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Preface

Welcome to the proceedings of DAGM 2011, which was held in Frankfurt am
Main, an international financial hub within Germany with a vibrant cultural
and historical tradition. The Johann Wolfgang Goethe University was founded
by the wealthy citizenship of Frankfurt in the early twentieth century. The uni-
versity, which currently has about 39,000 students, is today best known for its
law school, the department of economics, its medical school, but also for a rich
spectrum of life sciences and nature sciences. Research activity in visual pat-
tern recognition received a significant boost in Frankfurt through the forma-
tion of a Bernstein Focus Neurotechnology (BFNT) research cluster emphasizing
“vision in man and machine” through BMBF funding within the Bernstein net-
work for computational neuroscience. The research program brings together an
interdisciplinary team of computer scientists, neuroscientists, psychologists, ma-
chine learning and systems engineering experts to build an integrative framework
for computer vision systems.

This year, for the first time, the annual symposia of the German Pattern
Recognition Association (DAGM) and the German Classification Society (GfKl)
were held in conjunction. This offered a forum for scientific exchange and con-
tact between researchers in the two fields. We hope this provided a stimulating
experience for each participant in the joint conference.

The technical program of DAGM 2011 was a joint endeavor between the VSI
group of Goethe University and the Computer Vision Laboratory at Linköpings
Universitet and was supported through a grant from the Swedish ELLIIT excel-
lence initiative. The technical program covered all aspects of pattern recognition
such as early vision to machine learning and robot vision. The present proceed-
ings are the result of a multi-step process of paper solicitation, double-blind
review, and careful selection. The DAGM 2011 call for papers resulted in 98
submissions from authors in more than 24 countries. Each paper was subjected
to a rigorous double-blind review process and assessed by at least three Program
Committee members. Subsequently, a moderated per-paper discussion among
the reviewers led to a rating profile and a recommendation that summarized the
views of the reviewers. During a Program Committee meeting held in Frank-
furt in May 2011, the rating profiles, reviews, the discussion results and, where
necessary, additional review reports were evaluated. On this basis, the Program
Committee selected a total of 42 papers, corresponding to an acceptance rate of
below 43%. The Program Chairs assigned 20 papers for oral and 22 papers for
poster presentation, and grouped the papers into sessions. All accepted papers
are compiled in the present proceedings. We express our appreciation and thanks
to all the members of the Program Committee as well as the external review-
ers for their valuable service to the community. We would also like to express
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our thanks to all authors who submitted papers, for it is the vivid response of
authors to a conference call that makes a strong program possible.

We were proud to be able to present two invited talks from internationally
renowned scientists:

– Donald Geman: “Image Interpretation by Entropy Pursuit”
– Yann LeCun: “Learning Visual Feature Hierarchies”

These talks were complemented by a number of keynote talks invited by the
GfKl. Furthermore, four tutorials held by recognized experts were arranged:

— Tensors in Computer Vision and Image Processing, by Klas Nordberg
— Random Field Models for Natural Image and Scene Statistics, by Stefan

Roth
— Higher-Order Feature Learning: Building a Computer Vision “Swiss Army

Knife,” by Roland Memisevic
— Convex Optimization for Computer Vision, by Thomas Pock and Daniel

Cremers

Meanwhile, it is almost a tradition to have a Young Researchers’ Forum at
DAGM, where a carefully jury-selected ensemble of young researchers presented
their Master thesis work during the conference. This appreciation of theirs hope-
fully acts as an incentive for further noticeable scientific contributions.

For the first time, an “Adverse Vision Conditions Challenge” was initiated
as a satellite event to a DAGM conference, addressing the important area of
implementing computer vision on real-life video material which suffers from dif-
ferent strong degradations of image quality. The submitted contributions had to
comply with the same selection procedure as for the rest of the DAGM papers,
and four papers were selected for a particular AVCC poster session.

The technical program was complemented by a workshop on New Challenges
in Neural Computation (NC2), which was organized by Barbara Hammer and
Thomas Villmann on behalf of the GI-Arbeitskreis Neuronale Netze and the
German Neural Networks Society.

We would like to express our gratitude to all the kind people who contributed
to making DAGM 2011 in Frankfurt a success. This refers in particular to the
members of the Visual Sensorics and Information Processing Lab at Goethe Uni-
versity, and to the members of the Computer Vision Laboratory of Linköpings
Universitet, Sweden. We are indebted to Holger Friedrich, Christian Conrad and
David Dederscheck for their help with all local organizational matters, for Web
support and technical assistance, to the indefatigable Liam Ellis at Linköpings
Universitet for operating the Conference Management Tool (CMT) and author
communication during the review phase and while assembling the proceedings,
to Florian Meyer (Marburg University) for setting up the registration system, to
Kerstin Werschnik, Nicole Stender (Frankfurt) and Birgit Strassheim (Marburg)
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for back-office work concerning communication, social events, and accommoda-
tion issues, and finally our students and PhD students for a virtually uncountable
set of small and larger jobs along the way. Finally, we thank our sponsors, and ap-
preciate the initiative of Microsoft to provide the CMT conference management
system to the scientific community for free.

It was an honor for us to host the 33rd Annual Symposium of DAGM in
Frankfurt am Main in 2011, and we look forward to DAGM 2012 in Graz.

August 2011 Rudolf Mester
Michael Felsberg
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A Bayesian Approach for Scene Interpretation with
Integrated Hierarchical Structure

Martin Drauschke1 and Wolfgang Förstner2

1 Institute of Applied Computer Science, Bundeswehr University Munich, Germany
2 Institute of Geodesy and Geoinformation, University of Bonn, Germany

martin.drauschke@unibw.de, wf@ipb.uni-bonn.de

Abstract. We propose a concept for scene interpretation with integrated hierar-
chical structure. This hierarchical structure is used to detect mereological rela-
tions between complex objects as buildings and their parts, e. g., windows. We
start with segmenting regions at many scales, arranging them in a hierarchy, and
classifying them by a common classifier. Then, we use the hierarchy graph of
regions to construct a conditional Bayesian network, where the probabilities of
class occurrences in the hierarchy are used to improve the classification results
of the segmented regions in various scales. The interpreted regions can be used to
derive a consistent scene representation, and they can be used as object detectors
as well. We show that our framework is able to learn models for several objects,
such that we can reliably detect instances of them in other images.

1 Introduction

Scene interpretation is a very active research field in computer vision. Hence, hierarchi-
cal approaches can be found for categorizing images and detecting (complex) objects
in images, cf. [1–6], where often instances of general classes, such as, e.g., airplane,
building, cloth, dog, f ace etc. are to segment and to recognize. A different also very
challenging task is the detailed interpretation of terrestrial facade images, i. e., the
derivation of a scene description with information about the parts of the recognized
building. This task has been attracted by the computer vision community due to the fast
developments of virtual 3D city models. So far, such city models with several hundred
thousands of buildings are only used for visualization, but the integration of semantics
would significantly enrich their purpose. Obviously, the interpretation of facade images
should be performed automatically.

Buildings and their parts as windows, doors and balconies are very challenging ob-
jects due to their large variety in shape, size, color and texture. To detect such objects
in images, many different approaches have been proposed in last years. E.g., main au-
thors (see [7, 8]) try to classify pixels or larger patches using Markov Random Fields
(MRF). While their focus lies on separating building, ground, sky and vegetation from
each other.The contextual scene interpretation by considering different object sizes and
therefore image scales for object classification has already been applied in [3, 7, 9], but
these approaches either suffer under too simple regions, e.g., patches which cannot be
used for describing complex shapes, or they have a very high complexity.

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 1–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The spatial arrangement of facade elements is also considered in [10, 11] where the
authors propose to use spatial grammars for their scene interpretation. In [12–14] the
authors propose more ore less successful strategies for recognizing windows in facade
images, but rely on the rectangular shape of windows with strong contours and dis-
tinctive corners, or they consider the repetitive structure of many windows in building
facades. A very simple blob detector has been proposed by [15] who apply a saliency
based image analysis. In experiments, they obtained promising detection rates for win-
dows, but other facade parts, especially the smaller ones, have relatively low detection
rates.

The success of the window detectors leads to the question, if we could also design re-
liable detector for other facade parts as roof, doors or balconies. These objects are more
challenging due to their more variable appearance in images and their lower frequency.
Thus, we are pessimistic that this is a promising strategy. Instead of spending much
effort into modeling detectors for such objects, we propose to integrate segmentation
results in the scene interpretation. Thereby, we focus on object hierarchies, believing
that we obtain better classification results in case we integrate classification results of
higher image scales when analyzing lower image scales, e.g., we do not want to look
for windows or doors where we believe to see vegetation.

We propose a scene interpretation framework, which can be trained to detect in-
stances of various types. Therefore, we segment image regions at several image scales
and arrange them in a hierarchical order. [5] use their hierarchy to derive features from
various scales, which are used to build a feature vector for regions of the lowest scale
only. In contrast to [5], we also want to classify the regions at higher scales, thus we
individually derive features for each segmented region. We improve our classification
by an additional analysis using the region hierarchy, which we realize as a conditional
Bayesian network. Since Bayesian networks only infer hierarchy information, we also
integrate context knowledge by extracting features characterizing the neighborhood of
a region. This synthesis of methods enables us to develop a very flexible data-driven
scene interpretation approach.

The paper is organized as followed. In sec. 2, we present our concept of a conditional
Bayesian network which is constructed by using a hierarchy of segmented regions. Fur-
ther details to our approach are given in sec. 3. Then, we present our results in sec. 4.
In sec. 5, we discuss an extension of our approach for more general scene interpreta-
tion tasks. Finally, we summarize our approach and discuss possible extensions of it in
sec. 6.

2 Concept for Conditional Bayesian Network

We want to develop a methodology, which is able to detect instances of different classes.
These classes may describe well-shaped things, such as buildings and their parts as win-
dows or doors, and formless stuff, such as sky or vegetation. Due to the facts that we
look of objects which can be arranged hierarchically and we are interested in inter-
preting man-made scenes where we often find precisely detectable object contours, we
propose to segment distinctive image regions which are hierarchically ordered to obtain
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image evidence for further classification. This further step consists of three steps: ex-
tracting features for each region, classifying it by a conventional classifier, and finally
we construct a conditional Bayesian network to infer information through the hierar-
chy of regions. At we end, we have consistent classification of image regions, and the
classification results can be visualized in the image. Fig. 1 shows at the left side the
input image of a building scene in suburban environment, and below of it, the ideal
classification results of building and window are shown. At the right of fig. 1, we show
a hierarchy of manually segmented image regions.

Fig. 1. Left: Facade image (top row) and manually marked objects of class building (middle row)
and class window (bottom row) in yellow. Right: Hierarchical segmentation of building object
with parts of roof, wall, and window.

We call a segmented image region Sm, and note their hierarchical order by the parent-
relation π. I.e. for each region Sm we find exactly one parent Sπ(m), and the parent-
relation does not exist for top regions in the hierarchy. Usually, hierarchies are defined
by inclusion of smaller elements by larger ones. Hence, the parent of a region Sπ(m)
holds information on region Sm and of a distinctive neighborhood. In our point of view,
this is more realistic than learning about neighborhoods of all directions as typically
done in MRFs.

We derive a block of features F which consists of feature vectors Fm extracted from
region Sm. We use the region hierarchy and the block of features F to construct a
Bayesian network, as visualized in fig. 2. If we have segmented M regions, the graph of
the Bayesian network consists of M+1 nodes. For each region, we introduce M random
variables xm which are modeled discrete with C states, which describe the probability
for the m-th region to belong to one of the C classes. The additional node in the graph is
F which is treated like an observed random variable, because the features do not change
when inferring in the Bayesian network. Thus, F makes our network to a conditional
one.
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We obtain the best result for our scene interpretation, if we maximize the probability
P(x1, . . . ,xM,F), which we can approximate by

P(x1, . . . ,xM,F) (1)

= P(x1, . . . ,xM | F)P(F) (2)

= P(F)P(x1 | F) ∏
m>1

P(xm | xπ(m),F) (3)

= P(F)P(x1 | F) ∏
m>1

P(xm | xπ(m))P(xm | F) (4)

=̇ P(F)∏P(xm | F) ∏
m>1

P(xm | xπ(m)) (5)

∝ ∏P(xm | F) ∏
m>1

P(xm | xπ(m)). (6)

The right side of eq. 6 contains only two terms, which we want to derive from train-
ing data. Thereby, we approximate P(xm | F) by learning a classifier κ on the basis of
region-specific features, i.e. by P(xm | Fm). Then, classifier κ returns probabilities of
region Sm to belong to class c. The other term P(xm | xπ(m)) can simply be learned from
counting class labels of the training data dependent on the region hierarchy.

3 Realization Regarding Facade Image Interpretation

In this section, we describe how we have realized our concept for interpreting facade
images. We applied segmentation, feature extraction and classification methods which
are either designed with respect to that domain, or they are simple and efficient.

3.1 Hierarchical Segmentation

Several general and domain-specific approaches have recently been proposed to seg-
ment facade images. While the authors of [16] proposed a domain-specific strategy
with subdividing the scene into rectangles, we developed a more flexible segmentation
earlier, cf. [17]. There, we determine watershed regions in a dense scale-space with
41 scales. To reduce the number of regions, we proposed only to select stable regions,
i. e. we obtain M ≈ 1000 stable regions Sm. In experiments on facade images [17], we
showed that we are able to detect small objects, such as windows, and larger ones, such
as buildings. Furthermore, we showed that the hierarchy of stable regions reflects the
object structure.

3.2 Features of Regions

For each region Sm, we extract a D-dimensional feature vector with D = 65. We use
region-specific features as its area, circumference, form factor, and aspect ratio. Oth-
ers describe the region and the difference to its neighborhood, e.g. mean and standard
deviation of the color channels as well as the color differences. Furthermore, texture
features derived from Haar transform, characteristics of the gradients similar to HoG-
descriptors by [18], and characteristics of the generalized region by a 4-corner-polygon
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Fig. 2. Conditional Bayesian network derived from hierarchical segmentation of Fig. 1

as its angles or its area ratio to the original region. In preliminary tests, we evaluated
that these features are sufficient good for separating different objects. The correspond-
ing class label of each region, the best fitting label x̂m, is derived from manually labeled
annotations, cf. sec. 4.

3.3 Classification of Regions

Here, we describe how we design the classifier κ. Usually, at smaller scales, small
regions are segmented, which have homogeneous color or texture, but no characteristic
shape. At higher scale, this turns around: shape is often more informative than color or
texture. Therefore, we divide our set of segmented regions into subsets. Stability of a
region is defined in [17] by only slight changes of a region over several scales. Thus
we find each detected region in at least one of our five reference scales in scale space
(σ = 1,2,4,8,16). The lowest one defines the subset membership for classification.

For each training data subset, we perform a Linear Discriminant Analysis (LDA)
which determines the optimal feature subspace for separating the classes. There, we de-
termine class-specific probability density functions (PDF) by mixtures of three Gaus-
sian distributions (GM). Three GM are more reliable than just one, because we must
expect very heterogeneous data, e. g., building may have a homogeneously colored
wall, and they can be textured by their bricks. Then, we determine for each sample the
PDF for each of the C classes, and we obtain the probabilities for the sample’s class
membership xm after normalization. The class with the highest probability is taken as
result of the classification noted by x̃m.

3.4 Learning Probabilities of Hierarchy

For applying our conditional Bayesian network, we further need to determine probabil-
ities for class appearances in the region hierarchy. Again, we designed the probability
by depending it on the scale of region Sm. We derive the probabilities from counting the
relationships of targets of hierarchically ordered regions.

The class hierarchy itself might not be sufficient enough. E.g., if you recognize a
dark region in a red roof-region, then it is more likely a window than roof tiles, which
would be red again. Hence, we decided to specify the probabilities more detailed, and
we integrated the features of both regions, Sm and its parent Sπ(m). For each feature,
we model the PDF by class-dependent histogram with ten equally filled bins w.r.t. both
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regions, yielding in a 2D matrix of 100 entries. Evaluating the improvement of the
classification by the conditional Bayesian network, we are able to decide which feature
to choose for testing our algorithm.

3.5 Conditional Bayesian Network

The segmented regions are arranged in a hierarchy which forms a forest of trees. In
the Bayesian network, we model a random variable for each segmented region, which
has two parents: the random variable of the parent’s region and the random variable
describing the region’s classification in the LDA-subspace.

Now, we want to determine the best probabilities of all random variables, i.e. the
best classification results of all regions. Therefore, we apply the inference algorithm
of polytree-structured Bayesian networks as proposed in [19]. Since our structure of
hierarchically segmented regions only consists of trees, the inference algorithm is very
simple. As result we obtain vectors with C elements, each one reflecting the inferred
probabilities for a region’s class membership. The class label with the highest probabil-
ity is noted by x̃′m and selected as new classification result.

4 Experiments

4.1 Setup Up of Our Evaluation and Used Data

In the previous sections we described our concept and explained how we have real-
ized it. Now we want to show some results, and evaluate our approach. We tested our
classification framework on the benchmark data set by [20], where also regions of ob-
jects and the relations of parts are available. The data set contains of 60 facade images
and their manually labeled annotations, showing buildings of various sizes and styles,
mainly acquired in Germany and Switzerland. We divided the data set into five equally
sized subsets with 12 images, which were used for testing, while the other 48 were used
for training the classifier and learning the probabilities on hierarchy. By performing a
cross validation test, we managed each image being a test image exactly once.

For assigning target values for the regions, i.e., the best fitting class label x̂m, we first
check the manually labeled pixel-wise annotations of [20]. If there is one most dom-
inant class label, we select this label as target for the region. Otherwise, we check, if
the region overlaps with different objects, then we call the region mixture. Simultane-
ously, we check, if the regions overlaps with different objects where one is part of the
other, then it gets the class label of the superior class. Finally, if the region shows too
much image content, which is not labeled in the annotation, we assign this region to be
background. After determining the target of each region, we merge all classes together,
which appear less than 3%, and form a new class others. So, we hope to avoid many
misclassification due to the low appearance of some classes. In total, we will perform
a classification of regions considering the C = 7 classes building, window, vegetation,
car, mixture, background, others. The class others contains the regions with the origi-
nal class labels door, pavement, ground and sky.
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Table 1. Success and misdetection rates s and d of original classifier κ (LDA with GM) and s′
and d′ of classification with Bayesian network). p marks the portion of true samples of whole
data set.

class p s s′ d d′

building 0.319 0.488 0.648 0.457 0.4
vegetation 0.245 0.759 0.811 0.427 0.331
window 0.237 0.593 0.729 0.527 0.386
others 0.91 0.215 0.323 0.56 0.392
background 0.40 0.66 0.77 0.833 0.709
car 0.37 0.239 0.227 0.687 0.497
mixture 0.31 0.15 0.002 0.854 0.873

Fig. 3. Four scenes from Berlin (Germany) and classification results from the conditional
Bayesian network. Top row: results w.r.t. classes building, window, and car, respectively. Bot-
tom row: w.r.t. classes building, vegetation, and window, respectively.

4.2 Results

In total, our segmentation algorithm segments 131060 stable regions in 60 images.
We tested our approach and obtained the two classification results x̃m and x̃′m for each
region and compared them to the the region’s target x̂m. We determined the number
of true and false positives, respective, and we define their portion of all true respec-
tively all positively classified samples as success-rate (s or s′) and mis-detection rate
(d or d′). The prime indicates the classification after inferring the Bayesian network.
With classification by classifier κ (LDA and GM) we obtained a success of s = 0.514
correctly classified regions, after inferring the information in the Bayesian network, we
could improve our success-rate to s′ = 0.620. The class-specific success-rates of our
classification are shown in table 1.

Table 1 also shows the bad classification results for less occurring classes. In our
data set, we have 80% of all regions with a label building, vegetation or window. Thus,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4. Scene in Bonn (Germany). In the top row, (a) shows the original image, (b,c) the output of
building and vegetation at the highest scale, respectively. In the next row, (d,e) show the κ-output
for vegetation at two different lower scales and (f) the κ-output for window at a lower scale. In
the bottom row, (g,h) show the output of the Bayesian network for vegetation at the same scales
as a row above and (i) the output of the Bayesian network for window at the same scale as a row
above. Last row shows differences between CBN-output and κ-output. Red regions are no longer
classified, green regions are newly classified as vegetation or window, respectively.

classifiers typically perform better, if they perform well on these classes. Consequently,
low occurring classes as background, car and mixture have very low success rates.

Fig. 3 shows three results from Berlin, Germany, where we obtain really good results
with respect to one class. Here we see, that our classification scheme could be used for
object detection in images as well. For further visual inspection, we prepared images
showing the output of the classifications in fig.4. Within the image part visualized as
building in (b) the classification results in the lower scales (d,e,f) compared to (g,h,i)
improve significantly.

5 Adaptation of the Concept

Our concept for a Bayesian network used for scene interpretation as presented in sec. 2
only relies on (i) ground truth annotations, (ii) a hierarchical segmentation of the scene,
(iii) the extraction of features for segmented regions including characteristics on their
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neighborhood and (iv) a classifier which returns probabilities regarding the region’s
class membership. Our proposed Conditional Bayesian network remains, although the
other components may get changed. So far, we chose these components with respect
to the domain of interpreting man-made scenes, where we want to recognize complex
objects, such as facades, as well as their parts including their structure.

We are confident that we could transfer our concept to more general scene interpre-
tation tasks as segmenting and classifying objects using the MSRC data set [21] or Im-
ageNet [22]. These data sets do not use overlapping classes, i. e. objects and their parts
(building resp. window), but show symbolic image descriptions with a single class for
each pixel. The mapping between the segmented regions can be easily adapted, maybe
our additional label mixture can be dropped. Furthermore, our segmentation could be
exchanged by [9, 23], because the analysis of image partitions at a few scales might
be more efficient for general recognition tasks than working with selected, but stable
regions from various scales. Then, our feature vectors could get extended by additional
features, e. g. [18] or [21], and a more powerful classifier as random forests or logistic
regression could get integrated. Consequently, the classification results of a reference
scale should be selected for its evaluation.

6 Conclusions

We propose a methodology for scene interpretation which combines the hierarchically
ordered output of image segmentation and classification on the basis of region-specific
features. The tree-structure of the segmented image regions is used to construct a con-
ditional Bayesian network, and we may apply a very efficient inference algorithm. In
the conditional Bayesian network, we combine the probabilities reflecting the region’s
class membership by a common classifier and the class-specific coherences within the
hierarchy to improve the classification of segmented regions.

We presented reasonable results for detecting building parts and other objects in
terrestrial facade images using the benchmark data set [20] and working with seven
classes. We have increased the classification performance of our segmented regions
from 51% (ordinary classification) to 62% (classification with conditional Bayesian
network). Our approach is very efficient, because we may learn fast the needed proba-
bilities on the hierarchy and the region-specific classification, and the inference of the
network is simpler than in common MRFs.

Finally, we discussed how our approach can get generalized for application in other
scene interpretation tasks. Further developments w.r.t. the domain of facade images
could be done by integrating our results as input of a grammar-based approach. In
our point of view, this extension should further improve the results, because they also
consider the spatial arrangement of facade elements, e.g., the repetitive structures of
windows.
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5. Lim, J.J., Arbeláez, P., Gu, C., Malik, J.: Context by Region Ancestry. In: ICCV (2009)
6. Ommer, B., Buhmann, J.: Learning the Compositional Nature of Visual Object Categories

for Recognition. PAMI 32(3), 501–516 (2010)
7. Kumar, S., Hebert, M.: Man-made Structure Detection in Natural Images using a Causal

Multiscale Random Field. In: CVPR, vol. I, pp. 119–226 (2003)
8. Verbeek, J., Triggs, B.: Region Classification with Markov Field Aspect Models. In: CVPR

(2007)
9. Plath, N., Toussaint, M., Nakajima, S.: Multi-class Image Segmentation using Conditional

Random Fields and Global Classification. In: ICML, pp. 817–824 (2009)
10. Dick, A.R., Torr, P.H.S., Cipolla, R.: Modelling and Interpretation of Architecture from Sev-

eral Images. IJCV 60(2), 111–134 (2004)
11. Ripperda, N., Brenner, C.: Evaluation of Structure Recognition Using Labelled Facade Im-
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Abstract. Many fields of research in biology, motion science and robotics
depend on the understanding of animal locomotion. Therefore, numerous
experiments are performed using high-speed biplanar x-ray acquisition
systems which record sequences of walking animals. Until now, the evalu-
ation of these sequences is a very time-consuming task, as human experts
have to manually annotate anatomical landmarks in the images. There-
fore, an automation of this task at a minimum level of user interaction is
worthwhile. However, many difficulties in the data—such as x-ray occlu-
sions or anatomical ambiguities—drastically complicate this problem and
require the use of global models. Active Appearance Models (AAMs) are
known to be capable of dealing with occlusions, but have problems with
ambiguities. We therefore analyze the application of multi-view AAMs
in the scenario stated above and show that they can effectively han-
dle uncertainties which can not be dealt with using single-view models.
Furthermore, preliminary studies on the tracking performance of human
experts indicate that the errors of multi-view AAMs are in the same
order of magnitude as in the case of manual tracking.

1 Introduction and Related Work

Understanding animal locomotion is a crucial part of countless problems ranging
from the field of biology over motion science to robotics. To name but a few,
these problems include gaining a better understanding of evolution [1], the devel-
opment of mathematical models of locomotion such as the spring-mass model [2],
or building walking robots. To answer open questions in the field of locomotion
research, avian bipedal locomotion provides an appropriate testbed. One reason
for the suitability is that bird species exist in countless variations of important
locomotion parameters like body mass and limb proportions and exhibit a large
range of walking and running speeds.

To gain a profound and detailed insight into terrestrial bird locomotion, many
different specimen of various species need to be studied. Nowadays, these studies
are often entirely based on high-speed x-ray videography. As opposed to exter-
nal marker based methods, the key advantage is that all important parts of the
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(a) Acquisition System (b) Example Sequence

Fig. 1. (a) Biplanar high-speed x-ray acquisition system (NeurostarR©, Siemens AG).
(b) Example sequence of a quail (Coturnix coturnix) for the dorsoventral (top row)
and lateral (bottom row) camera view acquired with this system.

locomotor system can be observed directly [3,1]. A state-of-the-art x-ray acquisi-
tion system is shown in Fig 1a. The system consists of two movable x-ray image
intensifiers (C-arms) which are positioned around a table and allow for record-
ings at a high temporal and spatial resolution (1536× 1024 pixels at 1 kHz). For
the recording of animal locomotion sequences, a non-metallic treadmill is placed
on the central table. In Fig. 1b, the locomotion of a quail (Coturnix coturnix )
acquired using this system is exemplarily shown.

The evaluation of the locomotion sequences is mainly based on anatomical
points of interest (landmarks), as for instance the femur (thighbone), the hip
joints or the knee joints. Example landmarks used for a quail are shown in Fig. 3.
Until now, the landmarks have to be located manually by human experts. Due
to the high temporal resolution, however, this is a highly time-consuming task
which has prevented the realization of large-scale studies up to now.

Therefore, there is urgent need to automate the task of anatomical landmark
tracking for this application at a minimum of user interaction. At first sight, this
might seem to be an easy task, as key point tracking is a well-researched topic
in computer vision. Yet, there are several issues which tremendously complicate
the procedure. The main problems are the severe and continuously changing
occlusions in the x-ray images in consequence of the motion of the animal and
the imaging process. This effect causes local image areas around anatomical
landmarks to be extremely variable. Thus, local tracking techniques like optical-
flow tracking [4], KLT-tracking [5], region-based tracking [6] or SIFT-tracking
[7] are rendered impossible [8].

Model-based global approaches, on the other hand, explain each image as a
whole and hence are less prone to local disturbances. A prominent example in
this context is the registration of a given 3D computer tomography (CT) data set
to a 2D image [9,10,11]. In our scenario, however, this is a very difficult task, as
for each specimen a full-body CT scan plus a skeletal model would be necessary.

Active Appearance Models (AAMs) [12,13,14] offer another way of global
modeling. They are entirely based on given training images having annotated
landmarks, and a global model of shape and texture is learnt automatically. The
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(a) t = 0.641 s (b) t = 0.841 s

Fig. 2. Example for possible anatomical ambiguities. (a) and (b) depict the images 641
(t = 0.641 s) and 841 (t = 0.841 s) of a quail sequence, respectively. Both images seem
to show the identical pose of the walking bird. However, in the first image, the quail’s
right leg is ahead of the left leg and in the second image it is vice versa.

general suitability of AAMs for the present tracking task is shown in [8], where a
proof-of-concept is given and the impact of preprocessing methods and the choice
of training images are analyzed. Further difficulties of the tracking task at hand
which are not already covered in [8] are anatomical ambiguities, especially for
parts of the locomotor system. An example for this case is shown in Fig. 2,
where two approximately identical images are shown, which however represent
opposing states of a walking period. To resolve these ambiguities, either temporal
modeling or further context knowledge is necessary. Because one goal is to keep
the amount of user-interaction and hence the number of training images small,
a temporal model as described in [15] is not applicable. Instead, in the following
we analyze the suitability of using both camera views at a time to resolve these
uncertainties. For this task, we employ multi-view AAMs [16,17].

The remainder of this paper is organized as follows. In Sect. 2 we first give a
brief overview of basic AAMs and then describe the application of these models
for the current tracking task. Thereafter, we describe the adjustments presented
in [16,17] to achieve a multi-view model. We present our experiments and results
in Sect. 3. At the end we conclude our findings and discuss future work.

2 Active Appearance Models

Active Appearance Models (AAMs) [12,13,14] are well-known statistical models
which are used to represent the appearance of objects in digital images. In the
following, basic AAMs, their application on locomotion data and the extension
on multiple camera views are described.

2.1 Training Step

In the training step of AAMs, the goal is to learn valid appearances of an object
based on exemplary images. As the appearance is influenced by both shape and
texture, it is necessary to model these two in a combined framework. Thus, the
training step consists of building a shape model, a texture model and a combined
model. The training data consist of N training images I1, . . . , IN and M two-
dimensional landmarks ln = (xn,1, yn,1, . . . , xn,M , yn,M )T for each image In.
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Modeling Shape. The goal in this step is to determine the joint movements
of the given landmarks in a statistical manner by using Principle Component
Analysis (PCA). As first step, all shapes are aligned with respect to scale,
rotation and translation. Then, the landmarks are combined into the matrix
L = (l1 − lμ, . . . , lN − lμ), where lμ = 1/N

∑N
n=1 ln is the mean shape. The PCA

is applied on L, which gives the matrix P L of shape eigenvectors. By this means,
an arbitrary shape l′ can then be described by its shape parameters bl′ via

l′ = lμ + P Lbl′ , where bl′ = P T
L

(
l′ − lμ

)
. (1)

Modeling Texture. The combined variations of the gray values are analyzed in
a similar manner as in the previous step. The object textures of the images In are
shape-normalized to fit a common reference shape, forming the texture vectors
gn. Afterwards, a PCA is applied on the matrix G = (g1 − gμ, . . . , gN − gμ),
where gμ = 1/N

∑N
n=1 gn is called the mean texture. The result are the texture

eigenvectors P G, which can be used to represent an arbitrary texture g′ by its
texture parameters bg′ by means of

g′ = gμ + P Gbg′ , where bg′ = P T
G

(
g′ − gμ

)
. (2)

Modeling Appearance. In the third sub-step, the shape parameters bln
and

the texture parameters bgn
are concatenated into a new vector cn = (wbT

ln
, bT

gn
)
T

for each training image In. Here, w ∈ R is a scaling factor to account for
the different units of shape and intensity. Then, a final PCA is applied on
C = (c1, . . . , cN ), which yields the matrix P C of appearance eigenvectors. Each
object instance with shape parameters bl′ and texture parameters bg′ can then
be described by its appearance parameters bc′ via

c′ = (wbT
l′ , b

T
g′)

T
= P Cbc′ , where bc′ = P T

Cc′. (3)

By restricting P C on the leading eigenvectors with a certain amount of the total
variance, the number of model parameters can be reduced dramatically.

2.2 Model Fitting

To fit a trained model on new data, the necessary parameter updates δc are
predicted based on the texture difference δg between model and image. For this
purpose, a linear model δc = Rδg is used. The coefficients R are estimated using
multivariate regression by systematically displacing the known model parameters
of the training images. For a previously unseen image, the AAM can then be
fitted by iteratively adapting the model parameters according to R and δg.

2.3 Application on Locomotion Data

For the application of AAMs to the task of landmark tracking in locomotion
data, several issues have to be considered. A fundamental question is concerned
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(b) Dorsoventral View
(1) 5th vertebra
(2) furcula (wishbone)
(3) caudal carina(rear breastbone)
(4) pygostyle (pearson’s nose)

(5) pelvis (caudal)
(6) pelvis (cranial)
(7) left acetabulum
(8) left femur (thighbone)

(9) left crista cnemialis
(10) right acetabulum
(11) right femur (thighbone)
(12) right crista cnemialis

(c) Associations between Landmarks and Anatomical Structures

Fig. 3. Overview of the anatomical landmarks used in the two camera views of the
employed quail data set

1st shape parameter
(lateral model)

2nd shape parameter
(lateral model)

1st shape parameter
(dorsoventral model)

2nd shape parameter
(dorsoventral model)

Fig. 4. Influence of the shape parameters of the lateral and dorsoventral shape models.
The arrows indicate the movement of the landmarks for positive parameter values. For
negative values, the orientation of the arrows is the other way around. The shown
landmarks are described in Fig. 3.

with the selection of training images and the resulting scope of the model. Pos-
sible options range from generic inter-species bird models over specimen-specific
models to models for each individual locomotion sequence. Due to differences
in anatomy, annotated landmarks and the experimental setup between multiple
recordings, we concentrate on sequence-based AAMs.

In this case, annotated images taken from the sequence to be analyzed are
used for training. Note that this is an important difference compared to standard
AAMs which are usually trained on a set of independent object instances (e.g. a
face database in the context of face modeling). As a consequence, the resulting
AAM becomes a basic locomotion model which expresses the dynamic variation
of the landmarks over time. An example for this effect on the quail data set (see
Fig. 3) is shown in Fig. 4. It depicts the influence of the first and second shape
parameters for a lateral and a dorsoventral AAM. It can clearly be seen that
for both models the first shape parameter governs the movement of the thigh
bones. The second parameter mainly represents the typical cervical movement
of the quail which occurs during locomotion.

Another area of concern for this application is the huge shape non-stationarity
(cf. [18]) which is induced by the movement of the landmarks during locomotion.
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As at least a certain degree of shape stationarity is assumed for AAMs, currently
only the torso, the knee joint and the hip joint landmarks (see Fig. 3) are con-
sidered for automated tracking. In general, simply including the toe landmarks,
for instance, will lead to a drastically decreased tracking performance.

More details on the topics described above can be found in [8].

2.4 Multi-view Model

The extension of AAMs on multiple camera views is presented by [16,17] in the
context of medical image analysis. If we denote the number of camera views to be
modeled by K, then the nth training example consists of the images I(1)

n , . . . , I(K)
n

and the landmarks l(1)n , . . . , l(K)
n in these images. As first step, the landmarks l(k)

n

of all training examples are aligned camera-wise just like in the single-view case.
Then, all training images have to be shape-normalized, however still indepen-
dently for each camera view, yielding g

(k)
n . The main idea is then to simply

concatenate the landmark vectors and the texture vectors of the camera views
for each training example 1 ≤ n ≤ N in the sense of

ln =
(

l(1)n

T
, . . . , l(K)

n

T
)T

and gn =
(

g(1)
n

T
, . . . , g(K)

n

T
)T

. (4)

In this way, each training example actually consisting of multiple shapes and
textures can effectively be reduced to just one landmark vector ln and one texture
vector gn. The subsequent steps exactly follow those from the case of the single-
view model, and the multiple views are modeled implicitly.

3 Experiments and Results

In the following we experimentally analyze the benefits of multi-view AAMs in
comparison to single-view AAMs for the present task of anatomical landmark
tracking. As the main goal is to achieve sound tracking results at a minimum of
user interaction, the essential questions to be answered are:
– Can multi-view AAMs substantially resolve anatomical ambiguities which

can not be overcome using single-view models?
– Is a reduction of the amount of training data possible with multi-view AAMs?
– How do these models perform compared to manually tracked landmarks?

To answer these questions, all experiments were conducted on a real data set
for which comprehensive ground-truth landmark positions are available. This
data set shows the locomotion of a quail from two camera views (lateral and
dorsoventral, see Figs. 1 and 3) and has a length of 2245 images (2.245 s recorded
at 1 kHz). As a rescaling of the original images (1536 × 1024) to a size of 25%
does not lead to a substantial loss of tracking quality [8], all experiments were
conducted on the smaller versions for performance reasons. The evaluations,
however, were performed with respect to the original image size in any case.
Ground-truth landmark positions obtained from experts are available for 81
frames evenly spread over the entire sequence and allow a systematic evaluation.
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Fig. 5. Comparison of the tracking results between a single-view and a multi-view AAM
for the landmarks of the lateral camera view. Using a multi-view model, anatomical
ambiguities can be substantially resolved. As a result, the tracking quality of the knee
landmarks 8, 9, 11 and 12 is drastically improved.

The quantitative evaluation of the results is based on the Euclidian distance
between tracked and ground-truth landmark, which is known as point to point
error [19].

3.1 Resolving Anatomical Ambiguities

In the course of this paper we presented an example for anatomical ambiguities
which can arise in locomotion sequences (see Fig. 2). Furthermore, we stated
that these uncertainties can not be resolved using single-view AAMs and that
the application of multi-view AAMs is inevitable. To support this hypothesis,
we trained two single-view AAMs on the lateral and dorsoventral view of the
data set and compared the results with an—in other respects identical—multi-
view AAM. For training, 15 images from one walking period at the end of the
sequence were selected. Due to the ambiguities described above, the single-view
model of the lateral view has severe problems of locating the knee landmarks
correctly and even occasionally mixes the landmarks for the left and right knee
up. The comparison of single-view and multi-view model is given in Fig. 5. It
can clearly be seen that the multi-view model drastically improves the tracking
results of the knee landmarks (8, 9, 11, 12, see Fig. 3). Small errors, as, for
instance, indicated by the 25% quartiles, are reduced observably, however, the
major enhancements are present in the larger error regions. The median error
for the right knee landmark (12) is, for instance, reduced from 20 px in the
single-view case to 8 px in the multi-view case.

For the torso landmarks, however, no substantial improvement is observed.
This result can be explained by the fact that the torso landmarks usually have
a low ambiguity due to low interference with parts of the locomotor system.

3.2 Reduction of the Amount of Training Data

One very important goal is to keep the human interaction spent for landmark
labeling at a minimum to allow for a large amount of data to be processed.
Therefore, the amount of training images is an important factor. However, less



18 D. Haase, J.A. Nyakatura, and J. Denzler

Landmark 9 (crista cnemialis)

Number of Training Frames

P
o
in
t
to

P
o
in
t
E
rr
o
r
[p
x
]

0
5

10
15
20
25
30
35
40
45
50
55
60

)

3 6 9 12 15

(a)

Landmark 2 (furcula)

Number of Training Frames

P
o
in
t
to

P
o
in
t
E
rr
o
r
[p
x
]

0
5

10
15
20
25
30
35
40
45
50
55
60

( )

3 6 9 12 15

(b)

M
e
th

o
d

L
a
te
ra
l
P
a
rt

o
f
M
u
lt
i-
v
ie
w

M
o
d
el

L
a
te
ra
l
S
in
g
le
-v
ie
w

M
o
d
el

Fig. 6. Influence of the reduction of training data on single-view and multi-view AAMs.
The results are shown for (a) an exemplary knee landmark (crista cnemialis) and (b)
an exemplary torso landmark (furcula).

training images usually cause greater uncertainties and hence greater errors dur-
ing tracking. As discussed in the last subsection, the multi-view model is capa-
ble of reducing uncertainties. For this reason, an interesting question is whether
multi-view AAMs can be used to decrease the necessary amount of training data.

To answer this question, we compared the tracking results of single-view and
multi-view AAMs with identical parameters for varying numbers of training
frames. The frames were chosen from the third walking period of the quail in the
middle of the sequence. As in the last subsection, the results vary considerably
between torso landmarks and landmarks of the locomotor system. In Figs. 6a
and 6b, example results for both cases are shown. The former depicts the case
for a knee landmark (landmark 9, left crista cnemialis, see Fig. 3). Here, it can
be seen that the errors of both the single- and the multi-view model increase as
the amount of training frames is reduced. However, the errors for the single-view
model rise much more rapidly. In the case of the torso landmark, the results
remain approximately constant for both the single- and the multi-view models.
Again, this can be explained by the low ambiguity of this kind of landmarks.

Above results indicate that multi-view models can be used to decrease the
necessary amount of training frames. While the uncertainty of the torso land-
marks can not be decreased substantially as they are not subject to anatomical
ambiguities, the uncertainty of the locomotion landmarks can be reduced.

3.3 Comparison to Manual Landmark Tracking

Tracking Time. For the multi-view model presented in Subsec. 3.1, a total
time of 38.20 min (15.21 min training, 22.99 min tracking) was required. As the
sequence has a total number of 2245 images per camera view, this corresponds
to a time of 0.51 s per image. Human experts, on the contrary, usually need at
least about 45 s per image, which results in speed-up factors greater than 90.

Accuracy and Precision. To allow for a meaningful comparison between au-
tomated tracking results and manual tracking, currently a large-scale study on
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the accuracy and precision of human experts is in progress. Here, four experts
are to label one and the same locomotion sequence, three times each, and inde-
pendently of one another. Unfortunately, not all results are available to date.

Yet, first comparisons between multiple labelings of two experts for the given
data set indicate that the typical human errors are in the range of about 0.5 px
(min.), 5.5 px (1st quartile), 9 px (median), 14 px (3rd quartile) and 40 px (max.).
Taking these preliminary results into account, we can state that the errors of
the multi-view AAM shown in Fig. 5 are in the same order of magnitude as the
manual errors.

4 Conclusions and Further Work

In this work we analyzed the benefits of multi-view Active Appearance Models
for the application of anatomical landmark tracking in biplanar x-ray locomotion
sequences. We showed that multi-view models perform substantially better than
comparable single-view models in situations of high uncertainty, e.g. for frames
with anatomical ambiguities. Furthermore, we compared single-view and multi-
view models for varying amounts of training data and demonstrated that the
latter can be used to reduce the necessary amount of user labeled training images.
Finally we stated that, based on preliminary studies, the performance of multi-
view AAMs is in the same order of magnitude as in the case of manual tracking.

An interesting point for future work is to expand the presented approach on
landmark configurations with a substantially larger non-stationarity, as for ex-
ample shapes including toe landmarks. Also, local refinement methods could be
analyzed in order to obtain an even more accurate adaptation to the anatomical
structures. The preliminary studies on the precision of manual tracking should
be continued to enable a more profound comparison to automated methods.
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Abstract. We present a convenient framework for Sobolev active con-
tours and surfaces, which uses an implicit representation on purpose, in
contrast to related approaches which use an implicit representation only
for the computation of Sobolev gradients. Another difference to related
approaches is that we use a Sobolev type inner product, which has a bet-
ter geometric interpretation, such as the ones proposed for Sobolev active
contours. Since the computation of Sobolev gradients for surface evolu-
tions requires the solution of partial differential equations on surfaces,
we derive a numerical scheme which allows the user to obtain approx-
imative Sobolev gradients even in linear complexity, if desired. Finally,
we perform several experiments to demonstrate that the resulting curve
and surface evolutions enjoy the same regularity properties as the origi-
nal Sobolev active contours and show the whole potential of our method
by tracking the left ventricular cavity acquired with 4D MRI.

1 Introduction

Several problems in computer vision, such as image registration, segmentation,
stereo, and denoising, can be formulated as energy minimization problems. If the
modeled energy is convex, several global solution techniques can be used to find
a solution, e.g. [10,16]. There are, however, some cases where local techniques,
such as gradient descent, have to be used:

– The energy to be minimized is not convex, e.g. special energies for vessel
segmentation [11].

– The energy is convex, but the global minimum does not correspond to the
desired solution.

A typical example for the latter scenario is the usage of the Chan-Vese model
for tracking applications, e.g. [18]: this energy can be convexified [3], but its
global optima may not correspond to meaningful results and thus local methods,
such as gradient descent, have to be used.

During the last two decades, the idea of Sobolev gradients [12] has turned
out to be a powerful advancement in gradient descent based optimization and it
has been applied quite successfully to several computer vision problems, such as
deformable registration [21], image segmentation [20,6], and image denoising [4].
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Put simply, the idea of Sobolev gradients is to project the standard L2 gradient
of an energy, which is obtained via the calculus of variations, into a subspace of
L2 which contains more regular functions, i.e. a Sobolev space. Projecting the
gradient usually requires the solution of an elliptic partial differential equation
(PDE) and has to be done in every iteration step. The computation of Sobolev
gradients for active contours and surfaces is even more involved, because one
needs to solve this PDE on evolving curves or surfaces, respectively. While the
computation of Sobolev gradients for contours can be done in linear complexity
[20], the computation for surfaces enforces the solution of an equation system
due to the elliptic character of the problem. Although it has been demonstrated
by [6] and [8] that Sobolev type surface evolutions are computationally feasible,
there is still some space for improvements, which shall be demonstrated by this
paper:

1. In contrast to related approaches for surface evolutions [6,8] we will employ a
geometrically motivated Sobolev-type inner product, which allows the user to
weight the translational and the deformational component of the computed
gradient. This inner product is related to the ones that have been proposed
for active contours by [20,19].

2. All previous approaches for Sobolev type curve and surface evolutions use
either no implicit surface representation at all [8], or an implicit surface
representation only for projecting the gradient [20,6]. In contrast to this, we
use an implicit representation throughout the whole paper, which yields a
convenient framework for Sobolev type curve and surface evolutions.

3. In order to solve the projection step in a computationally efficient manner,
we propose to turn the resulting elliptic PDE into a parabolic one, which
corresponds to a continuous gradient descent. We further split the elliptic
operator in such a way that a standard semi-implicit time discretization can
be used. If desired, one can even use operator splitting techniques, e.g. [22],
in order to obtain an approximative Sobolev gradient in linear complexity.

Before we explain the theory of Sobolev spaces on implicit surfaces in Sec. 3, we
briefly review the classical L2 framework for variational level set based segmen-
tation in Sec. 2. In Sec. 4 we derive the proposed numerical scheme and in Sec.
5 we verify the expected properties of the proposed method experimentally.

2 The Classical L2 Framework

The considerations in the remainder of this paper are based on a signed distance
representation of the evolving curve or surface S ⊂ Ω ⊂ Rd (d = 2, 3):

φ(x) =

⎧⎪⎨⎪⎩
−d(x,S), if x is inside S,

0, if x is on S,

+d(x,S), if x is outside S,

(1)

where φ : Ω ⊂ Rd → R. In the following we will use the well-known property
|∇φ| = 1 in order to simplify the notation whenever possible.



Implicit Sobolev Surfaces 23

We assume that our segmentation problem is modeled as a minimization prob-
lem of the form

min
φ

E(φ). (2)

In order to make the following derivations more illustrative we further assume
that E is a linear combination of a region and a surface integral, e.g.

E(φ) =
1
|S|

∫
Ω

Hε(−φ)f dx +
α

|S|
∫

Ω

δε(φ)g dx, (3)

where

Hε(φ) =

⎧⎪⎨⎪⎩
0, φ < ε,
1
2 + φ

2ε + 1
2π sin(πφ

ε ), |φ| ≤ ε,

1, ε < φ,

δε(φ) =

{
1
2ε + 1

2ε cos(πφ
ε ), |φ| ≤ ε,

0, |φ| > ε,

(4)
are first-order accurate approximations of the Heaviside function H and its dis-
tributional derivative δ, cf. [13]. Note that this energy is made scale-invariant by
normalizing it by the surface area |S|. Computing the first variation F (E, ψ) of
E yields

F (E, ψ) =
d

dt
E(φ + tψ)

∣∣∣∣
t=0

= − 1
|S|

∫
Ω

δε(φ) [f + αdiv (g∇φ)] ψ dx = 0, (5)

where ψ is an arbitrary variation of φ. Taking a closer look at (5) we identify
the L2-type inner product

F (E, ψ) = 〈− (f + αdiv (g∇φ)) , ψ〉L2 = 0, (6)

where

〈u, v〉L2 =
1
|S|

∫
Ω

δε(φ)uv dx. (7)

The key observation, first made by [20] and [6], is that the gradient of the energy,
i.e. − (f + αdiv (g∇φ)), depends on the choice of the inner product and we thus
write

∇L2E = − (f + αdiv (g∇φ)) . (8)

This gradient is usually used in a continuous gradient descent

∂tφ = −δε(φ)∇L2E (9)

in order to evolve the contour or surface towards the desired configuration.
The problem of ∇L2E is that it inherits the local behavior of the image data

to be segmented, cf. Fig. 1. This makes any curve or surface evolution based on
∇L2E very local and prone to get stuck in an undesired local minimum [20]. By
using an inner product in (6) which enforces the computed gradient to be more
regular, i.e. to be an element of a Sobolev space, we can solve this problem.
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intermediate step ∇L2E Sobolev gradient

Fig. 1. We compare the classical L2 gradient and the Sobolev gradient visualized in
the narrow band around the contour. Note that the Sobolev gradient is much more
regular than the L2 gradient. (The image data taken from [1].)

Before we proceed, we want to briefly discuss the computation of the first
variation in (5). It has been demonstrated in [7] that computing the first variation
with respect to the embedding function, as done in (5), is different to computing
the first variation of E with respect to the surface itself. The technique presented
in [7] for converting level set gradients to shape gradients is, however, only
available in two dimensions. If a similar technique becomes available for three
dimensions, it would also make the proposed framework more geometric, but
until then we rely on computing the first variation with respect to φ.

As a consequence, our definition of ∇L2E is slightly different to the usual
convention of defining 〈u, v〉L2 =

∫
Ω uv dx and ∇L2E = −δε(φ) [f + αdiv(g∇φ)].

This way, the inner product defined in (7) can be interpreted as an approximation
to the L2 inner product for functions defined on S rather than functions defined
on Ω. Thus, ∇L2E as it is defined in (8) shall be interpreted as a function defined
on S. This interpretation would, of course, give rise to the question of how ∇L2E
has to be extended to the support of δε in order make the evolution in (9) well
defined, but since the definition of ∇L2E makes sense for all points in Ω this
extension is naturally given.

3 Sobolev Spaces on Implicit Surfaces

As discussed in the last subsection, carrying out the computation of the energy
gradient in a Hilbert space which contains more regular functions would lead to
more regular gradients, cf. Fig. 1. A natural choice are Sobolev spaces, because
they enforce not only the L2 norm of the function itself, but also its derivatives
to be finite.

3.1 Sobolev Spaces

The Classical Sobolev Space H1. In [6,8] a Sobolev space of the following type
has been used for obtaining more regular gradients:

H1(S) =
{
u ∈ L2(S) : ‖u‖H1 < ∞}

, (10)
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where ‖u‖2
H1 = 〈u, u〉H1 ,

〈u, v〉H1 = λ〈u, v〉L2 +
1
|S|

∫
Ω

δε(φ)∇Su · ∇Sv dx, λ > 0. (11)

Noting that the unit outward normal is given by η = ∇φ we can write the
intrinsic surface gradient as

∇Su = (I − η ⊗ η)∇u, (12)

which is a projection of ∇u onto S, cf. [2]. In contrast to [6,8] we decided to
weight the zero order component of 〈·, ·〉H1 , because this will allow us to better
compare H1 to the following Sobolev space.

The Geometrically Motivated Sobolev Space Ĥ1. The reason why we propose to
use a different Sobolev space is that the zero order component 〈u, v〉L2 of H1 has
no geometric interpretation. Inspired by [20] we propose the following Sobolev
space

Ĥ1(S) =
{
u ∈ L2(S) : ‖u‖Ĥ1 < ∞}

, (13)

where ‖u‖2
Ĥ1 = 〈u, u〉Ĥ1 ,

〈u, v〉Ĥ1 = λū · v̄ +
1
|S|

∫
Ω

δε(φ)∇Su · ∇Sv dx, λ > 0, (14)

and
ū =

1
|S|

∫
Ω

δε(φ)uη dx. (15)

The benefit of this Sobolev space is that the zero order component of the inner
product has a geometric interpretation, ū is the translational amount of u. This
geometric meaning can also be observed experimentally, cf. Sec. 5.

3.2 Computing Sobolev Gradients

Fortunately, Sobolev gradients can be computed easily from the standard L2

gradient by means of the Riesz representation theorem [9]. In order to simplify
the notation we define u = ∇H1E, û = ∇Ĥ1E, and w = ∇L2E. We further define

−
∫

Ω

· dx =
1
|S|

∫
Ω

δε(φ) · dx. (16)

Computing ∇H1E. Applying the representation theorem we obtain:

〈w, v〉L2 = −
∫

Ω

wv dx = −
∫

Ω

[λuv + ∇Su · ∇Sv] dx = 〈u, v〉H1 , (17)

where v is chosen arbitrarily. Noting that S is a closed surface and applying
integration by parts we obtain

−
∫

Ω

wv dx = −
∫

Ω

[λu − ΔSu] v dx, (18)
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where
ΔSu = div ((I − η ⊗ η)∇u) (19)

is the intrinsic surface Laplacian, i.e. the Laplace-Beltrami operator, cf. [2]. Ap-
plying the fundamental lemma of calculus of variations we obtain

w = (λI − ΔS) u. (20)

In order to solve this surface PDE we impose homogeneous Dirichlet boundary
conditions u|Γε

= 0, where Γε denotes the boundary of the support of δε, which
we denote by Ωε = {x ∈ Ω : δε(x) > 0}.
Computing ∇Ĥ1E. Again, we apply the representation theorem:

〈w, v〉L2 = −
∫

Ω

wv dx = λū · v̄ + −
∫

Ω

∇Su · ∇Sv dx = 〈u, v〉Ĥ1 . (21)

Inserting the definition of v̄ yields

−
∫

Ω

wv dx = −
∫

Ω

[λū · (vη) + ∇Su · ∇Sv] dx. (22)

Integrating by parts and using the fundamental lemma we end up with

w = λū · η − ΔSu. (23)

As w̄ = ū, we finally have

w − λw̄ · η = −ΔSu. (24)

Similar to (20) we impose homogeneous Dirichlet boundary conditions on Γε.

4 Numerical Treatment

Once we have computed ∇H1E or ∇Ĥ1E numerically, we can use it to evolve the
embedding function by

∂tφ = −δε(φ)∇H1E, or ∂tφ = −δε(φ)∇Ĥ1E, (25)

respectively, where we use ε = 1.5, as suggested in [14]. We approximate the
time derivative with a standard forward Euler discretization and interleave this
evolution with a few iteration steps for reinitializing the signed distance func-
tion, where we use the method of Peng et al. [15] in our experiments. A more
geometric way of maintaining a signed distance representation would, of course,
be given by the method of Chen et al. [7], which is unfortunately only available
for two dimensional problems. However, it should be noted that φ deviates much
less from a signed distance function during the evolution when we use Sobolev
gradients instead of classical L2 gradients.

The only question remaining is how to compute ∇H1E = u or ∇Ĥ1 = û
numerically, if ∇L2E = w is given. Our strategy will be to turn the stationary
PDEs (20) and (24) into time dependent ones and split the elliptic operators
in such a way that a standard semi-implicit time discretization for parabolic
problems can be used.
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Computing ∇H1E Numerically. At first we note that (20) may be interpreted as
the gradient of the energy

1
2

∫
Ωε

‖∇Su‖2
2 + λu2 − 2uw dx. (26)

A continuous gradient descent for this energy yields the parabolic problem

∂tu = ΔSu − λu + w. (27)

Next we split ΔS which yields:

∂tu = Δu − div (η ⊗ η∇u) − λu + w. (28)

Finally, we employ a semi-implicit time discretization leading to

(I − τΔ) ut+τ = ut − τ
[
div

(
η ⊗ η∇ut

)
+ λut − w

]
. (29)

Computing ∇Ĥ1E Numerically. Similar to the previous considerations, we note
that (24) may be interpreted as the gradient of the energy

1
2

∫
Ωε

‖∇Su‖2
2 − 2(w − λw̄ · η)u dx. (30)

The corresponding continuous gradient descent then reads

∂tû = ΔS û + (w − λw̄ · η), (31)

and after splitting ΔS we obtain

∂tû = Δû − div (η ⊗ η∇û) + (w − λw̄ · η). (32)

Finally, we employ again a semi-implicit time discretization:

(I − τΔ) ût+τ = ût − τ
[
div

(
η ⊗ η∇ût

) − (w − λw̄ · η)
]
. (33)

Remarks The presented numerical schemes allow us to perform a gradient de-
scent with a comparatively large step size in order to compute the Sobolev
gradients. In all our experiments in the next section five iteration steps with
τ = 2 were sufficient in order to obtain a good approximation. Finally, we want
to mention that weighting the first order component −

∫
Ω
∇Su ·∇Sv dx by λ > 0 re-

sults in operators of the form (I −λτΔ), which leads to an unnecessary coupling
of the discretization parameter τ and the model parameter λ.

5 Discussion of the Experiments

The main advantage of Sobolev gradients is that curve and surface evolutions
which employ Sobolev gradients are much smoother than the ones based on clas-
sical L2 gradients. In order to demonstrate that the Sobolev gradient obtained
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Fig. 2. In contrast to the curve evolution based on L2 gradient (upper row), the evolu-
tion based on Ĥ1 gradients is much smoother, even in the case of topological changes

step 20 step 120 step 240 step 360 converged

Fig. 3. The H1 driven curve (upper row) is only able to segment the object by de-
forming itself. In contrast to this, the Ĥ1 driven curve can also capture the object by
translation and it thus reaches to object much earlier, compare step 240 and 360.

with the proposed numerical scheme have the same advantageous properties we
compare Ĥ1 evolution to a classical L2 evolution in Fig. 2 by minimizing the
standard Chan-Vese model without penalizing the curve length [5]. As expected,
the Ĥ1 evolution is much smoother than the one based L2 gradients.

In Fig. 3 we illustrate the difference between the H1 evolution and the Ĥ1

evolution by minimizing the same energy. In both cases we chose λ = 0.5 and
used the same step size for the curve evolution. We can see that the curve
evolved by the Ĥ1 gradient (lower row) moves much earlier to the object than
the curve evolved by the H1 gradient, which is only able to capture the object
by deformation.
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(a) volume 1 (b) volume 4 (c) volume 8

(d) volume 12 (e) volume 16 (f) volume 20

Fig. 4. Tracking of the left ventricular cavity acquired by 4D MRI [17]

Our last experiment in Fig. 4 shows the applicability of our framework to real
world problems. We track the left ventricular cavity in 4D magnetic resonance
imaging (MRI) data (taken from [17]) by taking the segmentation result from
one volume as the initialization for the following one. Again we use the Chan-
Vese model without length penalty and apart from that we employ no regularizer
which ensures that the subsequent segmentation result is somehow close to the
previous one. Note that the image quality in 4D MRI data is usually inferior to
the quality of static 3D MRI. Please refer to the supplementary material for the
full video showing the segmentation of 20 consecutive volumes.

6 Conclusion

We have presented a convenient and efficient framework for Sobolev active con-
tours and surfaces, which is derived in a fully implicit manner. In contrast to
previous approaches [6,8], we employ a geometrically motivated Sobolev type
inner product. The performed experiments clearly show that the Sobolev gra-
dients obtained with the proposed numerical scheme lead to smooth curve and
surface evolutions. If desired, one can even use operator splitting techniques, e.g.
[22], in order to compute the Sobolev gradient in linear complexity. Further work
might include the usage of more sophisticated inner products, such as the ones
described in [19] as well as the incorporation of the ideas presented in [7].
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Abstract. In this paper, we propose a generic integration of context-
knowledge within the unary potentials of Conditional Random Fields
(CRF) for object segmentation and classification. Our aim is to learn
object-context from the background class of partially labeled images
which we call implicit scene context (ISC). A CRF is set up on image
super-pixels that are clustered into multiple classes. We then derive con-
text histograms capturing neighborhood relations and integrate them as
features into the CRF. Classification experiments with simulated data,
eTRIMS building facades, Graz-02 cars, and samples downloaded from
GoogleTM show significant performance improvements.

1 Introduction

Our aim is to segment and classify objects in images. We want to assign a label
to each pixel of an image. Context knowledge may add valuable information if
local object descriptors deliver ambiguous results in complex scenes. We learn
contextual relations between single objects of a scene and introduce them as a
prior. Local object descriptors and contextual knowledge are combined in a CRF
framework and each pixel is labeled with the most likely object class.

Much research has already focused on how to exploit contextual prior knowl-
edge for object classification in images. In [9] and further related publications
Kumar and Hebert extended Conditional Random Fields (CRF), originally pro-
posed in [11], to two-dimensional data and applied them to object detection in
images. They consider contextual knowledge through pair-wise potentials that
are weighted with features. CRFs provide a highly flexible framework for con-
textual classification approaches. Torralba et al. [18] use Boosting to learn the
graph structure within a CRF framework. Spatial arrangements of objects in an
image are learned with a weak classifier and object detection and image segmen-
tation are done in a combined way. Shotton et al. [17] propose an approach based
on features derived from texton maps they call “TextonBoost” to achieve joint
segmentation and object detection applying Boosting within a CRF framework.
Murphy et al. [12] use CRFs for joint object detection and scene classification
within a CRF. This classifier learns that particular object categories are more
likely to occur in certain scenes than in others. False alarms due to ambiguous
local features may be reduced because, for example, polar bears are not likely to
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appear in a jungle scene. However, this approach considers context on a global
scene level but does not model relations of single objects. He et al. [5] introduced
the use of a multi-scale CRF for scene segmentation and classification incorpo-
rating contextual features at regional and global scene level in addition to local
features at pixel-level. Rabinovich et al. [14] formulate a CRF based on image
regions that encodes co-occurrence preferences over pair-wise object categories.
This allows them to distinguish between object categories that often appear to-
gether in the same image and, more important, categories that do usually not
appear within the same scene. Calleguillos et al. [3] develop this method further
by introducing contextual interactions at pixel-level and at region-level in ad-
dition to semantic object interactions via object class co-occurrences. Gould et
al. [4] add a spatial component by modelling relative locations between object
classes and introducing them into a CRF as additional potential.

Kohli et al. [7] generalize the classical pair-wise Potts model to higher order
potentials that enforce label consistency inside image regions. They combine mul-
tiple segmentations generated with an unsupervised segmentation method within
a CRF for object segmentation and recognition. Related works of Ladicky et al.
[10] propose a hierarchical CRF that integrates features computed in different
spatial units as pixels, image segments, and groups of segments. They formulate
unary potentials over pixels and segments, pair-wise potentials between pixels,
and between super-pixels and also a connective potential between pixels and the
super-pixels they are contained in.

Heitz and Koller [6] exploit context contained in the background class through
what they call the “thing and stuff” (TAS) approach. The main idea is to, first,
cluster image super-pixels based both on local features and their ability to serve
as context for objects of interest and, second, to integrate this context prior into
a rigorous probabilistic framework for object detection. They combine a window
detector for local object detection with context that adds predictive power for
that particular object category. Savarese et al. [15] compute histograms of so-
called correlatons capturing correlations between pairs of pixels based on visual
word indices as function of distance. They learn exemplar histograms for each
object class from training data and test images are then assigned to the nearest
histogram in feature space.

1.1 Contribution

The key idea of our approach is to capture context of the background class
of partially labeled images via histograms to support object segmentation and
classification. With partially labeled we mean that only a small portion of the
object categories existing in the data are semantically annotated in training data.
All categories not explicitly labeled are contained within a joint background
class. Inspired by the “thing and stuff” (TAS) concept of Heitz and Koller [6]
and the “shape context” histograms of Belongie et al. [1] we introduce implicit
scene context (ISC) to CRFs. We seek a more general formulation and capture
background context and its relation to object classes via histograms (similar
to [15]) and integrate it as a potential into a CRF. This is done without major



Implicit Scene Context for Object Segmentation and Classification 33

changes to the general CRF framework in terms of training and inference. We do
neither add an additional potential nor introduce any complex graph structure
but exploit the flexibility provided by the definition of the association potential
which depends on all data globally [9].

– Characteristic patterns within the background class of partially labeled im-
ages and their relation to labeled object classes are learned.

– Contextual patterns are formulated in terms of histograms. We achieve ro-
tation invariance and the use of multiple context scales ensures good perfor-
mance for both small and big objects.

– Although we model it as a unary potential within a CRF framework it can
generally be utilized (with minor changes) with any kind of non-contextual
classifier like Support Vector Machines, too.

This novel approach is generally applicable to any kind of image scene, for
example, aerial images, terrestrial images, and medical images.

2 CRF Classification Framework

In the following, we denote scalars in normal face type and vectors in bold face
type. CRFs are discriminative models and thus directly model the posterior dis-
tribution P (y|x) of the labels y given data x. The label of the node i of interest
is yi and yj the label of node j it is compared to. We have to formulate a cost
function which is usually written as an energy term E (x,y) that encapsulates
unary potentials and pair-wise potentials. In order to gain a posterior distribu-
tion P (y|x) we need to turn the energies into probabilities by normalizing them
through the partition function Z (x). Making use of sufficient statistics of the
exponential family we may then write the posterior distribution P (y|x) as:

P (y|x) =
1

Z (x)
exp (E (x,y)) (1)

Following the notations of Kumar and Hebert [9] we can express the energy
term E (x,y) as the sum of association potentials Ai (x, yi) and interaction po-
tentials Iij (x, yi, yj):

E (x,y) =
∑
i∈S

Ai (x, yi) +
∑
i∈S

∑
j∈Ni

Iij (x, yi, yj) (2)

The association potential Ai (x, yi) measures how likely a label site i is labeled
with yi given the data x. It contains all unary potentials defined over cliques of
size one and this is where our implicit context will be incorporated. The interac-
tion potential Iij (x, yi, yj) models the pair-wise potentials that are defined over
cliques of size two. It describes how two label sites i and j interact and we will
leave this term almost unchanged.

Both potentials, unary and pair-wise, have access to all data x of the set S of
all image sites. Additionally, the pair-wise potentials also have access to all labels
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y globally because the neighborhood Ni of site i of Iij (x, yi, yj) may potentially
be the entire image. Those properties of CRFs provide a high degree of flexibility
and we can thus introduce context from very local to global scales into both
terms of the energy term in Eq. 2. However, the standard modelling of the
association potential Ai (x, yi) and the interaction potential Iij (x, yi, yj) (e.g.,
[9]) does not fully exploit the possibility of considering labels y and given data
x globally. Much research effort has gone into finding a more general and global
formulation of context through label comparisons in the interaction potential
(e.g., [14,7,3]). Our focus is on exploiting the full flexibility provided by the
CRF definition of the unary potentials of Ai (x, yi). We seek a more general and
global incorporation of all data x as done, for example, by Murphy et al. [12].
If we model the association potential Ai (x, yi) as a linear model the standard
formulation is:

Ai (x, yi) = yiwT hi (x) . (3)

Node features hi (x) generated from data x are contained in vector hi (x)
and the corresponding weights, which are tuned during the training process,
are contained in vector wT . We will integrate ISC through the feature vector
and thus hi (x) will be replaced as we will explain in section 3.1. The interaction
potential Iij (x, yi, yj) determines how two sites i and j should interact regarding
all data x (see Eq. 4). Using again a linear model we can write:

Iij (x, yi, yj) = yiyjvT μij (x) . (4)

μij (x) contains all edge features and vT the weights, respectively. Edge fea-
tures μij (x) can generally be chosen based on any kind of feature derived from
data x. They should however somehow reflect and model the relationship of the
nodes i and j that are compared. The standard approaches consist of either con-
catenating the feature vectors hi (x) and hj (x) of both nodes or of subtracting
them element-wise. We choose the latter one and μij (x) is:

μij (x) = |hi (x) − hj (x)|. (5)

3 Implicit Scene Context (ISC)

The idea is to exploit spatial patterns contained in the background class of
a partially labeled image to support object segmentation and classification. We
can then benefit from very large image databases where images are only partially
labeled and learn context although we do not explicitly know all object classes.
In addition to the object classes that have been explicitly labeled for training
we can use patterns existing in the unlabeled part of the data (i.e., labeled as
background class).

The following requirements have to be met: We should be able to cope with
very local to global context scales. In addition, we want to keep ISC generically
applicable to multiple kinds of scenes. For example, it should capture context
in terrestrial images of building facades where usually sky is above the facade
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(a) (b)

Fig. 1. Principle of implicit context: (a) ranges around the centroid CS1 of image
super-pixel S1 (grey levels indicate different labels appointed to the super-pixels with
k-means during training or NN during testing), (b) histograms of cluster labels of the
three ranges R1, R2 and R3

and vegetation below but also in aerial images of buildings where no preferred
ordering with attributes like “above” and “below” exists. Thus, we do not want to
rely on any kind of preferred direction. Finally, we want to achieve computational
efficiency and avoid the computation of co-occurrences. In order to meet these
requirements we take the following steps that will be explained in detail in the
following paragraphs:

– multi-scale image segmentation into super-pixels and feature computation,
– unsupervised k-means clustering and nearest-neighbor (NN) classification of

the super-pixels based on the previously generated features,
– generation of context histograms in three different ranges per super-pixel,
– input as feature vector to the CRF unary potentials.

3.1 Context Potential within CRF

During training we first perform an unsupervised classification of all super-pixels.
We could use any kind of unsupervised classifier but for means of speed and
simplicity we chose a k-means clustering followed by a NN classification. As
input to the k-means clustering we use all features hi (x) ∈ h (x) that were
computed per super-pixel. The exact cluster centers K we compute with the
k-means clustering K = Kmeans (h (x)) are used for the following processing.

Each super-pixel is labeled with yus,i ∈ yus where yus contains all unsuper-
vised labels corresponding to the number of chosen cluster centers k. Label yus,i

of the super-pixel i of interest is determined via NN and is thus a function of
the minimum mean distance between feature vector hi (x) and the cluster cen-
ters K. Each super-pixel i is assigned the cluster center Kc (where c = 1...k
is the cluster center with k the total number of all cluster centers) that is the
closest in feature space. The resulting labeled super-pixels (e.g., with k = 6) are
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shown schematically in Fig. 1(a). Next, the centroid CS of each super-pixel is
determined and histograms of labels histR (yus) occurring within three different
ranges R around each super-pixel are generated. The number of label occur-
rences yus within each range R is counted (Fig. 1(b) with three ranges R1, R2,
and R3). We can choose either short or long ranges depending on whether we
would like to incorporate local or global context, respectively. It should be noted
that longer ranges do not lead to any more complex graph structure because no
graph is set up at this point. Furthermore, the number of the ranges and either
coarse or fine scaling enables us to capture the distribution of object categories
contained in the background class as a function of their distance to the node
of interest. Then, various moments and additional information representing the
contextual patterns in the environment of a particular super-pixel are derived
from the histograms. We use qualitative, quantitative, and spatial context fea-
tures C (h (x)) (e.g., most often occurring label). For testing we apply exactly
the same processing steps but drop the k-means clustering. The cluster centers
K that were determined during training are passed to testing and the NN cluster
centers to the nodes of the test data are computed. Thus, all super-pixels of the
test data are labeled corresponding to the unsupervised classification performed
during training. The implicit context features Ci (h (x)) of the test data are
computed and introduced into a linear model:

Ai (x, yi) = yiwT Ci (h (x)) (6)

We can then either determine the class of each super-pixel i merely based on
implicit context features Ci (h (x)) or also add the local node features hi (x) to
the feature vector. The pair-wise potentials only change in such a way (cf. Eq.
5) that the element-wise absolute differences between nodes i and j in the graph
are now computed based on the corresponding implicit context features:

μij (x) = abs (Ci (h (x)) − Cj (h (x))) (7)

We do not perform any normalization of the label count in the histogram,
for example, based on the size of the super-pixels because tests show that the
importance of a super-pixel does not necessarily increase with its size. In other
words, small super-pixels may be characteristic context features and thus are of
high relevance for a particular object class.

4 Experiments

We perform several experiments with partially labeled data in order to assess
the benefits of ISC-CRF. Only one object category is semantically annotated
in training data and all other categories are labeled as background. First, we
demonstrate the performance improvements achieved with ISC-CRF compared
to a standard CRF for different object classes and background patterns (4.1).
Second, we evaluate the impact of different cluster center numbers and, third,
we assess the robustness to noise (4.2). Quickshift [19] is used for super-pixel
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. Results with simulated data, eTRIMS [8] facade images, algae, and Graz-02
cars [13]: true positives (green), false positives (red) and false negatives (blue) without
implicit scene context (b, e, h, k) and with implicit scene context (c, f, i, l)

generation. If a super-pixel extends across an object boundary it may not be
repaired later on in the process. We thus over-segment all images to ensure con-
sistency of object boundaries and super-pixels. In order to avoid unstable feature
distributions of too small super-pixels we generate a segmentation in three dif-
ferent scales. Super-pixels sharing a common boundary at the highest scale are
linked with edges in the graph. Features of coarser-scale super-pixels are writ-
ten to the vectors of the highest-scale super-pixels they contain. As features
hi (x) of a super-pixel we compute the first two moments of the color infor-
mation and oriented gradient histogram features. We select those very simple
features for reasons of transparency and ease of replicability. A subset of differ-
ent benchmark data sets (nine images out of each) is used to verify the proposed
ISC-CRF concept. A quadratic expansion of the feature vectors is done as de-
scribed by Kumar and Hebert [9] in order to introduce a more precise quadratic
decision surface. We apply the quasi-Newton method limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) for parameter estimation and loopy belief
propagation for approximate inference using Mark Schmidt’s toolbox [16]. Cross-
validation is performed with two thirds of the data for training and one third
for testing (as recommended by Crowther and Cox [2]) in order to compute true
positive rate (TPR) and false positive rate (FPR) pixel-wise. The TPR is the
percentage of all correctly labeled object pixels and the FPR is the percentage
of all background pixels that are misclassified as object.

4.1 Classification of Objects in Different Scenes

In order to verify the general applicability of the implicit scene context we per-
form tests with four different object class scenes: with simulated aerial images of
an urban scene, with facade images taken from the eTRIMS benchmark data [8],
with GoogleTM images of algae and with car images of the Graz-02 benchmark
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Table 1. TPR and FPR in % of standard CRF and ISC-CRF

CRF ISC-CRF
Data TPR FPR TPR FPR

Simulation 85.9 6.8 85.9 0.8
eTRIMS facades 86.9 22.1 88.1 7.3
Algae 75.7 37.0 84.5 23.7
Graz-02 cars 86.6 16.4 88.1 4.3

data [13]. Those four object class categories are chosen because they represent
different spatial object and background distributions. Many small objects (build-
ings) embedded into background context are contained in the simulated urban
scene (Fig. 2(a)). Small irregular objects entirely surrounded by background
context are the cars (Fig. 2(d)), single very large objects (facades) with clear
straight boundaries and with background context only above and below are the
building facades (Fig. 2(g)) and large but frayed objects partially surrounded
by background context are the algae (Fig. 2(j)). A good performance of the im-
plicit scene context approach for all tasks would support the claim of general
applicability to any kind of image scene.

The classification performance results of the test data are summarized in
Table 1. Example images and the corresponding results are shown in Fig. 2.
In all four cases the ISC-CRF decreases the FPR significantly in comparison
to the standard CRF. On an IntelTM Core i7 2.4 Ghz CPU, 12 GB RAM the
computation time using the implicit scene context potential does only marginally
increase by several seconds per image.

4.2 Parameter Assessment with Simulated Data

The context ranges, the number of k-means cluster centers, and the segmen-
tation scales are currently adapted manually to each data set. The previously
introduced simulated urban scene (see example in Fig. 2(a)) is used to evaluate
the impact of varying cluster centers because we know the exact number of ob-
ject categories contained in the data: buildings (red and gray rectangles), trees
(dark green circles), grassland (light green background) and streets (light gray
lines). The buildings are our labeled object class and all other object categories
are contained in the background class. Only color features are used for these
tests leading to five distinct clusters due to the building class consisting of red
and dark gray buildings. We use three different ranges (10, 20, and 30 pixel radii)
and perform tests with five up to 50 cluster centers. The FPR of each test is
displayed in blue Fig. 3(a) whereas the FPR of the standard CRF is displayed in
red. The FPR varies about 1 % (from 0.8 % to 1.8 %) and no significant trend
is observable. Changing the number of k-means cluster centers has a very small
impact on the classification performance but of course on computation time.
A rather small number of cluster centers is beneficial. The radii of the context
ranges and the segmentation scale are adapted to each scene separately because
both parameters depend on the scales of context and objects. This makes the
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(a) (b)

Fig. 3. FPR of ISC-CRF (blue) and standard CRF (red) classification of simulated
data: (a) with varying numbers of k-means cluster centers and (b) with different noise
levels

ISC-CRF highly flexible and easy to adapt to new scenes. Both parameters could
also be introduced into the learning step without major changes to the general
framework.

Second, we test if the ISC-CRF is robust to image noise and whether we
gain robustness compared to a standard CRF. Several gaussian noise levels with
mean zero and standard deviations up to 100 % (corresponding to 256 in our
case of 8 bit RGB channels) are generated and added to the RGB channels of
the simulated data, which is then cropped in order to keep all values between
zero and 255. Cross-validation tests with CRF and ISC-CRF is done and FPR is
recorded. In figure 3(b) FPR of the standard CRF (red) and FPR of ISC-CRF
(blue) of all tested noise levels are displayed. For all noise levels the FPR of the
ISC-CRF stays below that of the standard CRF. Furthermore, the ISC-CRF is
slightly more robust to noise because its FPR starts increasing later (approx. 90
% vs. approx. 80 %).

5 Conclusions and Future Work

In this paper we have introduced the concept of implicit scene context to learn
context in an unsupervised way from the background class. Tests with four
different scene types have shown that the ISC-CRF decreases the FPR while
increasing the TPR compared to a standard CRF. We have demonstrated that
different spatial object and background distributions can be captured via the
context histograms. In future work we want to integrate more complex features
and feature combinations, test our method on complete benchmark datasets,
and learn those parameters that are currently chosen empirically.
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Abstract. This paper presents a novel approach for Ambrosio-Tortorelli
(AT) image segmentation, or, more exactly, joint image regularization
and edge-map reconstruction. We interpret the AT functional, an approx-
imation of the Mumford-Shah (MS) functional, as the energy of a pos-
terior probability density function (PDF) of the image and smooth edge
indicator. Previous approaches consider AT or MS segmentation as a de-
terministic optimization problem by minimizing the energy functional,
resulting in a single point estimate, i.e. the maximum-a-posteriori (MAP)
estimate. We adopt a wider estimation theoretical view-point, meaning
we consider images to be random variables and investigate their distribu-
tion. We derive an effective block-Gibbs-sampler for this posterior PDF
based on the theory of Gaussian Markov random fields (GMRF). The
merit of our approach is multi-fold: First, sampling from the posterior
PDF allows to apply different types of estimators and not only the MAP
estimator. Secondly, sampling allows to estimate higher order statistical
moments like the variance as a confidence measure. Third, our approach
is not prone to get trapped into local minima as other AT image re-
construction approaches, but our approach is asymptotically statistical
optimal. Several experiments demonstrate the advantages of our block-
Gibbs-sampling approach.

1 Introduction

In this paper, we examine the Ambrosio-Tortorelli (AT) functional [1] for image
segmentation from an estimation theoretical point of view. Instead of minimizing
an energy functional in the original formulation, we interpret the AT functional
as the energy of a posterior probability density function and derive an effec-
tive block-Gibbs-sampler for approximating the minimum mean square and the
minimum medium estimator.

The Mumford-Shah (MS) [7] functional is maybe the most well-known con-
straint used for image segmentation. A major difficulty in using it is the han-
dling of inner image borders as lines, being circumvented by Ambrosio and
Tortorellis [1] approximation. They introduce a smooth edge indicator function
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v(x, y) : R2 → [0, 1] instead of the original line-like edge indicator, with v(x, y) ≈
1 on the edges, and v(x, y) ≈ 0 on smooth regions.

EAT =
∫∫
R

(β(u − g)2 + (α(1 − v)2‖∇u‖2) + (
ρ

2
‖∇v‖2 +

v2

2ρ
))dxdy (1)

where g is the observed noisy or incomplete image, u its smooth reconstruction,
and α, β, ρ ∈ R+. For ρ → 0 energy EAT converges to the original Mumford-
Shah functional. Unlike many other approaches, e.g. using level-sets [8], open
boundaries can be handled easily. Using such a functional, image segmentation
is understood to be joint image regularization and edge-map reconstruction.
Previous approaches to MS able to handle open boundaries (see e.g. [10]) or
approaches to AT segmentation [9] minimize the functionals, or, equivalently,
maximize the posterior PDF resulting in the MAP estimate. In contrast to this,
we interpret image and edge-map as random variables and sample from their
posterior PDF derived from the AT energy. Sampling is done using block-Gibbs-
sampling. Pixel-wise Gibbs sampling has its origin in image processing [2], where
it was already used for image restoration / segmentation together with a model
including a line process. However, sampling each pixel value individually has
the disadvantage of a much slower convergence to the target distribution than
block-Gibbs-sampling [11].

1.1 Related Work

Pätz and Preusser [9] recently showed, how to use the AT functional for segmen-
tation of stochastic images. Stochastic images are a representation, where each
pixel value is handled as a random variable and its distribution is modeled explic-
itly. Even though they model probability distributions, finding a solution of the
AT functional is still done deterministically using its Euler-Lagrange equations
together with a conjugate gradient solver. This is in contrast to our stochastic
approach.

Pock and Cremers [10] propose a fast primal-dual algorithm to compute the
solution of a convex relaxation of the MS functional. They report that their
results are independent of start conditions and better than results received by
the AT approach. We therefore perform some experiments on the same im-
ages they used, in order to show that quality restrictions do not apply as local
minima are not an issue of our estimation theoretical approach. In addition to
a point estimate, we are able to give information on its distribution, e.g. er-
ror variances. Efficient block-Gibbs-sampling of Gaussian Markov random fields
(GMRF) has been introduced by Rue and Held in a general statistical setting
[11]. In a computer vision context, i.e. the estimation of diffusion tensor images,
GMRF block-Gibbs-sampling has been applied by Krajsek et al.[5]. To the best
of the authors knowledge, GMRF block-Gibbs-sampling has never been used in
any segmentation approach so far.
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2 Bayesian Estimation Theory in a Nutshell

In this section we give a brief overview of the main principles of Bayesian esti-
mation theory as used here, for a broader overview we refer to [4]. We formulate
our AT estimation problem on a regular discrete image domain Gh with grid
size h. Discrete images then can be represented as column vectors u, v, g ∈ RN ,
respectively. Gradients ∇u, ∇v are approximated by finite difference operators
that can be described by matrices acting on the column vectors.

For an estimation theoretical view of the AT energy functional, one interprets
images as random vectors, i.e. each element of the vector is a realization of
a random variable. The task is to estimate the image u as well as the edge
indicator v from (possible noisy and incomplete) observations g. For notational
convenience we combine image and edge indicator to a target variable z =
(uT , vT )T . Let us further denote with ε = ẑ−z the error between the estimated
images ẑ and the particular true realization z of the target vector.

Bayesian estimators are characterized by means of their risk R(ẑ) = E [L]
defined by the expectation of a loss function L : R2N → R+, ε �→ L(ε) with
respect to the posterior PDF p(z|g). The Bayesian estimator (with respect to
a specific loss function L) of the target variable is then given by the value ẑ
minimizing the risk

ẑ = argz̃ minR(z̃) (2)

Obviously, different loss functions lead to different Bayesian estimators. Promi-
nent estimators are given by the quadratic loss function L(ε) = ‖ε‖2 leading to
the minimum mean squared error estimator (MMSEE)

ẑ =
∫

zp(z|g)dz , (3)

the (vector) hit and miss loss function L(ε) = 0 for ε = 0 and L(ε) = 1 for
ε �= 0 leading to the maximum a posteriori (MAP) estimator,

ẑ = argz max p(z|g) , (4)

and the absolute error loss L(ε) =
∑

i |εi| leasing to the minimum medium error
estimator (MMEE)

ẑi = median p(zi|g) (5)

= median
∫

p(z|g)dz�i (6)

where z�i denotes the random vector without element zi. Most prominent among
these estimators is surely the MAP estimator. Its popularity might come from
the fact that it can be computed by a pure optimization task. Other estimators
require computation of (usually high dimensional) integrals which in most cases
cannot be analytically computed but require some approximation. However, we
will demonstrate in the following that such approximations can effectively be
obtained for the AT segmentation problem by means of Markov chain Monte
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Carlo (MCMC) techniques. We approximate the MMSEE as well as the MMEE
by generating n samples zj from the posterior PDF p(z|g). The MMSEE is
then simply obtained by its sample mean, MMEE by its sample median. This
means that we transform the original AT image segmentation problem into an
estimation problem without the need for any optimization step of a highly non-
convex energy functional.

3 AT Segmentation as an Estimation Problem

In the following two subsections we describe the core of our segmentation algo-
rithm. First, we rewrite the AT energy in a probabilistic setting followed by the
numerical details.

3.1 A Probabilistic Interpretation of the AT Energy

The first step of our approach is to approximate the AT energy functional on a
discrete grid. To this end, we consider image values z = (u, v) at the knots of
the grid

EAT (u, v) =
N∑

i=1

β(ui − gi)
2 +

(
α(1 − vi)

2‖(∇u)i‖2
)

+
(

ρ

2
‖(∇v)i‖2 +

v2
i

2ρ

)
(7)

Gradients are approximated by finite differences.
In a next step, we consider (7) as the energy of the posterior PDF p(u, v|g)

of image u and edge indicator function v. Unfortunately, integrals required for
the MMSEE as well as for the MMEE are not analytically tractable with this
posterior PDF and direct sampling from p(u, v|g) is also not possible. However,
fortunately, due to the seminal work of Metropolis et al.[6] and Hastings[3] we
know that we can approximatively sample from p(u, v|g) by sampling from a
suitable proposal distribution. In particular, if we could find a partition of the
target vector z = (a, b) such that we can sample from the conditional pdfs
p(a|b, g) and p(b|a, g) in turn

aj+1 ∼ p(a|bj , g) (8)
bj+1 ∼ p(b|aj+1, g), j = bn, ..., K (9)

Metropolis [3] tells us that each sample of (8) and (9) is – after a considerable
burn in phase1 – an approximative sample from the posterior pdf p(u, v|g). This
approach is denoted as a block-Gibbs-sampler [11].

The conditional PDFs p(a|b, g) and p(b|a, g) can be derived from the full
posterior PDF p(a, b|g) by means of the basic multiplicative rule of probability
theory as p(a|b, g) = p(a, b|g)/p(b|g) and p(b|a, g) = p(a, b|g)/p(a|g), respec-
tively. Thus, the conditional PDFs p(a|b, g) and p(b|a, g) can be obtained from

1 Meaning that we disregard the first bn − 1 starting samples.
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the posterior PDF p(a, b|g) by setting one variable fixed combined with suitable
normalization.

What is a suitable partition of the target variable z for our AT segmen-
tation problem? By investigating the posterior PDF p(u, v|g) of the AT en-
ergy, we recognize that by fixing u or v the resulting AT energy becomes a
quadratic function of the other variable and consequently the corresponding
conditional PDFs become Gaussian distributions from which samples can be
obtained directly.

To make it more concrete let us first fix the edge indicator v. To consider
the symmetric nature of the AT functional (1), we approximate the gradient
expressions by forward and backward differences and taking its average as2

‖∇u‖2 ≈ 1
2

∑
i

(
‖Bx+

i
u‖2 + ‖Bx−

i
u‖2

)
(10)

= uT Du, D =
1
2

∑
i

BT
x+

i
Bx+

i
+ BT

x−
i
Bx−

i
(11)

‖∇v‖2 ≈ vT Dv, (12)

yielding the energy of the conditional PDF

EAT (u) = β ‖g − u‖2 + α
∑

i

uT D(V )u + c1 (13)

with

c1 =
N∑

i=1

(
ρ

2
‖(∇v)i‖2 +

v2
i

2ρ

)
, V = I − diag(vi) (14)

D(V ) =
∑

i

BT
x+

i
V Bx+

i
+ BT

x−
i
V Bx−

i
(15)

Applying quadratic complementation allows to transform the energy

EAT (u) = (u − mu)T Qu(u − mu) + c1 + c2 (16)

with

Qu = βI + αD(V ) (17)
mu = β Q−1

u g (18)
c2 = gT βIg − β2gT Q−1

u g (19)

and finally results in the Gaussian Markov random field (GMRF)

p(u|v, g) ∝ exp
(
−1

2
(u − mu)T Qu(u − mu)

)
(20)

2 Central differences are avoided as such approximation are known to lead to checker-
board artefacts as shown in [12].
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Applying the same procedure when holding u fixed yields the GMRF

p(v|u, g) ∝ exp
(
−1

2
(v − mv)T Qv(v − mv)

)
(21)

with

L = αdiag ((∇u)i) , e = (1, ..., 1)T (22)

Qv = L +
ρ

2
D +

1
ρ
I (23)

mv = Q−1
v Le (24)

Having obtained an appropriate number of samples using the scheme (8) and
(9) with the conditional PDFs (20) and (21) allows us to approximate different
estimators as described in Section 2. The MMSEE is approximated by taking
the mean of each variable and the MMEE by taking the median. The estimated
variance of each variable serves as a reliability measure of the point estimates.

3.2 Numerical Issues

As explained in the last section, the challenge is to sample from a Gaussian
distribution with known mean value and known precision matrix. Due to the
neighborhood relation of the finite difference approximation the Gaussian distri-
butions under considerations reduce to a Gaussian Markov random field (GMRF)
which means that the precision matrix is sparse and has a band-limited structure
[11]. We start with sampling from a zero mean Gaussian random vector q with
identical covariance matrix, i.e. each element of q is the realization of an inde-
pendent zero mean Gaussian random variable. Gaussian random variables can
be generated from uniformly distributed variables by means of the Box-Muller
algorithm; we used the Matlab function ’randn’. Secondly, the Cholesky decom-
position L of the precision matrix is computed, i.e. Q = LLT . In the third step,
we solve the linear equation system Ly = q by back-substitution. Finally, we
add the known mean to y. Inserting p = m + L−T q in the definition of the
covariance matrix directly proofs that p is a sample from N (m, Q).

We implemented the Gibbs sampler in MATLAB using standard build-in func-
tions and performed all experiments on an AMD Phenom II X6 1055T processor
running at 3.5 Ghz. For an 128 × 128 image our block-Gibbs-sampler requires
about 0.3s for each sample, i.e. a sample of the image or the edge indicator
function. A typical estimate of K − bn = 1000 samples with bn = 500 burn-in
samples thus requires about 2 · 0.3(1000 + 500)s = 900s which is in the same
time range reported for the estimator proposed in [10]. However, in [10] a GPU
implementation is considered running on a NVIDIA Tesla C1060. The imple-
mentation of our approach on parallel optimized harware/software is topic of
future research. We compute the MMSEE and MMEE for the K − bn samples.
As we found no significant differences between them we report only the results
of the MMSEE in the following.
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a b c d

e f g h

i j k l

Fig. 1. a original image; b degraded with 20% Gaussian noise ,i.e. σnoise = 0.2 when
the noise free image values are scaled between 0 and 1; c, d results obtained using the
classical, deterministic AT approach with random initialization, e,f results obtained
with our MMSEE approach with random initialization, g,h standard deviations of es-
timated image and edge-map of e and f, respectively, i,j results obtained with our
MMSEE approach initialized with observed image and observed edge indicator func-
tion, k, l results obtained using the deterministic AT approach with observed image
and observed edge indicator function (parameters: α = 6000, β = 12.5, ρ = 0.8).

4 Experimental Results

4.1 Stochastic vs. Deterministic AT Segmentation

In Figure 1 results for a noise reduction and edge detection at a triple junction are
shown using the deterministic AT [1] and our stochastic approach. We observe
that the deterministic approach gets stuck in a local minimum when initializing
with the observed images (k,l) as well as when initialized with random images
(c,d). Our stochastic approach (i,j,e,f) correctly finds the edges and in addition
gives information on the underlying distribution irrespective of its initialization.
Our approach also allows to estimate standard deviations of image (g) and edge-
map (h). As expected, variances are high for edge positions in the image, as gray
value information there obviously depends on the noise. Variances are low for
edge positions in the edge map, as there the edge signal is highest and most
certain.
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a b c

d e f

Fig. 2. a, d original and degraded image with 5% Gaussian noise; b, e smoothed
image and close up with parameters: α = 1000, β = 200, ρ = 1.2; c, f parameters:
α = 4000, β = 70, ρ = 0.3

4.2 Piecewise Smooth Images and the Crack-Tip Problem

Pock and Cremers [10] compare the original AT approach to their MS method,
which we consider to be the current reference method concerning achievable im-
age quality. They show two experiments which we redo in the following. The
first experiment using a synthetic piece-wise smooth 128 × 128-image with 5%
Gaussian noise added (see Figure 2 a and d, and [10], Fig. 4) focuses on vi-
sual noise artifacts. Pock and Cremers state worse results for the deterministic
AT approach, visible as noise pattern close to image edges. In Figure 2 the
same experiment is redone for two different choices of ρ, however now using our
stochastic AT approach. In the close up views Figs. 2 e and f, we see that using
ρ = 1.2 we get similar artifacts as reported in [10], which however nicely vanish
if ρ is reduced to 0.3 and smoothness weight α is increased.

The last experiment is the so-called Crack-Tip experiment (cmp. Figure 3
and [10], Fig. 6), an inpainting experiment nicely demonstrating how the de-
terministic AT optimization approach gets stuck in local minima, depending
on initial conditions. The synthetic image I (Fig. 3a) is given by I(x, y) =√

r(x, y) sin(θ(x, y)/2) where r(x, y) is the Euclidean distance of a point (x, y)
to the image center and θ(x, y) is the angle of the point (x, y) to the horizontal
line. The red circle in Fig. 3d presents the covered/missing part of the image.
Inside the circle parameter β is set to be 0 and outside ∞. The classical AT
method works well in a case of good initial conditions, but in other cases it
does not always come close to the global minimum of the AT energy (Figs. 3b,
e). Our stochastic approach visibly comes close to the true underlying image
independent of initial conditions, even locating the tip of the crack close to the
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a b c

d e f

Fig. 3. a, d original image and observed image with a circular gap in the middle;
b, e image and border using deterministic AT approach and a random image as an
initialization, c, f our result

center (Figs. 3c, f). Thus, we conclude that when applying a suitable estimator,
the AT functional delivers highest quality results, well comparable to the ones
reported in [10].

5 Summary

We presented a block-Gibbs-sampling approach to AT image segmentation. In
our approach the usual AT energy is interpreted as a posterior energy analo-
gously to the pioneering work of Geman and Geman [2]. But instead of applying
a pixel-wise Gibbs sampler within a discrete energy model as done in [2] we
derived an efficient block-Gibbs-sampler for the continuous valued AT energy
which allows us to sample the whole image or the whole edge-map at a single
blow. MMSEEs and the MMEEs are subsequently obtained by the sample mean
and sample median, respectively. No minimization of non-convex functionals is
necessary within this estimation framework. In addition, obtaining samples al-
lows us to calculate standard deviations of images and edge-map as a confidence
measure easily. This is also achieved by the method of Pätz and Preusser [9],
however using a gradient descent scheme sensitive to local minima. The results
we get are visually of the same quality as the ones of Pock and Cremers [10],
and also independent of the initial condition. In contrast to Pock and Cremers’
approach, we do not need to quantize gray values, allowing for better results on
continuous-valued images. We conclude, that we presented the first AT method
combining high quality results, independence of initial conditions, and error
estimation.
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Abstract. This work presents a novel approach for pedestrian head
localization and head pose estimation in single images. The presented
method addresses an environment of low resolution gray–value images
taken from a moving camera with large variations in illumination and
object appearance. The proposed algorithms are based on normalized de-
tection confidence values of separate, pose associated classifiers. Those
classifiers are trained using a modified one vs. all framework that tol-
erates outliers appearing in continuous head pose classes. Experiments
on a large set of real world data show very good head localization and
head pose estimation results even on the smallest considered head size of
7x7 pixels. These results can be obtained in a probabilistic form, which
make them of a great value for pedestrian path prediction and risk as-
sessment systems within video-based driver assistance systems or many
other applications.

1 Introduction

The field of video-based pedestrian detection has gained a lot of interest by
researchers during the past years. One reason for that is the huge demand of
car manufacturers to reduce harmful injuries of pedestrians caused by accidents
with a nearcoming car or even to avoid those. Advanced driver assistance sys-
tems not only try to detect pedestrians but also try to perform the best action
to react properly according to the underlying scene. As one can expect, a lot
of difficult scenarios and reactions have to be considered and figured out. To
support such approaches the head pose of pedestrians can provide a very impor-
tant hint. A pedestrian looking in the direction of the car may be aware of it
and thus is less likely to cause a critical situation than pedestrians just walking
towards the street without regarding the environment. The head pose indicates
the pedestrians’ awareness of the vehicle existence but it also helps to predict
the intended movement direction of the pedestrian for a further use within track-
ing methods or risk assessment systems. Head pose estimation using a vehicle
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mounted camera, has to deal with low resolution, lack of color images, as well
as high variations in illumination and background. Such a system also needs to
be robust to large variations in pedestrian and head appearances and guarantee
a high degree of reliability.

1.1 Previous Work

As this work integrates the head localization and head pose estimation prob-
lem, related literature dealing with both problems is discussed here. Moreover,
we present approaches on pedestrian orientation estimation due to its applica-
tion similarity to pedestrian head pose estimation. Face localization is a specific
type of face detection, where the number of faces in a given image is already
known. In comparison, face detection usually deals with frontal poses of human
heads, while head localization tries to localize the head in any given pose. Nev-
ertheless, the approach of this work is largely related to the problem of face
detection in general. One of the major contribution in this field is the work
of Viola&Jones [20], where a cascade of boosting classifiers based on Haar-like
features is used to detect faces in gray–value images. In [10] they present a
generalized method to detect faces under various orientations and heads un-
der various poses. Another major approach to face detection is the use of the
Modified Census Transform (MCT ) to describe binary structures around pixel
positions, see [7]. Recently, [22] suggested an extended 12-bit MCT feature set
for low resolution face detection in color images. Others [17] propose the Haar
Local Binary Pattern feature, a hybrid between Haar-like features and Local
Binary Patterns (LBP, similar to MCT), to achieve an illumination–invariant
face detection.

Head pose estimation approaches are usually application driven. [13] present
a survey of existing head pose estimation approaches for different scenarios and
variable kinds of input data. Applications in human machine interaction [19] e.g.
require more precise pose measures but provide a higher head resolution and
sometimes depth information using a stereo camera system. These approaches
mostly consider the frontal face poses. Applications in surveillance [3,9,15], rough
gaze estimation [16] and video driver assistance systems provide lower resolution
images under harsh conditions, but demand a discrete pose estimation with
larger pose steps including the full pan angle. Regarding the camera setup and
available information, many approaches use a network of two or more calibrated
cameras [2,4,14,21]. Nevertheless, some approaches are based on conventional
2D image signals [1,3,9,15,16]. To estimate the head pose, different algorithms
are presented. Some works estimate the head pose by measuring the similarity
to discrete appearance templates [15] while others try to detect facial features
and then estimate the head pose according to the geometrical positions of these
features [19]. Others use detection techniques to predict one of several discrete
head poses in an effort to detect heads under various poses [21]. Concerning our
requirements, we deal with discrete, relatively wide pan angle steps (45◦) that
cover the full head pan angle (360◦) in low resolution images. Similar conditions
are also given in the works of [3,15,16]. [3] use Ferns to determine skin and
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non-skin segments of the head, based on color information. In a second step
they estimate the head pose to be one of eight pose classes. [15] creates pose
template models by calculating a mean image for each of eight head pose images.
A similarity distance weighting map is constructed as a pose descriptor. Finally,
a given head sample is classified by a support vector machine (SVM ).

From an application point of view, in video driver assistance systems the head
pose is used as a pedestrian intention cue. Some works discuss the pedestrian
body pose as an alternative measure of a pedestrian’s intention and gaze in order
to improve tracking algorithms [6,8,18]. Most of them assume already detected
pedestrians and try to estimate their orientations [8,18]. Others integrate the
pedestrian detection and orientation estimation within a probabilistic framework
to achieve better results [6]. [18] use Haar-like features to train one vs. all
SVMs, while [8] train one vs. one SVMs using Histograms of Oriented Gradients
(HOG) [5]. [6] also use HOG features combined with support vector machines,
as well as adaptive local receptive fields (LRF ) in combination with a multilayer
neural network. Evaluations on their test data show the positive effect of the
integrated detection and orientation estimation in comparison to the results
of [8,18].

Because of the low resolution images and the wide pan angle used in this
work, head pose estimation based on facial features detection will not be suit-
able. A template based approach does not perform well when dealing with very
diverse appearances and background variations. The lack of color information
also prevents the use of color histograms. In comparison to pedestrian orienta-
tion estimation, where the pedestrian’s movement direction does not indicate
the real pedestrian’s awareness of nearcoming vehicles a priori, with the head
pose estimation, we are really able to predict the person’s intention.

1.2 Proposed System

Fig. 1. Approach overview. Different
head pose associated classifiers Hm,
m = 1...8, evaluate all possible win-
dows in the head search area (red) of
a pedestrian detection (blue). The out-
coming confidence values Cm are used
to perform the head localization and
pose estimation.

This work proposes an integrated head lo-
calization and head pose estimation ap-
proach. The method builds its decisions
based on confidence values provided by
pose associated classifiers. These classi-
fiers are based on state–of–the–art ob-
ject detection approaches, each of which
is trained separately under a modified one
vs. all framework to achieve a high local-
ization rate and ensure a stable training
process. Assuming a pre–defined pedes-
trian hypothesis (bounding box), the pro-
vided algorithm searches in the upper re-
gion followed by a head localization and
head pose estimation block. The head
pose of interest is set to be one of eight discrete poses distributed over the
full pan angle of 360◦. Figure 1 shows an overview of our proposed system.
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2 Methodology

The system developed here consists of eight separate classifiers associated with
the different head pose classes. These classifiers are built under a modified one
vs. all framework (see Sec. 2.1). Each classifier consists of a cascade of boost-
ing classifiers and produces a classification confidence, when a test sample is
evaluated. Given a pedestrian detection, the head pose classifiers are searching
for head correspondences in a specific area (Sec. 2.2) on the top of the pedes-
trian image, using a sliding window technique on different scales. This results in
eight confidence values per search location, which are normalized to be compa-
rable among each other (see Sec. 2.3). The head localization and pose estimation
is achieved by comparing the confidence values for all windows at all different
scales, assuming the presence of exactly on head per pedestrian hypothesis (see
Sec. 2.4).

2.1 Training Procedure

Fig. 2. Distribution of the manually la-
beled training samples with fuzzy borders
between different pose classes

This work tries to map the continu-
ous full head pan angle into a dis-
rete set of eight pose classes. There-
fore problems generating the training
data may appear in separating bor-
der elements of neighboring classes. In
other words, we are facing the prob-
lem of a training set with fuzzy bor-
ders between the different classes, see
Figure 2. A conventional one vs. all
training [18], where a certain class
classifier is trained against all the
other classes, may lead to an unstable
training process, especially when using outlier–sensitive boosting algorithms. To
prevent this problem we use a modified one vs. all training procedure, where a
special pose classifier is trained against all the other poses, except of its direct
neighboring poses. Experiments showed, that this yields more stable classifiers
and higher localization rates. Additionally we include areas around the head
and background images recorded in inner city scenarios into the negative set.
Figure 3 shows some examples of our training data. The number of samples in
each pose associated training set differs due to the distribution over pedestrian
appearances in our scenario. The setup of the classifiers we use will be explained
later in the experiments (Sec. 3).

2.2 Head Search Domain

Detected pedestrian images are the input to the head localization and pose es-
timation system developed here. The system will search for the pedestrian head
in the upper part of the pedestrian hypothesis. On average, the head represents
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Fig. 3. Examples of the training data for eight pedestrian head pose classes and neg-
ative samples

(a) (b)

Fig. 4. Pedestrian detection (blue),
head search domain (red) and search
windows (green). The ideal height for
the head search domain of 1

7
of the

pedestrians height (a), does not hold
for imperfect aligned pedestrian detec-
tion hypothesises (b).

approximately 1/7 of the total human
height. If a perfectly aligned pedestrian
detection is assumed, the mentioned value
would be fine. In practice however, pedes-
trian detectors sometimes will detect a
pedestrian resulting in a detection box
that is not perfectly bounding the pedes-
trian. To handle this problem, we consider
a head search domain having the same
width as the pedestrian detection box. For
the height we choose 2/11 of the pedes-
trians box height resulting from previous
experiments. This area is scanned on dif-
ferent scales to detect heads on different
sizes. An example is given in Figure 4.

2.3 Calculation and Normalization of Confidence Values

Classifying a certain region of an input image, using a sliding window, results
in eight confidence values per search position. These values are used later in a
comparative manner to determine the localization and the pose of the pedestri-
ans head. Since the eight pose classifiers are trained independently, the different
confidence values are also independent, thus have different ranges. To bring the
different outcomes to a comparable level, we perform confidence normalization.
For this we first evaluate each pose classifier on its training data and compute
the mean output confidence value C̄m. To normalize the different classifiers’ con-
fidence value ranges, the mean confidence values C̄m, m = 1, ..., 8 need to be
equalized. This can be achieved by multiplying these values by normalization
coefficients αm such that αmC̄m = αnC̄n, m �= n. Normalization with respect to
the highest mean confidence value will yield

αm = max
n=1,...,8

{C̄n}/C̄m. (1)
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The outputs Cm(l) of the different classifiers, on a special location l, are then
normalized by the corresponding coefficient αm, i.e.

Cm, norm(l) = αmCm(l). (2)

In the following we assume normalized confidence values and ignore the addi-
tional label.

2.4 Head Localization and Pose Estimation

The search for the head of a given pedestrian hypothesis is limited to the defined
domain in Section 2.2. This area will be scanned by a sliding window at different
scales, where each position lh is evaluated by the different pose classifiers. As a
result we get eight normalized confidence values per search position. We consider
a Bayesian decision and assign the sample x the position l̂h and pose class θ̂ with
the highest a posteriori probability:

(l̂h, θ̂) = arg max
lh,j∈{1,...,8}

P (lh, θj |x), with P (lh, θj |x) ≈ Cj(lh)∑
k

Ck(lh)
, lh ⊂ x. (3)

Thus, the head localization and head pose estimation is performed by simply
taking that particular position and pose, which scores the maximum confidence
over all pose classifiers, positions, and scales. I.e. the classifier outputs are used
twice, for head localization and estimation of the head pose.

3 Experiments

3.1 Experimental Setup

The proposed method is tested using classifiers based on different kinds of fea-
tures, that proved to be very useful in the fields of pedestrian– and face–detection
as well as for head pose estimation problems. All the classifiers are trained with
the same training parameters on the data mentioned in Section 2.1. First, we
use a boosting cascade of Haar-like features, as proposed in [20,12]. The sec-
ond type of classifiers are based on the Modified Census Transform [7]. These
features proved to outperform the Haar–like features concerning the problem of
face–detection. As we have proposed a method to estimate the head pose of a
pedestrian, we are dealing with head images at a very low resolution. Concerning
this point, we evaluate our classifiers on test samples with different resolutions
in order to get a dependency between the performance of our classifiers and the
image resolution, which is directly related to the distance between a pedestrian
and an approaching vehicle. Obviously, the effort on our system is to detect
the pedestrian’s intension as soon as possible. Thus, for evaluation we consider
pedestrian detections with a maximum height of 140 pixels (head size ≈20x20
pixels) and a minimum height of 50 pixels (head size ≈7x7 pixels). The test
samples are collected from 24 inner city video sequences à 200 Frames. In total
our test set consists of 10290 pedestrian samples, covering the eight head pose
classes.
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3.2 Head Localization Performance

Being aware of the fact, that we already assume the presence of a head within a
pedestrian hypothesis, it is possible to achieve very high head localization rates
in general. We assume a head localization to be correct, if cover and overlap
[11] of annotated ground truth data and detection hypotheses results in values
higher than 0.5.
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Fig. 5. Correct head localiza-
tion rates for different pedestrian
heights in image pixels. The corre-
sponding head sizes cover a range
from 20x20 pixels to 7x7 pixels.

Figure 5 shows the head localization rates
for the different classifiers at different image
resolutions. All configurations achieve very
good correct localization rates, scoring over
92% even when evaluating on the lowest con-
sidered resolution of 50 pixels of pedestrians’
height. The MCT-based features seem to per-
form slightly better for higher resolutions than
the Haar-like features, resulting in a correct
localization rate of nearly 98% for head sizes of
20x20 pixels. For smaller resolutions the per-
formance of the MCT features breaks down
and is comparable to Haar-like features. We
explain that with the loss of structures within
a 7x7 pixels patch in comparison to a 20x20
pixels head image. Figure 8a shows some sam-
ples of mislocalized heads at different resolutions. Most of these errors oc-
cur, when the structure of the background has a high similarity to the head
appearance.

3.3 Head Pose Estimation Performance

The correct estimation of the head pose is a more difficult task than the localiza-
tion itself. We are scanning the upper part of a pedestrian detection with eight
different pose classifiers, so that it is likely, that at least one of those results in a
very high confidence at the correct head position. For the head pose estimation
we would take the pose related to that particular classifier. However this could
probably fail concerning the difficulties of our fuzzy multi–class problem on low
resolution images. We represent our results using confusion matrices as proposed
in [6,15]. Higher values concentrated on the diagonals are related to a better per-
formance of a multi–class detection algorithm. Figure 6 shows the confusion ma-
trices for the considered feature types and resolutions. All configurations achieve
satisfying correct decision rates, even when evaluation is performed on very low
resolution images. The MCT–based approach reaches an overall correct decision
rate over 60% for head sizes of 20x20 pixels, where the use of Haar–like features
achieves 49%. The best accuracy up to 76% is reached by the left and right pose
MCT–classifiers. For head sizes up to 7x7 pixels, the overall performance breaks
down to a correct decision rate of 42% for the MCT–classifier and 44% for the
classifier based on Haar–like features. It can be noticed that the MCT–classifiers
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(a) MCT, head size 20x20 pixels (b) MCT, head size 7x7 pixels

(c) Haar, head size 20x20 pixels (d) Haar, head size 7x7 pixels

Fig. 6. Confusion Matrices for MCT– ((a), (b)) and Haar–classifiers ((c), (d)) for head
sizes of 20x20 pixels and 7x7 pixels

score higher correct decision rates for higher resolutions when compared with the
classifiers based on Haar–like features. The use of Haar–like features results in a
slightly better performance only on the lowest considered image resolution. This
may be explained, as for the localization results, by the nature of MCT–based
features that rely on the pixel level structures, which may disappear in low res-
olution images. Haar–like features measure intensity differences between larger
areas and are therefore unlikely to face this problem. Figure 6 also shows, that
most of the confusions of one particular head pose occur with the direct neigh-
boring head poses. Therefore we also considered a pose estimation to be correct
if the predicted pose is identical to the true pose or one of its direct neighboring
poses. In this way, it is possible to get correct decision rates at a minimum of
nearly 76% for head images of 7x7 pixels and a maximum of 87% for head sizes of
20x20 pixels using MCT features. In the case of the real eight–class problem, the
classifiers using Haar–like features tend to confuse the neighboring poses more
than the classifiers based on the MCT. However, when dealing with modified
eight–class problem, they seem to slightly outperform the MCT–classifiers, es-
pecially on the lowest resolution. Figure 7 displays samples of correct head pose
estimation results for heads of 20x20 and 7x7 pixels size using our MCT-based
method. The approach using Haar–like features results in similar images. To get
an impression of the complexity of head pose estimation in very low resolution
images we show samples of wrongly estimated orientations in Figure 8b.
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(a) (b)

Fig. 7. Correct results using MCT features for pedestrian heights of 140 pixels (a) and
50 pixels (b). White stripes indicate the pedestrians’ head pose direction.

(a) Samples of mislocalized heads using
MCT features in different image resolu-
tions

(b) Samples of wrongly estimated head
poses using MCT features in different
image resolutions

Fig. 8. Samples in different image resolutions, where the proposed system using MCT
features fails. (a) mislocalizations, (b) wrongly estimated head poses.

4 Conclusion

This work dealt with the integrated problem of pedestrian head localization and
head pose estimation under the harsh conditions of low resolution gray–value
images, full pan angle poses and high dynamic scenarios taken from a moving
camera. A solution of this problem was achieved by using a detection–based
approach, where two state–of–the–art face detection techniques built the basic
block. Head pose classifiers were trained in a modified one vs. all framework,
that guaranteed a good localization rate over the continuous head pose pan an-
gle and prevented instabilities during the training process. A sliding window at
different scales was used to collect classification confidence values all over the
head search area. Based on the normalized confidence values, the head could
be localized and the pose be estimated in a probabilistic manner. We evaluated
the developed system on a large and diverse dataset. Results were presented
considering confusion matrices and showed a very good performance for head
localization and head pose estimation, even when dealing with very low resolu-
tion images including heads down to a size of 7x7 pixels. The probabilistic form
of the head pose estimation results provides a suitable type of information for
further integration within video–based driver assistance systems.
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Abstract. Analyzing human motion data has become an important
strand of research in many fields such as computer animation, sport
sciences, and medicine. In this paper, we discuss various motion repre-
sentations that originate from different sensor modalities and investigate
their discriminative power in the context of motion identification and
retrieval scenarios. As one main contribution, we introduce various mid-
level motion representations that allow for comparing motion data in a
cross-modal fashion. In particular, we show that certain low-dimensional
feature representations derived from inertial sensors are suited for speci-
fying high-dimensional motion data. Our evaluation shows that features
based on directional information outperform purely acceleration based
features in the context of motion retrieval scenarios.

1 Introduction

There are many ways for capturing and recording human motions including me-
chanical, magnetic, optical, and inertial devices. Each motion capturing (mocap)
technology has its own strengths and weaknesses with regard to accuracy, expres-
siveness, and operating expenses, see [4,14] for an overview. For example, optical
marker-based mocap systems typically provide high-quality motion data such as
positional information given in joint coordinates or rotational information spec-
ified by joint angles. However, requiring an array of calibrated high-resolution
cameras as well as special garment equipment, such systems are not only cost
intensive but also impose limiting constraints on the actor and the recording
environment. On the other side, in recent years low-cost inertial sensors, which
can be easily attached to the body or even fit in a shoe, have become popular
in computer game and sports applications [7,9]. Another use of inertial sensors
is shown in [8], where the inertial sensor data is used to regularize marker-less
tracking results. However, inertial information such as joint accelerations, angu-
lar velocities, or limb orientations, is often being of less expressive power and
affected by noise.
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Fig. 1. (a) Actor wearing a suit with 41 retro-reflective markers as used by an optical
mocap system. (b) Actress wearing a suit with 5 Xsens MTx Sensors. (c) Positions of
41 markers provided by the optical system. (d) Locations of the sensors. (e) Limbs’
positions and orientations defined by the positions of markers. (f) Inertial sensors mea-
suring the orientation of the limb they are attached to. (g) Limb orientation expressed
with respect to a global coordinate system.

In this paper, we address the issue of cross-modal motion comparison inves-
tigating the expressiveness of various motion representations in the context of
general motion identification and retrieval scenarios. As one main contribution,
we introduce various mid-level feature representations that facilitate cross-modal
comparison of various motion types. Here, the main challenge consists of find-
ing a good trade-off between robustness and expressiveness: on the one hand, a
mid-level representation has to be robustly deducible from the data outputted
by different mocap systems; on the other hand, the representation has to con-
tain enough information for discriminating motions within a certain application
task. In particular, we show that certain low-dimensional orientation-based mo-
tion features are suited for accurately retrieving high-dimensional motion data
as obtained from optical motion capturing.

The remainder of the paper is organized as follows. In Sect. 2, we describe
different sensor modalities and discuss some of their properties. In particular, we
go into more detail on acceleration and orientation data as obtained from recent
inertial sensors. Then, in Sect. 3, we introduce various mid-level feature repre-
sentations that can be derived from the different sensor modalities. In Sect. 4,
we study the performance of these mid-level representations in the context of
cross-modal motion retrieval. Finally, in Sect. 5 we conclude with an outlook on
future work. Further related work is discussed in the respective sections.

2 Sensor Modalities

In this paper, we focus on two types of mocap systems, optical and inertial sys-
tems, which differ largely in acquisition cost, in the requirements on the recording
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conditions, and in the kind of data they provide. We now summarize some of
the fundamental properties of such systems, while introducing several motion
representations and fixing some notation.

2.1 Positional Motion Data

Optical marker-based mocap technology, as used in the passive marker-based
Vicon MX system1 or the active marker-based PhaseSpace system2, allows for
recording human motions with high precision. Here, the actor is equipped with
a set of active or passive markers, which are tracked by an array of calibrated
high-resolution cameras. From synchronously recorded 2D images of the marker
positions, the system can then reconstruct 3D coordinates of marker positions
or other skeletal kinematic chain representations. One particular strength of
optical marker-based systems is that they provide positional motion data of
high quality. However, requiring an array of calibrated high-resolution cameras as
well as special garment equipment, such systems are cost intensive in acquisition
and maintenance. Furthermore, many of the available optical mocap systems are
vulnerable to bright lighting conditions thus posing additional constraints on the
recording environment (e. g., illumination, volume, indoor). In our experiments,
we use a set of 41 retro-reflective markers which are attached to an actor’s suit
at well defined locations following a fixed pattern, see Fig. 1 (a).

2.2 Inertial Motion Data

In contrast to marker-based reference systems, inertial sensors impose compar-
atively weak additional constraints on the overall recording setup with regard
to location, recording volume, and illumination. Furthermore, inertial systems
are relatively inexpensive as well as easy to operate and to maintain. Therefore,
such sensors have become increasingly popular and are now widely used in many
commercial products. On the downside, inertial sensors do not provide any high-
qualitative positional data, but only accelerations and rate of turn data given
in the sensor’s local coordinate system. Note that these measured accelerations
always contain, as one component, the acceleration caused by gravity. Therefore,
the measured acceleration a can be thought of a superposition a = q[m + g]
consisting of the gravity g and the actual acceleration m of the motion. Here,
the quantity a is given in the sensors’s local coordinate system, while m and g
are given in the world coordinate system. The term q[·] represents the transfor-
mation from the global coordinate system to the sensor’s local coordinate system
(see below). This fact is often exploited in many portable devices such as recent
mobile phones to calculate the device’s orientation with respect to the canonical
direction of gravity [2].

In the context of cross-modal comparison of optical and inertial data, one
could integrate over the inertial data to obtain 3D positions. This, however, is
not practical since inertial data is prone to noise leading to very poor positional
1 www.vicon.com
2 www.phasespace.com

www.vicon.com
www.phasespace.com
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â, ĝ
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Fig. 2. Illustration of the different feature values. (a) Measured acceleration as with
respect to the sensors local coordinate system. (b) Pitch θs of a sensor with respect to
the plane defined by â respectively ĝ. (c) Roll ϕs of a sensor with respect to the plane
defined by â respectively ĝ.

data when being integrated [13]. Therefore, inertial data is often used indirectly
to influence and control certain parameters within a motion generation engine.
For example, inertial information may be used to identify and retrieve high-
quality motions that were previously recorded by optical mocap systems [11].
Here, to make the 3D positional data comparable with inertial information, one
obvious way is to suitably differentiate the 3D positional data to obtain velocities
and accelerations. Such data, however, is very local in nature with respect to the
temporal dimension thus making comparisons on this level susceptible to short-
time artifacts and outliers. In the following sections, we investigate this issue in
more detail and introduce mid-level representations that facilitate a more robust
cross-modal comparison.

In our experiments, we use inertial sensors supplied by Xsens3. Each MTx
unit contains an accelerometer, a rate gyro, as well as a magnet field sensor.
These units combine the information of the contained sensors to calculate their
full 3 degree of freedom (DOF) orientation q with respect to a global coordinate
system, see e. g. [1,3]. In the following, we refer to such a combination of inertial
and additional sensors as inertial unit. In order to express the orientation q
we use rotations expressed as unit quaternions (see [10]). Each such quaternion
defines a 3D rotation R3 → R3, which we also refer to as q. Let q[x] denote the
rotated vector for a vector x ∈ R3. The inverse rotation is referred to by q.

3 Feature Representations

In order to compare human motion data across different sensor modalities, one
needs common mid-level representations that can be generated from the data
outputted by the different sensors. In the context of this paper, our goal is to
retrieve full-body motions from a database containing motion data captured by
an optical mocap system using 41 markers, where the query is given in form of
a motion clip captured by five inertial sensors s1, . . . , s5 placed at the hip next
to the spine (s1) both lower arms (left s2, right s3) and both lower legs (left

3 www.xsens.com

www.xsens.com
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Fig. 3. Motion sequence consisting of six arm rotations, where the speed of the arm ro-
tations increases with each repetition. The pitch of the left forearm is shown, calculated
by using θ̃2 (gray) and θ2 (black).

s4, right s5), see Fig. 1 (d). Since all information supplied by the five inertial
sensors can be simulated using the 41 marker position (as shown in Sect. 3.1),
we use features close to the inertial data as common mid-level representation.

3.1 Virtual Sensors

Local accelerations and directional information as provided by inertial sensors
can also be defined from positional information coming from an optical mocap
system. To this end, for a given inertial sensor fixed to a limb in a specific way, we
use a suitable combination of markers to define the location and local coordinate
system of a corresponding virtual sensor, see Fig. 1 (e). The orientation q of a
virtual sensor is then the transformation from the local coordinate system to
the global coordinate system (see Fig. 1 (g)), while the global acceleration m
is obtained by double differentiation of the virtual sensor’s global position. By
adding the gravity g and transforming this quantity to the virtual sensor’s local
coordinate system using q one finally gets the local acceleration a = q[m + g].

3.2 Local Acclerations

As a first simple feature representation, we directly use the local accelerations as
outputted by the accelerometers. Using five inertial sensor units s1, . . . , s5, this
results in five local accelerations as ∈ R3 for s ∈ [1 : 5] := {1, . . . , 5}. We then
simply stack these five acceleration vectors to form a single vector

va = (aT
1 , . . . , aT

5 )T ∈ R15. (1)

3.3 Directions Relative to Acceleration

A more robust motion representation is obtained by measuring directions
rather than magnitudes. To this end, we define a global up-direction using the
direction of the gravity vector g. We are now able to define a two degrees of
freedom orientation of the sensor’s local coordinate system relative to this global
up-direction. Inspired by aviation, we call these two parameters pitch θs and roll
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ϕs, see Fig. 2. In many applications these quantities can be approximated using
only the measured acceleration as. These approximations denoted by θ̃s and ϕ̃s,
are defined as follows:

âs =
as

‖as‖ , (2)

θ̃s = arccos
〈
âs, (1, 0, 0)T

〉
, (3)

ϕ̃s = arccos
〈
âs, (0, 1, 0)T

〉
. (4)

Here, note that if the sensor’s local Y -axis is perpendicular to the global up-
direction, the pitch is determined by the rotation around the Y -axis. The result-
ing angle can be approximated by using an inner product between the X-axis
and âs approximating the up-direction, see Fig. 2 (b). Similarly, the roll can be
derived from the inner product between the Y -axis and the upward direction, see
Fig. 2 (c). We refer to the resulting pitch and roll features as acceleration-based
directional features. Again, we stack these features for all five sensors s1, . . . , s5

to form a single vector

vâ = (θ̃1, ϕ̃1, . . . , θ̃5, ϕ̃5)T ∈ R10. (5)

Here, pitch θ̃s and roll ϕ̃s are calculated using as as approximation for g. Recall
from Sect. 2.2 that each measured acceleration is a superposition as = qs[ms+g].
Thus θ̃s and ϕ̃s are only good approximations if ms is negligible. However, for
fast and dynamic motions, the component ms is large, which leads to corrupted
pitch and roll values, see Fig. 3

3.4 Directions Relative to Gravity

To address the above mentioned problem, one needs to approximate the global
upward direction in a more robust way—in particular during dynamic phases,
where ms is not negligible. To achieve such an estimation, simple accelerome-
ters do not suffice. We therefore use an inertial unit that outputs not only the
local accelerations but also the sensor’s orientation with respect to the global
coordinate system, see Sect. 2.2. Then, the direction ĝ can be estimated by trans-
forming the direction of the global Z-axis by means of the sensor’s orientation
qs. More precisely, we define

ĝs = qs

[
(0, 0, 1)T

]
, (6)

θs = arccos
〈
ĝs, (1, 0, 0)T

〉
, (7)

ϕs = arccos
〈
ĝs, (0, 1, 0)T

〉
. (8)

As before, we stack the pitch and roll features for all five sensors s1, . . . , s5 to
form a single vector

vĝ = (θ1, ϕ1, . . . , θ5, ϕ5)T ∈ R10. (9)
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The components are referred to as gravity-based directional features. The values
θs and ϕs exactly define (up to measurement errors) pitch and roll as introduced
in Sect. 3.3. The improvements in the case of highly dynamic motions are illus-
trated by Fig. 3, which shows the values of θ̃2 and θ2 over a motion sequence
containing six arm rotations (between frames 210 and 575). Here, the arm ro-
tations are performed at increasing speed, where the last rotation is performed
almost three times faster than the first one. While θ2 clearly shows the periodic
fluctuation of the pitch during the rotation, θ̃2 fails to display any meaningful
information when the motion becomes faster.

4 Cross-modal Comparison

In this section, we evaluate the feature representations in the context of a cross-
modal retrieval scenario, where we search in a database which comprises high-
dimensional 3D mocap while using low-dimensional inertial sensors as query
input.To this end, we assembled two databases DBxse and DBc3d. Each of the
databases contains ten instances of the ten motion classes shown in Fig. 4 (a),
which results in a total of 100 motion sequences per database. While the database
DBxse was recorded using five inertial sensors set up as shown in Fig. 1 (d), the
database DBc3d was assembled from excerpts of the HDM05 database which
consists of high-quality motions recorded by a 12 camera Vicon optical mocap
system, see [6]. Finally, we computed virtual sensors for DBc3d as described in
Section 3.1 matching the sensor setup as used for DBxse.

4.1 Class Confusion

Depending on the used feature representation, we now examine how well high-
dimensional motion sequences in DBc3d can be characterized by low-dimensional
sensor input from DBxse. To this end, we rank the motion documents from
DBc3d according to their similarity to a given query document from DBxse. More
precisely, we consider a document from DBc3d a match when it is an instance of
the same motion class as the given query document from DBxse. As similarity
measure we use the classical dynamic time warping (DTW) distance described
in [5], where, in our case, the highest ranked motion document has the smallest
DTW distance. By considering the distribution of motion classes among the ten
best-ranked documents one gets a good impression how the motion classes are
confused under a given feature representation. A common means to visualize this
are confusion matrices, which are shown for the three feature representations va,
vâ and vĝ in Fig. 4 (b). The rows of a confusion matrix represent the motion
classes of the query, whereas the columns represent the motion classes of the
ten best-ranked documents. Dark entries indicate a large percentage of a motion
class, whereas light colors indicate a low percentage. For example, the matrices
show that most of the motion classes are confused with the motion class CW (first
column) when using the feature representation va. Here, the reason is that the
motion class CW shows a lot of variance among the different motion instances
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CW EK GF JO JJ KI PU RB RF WA Ø

va 0.35 0.72 0.83 0.67 0.95 0.37 0.66 0.39 0.33 0.61 0.59
vâ 0.57 0.64 0.62 1.00 0.68 0.42 0.62 0.43 0.49 0.86 0.63
vĝ 0.97 0.68 0.67 0.97 0.98 0.56 0.50 0.64 0.79 0.88 0.77

(c)

Fig. 4. (a) Motion classes used for the experiments in Sect. 4. (b) Confusion matrices
(left) and true match distributions (right) of the three different feature representations.
(c) Averaged maximal F-Measures for every feature representation and motion class.
The last column shows for every feature representation the average over all motion
classes.

even when performed by the same actor. In particular, the risk of confusion
with the motion class CW is high for dynamic motions classes such as KI, PU, RB,
and RF, because dynamic motions under the feature representation va have a
very noisy character without much characteristic features. In contrast, using the
directional feature representation vĝ this confusion is reduced significantly.

4.2 F-measure

To further quantify the retrieval results, we use another measure from the re-
trieval domain referred to as maximum F-measure. Let k, k ∈ [1 :K] be the rank
of a given document, where K is the maximum rank (in our case K = 100). Now,
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for every k, precision Pk and recall Rk are defined as Pk := |T ∩ Mk|/|Mk| and
Rk := |T ∩Mk|/|T |. Here, Mk is the set of all documents up to rank k and T the
set of all possible matches (in our case |T |=10). Combining precision and recall
values for a given rank k yields the (standard) F-measure Fk :=2·Pk·Rk/(Pk+Rk).
Now, the maximum F-measure is defined as F :=max Fk, k∈ [1 :K]. The table in
Fig. 4 (c) shows the averaged maximum F-measure for each motion class,where
the was calculated by averaging the maximum F-measures over all queries of
each motion class, and every feature representation. Finally, the last column
shows the average over all motion classes. The better a given feature represen-
tation discriminates a motion class against all other motion classes the larger is
the corresponding entry in the table. It can be seen that the feature represen-
tation vâ is well suited to identify instances of motion class JO (1.00), whereas
the feature representation vĝ performs particularly well for the motion classes
CW (0.97), JO (0.97), and JJ (0.98). Furthermore, the identification rates for
the class CW show a drastic improvement under the feature representation vĝ

(0.97) in comparison to va (0.35). Also, the arm rotations RB and RF are much
better characterized under the feature representation vĝ (0.64 and 0.79) com-
pared to the acceleration based feature representations va (0.39 and 0.33) and
vâ (0.43 and 0.492). Interestingly, there are some exceptions where vĝ does not
outperform the other two feature representations. For example, in case of motion
class PU, vĝ (0.50) is worse compared to vâ (0.62) and va (0.66). Here, on the
one hand, the orientations of both arms—including roll and pitch—shows large
variations among the actors. On the other hand, all punching motion exhibit
characteristic peaks in the acceleration data, which can be captured particulary
well by va. However, in general, one can notice that vĝ is much better suited to
identify most motion classes than the feature representations va and vâ.

5 Conclusions

In this paper, we have presented a systematic analysis of various feature repre-
sentations in the context of a cross-modal retrieval scenario, where inertial-based
query motions are used to retrieve high-quality optical mocap data. Because of
the increasing relevance of motion sensors for monitoring and entertainment pur-
poses, the fusion of various sensor modalities as well as cross-domain motion anal-
ysis and synthesis will further gain in importance. For example, first approaches
have been presented that allow for identifying high-quality 3D human motions
from sparse inertial sensor input [11,12]. The reconstruction of high-quality 3D
human motions using database knowledge has become a major principle used
in computer animation and the gaming industry. Here, our analysis results and
methods constitute a suitable foundation for estimating the performance of the
various motion representations. For future work, following [11,12], we plan to
investigate which kind of inertial sensor input and which amount of database
knowledge is actually required to facilitate a robust and efficient reconstruction
of complex 3D full-body motions.
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Abstract. In this paper, we present a new method for line segments
matching for indoor reconstruction. Instead of matching individual seg-
ments via a descriptor like most methods do, we match segment chains
that have a distinctive topology using a dynamic programing formula-
tion. Our method relies solely on the geometric layout of the segment
chain and not on photometric or color profiles. Our tests showed that
the presented method is robust and manages to produce calibration in-
formation even under a drastic change of viewpoint.

1 Introduction

Many tasks in computer vision1 , such as structure from motion, expect a set of
features matched across images to register cameras in a common coordinate sys-
tem. For decades, corner detectors such as Harris and KLT detectors represented
the de facto features in computer vision literature. Recently, a new breed of fea-
tures appeared in the literature. Pioneered by the seminal work of David Lowe
[9], this new generation of feature detectors brought two major capabilities that
lacked in the previous generation: geometric invariance and a descriptor. The
first aspect is often achieved by using a scale-space framework [8] and data nor-
malization, whereas the addiction of a feature descriptor yield a better matching
repeatability.

However, in low texture scenes such as man-made environments (Fig.1), fea-
ture point perform poorly. In such scenes, 2D features run short in favor of line
segments and yet, they have not been used extensively as features for image
registration because of the difficulty of matching them. The later stems from
the fact that, segments vicinity are textureless and usually not distinctive which
precludes histogram-based (gradient, color, . . . ) description. Even if a segment
vicinity shows some variety, defining a neighbourhood zone is not tractable be-
cause a segment does not bear a natural scale, as it’s the case with feature points.
Last but not least, segment’s endpoints are seldom accurate thus, using them as
distinctive features is often error-prone.

In [3] authors used Kalman filters to track line segments. Their formulation
is akin to features tracking in video sequences and assumes short baselines.

Schmid and Zisserman [10] used epipolar lines bundles to constrain putative
matches followed by an intensity similarity check (using SSD along the segments)

1 This work was partially supported by the Fondation d’entreprise EADS, contract no
3610.
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Fig. 1. A pair of indoor images used in this paper

to identify correct matches. Though fast and accurate, their method assumes a
known epipolar geometry which makes it unsuitable for camera calibration. In
[1], a segments matching method with an application to wide baseline stereo is
presented. Here, feature points (SIFT, HOG,...) are extracted and used as an-
chor points. The actual segments pairing is performed by first, grouping putative
matches using their color profiles.Then, anchor-point/segment sideness consis-
tency is exploited to sort out the matches. Obviously, if no or few feature points
were detected and paired, the segment matching will rely solely on color profiles
which are known to be unstable. The idea of using supporting 2D features was
also proposed for segments matching in [5] and more generally for untextured
regions matching in [4].

In [11], the authors proposed an approach where segments are assigned a
descriptor computed from the layout of neighbouring lines (length ratios, relative
angles). As pointed out in [5], line signatures are subject to instabilities because
they rely on segments endpoints locations which are known to be inaccurate.

In this paper, we present a new method for segments matching. The proposed
method is suitable for camera calibration in an indoor environment and is based on
the fact that indoor scenes are often composed of segment chains. While individual
segments might not exhibit saliency, we show how segment chains topology have a
distinctive layout that can be exploited for matching. In this work, segment chains
are extracted and matched using dynamic programming. The result is then used
to compute the epipolar geometry induced by the camera motion.

The rest of the paper is organized as follows. Section 2 presents the algorithm
used for segments detection. The core of our algorithm is detailed in Section
3 while experimental results are reported in Section 4. Finally, we draw our
conclusion and discuss further improvement Section 5.
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Fig. 2. The Line Segment Detector (LSD). Line support regions are gathered recur-
sively if they fall within a certain orientation tolerance.

2 Segments Extraction

There are numerous ways to extract line segments in images. The classical ap-
proach consists of applying the Canny detector [2] to the image to extract edges.
These edges are then clipped at high curvature points. Along the curve that con-
nects two high curvature points, a line is fitted by either a least squares method
like in [1,5] or using a robust method such as the M-estimator technique. In
this paper, we used the Line Segment Detector (LSD) recently introduced in [6].
We would like to point out that our matching procedure is independent of the
underlying line detector and conveniency was the main motivation behind this
choice since an implementation of LSD is freely available on the author’s web
page. In the following we will summarize the LSD detector.

As depicted on Figure.2, line extraction starts by computing the edge map
of the image. Then, starting from a random position, line-support regions are
formed by grouping adjacent pixels that share the same gradient orientation
within a certain tolerance. The formation of the line-supports is done recursively
in a flood-fill fashion. Even though this procedure is based on a greedy algorithm,
the simple operations behind it makes it very fast. As a result, LSD outputs the
coordinates of the each segment endpoints along with the width of the associated
line-support.

Once the segments are extracted, an orientation will be assigned to each of
them according to the direction of their supporting gradient. Namely, a segment
will be oriented such as the darkest region will always lie on its right side. The
purpose of the orientation assignment is to form consistent segments chain as it
will be explained later. It could also be used to leverage matching ambiguities
when cameras orientations are available2.

2.1 Segments Merging

Segments detected by LSD are often fragmented because of noise. In order to
simplify the matching step, we post-process LSD output by merging the seg-
ments fragments that share the same orientation (up to a tolerance) and whose
endpoints are close. This is illustrated in Fig.3.
2 Most modern cameras provide this information in the image header.
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Fig. 3. Segments merging. Segments i and j are identified by their start and endpoint.
Left) No merging is done here because angle difference is large. Middle) No merging
neither because the distance between endpoints (||lie − ljs||) is large. Right) Merging is
done because the segments are well aligned and close to each other.

Fig. 4. LSD output after post-processing (see text)

The result of this process is a set of neat segments more suitable for our
matching procedure. As an exemple of such sets, running the merging procedure
on the sequence in Fig.1 is depicted in Fig.4.

3 Segment Chains Matching

In this section, we will give the details of our segment chain matching method.
Starting from an image, we use LSD to extract segments and merge fragments
as explained in the previous section. We then, form segments junctions by con-
necting salient segments in quasi-intersection situation. Such segments are most
likely to be 3D-coplanar, thus their intersections are the projection of real 3D
points that can be further used for camera calibration. At this stage, segments
in T-junction configuration are avoided as they presage occlusions.
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Fig. 5. Three extracted chains. The added segments must preserve the global orien-
tation of the chain (clockwise or counterclockwise) and its continuity.

Fig. 6. The incident angle θjk of a junction jk and the length of its inward segment

Starting from a junction that connects two salient segments, we form an initial
2-segment chain. This chain is recursively grown by adding continuous segments
that preserve the overall orientation. Three such chains are depicted in Fig.5.
Even though the extraction procedure is greedy, the running time is small thanks
to the low cardinality of the segments present in indoor scenes.
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Once segments chains isolated in both images, matching can take place using
a dynamic programing scheme presented in the following.

3.1 Dynamic Programing Formulation

Let C and C′ be two segments chains to match, given as a list of their junction
points. We define the cost of matching two junctions jk ∈ C and j′l ∈ C′ in terms
of their incident angles (θjk

, θj′l ) as:

match(jk, j′l) = |θjk
− θj′

l
| (1)

The cost of skipping a junction jk is given by the length of its inward segment:

skip(jk) = ||jk − jk−1|| (2)

See Fig.6 for further explanations.
The optimal cost of matching the junction jk ∈ C with the junction j′ ∈ C′

is formulated recursively as:

cost(jk, j′l) = match(jk, j′l) + min

⎧⎪⎨⎪⎩
cost(jk−1, j

′
k−1)

cost(jk−1, j
′
l) + skip(jk)

cost(jk, j′l−1) + skip(j′l)
(3)

Fig. 7. Matching cost. The cost of cross-matching 3 different chains. We can see that
real matches have a very low cost compared to other combinations which precludes a
winner-takes-all scheme.
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Fig. 8. Estimated epipolar lines on the first sequence along with 2 segment chains (blue
and red)

Because we do not know in advance the corresponding segment chains from
an image to another, we simply cross-match all the chains using our dynamic
programing formulation and assign matches using a winner-takes-all scheme.
Because the number of chains is low, this procedure is fast. To show the effec-
tiveness of this procedure, the cross-matching costs of the 3 chains depicted in
Fig.5 is reported in Fig.7 .

3.2 Camera Calibration

Once segment chains matches have been determined, junctions matches are triv-
ially extracted. However, theses matches are only putative because, unless they
result from coplanar segments, they are not the projection of the same 3D points.
To circumvent this, a RANSAC routine is used to randomly select 7-tuples from
putative junction matches and robustly estimate the fundamental matrix as ex-
plained in [7]. Of course, in the calibrated case, one would prefer estimating the
essential matrix in order to extract the rotations and translations of the cameras.

Our experiments showed that indoor scenes exhibits few outliers. Indeed, in
such scenes, adjacent segments are likely to be coplanar, thus most junctions
turn out to be real features.

4 Experiments

In this section we show the results of our experiments to demonstrate the effec-
tiveness of the proposed method. All images were shot with a hand-held iPhone.



78 J. Draréni, R. Keriven, and R. Marlet

Fig. 9. Second sequence. Top: Original images. Bottom: Detected segments after frag-
ments removal.
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Fig. 10. Estimated epipolar lines and 2 segment chains from the indoor sequence

The images were downscaled to a resolution of 1200×800. The estimated epipolar
geometry from the first sequence (see Fig.1) is depicted in Fig.8. Notice the
precision of the epipolar lines despite the camera motion.

We also ran our algorithm on a second sequence (see Fig.9). As it can be
seen, this sequence is challenging due to the amount of occlusion and the lack of
texture. The resulting epipolar geometry is shown on Fig.10.

The method was implemented on Mathematica and still, the running time for
each sequence was under 5 seconds on a 2.13 Ghz computer.

5 Conclusion

In this paper we presented a novel method to match line segments in an indoor
environment. Instead of building descriptors per segment, we considered segment
chains for their rich geometric topology that makes them very distinctive even in
presence of occlusions and severe viewpoint change. We also presented a simple
dynamic programing formulation to efficiently match such chains based solely
on geometric properties. In fact, our method is completely intensity-blind as no
photometric information was used to achieve the matching.

Moreover we think that our method could be successfully used to reconstruct
interiors from images and furthermore to produce building outlines.

Finally, we are convinced that our system could benefit from advances in
graph theory field to better explore the network of segments and efficiently ex-
tract meaningful chains. In fact, topics such as graph partitioning techniques are
already in study.
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Abstract. Many challenging computer vision problems can be formu-
lated as a multilinear model. Classical methods like principal component
analysis use singular value decomposition to infer model parameters. Al-
though it can solve a given problem easily if all measurements are known
this prerequisite is usually violated for computer vision applications. In
the current work, a standard tool to estimate singular vectors under in-
complete data is reformulated as an energy minimization problem. This
admits for a simple and fast gradient descent optimization with guar-
anteed convergence. Furthermore, the energy function is generalized by
introducing an L2-regularization on the parameter space. We show a
quantitative and qualitative evaluation of the proposed approach on an
application from structure-from-motion using synthetic and real image
data, and compare it with other works.

1 Introduction

To detect a model based only on observed images constitutes one of the central
tasks in computer vision applications. Problems like structure and motion esti-
mation as well as 3D or even 4D reconstruction can be formulated as a model
fitting problem. Assuming temporal coherence leads to a smoothness prior on
some variables. In this work we will focus on problems that are given as a mul-
tilinear model and we will show how the introduction of an L2-regularizer leads
to better solutions which can even be computed more efficiently.

Fitting a model with only a few parameters to observed data is the base of
the well understood method of principal component analysis (PCA). It is used,
for instance, for computation of eigenfaces [13], image matching [20], pose and
shape estimation [12], rigid structure and motion (SfM) estimation [19] or non-
rigid SfM [2]. Singular value decomposition (SVD) is often used to compute a
PCA. Since SVD can be computed quite easily, it is very popular for dimension
reduction approaches. However, SVD requires all measurements to be known. In
many applications in computer vision, for instance structure and motion esti-
mation, points cannot be observed because of occlusions or tracking failures.

In [19,3], missing observations are dealt with by solving complete sub-sets
and propagating these solutions while an EM approache is favored in [18]. Both

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 81–90, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



82 F.R. Schmidt, H. Ackermann, and B. Rosenhahn

types of algorithms work well for low noise or low amounts of missing values, but
they fail for realistic problems. A different approach to estimate the multilinear
model is the power factorization or NIPALS approach [22,11] which minimizes
an L2 energy function. It estimates solutions starting from the complete data,
i.e. it does not begin on any sub-set of the data.

In [16,17] Newton and Gauss-Newton approaches were considered which were
later generalized to weighted data [9,4]. To be more robust to errors that are
related to missing or corrupted data, different error norms are used in [6,15,8].
Another approach to cope with corrupted data is to enforce additional con-
straints that are specific to the problem. Constraints on individual projection
matrices were used in [14], consistency with epipolar geometry was imposed in [1]
and the smoothness of camera trajectories was enforced by means of a Kalman
filter in [10].

In this work we will minimize the common L2 energy function of [22,11,16,17,4]
by a gradient descent technique. The difference to power factorization is that
this gradient descent jointly optimizes both sets of variables thereby avoiding
accidental maximization and other numerical pitfalls.

Furthermore, we include a smoothness prior into the L2 energy. This leads to
the minimization of an energy E that is a convex combination of the L2 energy
Edata and the smoothness prior Esmooth. At the presence of a strong data term,
the smoothness term has only a small effect. Otherwise (due to missing data),
the smoothness term takes over control by extra- and interpolating information
that are driven by neighboring data. Therefore, our approach is different from
a Kalman filter approach in the sense that we do not indiscriminately enforce
smoothness but only if there is insufficient data. As a result, non-smooth models
can be estimated if the data information is very strong. Smoothness on the other
hand is stronger in areas of missing data and is weaker in areas that are well
defined by the observed measurements. A second difference to the Kalman filter
is that we do not process the data sequentially. While the L2-regularizer depends
on a specific temporal order of the observed images, the overall energy functional
E depends on all observations at the same time and will not change during the
optimization process.

The difference to the Gauss-Newton variants of [4] is that we only impose
smoothness on one set of variables. In the context of 3D-reconstruction we can
thus enforce smooth camera trajectories yet allow for non-smooth surfaces or
vice versa. Our experimental evaluation will show that the proposed method
performs superior.

Overall, we present the following contributions in this paper:

– A global energy is minimized by gradient descent thus avoiding problems
caused by starting from some sub-set of the data.

– The data term is extended by a smoothness term that governs those areas
with few measurements.

– We do not enforce smoothness on all variables indiscriminately, but only
smooth selectively. Thus partially non-smooth solutions can be obtained.

– We will demonstrate the proposed algorithm for simulated and real data.
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This paper is organized as follows. In Section 2, we derive the gradient descent
algorithm and discuss the advantages compared to power factorization. Section 3
generalizes the functional to include a smoothness prior. A quantitative analysis
with synthetic data is conducted in Section 4. Real image experiments with
challenging sequences are conducted in Section 5. In the same section we briefly
discuss future work. Section 6 provides a summary.

2 Energy Minimization Formulation

In this section, we will formulate the multilinear model estimation as an energy
minimization method and derive the gradient of this energy functional. We will
then discuss in which sense a gradient descent deviates from the popular power
factorization [11]. After presenting these two approaches, we will in Section 3
introduce a generalization that incorporates an L2-smoothness term into the
here presented energy functional.

First let us start with the general problem of multilinear model estimation.
To this end, we have a set of observations that are encoded in a m × n matrix
W . This can be understood as n observations of dimension m. The idea of a
multilinear model is it now to incorporate the knowledge that the observations
do not form an n-dimensional but rather an r-dimensional subspace with r � m.

Hence, we have r model vectors x1, . . . , xr ∈ Rm and y�
1 , . . . , y�

r ∈ Rn that
form a left and right base of the r-dimensional model space. Let xi,k and yk,j

denote the kth coordinate of vector xi and y�
j . Every element Wij of W can

then be written as a linear combination of xi and y�
j and we obtain for Wij =∑r

k=1 xi,k · yk,j . If we now put the vectors xi and y�
j into the m × r matrix X

and the r × n matrix Y , we receive the following equation

W = X · Y. (1)

In the perfect noiseless case, W has rank r, but since measurements are usually
perturbed by noise, matrix W can also exhibit ranks which are larger than r. In
practice, Equation (1) can thus not be solved exactly and is often reformulated
as the following least squares problem:

min
X∈Rm×r,Y ∈Rr×n

‖W − X · Y ‖2
fro (2)

where the Frobenius norm ‖A‖fro :=
√∑

i,j a2
i,j is the canonical norm on matri-

ces. In order to solve this problem, we can simply use the SVD of W = Q1ΣQ�
2 .

This results in the solution X = Q1Σ
1
2 for the left subspace and Y = Σ

1
2 Q�

2 for
the right subspace, respectively.

As SVD requires each entry of W to be known, for most real computer vision
problems it is not applicable. If some entries of W are unknown, we also have a
visibility mask V ∈ {0, 1}m×n which encodes the information whether the entry
wij is a valid observation (vij = 1) or not (vij = 0). Equation (2) then becomes

Edata(X, Y ) :=
1
2
‖(W − X · Y ) � V ‖2

fro (3)
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where the operator � denotes the element-wise product. In Section 3, we will
add a smoothness term to this data term in order to obtain better results, but
for now we will stick to this data term.

To minimize Eq. (3), we can use a gradient descent approach. In order to do
this, we have to compute the gradient of Edata. The next lemma states that this
task is easy in the sense that in only involves elementary matrix operations.

Lemma 1. The gradient of Edata can be computed as

∇Edata =
(

∂Edata

∂X
∂Edata

∂Y

)
=
(

[(XY − W ) � V ] Y �

X� [(XY − W ) � V ]

)
.

Proof. We will only show how to compute ∂Edata
∂X . The computation of ∂Edata

∂Y
can be done analogously. Now denote the columns V by vj . Then, we can write

∂Edata

∂yj
=

1
2

∂

∂yj

⎡⎣ n∑
j=1

‖(wj − X · yj) � vj‖2

⎤⎦
=

1
2

∂

∂yj
‖Vj(wj − X · yj)‖2

with the diagonal matrix Vj consisting of the entries of vj .

=
(
X�VjXyj − X�Vjwj

)
=X� ((Xyj − wj) � vj)

⇒ ∂Edata

∂Y
=X� ((XY − W ) � V ) �	

Since Edata is neither convex nor quasi-convex there is no obvious way of finding
the global minimum efficiently. In [22,11], Eq. (3) was minimized by iteratively
solving for ∂Edata

∂X = 0 and ∂Edata
∂Y = 0 while keeping the other set of variables

fixed. However, this method can get trapped in a local extremum: at every
iteration, a potential local extremum at least for one of the two variable X or
Y is chosen and thus the vulnerability that a local extremum for Edata is found
increases dramatically. Of course, we like to believe that this local extremum is
at least a local minimum. But this is not true in general. Since Edata is not a
convex function, every iterative update step can even increase the energy that we
want to minimize. If for example ∂2Edata

∂2X is negative definite or even indefinite,
the update w.r.t to X will move Y into a local maximum or a saddle-point.

To overcome these problems, we perform a gradient descent approach which
jointly optimizes X and Y . After each update of X and Y , X is projected to
an orthonormal representation as classical power factorization does. This has
several advantages:

1. The gradient descent approach will always decrease and thus we will omit
any local maximum.

2. Gradient descent methods tend to not get stuck in saddle-points. This is
because the area that will lead neighboring points via gradient descent into
the saddle-point form themself a zero set in the definition domain.
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3 Introducing L2-Regularization

Many real problems provide further constraints on the model. In this section
it will be shown how Eq. (3) can be generalized to include a smoothness prior
on the coordinates X . In the context of 3D-reconstruction we want to allow for
non-smooth surfaces hence we do not enforce smoothness on the variables Y .

X can be understood as a path in Rr which corresponds to the temporal
coherent observation in R

m encoded by the rows of the observation matrix W .
Therefore, X can be understood as a discrete sub-sampling of the following
trajectory:

c : [0, 1] →R
r

c

(
i − 1
m − 1

)
=(xi,1 · · ·xi,r)� ∀i = 1, . . . , m.

With this formulation, we can now introduce the L2-regularization on c via
Esmooth(c) = 1

2

∫ 1

0 c′(t)2 dt which becomes for its discrete representation X the
following backward difference:

Esmooth(X) =
1
2

1
m − 1

r∑
s=1

m∑
i=2

(xi,s − xi−1,s)2. (4)

By weighting the importance of the smoothness term over the data term by a
non-negative number λ, we can formulate the multilinear model estimation with
L2-regularization as minimizing the following energy function:

E(X, Y ) = Edata(X, Y ) + λ · Esmooth(X) (5)

As in Section 2 we want to minimize this energy via a gradient descent ap-
proach. In order to do this, we have to compute the gradient of Esmooth. It turns
out that also this gradient can be computed by easy matrix operations:

∂Esmooth

∂xi,s
=

1
m − 1

(−xi−1,s + 2xi,s − xi+1,s) (6)

Instead of matrix multiplication as in Lemma 1, we only need to compute
a simple linear combination of neighboring rows in the matrix X . Combining
Equation (6) with Lemma 1, we can find a minimum of E by projected gradient
descent.

4 Evaluation for Synthetic Data

For experimental evaluation, we draw on an application from structure from
motion: it was shown in [19] that feature trajectories of a rigid body over several
images taken by affine cameras are constrained to span a low-dimensional linear
subspace. Due to the incomplete trajectories, centroids cannot be computed, thus
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Fig. 1. Mean root square error (MRSE) of 10 trials between the estimated matrix
and the ground truth. The solid blue line indicates the proposed method, the dashed
blue line power factorization, the solid (dashed) red line Kalman-EM with (without)
specified variance, the solid green line nuclear norm minimization (NNM), and the
magenta dash-dotted line the regularized Gauss-Newton scheme.

Fig. 2. Average mean root square error (MRSE) with ground truth data of 10 trials.
The solid blue line indicates the proposed method, and the solid (dashed) red line
Kalman-EM with (without) specified variance.

the standard rank-3 constraint used in [19] must include the unknown center,
hence generalizes into a rank-4 constraint [1,18] in Eq. (2). We simulated 200 3D-
points distributed on a cylindrical surface. The points were translated, rotated,
and projected onto 20 images. For projection, an affine camera model was used,
thus avoiding non-Gaussian noise induced by estimating an incorrect model. We
experimentally determined that the functional obtains a global minimum for
λ = 3 · 108.

The proposed method was further compared with the power factorization
(NIPALS) algorithm, the Kalman-filtering EM approach, a method which mini-
mizes the nuclear norm [5]1, and a Tikhonov-regularized Gauss-Newton scheme
from [4]. Power factorization, the Gauss-Newton scheme, and the proposed gradi-
ent descent were randomly initialized 50 and the best result taken. The Kalman-
EM-algorithm was executed twice: once with specified variance (see below), once
with a generic variance of 1. For the nuclear norm minimization (NNM) there are
several parameters to specify. We set them to values which are very conservative
according to the authors.

1 The code is provided at svt.caltech.edu

 svt.caltech.edu
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Occlusion was simulated by randomly removing parts at the beginning and the
end of trajectories. We thus had trajectories only visible on a more or less narrow
band on the diagonal of W increasing the difficulty 2. We increased the amount
of invisible data from 5% until 95% in steps of 5%. Visible measurements were
perturbed with normally distributed noise with standard deviations σ = {0, 3, 5}.
For each combination of noise and missing observations, we simulated 10 different
realizations of W , i.e. perturbed and sampled its entries, and computed average
errors and computation times.

Figure 1 shows the average Frobenius error per pixel between the the es-
timated matrix and the ground truth, i.e. a mean root sum of squares error
(MRSE). The noise level was σ = 3. The solid blue line indicates the proposed ap-
proach, the dashed blue line, the solid red line Kalman-EM with known variance
and the dashed red line Kalman-EM without known variance. The green solid line
indicates NNM. Lastly, the magenta dash-dotted line indicates the Tikhonov-
regularized Gauss-Newton scheme of [4]. The NNM approach usually converged
to solutions of rank larger than 4. Since the physical model requires rank 4, we
then truncated the estimated left and right subspaces which caused large er-
rors. We varied its parameters yet could not find a more successful combination.
The Gauss-Newton method performed poorly for large amounts of missing data.
Other variants from this box achieved similar results. Both Kalman-approaches
(KF) and the proposed solution both achieve low errors. Our approach performs
superior to all other methods including power factorization.

The plots in Figure 2 compare both KFs and our method. The left plot cor-
responds to σ = 0, the middle to σ = 3, and the right to σ = 5. The blue error
curves look similar for σ = 3 and σ = 5, yet differ slightly. For noise-free data,
all three methods achieve similar errors if less than 40% of the matrix is known.
For larger sampling ratios, the proposed algorithm performs more than twice as
good. For noisy data, the proposed method is between 2.5 and more than 14
times more accurate.

5 Real World Applications

In this section we show successful application of the proposed method to two real
image sequences containing large noise and even a few outliers. While regularized
energies have already been applied to 3D reconstruction [7,21], the problem
that we address here is different from prior work. In [7,21], camera calibration
including intrinsic and extrinsic parameters is known, while the current work
considers unknown calibration information. Furthermore, regularization is not
applied to the 3D-points. Instead, we regularize the camera path.

The scene shown in Fig. 3(a) shows a corner of a historic building. A total
of 2000 trajectories were observed over 60 images with 68.6% missing features.
While there are no obvious outliers, noise is very large. Four images of the 3D-
reconstruction are shown in Fig. 3(b). The color of the pixel in the image it was
2 Due to the random occlusion, trajectories have to be permuted properly to make

the band-diagonal structure of W visible.
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(a)

(b)

Fig. 3. (a) Five images of a 60 image sequence with 2000 trajectories. 68.6% of the
data is missing and there is large noise. Red points indicate the feature found in each
image. (b) Four views of the reasonable 3D-reconstruction.

first observed in was assigned to each 3D-point. The overall reconstruction looks
reasonable, only the depth of the scene is underestimated. This error is due to
the affine camera model which cannot handle significant scene depth compared
with the the distance to the camera.

The second sequence consists of 672 trajectories over 10 images3. A single
image is shown in Fig. 4, left. A total of 57.7% of the data matrix is unknown.

Since there are several outliers present in the data, we adopted a RANSAC
approach on minimal subsets.

Four images of this 3D-reconstruction are shown in the left images of Fig. 4.
The ground plane is not rectangular with the wall of the house, and the right
side is heavily distorted. Considering the affine camera model, the reconstruction
is reasonable.

The achieved results look reasonable considering the affine camera model and
the fact that the shown squences have significant depth variation whereas the
assumption is that all 3D-points have similar depths. Approaches for projective
or Euclidean bundle adjustment can achieve better results yet require good ini-
tializations which can be provided by the proposed algorithm. Furthermore, such
software packages are much more complex than the proposed algorithm.

It is known that the L2 error metric defined by Eq. (3) is not entirely suit-
able for 3D-reconstruction. Nonetheless, the L2 metric is quite general and can
be directly applied to many other problems [13,20,12]. For SfM, we therefore
like to interpret the used error as an approximation of the prefered metric.
Future work will focus on studying more descriptive errors which better suit
3D-reconstruction. For the general problem of multilinear model, we would still
advocate the Frobenius error because it is a very general error which is consistent
with the proposed L2-regularizer.
3 This sequence is provided at http://www.robots.ox.ac.uk/~vgg

http://www.robots.ox.ac.uk/~vgg
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Fig. 4. Left: One image of a 10 image sequence with 672 trajectories and 57.7% un-
known features. Red points indicate features in the current image, green points corre-
spondences in the next image. Red boxes indicate apparent outliers. Right: Four views
of the 3D-reconstruction. Overall, it looks reasonable. The angle between ground plane
and house is not orthogonal due to the strong perspective distortion of the points close
the to camera which the affine camera model cannot handle.

6 Conclusion

In this work, a factorization algorithm for partially known matrices was pre-
sented. It uses a globally invariant energy function which was generalized to
include a smoothness prior. This prior penalizes non-smooth models only if the
data term is locally insufficient. Using the generalized energy functional, a gra-
dient descent method was derived. Using simulated data, we showed that this
algorithm is more accurate than all other methods even if significant parts of the
matrix are unknown. Using real image data, reasonable 3D-reconstructions were
presented. The proposed solution can be used to initialize a bundle adjustment.
Although structure and motion estimation was presented as application the pro-
posed algorithm is general and can be applied to any PCA problem [13,20,12,19,2].
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Abstract. Convolution kernels are a commonly used tool in computer
vision. These kernels are often specified by an ideal frequency response
and the actual filter coefficients are obtained by minimizing some weighted
distance with respect to the ideal filter. State-of-the-art approaches usu-
ally replace the continuous frequency response by a discrete Fourier spec-
trum with a multitude of samples compared to the kernel size, depending
on the smoothness of the ideal filter and the weight function. The number
of samples in the Fourier domain grows exponentially with the dimen-
sionality and becomes a bottleneck concerning memory requirements.

In this paper we propose a method that avoids the discretization of the
frequency space and makes filter optimization feasible in higher dimen-
sions than the standard approach. The result is no longer depending on
the choice of the sampling grid and it remains exact even if the weighting
function is singular in the origin. The resulting improper integrals are
efficiently computed using Gauss-Jacobi quadrature.

Keywords: Localized kernels, filter optimization, Gauss-Jacobi quadra-
ture.

1 Introduction

A convolution kernel is termed optimal if its frequency response minimizes a
chosen distance measure with respect to an ideal filter in the frequency space.
State-of-the-art approaches replace the continuous frequency space by a discrete
one with a multitude of samples compared to the kernel size, depending on how
smooth the ideal filter and the weight function are [1,6,7]. We propose to use con-
tinuous formulations of the weighted distance measure, of the relative frequency
error, and of the basic optimization problem in §2. Hence, the distance measure
does not depend on the sampling of the Fourier space any longer. The basic
optimization problem can be expressed by a linear system of equations Af = b.
The entries of A and b are determined by improper integrals. In §3, it is shown
that these integrals can be computed precisely by the means of Gauss-Jacobi
quadrature. The numerical experiments of §4 compare some kernels obtained
by the continuous and by the discrete approach as defined in [6]. Estimates of
the memory requirements and of the number of floating points operations for
both methods for d dimensions finish this section. Results in this paper are given
without proof. All proofs are provided in the supplementary material.
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2 Filter Optimization: A Continuous Reformulation

Let d be the dimension of the spatial and the frequency space. Let the frequency
response of an ideal filter F with bandwidth B, center frequency ρc, and filter
direction n ∈ Ω, |n| = 1, be defined on the cube Ω := [−π, π]d by the radial
symmetric factor RB,c(| · |) and the directional factor Dn(·) as follows [4]:

F (u) := RB,c(|u|) Dn(u) with RB,c(ρ) := exp
(−CB(ln ρ

ρc
)2
)
,

CB := 4
B2 ln 2 , and Dn(u) :=

{(
u
|u| · n

)2 if u · n > 0,

0 otherwise.

(1)

Let a kernel be defined by n coefficients fk ∈ C, 1 ≤ k ≤ n, assigned to the
coordinates xk of the local space. Then, its frequency response F̃f (u) reads

F̃f (u) :=
∑n

k=1
fk exp(−ixk · u) . (2)

Let w : Ω → R>0 be a positive weight function. Then, a distance measure is
defined on the weighted frequency space L2

w(Ω, C) by the weighted L2(Ω)-norm:

‖F − F̃f‖w,Ω :=
(∫

Ω

w(u)
∣∣F (u) − F̃f (u)

∣∣2 du
)

1
2 . (3)

Here, | · | denotes the absolute value |z| of the complex number z ∈ C. Using the
norm ‖ · ‖w,Ω, we define the relative frequency error by

erel := ‖F − F̃f‖w,Ω / ‖F‖w,Ω . (4)

The weight function w quantifies the significance of close approximation for dif-
ferent spatial or spatial-temporal frequencies. In conjunction with the weight
w, note that a strict analog with the discrete distance used in computer vision
[1,4,5,6] would suggest to define ‖ · ‖w,Ω with the squared weight w2(u) instead
of w(u) in (3). We decided to take the unsquared w as this is consistent with lit-
erature dealing with weighted Lebesgue spaces and orthogonal polynomials [2,8].
Using the above definition, we can now write the optimization problem (OP):
Determine f := (fj)1≤j≤N ∈ CN , so that A(f) := ‖F − F̃f‖2

w,Ω becomes min-
imal. The existence and uniqueness of f follows since A is a strongly convex
functional lower-bounded by 0 on CN .

Although the squared absolute value |z|2 = zz used in (3) is not a holomorphic
function, one can differentiate A from (OP) with respect to the real and the
imaginary components of the coefficient vector f using standard calculus and
reassemble the real and the imaginary parts as follows:

Proposition 1. Let ∂
∂ 
f and ∂

∂ �f be the gradient with respect to the real and
imaginary components of f , respectively. Then there holds(

∂
∂ 
f + i ∂

∂ �f

) A(f) =
(
−2
∫

Ω

w(u) ei xk·u (F (u) − F̃f (u)
)

du
)

1≤k≤N

. (5)

If f solves (OP), then
(

∂
∂ 
f + i ∂

∂ �f

)A(f) = 0.
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Eq. 5 can be rewritten as the linear system of equation A f = b with the matrix
A :=

(
ajk

)
1≤j≤N
1≤k≤N

∈ RN×N and the right hand side b :=
(
bk

)
1≤k≤N

∈ CN

where the entries ajk and bk are given by

ajk :=
∫

Ω

2w(u) cos
(
(xk − xj) · u

)
du , bk :=

∫
Ω

w(u) exp(ixk · u)F (u)du. (6)

The following two corollaries characterize the linear system A f = b.

Corollary 1. Let the weight w be fixed and Fn only dependent on n (see (1)).
The vector components bk of b from (6) depend only on x = xk. Therefore, we
write bx,n as a short hand. If n is assumed fixed, we write bx.

Let Ωn := {u ∈ Ω |u · n > 0} be the half of Ω which elements lie on the
same side of the hyper-plane u · n = 0 with the filter direction vector n (see
Figure 1 (right)). According to the definition of F (u) by (1), one obtains

bx = bx,n =
∫

Ωn

w(u) exp(ix · u) RB,c(|u|) ( u
|u| · n)2 du .

Furthermore, one gets b−x = conj(bx) and bx,−n = conj(bx,n).

Corollary 2. As the ajk entries of A from (6) depend only on Δx = xk−xj, we
write aΔx := ajk as a short hand. For x sampled equidistantly in each dimension,
A is a symmetric positive definite real-valued Toeplitz matrix.

3 Numerical Quadrature of Improper Integrals

The statements of §2 assumed only w(u) > 0 for all u ∈ Ω. The energy of normal
images is usually concentrated around the frequency u = 0 and decreases as |u|
increases. The class of weight functions defined in the following corollary has been
proven useful in practice and can be extended to more general weight functions
known in filter design (cf. [5,6]) straight forwardly.

Corollary 3 (Boundedness of the integrals). Let w be defined by w(u) :=
|u|−2β for β ≥ 0. Then the matrix entries aΔx are bounded for all x ∈ Rd , if
and only if β < d

2 .

We consider the special case of the matrix entry a0 =
∫ π

0 u−2β du = 1
1−2β π1−2β

from Corollary 2 to explain the need of a numerical quadrature that takes care
of the singularity at 0. Using equidistant sampling, a0 is approximated by the
sum â0 := π

n

∑n
j=1

(
2j−1
2n π

)−2β . In Figure 1 (left) we plotted the relative error
(a0−â0)/a0 of this approximation versus the number of samples n using a double
logarithmic scale of the axes. The solid and the dashed line of the plot show the
upper and lower limit of the convergence rate. With this it becomes clear that
integration by equidistant sampling is not feasible because one needs millions
of function evaluations. Therefore, we look for a quadrature which takes into
account the singularity of the integrand. G. Szegö already showed the basics for
such schemes in his book “Orthogonal polynomials” in 1938 [8, Chapter XV].
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Fig. 1. Left: Computation of a0 by equidistant sampling of u−2β for β = 0.49 with n
points. The relative error (a0 − â0)/a0 decreases with O(n−0.02). Middle: Computation
of aΔx for Δx ∈ [0, 25] using the Gauss-Jacobi quadrature; (aΔx − ãΔx)/aΔx ≤ 10−6

for all Δx if p = 2 + �Δx� quadrature abscissae are used. Right: Integration over Ωn.

3.1 The One-Dimensional Case

The integration domain Ωn must be considered for n = ±1 in the one-dimensional
case. As bx,−1 = conj(bx,1), it suffices to analyze Ω1. The integrals

aΔx =
∫ π

0

2u−2β cos(Δxu) du and bx,1 =
∫ π

0

u−2β exp(i xu)RB,c(u) du , (7)

needed for A and b from (6) contain a singularity at 0. By the theory of orthog-
onal polynomials (cf. [8]) there exist polynomials Jγ

p of degree p for γ > −1 with
Jγ

p (π) = 1 which are orthogonal to each other with respect to the scalar product
〈·, ·〉γ given by 〈f, g〉γ :=

∫ π

0
ζγ f(ζ)g(ζ) dζ. We recall two basic properties that

characterize these polynomials.
1. For any positive integer p, the zeros of Jγ

p are distinct real numbers
ζγ,p
i ∈ (0, π), 1 ≤ i ≤ p, called weighted quadrature points.

2. Gauss-Jacobi quadrature. There exist positive weight factors ωγ,p
i , 1 ≤ i ≤ p,

such that ∫ π

0

ζγ f(ζ) dζ =
p∑

i=1

ωγ,p
i f(ζγ,p

i ) (8)

for all polynomials f ∈ P2p−1((0, π)).
The quadrature points ζγ,p

i and the weight factors ωγ,p
i can be computed ef-

ficiently by solving an eigenvalue problem using the Givens-Householder algo-
rithm (see [3, §5.3], [2, Remark 4.2] for the numerical scheme). The strength
of the Gauss-Jacobi quadrature becomes clear by (8): p quadrature points are
sufficient to compute ζγ weighted integrals of polynomials of degree ≤ 2p − 1.

The drawback of the quadrature according to (8) is, roughly spoken, that the
convergence for non-polynomial f depends on the boundedness of the derivatives
of f . Bernardi and Maday gave a deep analysis of the approximation properties
of the Gauss-Jacobi quadrature for non-polynomial f using weighted Sobolev
spaces in [2]. In the supplementary material, this analysis is adapted to aΔx and
bx to prove the following propositions.
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Let aΔx and bx,1 be approximated by (in accordance with (8))

ãΔx := 2
p∑

j=1

ω−2β,p
j cos(Δxζ−2β,p

j ) and b̃x,1 :=
p∑

j=1

ω−2β,p
j exp

(
i xζ−2β,p

j

)
. (9)

Proposition 2. Let β ∈ [0, 1
2 ). Furthermore, let aΔx and ãΔx be given by (7)

and (9), respectively. Then, there exist constants c1 and c2 such that the error
e := |aΔx − ãΔx| may be estimated by

e ≤ c1(|Δx| + 1) p−1 and e ≤ c2(|Δx|2 + |Δx| + 1) p−2 .

Proposition 3. Let B ∈ [0.1, 3] be the bandwidth used in the definition of RB,c ,
and let bx,1 and b̃x,1 be given by (7) and (9), respectively. Then, there exist
constants c3 and c4 such that the error ew := |bx,1 − b̃x,1| of the Gauss-Jaboci
quadrature with respect to the weight function ζ−2β may be estimated by

ew ≤ c3(|x| + 1)B−1/2 p−1 and ew ≤ c4(|x|2 + |x| + 1)B−3/2 p−2 .

Propositions 2 and 3 are limits for the errors of the Gauss-Jacobi quadrature ap-
plied to the improper integrals occuring in the filter optimization. Figure 1 (mid-
dle) documents how the weighted integration works for the computation of aΔx

for Δx ∈ [0, 25] using the Gaussian-Jacobi quadrature with the p abscissae ζ−2β,p
j

for the weight |u|−2β with β = −0.49. For p = �Δx� + 2 the relative error of
ãΔx against the exact value aΔx is less 10−6. Even the step-like dependence of
the exact aΔx from Δx is already caught with this number of points.

Due to Figure 1 (left) there holds |a0 − â0|/a0 ≈ 0.96n−0.02. Therefore, more
than 10688 function evaluations are required to compete with ã0.

Using only p = 10 abscissae shows that the weighted quadrature collapses
for Δx > 9. Let �y� := min{k ∈ N | k ≥ y}. Numerical experiments like that
presented in Figure 1 (middle) indicate that already �|Δx|� + 2 and �|x|� + 5
abscissae suffice to approximate the integrals of aΔx and bx,1, respectively, so
that the relative errors are smaller than 10−6. These numbers are consistent
with the following idea: The quality of the quadrature (8) depends on how good
the interpolating polynom of degree 2p − 1 approximates the integrand. If one
conjectures that cos(|Δx|) can be approximated well by a polynomial of degree
2�|Δx|� + 1, then p = �|Δx|� + 2 is a feasible number of quadrature points.

3.2 The Two-Dimensional Case

Due to Corollaries 1 and 2 the computation of bx,n and aΔx demands the integra-
tion over the half square Ωn (see Figure 1 (right)). Let w(u)ĥ(u) be a short hand
for the integrands given by corollaries. At the beginning we assume |ϕn| ≤ π

4 for
ease of presentation, i.e., there exists an intersection point of the right edge of
the square Ω and the line {λn |λ ∈ R}. As can be seen in Figure 1 (right), using
the polar coordinates (ρ, ϕ) with u = (ρ cosϕ, ρ cosϕ)T one may rewrite
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Ωn

w(u) ĥ(u) du =
∫ −π

4

ϕn−π
2

H(ϕ) dϕ +
∫ π

4

−π
4

H(ϕ) dϕ +
∫ ϕn+ π

2

π
4

H(ϕ) dϕ (10)

with the interior integrals H(ϕ) :=
∫ r(ϕ)

0
ρ1−2β h(ρ, ϕ) dρ, ϕ ∈ [0, 2π], in both

cases. Here, h is well-defined by h(ρ, ϕ) := ĥ(u) and the upper limit r(ϕ) of the
interior integrals is given by r(ϕ) := π

cos ϕ for |ϕ| ≤ π
4 and by r(ϕ) := π

| sin ϕ| for
1
4π ≤ |ϕ| ≤ 3

4π. The integration over Ωn for the general situation ϕn ∈ [π, π] is
yielded by a shift argument: Let ϕs = σ

2 π , if 1
4π ≤ ϕn ≤ 3

4π, σ ∈ {−1, 1}, and
let ϕs = π , if 3

4π < |ϕn| ≤ π . Then, we obtain
∫

Ωn
ĥ(u) du by the substitution

of the integrand h(ρ, ϕ) in the right hand side of (10) with h(ρ, ϕ + ϕs). The
quadrature rule given by (8) can be adapted from the integration interval (0, π)
to the interval Iϕ := (0, r(ϕ)) by a scaling of the abscissae ζγ,p

j and of the
weights ωγ,p

j . Noting these adapted abscissae and weights by ζγ,p,ϕ
j and ωγ,p,ϕ

j ,
respectively, the interior integrals are obtained by

H(ϕ) ≈ H̃(ϕ) :=
∑p

j=1
ω1−2β,p,ϕ

j h
(
ζ1−2β,p,ϕ
j

)
.

Note that the weight ρ1−2β in (10) does not contain a singularity as long as
0 ≤ β ≤ 1

2 . In this case a normal Gaussian quadrature would be sufficient for the
numerical evaluation of H(ϕ). But the abscissae and the weights of the Gauss-
Jacobi quadrature can also be calculated for weight functions ζγ with positive γ.
As H(ϕ) becomes an improper integral for 1

2 < β < 1, the numerical quadrature
must account for the singularity in this case. The outer integrals

∫ Φb

Φa
H(ϕ) dϕ,

− 3
4π ≤ Φa ≤ Φb ≤ 3

4π, used in (10) do not contain any singularities and their
derivatives with respect to ϕ are good-natured. Therefore, a normal Gaussian
quadrature scaled to the interval [Φa, Φb ] with pout points will work well:∫ Φb

Φa

H(ϕ) dϕ ≈ 1
2 (Φb − Φa)

pout∑
k=1

ω
0,pout,[Φa,Φb ]

k H̃
(
ζ
0,pout,[Φa,Φb ]
k

)
.

3.3 The Three and Four Dimensional Cases

Let w(u) ĥ(u) be a short hand for the integrands given by (6) again. The com-
putation of bx,n and aΔx asks for the integration of the volume integral∫

Ωn
w(u) ĥ(u). Analogously to the two-dimensional approach presented in (10),

one can use multidimensional polar coordinates (ρ, ϕ1, . . . ϕd−1), d ∈ {3, 4}, and
write h(ρ, ϕ1, . . . ϕd−1) := ĥ(u) for the integrand.

Let Ωei , i ∈ {1, . . . , d} be the half cubes defined by using the definition of Ωn

with the unit coordinate vectors ei for n. The cumbersome task of parameterizing
Ωn in polar coordinates can be avoided by noting the the equivalent formulations

aΔx =
∫

Ωek

2 w(u) cos(Δx · u) du and

bx,n =
∫

Ωek

w(u)
(
cos(x · u) + i σ(u · n) sin(x · u)

)
RB,c(|u|) ( u

|u| · n)2 du
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Fig. 2. Frequency responses Fc and Fd of the optimized kernels and the corresponding
errors

with the sign function σ defined by σ(y) := 1 for y ≥ 0 and σ(y) := −1 else.
Nevertheless, the domain Ωei must be divided into subdomains analogously to
the 2d case, but more complicated, because the Gauss-Jacobi quadrature rule
demands integrands with bounded higher derivatives. The details of this seg-
mentation will be documented in a forthcoming technical documentation.

4 Numerical Experiments

4.1 Continuous versus Discrete Fourier Space Optimization

Let the ideal filter Fi be given by (1) with bandwidth B = 2
√

2, center frequency
ρc = π

4 , and direction n = 1. We computed the optimized kernels of size n = 7
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e
c

e
d

Fig. 3. Relative fre-
quency errors for ker-
nels of size n=9, n=11

with respect to the weight function w(u) = (u−β+0.05)2,
β = 0.49, using the continuous reformulation and using
the discrete approach presented in [6]. Fi and the fre-
quency responses Fc and Fd corresponding to the con-
tinuous and to the discrete optimization, respectively,
are plotted in Figure 2 (left). The Fourier space was
discretized using N = 3n uniformily distributed sam-
ples. As Fc and Fd are almost identical, Fd is shifted
shifted upwardly by +0.03 for reason of presentation.
The weight function is plotted as the dotted curve with
respect to the scale given on the right axis. The plot in
the center of Figure 2 shows the frequency errors Fi−Fc

and Fi − Fd. Here, Fi − Fd shifted upwardly by +0.01.
The zoom of these errors presented in the rightmost plot
of the figure makes it clear that the continuous optimization reflects better on
the singularity of the weight function than the discrete approach. There holds
w(u) ≥ 19 for u ∈ [− π

64 , π
64 ], i.e., the errors are amplified here. In Figure 3 the

two optimization approaches are compared by plotting the relative frequency
errors for the continuous and the discrete errors, ec and ed, respectively, for
varying β ∈ [−0.25, 0.499] using the same ideal filter Fi. The error measure used
is defined by (4). Again, we used 3n samples for the discretization of the Fourier
space.
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Fig. 4. Top row: Surface plots of the ideal frequency Fi (left) and of the frequency
responses Fw1 (middle), Fw2 (right). Bottom row: Contour plots of frequency errors
Fi − Fw1 (left) and Fi − Fw2 (right).

4.2 A Two-Dimensional Example

Let the ideal filter Fi be given by (1) with bandwidth B = 2
√

2, center frequency
ρc = π

4 , and direction n = (cos π
6 , sin π

6 )T (see the top left surface plot of Figure 4,
the short line directing from the z-axis pictures the filter direction). Using the
continuous formulation, we computed the optimized kernels of size 13× 13 with
respect to the weight functions w1 ≡ 1 and w2(u) = (u−β + 0.05)2, β = 0.99.
The corresponding frequency responses Fw1 and Fw2 are visualized by the top
middle and the top right surface plot of Figure 4.

In the bottom row of Figure 4 the pointwise frequency error Fi−Fwj , j ∈ {1, 2},
is shown by contour plots (left: w1; right: w2). A comparison of both plots makes
it clear that the error is pushed away from the center by the singularity of the
weight function w2.

It was not possible to discriminate between the kernels obtained by continuous
and by discrete optimization by visual inspection of the frequency response.
A comparison of the relative frequency errors showed that the result of the
continous optimization is less than 1 % more precise than the discrete approach
when (3 · 13)2 samples are employed in contrast to (13 + 2)2 quadrature points.

4.3 Computational Costs

Timings. Using the example of §4.2 for increasing kernel sizes n × n, n ∈
{1, . . . , 69}, we measured the time tc needed by the continuous approach and
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Table 1. Time and memory requirements

Approach Costs 1d 2d 3d 4d

discrete real var. 4n2 36n4 108n6 324n8

continuous real var. n n2 n3 n4

discrete flops O(n2 log n) O(2n4 log n) O(3n6 log n) O(4n8 log n)
continuous flops O(n) O(n2) O(n3) O(n4)

the time td needed by the discrete approach as presented in [6] in seconds. Fig-
ure 5 shows a double logarithmic plot of these timings. The solid line 10−3n3

and the dashed line 10−7n6 visualize the growth rates of the costs. A detailed
timing of the discrete approach shows that the bottlenecks of the implementa-
tion following [6] are the assembling of a matrix B of size n2 × (3n)2 and the
computation of the products which contain B as a factor like BHW 2B. Here, B
is the complex valued matrix which describes the linear mapping of the discrete
local space into the discrete Fourier space and W is the real valued diagonal
matrix corresponding to the discretization of the weight function. Assuming
that efficient matrix multiplication algorithms are employed for the computa-
tion of BHW 2B, the costs for this multiplications will grow with O(2n4 log n).
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Fig. 5. Timings [s] of
the filter optimization for
square shaped 2d kernels

The bottleneck of the implementation following the
continuous approach is also the assembly of the ma-
trix A ∈ Rn2×n2

from (6). But our implementation
uses that A is a symmetric Toeplitz matrix (see Corol-
lary 2). Therefore, it suffices to compute n2 matrix
entries instead of n2 ·n2 and to store these in a lookup
matrix L. With this, A can be simply assembled by
copying the entries of L to the right positions. Ne-
glecting the band structure of A, results in squaring
the computation time, i.e., it increases the costs from
O(n3) to O(n)6. Furthermore, we note that there is
no need to compute any matrix-matrix products con-
taining A.

Memory requirements. The implementation following [6] needs two matrices
with the dimensions of B at least: one for B and one for the results of matrix-
matrix products with B. Counting a complex valued variable as two real valued
variables, this means that we have to store not less than 2 ·2 · (3n)2 ·n2 variables.

Using the band structure of A, there is no need to store A at all. As A
is symmetric positive definite, we can take advantage from the preconditioned
conjugate gradient algorithm which solves Af = b iteratively. Therewith, it is
sufficient to implement the product Af as a function which depends on L and f .
So, only the real valued matrix L with n2 variables must be stored.
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Estimates for d dimensions. Now, let n be the size of the kernel in each
direction. Then the estimate of costs for the timing and the memory requirements
can be generalized from two to d dimensions as presented in Table 1. Let us
assume that we want to optimize a 4d kernel with 7 coefficients in each direction.
If the computations are done with real valued double precision variables (8 Byte),
we need 15 GByte at least to store the matrices of the discrete implementation
in contrast to 20 kByte necessary for the lookup matrix L.

5 Conclusions

A novel approach for the optimization of d dimensional convolution kernels has
been presented that avoids the discretization of the frequency response. There-
with, a weighted distance measure and relative frequency error have been defined
that do not depend on the sampling density of the Fourier space any longer. The
continuous approach yields similar kernels to the discrete method, but measure-
ments of the relative frequency error show that the continuous approach behaves
slightly better in case of strong singularities.

The continuous optimization avoids the storage and the multiplication of big
matrices. As the linear system of the proposed approach is determined by a sym-
metric positive definite Toeplitz matrix, it can be solved by the preconditioned
gradient method. The matrix can be replaced by a function which calculates
the matrix-vector product. Compared to the discrete approach, the continuous
method only needs a square root of the floating point operations. Therefore, it
is better suited for filter optimization in high dimensions.
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Abstract. We present a system for estimating location and orientation
of a person’s head, from depth data acquired by a low quality device. Our
approach is based on discriminative random regression forests: ensembles
of random trees trained by splitting each node so as to simultaneously
reduce the entropy of the class labels distribution and the variance of the
head position and orientation. We evaluate three different approaches
to jointly take classification and regression performance into account
during training. For evaluation, we acquired a new dataset and propose
a method for its automatic annotation.

1 Introduction

Head pose estimation is a key element of human behavior analysis. For this
reason, many applications would benefit from automatic and robust head pose
estimation systems. While 2D video presents ambiguities hard to resolve in real
time, systems relying on 3D data have shown very good results [5,10]. Such
approaches, however, use bulky 3D scanners like [22] and are not useful for con-
sumer products or mobile applications like robots. Today, cheap depth cameras
exist, even though they provide much lower quality data.

We present an approach for real time 3D head pose estimation robust to
the poor signal-to-noise ratio of current consumer depth cameras. The method
is inspired by the recent work of [10] that uses random regression forests [9] to
estimate the 3D head pose in real time from high quality depth data. It basically
learns a mapping between simple depth features and real-valued parameters
such as 3D head position and rotation angles. The system achieves very good
performance and is robust to occlusions but it assumes that the face is the
sole object in the field of view. We extend the regression forests such that they
discriminate depth patches that belong to a head (classification) and use only
those patches to predict the pose (regression), jointly solving the classification
and regression problems. In our experiments, we evaluate several schemes that
can be used to optimize both the discriminative power as well as the regression
accuracy of such a random forest. In order to deal with the characteristic noise
level of the sensor, we cannot rely on synthetic data as in [10], but we have
to acquire real training examples, i.e., faces captured with a similar sensor. We
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c© Springer-Verlag Berlin Heidelberg 2011
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therefore recorded several subjects and their head movements, annotating the
data by tracking each sequence using a personalized template.

Our system works on a frame-by-frame basis, needs no initialization, and runs
in real time. In our experiments, we show that it can handle large pose changes
and variations such as facial hair and partial occlusions.

2 Related Work

The literature contains several works on head pose estimation, which can be
conveniently divided depending on whether they use 2D images or depth data.

Among the algorithms based on 2D images, we can further distinguish between
appearance-based methods, which analyze the whole face region, and feature-
based methods, which rely on the localization of specific facial features, e.g., the
eyes. Examples of appearance-based methods are [13] and [17], where the head
pose space is discretized and separate detectors are learned for each segment.
Statistical generative models, e.g., active appearance models [8] and their varia-
tions [7,19,2], are very popular in the face analysis field, but are rarely employed
for head pose estimation. Feature-based methods are limited by their need to
either have the same facial features visible across different poses, or define pose-
dependent features [24,16]. In general, all 2D image-based methods suffer from
several problems, in particular changes in illumination and identity, and rather
textureless regions of the face.

With the recent increasing availability of depth-sensing technologies, a few
notable works have shown the usefulness of the depth for solving the problem
of head pose estimation, either as unique cue [5,10], or in combination with
2D image data [6,20]. Breitenstein et al. [5] developed a real time system capa-
ble of handling large head pose variations. Using high quality depth data, the
method relies on the assumption that the nose is visible. Real time performance
is achieved by using the parallel processing power of a GPU. The approach pro-
posed in [10] also relies on high quality depth data, but uses random regression
forests [9] to estimate the head pose, reaching real time performance without the
aid of parallel computations on the GPU and without assuming any particular
facial feature to be visible. While both [10] and [5] consider the case where the
head is the only object present in the field of view, we deal with depth images
where other parts of the body might be visible and therefore need to discriminate
which image patches belong to the head and which don’t.

Random forests [4] and their variants are very popular in computer vision
[18,11,9,14,12] for their capability of handling large training sets, fast execu-
tion time, and high generalization power. In [18,11], random forests have been
combined with the concept of Hough transform for object detection and action
recognition. These methods use two objective functions for optimizing the clas-
sification and the Hough voting properties of the random forests. While Gall et
al. [11] randomly select which measure to optimize at each node of the trees,
Okada [18] proposes a joint objective function defined as a weighted sum of the
classification and regression measures. In this work, we evaluate several schemes
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(a) (b)

Fig. 1. Simple example of Discriminative Regression Forest a): A patch is sent down
to two trees, ending up in a non-head leaf in the first case, thus not producing a vote,
and in a head leaf in the second case, extracting the multivariate Gaussian distribution
stored at the leaf. In b), one training depth image is shown. The blue bounding box
enclosing the head specifies where to sample positive (green - inside) and negative
patches (red - outside).

for integrating two different objective functions including linear weighting [18]
and random selection [11].

3 Discriminative Random Regression Forests for Head
Pose Estimation

Decision trees [3] are powerful tools capable of splitting a hard problem into
simpler ones, solvable with trivial predictors, and thus achieving highly non-
linear mappings. Each node in a tree performs a test, the result of which directs
a data sample towards one of the children nodes. The tests at the nodes are
chosen in order to cluster the training data as to allow good predictions using
simple models. Such models are computed and stored at the leaves, based on the
clusters of annotated data which reach them during training.

Forests of randomly trained trees generalize much better and are less sensitive
to overfitting than decision trees taken separately [4]. Randomness is introduced
in the training process, either in the set of training examples provided to each
tree, in the set of tests available for optimization at each node, or in both.

When the task at hand involves both classification and regression, we call
Discriminative Random Regression Forests (DRRF) an ensemble of trees which
allows to simultaneously separate test data into whether they represent part of
the object of interest and, only in the positive cases, vote for the desired real
valued variables. A simple DRRF is shown in Figure 1(a): The tests at the nodes
lead a sample to a leaf, where it is classified. Only if classified positively, the
sample retrieves a Gaussian distribution computed at training time and stored
at the leaf, which is used to cast a vote in a multidimensional continuous space.

Our goal is to estimate the 3D position of a head and its orientation from
low-quality depth images acquired using a commercial, low-cost sensor. Unlike
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in [10], the head is not the only part of the person visible in the image, therefore
the need to classify image patches before letting them vote for the head pose.

3.1 Training

Assuming a set of depth images is available, together with labels indicating head
locations and orientations, we randomly select patches of fixed size from the
region of the image containing the head as positives samples, and from outside
the head region as negatives. Figure 1(b) shows one of the training images we
used (acquisition and annotation is explained in Section 4), with the head region
marked in blue, and examples of a positive and negative patch drawn in green,
respectively red.

A tree T in the forest T = {Tt} is constructed from the set of patches
{Pi = (Ii, ci,θi)} sampled from the training images. Ii are the depth patches
and ci ∈ {0, 1} are the class labels. The vector θi = {θx, θy, θz, θya, θpi, θro} con-
tains the offset between the 3D point falling on the patch’s center and the head
center location, and the Euler rotation angles describing the head orientation.

As in [10], we define the binary test at a non-leaf node as tF1,F2,τ (I):

|F1|−1
∑
q∈F1

I (q) − |F2|−1
∑
q∈F2

I (q) > τ, (1)

where F1 and F2 are rectangular, asymmetric regions defined within the patch
and τ is a threshold. Such tests can be efficiently evaluated using integral images.

During training, for each non-leaf node starting from the root, we generate a
large pool of binary tests

{
tk
}

by randomly choosing F1, F2, and τ . The test
which maximizes a specific optimization function is picked; the data is then split
using the selected test and the process iterates until a leaf is created when either
the maximum tree depth is reached, or less than a certain number of patches
are left. Leaves store two kinds of information: The ratio of positive patches
that reached them during training p

(
c = 1| P) and the multivariate Gaussian

distribution computed from the pose parameters of the positive patches.
For the problem at hand, we need trees able to both classify a patch as be-

longing to a head or not and cast precise votes into the spaces spanned by 3D
head locations and orientations. This is the main difference with [10], where the
face is assumed to cover most of the image and thus only a regression measure
is used. We thus evaluate the goodness of a split using a classification measure
UC

( {P ∣∣tk } ) and a regression measure UR

( {P ∣∣tk } ): The former tends to sep-
arate the patches at each node seeking to maximize the discriminative power of
the tree, the latter favors regression accuracy.

Similar to [11], we employ a classification measure which, when maximized,
tends to separate the patches so that class uncertainty for a split is minimized:

UC

({P ∣∣tk })= |PL| ·∑c p
(
c| PL

)
ln
(
p
(
c| PL

))
+ |PR| ·∑c p

(
c| PR

)
ln
(
p
(
c| PR

))
|PL| + |PR| ,

(2)
where p

(
c| P) is the ratio of patches belonging to class c ∈ {0, 1} in the set P .
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For what concerns regression, we use the information gain defined by [9]:

UR

( {P ∣∣tk } ) = H(P) − (wLH(PL) + wRH(PR)), (3)

where H(P) is the differential entropy of the set P and wi=L,R is the ratio of
patches sent to each child node.

Our labels (the vectors θ) are modeled as realizations of a multivariate Gaus-
sian, i.e., p(θ|L) = N (θ; θ,Σ). Moreover, as in [10], we assume the covariance
matrix to be block-diagonal, i.e., we allow covariance only among offset vectors
and among head rotation angles, but not between the two. For these reasons, we
can rewrite eq. (3) as:

UR

( {P ∣∣tk } ) = log (|Σv| + |Σa|) −
∑

i={L,R}
wi log (|Σv

i | + |Σa
i |), (4)

where Σv and Σa are the covariance matrices of the offsets and rotation angles
(the two diagonal blocks in Σ). Maximizing Eq. (4) minimizes the determinants
of these covariance matrices, thus decreasing regression uncertainty.

The two measures (2) and (4) can be combined in different ways, and we inves-
tigate three different approaches. While the method [11] randomly chooses be-
tween classification and regression at each node, the method [18] uses a weighted
sum of the two measures, defined as:

arg max
k

(
UC + αmax

(
p
(
c = 1| P)− tp, 0

)
UR

)
. (5)

In the above equation, p
(
c = 1| P) represents the ratio of positive samples

contained in the set, or purity, tp is an activation threshold, and α a constant
weight. When maximizing (5), the optimization is steered by the classification
term alone until the purity of positive patches reaches the threshold tp. From
that point on, the regression term starts to play an ever important role.

We propose a third way to combine the two measures by removing the acti-
vation threshold from (5) and using as weight an exponential function:

argmax
k

(
UC + (1.0 − e− d

λ )UR

)
, (6)

where d is the depth of the node. In this way, the regression measure is given
increasingly higher weight as we descend towards the leaves, with the parameter
λ specifying the steepness of the change.

3.2 Head Pose Estimation

For estimating the head pose from a depth image, we densely extract patches
from the image and pass them through the forest. The tests at the nodes guide
each patch all the way to a leaf L, but not all leaves are to be considered for
regression; only if p

(
c = 1| P) = 1 and trace (Σ) < maxv, with maxv an em-

pirical value for the maximum allowed variance, the Gaussian p(θ) is taken into
account. As in [10], a stride in the sampling of the patches can be introducted
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Fig. 2. Some head pose estimation results. Starting from the left, two successfull esti-
mations, one failure, and one image with the camera placed on the side, showing the
single votes. In particular, the blue, smaller spheres are all votes returned by the forest,
while the larger, red spheres are the votes selected for the final estimation.

in order to find the desired compromise between speed and accuracy of the es-
timate. To be able to handle multiple heads and remove outliers, we perform a
bottom-up clustering step: All votes within a certain distance to each other (the
average head diameter) are grouped, resulting in big clusters around the heads
present in the image. We subsequently run 10 mean shift iterations (using a
spherical kernel with a fraction of the average head diameter as radius), in order
to better localize the centroid of the clusters. Then, similarly to [9], we select
only a percentage of the remaining votes, starting from the ones with smallest
uncertainty: if more votes than a threshold are left, we declare a head detected.
The Gaussians left at this point are summed, giving us another multivariate
Gaussian distribution whose mean is the estimate of the head pose and whose
covariance represents its confidence.

Figure 2 shows some processed frames. The green cylinder encodes both the
estimated head center and direction of the face. The first two images show success
cases, the third one is a failure case, while the last one shows a scan from a side
view, revealing the colored votes clustering around the head center. The small
blue spheres are all the votes returned by the forest (the means of the Gaussians
stored at the leaves reached by the test patches), while the larger, red spheres
represent the votes which were selected to produce the final result.

4 Data Acquisition and Labeling

For training and testing our algorithms, we acquired a database of head poses
captured with a Kinect sensor. The dataset contains 24 sequences of 20 dif-
ferent people (14 men and 6 women, 4 wearing glasses) recorded while sitting
about 1 meter away from the sensor. The subjects were asked to rotate their
heads trying to span all possible ranges of angles their head is capable of. Be-
cause the depth data needs to be labeled with the 3D head pose of the users for
training and evaluation, we processed the data off-line with a template-based
head tracker, as illustrated in Fig. 3. To build the template, each user was
asked to turn the head left and right starting from the frontal position. The
face was detected using [21] and the scans registered and integrated into one 3D
point cloud as described by [23]. A 3D morphable model [2] with subsequent
graph-based non-rigid ICP [15] was used to adapt a generic face template to the
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scan

integration fitting tracking

model

template

personalized template

Fig. 3. Automatic pose labeling: A user turns the head in front of the depth sensor,
the scans are integrated into a point cloud model and a generic template is fit to it.
The personalized template is used for accurate rigid tracking.

point cloud. This resulted in a template representing the shape of the head.
Thanks to such personalized template, each subject’s sequence of head rotations
was tracked using ICP [1], resulting in a pose estimate for each frame. Although
this method does not provide perfect estimates of the pose, we found that the
mean translation and rotation errors were around 1 mm and 1 degree respec-
tively. Note that the personalized face model is only needed for processing the
training data, our head pose estimation system does not assume any initializa-
tion phase.

The final database contains roughly 15K frames, annotated with head center
locations and rotation angles. The rotations of the heads range between around
±75 ◦ for yaw, ±60 ◦ for pitch, and ±50 ◦ for roll.

5 Experiments

For evaluation, we divided the database into a training and test set of respec-
tively 18 and 2 subjects. In order to compare the weighting schemes described
in Section 3.1, we trained each forest using exactly the same patches. We fixed
the following parameters: patch size (100x100 pixels), maximum size of the sub-
patches F1 and F2 (40x40), maximum tree depth (15), minimum number of
patches required for a split (20), number of tests generated at each node (20K),
and number of positive and negative patches to be extracted from each image
(10). Depending on the method used to combine the classification and regres-
sion measures, additional parameters might be needed. For the linear weighting
approach, we set the α and tp as suggested by [18], namely to 1.0 and 0.8. In
the interleaved setting [11], each measure is chosen with uniform probability,
except at the two lowest depth levels of the trees where the regression measure
is used. For the exponential weighting function based on the tree depth, we used
λ equal to 2, 5, and 10. For testing, we use the following settings: a 5 pixels
stride, maximum leaf variance maxv = 1500, radius of the spherical kernel for
clustering rc equal to the average head diameter, and mean shift kernel radius
rms = rc/6.

Results are plotted in Fig. 4 and Fig. 5. All experiments were conducted
by building 7 trees, each on 3000 sample images. In Fig. 4(a), the accuracy
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Fig. 4. Accuracy (a) of the tested methods as a function of the percentage of votes
selected for each cluster; success is defined when the head estimation error is below
10mm and the thresholds for the direction estimation error is set to 15 degrees. The
plots in (b) show the average angle errors again as a function of the percentage of
selected votes. It can be noted that the evaluated methods perform rather similarly
and the differences are small.
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Fig. 5. Accuracy of the head center estimation error (a), respectively of the angle error
(b) of the tested methods. The curves are plotted for different values of the threshold
defining success. All methods show similar performance.

of all methods changes as function of the percentage of leaves to be retained
during the last step of the regression, as explained in Section 3.2. Success means
that the detected head center was within 10mm from the ground truth location,
and the angle error (L2 norm of the Euler angles) below 10 ◦. All methods appear
to behave similarly, but we note a slightly higher accuracy for an exponential
weight and a 60% of the votes retained. Fig. 4(b) shows the average angular
error of the estimate, again plotted with respect to the percentage of retained
votes. Again, the differences between the weighting schemes are very small, as
can be seen also in the plots of Figs. 5 (a) and (b), showing the accuracy of the
head center estimation error, respectively of the angle error, for different values
of the threshold defining success.



Real Time Head Pose Estimation from Consumer Depth Cameras 109

Table 1. Mean and standard deviation of the errors for the 3D head localization task
and the individual rotation angles as a function of the stride parameter, together with
missed detection rates and average processing time. The values are computed by 5-fold
cross validation on the entire dataset.

Stride Head error Yaw error Pitch error Roll error Missed detections Time

4 14.7 ± 22.5mm 9.2 ± 13.7 ◦ 8.5 ± 10.1 ◦ 8.0 ± 8.3 ◦ 1.0% 87.5ms

6 14.5 ± 22.1mm 9.1 ± 13.6 ◦ 8.5 ± 9.9 ◦ 8.0 ± 8.3 ◦ 1.5% 24.6ms

8 14.1 ± 20.2mm 9.0 ± 13.2 ◦ 8.4 ± 9.6 ◦ 8.0 ± 8.3 ◦ 2.1% 11.8ms

10 14.6 ± 22.3mm 8.9 ± 13.0 ◦ 8.5 ± 9.9 ◦ 7.9 ± 8.3 ◦ 2.3% 7.7ms

As a last experiment, we chose the exponentially decreasing weighting of the
measures, defined by Equation (6), with λ set to 5. We then ran a 5-fold cross-
validation on the full dataset. We trained 7 trees for each fold, each on 3000 depth
images. The results are given in Table 1, where mean and standard deviation
of the head localization, yaw, pitch and roll errors are shown together with
the percentage of missed detections and the average time necessary to process
an image, depending on the stride parameter. It can be noted that the system
performs beyond real time already for a stride of 6 (needing only 25ms to process
a frame on a 2.67GHz Intel Core i7 CPU), still maintaining a small number of
wrong detections and low errors.

6 Conclusions

We presented a system for real time head detection and head pose estimation
from low quality depth data captured with a cheap device. We use a discrim-
inative random regression forest, which classifies depth image patches between
head and the rest of the body and which performs a regression in the continuous
spaces of head positions and orientations. The trees making up the forest are
trained in order to jointly optimize their classification and regression power by
maximizing two separate measures. Two existing methods were presented for
combining such measures and a third weighting scheme was introduced which
favors the regression measure as an exponential function of the node depth. In
our experiments, we compared the proposed methods and observed similar per-
formances in terms of accuracy. In order to train and test our algorithms, we
collected and labelled a new dataset using a Kinect sensor, containing several
subjects and large variations in head rotations.
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Abstract. Conditional Random Fields (CRFs) are popular models in
computer vision for solving labeling problems such as image denoising.
This paper tackles the rarely addressed but important problem of learn-
ing the full form of the potential functions of pairwise CRFs. We ex-
amine two popular learning techniques, maximum likelihood estimation
and maximum margin training. The main focus of the paper is on models
such as pairwise CRFs, that are simplistic (misspecified) and do not fit
the data well. We empirically demonstrate that for misspecified models
maximum-margin training with MAP prediction is superior to maximum
likelihood estimation with any other prediction method. Additionally we
examine the common belief that MLE is better at producing predictions
matching image statistics.

1 Introduction

Many computer vision tasks can be cast as an image labeling problem. Appli-
cations include semantic image segmentation [8], background-foreground seg-
mentation [14] or image denoising [18,16]. Structured models such as Markov
Random Fields and Conditional Random Fields have been successfully applied
in this context and shown in practice to outperform other methods. These models
combine local evidence, dependencies between neighboring pixels and possibly
global cues for specifying the probability of a labeling. The usage of a structured
model requires learning and inference (prediction). Learning consists of estimat-
ing the parameters of the model (i.e., the potentials) from labeled training data,
while inference is the task of predicting a labeling for a given image.

Inference has received a lot of attention in recent years, the dominant ap-
proach being maximum-a-posteriori (MAP) inference, for which several efficient
and accurate approximate algorithms have been developed [2,6]. On the other
hand, learning is still predominantly done by either hand-tuning the parameters
or performing a grid-search over a number of settings. This work considers the
relation between learning and inference for image labeling using a structured
model. Two approaches are discussed here. The classical approach estimates the
parameters w of the posterior distribution P (y|x,w) of a label y given an im-
age x using maximum likelihood. It predicts the label according to Bayesian
decision theory, which requires the specification of a suitable loss function Δ.
Depending on the loss function, different prediction functions are obtained, such
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Fig. 1. The two learning and prediction approaches. Left: The classical approach first
estimates a posterior P (y|x, w∗) from training data and incorporates the loss Δ at
test-time to infer the optimal label. Right: The alternative approach directly trains a
classifier for a specific loss and skips the distributional estimation step.

as MAP, maximum marginal or minimum mean squared error (MMSE). Ex-
pected risk minimization is the second approach, it directly trains a prediction
function which already incorporates the loss. Training and inference in these two
paradigms is visualized in Fig. 1. The first approach is known to be superior in
the ideal case where the model accurately describes the underlying image ac-
quisition process and sufficient amount of training data is given such that the
parameters can be correctly estimated.

The primary contribution of this paper is to show that there exist practical
situations in which the direct learning of a prediction function yields better per-
formance. We show that such settings arise when the assumed model does not
fully capture the dependencies in the data, a situation referred to as misspecifi-
cation [20]. This is an important insight for computer vision applications since
the data generating process is rather complicated and thus often inaccurately
modeled. As a second contribution we show that it is possible to learn the full
potentials of pairwise structured models even for relatively large state spaces
such as in image denoising applications. We conclude that through appropriate
training, efficient MAP inference can perform on par with more complex pre-
diction functions such as MMSE. In particular, we also demonstrate that MAP
is as good at reproducing image statistics as MMSE. Another goal of this work
is to review important facts about prediction and learning for image labeling
problems, which we feel are not well-known in the computer vision community.

2 The Image Labeling Problem

Most structured models for image labeling problems can be expressed as an
energy function of a labeling y, an image x and parameters w of the form

E(y, x,w) =
∑
t∈T

∑
c∈Ct

ψα(yc, x, wt). (1)

The model factorizes into cliques which are assumed to be grouped into sets
(templates) t that share the same parameter wt. yi is assumed to be in the set
{0, . . . ,K − 1}, leading to a total of KM possible labelings. Here M denotes
the number of sites for which a label is predicted. The CRF assumes that the
posterior of a labeling for an observed image is given by the Gibbs distribution
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P (y|x, w) =
1

Z(x, w)
exp(−E(y,x, w)), (2)

with partition sum Z(x,w) =
∑

y′ exp(−E(y′,x,w)). In the context of struc-
tured models it is usually assumed that the model depends linearly on the
parameters [5, Section 4.4.1.2], which we also do here. To make this linear de-
pendence explicit, the energy in (1) is rewritten as E(y,x,w) = −〈w, s(x,y)〉.
Here s(x,y) denotes the sufficient statistics which counts using indicator func-
tions the different configurations of the cliques in (1). We will discuss an example
of such a sufficient statistics in more detail in the next section.

2.1 Image Denoising

In this work we discuss as a running example the problem of image denoising.
Given an observed noisy image the goal is to reconstruct the original noise-free
image. For this task we consider a simple pairwise CRF to illustrate all the
concepts. The labeling y in this context is the reconstruction of the original
image and x denotes the noisy observation. The energy is assumed to be

E(y, x, w) = −
∑
i∈V

wu
|yi−xi| −

∑
(i,j)∈E

wp
|yi−yj|, (3)

where the graph G = (V , E) is the standard 4-neighborhood grid commonly
used in computer vision. The potentials have one parameter for each possible
outcome of the unary and pairwise term, respectively. This results in a total of
2K parameters. We denote by wu

j the j-th component of the unary parameter
wu and similarly for wp the pairwise parameter. For this simple image denoising
model the sufficient statistics s(x,y) = [su(x,y)T, sp(y)T]T are thus given by

su
k(x,y)=

∑
i∈V

δk(|xi − yi|), sp
k(y)=

∑
(i,j)∈E

δk(|yi − yj |).

Here δk(z) denotes the Kronecker delta function which evaluates to one if z = k
and to zero otherwise. For image denoising the state space of the variables yi is
typically quite large, for example K = 256 for a grayscale image.

2.2 Learning and Prediction

Most image labeling applications come with some form of labeled training data
on which a parameter w∗ is learned according to some objective. We will discuss
maximum margin learning and maximum likelihood estimation. Having deter-
mined w∗, the inference task considers predicting the optimal labeling y∗ for an
observed image. There exist several approaches for this, which we will discuss in
§ 4. The most popular prediction function is the MAP inference which can be
understood as maximizing the posterior distribution in a CRF

y∗ = argmin
y

E(y, x,w∗) = argmax
y

〈w∗, s(x, y)〉.
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Its popularity stems from the fact that efficient MAP inference algorithms such
as graph-cut or TRW-S exist. Strictly speaking, the MAP interpretation of a
labeling having minimal energy is only valid if the associated Gibbs distribution
leads to reasonable posterior estimates, i.e., the parameter is estimated with the
distributional aspect in mind. Here we use MAP to refer to finding the minimum
energy labeling regardless of whether (2) accurately describes the posterior.

3 Related Work

Early work on learning the potentials for low-level vision from data dates back
to the mid ’90s [22]. With the advance of structured models in machine learning,
more sophisticated techniques for estimating the parameters have also evolved
in computer vision. [7] trains a CRF for the tasks of binary image denoising
and the detection of man-made structures. More recently, principled discrimi-
native training has gained popularity in high-level vision applications, such as
semantic segmentation [11] and object recognition [4]. In the context of low-level
vision problems, learning has been done in stereo vision [17] and image denois-
ing. In denoising, the application considered in our work, the Fields-of-Experts
(FoEs) model [13] is a popular continuous, generative model with higher-order
factors (e.g., of size 3 × 3). In the original work, Roth and Black train the model
using contrastive divergence, an approximate maximum likelihood learning ap-
proach, and finally perform MAP inference at test time. Better results can be
obtained [16] by a training approach tailored towards the MAP prediction. Fi-
nally, [18] demonstrates improved accuracy when using contrastive divergence
learning and MMSE instead of MAP inference. They find that their predictions
better match the image statistics observed in natural images.

Our work sheds some light on these findings [18] and shows that MAP, while
inferior to MMSE in theory for an ideal setting, in practice can still outperform
MMSE. This is attributed to the fact that models are often misspecified and ap-
proximate maximum likelihood approaches, such as maximum pseudo-likelihood,
lead to inaccurate parameter estimates. Experiments are shown for the pairwise
model in § 2.1 which differs in several aspects to the FoE model. First, unlike
the FoE model, it is a discrete model. This allows us to learn the full shape
of the potential without any prior assumptions on the form. In contrast, such
assumptions are needed in the FoE model as it is a continuous model whose po-
tentials are functions parametrized by a small set of shape parameters. Second,
maximum likelihood and maximum margin training for our model is convex, this
is not the case for the FoE due to modeling assumptions. The convexity has the
advantage that our learning approach does not get stuck in local minima.

4 Optimal Prediction

Assuming that one is given the true posterior P (y|x) (note in particular that
we distinguish this from a model posterior P (y|x,w∗)) we now consider the
prediction task. In this context the loss Δ(y′,y) specifies the error/loss incurred
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when predicting the label y′ if y would be the true label. The loss is application
dependent and can be thought of as the error measure used in many computer
vision benchmarks: For semantic image segmentation this might be given by the
pixelwise accuracy, whereas for image denoising the pixelwise squared distance
of prediction and ground-truth might be used. According to Bayesian decision
theory [12, Theorem 2.3.2] the optimal prediction minimizes the expected risk:

y∗ = argmin
y′

EP (y|x)[Δ(y′, y)] = argmin
y′

∑
y

Δ(y′, y)P (y|x). (4)

Next, we relate several prediction functions to their implied loss function. The
loss is assumed to be non-negative and zero for the ground-truth labeling.

Zero-one error. The zero-one error is given by Δ(y′,y) = 1 − δy(y′). Here we
extend the Kronecker delta function to several variables. This loss treats all labels
y′ with y′ �= y in the same way by assigning a loss of one to them. A labeling
of an image with only one pixel different from the ground-truth is assigned the
same loss as a label that is different in every pixel. If the zero-one loss is used in
(4), then one identifies the MAP prediction rule y∗ = argmaxy P (y|x). As most
evaluation metrics are not as aggressive as the zero-one error discussed here, it
is clear that this is not the best loss term for most labeling tasks.

Mean pixel-wise error. The mean pixelwise error is given by Δ(y′,y) =
1
|V|
∑

i∈V(1 − δyi(y′i)). When inserting this loss into the Bayes predictor we end
up with the max-marginal prediction rule y∗i = argmaxyi

P (yi|x) ∀i ∈ V . Here
P (yi|x) denotes the marginal for the i-th pixel.

Mean squared error. The mean squared error (MSE)Δ(y′,y) = 1
V
∑

i∈V(yi−
y′i)

2 is a sensible choice if there exists an order on the labels, as for example in
image denoising. Optimal prediction is achieved by y∗i = EP (yi|x)[yi] ∀i ∈ V .
Thus, taking the mean of the individual variable posterior distribution mini-
mizes the mean squared error. This predictor is referred to as minimum mean
squared error (MMSE). For discrete variables one can round the expectation.

The underlying assumption in this section was that the true posterior dis-
tribution P (y|x) is known. In practice this posterior is modeled by the CRF
distribution P (y|x,w∗) which in many scenarios in computer vision does not
accurately model the true posterior. There might exist several reasons for this:
First, not enough data might be available to estimate all the parameters accu-
rately. Second, an improper estimation technique could be used for w∗. Third,
the model might not model all the dependencies in the data. As we will show,
if a model posterior distribution P (y|x,w∗) does not match the true P (y|x),
optimality of the schemes above is no longer guaranteed.

5 Learning

In this section we consider learning the optimal parameters w∗ of a structured
model for a given training set D = {(xn,yn)}N

n=1. We focus on maximum like-
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lihood estimation (MLE) and maximum margin (MM) learning. As MLE is
generally intractable we also consider the maximum pseudo-likelihood.

5.1 Maximum Likelihood and Maximum Pseudo-likelihood

MLE of the parameters for a given training set corresponds to finding the param-
eter with the largest likelihood given the observed data. To prevent overfitting,
an L2 regularizer is often included:

wmle = argmin
w

− 1

N

N∑
n=1

log P (yn|xn, w)+
λ

2
‖w‖2. (5)

In general, no closed form solution for the convex MLE objective exists and thus
iterative methods are employed. To evaluate the function value and the gradient,
the partition sum and the marginals need to be computed. For loopy graphs
these computations are generally intractable and one resorts to approximations.
A tractable alternative is given by the maximum pseudo-likelihood estimate [1]
(MPLE) which replaces logP (yn|xn,w) by

∑
i∈V logP (yn

i |yn
N (i),x

n,w). Here
N (i) denotes the Markov blanket of a variable i and yN (i) all the variables in
the Markov blanket. Conditioning on the ground-truth label of the neighboring
variables makes the partition sum collapse to a sum over the different states
of variable yi, which has linear complexity. Interestingly, the MPLE has the
desirable property that for enough data it converges to the MLE.

5.2 Maximum Margin

Instead of taking the detour of first estimating a posterior and subsequently
constructing a predictor by incorporating a loss, one can directly train a linear
predictor fw(x) = argmaxy〈w, s(x,y)〉. This predictor can be trained using
a particular loss function Δ(y′,y). Max-margin training (or equivalently the
structured SVM) [19] considers the following training objective

wmm=argmin
w

λ

2
‖w‖2+

1

N

N∑
n=1

max
y′

[〈w, s(xn, y′)−s(xn, yn)〉+Δ(y′, yn)
]
. (6)

For computer vision max-margin training has several advantages when compared
to MLE. First, inference reduces to a standard MAP problem, and thus neither
marginals nor the partition sum need to be computed. Second, it directly incor-
porates a loss in training and is expected to work well for this particular loss,
even if the model is not expressive enough. However, for the ideal setting, the
Bayes predictor in (4) is superior to MAP trained using max-margin, as it is
more expressive. Most training algorithms for max-margin work by successively
generating maximally violated constraints and repetitively solving the quadratic
programming problem in (6). Generation of the constraints reduces to the MAP
problem for the loss augmented model which incorporates the loss Δ(y′,yn).
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5.3 Insights on Statistic Matching
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Fig. 2. Pairwise image statistics on
logarithmic scale, see text for remarks

It is widely known that the image statis-
tics of natural images have a heavy tailed
distribution [15]. This is conjectured to be
an important property that most computer
vision systems still fail to model. The im-
age statistic of an image is obtained by
applying linear filters to the image and
building histograms of the resulting re-
sponses. For a pairwise gradient filter the
histogram obtained is equivalent to the suf-
ficient statistics sp(y) of our pairwise im-
age denoising model. For the task of image
denoising, [18] observes that the MAP prediction of the FoE model trained using
maximum likelihood, exhibit poor image statistics. The authors propose MMSE
prediction as an alternative resulting in better image statistics. The discussion
in § 4 shows that the superior performance of MMSE can be explained by the loss
being more suitable for the image denoising task. The improved image statistics
come only as a byproduct. MMSE in itself is not better at reproducing natural
image statistics. If predictions should explicitly show the heavy tails observed
in natural image statistics, then this property has to be either included in the
model as in [21], or in the prediction function using an appropriate loss. If no
regularization is included in the objective in (5) then MLE can be understood
as matching the empirical distribution in training by the expected sufficient
statistics under the model distribution P (y|xn,wmle):

1

N

N∑
n=1

EP (y|xn,wmle)[s(xn, y)] =
1

N

N∑
n=1

s(xn, yn).

This follows from the derivative of (5). A similar expectation matching is
identified for MPLE. However, this does not guarantee that the sufficient statis-
tics of the predicted labelings also match the observed training image statistics.
This behaviour is demonstrated in Fig. 2 for the image denoising application
described in more detail in § 6.2. Here we train on one image (32 gray lev-
els) and predict a labeling for the same image. The expected statistics us-
ing the simplified model assumed by pseudo-likelihood P (y|y1,x1,wmple) =∏

i P (yi|y1
N i,x

1,wmple) (shown as ‘PL expected’), are very close to the ground
truth statistics (shown as ‘true’). Smaller inaccuries are due to sampling. The ex-
pected statistics of the CRF model P (y|x1,wmple) (shown as ‘CRF expected’),
would coincide with the true statistics if exact MLE could be performed. This
also illustrates the deficiencies of the pseudo-likelihood approximation for a
small dataset. Neither the labeling predicted by MAP trained using max-margin
(shown as ‘MM/MAP’), nor the labeling predicted by MMSE learned using
maximum likelihood (shown as ‘MPLE/MMSE’), agree with the true statistics.
Expected statistics are obtained using Gibbs sampling of labelings y and aver-
aging s(x1,y) over the sampled y.
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6 Experiments

In this section we demonstrate the practical implications of the concepts dis-
cussed for the simple pairwise CRF model in § 2.1.

6.1 Synthetic Data
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Fig. 3. Results of the synthetic experiment. Left: for
increasing levels of misspecification MPLE trained
MMSE becomes worse than max-margin trained MAP.
Right: Learned potentials for ε = 2 (MPLE left, MM
right, unary top, pairwise bottom).

Here we study the proper-
ties of maximum pseudo-
likelihood estimation and
max-margin learning on
synthetic data. The syn-
thetic nature of the dataset
allows us to study the con-
sistency property of the
MPLE for large datasets.
In this experiment we add
structured noise to the la-
bels to simulate a case
where the model is mis-
specified, i.e., the relation-
ship between x and y cannot be captured by the assumed posterior P (y|x,w).
The dataset D = {(xn,yn)}N

n=1 is generated as follows: For a given image xn,
a label yn is sampled according to yn ∼ P (y|xn,wtrue) using a Gibbs sam-
pler. The image xn itself is generated by adding i.i.d. noise to a fixed image
x0 and rounding the values to integers within the domain {0, . . . ,K − 1}, here
for K = 16. For the weights wtrue we assume wtrue,u = −K/[1, 2, . . . ,K]T

and wtrue,p = −3· [0, 2, . . . ,K − 1]T. To study the influence of misspecifica-
tion the labels are perturbed. This is an important scenario to study, as most
computer vision models are still far from accurately describing the real world
situation. Having a parameter estimation and prediction approach that is robust
to misspecification is thus important in practice. To simulate the misspecifica-
tion, the labels yn are not sampled from the model in (3), but rather from a
model which also includes a 4-neighborhood dependency to the pixel two pixels
away (left, right, up, down). The weights of these interactions are chosen to be
wtrue,p,long = −3ε· [0, 1, . . . ,K − 1]T. Parameter estimation is done using the
dataset Dε = {(xn,yn)}N

n=1 for the model in (3). As ε is increased, the model
does not match the true data generating posterior anymore. To evaluate the
methods we learn a parameter and report the MSE of predictions on held out
test data. The results are averaged over five datasets. As we are primarily inter-
ested in the sensitivity of the estimation techniques to model misspecification,
a relatively large training set of size N = 500 is used. In Fig. 3 the MSE of the
different methods is shown.

The max-margin learning combined with MAP prediction leads to smaller
MSE values than MPLE based learning with MMSE. This is in agreement with
our intuition: max-margin learning directly considers the prediction function and
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should therefore be more robust to misspecifications. In the non-misspecified set-
ting likelihood based learning combined with MMSE inference performed better.
While the experiment was carried out using pseudo-likelihood, we conjecture that
the same problem is also present in maximum likelihood estimation as we also
performed an experiment that showed that MPLE converged for ε = 0.

6.2 Image Denoising
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Fig. 4. Learned unary (left) and pair-
wise (right) potentials. Top: result for
max-margin learning. Bottom: weights es-
timated by maximum pseudo-likelihood.

We consider the real world task of im-
age denoising, an active field of re-
search. The state of the art meth-
ods can broadly be grouped into
modifications of the Fields-of-Experts
framework [18,16,13] and sparse cod-
ing approaches [9,3]. The image de-
noising experiment was performed on
the images from the Berkeley im-
age segmentation dataset [10]. The
same train/test set split as in [18]
was used. The images are reduced
to grayscale values and i.i.d. Gaus-
sian noise with σ = 25 is added.
The resulting pixel values are rounded
to integers in {0, . . . , 255}. Further-
more, the image and the noisy version
thereof are further discretized to 64
labels to obtain the label y and the
input image x.

Maximum margin and MPLE training are performed on the 40 training ex-
amples. The resulting learned weights are shown in Fig. 4. We trained on the
full images as opposed to only on smaller subpatches, as it is often done for
contrastive divergence. We observe that the learned weights for the MM learn-
ing are much smaller. The pairwise potential is almost linear and the unary
potential has a roughly quadratic shape with truncation areas. The potentials
trained by MPLE differ substantially and show a much more varying shape.

Table 1. Image denoising test results of
the different methods. For MSE smaller
is better, for PSNR higher is better.

standard model with BM3D
method MSE PSNR MSE PSNR

MM/MAP 8.65 27.05 6.86 28.23
MPLE/MAP 17.42 24.30 13.31 25.5
MPLE/MMSE 10.04 26.65 8.47 27.54
BM3D only - - 6.95 28.19

As it is standard for image denoising
problems we use the peak signal-to-noise
ratio (PSNR) for comparison of the dif-
ferent methods. The test set consisted
of 68 images. Comparing the results of
the different approaches in Table 1, we
see that max-margin training combined
with MAP prediction leads to a lower
MSE and PSNR than maximum pseudo-
likelihood estimation followed by MMSE
prediction. For comparison we also show
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noisy image,20.29dB original image MM/MAP,26.03dB MPLE/MMSE,25.44dB MPLE/MAP,23.11dB

Fig. 5. MAP can outperform MMSE if trained with maximum margin. In the (cropped)
image above we observe that MM/MAP better preserves the fine structure on the rock.
MAP prediction with the MPLE estimate leads to substantially worse results.

the results obtained using the BM3D algorithm [3], considered state-of-the-art.
For BM3D we used the full 256 level grayscale images and discretized the result
to 64 levels. We also trained our pairwise model with BM3D predictions as a
secondary unary feature. The MAP labeling obtained using MM training result
in a small improvement over BM3D.

0 10 20 30 40 50 60

−2

−1

0

1

2

3

4

5

6

index k

p
a
ir
w
.
im

a
g
e
st
a
ts

lo
g
1
0
sp k
(y

) true

MM/MAP

MPLE/MMSE

MPLE/MAP

Fig. 6. Aggregated pairwise im-
age statistics on the test images.
MPLE/MMSE and MM/MAP re-
sult in similar statistics.

Unlike in the synthetic experiment, we can
not give a final conclusion on why MMSE per-
forms worse: it could be either the inaccurate
approximation made by pseudo-likelihood or
as the model is simplistic, that misspecifica-
tion becomes a problem as in the synthetic
experiment. However, the image denoising
experiment shows that in practice if trained
appropriately, MAP can lead to accurate pre-
dictions on par with MMSE. Unless the full
image zero-one loss is desired as an evaluation
criteria, MAP should not be used in combi-
nation with maximum likelihood learning. We
visualize the test set image statistics in Fig. 6. One observes that for the pair-
wise statistics the MM/MAP predictions show a very similar behavior as the
MPLE/MMSE solutions. MM/MAP seems to be a bit closer to the true im-
age statistics for the more often occurring configurations. An example of the
predictions is shown in Fig. 5.

7 Conclusions

This paper gives a general review of learning and inference for structured models.
For image denoising we found that if appropriately trained, MAP is competitive
with MMSE, the optimal prediction in theory. We explain this by misspeci-
fications of the model and the approximations needed in order for maximum
likelihood learning to become tractable. MAP, with many efficient inference al-
gorithms readily available, is therefore back on the road map of computer vision.
Our investigations also show that there exist scenarios where MMSE can outper-
form MAP. As models become more accurate, these differences might get more
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pronounced in the future. However, we suspect that better approximate maxi-
mum likelihood approaches are needed for MMSE to substantially outperform
MAP in practice.
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Abstract. We propose a novel method for pose-consistent segmenta-
tion of non-rigid 3D shapes into visually meaningful parts. The key idea
is to study the shape in the framework of quantum mechanics and to
group points on the surface which have similar probability of presence
for quantum mechanical particles. For each point on an object’s sur-
face these probabilities are encoded by a feature vector, the Wave Ker-
nel Signature (WKS). Mathematically, the WKS is an expression in the
eigenfunctions of the Laplace–Beltrami operator of the surface. It char-
acterizes the relation of surface points to the remaining surface at various
spatial scales. Gaussian mixture clustering in the feature space spanned
by the WKS signature for shapes in several poses leads to a grouping
of surface points into different and meaningful segments. This enables
us to perform consistent and robust segmentation of new versions of the
shape.

Experimental results demonstrate that the detected subdivision agrees
with the human notion of shape decomposition (separating hands, arms,
legs and head from the torso for example). We show that the method is
robust to data perturbed by various kinds of noise. Finally we illustrate
the usefulness of a pose-consistent segmentation for the purpose of shape
retrieval.

1 Introduction

Research in cognitive science suggests that human shape understanding is based
on a decomposition of the shape in smaller parts [7]. Inspired by this insight,
many algorithms in three-dimensional shape analysis rely on a segmentation of
the objects’ surface in meaningful parts.

Such a segmentation can be the building block of shape retrieval techniques
where an object is recognized as the sum of its parts [23,24,12]. Other interesting
applications include CAD, reverse engineering and medical image analysis [1],
texture mapping [10] and texture superresolution [6].

In this work we propose a method for automatically determining visually
meaningful, pose-consistent segmentations of non-rigid 3D shapes. Our approach
builds upon a quantum mechanical feature descriptor and upon Gaussian mix-
ture clustering in the feature space over several articulations of a shape.

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 122–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. The basic idea of our segmentation is to group those points in which quan-
tum particles of different energy levels have similar probabilities to be measured. The
clustering is achieved with an Expectation-Maximization using a Gaussian mixture
distribution. Thus, any cluster is described by a mean descriptor and its variance.

1.1 Related Work

Shape segmentation is a classical problem in shape analysis. For recent surveys
on existing methods we refer the reader to [17,1,3].

The problem of pose-consistent segmentation of shapes has only recently be-
come to the focus of researchers. The task consists in extracting a meaningful
partitioning of a shape which identifies the segments consistently over several
poses of the shape.

Following the intuition that meaningful shape parts should be rigid, some ap-
proaches cluster points whose movement through the different poses is approxi-
mately described by the same Euclidean motion. The works [2,8,16] fall in this
category. Of course, these methods depend on a precomputed correspondence be-
tween the articulated shapes which is computationally a very demanding problem.

Other methods employ local feature descriptors and group points with simi-
lar signatures. In [24], Toldo et al. cluster convex regions of similar curvature
using normalized graph cuts. This approach is inspired by the minima rule in
cognitive science. Because the principal curvatures are not isometry-invariant,
pose-consistency is not theoretically granted. Indeed, typically the intrinsic dis-
tances on a shape do not change significantly from one pose to another, which
make isometric deformations a good mathematical model for shape articula-
tions. Shapira et al. [18] use the Shape Diameter Function (SDF) for clustering.
The SDF measures at each point the diameter of the shape in inward-normal
direction and therefore captures volumetric information on the shape’s surface.
Again, the SDF is not isometry-invariant whence the segmentation results are
not guaranteed to be pose-invariant.



124 M. Aubry, U. Schlickewei, and D. Cremers

A class of very powerful, isometry-invariant tools for shape analysis rely on the
study of the spectrum of the Laplace–Beltrami operator. Our approach belongs
to this class. In the geometry processing community, these ideas first appeared in
the work [9] of Lévy. Rustamov [15] introduced the Global Point Signature which
encodes all local and global information about a point on the shape’s surface.
Very nice shape segmentation results where shown as an application. However,
because the signs and the ordering of the Laplace eigenfunctions can flip from
one articulation to another, it is not easy to identify segments over different
poses. Reuter [14] proposed a watershed-based segmentation employing a single,
user-selected Laplace eigenfunction. Robustness is ensured by persistence-based
denoising of the basins. In order to identify labels over different poses, Reuter
proposes to align the eigenfunctions of different shapes by comparing persistence
diagrams. In [19], Sharma et al. use a constrained spectral clustering approach
to segment a single deformable shape. The constraints enforce certain pairs of
points to belong to the same segment or to belong to different segments and
are given by user input. Label transfer to different shape poses is achieved by
registering the shapes. Again, this step involves reordering and sign-flipping of
the Laplace eigenfunctions.

To overcome the sign and ordering problem, Sun et al. [22] introduced a very
nice, physically motivated feature descriptor, the Heat Kernel Signature (HKS)
which encodes the heat dissipation process on the surface. They showed that the
HKS contains all information to characterize points uniquely. While the HKS
proved to be the current state-of-the-art feature descriptor [5], it has several
draw-backs. First of all, the natural parametrization domain for the HKS is
time which does not have an intrinsic meaning for a shape. Secondly, due to the
exponential decay in diffusion processes, the HKS mixes local and global scales
in an intransparent way. In contrast to this, our quantum mechanical feature
descriptor, the WKS, is parametrized on the energy domain which has by means
of eigenenergies an intrinsic interpretation for a shape. Furthermore, different
scales are clearly separated by the WKS.

A persistence-based segmentation technique using the HKS was presented by
Skraba et al. [20]. Similarly to Reuter’s work, this method is based upon the
watershed approach using the HKS function for a user-fixed value of the time
t. This value determines whether more local or global features should guide the
segmentation.

1.2 Contribution

In this work we present a novel approach for automatically finding pose-consistent
segmentations of 3D shapes. Our work builds upon a quantum mechanical fea-
ture descriptor, the Wave Kernel Signature (WKS). A segmentation is computed
in two steps: In a learning step we use several different poses of a shape to build
clusters of points for which the probability to find quantum mechanical particles
at different energy levels is similar. In the segmentation step, new poses of the
shape are partitioned by sorting each point in the most likely cluster. The main
contributions can be summarized as follows.
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– We show how to incorporate the framework of Quantum Mechanics to pose-
consistent shape segmentation. By grouping points in which particles over
different energy levels have similar probabilities to be measured, we exploit
global as well as local shape information in the segmentation process.

– Our method inherently guarantees consistent transfer of labels to different
shape poses, without the need of computationally expensive shape registra-
tions.

– Relying on a clustering in the feature space, our method is easily imple-
mented and fully automatic.

Experimental results show that our segmentation results agree with the human
intuition, that labels are consistently carried over to new poses and that our
method can cope with perturbed data. Finally, we illustrate the usefulness of
meaningful shape decompositions with an experiment on shape retrieval.

2 The Wave Kernel Signature – A Quantum Mechanical
Feature Descriptor

In this section we describe a quantum mechanical feature descriptor, the WKS,
which assigns with each point on an object’s surface a vector in RM . This vector
encodes the probability to measure particles of different energy levels in the
point. After a brief review of the dynamics of quantum particles on surfaces in
2.1, we give the definition of WKS in 2.2. In 2.3 we outline why WKS is useful for
shape analysis, and in particular why it is more convenient than the previously
defined HKS. For a more detailed study of the WKS we refer the reader to [4].

2.1 Quantum Particles on Surfaces

A quantum mechanical particle moving on a closed, differentiable surfaceX ⊂ R
3

is completely described by its wave function ψ(x, t) : X×R>0 → C. This function
solves Schrödinger’s equation

i
∂ψ

∂t
(x, t) = −ΔXψ(x, t), (1)

where ΔX is the Laplace–Beltrami operator of X . While the wave function itself
does not have an easy intuitive explanation, for fixed t > 0 its squared norm
|ψ(x, t)|2 : X → R is the probability density function of the position of the
particle at time t.

We now focus on the following physical experiment: Consider a quantum par-
ticle on X . Assume that we measure approximately at time t = 0 the energy
E of this particle and that subsequently we want to determine its position at
time t > 0. Since we did only an approximate measurement, the state of the
particle is a superposition of eigenstates. Mathematically, the eigenstates and
eigenenergies are given by the orthonormal eigenfunctions φ0, φ1, φ2, . . . and by
the corresponding eigenvalues 0 = E0 > −E1 ≥ −E2 ≥ . . . of the Laplace–
Beltrami operator ΔX . We call f2

E(Ek) the probability of our particle to be in
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the state corresponding to Ek. Assume now that the eigenvalues Ek are pair-
wise distinct which is the case with probability 1. For our particle with energy
distribution f2

E (hence allowing for uncertainty in the energy), its wave function
is given by

ψE(x, t) =
∑
k≥0

fE(Ek) exp (−iEkt)φk(x). (2)

Using that the functions exp (−iEkt)k≥0 are orthogonal for the L2-norm, the
average probability that the particle is measured in a point x ∈ X , is computed
as

lim
T→∞

1
T

∫ T

0

|ψE(x, t)|2dt =
∑
k≥0

fE(Ek)2φk(x)2. (3)

2.2 The Wave Kernel Signature

Now we work out how to use the above insights to design a feature descriptor
for shape analysis. For this, it remains to choose the energy distributions f2

E .
Recall that we aim for a segmentation of shapes undergoing strong pose

changes,which correspondmathematically to near-isometric deformations. There-
fore we have to optimize our descriptor for robustness to small non-isometric
deformations. A perturbation-theoretical analysis which we leave out here due
to the lack of space shows that the eigenenergies of a shape under articulation
can be modeled as log-normally distributed random variables. More details on
this can be found in [4].

This leads us to choose fE in (3) as a Gaussian distribution in the logarithmic
energy e = log(E) for fE and we define the Wave Kernel Signature at a point x
as

WKS(x, ·) : R → R, e �→ 1
Ce

∑
k≥0

exp

(
− (e− log(Ek))2

2σ2

)
φ2

k(x), (4)

where Ce =
∑

k≥0 exp
(

− (e−log(Ek))2

2σ2

)
.

2.3 Comparison of WKS and HKS

The eigenfunctions of the Laplace–Beltrami operator on X can be seen as a
generalization of the classical Fourier basis. In this interpretation, eigenvalues
play the role of frequencies. Consider a point on a surface as a signal by means of
its delta function. Both, the Heat Kernel Signature (HKS) [22] which is defined
by

HKS(x, t) =
∑
k≥0

exp(−Ekt)φ2
k(x) (5)

and WKS defined by equation (4) are symmetric expressions in the squared
Fourier coefficients. Note that the Laplace eigenfunctions depend on the choice
of a basis: even in the case of non-repeated Laplace eigenvalues there is a sign
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ambiguity. Luckily, HKS and WKS are independent of the choice of an orthonor-
mal basis of eigenfunctions. Both descriptors characterize points up to non-rigid
motion (cf. [22,4]).

The difference between HKS and WKS lies in the way Fourier coefficients are
filtered. HKS can be seen as a collection of low-pass filters parametrized over
the time t. The higher t, the more high frequencies are suppressed. In contrast,
WKS is a collection of smoothed delta filters in the Fourier domain. The precise
form of these smoothed delta filters is chosen in such a way that robustness to
pose changes is granted as outlined in Section 2.2.

Thereby, WKS should allow for more precise localization of features of points
in the frequency domain and thus for a higher precision in recognizing corre-
sponding points. For a thorough experimental comparison of HKS and WKS
confirming this heuristic we refer the reader to [4].

3 Learning Pose-Invariant Shape Segmentation

Assume now that we are given a shape in several different poses. Our segmen-
tation aims at grouping points in which quantum particles at different energy
levels have similar probabilities to be detected. We build clusters in the following
way:

– Pick a subset of training poses which are used for learning the clusters.
Typically we used 3-5 training poses.

– Compute the WKS for all points of all training shapes, leading to a point
cloud in RM , where M is the number of evaluation energies of the WKS
(which is 100 in all our experiments).

– Fit a Gaussian mixture model with K clusters to these training signatures.
The computation was done using the EM algorithm initialized by K-means.

Once the learning step is completed, we can segment both the training poses
and new poses by assigning with each point the label of the cluster, on which its
WKS has the highest score in the Gaussian mixture distribution.

Of course, we could also use other clustering schemes, leading to similar re-
sults. In some cases, we found that imposing the same variance to all the Gaus-
sians of the mixture can lead to slightly more robust results. Indeed, this is a
simple way to avoid overfitting: if some scale is very consistent in a cluster, the
variance for the corresponding Gaussian at this scale will be so small that a
slight change at this scale in a test shape will attribute the points to another
cluster. A shared variance will avoid that kind of effects.

4 Experimental Results

4.1 Computational Details

For computing the WKS on triangle meshes, we discretized the Laplacian us-
ing the cotan scheme introduced by Pinkall and Polthier [13]. Boundaries were
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Fig. 2. Fully unsupervised segmentation of 3D shapes: for different shape classes
and for different numbers of clusters, our segmentation algorithm is able recognize
semantically meaningful parts and to transfer correctly labels through strong pose-
deformations. The left and the middle column show segmentations of shapes from the
training set, while the right column visualizes the segmentation of new poses. The
shapes are courtesy of [25,5,21].

treated with Neumann conditions. We computed the first N = 300 eigenvalues
and evaluated the WKS at M = 100 values of e ranging from emin = log(E1)
to emax = log(EN )

1.02 with linear increment δ = emax−emin
M . The variance was set to

σ = 7δ. All these values were fixed in all our experiments.

4.2 Segmentation Results

Figure 2 shows results of segmentations of different shapes in several poses for
a varying number of clusters. Notice that the labels, visualized by colors, are
automatically transferred correctly to the different articulations and that they
are naturally spatially consistent.

4.3 Robustness

To test the robustness of our segmentation, we used the data of the SHREC 2010
benchmark [5]. This dataset contains different shapes undergoing a large variety
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Fig. 3. Robustness of the segmentation results tested on shapes from the SHREC 2010
robustness dataset [5]. On the top, one shape from the training set and at the bottom
test shapes with different perturbations. From the left to the right: topology, holes,
and shot noise.

query shape 0.7457 0.6662 0.3850 -0.0881

Fig. 4. Shape segmentation applied to shape retrieval on the SHREC 2010 dataset
[11]. The four columns on the right show representatives of four shape classes. For each
shape class a Gaussian mixture distribution was computed as outlined in Section 3.
The resulting segmentations are color encoded. The log-likelihood of the query shape
(leftmost column) with respect to these distributions is displayed below each class.

of poses and of different kinds of perturbations such as topological changes, noise
or holes. The method proves stable to such data as can be seen in Figure 3 where
some results are visualized.

4.4 Shape Retrieval

As an application of our pose-invariant shape segmentation framework we show
an experiment on shape retrieval on the dataset of the SHREC 2010 non-rigid
shape retrieval contest [11]. This dataset consists of 10 shape classes each of
which contains 20 different shape poses. We choose 5 training shapes from each
class and learn a segmentation of these training shapes. As a result of this learn-
ing step, we dispose of a Gaussian mixture probability distribution for each
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shape class. Given a query shape from the database which was not included
in the learning process, we compute its WKS at all points and evaluated the
negative log-likelihoods of the Gaussian mixtures. The query shape is sorted to
the shape class with the maximal log-likelihood. In Figure 4 we visualize the
resulting log-likelihood of a query shape for four different shape classes.

On the 150 query shapes we achieved 72% of correct assignments which is a
proof of concept that our part decomposition of shapes is of high informative
value for shape recognition.

5 Conclusion

We proposed a novel method for fully unsupervised, pose-consistent 3D shape
segmentation which arises from a Quantum Mechanical analysis of shapes. By
grouping those points in which quantum particles of different energy levels have
similar probabilities to be detected, we get an unsupervised partitioning of the
shape. Label transfer to different poses is granted by construction without the
need of user input or of computationally expensive shape registrations. Inter-
estingly, the computed part decomposition of shapes is consistent with human
notions of shape decomposition (torso, head, arms, legs, etc). Finally, we demon-
strate that such a segmentation can be efficiently used for shape retrieval.
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Abstract. For face recognition from video streams often cues such as
transcripts, subtitles or on-screen text are available. This information
could be very valuable for improving the recognition performance. How-
ever, frequently this data can not be associated directly with just one of
the visible faces. To overcome this limitations and to exploit valuable in-
formation, we define the task as a multiple instance learning (MIL) prob-
lem. We formulate a robust loss function that describes our problem and
incorporates ambiguous and unreliable information sources and optimize
it using Gradient Boosting. A new definition of the posterior probability
of a bag, based on the Lp-norm, improves the ability to deal with vary-
ing bag sizes over existing formulations. The benefits of the approach are
demonstrated for face recognition in videos on a publicly available bench-
mark dataset. In fact, we show that exploring new information sources
can drastically improve the classification results. Additionally, we show
its competitive performance on standard machine learning datasets.

1 Introduction

TV and video-sharing websites constantly provide large amounts of digital video
data. This data could be an extremely valuable and important source of infor-
mation, that today remains mostly unexplored. In fact, since most of the video
data is only indexed by some meta-data and not by its content, it is inaccessi-
ble to goal-oriented search. Manual annotation is laborious or even infeasible at
large scale, thus, to allow for a more efficient search and retrieval, methods for
automatic interpretation of the visual content are needed.

In this paper, we address the problem of fully automated identification of
people in videos, where we have to carry out the following steps: First, detecting
people’s faces and tracking them throughout a scene. Second, automatically
extracting as much information as possible about the persons’ identities from
associated information sources, such as the audio track (speech recognition),
subtitles, the transcript, on-screen text, or electronic program guide (EPG) data.
Third, using the gathered data to learn to re-identify them in different contexts,
only based on their visual appearance.

This problem was recently tackled by several authors [3,4,7,8,17,18]. Ever-
ingham et al. [7,8] label exemplars by visual speaker detection. The name of

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 132–141, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) Buffy, Dawn, Joice (b) Willow, Buffy

Fig. 1. Face recognition in videos: Often valuable information cannot be assigned
unambiguously to exactly one person. For instance we know from the video transcript
that a character is present in a scene, but the corresponding face is unknown.

the speaker is obtained by automatically aligning the timing information of the
subtitles with the naming information from the transcript. However, due to the
nearest neighbor classification label noise is propagated. Thus, the method can-
not recover from labeling errors. The work of Sivic et al. [18] replaces the nearest
neighbor framework by multiple kernel classification. The base kernels operate
on the min-min distance between HOG blocks. Therefore, the optimized combi-
nation coefficients describe the relative importance of the individual blocks for
classification. Nevertheless, it is not possible to integrate cues providing informa-
tion that can not be assigned unambiguously to one single instance. Ramanan
et al. [17] use a multitude of inference cues to obtain face clusters. Different
cues apply to different time scales. However, the system requires manual user
interaction to label an initial set of face clusters.

Thus, these methods require either manual labeling or cannot make use of
information that applies to multiple instances. However, this is a reasonable
scenario when learning from videos and associated sources. For instance, as il-
lustrated in Figure 1, we know from textual cues that a specific character should
be present in one scene of a movie. But we do not know to which of the cur-
rently visible faces this information corresponds. The goal of this paper is to
make use of information which cannot be disambiguated. Additionally, we have
to ensure robustness, i.e., since the information extraction procedure is not com-
pletely reliable, we have to inherently deal with noisy and uncertain labels. We
meet these requirements by formulating the task as a Multiple Instance Learning
(MIL) problem.

In particular, for that purpose we adopt Gradient Boosting. Compared to
other methods Gradient Boosting has the advantage that any loss function that
fits the task can be used, as long as it is differentiable, thus providing a very
general optimization framework. In our case we build on the Logit-loss function –
to ensure the required robustness – and further incorporate the MIL constraints.
The approach is similar to the one of Viola et al. [19], however, their formulation
implicitly assumes that all bags in the training data are more or less of the same
size and essentially not too big. To overcome this limitation, we define a new
formulation of the posterior probability of a bag, approximating more directly
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the original definition of MIL, which is better suited for our task. Additionally,
we generalize the framework such that arbitrary learning algorithms can be used
to form the weak hypotheses.

In the following, we first introduce our new Gradient Boosting based MIL al-
gorithm and then give an experimental evaluation on both, standard benchmark
datasets as well as on a publicly available face recognition dataset.

2 MIL - Boosting

In a supervised learning scenario the training data is given in the form of a set
D = {(x1, y1), . . . , (xN , yN)}, where xi ∈ Rd is a sample and yi ∈ Y = {−1,+1}
its corresponding binary label. However, in practice, it is often hard or even
impossible to assign a label to all samples. But it is rather easy to specify a
group of data samples for which it can be ensured that at least one instance
carries the label, which leads to Multiple Instance Learning (MIL) [6]. In MIL
the data is provided in form of labeled bags Dmil =

{
(Bl

1, y1), . . . , (Bl
N , yN )

}
,

where Bi = {xi1, . . . ,xiNBi
}, xij ∈ Rd, is a bag containing NBi samples and

yi ∈ Y its binary label. A bag is defined to be positive if at least one instance
in the bag is positive, whereas accordingly for a negative bag all instances have
to be negative. Building on these ideas, in the following, we will derive a new
formulation for MIL which is based on Gradient Boosting.

2.1 Gradient Boosting

In general, the goal of Boosting is to estimate a strong classifier F (x) as a linear
combination of weak classifiers ft(x) such that the the expected classification
error is minimized:

F (x) =
T∑

t=1

αtft(x) . (1)

In particular, Gradient Boosting aims to find a strong classifier F ∗(x) by
solving the following optimization problem:

F ∗(x) = arg min
F (x)

L(D;F (x)) , (2)

where L(D;F (x)) is a loss function measuring the performance of the classifier
by giving penalties for misclassified training examples.

Gradient Boosting iteratively estimates the function F ∗(x) by greedily con-
structing base functions ft(x) (weak learners) based on the preceding
f1(x), . . . , ft−1(x). This is accomplished by taking the derivative of the loss func-
tion with respect to the current strong classifier’s output for each training sample
and constructing the new ft(x) such as to produce outputs that approximate
the inverse direction of this gradient (i.e., reduce the residuals):
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ft(x) = argmax
f(x)

〈
−
{
∂L(D;F )
∂F (x1)

, . . . ,
∂L(D;F )
∂F (xN )

}
, {f(x1), . . . , f(xN )}

〉
(3)

= argmax
f(x)

−
N∑

i=1

∂L(D;F )
∂F (xi)

f(xi) . (4)

Finally, when the new ft(x) is found, the best weight αt is determined by a
line search.

2.2 Loss Functions

The main advantage of Gradient Boosting over other Boosting variants is the
flexibility of choosing a loss function that suites the task to be solved. Several dif-
ferent losses have been proposed in the literature (Exponential [10], Logit [11],
Savage [16]), mainly differing in the way how misclassified samples are pun-
ished, mainly influencing the robustness of the method against label noise. Since
the Logit loss has shown to be a considerable trade-off between robustness and
performance we build our algorithm on it. Thus, in the following we derive a
Gradient Boosting variant using a Logit loss, which can then easily be extended
by incorporating the Multiple Instance Learning constraints in Section 2.3.

The Logit loss of a classifier F (x) over a dataset D is defined as

L(D;F (x)) =
N∑

i=1

log
(
1 + e−yiF (xi)

)
= −

N∑
i=1

log
(

1
1 + e−yiF (xi)

)
. (5)

Thus, taking the logistic regression of the strong classifier’s output F (x), let

P (y=z|xi) =
1

1 + e−zF (xi)
(6)

be the predicted probability that an instance x is assigned the label z ∈ Y.
Then, we can interpret Eq. (5) as the cross entropy of the labels and the instance
probabilities reported by the classifier:

L(D;F (x)) = −
N∑

i=1

∑
z∈Y

[z=yi] log (P (y=z|xi)) , (7)

where [·] is the Iverson bracket.
With this loss the optimization for the weak learners in Eq. (4) becomes

ft(x) = argmax
f(x)

N∑
i=1

∑
z∈Y

[z=yi]
∂ logP (y=z|xi)

∂F (xi)
f(xi) . (8)
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Thus, we are looking for a new ft(x) whose output approximates the derivative
of the log of the instance probabilities, which we denote as

ai(z) =
∂ logP (y=z|xi)

∂F (xi)
. (9)

Generally, existing learning algorithms are not designed to solve Eq. (8). How-
ever, we can define a weight wi for each training sample as

∀xi ∈ D : wi = |ai(yi)| . (10)

Thus, we are very flexible and can use any learning algorithm that can han-
dle training data with (importance-)weighted samples to construct a new weak
learner approximating the gradient.

2.3 Solving MIL with Gradient Boosting

In order to solve the MIL problem we define a new loss function over the bags

L(Dmil;F (x)) = −
N∑

i=1

∑
z∈Y

[z=yi] log(P (y=z|Bi)) , (11)

where P (y=1|Bi) is the bag posterior. Following the definition of MIL, the bag
posterior is defined over the probabilities of its instances as

P (y=1|Bi) = max
j
P (y=1|xij) . (12)

However, this measure is not differentiable, thus, approximations have to be
used. For instance, Viola et al. [19] proposed to use noisy-or [15] as the bag
posterior model:

PNOR(y=1|Bi) = 1 −
NBi∏
j=1

(1 − P (y=1|xij)) . (13)

The main disadvantage of the noisy-or formulation is that the size of the bag
(number of instances) substantially influences the outcome. For example, if all
instances in a bag have a very low probability, it is still assigned a high posterior
probability if the number of instances is large. This is especially unfavorable if
the size of the bags varies strongly within the training data, as it is the case in
our task.

Therefore, we propose to use a more direct approximation to the max opera-
tion in Eq. (12), by making use of the Lp-norm:

PLp(y=1|Bi) =

⎛⎝NBi∑
j=1

P (y=1|xij)p

⎞⎠1/p

. (14)
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For large values of p this well approximates the max operation and as p → ∞
even converges to it. Thus, according to Eq. (8), the optimization for generating
the next weak learner is given by

ft(x) = argmax
f(x)

N∑
i=1

∑
z∈Y

[z=yi]
NBi∑
j=1

∂ logP (y=z|Bi)
∂F (xij)

f(xij) . (15)

Again, we can derive the weights for each instance by

∀(Bi, yi) ∈ Dmil, ∀xij ∈ Bi : wij = |aij(yi)| , (16)

where, in contrast to Eq. (9), the aij(z) are now defined on bag level:

aij(z) =
∂ logP (y=z|Bi)

∂F (xij)
. (17)

In our case, the derivation of Eq. (14) is given by

a
Lp

ij (z) =
ẑ − P (y=1|Bi)
1 − P (y=1|Bi)

(1 − P (y=1|xij))
P (y=1|xij)p∑NBi

k=1 P (y=1|xik)p
, (18)

where ẑ = (z + 1)/2. The bigger we choose p the better the approximation. As
p → ∞, we get

ãL∞
ij (z) = (ẑ − P (y=1|Bi))

[
P (y=1|xij) = max

k
P (y=1|xik)

]
/NBi,max , (19)

where NBi,max = |{j|P (y = 1|xij) = maxk P (y = 1|xik)}| is the number of in-
stances in bag Bi having the highest probability. Note that ãL∞

ij is not necessarily
the analytical derivative of PL∞ , since the series of PLp converges pointwise, but
not uniform. Nevertheless, we use it since it gives the best approximation for the
weights wij and it is easy to compute.

3 Benchmark Datasets

Before showing results for the actual task, i.e., face recognition, we would like
to give a broad quantitative comparison to other methods. In particular, we
evaluate the proposed MILBoost using the PLp bag posterior model on the well
known and frequently used CBIR machine learning database [1] with its three
multiple instance datasets Tiger, Fox and Elephant as well as on the two Musk
datasets [6]. Here, as well as in the other experiments, the weak learners used
are probabilistic decision stumps, which test one feature of a sample against a
threshold and report a probability of begin positive, estimated from the training
data, on either side. The mean areas under the ROC curves over 10 individual
10-fold cross validation runs are reported in Table 1.1

1 Note that for mi-SVM and MI-SVM there are three different versions depending on
the kernel (linear, poly, rbf) and we report the best one for each class.
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On Musk, MILBoost is in the range of state-of-the-art algorithms, although it
does not reach the performance of certain specialized methods. However, MIL-
Boost with the noisy-or bag posterior model, to the best of our knowledge,
delivers the best results reported so far for the Tiger and Elephant classes of
the CBIR dataset. Our PLp bag posterior model also produces very good results
on those two classes and considerably outperforms noisy-or on the difficult Fox
dataset. Note also, that its theoretical advantage of being able to handle variably
sized bags does not apply for these datasets, since the bags are of equal size.

Table 1. Results of various MIL algorithms on the standard MIL datasets CBIR and
Musk1&2. MILBoost outperforms all other methods on CBIR, with MILBoost Lp pro-
ducing the best overall performance. The best performance for each dataset is marked
in bold, second best in italics.

Tiger Elephant Fox Musk1 Musk2

sbMIL [2] 82.95 88.58 69.78 91.78 87.40

NSK [13] 79.07 82.94 64.01 85.61 90.78

MI-SVM [1] 84.00 81.40 59.40 81.50 86.30

mi-SVM [1] 78.90 82.20 58.20 87.40 83.60

MI-CRF [5] 78.90 82.20 58.20 77.90 84.30

PPMM [20] 80.20 82.00 60.30 95.60 81.20

MICA [12] 82.00 82.50 62.00 84.40 90.50

ALP-SVM [14] 86.00 83.50 66.00 86.30 86.20

MILBoost n-or 91.70 93.43 65.72 81.98 81.92

MILBoost Lp 89.79 91.82 71.80 81.98 81.87

4 Face Recognition from Videos

In the following we demonstrate our method for face recognition from associated
information sources on the publicly available part of the Buffy dataset proposed
by Everingham et al. [7]2. It consists of 27504 individual frontal face detections
and additionally provides face descriptions and face tracks. Faces are described
by normalized pixel patches extracted at salient facial feature points, which are
localized by a Pictorial Structures model [9]. Within a shot face detections (in
individual frames) are grouped into face tracks by motion information. Hence,
the task is to assign the correct cast name to each of the 516 face tracks. The
cast list of the ground truth annotation consists of 11 named entities, the class
other and false positive of the detection process. For each cast member we train
a one-vs.-all classifier.

To automatically obtain training labels, we exploit information sources closely
associated to the video, namely transcript and subtitles, both containing the
dialogs. The transcript additionally provides naming information and embraces
scenes with a textual description of what is happening. From the transcript we
extract the coarse scene structure. Further, to augment the transcript with the
2 The more recent “Buffy” dataset [18] is not publicly available.
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timing information it is aligned with the subtitles by dynamic time warping.
Thus, we now know who is speaking when but neither if the speaker is visible
or to which face the current utterance belongs.

We use these cues to compose training bags. A bag consists of one or more face
tracks and an associated label. First, we form speaker bags. To judge if a person
is speaking we observe the optical flow [21] around the mouth region. Tracks
identified as speaking are assigned the label of the current speaker from the
augmented transcript. Second, we define scene bags that contain all face tracks
present in a scene. The idea is to decide if a certain character is likely to appear
in a particular scene or not, dependent on the number of spoken text chunks.
To finally test the labeling performance, each face track forms a singleton bag.
Testing is done standalone based on pure face appearance and does not need
additional information.

Compliant with previous work we measure the performance in a refusal to
predict style. By taking the difference of the leading two classifier scores a confi-
dence is obtained. Further, we rank and threshold the confidences. In that sense,
recall means the percentage of face tracks which have a higher confidence than
the current threshold and thus are labeled. Precision means the ratio of correctly
labeled samples. We first report the performances of the different models for the
bag posterior probabilities on this task. The comparison is shown in Table 2,
where it can be seen that, as expected, PLp outperforms PNOR over most levels
of recall, especially for higher recall values. Thus, for the succeeding experiments
we just use the PLp bag posterior.

Table 2. Performance comparison of the different models for the posterior probability
of a bag. PLp outperforms PNOR over most levels of recall.

Recall 50% 60% 70% 80% 90% 100%

PLp 91,5% 90,9% 88,7% 86,3% 81,8% 77,7%

PNOR 91,5% 90,6% 86,5% 83,9% 78,5% 73,8%

Next, in Figure 2 we compare our method with previous work [7,8]. Ever-
ingham et al. proposed to classify each track based on the min-min distance to
the tracks labeled by the speaker detection. The min-min distance df (Fi, Fj)
between two face tracks Fi and Fj is defined as:

df (Fi, Fj) = min
fi∈Fi

min
fj∈Fj

‖fi − fj‖ , (20)

where fi ∈ Fi and fj ∈ Fj are face descriptions. This method is denoted as NN.
For comparison, we also include the original curve from [7]. Please note that
this method makes use of additional clothing descriptors and a different speaker
detection, not provided with the published dataset. As reference we also state
the performance of labeling all face tracks with the cast name appearing most
frequently in the transcript (Prior on Buffy). Further, also the performance of
using the aligned subtitles to propose a name is reported.
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(a) Precision/Recall (b) Confusion Matrix

Fig. 2. Buffy dataset: (a) MIL-Lp clearly outperforms the baseline (NN) over all levels
of recall. Subtitles describe further baseline methods, see text for details. (b) The
associated confusion matrix.

With the speaker detection we can label 33.4% of the tracks with a precison of
89.0%. Please note that the baseline method provides no means for ranking the
tracks detected as speaking. Therefore, the curve is constant for the first levels
of recall. Due to the nearest neighbor classification the baseline method has no
real chance to recover from labeling errors. Label noise propagates directly into
the classification. If the method is required to label all face tracks a precision of
60.1% is reached. MIL clearly outperforms the baseline method over all levels of
recall. At 100% recall the precision is 77.7%. This is an improvement of 17.6%
over the baseline. Indeed, the method even delivers a higher precision than the
speaker detection up to a recall level of 65%. It labels nearly twice as many face
tracks with an accuracy of 89%. This shows clearly the ability of MIL to recover
from labeling errors.

5 Conclusion

In this work we presented the task of face recognition in weakly labeled videos
as Multiple Instance Learning problem. We formulated the MIL concept in a
probabilistic loss function and optimized it in a Gradient Boosting framework.
The new formulation of the posterior probabilities of the bags using the Lp-norm
allows us to better deal with bags of varying size, as the comparison with noisy-
or confirmed. The evaluation on standard machine learning data shows excellent
results for the learning algorithm. Further, the task of face recognition in videos
verified that it is able to benefit from ambiguous and even noisy data. This can
be attributed to the design of the loss function, based on Logit. It gives penalties
for misclassifying training samples, but does not exaggerate the influence of very
wrong classifications to avoid over-fitting to potentially noisy labels.
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Abstract. We present a method for densely computing local spherical
histograms of oriented gradients (SHOG) in volumetric images. The de-
scriptors are based on the continuous representation of the orientation
histograms in the harmonic domain, which we compute very efficiently
via spherical tensor products and the Fast Fourier Transformation. Build-
ing upon these local spherical histogram representations, we utilize the
Harmonic Filter to create a generic rotation invariant object detection
system that benefits from both the highly discriminative representation
of local image patches in terms of histograms of oriented gradients and
an adaptable trainable voting scheme that forms the filter. We exemplar-
ily demonstrate the effectiveness of such dense spherical 3D descriptors
in a detection task on biological 3D images. In a direct comparison to
existing approaches, our new filter reveals superior performance.

1 Introduction

The rapid development of imaging techniques has led to a dramatic increase
in the amount of volumetric image data that need to be processed. Especially
in the field of biomedical imaging the third dimension becomes more and more
important as it enables studying organisms in their natural constellation. Objects
and organisms are sought to be located and analyzed in any number, at every
position, and in every orientation. This means, that volumetric data yields not
only more demanding constraints regarding computational efficiency, but also the
interrelationship of neighboring intensity values becomes more complex. One of
the most relevant issues is to cope with 3D rotation.

In this paper, we aim at creating filters based on the information of local gradi-
ent histograms that offer a robust, dense and rotation invariant object detection
in volumetric images. For this we transfer the widely used HOG [2] features to the
third dimension and show how to represent them in terms of so-called spherical
tensors. Upon this representation we are capable to benefit from the simple ro-
tation behavior of spherical tensors which enables the usage of Harmonic Filters
[4,8]. This leads to a trainable 3D object and landmark detection system (figure
1) that benefits from both highly characteristic gradient orientation histograms
and a memory and computational efficient trainable filter framework.

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 142–151, 2011.
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Fig. 1. Aiming at 3D landmark-detection: Above the flow diagram of the train-
able SHOG-Filter. We first compute the spherical gradient image of an input image
and split it into its spherical orientation field Y1(ĝ) : R

3 → S2 and its magnitude
image ‖g‖ : R

3 → R. Then the continuous spherical histograms of oriented gradients
(SHOG) are computed densely in the whole image in a recursive manner. We get an
expansion of the histograms in terms of vector-valued coefficients A�

w. We finally use
a trainable filter framework (Harmonic Filter) that learns a non-linear combination
of the SHOG coefficients A�

w such that a filter response is only given at the desired
landmark positions. Moreover, all responses on the remaining positions are suppressed.
Thanks to the continuous representation and the design of the coefficients A�

w in com-
bination with the Harmonic Filter, the filter response rotates smoothly with respect to
the orientation of the landmarks without additional computational costs.
SHOG-Filter training and application: i) Optimizing the filter parameter α. For
this a binary label image is required. ii) The filter can now be applied to further objects.

Mathematical Notation: We write vectors v ∈ Cn in bold letters. We denote
the complex conjugate of v by v and the transpose of v by vT . We consider
unit-length vectors n = (x, y, z)T ∈ R3, ‖n‖ = 1 w.l.o.g as points on the unit-
sphere which we denote by n ∈ S2. We equivalently can represent n in spherical
coordinates (θ, φ), where θ = arccos(z) and φ = atan2(y, x) (see figure 2). We
denote complex numbers by i , with i2 = −1 and denote the convolution by ∗.

2 SHOG - Spherical Histograms of Oriented Gradients

Local descriptors based on orientation histograms, such as SIFT [3] and HOG [2],
have revolutionized detection and matching in natural 2D images. Recently in
particular HOG found its way in many applications because it can be computed
efficiently and shows excellent performance. One step toward the third dimension
HOG based features have been used for describing 3D mesh models [7,1]. What
we propose here is a direct extension to volumetric images, where we aim at
densely computing HOG at every image position. In contrast to 2D where a
histogram is build upon gradient directions in a local neighborhood with respect
to one angle (figure 2 a) ), we must consider two angles for the 3D case (figure 2
b) ). Hence the resulting histogram can be considered to be a histogram on the
2-sphere (unit-sphere in 3D). We call the 3D representation of a HOG spherical
HOG, or shortly SHOG. It is worth noting that the literature discriminates
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Fig. 2. In 3D the gradient direction is described by two angles thus a histogram of
oriented gradients (HOG) can be considered as function on the sphere

between R-HOG (rectangular spatial window) and C-HOG (circular, isotropic
window). Since the rotation of objects plays an important role in our framework,
we only consider the latter one. Given an image f : R3 → R. We denote a dense
field of SHOG descriptors defined over the whole image domain as SHOG{f} :
R3×S2 → R, where S2 denotes the unit-sphere. For capturing only the structure
in a voxel’s surrounding a window function w : R3 → R is required. Such a
window function is e.g. the 3D Gaussian function. We compute a local SHOG at
position x by collecting all magnitudes of gradients within the window function
w contributing to orientation n according to the continuous distribution function

SHOG{f}w(x,n) =
∫
r∈R3

‖g(r)‖δ2n(ĝ(r))w(x − r)dr , (1)

where g : R3 → R3, g = ∇f is the gradient field of the volumetric image f ,
ĝ := g/‖g‖, ĝ : R3 → S2 the gradient orientation field and n ∈ S2 is the current
histogram entry (the direction) taken into account. δ2n : S2 → R denotes the
Dirac delta function on the unit sphere (see figure 5) that selects those gradients
out of g with orientation n. A direct extension to the 2D HOG descriptor would
require discrete sampling of the orientation space which is trivial in 2D, but in
general a non-trivial task in 3D. An equidistant discretization would require an
equidistant sampling of the sphere which in general can not be solved explicitly
(known as Thomson problem [10]). To overcome this problem we propose to
keep the histogram continuous and realize the ”binning“ in frequency domain
instead. Due to this reason we gain the following advantages: First, no interpo-
lation is required because our SHOG descriptor is based on the true continuous
distribution function. Furthermore, if the window function is isotropic, the de-
scriptor rotates with respect to rotation of its underlying data without leading
to any discretization artifacts in the histogram. This plays a very important role
when aiming at detecting objects in volumetric images at any position and in
any orientation using the Harmonic Filter framework.

SHOGDecomposition: The Racah normalized spherical harmonic functions[6]
Y �

m : S2 → C build a complete orthogonal basis for functions on the unit sphere
f : S2 → C. Similar to the Cartesian Fourier basis, spherical harmonics repre-
sent the different frequency components of spherical functions. We always have
2+ 1 functions Y �

m={−�,··· ,�} : S2 → C representing a basis function of frequency
, which can be arranged in a vector-valued function Y� : S2 → C

2�+1.
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Fig. 3. Key property of •� and Y: higher order spherical harmonics Y�+1 can be
obtained by element-wise coupling of spherical tensor fields Y� with Y1

Since a SHOG is a function on the sphere we can represent SHOGw(x) in
terms of the orthogonal basis functions Y�, namely

SHOG{f}w(x,n) =
∞∑

�=0

(A�
w(x))

T
Y�(n) , (2)

where A�
w(x) ∈ C2�+1 are the vector valued expansion coefficients completely

representing the SHOG at image position x in the spherical harmonic domain.
We identify the coefficients A�

w(x) by plugging the spherical expansion of the
Dirac delta function ( figure 5 ) into eq. (2):

SHOG{f}w(x,n) :=
∫
r∈R3

‖g(r)‖δ2n(ĝ(r))w(x − r)dr

=
∞∑

�=0

∫
(2+ 1)‖g(r)‖(Y�(ĝ(r)))

T
w(x − r)drY�(n)

=
∞∑

�=0

(2+ 1)
((

‖g‖(Y�(ĝ))
T
)

∗ w
)

(x)︸ ︷︷ ︸
=A�

w(x)∈C2�+1

Y�(n) =
∞∑

�=0

(A�
w(x))

T
Y�(n) . (3)

For a fast computation of SHOG we utilize so-called spherical tensor products
•� : C2�1+1×C2�2+1 → C2�+1 [4] which can be used for coupling spherical tensors

Fig. 4. The most left image shows a quantized SHOG. A band limited expansion in
terms of spherical harmonics offers a smooth rotation with the underlying data and a
memory efficient representation (here for � ≤ 5).
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Fig. 5. Band limited expansion of the Dirac delta δ2
n : S2 → R on the unit-sphere:

δ2
n(n′) :=

∑∞
�=0(2� + 1)(Y�(n′))

T
Y�(n). For our experiments we use � ≤ 5.

associated with different orders 1, 2 to form new tensors of higher or lower order
 i.e. in our scenario here for (point-wise) coupling different functions Y� or for
coupling the expansion coefficients A�

w of SHOGw. Most important, we can use
•� for recursively deriving spherical harmonics of order  + 1 by coupling two
spherical harmonics of order  and 1 with Y�+1 = Y� •�+1Y1 for  ≥ 1. In Fig. 3
we illustrate how higher order spherical harmonics can be computed recursively.
Utilizing this property we gain a recursive rule with which we avoid an explicit,
expensive computation of Y�(ĝ), namely

Y�+1(ĝ) = Y�(ĝ) •�+1 Y1(ĝ) . (4)

Moreover, it turns out that ‖g‖Y1(ĝ) = ( 1√
2
(∂f

∂x − i ∂f
∂y ), ∂f

∂z ,− 1√
2
(∂f

∂x + i ∂f
∂y ))

T

is just the spherical gradient of f which we compute in an initial step. The
remaining computations are just the convolutions with the window function w
that can be realized very efficiently by utilizing the Fast Fourier Transform.

Object Detection in 3D - SHOG Features for Harmonic Filters: The
Harmonic Filter [4,8] is a nonlinear polynomial filter that is designed for de-
tecting arbitrary structures in volumetric images. The most important charac-
teristic of this filter is a trainable voting scheme. The scheme comprises local
image features to train a voting function such that the filter responses only to
certain structures while responses to all remaining structures in the image are
suppressed. This is achieved in an initial training step where the voting scheme
is learned by providing a reference image together with a binary-valued label
image (see our introductory example in figure 1). The local features of the orig-
inal Harmonic Filter are the spherical derivatives of the 3D Gaussian encoding
the intensity values of a voxel’s surrounding in some kind of Taylor expansion
coefficients. These features are then combined in a weighted, non-linear way.
These weights are the free parameters that are optimized during the training
step. Because of the spherical representation of the derivatives the features show
a special, very simple rotation behavior depending on the rotation state of the
underlying data. The filter comprises the rotation state of the features to steer
the voting function wherefore the filter response itself rotates smoothly with
respect to the underlying data. Hence structures like objects or landmarks can
be detected in any orientation. Since the spherical expansion coefficients A�

w of
the SHOG obey the same rotation behavior like the expansion coefficients of the
spherical Gaussian derivatives in the original filter we propose to simply replace
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(a) Center Z-slices and renderings of the training data sets (b) Window functions

Fig. 6. Our Database: Alder pollen (4 porates for training, 56 for testing), Birch
pollen (3 train, 42 test), Beech pollen (4 train, 65 test), Lime pollen (3 train, 42 test),
Murgwort pollen (3 train, 42 test). Figure b) illustrates the size and shape of the two
window functions that we use in our experiments (two nested smoothed spheres).

the Gaussian derivatives by SHOG in the Harmonic Filter framework. In ad-
dition to a non-linear combination of all expansion coefficients A�

w we propose
to additionally compute and combine coefficients derived from different window
functions wn (an angular cross-correlation of different local SHOG). The expan-
sion coefficients of the voting function of the Harmonic Filter (eq. (6) in [4]) are
now

V�(x) :=
∑

|�1−�2|≤�≤�1+�2
�1+�2+� even

�1,�2,�≤N
n,m

αn,m
�1,�2,�(A

�1
wn

(x) •� A�2
wm

(x))︸ ︷︷ ︸
non-linear combination

of coefficients

; (5)

αn,m
�1,�2,� ∈ R are the new weighting parameters that are learned in a training step.

3 Experiments

For evaluating the performance of the SHOG-filter we aim at detecting land-
marks in volumetric confocal recordings of airborne pollen. In particular we aim
at detecting porates in 5 different kinds of pollen species [5], namely (see figure
6) Alder, Birch, Beech, Lime and Murgwort pollen. Each dataset consists of 15
volumetric images where the porates have been manually labeled by an expert
for training and evaluation. Note that the number of porates varies between but
also within the different species. The image sizes for the Alder, Birch and Murg-
wort pollen are about 803 voxels. For the Beech and Lime pollen we have about
1103 and 1203, respectively. One voxel corresponds to 0.4μm.

Apart from our SHOG-Filter, we consider two other trainable filters, namely
the original Harmonic Filter [4] and the Bessel Filter [9]. For all filters the ex-
perimental setup is as follows: We conduct 5 different experiments based on the
different pollen datasets. For each experiment we use one single dataset for train-
ing. The training sets are depicted in figure 6 (the labels for training are marked
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Table 1. a) Filter parameters in our Experiments. The filter parameters are given
in voxel size (voxel size ≈ 0.4μm). b) Performance on the Birch dataset when using
different normalization strategies.

(a) Filter Parameters

data Filter L Filter Parameter Feature Parameters

a) Alder SHOG 5 η = 5 {d, σ} = {2, 1}, {4, 2}
b) Birch SHOG 5 η = 5 {d, σ} = {2, 1}, {4, 2}
c) Beech SHOG 5 η = 6 {d, σ} = {2, 1}, {4, 2}
d) Lime SHOG 5 η = 7 {d, σ} = {4, 2}, {6, 2}
e) Mugwort SHOG 5 η = 4 {d, σ} = {2, 1}, {4, 2}

(b) Different Normalizations
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Fig. 7. The PR-curves are showing the performance of our SHOG-Filter compared
to two existing state-of-the-art approaches for all 5 datasets. The dashed lines show
the performance when tolerating an 8-voxel displacement to the ground-truth. The
straight line shows the performance when only tolerating a 4-voxel displacement. We
additionally show the maximum intensity projections of the raw filter responses of the
SHOG-Filter in figure 8, clearly emphasizing its superior performance.

by a red circle). In this step the filters optimize their parameter (least square
fit) such that the filter response is most similar to the labeling. The filters are
then applied to the remaining datasets for evaluation.

For all filters some parameters must be set manually. For finding the optimal
parameters we follow the way proposed in [9]. The optimization is done by vary-
ing the parameters during several training steps until the Euclidean distance of
the filter responses to the training label-images cannot be further reduced sig-
nificantly. For the SHOG-Filter we must determine the following parameters: A
filter degree L ∈ N that limits the number of expansion coefficients of the SHOG
filter A�

w,  ≤ L. Furthermore, for the Harmonic Filter framework we need to
set the parameter η that steers the size of a Gaussian window that restricts
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Fig. 8. Detection of airborne-pollen porates in 5 different datasets (see figure 6). We
show the maximum intensity projection (MIP) of the raw filter responds of the SHOG-
Filter together with the MIP of the detections (colored images) after thresholding (local
maxima, threshold selected with respect to the ERR). The SHOG-Filter clearly only
response to the porates. Furthermore, the SHOG-Filter didn’t respond to a pollen that
has accidentally found its way into the database (red mark).

the SHOG features that can contribute to a local filter response. We finally must
define one or more window function w for the SHOG itself. We observed that for
the given data two nested Gaussian windowed spheres w(r, d, σ) := e

−(‖r‖−d)2

2σ2

lead to the best performance. We exemplarily illustrate the size and shape of
the window functions we use for Alder datasets in figure 6(b). The parameters
for all SHOG-Filters are summarized in table 1(a).

The gradient magnitude highly varies over a wide range due to variations in
illuminations and in particular in volumetric biomedical images due to absorp-
tion and occlusion effects. Similar to [2] we observed that unnormalized gradients
lead to poor performance. See figure 1(b) for results on the Birch dataset corre-
sponding to different normalization methods. Normalizing SHOG with respect to
the standard deviation of the local intensity values [4] increases the performance
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Fig. 9. Detection of a Harmonic Filter for the Beech dataset (compare to figure 8
c)). The Harmonic Filter detects the porates. However, we where not able to avoid
responses on inner-pollen structures. Similar for the Bessel Filter on the Lime and
Beech dataset.

significantly. However, we achieve the best performance when almost neglecting
the gradient magnitude and only considering the gradient orientation by per-
forming a gamma correction of the gradient field, whereas gγ = ‖g‖γĝ. For our
experiments we use γ = 0.1.

Figure 7 lists the PR graphs showing the performance of the filters in all 5
experiments for both tolerating a 8 voxel (≈ 3.27μm) displacement to the ground
truth and tolerating only a more strict 4 voxel (≈ 1.64μm) displacement. For a
better comparison we list the equal error rate (EER) for all experiments in table
1(a). We additionally show qualitative results of the SHOG-Filter in figure 8.
The SHOG-Filter produces only clear responses at the correct porate positions.
All remaining regions of the pollen are successfully suppressed. Moreover, thanks
to the SHOG-Filter we detected a pollen that accidentally found its way into
the database. The structure of the porates differ strongly from the training set
and thus the filter didn’t respond at all (figure 8 d) ).

In figure 9 we expemplarily show detections on the Beech dataset correspond-
ing to the Harmonic Filter. Here we can observe that the Harmonic Filter clearly
can detect the porates but produces a lot of false positive detections within the
pollen. Similar for the remaining pollen species having high variations within
the pollen. We observed similar problems for the Bessel Filter. We were not
able to suppress responses on the inner structures of the Beech and Lime pollen
while still getting clear responses at porate positions. The main difference of the
SHOG-Filter is that the gamma normalized SHOG features are mainly compris-
ing the gradient orientations. Thus SHOG is very robust against non-linear, local
illumination and contrast changes. In contrast, the Bessel and Harmonic Filters
are both indirectly encoding the gradient magnitudes in their features and thus
are sensitive to non-linear illumination changes and noise.

4 Conclusions

In this paper, we have presented a way to efficiently compute dense spheri-
cal HOG (SHOG) descriptors in volumetric images. Upon theses descriptors we
extended the Harmonic Filter to comprise the SHOG features instead of sim-
ple Gaussian derivatives to benefit from both a dense, robust and discriminative
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description in terms of gradient histograms and the trainable voting scheme of
the Harmonic Filter which can be realized in a very computational and memory
efficient way.

We have shown the superior detection performance of our filter compared to
previous state-of-the-art trainable 3D filters. These results are very promising
in connection with the growing importance of volumetric data especially in the
life sciences. In order to foster further research and experiments, we will provide
public executables for using the proposed filter upon acceptance of this paper.
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Abstract. Graph-based methods are very popular in semi-supervised
learning due to their well founded theoretical background, intuitive in-
terpretation of local neighborhood structure, and strong performance
on a wide range of challenging learning problems. However, the success
of these methods is highly dependent on the pre-existing neighborhood
structure in the data used to construct the graph. In this paper, we use
metric learning to improve this critical step by increasing the precision of
the nearest neighbors and building our graph in this new metric space.
We show that learning of neighborhood relations before constructing
the graph consistently improves performance of two label propagation
schemes on three different datasets – achieving the best performance
reported on Caltech 101 to date. Furthermore, we question the predomi-
nant random draw of labels and advocate the importance of the choice of
labeled examples. Orthogonal to active learning schemes, we investigate
how domain knowledge can substantially increase performance in these
semi-supervised learning settings.

1 Introduction

Object recognition and scene classification are frequently addressed in computer
vision and state-of-the-art methods are dominated by purely supervised learning
methods [8,7]. Yet, there is common agreement that unlabeled data conveys
important information of the global data distribution as well as the structure
of the classes themselves. Nevertheless, we rarely find approaches successfully
tapping into both types of sources that would be able to challenge the best
supervised approaches. In a previous investigation, we show that the success of
such methods critically depends on the neighborhood relations in the data [4].
This strongly suggests that learning should start before a neighborhood structure
is imposed on the data points in order to surpass the inherent limitations of
traditional semi-supervised learning schemes.

One might argue that with the availability of crowd sourcing services like Me-
chanical Turk the value of unlabeled data has shrunken and will ultimately loose
its significance. Evidently, there has been a big impact on the vision community
as data and labels seem now available in abundance. But recent data collection
efforts at those large scales have their own set of problems due to labeling errors
and ambiguities [21]. Also adding label information in an unstructured manner

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 152–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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will lead to redundant information yielding an inefficient learning scheme. While
active learning has provided useful insights and improvements in this area, the
role of domain knowledge has gone largely overlooked.

Contributions: This paper is concerned with the question of how to make
better use of the provided labels already in the early stages of popular semi-
supervised learning methods. Therefore, our first main contribution is to em-
ploy a metric learning approach to improve the graph construction which leads
to a consistent improvement in performance. As second main contribution, we
propose methods of querying more informative labels based on domain knowl-
edge that are complimentary to traditional active learning settings. Our semi-
supervised learning schemes deliver consistent improvements across 3 dataset
and show state-of-the-art performance on Caltech-101.

2 Related Work

Graph-based methods are a popular choice for semi-supervised learning (SSL) as
they are well understood and easy to implement. The way they exploit neighbor-
hood structure is intuitive and the computational demands are usually moderate.
One of the key issue of these methods is the construction of the graph. But this
critical aspect is often neglected [24] and meaningful neighborhood relations as
well as a class structure is assumed to be encoded in the distances of the raw
feature space. We have shown in a recent study [4] that for visual categories
those assumptions cannot be taken for granted and that the quality of the graph
is in fact highly correlated with performance. Thus it is surprising how little
attention graph construction [19,13] has received in comparison to various al-
gorithmic contributions [22,23]. In [19], the authors uses the neighboring data
points to reconstruct each data point from its neighbors. In [13], they propose
a method to balance a graph such that dominant nodes are weighted down. All
those methods do not use the information which are contained in the labels it-
self and they are all based on the limiting assumption that the initial feature
representation is sufficient for immediate graph construction.

In contrast, metric learning learns a representation better suited to the task
at hand. The proposed methods essentially differ in the parameterization of the
learned metric (including regularizers and constraints) and optimization proce-
dures. Some methods learn a Mahalanobis distance [3,14,17,9] often with pair-
wise constraints, while other approaches maximize the inter-class distance by
a large margin approach [20]. Although, there are other works combining SSL
with some feature transformation [10,18,16], this work tightly interleaves a met-
ric learning scheme with label propagation. We use [3] and the follow-up work
[14] that show impressive improvements for Caltech 101. Beside the success, it
is scalable to large problems in particular in a high dimensional space and it
guarantees convergence to the global maximum.
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3 Improving Neighborhood Structure for SSL

As motivated above, we use metric learning [3] to improve our neighborhood
structure and apply a graph-based label propagation algorithm [22] on top of this
new metric space. Both methods are briefly explained in the following. As shown
in sec. 5 the proposed combination of these two techniques leads to improved
results over either technique alone, outperforming previously published results
e.g. for Caltech 101 using the same underlying image representation [14].

Information theoretic metric learning (ITML): [3] optimizes the Maha-
lanobis distance between each point pair xi, xj ∈ Rd

dA(xi, xj) = (xi − xj)TA(xi − xj) (1)

Eq. (1) reduces to a simple euclidean distance if A = I. To learn matrix A,
the algorithm minimizes the logdet divergence between a matrix A and an initial
matrix A0 with respect to pairwise similarity and dissimilarity constraints:

min Dld(A,A0)
s.t. dA(xi, xj) ≤ bu (i, j) ∈ S (2)

dA(xi, xj) ≥ bl (i, j) ∈ D
bu and bl are upper and lower bound of similarity and dissimilarity constraints.
S and D are sets of similarity and dissimilarity constraints based on the la-
beled data. To make this optimization feasible, a slack parameter γ is intro-
duced to control the trade-off between satisfying the constraints and minimizing
Dld(A,A0). The larger γ the more constraints are ignored. The optimization is
done by repeatedly Bregman projections of a single constraint per iteration.

One benefit of this optimization scheme is the efficient kernelization with K =
XTAX . A proof can be found in [3]. The kernel version has several advantages.
The run time depends only on the number of constraints nc and not on the
dimensions d that is critical in a high dimensional space. We can subsample the
number of constraints such that nc � d which reduces the costs from O(d2)
to O(n2

c). Finally, we can easily compute the at most violated constraint per
iteration since only matrix additions (Kii + Kjj − 2Kij) is required and no
complex multiplications as in eq. (1) leading to faster convergence.

Label propagation (LP): We use the common and robust method by [22].
Given a labeled set {(x1, y1), ..., (xl, yl)} and an unlabeled set {xl+1, ..., xl+u}
with n = l+u data xi ∈ Rd and l labels yi ∈ L = {1, ..., c} , we build a k-nearest

neighbor graph P̂ij =

{
1 if dA(xi, xj) is one of the smallest k distances of i
0 otherwise

that is symmetric, e.g., Pij = max(P̂ij , P̂ji), and weighted with a Gaussian kernel

Wij = Pij exp
(−dA(xi,xj)

2σ2

)
. Based on this graph a normalized graph Laplacian

S = I −D−1/2WD−1/2 with Dij =

{∑
jWij if i = j

0 otherwise
is built.
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Fig. 1. Left: ETH, middle: C-PASCAL (column 5-8), and right: Caltech 101

For the learning, we split our multi-class problem into c binary problems and
get a prediction vector for each class by an iterative procedure

Y (t+1)
m = αSY (t)

m + (1 − α)Y (0)
m (3)

with 1 ≤ m ≤ c and Y ∗
m the limit of this sequence. Parameter α ∈ (0, 1] controls

the overwriting of the original labels. The final prediction is obtained by Ŷ =
argmax1≤m≤cY

∗
m.

4 Datasets and Representation

We analyze three datasets with increasing number of object classes and different
difficulty. Some of the images are shown in Fig. 1.

ETH-80 (ETH) [15] contains 3,280 images divided in 8 object classes and 10
instances per class. Each instance is photographed from 41 viewpoints in front
of a uniform background.

We propose Cropped PASCAL (C-PASCAL) in [4] where we use the bounding
box annotations of the PASCAL VOC challenge 2008 training set [5] to extract
the objects such that classification can be evaluated in a multi-class setting.
The resulting data set contains 4,450 images of aligned objects from 20 classes
but with varying object poses, challenging appearances, background clutter, and
truncation. For the data representation of both datasets, we also use a HOG [2]
representation with cells of 8 × 8 pixels.

Caltech 101 [6] is a dataset with 9,144 images and 101 object classes. Objects
are located in the middle of the image, but there is still background clutter and a
large intra-class variability. As a representation we use the same kernel as in [12]
(obtained from the authors), which uses an average of four kernels: two kernels
based on the geometric blur descriptor, Pyramid Match Kernel (PMK) and the
Spatial PMK using SIFT features [11].

5 Evaluation of Metric Learning for Label Propagation

In this section, we show first the performance on all three datasets and compare
our results with the k-nearest neighbors results (KNN) given by [14]. Next, we
give some insight in the learned metric and the resulting neighborhood structure.
Based on these observations, we propose a new propagation scheme – Interleaved
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Fig. 2. Overall accuracy for different number of training samples. left: ETH, middle:
C-PASCAL, and right: Caltech 101.

Metric Learning and Propagation (IMLP) – by continuously adding unlabeled
data. Finally, we show results on Caltech 101 that outperform the state-of-the-
art for 5 training samples.

Metric learning for label propagation: In all experiments, we use the ker-
nelized version of ITML with a gaussian kernel. Only for ETH we report plain
metric learning as we didn’t observe any increased performance. Parameter σ
for the kernel and the slack parameter γ are set empirically. For the number
of nearest neighbor k we choose always the best for each algorithm. All experi-
ments were repeated 5 times with random splits. In table 1, results for k nearest
neighbor classifier before (KNN) and after (KNN+ITML) metric learning, and
label propagation before (LP) and after (LP+ITML) are shown for 5 training
samples per class. First, KNN+ITML (col. 3) is always better than KNN (col. 2).
Moreover, there is an increase from 39.1% to 52.2% for Caltech 101. Second, LP
(col. 4) is consistently improved by LP+ITML (col. 5), i.e., for Caltech 101 from
47.1% to 54.5%. Finally, all LP+ITML results are better than KNN+ITML due
to the additional information from the unlabeled data. This leads to an improve-
ment of 2.3% for Caltech 101 in comparison to [14]. The same observation holds
true when we vary the number of training examples as in fig. 2. The light blue
curve (LP+ITML) is for all 3 datasets above all other curves. It is noteworthy
to mention that both LP curves are above all KNN results for ETH.

Discussion and analysis: In fact, the precision of our neighborhood struc-
ture increases. This is also illustrated in fig. 3 for C-PASCAL. The first nearest
neighbors of a query image (1st col.) are shown before ITML (first row) and af-
ter ITML (second row). True positives are outlined with green. Indeed, training
examples of a class are pushed close together. But ITML tends to overfit to the
training samples. This is more obvious when we split the quality of k nearest

Table 1. Overall accuracy for all datasets and 5 training samples

dataset KNN KNN+ITML LP LP+ITML
ETH 61.0 ± 2.6 69.3 ± 0.8 65.3 ± 4.7 71.4 ± 3.0
C-PASCAL 15.8 ± 2.6 23.0 ± 1.6 21.5 ± 1.6 24.2 ± 2.7
Caltech 101 39.1 ± 1.1 52.2 ± 0.5 47.1 ± 0.6 54.5 ± 1.7
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Query

Query train train train train

Fig. 3. First nearest neighbors of a query image (1st column) of C-PASCAL. Top:
before ITML and bottom: after ITML. True positives are outlined with green and
training samples are marked with “train”.

neighors into labeled (NNL) and unlabeled (NNU ) quality, i.e., the number of
true positives within the k nearest neighbors. Fig. 4 shows these qualities for
different number of neighbors k. In particular for C-PASCAL and Caltech 101,
where we use a Gaussian kernel, NNL increases up to 95% − 100% for k = 1
while the effect on NNU is substantially smaller.

Interleaved Metric Learning and Propagation (IMLP): Based on this
observation, we address the lack of generalization by incorporating few predic-
tions from unlabeled data. We propose an iterative procedure with interleaved
metric learning and label propagation. This improves incrementally the nearest
neighbor precision with the condition that the manifold structure given by the
unlabeled data is taken into account. The resulting procedure is as follows:

1. metric learning to get kernel K
2. label propagation with kernel K to obtain predictions Ŷ of unlabeled data
3. choose m = m+ ns data points xi such that |ỹ1| ≥ ... ≥ |ỹi| ≥ |ỹi+1| ≥ ... ≥

|ỹm| with Ỹ = max1≤j≤c Y
∗
j and l < i <= u

4. construct new sets of similarities S and dissimilarities D from l labels and
m predicted labels, and go to step 1.

Table 2 shows results for Caltech 101, 5 training samples, and ns = 200. We
improve our results of LP+ITML to 58.7% that goes beyond existing best known
numbers of 56.9% by Boiman[1] and 54.2% by Gehler[8]. Also, the performance
of KNN+ITML increases to 59.1%. The better performance in comparison to
LP+ITML can be explained by incorporating more structure from unlabeled
data. Finally, we also get a small improvement for C-PASCAL even though
not as much as for Caltech 101 due to lower prediction quality, and almost no
improvement for ETH.

6 Selection of Training Data Based on Domain Knowledge

While the previous section was concerned with algorithmic improvements, we
now want to shift the focus to the importance of selecting good training examples
for semi-supervised learning algorithms. As those methods tend to operate in a
regime where only a few labels are available, a random strategy can easily pick
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Table 2. Overall accuracy for Caltech 101 and 5 training samples on our original
setting and with predictions

dataset KNN+ITML LP+ITML
original 52.2 ± 0.5 54.5 ± 1.7
with predictions 59.1 ± 0.7 58.7 ± 0.8

a set of atypical examples or simply provide poor coverage of the class and/or
viewpoint variation. We illustrate these issues in fig. 5, where we provide a more
detailed analysis for the class “car” from our C-PASCAL experiment. The first
column shows the best random draw w.r.t. average precision (PASCAL VOC
criteria) of the retrieved unlabeled examples. We observe a good coverage of
intra-class variation and view-points. The next column shows the worst draw.
Atypical examples, less viewpoint variation, and truncation have lead to a drop
in precision from 28.6% to 13.7%! Next we selected 5 prototypical examples by
hand to convey our domain knowledge of cars, which results in a performance
of 22.4%, right in between the best and worst results of a random draw. To
take a step towards an automated approach, we also seek prototypical examples
in a statistical sense by finding modes in the distribution of the car examples.
Please note that this is best-case type analysis as we are finding the modes for
the cars isolated from the other classes. However, this leads to a performance
of 35% which is over 6% better than the best random draw we have and over
20% better than the worst one. This large margin emphasizes the potential of
selecting appropriate labeled examples opposed to a random draw. The last two
columns represent draws from a method we are going to present in this section,
that almost recover the best-case performance.

In the following, we address the sampling process in an unsupervised manner
by using graph properties. The results on all 3 datasets show an improvement
for both precision and robustness. In the last experiment, we look at ETH where
we use the viewpoint information to obtain better distributed and more repre-
sentative training examples.

Towards indentifying prototypical instances: In our first experiment, we
build a graph based on our kernels and use the intrinsic graph structure to identify
highly connected nodes or nodes with a high weight. The intuition behind is that

ETH C-PASCAL Caltech 101

Fig. 4. Nearest neighbor quality splitted into labeled and unlabeled quality
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random:
best

AP=28.6%

random:
worst

AP=13.7%

prototype

AP=22.4%

best case

AP=35.0%

thresh:
best

AP=33.0%

thresh:
worst

AP=29.7%

Fig. 5. Training samples of C-PASCAL: random best and worst seed (column 1-2),
prototypical selection, and best case estimation (4th column), and with threshold on
the graph structure for best and worst seed (column 5-6). AP is the average precision
for this class calculated by the PASCAL VOC criteria.

representative images for a class are usually well integrated in the graph and form
almost a clique with other similar images, e.g., these nodes have many edges (� k)
with high weights. Our goal is to find such key images. To eliminate images that
have many neighbors but only with low weights, we normalize this term by the
number of edges: ∑

iWij∑
i Pij

> thresh (4)

We set thresh in our experiments to 0.6. For C-PASCAL, this reduces the
number of possible selected images from 222 on average to 136 images per class.

Table 3. Overall accuracy of different sampling methods – random sampling, with
threshold, and a best case estimate – for 5 training samples

dataset sampling KNN KNN+ITML LP LP+ITML
ETH random 61.0 ± 2.6 65.3 ± 4.7 69.3 ± 0.8 71.3 ± 3.0

threshold 63.8 ± 2.0 67.4 ± 1.0 72.9 ± 2.8 73.0 ± 3.3
best case 68.5 73.5 81.1 82.6

C-PASCAL random 15.8 ± 2.6 21.5 ± 1.6 23.0 ± 1.6 24.2 ± 2.7
threshold 19.0 ± 1.1 23.5 ± 1.0 24.7 ± 1.9 25.6 ± 2.0
best case 30.1 30.4 36.2 36.4

Caltech 101 random 39.1 ± 1.1 47.1 ± 0.6 52.2 ± 0.5 54.5 ± 1.7
threshold 40.3 ± 0.6 47.3 ± 1.1 53.3 ± 1.2 55.5 ± 0.9
best case 45.7 53.9 57.9 59.9
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Table 4. Overall accuracy of ETH for different viewpoint sampling methods in com-
parison to our random baseline (first line)

long. width KNN KNN+ITML LP LP+ITML
random random 61.0 ± 2.6 65.3 ± 4.7 69.3 ± 0.8 71.3 ± 3.0
90◦ 360◦/5 64.0 ± 2.2 65.5 ± 3.5 74.9 ± 2.6 74.2 ± 3.6
68◦ − 90◦ 63.7 ± 2.8 66.2 ± 2.3 73.9 ± 2.5 74.4 ± 3.1
45◦ − 90◦ 65.4 ± 2.3 68.3 ± 2.7 73.3 ± 1.7 75.2 ± 2.4
35◦ − 90◦ 64.3 ± 1.9 68.2 ± 1.5 73.6 ± 2.2 76.5 ± 2.0
22◦ − 90◦ 62.2 ± 3.5 67.1 ± 3.1 69.8 ± 3.1 71.8 ± 3.6

Table 3 shows the performance with and without thresholding for all three
datasets (row 1-2) and 5 training examples. Again, we have an improvement for
all datasets. For C-PASCAL, we increase the performance of LP+ITML from
24.2% to 25.6% while decreasing the standard deviation from 2.7% to 2.0%. Fig.
5 shows the according training samples for the best and the worst seed in the
last two columns. It stands out that the average precision (AP) of the worst seed
of thresholded sampling is higher with 29.7% than the best random sampling
AP with 28.6%.

To get an idea what we can achieve in an almost best case scenario, we
build a graph with k = 50, and calculate for each node the number of cor-
rect neighbors. We apply k-means clustering for each class to get 5 clusters.
Finally, we choose for each cluster the image with the highest nearest neighbor
accuracy. This procedure ensures both class coverage and high precision. The
results are shown in table 3 last row and the corresponding training examples
for C-PASCAL are in fig. 5 (col. 4). It is obvious that there is a huge potential
in selecting the “right” training samples. While we improve the performance of
LP+ITML of C-PASCAL from 24.2% to 36.4%, we also increase the difference
to KNN+ITML from 2.7% to 6% that suggests a large unused potential in the
underlying structure.

Towards indentifying prototypical viewpoints: For our second experiment,
we use domain knowledge in terms of viewpoint information. Each object in
ETH is captured from 41 different viewpoints with varying degrees on both
the longitudinal axis from 0◦ to 90◦ and the width axis with 360◦. We split
the width axis with 360◦ into 5 parts and sample one example from each of
these areas. Additional, we increase the radius on the longitudinal axis start-
ing from 90◦ to 22◦. The larger the range the more objects from above are
sampled.

In Table 4 are the results in comparison to our random baseline (first line).
All sampling methods based on domain knowledge (row 2-6) lead to a higher
performance and a lower standard deviation in comparison to the baseline with
71.3% that contains many images photographed from above. Our best result for
LP+ITML with viewpoint information is 76.5%.
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7 Conclusion

In this work, we use metric learning to enhance our nearest neighborhood struc-
ture that is key for graph-based algorithms and their performance. We show
a consistent and significant improvement on three different datasets, and give
insights into the learned metric space. We propose a second label propagation
scheme – Interleaved Metric Learning and Propagation (IMLP) – that leads to
the best published performance on Caltech 101 to date. Finally, we use domain
knowledge to sample training data for the semi-supervised framework, and point
out the potential in comparison to the common random sampling strategy.

In future work, we intend to make this approach scalable to large image col-
lections like ImageNet since we have not yet exploited all information contained
in massive data sets. It would also be interesting to explore other domain-specific
or structure knowledge to get better and more representative training samples
that require less supervision.
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Abstract. We present a new people tracking method for human height
mounted camera, e.g. the one attached near information or advertising
stand. We use state-of-the-art particle filter approach and improve it
by explicitly modeling of object visibility which makes the method able
to cope with difficult object overlapping. We employ our own method
based on online-boosting classifiers to resolve occlusions and show that
it is well suited for tracking multiple objects. In addition to training an
online-classifier which is updated each frame we propose to store object
appearance and update it with a certain lag. It helps to correctly handle
situations when a person enters the scene while another one leaves it at
the same time. We demonstrate the perfomance of our algorithm and
advantages of our contributions on our own video dataset.

1 Introduction

Person tracking is a well-studied problem in computer vision. During the last
decades many methods and approaches have been proposed in this field. One
of the main applications of such methods is video surveillance in security and
sport translations. It determines some common scenarios which are considered in
many methods. In these scenarios camera is mounted high above the ground and
is remote from the tracked objects. We consider another scenario where camera
is attached to an information stand, 1-2 meters above the ground and watches
people who pass in front of it, look at it or come close to it. Such scenario arises
in a number of applications, e.g. information and advertising stands.

The concerned scenario differs from standard security applications or sport
translations (Fig. 1). First, bottom parts of people and the ground are not visible.
This complicates an estimation of trajectories in 3D. Also it makes standard
people detection algorithms unreliable. Second, people are often occluded by
each other for a long time, which is not as common in scenarios with higher
located cameras. It means that tracking in this scenario implies multi-target
tracking with a lot of occlusions among targets. Third, objects occupy large part
of a frame. It causes problems with proper handling of objects, entering and
leaving the scene. Fourth, objects tend to stop and look at camera. Along with
almost 1D trajectories it reduces reliability of motion models. Fifth, algorithm
should be able to react almost instantly because of its usage in information
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Fig. 1. Tracking scenarios: (left) - example from PETS sequences, (center) - frame
from soccer match video, (right) - the proposed scenario

stands. That means, the algorithm cannot use global optimization schemes, but
is restricted to employ frame-by-frame basis.

We propose a novel method for tracking people in such scenario. Our method
processes video frame by frame and is based on a widespread and acknowledged
particle filter framework. We improve it by explicitly modeling of object visi-
bility state. It helps to correctly track people even after long-term occlusions.
To distinguish objects from each other we employ online-boosting for training
object appearance models. We improve this method by training a classifier us-
ing ‘one target against every other’ approach rather than ‘one target against all
other’. It improves distinguishing objects in crowded scenes. Finally, we propose
to store object appearances with a certain update lag in order to determine its
rapid changes. This is very often caused by simultaneous enter of one person and
leaving of another. Our method is able to perform tracking correctly in these
difficult situations.

We tested our algorithm on our own collection of 29 videos of the concerned
scenario. The results show a good performance of the proposed method and the
advantages of our contributions.

The rest of the paper is organized as follows. The related work is discussed in
Section 2. The proposed method is described in Section 3. Our video database
and the experimental results are discussed in Section 4. Section 5 concludes the
paper.

2 Related Work

For object tracking tasks a lot of algorithms has been proposed starting from
following a manually marked object against complex background to video surveil-
lance of huge amount of people in airports [20].

Multi-target tracking consists of algorithms which focus on tracking several or
many objects simultaneously. They need to solve problems that are not typical
for other tracking approaches. These problems are distinguishing objects one
from another, resolving occlusions between objects, processing of objects entering
and leaving the scene.

Some algorithms rely on global optimization to resolve multi-target ambi-
guities. Classical approaches such as JPDAF [6] and MHT [18] are very time-
consuming, because the search space of these methods grows exponentially with
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the number of targets and time steps. Other approaches employ a mixture of
greedy schemes and dynamic programming to overcome the problem [1][2][15].
In [14] authors use similar approache to find reliable parts of trajectories. Then
their method tries to stitch derived tracklets together. Global optimization al-
gorithms showed good results. But they consider a whole video sequence and
therefore cannot work in online applications in the original form without modi-
fications.

In order to work online tracking algorithms should stick to frame-by-frame
basis [3][4]. The most prominent methods of this type use Particle Filter ap-
proach [3][17][19]. Algorithms either model all objects in the scene with one set
of particles [8] or use independent sets for each object. The former approach
leads to exponentially growing number of particles or to lowering approxima-
tion accuracy with the number of objects. Meanwhile use of independent set of
particles for each object leads to problems with resolving occlusions.

Different approaches are used to resolve occlusions: motion estimation, learn-
ing objects appearance models and 3D modeling by use of two or several cameras
[11][16]. While some of these approaches might be very helpful, they are not al-
ways available. For example, in our scenario we can not use several cameras.

Some algorithms perform tracking in scenarios similar to the concerned one.
In [12] objects are represented as mixtures of 5D Gaussians without training
any object-specific classifiers. Also authors use euristic approach for finding new
people in a frame and don’t properly handle their leaving. In [9] authors use a
particle filter framework but they use one appearance model for all objects. That
means that their algorithm can find objects in the scene but cannot distinguish
them properly.

Although many algorithms such as [3] show good quality in different video
sequences, they do not explicitly model occlusions. This can lead to possible loss
of objects. We propose to explicitly model occluded object state to overcome
this problem.

3 Approach

3.1 Background Subtraction

In this paper we consider a scenario in which camera is mounted on 1-2 meter
height, and does not see the ground. This fact makes an estimation of object
3D position very hard. A special upper-body detector can be used as in [5]. But
it is suited only for frontal people, so we use background subtraction method.
This step should not be time-consuming, so we use simple background modeling
with Gaussian distribution in each pixel. We use short background videos for
initialization. Then we retrieve foreground masks frame-by-frame pixel-by-pixel.
Foreground pixels are post-processed with simple morphological operations and
final foreground mask is obtained.

We employ the fact that all people in our scenario are cut by the bottom of
the frame. After background subtraction step we find all sufficiently big blobs in
a frame. These blobs restrain possible positions of objects, i.e. no object can be
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Fig. 2. Example of a simple occlusion handling. Graphics under frames show a distri-
bution of current particle filter set. The parts of graphics above the line correspond to
visible particles and vise versa.

outside the blobs. In order to correctly model objects, which are only partially
inside the scene, we add two invisible blobs: one to the right and one to the left
of a frame.

3.2 Particle Filter

We use a first-order Markov process in order to model object states during
tracking. Within this context Particle Filter(PF) approach models probability
distribution of object states as a weighted set of particles.

p(S) =
N∑

i=1

wiδ(S − si), where
N∑

i=1

wi = 1. (1)

Here wi are weight coefficients, si are particles and N is their number.
PF also known in literature as Bootsrap Filter and Condensation algorithm

[10], allows to predict object state in a new frame based on a current set of
particles, and to estimate the likelihood of each particle based on a new frame.
The main advantage of Particle Filter approach is its ability to model a huge
variety of possible distributions, while other approaches are not so powerful.
For example, another popular approach Kalman Filter (KF) works only if both
prediction and observation models can be modeled with Gaussian distributions.

Classical PF approach uses particles consisting of object position and veloc-
ity information. In our case object positions can be modeled in 1D. Bottom
of each object is the frame bottom line in our scenario, and object height can
be defined by foreground mask. This leads to the following particle structure
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Fig. 3. Example of object loss when particles don’t have visibility label

s = (x, wd, v, l), where x is a center of object’s bounding box, wd is its width,
and v is an object’s speed. The last component l is a binary label which shows
whether we consider this particle visible or occluded. This component comprises
our contribution to classical particle structure. Label l (we named it visibility
label) helps in describing current situation more carefully. Now particles have
an option to become occluded by changing their visibility label instead of oblig-
atory following some visible objects. Explicit modeling of visibility state makes
it possible not only to estimate probable positions of objects but also to assess
if the object is occluded by another one.

During a prediction step particle states are updated based on motion model:⎧⎪⎨⎪⎩
xt = xt−1 + vt−1 + N (0, δx),
wdt = wdt−1 + N (0, δwd),
vt = vt−1 ∗ (1 − β) + β ∗ (xt − xt−1) + N (0, δv)

(2)

Visibility label change is modeled with Bernoulli distribution:

P (lt|lt−1) = lt−1 ∗ (1 − α) + α ∗ lt (3)

We use α equal to 0.2 in our experiments. Thereby during each prediction
step some pixels change their visibility label.

Fig. 2 shows an example of tracking 2 people. The importance of our contri-
bution is shown in Fig. 3 where tracking is performed by baseline PF framework
without explicit visibility modeling. During complex occlusion blue object par-
ticles lose the tracked person. This is not the case with visibility label (Fig. 6).
During the same occlusion blue object particles change their visibility labels
and divide between two blobs. After reappearing of the person after occlusion,
particles find him and continue tracking.

3.3 Appearance Model

During an estimation step each particle is assigned with a weight coefficient
according to the observation model:

wi
t ∝ p(zt|sit) (4)

Here zt is an observation in frame t. As in [3] for likelihood modeling of a
particle, we use online boosting classifier similar to [7]. We use color and texture
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histogram bin values as features. Positive examples are derived from the object
appearances and negative examples are derived from the other targets. But as
opposed to [3] we train online classifiers ‘one target against every other’ rather
than ‘one target against all other’.

In [7] mean bin values are used to train a classifier. This is sufficiently good
approach when there are just two targets. But in case of several targets, their
mean histogram bin values might not correspond to actual object appearances.
That is why we propose to train binary online boosting classifiers. Our approach
is based on the fact that two objects can be efficiently distinguished by [7]
method. So for each object we trained M-1 binary classifiers, where M is equal
to the total number of objects in the scene. Each binary classifier estimates the
likelihood of the observation model as if there were just two objects. The output
of the overall classifier is set to the minimum of binary classifiers outputs. This
means that the overall classifier gives positive answer only if observed data are
more similar to the current object than to any other target in the scene.

We use RGB 4x4x4 histograms and LBP 256-bin histograms to create object
appearance model. We update this model each frame for objects which are not
involved in any occlusions. The classifier output is scaled to [0; 1] segment. [0;
0.5) values correspond to negative classifier answers, while (0.5; 1] - to positive
ones. If a particle is occluded (i.e. its visibility label is false) or its position is
outside the frame then its likelihood is set equal to 0.5.{

p(zt|sit) = mink �=j BinaryClassifier(j,k)(zt, sit), lit = true
p(zt|sit) = 0.5, lit = false

(5)

3.4 Processing of Entries and Leavings

Each blob in a frame can contain several objects. If a blob does not contain any
objects, it is initialized with a new one. The leaving of an object from the scene
is detected if the following conditions are true:

– Sum of weights of particles outside the frame should be more than the spec-
ified threshold

– Particles inside the frame are mainly occluded (l = false)
– At least K frames have passed since some object particle weight is outside

the frame

In a simple case, when a person comes to the boundary alone and then goes
away, all its particles migrate outside the scene. But in our scenario there are
a lot of cases when two persons simultaneously approach frame boundary and
one occludes another. In this case we cannot say precisely whether the person is
outside or just occluded by another one. The proposed algorithm turns on the
timer for the person who might have left. If a person doesn’t appear for several
frames then we stop tracking it. Otherwise if it reappears we continue to track
it and turn off the timer. Example of processing a leaving person is shown in
Fig. 4.
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Fig. 4. Handling person leaving the scene: note that in bottom left frame the person
has already left but the algorithm is not sure and keeps two hypotheses where person
can be: either behind the other one, or outside the frame

Another frequent case in our scenario is an entrance of one person while
another person is leaving at the same time in the same part of a frame. In this
case PF tends to retrain and start tracking the new person. This causes ID
switch mistake. To overcome this problem we keep object appearance for the
last L frames. If object appearance differs much from itself L frames ago, while
no other objects is nearby and the object is near a boundary, then we create
a new object with current appearance and set the existing object appearance
to its previous appearance. This allows to correctly process cases when a new
object appears in front of or behind existing one, no matter whether existing
object is leaving the scene or just standing near its boundary. Fig. 5 shows the
advantage of our method in such case.

4 Experiments

We were unable to find well-recognized video sequence databases containing
videos of the proposed scenario. So we created our own database using a simple
camera. We made 29 indoor videos consisting of 174 to 877 frames and 2 to 13
people.

We provided ground-truth labeling for each video sequence in a semi-automatic
mode. We manually drew bounding boxes every Pth frame (usually P = 10 ).
Then ground-truth in intermediate frames was obtained by linear interpolation.

We implemented the proposed method in Matlab. We compared it with the
baseline method, i.e. PF framework with online-boosting classifiers for resolv-
ing occlusions. In the baseline method we used ‘one target against all other’
online-boosting approach. We tested full version and baseline method along with
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Fig. 5. Example of tracking with processing of simultaneous entering and leaving ob-
jects (bottom row), and without it (top row)

modifications which comprise our contributions. They are the use of visibility
label (VL), ‘one target against every other’ online-boosting approach (OTAEO)
and storing of object appearances with a certain update lag for determining an
object entrance during leaving of another object (SAUL). We used the same
parameters for all video sequences.

We have met the problem of matching between output and ground-truth re-
sults which is non-trivial, and was mentioned in [14]. We implemented automatic
method based on Hungarian algorithm [13] to perform the matching. For the
evaluation we use standard metrics such as ID switches, Fragments, Recall and
Precision in terms of [14]. We use PASCAL VOC criterion (intersection over
union) to determine whether output and ground-truth match. The results can
be seen in Table 1.

It appears that in easy sequences where there are no long-term occlusions
involving many people our contributions do not help much. Moreover they are
not necessary; tracking problem can be solved without them. However in difficult
examples our contributions help to improve the overall performance. This can be
seen by evident difference in ID switches and Fragments metrics. The example of

Table 1. Experimental results of our algorithm

Algorithm type IDS Frag Recall Precision

Baseline 21 17 86% 87%
Baseline + [VL] 14 10 87% 88%
Baseline + [VL] + [OTAEO] 13 4 90% 90%
Baseline + [VL] + [OTAEO] + [SAUL] 8 3 90% 91%
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Fig. 6. Example of tracking in a sequence with many occlusions

the proposed algorithm tracking result in a complex video can be seen in Fig. 6.
Supplemental materials with some other results can be found on our website:
http://graphics.cs.msu.ru/en/projects/hmc-people-tracking/.

5 Conclusion

We have proposed a new method for tracking people in case in which a camera
is mounted on a human height. We have made our own video database and
compared our proposed method with a baseline particle filter framework with
online learning of object appearance. Our experiments a good performance of
our method along with the importance of our contribution. The key factors
for this performance are: (1) explicit modeling of occlusion state, (2) using ‘one
target against every other’ online boosting scheme rather than ‘one target against
all other’, (3) storing object appearance with a certain update lag to resolve
simultaneous entrance-leaving ambiguities.

Although we consider only specific scenario we believe that our ideas can be
very helpful for improving performance in other types of multi-target tracking
problems.
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Abstract. The assignment of multiple person tracks to a set of candi-
date person locations in overlapping camera views is potentially compu-
tationaly intractable, as observables might depend upon visibility order,
and thus upon the decision which of the candidate locations represent
actual persons and which do not. In this paper, we present an approx-
imate assignment method which consists of two stages. In a hypothesis
generation stage, the similarity between track and measurement is based
on a subset of observables (appearance, motion) that is independent of
the classification of candidate locations. This allows the computation of
the K-best assignment in low polynomial time by standard graph match-
ing methods. In a subsequent hypothesis verification stage, the known
person positions associated with the K-best solutions are used to define
the full set of observables, which are used to compute the maximum like-
lihood assignment. We demonstrate that our method outperforms the
state-of-the-art on a complex outdoor dataset.

1 Introduction

We are interested in tracking a handful of persons in dynamic, uncontrolled
environments using overlapping cameras1. Cost and logistics typically limit the
number of cameras that can be used, as well as their viewpoints. We aim for
methods that can cope with as few as three surrounding cameras and diagonal
viewing directions that maximize overlap area (as opposed to ceiling-mounted
cameras with a bird-eye’s view). The considered set-up makes it difficult to
establish individual feature correspondences across camera views, furthermore,
inter-person occlusion can be considerable. We aim for robustness by performing
detection and tracking based on a 3D scene reconstruction, obtained by volume
carving [14]. A main challenge is to establish correct object correspondence across
multiple views. Matching different objects together across multiple views leads
to erroneous 3D objects, so-called ‘ghosts’ (see Figure 1).

2 Previous Work

Person tracking has been studied extensively. Due to space limitations, we re-
strict ourselves to work using overlapping cameras that aims to recover multi-
1 This research received funding under EC’s FP7/2007-2013 under grant agreement

nr. 218197 (ADABTS).
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Fig. 1. (left: real-world, right: schematic) Volume carving [14] projects foregrounds for
all cameras into a 3D space, ‘carving out’ potential persons (left: red areas, right: red
bounded, white areas). Splitting these into individual potential person measurements
results in superfluous objects caused by incorrect correspondences (‘ghosts’ or artifacts,
black ellipses (left), unmarked white areas (right)) and actual persons (blue ellipses).

person location. See Table 1 for an overview that highlights the way person lo-
calization and track assignment is performed - our primary paper scope. These
approaches can thereafter be embedded in a state estimation framework, either
recursive (Kalman [1][8][12], particle filtering) or in batch mode (Viterbi-style
MAP estimation [6], graph-cut space-time segmentation [9] or otherwise [4,10]).

Apart from the various ways correspondence and localization is performed
the main point to note from Table 1 is that multi-person localization and track
assignment is performed in a decoupled manner. This means that person local-
ization does not take advantage of motion and appearance cues associated with
active tracks; only after person position has been determined are the latter cues
incorporated for track assignment [6]. This approach faces difficulties in disam-
biguating tracks in close proximity. Therefore, in this paper, we pursue person
localization and track assignment jointly. A similar concept was proposed in [10]
in a single view context. However, only pairwise object interactions were taken
into account while leaving out the dependency between the perceived object
appearance and the selected hypotheses. Here, we consider an instantiation spe-
cific to multi-view tracking, and we propose a novel two-stage joint estimation
procedure to handle the potentially unfavorable (exponential) complexity.

3 Multi-person Track Assignment

To treat person localization and track assignment jointly, we formulate the prob-
lem as an edge selection task on a bipartite graph G = (X,Z,E) with vertex sets
X and Z and edges E. Givenm measurements of potential persons (see figure 1),
n currently existing tracks, p possible track creations and r possible track ter-
minations, each set contains v = max(n,m) + max(p, r) + 1 vertices. Vertex set
X = {x1 . . . xn, π1 . . . πp, γ1 . . . γv−n−p} contains vertices xi for existing person
tracks, πi for the generation of new person tracks, and γi for the generation of
a false positives (‘ghosts’). Vertex set Z = {z1, . . . , zm, ω1, . . . ωr, δ1 . . . δv−m−r}
contains vertices zj for measurements, ωj corresponding to terminated tracks,
and δj to represent erroneous (i.e. noise) measurements. The bipartite graph has



Multi-person Localization and Track Assignment in Overlapping Cameras 175

Table 1. Overview of multi-person localization and track assignment using overlapping
cameras (CA: Number of cameras, NP: Number of persons)

Method CA NP Localization Track Assignment

Arsić [1] 4 5 foreground segmentation, multi-plane quadratic programming:
homography, basic false pos. reduction position + appearance (SIFT)

Berclaz [2] 4 5 person classifier, prob. occupancy map -
Calderara [4] 4 3 homography, epipolar constraints, -

appearance based
Eshel [5] 9 21 homography, intensity corr., false pos. position +

reduction only during tracking appearance
Fleuret [6] 4 4-6 foreground segmentation, foreground segmentation + position +

probabilistic occupancy map appearance (color hist.)
Hu [7] 2-3 4 foreground segmentation, position

principal axis, homography
Kang [8] 2 5 foreground segmentation, multi-hypothesis (JPDA): 2D and 3D

homography position + appearance (color descr.)
Khan [9] 4 9 foreground likelihood homography space-time segmentation
Liem [11] 3 4 foreground segmentation, volume carving, nearest neighbor: position +

no false positive reduction appearance (color hist.)
Mittal [12] 4-16 3-6 color matching of epipole segments position, velocity
Yang [15] 8 8 foreground segmentation volume carving -

basic false positive reduction
This 3 2-4 joint person localization and assignment: foreground segm., volume carving +

method appearance (color hist.) + position Hungarian method and combinatoric approach

edges E such that: (1) all edges e ∈ E connect vertices fromX and Z: e ∈ X×Z,
(2) vertices within X and Z have degree one (i.e. are connected by one edge)
and (3) E does not contain edges connecting a vertex πi to ωj .
The set E can be divided into subsets EC , EN , ED, and EG, containing

– 〈xi, zj〉 ∈ EC : zj is the person assigned to continued track xi,
– 〈πi, zj〉 ∈ EN : zj is a person which should be assigned to a new track,
– 〈xi, ωj〉 ∈ ED: track xi can be deleted,
– all other edges ∈ EG: involving ‘ghosts’.

Furthermore, we set p = r = 1, thus allowing the addition/removal of only
one person track per frame. At a framerate of 20 Hz, this means that 20 persons
could be added or removed every second. We also ensure that X and Z have at
least one vertex γi and δj by setting v = max(n,m) + 2 in our experiments.

3.1 Likelihood Formulation

A set of features O is derived from the measurements. This set consists of the
foreground image regions OFG, the position on the ground plane OPos and
appearance OApp of (possible) persons. For a given set of edges in the bipartite
graph, we model the probability of observing these features:

p(O|E) = p(OPos|E) p(OFG|E) p(OApp|E). (1)

The probability distribution over the positions of measurements only depends
on the position of the assigned tracks, or the position where a new track is
created or removed.
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p(OPos|E) =
∏

ek∈EC

p(OPos,C
k |ek) ×

∏
ek∈EN

p(OPos,N
k |ek) ×

∏
ek∈ED

p(OPos,D
k |ek) × p

|EG|
nPos

(2)

OPos,C
k denotes the deviation between predicted location of a track and the

position of a measurement on the ground plane. OPos,N
k denotes the measured

position of a new track on the ground plane. OPos,D
k denotes the disappearance

of a measurement. pnPos is a penalty factor, given by the likelihood at the par-
ticular distance where p(OPos|EG) = p(OPos|EC). Note that p(OPos,C

k |E) =
p(OPos,C

k |ek) and p(OPos,N
k |E) = p(OPos,N

k |ek) (i.e. p(OPos,N
k |ek) does not de-

pend on any e ∈ E \ ek).
We expect that tracked persons explain the observed foreground regions OFG

in each camera view. Following [6], the foreground observation probability in
a camera c is p(OFG

c |E) = 1
Z e

−Ψ(Bc,Ac(E)), where Ac(E) denotes the synthetic
image obtained by putting rectangles at locations corresponding to zj for which
ek ∈ EC ∪ EN (i.e. the union of the corresponding rectangles), Bc is the seg-
mented foreground region, and Ψ(Bc, Ac(E)) the fraction of the foreground cor-
rectly segmented (c.f. [6]). Averaging over all C cameras results in

p(OFG|E) =
1
C

C∑
c=1

p(OFG
c |E) =

1
C

C∑
c=1

1
Z
e−Ψ(Bc,Ac(E)). (3)

If all zj are outside the field of view of camera c, p(OFG|E) is not computable
(since Ψ(Bc, Ac(E)) contains a division by |Ac(E)|). For these cases, a good value
for Ac(E)⊕Bc

Ac(E) in Ψ(Bc, Ac(E)), with ⊕ the per-pixel exclusive or, was experimen-
tally found to be 1.5. This value is also used for computing the penalty term
pnFG, used when the foreground likelihood is not computable (e.g. for ED).

Appearances are represented as three RGB color histograms (10 × 10 × 10
bins): for the legs, arms/torso and head/shoulders, respectively. Splitting the
appearance vertically allows us to use and update appearance features, even if
a person is partially occluded. Spatial occlusion information, based on detected
persons in E, is taken into account when sampling the images and updating
the tracked appearance. Histograms are taken from each camera viewpoint and
averaged over the different viewpoints:

p(OApp|E) =
∏

ek∈EC

[
p(OApp

k |E)
]

× p|E\EC |
nApp

with

p(OApp
k |E) =

1
C

C∑
c=1

p(OApp
k,c |E). (4)

where OApp
k,c is the Hellinger distance [3] (equal to

√
1 −BC, with BC being the

Bhattacharyya Coefficient) between the appearance of measurement k in camera
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c and the known appearances of the tracks in EC . The factor pnApp compen-
sates for the lack of appearance information for objects not linked to existing
tracks, represented by the point where p(OApp|EG) = p(OApp|EC). Distributions
OPos,C

ij |ek and OApp
ij |ek, are determined experimentally on a separate validation

set. Values for these distributions are aggregated across C different camera views.
See also section 4.1.

3.2 Likelihood Optimization

A brute-force approach to finding the most likely set of edges E for (1) would
quickly become intractable due to the combinatorial nature of the assignment
problem, especially when there are many measurements. Instead, the idea is to
only compute the full likelihood on K preselected probable solutions, after which
the most likely one is selected as our final estimate. Preselection is achieved by
approximating p(O|E) as a function p̂(O|E) that can be written as a product of
independent edge likelihoods. An extended version of the Hungarian algorithm
[13] finds the top K most likely solutions for p̂(O|E) in the bipartite graph by
expressing it as a max-sum problem which can be solved in low polynomial time.

Since (3) and (4) contain terms dependent on the complete assignment E
(e.g. due to occlusion), the conditional probabilities p(OApp

k,c |E) and p(OFG
k |E)

are replaced by approximations p̂(OApp
k,c |E) and p̂(OFG

k |E) respectively where
the likelihood of each edge is independent of the other edges.

Instead of taking possible occlusion of people into account, as was the case in
(3), p̂(OFG|E) approximates the foreground probability by computing it inde-
pendently for assigned tracks:

p̂(OFG|E) =
∏

ek∈Econt,new

p̂(OFG
k |ek) × p|E\{EC∪EN}|

nFG

with

p̂(OFG
k |ek) =

1
C

C∑
c=1

1
Z
e−Ψ(Bc,Ac(ek)). (5)

Approximation p̂(OApp
k,c |E) only includes the appearance of measurements k in

those camera views Ck where the appearances are guaranteed not to be occluded,
such that dependency on E can be dropped:

p̂(OApp
k,c |E) =

{
p(OApp

k,c |ek) iff c in Ck

pnApp otherwise
(6)

Now (1) is approximated as:

p̂(O|E)=
∏

ek∈EC

p(OPos,C
k |ek)p̂(O

F G
k |ek)p̂(OApp

k |ek) ×
∏

ek∈EN

p(OPos,N
k |ek)p̂(O

F G
k |ek) pnApp

×
∏

ek∈ED

p(OPos,D
k |ek) pnF G pnApp ×

∏
ek∈EG

pnPos pnF G pnApp, (7)

which contains a term for each edge independent of the other edges. Using this
expression we preselect the K solutions with the Hungarian method.
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4 Experiments

4.1 Setup

Experiments were performed in a complex, outdoor setting. On a train station
platform, 2 to 4 actors engaged in various activities. The background is dy-
namic (trains are passing by, bystanders are walking around) and lighting condi-
tions change continuously. Ten sequences were used, with about 5300 multi-view
frames (avg. distance between center points of closest persons is 1.6 m, std. dev.
is 1.2 m). For the purpose of evaluation, we only considered the area visible in
all three cameras, see Figure 2(left). Ground truth (torso position) was created
by manual labeling.

Proposed Method. Space volume carving is used to ‘reconstruct’ a 3D rep-
resentation of the objects in the scene, making use of foreground segmented
images. All objects are projected onto the ground plane where only those having
sufficient vertical mass to represent a person are kept. An object is detected as
a possible person when the area of its top-down projection has at least half the
size of an average person. Preliminary tests on our data have shown that on
average a person has a top-down silhouette approximated by the area of a circle
with a 40 cm diameter. The number of possible persons within one object is
determined to be the number of times this ‘average person’ fits into the detected
object. The EM algorithm is used to find the most likely positions of multiple
persons in objects larger than one person. It is adapted in such a way that it
fits an equally sized ellipse for each person, each ellipse having an aspect ratio
of 2:3 representing the average human shape seen from top-down.

Parameterizing the likelihood p(OPos,C
k |ek) is done by an exponential distri-

bution using λ = 1/0.03 (estimated by measuring distances between people in a
validation set). The steep descent of such a distribution makes high values un-
likely, which de facto puts a bound on the distance a person can travel between
2 frames (0.05 seconds). Approximating the distance distribution of non-person
objects p(OPos|EG) is optimal using a log-normal distribution ln N (0.22, 0.05).
The largest allowable distance between two objects, still being classified as per-
sons is set at the distance where p(OPos,C |EC) = p(OPos|EG), which is 0.2 m.
This results in a maximum movement speed of about 14 km/h.

Distribution p(OApp|EC) and p(OApp|EG) are described as log-normal dis-
tributions having parameter settings ln N (−2.2, 0.6) and ln N (−1.0, 0.5) respec-
tively. Since the Hellinger distance takes on values between 0 (complete match)
and 1 (no match at all), the range of these functions is limited. For the penalty
term p|E\EC|

nApp , a Hellinger distance of 0.3 is used, representing a likelihood of 0.5.
Finally, p(OPos,N

k |ek) and p(OPos,D
k |ek) are defined using an inverted distance

map (figure 2, right) based on the boundaries of the scene’s visible area (figure 2,
left). This map assigns high likelihood to person creations and deletions at the
borders of the scene and decreases the likelihood according to the distance from
the nearest edge. For the penalty term pnPos, a value of 10−4 is found to be
reasonable.
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Fig. 2. (left) Area of interest on the ground plane, covered by 3 cameras and used for
tracking and detection. (middle) Scene top-down view (similar to figure 1, left) (right)
Distance map for determining addition/removal likelihood. Blue: high likelihood, red:
low likelihood.

Comparison Method. We compare our proposed algorithm with the Probabil-
ity Occupancy Map (POM) algorithm, a state-of-the-art method for which the
software was kindly made available by the authors of [6]. This system uses the
foreground segmented images as returned by our system as input. For each item
on a predefined list of discretized ground plane positions, the POM algorithm
returns the likelihood that a person is present at that location. In [6] the ground
plane was discretized using a regular grid of size 20 cm. We increased the res-
olution to 10 cm to compensate for binning effects; this improved performance,
especially at low positional error tolerance. Computing the person presence like-
lihood is done based on the amount of segmented foreground inside a fixed-size
Region of Interest (ROI), positioned on each ground plane location. These ROI
are represented by boxes of 2 m high and 70 cm wide, projected in each camera.
These proportions roughly correspond to those provided in the software by [6]
and have been verified to work well in preliminary experiments.

Due to the large grid (9100 locations) and the large number of detections
in the neighborhood of a person at the selected likelihood threshold (see next
section), computing a match between all persons at t and all detections at t+ 1
would be very costly. In order to keep things manageable, Non-Maxima Sup-
pression (NMS) is used to keep only the most likely person positions in a 3 × 3
grid neighborhood. Matching is done by evaluating p(OPos|E)p(OApp|E) for all
combinations of accepted detections at t and t + 1. The term p(OFG|E) from
(1) is left out of this equation since it is already embedded in the initial POM
results [6].

4.2 Evaluation

Detections. Both the proposed and POM method have a main parameter that
controls the number of candidate person locations that are detected. For our
method, this is the minimum vertical mass, for the POM method, this is a
threshold on person likelihood at a grid position. In order to find comparable
values for the later evaluation of track assignment and tracking, we computed
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Fig. 3. (left) Our detection performance for different minimum allowed vertical mass
(right) POM detection performance for different detection thresholds. Lower threshold
values for POM could not be tested since the resulting increase in the number of
detections causes computational issues. Both figures show multiple maximum allowable
GT to detection distances (30 cm, 50 cm and 75 cm).

their effect on the True Positives (TP), False Positives (FP) and False Negatives
(FN). See figure 3. Based on this, we selected a minimum vertical mass threshold
of 90 cm for our method, and a likelihood threshold of 0.01 for the POM method.

Preselection. The quality of the proposed preselection (Section 3.2) is tested
on a separate validation set (around 104 frames, eight scenarios). A cumulative
plot of the fraction of frames where the correct solution occurs within the first x
solutions is given in figure 4 (left). A solution is deemed correct when all Ground
Truth (GT) persons are localized in the scene with a maximum distance error of
75 cm and there are no false positives. The results were computed incrementally,
i.e. persons detected at time t are based on the result found at t−1, which in turn
depended on result at t− 2, etc. (no filtering is performed). The cases where the
correct solution was not present among the top-100 ranked solutions are mostly
caused by errors in foreground segmentation (this does not necessarily mean that
the system loses track from that point on; a tracker might still recuperate). From
these experiments, 40 is determined to be a good cut-off point for the number
of hypotheses maintained after preselection.

Person Localization and Track Assignment. Performance evaluation is
done for both methods on a frame-to-frame basis, i.e. new detections at t+1 are
matched to GT person positions from t. This allows us to focus on the person
localization and track assignment capability. For a fair comparison, POM detec-
tions are used as the input of our system, replacing volume carving. Cylinders
of 70 cm diameter and 2 m high (equal to the ROI used by POM, section 4.1)
are generated in the voxelspace at the locations of POM’s detections. Person
detection is done using our two-stage estimation process on this POM-generated
voxelspace. Figure 4 (right, dotted lines) shows the performance of our method
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Fig. 4. (left) Percentage of cases that the correct solution is among the top x of so-
lutions produced. (right) Detection and tracking performance of our method and the
POM method, given a maximum allowable error between the GT positions and the
detected positions.

as well as the POM method, given different maximum allowable errors between
the GT and the detections. Our method outperforms POM for any of the tested
maximum GT error distances (higher TP, lower FP). This is especially the case
for positional tolerances below 30 cm, where the grid-based nature of POM leads
to binning artifacts. Even at the highest allowable GT error of 75 cm, our method
still has a TP rate about 4% above POM. This is due to a combination of the
close proximity of the people in certain parts of the scenes (up to 25 cm) and
their occlusion by other people. If people are positioned so that it is no longer
possible to segment the foreground regions of different people in any view, POM
is unable to detect all individual persons (as described in [6]).

Tracking. Although the focus of the current paper is on person localization
and track assignment, we also embed the results of both methods in a standard
Kalman Filter (KF) framework, to compare results at the tracking level. We use
a KF with a constant velocity model; the assignments of measurements are now
made with respect to the KF predictions. We use a gating distance of 1.5 m
to search for measurements from the locations corresponding to predictions. We
require a track to be of certain duration, before it is considered active. Similarly,
visible tracks are discontinued after a certain time during when no measurements
are assigned. Both durations are set to 20 frames in the experiments. See Figure 4
(right, solid lines). As can be expected, the number of FP rises and the number
of TP declines, when compared to the detection results (figure 4, right, dotted
lines) which use GT data at time t. Nevertheless, the proposed method maintains
its advantage versus the baseline POM method. Results can be seen in Figure 5.

Computational cost. of both methods was assessed on a comparatively diffi-
cult 4-person sequences of 620 frames. Processing involved a single core Xeon 3
GHz system with 3 GB RAM. The POM detection method required about 7.5
s per frame, while our volume reconstruction took 3 s (both C++). The subse-
quent two-stage track assignment required 3 s per frame, for both localization
approaches. This was reduced to 1.1 s when using 10 instead of 40 candidate
assignments from preselection. All frames had a resolution of 752 × 560 pixels.
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Fig. 5. Tracking sequences from four scenarios, one triplet of three time instances per
scenario. Each triplet shows one of the three camera perspectives. Clockwise: (1) Four
people starting a fight. (2) Three people argue. (3) People meet, hug and leave the
scene. (4) people pass each other.

5 Conclusion

We presented an efficient two-step method for the joint person localization and
track assignment in the context of a multi-view, multi-person tracking system.
The proposed person localization approach, based on volume carving, outper-
formed a baseline POM localization method. This holds in particular for the
cases where people stand close together so that their projections are merged in
the camera foregrounds. The POM method would converge onto the center of
the cluster as the most likely person location; non-maxima suppression would
discard the rest. Our system deals with this problem adequately.
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Abstract. Many unsupervised learning algorithms make use of kernels
that rely on the Euclidean distance between two samples. However, the
Euclidean distance is optimal for Gaussian distributed data. In this pa-
per, we relax the global Gaussian assumption made by the Euclidean
distance, and propose a locale Gaussian modelling for the immediate
neighbourhood of the samples, resulting in an augmented data space
formed by the parameters of the local Gaussians. To this end, we pro-
pose a convolution kernel for the augmented data space. The factorisable
nature of this kernel allows us to introduce (semi)-metrics for this space,
which further derives relaxed versions of known kernels for this space.
We present empirical results to validate the utility of the proposed lo-
calized approach in the context of spectral clustering. The key result of
this paper is that this approach that combines the local Gaussian model
with measures that adhere to metric properties, yields much better per-
formance in different spectral clustering tasks.

1 Introduction

Many unsupervised learning algorithms rely on the exponential kernel KE , and
the Gaussian kernel KG to measure the similarity between two input vectors1

x,y ∈ R
p. The Euclidean distance in KE and KG, however, has two implicit

assumptions on the data under consideration. First, by expanding the squared
norm ‖x − y‖2 to (x − y)�I(x − y), where I is the identity matrix, one directly

1 Notations: Bold small letters x,y are vectors. Bold capital letters A,B are ma-
trices. Calligraphic and double bold capital letters X , Y, X, Y denote sets and/or
spaces. Positive definite (PD) and positive semi-definite (PSD) matrices are denoted
by A � 0 and A 	 0 respectively.
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Fig. 1. (A) The exponential kernel KE relies on the Euclidean distance between X
(green) and Y (blue). (B) The local Gaussian assumption considers the few nearest
neighbours (NNs) around X and Y , and then each set of NNs is modelled as a Gaussian
distribution as in (C). The proposed relaxed kernels will rely on the dissimilarity (or
difference) between the two Gaussian distributions instead of the Euclidean distance
between X and Y .

obtains a special case of the generalized quadratic distance (GQD) d(x,y;A) =√
(x − y)�A(x − y), where A is a symmetric PD matrix. From a statistical

vantage point, the Euclidean distance is the optimal metric if the data is gener-
ated from a spherical Gaussian distribution with unit variances – the spherical
assumption – which is a hard to attain natural setting in real world data sets.

Second, the GQD has an inherent limitation for which the matrix A is con-
strained to be globally defined over the whole input space, which enforces the
global Gaussian assumption of the data, or the ellipsoidal assumption. Besides
that this constraint on A is restrictive, the ellipsoidal assumption is unjustified
since a large Gaussian distribution with a full covariance matrix, does not yield a
faithful modelling for the true empirical density of the data. In turn, this affects
the relative distances between the samples, which finally affects the similarity
evaluated by KE and KG.

In this paper, we propose to relax the constraint that enforces the global
Gaussian assumption on the data. That is, as depicted in Figure (1), instead of
being globally defined over all the data set, the Gaussian assumption is allowed
to only hold in a local neighbourhood around each sample xi ∈ X ⊆ Rp, where X
is the input space. Note that the local Gaussian assumption, does not impose any
constraints nor assumptions on the global data distribution. The local Gaussian
assumption, however, associates with each xi a symmetric PD matrix Ai, which
is the covariance matrix of the local Gaussian distribution centered at xi. In
turn, this changes the structure of the data from the simple set of vectors D =
{xi}n

i=1 ⊆ X , to a new augmented data set DA = {(xi,Ai)}n
i=1 ⊆ X of the

2-tuples (xi,Ai). Note that all Ai’s are defined in an unsupervised manner.



186 K. Abou–Moustafa et al.

To this end, we propose a convolution kernel KX [17] that measures the simi-
larity between the inputs (xi,Ai) and (xj ,Aj). The kernel KX is an exponential
function of a dissimilarity measure for the 2-tuples (xi,Ai). Due to the factor-
izable nature of KX, it turns that KX derives a set of metrics and semi-metrics
on the augmented space X, which further derive a set of relaxed kernels for X.
Interestingly, these (semi-)metrics are based on divergence measures of proba-
bility distributions, and the Riemannian metric for symmetric PD matrices [15].
Moreover, we show that using the exponential function in KX, the space X is
isometrically embeddable into a Hilbert space H [16].

Preliminaries. In order to make the paper self-contained, we find it necessary
to introduce the following definitions. A metric space is an ordered pair (M, d)
where M is a non-empty set, and d is a distance function, or a metric, defined as
d : M × M �→ R, and ∀ a, b, c ∈ M, the following Axioms hold: (1) d(a, b) ≥ 0,
(2) d(a, a) = 0, (3) d(a, b) = 0 iff a = b, (4) symmetry d(a, b) = d(b, a), and (5)
the triangle inequality d(a, c) ≤ d(a, b) + d(b, c). A semi-metric distance satisfies
Axioms (1), (2) and (4) only. That is, the triangle inequality need not hold for
semi-metrics, and d(a, b) can be zero for a �= b. For instance, ‖x−y‖2 in KE is a
metric, but ‖x−y‖2

2 inKG is a semi-metric. Similarly for the GQD, d2(x,y;A) is
a semi-metric, and if A is not strictly PD, then d(x,y;A) is also a semi-metric.
Note that the definition of a metric space is independent from whether M is
equipped with an inner product or not.

Axioms (1) & (2) produce the positive semi–definiteness (PSD) of d, and
hence metrics and semi-metrics are both PSD. Note that this PSD property is
only valid for metrics and semi-metrics due to their Axiomitic definition above,
and can not be generalized to other PSD function as defined in the following.

A necessary and sufficient condition to guarantee that a symmetric similarity
function K is a kernel function over X , is that K should be PSD2. This ensures
the existence of a mapping φ : X �→ H, where H is a Hilbert space called the fea-
ture space, in which K turns into an inner product: K(xi,xj) = 〈φ(xi),φ(xj)〉.

The family of p–dimensional Gaussian distributions is denoted by Gp, and for
G ∈ Gp, it is defined as:

G(x; μ,Σ) = (2π)−
p
2 |Σ|− 1

2 exp{− 1
2 (x − μ)�Σ−1(x − μ)},

where | · | is the determinant, x,μ ∈ Rp, Σ ∈ S
p×p
++ , and S

p×p
++ is the manifold of

symmetric PD matrices.

2 The Local Gaussian Assumption

Our proposal for relaxing the constraint on matrix A in the GQD is equivalent to
relaxing the global Gaussian assumption on the data to be only valid in a small
neighbourhood around each sample xi ∈ X . Note that this mild assumption

2 For the set X and for any set of real numbers a1, . . . , an, the function K must satisfy
the following:

∑n
i=1

∑n
j=1 aiajK(xi,xj) ≥ 0.
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on the local distribution around each xi does not impose any constraints nor
assumptions on the global data distribution. To realize the local Gaussian as-
sumption, each xi is associated with a symmetric matrix Ai � 0 defined as:

Ai =
1

m− 1

m∑
xj∈Ni

(xj − xi)(xj − xi)� + γI , (1)

where xj ∈ X , Ni = {xj}m
j=1 is the set of m nearest neighbours (NNs) to xi, and

0 < γ ∈ R is a regularization parameter. The regularization here is necessary to
avoid the expected rank deficiencies in Ai’s, which are due to the small number
of NNs considered around xi, together with the high dimensionality of the data3,
and hence, this helps avoid over-fitting and outlier reliance. The definition of Ai

in (1) is simply the average variance–covariance matrix between xi and its m
NNs. Hence, the local Gaussian assumption, depicted in Figure (1), can be seen
as anchoring a Gaussian density Gi(μi,Σi) at point xi, where its mean μi ≡ xi

and its covariance matrix Σi ≡ Ai. The local Gaussian assumption can be taken
further and extended in the spirit of manifold Parzen windows [18] by including
xi in Ni, and define μi and Σi as follows:

μi ≡ μ̂i =
1

m+ 1

∑
xj∈Ni

xj , and (2)

Σi ≡ Σ̂i =
1
m

∑
xj∈Ni

(xj − μ̂i)(x
j − μ̂i)

� + γI . (3)

This can be seen as a local smoothing for the data, combined with local feature
extraction by means of a generative model, where the features are the parameters
μ̂i and Σ̂i for each xi ∈ X . Note that Ai and Σ̂i are defined in an unsupervised
manner, however when auxiliary information is available in the form of labels
or side information, they can be defined in a supervised or a semi–supervised
manner.

The result of the local Gaussian assumption introduces a new component Ai

for each xi ∈ X which changes the structure of the input data from the set
of vectors D = {xi}n

i=1 to an augmented data set DA = {(xi,Ai)}n
i=1 ⊆ X of

2-tuples (xi,Ai). This change in the data structure, in turn, requires a change in
KE and KG which can only operate on the first element of the 2-tuples (xi,Ai)
– elements in Rp – and not the symmetric matrix Ai � 0.

Note that the augmented space X implicitly represents the parameters for
the set of local Gaussians G = {Gi(μi,Σi)}n

i=1, which will be referred to as the
dual perspective for X. In order to avoid any future confusion in the notations,
this will be the default definition for X, where implicitly, (μi,Σi) ≡ (xi,Ai), or
(μi,Σi) ≡ (μ̂i, Σ̂i).

3 Note that γ is unique for all Ai’s.
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3 A Convolution Kernel for the Space X

The framework of convolution kernels suggests that a possible kernel for the
space X can have the following structure [17]:

KX{(μi,Σi), (μj ,Σj)} = Kμ(μi,μj)KΣ(Σi,Σj),

whereKμ andKΣ are symmetric PSD kernels, which yields thatKX is symmetric
and PSD as well. Our approach for definingKμ andKΣ is based on the definition
of KE, which is an exponential function of the Euclidean distance between its
two inputs. Due to the PSD and symmetry properties of (semi-)metrics (Axioms
(1), (2), & (3)), it follows that KE is symmetric and PSD. This result is due to
Theorem (4) in [16] which states that:

Theorem 1. The most general positive function f(x) which is bounded away
from zero and whose positive powers [f(x)]α, α > 0, are PSD is of the form:
f(x) = exp{c+ ψ(x)}, where ψ(x) is PSD and c ∈ R.

If ψ(μi − μj) = ‖μi − μj‖, σ > 0, and c = − 2
σ ‖μi − μj‖, it follows from

Theorem (3.1) that KE is PSD. This discussion suggests that, if dμ(·, ·) and
dΣ(·, ·) is (semi-)metric for {μi}n

i=1 and {Σi}n
i=1 respectively, then Kμ and KΣ

can be defined as:

Kμ(μi,μj) = exp
{− 1

σdμ(μi,μj)
}
,

KΣ(Σi,Σj) = exp
{− 1

σdΣ(Σi,Σj)
}
, and hence

KX = exp
{− 1

σ [dμ + dΣ ]
}
, (4)

where σ > 0 , and [dμ + dΣ ] is a (semi-)metric for the augmented space X. In
Section (4), it will be shown that, in general, dμ is the GQD between μi and μj ,
while dΣ is a (semi-)metric for symmetric PD covariance matrices.

3.1 Isometric Embedding in a Hilbert Space H
An interesting property of the exponential function in KE and KG is its ability
to perform an isometric embedding for (Rp, ‖ · ‖2) and (Rp, ‖ · ‖2

2) into a Hilbert
space H. This result is due to Theorems (1) in [16] which states that:

Theorem 2. A necessary and sufficient condition that a separable space S with
a semi-metric distance d, be isometrically embeddable in H, is that the function
exp{−αd2}, α > 0, be PSD in S.

Moreover, if d is a metric, then the triangle inequality is preserved through the
embedding, and the new space becomes a metric space4. Therefore, if dμ and
dΣ are metrics (or semi-metrics) for {μi}n

i=1 and {Σi}n
i=1 respectively, then by

Theorem (3.1), Kμ � 0 and KΣ � 0, and by Theorem (3.2), ({μi}n
i=1, dμ),

({Σi}n
i=1, dΣ) and (X, [dμ + dΣ ]) are isometrically embeddable in H.

4 See footnote in [16, p. 525].
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Theorem (2) in [16], which we do not state here due to space limitations,
is similar to Theorem (3.2), however it addresses the particular case of spaces
with m real numbers, denoted by Sm, and equipped with a norm function ϕ(x),
x ∈ Sm, and a distance function ϕ(x − x′)

1
2 . This theorem will be used instead

of Theorem (3.2), when the Riemannian metric for symmetric PD matrices is
introduced.

4 Kernels for Probability Distributions

To derive dμ and dΣ , our discussion begins from the dual perspective for X, or
the set G = {Gi(μi,Σi)}n

i=1, and the definition of KE as an exponential function
of the Euclidean distance between its input vectors. The fundamental difference
here is that the elements of interests are not the vectors xi,xj ∈ Rp, but rather
two Gaussian distributions Gi,Gj ∈ Gp, with μi �= μj and Σi �= Σj . It follows
that the Euclidean distance describing the difference between xi and xj needs to
be replaced with a dissimilarity measure for probability distributions, and this
measure should be at least a semi-metric in order to guarantee that the resulting
kernel is PSD, according to Theorem (3.2).

A natural measure for the dissimilarity between probability distributions is
the divergence, which by definition according to [1] and [3] is not a metric. To
see this, let P be a family of probability distributions, and let P1, P2 ∈ P be
defined over the same domain of events E , then the divergence of P2 from P1 is:

div(P1, P2) = Ep1{C(φ)} =
∫
E
p1(x)C(φ(x))dx, (5)

where div(P1, P2) ∈ [0,∞), p1, p2 are the probability density functions of P1 and
P2 respectively, φ(x) = p1(x)/p2(x) is the likelihood ratio, and C is a continuous
convex function on (0,∞). Note that by definition, div(P1, P2) ≥ 0, and equality
only holds when P1 = P2 [1]. This is equivalent to Axioms (1) & (2) of a metric,
and hence div(P1, P2) is PSD. The divergence as defined in Equation (5), is not
symmetric5, since div(P1, P2) �= div(P2, P1). However, a possible symmetrization
for the divergence can be as : sdiv(P1, P2) = div(P1, P2) + div(P2, P1) , where
sdiv preserves all the properties of a divergence as postulated by Ali–Silvey and
Csiszar. Hence, sdiv is symmetric and PSD – a semi-metric – and a possible
kernel for P1 and P2 can be defined as:

KP(P1, P2) = exp{− 1
σ sdiv(P1, P2)}, σ > 0. (6)

Using Theorems (3.1) and (3.2), KP is symmetric and PSD, and (P , sdiv) is
isometrically embeddable in H. Note that KP is in the same spirit of the expo-
nential kernelKE as explained above. In addition,KP is valid for any symmetric
divergence measure from the class of Ali–Silvey or f–divergence [3], and hence
it is valid for any probability distribution. It is also important to note that the
kernel KP is not the only kernel for probability distributions, and other kernels
were proposed in the work of [6,4,11].
5 Depending on the choice of C(·) in (5) and its parametrization, one can derive

symmetric divergence measures, see [1] for examples.
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4.1 The Case of Gaussian Densities

We now consider the particular case of Gaussian densities under some classical
symmetric divergence measures such as the symmetric KL divergence, or Jeffreys
divergence dJ , the Bhattacharyya divergence dB, and the Hellinger distance dH .
For G1,G2 ∈ Gp, Jeffreys divergence dJ can be expressed as:

dJ(G1,G2) = 1
2u

�Ψu + 1
2 tr{Σ−1

1 Σ2 + Σ−1
2 Σ1} − p, (7)

where Ψ = (Σ−1
1 + Σ−1

2 ), and u = (μ1 − μ2). The Bhattacharyya divergence
dB and the Hellinger distance dH are both derived from the Bhattacharyya
coefficient ρ, which is a measure of similarity between probability distributions:

ρ(G1,G2) = |Γ |− 1
2 |Σ1| 1

4 |Σ2| 1
4 exp{− 1

8u
�Γ−1u},

where Γ = (1
2Σ1 + 1

2Σ2). The Hellinger distance can be obtained from ρ as
dH(G1,G2) =

√
2[1 − ρ(G1,G2)], while dB(G1,G2) = log[ρ(G1,G2)] is defined as:

dB(G1,G2) = 1
8u

�Γ−1u + 1
2 ln

{ |Γ |
|Σ1| 1

2 |Σ2| 1
2

}
. (8)

Kullback [9] notes that dJ is positive and symmetric but violates the triangle
inequality. Similarly, Kailath [7] notes that dB is positive and symmetric but
violates the triangle inequality, while dH meets all metric Axioms. Using the
kernel definition in (6), it is straight forward to define the following kernels:

KJ(G1,G2) = exp{− 1
σdJ (G1,G2)}, σ > 0, (9)

KH(G1,G2) = exp{− 1
σdH(G1,G2)}, σ > 0, and (10)

KB(G1,G2) = exp{dB(G1,G2)} = ρ(G1,G2). (11)

We note that [8] have proposed the Bhatacharyya kernel ρ(G1,G2) and confirm
that it is PSD through the product probability kernel (PPK). In contrary, [12]
have proposed the KL kernel KJ(G1,G2) and claim, without justification, that
it is not PSD. Since dJ and dB are semi-metrics, and dH is a metric, then using
Theorems (3.1) and (3.2), KJ , KH and KB are symmetric and PSD kernels, and
(X, dJ ), (X, dB), and (X, dH) are isometrically embeddable in H.

4.2 A Close Look at dJ and dB

Kullback [9, pp. 6,7] describes dJ (G1,G2) in Equation (7) as a sum of two com-
ponents, one due to the difference in means weighted by the covariance matrices
(the first term), and the other due to the difference in variances and covari-
ances (the second term). Note that this explanation is also valid for dB(G1,G2)
in Equation (8). Recalling KX from Equation (4), then dμ and dΣ can be char-
acterized as follows. The first term in Equations (7) and (8) is equivalent to the
GQD, up to a constant and a square root – hence both terms are semi-metrics.
If Σ1 = Σ2 = Σ, then:

dJ (G1,G2) = u�Ψu,
dB(G1,G2) = u�Γ−1u.

}
dμ (12)
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The second term in Equations (7) and (8) is a discrepancy measure between two
covariance matrices that is independent from μ1 and μ2. If μ1 = μ2 = μ then:

dJ(G1,G2) = tr{Σ−1
1 Σ2 + Σ−1

2 Σ1} − p,
dB(G1,G2) = ln

{
|Γ ||Σ1|− 1

2 |Σ2|− 1
2

}
,

}
dΣ (13)

which define two dissimilarity measures between Σ1 and Σ2, and both measures
are semi-metrics.

4.3 A Metric for Symmetric PD Matrices

The factorisable nature ofKX, and the decomposition of dJ(G1,G2) and dB(G1,G2)
into two difference components, where the second term is independent from μ1

and μ2, allows us to introduce a metric for symmetric PD matrices that can be
used instead of the semi-metrics in Equation (13).

A symmetric PD matrix is a geometric object, and the space of all symmetric
PD matrices, denoted by S

p×p
++ , is a differentiable manifold in which each point

A ∈ S
p×p
++ has a tangent space TA(Sp×p

++ ) that is endowed with an inner product,
or a Riemmanian metric 〈·, ·〉A, on the elements of the tangent space. The di-
mensionality of S

p×p
++ and its tangent space is p(p+1)/2. Due to the inner product

〈·, ·〉A, the tangent space for S
p×p
++ is a finite dimensional Euclidean space.

The Riemannian metric, by default, respects the geometry of S
p×p
++ , which is

unlike the semi-metrics in (13) that are just derived from the divergence measures
dJ(G1,G2) and dB(G1,G2), and unaware of the geometry of S

p×p
++ . If dR is the

Riemannian metric for S
p×p
++ , then dΣ in Equation (4) can be replaced with dR,

and hence KX can be redefined as follows:

KX = Kμ(μ1,μ2)KR(Σ1,Σ2), (14)

= exp{− 1
σdμ} exp{− 1

σdR},
= exp{− 1

σ [dμ + dR]}, σ > 0. (15)

where dR is the distance between the two matrices {Σ1,Σ2 ∈ S
d×d
++ } defined as :

dR(Σ1,Σ2) = tr{ln2 Λ(Σ1,Σ2)} 1
2 , (16)

and Λ(Σ1,Σ2) = diag(λ1, . . . , λd) is the solution of a generalized eigenvalue
problem (GEP): Σ1V = ΛΣ2V. The metric dR was first derived by C. Rao [15],
and latter analyzed by Atkinson and Mitchel [2] 6, while independently derived
by Förstner and Moonen in [5]. Note that dR is invariant to inversion and to
affine transformations of the coordinate system. Since dR is induced by a norm
on T (Sp×p

++ ), then using Theorem (3.1) and Theorem(2) in [16], KR is PSD, and
(TA(Sp×p

++ ), dR) is isometrically embeddable in H, for all A ∈ S
p×p
++ .

6 See their affiliated references.
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5 Relaxed Kernels for the Augmented Space X

Besides the Jeffreys kernel KJ , the Hellinger kernel KH , and the Bhattacharyya
kernelKB in Equations (9), (10) and (11) respectively, we define two new kernels
for the space X based on the metric dR:

KJR(G1,G2) = exp{− 1
σdJR(G1,G2)}, and (17)

KBR(G1,G2) = exp{− 1
σdBR(G1,G2)}, where (18)

dJR(G1,G2) = (u�Ψu)
1
2 + dR(Σ1,Σ2),

dBR(G1,G2) = (u�Γ −1u)
1
2 + dR(Σ1,Σ2),

Ψ � 0, Γ −1 � 0, and σ > 0.

The positive definiteness of Ψ and Γ −1, and the square root on the quadratic
terms of dJR and dBR, assure that the quadratic terms are metrics. If μ1 =
μ2 = μ, then dJR and dBR will yield the Riemannian metric dR, and hence,
KJR and KBR will be equal to KR. If Σ1 = Σ2 = Σ, then dJR and dBR will
yield the GQD. If Σ = I, the GQD will be equal to the Euclidean distance, and
KJR and KBR will yield the original exponential kernel KE .

Similar to KE and KG, the relaxed kernels KJ , KH , KB, KJR and KBR rely
on the distance between the 2-tuples (μ1,Σ1) and (μ2,Σ2). Moreover, they
all provide an isometric embedding for the space X, and the difference between
these embeddings is due the metric or semi-metric defining each kernel. While
dJ and dB are semi-metrics, dH , dJR and dBR are metrics. Since Axioms (3) &
(5) do not hold for semi-metrics, it follows that dJ and dB will not preserve the
relative geometry between the elements in Rp, and that between the elements in
S

p×p
++ . Although dH is a metric, it relies on a semi-metric for covariances matrices,

which is not the case for dJR and dBR.

6 Related Work

Our research work parallels a stream of ideas that consider distances (or simi-
larities) between two subspaces, tangent spaces, or sets of vectors, instead of the
direct distance (or similarity) between points. In the context of learning over sets
of vectors (SOV’s), [19] propose a general learning approach within the kernel
framework. For two SOV’s, their kernel is based on the principal angles between
two subspaces, each spanned by one of the two SOV’s. In [8], each SOV is a
bag of pixels representing one image. Each SOV is modelled as a Gaussian dis-
tribution, and the Bhattacharyya kernel KB is used with SVMs to classify the
images. Similarly, in [12] each SOV is a bag of features representing one multime-
dia object (an image or an audio signal), and modelled as Gaussian distribution.
However, instead of KB, they use the KL kernel KJ with SVMs to classify the
multimedia objects.
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Table 1. Specifications of the data sets used in the experiments. The number of classes,
samples, and attributes are denoted by c, n, and p respectively.

Data set c n p Data set c n p

Balance 3 625 4 NewThyroid 3 215 5
Bupa 2 345 6 Pima 2 768 8
Glass 6 214 9 Segment 7 2310 18
Iris 3 150 4 Sonar 2 208 60
Lymphography 4 148 18 WDBC 2 569 30
Monks–1 2 556 6 Wine 3 178 13
Monks–2 2 601 6 Yeast 10 1484 6
Monks–3 2 554 6

7 Experimental Results

We validate the proposed relaxed kernels in the context of unsupervised learning
using spectral clustering (SC) algorithms. Here we compare the performance of
1) the standard k-means algorithm, 2) SC according to the version of [14]–as de-
scribed in [10]–using the exponential kernel KE , and 3) SC over the augmented
space X using four (4) different kernels: the KL kernelKJ [12], the Bhattacharyya
kernel KB [8], the Hellinger kernel KH , and the proposed kernel KBR. Although
our experiments includedKJR as well, we found that the results ofKJR andKBR
are very close to each other, and hence we show only the results for KBR. This
shows that the main difference between dJ and dB are the semi-metrics for co-
variance matrices in Equation (13). The parameter σ for KE , KJ , KB, KH and
KBR was selected using a simple quantile based approach7. In all our experiments,
the regularization parameter γ = 1. Although we do not focus on selecting the best
γ values, it nevertheless shows that, under this uniform γ assumption, the local
Gaussian assumption typically shows significantly better results.

All algorithms were run on 15 data sets from the UCI machine learning repos-
itory [13], shown in Table (1). Clustering accuracy was measured using the Hun-
garian score of [20]8. The performance of each algorithm was averaged over 30
runs with different initializations. Since the number of classes of the UCI data
sets is given, we assumed that the number of clusters is known. Before proceed-
ing to the results, it is important to emphasize that selecting the best parameter
values for k, σ, γ and the number of clusters, is largely a model selection issue,
and hence, it should not be confounded with verification of the effectiveness of
the local Gaussian modelling premise.

Columns two and three in Table (2) show the results for k-Means and SC
with KE on the original data set X . Columns four to seven in Table (2) show
the results of SC over the augmented data set DA = {(μ̂i, Σ̂i)}n

i=1 with the 4
different relaxed kernels. Due to space limitaitons, we do not show the results
for SC over the augmented data set DA = {(xi,Ai)}n

i=1. It can be seen that
7 The approach was suggested in Alex Smola’s blog: http://blog.smola.org/page/2
8 See [20] for more details.
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Table 2. Clustering accuracy for k-Means, SC with KE , and SC over DA = {(μ̂i,
Σ̂i)}n

i=1 with KJ , KB , KH , and KBR

Data set k-Means KE KJ KB KH KBR

Balance 51.1 (3.2) 53.6 (4.5) 60.0 (3.4) 61.2 (3.5) 60.3 (0.2) 64.9 (4.9)
Bupa 55.1 (0.1) 57.1 (0.2) 62.9 (0.1) 62.3 (0.18) 61.1 (0.07) 64.3 (0.18)
Glass 51.3 (3.4) 50.8 (2.0) 52.5 (2.8) 52.4 (3.3) 52.2 (2.9) 53.8 (4.6)
Iris 84.5 (12.0) 93.5 (7.1) 93.1 (18.1) 94.4 (9.2) 93.4 (5.4) 93.3 (10.4)
Lymphography 48.0 (6.1) 52.5 (5.7) 65.9 (2.1) 69.6 (2.9) 67.6 (5.3) 65.0 (6.0)
Monks–1 64.6 (5.4) 66.4 (0.1) 62.0 (2.1) 62.7 (1.0) 67.6 (0.02) 69.4 (0.04)
Monks–2 51.6 (2.0) 53.1 (3.0) 65.3 (0.1) 65.3 (0.02) 65.4 (1.7) 65.7 (0.1)
Monks–3 63.4 (4.2) 65.7 (0.1) 79.9 (0.02) 79.9 (0.02) 79.9 (0.02) 79.9 (0.02)
NewThyroid 78.0 (9.7) 75.8 (0.1) 79.9 (1.5) 80.3 (0.4) 86.5 (3.2) 91.1 (2.5)
Pima 66.0 (0.1) 64.7 (0.2) 68.2 (0.1) 67.8 (0.16) 67.9 (0.02) 67.5 (0.05)
Segment 51.5 (8.1) 65.4 (5.1) 62.7 (13.7) 62.9 (6.5) 67.7 (3.6) 69.1 (5.7)
Sonar 54.5 (0.7) 54.8 (4.2) 63.2 (3.1) 64.2 (2.4) 63.1 (2.1) 64.3 (2.4)
WDBC 85.4 (0.1) 84.0 (0.1) 92.7 (5.4) 93.6 (0.08) 94.2 (0.1) 95.6 (0.1)
Wine 67.8 (5.1) 67.8 (7.0) 90.4 (4.9) 88.1 (8.9) 88.7 (0.3) 88.2 (6.3)
Yeast 34.2 (1.3) 42.7 (2.8) 46.9 (1.8) 45.5 (1.8) 45.0 (2.2) 45.4 (2.5)

for most of the cases, the performance of SC over the augmented data sets
outperforms the standard SC and the k-Means algorithms. More specifically,
the performance of SC over DA = {(μ̂i, Σ̂i)}n

i=1, is consistently better than k-
Means and the standard SC, which is due to the smoothing included in defining
the 2-tuple (μ̂i, Σ̂i). In terms of kernels over DA = {(μ̂i, Σ̂i)}n

i=1, KH and KBR
are usually better thanKJ andKB, and at least, very close to their performance.
This emphasizes the role of the (semi-)metric defining each kernel.

8 Conclusion

We relax the global Gaussian assumption of the Euclidean distance in the expo-
nential kernel KE . The relaxation anchors a Gaussian distribution on the local
neighbourhood of each point in the data set, resulting in the augmented data
space X. Based on convolution kernels, divergence measures of probability dis-
tributions, and Riemannian metrics for symmetric PD matrices, we propose a
set of kernels for the space X, and show using preliminary experiments that the
local Gaussian assumption significantly outperforms the global one. Since all
our approach described here is unsupervised, a main future research direction is
to investigate the usefulness of this approach in supervised and semi-supervised
learning tasks.
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Marcel Lüthi, Christoph Jud, and Thomas Vetter

Computer Science Department
University of Basel, Switzerland

{marcel.luethi,christoph.jud,thomas.vetter}@unibas.ch

Abstract. Hybrid registration schemes are a powerful alternative to
fully automatic registration algorithms. Current methods for hybrid reg-
istration either include the landmark information as a hard constraint,
which is too rigid and leads to difficult optimization problems, or as a
soft-constraint, which introduces a difficult to tune parameter for the
landmark accuracy. In this paper we model the deformations as a Gaus-
sian process and regard the landmarks as additional information on the
admissible deformations. Using Gaussian process regression, we integrate
the landmarks directly into the deformation prior. This leads to a new,
probabilistic regularization term that penalizes deformations that do not
agree with the modeled landmark uncertainty. It thus provides a mid-
dle ground between the two aforementioned approaches, without sharing
their disadvantages. Our approach works for a large class of different
deformation priors and leads to a known optimization problem in a Re-
producing Kernel Hilbert Space.

1 Introduction

The problem of establishing point-to-point correspondence between two images
is central to computer vision and medical image analysis. It is usually addressed
using image registration methods, which aim to find a mapping such that each
point in a reference image is mapped to its corresponding point in the target
image. Formally, the registration problem can be defined as follows: Given a
reference and target image IR, IT : Ω → IR find the deformation field u : Ω →
IRd from a class of admissible deformations that optimally aligns the warped
reference image IR(x + u(x)) with the target IT (x). This problem is usually
formulated as a minimization problem of the functional

J [u] := DI [IT , IR, u] + λR[u] (1)

where DI is a similarity measure for the images, R a regularization term that
penalizes non-smooth solutions and λ a regularization parameter. In cases where
the images are noisy or corrupted, minimizing (1) may not lead to the desired
correspondence. Hybrid registration schemes have shown to be a powerful alter-
native for such cases. These schemes let the user specify a set of corresponding
landmark points LR, LT ⊂ Ω for the reference and the target image.
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Various different methods for integrating these landmarks are known. They
broadly fall into two classes. The first class of methods integrate the landmarks
as a hard constraint [9,5,3,2]. The resulting problem is to find a deformation
field that minimizes (1), but subject to additional landmark constraints:

J ′[u] = DI [IT , IR, u] + λR[u] s.t. DLM [LR, LT , u] ≤ ε, (2)

where DLM measure the landmark distance. Most such methods require a perfect
interpolation of the landmarks (i.e. ε = 0 in (2)) [5,3,2]. The resulting optimiza-
tion problem is a difficult numerical problem. To the best of our knowledge,
solutions have only been presented for the case of the thin-plate spline model.
The second class of methods do not strictly enforce the landmark constraint, but
add it as a penalty into (1) [14,13,6,8]. This leads to the minimization problem
of the functional

J ′′[u] = DI [IT , IR, u] + ηDLM [LT , LR, u] + λR[u], (3)

where η is an additional parameter. This approach has the advantage that the
optimization problem is easier to handle and its integration into existing regis-
tration schemes is straight-forward. Moreover, we argue that it is more natural to
treat the landmarks as a soft constraint as they are usually only approximately
known. The main problem with this formulation is that it treats the landmark
and regularization term independently, even though landmarks clearly provide
a-priori information about the deformations. The regularization parameters λ
and η become mutually dependent, which makes parameter tuning difficult.

In this paper we propose a formulation of hybrid registration that combines
both approaches, by integrating the landmark information into the regularization
term in (1). The uncertainty of the landmarks positions σ is the only additional
parameter that we introduce. Its value is at least approximately known from
the experimental setup. If we set σ = 0, our solution matches the landmark
points perfectly, whereas for σ > 0 an approximate solution is achieved. The
main idea is to model the admissible deformations as a (vector-valued) Gaussian
process u ∼ GP(0, k). Its covariance function k determines the regularization
properties of the deformation field. Landmark registration becomes the problem
of Gaussian process regression [10], where the displacement at the landmark
points are our observations. Gaussian process regression does not only provide
us with a MAP solution for the landmark registration problem, but yields the
full posterior distribution p(u|LT , LR). This distribution is again a Gaussian pro-
cess GP(μLM , kLM ), whose parameters are known in closed form. Its covariance
function kLM spans a Reproducing Kernel Hilbert Space (RKHS), whose asso-
ciated norm ‖·‖kLM penalizes functions according to the posterior probability
p(u|LT , LR). Thus, it is an ideal regularization term for the registration problem
(1) and leads to a hybrid scheme. The resulting formulation of the registration
problem has recently been addressed by Schölkopf et al. [13]. They proposed a
general solution strategy that can be applied to any covariance function. Yet
in contrast to our work, they do not include the landmarks into the covariance
function, but model them as a soft constraint as in (3).
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Unlike most previous approaches for hybrid registration, which have been
formulated for a fixed deformation model such as the thin-plate splines [5,3,9],
elastic body splines [17] or B-splines [14,8], our approach works for any valid (i.e.
positive definite) covariance function. In particular it includes the deformation
models that arise from Green’s functions of regularization operators, which have
been proposed for hybrid registration in [2].

We present experiments for a simple toy example and a 2D X-ray image of
the hand. Although our current implementation does not allow us to register
large images, our results clearly illustrate the benefits of our approach. Our ex-
periments show that while different covariance functions lead to different regu-
larization properties, the parameter σ that models the landmark accuracy keeps
its intuitive meaning. Furthermore we illustrate that the ability to model the
landmark inaccuracies is important to obtain good registration results.

2 Background

The core idea of our method is to use Gaussian process regression to obtain a
deformation prior that implicitly incorporates the landmark term. In this section
we briefly review Gaussian processes and their application to regression.

2.1 Gaussian Processes

Stochastic processes allow us to define a probability distribution over a function
space. Formally, a stochastic process is a collection of random variables f(x), x ∈
Ω where Ω is an index set. A Gaussian process is a stochastic process with the
property that for any finite number of observations, x1, . . . , xn ∈ Ω the values
f(x1), . . . , f(xn) are jointly normally distributed [10]. A Gaussian process is
completely defined by its mean μ : Ω → IR and a covariance function k : Ω×Ω →
IR. We write GP(μ, k) to specify a Gaussian process. To simplify the discussion,
we consider here only Gaussian processes GP(0, k) with zero mean. The extension
to the general case is, however, straight-forward.

The covariance function k(x, y) specifies for each pair of points x, y their
covariance E[f(x)f(y)]. By specifying a covariance function we define which
functions are likely under the given process. Many known covariance functions
require that nearby values are strongly correlated, which leads to that they
effectively favor smooth functions. Indeed, many covariance functions arise as
Greens functions of common regularization operators [16]. Covariance functions
are also often referred to as kernels, and we will use the terms interchangeably.

Vector-valued Gaussian Processes. To be able to use Gaussian process
for modeling deformation fields, the above concepts need to be generalized to
the case in which each random variable u(x) is a d dimensional random vec-
tor. The covariance function becomes matrix valued k(x, y) : Ω × Ω → IRd×d,
with k(x, y) = E[u(x)u(y)T ]. It can be shown that the vector-valued case can be
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reduced to the scalar case. Thus all known results for real-valued Gaussian pro-
cesses carry over to this more general setting. We refer to the article by Hein
et al. for further details [4].

A useful class of covariance functions for the vector valued case arise from
the scalar valued covariance functions. Let A ∈ Rd×d be a symmetric, positive
definite matrix and l a real valued covariance function. It can be shown that the
matrix valued function k with entries kij defined by

kij(x, y) = Aij l(x, y), (4)

is a valid covariance function [7]. The entry Aij determines the correlation be-
tween the i-th and j-th output component. In cases where we do not have any
a-priori knowledge about their correlation, we can choose A = Id as the identity.
In this case each dimension is considered as independent.

2.2 Gaussian Process Regression

Assume that we are given an i.i.d. sample S = {(x1, y1, ), . . . , (xn, yn)} ⊂ Ω×IRd

and let u ∈ GP(0, k) be a vector valued Gaussian process with k : Ω×Ω → IRd×d.
Gaussian process regression lets us infer the distribution p(u|S). We assume that
y ∼ N (u(x), σ2Id). This means, instead of observing the actual values u(x) we
observe noisy instances y thereof. The likelihood of the data is given as p(S|u)) =∏n

i=1 N (u(xi), σ2Id). Under this assumption the posterior distribution p(u|S) ∝
p(u)p(S|u) is known in closed form [10]. It is again a Gaussian process GP(μp, kp)
and its parameters are

μp(x) = KX(x)T (KXX + σ2I)−1Y (5)

kp(x, x′) = k(x, x′) −KX(x)T (KXX + σ2I)−1KX(x′). (6)

Here, we defined KX(x) = (k(x, xi))n
i=1 ∈ IRnd×d, KXX = (k(xi, xj))

n
i,j=1 ∈

IRnd×nd and Y = (y1, . . . , yn)T ∈ IRnd. Note that KX and KXX consist of
sub-matrices of size d× d.

Under this posterior distribution, only functions that agree with the given
sample S are likely observations. This is illustrated in Figure 1. Figure 1a shows
random samples from a one-dimensional prior distribution where we used the
Gaussian covariance function, defined by k(x, x′) = exp(−‖x− x′‖2). Figure 1b
shows the corresponding posterior distribution after the sample has been ob-
served.

3 Hybrid Registration Using a Landmark Prior

In this section we show how Gaussian process regression yields a solution of the
landmark registration problem, and how the resulting posterior process can be
used as a regularization term. Furthermore, we outline a generic procedure how
the resulting registration functional can be solved.
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(a) (b)

Fig. 1. (a) Random samples from a Gaussian process. (b) Random samples from the
posterior process, after a number of points have been observed. Only functions that
agree with the observations are likely to be observed.

3.1 Landmark Registration

Let u ∼ GP(0, k) be a vector valued Gaussian process with covariance function
k : Ω ×Ω → IRd×d that defines our prior assumptions about the possible defor-
mations. Usually, we choose k, such that the Gausssian process favours smooth
deformation fields. Further let LR = {l1R, . . . , lnR)} and LT = {l1T , . . . , lnT )} be the
given landmarks. These landmarks provide us with known deformation at the
landmark points

L = {(l1R, l
1
T − l1R), . . . , (lnR, l

n
T − lnR)} =: {(l1R, y1), . . . , (l

n
R, yn)},

and thus we have a sample set S on which we can apply Gaussian process
regression. The likelihood function is given by

p(L|u) =
N∏

i=1

N (u(xi), σ2Id),

and corresponds to our assumption that the inaccuracies of the landmarks can
be modeled as independent Gaussian noise. We know from Section 2 that the
posterior p(u|L) ∝ p(u)p(L|u) is under these assumptions again a Gaussian
process p(u|L) ∼ GP(μLM , kLM ), whose parameters are known in closed form
and are defined by (5). This posterior distribution thus defines a distribution
over deformation fields which incorporates the landmark constraints. Its mean
deformation μLM is the MAP solution to the landmark registration problem
and provides an optimal trade-off between our a-priori information about the
deformation field and the landmark constraints.

3.2 Combined Landmark and Image Registration

Our starting point for combining the landmark prior with image registration is
the probabilistic formulation of the registration problem by Christenson et al.
[1]. They pointed out that the registration problem (1) can be interpreted as the
following MAP estimation problem:

arg max
u

p(u)p(IT |IR, u), (7)
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where p(u) ∝ exp(−R[u]) is a Gaussian process prior over the admissible defor-
mation fields and p(IT |IR, u) ∝ exp(λ−1D[IR, IT , u]) is the likelihood. Given the
displacements from the landmarks L, it is natural to reformulate (7) as

argmax
u
p(u|L)p(IT |IR, u) (8)

and to choose p(u|L) ∼ GP(μLM , kLM ) using the closed form solution derived
in the previous section.

To solve (8) we exploit the well known fact that finding the MAP solution
of a Gaussian process model corresponds to solving minimization problem in
the Reproducing Kernel Hilbert Space (RKHS) Fk defined by the covariance
function k (see e.g. Wahba [16]). In the following discussion we chose the sum of
squared differences as a distance measure:

D[IT , IR, u] =
∫

Ω

[IT (x) − IR(x+ u(x))]2 dx. (9)

The problem corresponding to (8) becomes

arg min
u∈Fk

‖u‖2
kLM

+ λ−1

∫
Ω

[IT (x) − IR(x+ μLM (x) + u(x))]2 dx. (10)

where ‖·‖kLM denotes the RKHS norm. Treating the registration problem as
a minimization problem in a RKHS is the starting point of a recent paper by
Schölkopf et al. [13]. We briefly sketch the approach and refer to the original pa-
per for further details. The idea is to approximate the integral in (9) by uniformly
sampling N points from Ω and solve the discretized problem:

u∗ = argmin
u∈Fk

λ‖u‖2
kLM

+
1
N

N∑
i=1

[IT (xi) − IR(xi + μLM (xi) + u(xi))]2 (11)

The generalized representer theorem [12] asserts that the optimal solution u∗ is
given as a finite linear combination of the covariance functions kLM

u∗(x) =
N∑

i=1

kLM (x, xi)α∗i , (12)

where α∗i ∈ IRd is a vector of optimal coefficients for each output dimension.
The optimal coefficients (α∗1, . . . , α

∗
n) can be found by plugging (12) into (11) to

obtain a finite dimensional minimization problem

arg min
α1,...,αN

λ
N∑
i,j

αT
i kLM (xi, xj)αj+

1

N

N∑
i=1

[IT (xi)−IR(xi+μLM (xi)+
N∑

j=1

kLM (xj , xi)αj)]
2.

(13)

This problem can be solved using any standard optimization scheme.
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3.3 A Note on the Implementation

The above approach provides us with a general method to find the MAP solution
to (8) for the case when the prior p(u) is a Gaussian process. This is a extremely
general formulation and includes many different registration schemes as a special
case. This generality comes at the price that each optimization step requires
the evaluation of the covariance function in a double sum over N points. For
most real images N is too large for this to be feasible. Schölkopf et al. [13]
proposed to use compactly supported covariance functions. The matrix KXX =
(kLM (xi, xj))N

i,j=1 becomes sparse and needs to be computed only once. The
double sums in (13) can be replaced by matrix-vector multiplications. Using a
straight-forward implementation of this approach, we can register an 128 × 128
image in about 15 minutes on a standard PC (single core). For the registration
of 3D images this approach remains infeasible. To be able to solve (8) more
efficiently, some of the generality might have to be sacrificed and the solution
scheme targeted to special covariance functions.

4 Results

In this section we illustrate our method on a toy example and a X-ray image.
We choose the following covariance functions: The (cubic) B-spline, defined by

kb(x, x′) :=
∑
l∈Z2

β⊗(x− l)β⊗(x′ − l) (14)

where β⊗ are tensor product B-splines defined for x ∈ IR2 as β⊗(x)=β3(x1)β3(x2)
and β3 in turn is the cubic B-spline basis function [15]. Further, the Wu’s func-
tions defined by [11]

k0,0(x, x′) := k0,0(r) = max(0, (1 − r))

where r = ‖(x− x′)‖2/s and s determines the support of the kernel and finally
the Wu’s function defined by

k2,1(x, x′) := k2,1(r) = max(0, (1 − r))4(4 + 16r + 12r2 + 3r3).

To obtain the corresponding matrix valued functions, we multiply the covariance
function by the identity matrix I2 (Cf. Section 2.1). Thus, we effectively treat
each output dimension as independent. We keep the regularization parameter λ,
as well as the parameters of the covariance functions constant in all the examples.

Figure 2 shows the result for the toy example. A proper registration solution
would match all the corners onto each other. Using only a standard smoothness
prior the registration method will not be able to find the right correspondences.
Figure 2c shows the result for the B-spline covariance function when the land-
marks are ignored. By forcing the landmarks point to match exactly (i.e. setting
σ = 0), we can enforce a correct solution (Figure 2, (d)-(f)).



Using Landmarks as a Deformation Prior for Hybrid Image Registration 203

(a) Reference (b) Target (c) No landmarks

(d) B-spline kernel (e) Wu-kernel k0,0 (f) Wu-kernel k2,1

Fig. 2. A toy example: The goal is to transform the reference (a) onto the target (b).
(c) shows a result using the B-spline kernel without landmarks. Using the landmarks
we can enforce the desired matching of the corners (d)-(f). From the deformed grids
we see that the deformation fields differ for different covariance functions, even though
the registration result looks the same.

We see that the result looks the same in 2d-2f, but the actual deformations
(as shown by the grid) strongly depend on the chosen covariance functions. In
our second example we illustrate the influence of the landmark accuracy on the
solution. Figure 3a and 3b show the target and reference image together with
the correct landmarks. Using these landmarks, we obtain the registration result
depicted in Figure 3c. We then add Gaussian noise with a standard deviation
of 5mm onto the landmarks position (Figure 3d). Forcing the landmarks to
perfectly match, by setting σ = 0mm, leads to the result shown in Figure 3e. A
much better solution is obtained if we model the landmark inaccuracy correctly
by setting σ = 5mm (Figure 3f).

5 Conclusion

We have presented a novel formulation of hybrid registration. In contrast to pre-
vious approaches, we proposed to integrate the landmark information directly
into the deformation prior. This avoids a new trade-off parameter, but still allows
us to control how accurately the landmarks should be matched. Furthermore,
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(a) Reference (b) Target (c) Result

(d) Noisy Landmarks (e) σ = 0mm (f) σ = 5mm

Fig. 3. Two X-ray images of hands ((a), (b)) are registered. (c) shows the solution
using the Wu kernel k2,1. In (d) we add noise to the landmark positions. (e) shows the
solution when a perfect match (σ = 0mm) is enforced. Correctly modeling the noise
on the landmarks greatly improves the result (f).

the regularization term has a natural probabilistic interpretation as the posterior
p(u|LT , LR) of the deformations u given the landmarks. Our results illustrated
that we can both enforce a perfect match of the landmark points, and allow for
an approximate matching. Further, we showed that by using different covari-
ance functions, different regularization properties can be obtained, which makes
this approach more versatile than previous formulations. The use of compact
covariance functions makes the method practical for the registration of 2D im-
ages of moderate size. However, it is still not feasible at this point to use it for
the registration of 3D images. Devising an efficient scheme for special classes of
covariance functions, such that 3D hybrid registration becomes possible is an
interesting challenge, which we will address in future work.
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Abstract. Many state-of-the-art denoising algorithms focus on recov-
ering high-frequency details in noisy images. However, images corrupted
by large amounts of noise are also degraded in the lower frequencies.
Thus properly handling all frequency bands allows us to better denoise
in such regimes. To improve existing denoising algorithms we propose
a meta-procedure that applies existing denoising algorithms across dif-
ferent scales and combines the resulting images into a single denoised
image. With a comprehensive evaluation we show that the performance
of many state-of-the-art denoising algorithms can be improved.

1 Introduction

The problem of removing noise from natural images has been extensively studied,
so methods to denoise natural images are numerous and diverse. [4] classifies
denoising algorithms into three categories: The first class of algorithms rely on
smoothing parts of the noisy image [12,16,14] with the aim of “smoothing out”
the noise while preserving image details. The second class of denoising algorithms
exploit learned image statistics. A natural image model is typically learned on
a noise-free training set (such as the Berkeley segmentation dataset) and then
exploited to denoise images [11,17,5]. In some cases, denoising might involve
the careful shrinkage of coefficients. For example [13,1,8,9] involve shrinkage of
wavelet coefficients. Other methods denoise small images patches by representing
them as sparse linear combinations of elements of a learned dictionary [3,7,6].
The third class of algorithms exploits the fact that different patches in the same
image are often similar in appearance [2,4].

Denoising algorithms are usually evaluated on their ability to remove additive
white Gaussian noise (AWGN). Standard test images exist for this purpose. The
most popular performance measure is arguably the peak signal to noise ratio
(PSNR), which is related to the mean squared error (MSE).

Hypothesis: We speculate that most denoising algorithms focus on removing
noise on the higher frequencies and thus are often best suited for recovering fine-
scale information. Wiener filtering, bilateral filtering [14], but also the fields of
experts approach [11] rely on relatively small filters to denoise images. The small
size of these filters causes these approaches to ignore larger-scale information.
Denoising approaches based on dictionaries such as [3] typically decompose the
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noisy BM3D [2] MS-BM3D (our approach)
σ = 200, PSNR: 7.59dB PSNR: 18.88dB PSNR: 20.96dB

Fig. 1. In high noise settings, our approach improves the results achieved with BM3D

image into small patches and then denoise the patches separately and indepen-
dently. Larger-scale structure is lost when the image is decomposed into small
patches. So we hypothesize that many denoising algorithms can be improved by
employing a multi-scale approach.

Assumption: Our approach assumes that the statistics of natural images are
invariant to changes in spatial scale. An intuitive justification for this assumption
is that scenes are about equally likely to be viewed from different distances. This
assumption has been successfully exploited by others [9].

Contributions: We present a meta-procedure than can be used in combination
with existing denoising methods, yet often improves the results. We choose al-
gorithms from all three categories to show that our procedure is versatile. We
evaluate the PSNR on a set of 13 standard test images with varying amounts of
added noise. In most cases, we use commonly available implementations of these
algorithms.

Related work: Besides the denoising method mentioned above, there is a proce-
dure that is relatively similar to ours. In [4], the authors introduce the “stochastic
denoising” procedure and propose an extension (called “multi-pass denoising”)
in order to handle “larger-scale” noise (i.e. noise that is not uncorrelated across
neighboring pixels). The extension is similar to our meta-procedure in that in
addition to the original image, a single down-sampled version is denoised. The
down-sampled denoised image is up-sampled and combined with the denoised
image of the original size. Different from our method is that the authors com-
bine the images using a pixel-specific linear blend between the two images. The
ratio of the blend is controlled by the gradient of the image at that pixel. No
quantitative evaluation was provided in [4], but we include it in our evaluation.
[10] also considers a multiscale approach for image denoising by thresholding
coefficients in different frequency bands.
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Fig. 2. Noisy Lena becomes less noisy by down- and up-sampling (top row) with power
spectra (bottom row)

2 Down-Scaling Has a Denoising Effect

When an image that has been corrupted with AWGN is down-scaled, the image
becomes more recognisable. The effect is illustrated in Fig. 2: adding a large
amount of Gaussian noise leaves the “Lena” image barely recognisable (upper
left). Nonetheless, the down-scaled version (upper middle) seems to contain much
less noise.

Down-scaling an image effectively averages neighboring pixel values, causing
the uncorrelated values of the noise to become smaller. Since neighboring pixels
in natural images are often highly correlated, the down-scaling process is not
that damaging to the image information. Another explanation is that natural
images have the most energy in the low frequencies whereas AWGN is uniformly
spread over the whole spectrum. Down-sampling an image keeps mainly the low
frequencies, which are precisely the frequencies where the image information is
strongest (bottom row in Fig. 2). Nonetheless, if the amount of noise is very
large, frequencies in the middle of the spectrum are also affected, so the image
information in lower frequencies should also be denoised.

3 How to Denoise Lower Frequencies

We imagine a hypothetical scenario in which we wish to recover the low frequen-
cies of a noisy image as best as possible. To evaluate how well we recovered the
low frequencies, we compare the resulting image to a down-scaled version of the
ground truth image. We compare two approaches:
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Fig. 3. Which approach better recovers the low frequencies? First down-scaling, then
denoising is better than the other way around when the noise is strong

1. First denoise, then down-scale the result.
2. First down-scale, then denoise.

Which approach is better? In the first approach, the denoising algorithm has
more information available, while in the second approach the denoising algorithm
is applied to the down-sampled version. Denoising a down-scaled image should
be an easier task, which would suggest that the second approach is better. If
the second approach achieves better results, we could conclude that denoising
algorithms are not good at recovering large-scale (i.e. low frequency) information,
confirming the hypothesis we advanced in the introduction.

Fig. 3 compares the two approaches using KSVD as the denoising procedure.
Comparing the achieved PSNRs we see that the second approach is preferable
to the first. This effect also holds for other denoising algorithm for a variety of
different noise settings (see supplementary material for details).

Thus we can conclude that if we wish to recover low-frequency information
with a denoising algorithm that is not designed to recover low frequencies, down-
scaling the image might help. Effectively the down-scaling transforms the low-
frequency information into high-frequency information which can be accessed by
the denoising algorithm. In the following we show how this insight can be ex-
ploited with a multi-scale procedure such that the high-frequencies are recovered
from the given noisy image, while we get the low frequencies from a down-scaled
version of it.

4 Multi-scale Denoising

We propose a meta-procedure that relies on denoising not only the original
noisy image, but also down-scaled versions of that image. This meta-procedure
is formulated such that it can be combined with any existing denoising algorithm.
The last step of our procedure consists in combining the denoised images at the
different scales. The combination is motivated by Laplacian pyramids. Fig. 4
summarizes our method graphically.

We will denote by dα(x) a procedure that down-samples the image x by the
factor α. Similarly, we denote by uα(x) the procedure that up-samples the image
x by the factor α. In practice, we applied Matlab’s imresize function with the
Lanczos-3 kernel. Other kernels do not lead to significantly different results.
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Fig. 4. Our procedure denoises a noisy image at different scales and then combines
these images similarly to Laplacian pyramids

Note that resizing is a linear operator which can be represented as a ma-
trix D. The covariance matrix of downsampled Gaussian noise is proportional
to DDT which is approximately the identity matrix for most resampling ker-
nels (e.g. Lanczos). This fact implies that the AWGN assumption also holds for
downsampled images.

Denoising at different scales. As parameters to our procedure we initially
choose a denoising algorithm and scaling factors α1, . . . , αn (sorted in ascending
order). Given a noisy image x0, we create n down-sampled versions x1, . . . , xn,

x1 = dα1(x0); · · · xn = dαn(x0). (1)

The images x0, . . . , xn are subsequently denoised using the same denoising pro-
cedure:

y0 = denoise(x0); · · · yn = denoise(xn). (2)

Next we combine the n + 1 denoised images y0, . . . , yn in a Laplacian-pyramid
fashion to obtain the best possible denoised image z0 (which will have the same
size as the input image x0).

Recombining the images on the different scales. For this we decompose
the image yi into low and high frequency components li and hi:

li = dαi/αj
(yi) hi = yi − uαj/αi

(li). (3)

Next, the low frequency information li is discarded and replaced by yi+1, which
has the same size as li. We do so because yi+1 contains more accurate low-
frequency information. Combining yi+1 and hi we obtain a reconstruction zi at
level i:

zi = hi + uαj/αi
(yi+1) (4)

which combines the best of yi and yi+1, i.e. the high frequencies of yi and the
low frequencies from yi+1.
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Fig. 5. Left: high frequencies of the clean image (lower-right corner of “Barbara”).
Center: high frequency image of the denoised image (recovered from noisy image with
σ = 100). The image contains mostly noise, but Barbara’s pants are discernible. Right:
thresholded high frequency image. Structure from the pants is kept. Panel on the right
shows that thresholding helps.

As common for Laplacian pyramids, we start the multi-scale reconstruction
with the two smallest images yn−1 and yn and proceed through all scales until
we reconstruct the image z0 which is the denoising result of our method.

Shrinking high frequency coefficients. The right panel in Fig. 5 shows the
benefit of using the proposed multi-scale meta-procedure with two scales in com-
bination with the KSVD denoising algorithm. At noise levels above σ = 25, the
meta-procedure (MS-KSVD, no thresholding, line ’—x—’) improves the results
over the plain denoising algorithm (solid line). At first, the improvement grows
with growing noisiness. However, when the noise becomes very strong, this ef-
fect is reversed: The multi-scale meta-procedure helps less and less. This effect
is due to the fact that the high-frequency components zi are beneficial in lower
noise settings, but detrimental at higher noise levels. At very high noise levels,
the denoising algorithm becomes incompetent at recovering high-frequencies. A
possible solution to the problem is to attenuate the values in the high-frequency
image zi in such a way as to keep only the strongest components. We replace
Eq. (4) by:

zi = T (hi, λ) + uαj/αi
(yj) , (5)

where T (hi, λ) is the hard-thresholding operator with threshold λ. Other atten-
uation methods lead to similar results.

The three images on the left of Fig. 5 show the effect of the hard-thresholding
operator on a high-frequency image: The smaller values in the high-frequency
are mostly due to errors in the denoising procedure and are successfully removed
by the thresholding operation. The larger values however are unlikely to be due
to errors in the denoising procedure and are therefore kept.
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5 Experimental Evaluation and Results

Our meta-procedure is sensitive to the threshold parameter λ as well as to the
sizes and numbers of scales used in the Laplacian pyramid. We tuned those
hyperparameters for each considered denoising algorithm and for each noise level
σ on a training set of 20 images from the Berkeley segmentation training dataset,
see supplementary material. The smallest number of scales is 1 (no multi-scale
approach) and the largest is 4. The scale sizes we chose are (1/2)k with 0 ≤ k ≤ 3.
This corresponds to repeatedly down-scaling by a factor of two.

As the test set, we used the 13 standard gray-scale images commonly known
as: “Barbara”, “Boat”, “Cameraman”, “Couple”, “Fingerprint”, “Flintstones”,
“Hill”, “House”, “Baboon”, “F16”, “Lena”, “Man” and “Peppers” (see supple-
mentary material for images).

We applied our meta-procedure to nine state-of-the-art denoising algorithms
whose implementations are commonly available. (1) Wiener filtering using Mat-
lab’s wiener2 function with the default neighborhood size of 3. (2) Bilateral
filtering [14]1 with three hyper-parameters that need to be set. Empirically, we
found 10 to be a good value for the half-size of the Gaussian bilateral filter
window. We chose σ1 = 3 and set σ2 between 10−4 and 2.2 depending on the
noisiness of the image. (3) Bayesian least-squares Gaussian scale mixtures (BLS-
GSM) [9]2, (4) Stochastic denoising [4]3, (5) Block-matching 3D (BM3D) [2]4, (6)
Fields of Experts (FoE) [11]5, (7) Basis roation fields of experts (BRFoE) [17]6,
and (8) Total variation denoising (TV) [12]7 all have implementations publicly
available online. We used the default parameters for all methods except for FoE,
where we were able to improve results over the publicly available implementa-
tion by adapting the number of iterations to the amount of noise in the image.
We used our own implementation for (9) KSVD [3]. We found 10 iterations for
training the dictionary to be sufficient.

Improvements for varying noise levels. Fig. 6 reports for various noise levels
σ the difference between the results obtained in the single scale setting (denoted
“baseline . . . ”) compared to our multi-scale meta-procedure (denoted “MS-. . . ”).
We also included results obtained with the “multi-pass” procedure proposed in [4]
(denoted “Estrada-. . . ”). The integer values from one to four along the line of our
multi-scale procedure (“—x—”) indicate the number of scales applied.

When the noise level is low, in most cases our multi-scale meta-procedure does
not improve the results of the baseline algorithm. In fact, the results are in those
cases identical to the baseline algorithm. This happens when our multi-scale

1 http://www.mathworks.com/matlabcentral/fileexchange/12191
2 http://decsai.ugr.es/~javier/denoise/software/
3 http://www.cs.utoronto.ca/~strider/Denoise/
4 http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_software
5 http://www.gris.informatik.tu-darmstadt.de/~sroth/research/foe/index.html
6 http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
7 http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html

http://www.mathworks.com/matlabcentral/fileexchange/12191
http://decsai.ugr.es/~javier/denoise/software/
http://www.cs.utoronto.ca/~strider/Denoise/
http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_software
http://www.gris.informatik.tu-darmstadt.de/~sroth/research/foe/index.html
http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html
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Fig. 6. Improvements achieved by combining our meta-procedure with nine different
denoising algorithms. Results are averaged over 13 test images.

approach employs only the original scale (leading to the original denoising algo-
rithm), indicating that in those noise regimes, it was not beneficial to use more
scales in the training set.

The largest improvement achieved with our multi-scale meta-procedure occurs
when the noise becomes stronger, which corrupts the low frequencies more and
more. The improvement is particularly dramatic for Wiener and BRFoE (more
than 8dB), which are patch-based methods that ignore the lower frequencies.
Also KSVD is a method that is based on small patches, which also makes it
blind to low frequencies, explaining the improvements obtained. However, some
algorithms cannot be improved, such as BLS-GSM and Total Variation. This can
be explained by the fact that BLS-GSM is a wavelet method and therefore al-
ready a multi-scale algorithm. So we see that a limitation of our meta-procedure
is that it is only useful to apply it to denoising methods which are not already
considering lower frequencies.
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Fig. 7. The overall best methods compared to the baseline BM3D. For high noise
setting our multi-scale approach applied to BM3D leads to the best results.

Note that our proposed meta-procedure outperforms the procedure by Estrada
et al. [4] in almost all cases. Furthermore, our approach almost never deteriorates
the denoising results, which sometimes happens for Estrada’s method, especially
when the noise is low. The improvements are reported in terms of PSNR, but
we observed similar improvements in the structural similarity index [15] (see
supplementary material).

KSVD vs. BLS-GSM revisited. In [3], the KSVD denoising algorithm is
compared to BLS-GSM, described in [9]. It was noted that on the images “Pep-
pers”, “House” and “Barbara”, KSVD outperforms BLS-GSM as long as the
noise is below σ = 50. When the noise level is increased, BLS-GSM outperforms
KSVD. We repeat the experiment on our images, but this time also report the
results achieved with the multi-scale extension applied to KSVD (Fig. 7). We
indeed observe that baseline KSVD outperforms BLS-GSM when the noise is
low. However, the multi-scale version of KSVD outperforms BLS-GSM on all
noise settings, see Fig. 7.

Multi-scale KSVD vs. BM3D. BM3D is often considered to be the best
denoising algorithm currently available, even though Fig. 7 shows that for high
noise levels BLS-GSM is superior. Also the multi-scale extensions of KSVD is
better when the noise is very high.

Multi-scale BM3D vs. all others. Our multi-scale extension combined with
BM3D delivers results that outperform all other denoising algorithms especially
on the high noise levels, see Fig. 7.

6 Conclusion

For high noise levels, not only the high frequencies but also the low frequencies
are corrupted. However, most image denoising algorithms are not always good
at recovering low-frequency information. To improve such algorithms we devised
a strategy to improve the denoising results using a multi-scale approach.
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In comprehensive experiments we have shown that several state-of-the-art
image denoising algorithms can be improved using this approach. Even though
BM3D is arguably one of the best currently existing denoising algorithms, our
method was able to improve its results on images that have been corrupted by
high noise levels.
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Abstract. A framework for the automatic detection of dangerously de-
teriorating visibility (e.g. due to bad weather and/or poor illumination
conditions) is presented. The method employs image matching tech-
niques for tracking similar fragments in video-frames captured by a
forward-looking camera. The visibility is considered low when perfor-
mances of visual tracking deteriorate and/or its continuity is lost either
temporarily (i.e. a sudden burst of light, a splash of water) or more
permanently. Two variants of the tracking algorithm are considered, i.e.
the topological approach (more important) and the geometric one. Using
the most difficult examples of DAGM2011 Challenge dataset (e.g. Snow,
Rain and Light-sabre clips) it is demonstrated that the visibility quality
can be numerically estimated, and the most severe cases (when even the
human eye can hardly recognize the scene components) are represented
by zero (or near-zero) values. The paper also briefly discusses the im-
plementation issues (based on a previously developed similar real-time
application) and directions of future works.

1 Introduction

Vision-based navigation in adverse conditions is one of the most challenging is-
sues in building (semi-)intelligent vehicles. Even in relatively good conditions and
within partially structured environments (e.g. driving cars on roads with marked
lanes) only narrowly-defined problems can be more or less robustly handled us-
ing purely visual approaches (lane tracking, e.g. [1,2], detection and tracking
individual vehicles, e.g. [3,4], recognition of road signs, e.g. [5,6], etc.). However,
to the best of our knowledge, there are no attempts to address the most general
question of machine vision in vehicular applications, i.e. whether the existing
conditions are good enough to apply vision techniques or whether alternative
sensing techniques (if available) should be used instead. From the pragmatic
perspective, the conditions can be considered acceptable if the visual contents
can be robustly tracked in the stream of camera-captured data (e.g. in a se-
quence of video-frames). Of course, such conditions may not be good enough
to successfully apply a particular algorithm, but most probably no vision-based
algorithm can be used if the visibility conditions are too adverse.

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 216–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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This paper presents a general methodology to estimate the quality of visual
data captured from a forward-looking moving camera (i.e. it assesses the cur-
rent visibility conditions). No models of roads (e.g. lane marks, dividers, etc.),
infrastructure (e.g. road signs, traffic lights, etc.) or vehicles are used so that the
method can be instrumental in any typical road conditions and scenarios. Using
the principles of image fragment matching (recently reported in a few papers)
we propose to measure the visibility quality by estimating how smoothly similar
fragments of the captured scenes can be tracked in sequences of video-frames.
Various categories of visibility quality can be defined. In general, the visibility
is considered acceptable when sufficiently large similar fragments of scenes can
be tracked over a number of subsequent frames. Thus, we can identify cases of
temporary visibility disruptions (e.g. caused by sudden flashes of illumination,
splashes of water, etc.) and cases of more permanent visibility disruptions (e.g.
periods of heavy precipitation, dense fog, etc.). Two numerical measures are pro-
posed to distinguish between the categories and to evaluate current conditions
within a category.

Section 2 of the paper briefly overviews state-of-the-art in keypoint-based
image matching techniques. In Section 3, we discuss how the image matching
techniques can be used to automatically assess the road visibility conditions.
Exemplary results obtained using a selection of the most challenging DAGM2011
Challenge videos are presented in Section 4. The concluding Section 5 focuses
on the future directions of the presented work.

2 Principles of Keypoint-Based Fragment Matching

Keypoint matching is considered one of the most universal tools for detecting
local correspondences between similar but not necessarily identical visual data.
Various keypoint detectors and descriptors have been proposed, but from large
numbers of published papers it can claimed that affine-invariant detectors pro-
posed in [7] are satisfactorily robust and stable for a wide range of applications.
Correspondingly, SIFT features, [8], and their derivatives are a well established
standard for keypoint descriptors. Therefore, this combination of detectors and
descriptors is used throughout this paper, although any other keypoint detectors
and descriptors can be alternatively used in all presented algorithms.

Similarities between images or their fragments can be established by detect-
ing sets of correspondingly matched keypoint pairs which satisfy the required
configuration constraints. Affine transformations are typically used to model
similarities between rigid objects (assuming additionally that perspective dis-
tortions are negligibly small). Currently, the method proposed in [9] (where
similar fragments are detected in a pair of images as local maxima in the his-
togram of affine transformations build between triangles of matched keypoints
from both images) seems to be the most general approach in detecting locally pla-
nar similar objects/fragments/scenes in images of diversified and unpredictable
contents. In this approach, similar (near-duplicate) fragments are represented by
convex hulls of keypoints contributing to such maxima. Fig. 1 provides examples
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Fig. 1. Detection of (almost) planar near-duplicate fragments in exemplary pairs of
images from diversified domains

(a) (b) (c) (d) (e) (f)

Fig. 2. Comparison between near-duplicates detected by the affine method (a, b, c) and
by the topological approach (d, e, f) in images containing deformable and non-planar
components

of near-duplicate detection in a wide range of domains (indoor scenes, face
authentication, landscapes, detection of small similar objects on unpredictable
backgrounds, etc.).

In case of deformable objects (and/or strong perspective deformations) the
affine-based matching can be too rigid so that we use alternative topological
constraints proposed in [10]. Using these constraints, groups of similar keypoint
pairs defining near-duplicates in the compared images are identified as connected
sub-graphs of the topological graph built over pairs of matched keypoints. Con-
vex hulls of such groups of keypoints are considered estimates of detected near-
duplicates. The extracted near-duplicates are generally larger than their affine
counterparts (by incorporating distorted and non-planar similar fragments of
matched images). Moreover, in case of similar objects on different backgrounds,
parts of the backgrounds can also be included (if they are topologically consis-
tent with some fragments of the other background). Exemplary results obtained
by the affine and topological approached are compared in Fig. 2.

3 From Image Matching to Visibility Conditions

From the perspective of traffic applications, good visibility can be informally
defined as conditions when objects and components of the observed moving
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world can be smoothly and unobtrusively tracked by standard visual means
(i.e. human eyes or forward-looking cameras). It can be argued, therefore, that
matches between contents of frames captured by a video-camera can be a feasible
model of the visibility quality.

Four aspects of image matching in the context of visibility assessment in traffic
applications should be highlighted:

– Keypoint-based image matching is possible only if keypoints are detected.
Since keypoints generally represent locations with the most prominent vari-
ations of image gradients, a small number (or lack) of keypoints usually
indicates foggy, rainy or otherwise difficult conditions limiting the visibility
of scene details. Even though very few keypoints can be found in highly uni-
form areas as well (e.g. very smooth roads, cloudless sky, etc.) such areas
seldom occupy the most important parts of typical views in traffic scenarios.

– Neighboring frames of video-streams are usually highly similar (i.e. many
consistently located keypoint matches can be found) even if the visibility is
poor (see Fig. 3). Thus, for a proper evaluation of visibility conditions, well
separated (e.g. by 5 or 10 frames) views should be compared. In such pairs
of frames, groups of consistently matched keypoints usually represent the
same objects while random visual artifacts formed by precipitation or bursts
of illumination are not matched.

– Geometric distortions between forward-view frames can be only partially
modeled by affine transformations (mostly distant parts of the view and/or
central fragments of the frames). Fragments located closer to the vehicles are
subject to strong perspective distortions (non-affine mappings). Moreover,
even within affine-related areas there could be fragments (e.g. other moving
vehicles) related by different affine mappings so that multiple near-duplicates
can be detected. Therefore, we should consider both the topological approach
(to identify as large near-duplicates as possible) and the affine technique (to
prospectively obtain more accurate estimates of the scene geometry).

– The critical visual data are usually located in the central sections of captured
frames (excluding their lower parts which typically show just the road surface
in front of the vehicle). Thus, near-duplicate fragments detected in these
areas should be considered more important than near-duplicates in other
parts of frames.

Based on the above observations, we propose a method of the quantitative visibil-
ity assessment (primarily for traffic applications, but suitable for other domains
as well). Since the method is based on near-duplicate detection, no models of the
environment or its components are needed. Assuming availability of a forward-
looking video-camera, the method incorporates the following operations:

1. Select the time increment T for frame matching. In the conducted exper-
iments on DAGM2011 Challenge videos, we use T = 10frames (0.4sec for
25Hz camera), i.e. frame FN is matched to frame FN+10. In practice, T can
be adaptively adjusted by taking into account the camera frame rate and
the current speed of the vehicle (see also Section 5).
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(a) (b)

Fig. 3. Near-duplicates detected in neighboring frames captured in good (a) and poor
(b) weather. In both cases, large near-duplicates are detected in spite of very different
visibility conditions.

2. In the video-stream, identify near-duplicates in pairs of frames (F0, FT ),
(FT , F2T ), (F2T , F3T ), etc. Topological near-duplicates are considered the
main result, but affine near-duplicates can be detected as well for special-
ized applications or further analysis of road conditions. Let DN+T

N be the
near-duplicate found in FN matched with FN+T , and DN

N+T be its counter-
part in FN+T . In order to reduce the noise of moving wipers (see Fig. 4)
and other similar effects, it is recommended to match at each step frames
(FN , FN+T ), (FN , FN+T+1), (FN+1, FN+T ) and (FN+1, FN+T+1) instead of
frames (FN , FN+T ) only, and to use the largest detected near-duplicates as
DN+T

N and DN
N+T results.

3. Define the region of interest R in the captured video. Typically, R occu-
pies the central part of frames; it can be adaptively shifted and/or resized
depending on the specific needs of applications.

4. For FN frame, calculate the current visibility quality V Q using

V Q(N) =

∥∥R ∩DN−T
N

∥∥
‖R‖ . (1)

Subsequently, the current visibility continuity V C is estimated using

V C(N) =

∥∥DN−2T
N−T ∩DN

N−T ∩R∥∥∥∥DN−2T
N−T ∩R∥∥ , (2)

unless
∥∥DN−2T

N−T ∩R∥∥ = 0 (V C(N) = 0 in such cases by definition). Note
that the V C(N) value is obtained from the near-duplicates found in FN−T

frame.

Informally, V Q indicates how much of the visual data from the previous frame
can be recognized within the region of interest of the current frame, while V C
estimates the overlaps between the matching similar fragments in a sequence of
three frames (i.e. tracking continuity). Fig. 5 illustrates how the above definitions
are applied to exemplary frames (frames FN−T and FN are shown). Visibility at
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Fig. 4. Two neighboring frames with and without the noise of a moving wiper

(a) FN−T with DN−2T
N−T (b) FN−T with DN

N−T (c) FN with DN−T
N

Fig. 5. Visibility quality estimates from exemplary frames FN−T and FN : V Q(N) =
93.05%, V C(N) = 86.96%. The size of interest region R is defined arbitrarily.

these images is good and both quality measures are correspondingly high. More
results are presented in the next section to confirm that V Q and V C values
consistently agree with the subjective evaluation of visibility quality.

4 Experimental Result

The proposed method has been tested using clips provided in DAGM2011 Chal-
lenge (mainly the most difficult examples, e.g. Snow, Rain and Light-sabre clips).
The goal is to verify whether the correlation between V Q and V C measures and
the subjective assessment of visibility actually exists. The following Figs 6 to
9 contain exemplary sequences of images separated (subject to the remark in
Step 2 of Section 3) by T = 10 frames. Shapes of the interest region R have
been defined arbitrarily, mainly based on aspect ratio of the videos. Each image
in the sequences contains two copies of FN frame with either DN−10

N (top) or
DN+10

N (bottom) near-duplicate shown (the terminal frames are obviously dis-
played only once). Thus, the values of V Q correspond to the coverage of ROI’s by
near-duplicate in the top half-images, while the overlaps between near-duplicates
from top and bottom half-images visually represent the values of V C.

5 Future Works and Conclusions

The paper presents only the feasibility study of the proposed method. Thus,
further researches are needed to fully implement the method and to integrate
it with the actual vehicular systems. In our opinion, three problems should be
investigated in particular.

– Real-time implementation. The paper does not discuss details of the
real-time implementation although this is obviously the ultimate objective. A
similar real-time webcam-based application has been reported in [11]. In this
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Fig. 6. Visibility changes during Rain video-clip. Initially, the visibility is acceptable,
then it deteriorates and eventually improves again. The sequences of V Q and V C
measures are: V Q = {65.3%, 54.9%, 66.5%, 43.2%, 59.5%, 50.1%, 59.7%, 63.7%, 25.4%,
14.3%, 0%, 8.3%, 22.6%, 0%, 0%, 36.0%, 40.3%, 2.6%, 7.4%, 12.4%, 11.6%, 46.2%,
54.6%} and V C = {57.2%, 87.4%, 59.6%, 84.2%, 50.8%, 73.5%, 72.7%, 35.1%, 50.7%,
0%, 0%, 72.9%, 0%, 0%, 0%, 53.2%, 5.7%, 80.7%, 84.1%, 72.1%, 57.5%, 91.7%}.

application, an input frame can be memorized as the reference image, and its
content is subsequently tracked (using the topological approach) in the fol-
lowing frames. However, we cannot apply the same methodology because of
certain simplifying assumptions, which render it unsuitable for our problem
(e.g. real-time implemented SURF detector and descriptor are used; they are
computationally more efficient, but reported inferior to SIFT). Nevertheless,
we believe that by reducing the effective frame-capturing rate (frames of in-
terests are separated by intervals of T frames) more computational resources
can be released to apply in real time more advanced algorithms of keypoint
detection, description and matching.
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Fig. 7. A period of very poor visibility in Light-sabre video-clip. V Q = {34.2%, 49.3%,
0%, 0%, 5.4%, 0%} and V C = {51.0%, 0%, 0%, 0%, 0%, 0%}.

Fig. 8. A period of relatively good visibility in Light-sabre video-clip. V Q = {32.6%,
49.6%, 78.6%, 31.5%, 68.4%, 51.9%} and V C = {85.5%, 98.4%, 33.4%, 99.5%, 56.9%,
99.8%}.

– Statistical analysis. Currently, only a limited number of videos have been
used in the experiments. More data are needed to, first, conduct a thorough
analysis of the method’s performances and, secondly, to establish statisti-
cal relations between the subjective impression of visibility and numerical
characteristics (e.g. thresholds, fluctuations, etc.) of V Q and V C measures.

– Visibility-based speed control. It has been shown in Fig. 3 that even
in poor visibility conditions large near-duplicates are found if the scenes
are almost identical (e.g. neighboring frames or frames captured with longer
intervals from a slow-moving vehicle). Thus, the values of V Q and V C can be
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Fig. 9. Good visibility within the central part of the view only (Snow video-clip).
Although the V Q values are low (i.e. V Q = {8.5%, 6.5%, 6.8%, 7.5%, 11.8%, 11.3%})
the continuity is very high (V C = {80.9%, 93.8%, 97.7%, 79.3%, 53.1%, 95.6%}).

Fig. 10. V Q and V C improvement by reducing the inter-frame interval T (which em-
ulates the vehicle speed reduction)

prospectively improved by speed reduction. If the “safe visibility” threshold
values can be established for V Q and V C (as suggested in the previous para-
graph) the corresponding speed-control mechanism could be proposed. When
unsafe visibility conditions are numerically estimated, the vehicle’s velocity
should be reduced until the values of V Q and V C exceed the thresholds (us-
ing the same inter-frame interval T , of course). Since alternative video-clips
of the same roads in the same conditions captured from a slower vehicle are
not available, we have emulated lower speeds by using shorter intervals T .
Fig. 10 shows the results for one of the most difficult sections in Fig. 6 (i.e.
the end of Row 2) by using T = 2. The visibility measures clearly improve
(although, objectively, the conditions remain the same). These numerical
improvements are, in our opinion, justified. They can be interpreted as in-
dicators that at lower speeds the human vision has to handle less visual
changes, i.e. it can do it more efficiently.

Altogether, it can be concluded that the paper (although presenting only the
preliminary results of the proposed method) suggests a new approach to the
vision-based solutions for traffic applications and, thus, opens novel perspectives
in such applications.
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Abstract. High Dynamic Range Images provide a more detailed infor-
mation and their use in Computer Vision tasks is therefore desirable.
However, the illumination distribution over the image often makes this
kind of images difficult to use with common vision algorithms. In par-
ticular, the highlights and shadow parts in a HDR image are difficult to
analyze in a standard way. In this paper, we propose a method to solve
this problem by applying a preliminary step where we precisely compute
the illumination distribution in the image. Having access to the illumina-
tion distribution allows us to subtract the highlights and shadows from
the original image, yielding a material color image. This material color
image can be used as input for standard computer vision algorithms, like
the SIFT point matching algorithm and its variants.

1 Introduction

While High Dynamic Range Images (HDRI) representing the real word’s range
of luminance are commonly used in the Computer Graphics community, their use
in machine vision tasks (e.g. Registration and Identification) is not widespread
in the Computer Vision community. HDRI can measure a high radiance and
illumination range for the real world scenes, thus providing more information
than the low dynamic range images (LDRI). Many applications, such as image-
based lighting [6], and BRDF measurement [14] require access to the whole
dynamic range of a scene. In this paper, we present a method to use HDR images
for computer vision tasks by estimating the illumination distribution first and
applying a suitable tone-mapping method for computer analysis. We apply this
concept to the matching problem, yielding a SIFT [16] method for the HDRI.

Illumination distribution estimation is an important task for the computer
vision. The appearance of objects depends greatly on illumination conditions.
Since substantial image variation can result from shading, shadows and high-
lights, there has been much research on dealing with such lighting effects for a
LDRI [3] [15] [13], but not much for HDRI [23]. Because of the significant effect
of lighting, it is often helpful to know the lighting conditions of a scene so that
an image can be more accurately analyzed. Recovery of illumination conditions
is also important for computer graphics applications, such as inserting correctly
shaded virtual objects into augmented reality systems [22] and lighting reproduc-
tion for compositing actors into video footage [7]. While these graphics methods

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 226–235, 2011.
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introduce special devices into a scene to capture the lighting distribution, es-
timation of illumination in image has proven to be a challenge. In this paper,
we do not only estimate light source position (like e.g. [23]), but we provide the
illumination distribution as a Gaussian Mixture Model (GMM) over the image
for each different exposure layer in the HDR image.

The development of techniques for HDRI capture and synthesis have made
tone-mapping an important problem in computer graphics [9]. The fundamental
problem is how to map the large range of intensities found in an HDRI into the
limited range generated by a conventional display device. There are three main
taxonomies of tone-mapping operators. A primary distinction is whether an op-
erator is global or local. Global operators apply a single mapping function to all
pixels of the image, whereas local operators modify the mapping depending on
the characteristics of different parts of the image. A second important distinc-
tion is between empirical and perceptually based operators. A third distinction
is between static and dynamic operators. In this paper we suggest to use a new
tone-mapping method, more suited to computer vision tasks, and to get a “ma-
terial color” of the scene or the object without the illumination interference.In
all feature extraction methods, the invariance with respect to imaging conditions
represents the biggest challenge. More specifically, the local extracted features
should be invariant with respect to geometrical variations, such as translation,
rotation, scaling, and affine transformations. Furthermore, these features should
be invariant with respect to photometric variations such as illumination direc-
tion, intensity, colors, and highlights. SIFT [16] [17] has been proven to be
the most robust among the local invariant feature descriptors with respect to
different geometrical changes [20]. However, due to the color constancy prob-
lem, a lot of geometrical invariant approaches avoid dealing with illumination
problem. Therefore, illumination invariance is a crucial problem which has to be
solved for local features. While some researchers already focused on the color
constancy problem [2] [19], some attempts to make use of the color information
inside the SIFT descriptors have been proposed [5] [4] [10] [1]. In this paper, we
solve the illumination invariance problem for the HDR images, using result of
our illumination distribution estimation.

The paper provides three main contributions to the HDR image processing
research. First, we show that it is possible to estimate the illumination distribu-
tions in each exposure layer of HDRI with a Gaussian Mixture Model. Second,
we propose a new tone-mapping algorithm which is more suitable for the com-
puter analyzing through material color recovery. Third, as an application, we
show that the SIFT algorithm using the tone-mapped images performs better in
terms of robustness and number of matches.

The remainder of the paper is organized as follows: We first present illumina-
tion distribution with GMM in Sect. 2. In Sect. 3, we explain how to estimate the
GMM parameters in HDRI. We show how to recover the shadow and highlight
parts position in the image from the illumination distribution result in Sect. 4.
Finally, the SIFT method for HDRI and the results is presented in Sect. 5. We
conclude in Sect. 6 with directions for future work.
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2 Illumination Distribution with GMM

We can assume that the illumination distribution in the 2D image is a Gaussian
mixture model (GMM) for several light sources. For a single light source, we
assume that the illumination distribution is a Gaussian model as Eq. (1)

e(x) = p(x| θ) =
1√
2πσ

exp

(
− (x − μ)T (x − μ)

2σ2

)
(1)

In the Eq. (1), x is the 2d image position, μ is the light source position, σ
stands for the light intensity and the distribution property, and we assume that
σ is same for the two direction, but different for each exposure layer in the multi-
exposure sequence of the HDRI. There are 11 exposure layers created from one
light source HDRI, as shown in Fig. 1a, the exposure times varied by powers
of two between f-stops from 1

32 to 32. Fig. 1b shows the Gaussian illumination
distribution results for each exposure layer with the method in Sect. 3, the light
source position μ is not changed, the variance σ increases from layer to layer.

Then we can assume that the GMM model for more than one light sources,
as the Eq. (2)

e(x) =
K∑

k=1

ρk∗p(x| θk) with x| θk ∝ N(μk, σk) (2)

In the Eq. (2), ρk is the mixture weight for the light source k, we assume that ρk

are same for the different exposure layer to the same light source. Fig. 1c shows
one exposure layer created from a two light sources HDRI, Fig. 1d expresses the
Gaussian distribution result as the method in Sect. 3.

Our hypothesis is that illumination can be estimated as a GMM for different
exposure layers.

3 Illumination Distribution in HDRI

In this section we show how to estimate the GMM parameters for the illu-
mination distribution in each exposure layer. The input of our algorithm is a
HDRI. We first create a multi-exposure durations sequence with normal global
tone-mapping method. Equivalently, the input can be a number of digitized pho-
tographs taken from the same point with different known exposure durations tj .
Using diffuse body reflection Lambertian model [11]:

Ei = e(i)R∞ (λ, i) (3)

In the Eq. (3), where i denotes the position at the imaging plane and λ the
wavelength. Further, E(λ, i) denotes the illumination spectrum, the material
reflectivity is denoted by R∞ (λ, i), for this part, it’s the property of the material,
we call it “material color”, which is used in the feature extraction in Sect. 5.
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(a) (b) (c) (d)

Fig. 1. (a) A multi-exposure sequence of HDRI with one light source. (b) Gaussian
distribution results for (a); (c) One HDRI exposure layer with two light sources. (d)
Gaussian distribution results for (c).

For different exposure time layer j, as [8], we can get:

Mij = e(i)R∞ (λ, i) tj (4)

As presented in Sect. 2, we can estimate the e(i) part as GMM for the illumi-
nation distribution. Taking the GMM e(i) to the Eq. (4), the final illumination
distribution function for each pixel in each layer:

Mij =

(
K∑

k=1

ρk∗p( i| θk,j)

)
R∞ (λ, i, j) tj (5)

Finally, the “material color” R∞ (λ, i, j) part for each pixel can be expressed:

R∞ (λ, i, j) =Mij/

(
K∑

k=1

ρk∗p( i| θk,j)tj

)
(6)

For each exposure layer j, we can assume that the “material color”R∞ (λ, i, j)
part is the same. We define the energy function:

E (ρk, θk,j) =
L−1∑
j=1

N∑
i=1

⎛⎝ Mij+1
K∑

k=1
ρkp( i|θk,j+1)tj+1

− Mij

K∑
k=1

ρkp( i|θk,j)tj

⎞⎠2

(7)

In Eq. (7), L stands for the number of different exposure duration layers, N is
the number of pixels, and K is the number of the light source for each layer.
We assume that the light intensity σ in θ are different, but the light position μ
in θ and the light intensity weight ρ are same for each layer. We use iterative
Expectation Maximization (EM) procedure to find a solution to minimize the

energy function Eq. (7). Because
K∑

k=1

ρkp( i| θk,j)tj �= 0 for each pixel in every

layer, then energy function turns to:

E (ρk, θk,j) =
K∑

k=1

L−1∑
j=1

N∑
i=1

ρk (p( i| θk,j)tjMij+1 − p( i| θk,j+1)tj+1Mij)
2 (8)
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With the EM algorithm, we can get the Q function:

Q (ρ, θ) =
K∑

k=1

L−1∑
j=1

N∑
i=1

ρold
k

(ln(p( i| θk,j)tjMij+1) − ln(p( i| θk,j+1)tj+1Mij)) (9)

ρold
k

=

L−1∑
j=1

N∑
i=1

(ln(p( i|θk,j)tjMij+1)−ln(p( i|θk,j+1)tj+1Mij))

K∑
k=1

L−1∑
j=1

N∑
i=1

(ln(p( i|θk,j)tjMij+1)−ln(p( i|θk,j+1)tj+1Mij))

(10)

We set the initial value ρold
k

= 1. During the minimization-step, we can esti-
mate σk,j to maximum Q function. Then during expectation-step, we estimate
the new ρ

k
for each alternative light source position. If the weight ρk < Tlight

(Tlight is a threshold defined by user), we consider this pixel is not the light
source position, and assign 0 to this weight ρk directly. For the experiments, we
set Tlight = 4.0.

The above EM procedure converges to a local minimum of the Eq. (7). Please
note that the variances σk,j are continuously recomputed, they’re increasing
from low exposure layer to high exposure layer, which is similar to an annealing
procedure in which support of the Gaussians is reduced when assignment 0 to
this weight ρk.

The first result are shown in Fig. 1b for one light source and Fig. 1d for two
light sources. For these two experiments, the lights and the scene are controled
strictly, the exposure times varied by powers of two between f-stops from 1

32 to
32. K is the alternative light sources, considering as the whole image size 1...N .
We can see the illumination changed for one light source in Fig. 1b, and the
illumination distribution for two light source in Fig. 1d.

In order to make the EM convergence fast, the initial light area can be calcu-
lated firstly, then the alternative light source number K in the energy function
becomes smaller than the whole image size. For the initial light area detection
for HDRI, there are known methods to solve this problem [23] [12]. However, for
our case, we need not to estimate the light source accurately. We can get the
initial light source from the low exposure time layer with a threshold. In the low
exposure time layer, the light densities are low, and if the pixel value is bigger
than a threshold, we can consider it as the initial alternative light position. When
the energy function is minimized with EM algorithm step by step, an accurate
light source position will be determined by the weight parameters ρk.

We test our approach for natural environments and complex light conditions
in two scenes: Church and Studio.

For the Church scene, a number of digitized photographs are taken from the
same point with different known exposure durations, there are 16 photographs
of a church taken at 1-stop increments from 1/1000 sec to 30 sec. Fig. 4 shows 5
samples from the sequence, the exposure times are 0.0146, 0.1172, 0.4688, 1.8750,
30.0 sec. The sun is directly behind the rightmost stained glass window, making
it especially bright. The initial light source is given by exposure 0.1172 layer, as
Fig. 2a. The final illumination distribution for these layers results are shown in
Fig. 5. The algorithm can detect three main light sources, window on the top of
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(a) (b) (c) (d)

Fig. 2. (a)Initial light sources for EM procedure. (b) Highlight and (c) Shadow area
for church of exposure time 1.8750 sec layer. (d)“Material color”.

the church and three windows in the middle of the church. As the exposure time
increase, the illumination distribution is changed, but the light source position
is not changed. The light intensity is increasing layer to layer.

For the Studio scene, we can created 11 exposure layers by normal global tone-
mapping method, the exposure time increments from −11EV to 2EV . As Fig. 6
shows 5 samples from the sequence, the exposure times are −10, −8, −1.5, 0, 1.5
EV. The sun is outside the glass window, making it especially bright. The initial
light source is given by exposure −10EV layer, as Fig. 3a. The final illumination
distribution for these layers results are shown in Fig. 7. The algorithm can detect
the light sources from outside of the window and the lamp inside the room.

From the experiments, our algorithm not only can detect the point light
sources as the Fig. 1b and Fig. 1d, but also can detect the plane light source as
the natural case, as Fig. 5 and Fig. 7. Once we have computed the illumination
distribution information, we can compute highlight parts and shadow parts in
the image, as described in the Sect. 4.

4 Shadow and Highlight Parts in HDRI

In this section, the shadow, highlight parts and the “material color” images are
calculated by the illumination distribution results in Sect. 3. In Eq. (4), e(i) is
the light sources distribution, in the real environment image, we can assume that
there is another light source (ambient light) that distributes evenly in the 2D
image. For our experiments, the ambient light A is constant, A = 0.001. We can
then derive the “material color” for each layer:

R∞ (λ, i, j) =Mij/ ((e(i) +A) tj) (11)

For each layer, we define two thresholds Tup and Tbelow, If the “material
color” R∞ (λ, i, j) > Tup, consider this area as the highlight part for this layer,
the highlight part are not included the light source positions. Similarly, if the
“material color” R∞ (λ, i, j) < Tbelow, we consider this area as the shadow part
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(a) (b) (c) (d)

Fig. 3. (a)Initial light sources for EM procedure. (b) Highlight and (c) Shadow area
for Studio of exposure 0 EV layer. (d)“Material color”.

Fig. 4. Church, exposure times sequence 0.0146, 0.1172, 0.4688, 1.8750, 30.0 sec

Fig. 5. Church, illumination distribution results for the image layers above

Fig. 6. Studio, exposure times sequence −10, −8, −1.5, 0, 1.5 EV

Fig. 7. Studio, illumination distribution results for the image layers above
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for this layer. For the experiments, we set Tup = 240 and Tbelow = 20. The
highlight parts and shadow parts for the church exposure time 1.8750 sec layer
are shown in Fig. 2b 2c; The result for the studio exposure 0EV is shown in
Fig. 3b 3c.

Furthermore, the “material color” can be determined by R∞ (λ, i, j) in multi-
exposure layers j = 1...L:

R∞ (λ, i) =

⎛⎝ L∑
j=1

w(j)R∞ (λ, i, j)

⎞⎠ / L∑
j=1

w(j) (12)

Because the information in the middle exposure time layers are more reliable,
the weight parameters w(j) are assigned as 1-D Gaussian distribution, w(j) are
small for the lower and higher exposure time, and large for the middle exposure
time in the sequence. We can consider this step as a tone-mapping procedure. It
is worth noting that, different from the usual tone-mapping methods that try to
produce a pleasant visual effect, our tone mapped results are more suitable for
the computer analysis. We test the image feature extraction and corresponding
problem with SIFT with our tone-mapping algorithm in Sect. 5. The final “ma-
terial color” image results are shown in Fig. 2d of church image and Fig. 3d of
studio image. There is no highlight area in the final image.

5 Point Matching in HDR Images and Results

In this section we will calculate the corresponding points with SIFT method
for two HDRI for a same scene and a same object. As Sect. 4, the “material
color” image can be calculated from one HDRI, without highlight area. Then
the corresponding invariant features can be detected for two HDRI. We use
the PC-SIFT method [5], which is motivated by perception-based color space,
instead of using the gray value as the input image, the PC-SIFT approach builds
the SIFT descriptors in 3 channel color space, is more robust than the normal
SIFT with respect to color and photometrical variations.

The main stages using local invariant features are interest points detection,
descriptor building and descriptor matching. Interest points should be selected
so that they achieve the maximum possible repeatability under different photo-
metric and geometric imaging conditions. As discussed in Sect. 3, our SIFT is
based on “material color” image, which is illumination invariance. In the same
time, the extrema in Laplacian pyramid, which is approximated by difference-
of-Gaussian for the input image in different scales, has been proven to be the
most robust interest points detector to geometrical changes [20] [4].

The experiment results are shown below. First, we test an object feature with
two different views, for each view, there are 12 exposure duration from 1

60 sec to
0.4sec. In Fig. 8a shows the 1

8 sec layer and the PC-SIFT result. The “material
color” and the PC-SIFT results are shown in Fig. 8b, from which we can notice
there is no highlight and shadow part on the object. Meanwhile the SIFT can
find the corresponding points without the light interference.
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Fig. 8. (a) One exposure time 1/8 sec and (b) 0.8EV layer of 12 multi-exposure and
PC-SIFT result, (b)(d) The “material color” and PC-SIFT result. (e)Total matches
and correct matches of different tone-mapping methods.

Second, we test a scene with two different views HDRI, 14 exposure layers are
created by normal tone-mapping method from −3EV to 9EV, In Fig. 8c, shows
the 0.8EV layer and the PC-SIFT result. The “material color” and the PC-SIFT
results are shown in Fig. 8d, there is not enough information to clear the shadow
part, because the shadow parts exist in each exposure layer. For the SIFT result,
our algorithm can detect the corresponding without the light source factor, find-
ing the correct corresponding near the window part. Further, the shadow part
can be extracted, as Fig. 2c shows, if we do not like the corresponding points in
the shadow area, they can be cleaned away.

Finally, we compare our method (red line) to the other tone-mapping al-
gorithm, global tone-mapping filter Reinhard [21] (blue line), local filter Man-
tiuk [18] (green line) and one exposure LDR image layer (black line) in Fig. 8e,
the dotted lines show the correct matches, and the solid lines show the total
matches for the 7 image paris of different scenes. As the result show, our method
can detect more matches and find more correct matches.

6 Conclusions

In this paper, we presented a robust point matching approach for HDR images.
Our method is based on a robust estimation of the illumination distribution in
the 2D image using a Gaussian Mixture Model. The parameters of the GMM
are recovered directly from the HDRI with EM-algorithm. With the estimated
illumination distribution in the 2D image, we can compute the highlight parts,
shadow parts and “material color” image, which is suitable for many computer
vision tasks. We show that we can successfully apply this method to the point
matching problem, using SIFT as underlying method. Our results show that a
better matching is achieved in terms of robustness and number of matches.

Acknowledgment. This work has been partially funded by the project CAP-
TURE (01IW09001).
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Abstract. Vision-based motion perception builds primarily on the con-
cept of optical flow. Modern optical flow approaches suffer from several
shortcomings, especially in real, non-ideal scenarios such as traffic scenes.
Non-constant illumination conditions in consecutive frames of the input
image sequence are among these shortcomings. We propose and eval-
uate the application of intrinsically illumination-invariant census trans-
forms within a dense state-of-the-art variational optical flow computation
scheme. Our technique improves robustness against illumination changes,
caused either by altering physical illumination or camera parameter ad-
justments. Since census signatures can be implemented quite efficiently,
the resulting optical flow fields can be computed in real-time.

1 Introduction

1.1 Dense Optical Flow in Real Scenes

Reliable motion estimation in real-time is a key task for a variety of applica-
tions, e.g., in robotics or automotive driver assistance. While many new variants
of dense variational optical flow algorithms have been proposed in recent years,
they have focused mainly on accuracy under ideal conditions—which is bench-
marked on the Middlebury optical flow data set [1]—rather than on robustness
in practical applications.

Algorithms for optical flow estimation in real scenes under non-ideal condi-
tions still suffer from the following issues in particular: non-constant illumination
conditions in consecutive frames, large displacements (some improvements have
been made here in recent years, e.g., [2]), weakly textured areas, and model viola-
tions such as transparency or reflections. In this work, we focus on the first topic
and provide a new optical flow technique to cope with non-constant illumination
conditions, caused either by physical illumination changes (including shadows)
or by unanticipated and unknown adjustments of the camera parameters (e.g.
the exposure time).

1.2 Related Work

Since most variation-based optical flow algorithms exploit the brightness con-
stancy constraint in consecutive frames, they are not stable under changing
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illumination conditions. During the last three decades, since Horn and Schunck
[8] introduced their dense optical flow model, several approaches have been pro-
posed to overcome this illumination sensitivity.

One might first think of a simple global mean-and-variance equalization to
overcome the illumination sensibility. Although this can help remove global illu-
mination offsets and can compensate the gain of a global transition function, the
approach has some drawbacks. First, the device-dependent transition functions
which map the incident light energy at the sensor elements to electronic signals
are often non-linear. Second, changes of the mean intensity of the image can
also result from real changes of the scene rather than the illumination (think of
a big dark truck moving into the scene in front of the observer) and a mean-
and-variance equalization would lead to incorrect results. Last, even a more
generalized histogram adaptation approach could not cope with local changes of
the physical illumination of a scene.

In [14], based on the improved model from [15], the authors propose the pre-
processing of the original images with an ROF[10] denoising scheme (computed
according to [4]) and take the difference to the original images as the new in-
put. This structure/texture decomposition leads to slightly better results than
the application of a simple Gauss-based high-pass band filter, which also yields
some illumination-change resistance and is computationally more efficient. The
shortcoming of an ROF denoising based high-pass filtering of the input images
is two-fold: even when a pyramid scheme is used, the structure-texture decom-
position leads to problems with larger displacements and an ROF denoising is
computationally still quite expensive.

A qualitatively different approach is proposed in [5], where an additional scalar
function is estimated together with the optical flow field in a joint optimization
process. This function is then expected to cover all illumination inconsistencies.
Since this function must be very smooth on the image domain, good results
require many iterations. This eliminated the real-time capability in our imple-
mentation. An interesting and completely different approach for color images
was presented in [9], where the authors use the constancy of a set of photomet-
ric invariances from color space in a variational scheme. The use of an advanced
data term for illumination robustness in variational optical flow is mentioned
in [12], where the normalized cross correlation is used as residual and leads to
robustness against multiplicative illumination changes.

2 Dense Motion Estimation

Given two image functions I{1,2} : Ω → R+ on the image domain Ω ⊂ R2,
the optical flow is defined as the apparent motion of the pixels from I1 to I2.
Neglecting transparency or reflections, the projected motion of the objects of
the real world onto the two-dimensional image plane is an element of the set of
possible optical flow fields (ambiguities in the optical flow arise when there are
textureless areas in the image sequence).
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A reasonable optical flow field u : Ω → R2 is received by solving

arg min
u

{λED [u] + ES [u]} , (1)

with a m.a.p. expectation maximization in mind. The data term

ED [u] =
∫

Ω

Ψ (ρ (x,u (x))) dx (2)

consists of a norm Ψ : R → R+ and the residual function ρ : Ω × R2 → R. The
exact form of ρ can vary and determines the behavior under illumination changes
as we will show in the next section. The regularizing smoothness term ES helps
to provide the most probable solution for Eq. (1), given our model conception
in the exact form of ES. Since, per definition, the regularizing smoothness term
is independent of the input data I{1,2}, it is not in the remainder of this paper.

2.1 A General Numerical Solution Scheme

Following the algorithm proposed in [15], we use the coupling term EC [u,v] =
(1/2θ) · ∫Ω (u (x) − v (x))2 dx with the coupling constant θ to separate the op-
tical flow functional Eq. (1) into two parts, which are then solved iteratively.
Given the result of the previous computation step in v, the first part

argmin
u

{λED [u] + EC [u,v]} (3)

contains the data term and can be solved pointwise. Having the result of (3) in
u, the second part

argmin
v

{EC [u,v] + ES [v]} (4)

contains the regularization and is solved depending on the exact form of ES.
The iterative solution of Eqs. (3) and (4) is performed until the desired accuracy
is achieved or a fixed number of iterations have been executed. As proposed in
[14], this iterative scheme is combined with median filtering for robustness and
a pyramid scheme to cope with larger displacements.

2.1.1 Solving the Data Part for Arbitrary Residuals. Taking a closer
look at the solution of the data part Eq. (3) allows describing a general straight-
forward gradient-descent solution scheme. This can be applied later for special
forms of ρ and Ψ , especially for illumination-robust ones. Linearizing the residual
ρ around the start value v in the second argument yields

ρ (x,u) ≈ ρ̃ (x,u) = ρ (x,v) + ∇�ρ (x,v) · (u − v) . (5)

With the notation (u1, u2)
� ≡ u (x) and solving for i ∈ {1, 2}

0 =
∂

∂ui
{λED [u] (x) + EC [u,v] (x)}
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establishes the gradient descent step. Noting u ≡ u (x) ,v ≡ v (x) , (ρ1, ρ2)
� ≡

∇ρ (x,v) leads to

0 = λf · ρ̃ (x,u) · ρi +
1
θ

(ui − vi) (6)

with the factor f depending on the exact form of the norm Ψ and computed by
f ≡ Ψ ′ (ρ (x,v)) /ρ (x,v). Since Eq. (6) is linear in ui, it is possible to formulate
a linear equation system A · u = b with

A =
(

1
θ + λfρ21 λfρ1ρ2
λfρ1ρ2

1
θ + λfρ22

)
and

b =
1
θ
v − λf · ∇ρ (x,v) · R

with R = ρ (x,v) − ∇�ρ (x,v) · v and solve it with respect to u by a standard
algorithm.

2.1.2 Special Data Terms in the Literature. In the classical approach by
Horn and Schunck [8], we have ρ (x,u) = I2 (x + u) − I1 (x), the well-known
brightness constancy constraint ρ̃ (x,u) = ∇I (x) · u + It (x) (with It (x) =
I2 (x) − I1 (x)), Ψ (ρ) = ρ2 and f = 2. Approximating Ψ (ρ) = |ρ| with Ψ ≈√
ρ2 + ε, ε � 1 in the outlier-robust TV-L1 model by Zach and Pock [15] leads

to f = 1/Ψ (ρ). Many other models known from literature (e.g. the photometric
invariant model in [9] or the dense Lucas-Kanade approach in [3]) can also be
solved by this scheme. The following, we will use Ψ =

√
ρ2 + ε, ε � 1 for our

own approach.

3 Illumination-Invariant Motion Estimation

3.1 Illumination Robustness with Local Compensation of the Mean

The numerical framework sketched in the previous section used the residual
function ρ which in [8] or [15] corresponds to the grey-value constancy. Using
more sophisticated residuals, such as

ρ (x,u) =
n∑

i=1

∣∣I2 (x + yi + u) − I2 (x + u) − I1 (x + yi) + I1 (x)
∣∣d (7)

with I{1,2} (x) = 1/n ·∑n
i=1 I{1,2} (x + yi) as the mean grey value and the fixed

list of points (y1,y2, . . . ,yn)� ∈ Rn×2, n ∈ N around the origin, is a first step
towards illumination robustness. The pointwise compensation by the local mean
leads to an invariance of the results against local offsets of the illumination. In
some cases, this is already sufficient to establish an effective protection against
erroneous flow vectors due to the change of illumination conditions. The applica-
tion of the residual in Eq. (7) is similar to a high pass filtering, which is performed
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in [14] by a structure-texture decomposition based on the ROF model. The spe-
cial cases are the zero mean sum of absolute differences (ZSAD) for d = 1 and
the zero mean squared sum of differences (ZSSD) for d = 2, which can both be
easily implemented using the numerical scheme presented in the previous section
and which are evaluated in the experimental part (Section 4).

3.2 Illumination Model

Before presenting more illumination-robust variants of the residual ρ, first a
closer look at the illumination process. The image intensity field I : Ω → R+

of our input images at a point in time is the result of this process. It can be
modeled by

I (x) = T (J (c (x) ,x)) (8)

with the intrinsic, physical color field c : Ω → R+, the physical illumination
(which here includes all atmospheric effects, noise etc.) J : R+ × Ω → R+ and
the device-specific generally time-dependent and unknown but always monotonic
transition function T : R+ → R+. The physical illumination J varies slowly in
the space domain (apart from shadow and object edges) and it is monotonic
in its first argument for a fixed point x. This leads to the conclusion that data
terms of the optical flow functional not relying on the exact grey-values or ratios,
but rather on their ordering, lead to the most robust results under non-constant
illumination conditions. In other words, though T and J are widely arbitrary
and time-dependent, apart from shadow and object edges, their monotonicity
can be relied upon.

3.3 Illumination-Invariant Census Based Residuals

How can we profit from the monotonicity of the functions T and J from Eq. (8)
which constitute the illumination process? It is necessary to look at the ordering
of the grey-values rather than their exact values, differences or ratios. Exactly
this is provided by census transforms. Census signatures for sparse optical flow
computation have already been used in [11], where they were used to efficiently
compute large displacements.

The census transform maps to every pixel x of the image plane Ω one signature
vector, st : Ω → {0, 1}n

, n ∈ N, t ∈ {1, 2}, which is defined as

st,i (x) = [It (x + yi) − It (x) + ε ≥ 0] , (9)

with i ∈ [1, n] given the fixed list of points (y1,y2, . . . ,yn)� ∈ Rn×2 near the ori-
gin and a small ε ∈ R. The brackets [X ] in Eq. (9) indicate whether the statement
X is true ([X ] = 1, the pixel at x + yi is clearly brighter than the pixel at x) or
false ([X ] = 0, the pixel at x+yi is darker than or similar to the pixel at x). Our
implementation uses points in the direct neighborhood of the origin. Depending
on the chosen patch size r, the first r rectangles of pixels around the origin are
considered, so that n = (2r + 1)2 − 1. Our evaluation used a 3 × 3 (n = 8) and
a 5 × 5 (n = 24) patch size variant of the census transform.



Illumination-Robust Dense Optical Flow Using Census Signatures 241

In the classical case, the residual ρ is based on the grey value difference be-
tween two corresponding points of the consecutive images. We will now introduce
a residual function which is based on the similarity of the census signatures of
the two corresponding points. We propose to use the Hamming distance

ρ (x,u) =
n∑

i=1

[s2,i (x + u) �= s1,i (x)] (10)

which is zero if and only if s1 (x) = s2 (x + u) and which is n if every compo-
nent of s1 is different to corresponding component of s2. The Hamming distance
based on the signature vectors has the nice property that it is inherently invari-
ant under arbitrary changes of the device specific transition function T (since T
is monotonic), and it is also invariant under most changes of the physical illumi-
nation J (since J is piecewise slowly varying on the space domain), if the point
does not lie on an illumination edge; the illumination process does not affect the
value of the Hamming distance ρ (x,u).

The best choice for the parameter ε in Eq. (9) depends on the noise level of
the image. Note that the residual function ρ has to be smooth in the second ar-
gument (the displacement u) to be used in the iterative gradient descent scheme
described in Sec. 2.1. While this turns out to be also the case for the Hamming
distance in Eq. (10) (we use linear interpolation of the grey values at non-integer
image positions for s2), the smoothness of ρ is further promoted by the small
offset ε when dealing with image noise. A ternary variant, where equality be-
tween the values It (x + yi) and It (x) is treated as a third case, provides more
information and can also be applied.

4 Results

4.1 Evaluation of a Synthetic Scene from the Middlebury Data Set

Testing the illumination-robustness on the Grove2 sequence from the Middlebury
optical flow data set [1], for which the ground-truth optical flow uGT : Ω →
R2 is available, provides a reproducible quantitative evaluation of the method
proposed here. Considering the optical flow field between the frames 10 and
11 with the corresponding images I10 and I11 and varying the γ value of I11
from γ = 1 to γ = 4 results in the modified images I11,γ with I11,γ (x) =
255 · (I11 (x) /255)γ . For a variety of optical flow methods, the average endpoint
error of the flow field, 1/ |Ω| · ∫Ω |u (x) − uGT (x)| dx, is computed for every γ
in the range [1, 4].

Though it can be seen in the table of Fig. 1 that the census-based approaches
are slightly outperformed by the grey-value-based TV-L1 approach from [13]
for γ = 1 (no illumination change), the graph on the left shows that when in-
creasing the γ value, one approach after another—apart from the census based
methods—becomes unstable and fails to provide correct flow results. The illumi-
nation robustness of the census based methods is only affected by discretization
effects of the γ correction.
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AEPE in px γ = 1 γ = 2 γ = 4

TV-L1 0.150 89.6 106
TV-L1+S/T 0.165 2.69 6.46

Illumination term 0.175 0.236 13.4
ZSAD 0.193 0.246 0.780

3 × 3 Census 0.191 0.189 0.231
5 × 5 Census 0.179 0.180 0.227

Fig. 1. Evaluation of the Grove2 sequence from the Middlebury optical flow dataset
from frame 10 to 11. Frame 10 is γ-corrected with 1 ≤ γ ≤ 4. Left: Average end-
point error, blue: TV-L1 optical flow without structure/texture decomposition; green:
TV-L1 with structure/texture decomposition, both from [14]; red: optical flow with
joint illumination term estimation [5]; cyan: ZSAD based optical flow; magenta: 3 × 3
census based optical flow; yellow: 5 × 5 census based optical flow. Right: Exemplary
quantitative results.

4.2 Real Scenes

4.2.1 Example: Buggy Scene. Two different real image sequences are qual-
itatively explored using the proposed methods. In the first example, we again
perform an artificial gamma adjustment on two input images of a city scene
(first image γ = 0.9, second γ = 0.8) and compare the flow results of the several
algorithms. The results in Fig. 2 are now descussed in detail.

In the second row of Fig. 2, the result of the TV-L1 approach from [14], applied
on the two differently γ-adjusted input images (top row), is shown. Clearly, the
illumination difference between the two input images makes it impossible for
the grey-value based algorithm to provide correct flow fields. In contrast, the
structure/texture decomposition on the right hand side allows for illumination
robustness in this case. The joint computation of an additional illumination
term, already mentioned in Sec. 1.2 from [5], also solves the problem (third row,
right) but leads to a loss of details in the flow field. Note for example the fast
moving foot of the woman in the right part of the image which is merged with
the environment, or consider the absence of the umbrella.

There are two main aspects when reviewing the census result: First, even
without structure/texture precomputation or computation of an additional illu-
mination term, both variants of census based optical flow are indeed inherently
illumination-invariant. Second, the resulting flow fields are more detailed than
the ones received from approaches known from literature: the fast moving foot
can be clearly observed when using census signatures. In addition, the under-
estimation of the flow vectors on the turning car known from the approaches
above vanishes almost completely. Note that census signatures are patch-based
and are therefore suffering from one major drawback: the loss of resolution in
the result. As seen in Fig. 2, a patch structure is clearly visible in the resulting
optical flow field.
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Fig. 2. Comparison of flow results of a typical traffic scene. Top row: The two dif-
ferently gamma adjusted input images (note that the right one has a slightly lower
gamma value). Second row: TV-L1 optical flow from [14] without (left, color encoding:
color indicates direction, intensity indicates magnitude) and with structure/texture
decomposition (right). Third row, left: image intensity based optical flow with joint
illumination term computation from [5]. Right: binary 3 × 3 census based optical flow
(left) without illumination term or structure/texture decomposition.

4.2.2 Example: Highway Scene. We also explore the results on a second
traffic scene taken on a highway [6] which is very challenging for flow estimation.
In addition to illumination changes, large flow vectors, large weakly textured
regions, and aliasing effects occur. As a consequence, even with constant illu-
mination between two frames, standard optical flow methods (see Fig. 3, third
row, left) only yield partially reasonable flow fields (note that we would expect
a rainbow-like structure on the highway surface). During the sequence, the cam-
era system is exposed to very different illumination conditions which change
abruptly. This causes the device-internal transfer function to change as well in a
wide range. Results of several optical flow methods are presented in Fig. 3. No
artificial gamma adjustment is performed for this sequence.

We were not able to receive reasonable flow results with standard approaches
like the TV-L1 from [14] with (third row, left) or without structure/texture de-
composition (second row, right). However, the joint estimation of an illumination
field [5] (third row, right) was able to detect the moving car on the left and the
car in front of the camera which is correctly colored black, since it is nearly
constantly moving with the same velocity in the focus of expansion. Both census
approaches (bottom row) are apparently able to detect the correct motion, if the
corresponding image region is sufficiently textured.
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Fig. 3. Comparison of flow results from a very challenging highway scene [6], frame 108
to 109. Top row: The two differently exposed input images (note the different illumina-
tion). Second row, left: TV-L1 flow from [14] without structure/texture decomposition
of the previous frame (107 to 108), without illumination changes for reference; right:
TV-L1 optical flow from [14] without structure/texture decomposition. Third row: TV-
L1 optical flow with structure/texture decomposition from [14] (left), image intensity
based flow with joint illumination term computation from [5] (right). Bottom row: bi-
nary census based optical flow (left), ternary census optical flow (right), both from Sec.
3. Color encoding as in Fig. 2.

5 Conclusion

This work proposed a new technique for optical flow computation coping with
illumination changes often occurring in real scenes such as traffic scenarios. A
variety of different residual functions can be used in a general numerical solu-
tion scheme for optical flow. Profiting from the monotonicity of the illumination
process, illumination-invariant residuals can be constructed when considering
the grey value ordering rather than their exact differences. Hamming distances,
based on several different census signatures, replace the simple grey value con-
stancy constraint from classical optical flow approaches. In the second part,
results from the proposed novel technique are compared to those based on work
known from literature. The application of census signatures in dense variational
optical flow leads to the best results both on synthetic and real traffic scenes
during illumination changes. While census signatures may have their shortcom-
ings when used as single correspondence measures, they generally seem to provide
very robust results when applied in a regularized global optimization scheme (see
also the application of census transforms in stereo vision [7]). Future work will
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combine the census based optical flow computation method with large displace-
ment support using feature correspondences and extended regularizing models
to make it possible to apply dense motion estimation in real scenarios, e.g. in
traffic scenes for driver assistance systems.
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Abstract. In this paper we address the problem of dense stereo match-
ing and computation of optical flow. We propose a generalized dense
correspondence computation algorithm, so that stereo matching and op-
tical flow can be performed robustly and efficiently at the same time.
We particularly target automotive applications and tested our method
on real sequences from cameras mounted on vehicles.

We performed an extensive evaluation of our method using different
similarity measures and focused mainly on difficult real-world sequences
with abrupt exposure changes. We did also evaluations on Middlebury
data sets and provide many qualitative results on real images, some of
which are provided by the adverse vision conditions challenge of the
conference.

1 Introduction

Dense stereo matching and the computation of optical flow in real-time are im-
portant for many computer vision tasks. In automotive applications very useful
driver assistance systems can be realized based on this information – collision
avoidance maneuvering, preventive pedestrian protection, longitudinal vehicle
control or camera-based parking slot detection – are just some examples.

Many of those automotive applications rely on real-time stereo and optical
flow. Therefore, in this paper, we focus on dense stereo, motion-stereo and optical
flow that can be applied in real-time to challenging real-world sequences acquired
by cameras integrated into vehicles. Since dense matching is very demanding in
terms of processing power, we focus on highly efficient methods, but still try
to maintain reasonable quality. In practice, stereo matching and in particular
motion-stereo becomes difficult under sudden exposure or illumination changes
(e.g. in garages), low-light scenarios, different weather conditions (rain, snow,
etc.) or due to glare light effects. Standard block matching techniques that are
fast usually use very simple similarity measures and exhibit lots of artifacts
in such realistic scenarios. On the other hand robust similarity measures are
better and may be used to improve results in such situations. However, the
computational burden often prohibits their usage in real-time systems. A more
generic and complicated problem than stereo is optical flow. It helps determining
the motion of moving objects and has to face similar challenges as ordinary
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stereo. However, while for stereo the epipolar geometry can be used to constrain
possible matches to epipolar lines, in optical flow a large rectangular search
region must be considered instead. This usually results in a high computational
overhead. Therefore, the formulation of a highly efficient and robust approach
based on block matching is much more difficult than for stereo.

In this paper we propose a generalized dense correspondence computation
algorithm, so that stereo matching and optical flow can be performed robustly
and efficiently at the same time. We generalize and extend the concepts of the
efficient disparity computation approach given in [18], which was originally de-
signed for highly efficient disparity retrieval. There, stereo matching is performed
iteratively by alternating minimization and propagation phases at every pixel.
We significantly increase the correspondence search range to a two dimensional
area and, although based on window-based block matching, still maintain a sur-
prisingly high efficiency. Consequently, our approach can be applied not only to
stereo, but also to optical flow.

We demonstrate the effectiveness on challenging real-world and Middlebury
data sets and the results underline a significant improvement in running times,
while quality is not sacrificed.

In the rest of the paper, we will first review related work and explain briefly
the ideas in [18], then present our method and finally show an exhaustive exper-
imental evaluation.

2 Related Work

Traditional correlation-based or local methods [4, 8] can be implemented very
efficiently [15,19,3] and are still widely used in many real-time applications. The
main assumption of these approaches is that all pixels in the matching region
originate from co-planar or even fronto-parallel scene points. This assumption is
often violated in real world scenarios and results in inaccurate object boundaries
[8, 17]. Some techniques have been introduced to improve the quality [21, 12, 8],
but are often quite time consuming or have limited effect.

In global methods the stereo problem is formulated as an energy minimization
problem and is solved using standard optimization techniques like in [3, 1, 17, 7,
9, 5, 20, 14, 13]. These approaches usually achieve much better visual and quan-
titative quality, but are also computationally quite expensive. Several attempts
have been made to improve their running times using GPUs [1, 16]. However,
such hardware is not available on many mobile platforms or vehicles.

Among the global methods, semi-global matching [7, 6] is known to be the
most efficient approach and also comes with a reasonable quality. However, real-
time processing requires specialized hardware [6] or enormous processing power
and much memory. From this prospect, a generalization of semi-global matching
from stereo towards optical flow is infeasible due to the increased amount of
memory and number of cost function evaluations.

By contrast, in this paper, we demonstrate both memory and computationally
efficient stereo and optical flow using robust cost measures.
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3 Background

In [18] an efficient dense stereo matching algorithm was presented, which does not
rely on an exhaustive search technique. Unlike related correlation based methods
no a-priori maximum disparity is required. In their approach matching is done
by a localized minimization technique at every pixel and uses SAD. Since the
maximal disparity is not known, only neighboring disparity values are checked.
The one which decreases the dissimilarity is retained. However, this procedure
might be confused by local minima. Therefore a propagation step was introduced
where the dissimilarity is also checked using the larger neighborhood, i.e for the
larger disparity values. This allows jumping over some local minima and when
done in several iterations may converge to the global minimum. It is evident that
the pixel dissimilarity is evaluated in every iteration and at every pixel. However,
the efficiency and quality was still higher than the one of traditional real-time
correlation methods based on using integral images. This can be explained by
very few cost function evaluations.

4 Method

These properties of [18] motivated us to use this method and to extend it. We
first use robust similarity measures and later generalize it to the optical flow
problem. Since the algorithm of [18] does not rely on box filtering or integral
images [19] our goal is to preserve as much efficiency as possible, even though
using complex cost functions.

4.1 Robust Similarity Measures

The convergence of [18] is mainly based on the use of matching costs which are
aggregated over a support region (e.g. a square window). Therefore, we argue
that the use of normalized cross-correlation (NCC) or Census Transform (CT)
[22] is possible as long as matching windows are used. We chose to use the
following robust cost functions.

Normalized Cross-Correlation (NCC).

ENCC =
∑∑

(IL(p) − ĪL)(IR(q) − ĪR)
σLσR

(1)

with IL and IR being the left and right images, ĪL and ĪR being average pixel
intensities in the correlation window computed as ĪL =

∑∑ IL(p)
N where N =

(w + 1)2 and w is the window size. σ2
IL

=
∑∑

(IL(p) − ĪL)2 is the variance
of the image intensities in the defined correlation window. IR, ĪR and σIR are
computed analogously.
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Census Transform (CT). The Census filter computes a bit string for every
image pixel. Every bit encodes a specific pixel of the local window centered
around a pixel of interest. The bit is set to one if the pixel has a lower intensity
than the pixel of interest. Later, the pixel-wise matching cost is defined as the
Hamming distance of pairwise bit strings. In practice, we sum these Hamming
distances over a small support region.

4.2 Optical Flow

For optical flow, we generalize the approach presented in [18], by modifying the
individual processing steps. For every pixel location p = (x, y)T we search for
a flow vector f = (u, v)T , where u and v are the displacements in x- and y-
direction. For the dissimilarity E of image pixels, we use matching costs based
on SAD ESAD, NCC ENCC , or Census transform ECT . The two-dimensional
flow vectors are stored in a flow field F(p).

Optimization Procedure. One of the central ideas of the method is that at
every pixel location, a steepest descent is performed. This means that at every
pixel, the flow vector is modified using the minimization step. However, the
minimization will stop at local, suboptimal minima. To alleviate this problem,
a propagation is introduced, so that at every pixel, the flow vectors of adjacent
pixels are evaluated.

Minimization Step. Let the current flow vector at p be f0 = F(p) = (u0, v0)T

(which is (0, 0)T directly after initialization). The mapping for the iteration is
then given as:

fn+1 = (un+1, vn+1)T := argminf∈M E(p, f) (2)

with the modified vectors

M :=
{(
un + i
vn + j

) ∣∣∣∣ i, j ∈ {−1, 0, 1} , i2 + j2 ≤ 1
}

(3)

Please note that we do not include diagonal steps in M , because it improves
the efficiency and the result is not notably affected. If fn+1 = fn the iteration is
stopped and the flow field is updated.

Propagation Step. In the propagation at every pixel, the flow vectors from sur-
rounding pixels are evaluated and the flow field is updated:

F(p) �→ argminf∈N(p)E(p, f) (4)

with the neighboring flow vectors N(p) (with F(p) ∈ N(p)). At this step, flow
vectors may be spread through their local neighborhood. In practice, we alternate
minimization and propagation steps for a few iterations until convergence is
achieved (2-3 repetitions from experience).
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Hierarchical Iteration. In the original formulation, the image pyramid was
created only by scaling the horizontal dimension to reduce ambiguity in texture-
less regions. In case of optical flow, where we search also along the vertical axis,
we scale both dimensions.

We start the matching at the lowest resolution. In every pyramid level, we
perform the optimization procedure, which computes an estimated flow field. At
next resolution, the optimization uses the upscaled flow field from the previous
resolution as a starting point (in the beginning, all flow vectors are set to (0, 0)T ):

F (k+1)(2x+ i, 2y + j) = 2F (k)(x, y) with i, j ∈ {0, 1} (5)

5 Results

In this section we present our experiments with dense stereo and optical flow
methods applied to a number of real sequences and Middlebury data sets for
quantitative results.

5.1 Robust Stereo Matching

Quantitative evaluation. In our experiments with the Middlebury data set Art
from [10] we performed stereo matching using image pairs with different combi-
nations of exposures or illuminations similar to [10]. The main result depicted
in the graphs of Fig. 1 is that the tested cost measures are less effective for
different illuminations than for exposure changes. The matching error depends
on the amount of the illumination change between the image pair. On the con-
trary, the exposure change has less influence on the error variation. The Census
Transform is very effective in this case and shows only slight variations between
the combinations. It is interesting that in many cases local matching can keep
up with semi-global matching and was in two cases even better. However, also
SGM could be improved by Census Transform if more processing time is spent.

Qualitative evaluation. We performed tests on real world sequences provided by
the 2011 DAGM Adverse Vision Conditions Challenge and imagery from our
vehicle. In particular, we present results on the sequences Exposure Changes
(see Fig. 2), Groundplane Violation (see Fig. 3) and a motion-stereo video from
our application (see Fig. 4), because there are interesting differences noticeable.
For the Motion-Stereo example we picked a very challenging data with incident
sunlight. In practice, our sequences feature glare light effects, frequent exposure
changes, specular reflections and specular highlights.

In Fig. 2 (Exposure Changes), Fig. 3 (Groundplane Violation) and Fig. 4
(Motion-Stereo) we show a comparison of traditional matching algorithms and
our matching method with different similarity measures. As expected, Census
Transform performs in overall better than the other similarity measures, and
surprisingly, SAD performs also quite well in combination with a x-Sobel opera-
tor. The quality when using NCC is relatively bad, which might be explained by
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Fig. 1. Results on the stereo dataset Art for different exposures and illuminations. The
x-axis denotes the different exposure/illumination combinations.

Left Frame 88 Right Frame 88 SGM Our Method (NCC)

Our Method (Census) Traditional (Census) Unger et al. (SAD) Traditional (SAD)

Left Frame 89 Right Frame 89 SGM Our Method (NCC)

Our Method (Census) Traditional (Census) Unger et al. (SAD) Traditional (SAD)

Fig. 2. Results on the sequence Exposure Changes

a high sensitivity in homogeneous regions. The semi-global method of [7] pro-
duces relatively good results, but in some difficult situations the density of the
disparity maps is reduced in homogeneous regions (see Fig. 2 frame 89, Fig. 3
and Fig. 4).
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Left Frame 220 Right Frame 220 SGM Our Method (NCC)

Our Method (Census) Traditional (Census) Unger et al. (SAD) Traditional (SAD)

Fig. 3. Results on the sequence Groundplane Violation

Frame 110 SGM Frame 150 SGM

Our (Census) Trad. (Census) Our (Census) Trad. (Census)

Unger et al. (SAD) Trad. (SAD) Unger et al. (SAD) Trad. (SAD)

Fig. 4. Results on the motion-stereo sequences of our method (Our), traditional block
matching (Trad.), semi-global matching (SGM) and the method of Unger et al.

5.2 Efficient Dense Optical Flow

We performed tests on the challenging real image sequences Large Displacement
and Exposure Changes also provided by the 2011 DAGM AVCC and show results
in Fig. 5. In Large Displacement, the vehicle in front (entering from the left)
drives with a higher velocity than the cars in the background (which move from
right to left). The sequence Exposure Changes is a video from a forward looking
camera on a forward moving vehicle, where a sudden change in exposure takes
place between frames 90 and 91. Our method with Census Transform shows
again the best overall result, but also the SAD cost measure works surprisingly
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Large Displacement, Frames 200–202 Exposure Changes, Frames 90, 91

Our Method (SAD)

Our Method (Census)

Chambolle and Pock [2]

Fig. 5. Results on the sequences Large Displacement (flow fields were
computed for frame pairs (200, 201), (201, 202) and (202, 203)) and Ex-
posure Changes (frame pairs (90, 91) and (91, 92)). The image on the
right denotes the color-coding of the computed flow vectors. Please
note that this figure is best viewed in color.

well on images that were previously filtered with a Sobel filter in x direction.
We do not include the results of the Horn and Schunck algorithm [11], because
it recovered only very localized motion. TV-L1 of [2] works relatively well, but
is highly sensitive to exposure changes. Due to this reason we use Sobel-filtered
images, but in this case the smoothness is negatively affected by image noise. At
dramatic changes of the exposure time, none of the methods succeeded.

5.3 Efficiency

Table 1 shows the execution times in milliseconds of our single-threaded imple-
mentations on a standard Intel E8200 CPU and underlines the high efficiency of
our methods. We tested stereo matching on images with a resolution of 1024x334
and a maximum disparity of 48 (for traditional methods that require an a-priori
specification). Optical flow methods were also tested on 640x481 images and flow
vectors with displacements of at most 30 pixels in each direction (the timings
of [2] are not comparable, because their Matlab implementation took minutes
and a GPU version reported as real-time [2] is of course not comparable to a
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Table 1. The execution times of the different methods in milliseconds. Stereo matching
was tested on images with a resolution of 1024x334 and a maximum disparity of 48 was
used for methods that require it a-priori. Optical flow was tested on 640x481 images
and flow vectors with displacements of at most 30 pixels in each direction. We also
performed tests on images scaled to one third of their original size.

Method Stereo Flow Flow
1024x334 640x481 213x160

SGM 536 - -
Unger et al. (SAD) 129 - -
Our Method (SAD) - 466 52
Our Method (Census) 403 1763 167
Our Method (NCC) 560 1812 179
Trad. Block Matching (SAD) 263 39744 641
Trad. Block Matching (Census) 2313 162769 2029
Trad. Block Matching (NCC) 2691 140648 1913
Horn and Schunk [11] - 313 34
Chambolle and Pock [2] - N/A N/A

CPU implementation). We also performed tests with down-scaled images (third
of their original size). The timings underline the high efficiency of our proposed
optical flow formulation which demonstrates that with small images it is possi-
ble to compute dense optical flow with large displacements in real-time on com-
modity hardware, even with robust cost measures. On higher resolutions, the
performance gap to traditional block matching is extremely big: our proposal is
up to 90 times faster due to our efficient search algorithm and the hierarchical
setup.

6 Conclusion

We presented a generalized framework for dense stereo matching and optical flow
which can be computed efficiently and robustly at the same time. We tested our
method on a number of real world sequences and provided quantitative results
on Middlebury data sets. The comparison of different similarity measures showed
that robust ones, like census transform, are usually the best choice. However,
in some situations traditional measures like SAD perform also quite well. The
main strengths of our framework are its efficiency, which is maintained even
when using more demanding robust measures, and its genericity, since complex
problems like optical flow can be addressed, and its good results, obtained on
very challenging real world data.

Acknowledgements. We would like to thank Daniel Scharstein and Richard
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ported by the BMW Group.
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Abstract. Correspondence between non-rigid deformable 3D objects
provides a foundation for object matching and retrieval, recognition, and
3D alignment. Establishing 3D correspondence is challenging when there
are non-rigid deformations or articulations between instances of a class.
We present a method for automatically finding such correspondences that
deals with significant variations in pose, shape and resolution between
pairs of objects. We represent objects as triangular meshes and consider
normalized geodesic distances as representing their intrinsic characteris-
tics. Geodesic distances are invariant to pose variations and nearly invari-
ant to shape variations when properly normalized. The proposed method
registers two objects by optimizing a joint probabilistic model over a sub-
set of vertex pairs between the objects. The model enforces preservation
of geodesic distances between corresponding vertex pairs and inference is
performed using loopy belief propagation in a hierarchical scheme. Addi-
tionally our method prefers solutions in which local shape information is
consistent at matching vertices. We quantitatively evaluate our method
and show that is is more accurate than a state of the art method.

1 Introduction

Finding correspondences between non-rigid 3D deformable objects is a critical
task for many applications. Examples include object recognition and retrieval,
shape deformation and morphing, 3D surface registration, etc. By defining corre-
spondences using a structure preservation criterion, we can assess the similarity
between two objects based on the amount of structure distortion. For applica-
tions involving search for similar 3D object models, it may be critical to have
a measure of similarity that is invariant to common variations within a class
(e.g. body pose and identity variation). Additionally, mesh alignment, for exam-
ple of laser scans of human bodies, typically employs surface registration methods
like ICP [3], [15] which require an initial set of correspondences. Here we describe
a fully automated method for obtaining such correspondences between meshes
that vary in shape, pose, and resolution.

Although the problem of establishing correspondences among rigid objects
has been addressed in the literature adequately, finding correspondences be-
tween non-rigid deformable objects is still a challenge. Variations in pose and
shape change the local geometry of the object’s surface increasing the likelihood
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Fig. 1. Local optima in a combinatorial optimization problem for matching objects
varying in pose and shape. Previous work, Generalized Multi-Dimensional Scaling
(GMDS) [5], relies only on the preservation of geodesic distances and can yield non-
meaningful correspondences; e.g. the chest of the body in the left pose is mapped
to the back of the body in the right pose (corresponding regions are shown with the
same color). Our method, Probabilistic Geodesic Surface Embedding (PGSE), achieves
more intuitive results by combining geodesic distances with local surface descriptors in
a coarse-to-fine probabilistic optimization framework.

of a false match. In addition, matching two objects entails solving a combina-
torial problem in the exponential space of possible pairwise correspondences.
Such an optimization may get stuck in local optima resulting in non-meaningful
correspondences. Figure 1 shows an example of non-meaningful correspondences
produced by related work, Generalized Multi-Dimensional Scaling (GMDS) [5],
where the chest is mapped to the back of the human model and vice versa.
This effect is significantly diminished using our method, Probabilistic Geodesic
Surface Embedding (PGSE).

Previous methods for matching nonrigid deformable objects with significant
variation in pose aim at providing global consistency of correspondences by
preserving intrinsic properties of the objects. Usually these methods find
deformation-invariant representations of the objects and match the objects in
the representation domain. Examples include the use of geodesic distances [5],
diffusion distances [6] or representations in the Möbius domain [13].

Although preservation of the intrinsic properties of the objects may be suf-
ficient to assess their similarity, intrinsic-only matching criteria are oblivious
to object self-symmetries and may yield non-meaningful correspondences. To
overcome this weakness, previous work has explored the use of local surface
properties and/or costs of surface deformation. Previous local surfaces proper-
ties are either geometric or based on the intrinsic characteristics of the shape or
both. For instance, the work in [2] uses oriented histograms describing the dis-
tribution of points in local neighborhoods along the object surface (spin images
[11]). Dubrovina et al. [7] use a local surface descriptor based on the eigenval-
ues of the Laplace-Beltrami operator which is related to the flow in the mesh
representation of the object. Wang et al. [16] use descriptors based on curvature
and surface normals targeted towards a specific class of surfaces (brain surfaces).
Efforts that also take into account object deformation include [10], [18].
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Most previous work considers pose variations of the same object. To the best of
our knowledge, only the work in [18] considers variations in shape, but the objects
to be matched do not have significant differences in pose. We are concerned with
finding correspondences among objects of the same category varying in shape,
pose, and resolution. Extending previous approaches for global matching, we
rely on preserving normalized geodesic distances to account for the additional
variation in shape. We also employ a probabilistic framework for optimization
similar to the one in [2]. We enforce stricter geodesic preservation constraints
and use alternative local surface descriptors that are invariant to shape, pose,
and resolution variations.

Our main contributions can be summarized as follows:

– A method for finding surface point correspondences of a non-rigid object
undergoing significant deformation due to pose and shape variation.

– A method for finding surface point correspondences between objects differ-
ing in global/local resolution and triangulation, containing up to a small
proportion of holes.

– Correspondence search that effectively explores the space of possible corre-
spondences and is more robust to local optima than previous work. It relies
on a discriminative probabilistic model that preserves properties related to
geodesic distances and uses loopy belief propagation (LBP) for inference.

2 Probabilistic Geodesic Surface Embedding

We consider the problem of finding correspondences between two triangular
meshes, a model mesh X and a data mesh Z. The model mesh X = (V X , EX)
is a complete surface consisting of a set of vertices V X = (x1, . . . , xNX ) and a
set of edges EX . The data mesh Z = (V Z , EZ) may contain a modest num-
ber of holes (missing data); the vertices and edges are V Z = (z1, . . . , zNZ ) and
EZ respectively. Typically the data and model meshes differ in shape, pose,
and resolution. Each data mesh vertex zk, k = 1, . . . , NZ is associated with a
correspondence variable ck ∈ {1, . . . , NX} that specifies the model mesh vertex
it corresponds to. The task of finding correspondences is one of estimating the
most likely set of all correspondence variables C = (c1, . . . , cNZ ) given a specific
pair of model and data meshes X , Z.

2.1 Probabilistic Model

We cast the problem of finding correspondences as one of finding the most likely
embedding of the data mesh Z into the model mesh X encoded as an assignment
to all correspondence variables C = (c1, . . . , cNZ ). More specifically we take a
discriminative approach where our goal is to find a configuration of C that max-
imizes the distribution p(C|X,Z) over all correspondence variables conditioned
on a pair of mesh instances X , Z. Writing this distribution as an undirected
graphical model, we get the Conditional Random Field (CRF) model depicted
in Figure 2. Each latent variable node in the model denotes the correspondence
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Fig. 2. Conditional Random Field (CRF) model for finding correspondences. The ob-
served variable in the model is a pair of a model mesh X = (V X , EX) and a data mesh
Z = (V Z , EZ). The latent variables are the correspondence variables C = (c1, . . . , cNZ )
of all data mesh vertices. Edges in the model between latent and observed variables
favor correspondences that preserve the intrinsic properties of the data mesh vertices.
Geodesic constraints between all possible pairs of correspondence variables are enforced
through the edges between latent variables.

variable ck of vertex zk, k = 1, . . . , NZ , in the data mesh. The observed variable
is a pair of model and data meshes X , Z.

We approximate the conditional distribution of the correspondence variables
using potential functions, ψ, linking all pairs of latent variables and unary po-
tentials, φ, linking each latent variable with the data. Formally we approximate
the conditional distribution as: p(C|X,Z) ∝ ∏

k φ(ck, X, Z)
∏

k,l ψ(ck, cl, X, Z).
The main idea behind our approach is that the geodesic distances between

points in the data mesh Z should be the same as the geodesic distances between
the corresponding points in the model mesh X . Our method searches for cor-
respondences that satisfy this property. At the same time we want to preserve
in the embedding the intrinsic geodesic properties (geodesic signature) of the
data mesh vertices. All the abovementioned constraints are enforced using the
potentials described below.

Pairwise geodesic potential ψ(ck, cl, X, Z): We consider normalized geodesic
distances as the invariant used to match meshes that deform non-rigidly due
to changes in shape and pose. We calculate exact geodesic distances using the
the Fast Marching method described in [12]. For each pair of data mesh vertices
zk, zl, we define a potential function ψ(ck, cl, X, Z) that constrains the pair of
correspondences ck, cl in the model mesh X to be geodesically consistent with
vertices zk, zl in the data mesh Z. Let M = (V,E) be a mesh with vertices
V and edges E and h : V × V → � be a geodesic distance function. Then
h(j,m;M) represents the normalized geodesic distance between two vertices j
and m in mesh M . The normalization is done by dividing the geodesic distance
by the maximum geodesic distance over all pairs of vertices in M. The geodesic
potential between a pair of data mesh vertices zk, zl is defined as

ψ(ck, cl, X, Z) = N(h(ck, cl;X);h(k, l;Z), σ2
kl) (1)

where σkl is a user defined parameter; here σkl = 0.1 · h(k, l;Z).
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Geodesic signature potential φ(ck, X, Z): We encode a potential that en-
forces that corresponding vertices ck in the model mesh have similar intrinsic
properties as those in the data mesh zk. Our goal is to distinguish spatially dif-
ferent areas in the model and data meshes as much as possible. The intrinsic
property we use is the mean normalized geodesic distance of vertex zk over all
possible vertices in the data mesh (geodesic signature). The resulting potential
can be written as

φ(ck, X, Z) = N(g(ck;X); g(k;Z), σ2
k) (2)

where g(j;M = (V,E)) = 1
|V |
∑

m∈V h(j,m;M) is the mean normalized geodesic
distance from j to all other vertices m in the mesh M and σk is a user defined
parameter. The use of geodesic signatures is important because it biases the
embedding of the data mesh to the model mesh to match spatially similar areas
between the meshes. In practice we observe that this also improves convergence
of the optimization procedure described below.

2.2 Inference

Our goal is to find an assignment of the correspondence variables that maxi-
mizes the probability p(C|X,Z) as represented by the graphical model. Exact
inference is computationally infeasible due to the large number of variables and
loops in the graph. Instead we use max-product loopy belief propagation (LBP)
[17] for approximate inference. Running LBP until convergence yields a set of
probabilities over model mesh vertices for each correspondence variable ck. We
compute the optimal correspondence for each data mesh vertex zk as the model
mesh vertex that maximizes the probability distribution of the correspondence
variable ck.

Our inference scheme is performed in two rounds as shown in Figure 3. In
the first round, the data mesh is sampled at a coarse level (Figure 3 (a)) using
the farthest point sampling method [8]. In a similar way, the model mesh is
sampled at a coarse level (Figure 3 (b)) and an initial set of correspondences is
obtained using LBP. In the second round, the initial correspondences are refined
by restricting the domain for each correspondence variable to be geodesically
close to the solution of the first round of inference (Figure 3 (d)). Here we
restrict the search to vertices with a geodesic distance up to 1/2 the average
geodesic distance between nearby samples in the model mesh. The complexity
of each round is O(K2L2) where K is the number of samples in the data mesh
and L the number of corresponding samples in the model mesh.

3 Results

3.1 Data

We evaluate our algorithm on triangular meshes from the TOSCA nonrigid world
database [4] and human bodies generated using the SCAPE model [1]. All the
objects are represented as triangular meshes and they are simplified to have
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Fig. 3. Illustration of the sampling process during the inference procedure. In the first
round, a data mesh and a model mesh are sampled at a coarse level. A coarse sampling
of the data mesh to e.g. 75 markers (a) and a coarse sampling of the model mesh to
e.g. 150 samples (b) produce an initial set of correspondences. In the second round, for
each individual marker in the data mesh (c), the domain of possible correspondences
is obtained from finer sampling around the solution found in the first round (d).

2000-4000 vertices to aid comparison with related work. For each pair of meshes
we find correspondences of 75-100 surface points. For the following experiments
our method requires around 5GB of RAM per pair of meshes. The running time
is approximately 1h on a 2.66GHz Intel Xeon processor.

3.2 Evaluation

The meshes we use do not come with any ground truth information about cor-
respondences between their vertices. Typical error metrics in this case measure
the degree that geodesic distances are preserved between the data mesh and
the model mesh. However, preservation of geodesic distances does not ensure
that the correspondences are qualitatively meaningful. The smaller the number
of markers used and the larger the number of self-symmetries in the object,
the larger the number of possible correspondence configurations with geodesic
distances similar to the geodesic distances between data mesh markers. We find
that comparing Voronoi regions around the markers and their optimal correspon-
dences provides a more intuitive measure than comparing the degree in which
geodesic distances have been preserved. Similar Voronoi regions between the
data and model meshes also lead to similar geodesic distances among markers
and their optimal correspondences. The opposite is not necessarily true. Com-
paring Voronoi regions does not only include how well the geodesic distances
are preserved, but also how similar the neighborhoods around markers and their
optimal correspondences are.

Let vs(i) be the area of the Voronoi region around marker i and vm(c∗i ) the
area of the Voronoi region around the optimal correspondence c∗i of marker i
in the model. We define the following error metric, Te, representing the average
change in the Voronoi area over all markers and their correspondences.

Te =
1

|U |
∑
i∈U

∣∣∣vs(i) − vm(c∗i )
vs(i)

∣∣∣ (3)

where U is the set of markers in the data mesh.
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Correspondences inMesheswithSameTopology. We compare our method,
PGSE, to the GMDS method presented in [5] using triangular meshes of the same
topology. For each object in the TOSCA nonrigid world database, we find corre-
spondences to the canonical object of the category it belongs to. For the SCAPE
bodies, we find correspondences between the mean SCAPE body in the canonical
pose as defined in the CAESAR dataset [14] and SCAPE bodies varying in pose,
shape, and pose and shape together.

Figure 4(a) illustrates the correspondences found with GMDS and PGSE.
Evaluating the correspondences using the error metric defined above, we get the
error plots shown in Figures 4(b, c, d). For the parameterized bodies generated
using the SCAPE model, we sort the results based on pose or shape variation.
Pose variation is measured as the average joint angle deviation from the joint
angle configuration in the canonical pose. It is weighted by the percentage of
mesh vertices each joint controls and it is measured in radians. Shape varia-
tion is measured based on the L2-norm of the shape coefficients in the SCAPE
model. Given the variety of categories in the TOSCA nonrigid world database,
we present only summary statistics of the error over the database. For the case
of PGSE, the average Te error is 0.1410 with standard deviation 0.1059. For the
case of GMDS, the average Te error is 0.2799 with standard deviation 0.1564.

In all cases we see that the error increases as we vary the pose or the shape. Al-
though not reported with error metrics, GMDS performs better on average at pre-
serving geodesic distances; this is not surprising as the GMDS method minimizes
exactly this error. In contrast, our method combines the preservation of geodesic
distances with local shape matching constraints. Our approach, PGSE, performs
better in terms of the maximum discrepancy in geodesic distances between pairs
of markers and their correspondences. Evaluating the correspondences using the
Te error (Figure 4), we see that PGSE performs better in all cases. Statistical sig-
nificance values for the errors per dataset are shown in Table 4(e). Changing the
pose yields a bigger increase in the mean error than changing the shape. Changing
both shape and pose yields the biggest increase in error as expected.

Correspondences in Meshes with Different Topology. Next we evaluate
the effects of changing the global and local resolution of the triangulated meshes
used above. We use QSLIM [9] to change the global resolution of the meshes
generated based on the SCAPE model and we observe an almost uniform reduc-
tion in resolution across the surface of the SCAPE bodies. In this case, we find
no significant difference in performance between GMDS and PGSE as a function
of mesh resolution.

Often one wants to align an artist-generated template mesh with higher-
resolution meshes created by a laser scanner or other structured light system. In
this case the meshes have very different topology and resolution. Consequently
we find correspondences between the SCAPE bodies varying in shape and pose
as above and a custom made template mesh shown as the right mesh in Figure
5 (a). This template mesh exhibits significant differences in local resolution and
topology compared with the SCAPE bodies. We are unable to quantitatively
evaluate GMDS because in most cases the markers collapse to the same vertex
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(a)

(b) (c) (d)

TOSCA SCAPE SCAPE SCAPE
nonrigid 3D world pose shape shape/pose

Te 3 · 10−16 0.013 3 · 10−4 3.15 · 10−4

(e)

Fig. 4. (a) Visual correspondences between meshes in the TOSCA nonrigid world
database and SCAPE bodies varying in pose and/or shape. Corresponding areas are
shown with the same color. Areas where our method, PGSE, performs better than
GMDS are circled. Note that correspondences are defined up to intrinsic symmetries
in the meshes. (b) Mean Voronoi error plot for the SCAPE bodies varying in pose, (c)
shape, and (d) pose and shape. The data points in figures (c,d) are ordered based on
shape variation. Table (e) shows the results of the Wilcoxon signed rank test on the
errors induced by the GMDS, PGSE correspondences. All the p-values displayed in the
table are below the default significance level of 5%.
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(a) (b)

Fig. 5. (a) An example pair of meshes with significant differences in local resolution
and mesh topology: a SCAPE body and our template mesh. (b) Mean Voronoi-based
error for correspondences between the SCAPE bodies varying in shape & pose and
the template. To simplify visualization the SCAPE bodies are ordered only based on
shape variation. A Voronoi-based error cannot be defined for the case of GMDS due
to markers collapsing at the same vertex.

on the data mesh surface resulting in Voronoi regions with zero area. In contrast,
we observe that even large differences in local resolution between the surface of
the data and model meshes does not influence the performance of our algorithm
(the error in Figure 5 (b) is similar to the error in Figure 4 (d)) .

4 Conclusions

We present a method that finds correspondences between non-rigid articulated
objects varying in pose, shape, and global or local resolution. Our method pre-
serves pairwise normalized geodesic distances between a pair of objects as well
as local surface properties also based on geodesic distances. We show improved
correspondence over previous work on widely varying mesh models. Addition-
ally using the SCAPE model we are able to separately evaluate accuracy as a
function of pose, shape, and resolution variation. We also define a Voronoi-based
error measure that better measures correspondences that are intuitively “good.”
Future work involves making our method robust to noisy surfaces as well as
surfaces with missing information. Learning the parameters of our CRF model
from training data is another direction for future work.
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13. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM
Transactions on Graphics (TOG) 28(3), 1–12 (2009)

14. Robinette, K., Daanen, H., Paquet, E.: The caesar project: a 3-d surface anthro-
pometry survey. In: Proceedings of Second International Conference on 3-D Digital
Imaging and Modeling, pp. 380–386. IEEE, Los Alamitos (1999)

15. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3dim, p.
145. IEEE Computer Society, Los Alamitos (2001)

16. Wang, Y., Peterson, B., Staib, L.: 3d brain surface matching based on geodesics
and local geometry. Computer Vision and Image Understanding 89(2-3), 252–271
(2003)

17. Yedidia, J., Freeman, W., Weiss, Y.: Understanding Belief Propagation and its
generalizations. Exploring Artificial Intelligence in the New Millennium 8, 236–239
(2003)

18. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick, O., Tagliasacchi,
A.: Deformation-Driven Shape Correspondence. In: Computer Graphics Forum,
vol. 27, pp. 1431–1439. Wiley Online Library, Chichester (2008)



Dense 3D Reconstruction of Symmetric Scenes

from a Single Image
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Abstract. A system is presented that takes a single image as an in-
put (e.g. showing the interior of St.Peter’s Basilica) and automatically
detects an arbitrarily oriented symmetry plane in 3D space. Given this
symmetry plane a second camera is hallucinated that serves as a virtual
second image for dense 3D reconstruction, where the point of view for
reconstruction can be chosen on the symmetry plane. This naturally cre-
ates a symmetry in the matching costs for dense stereo. Alternatively, we
also show how to enforce the 3D symmetry in dense depth estimation for
the original image. The two representations are qualitatively compared
on several real world images, that also validate our fully automatic ap-
proach for dense single image reconstruction.

1 Introduction

Symmetry is a key design principle in man-made structures and it is also fre-
quently present in nature. Quite some effort has been spent to detect or ex-
ploit symmetry in computer vision (e.g. [6,11,14,4,20,9,2,3]). Unlike previous
researchers, in this contribution we investigate how 3D symmetry can be ex-
ploited to automatically obtain a dense three-dimensional perception of some
scene from a single image, in particular when the scene is symmetric with respect
to some virtual symmetry plane. The intuition is that when the observer is not
exactly in this symmetry plane, then each object and its symmetric counterpart
are seen from a (slightly) different perspective. These two different perspectives
onto essentially the same thing can be exploited as in standard two-view stereo
to obtain a dense, three-dimensional model (see fig. 1). The key steps are es-
sentially comparable to structure from motion [13], however we run the whole
pipeline on a single image, where we assume the intrinsic camera parameters
to be known beforehand: Within-image feature matching, robust estimation of
autoepipolar geometry and symmetry plane followed by dense depth estimation.
Our key contributions are a novel, straight-forward 3D formulation of the single
image symmetry scenario which is analog to multi-image structure from motion,
a single-texture plane-sweep for a symmetric viewpoint to create a cost volume,
and enforcing 3D symmetry in the global optimization by equality constraints in
the minimum-surface formulation. The next section will relate this contribution
to previous work, before the following sections detail the steps of the approach.
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Fig. 1. From left to right: Input image taken at St.Peter’s Basilica, detected symmetry
(lines connecting features), some rendered oblique view of a very coarse, untextured
but shaded model, reconstructed from the single image

2 Previous Work

Previous work related to this contribution can roughly be divided into two cat-
egories. The first category describes the general ideas of symmetry exploitation
and uses interactive techniques like clicking correspondences or works on re-
stricted scenarios. Gordon [6] seems to be the first to have described the idea of
shape from symmetry, later Mitsumoto et al. consider mirrors [11]. Much later,
also [4] considers symmetric scene geometry but seems to be unaware of Gor-
don’s work. In terms of dense reconstruction, Shimshoni et al. show interesting
results on reconstructing textureless, lambertian objects [14], but they assume a
weak perspective camera, horizontal symmetry and a single light source. Their
iterative approach starts from a rough estimate of the light source and symmetry
plane to optimize normals and scene parameters using shape-from-shading. In
other works, geometric relations using planar mirrors have been considered (e.g.
[5]) or silhouette-based reconstruction therein [20].

The second category of approaches is concerned about automatic detection of
symmetry. Here, with the advances of automatic matching, feature-based estima-
tion of planar homologies present in symmetry and repetition (e.g. [15]) became
possible, also with non-fronto-parallel planes. In terms of 2D symmetry, Loy and
Eklundh [9], observed that SIFT features[8] can either be extracted on mirrored
regions or that the SIFT descriptor itself can be rearranged for in-image match-
ing to find mirrored features. Detection was then extended by Cornelius et al.
[2,3] to planar but non-frontal scenes. Wu et al. [16] detected and reconstruct
repetitions on rectified planar facades with relief structures. For more details on
computational symmetry, we refer to the recent survey paper by Liu et al. [17].

In general, we observe that there is no fully automatic approach to recon-
struct a dense, textured 3D model from a single image showing a symmetric
scene, which we show in this contribution. Furthermore, we give a novel, clear
derivation of the geometry of the symmetric scene which nicely shows the du-
ality of interpreting an image point as being the projection of a reflected point
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Fig. 2. Left: Reflection of points on a plane with normal n according to equation 2.
Center images: dual interpretation of mirrored point and mirrored camera of equation
3. Right: normal constraint of eq.6: the normal n must lie in all backprojection planes
of symmetry correspondences.

in one camera or the projection of the original point in a “reflected” camera.
Finally, we obtain a dense reconstruction that particularly enforces consistent
depth for symmetric points. Posing the depth estimation as a labeling problem,
we show how to integrate symmetry as equality constraints into a voxel-based
(continuous) minimum-cut. The symmetry of the scene allows to compute depth
with respect to a central view on the symmetry plane or for the original image,
where we compare advantages and drawbacks for both solutions.

3 Symmetric Scene Geometry

In this contribution we focus on symmetric scenes, i.e. scenes with a global
symmetry plane so that for each point X on one side of the plane there is a
corresponding 3D point X ′ on the opposite side of the plane.

It is easy to see that the image X ′
e of a Euclidian 3D point Xe given a mirror

plane with normal n through the origin can be obtained by

X ′
e = Xe − 2(nTXe)n =

(
� 3 − 2nnT

)
Xe (1)

Now consider that the symmetry plane can have an arbitrary position (not neces-
sarily going through the origin, but by passing it at distance d) and it is expressed
in homogeneous coordinates as π =

(
nT − d). A reflection by this plane (see

figure 2, left image) can then be written linearly in homogeneous coordinates as

X′ =
(
� 3 − 2nnT −2dn

0T
3 1

)
︸ ︷︷ ︸

�π

X (2)

Here, �π is a projective transformation that encodes the mirroring.
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Consider now a (intrinsically calibrated) camera observing the point X at
image position x � �X, where we assume � being the canonic camera at the
origin and looking into positive z-direction (cf. to [7]): � = (� 3 03). It will observe
the mirrored point X′ at x′ � �X′, which can also be written using �π as

x′ �
�
′︷ ︸︸ ︷

� · �π · X︸ ︷︷ ︸
X′

(3)

This equation shows a duality of possible interpretations: � can be absorbed
into the projection matrix, defining a new camera that observes an image with
x and x′ swapped, or, � can be absorbed into the point to project the mirrored
point (see figure 2, center images). In case we absorb it into the mirrored camera
we obtain the 3 × 4 projection matrix

�
′ = ��π = (� 3 03)

(
� 3 − 2nnT −2dn

0T
3 1

)
=

⎛⎜⎝� 3 − 2nnT︸ ︷︷ ︸
�

−2dn

⎞⎟⎠ (4)

Please note that � is an orthogonal 3 × 3-matrix with determinant -1 (not a
rotation matrix), however �′ is still a valid projection matrix. If we compute the
essential matrix between �′ and � (or between the image and itself) we obtain

� � [n]×
(
� 3 − 2nnT

) � [n]× (5)

which is autoepipolar [7].

4 Estimating the Symmetry Plane

Obtaining Correspondences. Since the goal is to recover the symmetry plane
in three-dimensional scenes, local regions and their symmetric counterparts may
look significantly different. In fact, since perspective effects and illumination dif-
ferences may appear (depending on the distance of the camera to the symmetry
plane and depending on illumination and scene normals), this is a wide-baseline
matching problem. Similar to previous authors, who were looking for symmetry
only in 2D[9] or on planes [3,2], we exploit the fact that local affine features (cf.
to [10] for an overview) locally compensate for perspective effects. Since classi-
cal shape + dominant orientation normalization (cf. to [8]) does not allow for
general affine transformation but only for those with positive determinant (re-
flections are not compensated by this), for each feature we explicitly extract also
a mirrored descriptor as proposed by [9]1. Then we find within image correspon-
dences between mirrored and non-mirrored descriptors according to proximity
in descriptor space.
1 If speed is not a concern, just mirroring the whole image along any direction, ex-

tracting features and re-assigning descriptors to the coordinates in the original image
is sufficient.



270 K. Köser, C. Zach, and M. Pollefeys

Symmetry Plane Normal. By definition we know that the line connecting a
point X and its symmetric counterpart X ′ is in direction of the symmetry plane
normal (as long as X is not on the symmetry plane and thus identical to X ′).
The plane that is spanned by the camera center and the two viewing rays to
the two 3D points contains also this line and consequently the symmetry plane’s
normal vector must lie in this plane (compare figure 2, right image). Let (x,x′)
be a pair of corresponding (symmetric) features. Then(

[x′]× x
)T︸ ︷︷ ︸

ax

n = 0 (6)

If we use a second correspondence (y,y′) then the analogue constraint must hold
and consequently n has to lie in the null space of the matrix composed of the
rows ai: (

ax

ay

)
n = 0 (7)

Obviously, n � ax × ay fulfills this equation. This is a minimal solution to the
3D symmetry normal from 2 points, which is essentially the same as estimating
the epipole for autoepipolar matrices or a vanishing point from images of parallel
line segments (cf. to [7]). Please note that this is similar in spirit to [3], however
we explicitely write it down for 3D scenes.

Since points on the symmetry plane do not provide constraints, we reject
all correspondences with less than 10% image width displacement and apply 2-
point RANSAC with the above minimal solver to estimate the symmetry plane
normal. Afterwards we apply maximum likelihood estimation for the normal as
common also for standard vanishing point estimation approaches [7].

Camera Geometry. Since we are aiming at dense stereo, some baseline is re-
quired to reconstruct the scene geometry. We will now construct a second virtual
camera to perform the stereo. Assume for now that the original image has not
been taken from exactly inside the symmetry plane. Then, since image-based re-
constructions are only up to scale, we can define the baseline of our to cameras
to be 2. However, since n and −n are projectively equivalent, there are still two
options for the second camera center that need to be resolved, e.g. by checking in
which of the configurations the correspondences are in front of the cameras.

As explained in equation 4, we know that a camera with the projection matrix
�
′ would observe an image with coordinates of x and x′ swapped. This camera

can be converted to a more intuitive right-handed representation by multiplying
the projection matrix by −1, subsequent �,�,C-decomposition (this camera is
then looking away) and appropriate rotation, e.g. to obtain a rectified standard
stereo setup. However, we decided for a more direct approach and use the (left-
handed) �′ directly in plane-sweep stereo.

We observe that the proposed approach fails in case the camera center is on the
symmetry plane, which corresponds to the case of no baseline in standard stereo.
Being close to the symmetry plane means only small baseline and potentially
only a few measurable disparity steps.
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5 Dense Depth Estimation

Dense Stereo and Plane-Sweep. Beside using a rectified configuration for
dense stereo computation, there are two natural choices for the reference frame
used to represent the depth map. Both approaches are based on the plane-sweep
methodology. Note that the image to use for the mirrored view is exactly the origi-
nal image, since symmetric 3D points are treated as the same 3Dpoint by construc-
tion. Thus, no additional image has to be synthesized for the mirrored camera.

The first option is to utilize a virtual view between the original and the mir-
rored camera residing on the mirror plane (see Fig. 3(a)). A fronto-parallel plane
sweep approach for stereo with respect to this central view is similar to com-
putational stereo after image rectification, but in this setting both matching
images are moving in horizontal direction. This setup has a few advantages, but
one major disadvantage. First, by using a symmetric matching score (i.e. sym-
metric with respect to swapping image patches), and if a symmetric smoothness
term is utilized, then the result depth map is naturally symmetric without ex-
plicit enforcement. Second, the central view configuration usually minimizes the
perspective distortion when using larger aggregation windows for the matching
score, since the plane of symmetry is often orthogonal to the surface of man-
made objects. Thus, fronto-parallel planes with respect to the central camera
tend to be aligned with surface elements leading to better matching scores. The
disadvantage of the central reference view configuration is, that there is no fixed
reference image unaffected by the current depth hypothesis, and therefore one
pixel (or patch) e.g. in the left (original) image may match several pixels/patches
in the mirrored view. This leads to noticeable artefacts induced especially by tex-
tureless regions (see Fig. 4(b) and (c)).

The other natural configuration uses the original camera as reference view,
and the mirrored camera as matching image (see Fig. 3(b)). The symmetry of the
3D geometry induced by the resulting depth map is lost, and must be explicitly

(a) Central configuration (b) Non-central configuration

Fig. 3. The two setups used for dense depth estimation via plane sweep
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enforced if desired. Since in this configuration the symmetry requirement of the
reconstructed object cannot easily be formulated in terms of the resulting depth
map, global methods for depth map computation are difficult to extend with
symmetry constraints. We utilize the globally optimal stereo method based on
finding the minimum-cost surface separating a near plane from a far plane in
3D [1,12,18]. In the following section we describe, how 3D symmetry constraints
can be incorporated into a class of global stereo methods.

Global Stereo with Symmetry Constraints. The basic model for globally
optimal stereo is

E(u) =
∫

Ω×L
φ(∇u) dx dl,

where u : Ω × L → {0, 1} represents the sublevel function of the desired label
assignment Λ : Ω → L. φ is a family of positively 1-homogeneous functions
implicitly indexed by grid positions (x, l) ∈ Ω × L. In order to avoid the trivial
solution u ≡ 0 we fix the boundaries, u(x, 0) = 0 and u(x, L) = 1.

Each grid position (x, l) (i.e. a camera ray with an associated depth label) cor-
responds to a point X in 3D space. Thus, u can be interpreted as 3D occupancy
function whether a voxel corresponding to (x, l) is filled (u(x, l) = 1) or empty
(u(x, l) = 0). Knowing that the object to be modeled is symmetric with respect
to a mirror plane nTX = 1, implies that both 3D locations X and its reflection
X ′ = (� − 2nnT)X + 2n are either occupied or empty, i.e. have the same state.
The constraints can be translated to a set of equality constraints for correspond-
ing locations in the domain Ω × L, u(x, l) = u(x′, l′) for

(
(x, l), (x′, l′)

) ∈ C.
Here C is a set of corresponding locations within the viewing frustum.

Overall the depth labeling task can be written as (after relaxing the binary
constraint u(x) ∈ {0, 1} to u(x) ∈ [0, 1])

E(u) =
∫

Ω×L
φ(∇u) dx dl,

subject to u(x, l) ∈ [0, 1], u(x, 0) = 0, u(x, L) = 1, and u(x, l) = u(x′, l′) for(
(x, l), (x′, l′)

) ∈ C. This is a non-smooth convex problem. On a discrete grid
and with φ being a weighted L1 norm this can be solved with a graph cut
method [1]. The additional equality constraints can be enforced by infinite links
between the respective nodes in the graph (and therefore both sites have to be
on the same side of the cut). Using similar arguments as in [19] it can be shown
that u attains essentially binary values also in the case of general positively
1-homogeneous functions φ.

Implementation Details. We utilize the L1 difference between 5 × 5 pixel
patches of Sobel-filtered images as our image matching score. Consequently, pixel
brightness differences due to shading effects are largely addressed by this choice
of the similarity function. We increase the robustness of the matching score
by truncating its value to a maximum of 5 (with respect to normalized pixel
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(a) Input image (b) Non-central conf. (c) Central conf.

(d) Input image (e) Unconstrained (f) Symm. constr. (g) Central conf.

Fig. 4. Results for our datasets. First row: while the central configuration naturally
leads to symmetric depth maps, some artefacts induced by textureless regions are
visible (see the apexes of the towers in (b) and (c)). Bottom rows: input images (d)
and depth maps obtained for the non-central configuration without explicit symmetry
constraints (e), with symmetry constraints (f), and for the central configuration (g).
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intensities in [0, 1]). This is very helpful to limit the influence of non-symmetric
high-frequency textures on the overall result. Global optimization to obtain a
smooth depth map is based on a primal-dual gradient method. Spatial smooth-
ness is enforced by utilizing the isotropic total variation. The final depth value
(potentially at subpixel accuracy) is extracted from u as the 0.5-isolevel.

6 Experiments

We evaluated our approach on a set of real images from a range of several sce-
narios (see Fig. 4): facades, indoor environments with a large depth range, depth
discontinuities and occlusions, and finally rather textureless and only approxi-
mately symmetric objects. In order to cope with inaccuracies of the estimated
symmetry plane normal, and to be robust with respect to texture asymmetries
at small scales, we downsized the images to quarter resolution (of originally 3-6
MegaPixel). The plane sweep method evaluates 120 depth values, and the weight
parameter for the data fidelity term is set to 5.

Since a quantitative evaluation is difficult due to missing ground truth, we
qualitatively compare the different approaches. First it can be observed that
the global but unconstrained solution does not produce symmetric 3D scenes,
whereas the other approaches do. Qualitatively the depth maps returned by the
different dense stereo methods are similar, although they differ in details. While
the central approach seems to be attractive because of its intrinsic 2D symmetry
of the depth map, we noticed that it can introduce undesired artefacts: in the
central configuration a single pixel of the original view can be consistent with
different depth hypotheses and thus be assigned to multiple depths. Objects
with small depth variations and concave environments are clearly most suitable
for symmetry-based single view reconstruction, due to the absense of strong
occlusions (Fig. 4, first two rows).

7 Conclusion

After anaylzing the underlying 3D geometry, we have presented a novel auto-
matic approach to densely reconstruct a symmetric scene from a single image. In
particular we suggested and compared different representations of the 3D scene
(depth with respect to a virtual central view or with respect to the original
camera), and enforced the reconstructed scene to be symmetric by equality con-
straints between corresponding 3D locations in a minimal surface formulation.

Future work might exploit multiple local symmetries, and could also investi-
gate in detecting the support of the detected symmetry in the image, i.e. separate
symmetric and non-symmetric scene elements.
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Abstract. The profile of a 10mm wide and 1 μm deep grinding imprint
is as unique as a human fingerprint. To utilize this for fingerprinting
mechanical components, a robust and strong characterization has to be
used. We propose a feature-based approach, in which features of a 1D
profile are detected and described in its 2D space-frequency represen-
tation. We show that the approach is robust on depth maps as well
as intensity images of grinding imprints. To estimate the probability of
misclassification, we derive a model and learn its parameters. With this
model we demonstrate that our characterization has a false positive rate
of approximately 10−20 which is as strong as a human fingerprint.

1 Introduction

For more than one century, many mechanical components are manufactured in-
terchangeable. This allowed mass production with enhanced quality at lower
costs. However interchangeable parts are usually indistinguishable and thus not
identifiable. This leads to problems with product plagiarism and the determi-
nation of origin of a component. Labeling components is often not a suitable
approach as labels may get lost, copied or change functional properties of a
component. Thus, the variation of inherent material properties is used for fin-
gerprinting in various fields, e.g. chemical fingerprints [10] for marking medicine

Fig. 1. Approach: Profile s(x) of a grinding imprint image is obtained and characteristic
features are extracted in the space-frequency domain S(x,f)
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or Physical Unclonable Functions [14] for the identification of computer chips.
In this work, grinding imprints are characterized for fingerprinting mechanical
components (cf. Fig. 1). They are created by a grinding wheel which is shifted in
grinding direction. The imprints here have a width of 10 mm and a depth stan-
dard deviation of σ ≈ 0.8μm. To enforce statistically independent fingerprints,
the grinding wheel is straightened before an imprint is created, which means
that several layers of abrasive materials are removed from its surface.

In this paper, we derive the framework to extract, to characterize and to
verify such imprints in order to identify components. There are four requirements
for the characterization. It should be (a) independent to geometric variations
of the imprint such as a shift or a scale, as a a highly-precise alignment of
extracted data should not be necessary, (b) robust to a few but maybe strong
local perturbations, and (c) unique like a human fingerprint. As we want to allow
that the characterization is computed from depth maps as well as from intensity
images, the characterization should also be (d) independent from a non-linear
scale in depth. In our approach, the characteristic feature constellation is learned
in the space-frequency domain of the imprint profile. Our contributions are

– the detection of features of a 1D grinding profile in the 2D continuous wavelet
space

– the characterization and matching of profiles using feature locations and
descriptions, and

– the analysis of the strength of our fingerprint characterization with respect
to false positive detection and surface perturbation.

By this, we demonstrate that our approach allows identification as secure as if
a human fingerprint was analyzed.

1.1 Related Works

Historically, fingerprints are characterized by the constellation of minutiae which
are ridge properties like crossings, bifurcations, dots and endings. The strength
of a fingerprint is due to the fact that the constellation of the minutiae is unique.
The probability of a false positive classification with only 12 correspondences is
that low (≈ 10−20) that it is sufficient as evidence in court [11].

In our approach we follow the idea of detecting minutiae. As the analyzed
imprint does not contain explicit patterns like ridge crossings, we use an approach
inspired by feature-based image analysis, where generalized salient features are
detected. These features may be maxima in the DoG scale space [6], anisotropic
blobs [9], homogeneous regions [8] or maxima of local entropy [5]. Then, analog to
the minutiae type, a descriptor is built which usually is an affine and illumination
invariant representation of the local image contents. To verify the constellation
of matching descriptors, usually an affine or projective transformation is fitted
to the correspondences using RANSAC [2]. However, grinding imprints are not
suitable for feature-based approaches as they vary slowly in the grinding direction
and abruptly orthogonal to it. This means that an imprint is better characterized
using its 1D profile. Thus, we focus on features of grinding imprint profiles.
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Traditionally, grinding imprints are characterized according to ISO 25178,
which describes the rules and procedures for the assessment of surface texture.
However, such global surface texture parameters such as the root mean square
height of the surface Sq or the maximum height of the surface Sz can neither be
used to distinguish nor to describe surfaces robustly.

Further, methods of statistical texture analysis could be used to characterize
an imprint. E.g. in [13], the maxima locations of an entropy measure over dif-
ferent orders and scales is used as characteristic fingerprint image. But as the
relevant information is contained in one dimension, statistical methods for signal
analysis in one dimension seem more adequate.

The differences between audio data and grinding profiles are the statistical
signal properties –grinding profile samples are highly transient– and the number
of samples –a profile consist only of 3200 samples whereas audio data usually of
10 s or more at 44 kHz. Most approaches tackle audio fingerprinting as a pattern
recognition problem where feature vectors are to be classified. These are usu-
ally regularly sampled from the distribution of spectral coefficients like Fourier
Coefficients, Mel Frequency Cepstral Coefficients or Wavelet Coefficients. For a
broad overview we refer to [1]. In contrast to this, we decided to detect specific
salient positions in the space-frequency domain and describe them locally. This
has the advantage that signals with change in scale or with partial differences
are better comparable.

A similar idea has recently been introduced for audio indexing [15]. They ana-
lyze the Short Time Fourier Transform (STFT) spectrogram and use customary
SIFT [6] features for its description. However as imprint profiles are more tran-
sient than audio data, the STFT is not a stable characterization. Further SIFT
is not a suitable approach for describing features as rotation invariance is not
desirable. Nonetheless, in Experiment 4.4, we use this method for a comparison
with our proposed approach.

There exist many applications in which the continuous wavelet transformation
[7] (CWT) is used to compare 1D data. In [3], CWTs of two time series are
multiplied to analyze the correlation between different climatic effects. The same
method is applied in [12] to analyze economic relationships. However to the best
of our knowledge, besides [15], there is no approach in which salient features in
the space-frequency domain are detected and compared.

The outline of this paper is as follows: In Section 2, our feature-based profile
characterization approach is explained. We derive an estimate on the probability
of falsely matching two profiles in Section 3. We evaluate the properties of the
approach in experiments in Section 4. A conclusion is given in Section 5.

2 Feature-Based Profile Characterization

2.1 Detection

First, the profile s(x) is extracted from the 2D depth map or intensity image
d(x,y) of the imprint (cf. Fig. 1). We assume that x is the dimension orthogonal
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to the grinding. To cancel out noise and outliers, s(x) is built by averaging over
ny image rows around y = y0:

s(x) =
1
ny

y0+ny/2∑
y=y0−ny/2

d(x, y) . (1)

s(x) is transformed to the space-frequency domain S(x,f) using the continu-
ous wavelet transform [7] (CWT) with the wavelet φx,f (ξ):

S(x,f) =
∫ ∞

−∞
s(ξ) · φx,f (ξ) dξ . (2)

φ is parametrized by x and f , where x is the translation the wavelet is centered
around and f is the dominant frequency in the power density spectrum of φx,f .
To cover a wide range of frequencies, the frequency is sampled logarithmically
between λ0 = sc/2 and λ1 = sx/2, where sx is the profile length and sc the
expected diameter of the imprint of one grain, which is 125μm here.

Like the filter response of every linear system, for a constant f , S(x,f) denotes
a local estimate of the cross correlation (cf. (2)) of the profile at position x and
the wavelet. Peaks in S at (xm,fm) indicate a high correlation between the
local neighborhood of s(xm) and φxm,fm . The distribution of peaks (cf. Fig. 1)
is specific for each profile and fulfills requirement (b) as local changes do not
change the global distribution (cf. Fig. 2).

Wavelets are useful here to obtain sharp-edged and stable peaks in S(x,f). In
principle, an arbitrary real-valued wavelet could be used. On the one hand, sharp-
peaked wavelet distributions are better locatable in x and f . Thus, a wavelet
should be shaped like a profile. On the other hand, peaks should occur at different
frequencies f , so the wavelet should be generic enough. We empirically chose the
Daubechies wavelet [7] of order 4 as it matches both criteria, but we did not do
extensive evaluation of different wavelets.

As feature location, local maxima are chosen as they are locatable most
precisely and robustly under perturbation. The candidate m with coordinates
(xm,fm) is found using non-maximum suppression on |S(x,f)|. Then region Rm

is determined which describes the extents of feature m. In order to be scale
invariant, its extents are proportional to the wavelet wavelength λm = f−1

m . In
spatial direction, the extent is x = xm ± λm/2. Similarly, in frequency direction
it is chosen such that f−1 = λm ± λm/2. Thus, the borders of Rm are

x = [xm − λm/2;xm + λm/2] , f = [2/3fm; 2fm] . (3)

2.2 Description

To avoid clusters in the profile characterization, all candidates j are discarded,
if their detected location (xj , fj) falls into the region of another candidate i with
higher absolute value in S:

|S(xj , fj)| < |S(xi, fi)| ∨ (xj , fj) ∈ Ri . (4)
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Fig. 2. Detected (black ellipses) and matching (green ellipses) features in the continu-
ous wavelet space S(x,f) between two profiles with partially similar local (right half)
but different global structure (lower half)

For all remaining candidates m, a descriptor Dm is built by sampling Rm

in equal intervals. In this work, we sample 3 frequencies with 9 samples each
resulting in a descriptor length of 27. Next, the descriptor is normalized, such
that E[Dm] = 0 and ‖Dm‖ = 1. As a scaling or a depth shift of the profile has
no influence on the descriptor, requirement (d) is achieved. Finally, we have a list
of feature locations (xm, fm = 1/λm) with one descriptor Dm for each feature.

2.3 Comparison

In this Section, we explain how the characterizations of two profiles s(1) and
s(2) are compared. First, all correspondence candidates (i,j) are found whose
descriptors D

(1)
i and D

(2)
j are similar under the cosine metric:

cos(∠(D(1)
i ,D

(2)
j )) =

〈D(1)
i ,D

(2)
j 〉

‖D
(1)
i ‖ · ‖D

(2)
j ‖

= 〈D(1)
i ,D

(2)
j 〉 > dt , (5)

where dt is a threshold set to 0.9 here.
Next, the spatial constellation of all candidates is verified. It is assumed that

profile s(1) and s(2) spatially differ by a shift Δx and a wavelength ratio Δλ.
Thus, the constellation of all correspondence pairs (i,j) must fulfill

l
(2)
j =

[
x

(2)
j

λ
(2)
j

]
= Δλ ·

[
x

(1)
i +Δx

λ
(1)
i

]
= Δλ · (l(1)i + Δx) . (6)

The two unknowns can be estimated from one correspondence pair. They are
optimized by minimizing the squared symmetric Euclidean distance

e2i,j =
1
2

|l(2)j −Δλ · (l(1)i + Δx)|2 +
1
2

|l(1)i − l
(2)
j /Δλ − Δx|2 (7)

over all candidates (i,j) using RANSAC [2]. Outliers are detected if ei,j is bigger
than an error radius r, which is set to 6 samples here. After this, correspondences
with the same geometric constellation have been found.



Fingerprints for Machines 281

3 False Positive Profile Matches

In this section, we derive a model on the probability pfp , prof of wrongly matching
two profiles of different components. We assume that the classification is based
on the numbers of correspondences k.

For each possible correspondence, there are two criteria in order to be re-
garded as inlier: According to Section 2.3, first the descriptors have to match.
We call the probability of one false descriptor match pfp , desc. Second, a corre-
spondence has to fulfill spatial constraints with a probability of pcstl in order
to be considered as inlier to RANSAC. Assuming statistical independence, the
probability of fulfilling both constraints for a random correspondence inlier is

pri = pfp , desc · pcstl . (8)

If there are n1 features detected in the first profile and n2 in the second, there
may be n = n1n2 correspondences. Assuming n � k, the probability of exactly
k inliers meeting the inlier criteria out of n correspondences can be expressed
using the binomial distribution

B(k,n,pri) =
(
n

k

)
· pk

ri · (1 − pri)n−k . (9)

However, one of the k correspondences always fulfills the RANSAC motion model
as this model is derived from it. This correspondence matches with pfp , desc and
there may be n2 possible motions derived from it. So the probability of obtaining
exactly k correspondences is

pk , prof(k) = 1 − (1 − pfp , desc ·B(k − 1,n− 1,pri))
n2 , k ≥ 2 . (10)

Thus, the distribution of two independent profiles to match using a threshold
of k filtered correspondences is

pfp , prof(k) =
n∑

i=k

pk , prof(i), k ≥ 2 . (11)

4 Experiments

4.1 Evaluation of False Positive Detections

We use the model from Section 3 in order to determine the probability of two
independent fingerprints to match. The profiles are extracted from depth images
taken with a confocal white light microscope which uses depth from focus [4]. Its
lateral sampling distance is 3.1μm, so there are 3200 samples for the 10 mm wide
profile. The a priori probabilities pfp , desc and pcstl from Eq. (8) are estimated
from depth images of 45 different grinding imprints. Of each depth image d(i),
two profiles s(i)1 and s(i)2 are taken of each at a distance of 1 mm. All descriptors
from s

(i)
1 are compared with all descriptors from s

(j)
2 . As the descriptors should
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(a) (b)

Fig. 3. (a) Confusion matrix C with number of matches C(i,j) = k between profile d
(i)
1

and d
(j)
2 . (b) Probability for two different fingerprints having exactly k correspondences:

p̂k , prof(k) vs. normalized histogram r(k) from C.

only match, if i = j and if their position is not altered, we get an estimate for
pfp , desc by counting false positive correspondences nfp versus true negative corre-
spondences ntn. Regarding pcstl, which is the probability for a random RANSAC
inlier, we compare the inlier area si with the area of possible feature locations sp.
As nearly all mismatches from the descriptor matching occur at small frequency
differences, we chose to compare the areas in the 1D space domain and not in
the 2D space-frequency domain:

p̂fp , desc =
nfp

ntn + nfp
= 1.54% , p̂cstl =

si
sp

=
2r
sp

= 0.48% . (12)

In Fig. 3a, the confusion matrix C(i,j) with the number of correspondences
k between d(i)1 and d(j)2 is displayed. For enhanced visibility, C is scaled between
k = 0 and k = 10. Please note that true positives on the diagonal have a higher
expected match count of E[C(i,i)] = 26. For i �= j, only up to k = 6 false
correspondences occurred with E[C(i,j)] = 1.9. The normalized histogram r(k)
of C(i,j) = k is displayed in Fig. 3b. It is visible that our estimate p̂k , prof(k)
follows r(k). To compare the strength of our approach to natural fingerprints,
we extrapolate using p̂k , prof(k) up to k = 19, which is a reasonable value as
classification border as the expected true positive match count is significantly
higher. We receive a profile false detection probability of p̂fp , prof(k = 19) ≈
10−20. Thus, we have shown that such grinding imprints are as strong as human
fingerprints for identification.

4.2 Corrosion

In this experiment, we analyze the influence of corrosion to the redetection of an
imprint. Salt spray corrosion tests (DIN EN ISO 9227) were used to artificially
age the component: 1.5 ml/h of a 5% NaCl salt solution are sprayed onto the
surface for a certain duration τ of aging. Afterward, the surface is acid cleaned.
From the surface views in Fig. 4, it can be seen, that two different effects occur:
continuous perturbation of the surface, and the complete destruction of local
spots which is best visible for τ = 19 h. We compare the number of correspon-
dences k between original and corroded imprint over τ in Fig. 5.
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Fig. 4. Corrosion on the grinding imprint after aging for a time span τ

Fig. 5. Number of correspondences k after aging for time span τ

It can be seen that the outcomes are lowering unsteadily, which is a result
of local destruction. However k is still significantly higher than for different
imprints as our representation allows partial matches in space and frequency.
This can be observed in Fig. 2, in which the correspondences between original
and a corrosion of τ = 19 h are displayed.

4.3 Optical Fingerprint Comparison

In this experiment, we will demonstrate that the here-presented approach is
able to identify imprints obtained from the plain image intensities. As input,
we use diffusely-illuminated images from the same imprint which were taken
with a customary camera at a resolution of 1000 × 1000 pel2. In contrast to
Experiment 4.1, we focus on a high detection rate here for an optical on-line
comparison, as a positive detection could be verified by a depth map if a low false
detection rate is needed. Thus, we set the correspondence threshold to k = 10,
which is reasonable as the number of samples is only one third compared to
depth profiles. Apart from this, only dt from (5) was adopted to 0.8.

In Fig. 6a, images from the same profile with varying brightness, camera
pose (up to 10% shift) and scaling (up to 30% zoom) were taken. Similar to
Experiment 4.1, we match every profile s(i)1 obtained from the upper image half
to every profile s(j)2 from the lower half. In Fig. 6b, the number of correspondences
between i and j is displayed. In total, we receive a detection rate of 44%, which
is very good for this challenging task. If we fix the pose and only vary the
illumination, we even get 77% detection rate.

4.4 Comparison to SIFT Matching

We now compare our results to the approach of [15], in which customary SIFT
features are used on an audio signal STFT spectrogram. We use the provided
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(a) (b)

Fig. 6. (a) Intensity images d(i) with varying camera pose and estimates of

(Δx/pel; Δf ) for profile s
(i)
1 with respect to profile s

(6)
2 with smallest zoom. (b) Con-

fusion matrix with number of matches between s
(i)
1 and s

(j)
2 .

Fig. 7. Depth profile spectrograms of the same surface. Unlike the data of [15], there
is no coarse structure which could be used for SIFT matches (Cf. Fig. 2).

parameters and input the depth profiles from Experiment 4.1 instead of audio
data. As the signal length is much shorter (3200 samples compared to 441000 for
a 10 s block) and as the profiles are more transient than audio signals, we chose
a window length of 32 samples to obtain the spectrogram. Feature extraction
and comparison was carried out as described in [15].

In Fig. 7, spectrograms from two measurements s(i)1 and s(i)2 of the same
depth profile are displayed. It can be seen that there are only 3 correspondences
detected, which is one of the best results of this method. In total, if profile s(i)1 is
matched with itself, an average of 84 correspondences were found, if it is matched
with the second measurement s(i)2 at 1 mm distance, this value drops to 0.36 (for
different profiles s(i)1 and s(j)2 , it is 0.03). This shows that the spectrogram is not
suitable to robustly and uniquely describe transient profiles.

5 Summary and Conclusion

In this paper we have shown an approach to extract and compare robust and
precise characterizations of grinding imprints. It is based on features obtained
from the continuous wavelet transformation. This allows a shift and scale in-
variant characterization of the profile. For the comparison of two fingerprints,
the number of corresponding features with consistent geometric constellation is
used and compared with a threshold k. In experiments we have shown that the
approach is robust to perturbations like corrosion. We have shown that a similar
approach which uses an STFT spectrogram in combination with SIFT is not
suited for this data. We further have demonstrated that our approach works on
intensity images as well as on depth maps, even under variation of illumination
and pose. To estimate the strength of the proposed approach, a model on the
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false positive detection probability p̂fp , prof(k) was derived and its parameters
trained. This model indicates that a reasonable amount of k ≥ 19 matches leads
to as few false positive detections as if human fingerprints were compared.
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rative Research Centre 653. We thank the Institute of Materials Science of the
Leibniz Universität Hannover for their support of artificially aging components.
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Abstract. This paper addresses the problem of aligning two unsynchronized
video sequences. We present a novel approach that allows for temporal and spa-
tial alignment of similar videos captured from independently moving cameras.
The goal is to synchronize two videos of a scene such that changes between the
videos can be detected automatically. This aims at applications in driver assis-
tance or surveillance systems but we also envision applications in map build-
ing. Our approach is novel in that it adapts an efficient information retrieval
framework to a computer vision problem. In addition, we extend the recent ECC
image-alignment algorithm to the temporal dimension in order to improve spa-
tial registration and enable synchro refinement. Experiments with traffic videos
recorded by in-vehicle cameras demonstrate the efficiency of the proposed method
and verify its effectiveness with respect to spatio-temporal alignment accuracy.

1 Introduction

Video alignment requires matching scene points in both space and time. Given two
or more video sequences, the goal is to find correspondences between projections of
the same scene point in a time-coherence framework so that frames from the different
videos can be registered.

Most related contributions either assume stationary cameras or consider settings of
jointly moving cameras in a fixed relative orientation [2,9,14]. With the exception of [9],
these works also consider a linear model for temporal displacements between videos.
Independently moving cameras have been studied either in the context of a constant
temporal offset between sequences (overlap in time) [13] or of a dynamic time shift
(no overlap in time) [3,10]. Since the latter poses difficult problems when moving
cameras accelerate irregularly, related contributions assumed nearly coincident cam-
era trajectories or the availability of metadata such as GPS coordinates [3,10]. While
most approaches to video synchronization attempt to align trajectories of interest points
[2,9,13,14], other methods rely on spatial intensity information [2,3,10]. To establish
the geometry between synchronized frames, models such as 2D homographies [2], fun-
damental matrices [2,9], 3D rotations [3], or affine projections [14] have been used.

In this paper we consider independently moving un-calibrated cameras whose trajec-
tories are similar. In particular, we consider in-vehicle cameras that are mounted behind
the windshield and record everyday street scenes. We aim at aligning videos that are
recorded on different days from within different vehicles driving the same route and

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 286–295, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Efficient and Robust Alignment of Unsynchronized Video Sequences 287

Fig. 1. Top: An example of two video sequences [3]. Due to non-overlapping capture times, dif-
ferent moving objects appear in the sequences. Bottom: Examples of corresponding frames with
noticeably different scene content.

following approximately the same lane (see Fig.1). In this scenario, velocity and accel-
eration of the cameras naturally vary and the corresponding temporal mapping is highly
non-linear. Unlike previous works, the method we propose in this paper can even deal
with backward motion of cameras. It is fast enough to allow for online application and
the recorded 3D scene is not required to be static.

Our scenario is closely related to [3,10], yet, we consider completely different algo-
rithmic approach: we treat video synchronization as an information retrieval problem
where we apply highly efficient low-level descriptors and efficient subsequent matching
steps. As our video data sets are captured at sensibly different times, the first recorded
sequence can be preprocessed and indexed before the second sequence becomes avail-
able for analysis. This mimics a recent trend in computer vision where computations
are pushed back to an off-line task in order to accelerate online procedures [6,12]. In
our case, pre-processing focuses on efficiently storing the frames of the first sequence in
a database, indexing the database, and structuring the index appropriately. This way we
can handle the subsequent synchronization problem by means of querying the database
for content that is similar to a given frame in the second video sequence. Having thus
obtained a rough synchronization, we then address the spatial registration between syn-
chronized frame and the problem of subframe correction and propose a space-time ex-
tension of the recently introduced ECC algorithm [4].

Our presentation proceeds as follows: Next, we formalize the video alignment prob-
lem. Section 3 casts video synchronization as an information retrieval problem and
Section 4 presents our extension of the ECC algorithm to the space-time dimension.
In Section 5, we discuss efficiency and, in Section 6, we evaluate our approach on real
world sequences. Finally, Section 7 concludes this contribution.

2 Problem Formulation

Suppose we are given two image sequences Sr = Ir(x̂) and Sq = Iq(x), where the first
is a reference and the second is a query sequence and x̂ = [x̂, ŷ, t̂]t , x = [x,y, t]t denote
space-time points. The goal of video alignment is to match space-time points in the two
sequences. We are interested in a spatio-temporal mapping W (x;p) where p is a space-
time parameter vector, such that x̂ = W (x;p). Following [2], we define the mapping
model as W (x;p) = [Ws([x,y]t ;ps)t ,Wt(t,pt)]t where Ws() is the spatial- and Wt() is the
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time-warp parameterized by ps and pt respectively, and p = [pt
s, pt

t ]
t . For independently

moving cameras, both parameter vectors ps and pt vary along Sq. Yet, in the case of
irregular and backward motion, both vectors must be re-estimated for all query frames.

In order to efficiently handle such cases, we propose a new approach to video syn-
chronization that can also be viewed as an initialization scheme for the spatio-temporal
alignment. Let us suppose that the time mapping is roughly expressed through a finite
discrete-time signal T : IN → IN, such that t ′ = T (t) and t ′ is close to t̂. Towards the goal
of finding integer values T (t) for all time indices t, we consider this signal to be the out-
come of an information retrieval step. More specifically, we consider the whole set of
reference frames as a database of images and all input frames as query frames. Then,
by querying the database with an input frame assigned to time index t0, we retrieve the
corresponding frame assigned to time index t ′

0 = T (t0).
Given the pair (t0,T (t0)) we adopt a time-local spatio-temporal model W (), which

permits us not only to spatially align synchronized frames, but to refine the time align-
ment result, thus providing subframe accuracy. Note that this model does not imply a
short-time sequence-to-sequence alignment but an image-to-sequence, or better frame-
to-subframe, alignment. Given a query frame Iq(x,y, t0) and the mapped pair (t0,T (t0)),
we are looking for a spatio-temporally warped image (subframe) from the short-time
sequence Ir(x̂, ŷ,T (t0)± μ), where μ is a small integer so that a predefined error crite-
rion between corresponding frames is satisfied. As a result, we obtain subframe accu-
racy without using expensive spatio-temporal manifold computations [2]. This is due to
the space-time extension in parameter-domain only. Next, we discuss how to determine
the time-mapping T () and the spatio-temporal model W ().

3 An IR Approach to Video Synchronization

We adopt an information retrieval approach to deal with the video synchronization prob-
lem. This allows us to preprocess the reference data without any knowledge of the query
sequence and to devise an efficient synchronization step. Similar to modern informa-
tion retrieval methods [8,12] we apply inverted index lists and weighted voting scores
in order to improve the reliability of the retrieval process.

Although most retrieval works in computer vision society rely on multidimensional
descriptors [7,12], our scenario permits the use of short-length descriptors. In order to
describe image patches we apply a geometric hashing method introduced in [6] for
astrometry. Specifically, let us assume that we have applied an interest point detector
[11] in an image and the locations of the interest points are available. Then we consider
quadruples of nearby interest points to characterize local image structures.

Suppose a quadruple (quad) of interest points x̄i = [x̄i, ȳi]t , i = {a,b,c,d,} as shown
in Figure 2. x̄a, x̄b are the control points which are defined by the most widely separated
pair of points. By s we denote the distance (diameter) between control points; ϕ denotes
the orientation of the diameter vector and c denotes the centroid of the quad. That is

s = ‖x̄a − x̄b‖, ϕ = tan−1 ȳb − ȳa

x̄b − x̄a
, c =

1
4∑

i
x̄i , (1a-c)

where ‖·‖ denotes the Euclidean distance. We then consider a local coordinate system
oriented and centered with respect to the control points x̄a, x̄b, so that their locations
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Fig. 2. (a) Geometric hashing using a quad structure; (b) query frame with extracted Harris points;
(c) and (d) valid quads of the query and corresponding reference frame; red dots are quad centers

coincide with (0,0) and (1,1), respectively. This allows for hashing the remaining
points x̄c, x̄d in the local coordinate system through their new coordinates (x′

c,y
′
c),

(x′
d ,y

′
d). Accordingly, any quad of nearby features can be coded using a length-four

hash-code (x′
c,y

′
c,x

′
d ,y

′
d). In other words, each quad is represented as a 4D point space

and similar quads correspond to nearby points in this space. Similar to [6], we only
consider quads where the points x̄c, x̄d lie inside a circle of diameter s. Any different
order of points in pairs (x̄a, x̄b) and (x̄c, x̄d) creates a different symmetry which can be
easily resolved [6].

This novel local descriptor is translation-, scale-, and rotation invariant which is re-
quired to match quads between frames. Also, small localization errors from interest
point detection entail only small displacements of the hash code in the 4D feature space.

3.1 Indexing, Structure, and Retrieval

Once the reference sequence is available, we store each frame Ir(x̂, ŷ, t̂n) as an image In

in a database where n = 1,2, · · · ,N. We apply an interest point detector (e.g. Harris) to
all images, extract all valid quads and assign to the jth quad of the nth image its hash
code qn j = (x′

c,y
′
c,x

′
d ,y

′
d)n j, where j = 1,2, · · · ,Jn. Since the discriminative power of the

quad descriptor is low, we do not apply vector quantization [12] but keep working with
continuous hash-codes. In addition, the short-length descriptor allows us to store all
hash-codes qn j and create an inverted index list assigning to every record its reference
set Rn j = {n,cn j,sn j,ϕn j}.

Given a query quad, we do not search for the nearest neighbor but look for similar
quads inside a range. This implies a range search problem and in order to quickly
answer a query we apply a kD-tree structure (k = 4). Searching for a corresponding
frame to a query frame can then be cast as a voting approach. Given a query image
and its quads qk,k = 1,2, · · · ,K, we query the database with all qk and any quad qn j

which is ε-close to qk votes for the nth image. By initializing all image scores vn to 0,
we increase the score of each retrieved image by vn ← vn + f (qk,qn j), where

f (qk,qn j) =

{
wn if ‖qk − qn j‖< ε
0 otherwise.

(2)

The weights wn could be chosen to be the terms frequency - inverse document frequency
(TF-IDF) scores used in text retrieval [8]. However, since quads correspond to continuous
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Fig. 3. Frame synchronization for the Rural sequence [3] based on pure retrieval results (left), af-
ter enforcing spatio-temporal consistency with R0 = 50 (middle) and after additionally enforcing
rotation consistency constraints with |ϕk − ϕn j|< π/12 (right)

vectors and thus are unique with high probability, the TF factor does not add to the preci-
sion. The IDF factor, on the other hand, improves the retrieval precision since quads that
appear in a similar form in many images are not indicative of image content. Hence, we
choose wn = log N

Nk
, where Nk is the number of the retrieved images after querying qk.

3.2 Spatio-temporal Coherence

In order to reject false positive matches before voting, we enforce a spatio-temporal
coherence constraint which agrees with our basic assumption that the trajectories of
two cameras are approximately coincident. Since we would like to retrieve that frame
which has been captured from the closest point to the viewpoint of the query frame, it is
justified to not allow matches between far apart quads. Therefore, for correspondence,
we require a quad in the database image to be inside a circular region whose center
coincides with the centroid of the query quad, i.e. ‖ck −cn j‖<R0. Due to large overlaps
between images this constraint favors both spatial and temporal coherence.

We can also enforce additional constraints like scale- and rotation-consistency by
enabling appropriate coarse coherence measures for s and ϕ respectively. However, we
found such constraints not to be as vital as the spatio-temporal one. Fig 3 shows the
synchronization result before and after enabling constraints.

4 Spatial Alignment and Synchro Refinement

The above rough video synchronization step results in a sequence T : IN → IN and
matched frames (t,T (t)). Ideally, however, synchronization would yield a sequence
T : IN → IR+ providing subframe accuracy. To further refine synchronization results
and to spatially align synchronized frames, we extend a recent, robust image alignment
algorithm [4].

The Enhanced Correlation Coefficient (ECC) scheme as reported in [4] supposes
that Iq(x,y,t0) is the template image and Ir(x̂, ŷ,T (t0)) is the input image that must be
warped towards the alignment. If A = {xm|m = 1,2, . . . ,M} is the set of space-time
points of the query image, ECC then determines the corresponding set Â = {x̂m|x̂m =
W (xm;p), m = 1,2, . . . ,M} in the other sequence. This requires to explicitly define the
spatio-temporal mapping W (). Although the fundamental matrix would apply to our
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scenario, its use only characterizes pixel motions up to an epipolar line and entails extra
effort for computing dense correspondences [5]. Moreover, estimating the fundamental
matrix is susceptible to errors and moving cameras may increase this uncertainty. There-
fore, we approximate the spatial motion using a 2D homography model. Incorporating
only temporal shifts for the time warping and using homogeneous spatial coordinates,
we can write the space-time model as⎡⎢⎢⎣

x̃
ỹ
w̃
t̂

⎤⎥⎥⎦=

⎡⎢⎢⎣
h1 h2 h3 0
h4 h5 h6 0
h7 h8 1 0
0 0 τ 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x̂
ŷ
1
t0

⎤⎥⎥⎦ , (3)

where x = x̃/w̃, y = ỹ/w̃, ps = [h1, . . . ,h8]t and pt = τ , being τ appropriately initialized
via the synchronization task.

ECC alignment aims at estimating the optimal parameter vector such that the cor-
relation coefficient between the query image and the warped retrieved image is maxi-
mized. Stacking the intensities of the points contained in A and Â we form the vector
iq = [Iq(x1), Iq(x2), · · · , Iq(xM)]t and the warped vector ip = [Ir(x̂1), Ir(x̂2), · · · , Ir(x̂M)]t ,
and let īq and īp be their zero mean counterparts. Then, the objective function that must
be maximized is the enhanced correlation coefficient defined as

ρ(p) =
ītq īp

‖īq‖ ‖īp‖ . (4)

In order to solve the maximization problem, we assume similar to [4] that a nominal
parameter vector p̃ is known, such that p = p̃ + Δp. Then, using a first order Taylor
expansion on īp, the ECC function amounts to

ρ(Δp; p̃) =
ītq[īp̃ + Jp̃Δp]

‖īq‖
√

‖īp̃‖2 + 2ītp̃Jp̃Δp+ ΔptJt
p̃Jp̃Δp

, (5)

where Jp̃ is the Jacobian of the vector īp with respect to parameters evaluated at p̃.
However, our extension requires the redefinition of this matrix. Its size is M × 9 and
the mth row is formed by the product ∇It

rJW where ∇Ir = [ ∂ Ir
∂ x̂ ,

∂ Ir
∂ ŷ ,

∂ Ir
∂ t̂ ]t is the spatio-

temporal gradient of image Ir evaluated at point W (xm; p̃) and JW is the Jacobian of the
transformation in (3) evaluated at p̃. Note that both spatial and temporal gradients build
on first-order central differences of smoothed intensities. As far as JW is concerned,
based on (3) we have

JW =

[
∂Ws
∂ps

0

01×8
∂Wt
∂τ

]
=

1
w̃

⎡⎣x̂ ŷ 1 0 0 0 −x̂x −x̂y 0
0 0 0 x̂ ŷ 1 −ŷx −ŷy 0
0 0 0 0 0 0 0 0 w̃

⎤⎦ . (6)

Despite the non-linearity of the function ρ(Δp; p̃), its maximization results in the fol-
lowing closed form solution

Δp = (Jt
p̃Jp̃)−1Jt

p̃
{

λ īq − īp̃
}
, (7)
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(a) (b) (c) (d)

Fig. 4. (a) A query frame and (b) the best retrieved frame; (c) the space-time alignment after 2
and (d) after 10 iterations; differences between frames are indicated in lawn-green and hot-pink

with λ being given by

λ =
ītp̃(IM − PJ)īp̃
ītq(IM − PJ)īp̃

, (8)

where IM is the identity matrix and PJ = Jp̃(Jt
p̃Jp̃)−1Jt

p̃ is a projection operator.

By translating this solution into an iterative scheme p{i} = p{i−1} + Δp{i}, we can
approximate the solution of the highly non-linear problem of maximizing the function
in (4). This yields the optimum parameter vector for dense spatio-temporal correspon-
dences of subpixel and subframe accuracy. The complexity per iteration of this scheme
can be shown to be O(Mη2), where η is the number of parameters [4]. Figure 4 shows
an example of the resulting spatio-temporal alignment.

5 Efficiency

An important characteristic of our proposed framework is that we can exploit the se-
quential nature of video data which implies a coarse time-consistency for synchroniz-
ing successive frames. We thus propose to split the database of frames into β subsets
of successive frames and use a separate kD-tree for the quads of each subset. For a re-
gular split (Fig.5 left), we would need to investigate two adjacent subtrees whenever the
current results are inside a transition area. To avoid this, we allow overlap between ad-
jacent subtrees in the forest (Fig.5 right). This way, we need to query only one sub-tree
and have to change the tree index if the current retrieval results are above a threshold
(e.g. the median of the overlap area).

For range search problems, querying a 4D-tree structure requires O(n
3
4 + κ) where

n is the number of points and κ is the number of neighbors within range [1]. Adopting
the above splitting method, the query time reduces to O((n/β )

3
4 +κ/β ), which acceler-

ates the synchronization process without affecting its precision. For spatial alignment,
we can apply a pyramid based scheme [2] which not only accelerates the alignment
algorithm but also compensates for large displacements. Additionally, since gradient-
based alignment schemes mainly rely on high frequent parts of a signal, we ignore low-
frequency pixels and aggregate only those pixels around key points. Taking into account
the complexity O(Mη2), where M � η , the computational burden of spatio-temporal
alignment drastically reduces via these two modifications.
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Fig. 5. Subtrees of quads that belong to subsets of reference frames. Regular split (left) and split
with overlap (right).

6 Results

Following the methodology of [3], we evaluate the accuracy of the proposed synchro-
nization method via the resulting synchronization error. As we adopt an IR approach,
we compare our method with the recently proposed SIFT-flow algorithm [7] and the
method presented in [3]. SIFT-flow estimates temporal alignments by histogram match-
ing whereas spatial correspondences result from a pixel-based flow algorithm. The work
in [3] models synchronization as a MAP inference problem in a Bayesian network and
considers the common least-squares framework for spatial registration.

We experiment with three real-world video sequences recorded from within mov-
ing vehicles at different times, namely the Backroad, the Campus and the Highway
sequences [3]. Each dataset shows footage from accelerating and decelerating cars.
Ground truth is available in form of lower and upper bounds of synchronization in-
dices. If the sequence ft (t) represents any synchronization result and L(t) and U(t) are
the sequences of the lower and upper bounds respectively, the synchronization error is

e( ft(t)) =

{
0 if L(t) ≤ ft(t) ≤ U(t)
min{| ft(t)− L(t)|, | ft(t)−U(t)|} otherwise

. (9)

The resolution of sequences is 540×720 pixels in space and 1500 frames on average
in time. The interest point detector we used is the Harris detector as described in [11].
We also tested other detectors, but our results were in accordance with the results of
[11] verifying the favorable repeatability of Harris detector. Each subtree of the forest
structure (Fig.5 left) efficiently stored the descriptors of 250 successive frames, being
the overlap equal to 20 frames. Based on equation (2) we considered a tolerance thresh-
old with ε = 0.07 while retrieval results were re-ranked by the space-time coherence
constraint with R0 = 50 pixels (the latter should be defined with respect to the video
resolution). Finally, ECC run within a coarse-to-fine framework in spatial domain only,
using a 4-level gaussian pyramid and running 5 iterations per level.

Table 6 shows the performance of the methods in terms of the synchronization error,
i.e. the percentage of values where e( ft (t))> δ . We provide results for δ = 0 and δ = 1
to indicate the error variance. We observe that the proposed method performs better for
Highway dataset since the vehicle follows an almost straight road with high velocity;
the latter leads to fewer reference frames as candidate matches to a query. Moreover,
the low error variance favors the refinement, as ECC cannot cancel out strong synchro-
nization errors. In other words, even if the quad-based alignment returns false positives,
what seems to be important is the distribution of errors, being their concentration around
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Table 1. Synchronization Error (%)

Backroad Campus Highway Average

δ = 0 δ = 1 δ = 0 δ = 1 δ = 0 δ = 1 δ = 0 δ = 1

Quad-based 29.4 15.4 26.4 13.5 25.3 8.7 27.0 12.5
Quad-based-ECC 25.4 8.4 23.8 11.4 8.3 2.9 19.1 7.5
Diego et al. [3] 37.4 31.9 17.7 9.17 32.6 27.7 29.2 22.9
SIFT-flow [7] 27.7 13.6 18.5 11.7 25.7 12.9 23.9 12.7

Fig. 6. (Top) Alignment results and (bottom) pixel-wise differences after alignment by applying
(left) the proposed approach, (middle) SIFT-flow and (right) the method in [3]

zero particularly desired. On the other hand, in Campus and Backroad sequences there
appear near-camera “objects” and road turns; the former affects the quad-based align-
ment while the latter gives rise to homography uncertainties. The SIFT-flow method
provides slightly higher error scores while it obviously requires many more operations
due to the descriptor’s size (a 128-dimensional vector). Still, our method also exhibits
better performance than the method in [3] which actually incorporates GPS data.

Figure 6 illustrates change detection results obtained from the three approaches. The
proposed method detects scene changes with higher accuracy. SIFT-flow seems to be
affected by the presence of moving cars and creates artifacts and truncated objects. The
method in [3] performs poorly. As far as the complexity is concerned, the average syn-
chronization time of the proposed method is 0.22 sec per frame (Matlab implementation
on a 3GHz Pentium) and the space-time alignment requires 1.12 sec. As a result, we
envision online execution of the proposed algorithm in a GPU-based environment. The
retrieval time of the SIFT-based histogram matching is 9.46 sec per frame, while SIFT-
flow re-ranks the top-5 list in terms of the flow energy and register the frames in 160.5
sec (5 × 32.1). The method in [3] compares each input image to all reference images
and the comparison is meaningless.

Please refer to http://xanthippi.ceid.upatras.gr/people/evangelidis/DAGM2011/
for alignment videos of the real sequences.
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7 Conclusions

A novel method for video alignment with applications in change detection was pre-
sented. This method enables the spatio-temporal alignment of similar videos captured
from independently moving cameras. We proposed an efficient method adopted from
information retrieval that applies short-length descriptors of frame content for video
synchronization and a spatio-temporal alignment scheme for accurate change detec-
tion between synchronized frames. We experimented with a series of real world traffic
videos captured from within moving vehicles. Our results verified both the efficiency
and the effectiveness of the proposed method. Although we aim at driver assistance and
security scenarios, the proposed framework obviously also applies to problems such as
automated 3D map building or visual odometry.

Acknowledgements. This work has been funded by ERCIM. We also thank the ADAS
group of the Computer Vision Center of Barcelona (Spain) for video data sharing and
Ferran Diego for discussion.
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Abstract. This paper introduces an approach for automatic foreground
extraction from videos utilizing depth information from time of flight(ToF)
cameras. We give a clear definition of background and foreground based on
3D scene geometry and provide means of foreground extraction based on
one-dimensional histograms in 3D space. Further a refinement step based
on hierarchical grab-cut segmentation in a video volume with incorpo-
rated time constraints is proposed. Our approach is able to extract time-
consistent foreground objects even for a moving camera and for dynamic
scene content, but is limited to indoor scenarios.

1 Introduction

Accurate separation of foreground from background in video sequences plays
an important role in many applications, like virtual studios, TV and 3DTV
production, teleconferencing or video surveillance and is a difficult task, which
has been extensively studied over twenty years. The approaches found in the
literature can be roughly divided into two categories: interactive and automatic.

Interactive approaches [14,2,11] require some sort of user input, for example
a trimap, consisting of definitive foreground, definitive background and uncer-
tainty region. While high quality results can be achieved, processing long video
sequences becomes a time-consuming operation. Using user input for selected
keyframes only [10], reduces the complexity, but the amount of required user in-
teraction still remains high and the quality decreases with the number keyframes.
Automatic approaches try to perform foreground segmentation without any user
input. A common technique here is to perform background subtraction based on
color similarity with known background of uniform color distribution [16]. While
very accurate results can be achieved, a special setup with controlled lighting
conditions is required. Another category of automatic approaches try to detect
foreground based on motion in combination with contrast and color cues [17,5].
Such approaches however, are limited to stationary cameras and dynamic content
� This work was partially funded by the ”Zukunftsprogramm Schleswig-Holstein

(2007-2013)” with funds from the European Commission (EFRE) and Land
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and are unable to detect still objects. Recently, many researchers are investigat-
ing the use of additional cues, like depth or infrared illumination, for foreground
extraction [1,18,9,13,4].

In [1] authors use a 3D model, constructed in an offline phase to perform fore-
ground extraction based on depth comparison. They achieve good separation of
foreground in real - time but the need of a 3D model makes the system inflexible.
In [19,4,18] authors use a simple thresholding technique on depth (infrared) im-
age to initially identify the foreground and perform additional refinements steps
in later processing. While this may be suitable for some scenes, it will certainly
fail in presence of slanted surfaces like floor or ceiling. In [19] authors use a graph
cut technique to optimize initial segmentation results similar to our approach,
but segment each frame separately which can lead to temporal inconsistencies. In
[9] authors use a standard stereo system and combine disparity estimation with
color and contrast cues. However, only objects in the front layer are extracted,
what maybe not enough for some applications.

This paper introduces automatic foreground extraction for videos in indoor sce-
narios utilizing depth information from ToF cameras. In the approach depth from
two ToF cameras is transformed to the view of a color camera and used to perform
initial foreground extraction based on surface normal and histogram threshold-
ing. Afterwards a hierarchical automated grab-cut segmentation is performed to
refine the results over a batch of images simultaneously incorporating temporal
constraints to insure temporal consistency without any user interaction.

2 Data Acquisition and Preprocessing

For the data acquisition we use the system from [7]. It consists of 5 CCD cam-
eras and 2 ToF cameras. Figure 1 shows a picture of the camera system. For the
foreground extraction only the reference color camera C5 (1920 × 1080 px.) and
the two ToF cameras (200×200 px) T1 left and T2 right from the reference cam-
era, which measure depth per pixel through correlation of emitted and reflected
infrared light, are used. The ToF cameras provide reliable depth information but
are limited to 7.5 meters. For more information on ToF cameras refer to [8]. Be-
fore data aquistion, all cameras are calibrated using a joint method described in
[15]. After data acquisition, the ToF depth images are transformed to the view

Fig. 1. From left to right: Camera system, color image from the reference camera,
transformed depth image
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of the reference camera, using 3D mesh warping technique from [7,1]. Figure 1
shows the transformed depth from the view of the reference camera. Black ar-
eas are caused by occlusion regions not seen by the depth cameras. After data
acquisition and pre-processing we have a video sequence in form of color images
and corresponding depth images from the view of the reference camera.

3 Separation of Foreground and Background

Separation of foreground and background is an important task for many appli-
cations. However the question of what is considered to be the foreground and
what the background is application specific and can’t be answered in general.
Many applications, for example in TV or 3DTV, are concerned with foreground
extraction in indoor scenarios, where all objects inside a room a considered as
foreground, and room walls, ceiling and floor as background. Therefore, we as-
sume that the scene is confined to a room. Under this assumption we define the
outer boundaries of the room, like floor, walls or ceiling to be the background
and consider the interior as the foreground.

(a) (b) (c)
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Fig. 2. (a) Normals after initial estimation with PCA (11 × 11 window), color coded;
(b) normals for the pixel in the most outer histogram bin after refinement, color coded;
(c) original image without background; (d) schematic representation of 3D graph; (e)
trimap generated from image in (c): black pixel are not considered for segmentation;
(f) final segmentation result; (g) a schematic representation of a room with objects,
and normal for the left wall; (h) histogram built in the direction of the normal; Bin0

is the most outer bin in the scene for this direction and contains all wall points
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3.1 Foreground Extraction Based on Directed Histograms

The idea to use one thresholding plane to separate foreground from the back-
ground based on depth or infrared images is not new [19,4,18]. However, in pres-
ence of slanted surfaces like walls, floor or ceiling, to do the separation with only
one plane is difficult and in some cases impossible. In order to overcome these
limitations we developed a method, which uses multiple thresholding planes, fit-
ted to bounding walls, which are positioned in the scene automatically.

Initial estimation of the plane orientation
In a first step we estimate a normal for each point in the depth image. This is
done by projecting each neighbor point in a window around the current point in
3D space and by applying principal component analysis (PCA). PCA is applied
by calculating the covariance matrix from the given point cloud and by perform-
ing singular value decomposition.The calculated eigenvector with the smallest
eigenvalue is then the plane normal in least squares sense. Figure 2 (a) shows
the results from the normal estimation through the PCA.

In a second step we apply a clustering method from [12] to get a discrete set
of normals as the first estimates for the thresholding plane orientations. The
method performs iterative splitting of the clusters orthogonal to their greatest
variance axis. The clustering is performed hierarchically, starting with one clus-
ter constructed from all image points and proceeding to split a cluster with the
biggest variance until a maximal cluster number is reached. To determine the
optimal cluster number adaptively, we stop the splitting if no cluster with vari-
ance over a certain threshold exist. The main idea behind the clustering is to
reduce the set of candidates for later processing.

Robust orientation estimation
After the initial normal estimation we have a discrete set of normals represent-
ing initial orientations for the thresholding planes. To increase robustness in
our refinement process, we order the normals in decreasing order based on the
size of the corresponding clusters (biggest cluster first). Following steps are then
performed iteratively for each normal in the set:

• First, the normal is oriented to point to the inside of the room, and a his-
togram is calculated in the direction of the normal, by projecting all 3D data
points from ToF data to the line defined by the normal. By orienting the
normal inwards, we assure that the first bin (Bin0) in the histogram is the
most outer bin in the scene (see figure 2 (g) and (h) ). The bin size of the
histogram is defined by the user and was set in our experiments to 20 cm,
to increase robustness against errors in depth measurement.

• Second, from the first histogram bin a new plane orientation is estimated
based on RANSAC [6]. All points in the bin are then classified in inliers and
outliers based on predefined threshold for distance from the plane and an
optimal fitting plane is calculated for the inliers using principal component
analysis. The refined normal is set to the normal of the estimated fitting
plane and a new iteration starts.



300 A. Frick, M. Franke, and R. Koch

The number of iterations in the refinement process is defined by the user and
was fixed in our experiments to 3. After the iterative refinement all 3D points
in the first bin are projected to the fitting plane in first bin from the last it-
eration. Figure 2 (b) shows the normal vectors for the pixel corresponding to
the 3D points in the first bin for each refined normal. The pixel colored white
correspond to the 3D points, which are not lying in the first bin of any normal
and are foreground candidates.

Final thresholding
The final thresholding is performed by construction of a directed histogram for
each refined thresholding plane orientation (refined normal in the discrete set)
and by placing the thresholding plane after the first histogram bin. All pixel in
the depth image, corresponding to 3D points in the first bin are removed from
the image (all points in the outer hull of the scene point cloud, see figure 2 (g)
and (h)).

3.2 Grab-Cut Segmentation in a Video Volume

Due to the ToF depth measurement errors and big resolution change during the
transformation of depth to the view of the reference camera some artifacts appear
in the thresholded image after initial foreground extraction (see figure 2 (c)). In
order to reduce these artifacts, we apply time-consistent color segmentation step
based on grab - cut algorithm [14], extended to a video volume.

Similar to the grab - cut algorithm for one color image, we use trimaps to
divide an image in definitive foreground, definitive background and uncertainty
region. We use gaussian color mixture models to represent foreground and back-
ground, but build and update these models for a batch of images simultaneously.
To achieve the temporal consistency we construct a 3D graph from all images in
a batch, connecting pixel in different images through temporal edges. To handle
the complexity we operate on the image pyramid and include only pixel in the
uncertainty region, as well as their direct neighbors in definitive foreground and
background in graph construction. In the following we describe our refinement
scheme in more detail.

Automatic Trimap generation
For the trimap generation we convert each thresholded image to a binary image.
After that morphological operations, erosion and dilation, are performed. Let
Ek be the k-th binary image after erosion and Dk the k-th binary image after
dilation and DDk the binary image after dilation applied to Dk. The definitive
foreground for the k-th batch image is then defined as T k

f = Ek, uncertainty re-
gion as T k

u = Dk −Ek and definitive background as T k
b = DDk −Dk. The trimap

for bacth image k is defined as T k = T k
u ∪T k

f ∪T k
b . Additionally a reduced trimap

is defined, as T
k

= T k
u ∪ {pk ∈ (T k

b ∪T k
f )|∃qk ∈ T k

u with dist(qk, pk) ≤ √
2}. The

number of erosion and dilation operations defines the size of T k
u , T k

f and T k
b in

the trimap. Figure 2 (e) shows the generated trimap for the thresholded image
from figure 2 (c).
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Hierarchical segmentation scheme
To reduce computational complexity we build an image pyramid of N levels,
whereby in each next level the resolution of the image from the previous level is
reduced by a factor of 2. All images in a level are processed in batches of size
|B| as follows. For each batch B:

1. A trimap is created for each image.
2. Using the definitive foreground and definitive background from all trimaps

in the batch two gaussian mixture color models are created, one for the fore-
ground GMf and one for the background GMb. To create a gaussian mix-
ture model, we use the clustering method from [12] with a specified variance
threshold as a stopping criterium (as described in section 3). The clusters
calculated by the clustering algorithm are used to determine individual gaus-
sian components of a gaussian mixture model. By using a variance threshold
as a stopping criterium, we are able to determine the number of clusters and
hence the number of gaussian components automatically, instead of setting
it to a fixed number specified by the user as in [14].

3. A 3D graph in a video volume is constructed similar to [10] and a graph -
cut segmentation technique [2] is applied to classify all pixel in the unknown
regions T k

u (k = 0, ..., |B|) as foreground or background. The classification
of pixel is stored in a map A, with A[pk] = FG if the pixel pk from the k-th
batch image is classified as foreground and A[pk] = BG else.

4. The color models are updated based on the pixel classification A.
5. Steps 3 and 4 are repeated until a maximum number of iterations is reached.

We start processing with the lowest level N . For this level trimaps are generated
from the thresholded images as described before. For each successive level we use
the segmentation results from the previous level to create more accurate trimap.
For the level N the size of the uncertainty region is specified once for the whole
sequence (each trimap has the same uncertainty size) and has to be chosen ap-
propriate to compensate for errors due to imperfect depth measurements. For
the successive levels the width of the uncertainty region is fixed, to compensate
for errors due to up-sampling.

Graph cut segmentation
The classification of pixel in a video volume (batch B) in foreground and back-
ground can be formulated as a binary labeling problem on the map A and ex-
pressed in the form of the following energy functional

FA =
∑

pk∈⋃ |B|
k=0 T

k

D(pk) +
∑

{pk,qk}∈ES

λSSA(pk, qk) +
∑

{pj ,qk}∈ET

λTTA(pj , qk) (1)

ES defines spatial 8-neighborhood for each image Ik ∈ B
ES = {{pk, qk}|pk, qk ∈ T k ∧ dist(pk, qk) ≤

√
2} (2)

ET defines temporal neighborhood between two successive images Ik, Ij ∈ B.

ET = {{pj, qk}|pj ∈ T j ∧ qk ∈ T k ∧ (pj ∈ T j
u ∨ qk ∈ T k

u ) ∧ dist(pj , qj) ≤ n} (3)
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In other words, a pixel pj ∈ Ij is considered a temporal neighbor for a pixel
qk ∈ Ik, if the distance between pixel coordinates does not exceed a maximum
distance n and either pj or qk belong to an uncertainty region. The size of the
neighborhood is defined through the factor n. For simplicity the neighborhood
is chosen as a rectangular window with the size TN × TN pixel.
D(pk) is a data cost term penalizing assignment of a pixel pk to foreground or

background based on similarity to the gaussian mixture models GMf and GMb.

D(pk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−lnPr(pk|GMb), if A[pk] = BG ∧ pk ∈ T k

u

−lnPr(pk|GMf ), if A[pk] = FG ∧ pk ∈ T k
u

0, if A[pk] = FG ∧ pk ∈ T k
f ;A[pk] = BG ∧ pk ∈ T k

b

∞, if A[pk] = FG ∧ pk ∈ T k
b ;A[pk] = BG ∧ pk ∈ T k

f

(4)
SA(pk, qk) is a spatial cost term penalizing the assignment of the neighbor pixel
pk, qk to different labels and is defined as

SA(pk, qk) = S(pk, qk)
δ(A[pk], A[qk])
dist(pk, qk)

, S(pk, qk) = exp(−|I(pk) − I(qk)|2
2σ2

S

),

(5)
where δ(A[pk], A[qk]) = 0 if A[pk] = A[qk] and 1 else.
TA(pj , qk) is a temporal cost term which should assure consistency between

successive frames Ik, Ij ∈ B and is defined as

TA(pj , qk) = T (pj, qk)δ(A[pj ], A[qk]), T (pj , qk) = exp(−|Ij(pj) − Ik(qk)|2
2σ2

T

).

(6)
The parameters λS and λT are weighting factors for the balance between dif-
ferent cost terms. The parameters σ2

T and σ2
S model spatial and temporal color

variance. The energy functional FA can be mapped on a 3D graph G and ef-
ficiently minimized using one of the max - flow / min-cut algorithms from the
literature. We define G as G = (V,E), with the node set V =

⋃|B|
k=0 T

k ∪ {s, t}
and the edge set E = ED ∪ ES ∪ ET , whereby s and t are two additional nodes
representing background (t) and foreground (s). We define ED as

ED = {{s, pk}, {t, pk}|pk ∈
|B|⋃
k=0

T
k} (7)

and set the capacity weights for an edge e ∈ E to S(e), if e ∈ ES and T (e), if
e ∈ ET . For e ∈ ED we set the capacity weights for pk ∈ T k

u to −lnPr(pk|GMb),
if s ∈ e and −lnPr(pk|GMf ), if t ∈ e. For pk ∈ T k

f the capacity weights are set
to ∞, if s ∈ e and 0, if t ∈ e and for pk ∈ T k

b to ∞, if t ∈ e and 0, if s ∈ e. To
minimize the functional a minimum cut is calculated on the graph G using the
algorithm from [3], where minimum cut capacity is equivalent to the minimum
of the functional FA. Figure 2 (f) shows the segmentation result for the image
from figure 1 and figure 2 (d) a schematic representation of the graph G.
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Fig. 3. Results after initial thresholding (left) and after grab-cut refinement with tem-
poral constraints (right)

4 Experimental Results

For the experimental evaluation we captured a sequence of 800 frames. After pre-
processing, depth and color images were first scaled to the resolution of 960×540
px. to reduce computational complexity. For the initial foreground extraction,
based on depth thresholding, the bin size in the orientation refinement step
was set to 20 cm and the inlier threshold for RANSAC to 3 cm. The bin size
for the last thresholding step was set to 10 cm. For some frames the bin size
and inlier threshold had to be adjusted to compensate errors on image borders
due to bad normal alignment, but no manual correction of thresholded images
was necessary. Figure 3 (left) shows the result from image 296 after the initial
thresholding step. For the grab - cut refinement we used 3 pyramid levels. The
segmentation parameters like: Tu size (s(Tu)), λS , λT , batch size |B| and tem-
poral neighborhood size TN , were set for the whole sequence as follows: (level
3: s(Tu) = 4, λS = 3, λT = 3 , |B| = 100, TN = 7), level 2 (s(Tu) = 6, λS = 3,
λT = 3 , |B| = 30, TN = 13) and level 1 (s(Tu) = 6, λS = 30, λT = 10 ,
|B| = 50, TN = 1). Through our experiments we found out that longer batches
provide in general better segmentation results due to more stable color models.
The smoothness parameters λS and λT were determined experimentally. The
size of the uncertainty region for the level 3 was also chosen experimentally to
compensate for depth measurement errors. For the levels 2 and 1 it was fixed
to 6 px., to compensate for errors due to up-sampling. The size of the temporal
neighborhood in general should be chosen appropriately to compensate scene
motion. However, to handle computational complexity and memory consump-
tion, we chose TN for level 1 to be 1 pixel. To compensate possible errors due
to motion, the spatial and temporal balance smoothness weights were chosen
unequal: λS = 30 and λT = 10. For other levels TN was chosen appropriately to
capture moderate movements of the standing person in the foreground. Figure
3 shows the results after the grab-cut refinement (right) in comparison to the
results after the initial thresholding (left). Figure 4 shows some chosen frames
from the sequence (top) together with the segmentation results (bottom). Notice
that the camera was moved from right to left and back during the capturing. To
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Fig. 4. Frames 0, 200, 430, 700 and corresponding segmentation results

evaluate the quality of the segmentation more thoroughly we segmented 11 suc-
cessive images (286 − 296) manually. The results from automatic segmentation
through the proposed approach were than compared to the manual segmentation
results (see automatic results for 296 in figure 3 (right)). Without time edges the
percentage of false classified pixel compared to manual segmentation is 1.97%,
with time edges the number of false classified pixel decreases to 1.57%. While
the difference is only about 0.4%, the flickering on the object borders decreases
significantly.

5 Conclusion

We introduced an approach for automatic foreground - background separation
in videos. One contribution of this paper is a clear definition of background
based on one dimensional histograms in 3D space. The second contribution is
an automatic segmentation scheme of the foreground objects in a video volume
incorporating temporal constraints. Based on depth and color/contrast cues our
approach is capable of handling dynamic scenes and moving camera, as shown
in the experimental results. In our future work we plan to extend our approach
to segmentation of individual objects in the scene, which could be extracted
from the initial thresholded images based on further depth analysis. We will also
investigate the alternatives to the trimap-controlled segmentation, as it can lead
to errors in presence of thin structures and large depth errors.
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Abstract. Segmentation is an important preprocessing step in many ap-
plications. Compared to colour segmentation, fusion of colour and depth
greatly improves the segmentation result. Such a fusion is easy to do by
stacking measurements in different value dimensions, but there are better
ways. In this paper we perform fusion using the channel representation,
and demonstrate how a state-of-the-art segmentation algorithm can be
modified to use channel values as inputs. We evaluate segmentation re-
sults on data collected using the Microsoft Kinect peripheral for Xbox
360, using the superparamagnetic clustering algorithm. Our experiments
show that depth gradients are more useful than depth values for segmen-
tation, and that channel coding both colour and depth gradients makes
tuned parameter settings generalise better to novel images.

1 Introduction

Segmentation of a colour image into semantically meaningful regions is one of
the oldest problems in computer vision. Purely colour-based segmentation is of-
ten problematic, due to colour changes on the surfaces of textured objects. It
is thus often argued that without auxiliary information (such as prior knowl-
edge obtained e.g. using object appearance learning) bottom up, image based
segmentation is an ill-posed problem [15,11].

In contrast to colour regions, homogeneous regions obtained from depth seg-
mentation are more likely to correspond to what we intuitively perceive as ob-
jects. The reason for this is that we categorise objects, mainly according to what
actions we can perform on them [14,11]. An entity that is defined in 3D is more
likely to be acted upon separately, than one that is defined only by colour. By
fusing colour and depth we can however obtain an even better result, and here
we investigate how to do so.

Our intended application is segmentation of individual leaves on growing
plants, and we use data from the recently introduced Microsoft Kinect sen-
sor1. As an operational problem definition, we make use of a set of hand-labelled
images, where individual leaves have been assigned different labels.
1 http://www.xbox.com/Kinect

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 306–315, 2011.
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1.1 Related Work

Much work on fusion of colour and depth has been done over the years. Such
work has either used custom made sensors, as e.g. in [4], or more recently, time-
of-flight sensors [7,3,5]. Another large body of similar work is stereo rig segmen-
tation [1,20]. Stereo rig research is however of a different nature, as the input is
two RGB images, and thus best results are obtained when jointly estimating a
segmentation and a depth map [20].

We use depth from structured light (the Kinect output), which gives us quasi-
dense depth maps; values almost everywhere, but with thin missing-data shadows
near occlusion boundaries.

Currently there exists no standard evaluation set for RGB+depth segmenta-
tion, instead only qualitative examples of success are shown, see e.g. [4,1,7,3]. In
[20,5] only the depth map quality is evaluated. In colour image segmentation,
good evaluation datasets exist, see e.g. [16], and these are of great use when
selecting algorithms for particular applications. We have assembled a dataset
with hand-labelled ground truth, and we use it to thoroughly verify the relative
contributions of colour and depth, as well as the improvement offered by channel
coding.

Our application is inspection and measurement of growing plants. As the
scene is static, we cannot exploit either background modelling [7] or tracking
[3]. Furthermore, purely colour-based segmentation is particularly brittle here,
due to small reflectance variations, shadows, and in particular occlusions [6].
Segmentation for plant model registration is considered to be a hard problem
that requires manual interaction even if colour and depth information is used [17].

We improve fusion of colour and spatial derivatives of depth, by using the
channel representation [12]. By feeding the fused channel vectors to a state-of-
the-art colour segmentation algorithm [2] we obtain a method that once tuned,
will generalise well to new data.

2 Methods and Materials

2.1 The Microsoft Kinect

The Microsoft Kinect1 is a peripheral device for the Xbox 360. It is used to obtain
dense depth estimates using a structured light pattern. The device contains a
colour camera, a near-infrared (NIR) camera and a laser projector, offset by a
narrow baseline, see Fig. 1, a, b.

A structured light pattern is projected onto the scene, using a laser projector
with a characteristic wavelength of 830 nm2. The structured light pattern is
designed to have a negligible auto-correlation, and is imaged by the NIR camera.
The displacement of the NIR camera relative to the laser projector allows the
distance to objects in the scene to be computed using triangulation [18]. The
device is capable of outputting RGB, NIR and depth images with 640 × 480

2 http://openkinect.org/wiki

http://openkinect.org/wiki
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a b

c d e

Fig. 1. The Kinect device: a, b (A) – laser projector, (B) – colour camera, (C) –
NIR camera; Images from the Kinect: c – RGB image from colour camera; d –
light pattern as imaged by NIR camera; e – resulting depth map

pixels at 30 frames per second (Fig. 1, c–e). Open source drivers in the form
of the libfreenect3 library are available from the OpenKinect4 community
and can be used to interface with the Kinect device. Approximate formulae for
converting the Kinect depth map to metric distances are also available2.

We use the libfreenect3 library to control the Kinect, and receive the colour
and depth video streams. The two streams need to be aligned, since the position,
orientation and field of view (FoV) of the cameras are different. We do this by first
estimating the intrinsic camera parameters of the two cameras, using the widely
used OpenCV5 implementation of [22]. We then find the relative orientation and
translation between the cameras, by minimising the transfer error in the image
plane of the colour image, using manually selected corresponding points in the
colour and NIR images. We do this using the non-linear least squares solver
lsqnonlin in Matlab.

Note that, as the Kinect cameras are rigidly mounted, the calibration de-
scribed here only has to be performed once for each unit. In the following, we
thus consider the RGB image f(x, y), and the depth map h(x, y), transferred to
the RGB camera as the input.

2.2 Fused Feature Vectors

The depth image h(x, y) delivered by the Kinect is a) quantised and b) the
quantisation levels are proportional to the absolute depth. This implies that
segmentation based on the depth becomes more difficult if the respective part of
the scene is located further away from the camera. Due to the constant spatial
3 https://github.com/OpenKinect/libfreenect
4 http://openkinect.org
5 http://opencv.willowgarage.com

https://github.com/OpenKinect/libfreenect
http://openkinect.org
http://opencv.willowgarage.com
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accuracy in the NIR camera, this behaviour is sensible. However, for leaves that
touch each other and which are at distances of approximately one meter, the
segmentation will bleed out between neighbouring leaves if the segmentation is
based on regularising the gradient of the depth image:

Esmooth = ρ(|∇h(x, y)|2) , (1)

where Esmooth is the regularising term and ρ() is a monotonic function.
Touching leaves are unlikely to have identical surface normals. Therefore, we

choose to regularise the differences in the gradients of the depth map instead:

Esmooth = ρ(|∇hx(x, y)|2 + |∇hy(x, y)|2) , (2)

where hx(x, y) = ∂
∂xh(x, y) and hy(x, y) = ∂

∂yh(x, y).
Thus, we have three requirements for assigning image points to the same seg-

ment: similar colour (f(x, y)), similar x-derivative of the depth image (hx(x, y)),
and similar y-derivative of the depth image (hy(x, y)). In the ideal case, the fea-
ture vector used for segmentation, called g(x, y) in what follows, should represent
f(x, y), hx(x, y), and hy(x, y). In the experiments below, five different variants
of the feature vector will be used:

g(x, y) = f(x, y) (3)

g(x, y) = h(x, y) (4)
g(x, y) =

⎡⎣ hx(x, y)
hy(x, y)√

hx(x, y)2 + hy(x, y)2

⎤⎦ (5)

g(x, y) =

⎡⎣(1−λ)w(f(x, y); b1)
λw(hx(x, y); b2)
λw(hy(x, y); b2)

⎤⎦ (6) g(x, y) =

⎡⎢⎢⎣
(1 − λ)f(x, y)
λhx(x, y)
λhy(x, y)

λ
√
hx(x, y)2 + hy(x, y)2

⎤⎥⎥⎦ (7)

where λ > 0 is a weight factor between colour and depth and w is the channel
vector computed using the basis function bj , cf. sect. 2.4. The respective feature
vector g(x, y) is then spatially clustered using superparamagnetic clustering.

2.3 Superparamagnetic Clustering

In the image, each pixel is characterised by a feature vector g(x, y). Our goal
is to to group the image pixels into spatially connected areas of similar feature
values. This defines a pixel labelling problem, where a label has to be assigned
to every pixel i, which we call li. To find this label configuration, we use the
method of superparamagnetic clustering of data [2]. In this method, each pixel
i is assigned a spin variable σi (not to be confused with the label li), which
can take q different states. The spins interact with each other such that spins
having a similar feature value have the tendency to align. Here, we only consider
nearest neighbour coupling, i.e., two pixels are i and j with coordinates (xi, yi)
and (xj , yj) are only interacting if |(xi − xj)| ≤ 1 and |(yi − yj)| ≤ 1.
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The spin states configuration is then determined by a Potts energy function

E = −
∑

〈ij〉Jijδ(σi, σj) , (8)

with Jij = 1− $/$̄ and $ij = |gi −gj|, where gi and gj are the feature vectors
of the pixels i and j, respectively. The mean distance $̄ is obtained by averaging
over all bonds and scaling with a factor h. The Kronecker δ function is defined
as δ(a, b) = 1 if a = b and zero otherwise.

The model is a statistical model, so the probability P (S) of a spin configura-
tion S is determined by the Boltzmann distribution through P (S) ∝ exp(−E/T ),
where T is the temperature of the system. This implies that the energy is the
logarithm of the probability of the spin configuration and can thus also be viewed
as the log posterior of a Markov Random Field [10].

The grouping problem is then solved by finding clusters of correlated spins in
the low temperature equilibrium states of the energy function E, using a sigmoid
of E as the link strength. The total number M of segments is then determined
by counting the computed segments. It is usually different from the total number
q of spin states, which is a parameter of the algorithm (here q = 30).

We solve this task by implementing a clustering algorithm. In a first step,
“satisfied” bonds, i.e. bonds connecting pixels of identical spins σi = σj , are
identified. Then, in a second step, the satisfied bonds are “frozen” with some
probability Pij . Pixels connected by frozen bonds define a cluster, which are
updated by assigning the same value to all spins inside a cluster [19]. In the
method of superparamagnetic clustering proposed by Blatt et al. [2] this is done
independently for each cluster. The algorithm is controlled by the “temperature”
parameter, and has been shown to deliver robust results over a large temperature
range. After 100 iterations, clusters are used to define segments with labels li.
As a consequence, two spins which are in the same spin state can carry different
segment labels. This allows testing new spin combinations in the next iteration,
while stabilising segments having similar feature values.

2.4 Channel Coding

Adding depth derivatives, hx(x, y), hy(x, y), and colour, f(x, y), as different com-
ponents of a vector space (7) is not sensible due the different respective physical
units. Instead, we will use smooth basis functions to generate probabilistic repre-
sentations of colour and depth derivatives and combine those (6). The generated
representations, called channel representations [12], are a special case of soft
histograms, with the additional property that modes of the underlying density
can be extracted with sub-bin accuracy [9].

Channel representations are also known as population codes [21]. They differ
from GMMs and Parzen window (or kernel density) estimators, because posi-
tions of the basis functions are spread regularly across the domain. This has
the advantage that signal processing methods can be used for manipulation, see
e.g. [13] for the use of basis functions in the colour channels.
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Fig. 2. Illustration of basis functions for N = 8. The basis functions are spaced with
distance d and have a width of 3d. The encoded values may lie between gmin and gmax.

Given a feature component g, the basis functions are located on a grid with
spacing d. The used kernel function b(g) are compact and overlapping. Through-
out this paper they have a support of size 3d, see Fig. 2. In the remainder of this
paper, cos2 kernel functions [12] are used:

b(g) � 2
3d

{
cos2(πg

3d ) |g| < 3d
2

0 |g| ≥ 3d
2

. (9)

The range of g together with d determine the number of basis functions N =
(gmax − gmin)/d + 2. The grid index is n ∈ {0 . . .N − 1}. Using (9), we obtain
the channel vector w = [w0, w1, . . . , wN−1]T from g using:

wn(g; b) = b(g − nd− d/2 − gmin) . (10)

Usually, several feature components from a local neighbourhood are pooled in
each vector by local averaging of channel vectors.

The distance of channel vectors behaves like a sigmoid function of the cor-
responding feature distance: Large distances become saturated [9]. Statistically
independent channel vectors can be concatenated, as is done in (6), and still
result in sensible distance measures. The RGB vector might be interpreted as a
channel vector of the spectral density with length N = 3 and the colour match-
ing function as basis functions. Applying spatial averaging, the resolution of the
channel vector is increased [8]. Channel encoding is denoted w(f(x, y); b1) in (6).

3 Experiments

3.1 Data Sets

Evaluation data consists of six pairs of images, each consisting of a colour image
(640 × 480 pixels in 8-bit RGB), and an aligned depth map of equal resolu-
tion. An example of such an image pair is shown in figure 3. These image pairs
(henceforth denoted plant1 to plant6) were chosen to illustrate the challenges
faced when performing segmentation based on colour and depth. The objective
is to segment leaves on the plant from the background, and from each other.
This causes problems when using colour-based segmentation due to the similar-
ity in colour between one leaf and another. The complex structure with many
occlusion boundaries where leaves overlap also causes problems for depth-based
segmentation, as do the connections of leaves to one another.



312 M. Wallenberg et al.

Fig. 3. Examples of evaluation images and segmentation evaluation. From left
to right: Colour image and depth map for the plant3 images. Illustrations (a) and (b)
used to describe the segmentation evaluation procedure (see section 3.2).

3.2 Performance Evaluation

Performance evaluation was carried out using manually segmented ground-truth
images. In these images, regions of the kind we wish to segment were manually
separated and labelled. Examples of such images are shown in figure 5, first and
third row. In [16], precision and recall measures are used to evaluate performance.
While this is readily applicable to a binary problem, its generalisation to the
multi-region segmentation case is not straightforward. We instead propose a
consensus score, s, with which to score a particular segmentation of an image.
The score s is computed as the sum of two terms, where one serves to reward
coverage of ground truth segments and penalise over-segmentation, and the other
serves to penalise under-segmentation and merging of ground-truth regions.

When calculating sY(X), X is the segment for which the score is calculated,
and Y = {Yj}J

1 are overlapping segments in the result being compared to. With
regions as in figure 3(a) (with X = A and Y = {B1, B2}), A corresponds to a
ground-truth segment, and B1 and B2 correspond to overlapping segmentation
results. With S(R) denoting the area of a particular segment, sB(A) is:

sB(A) = max
i

(S(A ∩Bi) −
∑
j �=i

S(A ∩Bj)) . (11)

For the example in figure 3(a) we get sB(A) = S(A ∩B1) − S(A ∩B2).
When all ground-truth segments in an image have been scored in this way,

the roles of ground-truth and segmentation results are reversed. With regions as
in figure 3(b), with B corresponding to a segment in the segmentation result,
and A1, A2 and A3 corresponding to ground-truth regions, sA is calculated as
in (11), which in this case means sA(B) = S(B ∩A1) − S(B ∩A2) − S(B ∩A3).

The final consensus score s is then the sum over all K ground-truth regions
and all J segments as:

s =

∑K
k=1 sB(Ak) +

∑J
j=1 sA(Bj)

2
∑K

k=1 S(Ak)
, (12)

where
∑K

k=1 S(Ak) is the total area of ground-truth regions in an image (this
produces a score in the range −1 < s ≤ 1). Note that this method differs
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Fig. 4. Consensus scores on the plant data set. Images indicated with asterisks were
used for parameter tuning of all methods. Note that although RGB+ΔD and channel
coded RGB+ΔD have similar results on the tuning images, channel coded RGB+ΔD
has a higher score on all evaluation images.

from [16]. Since we cannot evaluate results in areas not covered by ground truth
data, these will not affect the resulting score (12). We also use the entire regions
instead of comparing boundaries as our goal is coverage, rather than precise
location of boundaries.

3.3 Tested Methods

The methods we evaluate all make use of superparamagnetic clustering, as de-
scribed in section 2.3. The feature vectors used are those described in section 2.2.
The depth map gradient was estimated using finite differences. A small amount
of low-pass filtering (3 × 3 Gaussian kernel with σ = 1.5 px) was applied to each
component of the feature vectors before clustering. This serves to reduce noise,
and was found to improve the results for all tested methods.

For all methods, the temperature parameter was kept constant at T = 0.05.
Scaling parameters were tuned by maximising consensus score on the plant1
and plant3 sets. For the methods using only colour or depth, the global scaling
parameter was tuned individually for each method. In the cases when both depth
and colour information was used, the global scale factor was optimised together
with the relative weight λ for each method (see section 2.2, eq. (3) to (7)). The
number of basis functions in channel coding was N = 6 for colour and N = 7
for each of hx(x, y) and hy(x, y) (resulting in a total of 20 channels).

3.4 Results

Results of the evaluation procedure are shown in figures 4 (consensus scores) and
5 (segmented images). Purely colour- and depth-based segmentation performs
worst, as can be expected given the nature of the data. Depth gradient-based
segmentation (Δdepth) performs better than either of these two. The concate-
nation of RGB colour and depth gradient (RGB + ΔD) performs well overall,
but seems to show a slight tendency toward overfitting. The channel-coded vari-
ant (CC RGB +ΔD) shows similar results on the training data, but generalises
better to the other image sets.
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Ground truth 1–3

Result 1–3

Ground truth 4–6

Result 4–6

Fig. 5. Segmentation results on the plant data set, and corresponding ground truth

4 Conclusions

We have evaluated a method for joint colour and depth-based segmentation
using data gathered with the Kinect. The results show that it is indeed possible
to obtain better results by fusing colour and depth, than using either one in
isolation. The greater robustness of the channel-based segmentation indicates
that this is a suitable approach for fusing these measurement modalities. Our
experimental setup with consensus score tuning on two of the image pairs, and
evaluation on all pairs also demonstrates that the parameters found by tuning
generalise well to new data. Future work will include exploring the use of other
colour spaces, as well as other ways to represent the depth maps, before feeding
them to the channel encoding procedure.
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Abstract. Fluorescence microscopy methods are an important imaging tech-
nique in cell biology. Due to their depth sensitivity they allow a direct 3-D imag-
ing. However, the resulting volume data sets are undersampled in depth, and
the 2-D slices are blurred and noisy. Reconstructing the full 3-D information
from these data is therefore a challenging task, and of high relevance for bi-
ological applications. We address this problem by combining deconvolution of
the 3-D data set with interpolation of additional slices in an integrated varia-
tional approach. Our novel 3-D reconstruction model, Interpolating Robust and
Regularised Richardson-Lucy reconstruction (IRRRL), merges the Robust and
Regularised Richardson-Lucy deconvolution (RRRL) from [16] with variational
interpolation. In this paper we develop the theoretical approach and its efficient
numerical implementation using Fast Fourier Transform and a coarse-to-fine mul-
tiscale strategy. Experiments on confocal fluorescence microscopy data demon-
strate the high restoration quality and computational efficiency of our approach.

1 Introduction
Imaging science and cell biology have been interwoven since the beginnings of both
fields, when Robert Hooke discovered plant cells with the help of a microscope [9,
Observ. XVIII]. In their continual symbiosis, virtually every advance in each of the
two fields has been inherently linked with the progress of the other discipline. More
than three centuries after Hooke, cell biology forms one of the keystones of today’s life
sciences, and it continues to pose exciting challenges for imaging science.

Three-dimensional imaging of intracellular structures in living cells is one of these
problems. Its solution is of utmost importance for the understanding of life processes,
or influences that interfere with these life processes. For example, nanoparticles play an
increasing role in modern technology, but their inflammatory and toxicological effects
in human cells are hardly understood. This drives the interest of researchers to study
the effects of nanoparticles within cells. Tracing the transport of those tiny objects in a
living cell is an important part of this research.

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 316–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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While some well-established tools of 3-D imaging such as tomographic methods
turn out impractical for imaging living specimens on the desired scale, one of the most
promising approaches in current imaging that is compatible with the requirements of
this application field are fluorescence microscopy techniques such as Confocal Laser
Scanning Microscopy (CLSM) [12] or Stimulated Emission Depletion Microscopy
(STED) [8]. Due to physical limitations, however, these methods have much lower res-
olution in depth direction than within a constant depth plane. Also, light contributions
from out-of-focus planes cannot be completely suppressed. The low light intensities
involved lead to Poisson noise.

One obtains therefore blurred and noisy data that are severely undersampled in depth
direction. To make them suitable for further analysis in biological research, they need
to be sharpened, denoised, and interpolated to approximately isotropic resolution. Since
measured volumes range up to about 1600×1600×50voxels, computationally efficient
algorithms are needed.

Related work. Deconvolution has been in the focus of image processing research for
a long time. An early and still popular approach is the Richardson-Lucy algorithm
[13,10]. Variational deconvolution methods have been introduced in the nineties [11].
The minimisation interpretation of Richardson-Lucy deconvolution [14] establishes a
relation between both approaches that has been used to establish Richardson-Lucy type
methods with regularisation [2], specifically in variational formulation [5,16]. Decon-
volution of confocal microscopy images has been considered recently e.g. in [5,6].

Variational formulations for interpolation have been considered in [3,15]. A joint
variational approach for (blind) deconvolution and interpolation of missing image infor-
mation (inpainting) has been proposed in [4]. A variational framework for simultaneous
deblurring and motion estimation has been proposed in [1].

Our contribution. To address the multiple degradation of fluorescence microscopy im-
agery of living cells, we propose a novel variational method for simultaneous deconvo-
lution and interpolation in 3-D. By choosing as deconvolution component the modified
Richardson-Lucy approach of the type of [5,16], we obtain an efficient fixed point iter-
ation for minimisation.

Structure of the paper. In Section 2 we develop our joint variational deconvolution
and interpolation approach, and derive the fixed point iteration for its optimisation.
Its space-discrete numerical realisation is addressed in Section 3. Section 4 presents
experimental results on confocal microscopy data to demonstrate the reconstruction
quality and efficiency of the model. We end with conclusions in Section 5.

2 Joint Variational Interpolation and Deconvolution

In this section, we present our model for simultaneous interpolation and deconvolu-
tion. It combines variational interpolation methods [3,15] with the deconvolution model
from [16]. The advantage of the latter is that it leads to a computationally efficient
fixed point iteration similar to Richardson-Lucy deconvolution, called Robust and Reg-
ularised Richardson-Lucy deconvolution. Computational efficiency is crucial since we
aim at reconstructing large fluorescence microscopy 3-D data sets.
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2.1 Deconvolution Model

The deconvolution model from [16] is a modification of the popular Richardson-Lucy
(RL) algorithm [10,13] which is also in broad use for fluorescence microscopy 3-D
deconvolution, due to its simplicity and computational efficiency. Let the degraded im-
age f , the sharp image u, and the point-spread-function (PSF) h be smooth functions
over Ω = IR3 (or IR2 for 2D images). Then RL generates a sequence of successively
sharpened images u1, u2, ... from the initial image u0 := f via the fixed point iteration

uk+1 =
(
h∗ ∗ f

uk ∗ h
)

· uk . (1)

Here, we denote by h∗ the adjoint of the PSF, h∗(x) := h(−x). In the case of a noise-
free observed image (where f = g∗h is satisfied exactly), the multiplier h∗∗ f

g∗h equals
1. Thus, the sharp image g is a fixed point of (1) in this case.

The single parameter of this method is the number of iterations. With more iterations,
the degree of sharpening increases, but at the same time the amount of regularisation
sinks. In the presence of (even very low) noise the results will be dominated by ampli-
fied noise after some number of iterations.

The fixed point iteration (1) is associated with the minimisation of the functional

Ef,h[u] :=
∫

Ω

(
u ∗ h− f − f ln

u ∗ h
f

)
dx (2)

with respect to a multiplicative perturbation, thus slightly adapting the usual Euler-
Lagrange formalism. This variational viewpoint allows to modify RL by introducing
additional regularisers [5,16] that provide a more flexible means of structure-preserving
or structure-enhancing regularisation than the original regularisation by stopping. More-
over, robust data terms can be introduced [16]. With both modifications and the abbre-
viation rf (v) := v − f − f ln(v/f), the energy functional reads

Ef,h[u] =
∫

Ω

Φ (rf (u ∗ h)) + α Ψ
(|∇u|2)dx (3)

where both Φ, Ψ : IR+ → IR are increasing penalty functions, and the regularisation
weightα should be chosen dependent on the noise level in the blurred image. The robust
data term not only handles extreme noise, but also copes with imprecisions in the blur
model and the PSF. Assuming multiplicative perturbation, one can derive from (3) an
Euler-Lagrange equation and finally the fixed point iteration, cf. [16]

uk+1 =
h∗ ∗

(
Φ′(rf (uk ∗ h))

(
f

uk∗h

))
+ α

[
div
(
Ψ ′(|∇uk|2)∇uk

)]
+

h∗ ∗ Φ′(rf (uk ∗ h)) − α [div (Ψ ′(|∇uk|2)∇uk)]−
uk (4)

where [z]± := 1
2 (z ± |z|). This iteration is called robust and regularised Richardson-

Lucy deconvolution (RRRL). It achieves an image restoration quality comparable to
state-of-the-art variational deconvolution at a computational cost comparable to that of
the original RL method, see [16].
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2.2 Interpolation Model

In the interpolation part of our approach, we tie up to PDE models for interpolation and
variational image regularisation as were formulated in [3,15].

Assume that image data is observed in the region D ⊂ Ω and is to be extended to
the entire domain Ω. Taking into account that image data on D are also contaminated
by noise, minimisation of the functional

E[u] =
1
2

∫
D

|u− f |2 dx + α
∫

Ω

Ψ(|∇u|2) dx (5)

performs simultaneous interpolation and denoising, see [3] with total variation regu-
lariser Ψ(s2) = |s|. The use of a non-quadratic penaliser Ψ ensures that edges are
preserved. ForD = Ω, variational denoising is recovered.

2.3 Joint Model

To achieve simultaneous interpolation and deconvolution, we proceed in a similar man-
ner as in [4] where a blind deconvolution approach with quadratic penalisation in the
data term was combined with TV inpainting. We replace the simple data term of (5)
with the deconvolution data term from (3) but evaluate it on the observed domain D
only as in (5). The regulariser is inherited from (5) and acts therefore throughoutΩ. We
aim therefore at minimising the functional

E[u] =
∫

D

Φ (rf (u ∗ h))︸ ︷︷ ︸
data

dx + α
∫

Ω

Ψ(|∇u|2)︸ ︷︷ ︸
smoothness

dx . (6)

Similar as before, the data term herein suppresses deviations from the blur model in
the observed image domain D by asymmetric penalisation of the reconstruction error.
The smoothness term combines structure-preserving denoising in D with structure-
preserving interpolation in Ω \ D. One should, however, be aware that due to the
convolutions also the direct influence of the data term is not limited to D. The regu-
larisation weight α > 0 balances the influence of the data and smoothness terms.

In order to compute the minimiser u, we derive again the Euler-Lagrange equation
for a multiplicative perturbation. As in the case of RRRL, this proceeding not only
allows to derive an efficient RL-style fixed point iteration but also ensures that the pos-
itivity of u is strictly preserved. Denoting by χD the characteristic function of D, the
resulting equation reads(

h∗ ∗
(
χDΦ

′(rf (u ∗ h))
(

1 − f

u ∗ h
))

− α div
(
Ψ ′(|∇u|2)∇u)) · u = 0 , (7)

from which we obtain the fixed point iteration

uk+1 =
h∗ ∗

(
χDΦ

′(rf (uk ∗ h))
(

f
uk∗h

))
+ α

[
div
(
Ψ ′(|∇uk|2)∇uk

)]
+

h∗ ∗ (χDΦ′(rf (uk ∗ h))) − α [div (Ψ ′(|∇uk|2)∇uk)]−
uk . (8)
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We will call this iteration simultaneous interpolation and RRRL deconvolution (IRRRL).
It converges to the steady-state much faster than gradient descent schemes, which are
often used for conventional variational approaches, see [4] for simultaneous interpo-
lation and deconvolution. This will make our method computationally more efficient
than conventional approaches, while at the same time it achieves reconstruction quality
comparable to those approaches.

We remark that classic RL deconvolution [10,13] as well as regularised RL [5], ro-
bust RL [16] and RRRL [16] are embedded as special cases in IRRRL. An extension
to multi-channel image data is straightforward along the lines of [16]. For more details
we refer to [7].

3 Numerical Aspects

To implement IRRRL for the reconstruction of 3-D images, a discretised version of (8)
is required. In the discretisation of the data terms (i.e. the first term in the numerator and
the first term denominator) at voxel (i, j, l) the expensive 3-D convolution operations
are transferred to the Fourier domain. In order to use a Fast Fourier Transform (FFT)
implementation for which image dimensions need to be powers of two, and to mitigate
wraparound errors, images are extended by mirroring within a suitable stripe around the
image domain. The Fourier strategy considerably improves the computational efficiency
of our model over the direct implementation of the convolutions in the spatial domain.
The characteristic function χD is implemented using a binary image.

For the diffusion term D := div (g ∇u), we found that the discretisation method
does not have a major effect on the performance of our model. Thus, we use the simplest
discretisation based on central differences:

Di,j,l

=
1
h1

(
gi+1,j,l + gi,j,l

2
ui+1,j,l − ui,j,l

h1
− gi,j,l + gi−1,j,l

2
ui,j,l − ui−1,j,l

h1

)
+

1
h2

(
gi,j+1,l + gi,j,l

2
ui,j+1,l − ui,j,l

h2
− gi,j,l + gi,j−1,l

2
ui,j,l − ui,j−1,l

h2

)
+

1
h3

(
gi,j,l+1 + gi,j,l

2
ui,j,l+1 − ui,j,l

h3
− gi,j,l + gi,j,l−1

2
ui,j,l − ui,j,l−1

h3

)
, (9)

where h1, h2, and h3 are the spatial grid sizes in x, y, and z directions, respectively.
The diffusivity g = Ψ ′(|∇u|2) is discretised by

gi,j,l = Ψ ′
((
ui+1,j,l − ui−1,j,l

2h1

)2

+
(
ui,j+1,l − ui,j−1,l

2h2

)2

+
(
ui,j,l+1 − ui,j,l−1

2h3

)2
)
. (10)

In order to speed up the computation, we complement the scheme developped so
far by a coarse-to-fine strategy. On each level (except the coarsest one), the result of
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Fig. 1. Confocal microscopy 3-D image of the filament network of a cell. (a) Left: Slice 12 from
the complete 3-D image (1024 × 1024 × 24 voxels). (b) Right: Corresponding slice from the
clipped 3-D image (Dataset A, 376 × 244 × 24 voxels).

the next coarser level serves as a fairly good initialisation, which makes the iteration
converge considerably faster.

Since in our case interpolation is used to increase resolution in depth (z) direction,
we implemented the coarse-to-fine approach as follows:

1. Downsample the 3-D image to a coarse scale in x, and y directions.
2. Apply the IRRRL fixed point iteration at the coarse version of the image.
3. Interpolate the solution of the coarse level and use it as an initialisation at the next

finer scale.

In experiments on 3-D cell images the coarse-to-fine strategy boosts the computa-
tional efficiency of IRRRL by more than a factor 4.

4 Experimental Evaluation

In this section, we show experimental results based on real-world data to illustrate the
benefits of the proposed simultaneous model. Note that all computations were per-
formed in 3-D although only exemplary slices are displayed. In all models, we use
as penalisation functions Φ(r) = 2

√
r in the data term, and the Charbonnier function

Ψ(s2) = 2λ
√

1 + s2/λ2 − 2λ in the smoothness term.
The data sets used in the experiment are confocal fluorescence microscopy 3-D im-

ages of the filament network of living cells. Images and 3-D PSFs were provided by
the Nano-Cell Interactions group at the Leibniz Institute for New Materials (INM),
Saarbrücken. The resolution of these data sets in z direction is significantly lower than
in x and y directions. We aim therefore at deblurring these images and at the same time
interpolating a number of additional slices (typically, 1–5 slices) between each pair of
neighbouring slices in z direction, in order to compensate the unequal resolution and
achieve approximately equal voxel dimensions in x, y, and z directions.

Due to the huge image dimensions, 3-D reconstruction of an entire data set was
beyond the memory capacity of available PCs. The experiments presented here were
therefore carried out on cutouts. Fig. 1(a), for example, shows Slice 12 of a confocal
microscopy data set. Its central part represents the filament network of a complete cell,
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Fig. 2. 3-D reconstruction of Dataset A/2 by 100 iterations of IRRRL with Charbonnier regu-
lariser, α = 0.002. (a) Top left: Slice 8 of Dataset A/2. (b) Top right: Slice 9 of Dataset A/2.
(c) Bottom left: Reconstruction of Slice 8. (d) Bottom right: One of the three slices interpolated
between Slices 8 and 9.

while the outer parts belong to adjacent cells. For our experiments, the number of slices
was retained but all slices were clipped as shown in Fig. 1(b). In the following, this
clipped image will be called Dataset A.

In Dataset A, the voxel size is about 126 nm in depth and 62 nm within the con-
stant depth planes. Interpolating a single slice between each pair of subsequent slices
would actually suffice to make the voxel dimensions almost equal in x, y, and z direc-
tions. For a more informative test of the performance of our method, we remove the
even-numbered slices from the data set. We will refer to this thinned dataset as Dataset
A/2. To compensate for the thinning, each gap between slices of Dataset A/2 should be
filled with three reconstructed slices. On one hand, this makes the problem consider-
ably harder. On the other hand, it enables us to assess the reconstruction quality: Using
sharpened versions of the retained slices from Dataset A as ground truth, we can quan-
tify the reconstruction error of the second of three reconstructed slices. To this end, we
use the average absolute error (AAE).

Fig. 2 illustrates the result of the first experiment. In (a) and (b) subsequent slices
from Dataset A/2 are shown. The reconstruction of the slice in (a) is shown in (c). This
demonstrates the deconvolution quality of IRRRL, since details in the processed slice
(c) are much sharper than in the original slice (a). This makes it easier to track the fila-
ment network of the cell which is essential for microbiological applications like tracing
nanoparticle transport in living cells. The interpolation effect of IRRRL is demonstrated
in Subfigure (d) by one of the three slices interpolated between (a) and (b).



Simultaneous Interpolation and Deconvolution Model 323

Fig. 3. Comparison with the sequential approach. (a) Top left: Slice 14 of Dataset A (not present
in Dataset A/2). (b) Top right: Ground truth (Slice 14 after the preprocessing step). (c) Bot-
tom left: Corresponding interpolated slice from IRRRL reconstruction of Dataset A/2. (d) Bot-
tom right: Corresponding interpolated slice from sequential deconvolution and interpolation of
Dataset A/2. Note particularly the unsatisfactory reconstruction in the lower right part.

In Fig. 3 we present further results together with a ground-truth comparison. Subfig-
ure (a) shows one of the even-numbered slices of Dataset A which are removed in A/2.
The sharpened version shown in Subfigure (b) is taken from an IRRRL reconstruction
of the undecimated Dataset A. This slice forms the ground truth for our subsequent
comparison. Figure 3(c) shows the second interpolated slice between slices 7 and 8
from our IRRRL reconstruction of the decimated Dataset A/2, which corresponds to
Slice 14 of Dataset A. Indeed, the slices in (c) and (b) are not only visually similar, but
also the AAE between them amounts to a low 4.55, confirming the good quality of the
interpolation. For comparison, the AAE between the sharpened slices 7 and 8 is 16.83.

In our second experiment, we want to demonstrate the advantage of simultaneous
interpolation and deconvolution over a sequential approach that deconvolves the data
first, and then interpolates additional slices. We deconvolve therefore Dataset A/2 by
RRRL and then interpolate the three missing slices using the variational interpolation
model (5). The result is shown in Fig. 3(d). This image corresponds to the same slice as
(b) and (c). The visual impression that the reconstruction quality of (d) is inferior to (c)
is confirmed by the AAE of (d) vs. (b) which is 11.4.

A second example of reconstruction by IRRRL is shown in Fig. 4, based on a differ-
ent dataset.

Finally, in order to illustrate the computational efficiency of IRRRL, we collect in
Table 1 runtime measurements of IRRRL and a conventional variational approach for
simultaneous deconvolution and interpolation.
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Fig. 4. 3-D reconstruction by IRRRL with Charbonnier regulariser, 100 iterations, α = 0.001.
(a) Left: Slice 5 of a fluorescence microscopy data set (Dataset B, 486 × 297 × 22 voxels). (b)
Right: Interpolated slice between slices 5 and 6.

Table 1. Approximate computational expense of the conventional variational simultaneous inter-
polation and deconvolution model and different implementations of the IRRRL model. Compu-
tation times refer to a single-threaded calculation on a Core2Duo CPU running at 2.00 GHz.

Implementation Iterations Computation Reduction factor w.r.t.
time (m) conventional implementation

conventional 500 6020 1
Spatial 100 1791 3.36
Fourier-spatial 100 135 44.59
Coarse-to-fine 20-20 33 182.42

We start with the conventional method. It consists essentially in a non-blind variant
of the functional from [4] being minimised by gradient descent. For reasonable recon-
struction quality, 500 iterations are needed. A straightforward IRRRL implementation
speeds up the computation by a factor of more than three. Some increase in the com-
putational cost of a single iteration is more than outbalanced by the reduction of the
iteration count to 100 for comparable reconstruction quality.

In both cases so far convolution was computed in the spatial domain. Since the con-
focal microscopy blur kernel has fairly large spatial dimensions, it is beneficial to use
instead an FFT-based convolution via the Fourier domain. In our example, this achieves
a speed-up factor of about thirteen. In a last step, we improve this method further by
introducing the coarse-to-fine strategy with just two scales, thereby increasing the speed
roughly to fourfold.

5 Conclusion and Future Work

We have developped an integrated variational approach for 3-D image deconvolution
and interpolation that does not only deliver reconstruction in high quality but also allows
efficient numerical implementation by means of a fixed point iteration similar to the
Richardson-Lucy algorithm. Further speed-up was achieved by transferring convolution
operations to the Fourier domain via FFT, and a coarse-to-fine strategy.
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Future work will be directed to integrate this method with other image processing
tools for 3-D confocal microscopy data into efficient software for cell biological re-
search. Moreover, improvements of the model like edge-enhancing regularisers will be
investigated. Concerning the implementation, 3-D image processing is highly demand-
ing in terms of time and memory, so further algorithmic optimisation in both parameters
is another topic of ongoing research.
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Abstract. Steerable filters are a common tool for feature detection in early vi-
sion. Typically, a steerable filter is used as a matched filter by rotating a tem-
plate to achieve the highest correlation value. We propose to use the steerable
filter bank in a different way: it is interpreted as a model of the image formation
process. The filter maps a hidden ’orientation’ image onto an observed intensity
image. The goal is to estimate the hidden image from the given observation. As
the problem is highly under-determined, prior knowledge has to be included. A
simple and effective regularizer which can be used for edge, line and surface
detection will be used. Further, an efficient implementation in terms of Circular
Harmonics in the conjunction with the iterated use of local neighborhood opera-
tors is presented. It is also shown that a simultaneous modeling of different low-
level features can improve the detection performance. Experiments show that our
approach outperforms other existing methods for low-level feature detection.

1 Introduction

Steerable filters, introduced in [1], are a common tool in early vision and image analysis.
The original idea was motivated by correlating a matched filter for different orientations
to get an evidence for some local feature of interest. Applications of steerable filters are
widespread, e.g. in local orientation analysis [2], texture modeling [3], 2D rotation in-
variant object recognition [4] and feature detection in 2D [5] and 3D [6]. Different
frameworks make use steerable filters, for example, nonlinear anisotropic diffusion fil-
ters [7,8] smooth along local prominent direction which are obtained from a steerable
filter, or, the tensor voting framework [9] uses steerable filters to establish orientation
coherence to reliable detect local features.

The first main contribution of this work is to use the steerable filter bank in a differ-
ent sense, but for the original purpose, to detect local oriented features. The steerable
filter is interpreted as a generative model of image formation: an unknown orientation
field is convolved with an orientable template to create the observed image, which is
thereafter corrupted by additive noise. The goal is to estimate the orientation field given
the noisy observation. This is the main difference to a conventional matched filter: an
inverse problem is solved. In fact, we can interpret the solution as a MAP-estimate of
the posterior distribution for the feature orientation profile. As the problem is highly

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 326–335, 2011.
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under-determined, we have to assume additional prior knowledge about the spatial or-
ganization of the template, which relates the approach to Markov random fields. We
will adopt a principle which was already used in the context of processing of diffu-
sion weighted MR-images [10,8]. The idea is quite simple: for instance, assume a line
crosses a pixel r with direction n, then it is very likely that the line will also cross pixel
r + εn, where ε is a small real number. We will extend this idea to edges: if an edge
crosses a voxel r with normal n, then it is also reasonable to assume that edge is also
present in the pixel r + εn⊥ where n⊥ are the vectors perpendicular to n. Our second
main contribution is the efficient implementation of the proposed approach for arbitrary
higher order kernels. The idea is based on a circular harmonic representation of the
orientation fields. In this representation the iterated use of complex derivatives admits
the efficient computation of the steerable filter, which is indispensable for solving the
inverse problem. Necessarily the prior will also be formulated in terms of the circular
basis system.

The experiments will show that the new approach is better than other state-of-the-art
approaches for a line detection task. Moreover, it will also be shown that the simulta-
neous modeling of edge and line templates substantially improves the overall detection
performance.

2 Steerable Deconvolution

In this section we present the central idea of our approach and give a rough impression
of the optimization process which is involved. We denote vectors r ∈ R2 in bold face.
Variables in ’orientation’-space are denoted by normalized vectors n ∈ S1 on the unit
circle. Images are just functions y : R2 �→ R which we also denote compactly in
bold letters as y depending on the context. Orientation images are functions of type
x : R

2 ×S1 �→ R whose second argument is associated with an orientation. For brevity
we define O2 := R2 × S1. Linear operators acting on images are denoted by capital
bold letters, e.g. A. The adjungate is denoted by ·� and the complex conjugate by ·.

2.1 The Idea

A steerable filter is very similar to a matched filter, where a template patch, usually
called kernel, is correlated for different orientations and position with an image y by

x(r,n) =
∫

R2
A(r′,n)y(r′ − r)dr′.

The steerable filter response is an orientation function x : O2 �→ R describing the
correlation value of the image with the template A : O2 �→ R. We write the filter
kernel A here in a general way with two arguments: the second argument n determines
the the direction in which the template is steered. Usually the kernel is of the form
A(r,n) = t(Unr) where t is the template patch and Un a rotation matrix depending
on the direction n.

The above filter equation can be written compactly as x = A�y, where x and y
denote the images and A� describes the linear matching process with the steerable filter
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kernelA. Now, in these terms our approach can be formulated easily. The key idea is to
use the operator A as a generative model of the image formation process. That is, the
orientation image x is interpreted as the hidden variable of the system which is mapped
by A onto the observed image y. The goal is to estimate x given the observed image.
The most simple approach to solve this problem is to assume independent distributed
Gaussian noise on the observation and, hence, minimize the squared difference:

J(x) = ||Ax − y||2

which is nothing else than a deconvolution of the image y with the kernel A. Note the
difference to usual deconvolution problems: in our approach the image formation model
maps an orientation image onto a scalar intensity image. The image formation renders
the kernel A(x,n) into a scalar image y by superimposing the contributions from each
position and orientation weighted by the underlying hidden orientation distribution x.

2.2 Regularization

Obviously, the number of unknowns is much higher than the number known variables,
thus, an additional regularization term is necessary. A simple and generally applicable
one is a smoothness prior, that is, we have the additional term

Riso(x) =
∫

O2
|∇x|2 drdn,

where ∇ is the gradient operator with respect to the spatial coordinates r = (r1, r2).
This regularizer penalizes large local deviations, which results in blurring across edges
and lines, a well known problem with quadratic regularizers. In fact, in orientation
space there is a regularizer that can prevent this effect while still being quadratic. Think
of a line template A(x,n), where n is the direction of the line. In this scenario the
regularizer

Rfc(x) =
∫

O2
(n�∇x)2 drdn,

blurs only along the lines but not across. This prior was already used in [10] in the
context of High Angular Resolution Diffusion Imaging (HARDI) and can be motivated
by a diffusion process [8] on orientation scores. There is a simple extension for edges:
the direction is chosen perpendicular to the orientation of the edge, because we want
to smooth along the edge and not across. In spite its simplicity, it is astonishing that
a Gaussian prior (that is quadratic), which gives a linear system to solve, can preserve
edges. Typically, anisotropic filters that preserve edges/lines depend nonlinearly on the
image.

2.3 Probabilistic Interpretation and Optimization

The proposed approach has a natural statistical interpretation as a continuous Gauss
Markov random field (GMRF). One can assume that the joint posterior probability
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density p(x|y) for the occurrence of a certain feature orientation intensity profile x is
given by

p(x|y) ∝ p(y|x)p(x) =
1
Z
e−||Ax−y||2e−λ||n�∇x||2 (1)

The goal of minimizing the proposed objective is equivalent to finding the MAP-
estimate. Note, that in this way it is also possible to interpret the classical steerable filter
as a approximative MAP-estimate: choose the prior to be the usual mean-free Gaus-
sian p(x) ∝ e−λ||x||2, then, for large λ one has the approximation xMAP = (A�A +
λI)−1A�y ≈ A�y. Finding the MAP-estimate of the posterior in equation (1) is
equivalent to the minimization of the objective

xMAP = argmin I(x) = argmin (J(x) + λR(x)),

with regularization parameter λ ∈ R. The necessary condition for x to be a minimum
of I is that the variation of I(x) vanishes. The computation of the variation follows
standard variational calculus. Finally we obtain

d

dx
I = A�Ax − A�y + λ(n�∇)2x = 0, (2)

where d
dx defines the functional derivative with respect to x(r,n). To solve this equation

we will use the standard linear conjugate gradients algorithm. Therefore, one has to
apply the operator A�A+λ(n�∇)2 several times. Its efficient implementation will be
presented in the next section.

3 Complex Formulation

In this section we focus on the efficient implementation of the proposed idea for arbi-
trary higher order kernels, and, in particular, we look at one specific combined edge/
ridge kernel, which admits an efficient formulation by local neighborhood operators.
For a naive implementation of the general formulation the orientation variable n (which
is actually just an angle) would be discretized in an equidistant manner. In this way, the
optimization becomes computationally quite expensive. Imagine, in each iteration a
matching of the filter kernel for lots of different orientation has to be applied (that is the
operator A�) and vice versa the kernel has to be rendered back (which is just an appli-
cation of A). For each orientation a direct convolution (usually by the FFT) has to be
computed. The complexity of the regularizer is the same as for any standard anisotropic
PDE-based smoothing process times the number the discrete directions involved. We
want to point out a different way: the use of Fourier analysis combined with complex
derivative operators. The idea is to represent all function with respect to their angular
coordinate n in Fourier space, this was already done e.g. by [11] and is a common way
to represent arbitrary shaped steerable filter templates.
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3.1 Fourier Representation of the Steerable Convolution

The idea is to expand the function x(r,n) and the kernel A(r,n) locally in the Fourier
basis with respect to the second coordinate n, which we will replace by the angle φ:

x(r, φ) =
L∑

k=−L

bk(r)eikφ,

where L is the finite cut-off parameter. Thus, we have now represented x by a series of
complex-valued ’expansion’-images bk(r). We do the same for the kernelA and denote
the corresponding expansion images by ak(r). We first look how we take advantage
from this during the computation of expression A�y which appears in equation (2).
Due to the linearity of the expansion and the correlation operations we have

(A�y)(r, φ) =
L∑

k=−L

(∫
ak(r′)y(r′ − r)

)
︸ ︷︷ ︸

ck(r)

eikφ, (3)

that is, the defined ck are the Fourier expansion images of the ’orientation’ function
A�y. Thus, the application of A turns out to be a correlation of the individual expan-
sion images ak of the kernel with the image y. Typically, one can use a much lower
number L of Fourier expansion images than discretized angle images, so this is already
a step towards a lower computationally complexity. Now, look at the application of the
operator A:

(Ax)(r) =
∫

R2×S1

A(r − r′,n)x(r′,n) dr′dn

Inserting the Fourier expansions and using the relation
∫ 2π

0
eiφk = 2πδk yields

(Ax)(r) =
L∑

k=−L

∞∫
0

a−k(r − r′)bk(r)dr′. (4)

That is, the application of A just convolves the expansion coefficients of the kernel
ak and the image b−k pairwise and sums them all up. In this way, we have already
gained a bit of computational performance, but still several explicit convolutions are
involved. Before presenting a way of avoiding them, we want to introduce the Fourier
representation of the above mentioned regularizer.

3.2 Regularizer in Fourier Representation

How does the directed diffusion generator (n�∇)2 of the proposed regularizer act on
the Fourier representation of the orientation function x? To answer this question, it is
convenient to introduce complex derivatives, which are defined by ∂z = 1

2 (∂1 − i∂2)
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Fig. 1. a) impulse response of the regularizer for L = 8: the free action of the regularizer onto the
pulse xk(r) = δ(r)eikθ after several iterations (θ = 0). b) the proposed kernel AG: the real part
contains the line, the imaginary part the edge template. c) a satellite image for demonstration of
the filter. d) the maximal filter response of the satellite image with filter parameters L = 8, σ =
8, α = 12, λ = 5.

and ∂z = 1
2 (∂1 + i∂2), respectively, where ∂1, ∂2 are ordinary Cartesian derivatives.

With their help one can write

4(n�∇)2 = (eiφ∂z + e−iφ∂z)2 = ei2φ∂zz + 2∂zz + e−i2φ∂zz,

where n is just related to φ by n = (cos(φ), sin(φ))�. To compute the action of
(n�∇)2 on x in terms of the describing coefficients bk we have to compute the or-
thogonal projection of (n�∇)2x(r, φ) onto the basis function eikφ,

d

dbk
Rfc =

1
2π

∫ 2π

0

(n�∇)2x(r, φ)e−iφkdφ

Replacing the Cartesian derivative by the complex one and the function x by its Fourier
expansion yields after some basic algebraic manipulations

d

dbk
Rfc = ∂zzbk−2 + 2∂zzbk + ∂zzbk+2. (5)

Compared to the angle-discretized version the complexity per coefficient image bk is a
little bit more, but as described above there are much less images if one uses Fourier
representation. In Figure 1 we show the impulse response of the regularizer by display-
ing the orientation maximas in gray scale together with the direction of the maximas in
red.

If the regularizer is used in conjunction with edge templates, the only modification
is to switch for the first and last term in equation (5) the sign. Actually, it is possible to
neglect the differences for edges and ridges, if edge templates are made imaginary. An
edge template Aedge(r,n) obviously fulfills Aedge(r,n) = −Aedge(r,−n), on the other
hand a ridge kernel Aridge(r,n) = Aridge(r,−n). It is quite natural to combine both
as follows A(r,n) = Aridge(r,n) + iAedge(r,n). Then, the combined kernel fulfills
A(r,−n) = A(r,−n) and the regularizer as given in equation (5) works for both
types of templates simultaneously.

3.3 A Combined Edge/Ridge Kernel

It was already described how arbitrary steerable kernels A and A� can be computed
by direct convolutions with their complex expansion images. In fact, this way might
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be still computationally expensive. There is actually an even cheaper way to do these
operations: by repeated applications of local finite difference operators. If denote the
angle between n and r by θ we can write the combined edge/ridge kernel described in
[12] as

AG(r,n) := cosh

(
α|r| sin(θ)
σ2

)
exp

(
αin�r − |r|2

σ2

)
=

∞∑
k=0

(
(−w)k

k!
∂k

z +
wk

k!
∂k

z

)
e−|r|2/σ2

,

where w ∈ C is related to n = (cos(φ), sin φ)� and α ∈ R just by w = αeiφ. The
kernel is similar to a gabor wavelet, but more local due to the additional hyperbolic
cosine. In Figure 1b) we show real and imaginary part of the kernel. The real part
contains a ridge template, while the imaginary part contains an edge template, and thus,
the kernel is symmetric in the sense that AG(r,n) = AG(r,−n), and the regularizer as
given in equation (5) will work without any modification. To compute the correlation
of this kernel for all possible rotation we have to determine the expansion images ak =
1
2π

∫
AGe

−ikφdφ, which are computed to

a0 = 2e−|r|2, ak =
(−α)k

k!
∂k

z e
−|r|2/σ2

, a−k =
αk

k!
∂k

z e
−|r|2/σ2

By using the fact that convolutions and differentiation commute we can now insert this
into equation (3) and compute the integral ck(r) to

ck =
(−α)k

k!
∂k

z y
s and c−k =

αk

k!
∂k

z y
s (6)

where ys = y ∗e−|r|2/σ2
is the Gaussian smoothed image y. On the other hand we have

to evaluate the sum and the integral in equation (4). In fact, there is a similar way to do
this:

y(r) =
L∑

k=0

αk

k!
∂k

z b
s
k +

L∑
k=0

(−α)k

k!
∂k

z b
s
−k (7)

where again bsk = bk ∗e−|r|2 . In conclusion, we have shown that both operations A and
A� can be computed for the proposed kernel by the help of complex partial derivatives.
In the next section it will be shown that, actually, just 4L finite difference operations
are needed to apply them.

In Algorithm 1 we give pseudo code of the implementation of the operator (A�A+
λ(n�∇)2). First the diffusion generator is computed (line 1), which is the direct imple-
mentation of equation (5). In line 2-5 the application of A is performed by following
equation (7). In fact, there is very efficient scheme just needing 2L differentiations. The
complex derivatives are implemented by central finite differences. In line 6 the only
explicit convolution takes place, which simultaneously accomplishes those needed for
A and A�. Line 7 computes equation (6), again in an iterative and efficient way.

Finally, the above described operator is used with the common conjugate gradient
(CG) algorithm for optimization. In the experiments we used 40 CG iterations.
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Algorithm 1. xnew = (A�A + λ(n�∇)2)x
Input: x in terms expansion images bk

Output: xnew in terms of expansion images bnew
k

1: Compute the diffusion generator according to eq. (5)

bnew
k = λ(∂zzbk−2 + 2∂zzbk + ∂zzbk+2),

2: Let y+(r) := 0 and y−(r) := 0
3: for k = L : −1 : 1 do
4: According to eq. (7) compute

y+ :=
αk

k!
bk + ∂zy+ and y− :=

(−α)k

k!
b−k + ∂zy−

5: end for
6: Convolve c0 := (y+ + y−) ∗ e−|r|2/(2σ2)

7: According to eq. (6) compute for k > 0

ck :=
−α

k
∂zck−1 and c−k :=

α

k
∂zc−k+1

8: Let bnew
k := bnew

k + ck

4 Experiments

For a quantitative assessment a simulation is performed. The simulation was set up by
drawing lines of width 3px and adding independent Gaussian noise with standards de-
viation of 1. The lines were drawn such that their curvature do not exceed 1/5(px)−1.
For comparison we consider three other approaches: a steerable filter, anisotropic diffu-
sion and tensor voting. The optimal steerable filter proposed in [5] was used, where the
scale was optimized with respect to the area under the curve (AUC) of the ROC curve.
To apply the anisotropic diffusion framework the following strategy was applied: the
principal direction of the steerable filter is used to compute a diffusion tensor field. The
diffusion tensor field is, then, used to blur the steerable filter response in an anisotropic
way. The approach is based on the idea of coherence enhancing filtering of tensor valued
functions [13,14,15]. The tensor voting idea is closely related to this strategy but makes
use of a more sophisticated blurring kernel. Instead of using the diffusion equation to
blur the image anisotropically (with a squeezed Gaussian) the tensor valued function
is convolved with the kernel (we used Medioni’s voting field, [16]) The advantage of
this approach is the particular shape of the tensor valued convolution kernel (the vot-
ing function), which leads to constructive interference along the lines but to destructive
inference orthogonal to them. For details we refer to [16]. The parameters of all three
reference approaches were tuned with respect to the AUC criterion.

In Figure 2 steerable deconvolution (SD) is analyzed in terms of ROC curves. To de-
termine the evidence map for a line occurence we search for each position r the angle
φ which maximizes the deconvolution result xMAP(r, φ) (in case of the complex kernel
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Fig. 2. ROC diagrams for simulated data with SNR=1. (left) Comparison of joint edge/line
modeling versus sole line modeling for different values of L. (middle) Spherical deconvolu-
tion for different regularization parameters λ. (right) Comparison of steerable deconvolution
(σ = 2, μ = 0.5, λ = 4 SD), steerable filter (SF σ = 3.5, μ = 0), tensor voting (TV) and
anisotropic diffusion.

the real part of xMAP). Figure 2a) compares the different usage of the kernel described
in section 3.3. On the one hand we used the full complex kernel, that is, lines and edges
are modeled simultaneously, and on the other hand only the real part (the line template)
of the kernel is used for modeling. Note, that both approaches are not equivalent like
for a matched filter approach. Despite the fact that the even (real) and the odd (imag-
inary) parts are orthogonal the deconvolution gives, due to its global nature, different
results. One can observe in Figure 2a) that the joint modeling of lines and edges is able
to significantly improve the detection performance regardless the expansion degree L
of the kernel. The reasons are not so obvious. One may explain it by the fact that the
edge template helps to absorb some of noise, which otherwise would enter the line re-
sponse. In Figure 2b) we compare steerable deconvolution with the full complex kernel
for different regularization parameters λ. Low λ leads to higher precision because the
response is not so blurry. On the other hand higher λ gives much earlier high recall
rates but suffers from false positive detections, due to the more blurry response. Finally,
in Figure 2c) steerable deconvolution is compared to the three reference approaches:
steerable filters (SF), tensor voting (TV) and anisotropic diffusion (ADiff). For an ex-
pansion degree of L = 2 the performance of SD is comparable to tensor voting, while
for higher degrees SD significantly outperforms TV, SF ans ADiff. It is understandable
that ADiff is slightly worse than TV because the TV-voting function incorporates the
prior knowledge that we are looking for lines with a certain amount of curvature. One
can further observe a saturation of the SD performance for L = 8.

5 Conclusion

In this paper we proposed to use a steerable filter bank as a generative model of
image formation. Together with a special directed regularizer the approach can be in-
terpreted as a continuous GMRF. We proposed an efficient implementation of the ap-
proach in terms of circular harmonics on complex local neighborhood operators. The
synthetic experiments have shown that the approach outperforms existing line-detectors
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like steerable filter, tensor voting and anisotropic diffusion. The application of the pro-
posed approach to real world applications remains subject to future work (see Figure 1
for an example on a satellite image).
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Abstract. We present a novel way of performing pose estimation of
known objects in 2D images. We follow a probabilistic approach for
modeling objects and representing the observations. These object mod-
els are suited to various types of observable visual features, and are
demonstrated here with edge segments. Even imperfect models, learned
from single stereo views of objects, can be used to infer the maximum-
likelihood pose of the object in a novel scene, using a Metropolis-Hastings
MCMC algorithm, given a single, calibrated 2D view of the scene. The
probabilistic approach does not require explicit model-to-scene corre-
spondences, allowing the system to handle objects without individually-
identifiable features. We demonstrate the suitability of these object
models to pose estimation in 2D images through qualitative and quan-
titative evaluations, as we show that the pose of textureless objects can
be recovered in scenes with clutter and occlusion.

1 Introduction

Estimating the 3D pose of a known object in a scene has many applications in
different domains, such as robotic interaction and grasping [1,6,13], augmented
reality [7,9,19] and the tracking of objects [11]. The observations of such a scene
can sometimes be provided as a 3D reconstruction of the scene [4], e.g. through
stereo vision [5]. However, in many scenarios, stereo reconstructions are unavail-
able or unreliable, due to resource limitations or to imaging conditions such as
a lack of scene texture.

This paper addresses the use of a single, monocular image as the source of
scene observations. Some methods in this context were proposed to make use of
the appearance of the object as a whole [6,13,15]. These so-called appearance-
based methods however suffer from the need of a large number of training views.
The state-of-the-art methods in the domain rather rely on matching characteris-
tic, local features between the observations of the scene and a stored, 3D model
of the object [1,7,17]. This approach, although efficient with textured objects or
otherwise matchable features, would fail when considering non-textured objects,
or visual features that cannot be as precisely located as the texture patches or
geometric features used in the classical methods. Hsiao et al.’s method [8] seeks
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c© Springer-Verlag Berlin Heidelberg 2011



Probabilistic Object Models for Pose Estimation in 2D Images 337

to better handle multiple possible correspondences between the model and scene
features, but still requires a large fraction of exact matches to work efficiently.

The proposed method follows a similar approach to the aforementioned refer-
ences for modeling the object as a 3D set of observable features, but it is different
in the sense that few assumptions are made about the type of features used, and
in that it does not rely on establishing specific matches between features of the
model and features of the observed scene. For this purpose, we represent both
the object model and the 2D observations of a scene as probabilistic distributions
of visual features. The model is built from 3D observations that can be provided
by any external, independent system. One of the main interests of the proposed
method, in addition to the genericity of the underlying principles, is its ability
to effectively handle non-textured objects. The general method itself does not
make particular assumptions about the type of features used, except that they
must have a given, although not necessarily exact, position in space, and they
must be potentially observable in a 2D view of the object.

In order to demonstrate the capabilities of the proposed method at handling
textureless objects, we apply it to the use of local edge segments as observations.
Practically, such features cannot be precisely and reliably observed in 2D images,
e.g., due the ambiguity arising from multiple close edges, 3D geometry such as
rounded edges, or depth discontinuities that change with the point of view.
Such problems motivate the probabilistic approach used to represent the scene
observations.

The 3D observations used to build the model are provided by an external
system that performs stereopsis on a single pair of images. Such a model can
thus be quickly and automatically learned, at the expense of imprecision and
imperfections in the model. This again motivates the use of a probabilistic dis-
tribution of features as the object model. Other model-based methods proposed
in the literature have used rigid learned [7,17] or preprogrammed (CAD) models
[9,19], but such CAD models are, in general, not available. Our approach for
object modeling is more similar to the work of Detry et al. [5], where an object
is modeled as a set of parts, themselves defined as probability distribution of
smaller visual features. The main contribution of this paper is the extension of
those principles to the use of 2D observations.

The representations of the object model and of the scene observations that
we just introduced can then be used to perform pose estimation in monocular
images, using an inference mechanism. Algorithms such as belief propagation
[5] and Metropolis-Hastings MCMC methods [4] were proposed in the literature
to solve similar problems, and we adapt the algorithm presented in that last
reference to our specific type of model and observations.

Finally, our method provides a rigorous framework for integrating evidence
from multiple views, yielding increased accuracy with only a linear increase of
computation time with respect to the number of views. Using several views of
a scene is implicitly accomplished when using a stereo pair of images, together
with a method operating on 3D observations [5]. However, our approach does not
seek matches between the two images, as stereopsis does, and can thus handle
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arbitrarily wide baselines. Other methods for handling multiple views with a 2D
method have been proposed [2,14]. In these methods however, the underlying
process relies on the matching of characteristic features.

2 Object Model

Our object model is an extension of earlier work [4]. For completeness and clarity,
the upcoming sections include essential background following this source.

2.1 General Form

We use a 3D model that allows us to represent a probabilistic distribution of
3D features that compose the model. These features must be characterized by a
localization in the 3D space, and can further be characterized by other observable
characteristics, such as an orientation or an appearance descriptor. The model
of an object is built using a set

M =
{(
λ�, α�

)}
�∈[1,n]

(1)

of features, where λ� ∈ R3 represents the location of a feature, and α� ∈ A is
a (possibly zero-element) vector of its other characteristics from a predefined
appearance space A. When learning an object model, the set of features M is
decomposed into q distinct subsets Mi, with i ∈ [1, q], which correspond ideally
to the different parts of the object. This step allows the pose estimation algorithm
presented below to give equal importance to each of the parts, therefore avoiding
distinctive but small parts being overwhelmed by larger sections of the object.
The procedure used to identify such parts is detailed in [4].

Our method relies on a continuous probability distribution of 3D features
to represent the model. Such a distribution can be built using Kernel Density
Estimation (KDE), directly using the features of Mi as supporting particles
[5,18]. To each feature ofMi is assigned a kernel function, the normalized sum of
which yields a probability density function ψi(x) defined on R3 × A. The kernels
assigned to the features of Mi will depend on the type of these features.

Reusing the distribution of 3D features of part i, ψi, and considering an in-
trinsically calibrated camera, we now define ψ′

i,w as the 2D projection onto the
image plane of that distribution set into pose w, with w ∈ SE(3), the group of
3D poses. Such a distribution is defined on the 2D appearance space, which cor-
responds to R

2×B, where B is the projected equivalent of A. For example, if A is
the space of 3D orientations, B would be the space of 2D orientations observable
on an image. Similarly, if A is a projection-independent appearance space of 3D
features, B would be the simple appearance space of direct 2D observations of
such features.

Practically, ψ′
i,w can be obtained by setting the features of Mi into pose w,

and projecting them onto the image plane (Fig. 1c). The resulting 2D features
∈ R2 × B can, similarly to the 3D points, be used as particles to support a KDE
on that space, using an equivalent projection of the kernels used in 3D.
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2.2 Use of Edge Segments

This paper presents the particular application of the object model presented
above to the use of local edge segments as visual features. Those features basically
correspond to 3D oriented points, which are characterized, in addition to their
localization in 3D, by an orientation along a line in 3D. Therefore, reusing the
notations introduced above, the space A, on which the elements α� are defined,
corresponds to the half 2-sphere S2

+, i.e. half of the space of 3D unit vectors. The
kernels used to compose a 3D probability distribution ψi can then be decomposed
into a position and an orientation part [5,18]. The first is chosen to be a Gaussian
trivariate isotropic distribution, and the latter a von Mises-Fisher distribution
on S2

+. The bandwidth of the position kernel is then set to a fraction of the
size of the object, whereas the bandwidth of the orientation kernel is set to a
constant. The 2D equivalent of those distributions are obtained using classical
projection equations. Fig. 2 depicts the correspondence between the 2D and
3D forms of a particle corresponding to an edge segment and its associated
kernel.

The visual features used in our implementation are provided by the external
Early Cognitive Vision (ECV) system of Krüger et al. [12,16]. This system ex-
tracts, from a given image, oriented edge features in 2D, but can also process a
stereo pair of images to give 3D oriented edge features we use to build object
models (Fig. 1b).

3 Scene Observations

The observations we can make of a scene are modeled as a probability distribu-
tion in a similar way to the model. The observations are given as a set

O =
{(
δ�, β�

)}
�∈[1,m]

(2)

of features, where δ� ∈ R2 is the position of the feature on the image plane, and
β� ∈ B are its observable characteristics. These characteristics must obviously
be a projected equivalent to those composing the object model. Here again, the
features contained in O can directly be used as particles to support a continuous
probability density, using KDE.

In the particular case of edge segments, the observations correspond to 2D
oriented points (Fig. 1e). They are thus defined on R2 × B with B = [0, π[.
As mentioned before, the uncertainty on the position and orientation of visual
features like edge segments can arise from different sources, and no particu-
lar assumptions can thus be made on the shape of their probability distribu-
tion. The kernels used here are thus simple bivariate isotropic Gaussians for the
position part, and a mixture of two antipodal von Mises distributions for the
orientation part. The sum of those kernels, associated with each point of O,
then yields a continuous probability density function φ(x) defined on R2 × [0, π[
(Fig. 1f).



340 D. Teney and J. Piater

L
R

(a) (b)

�
�

��

�
�

��

�
�

��tw(ψi)

ψ′
i,w

(c)

(d) (e) (f)

Fig. 1. Proposed method applied to edge segments (orientation of segments not rep-
resented). (a) Stereo images used to build object model; (b) 3D edge segments that
compose the model; (c) probabilistic model (ψi) in pose w, spheres representing the
position kernel (their size is set to one standard deviation), and its simulated projection
in 2D (ψ′

i,w; blue and red represent resp. lowest and highest probability densities); (d)
image of a scene; (e) 2D edge segments used as observations; (f) probabilistic represen-
tation of observations (φ).

Fig. 2. Correspondence of 3D edge segment and associated kernel, with their 2D pro-
jection on image plane. Orange boundaries represent one standard deviation.

(a) (b) (c) (d)

Fig. 3. Results of pose estimation; model features reprojected on input image. (a) Good
result (close to ground truth); (b) good result; (c) same frame as (b) with incorrect re-
sult, orientation error of about 80◦, even though the reprojection matches observations
slightly better than (b); (d) incorrect result, insufficient observations extracted from
pan bottom, and orientation error of about 180◦.
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4 Pose Estimation

The object and observation models presented above allow us to estimate the
pose of a known object in a cluttered scene. This process relies on the idea that
the 2D, projected probability distribution of the 3D model defined above can be
used as a “template” over the observations, so that one can easily measure the
likelihood of a given pose.

Let us consider a known object, for which we have a model composed of q
parts Mi (i ∈ [1, q]), which in turn define ψi and ψ′

i,w. On the other hand,
we have a scene, defined by a set of observations O, leading to a probabilistic
representation φ of that scene. We model the pose of the object in the scene with
a random variable W ∈ SE(3). The distribution of object poses in the scene is
then given by

p(w) ∝
q∏

i=1

mi(w) , (3)

with mi(w) being the cross-correlation of the scene observations φ(x) with the
projection ψ′

i,w of the ith part of the model transformed into pose w, that is,

mi(w) =
∫

R2×B
ψ′

i,w(x)φ(x) dx . (4)

Computing the maximum-likelihood object pose arg maxw p(w), although an-
alytically intractable, can be approximated using Monte Carlo methods. We
extend the method proposed in [4], which computes the pose via simulated an-
nealing on a Markov chain. The chain is defined with a mixture of local- and
global-proposal Metropolis Hastings transition kernels. Simulated annealing does
not guarantee convergence to the global maximum of p(w), and we thus run sev-
eral chains in parallel, and eventually select the best estimate. In practice, a
strong prior is usually available concerning the distance between the camera and
the object, e.g., as information on the scale at which the object can appear in
an image. The global transition kernel can benefit from this prior to favor more
likely proposals, and therefore drive the inference process more quickly towards
the global optimum.

As mentioned above, the proposed method naturally extends to observations
from v multiple views. We definemi,j(w) similarly to Eq. 4 but relative to specific
views j, j = 1, . . . , v. Accounting for observations from all available views, Eq. 3
then becomes

p(w) ∝
v∏

j=1

q∏
i=1

mi,j(w) , (5)

which is handled by the inference process similarly to the single-view case.

5 Evaluation

This sections presents the applicability of the proposed method for estimating
the pose of objects on two publicly available datasets [3,10].
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5.1 Experimental Setup

In this work, each model is built from one manually segmented stereo view of
the object (such as Fig. 1a). The models used here are typically composed of
between 1 and 4 parts, containing around 300 to 500 observations in total. Pose
estimation is performed on single 1280 × 960 images taken with an intrinsically
calibrated camera. The number of parallel inference processes (see Section 4) is
set to 16. On a typical 8-core desktop computer, the pose estimation process on a
single view typically takes about 20 to 30 seconds. Also, as proposed in Section 4
and detailed below, a crude estimate of the distance between the camera and
the object is given as an input to the system.

The ECV observations we use (see Section 2.2) can be characterized with an
appearance descriptor composed of the two colors found on the sides of the edge.
This appearance information does not enter into the inference procedure. How-
ever, in the following experiments we use it to discard those scene observations
whose colors do not match any of the model features. This step, although not
mandatory, helps the pose estimation process to converge more quickly to the
globally best result by limiting the number of local optima.

5.2 Rotating Object

We first evaluated our method on a sequence showing a plastic pan undergoing
a rotation of 360◦ in the gripper of a robotic arm [10]. The ground truth motion
of the object in the 36 frames of the sequence is thus known. The estimate of the
distance to the object, given as input to the system, is the same for the whole
sequence, and is a rough estimate of the distance between the gripper and the
camera (about 700mm). Let us note that, for some images of the sequence, this
estimate is actually quite different from the exact object-camera distance, since
the object is not rotating exactly around its center.

This publicly available dataset is composed of stereo images, and we used
the frame corresponding to a rotation of 50◦ to learn the model, as it gives a
good overall view of the object. Four types of experiments were then performed
(Fig. 4). First, the pose of the object was estimated in each frame of the sequence,
using one single view. One can observe that correct pose estimates can mostly
be made close to the viewpoint used for learning the model (Fig. 4). A number
of results have an orientation error of almost 180◦, which correspond to a special
case (Fig. 3d) that can be explained by the flat and almost symmetrical object
we consider. Indeed, if very few observations are extracted from the bottom
of the pan, only the handle and the top rim of the object can be matched to
the image. Another large number of incorrect pose estimates have orientation
errors of 70–110◦; most of them correspond to ambiguities inherent to a 2D
projection, as illustrated on Fig. 3b–c. Similarly, most of the translation errors
occur along the camera-object axis, as an inherent limitation of 2D observations.
The percentage of correct pose estimates, defined by orientation and translation
errors of less than 10◦ and 30mm resp., and evaluated over the whole sequence,
is only 20%. Second, the same experiment is performed using two views. Some
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of the ambiguities can then be resolved, and this percentage rises to 60%. This
result can be compared to the evaluation of Detry et al. [5] on a similar sequence,
which achieved a score of only 40–50%. We stress that the latter method relied
on 3D observations computed from stereo, whereas our method uses one or more
2D images directly, and is not limited to short-baseline stereo pairs.

Finally, we used our framework to track the pose of the object over the whole
sequence, using one and two views, respectively. The pose is initialized with
ground truth information for the first frame, and is then tracked from one frame
to the next, using the same process as outlined in Section 4, but without the
use of global proposals in the chain, and thus limiting the inference process
to a local search. These experiments yield very good results (see Fig. 4), the
remaining error being mostly due to the limitations of the model, learned from
a single view of the object.
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Fig. 4. Results of the “rotating object” sequence. For pose estimation, one marker
represents one run of the algorithm (the same number of runs are executed for each
frame). For pose tracking, the lines represent means over multiple runs.

5.3 Cluttered Scenes

We evaluated the robustness of our method to clutter and occlusions by com-
puting the pose of various objects in several cluttered scenes [3], using a single
input image. The estimate of the distance to the objects, used as input, is the
same for all scenes and objects, and roughly corresponds to the distance between
the camera and the table on which the objects are placed (about 370mm). Here
again, this is an only crude estimate, as the actual distance to the objects varies
from 200 to 600mm.

Several of these scenes are presented in Fig. 5, with object models superim-
posed in the estimated pose. Sometimes, insufficient observations are extracted
from the image, and the pose cannot be recovered (e.g. second row, last image).
However, the reprojection error achieved by our algorithm is clearly low in most
cases; the models generally appear in close-to-correct poses. A perfect match be-
tween the reprojected model and the observations is not always possible, which
is a limitation of the sparse observations and object models we use. Small differ-
ences in the reprojection on the image plane may then correspond to large errors
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Fig. 5. Results of pose estimation (using a single view), with model features reprojected
onto the input image. Most remaining errors are a limitation of the simple object models
used, each learned from a single stereo pair.

in the actual 3D pose recovered. Most of these errors can be greatly reduced by
using additional views of the scene, which is easily done with our method.

6 Conclusions

We presented a generic method for 3D pose estimation of objects in 2D images,
using a probabilistic scheme for representing object models and observations.
This allows the method to handle various types of observations, including fea-
tures that cannot be matched individually; here we use local edge segments. Us-
ing these principles, we showed how to use Metropolis-Hastings MCMC to infer
the maximum-likelihood pose of a known object in a novel scene, using a sin-
gle 2D view of that scene. The probabilistic approach makes the pose estimation
process possible without establishing explicit model-to-scene correspondences, as
opposed to existing state-of-the-art methods. Together with the use of edge seg-
ments as observations, the method allows us to effectively handle non-textured
objects. Further, the method extends to the use of multiple views, providing a
rigorous framework for integrating evidence from multiple viewpoints of a scene,
yielding increased accuracy with only a linear increase of computation time with
respect to the number of views. We validated the proposed approach on two
publicly-available datasets. One dataset allowed quantitative evaluation; the re-
sult of an experiment was compared to the results of an existing method, and
showed an advantage in performance for our method. The pose estimation pro-
cess was also evaluated with success on scenes with clutter and occlusion. Future
work will extend the current implementation to the use of other visual features,
thereby extending the types of objects that can be handled.
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12. Krüger, N., Wörgötter, F.: Multi-modal primitives as functional models of hyper-
columns and their use for contextual integration. In: De Gregorio, M., Di Maio, V.,
Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 157–166. Springer,
Heidelberg (2005)

13. Mittrapiyanuruk, P., DeSouza, G.N., Kak, A.C.: Calculating the 3D pose of rigid
objects using active appearance models. In: ICRA, pp. 5147–5152 (2004)

14. Pless, R.: Using many cameras as one. In: CVPR (2), pp. 587–593 (2003)
15. Pope, A.R., Lowe, D.G.: Probabilistic models of appearance for 3D object recog-

nition (2000)
16. Pugeault, N.: Early Cognitive Vision: Feedback Mechanisms for the Disambigua-

tion of Early Visual Representation. VDM Verlag Dr. Müller (2008)
17. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and

recognition using local affine-invariant image descriptors and multi-view spatial
constraints. Int. J. Comput. Vision 66(3), 231–259 (2006)

18. Sudderth, E.B.: Graphical models for visual object recognition and tracking. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2006)

19. Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3D tracking using online and
offline information. IEEE Trans. PAMI 26(10), 1385–1391 (2004)

http://intelsig.org/publications/Detry-2009-PAMI/
http://www.mip.sdu.dk/covig/sequences.html


Fusion of Audio- and Visual Cues for Real-Life

Emotional Human Robot Interaction

Ahmad Rabie and Uwe Handmann

Institute of Informatics
University of Applied Sciences; HRW

Mülheim & Bottrop, Germany
{ahmad.rabie,uwe.handmann}@hs-ruhrwest.de

Abstract. Recognition of emotions from multimodal cues is of basic
interest for the design of many adaptive interfaces in human-machine in-
teraction (HMI) in general and human-robot interaction (HRI) in partic-
ular. It provides a means to incorporate non-verbal feedback in the course
of interaction. Humans express their emotional and affective state rather
unconsciously exploiting their different natural communication modal-
ities such as body language, facial expression and prosodic intonation.
In order to achieve applicability in realistic HRI settings, we develop
person-independent affective models. In this paper, we present a study
on multimodal recognition of emotions from such auditive and visual
cues for interaction interfaces. We recognize six classes of basic emotions
plus the neutral one of talking persons. The focus hereby lies on the
simultaneous online visual and accoustic analysis of speaking faces. A
probabilistic decision level fusion scheme based on Bayesian networks is
applied to draw benefit of the complementary information from both –
the acoustic and the visual – cues. We compare the performance of our
state of the art recognition systems for separate modalities to the im-
proved results after applying our fusion scheme on both DaFEx database
and a real-life data that captured directly from robot. We furthermore
discuss the results with regard to the theoretical background and future
applications.

1 Introduction

Recognizing emotions is widely accepted as one relevant step towards more nat-
ural interaction in human-robot and, more general, human-machine interaction.
The new scientific understanding of emotions on the one hand, and the rapid
evolution of computing system skills on the other, provided inspiration to nu-
merous researchers to build machines that will have the ability to recognize,
express, model, and communicate emotions.

In order to exploit emotional cues also in technical interfaces, the recogni-
tion of dedicated emotions is in particular necessary. Indeed, humans articulate
emotions using different modalities in parallel (cf. Fig. 1(a) for an example from
a human-robot interaction study). On the one hand, the different modalities

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 346–355, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Audio-Visual Emotion Recognition for HRI 347

(a) Emotion articulation in an HRI task (b) The Bayesian network structure for
decision-level fusion

Fig. 1.

transport a significant amount of redundancy, allowing a more robust percep-
tion of one’s emotion. On the other hand, dedicated emotions might be easier
to read from one cue than another. Consequently, the recognition of emotions
from multi-modal cues already has a certain tradition in research with a focus
on visual and auditory cues, due to their relevance in human-human interaction.
In order to apply emotion recognition in real-world interactive systems, a multi-
modal, online system is proposed that analyzes users’ faces and voices in order
to classify emotions. As we are interested in the online analysis of verbal inter-
actions, the paper focuses on the multi-modal analysis of talking interlocutors
which is different from most approaches which focus on non-talking faces.

This paper first briefly introduces the relevance and related work on multi-
modal recognition of emotion on natural interaction in Sec. 2. Afterwards, our
systems for visual (Sec. 3.1) and acoustic (Sec.3.2) recognition are introduced.
We present a comprehensive study using the DaFEx database [1] on recogniz-
ing the six basic Ekmanian emotions (anger, disgust, happiness, fear, sadness,
and surprise)[2] plus a neutral class and discuss the results with regard to a
fusion scheme and its accordance to theoretical models. An evaluating study
of unimodal- and bimodal recogniton of five basic emotions (anger, fear, neu-
tral, sadness, and suprise) from data captured directly from robot’s camera and
microphon demonstrates the ability of our bimodal system to be applied for
natural, unrestricted and life-like human-robot interaction in Sec. 4.

2 Emotions in Natural Interaction

Though the study of emotion has a long tradition in psychology, approaches
to the automatic recognition of emotions have emerged only in the last decade
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when the necessity to deal with the affective state of a user has become obvious
for efficient and user-friendly human-computer interaction. For example, in tu-
toring systems or computer games, knowing about the user’s feeling of boredom,
frustration or happiness can increase learning success or fun in the game. In
human-robot interaction, affective reactions of the robot, following the recogni-
tion of the user’s emotional state, can make the interaction more natural and
human-like.

Possible modalities to exploit for automatic recognition are language (acoustic
and linguistic information), facial expressions, body gestures, bio signals (e. g.
heart rate, skin conductance), or behavioral patterns (such as mouse clicks).
Though one modality alone can already give information on the affective state
of a user, humans always exploit all available modalities, and if an automatic
systems attempts to reach human performance, the need for multi-modality is
obvious. Thereby not only consent results of different modalities lead to more
confident decisions, but also conflicting results can be helpful [3], e. g. to detect
pretended or masked emotions, or to find out more reliable modalities for certain
emotions. The most obvious modalities in human-human conversation, and also
in human-robot conversation which we aim to enhance, are speech and facial
expressions. Most related work has focused on the offline analysis of actors [4,5]
or spontaneous emotions databases [6]. [3] present a framework for the fusion of
multiple modalities for emotion recognition, however, without evaluation.

The novel aspect of our work is the using of technology that is fully capable of
online recognition of emotion for natural human robot interaction. We presented
an offline analysis of an actors database as previous work. With this analysis we
first wanted to find a suitable fusion scheme motivated by the uni-modal results
of which emotions are better recognised by which modality. This fusion scheme is
then straight-forward applied in real-time scenario of human robot interaction.

3 Bi-modal Emotion Recognition

Theories of modality fusion in human perception do not agree on how informa-
tion from different modalities should be integrated. For example, the Fuzzy Log-
ical Model of Perception (FLMP) [7] states that stimuli from different modalities
should be treated as independent sources of information and be combined regard-
less of the kind of information they contain. This view is not undisputed (i.e. [8])
and it has been argued that the FLMP does not work well when confronted
with conflicting information from different modalities [9]. Perceptual results sug-
gest that, at least for the case of emotion recognition, the modalities should be
weighted according to which information that they convey best [10]: the visual
modality primarily transmits valence (positive or negative value) whereas the
auditory channel mainly contains information about activation.

In our work we challenge this approach by analysing the auditory and vi-
sual stimuli with respect to their general discriminative power in recognizing
emotions. Note that in our work we focus on interactive scenarios and are thus
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targeting at systems that are able to work online. The approaches we present
in this paper are, therefore, not only being tested offline on existing databases
but have proven their applicability in robotic applications in real world set-
tings [11,12]. This is in contrast to other work (e.g. [4,5]), which has focussed
on offline emotion recognition only. The following three sections will provide a
brief introduction on the respective unimodal analysis techniques as well on the
proposed probabilistic decesion level fusion.

3.1 Visual Facial Expression Recognition

In order to recognize basic emotion visually, we take a closer look into the inter-
locutor’s face. The basic technique applied here are Active Appearance models
(AAMs) first introduced by Cootes et al [13]. The generative AAM approach uses
statistical models of shape and texture to describe and synthesize face images.

An AAM, that is built from training set, can describe and generate both shape
and texture using a single appearance parameter vector, which is used as feature
vector for the classification. The “active” component of an AAM is a search
algorithm that computes the appearance parameter vector for a yet unseen face
iteratively, starting from an initial estimation of its shape. The AAM fitting
algorithm is part of the integrated vision system [11] that consists of three basic
components. Face pose and basic facial features (BFFs), such as nose, mouth
and eyes, are recognized by the face detection module [14]. This face detetion in
particular allows to apply the AAM approach in real-world enviroments as it has
proven to be robust enough for face identification in human robot interaction
in natural environments [15]. The coordinates representing these features are
conveyed to the facial feature extraction module. Here, the BFFs are used to
initialize the iterative AAM fitting algorithm. After the features are extracted the
resulting parameter vector for every image frame is passed to a classifier which
categorizes it in one of the six basic emotions in addition to the neutral one.
Besides the feature vector, AAM fitting also returns a reconstruction error that
is applied as a confidence measure to reason about the quality of the fitting and
also to reject prior false positives resulting from face detection. As classifier a one-
against-all Support Vector Machine is applied. The whole system is applicable in
soft real-time, running at a rate of approximate (5) Hz on recent PC hardware.

3.2 Emotion Recognition from Speech

For the recognition of emotions from speech, EmoVoice, a framework that fea-
tures offline analysis of available emotional speech databases, as well as on-
line analysis of emotional speech for applications, is used [16]. The approach
taken there is purely based on acoustic features, that is no word information is
used. As a first step in feature extraction, a large vector of statistical features
based on prosodic and acoustic properties of the speech signal was calculated
for each utterance in the DaFEx database. From this large vector of over 1400
features the most relevant ones were selected by correlation-based feature subset
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selection [17]. This selection is necessary to increase performance as well as
speed of classification. By this way, 71 features related to pitch, energy, MFCCs,
to linear regression and range of the frequency spectrum of short-term signal
segments, to the speech proportion and to the length of voiced and unvoiced parts
in an utterance, and the number of glottal pulses remained. The full procedure
of extracting features is described in [18,16]. For classification, again support
vector machines were used, but with a linear kernel. The feature selection is
typically done offline, but the feature extraction and classification can be done
in real-time. Utterances as classification units, which are normally not available
in online applications, can be replaced by an on-the-fly segmentation into parts
with voice activity.

3.3 Probabilistic Decision Level Fusion

As affective states in interaction are usually conveyed on different cues at the
same time, we agree with other works summarized in [19] that a fusion of visual
and acoustic recognition yields significant performance gains. Hence, we followed
the idea of an online integration scheme based on the prior offline analysis of
recognition results on a database. In current classification fusion research, usually
two types of multi-modal fusion strategies are applied, namely feature level fusion
and decision level fusion. Both types combine different modalities of data to
achive better recognition performance. In the former one, the feature spaces
of all modalities are merged into one feature space, which is then conveyed to
a single classifier. While in the latter type the classification is performed on
each modality separately, then the results of each modality are fused to a final
class-prediction accuracy. Due to the inherently different nature of our visual
and accoustic cues, we decided for a decision-level fusion scheme. But instead
of applying majority voting or other simple fusion techniques, we explicitly take
the performance of each individual classifier into account and weight it according
to their respective discrimination power.

The proposed probablistic approach for this fusion are Bayesian networks
with a rather simple structure depicted in Fig. 1(b). Based on the classification
results of the individual visual and acoustic classifiers, we feed these into the
Baysian network as evidences of the observable nodes (A and V, respectively).
By Bayesian inference the posteriori probabilities of the unobservable affective
fusion (F) node are computed and taken as final result.

The required probability tables of the Bayesian network are obtained from a
performance evaluation of the individual classifiers in an offline training phase
based on ground-truth annotated databases. Therefore, confusion matrices of
each classifier are turned into probability tables modeling the dependent obser-
vation probabilities of the model according to the arrows in Fig. 1(b). In the
notion of Zeng et al. [19], our fusion scheme is referred to as model-level instead
of decision-level fusion, as it takes the respective classification performance mod-
els into account.
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4 Evaluation on Real-Life Data

As a previous work toward a bimodal system with online ability all systems are
evaluated on the DaFEx database [1], which consists of 1008 short video clips of
eight Italian actors (4 male and 4 female). Each clip comprises then deliberate
presentation of one of the six Ekman’s basic emotions plus the neutral one and
lasts between 4 and 27 sec. The DaFEx database is divided into six blocks, in two
of them namely block 3 and block 6 the actors present facial expression without
speaking, in the remainder the actors speak during their emotional performance.
Each actor in each of these block performs the seven emotion three times with
different intensities (high, medium, and low).

The subset of DaFEx was chosen that contained only videos where the actors
were speaking namely (block 1, 2, 4, and 5). Due to the small sample size, the
same actors were used for training and test; but it shall be noted that both
recognizers apply person independent models. However, the same leave-one-out
cross-validation is used for the different modalities. Training is done on three
blocks and evaluation of the performance of each uni-modals is performed on the
one remaining test block. The probability tables for the Bayesian fusion model
are obtained from validation of the performance on the three training blocks.
The fusion performance is tested again on the test block. In cross-validation, all
permutation of blocks are applied to training and test respectively.

Table 1. Recognition rates achieved by each unimodal und the bimodal for each indi-
vidual emotion

Ang Dis Fea Hap Neu Sad Sur Total

Vis 94.44 73.61 58.33 80.55 79.16 72.22 62.91 74.46

Aco 68.05 51.38 48.61 50.00 87.49 69.44 58.33 61.90

Bimodal 81.94 87.50 52.78 86.11 86.11 74.99 77.77 78.17

Table 1 depicts the achieved significant overall improvement of the proposed
fusion scheme applying our simple Bayesian networks model proposed in Sec. 3.3.
The fused system has the advantage over the vision- and audio-based unimodal
of about 4% and 16% points, respectively. The 2nd and the 7th columns (Dis, Sur
respectively) reveal a high accuracy of the fusion model for recognizing disgust
and surprise respectively in contrast to the stand alone uni-modal models, indi-
cating that both cues obviously comprise complementary information that facil-
itate eased discrimination in the joint analysis. In contrast, from column (Fea) it
is noticeable that both uni-modal cues comprise only redundant information so
that the fusion yields no improvement with regard to discrimination ability for
the recognition of fear. Overall our system achieves good results on the DaFEx
database, which are comparable with those reported for human observers [1].
However, the results achieved by the bimodal system emphasize putting forward
the fusion scheme of Sec. 3.3 toward efficient recognition of emotion for HRI [20].

As we are striving in this work to give the robot a bimodal emotion recognition
ability that is based on analyzing facial expressions and speech information, the
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systems are afresh evaluated on data set with subjects in a real-life conditions.
Four subjects have participated in this test (one female and three males). The
whole procedure is divided into training and test phases. For one subject both
phases were conducted in the same day; for two others the test was is conducted
in the following day, while for the fourth subject the time interval was two days.

In the training phase the subjects are asked to display facial expressions of
five emotion classes: anger, happiness, neutral, sadness, and surprise with and
without speaking. The average amount of data captured from each subject for
each facial expression class was 246 images. To create conditions of real-life
human-robot interaction as much as possible, the subjects are allowed to move
arbitrarily in front of the camera. During this phase a person-independent AAM,
which is built from a subset of the DaFEx database of talking and non-talking
subjects, is used to extract the emotion-related facial features. These features
are then conveyed to train a person-dependent SVM.

Table 2. Confusion matrix obtained by using the facial-expression-based system in
the test session of displaying emotions deliberatively; rows represent the ground truth

Anger Happiness Neutral Sadness Surprise

Anger 57.72 00.60 12.19 28.54 00.95

Happiness 02.96 67.46 21.00 07.15 01.42

Neutral 05.21 00.00 64.36 30.42 00.00

Sadness 02.98 00.00 17.32 79.18 00.53

Surprise 05.57 00.88 31.35 10.55 51.64

Total 64.07

In the test phase the subjects are asked to display facial expressions and utter
a few sentences (in general five) expressing as much an emotions as possible 1.
The above-mentioned AAM is used to extract facial features, which are labeled
with the proper emotional class by the above-trained SVM. In this session a
person-independent speech-based emotion recognizer is utilized to categorize
each utterance into the proper emotional class. An average of 145.25 images
from each subject for each emotion are used as test data. The validation matrix
for the fusion scheme of each subject was an averaged confusion matrix (CPT),
which is obtained from the performance of both individual systems on the three
remaining subjects.

Table 2 illustrates the result obtained by using only the facial-expression-based
emotion analysis system to recognize emotions that are deliberatively displayed
by the subjects. As depicted in the table, the most negative emotion − sadness
− and the most positive emotion − happiness − are recognized the best. Neutral
also has a relatively high recognition rate, which can serve to distinguish between
emotional and non-emotional states of the interactant. The mutual confusion
between sadness and neutral indicates the similarity between them when the
distinguishing is based only on analyzing the associated facial expressions. The
1 The sentences were emotional words free.
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Table 3. Confusion matrix obtained by using the facial-expression-based system in
the test session of expressing emotions via facial expressions and speech tone simulta-
neously; rows represent the ground truth

Anger Happiness Neutral Sadness Surprise

Anger 75.00 00.00 06.25 18.75 00.00

Happiness 25.00 43.75 25.00 06.25 00.00

Neutral 20.00 00.00 50.00 30.00 00.00

Sadness 22.36 11.11 06.25 60.28 00.00

Surprise 16.67 00.00 12.50 22.92 47.92

Total 55.39

fact that surprise is a transient state, difficult to hold, which changes rapidly
into another one (in our test it changed generally into the neutral state), could
be the reason for the relatively high confusion of surprise with neutral.

The results obtained by analyzing facial expressions during speech are illus-
trated in the table 3. The results present the recognition rates after applying
majority voting for each utterance that doesn’t include a pause longer than 200
ms. As in the evaluation with the database (offline evaluation), facial-expression-
based analysis of emotion delivered lower recognition rates when the subjects
were engaged in conversational sessions; 64.07% for the former and 55.39% for
the latter. The higher recognition rate of anger during speech compared to anger
displayed deliberatively could be because majority voting over the time of each
sentence is applied in the former, while the recognition rate of the latter is com-
puted for the entire video sequence.

Table 4. The performance of each stand-alone unimodal systems against the one of
the bimodal system. All results are obtained from a test in a real-life condition.

Anger Happiness Neutral Sadness Surprise Total

Vis 75.00 43.75 50.00 60.28 47.92 55.39

Aco 33.04 15.42 36.25 23.06 10.42 23.63

Audio-Visual 75.00 50.00 68.75 49.03 47.92 58.14

Table 4 illustrates the results obtained from both the stand-alone and bi-
modal systems. The low rates delivered by the speech-based emotion analysis
system - the first raw - could be because a person-independent classifier is used,
which is trained on a speech-based emotion database that does not include the
subjects participating in the evaluation procedure. Nevertheless, it can be seen
that the whole performance of the bimodal system has an advantage over both
facial-expression- and speech-information-based systems, which satisfy the goal
of the fusion scheme proposed previously. However, when the performance of each
channel on each emotion is considered it is notable that the recognition rate of
happiness and neutral is enhanced when the bimodal system is employed, which
indicates that the cues of both modalities comprise complementary information
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for these two emotions. In contrast, from the first and fifth rows, it is noticeable
that both unimodal cues comprise only redundant information so that combining
both modalities yields no improvement with regard to discrimination ability for
the recognition of anger and surprise. Furthermore, the fourth column indicates
that both modalities deliver conflicting information, which causes sadness to be
recognized even less than the stand-alone facial-expression-based modality.

The comparison between the performance of all of the systems in the cases
of offline (DaFEx database) and online (data captured in real-life conditions)
evaluation shows better performance of the systems in the former case, espe-
cially of the speech-information-based system. These performance differences
were greatly expected because (I) the speech-information-based system in the
former was trained using data from the same subjects who had participated in
the evaluation test, (II) the facial-expression-based system of the former case was
trained and tested on a relatively constrained set of data (the actors displayed
almost a frontal-view facial expression with constrained head movements while
they were sitting in front of the camera), and (III) the degraded performance of
both unimodal systems will consequentially lead to a degraded performance of
the bimodal system.

5 Conclusion and Outlook

In this paper we presented our approaches on single cue analysis and multi-cue
probabilistic decision-level fusion for emotion recognition. As we strive to recog-
nize the basic emotions in real interaction, we presented a person-independent
model and restricted ourselves to the challenge of talking persons in this database-
based study.

The results indicate that the performance of each modality is highly varying
with the respective emotion class which is in line with hypotheses of modality
fusion in human perception [10,7]. Based on these results we put forward our
fusion scheme where each modality is weighted according to its discriminative
power for a specific emotion by applying Bayesian networks trained according to
the performance of the individual classifiers. Towards our goal of real-life Human-
Robot Interaction our system presents an advanced improvement not only due
its reasonable accuracy in emotion recognition but also due its applicability as
an online system in less constrained environments and without any further prior
processing [4,6].
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Abstract. Sparsely connected Multi-Layer Perceptrons (MLPs) differ
from conventional MLPs in that only a small fraction of entries in their
weight matrices are nonzero. Using sparse matrix-vector multiplication
algorithms reduces the computational complexity of classification. Train-
ing of sparsely connected MLPs is achieved in two consecutive stages. In
the first stage, initial values for the network’s parameters are given by
the solution to an unsupervised matrix factorization problem, minimiz-
ing the reconstruction error. In the second stage, a modified version of
the supervised backpropagation algorithm optimizes the MLP’s parame-
ters with respect to the classification error. Experiments on the MNIST
database of handwritten digits show that the proposed approach achieves
equal classification performance compared to a densely connected MLP
while speeding-up classification by a factor of seven.

1 Introduction

Multi-Layer Perceptrons [1] have been widely employed in a vast range of classi-
fication tasks, especially for handwritten digit recognition [11]. MLP parameter
tuning is traditionally achieved using the backpropagation algorithm [18]. This
procedure has recently tied the record [3] on the MNIST database of handwrit-
ten digits [12], achieving an error of 0.35%. For this, the MLP comprised six
layers with 12 million synaptic connections. The learning set was extended by
generating artificial training examples using elastic distortions [19].

This paper focuses on posing sparseness constraints on the weight matrices
of MLPs, so that only a small fraction of entries are nonzero. Thus, sparsely
connected MLPs or briefly sparse MLPs (SMLPs) are yielded. This is motivated
in part by the fact that neurons in biological neuronal systems are not connected
to every other neuron in the network [22]. Sparse connectivity helps to reduce
both memory usage and computational complexity of the classification task.
By exploiting the structure of sparsely populated weight matrices, the principal
module of an MLP’s feeding-forward mechanism can be sped up. This is espe-
cially advantageous in industrial applications, where a system may be rendered
real-time capable or where hardware cost may be reduced [15,17].

The main focus of this paper is the training of sparsely connected MLPs. The
amount of nonzero connection weights is set a-priori, and can hence be chosen
to obtain a classifier with predictable time complexity. In the first of two consec-
utive stages, a matrix factorization algorithm that uses sparse filter matrices for
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generating sparse and information-preserving representations is used to initialize
the sparse MLP’s parameters. In the second stage, a modified backpropagation
learning algorithm finds an MLP that is optimal with respect to the classification
error, simultaneously fulfilling sparseness constraints.

The remainder of this paper is organized as follows: Section 2 addresses the
problem of computing sparse representations in an unsupervised manner suitable
for sparse MLP initialization. In Sect. 3, an algorithm for training sparsely con-
nected MLPs is proposed. The results of this technique applied to handwritten
digits are demonstrated in Sect. 4, and compared with alternative approaches in
Sect. 5. The final section contains a summary and conclusion.

2 Sparse Generative Models for SMLP Initialization

Training of sparsely connected MLPs from randomly initialized parameters is an
ill-conditioned problem. Network parameter initialization constitutes the most
crucial part in the whole procedure. One key idea that has recently found its
way into the pattern classification community is the unsupervised pre-training
of classifiers [8]. Here, the computation of sparse representations is of particular
interest. Considering linear generative models, a sample x ∈ IRd is approximated
by the linear combination of a matrix of bases W ∈ IRd×n with a code word
h ∈ IRn, such that x ≈ Wh. Traditional sparse coding [7] is achieved by requiring
most entries of h to be zero. Another notion is the restriction thatW be sparsely
populated, which is the main focus of this section.

One of the most important mathematical models known to reproduce cer-
tain data sets using a sparse matrix of bases is Non-Negative Matrix Factoriza-
tion (NMF) [14]. It aims to factorize a data matrix X ∈ IRd×M

≥0 of M samples
with non-negative entries into the product of a matrix of bases W ∈ IRd×n

≥0

and a matrix of code words H ∈ IRn×M
≥0 , both with non-negative entries. Since

NMF is only allowed to make additive combinations in a linear generative model
framework, sparse matricesW can be achieved [14]. However, there are data sets
where NMF fails to produce sparse representations without further modifications
to the algorithm itself [9].

2.1 Non-Negative Matrix Factorization with Sparseness Constraints

NMF is extended by Non-Negative Matrix Factorization with Sparseness Con-
straints (NMFSC) [9] so that the sparseness of the representation becomes easily
controllable. In doing so, a formal sparseness measure σ based on a normalized
quotient of the L1 norm and the L2 norm of a vector has been proposed:

σ : IRd \ { 0 } → [0, 1] , x �→
√
d− ‖x‖1

‖x‖2√
d− 1

. (1)

Using σ, NMFSC must minimize the reproduction error in Frobenius norm,
ENMF(W,H) := ‖X −WH‖2

F , subject to σ(Wei) = σW and σ(Htei) = σH for
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all i ∈ {1, . . . , n} for constant sparseness degrees σW , σH ∈ (0, 1). Here, ei is the
i-th canonical basis vector. σW controls the sparseness of the individual columns
of W . σH controls the fraction of samples each column of W contributes to.

The biconvex objective function is minimized via alternating gradient descent
on W and H , with each step followed by a sparseness-enforcing projection to
meet the sparseness constraints. This sparseness-enforcing projection is com-
puted by iterative projection on a hyperplane satisfying an L1 norm constraint
and on a hypersphere satisfying an L2 norm constraint [9,20].

The major drawback of NMFSC is that it is only a generative architecture.
However, computation of sparse code words h from arbitrary samples x is pos-
sible through a cost-intensive optimization. Unfortunately, no real-time capable
algorithm to solve this code word inference problem is known.

2.2 Extension for Fast Inference of Sparse Code Words

To address this issue, an extension ensuring fast inference of sparse code words
has recently been proposed [21]. There, inference is modeled as feeding forward
the training samples through a one-layer perceptron, employing a non-linearity
that approximates a soft-shrinkage operation. Similar to [16], the matrix of bases
is used for code word inference as well.

As sparseness is enforced through NMFSC’s projection operator, the non-
negativity constraint is no longer needed. Hence let X ∈ IRd×M , W ∈ IRd×n and
H ∈ IRn×M , allowing for a more general range of applications. This enables the
normalization of the training samples to zero mean and unit variance, which is
advantageous in classification scenarios [13].

To extend NMFSC for fast inference, a vector of thresholds θ ∈ IRn and
a nonlinear transfer function f : IRn → IRn are introduced. Feed-forward code
words are defined to be a one-layer perceptron’s output, x �→ f(W tx+ θ). Here,
f is chosen to be a hyperbolic tangent raised to an odd exponent greater or
equal to three, that is f : IR → IR, x �→ (tanh (βx))q with β > 0 and q ∈
2IN0 + 3 = { 3, 5, 7, . . .}. The exponentiation has a similar effect as applying a
soft-shrinkage function after a hyperbolic tangent transfer function, thus allowing
for sparse inferred code words. However, this function has the advantage of being
differentiable everywhere. In this paper, β = 1 and q = 3 were chosen. By
computing the squared difference between the code word matrix and the matrix
of feed-forward code words, the inference error is given by EInf(W, θ,H) :=
‖H − f (W tX + θ · J1×M )‖2

F . Here, J1×M ∈ IR1×M denotes a matrix containing
only ones and is employed for repeating the threshold over all M samples.

The objective function is defined to lie between reconstruction error and in-
ference error, controlling the trade-off with a parameter αInf ∈ [0, 1]:

E(W, θ,H) := (1 − αInf) · ENMF(W,H) + αInf · EInf(W, θ,H) . (2)

Here, αInf was chosen to start from zero and reach 1/2 asymptotically. E is
minimized by alternating gradient descent. Each update of W and H is followed
by sparseness-enforcing projections, ensuring that the sparseness constraints are
met: σ(Wei) = σW and σ(Htei) = σH for all i ∈ {1, . . . , n}.
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3 Sparsely Connected MLPs

In the preceding section, only generative models were investigated. It turns out
that state-of-the-art performance in classification problems can not be achieved
solely by using unsupervised learning algorithms. This is because the represen-
tations have only been optimized to retain a maximum of the information in
the training samples, regardless of their class labels. However, the unsupervised
algorithms provide adequate initializers for more discriminative architectures.
Exploiting the emergence of sparse matrices of bases, an efficient way of training
sparsely connected MLPs is proposed in this section.

3.1 Architecture

Consider an MLP with L layers, where W := (W1, . . . ,WL) andΘ := (θ1, . . . , θL)
denote the weight matrices and the threshold vectors of the individual layers,
respectively. Let Wi ∈ IRdi−1×di and θi ∈ IRdi for all i ∈ {1, . . . , L}, where
d0, d1, . . . , dL−1, dL ∈ IN denote the complexity of the individual layers. Given
a dataset of samples and teacher signals, W and Θ are adjusted by minimizing
the deviation between network output given the samples and the corresponding
teacher signals. This deviation can be measured using the mean square error
function or the cross-entropy error function [1]. In classification problems with
n > 2 distinct classes, the teacher signals are represented using 1-of-n codes.
The final layer’s transfer function then is set to the softmax function [1].

In sparse MLPs, the weight matrices are enforced to meet specific sparseness
constraints. Let σW1 , . . . , σWL ∈ (0, 1) be sparseness degrees for every layer. The
problem of training SMLPs then becomes minimizing the error function subject
to σ(Wiej) = σWi for all i ∈ {1, . . . , L} and for all j ∈ {1, . . . , di}. Here, σ is
the sparseness measure from Sect. 2.1. In practice, posing sparseness constraints
to the final layer is often not beneficial, as it constitutes the final weighting of
the MLP’s internal state. In the remainder of this paper, analysis is restricted
to final layers without sparseness constraints. In the case of two-layer MLPs, let
σW := σW1 denote the sparseness degree of the only hidden layer.

3.2 Training Algorithm

Similar to Radial Basis Function (RBF) networks [1], a proper initialization of
W and Θ is crucial for the success in training SMLPs. Using unsupervised pre-
training, this is not limited to RBF networks [8]. By employing the learning
algorithm from Sect. 2.2, layers 1 to L− 1 are initialized in a layer-wise manner.
This guarantees that the respective weight matrices are sparsely populated, and
every layer is able to reproduce its individual input.

Supervised linear SVM training [6] is used to initialize the final layer. If the
classification problem is not binary, each hidden unit in layer L represents one
class using 1-of-n codes. Linear SVM training is then run in a one vs. all fashion,
and the corresponding column of WL and the corresponding entry of θL are set
to contain the linear SVM’s weight vector and threshold, respectively.
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Supervised training of sparsely connected MLPs is achieved through sequen-
tial gradient descent, using the backpropagation algorithm [18]. With the origi-
nal backpropagation algorithm, the connection matrices that were initialized to
be sparsely populated lose this property during training. This indicates that
sparse connection matrices do not minimize the unconstrained classification
error. Minimization of the error function subject to sparseness constraints is
achieved by projected gradient descent, that is the sparseness-enforcing projec-
tion from Sect. 2.1 is carried out after presentation of a few thousand samples
to the network. It is important not to project too early, because then W will
not be modified effectively during learning. By projecting too late, the changes
to W between projections become too intense, resulting in divergence.

After training has converged, an MLP with connection matrices meeting sparse-
ness constraints results. The connectivity rate in the weight matrices is set a-priori
using sparseness degrees. The relationship between both values is non-linear, but
can be calculated beforehand. Naive pruning of connections with small absolute
values can increase sparseness further. The threshold for pruning has to be verified
on the learning set so that the classification error is not increased.

3.3 Computational Complexity of Classification

In practice, the computational complexity of the classification routine is relevant
for designing the classifier’s architecture, adjusting it to specific hardware needs.
Let A ∈ IRd×n be a matrix and x ∈ IRd be a vector. Investigating the problem
of computing the matrix-vector product Atx, the kernel of this computation is a
multiply-accumulate (MAC) operation, D ← D+A(j, i) ·x(j). Here, D is a data
register employed to avoid having to store the product in memory after every
execution. The MAC operation is executed dn times, and 2dn numbers have
to be fetched from memory. If A is a sparsely populated matrix with exactly k
nonzero entries in each column, it can be stored as pair of a matrix P ∈ INk×n

0 of
positions of nonzero elements with a matrix of according values V ∈ IRk×n. The
kernel of the sparse matrix-vector product computation then becomes the MAC
operation D ← D+V (j, i) ·x(P (j, i)), and is carried out kn times. In total, 3kn
numbers now have to be fetched from memory, also accounting for the entries
of P . If k < 2

3d, the sparse matrix-vector multiplication needs less read accesses
than the dense counterpart does. Method effectiveness thus increases with d.

The computation of matrix-vector products is the dominating part of the
overall computational complexity of MLP classification. The application of the
thresholds is equivalent to initializing register D with the concrete threshold
value and requires only n additional memory accesses. Transfer function evalua-
tion can be sped up by employing a function that can be evaluated by means of
algebraic operations on the argument [5]. Hence, no auxiliary data needs to be
read from memory, as look-up table entries or coefficients of a Taylor expansion
would be required otherwise. The final layer’s transfer function can always be
replaced with a linear one since the classification decision is equivalent to thresh-
olding in binary classification problems and to finding the maximum entry in the
network’s output vector if more than two classes are involved.
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In summary, the computational complexity of classification with MLPs de-
pends strongly on the number of nonzero entries in the weight matrices. Sparsely
connected MLPs require some overhead with respect to the read accesses, as the
more complex data structure has to be stored as well. For comparison, a simple
computational model that accounts for MAC operations and memory accesses
is defined. Let Z ∈ IR be the memory latency relative to the cost of a MAC
operation. Considering a two layer d − h − n MLP, the cost for classifying one
sample is (1 + 2Z)h (d+ n) operations. A sparse MLP with a connectivity rate
of ρ ∈ (0, 1) in the first layer needs (1 + 3Z) ρdh+ (1 + 2Z)hn operations. The
speed-up factor S (Z, ρ) is then the quotient of the two quantities and is inde-
pendent of the number of hidden units h. S(Z, ρ) converges decreasingly for very
high memory latencies to

S∞ (ρ) := lim
Z→∞

S(Z, ρ) = lim
Z→∞

(
1
Z + 2

)
(d+ n)(

1
Z + 3

)
ρd+

(
1
Z + 2

)
n

=
2 (d+ n)
3ρd+ 2n

. (3)

In this computational model, a lower bound of sparse MLP speed-up over dense
MLPs is given by S∞ (ρ), which is independent of memory latencies.

4 Experiments on Handwritten Digits

The performance of sparse MLPs is evaluated on the MNIST database of hand-
written digits [12]. It consists of 70 000 samples, divided into a learning set of
60 000 samples and an evaluation set of 10 000 samples. Each sample represents
a digit of size 28×28 pixels and has a class label from {0, . . . , 9} associated with
it. The samples were normalized to achieve zero mean and unit variance.

Three variants of the learning set have been employed for the experiments.
The first one is the original learning set with 60 000 samples. To investigate the
effect of small translations, the samples have been jittered by 1 pixel in each
of 8 directions, yielding 540 000 samples. Finally, by applying additional elastic
distortions [19], a learning set with 13.5 million samples was generated.

The architecture was fixed to two-layer MLPs with 1000 neurons in the
hidden layer. Although employing more layers has improved classification per-
formance [3], this paper focuses on creating classifiers with very low compu-
tational complexity. For reference, conventional densely connected MLPs have
been trained on the three learning sets and tested on the 10 000 samples of the
evaluation set, yielding errors of 1.9%, 0.89%, and 0.61%, respectively. Thus,
similar to [2,4], adding jittered samples to the learning set significantly improves
the classification error. The localization uncertainty can be explained by the orig-
inal placement of the digits based on the center of mass of their pixel values [12].
This illustrates that MLPs are not able to learn invariants well, and hence rely
heavily on artificial training samples added to the learning set. Adding even
more samples using elastic distortions further decreases the classification error.

Two-thirds of the connections in the first layer of the MLP trained on the
jittered learning set have been removed through naive pruning based on their
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Table 1. Comparison of a conventional MLP with sparsely connected MLPs on the
MNIST dataset. All MLPs had two layers with 1000 units in the hidden layer. Only
the first connection matrix W1 was required to be sparse, W2 was densely populated.

Sparseness degree σW none 0.75 0.80 0.85 0.90

Connectivity rate ρ in W1 [%] 100 12.9 8.7 6.6 3.7

Number of synaptic connections 800 000 110 000 78 000 62 000 39 000

Speed-up S∞ (ρ) to dense MLP 1 4.9 7.1 9.1 15

Error on evaluation set [%] 0.89 0.83 0.86 0.91 0.94

absolute values. This increased the error from 0.89% to 1.2%. If only enough
connections were removed so that the classification error did not increase, 55.7%
of the connections still remained. Thus, only a mild speed-up factor of 1.2 could
be achieved while retaining classification capabilities. If instead of naive pruning
the sparseness-enforcing projection from Sect. 2.1 is used, the error increases
drastically to 3.0%. This indicates that the solution found by unconstrained
minimization is very distant from a minimum fulfilling sparseness constraints.

The results can be improved by training sparsely connected MLPs using the
method from Sect. 3.2. As 96% of all samples possess a sparseness of less than
0.75, this value was chosen for the lower bound on the MLP sparseness. A sum-
mary of the results on the jittered learning set is given in Table 1. For σW = 0.75,
an error of 0.83% was achieved, rendering it slightly better than the conventional
MLP. Nevertheless, only 12.9% of the entries in the first connection matrix were
nonzero, resulting in a lower bound to the speed-up factor of 4.9 compared to
the dense MLP. For comparison, a dense MLP with a reduced number of hidden
units has been trained. Though the dense MLP was adjusted for equal compu-
tational complexity as the SMLP, only an error of 1.1% could be achieved. For
σW = 0.80, the error slightly increased, but the lower connectivity rate allowed
for a speed-up of at least factor seven. The speed-ups increase more for higher
sparseness degrees, while the classification capabilities degrade. However, even
for very sparse connection matrices, the error remains below 1%.

Sparse MLPs for sparseness degrees 0.75, 0.80, 0.85, and 0.90 have also been
trained on the learning set generated by elastic distortions, achieving signifi-
cantly lower errors of 0.59%, 0.64%, 0.67%, and 0.72%, respectively. Though the
SMLP with σW = 0.75 achieved an error statistically equal to the one of the
conventional MLP, the connectivity rate in the hidden layer was 14.2%, which
results in a minimum speed-up of factor 4.5.

To verify the initialization as described in Sect. 3.2, an MLP was initialized
using random values and then trained on the jittered learning set with the back-
propagation algorithm subject to sparseness constraints. After convergence, an
error of 1.1% was achieved, which is significantly higher than the corresponding
error of 0.89% using the unconstrained backpropagation algorithm. Thus, rea-
sonable results could only be achieved using the combination of a sophisticated
initialization scheme with a constrained backpropagation algorithm.
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Fig. 1. Comparison of various approaches to MNIST considering classification error
and computational complexity of classification. Computational complexity is given rel-
ative to the complexity of a dense two-layer MLP with 1000 hidden units. A detailed
discussion is given in Sect. 5. This figure is best viewed in color.

5 Comparison with Alternative Approaches

The results described in the previous section are compared with alternative
approaches from LeCun 1995 [10,11], Burges 1997 [2], DeCoste 2002 [4], Hin-
ton 2006 [8], and Cireşan 2010 [3]. The two major points of this comparison are
the error achieved on the evaluation set and the computational complexity of
classification relative to a densely connected MLP with 1000 hidden units. The
results of this discussion are illustrated in Fig. 1 and are referenced using signs
(a)–(z). Though [19] achieved an error of 0.4% using convolutional neural net-
works, the computational complexity of their approach has not been published.
Thus it is not included in this discussion.

A very efficient solution using a family of convolutional neural networks has
been given by LeCun 1995 [10,11]: (a) LeNet-4 and (b) LeNet-5 using the original
learning set, (c) LeNet-5 and (d) boosted LeNet-4 using an augmented learning
set. The computational complexity has been determined based on the number
of MAC operations from [11].

Burges 1997 [2] proposed a Virtual Support Vector Machine, adding samples
jittered in four directions to the learning set. Their approach (e) achieves an
error of 1.0%, but the computational complexity is very demanding. The com-
putational cost can be reduced by approximating the SVM’s hyperplane normal
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by a reduced set of vectors, resulting in a speed-up of factor 22 [2], involving
a slightly larger error (f). DeCoste 2002 [4] improve on the classification error
by using samples jittered in eight directions. The error improves from (g) the
original learning set to (h) jittering by 1 pixel and (j) jittering by 2 pixels. Com-
putational complexity of [2] and [4] has been determined based on the number
of support vectors. The complexity in the latter case is very high, but there no
reduced set approach has been applied.

Hinton 2006 [8] used a deep network of Restricted Boltzmann Machines, pre-
trained using unsupervised algorithms. They (k) achieved an error of 1.2%, with-
out having to augment the learning set using artificial training samples. Thus,
their approach is completely invariant to permutations of the pixels of the in-
put samples. Using a two-layer MLP, a significantly higher error of 1.9% was
achieved using the very same learning set, see Sect. 4.

By employing very large MLPs, Cireşan 2010 [3] currently hold the record on
MNIST classification. They employed elastic and affine distortions to obtain a
huge learning set. MLP training was sped up by greatly exploiting parallelism
on a graphics processing unit. They trained MLPs with (l) three layers, (m)
four layers, (n) five layers, and (p) six layers. Unlike recent trends, they did not
employ unsupervised pre-training before using the backpropagation algorithm
to tune the MLP parameters.

The results obtained in this paper are quite competitive. The conventional
two-layer MLP with 1000 hidden units trained on the jittered samples achieved
(q) an error of 0.89%. By training on the elastically distorted samples, an error
of 0.61% was achieved (r). By exploiting the sparse connection matrix of sparse
MLPs, significant speed-ups can be gained while retaining similar classification
performance. For the jittered learning set, SMLPs with sparseness degrees σW of
(s) 0.75, (t) 0.80, (u) 0.85, and (v) 0.90 have been trained. On the elastic learning
set, SMLPs with sparseness degrees of (w) 0.75, (x) 0.80, (y) 0.85, and (z) 0.90
have been trained, achieving significantly better classification performance but
also higher computational complexity due to a higher connectivity rate.

6 Conclusions

Traditional Multi-Layer Perceptrons have been studied and applied intensely
over the past decades. They have recently achieved state-of-the-art performance
in handwritten digit recognition. In this paper, an algorithm for the training of
sparsely connected MLPs has been proposed. In doing so, the MLP’s parame-
ters are initialized using the solution to an unsupervised matrix factorization
problem. Then, the parameters are tuned to optimize classification capabilities
using a projected gradient descent algorithm. A comparison with alternative
approaches has shown that sparse MLPs achieve competitive classification per-
formance, while computational complexity can be reduced using sparse matrix-
vector multiplication algorithms. This enables using sparse MLPs in embedded
systems, where real-time capable algorithms are mandatory, and each speed-up
results in an effective reduction of hardware cost.
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Abstract. Machine learning is increasingly used to autonomously adapt
brain-machine interfaces to user-specific brain patterns. In order to min-
imize the preparation time of the system, it is highly desirable to reduce
the length of the calibration procedure, during which training data is
acquired from the user, to a minimum. One recently proposed approach
is to reuse models that have been trained in historic usage sessions of
the same or other users by utilizing an ensemble-based approach. In
this work, we propose two extensions of this approach which are based
on the idea to combine predictions made by the historic ensemble with
session-specific predictions that become available once a small amount of
training data has been collected. These extensions are particularly use-
ful for Brain Reading Interfaces (BRIs), a specific kind of brain-machine
interfaces. BRIs do not require that user feedback is given and thus,
additional training data may be acquired concurrently to the usage ses-
sion. Accordingly, BRIs should initially perform well when only a small
amount of training data acquired in a short calibration procedure is
available and allow an increased performance when more training data
becomes available during the usage session. An empirical offline-study in
a testbed for the use of BRIs to support robotic telemanipulation shows
that the proposed extensions allow to achieve this kind of behavior.

1 Introduction

Brain Reading Interfaces (BRIs) are one particular kind of brain-machine in-
terface (BMI) that allow to provide the machine with information about the
current mental state and intent of its user such that the machine can optimize
its behavior accordingly. In contrast to active Brain-Computer Interfaces (BCIs,
see [3,14] for a review of works), BRIs estimate the user’s mental state and intent
based on passive, external observation of brain activity without requiring any
active participation of the user. This observation can, e.g., be based on electroen-
cephalography (EEG). Since no active participation of the user is required, BRIs
are well-suited for scenarios like robotic telemanipulation where a sophisticated
BMI is expedient but the user needs to be fully immersed in his task.

Like active BCIs, BRIs must be adapted to the current brain patterns of the
user since these characteristic patterns vary between different subjects and even
change over time within the same subject. This can be achieved by using machine
learning (ML) techniques (see, e.g., Blankertz et al. [4] for an example in an active
BCI). The common approach for using ML in BCIs is to record labeled training
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data during a so-called calibration procedure that must be conducted prior to
each usage session. In this calibration procedure, the user acts in a controlled
and supervised scenario. The labeled data acquired is then used to adapt the
ML-based BCI system to the user’s current brain patterns. The drawback of this
approach is that the user has to conduct this calibration procedure each time
he wants to use the system. Thus, it is highly desirable to keep this calibration
procedure as short as possible (or remove its necessity altogether).

Different approaches for reducing the calibration time have been proposed:
Krauledat et al. [10] proposed an algorithm targeted at long-term BCI users
that allows to skip the calibration procedure. This is accomplished by inferring
spatial filters and classifiers that generalize well across sessions based on reusing
training data from historic sessions of the same user and clustering of historic
spatial filters. Fazli et al. [6] proposed a method that allows to skip the cali-
bration procedure for both long-term and novel users. Their approach is based
on an ensemble of historic spatial-filter/classifier combinations that are trans-
ferred to the current session and whose individual predictions are combined into
a joint prediction by means of a gating function. Both approaches require that
a large number of historic sessions be available. Further approaches for reducing
calibration time are multi-task learning [2], semi-supervised learning [11], and a
hybrid approach that mixes historic data with session-specific data [12].

The main contribution of this paper is to propose two extensions of the “pure”
ensemble-based approach of Fazli et al. and to present an empirical comparison
of these approaches in a testbed for the use of BRIs to support robotic telema-
nipulation. The two extensions we propose are based on the idea of combining
the predictions made by the historic ensemble with session-specific predictions
that become available once some amount of training data has been collected. We
show that these extensions achieve good performance when only a small amount
of training data is available and—in contrast to the “pure” ensemble approach—
also become increasingly better for more training data. This is particularly im-
portant for BRIs, since BRIs allow to interweave the acquisition of training data
with the actual usage session. Thus, the system should initially perform well
based on a small amount of training data acquired in a short calibration pro-
cedure but should also be able to improve performance when increasingly more
training data is gathered during the usage session. Furthermore, in contrast to
related approaches like [6] and [10], the proposed extensions perform well also
when only a small number of historic sessions is available. The paper is struc-
tured as follows: In Section 2, a testbed for BRIs in robotic telemanipulation
is presented. Subsequently, the baseline BRI as well as different ensemble-based
extensions are proposed in Section 3. In Section 4, the experimental setup and
a discussion of our results are given and a conclusion is drawn in Section 5.

2 Scenario

The empirical evaluation was conducted on an EEG dataset recorded in the
Labyrinth Oddball scenario (see Figure 1), a testbed for the use of BRIs in
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Fig. 1. Labyrinth Oddball: The subject plays a physical simulation of the BRIOR©

labyrinth and has to respond to rare ’target’ stimuli by pressing a buzzer. Event-related
potentials (ERPs) evoked by ’target’ and more frequent ’standard’ stimuli are depicted.

robotic telemanipulation. In this testbed, the operator has to simultaneously
execute a manipulation task (playing the Labyrinth game) and to distinguish
two different kinds of stimuli presented to him while playing the game. The BRI
only needs to passively monitor whether the operator of the Labyrinth game
correctly recognized and distinguished these stimuli. Since no user feedback is
given, the testbed is well suited for evaluation of BRIs (for more details we refer
to [8] and the video in [1]). The BRI’s task is to discriminate between the EEG
patterns evoked by recognizing so-called ’standard’ and ’target’ stimuli1. While
’standard’ stimuli are frequent (720 presentations per run) but irrelevant, ’tar-
get’ stimuli are rare (120 presentations per run) and require the user to press a
buzzer. Such a scenario is called “oddball discrimination paradigm” and the suc-
cessful recognition of the rare ’target’ stimuli is known to elicit an event-related
potential (ERP) called P300 [13]. In contrast to many active BCIs (e.g. [14]), the
classification has to be made based on the individual instance and not on an av-
erage over several repetitions of the same condition. To avoid differences in early
visual brain activity and to make sure that differences in the EEG recorded and
classified after the presentation of both stimuli types are actually due to higher
cognitive processing, the visual presentation (shape and color) of standard and
target stimuli was kept very similar. Note that neither during the calibration
procedure nor during evaluation runs feedback was given to the subject.

EEG data was acquired in 12 sessions from 6 male subjects; each subject
performed 2 sessions. Sessions were recorded on different days; accordingly, the
EEG cap was fitted onto the subject’s head for each session anew. Each of these
sessions consisted of five repetitions (called “runs”) of the Labyrinth Oddball
paradigm. After each of the five runs there was a short break of 10 minutes. The
EEG was recorded and stored along with information about which stimulus was
1 This is a kind of proxy-task for the actual task of distinguishing between recognized

and missed target stimuli (see [8] for a discussion).
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presented at what time and whether the buzzer was pressed afterwards. EEG was
recorded continuously from 64 electrodes (extended 10–20 system with reference
at electrode FCz), using an actiCap system (Brain Products GmbH, Munich,
Germany). Two of the 64 channels (replacing the electrodes TP7 and TP8) were
used to record electromyography signals of muscles of the lower arm and have
been discarded in this study. EEG signals were amplified by two 32 channel
BrainAmp DC amplifiers (Brain Products GmbH, Munich, Germany) and were
sampled at 1000 Hz. The impedance was kept below 5 kΩ.

3 Methods

Baseline BRI. As a first step of the baseline BRI system used for discrimi-
nation of the ’standard’ and the ’target’ condition, rectangular time windows
starting 0 ms and ending 1000 ms after stimulus presentation are extracted from
the continuous signal recorded during the experiment. Thereupon, the extracted
time windows are normalized so that the mean value of each channel becomes
0 within this window. Subsequently, the signal is low-pass filtered (cutoff fre-
quency 12 Hz), downsampled from 1000 Hz to 25 Hz, and again low-pass filtered
for a cutoff frequency of 4 Hz in order to focus on slow ERPs like the P300.

After this, the signal is spatially filtered. Spatial filtering denotes a mapping
of the original n channels x(t) (that directly correspond to the n electrodes) onto
new pseudo-channels x̃(t) =WTx(t) that are a mixture of the signals recorded at
different electrodes (see Blankertz et al. [5] for a discussion of why spatial filtering
is an important step). In this work, we have generated spatial filters based on the
common spatial patterns (CSP) algorithm [9]. CSP maps the data onto axes such
that the variance for instances of the first class is maximized and the variance
for the second class is minimized (or vice versa). With X(c)

i ∈ Rn×t being the
i-th of the nc examples of band-pass filtered and centered EEG segments with
t samples for class c, this is achieved by a simultaneous diagonalization of the
two empirical intra-class covariance matrices Σc = n−1

c

∑nc

i=1X
(c)
i (X(c)

i )T , i.e. by
solving Σ1W = ΛΣ2W where Λ is the vector of generalized eigenvalues andW is
the matrix of generalized eigenvectors corresponding to the learned projections.

The values of the resulting pseudo-channels, i.e., the 26 × 62 samples of the
62 pseudo-channels that fall into the time window from 0 to 1000 ms, are used
as features. Thereupon, each feature dimension is normalized such that its 2.5th
percentile on the training data is mapped onto 0 and the 97.5th percentile is
mapped onto 1. The resulting feature vectors are classified using a support vec-
tor machine (SVM) with linear kernel and complexity 0.01. Since the ratio of
standard and target class instances in the dataset is highly unbalanced due to
the oddball paradigm, the weight for class ’target’ has been set to 2.0, while
the weight of class ’standard’ was set to 1.0. The feature set and all mentioned
parameters have been chosen based on a preliminary investigation conducted on
a hold-out dataset. The implementation of the data processing system is based
on the “Modular toolkit for Data Processing” [15].
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Ensemble approach. The baseline BRI outlined above adapts to the specific
user by supervised training of subject- (and session)-specific spatial filters, fea-
ture normalization, and classifiers. Once trained, these three components form a
subject- and session-specific classification system cs (subsequently called a clas-
sification flow) that maps preprocessed time series x onto the scalar classifier
prediction cs(x) ∈ R. Unfortunately, training of a classification flow requires a
large training dataset that has to be recorded at the start of each session. In
order to reduce the required amount of training data (possibly even to zero), Fa-
zli et al. [6] proposed to reuse classification flows trained on N historic sessions
from the same and other subjects; such a set h = (ch1 , . . . , chN ) of historical
classification flows chi is called an ensemble. An ensemble can be used to gen-
erate a vector of class predictions h(x) = (ch1(x), . . . , chN (x)) ∈ RN for a given
time series x.

Thereupon, a so-called gating function g combines the ensemble’s predictions
h(x) ∈ RN into a joint prediction g(h(x)) ∈ R (in the linear case g(x) =∑N

i=1 wichi(x)). A gating function can be defined without requiring session-
specific training data by, e.g., training it on historic data (compare Fazli et
al. [6]) or, alternatively, without any training by predicting according to the
equally-weighted mean of the ensemble’s predictions (wi = 1/N). Furthermore,
in situations where a small amount of session-specific training data is available,
it is possible to train a gating function such that higher weights wi are assigned
to historic flows chi that have high predictive performance for the current ses-
sion. We focus on the latter approach since it can be combined naturally with
the proposed augmentation approaches (see below). We use an SVM with lin-
ear kernel for learning the gating function’s parameters wi since this SVM-based
gating function achieved superior performance on hold-out test data of the given
scenario compared to other common methods for learning gating functions. The
outlined “pure” ensemble approach is depicted as the middle layer in Figure 2.

Augmentation approaches. While ensemble approaches have been successful in
achieving good performance when only a limited amount (or even no) training
data from the current session is available (see, e.g., [6]), it is unlikely that they
can achieve competitive results when more session-specific training data becomes
available since they can not exploit novel patterns or shifts present in the current
session that have not been observed in any of the historic sessions. We propose
to use the ensemble approach presented above not instead but in addition to
the training of a session-specific flow cs, i.e., to augment the session-specific
flow cs by the predictions of the ensemble h. In this approach, the available
training data is used for two purposes: training of a session-specific flow cs and
training of the gating function g which determines the final classification based on
the ensemble’s predictions and the session-specific information. We propose and
compare two alternative approaches: Classification Augmentation and Feature
Augmentation (see Figure 2).

In the classification augmentation approach, the prediction of the session-
specific classification flow cs(x) is treated like any of the ensemble flow’s pre-
dictions chi(x): An augmented ensemble h̃ = (ch1 , . . . , chN , cs) is generated and
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Fig. 2. Different ensemble and augmentation approaches. Feature Augmenta-
tion and Classification Augmentation are two alternative approaches for augmenting
the ensemble’s predictions by session-specific information. TS denotes a time-series,
FV a feature vector, and CL a scalar classifier prediction.

the gating function g chooses the joint prediction g(h̃(x)) based on h̃’s output
(h̃(x) ∈ RN+1). Both cs and g need to be trained based on data acquired in the
current session; using the same data for both tasks, however, would result in a
too strong reliance of the gating function on cs since the predictive performance
of cs would be evaluated on its own training data. Thus, the available training
data needs to be split into two parts. Empirically, we have found that using 2/3
for training of cs and 1/3 for training of g is a good compromise.

In contrast, in the feature augmentation approach, the session-specific in-
formation added to the ensemble’s predictions is not the classifier’s prediction
cs(x) but the values of the n most informative features f1(x), . . . , fn(x), i.e.,
h̃(x) = (ch1(x), . . . , chN (x), f1(x), . . . , fn(x)) ∈ RN+n. Thus, h̃(x) consists of
two very different kinds of values: classifier predictions and CSP-pseudo-channel
values (the selected features). However, this does not impose a problem and has
the advantage that the available training data can be used more efficiently than
in classification augmentation (note that while in principle feature selection and
training of the gating function should be done on disjoint training sets, we have
found empirically that it is favorable to train both on the same data). The choice
of n is one additional parameter of this approach. The determination of the most
informative features is made using the RELIEF feature selection algorithm [7].

4 Evaluation

Experimental Setup. One historic classification flow has been trained for each
historic session, resulting in 12 historic classification flows. Each of the 12 sessions
has been used once as evaluation session with the remaining 11 sessions being
considered accordingly as historic sessions. Two different settings have been com-
pared: In the “LeaveOneSessionOut” setting, the classification flows belonging
to all but the current evaluation session have been used in the ensemble (result-
ing in ensembles of N = 11 flows), while in the “LeaveOneSubjectOut” setting,
all classification flows that have not been generated from usage sessions of the
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current subject are used in the ensemble (resulting in ensembles ofN = 10 flows).
For each evaluation session, the data recorded in the first run has been used as
training data and each of the remaining four runs has been used once as test
dataset (intra-session setup), resulting in 4 ∗ 12 = 48 performance samples per
method. Training datasets of six different sizes t ∈ {42, 84, 168, 252, 420, 840}
have been randomly sampled from the 840 labeled instances of the first run,
where t = 840 corresponds to a calibration time of approximately 16 minutes.
We refer to “experimental design.pdf” in [1] for more details.

Parameters of the SVM gating function have been selected using 5-fold inter-
nal cross-validation on the training data (complexity C ∈ {0.001, 0.01, 0.1, 1.0}
and target class weight wt ∈ {1, 2, 5, 10} for standard class weight 1). The param-
eter n of the feature-augmentation approach has been linearly increased from
n = 2 for t = 42 to n = 50 for t = 840 to account for a stronger influence
of the session-specific information when more training data becomes available.
The scalar output of the gating function g is mapped onto the binary classes by
choosing a threshold that maximizes the performance on the training data. For
comparison, the results of the “zero-training” gating function that predicts ac-
cording to the equally-weighted ensemble mean are given for the pure ensemble
for t = 0. The performance of the session-specific flow cs is given as “baseline”.
No value for classification augmentation is given for t = 42 since not enough tar-
get class training examples were available for the two-stage training procedure.

Because of the large class-skew of the classification task, standard measures
such as accuracy are not well suited as performance metric. Instead, performance
is measured according to the mutual information metric I(T ;Y ) = H(T ) −
H(T |Y ) with H(T ) = −∑n

i=1 p(xi)log2p(xi) being the Shannon entropy of the
class label T and H(T |Y ) the conditional entropy of the class label T given
the classifier’s prediction Y . The values of the metric correspond to the bits
of information about the true class label conveyed by the classifier. The main
advantage of this metric is that any kind of random classifier has mutual in-
formation 0. Note that the class label’s entropy (and thus I(T ;Y )) is upper
bounded by H(T ) ≈ 0.533 for the given class ratio of 6 : 1. The optimally
achieved performance (mutual information of 0.22) corresponds roughly to 94%
correct classifications.

Results and Discussion. We compared the four different approaches (factor e)
for different training set sizes (factor t) by repeated measures ANOVA with t
and e as within-subjects factors. This statistic model was separately performed
for each setting s ∈ {”LeaveOneSessionOut”, ”LeaveOneSubjectOut”} because
of the different ensemble sizes N for the two settings. Whenever the results
of the two different settings were compared, the additional factor s was added
to the statistic model. In order to avoid that the different values of N for the
two settings affect these comparisons, one randomly selected session of another
subject was removed from the “LeaveOneSessionOut” setting such that N = 10
in both cases. If needed, the Greenhouse-Geisser correction and—for pairwise
comparisons—Bonferroni correction were applied. All tests have been performed
for a significance level of p < 0.05 (see “statistics.pdf” in [1] for more details).
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Fig. 3. Effect of training set size. Comparison of baseline, ensemble, and augmenta-
tion approaches for maximal N (LeaveOneSessionOut: N = 11, LeaveOneSubjectOut:
N = 10) and for different training set sizes t.

Figure 3 summarizes the results of the study. In the “LeaveOneSessionOut”
setting, the ensemble approach is significantly better than the baseline for t ≤
252 and worse for t = 840. This supports the hypothesis that historic predictors
provide good performance when only a small amount of training data is available
but are outperformed by session-specific predictors when larger amounts of train-
ing data have been acquired. Among the augmentation approaches, feature aug-
mentation is clearly better with statistical significance for t ∈ {42, 84, 168, 420}.
This may be attributed to the inefficient usage of training data in the classifi-
cation augmentation approach where it is necessary to split the training data
into two disjoint parts (see Section 3). Furthermore, feature augmentation can
be considered to be superior to both the ensemble and the baseline approach
since performance is never significantly worse than any of the two, but signif-
icantly better than the ensemble for t ≥ 420 and better than the baseline for
t ∈ {42, 84, 168, 420}. This indicates that feature augmentation provides an ef-
ficient way of combining historic and session-specific information by adaptively
learning which source of information should be trusted more.

Results in the “LeaveOneSubjectOut” setting are qualitatively similar, with
the notable difference that the ensemble’s performance is significantly worse than
in the “LeaveOneSessionOut” setting for all t. This shows that a historic session
of the same user helps to increase the performance of the ensemble approach.
As a result, in the “LeaveOneSubjectOut” setting, the ensemble is significantly
better than the baseline only for t ≤ 168 but worse for t = 840. Performance
of the feature augmentation approach deteriorates significantly as well in the
“LeaveOneSubjectOut” setting for all t �= 252; however, this deterioration is less
strong since the session-specific flow compensates partly for the missing historic
session of the same user. Accordingly, the feature augmentation approach is still
never significantly worse than the baseline but significantly better for t ≤ 168.
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Figure 4 shows how the size N (N ∈ {1, 2, 4, 6, 8, 10, 11}) of the historic en-
semble and the size of the training dataset t mutually affect the performance of
the pure ensemble and the feature augmentation approach (in the “LeaveOne-
SessionOut” setting). These results have been separately analyzed for each set-
ting by repeated measures ANOVA with the within-subjects factors N , t, and
e. The performance of the pure ensemble approach depends strongly on the
ensemble’s size: Even for large t, no performance above 0.17 is achieved for
N ≤ 2 and no performance above 0.19 for N ≤ 6. This dependence on N is even
stronger in the “LeaveOneSubjectOut” setting (see “LOSubjO.pdf” in [1]). On
the other hand, the feature augmentation approach depends less strongly on N ,
outperforming the baseline for small t significantly even when N is very small
(t < 84 for N = 1; t < 168 for N ∈ {2, 4}) while never being significantly worse.

5 Conclusion

We have presented two alternative approaches for combining predictions made by
an ensemble trained on historic sessions with a flow that has been trained on data
acquired in the current usage session. This hybrid approach allows to achieve a
better performance than the session-specific predictor when only small amounts
of training data are available and a better performance than the historic ensemble
when more training data becomes available. The proposed approach performs
well for subjects for which historic sessions exist but also for novel subjects
for which no historic sessions have been conducted. Furthermore, in contrast
to related approaches like [6] and [10], the proposed method also achieves good
performance when only a small number of historic sessions is available, where it
still outperforms the session-specific predictor for small training datasets. Future
work is to conduct online studies in which the acquisition of training data is
performed concurrently to the usage session.
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Abstract. The supervised learning paradigm assumes in general that
both training and test data are sampled from the same distribution.
When this assumption is violated, we are in the setting of transfer learn-
ing or domain adaptation: Here, training data from a source domain, aim
to learn a classifier which performs well on a target domain governed by
a different distribution. We pursue an agnostic approach, assuming no
information about the shift between source and target distributions but
relying exclusively on unlabeled data from the target domain. Previous
works [2] suggest that feature representations, which are invariant to do-
main change, increases generalization. Extending these ideas, we prove a
generalization bound for domain adaptation that identifies the transfer
mechanism: what matters is how much learnt classier itself is invariant,
while feature representations may vary. Our bound is much tighter for
rich hypothesis classes, which may only contain invariant classifier, but
can not be invariant altogether. This concept is exemplified by the com-
puter vision tasks of semantic segmentation and image categorization.
Domain shift is simulated by introducing some common imaging distor-
tions, such as gamma transform and color temperature shift. Our experi-
ments on a public benchmark dataset confirm that using domain adapted
classifier significantly improves accuracy when distribution changes are
present.

1 Introduction

The fundamental assumption in supervised learning is that training and test
data arise from the same distribution. However in real life applications, it is
common that training examples from one source domain are used to build the
predictor that is expected to perform a related task on a different target domain.
This change requires domain adaptation.

The situation with domain changes and the need for domain adaptation is
shared by many fields, e.g., we have to account for domain change when we train
a spam filter for a new user on examples from other users. In natural language
processing, this occurs in e.g., part-of-speech tagging [5], where the tagger is
trained on medical texts and deployed on legal texts. In computer vision systems,
classifiers are usually trained prior to deployment on data which are manually
annotated by experts. This labeling process is tedious and expensive, whereas
data collection is usually fast and inexpensive. For instance, collecting unlabeled
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data from a video surveillance system under different settings (different camera,
lighting) requires little effort, but labeling this data demands a human annotator
and often even a trained domain expert. Hence, the ability to adapt to a new
domain using only unlabeled data from a new target distribution is of substantial
practical advantage.

To achieve good generalization in supervised learning one should keep the
hypothesis class simple while minimizing the empirical risk. Intuitively, in case
of domain adaptation an additional requirement should be imposed: the source
and the target distributions should look the same for the good classifier. In other
words, classifier should be invariant to the change of the distribution.

We consider the setting where a finite set of labeled training examples is
available from the source domain, but only few unlabeled examples are available
from the target domain. We proceed by first proving a bound on the target
generalization error, which is dependant on the classifier’s training error on the
source distribution and its invariance to distribution changes. This bound is
much tighter for rich hypothesis classes, that only contain invariant hypothesis,
but are quite variable in general. Invariance is formulated as the inability of the
classifier to discriminate between the source and the target domain. Finally, we
construct an algorithm that minimizes this bound.

Along with a theoretical analysis of domain adaptation we present an experi-
mental validation of our results. Computer vision serves as a challenging applica-
tion domain for machine learning, which allows us to visually inspect our results.
We experimentally show the applicability of our approach by constructing a do-
main adaptive version of semantic texton forest [13] (STF) for image semantic
segmentation and categorization. Semantic segmentation simultaneously requires
to segment and recognize objects, one of the fundamental and most challenging
computer vision tasks. We study the adaptation of STF to color cast and gamma
transform, which are very natural distortions in imaging. We will see that such
distortions are very damaging for an STF. But with domain adaptation we are
able to improve results in some cases by more than a factor of two.

The paper is organized as follows. We first shortly describe previous works.
Section 3 formally defines our problem and notation. In section 4 we present
our theoretical bound. In section 5 the domain adaptive random forest for se-
mantic segmentation and categorization is discussed. Section 6 describes our
experimental results followed by a conclusion.

2 Prior Work

In this paper we consider the setting of domain adaptation for an arbitrary shift
in the data distribution and where only unlabeled data from the target domain
is available. Much research has been done to address each constraint individu-
ally. However little has been reported when both constraints are considered. We
briefly review the literature for different settings of learning under distribution
shift.
Transfer learning. Transfer learning is a setting when labeled data from the tar-
get distribution is available. In [4] authors prove uniform convergence bounds for
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algorithms that minimize a convex combination of source and target empirical
risk. A thorough experimental evaluation for this scenario (minimization of con-
vex combination of risks) can be found in [12]. In [8] a boosting method for transfer
learning is developed. [11] studies adaptation with multiple sources, where for each
source domain, the distribution over the input points as well as a hypothesis with
error at most ε are given. They prove that combinations of hypotheses weighted
by the source distributions benefit from favorable theoretical guarantees.

Covariate shift. One common assumption to address the case where labels are
not available is that of covariate shift. Here, only the marginal distribution Pr[X ]
changes and the conditional remains unchanged, i.e., PrDS [Y |X ] = PrDT [Y |X ].
In [3] the general problem of learning under covariate shift is formulated as an
integrated optimization problem and a kernel logistic regression classifier is de-
rived for solving it. A nonparametric method which directly produces resampling
weights without distribution estimation for learning under covariate shift is pre-
sented in [10]. Their method works by matching distributions between training
and testing sets in feature space. Another paper [3] studies a complex problem
of learning multiple tasks (multitask learning), when each task may have a co-
variate shift. They derive a learning procedure that produces resampling weights
which match the pool of all examples to the target distribution of any given task.

Semi-supervised learning. Semi-supervised learning (SSL) [6] is another strategy
to improve the classifiers accuracy by using unlabeled data. Our setting should
not be confused with semi-supervised learning. As in SSL we use unlabeled data
to improve our classifier. While SSL assumes data to come from the same distri-
bution, our setting does not impose such an assumption. One common approach
to semi-supervised learning is to treat labels of unlabeled data as additional vari-
ables which have to be optimized to maximize the possible separation margin.
Such strategy could also be advocated for domain adaptation as a valid heuristic
(and was used for that purpose in [1]), though it has no theoretical support. Ex-
amples of semi-supervised methods are tSVM [14] and semi-supervised random
forests [7].

Domain adaptation. The setting that is closest to ours has been defined in [2].
The authors also consider the case with no assumptions about shift and they re-
quire only unlabeled data from target distribution. By studying the influence of
feature representation on domain adaptation, they theoretically prove that the
hypothesis space that is invariant to distribution changes improves generaliza-
tion, although the problem of finding such a space is not addressed. In contrast
to [2] we are interested in learning a classifier from a rich, possibly not invariant
family, which generalizes well under distribution shift. We discuss this work in
more details in Section 4.

3 Problem Setup

Let X be the instance set and Y be the set of labels. The joint distributions are
given by D̃S(X × Y ) and D̃T (X × Y ), for the source and the target domains
respectively. The corresponding marginal distributions of X are denoted by DS



Agnostic Domain Adaptation 379

and DT . To simplify the notation we restrict ourselves to dichotomies, i.e., to
two classes. Labeled training samples are drawn from D̃S(X × Y ), but only
samples of unlabeled data are gathered from DT . Let H ⊆ {h : X → Y } be
the hypothesis space. The probability that hypothesis h makes an error on the
source domain as

εS(h) = E(x,y)∼D̃S
[h(x) �= y]. (1)

The error on the target domain εT (h) is defined similarly. Zh denotes the
characteristic function of h,

Zh = {x ∈ X : h(x) = 1}. (2)

The symmetric set difference is abbreviated by AΔB = (A \ B) ∪ (B \ A). For
example, PrDS [ZhΔZh∗ ] is the probability that [h �= h∗] with respect to the
marginal distribution of X in the source domain.

We do not make any assumptions about the nature of the domain shift. It is
possible that both marginals Pr(X) and conditional probabilities Pr(X |Y ) are
changing and the resulting bound is completely agnostic.

4 Generalization Bound

Now we derive our theoretical results. Suppose there is a hypothesis in H which
performs λ well on both domains:

inf
h∈H

[εS(h) + εT (h)] ≤ λ. (3)

In the work of Shai Ben-David [2], the following generalization bound was
provided in a form dependant on the A-distance between the source and the
target domain:

εT (h) ≤ε̂S(h) +

√
4
m

(d log
2em
d

+ log
4
δ
)

+ λ+ dH(DS ,D′
T ). (4)

In words, the A-distance is proportional to an ability of family of predictors
to distinguish between two distributions:

dA(D,D′) = 2 sup
A∈A

|PrD[A] − PrD′ [A]|. (5)

Unfortunately the question of how to find such a family of predictors was not
addressed. The bound in eq. 4 states that when the features and the hypothe-
sis family are invariant to domain shift, then we can expect to generalize well.
However, the bound does not tell us how to choose the best hypothesis from the
hypothesis class. Even the experimental results in [2] are not fully justified by
this bound, since the feature representation was learnt after seeing the data. For-
mally, to apply this bound, all possible variants of feature representation, which
could be learnt by structural correspondence learning [5], should be included
into hypothesis family H , which will render the bound trivial.
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We will now show a bound, which depends on the characteristics of the partic-
ular hypothesis chosen by the training algorithm, rather than on the hypothesis
class that we choose from. Our bound would allow us to design an algorithm,
that explicitly searches for a hypothesis that minimizes it.

We formalize invariance of a classifier as its inability to distinguish between
the source and the target distributions:

ψ(h) = |PrDS [Zh] − PrDT [Zh]|. (6)

ψ(h) has a minimum at zero (high invariance), i.e., the classifier cannot dis-
tinguish between the source and the target distribution. It exhibits a maximum
of one (low invariance) when the classifier can always accurately decide from
which distribution a data point comes from.

Now we are ready to formulate our theorem.

Theorem 1. Let H be a hypothesis space of VC-dimension d. Given m i.i.d.
samples from D̃S, ∀h ∈ H, with probability of at least 1 − δ,

εT (h) ≤ε̂S(h) +

√
4
m

(d log
2em
d

+ log
4
δ
) + λ

+ ψ(h) + ψ(h∗) + ψ(h · h∗), (7)

where ψ(h) = |PrDS [Zh] − PrDT [Zh]|.
Proof. Let h∗ = arg minh∈H(εT (h) + εS(h)), and let λS and λT be the errors of
h∗ on the source and the target domains respectively. Note that λ = λS + λT .

To get the bound in [2] authors bounded the change, induced by the domain
shift, of the difference between the best hypothesis h∗ and the learnt h by the
invariance of the hypothesis family to distribution shift – A-distance. Essentially,
we decompose this invariance into three parts: invariance of the learnt hypothesis,
of the best hypothesis, and of their intersection. The proof is the following:

εT (h) ≤λT + PrDT [ZhΔZh∗ ] (8)
=λT + PrDS [ZhΔZh∗ ] − PrDS [ZhΔZh∗ ] + PrDT [ZhΔZh∗ ] (9)
=λT + PrDS [ZhΔZh∗ ] − PrDS [Zh \ Zh∗ ] − PrDS [Z∗

h \ Zh]
+ PrDT [Zh \ Zh∗ ] + PrDT [Z∗

h \ Zh] (10)
=λT + PrDS [ZhΔZh∗ ] + PrDT [Zh] − PrDT [Zh ∩ Zh∗ ] − PrDS [Zh]

+ PrDS [Zh ∩ Zh∗ ] + PrDT [Zh∗ ] − PrDT [Zh ∩ Zh∗ ]
− PrDS [Zh∗ ] + PrDS [Zh ∩ Zh∗ ] (11)

≤λT + PrDS [ZhΔZh∗ ] + |PrDT [Zh] − PrDS [Zh]|
+ |PrDT [Zh∗ ] − PrDS [Zh∗ ]|
+ 2 |PrDT [Zh ∩ Zh∗ ] − PrDS [Zh ∩ Zh∗ ]| (12)

=λT + PrDS [ZhΔZh∗ ] + ψ(h) + ψ(h∗) + 2ψ(h · h∗) (13)
≤λ+ ψ(h∗)︸ ︷︷ ︸

constant

+ εS(h) + ψ(h) + 2ψ(h · h∗)︸ ︷︷ ︸
dependant on h

. (14)
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To finish the proof one needs to apply classic Vapnik-Chervonenkis [14] theory to
bound εs(h) by its empirical estimate. Using Vapnik-Chervonenkis theory again,
we can bound the true ψ by its empirical estimate and an additional complexity
penalty.

Observe that the bound has two parts: a constant part and the second part
that is dependant on h. The constant (w.r.t. h) part is a function of the hypoth-
esis class, which is assumed to be fixed. The part that depends on h consists
of a sum of the classifier’s training error εS(h) and the invariances ψ(h) and
ψ(h · h∗). The term ψ(h) is the invariance of a learnt classifier, which can be
controlled during training. The term ψ(h ·h∗) measures the intersection between
the learnt h and the optimal classifier h∗. It is large when the overlap between
h and h∗ changes a lot after the domain shift. Regretfully ψ(h · h∗) can neither
be measured nor optimized, since we completely lack and knowledge of h∗: it
pinpoints the uncertainty incurred in the absence of labeled data in the target
domain. Hence in our design of the algorithm in section 5 we will only minimize
the empirical estimates of ε(h) and ψ(h).

In contrast to eq. 4 [2], we no longer rely on the invariance of the entire
hypothesis class, but rather only on the specific classifier that we learn. Thus
optimization of the bound can be integrated into the training process directly,
as demonstrated in the following section. Our bound is also tighter for rich
hypothesis classes, where invariant hypothesis is contained, but the class itself
far from being invariant.

5 Algorithm

Theorem 1 provides us with an insight on how such a domain adaptive classifier
could be constructed. When minimizing empirical loss on the source distribu-
tion, ψ(h) should also be minimized by increasing its invariance. We implement
this idea for the random forest classifier. In particular, for extremely randomized
forests [9] (ERF), a predicate for splitting is selected that concurrently maxi-
mizes information gain and minimizes the empirical estimate of ψ(h). Here we
describe an ERF for the computer vision task of semantic segmentation – a task
of simultaneous object segmentation and recognition. This ERF will also provide
us with an adapted kernel for SVM based object categorization.

Semantic Texton Forest. The Semantic Texton Forest (STF) proposed in [13] is
employed for semantic segmentation. Their work uses ERF for pixel-wise classi-
fication. Below we shortly describe this approach.

A decision forest is an ensemble of K decision trees. A decision tree works
by recursively branching left or right down the tree according to a learnt binary
split function φn(x) : X → {0, 1} at the node n, until a leaf node l is reached.
Associated with each leaf l in the tree is a learned class distribution P (c|l).
Classification is done by averaging over the leaf nodes L = (l1, ..., lK) reached
for all K trees:

P (c|L) =
1
K

K∑
k=1

P (c|lk). (15)
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Conceptually, a forest consists of a structure, consisting of nodes with split
functions, and probability estimates in the leaf nodes. We can represent a forest
as a complex function f(g(x)), where g : X → NK maps the instance feature
vectors to the vector of leaf indices, reached for each tree and f : NK → [0, 1]C

maps those indices to class probability estimates. Each leaf then has to store a
vector wl = [P (y = 1|l), ..., P (y = C|l)].

Trees are trained independently on random subsets of the training data.
Learning proceeds recursively, splitting the training data at node into left and
right subsets according to a split function φn(x). At each split node, several
candidates for φn(x) are generated randomly, and the one that maximizes the
expected gain in information about the node categories is chosen:

ΔH = − |Il|
|In|H(Il) − |Ir|

|In|H(Ir), (16)

where H(I) is the Shannon entropy of the classes in the set of examples I. The
recursive training usually continues to a fixed maximum depth without pruning.
The class distributions P (y|l) are estimated empirically as a histogram of the
class labels yi of the training examples i that reached leaf l.

STF, as presented above, provides prediction on the basis of local context
only. To bring a global image context into play an Image Level Priors (ILP)
are used. The support vector machine (SVM) is trained to predict whether a
certain object is present in the image. Output of SVM is scaled to the probability
simplex and pixel level STF predictions are then multiplied by it. A kernel for
the SVM is constructed by matching the amount of pixels in two given images
that pass through the same nodes in the STF. We refer the reader to the original
publication [13] for more details on ILP and STF training.

Domain Adaptation. To adapt a STF to a particular domain, we introduce a
slight modification to the original criterion (eq 16) for choosing the best split
function φn(x). The new criterion ΔH̃ now takes shift invariance into account
as desired

ΔH̃ = ΔHS︸ ︷︷ ︸
ε̂(h)

−α
(∣∣∣∣ |IT

r |
|IT

n | − |IS
r |

|IS
n |
∣∣∣∣+ ∣∣∣∣ |IT

l |
|IT

n | − |IS
l |

|IS
n |
∣∣∣∣)︸ ︷︷ ︸

ψ̂(h)

, (17)

where IT
r and IT

l are the data points from the target domain right and left of
the split respectively. IT

n is the total amount of the target domain data points
that have been classified by a node. The same notation is used for the source
data with respective superscripts IS

(·). First term – ΔHS stands for information
gain on labeled data from source domain and optimizes an empirical estimate
of ε(h). The second term is an empirical estimate of ψ(h). This addendum deals
with unlabeled data from both domains, penalizing those splits, that produce
classifiers invariant, which are not invariant to the distribution shift. This mod-
ification, forces our classifier to both minimize error on the source distribution
and maximize invariance of the classifier towards distribution changes. It slightly
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increases the training time and has no effect on the computational complexity
of the final predictor. Adaptation of the image categorizer emerges in a natural
way, since the adapted STF provides the (adapted) kernel for the image cate-
gorizer. The proposed approach is generic and can possibly be applied to other
application fields too.

6 Experiments

We evaluate our approach on two fundamental computer vision tasks: semantic
segmentation and image categorization. The benefit of using visual data for
domain adaptation experiments is that we can introduce realistic distribution
shifts based on common imaging distortions and visually inspect the results.
For our experiments, we used the MSRC21 dataset. This dataset comprises of
591 images out of 21 object classes. The standard train/test/validation split, as
in [13], contains 276/256/59 images, respectively. In order to estimate standard
error deviation we used 5 random splits of the dataset into train/test/validation
sets keeping the same proportions as in the standard split. We applied several
common imaging distortions on the dataset to simulate distribution shift. We
train our classifiers on the undistorted training images. The unlabeled set of
distorted validation images is used for adaptation.

We compare our algorithm (STF-DA) with two baseline methods. The first
baseline is a STF [13] trained on the undistorted training set only. We also
compared our results to a semi-supervised random forest (STF-SSL) [7] trained
on the training set and unlabeled validation set, for the following reasons. First,
it can be readily integrated into the STF framework. Second, it optimizes the
separation margin of the classifier over all classifier parameters and all labelings
of unlabeled data, which is a valid heuristic for domain adaptation in case when
no information is available on the distribution shift and labeled data for target
domain are lacking. We evaluate on distorted test images. For all classifiers, we
use the implementation with the parameter setting of the STF framework as
provided in [13].

Image Distortions
We consider two distortions common in imaging: color temperature shift and
gamma transform. Distortions are applied to test and validation set. Both distor-
tion types change both the marginal and the conditional probabilities. Color shift
affects only color features, when gamma transform inflicts a nonlinear change
in all features. Moreover, the hypothesis class (random forests) are far from be-
ing invariant towards this distortions. We introduce two versions of the shift for
both distortions. One is deterministic - every image is perturbed in the same way
(shift parameters are constant). In the second case, for each image we randomly
select a distortion parameter. In contrast to the previous works we are able to
deal with this setting both in theory and in practice.

Color Temperature Shift. Color temperature is a characteristic of visible light
that has important applications in lighting and photography. The color temper-
ature of a light source is determined by comparing its chromaticity with that
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Table 1. Accuracy on semantic segmentation and image categorization tasks

Distortion Semantic Segmentation Image Categorization

STF STF-SSL STF-DA STF STF-SSL STF-DA
Temp. (det) 0.19 ± 0.02 0.20 ± 0.03 0.44 ± 0.05 0.25 ± 0.02 0.26 ± 0.02 0.48 ± 0.04
Temp. (rand) 0.37 ± 0.03 0.38 ± 0.02 0.46 ± 0.03 0.40 ± 0.02 0.40 ± 0.01 0.52 ± 0.03
Gamma (det) 0.48 ± 0.04 0.50 ± 0.03 0.52 ± 0.03 0.53 ± 0.04 0.53 ± 0.04 0.58 ± 0.02
Gamma (rand) 0.41 ± 0.03 0.42 ± 0.02 0.45 ± 0.03 0.44 ± 0.02 0.45 ± 0.03 0.49 ± 0.02

of an ideal black-body radiator. Color temperature shift is a common artifact
of digital photography. The same scene shot under different lighting will have
a color cast: the warm yellow-orange cast of tungsten lamps or the blue-white
of florescent tubes. Most digital cameras perform white balance correction by
digitally adjusting color temperature. For the deterministic case we reduced the
temperature of all images by 40%. In the randomized case images have there
temperature lowered by 40, 30, 20% or 10% at random. Deterministic shift is
very strong and renders nearly all color feature non reliable.

Gamma Transform. Due to a finite dynamic range and discretization in digital
cameras, images can easily become over- or under-exposed. We mimic this effect
by the gamma transform p̃i,j,c = pγ

i,j,c. In our experiments we use γ = 2 for
the deterministic case. Again, we have also produced a dataset with γ being
randomly chosen in the interval [0, 4] to make the shift non deterministic. This
shift does not change images as dramatically as color shift, but is not restricted
to a certain feature subspace. One can not adapt to it by just simply discarding
certain features (as it could be done in color shift case).

Results
We evaluate on semantic segmentation task measuring overall per pixel accuracy
and on the task of image categorization measuring average precision (Table 1).

In all experiments, STF-DA outperforms both baseline algorithms. STF-
SSL fails to bring any significant improvement over STF: semi-supervised learn-
ing is inappropriate to account for a distribution shift. The most significant im-
provements of STF-DA over the baselines are observed on the data with color
temperature shift. Our algorithm is able to filter out unreliable color features
and perform better – in the deterministic case the accuracy increases more then
twice. Success on γ transformed data validates that our approach is applicable
even when the shift affects all features and when it is not restricted to only a
subset of features. The more general non deterministic shifts are also processed
satisfactorily by STF-DA.

7 Conclusion

We have presented an analysis of domain adaptation for cases where only un-
labeled examples from the target distribution are available and no assump-
tions are made about the shift between the target and the source distributions.
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Intuitively, a good classifier should be invariant to changes in the distribution.
We formalize this intuition by proving an upper bound of the generalization error
of classifiers trained on the source domain and tested on the target domain. Our
bound explicitly depends on classifier’s invariance and its error on the source
distribution. In contrast to previous work [2] that requires the whole hypothesis
class to be invariant, this study demonstrates that good generalization can be
achieved even when the hypothesis family only contains one invariant classifier.
We experimentally confirm our findings on the challenging tasks of semantic
segmentation and image categorization. We show that our adaptation algorithm
significantly improves results for different imaging distortions, in some cases by
more than twice.

Acknowledgements. This work has been supported by the Swiss National
Science Foundation under grant #200021-117946.
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Will the Pedestrian Cross?
Probabilistic Path Prediction Based on Learned Motion Features
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Abstract. Future vehicle systems for active pedestrian safety will not only re-
quire a high recognition performance, but also an accurate analysis of the de-
veloping traffic situation. In this paper, we present a system for pedestrian action
classification (walking vs. stopping) and path prediction at short, sub-second time
intervals. Apart from the use of positional cues, obtained by a pedestrian detector,
we extract motion features from dense optical flow. These augmented features are
used in a probabilistic trajectory matching and filtering framework.

The vehicle-based system was tested in various traffic scenes. We compare its
performance to that of a state-of-the-art IMM Kalman filter (IMM-KF), and for
the action classification task, to that of human observers, as well. Results show
that human performance is best, followed by that of the proposed system, which
outperforms the IMM-KF and the simpler system variants.

1 Introduction

Strong gains have been made over the years in improving pedestrian recognition per-
formance. However, the initation of an emergency vehicle maneuvre requires a precise
estimation of the current and future position of the pedestrian with respect to the mov-
ing vehicle. A deviation of, say, 25 cm in the estimated lateral position of the pedestrian
can make all the difference between a “correct” and an “incorrect” maneuvre initiation.
One major challenge is the highly dynamic behaviour of pedestrians, which can change
their walking direction in an instance, or start/stop walking abruptly. As a consequence,
prediction horizons for active pedestrian systems are typical short; even so, small per-
formance improvements can produce tangible benefits. For example, accident analysis
[15] shows that being able to initiate emergency braking 0.16 s (4 frames @ 25 Hz) ear-
lier, at a Time-to-Collision of 0.66 s, reduces the chance of incurring injury requiring
hopital stay from 50% to 35%, given an initial vehicle speed of 50 km/h.

The paper studies the case of a pedestrian walking towards the road curbside, and
poses the question whether the pedestrian will cross or not. See Figure 1. This setting
is inspired by an earlier human factors study [16], where participants were asked the
same question, upon viewing similar video content. This study varied the amount of
visual information provided to the participants and examined its effect on human clas-
sification performance; in the baseline case, the pedestrian was fully visible, whereas
in other cases, parts of the images were masked out. Masking the complete pedestrian,
and leaving only positional information (bounding box), turned out to decrease human
accuracy markedly.

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 386–395, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Everyday problems vehicle drivers are faced with: Will the pedestrian cross?

Besides action classification, the aim of this paper is to accurately predict the pedes-
trian path. For this, an input pedestrian trajectory fragment is matched against pre-
viously stored pedestrian trajectories in a database. The retrieved trajectories in the
database are used for extrapolation and path prediction. The intuition is that more com-
plex dynamics (e.g. the process of a pedestrian stopping) are more accurately captured
by such learning-based approaches than with generic modeling approaches relying on
constant motion assumptions.

2 Previous Work

In this section, we focus on previous work on pedestrian motion models and path pre-
diction. The reader is referred to [9,10] for surveys on pedestrian detection. There is
furthermore a wealth of work on human activity recognition [18], including some on
detecting unusual pedestrian motion patterns (e.g. [14]).

One way to perform path prediction relies on closed-form solutions for Bayesian
filtering; in the Kalman Filter (KF) [3], the current state can be propagated to the fu-
ture by means of the underlying linear dynamical model, without the incorporation of
new measurements. The same idea can be applied to filter extensions, which involve
multiple linear dynamical models, i.e. to the Interacting Multiple Model Kalman Filter
(IMM-KF) [3]. An alternative approach for path prediction involves stochastic models.
Possible trajectories are generated by Monte Carlo simulations, taking into account the
respective dynamical models. For example [1], use Bayesian filtering by means of par-
ticle filtering and a constant motion model. [8] distinguishes lateral and longitudinal
pedestrian velocity and models these independently by a random walk. In [19] pedes-
trian motion is modeled by means of four states of a Markov chain, corresponding to
standing still, walking, jogging and running. Each state has associated probability distri-
butions magnitude and direction of pedestrian velocity; the state changes are controlled
by various transition probabilities. More recently, complex pedestrian motion models
also account for group behaviour and spatial lay-out (e.g. entry/exit points) [2].

The limited amount of available training data precludes the use of modeling ap-
proaches which compute joint probability distributions over time intervals. Indeed, most
pedestrian motion models consists of states that correspond to single time steps, and
are first-order Markovian. This potentially limits their expressiveness and precision.
In contrast [4] describe an extension of particle filtering to incrementally match tra-
jectory models to input data. It is used for motion classification of 2D gestures and
expression. A further development [17] adds an efficient tree search in the context of
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articulated 3D human pose recovery. In [13] this technique is applied to vehicle motion
prediction, utilizing the quarternion-based rotationally invariant longest common sub-
sequence (QRLCS) metric for trajectory matching. [5] propose a multi-level prediction
model, in which the higher levels are long-term predictions based on trajectory cluster-
ing matching, whereas the low level uses an Auto-Regressive model to predict the next
time step.

The main contribution of this paper is a system for pedestrian action classification
(walking vs. stopping) and accurate path prediction from a moving vehicle, at short
time intervals. We borrow from the efficient trajectory matching approaches of [13,17]
but augment the underlying features to include motion cues. The latter is motivated by
the before-mentioned study [16]. For our use in trajectory matching, however, we need
to derive a low-dimensional optical flow representation. We use real video data, which
results in a realistic modeling of sensor uncertainty.

3 Proposed System

An overview of the proposed system is given in Figure 2. The feature extraction step
uses dense stereo [11] and dense optical flow [20] data computed over the bounding
boxes returned by a pedestrian detector. Lateral and longitudinal position of the pedes-
trian is obtained with the center of the detector box and median disparity values inside
the box, respectively. Vehicle ego motion is compensated by rotation and translation of
positions to a global reference point using velocity and yaw-rate measurements from
on-board sensor data. Motion features involve a low-dimensional histogram representa-
tion of optical flow. Measured pedestrian positions and motion features are subsequently
used in a trajectory matching and filtering framework. From the filter state and informa-
tion about the class labels of the matched trajectories, a future pedestrian position and
action is derived.

Motion Features. We propose a low dimensional feature that captures flow variations
on the pedestrian legs and upper body. In order to operate from a moving vehicle ad-
ditional invariance to pedestrian distance and vehicle motion is important. Features are
designed to allow bounding box localization errors from a pedestrian detection system.
Figure 3 illustrates the feature extraction steps. Vehicle velocity and yaw-rate measure-
ments from on-board sensor data in combination with stereo measurements are used to
compute the ego-motion compensated optical flow field. Flow vectors are normalized

Fig. 2. Overview of the proposed system for pedestrian action classification and path prediction
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Fig. 3. Overview of the motion feature extraction procedure

with the camera cycle time and measurements from dense stereo for robustness to frame
drops and invariance to different pedestrian distances to the camera. This normalized
motion field is used to extract features given a bounding box detection and distance esti-
mation zped from a pedestrian detection system. To ensure that the pedestrian is located
in the box for all possible limb extensions and slight localization errors a bounding box
aspect ratio of 4:3 is used. Motion vectors not belonging to the pedestrian body are
suppressed by using only values at a depth similar to the estimated pedestrian distance.
Remaining values in the motion field are used to compute the median object motion
and extract orientation histograms. To capture motion differences between torso and
legs the bounding box is split into an upper and lower sub-box. For each sub-box the
median motion is removed to compensate the pedestrian ego motion. Resulting orien-
tation vectors v = [vx, vy]T are assigned to bins b ∈ [0, 7] using their 3600 orientation

θ = atan2(vy, vx) and bin index b =
⌊

θ
π/4

⌋
. Bin contributions are weighted by their

magnitude and resulting histograms are normalized with the number of contributions. A
feature vector is formed by concatenating the histogram values and the median flow for
the lower and upper box. Dimensionality reduction of the feature vector is archived by
applying principal component analysis (PCA). The first three PCA dimensions with the
largest eigenvalue are used as final histograms of orientation motion (HoM) features.

Probabilistic Trajectory Matching. A pedestrian trajectoryX is represented using the
ordered tuples X = ((x1, t1), . . . , (xN , tN )). For every timestamp ti the state xi con-
sists of the lateral and longitudinal position of the pedestrian and additional features
extracted from optical flow (Figure 4(a)). For motion prediction retrieval, it is possible
to compare each trajectory in a motion database with an observed history using a sim-
ilarity measure. With the Quaternion-based Rotationally Invariant Longest Common
Subsequence (QRLCS) metric [13] the optimal translation and rotation parameters to
superimpose two trajectories are derived. The distance distQRLCS(A,B) ∈ [0, 1] be-
tween two trajectories is given by the number of possible assignments determined by
an ε area around each trajectory state, normalised by the number of trajectory states.
Figure 4(a) illustrates this matching process. We replaced this greedy search by a prob-
abilistic search framework [13,17] where the search time depends on the number of
sampling points.
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(a) (b)

Fig. 4. a) System trajectory with history of length d containing position and feature information
for every entry is matched to the training database. Resulting matching position and similarity
distance to trajectories in the training database describes a possible trajectory course and class
label. b) Tree representation of the trajectory training database. Leaf nodes represent trajectory
snippets of fixed length. Similar trajectories are search by traversing the tree using the trajectory
descriptors for every level.

Given a motion historyM1:t up to the current time step t, the probability that a future
pedestrian state φT occurs is computed by

p(φT |M1:t) = η p(M1:t|Ψt)
∫
p(Ψt|Ψt−1) p(Ψt−1|M1:t−1) dΨt−1 (1)

with a normalisation constant η and the current state Ψt which represents a sequence
of trajectory points including position, optical flow features and its history over a tem-
poral sliding window with a manually defined number of time steps d. p(φT |Ψt) is the
probability of observing a future state φT , and is determined from the motion database.

This distribution p(φT |M1:t) is represented by a set of samples or particles {Ψ (s)
t }S ,

which are propagated in time using a particle filter [4]. Therefore, each particle Ψ (s)
t

represents a sub-trajectory for the current state.
A set of overlapping sub-trajectories (snippets, e.g. [12]) with fixed number of tra-

jectory points d is created from the motion database. By piling the features for each
trajectory point in a snippet into a description vector and applying the PCA method to
these vectors, their principal dimensions can be ordered according to the largest eigen-
value. The resulting transformed description vector v is used to build a binary tree.
For each level l the snippet is assigned to the left or right sub-tree depending on the
sign of vl. Figure 4(b) illustrates this search tree. Particle prediction is performed by
a probabilistic search in the constructed binary tree and a lookup for the next state
in the motion database. The distribution p(M1:t|Ψt) represents the likelihood that the
measurement trajectory M1:t can be observed when the model trajectory is given. In
the context of particle filters, this value corresponds to the weight of a particle and is
approximated using w(s) = 1 − distQRCLS for each particle Ψ (s)

t . Each particle is a
representation of the assumed current pedestrian state with an assigned likelihood.

Action Classification and Path Prediction. The distribution of the predicted state
p(Φt|M1:t) is approximated by means of the particle filter. An estimated state Φ(s)

T
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Table 1. Number sequences and frames for each class with moving and non-moving ego vehicle

Sequences / Frames vehicle standing vehicle moving
ped. stopping 12 / 1526 5 / 587
ped. walking 9 / 1686 4 / 750

representing the pedestrian state in the future T = t + ΔT can be derived by look-
ing ahead on the associated trajectories for the current state Ψ (s)

t . This results in many
hypotheses which are compensated using a weighted mean-shift algorithm [6] with a
Gaussian kernel and weights w(s) ∼ p(Φ(s)

T |M1:t).
As the final predicted state Φ∗

T the cluster center with the highest accumulated weight
is selected. The trajectory database contains two classes of trajectory snippets, the class
Cs in which the pedestrian is stopping and the class Cw where the pedestrian continues
walking. For the predicted object state Φ∗

T derived using cluster members L = {Φ(l)
t }

and the corresponding weight w(l) the stopping probability can be approximated using:

p(Cs|L) ≈
∑

Φ
(l)
t ∈Cs

w(l)∑
Φ

(l)
t ∈Cs

w(l) +
∑

Φ
(l)
t ∈Cw

w(l)
. (2)

4 Experiments

Video data of two scenario types was recorded using a stereo camera (22 fps) on-board
a vehicle. The first scenario features the stopping of a pedestrian at the curbstone. In
the second scenario, the pedestrian crosses the street. Recorded data consisted of runs
where the vehicle is stationary at a distance of 15 m to 17 m to the pedestrian and
runs where the vehicle is moving at speeds of 20 − 30 km/h. Tables 1 summarizes the
recorded data with four different pedestrians.

Pedestrians were shape labeled to derive the ground-truth position in the world. The
median disparity value on the pedestrian upper body and the center of gravity of the
shape is used to project the 3D position. For each trajectory where the pedestrian is
stopping the moment of the last placement of the foot is labeled as the stopping moment.
By definition, all frames earlier to this event will have a time-to-stop value (TTS in
frames) greater than zero. Frames after the stopping moment have a TTS value smaller
than zero. In sequences where the pedestrian continues walking the closest point to the
curbstone (with closed legs) is labeled. Analogous to the TTS definition, it is called
time-to-curb value (TTC). Since the focus of the paper is not a particular pedestrian
detection system, we first provide as input to the evaluated methods the ground truth
2D bounding boxes perturbed by noise. Artificially generated uniform noise is added to
the height and center of the 2D bounding boxes up to 10% of the original height value.

Analyzing walking trajectories shows an average gait cycle of 10 to 14 frames for
different pedestrians. A trajectory database as described in previous Section is generated
in a sliding window fashion to contain sub-trajectories with a fixed length of ten frames.
For test trajectories a history of 14 frames is used to capture gate cycle variations.
Trajectories in which the pedestrian did not stop as well as trajectory slices with a
TTS > 20 (twice the gate cycle) are member of the class Cw. The stopping class Cs

consists of the remaining slices.
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Evaluated Models and Parameter Settings. The particle filter approximates the cur-
rent probability density with S = 400 particles and uses a search deviation parameter
of β = 0.05 for the tree search (see [13]). The mean shift position procedure operates
with a kernel width value h = 0.1. Two feature combinations for the PF are compared:
The base configuration uses the lateral and longitudinal object position (Pos) for the
trajectory matching. The second combination uses the median horizontal object flow
(MFlowU) in the image plane and additional motion features (HoM) described in pre-
vious Section. For the evaluation the training and testing data has been processed using
leave-one-out cross validation. In order to ensure the optimal search result by the PF,
the proposed system is compared against a full-search (i.e. brute force, BF) method over
all training trajectories. For each trajectory slice from the training set, the BF method
selects the best hypothesis based on the weight value, equal to the particle weights in
the PF system.

As a second model of comparison to the proposed PF system, we use the state-of-
the-art Integrated Multiple Model Kalman Filter (IMM-KF) [3]. Two process models
describing pedestrian motion are used: A steady walking pace can be represented with
the constant velocity (CV) model with process noise parameter qCV . For non-moving
pedestrians the constant position (CP) model with qCP applies. For the following eval-
uation qCV = 0.009 and qCP = 0.01 has been derived from the set of training trajecto-
ries, with respect to the positions minimum mean-RMS error. Each model is provided
with the same 3D position data as for the PF as a measurement input. In preliminary
experiments a constant acceleration model (CA) was tested as well, but did not produce
acceptable results. As mentioned in [3], this can be explained by the relatively short time
span of the deceleration process, a comparatively large measurement noise and the use
of the second derivative of the position data to estimate the deceleration. Measurement
noise for each test trajectory is computed from the training trajectories and yields a stan-
dard deviation of σz = 0.25 m in longitudinal and σx = 0.15 m in lateral direction. The
Markov matrix P describing the transition probabilities between the CV and CP model
was derived from the available training data P := [0.999, 0.001; 0.001, 0.999]. Choos-
ing larger values for the model transitions result in more frequent, undesired switches,
especially with noisy measurements.

Pedestrian Action Classification. We first tested the ability of various systems to clas-
sify pedestrian actions, i.e. whether the pedestrian will cross or not. Figure 5 illustrates
the mean performance of each system with different feature sets on stopping and walk-
ing test trajectories; depicted is the estimated probability of stopping, as a function of
TTS or TTC. For the PF and BF approaches the stopping probability is approximated as
described in previous Section. For the IMM-KF filter the probability of the CP model
is used. To put the performance of the systems in context, we also evaluated human
performance. Video data was presented to several human observers using a graphical
user interfaces, where playback was automatically stopped at different TTC or TTS mo-
ments (20, 11, 8, 5, 3). For each test, the observers had to decide whether the pedestrian
will stop at the curbstone or cross the street and provide a confidence using a slider
ranging from 0 to 1. Sequence and playback stopping point were randomly selected
before being presented, to avoid the effect of re-identification.
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(a) (b)

Fig. 5. Estimated probability of stopping over time for (a) stopping or (b) walking test trajectory
(averaged over all respective sequences

(a) (b)

Fig. 6. Classification accuracy of the different systems over time. (a) Results for the jittered
ground-truth bounding boxes. (b) Results for the bounding boxes of a HOG detector.

On trajectories where the pedestrian continues walking, all systems show a low and
relatively constant stopping probability. BF and PF results for different feature com-
binations show a similar performance. The CV model for the IMM-KF filter remains
more likely all time. On trajectories where the pedestrian is stopping, all systems ini-
tially start with a low stopping probability, since stopping is preceded by walking. But
about 11 frames before the stopping event the confidence increases more markedly.
Class membership of an input trajectory for each time instant is assigned by thresh-
olding the observed stopping probability (cf. Figure 5). Based on the training set, we
selected for each system a threshold that minimizes its classification error (i.e. stopping
classified as walking and vice versa) over all sequences and time instants. Figure 6 il-
lustrates the classification accuracy using these “optimal” thresholds. Human estimates
of the pedestrian action class outperforms current methods. The proposed system using
the feature combination Pos + HoM + MFlowU dominate the classification accuracy
compared to other evaluated competetive models at all times. An accuracy of 0.8 in
classifying the correct pedestrian’s action is reached 570 ms and 180 ms before a pos-
sible standstill by the human and proposed system; it is only reached after the possible
standstill with the other methods, due to sensor noise.
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Table 2. Mean and standard deviation of the RMSE (in m) for walking and stopping trajectories
with different systems and prediction horizons (#frames). left: Results using the jittered ground
truth bounding boxes right: Results using recognitions from a pedestrian detector.

Walking Stopping
0 3 5 11 17 0 3 5 11 17

IMM-KF
Mean 0.62 0.73 0.80 1.06 1.33 0.51 0.66 0.77 1.14 1.54
± Std 0.51 0.57 0.61 0.73 0.87 0.48 0.57 0.65 0.93 1.23

Pos
Mean 0.32 0.42 0.48 0.70 0.89 0.25 0.35 0.43 0.63 0.86
± Std 0.09 0.14 0.18 0.29 0.34 0.07 0.11 0.16 0.22 0.26

Pos+HoM Mean 0.37 0.49 0.56 0.79 1.07 0.28 0.04 0.46 0.66 0.88
+MFlowU ± Std 0.17 0.21 0.25 0.31 0.39 0.11 0.18 0.22 0.31 0.43

Walking Stopping
0 17 0 17

0.64 2.37 0.38 1.52
0.69 2.52 0.28 1.26
0.28 0.68 0.25 0.83
0.25 0.49 0.17 0.42
0.43 0.99 0.31 0.89
0.45 0.79 0.20 0.61

Path Prediction Accuracy. The second set of experiments evaluates the world local-
ization accuracy of path prediction for different prediction horizons for every time
step (i.e. frame). The predicted object position for the PF is computed as described
in previous Section by a look-up on the subsequent parts of the matched trajectories.
Position predictions of the IMM-KF are derived by predicting the current filter state
without additional measurement updates. Given a prediction time step inside the range
[20,−5] frames, where frame 0 denotes the manually labeled TTS/TTC moment, the
predicted localization error is evaluated for different prediction horizons.

Localization error for the different prediction horizons are summarized in Table 2.
As can be seen, the IMM-KF has a higher localization error for any prediction hori-
zon than PF feature combinations. Because the IMM-KF uses the filtered velocity for
path prediction, the increasing localization error can be explained by erroneous velocity
estimations, without new measurements the current velocity estimates are propagated
unchanged. The proposed system outperforms the IMM-KF by a factor of about 1.7 and
1.2 in stopping and walking situations, respectively, in terms of the reduction of mean
RMS. The addition of motion features does not result in improved accuracy, likely be-
cause the right trajectory snippets in the database are already found with position-only
features; accuracy gains can be expected by a larger training set.

Evaluation using a Real Pedestrian Detector. We also evaluated performance using
the bounding boxes provided by a state-of-the-art HOG pedestrian detector [7]. Miss-
ing detections were filled in using a basic correlation tracker (one sequence had to be
excluded from the evaluation because of 11 successive missing detections). For IMM-
KF systems the measurements noise derived from training sequences has been adjusted
to σz = 0.48 m and σx = 0.37 m. Process noise was left unchanged. We found that
the position and height error of the detector boxes compared to the ground truth is
normally distributed with a standard deviation of 5% of the box height but with small
number of outliers with larger errors. These outliers affect both position prediction and
classification performance of the IMM-KF method (cf. Figure 6(b) and Table 2). For
the IMM-KF the outliers lead to frequent model switches resulting in a less accurate
action class decision and velocity estimation. Classification performance of all meth-
ods decreases compared to the previous experiments. With the particle filter approach
no significant change in the localization accuracy is observed compared to the results
obtained previously; we attribute this to the robustness of the QRLCS metric to outliers.
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5 Conclusion
We presented a system for short-term pedestrian action classification and path pre-
diction, that makes use of learned, labeled trajectory data. On the task of classifying
whether a pedestrian nearing the curb side will stop, human performance was best,
followed by the proposed system, and on third spot the state-of-the-art IMM-KF and
simpler system variants, without an augmented motion feature set. Regarding the path
prediction accuracy, our system leads to a significant lower position error, especially
for large prediction horizons. We would like to thank C. Wöhler and M. Enzweiler for
helpful discussions.
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Abstract. In this paper, we address the problem of simultaneous track-
ing and reconstruction of non-planar templates in real-time. Classical
approaches to template tracking assume planarity and do not attempt
to recover the shape of an object. Structure from motion approaches use
feature points to recover camera pose and reconstruct the scene from
those features, but do not produce dense 3D surface models. Finally, de-
formable surface tracking approaches assume a static camera and impose
strong deformation priors to recover dense 3D shapes.

The proposed method simultaneously recovers the camera motion and
deforms the template such that an approximation of the underlying 3D
structure is recovered. Spatial smoothing is not explicitly imposed, thus
templates of smooth and non-smooth objects can be equally handled.
The problem is formalized as an energy minimization based on image
intensity differences. Quantitative and qualitative evaluation on both
real and synthetic data is presented, we compare the proposed approach
to related methods and demonstrate that the recovered camera pose is
close to the ground truth even in presence of strong blur and low texture.

1 Introduction

Template tracking is one of the fundamental problems in computer vision and a
multitude of impressive techniques have been proposed in the literature [12,1,4,9].
They mainly concentrate on planar templates and estimate camera motion by
energy minimization. The applications of template tracking are wide and in-
clude, but are not limited to, vision-based control, human-computer interfaces,
augmented reality, robotics, surveillance, medical imaging and visual reconstruc-
tion. In many applications, the planarity assumption is good enough, but in
general that is not the case. For that reason Silveira and Malis [17] and Bartoli
and Zisserman [2] considered computing 2D warpings of the reference templates
while tracking them. The real depth and camera motion are then obtained by
decomposing the estimated warpings.

Motivated by the fact that the world is not planar and driven by the emerging
needs of simultaneous recovery of the structures and motion of the camera, we
address the problem of simultaneous tracking and reconstruction of a non-planar
template in real time. The model of the template is represented as a triangular
mesh. We start with a planar shape and simultaneously recover camera motion

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 396–405, 2011.
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and deform the shape such that the underlying 3D structure is approximately
recovered. As we use all pixels of the template, the object does not necessarily
have to be well textured and contain many feature points. This is different from
classical Structure from Motion (SfM) and Simultaneous Localization and Map-
ping (SLAM) techniques that primarily rely on sparse feature points, such as
e.g. Klein and Murray’s PTAM [10] of which Newcombe and Davidson [13] use
the camera poses and sparse feature map to create a dense reconstruction. They
perform very well, but depend on the amount of the observed features and tend
to be sensitive to the amount of blur.

Unlike methods which rely on prior deformation models [16,15] and assume
fixed camera position, we solve for camera motion and do not impose any con-
straints on the model deformation, therefore we can equally reconstruct and
track templates that are smooth or have creases. However, since the problem is
ill-posed, we have made certain assumptions: we use templates of a predefined
size, assume that in its initial/reference position the entire template is visible
and is not self-occluded, and finally we restrict mesh vertices to only move along
the camera rays, thus having one degree of freedom per vertex.

We evaluated the performance of our method on both synthetic and real
video sequences. Further, we performed quantitative analysis and compared the
method to ground truth measurements and to standard planar template tracking
methods and PTAM. Our experiments indicate that, even with the approximate
shape we recover, the tracking precision increased and turned out to be much
more stable than tracking of planar templates and deals better with blur and
low-textured surfaces than PTAM.

In the remainder of the paper, we first discuss related works, then describe
our method in detail, finally present experimental results and conclude.

2 Related Work

Template tracking has always been assuming the planarity of the object of inter-
est to be tracked. Since Lucas-Kanade [12], the real-time constraint was enforced
and in recent works [1,3] it became standard. Improvements in convergence speed
and robustness in the calibrated camera setting were especially achieved by the
method of Benhimane and Malis [4]. For those reasons, we in part relied on their
method.

Other researchers [14,7,17] also proposed to find deformations of an object in a
sequence of acquired images. These methods generally consist of estimation of the
parameters of the warping function that registers the reference image, in which
the object is mainly planar, to the input image where the object is deformed.
Pilet et al. [14] and Gay-Bellile et al. [7] relied on feature points. While the
former can deal with a huge amount of outliers, the latter is relatively sensitive
to them. Datta et al. [5] use affine warps and integrated the idea of articulated
points as hard constraints into the minimization, i.e. they force patches to move
according to their connectivity. Hilsmann et al. [8] re-texture the surface of a
deforming object realistically by estimating both the changes in geometry and
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photometry, they also explicitly model external occlusions to further improve the
quality of the augmentation. Silveira and Malis [17] use 2D warps and present a
generic framework for template tracking which can undergo deformations. In all
of these cases, the warping is done in image space and therefore does not provide
a 3D shape, but instead 2D warpings of the images as in deformable registration.
To recover the 3D shape, the recovered 2D warpings are decomposed into a rigid
motion and according depths.

On a separate track, deformable surface tracking from monocular videos has
been developed. Because of the inherent ambiguity, deformation models have
been introduced to constrain deformations of particular objects like e.g. paper
and clothes [16,15,19]. These approaches generally output the 3D surface meshes.
However, they do not provide the relative camera/object motion in the image
sequence, require heavily textured objects and generally do not work in real-time.

Simultaneous recovery of the camera motion and the 3D shape is also related
to SfM [18] and SLAM [6] techniques. Both techniques strictly rely on image
features and incremental reconstruction of an observed scene, while neither of
them operates on the dense pixel level. The system proposed by Newcombe and
Davidson [13] indeed produces a dense reconstruction using a movable camera;
it relies on PTAM [10] to precisely recover the motion of the camera, they also
use its sparse feature map to initialize a dense optical flow method [20].

Most of the previously mentioned methods are using feature points and/or
define constraints on the possible model deformations. Relying on features usu-
ally implies that the observed object has to be well textured. Instead of using
a set of extracted feature points in the image, we use all available pixels of the
template which in turn enables tracking of low textured templates. We simulta-
neously recover the camera motion and the approximate shape of the non-planar
template. Our method exhibits fast convergence, is robust under blur, works in
real-time and recovers quite precise camera pose given the on-line reconstruction
of the approximate template’s shape.

3 Method

The task of the algorithm is to estimate updates of the mesh M and the camera
pose T given a novel image I of the object and relying of estimates on mesh
and pose, denoted as M̂ and T̂ obtained in the previous frame. We assume that,
ignoring occlusion and drastic lighting changes, the reference image I∗ can be
constructed from I by back-warping each face f given the true pose and the
recovered mesh. Given that we only know their approximations T̂ and M̂ , we
produce an estimated image Î∗ by applying a homography G to each face of
the mesh. This is illustrated in Figure 1(a). As the mesh is defined piece-wise
planar, warping a single face f is conducted by the homography:

G(T,n∗
f ) = K(R + tn∗�

f )K−1Gf . (1)

Here, K denotes the known 3 × 3 camera intrinsics, n∗
f ∈ R3 is the normal of

face f scaled by the inverse of the distance d∗f of the face to the camera center c∗
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I∗I

Î∗ y(x)

(a) Overview of the method

z∗ = 1

z∗ = 0c∗

(b) Parameterization of z∗
i

Fig. 1. (a) The mesh is overlaid onto the object, with highlighted movable vertices.

Out of the camera image I the estimate of the reference image Î∗ is unwarped. The
error y(x) = Î∗ −I∗ is subject to iterative minimization. (b) The vertices of the mesh
are free to move along their respective projection ray, i.e. (u∗

i , v∗
i ) are fixed but z∗

i may
change.

in the reference frame; the camera pose T is decomposed to get R ∈ SO(3) and
t ∈ R

3. Finally, the homography Gf is used to apply a 2D translation of the face
to its specified position within I∗. We assume that the updates T(x),n∗

f (x) of
the estimates T̂, n̂∗

f are reasonably small. They are parameterized in terms of the
camera pose and the mesh deformation x = (ωx, ωy, ωz, νx, νy, νz, ψ1, ψ2, . . . , ψn)
where the first six parameters represent the update of the pose T̂ of the camera,
represented by the Lie algebra of SE(3). The remainder of x represents the
update of the inverse depths ψi = 1/z∗i of the movable vertices.

Deformations of the mesh M∗ are modeled by moving vertices along their
respective rays emanating from the camera center c∗ in the reference view, see
Figure 1(b). Every vertex v∗

i is defined via its 2D coordinates v∗
i = (u∗i , v

∗
i , 1)�

in I∗ and its depth z∗i w.r.t. the camera center c∗. The normal n∗
f of a face f is

computed from its vertices {v∗
i ,v

∗
j ,v

∗
k} and inverse depths:

n∗
f (x) =

n∗

d∗
= K� [v∗

i v∗
j v∗

k

]−� [ψi ψj ψk]� . (2)

This formula was developed by combining the inverted pinhole projection a =
(x, y, z)� = zK−1(u, v, 1)� with the plane equation n�a = d. Note that this
parameterization of n∗

f (x) is linear w.r.t. the inverse of the depths.
For the sake of simplicity, we consider only a single face consisting of m pixels

and define the m× 1 error vector y(x) as concatenation of the error measures

yi(x) = Î∗ − I∗ = I (qi) − I∗(p∗
i ) (3)

= I
(
d
(
G
(
T̂T(x),n∗

f (x̂ + x)
)

p∗
i

))
− I∗(p∗

i ) (4)

where qi are pixel coordinates in the input image obtained by back-warping
to the reference image and d((u, v, w)�) = (u/w, v/w, 1)� represent normalized
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homogeneous coordinates. The current estimates of the depths is stored in x̂,
thus the update n∗

f (x̂ + x) used in Equation (4) is equivalent to the update
1
ẑ∗ ← 1

ẑ∗ + ψ. To increase numerical stability, we add a regularization term to
the cost function via a function r(x) : R6+n → R6+n for n movable vertices in
the mesh, discussed in section 3.1. The cost function can be written as

φ(x) =
1
2

(
||y(x)||2 + λ ||r(x)||2

)
(5)

where the scalar λ is used to balance the squared norms of y(x) and r(x). The
update x is computed by linearizing the quadratic cost function and therefore
solving the linear system(

J�
y Jy + λJ�

r Jr

)
x = − (J�

y y(0) + λJ�
r r(0)

)
(6)

where Jy and Jr are Jacobians of the data and the regularization terms. This
system is solved iteratively for x using e.g. its pseudo-inverse or Cholesky decom-
position. The Jacobian Jy can be written as the product Jy = JÎ∗JdJG where
JÎ∗ is the gradient of the estimated reference image, Jd and JG are the Jaco-
bians of the projection and the homography. In the spirit of [4], this first order
linearization can be approximated to second order as Jy = 1

2

(
JÎ∗ + JI∗

)
JdJG

by including the gradient of the reference image JI∗ . As shown in the evalua-
tion, this in general increases the convergence frequency of the Gauss-Newton
optimization with low additional costs. The convergence area is increased by
employing multiple levels of an image pyramid.

3.1 Regularization

In case the camera is close to the reference camera, the matrix J�
y Jy becomes

increasingly ill-conditioned, i.e. tiny changes in y(0) may provoke huge changes
in x. This is because the projection rays of the current camera are approximately
aligned with those of the reference camera (depicted in Figure 1(b)). In this
degenerate configuration, arbitrary movements of the vertices, respectively their
inverse depth ψi, result in almost identical unwarped reference images Î∗.

However, this configuration can be easily mitigated by adding a regularization
term to the cost function that restrains the vertices in that case. We define r(x)
as r(x) = (01×6, r1(x), r2(x), . . . , rn(x))� which currently only operates on the
n movable vertices. We compute ∀i ∈ 1, 2, . . . , n:

ri(x) =
(
1 + λse

−λr||̂t||2)( 1

ψ̂i + ψi

− μi

)
. (7)

The first part of the regularization term is a weighting factor that penalizes the
degenerate configuration just discussed. The scalars λs and λr determine the
scale and range of the penalty concerning the baseline, empirically λs = λr = 10
gave good results. The second part of Equation (7) is responsible for damping the
deformations and moving them towards their most likely true value. It penalizes
changes of the depths with respect to a reference depth μi of the vertex.
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(a) Convergence of shape (b) 1st vs. 2nd order

Fig. 2. Evaluation on synthetic data. (a) Sequence of synthetic pyramid, 16 faces and
12 moving vertices were used. Note that the shape quickly converges towards true
shape from the template image (frame 1) to frame 2. (b) The proposed second order
approximation of Jy converges 2-4 iterations earlier in case of slight deformations.

A näıve way of determining μi may consist in computing it as running average,
e.g. updated after every image as μi ← 0.9μi + 0.1/ψ̂i. This method is simple
yet effective in case of a continuously moving camera. However, when the cam-
era becomes stationary, μi will converge towards the value optimal for only this
local configuration and information from distant successful registrations will be
lost over time.

An improved version of determining μi tries to preserve previous knowledge
about the camera motion. For this, we spatially sample height estimates of the
proposed method on a hemisphere around each vertex using the geometry of the
camera ray of the vertex in I∗ and the current camera ray in I. The samples
are weighted using the angle between the rays, small angles are down-weighted
as they represent (near-) aligned camera rays and thus lead to the degenerate
configuration just discussed. Further we include into the weight the normalized
cross-correlation of the adjacent faces of the vertex in both I∗ and Î∗ to miti-
gate the influence of severely incorrect estimations of the camera pose or vertex
heights. Typically, the value of μi changes rapidly in the beginning as the shape
transforms from the initial estimate towards a more likely shape, but after that
becomes relatively stable given sufficient camera movements.

4 Evaluation

The proposed method was quantitatively evaluated both on synthetic and real
video sequences for which ground truth of the camera pose was available; in case
of the synthetic sequence also the estimate of the shape was evaluated. Further,
we evaluated the method qualitatively on smooth objects and on objects with
creases, using a moving camera. Equally we tested our method on a smoothly
deforming object with a fixed camera. Comparison against PTAM [10] was con-
ducted in presence of several levels of blur. Videos of the evaluations can be
found in the supplementary material.
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Fig. 3. Evaluation on real data. Comparison of ESM [3], DP [4] and proposed method.
Poses were compared to ground truth from a mechanical measurement device.

4.1 Quantitative Evaluation

Synthetic sequence. A synthetic pyramid was created first seen from the top,
then moving towards the lower left corner of the image while rotating. We used
a mesh of 16 faces and 13 vertices from which only the central vertex was fixed.
No regularization was employed as neither noise nor degenerate configurations
are present and only a maximum of five iterations per frame on pyramid level
0, i.e. on the original resolution, were allowed. The method shows low errors in
both pose and shape of the object. The synthetic evaluation is illustrated in
Figure 2 and in the supplementary material. When comparing the first order
linearization of Jy with the presented approximated second order linearization,
we observed that they have similar convergence rate when there is strong motion
in the depths like in frames 1-2 in Figure 2(b) . However, when the estimation
of the structure is changing just slightly like in frames 2-3 shown on the bottom
in Figure 2(b), 2 to 4 iterations may be saved and our results match those of
Benhimane and Malis [4] in terms of convergence.

Real sequence. To perform a quantitative evaluation with real camera images, we
have created a sequence using a real camera mounted on a mechanical measure-
ment device that provided a ground truth pose of the camera computed similarly
to Lieberknecht et al. [11]. We made a sequence for tracking low textured tar-
get, a computer mouse on a mouse pad. Similar to the synthetic sequence, this
sequence starts with an almost fronto-planar view such that we can create a rea-
sonable reference image from it by rectifying the first image given the ground
truth pose. The sequence was used to evaluate our method, ESM [3] and the cal-
ibrated multi-planar tracking method [4] referred to as DP. The algorithms were
given identical parameters, i.e. 2 pyramid levels and 5 iterations per level. Poses
were computed from the 2D–3D correspondences of the corners of the templates.
As can be seen in Figure 3, our method outperforms planar methods in terms
of accuracy on the pose of the camera. Furthermore, we evaluated the robust-
ness of the proposed method with respect to blur introduced by consecutively
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Fig. 4. Quantitative evaluation against blur. A (5×5) mean filter was applied consec-
utively 0–4 times to evaluate the robustness of the method to blur. Left: Frame of
the blurred image sequences given to PTAM (left) and proposed method (right). In
case of PTAM the plane indicates the ground plane PTAM fits to available features
after initialization. In our case we show the deformed 3D mesh model. Right: Error in
translation for cropped images and blur levels 0 and 1, below a table displaying the
mean error and standard deviation of the methods.

applying a (5×5) mean filter. This kind of blur can be found in real data when
the object is out-of-focus given a fixed-focus camera. We observed that the accu-
racy of the method did increase slightly as the blur increased. The same sequences
were given to PTAM. As poses of PTAM are defined in an rather arbitrary coor-
dinate system, we aligned them by minimizing the sum-of-squared distance to the
ground truth, solving for a 6-DOF transformation and 1-DOF scale. In order to
make fair comparisons, we focused only on the area belonging to the object and cut
the markers out. To avoid synthetic stable features, like those on the edges of the
cut, we slightly randomized the borders of the mask. PTAM could not successfully
initialize starting from the second level of blur, as depicted in Figure 4, since there
were very few features on the lowest image pyramid level to be tracked. However
the accuracy of PTAM is superior when using the full image as shown in Figure 4.
The proposed method is giving the same results both for full and cropped image.

4.2 Qualitative Evaluation

To analyze how the method works in case of a smooth object and in case of ob-
ject with creases, we evaluated it by tracking a cup and a truncated pyramid. The
method was able to track both objects well and approximated the shapes reason-
ably. As noted in [5], best results are obtained when the structure of the mesh is
able to express the structure of the underlying object. Furthermore, we evaluated
the robustness of the method when tracking deformed objects. Although this vi-
olates the rigidity assumption, the method copes well with slight deformations as
shown in Figure 5. In the cup sequence, after estimating the shape we manually
disabled the estimation of the depths and used the method only for tracking the
pose. We show that the pose is well estimated even under severe occlusion of up to
50% of the mesh. On a 2.5GHz dual core notebook, the speed is typically 10–30ms
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(a) Evaluation for rigid objects.

(b) Evaluation for a deforming object.

Fig. 5. Qualitative evaluation of recovered shapes. The first frame of the sequence
(shown left-most) is used as template. (a) Shape recovery of the rigid objects from moving
camera where also the camera motion is estimated. (b) Recovering shape of the deform-
ing object where the camera is not moving. Although the method was not designed for
such situations, we still managed to apply it to recover moderate object deformations.

per frame when estimating the camera pose and around 40–60ms when addition-
ally estimating the deformations. The timings were obtained using pyramid levels
3 and 2, at most 5 iterations per level and a mesh of approximately 200×200 pixels
on level 0. Most of the time is spent in the direct computation of J�

y Jy.

4.3 Discussion and Future Work

During the evaluation, we observed that the main source of error originated from
fast translational camera motion as this violates our assumption of small motion
considerably. However, we believe that this could be mitigated by using active
search, e.g. by employing a motion model. To further increase robustness, we plan
to investigate in a regularization term that penalizes deformation caused by er-
rors in camera tracking. In addition, we plan to add the possibility of dynamically
extending the deformed template as camera moves around.

5 Conclusion

We presented a real-time method for simultaneous tracking and reconstruction of
non-planar templates. While we remove the planarity constraint inherent to classi-
cal template tracking, we still benefit from all available pixels of the template when
building our objective function. We do not impose any constraints on the model
deformation, therefore we can equally reconstruct and track templates that are
smooth or have creases. The tracking precision of our method is very good com-
pared to the ground truth. This proves that even with only an approximate shape
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of the template recovered on-line, the tracking is more stable compared to pla-
nar template tracking methods. Furthermore, and in contrast to SfM and SLAM
methods, the proposed algorithm still works well for low textured objects and in
presence of strong blur.
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Abstract. In this paper, we propose a two-phase tracking algorithm for
multi-target tracking in crowded scenes. The first phase extracts an over-
complete set of tracklets as potential fragments of true object tracks by
considering the local temporal context of dense detection-scores. The sec-
ond phase employs a Bayesian formulation to find the most probable set
of tracks in a range of frames. A major difference to previous algorithms
is that tracklet confidences are not directly used during track generation
in the second phase. This decreases the influence of those effects, which
are difficult to model during detection (e.g. occlusions, bad illumination),
in the track generation. Instead, the algorithm starts with a detection-
confidence model derived from a trained detector. Then, tracking-by-
detection (TBD) is applied on the confidence volume over several frames
to generate tracklets which are considered as enhanced detections. As
our experiments show, detection performance of the tracklet detections
significantly outperforms the raw detections. The second phase of the al-
gorithm employs a new multi-frame Bayesian formulation that estimates
the number of tracks as well as their location with an MCMC process.
Experimental results indicate that our approach outperforms the state-
of-the-art in crowded scenes.

1 Introduction

Tracking is a key issue in various video-based applications, such as surveillance,
video retrieval systems, robotics, etc. However, multi-target tracking, especially
in crowded scenes, is still one of the most challenging problems, due to difficulties
such as occlusions, association complexity and measurement noise.

In recent years, much progress in object detection has been made and many
detector-based tracking approaches e.g. [1,10,18] have been proposed. In con-
trast to background-model based approaches, detector-based tracking is robust
against changing backgrounds and moving cameras. It can also be used in crowded
scenes, where learning and updating the background model are often impractical.

However, object-model learning is also challenging. For some object classes
with large appearance variations, e.g. people, detectors can not distinguish ob-
jects from the background reliably, e.g. due to clutter and partial occlusions. Such
uncertainties cause erroneous detections when using a single-frame object detec-
tor only. Whilst temporal context can improve detections, the sparse and discrete
nature of single-frame detectors (that use e.g. a non-maximum suppression to
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sparsify detections) are unsuitable for this purpose, as too much information is
discarded. In contrast, their dense and continuous raw detection-scores are more
suitable for modeling the temporal context. In our work, we propose an efficient
way to explore the spatial-temporal volume of dense detection-scores and ex-
tract tracklets from this volume. With an inhomogeneous Poisson process [8],
we describe the tracklets as multi-frame observations without confidences orig-
inated from the corresponding tracks. Thus, based on the density of tracklets,
the number of targets as well as their states can be estimated in a multi-frame
tracking framework.

This paper presents three main contributions. Firstly, an efficient method to
explore the spatial-temporal context of targets based on the continuous detection-
scores is introduced in Section 3.1, Secondly, a new tracking framework based
on multi-frame observations is proposed. In this framework, we use the den-
sity of tracklets rather than their detection-confidences as measurements for
multi-frame tracking, to avoid the problem of instable detection-confidences due
to occlusions and cluttered background. Finally, the experiments (Section 4)
show a significant improvement of detection performance by employing tracklet
detections. Our tracking algorithm outperforms the state-of-the-art method in
crowded scenes.

2 Related Work

Significant progress in object detection recently has motivated research interest
in detector-based tracking. Some approaches resolve the tracking problem by
associating tracklets, i.e. short measurement sequences, using a global match-
ing algorithm, e.g. [1,10]. These approaches are globally optimal in the sense
of maximum-a-posteriori (MAP) probability. But they are often unsuitable for
time-critical online applications. Moreover, detection-scores below the threshold-
value are discarded, which could have been helpful information for linking track-
lets. Wu and Nevatia [18] process online-tracking by associating detection re-
sponses of multiple confidence levels, which are generated by varying the thresh-
olds. This algorithm is actually a compromise between efficiency (hard decision)
and completeness (continuous scores).

Other algorithms make use of the intermediate output of detectors for track-
ing directly on the dense detection-score volume (TBD). In this case, detection
decision, e.g. from thresholding, is delayed and tracking is performed on the
raw measurements. It was first proposed for tracking weakly detected objects
in radar applications where the SNR is low [15]. Recently, TBD has also been
used for detector-based tracking. One category is online-boosting based tracking,
e.g. [2]. They employ supervised or semi-supervised learning methods to distin-
guish the specific object from the background. However, drifting as a result from
self-enforced wrong updates remains an issue. Another category is based on de-
tectors trained offline [5], [14], [6]. In the work of Breitenstein et al. [5], they inte-
grate the continuous detection-scores in a particle-filter framework. However, to
avoid the exponential growth in the number of particles needed to represent the
joint state space, they use independent particle sets for each target, which may
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Fig. 1. The pipeline of our tracking system. TBD stands for tracking-by-detection.

have problems with interacting objects and occlusions. [14] generates a global
spatial-temporal volume by combining detection-scores with ground-plane and
background information. In this confidence volume, they apply a particle-filter
to find the trajectories. Due to the lack of individual information in detection re-
sponses, such an optimization on responses over a long time is not robust against
frequent interactions or occlusions between targets.

Building on the idea of tracklets, e.g. used in [1], we explore the local spatial-
temporal volume of dense detection-scores in the form of tracklets, which are
shown to improve detection significantly. As long tracks are not considered, it is
more robust against occlusions. Based on the density of these tracklets, instead of
the instable detection-confidences, a multi-frame tracking framework is proposed
to estimate the target states.

3 Multi-target Tracking Based on Dense Detection-Scores

Fig. 1 depicts our tracking framework which consists of two phases. First, over-
complete tracklets are extracted by exploiting the local spatial-temporal context
of detection-scores. Then, based on the density distribution of tracklets, we pro-
pose a Bayesian framework to estimate the target states jointly.

3.1 Generation of Tracklets

In many of the previous detector-based approaches, the high-score detections
are used as input for tracking. However, these detections are sparse and unreli-
able in situations such as occlusions or complex backgrounds. For example, the
detection-score often decreases when the object is partially occluded and thus
discarded by thresholding. But in the temporal context, these responses are im-
portant cues for detecting the object completely and accurately over frames. On
the other hand, some stochastically generated false alarms, which usually have
high detection-scores for only one or two frames, can also be characterized by
their large changes of the detection-scores over a short duration. In these sit-
uations, a frame-based threshold discards too much useful information. Thus,
instead of using single-frame detections, tracklets T are extracted from the re-
sponse volume as observations for tracking, where each tracklet T ∈ T is a
sequence of target states {xk, xk+1, · · · , xk+l−1} with a fixed length l.

We apply the detector on the input images I = {I1, I2, · · · , Ik} and obtain the
detection responses F = {F1,F2, · · · ,Fk}, where Ft are the responses at frame
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t. Ideally, tracklets T could be determined from the response volume F jointly.
However, such a global optimization on P (F , T ) is computationally expensive,
especially when the number of targets is high. As a compromise, we determine an
overcomplete set of tracklets, where each tracklet T ∈ T is found separately in a
local response volume. Intuitively, such local volumes should be chosen around
high-score detections. More specifically, for each high-score detection d at frame
t, a temporal window [t, t + l − 1] and a spatial neighborhood, depending on
the assumed maximal velocity of a target (see (3)) and the size of the temporal
window, are specified. In this spatial-temporal volume, we define the observation
of a state x as a small spatial neighborhood around x at each frame s, denoted
as Fs|x. Let Ft,d be the set of the frame observations Fs|x in the local spatial-
temporal volume, a tracklet is determined by maximizing the joint probability:

T ∗ = arg max
T
P (Ft,d, T ) . (1)

Using a hidden Markov model of first order, i.e. assuming state xs is only de-
pendent of the previous state xs−1, the joint probability can be reformed as

P (Ft,d, T ) = P (Ft,d|T )P (T ) =
t+l−1∏
s=t

P (Fs|x|xs)︸ ︷︷ ︸
observation

t+l−1∏
s=t+1

P (xs|xs−1)︸ ︷︷ ︸
transition prob.

P (xt)︸ ︷︷ ︸
init. prob.

.

(2)
Initial probability models the a-priori state distribution of objects. The

scene knowledge can be modeled in this distribution. Without explicit informa-
tion, we set P (xt) as a uniform distribution.

Transition probability is modeled by a gating function, which assumes a
maximum velocity δ of targets:

P (xs|xs−1) =
{1/c if xs ∈ Δ(δ, xs−1) ,

0 otherwise, (3)

where Δ(δ, xs−1) is a spatial neighborhood of xs−1 defined by δ and c =
|Δ(δ, xs−1)| is the normalization factor.

Observation Model is approximated by the maximal response fr from Fs|x
and P (fr|xs) can be learned by fitting the responses on a validation dataset.

Thus, optimal tracklets initialized by the high-score detections can be deter-
mined by using the Viterbi Algorithm. In this way, weak detections between
high-score detections can be recovered and only a relatively low joint probabil-
ity P (Ft,d, T ) is assigned to ’isolated’ false alarms. By setting a threshold θ on
P (Ft,d, T ), such false positive detections can be eliminated. As the optimization
in a local volume is sensitive to initializations (starting frames and positions),
overcomplete tracklets are generated, i.e. initialized from all high-score detec-
tions. In this way, our approach is robust against missing or inaccurate detec-
tions (see Fig. 3). Besides, dense tracklets would be generated in volumes with
”continuous” high scores. Hence, the density of tracklets provides an alternative
to detection-confidences as measures for the state-estimation.
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3.2 Multi-target Tracking from Tracklets

The tracklets generated as described previously are an overcomplete set of track
fragments. The remaining problem considered in this section is to estimate the
number of targets and their tracks based on the observations of overlapping
tracklets. To this end, we propose an approach similar to multiple hypothesis
tracking (MHT) [7,4], which is a multi-target tracking with deferred decision. In
our tracking model, tracklets T are considered as multi-frame observations and
an inhomogeneous Poisson model [8] is used to describe the generation process
of the set of tracklets from the tracks to be estimated. The main difference to
conventional data-association based methods like JPDA [13,11] is that no explicit
association has to be made. In this model, the density of tracklets, instead of
their detection-confidences, are used as measurements, because of the discrete
nature of the Poisson process. Besides, detection-confidences are instable due to
e.g. occlusions, clutters, or bad illumination.

The advantage of multi-frame observations is that they provide clues for not
only positions of targets at each frame, but also their temporal developments.
Because tracklets are overlapping, it is easier to identify related tracklets than in
the case of single-frame detections. Thus, the number of hypotheses that must
be considered is reduced. This leads to a lower computational complexity.

Problem formulation: The multi-target state is Xt = {X1
t , · · · , Xn

t }, where
n is number of targets up to frame t and each track X i

t is a sequence of target
states. The observations are the tracklets Tt = {T 1

t , · · · , Tm
t } from Section 3.1.

The standard Bayesian formulation is applied to update the belief about the
multi-target state:

P (Xt|Tt) ∝ P (Tt|Xt)P (Xt) . (4)

In the following, the observation model and the prior model are detailed. For
notational simplicity we omit the time index t.

Observation model: The inhomogeneous Poisson point process is used to
model the likelihood function [8]. It assumes that the received observations T
are generated by (conditionally independent) superposition of observations from
n + 1 sources, of which n are the targets X and the extra one is for the back-
ground clutter. Compared to the conventional likelihood model, complexity is
significantly reduced as no explicit association between targets and observations
is made and multiple observations originating from a target are allowed. Both
the number of the observations and their spatial distribution are considered in
this model. The joint likelihood of m observations T = {T 1, · · · , Tm} for multi-
target X = (X1, X2, · · · , Xn) are [8]:

P (T |X ) =
e−μ

m!

m∏
j=1

λ(T j |X ) =
e−μ

m!

m∏
j=1

n∑
i=0

λi(T j |X i) , (5)

where μ =
∑n

i=0 μi is the number of expected observations in the image area A,
μi is the expected observations from targetX i, and λi(p|X i) describes the spatial
density of observations in A with μi =

∫
A λi(p|X)dp. λ0 models the observations
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from clutter. We assume λ0 uniformly distributed in A, i.e. λ0(p|X0) = ρ. This
model was originally defined for single-frame observations. It can be easily ex-
tended for multi-frame observations:

P (T |X ) =
e−M

(m · l)!︸ ︷︷ ︸
expected #observations

m∏
j=1

(
ρl +

n∑
i=1

Λi(T j|X i)

)
︸ ︷︷ ︸

observation spatial density

, (6)

where l is the length of tracklets and M =
∑

iMi is the expected number of
observations originating from targets {X i}i=1···n. Let Ai,j be the intersection
frames of X i and T j. The multi-frame observation spatial density Λi(T j|X i) is

Λi(T j|X i) = ρl−|Ai,j |
∏

s∈Ai,j

Mig(zs|xs) , (7)

where g(zs|xs) assumes a Gaussian distribution of observations zs around the
corresponding target xs at each frame s. Substituting (7) into (6), we have

P (T |X ) = c1e−M
m∏

j=1

⎛⎝1 +
n∑

i=1

∏
s∈Ai,j

c2g(zs|xs)

⎞⎠ , (8)

where c1 is a constant independent of the tracks X and c2 = μi

ρ models the signal-
to-noise-ratio. In the implementation, the expected number of observations for
each target is determined by Mi = |X i| · l · Pd, where Pd is the detection rate.

However, for two very close targets, i.e. not only at one frame but several
frames in our case, there is a problem of merged observations (see Fig. 2(a)).
This leads to an ambiguity in the state estimation regarding the number of
targets and the distribution for each target. In Fig. 2(b), two tracks and sev-
eral tracklets (multi-frame observations) are visualized. The spatial intensities
of tracklets

∑
i Λi is indicated by the line width. While the overlap with a track

increases the spatial intensity (e.g. T 1 and T 2, either a spatial deviation (T 3) or
a temporal inconsistency (T 4) reduces the spatial intensity. It shows that track-
lets provide strong clues in spatial as well as in temporal dimension for state
estimation.

Prior probability: By assuming an independent and constant-velocity motion
of targets, we penalize sudden changes in velocity:

P (X ) =
∏

X∈X
P (X) =

∏
X∈X

P (‖X ′′‖∞) , (9)

where X
′′

the second-order motion-vector , i.e. accelerations at each frame, and
‖•‖∞ is the maximum norm. A Gaussian function G(0, σm) is used to model the
prior probability P (‖X ′′‖∞). The parameter σm is learned from some training
sequences. Accelerations are normalized according to the target size, so that they
are invariant to the 3D projection. Intuitively, ‖X ′′‖∞ increases as tracks get
longer. Therefore, different σm are learned for different track lengths.
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(a) Observation spatial intensity curves
for two close (blue), moderately sepa-
rated (red) and distant (black) targets
(single frame). Observations are unre-
solved if targets are too close.

(b) Examples of tracks and track-
lets. The spatial and temporal con-
sistency of tracklets to tracks is im-
portant for the observation spatial
intensities

∑
i Λi (visualized by the

line width of tracklets).

Fig. 2. Examples of observation spatial intensity for (a) single- and (b) multi-frame
observations. We assume a Gaussian distribution of observations around the corre-
sponding target.

State estimation: After specifying observation likelihood (8) and prior prob-
ability (9), multi-target states X can be estimated by maximizing the posterior
distribution in (4). Let O be all frame-states of tracklet T . A possible solution of
X is a set of tracks {X1, · · · , Xn}, where each track X i consists of a sequence of
states from O and n is an unknown variable. Additionally, a maximum velocity
of any target is assumed to reduce the solution space. For the reason of efficiency,
the Markov chain Monte Carlo (MCMC) approach is employed to sample instead
of enumerating all possible solutions. Similar to the multi-scan MCMCDA algo-
rithm in [11], a variation of transition types are defined to initialize, terminate,
split, merge, extend, reduce and switch tracks by sampling with the MCMC al-
gorithm. As multi-frame observations are used, the convergence rate is fast. For
example, about 2000 iterations are sufficient to track more than 20 targets in
our experiments. Furthermore, a temporal window [t−L+1, · · · , t] of size L can
be set, so that only the last L frames are revisited for the estimation.

4 Experiments

In this work, a cascade Adaboost classifier [17] trained on head-and-shoulder-
patches is used, as the head-and-shoulder part of most people is visible in
crowded scenes. For the evaluation, we use video sequences of crowded scenes
from PETS2007 [16], MCTTR [9] and PETS2009 [12].

Detection Performance: First, we want to show the improvement of detection
performance by using the proposed tracklets (the first phase of our algorithm,
Section 3.1). In this experiment, we vary the length of tracklets. To compare
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Fig. 3. Raw detections (first row) vs. tracklet detections (second row). The detection-
scores of the objects (numbers above bounding boxes) are not stable, which leads to
missing detections. These missing detections are recovered by our tracklet approach.
Furthermore, false alarms are also reduced.

(a) Sequence PETS2007 S5 V2 (b) Sequence MCTTR1203a

Fig. 4. Comparison of detection-performance of tracklets and the original detector
(black lines). Tracklets achieve much better results than the original detector. The
improvement increases with the length of tracklets.

with the original detector, precision-recall curves are computed by adjusting the
threshold value for the joint probability P (Ft,d, T ). In Fig. 4, recall rates are
significantly improved by tracklets which exploit the temporal context of strong
detections. Further, many false positives of the original detector, even with high
detection-scores (left-side of the curve), are eliminated. It proves the effectiveness
of tracklets by removing the sporadic false alarms with high detection-scores. The
performance increases also with the length of tracklets. However, the improve-
ments saturate at length 10.

Tracking Performance: The proposed tracking algorithm is based on track-
lets detections. Fig. 5 shows some tracking results from our complete two-phase
approach proposed in Section 3. By modeling false alarms explicitly in the like-
lihood model and introducing the motion model, our approach is robust against
some outliers in the generated tracklets (Fig 5(a)). However, some false alarms
still remain (Fig. 5(c)). Most of them do not change appearance much over time,
hence relatively constant detection-responses are obtained. In this situation, the
proposed approach can not distinguish them from the correct target, as the de-
tector is the only source of information for tracking. Combination of different
detectors could probably alleviate this problem.
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(a) (b) (c)

Fig. 5. (a) Tracking output (yellow lines) from tracklets (red lines). The track estimates
are robust against the outliers in tracklets. (b) Tracking output (yellow lines) are
compared to the ground truth (blue lines). Targets far from the camera (too small) are
not tracked well. (c) Examples of false alarms by tracking. Most of them have relatively
constant detection-responses, i.e. with stable appearance over time.

Table 1. Quantitative evaluation. Compared to the results in [6] on PETS2009, our
algorithm has much better precision (MOTP) and similar accuracy (MOTA).

Seq.

HD
RailwA

HD
RailwB

PETS2007
S5-V2

MCTTR
1203a

PETS2009
S2-L2

PETS2009
S2-L3

MOTP 83.8% 82.7% 81% 78.8%
79.1%
(51.3% [6])

80.1%
(52.1% [6])

MOTA 83.9% 72.4% 72.6% 60.7%
55.1%
(50.0% [6])

61.0%
(67.5% [6])

The CLEAR MOP metrics [3] are used to evaluate the tracking performance
quantitatively. The precision score MOTP (intersection over union of bounding
boxes) and the accuracy score MOTA (composed of false negative rate, false
positive rate and number of ID switches) are computed. The results are shown
in Table 1. We also compare our method with the results reported in [6] for
PETS2009. Our algorithm achieves a much higher precision score (MOTP). It
benefits from our head-shoulder model (suffering less occlusion problems in such
crowded scenes) and the exploitation of the dense spatial-temporal volume. The
accuracy (MOTA) of our algorithm is similar to that of [6]. Our tracking system
is implemented in C++. The runtime depends on the number of targets and
tracklets. For the sequence MCTTR1203a with about 20 targets, the processing
time of tracking is about 0.8 second/frame. Further optimization is possible.

Summary: The proposed tracklet approach improves the detection performance
significantly. Based on that, our algorithm provides robust tracking in challeng-
ing crowded sequences and outperforms a state-of-the-art method.
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5 Conclusions

In this paper, we propose a novel tracking framework based on the dense output
of the detector. From local spatial-temporal volumes of dense detection-scores,
tracklets are extracted to improve the detection performance. Instead of using
detection-confidences directly, which are usually instable due to occlusion and
clutter, overcomplete tracklets are generated and their density is considered as
measurements for tracking. By modeling the tracklets and their density with
an inhomogeneous Poisson process, target states are estimated efficiently in a
Bayesian tracking framework. Compared to the state-of-the-art method, our al-
gorithm achieves better tracking results in crowded scenes.
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Gerard Pons-Moll, Laura Leal-Taixé, Tri Truong, and Bodo Rosenhahn

Leibniz University, Hannover, Germany

Abstract. In this paper we present a robust and efficient shape matching ap-
proach for Marker-less Motion Capture. Extracted features such as contour, gra-
dient orientations and the turning function of the shape are embedded in a 1-D
string. We formulate shape matching as a Linear Assignment Problem and pro-
pose to use Dynamic Time Warping on the string representation of shapes to
discard unlikely correspondences and thereby to reduce ambiguities and spurious
local minima. Furthermore, the proposed cost matrix pruning results in robust-
ness to scaling, rotation and topological changes and allows to greatly reduce the
computational cost. We show that our approach can track fast human motions
where standard articulated Iterative Closest Point algorithms fail.

1 Introduction

Markerless motion capture is an active field of research [2, 3, 9, 10, 23]. The high di-
mensionality of the state space and the inherent depth ambiguities make estimating
3D motion from 2D images a difficult and interesting problem. The integration of pri-
ors learned from training data is now a very popular approach to mantain robustness
in difficult conditions [13, 19–22, 26]. Although human pose estimation benefits from
learned priors, many applications require a general solution without imposing strong
assumptions on the dynamics of the activity to be captured. The majority of algorithms
are generative and model based, in which a surface mesh of the subject is matched with
2D image observations. Generative approaches aim at modelling the likelihood with a
cost function that measures how well the model explains the image observations. Local
optimization (LO) methods estimate the pose by iteratively linearizing the cost function
to find a descent direction. Here, recovery from false local minima is a major issue. To
overcome such limitations particle based global optimization algorithms have been pro-
posed [9, 10]. However, this last group of approaches, while robust, are computationally
very expensive and do not provide a smooth and temporaly consistent motion like local
approaches. It has been reported that (LO) can easily get trapped in local minima dur-
ing fast motions. One reason for that is that correspondences between model and image
observations are typicaly obtained with variations of the well known Iterative Closest
Point (ICP) algorithm [4, 7, 8, 19, 25]. We argue that this practice has led LO algorithms
to the inferior performance for capturing highly dynamic activities. In fact, provided
with the correct correspondences, LO converges to the correct solution in almost all the
cases, even for large displacements.

In this paper, we show how the performance of standard LO is greatly improved by
employing a robust and efficient model image association algorithm based on bipartite

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 416–425, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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graph matching. In order to increase the robustness and decrease the computational
cost of the matching problem, extracted shape features such as the turning function
of contours and gradients are used to reduce the space of possible associations. By
representing the contours as strings, upper and lower bounds for the matches are found
using the Longest Common Subsequence (LCS) algorithm. This enables robust tracking
even for highly dynamic activities as we will show in the experiments.

2 Related Work

Shape matching is a rich sub-field of computer vision research in itself (see for example
[5, 27]). ICP is one of the most popular algorithms for finding correspondences, mainly
due to its simplicity. Nonetheless, ICP gets trapped in local minima for sequences with
fast motions due to the fact that only the localy closest points are considered. Richer
shape descriptors such as Shape Context [15, 29] or Chamfer distance [9] reduce am-
biguities in the matching costs. The advantage of Shape Context as used in [15, 29] is
that it uses a global optimization algorithm, namely the Hungarian matching algorithm,
which provides a globally optimal assignment. This property is particularly useful for
fast motions, but unfortunatelly global matching is computationaly very expensive.
Contour-based matching exploits the order of the points to improve data association
[1]. As presented in [6, 14], shape contours can be expressed as strings, and therefore,
the shape matching problem can be solved using string matching methods, which are
fast and can be efficiently implemented using dynamic programming. In the context of
human pose estimation, sophisticated shape descriptors and matching algorithms have
been used in discriminative approaches where the goal is to learn direct mappings from
shape or image features to the pose space [2, 3, 11, 15, 21].

However, few works (e.g. [24, 29]) have focused on integrating robust shape match-
ing constrains in a generative model based pose estimation algorithm. The main rea-
son is the high complexity of optimal assignment algorithms. As we will show in this
work, rich shape descriptors can be used not only to resolve ambiguities in the match-
ing process but also to reduce the computational complexity. This enables us to use a
global shape matching method to feed a model based tracker with robust correspon-
dences. Hence, the resulting tracker has the desirable properties of global optimiza-
tion algorithms such as recovery from tracking failures with reasonable computational
complexity.

3 Tracking System

We model human motion by a skeletal kinematic chain containing N = 22 joints
that are connected by rigid bones. The global position and orientation of the kine-
matic chain are parameterized by a twist ξ0 ∈ R6 [16]. Together with the joint an-
gles Θ := (θ1 . . . θN ), the configuration of the kinematic chain is fully defined by a
D = 6 +N -dimensional vector of pose parameters X = (ξ0, Θ). We assume here for
simplicity that all joints are modelled by concatenating 1 DoF revolute joints, for a
description of the parameterization using free axes of rotation to model ball joints we
refer the reader to [18]. Let Ji ⊆ {1, . . . , n} be the ordered set of parent joint indices
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of the i-th bone. The absolute rigid motion GTB
i of the bone is given by concatenating

the global transformation matrix G0 = exp(ξ̂0) and the relative rigid motions matrices
Gi along the chain by

GTB
i = G0

∏
j∈Ji

Gi = G0

∏
j∈Ji

exp(θj ξ̂j). (1)

where exp(θj ξ̂j) is the exponential map of the j-th joint and ξj is the constant twist of
the j-th joint in the chain. A surface mesh of the actor is attached to the kinematic chain
by assigning every vertex of the mesh to one of the bones. Let p̄ be the homogeneous
coordinate of a mesh vertex p in the zero pose associated to the i-th bone. For a given
pose X, the vertex in a rest position p̄ is transformed using p̄(X) = GTB

i p̄.
In order to find correspondences between model points and image features we project

the mesh points belonging to the occluding contour pi ∈ O obtaining a set of 2D pro-
jections r̂i ∈ M. Then we match the model projections r̂i ∈ M to the image contour
points rj ∈ I using the algorithm explained in Sect. 4. Given a set of 2D-2D correspon-
dences we minimize the sum of squared distances between the 3D counter part of the
model projections pi and the projection rays Li casted by the 2D image contour points
ri. Let Li = (ni,mi) be the Plücker coordinates of the line corresponding to the image
point ri. Then, the cost function for N correspondences can be written as

e(Xt) =
N∑
i

‖ei(Xt)‖2 =
N∑
i

‖pi(Xt) × ni − mi‖2 (2)

where the scalar e(Xt) ∈ R is the total error and ei(Xt) ∈ R3 is the individual error
associated with the i-th correspondence. To minimize Eq. (2) we use the Levendberg
Marquadt algorithm. Let e = (e1, . . . eN ) ∈ R3N dennote the vector valued error
function containing the individual correspondence errors. Then at each iteration the
descent stepΔX is found as

ΔX = −(JT J + μI)−1 JT e (3)

where J ∈ R3N×D is the analytical Jacobian matrix of the vector valued error function
w.r.t the pose parameters J = Δe

ΔX and μ is the adaptive damping parameter of the
Levendberg Marquadt (LM) algorithm. As with any local method LM can get trapped
in local minima. Fortunately, provided with the correct correspondences and adequate
adaptive damping parameter μ it converges to the correct solution even for fast motions
as we will show in the experiments.

4 Motion Capture with String Matching

To minimize Eq. (2), we must find correspondences between the set of projected mesh
points r̂i ∈ M and the set of contour points ri ∈ I of the image. We formulate the
shape matching as a Linear Assignment Problem and propose to use Dynamic Time
Warping on the string representation of the contours to discard semantically dissimilar
matchings, thereby greately reducing computational time and increasing robustness to
scaling, rotation, holes and topological changes.
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4.1 Linear Assignment Problem

Let us define a weighted bipartite graph G = (V,E), where its vertexes (or nodes) are
partitioned into two distinct sets: the projected points of the occluding contour of the
mesh M and the contour image points I. All the edges (i, j) ∈ E of the graph connect
a vertex from one of the vertexes sets to the other (E ⊆ M × I). Each edge (i, j) has
a weight or cost C(i, j), computed using the Euclidean distance. The shape matching
problem is then reduced to finding the maximum weighted bipartite matching, which
can be formulated as a Linear Assignment Problem (LAP) by defining a set of flags
xi,j , which take the value 1 when nodes i and j are matched, and 0 otherwise. In this
setting, the LAP is formulated as the minimization of the objective function:

min
∑
i,j

C(i, j)xi,j subject to:
∑

i

xi,j = 1 for i ∈ M
∑

j

xi,j = 1 for j ∈ I.

The algorithms used to solve the LAP can be classified into three categories, de-
pending if they are based on: maximum flow, e.g. Hungarian algorithm; Linear Pro-
gramming, e.g. Simplex algorithm; and the methods based on shortest paths, like the
LAPJV presented by Jonker and Volgenant [12]. In this paper, we use the LAPJV algo-
rithm since its notably faster than the commonly used Hungarian algorithm. Next, we
present how we use DTW on 1D shape representations to prune the graph.

4.2 String Representation of Shapes

To map a contour A onto a 1D string we first parametrize it by the arclength s. Thereby,
a contour A is represented by a set of n ordered points along the curve A(s) =
(x(s), y(s)), s ∈ {1 . . . n} forming a polygon. As a 1D descriptor, we use the cumu-
lative angle function, or turning function ΘA(s) of a polygon that measures the angle
between the counterclockwise tangent and the x-axis as a function of the arclength s. To
leverage the influence of noise and the number sampled points in the contour, we com-
pute the turning function as the cumulative angle differences between robust contour
gradients ∇I(s). Hence, the 1D string representation of the contour is:

ΘA(n) =
n∑

s=0

arccos
( ∇I(s) · ∇I(s+ 1)

‖∇I(s)‖ · ‖∇I(s+ 1)‖
)(

ẑ · ∇I(s) × ∇I(s+ 1)
‖∇I(s)‖ · ‖∇I(s+ 1)‖

)
,

where the gradient ∇I(s) = ∇I(x(s), y(s)) is computed at x(s), y(s) on the silhou-
ette image using Gaussian derivative filters. This results in a more robust and smoother
version of the turning function. The second term, where ẑ = [ 0 0 1 ]T is the unit vec-
tor in the z direction, simply keeps track of the turning direction taking the value +1
for right hand turns and -1 for left hand turns. Note that this representation is already
translation invariant. Now, matching two contours M and I simplifies to a compari-
son between the corresponding strings which have in general different lengths ΘM(s),
with s ∈ {1, 2 . . . n}, ΘI(t) with t ∈ {1, 2 . . .m}. To obtain a scale invariant solution
we use the Dynamic Time Warping (DTW) which finds the optimal alignment between
strings allowing non-linear deformations along the arclength dimension s as we will
explain in Sect. 4.3. This further allows us to be robust to topology changes such as
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Fig. 1. Matching the turning function with the Longest Common Subsequence (LCS). The LCS
allows the string to be compressed and stretched, which allows us to correctly match silhouettes
with holes or disappering contours (like the contour between the legs marked with a black arrow).

self occlusions that often occur during tracking. To bring both strings into a common
starting salient point, we find the region in both shapes with highest consequent similar-
ity. The problem, which is known as Longest Common Consecutive Substring (LCCS)
match, consists in finding the longest strings which are substrings of both ΘM(s) and
ΘI(s) and can be efficiently solved using Dynamic Programming. The substring found
is used to bring both sequences to a common starting point. As a result, the turning
function is more robust against rotations (see Fig. 2(a)).

4.3 The Wagner-Fischer Algorithm

The most common problem we face when matching human silhouettes are topology
changes such as disappearing contours, as shown in an example in Fig. 1. In the first
frame, the legs are separated enough so that they can be distinguished in the silhouette.
In the next frame though, the legs are too close to each other, and the contour that
separates them suddenly dissapears. Intuitively, this means that one contour needs to
be warped in a non-linear fashion to match another contour. Dynamic Time Warping
(DTW) is a well-known technique to find an optimal alignment between two given
sequences, allowing the sequences to be stretched or compressed in order to be better
matched. When the sequences consist of discrete symbols, i.e., strings, the objective
is to find the Longest Common Subsequence (LCS). The LCS algorithm used in this
paper was proposed by R. Wagner and M. Fisher [28], and is based on the edit distance,
also called the Levenshtein distance. Let A = A1, A2 . . . Am and B = B1, B2 . . . Bn

be two strings. The Levenshtein distance between A and B, D(A,B) is computed in
O(m,n) time in a dynamic programming fashion:

D(i, j) =

⎧⎪⎪⎨⎪⎪⎩
D(i − 1, j − 1), if Ai = Bj

min

⎧⎪⎨⎪⎩
D(i − 1, j − 1) + 1,

D(i, j − 1) + 1,

D(i − 1, j) + 1,

if Ai = Bj

where i = 1 . . .m and j = 1 . . . n. Once we have the edit distance matrix D(A,B),
a recursive function is used to find the assignments. Note that the assignments are not
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(a) (b) (c) (d)

Fig. 2. (a) Matching of two rotated and scaled shapes with the proposed method. (b) Original dis-
tance matrix. (c) Distance matrix after LCCS. (d) Final distance matrix, only the values inside the
LCS boundaries are computed; as we can see, most of the edges (in white) are erased, efficiently
reducing the computational time and increasing the matching accuracy of the algorithm.

necessarily unique and they depend on the order how we run the LCS algorithm. There-
fore, we run the LCS twice, once in each direction, and consider these assignments to be
the upper and lower bound of the set of possible assignments. By erasing the elements
of the cost matrix C(i, j) in Eq. (4) which are outside these bounds, we reduce most of
the edges, (Fig. 2(d)), therefore reducing computational time (see Section 5.1).

5 Experiments

In this section we evaluate our proposed algorithm by comparing it to a standard artic-
ulated ICP. For validation, we use the publicly available database (MPI08) [17], which
contains a wide variety of human motions ranging from simple ones such as walking
to really challenging ones such as lying down, throwing and non-scripted freestyle mo-
tions. The database is recorded in an indoor setup with 8 calibrated cameras. It consists
of 4 subjects performing 14 different motion patterns. In total, more than 10 minutes of
video footage are used for our validation study. Unless otherwise specified, we used 7
cameras for tracking and left out one frontal camera for validation. The overlap mea-
sure between the validation camera and the mesh silhouette projection is used as error
metric. For a sequence of T frames the error measure is computed as

e =
1
T

T∑
f=0

(
1 − If

val ∩ If
templ

If
val ∪ If

templ

)
(4)

where If
val and If

templ are the silhouette image of the validation camera, and the ren-
dered model silhouette at frame f respectively.

5.1 Computational Time

We compare the computation time for solving the LAP using different 4 different meth-
ods, i.e. (1) Hungarian on the distance matrix, (2) Hungarian on the pruned cost matrix
obtained with the method explained in Section 4, (3) LAPJV on the distance matrix



422 G. Pons-Moll et al.

(a) (b) (c)

8 20 40
frame rate [Hz]

er
ro

r

0.12

0.15

0.17

number of cameras
2 4 7

0.11

0.18

0.25

number of samples
125 250 500

T
im

e
[s

ec
]

0

25

50

Fig. 3. (a) mean error vs frame rate of a walking sequence: ICP (red • ) vs. proposed (black • ) ,
(b) mean error vs the number of cameras: ICP (red • ) vs. proposed (black •), (c) comparison of
computation time for the methods: Hungarian (blue •) , Hungarian+SM (red • ), LAPJV (green
• ) and proposed (black •)

and (4) our proposed method (LAPJV + pruned cost matrix). In Fig. 3(c) the compu-
tational time for matching is shown as a function of the number of sampled points in
the contour. Our approach scales much better with the number of sampled points than
the other 3 methods thanks to the graph pruning. In addition, the processing time per
frame is comparable to that of a simple articulated ICP even though we use global
matching.

5.2 ICP vs. Proposed Method

To test the robustness of the proposed approach to fast motions we tracked one of the
walking sequences of the database with reduced frame rates. In Fig. 3 (a) we show the
mean error as a function of the frame rate for the ICP and the proposed method. The
proposed method outperforms ICP for low frame rates as ICP easily gets trapped in local
minima during matching. Similar results are obtained when the number of cameras are
reduced, see Fig. 3(b). In Fig. 5 the tracking error of ICP vs. our proposed method is

Fig. 4. Freestyle sequence: Top row (ICP) and bottom row (proposed)
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Fig. 5. Mean error for the sequences in the MPI08 database for methods (ICP) in red • and
(proposed) in black •. Each of the 14 motion patterns was performed by 4 different subjects.

Fig. 6. Freestyle sequence for (ICP) top row and bottom row (proposed). The segmented image
is shown with the reconstructed skeleton overlaid.

shown for all the 54 sequences present in MPI08 database. For every motion pattern
we show the mean error of the 4 sequences corresponding to each actor. Our method
performs better in almost all the sequences. A small improvement is achieved for simple
motion patterns such as walking or locomotion because there ICP already performs
very well. However, for complex motions such as throwing, lying down and freestyle
we obtain much more accurate results. Several qualitative results showing the original
segmented image with the reconstructed poses of ICP and the proposed method can
be seen in Figs. 4 and 6. Finally, we show the reconstructions obtained our proposed
method together with the mesh overlaid on the original images in Fig. 7.
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Fig. 7. Tracking results of a cartwheel sequence with our proposed method: top row original
image with the model overlaid in yellow and bottom row the reconstructed pose. Even when the
segmentation is not correct (see the arm missing in the last image), the pose is correctly recovered.

6 Conclusions

We have presented a robust shape matching approach based on strings for Marker-
less Motion Capture. Under a generative pose estimation algorithm, we define a Linear
Assignment Problem to find correspondences between model projections and image
features. Shape features such as contour and the turning function are used to represent
the shapes as 1-D strings. Dynamic Time Warping is then used on the shape strings in
order to find upper and lower bounds for the correct matches. The proposed cost matrix
pruning effectively lowers the computational complexity and removes most of the non-
optimalities typical of local data association algorithms. Quantitative and qualitative
experiments show that our method outperforms the commonly used Iterative Closest
Point (ICP) for sequences with fast motions. We also show that the proposed method
allows tracking at a lowered frame rate, since it is more robust to scale and rotation and
is able to deal with topological changes. In future work we will explore the use of string
matching algorithms for consistent identification and localization of body parts.
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Image Comparison on the Base of a

Combinatorial Matching Algorithm

Benjamin Drayer
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Abstract. In this paper we compare images based on the constellation
of their interest points. The fundamental technique for this comparison
is our matching algorithm, that is capable to model miss- and multi-
matches, while enforcing one-to-one matches. We associate an energy
function for the possible matchings. In order to find the matching with
the lowest energy, we reformulate this energy function as Markov Ran-
dom Field and determine the matching with the lowest energy by an
efficient minimization strategy. In the experiments, we compare our al-
gorithm against the normalized cross correlation and a naive forth-and-
back best neighbor match algorithm.1

1 Introduction

The comparison of complex structures plays an important role in biological and
medical research. In many cases the problem of how similar two structures are is
posed on a scale where we have one to one correspondences such as eye to eye, leg
to leg or mouth to mouth. A good strategy is to first perform a registration (e.g.
an elastic registration such as [2]) and then measure the similarity of the pixel
intensities e.g. with differences or with the normalized cross correlation (NCC).
Difficulties arise, when there are no one-to-one correspondences guaranteed as
shown in Figure 1.

(a) (b) (c)

Fig. 1. While (a) and (b) match better according to the shape of the leaves, (a) and
(c) are considered more similar regarding the number and arrangement of leaves. In
this paper we define a matching based similarity measure that allows to consider both
criteria.

1 Recommended for submission to YRF2011 by Junior-Prof. Dr. Olaf Ronneberger.

R. Mester and M. Felsberg (Eds.): DAGM 2011, LNCS 6835, pp. 426–431, 2011.
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Obviously every intensity based similarity measure fails, when one leaf corre-
sponds to no or several leaves. This problem also arises in microscope imaging,
where we can register and compare different recordings on a rough scale to a
certain degree. But when we go in detail, in our case the cell level, the slight
differences between the same organs in different individuals become noticeable.
One cell may correspond to no cell, to one cell or to many cells and vice versa.

To solve this problem, we apply a similarity measure based on correspondences
between interest points of the images. Our main contribution is the matching
algorithm that establishes these correspondences. An intuitive way for such a
matching is a forth- and back-matching of the best neighbors. The disadvantage
of this naive method is, that it cannot favor the one-to-one correspondences. As a
result, we get un-proportional many multi-matches and the structure of the image
is lost. Whereas our matching algorithm, matches not one key point to its closest
neighbor, but it matches a local arrangement so that the one-to-one correspon-
dences are favored and local constellations are properly taken into account.

2 Interest Points and Features

In our application, the substructures that we want to match are roundish. We
detect them with a Laplacian of Gaussian as done in [4]. The Laplacian of
Gaussian gets a high response not only on round structures but also on elongated
structures such as edges and ridges. As in [4], [1], we remove the unstable key
points caused by elongated structures and we reject the interest points in the
background with an Otsu thresholding.

Considering 2D images, we describe the interest points with local, normalized
color histograms. When we deal with 3D images, we compute rotation invariant
features based on the spherical harmonics [3], where the spherical harmonics are
computed on multiple spheres at different scales in order to better describe the
volume around the interest point.

3 Matching Algorithm

With each matching f , we associate an energy in such a way that the one-
to-one correspondences are favored. Minimizing the energy function in a brute
force manner is too expensive and since the energy function is non-convex, a
gradient descent is not an option. Therefore we reformulate the energy as a
markov random field and use a combinatorial approach.

For the matching, we consider the sets A and B, each containing vectors with
geometrical and appearance information of the respective interest points. With
d(a,b) we denote the distance between the interest points in the feature space,
where a ∈ A and b ∈ B. The distance is the l2-norm, normalized by the average
distance of the best neighbor (in A) of each interest point in A.

With f we denote the matching relation from A to B. Equivalently, we can
write that as

f : A → P(B) , (1)

where P denotes the power set.
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In order to judge the quality of a certain matching, we compute an energy
function E : f → R+. This energy function consist of the cost for the matchings
from A to B and the costs for the not matched points in B. With Ef (a) we
denote the cost that is contributed by a under the mapping f :

Ef (a) =

⎧⎨⎩
p∅ f(a) = ∅ (miss match)
d(a,b) f(a) = {b} (single match)
pm +

∑
bi∈f(a) d(a,bi) |f(a)| > 1 (multi match)

, (2)

where p∅ and pm are constants that penalize miss- and multi-matches. In our
experiments, we choose the average of the distance for p∅ and pm = 10.

So far this energy favors a one-way best neighbor match. We introduce another
energy term for the not matched elements from B. This term Ef (b) forces the
one-to-one correspondences and therefore it also preserves the local structure.
Let a1 and a2 be the two closest elements to b. Then we define a miss-match
penalty function:

p(b) = min(λd(a1 − b) + (1 − λ)d(a2 − b), p∅), (3)

with λ ∈ [0, 1]. For our experiments, we choose λ = 0.5.
For the assignment of the miss-match cost, we need information of the inverse

matching relation. The inverse matching relation finv of b is:

finv(b) = {a ∈ A|b ∈ f(a)} . (4)

The energy term Ef (b) becomes:

E(b) =
{
p(b) finv(b) = ∅

0 else
. (5)

Altogether the energy function of mapping f is:

E(f) =
∑
a∈A

Ef (a) +
∑
b∈B

Ef (b). (6)

3.1 Reformulation as Markov Random Field

The brute force solution for this problem is too expensive (exponential runtime),
even if we restrict the amount of mappings in such a way that an a can only be
mapped to an arbitrary subset of its k closest b Therefore, we reformulate the
problem as a Markov Random Field of the form:

E =
∑
a∈V

Va(la) +
∑

(ai,aj)∈E
Vaiaj (lai laj ) (7)

and can apply sophisticated algorithms such as the max-sum solver [5] to mini-
mize the energy in a reasonable time.

The set of nodes V is A. The set of labels for each a are the 2k possible subsets
of its k closest b. In our implementation, we choose k = 5. The set of edges E
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consists of pairs of nodes (a1,a2) that have at least one common b in their sets
of k closest b, otherwise they don’t form an edge.

The unary potential becomes:

Va(la) =

⎧⎨⎩
p∅ la = ∅ (miss match)
0 |la| = 1 (single match)
pm |la| > 1 (multi match)

. (8)

The pairwise potential becomes:

Vai,aj(lai , laj) =
∑

b∈{f(ai)∩f(aj)}

Eai,aj ,b(lai , laj )( |finv(b)|
2

) , (9)

where

Eai,aj,b(lai , laj) =

⎧⎪⎪⎨⎪⎪⎩
p(b) b /∈ lai ∧ b /∈ laj (miss match)

d(ai,b) b ∈ lai ∧ b /∈ laj (single match)
d(aj ,b) b /∈ lai ∧ b ∈ laj (single match)

d(ai,b) + d(aj ,b) b ∈ lai ∧ b ∈ laj (multi match)

.

(10)

We normalize by
( |finv(b)|

2

)
, since this is the number of pairs (a1, a2) that have

b in common.

4 Experiments

We show the performance of our algorithm with two experiments. First, we
compute correspondences for different constellations of fruits and second, we
apply the matching algorithm on microscopic data of the zebra fish embryo.
The correspondences are the base for the similarity measure, where only one-to-
one correspondences are taken into account (multi-matches inconsistencies are
reduced to their best edge). The similarity measure is:

s(A,B) =
2

|A| + |B|
∑

(a,b)∈S

1
1 + d(a,b)

, (11)

where S denotes the set of one-to-one correspondences.
In Figure 2 we compare our algorithm against the NCC. In the first row of this

Figure, we try to match a mixture of apples and kiwis, where the position and
the amount of the objects vary. In the second row, we almost keep the position
of the fruits, do not vary the amount, but we change the kiwis to apples and vice
versa. For the NCC, the case in the second row is more similar, whereas with
our matching algorithm we correctly determine that the images in the first row
are more similar.

The second part of this experiment (Figure 3) shows the superiority of our
multi-matching algorithm over the best neighbor match. By comparing the two
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) overlay of the images, similarity=0.2969 (NCC) (b) all edges of multi-
match. (c) confident edges of multi-match, similarity=0.836 (d) overlay of the images,
similarity=0.7401 (NCC) (e) all edges of multi-match. (f) confident edges of multi-
match, similarity=0.331.
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(d) (e) (f)

Fig. 3. (a) overlay of the images. (b) all edges of best match. (c) confident edges of
best match, similarity=0.412. (d) distribution of matches for the best match (red) and
multi-match (blue) algorithm. (e) all edges of multi-match. (f) confident edges of multi-
match, similarity=0.748. The blue edges indicate multiple correspondences, the yellow
edges indicate one-to-one correspondences.

sets of apples, arranged as bows we see advantageous effects of matching a local
neighborhood, especially the preserving of the local structure. The histogram
of the matches in Figure 3(d) shows the strong favoritism of the one-to-one
correspondences of our approach.

In Figure 4, we show the performance of our matching algorithm on micro-
scopic recordings of the zebra fish embryo. The recordings are taken on the cell
level and a dataset measures 800 × 500 × 500 voxel. Based on our matching
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(a) (b) (c)

Fig. 4. (a) cells (red) and gene expression (green), (b) maximum intensity projections
of the gene expression (c) matching of the same gene expression (of different indi-
viduals), green and red circles are the found interest points, yellow lines indicate the
correspondences. Due to better visibility this is a maximum intensity projection in
z-direction from 220 to 250 μm.

algorithm, we can correctly classify a large database of gene expressions, but as
this is a part of a joint unpublished project, only one example can be shown here.

5 Conclusion

In this paper we presented a matching algorithm for a correspondence based sim-
ilarity measure. We showed the advantages of our comparison method over the
normalized cross correlation and the best neighbor match algorithm. Further-
more, we got promising results when we applied the algorithm on microscopic
recordings of the zebra fish.
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Large Displacement Optical Flow

for Volumetric Image Sequences�

Benjamin Ummenhofer

Department of Computer Science, University of Freiburg

Abstract. In this paper we present a variational optical flow algorithm
for volumetric image sequences (3D + time). The algorithm uses de-
scriptor correspondences that allow us to capture large motions. Further
we describe a symmetry constraint that considers the forward and the
backward flow of an image sequence to improve the accuracy of the flow
field.

We have tested our algorithm on real and synthetic data. Our ex-
periments include a quantitative evaluation that show the impact of the
algorithm’s components. We compare a single core implementation to
two parallel implementations, one on a multi-core CPU and one on the
GPU.

1 Introduction

For the analysis of biological or medical volumetric data sets, the motion or
growth of objects is of great interest. We propose the use of the three-dimensional
optical flow field to analyze the motion of such processes. In contrast to conven-
tional volumetric tracking methods, we do not need to segment the tracked
objects, which is of great advantage when dealing with objects at the resolution
limit of the microscope. The flow field provides dense motion information for
every voxel.

An optical flow method for the analysis of biological data should fulfill three
requirements. First, the method should be able to capture large displacements
because the time resolution of microscopes is limited and fewer exposures pre-
vent the samples from damage. Second, the method should be accurate, so that
objects can be tracked over many time steps. Third, the method should be fast.
Short runtimes in the area of the frame rate of the microscope allow to use the
results to automatically manipulate objects during an experiment.

Our algorithm can capture large displacements by integrating descriptor
matching into a variational framework as presented by Brox et al. [3]. We have
adapted their Large Displacement Optical Flow to volumetric datasets by us-
ing a three-dimensional extension of the Histogram of Oriented Gradients by
Dalal and Triggs [4]. Similar 2D + time HOG descriptors have been used in the
context of action recognition by Kläser et al. [6].

� Recommended for submission to YRF2011 by Prof. Dr. Thomas Brox.
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We have also integrated the Symmetrical Optical Flow proposed by Alvarez
et al. [1]. Similar to them, we add an energy term that considers the symmetry
between the forward and the backward optical flow. The consideration of the
symmetry improves the accuracy of the optical flow field.

To achieve fast runtimes we have implemented our algorithm on parallel hard-
ware such as shared memory computers and graphics processing units (GPU).

2 Variational Model

Like Horn and Schunck [5], we describe the problem of computing the optical
flow as an energy minimization problem. Let I1(x) and I2(x) be the functions
of the first and the second image of an image sequence with x = (x, y, z)T . The
optical flow from the first to the second image (the forward flow) is denoted as
w1 = (u1, v1, w1)T , where u1, v1, w1 are functions of a position x. The energy
functional for the forward flow reads

E1(w1) = Egrey(w1) + Egrad(w1) + Esmooth(w1) + Ematch(w1) + Esymm(w1).
(1)

The distinct energy terms are

Egrey(w1) =
∫

Ω

Ψ
(

|I2(x + w1) − I1(x)|2
)
dx (2)

Egrad(w1) = γ
∫

Ω

Ψ
(

|∇I2(x + w1) − ∇I1(x)|2
)
dx (3)

Esmooth(w1) = α
∫

Ω

Ψ
(

|∇u1(x)|2 + |∇v1(x)|2 + |∇w1(x)|2
)
dx (4)

Ematch(w1) = β
∫

Ω

δ(x)ρ(x)Ψ
(

|w1(x) − wD(x)|2
)
dx (5)

Esymm(w1) = ζ
∫

Ω

Ψ
(

|w1(x) + w2(x + w1(x))|2
)
dx , (6)

with the robust penalizer Ψ(s2) =
√
s2 + ε2 and the constant ε = 0.001. The

descriptor flow wD in Ematch is computed from descriptor correspondences. As
we do not compute descriptor correspondences for every voxel, we define that δ
is 1 where we have a descriptor correspondence and 0 elsewhere. The function ρ
defines a weight for each descriptor correspondence and is explained later. The
backward flow is denoted as w2. All energy terms are weighted relative to the
grey value constancy constraint Egrey with the factors α, β, γ and ζ.

The minimization of the above energy functional is done similarly to [2], [3].
The functional (1) is minimized in two nested fixed point iterations. The outer
fixed point iterations are in the flow w1 and are combined with a coarse-to-fine
strategy. The inner fixed point iterations compute an increment dw1 and resolve
remaining nonlinearities in the equations caused by the Ψ functions.

In the following we describe the computation of the descriptor correspondences
and the integration of the symmetrical optical flow into the minimization scheme.
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2.1 Descriptor Matching

The idea of the descriptor matching is to integrate a flow wD computed from
descriptor correspondences between the first and the second image into the vari-
ational approach. This is done by the energy term Ematch. The term drives the
optical flow field towards a solution that contains the large displacements.

The flow wD is computed on a sparse grid. For each of the grid points we
compute a HOG descriptor in I1 and find the best matching descriptor in the
second image I2. An example is given in Fig. 1, where the feature vector f1 of
the descriptor is matched to the descriptor with feature vector f2.

To reduce the number of wrong correspondences we apply a consistency check
by reverse matching. The best reverse match f ′1 must be within a threshold radius
R, otherwise the descriptor correspondence is rejected. A resonable choice for
the radius R is the spacing of the grid points.

I1

R

f1

f ′1 I2

f2

Fig. 1. The descriptor with feature vector f1 is matched to f2. The descriptor corre-
spondence (f1, f2) is rejected if the distance between the reverse match f ′1 and f1 is
greater than R.

Correspondences that pass the test are weighted with the function

ρ =
d2 − d1
d2

·
(
1 − r

R

)
, (7)

where r is the distance between f1 and f ′1. The d1, d2 are the SSD dissimilarity
measurements between the best and the second best match (e.g. d1 = |f1 − f2|2).

2.2 Symmetrical Optical Flow

The idea of the symmetrical optical flow is that the flow vectors of the forward
and backward flow at corresponding points are inverse to each other. This leads
to the constraint w1(x) = −w2(x + w1(x)) found in the energy term Esymm.

The full energy functional of the symmetrical optical flow is

E(w1,w2) = E1(w1) + E2(w2) , (8)

where E2 is similarly defined as E1 in Eq. (1). Note that we have chosen that
E1 is not a function of w2 and E2 is not a function of w1. This allows us to
alternately compute the forward and the backward flow.

Both flows are estimated once for each level of the coarse-to-fine strategy.
On the coarsest level we initialize both flows using the non-symmetrical energy
functional that is Eq. (1) without the symmetry term Esymm.
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3 Results

We have tested our algorithm on synthetic and real data sets. Fig. 2 shows two
of the data sets. To prove the abilities of our algorithm we have tested the effects
of the symmetrical optical flow and the descriptor matching on both data sets.

(a) Synthetic sequence (b) Zebrafish embryo sequence

Fig. 2. Datasets: (a) The synthetic image sequece shows 6 objects in motion. One of
the objects is displaced more than its diameter between frames. (b) Zebrafish embryo
image sequence recorded with a confocal microscope.

3.1 Synthetic Image Sequence

Table 1 shows the results compared to the ground truth of the synthetic data set.
The errors are only computed at the objects in the scene, as the background has
no information and its motion is undefined. The results show that the error is

Table 1. Results on the synthetic image sequence with different features activated.
Parameters are γ = 3, α = 20, β = 100, ζ = 5.

Without Ematch,Esymm Without Ematch Without Esymm All features

Angular error 36.44◦ 35.27◦ 15.07◦ 12.30◦

dominated by the object with the large displacement. Activating the descriptor
matching allows to capture the large displacement and significantly reduces the
error. The symmetrical optical flow improves the accuracy but cannot cope with
the large displacement.

3.2 Zebrafish Embryo Sequence

To test the performance on this sequence, we compute trajectories from the
optical flow field and compare them with the true trajectories of the objects.

Fig. 3 shows the trajectory computed for a fast moving nucleus without (a)
and with (b) the symmetry energy term. The computed trajectories are very
accurate and allow to track the objects over many time steps. The trajectory
shown in Fig. 3(b) is more accurate and diverges after 48 time steps, while the
trajectory computed from the flow without the symmetry term diverges after 32
time steps from the actual object trajectory.
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Fig. 3. Trajectory of a nucleus computed from the optical flow without (a) and with
(b) the symmetry energy term Esymm. The length of the trajectory in image (a) is
69µm over 32 time steps. The length of the trajectory in image (b) is 90µm over 48
time steps.

Some of the displacements in the data set can only be captured with descrip-
tor matching. Fig. 4(a,b) shows a nuclei that moves about the size of its di-
ameter. Without the descriptor matching the resulting optical flow field shown
in Fig. 4(c) tries to shrink the object (because it is gone). With the descrip-
tor matching enabled, the object motion is correctly described by the flow field
shown in Fig. 4(d). The image also shows some distortions that can be explained
with false descriptor matches.

(a) t0 (b) t1 (c) (d)

y

x

(e) Color coding

Fig. 4. (a) and (b) show a nucleus (highlighted red) that moves about the size of its
diameter between time steps. The images (c) and (d) show the x and y components
of the optical flow field computed without (c) and with (d) descriptor matching. The
color coding for the optical flows is depicted in image (e).

3.3 Runtime

Table 2 shows a runtime comparison for the CPU and the GPU version of our
implementation. The tests were run on a computer with an Intel Xeon 6 cores
CPU at 3.33GHz. For the GPU version we used an Nvidia GTX 460 and an
Nvidia Quadro 6000.
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Table 2. Runtimes for the zebrafish sequence with a resolution of 205 × 205 × 41

Xeon 1 thread Xeon 6 threads Quadro 6000 GTX 460

Runtime in seconds 806.724 267.429 121.489 155.710

The GPU version is quite close to the capture speed of the microscope which
is 60 seconds. There is still room for optimization of the GPU code, which will
allow to use our method in real time applications with respect to the capture
interval of microscopes. For instance, we plan to adapt our generic CG solver to
the specific structure of our system matrix.

Acknowledgments. We want to thank Sungmin Song and Wolfgang Driever
from the Wolfgang Driever Lab, Biology I at the University of Freiburg for
providing the data sets used in this work.
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Abstract. Controlling a tendon-driven robot like the humanoid Ecce
is a difficult task, even more so when its kinematics and its pose are
not known precisely. In this paper, we present a visual motion capture
system to allow both real-time measurements of robot joint angles and
model estimation of its kinematics.

Unlike other humanoid robots, Ecce (see Fig. 1A) is completely
molded by hand and its joints are not equipped with angle sensors. This
anthropomimetic robot design [5] demands for both (i) real-time mea-
surement of joint angles and (ii) model estimation of its kinematics. The
underlying principle of this work is that all kinematic model parame-
ters can be derived from visual motion data. Joint angle data finally
lay the foundation for physics-based simulation and control of this novel
musculoskeletal robot.

Fig. 1. A: Musculoskeletal humanoid robot Ecce B: Shoulder test rig with visual
motion capture system, both robots developed within the Eccerobot project [6]
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1 Introduction

As for almost all robot control tasks, modeling the kinematic structure and
obtaining real-time joint angle data is of crucial importance. Controlling the
muscle-based humanoid robot Ecce (Fig. 1A) is still an unresolved problem, but
without knowledge of its precise kinematics, only few control approaches can be
used at all [1]. However, the novel muscle-based humanoid Ecce is completely
molded by hand in a rapid-prototyping process, its skeleton is hand-crafted using
the thermoplastic polymorph [6] and its artificial muscles are made of tendon-
driven actuators. Therefore, we first need to estimate its kinematic parameters
in order to allow approaches to robot simulation and control.

Beyond the need for precise kinematic parameters, real-time measurement of
joint angles is also of crucial importance for robot controller design. However, the
robot is equipped with ball-and-socket joints, in which direct angle sensors can
hardly be incorporated. Creating a three-dimensional angle sensor for a spherical
joint is a challenging task: For another tendon-driven robot Kotaro, Urata et al.
developed a custom-made sphere joint angle sensor using a micro camera and
image processing of markers in the joint socket [11].

Our requirements are slightly different, as we need a means for joint angle
measurement that is inexpensive, commercially available and very precise, but
not necessarily internal. We therefore decided to use external motion sensing,
which can be dedicatedly installed and calibrated at all three robots of the
Eccerobot project. For that, we first tested a Polhemus LibertyTM magnetic
motion capture system. However, the magnetic sensors showed a jitter of up to
5 mm and 3 degrees during motor operation, rendering the magnetic tracking
approach impractical for our setup. After further review of motion capture sys-
tems, we decided on a visual stereoscopic solution with passive retro-reflective
marker balls and infra-red illumination, similar to [7]. This solution is available
from commodity hardware, cost-effective and allows us to arrange the markers
over the full length of the robot’s limbs, effectively increasing the precision of
orientation and joint angles in comparison to systems with fixed marker sizes.
In the following, the setup of our motion capture system is briefly described.

2 Visual Motion Capture System

The overall setup of our motion capture system is shown in Fig. 1B. Each robot
limb is equipped with 4 to 6 marker spheres with retro-reflective coating. A
stereo camera setup of two PointGrey Flea 2 cameras with 6 mm Pentax optics
and a baseline of 477 mm is installed roughly 1 m from the robot. Each camera is
enclosed by four λ = 880 nm LED clusters and equipped with λthresh = 750 nm
infra-red pass filters.

Marker thresholding, connected component search and 2D coordinate extrac-
tion are efficiently implemented at sub-pixel accuracy similar to the standard
methods [7]. After that, the 3D coordinates of the marker balls are obtained
by optimal 3D triangulation. All these image processing steps are described at
length in [4].
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2.1 Efficient Rigid Body Detection

Once the 3D marker positions are available, the combined matching and orien-
tation problem of the known rigid marker targets needs to be solved in order to
recover the poses of the robot’s limbs. Mathematically, the rigid body detection
is the problem of aligning a selection ΠM of m from k known marker points M
with a selection ΠP of m from n measured points P under a rigid transforma-
tion RT . ΠM and ΠP are binary matrices that select and permute 3D points
of M and P , respectively. Our rigid body detection step finds a compromise
between the number of matching points m and the residual geometric error of
the alignment:

arg min
ΠM ,ΠP ,RT

‖ΠPP −RT ΠMM‖2

1.5k−m

m
s.t. m ≥ 3 (1)

Here, the constant 1.5 is a design parameter to penalize low numbers of match-
ing points. Even though this problem is similar to the largest clique search and
can be theoretically infeasible for even small numbers of points, we can dramat-
ically shrink the search space by applying an upper threshold t that rejects all
matchings over a certain geometric distance, in our case t = 5 mm. As an initial
step, a priority queue of 2-matchings is built, which can be ordered by geometric
distance in O(n2) [7]. From that, we select only a certain quantile, in our case
the best 50 matchings—note that this is the only heuristic we apply in our algo-
rithm. On this set, the actual search is conducted in a RANSAC-like fashion [2],
recursively adding candidate points. In every recursive step, the residual geo-
metric distance is checked against the threshold t, leaving very few evaluations
for real-world problems [4]. For m ≥ 3, transformations RT are recovered by
Umeyama’s method [10]. Finally, the poses RT of the limbs of the robot are
output.

We believe that our approach is particularly efficient thanks to the heavily
pruned search tree, compared to the extensive search in [8] or a maximum-clique
search [7]. Furthermore, it is able to handle very low numbers of inliers in contrast
to rigid point set registration approaches based on interative closest point [9] or
eigenstructure decomposition [12].
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Fig. 2. Kinematic parameter estimation using visual motion capturing
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3 Kinematic Model Estimation and Joint Angle
Calculation

Now that the pose of the robot is available from the motion capture system, we
are to calibrate its kinematic model and then calculate the joint angles.

3.1 Ball Joint Model Estimation

First, we consider the calibration of ball-and-socket joints based on the method
described in [3]. As shown in Fig. 2, a ball joint can be parameterized by the
position of the center of rotation with respect to the two frames of reference
given by the attached marker targets. Let c1 and c2 be the rotational center in
the reference frames S1 and S2, respectively. Measuring several joint poses Ti,
we can assume c1 ≈ Tic2 for all i. Separating the rotational and translational
parts of Ti such that Ti = [Ri ti], we obtain a linear least squares problem:

arg min
c1,c2

⎡⎢⎣ I −R1

I −R2

...

⎤⎥⎦
︸ ︷︷ ︸

M

[
c1
c2

]
−

⎡⎢⎣ t1t2
...

⎤⎥⎦ (2)

This problem is easily solved by standard numerical libraries and we obtain the
kinematic parameters c1 and c2.

3.2 Hinge Joint Model Estimation

As hinge joints are essentially a special case of ball-and-socket joints, we can
again apply Eq. 2. However, the minimization then yields a random point on
the rotational axis of the hinge joint, possibly far away from the physical setup.
Gamage et al. [3] resolve the rotational axis ambiguity by replacing the mea-
surement matrix M by its closest rank-5 approximation M5, which leads to a
well-defined position for the center of rotation c. The null space of M5 yields
the axis of rotation cz in both reference frames, which we define as the z-axis of
the rigid transformations to the axis coordinate frames. With the further choice
cy = c× cz and cx = cz × cy and normalization to unit vectors, we finally obtain
a unique parameterization of the hinge joint coordinate frame C = [cx cy cz c],
for C3 and C4, respectively. As described in [4], we further perform a non-linear
minimization on our kinematic model in order to minimize the actual marker
ball residual errors.

Finally, we have obtained a unique parameterization for both ball joints and
hinge joints. This allows us to model the kinematics of the robot Ecce. For the
shoulder test rig in Fig. 1B, we measured 22 distinct joint poses from several
viewpoints and could calibrate the robot kinematics up to a residual error of
1.29 mm for the position of the center of rotation and 0.83 mm for the axis of
rotation. Note that this error is far better than in earlier manual measurements,
when we could estimate the robot’s kinematics at an error of ≈10 mm.
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Table 1. Error Evaluation Results

A. Accuracy of 3D position

Marker Target Position [mm]

S1 Torso 0.8082
S2 Upper Arm 0.8214
S3 Lower Arm 1.2083

B. Precision of joint angles

Translation Rotation Joint angle
Transformation [mm] [degrees] [degrees]

T1 Shoulder 0.4833 0.2382 0.2060
T2 Elbow 0.5638 0.2304 0.0546

3.3 Joint Angle Calculation

With the kinematic parameters at hand, we finally calculate joint angles given
the transformations T from Section 2. For ball joints, the rotation can be re-
covered from the measured pose T by solving the orthogonal Procrustes prob-
lem as described in [10]. For hinge joints, the angle calculation reduces to a
2-dimensional problem in the plane perpendicular to the rotational axis. The
rotation angle α can be obtained by employing the two-valued arctangent func-
tion, details are given in [4]. Our final motion capture system delivers real-time
joint angle data at a 20–30 ms delay on a dual core 2.4 GHz system.

3.4 Error Evaluation

In order to verify the accuracy of our motion capture system, we evaluated both
the accuracy of 3D positions compared to known motions over a fixed distance,
as well as the precision of all data while the changing camera angle.

First, the robot setup was moved over a known distance of 400 mm, while the
joint angles were unchanged. This measurement was repeated several times and
under several angles, the root mean square error of measured distances compared
to the known distance is shown in Table 1A.

Second, we measured the precision of motion capture (see Table 1B) data while
moving the camera to widely different angles over a sequence of 2000 frames. It is
our strong belief that most sources of errors—except overall scaling—will show
up when changing the viewpoint. From these results, we draw the conclusion
that our system delivers joint angles at an error well below 1 degree.

4 Conclusion

In this work, we have developed a versatile motion capture system that serves
two purposes: First, we can estimate the kinematic model of the musculoskeletal
humanoid Ecce. Second, we can deliver real-time data of its pose and its joint
angles, which opens up several areas of application. Both static and dynamic
data may be captured and put to use for our future work in robot simulation
and control.

4.1 Future Work

One of the central objectives of the Eccerobot project is to employ physics-
based robot simulation both off-line for controller development as well as on-
line as an internal model for robot control [6,5]. Our motion capture system
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is therefore of great use for simulation parameter estimation and creation of a
simulation model. Evolution strategies are currently applied in order to optimize
the physics-based simulation model based on our joint angle measurements [13].

Acknowledgments. The author would like to thank Konstantinos Dalam-
agkidis and Alois Knoll (Robotics and Embedded Systems, Technische Univer-
sität München) for their valuable advice, as well as Steffen Wittmeier for his
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Object Recognition System Guided by Gaze of

the User with a Wearable Eye Tracker
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Abstract. Existing approaches for object recognition typically rely on
images captured on an ordinary digital camera and therefore the recog-
nition task sometimes becomes difficult when the image contains other
objects (cluttered) and the object of interest is not clearly indicated. In
this work, we integrate a wearable eye tracker into the object recognition
system in order to recognize which object the user is paying attention
to in the scene camera. To demonstrate the usability of such a gaze1

based object recognition interface, we developed a prototypical applica-
tion named Museum Guide 2.0 which can be used in a museum as a
mechanical guide for visitors.

1 Introduction

A significant advance of object recognition technologies has been seen in recent
years and it provides us with great opportunities to design practical applica-
tions for object recognition such as Google Goggles2, kooaba3 or ViPR4. Thus,
nowadays people can easily access information about objects simply by taking a
picture of them with these applications. In these applications, an ordinary dig-
ital camera which captures a fixed-shaped (usually square) image of the scene
is typically used. However, in the image taken by such a camera, the object of
interest may not be captured perfectly (occlusion) or other objects may also be
captured (clutter) and therefore the task of object recognition becomes difficult.
A drawback of an ordinary camera-based object recognition method is that the
user’s interests or attentions do not explicitly appear within the image and thus
it is not easy to estimate where they exist in the image taken.

To estimate where the user’s interest exists in a certain environment, an eye
tracker is a suitable device because eye movements are immediately connected
to human intuition. Recent studies on eye movements revealed how human eye
movements are controlled and showed that the eyes fixate on a scene to acquire
enough information for understanding the scene [1]. A number of developers

� Recommended for submission to YRF2011 by Prof. Andreas Dengel.
1 Gaze is referred to as a long steady look at an object which is composed from several

fixations in this work.
2 http://www.google.com/mobile/goggles/
3 http://www.kooaba.com/
4 http://www.evolution.com/core/ViPR/
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in the area of human-machine interaction (HCI) have been inspired by these
studies and have proposed a lot of applications taking advantage of eye tracking
information [3,4].

In this work, we investigate how object recognition can be guided by eye
tracking information to recognize the object the user is interested in and how
such a framework can be used in a human-machine interactive interface. We
developed a prototypical application named Museum Guide 2.0 to demonstrate
the usability of such a gaze-based interface for object recognition. Museum Guide
2.0 acts as an unintrusive personal guide for a visitor in a museum. When it
detects that the user is looking at a specific art object, it will provide audio
information on that specific object via headphones.

2 Proposed Application

Figures 1 and 2 show an abstracted image of the Museum Guide 2.0 scenario and
a brief workflow model of the system, respectively. The system works as follows:
A head-mounted eye tracker observes the visitor’s eye movements and synchro-
nizes detected eye fixations with the captured real world images. The built-in
object recognition subsystem recognizes which of the objects in the database
is currently being fixated by the user. As soon as gaze on a specific object is
detected, the application provides audio information on that specific object.

We have several challenges in this scenario. First, how to use fixation in-
formation to guide object recognition. Second, in order to apply any kind of
benchmarking to the system output, we need to define so-called ground truth
based on our context. What is required for the system in the Museum Guide 2.0
scenario is to detect the user’s gaze on a specific object which can be observed
as a time interval rather than a frame in a video stream. Therefore, we need to
transform observed eye movements over several frames in a video stream into
gaze on specific objects and thereby we define our criteria for benchmarking.
Third, we need to judge whether the recognized object for each frame is being
gazed at by the user or not.

3 Real-Time Gaze Based Object Recognition

We propose real-time gaze based object recognition that overcomes the challenges
stated above.

3.1 Eye Tracking Method

We use the SMI iViewXTM HED 5 as a head-mounted eye tracker. In this system,
the user’s eye is illuminated by infra red light. The eye camera of this eye tracker
captures images of the illuminated eye and the image analysis software in the
5 http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/

iview-x-hed.html

http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/iview-x-hed.html
http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/iview-x-hed.html
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Fig. 1. Museum Guide 2.0. The system detects the gaze of the user on particular
objects and instantly provides information regarding the respective object.

Fig. 2. A brief workflow model of Museum Guide 2.0

system maps the center of the pupil in the image into the scene camera. When it
detects a fixation, the mapped point is sent to the object recognition framework
as the user’s fixation point.

3.2 Basic Object Recognition Method

We adopt a SIFT based object recognition method [2] as the base of our object
recognition framework. To prepare the database for object recognition, SIFT
features are extracted from images of each object (an exhibit in the museum).
Each query image is recognized as a specific object by matching SIFT features
between the query and the database.

3.3 Fixation Guided Object Recognition

Since we can obtain the fixation point for each frame which can be considered as
the interest point of the user, object recognition system can be guided in order
to recognize the object being watched by the user. Thus, instead of extracting
SIFT features from the entire image of the frame, we limit the region for feature
extraction to a local area whose center position is the fixation point.
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3.4 Gaze-Based Ground Truth Processing

For benchmarking the system, we need to obtain ground truth from video stream
data. Manual labeling for each frame is the most primitive way to obtain ground
truth of video stream data. However, for the sake of the gaze-based interface, we
would prefer to define a sequence of frames whose fixations are on one specific
object as gaze based ground truth which corresponds to a time interval in which
the user likes to get information from the museum guide. In this work, manu-
ally labeled video data is processed to obtain gaze based ground truth that is
composed from the gaze on each object.

3.5 Gaze Detection Based on Recognition Results

In order to match processed ground truth, the system needs to judge whether the
user is gazing at the object or not from object recognition results. We propose
three different methods to detect the user’s gaze from object recognition results.

Non-weighting plain method directly outputs an object recognition result for
each frame. Accumulation of n frames method accumulates histograms obtained
from object recognition processes. Each value in the histogram corresponds to
the frequency of matched SIFT features for each object. If the highest value in
the histogram exceeds the threshold value, it is recognized as gaze on the object.
Pseudo ground truth generative method counts the number of frames that have
the same object recognition label X . When the number of such frames reaches
Tdur value, the system recognizes the user is gazing at object X . Simultaneously,
if the consecutive Tnoise frames are not recognized as object X , the count is set
to 0.

When the gaze on a specific object is detected by the system, it triggers the
event for providing information about the object.

4 Experiments and Results

For benchmarking the system, we recorded 10 test video files where the users
were strolling in our museum wearing the SMI iViewXTM HED eye tracker. We
used 12 objects and placed them on a table in our museum. All frames of the
video files were labeled manually as the name of the object being fixated by the
user.

First, to evaluate the benefit obtained by using fixation positions in object
recognition, we compare the fixation guided object recognition method with two
conventional methods that work on the camera image without considering the
eye position (baseline methods). As shown in Figure 3, “Entire image” uses the
entire image of a frame for recognition (extracting SIFT features from the entire
area) and “Center area” limits the region for recognition to the center area of
the image regardless of eye position (but the size of the region is the same as
the fixation guided method). In this experiment, the result is evaluated frame
by frame without considering gaze-based ground truth stated in the previous
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Fig. 3. Example of regions for each recognition method. Entire image uses the whole
image, Center area crops the region from the center of the image and fixation guided
recognition method crops the region according to the fixating point.

Fig. 4. Results of fixation guided object recognition, showing that methods using fixa-
tion information clearly outperformed simple object recognition methods (Entire image,
Center area) that did not use any eye tracking information

Fig. 5. The results of gaze based object recognition. The pseudo method outperformed
other two methods.
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section. Figure 4 shows the results obtained by changing output thresholds from
0.5 to 0.9 for the highest value in the histograms computed by object recogni-
tion processes. The fixation guided object recognition method completely out-
performed the two baseline methods indicating that eye position indeed helps in
improving the object recognition system.

Next, we evaluated the gaze detection methods on recogniton results. By pro-
cessing the manually labeled data, we obtain sequences of frames that the users
were gazing at the objects (long time intervals of gaze on particular objects).
Here, we compared three methods (a pseudo ground truth generative method,
an accumulation of n frames method and a plain method). Figure 5 shows the
result of each gaze detection method. As shown in this figure, the pseudo method
(pseudo ground truth generative method) outperformed the other methods. By
using this method, the system could detect the users’ gaze with more than 90%
of precision and 80% of recall.

5 Conclusion

We have proposed an object recognition system that makes use of eye tracking
information to detect the user’s gaze on a particular object. The experimen-
tal results showed the fixation guided recognition method could recognize the
object that the user was looking at and the advantage of using eye informa-
tion by comparing it with two baseline methods. Furthermore, they also showed
the proposed gaze detection method could reasonably detect the user’s gaze on
objects.

Regarding future work, we would like to expand the database to adapt the
application not only to the museum scenario but also to other scenarios and
compare the recognition method with other recognition methods which use the
segmentation approach or a saliency map to estimate the user’s attention.
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Abstract. Object discovery is one of the most important applications
of unsupervised learning. This paper addresses several spectral cluster-
ing techniques to attain a categorization of objects in images without
additional information such as class labels or scene descriptions. Due to
the fact that background textures bias the performance of image cat-
egorization methods, a generic object detector based on some general
requirements on objects is applied. The object detector provides rectan-
gular regions of interest (ROIs) as object hypotheses independent of the
underlying object class. Feature extraction is simply constrained to these
bounding boxes to decrease the influence of background clutter. Another
aspect of this work is the utilization of a Gaussian mixture model (GMM)
instead of k-means as usually used after feature transformation in spec-
tral clustering. Several experiments have been done and the combination
of spectral clustering techniques with the object detector is compared to
the standard approach of computing features of the whole image.

1 Introduction and Related Work

Unsupervised image categorization for object discovery is a challenging task in
computer vision. Algorithms try to group images according to categories of the
pictured objects only using the visual content. This can be done by utilizing
similarities between representations of images assuming that images containing
objects of the same class provide similar feature vectors. A clustering of all
vectors then implies a clustering of the corresponding images.

Commonly used approaches for object discovery include spectral clustering
techniques, which are characterized later in this paper. A main part of those
methods rely on graph partitioning based on optimizing the Normalized Cut [11].
Closely related to Normalized Cuts Spectral Clustering is a dimensionality reduc-
tion technique called Laplacian Eigenmaps [2], where at last, the same eigenvalue
problem of the graph Laplacian as for the Normalized Cut optimization needs
to be solved. A good overview of spectral clustering and graph Laplacians is
provided by von Luxburg [5].
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Another alternative to discover objects in images is the usage of Topic mod-
els [12,13]. Object categories are determined by estimating the parameters of
a statistical model, which involves hidden (latent) topic variables [12]. Both
approaches for object discovery, spectral clustering and topic modeling, are
compared by Tuytelaars et al. [14]. In the present paper, we focus on spectral
clustering techniques and present their combination with a general object
detector.

2 Spectral Clustering Techniques

Spectral clustering techniques are methods that rely on the eigen-decomposition
of a modified similarity matrix containing pairwise similarities of feature vec-
tors [14]. Using the eigenvectors and eigenvalues of such matrices, feature vectors
can be transformed by projections into a low-dimensional feature space prior to
clustering.

In this section, four selected methods, which meet that definition of spectral
clustering, are described briefly. They have in common that each of them uses
pairwise similarities of feature vectors x(1), . . . ,x(M) ∈ IRN calculated by a
kernel function κ and collected in a kernel matrix K with Kij = κ

(
x(i),x(j)

)
.

Each method realizes a specific feature transformation and the transformed
data points are always clustered using standard techniques. While k-means is
usually applied, we use a GMM, which generalizes k-means by estimating arbi-
trary covariance matrices.

2.1 Nonlinear Component Analysis

Kernel methods treat the kernel matrix K as a matrix containing inner products
of the feature vectors in a higher-dimensional space IF, which mostly depends on
the input space in a nonlinear way. The following two approaches of nonlinear
component analysis both project the data points on principal axes in IF without
computing vectors in this space, but they differ in the selection of the axes.

Kernel Principal Component Analysis (Kernel-PCA). For Kernel-PCA,
those principal axes are chosen, which offer largest variance of data points in IF.
Thus, Kernel-PCA is equal to standard PCA in this higher-dimensional space.
As in standard PCA, a centering step is necessary to ensure centered data points
in IF [10]. The largest eigenvalues and corresponding eigenvectors of the centered
kernel matrix K̄ solving K̄v = λv are required to compute transformed feature
vectors x̃(1), . . . , x̃(M) [10].

Kernel Entropy Component Analysis (Kernel-ECA). Using Kernel-ECA
for feature transformation also results in computing projections of data points on
principal axes. Different to Kernel-PCA, the eigenvectors are not chosen accord-
ing to the largest eigenvalues of the centered kernel matrix, but with respect
to their contribution to an approximation of the quadratic Renyi entropy [8]
H (p) = − log

∫
p2 (x) dx. As stated by Jenssen [4], the aim is to select prin-

cipal axes with highest contributions to this entropy. The contribution of the
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m-th principal axis to an approximation of this entropy is cm =
(√
λm1Tv(m)

)2
with eigenvalue λm and the corresponding eigenvector v(m) of K. Compared to
Kernel-PCA, there is no centering step of the kernel matrix involved [4].

2.2 Normalized Cuts Spectral Clustering

For Normalized Cuts Spectral Clustering, a weighted and undirected graph is
constructed treating feature vectors as vertices and pairwise similarities as edge
weights. Thus, it is possible to use the kernel matrix K to represent a full graph.
The two methods of this section optimize the Normalized Cut [11] of the graph
determined by K. In general, the optimization can be done by minimizing the
Rayleigh quotient yT(D−K)y

yTDy , which ends in computing eigenvectors according
to the smallest eigenvalues of the generalized eigenproblem (D − K)y = λDy,
where D is a diagonal matrix containing row sums of K [11]. The eigenvalue λ
is equal to the Normalized Cut with respect to y, which in theory is a binary
vector describing the corresponding bipartition of the graph.

Random Walks Laplacian Eigenmaps (Random Walks LEM). The work
of Meila and Shi [6] gives an interpretation of spectral partitioning with random
walks using the stochastic matrix P = D−1K. Instead of the generalized eigen-
problem, they solve

(
I − D−1K

)
y = λy, with I the identity matrix, by com-

puting eigenvectors of P according to the largest eigenvalues. Since eigenvectors
of P are also solutions for the generalized eigenproblem [5], these eigenvectors
minimize the Normalized Cut as well. Forming a matrix X̃ containing the eigen-
vectors of P in its columns, the rows of X̃ represent the transformed feature
vectors x̃(1), . . . , x̃(M). Because of the strong connection between Normalized
Cuts Spectral Clustering and Laplacian Eigenmaps (cf. Sect. 1) as well as the
random walks point of view [6], this method is termed Random Walks Laplacian
Eigenmaps (Random Walks LEM) throughout this paper.

NJW-Algorithm. The NJW-Algorithm [7] uses eigenvectors of the normalized
Laplacian matrix L = D− 1

2 (D − K)D− 1
2 by computing eigenvectors according

to the largest eigenvalues of L̃ = I −L. Compared to Random Walks LEM, this
leads to scaled eigenvectors z = D

1
2 y [11]. Transformed feature vectors are

computed as done in the algorithm called Random Walks LEM, but with an
additional normalization of the rows of X̃ having unit length [7].

3 Object Detection and Categorization of ROIs

As in [14], feature extraction is often performed on the whole image. To avoid
clusterings based on background textures, it is desirable to compute features
only at regions, which are covered by an object. The key idea of this paper is to
integrate a general object detector into an unsupervised learning framework for
object discovery. For this purpose, the general object detector of Alexe et al. [1]
is applied to generate bounding boxes as object hypotheses independent of the
object’s class and feature extraction can be limited to these rectangular areas.
Using this detector, we get an arbitrary number of bounding boxes, each of them
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having a score between 0 and 1 measuring how likely the rectangle contains an
object of any class. The scoring and thus the detector works generic across
categories using some object cues such as closed contour and color contrast [1].

At first glance, applying this detector is not possible in an unsupervised frame-
work, because the detector needs to be trained with images and ground-truth-
information about ROIs. But if the training images are completely independent
of the clustered images, there is no information utilized about the latter. So,
when we use the detector with the default parameter setting, which comes with
the software of Alexe et al. [1] and whose values are obtained using images con-
taining objects of classes different to those that should be discovered, it can be
seen as an unsupervised scenario as well.

First Approach: One ROI per Image. In a first approach, we sample a
fixed number of ROIs for every image, but using only the ROI of each image
with the highest score given by the detector. Feature extraction, transformation
and clustering is simply done for those ROIs and the category label of one ROI
directly specifies the label of a single image.

Second Approach: Multiple ROIs per Image. The second approach em-
ploys the idea of Russell et al. [9] for object discovery, where multiple segmen-
tations of each image are used with the assumption that at least one segment
covers one single object in a sufficient way. In the case of ROIs, assuming that
at least one ROI is a good bounding box for an object in the image, multiple
ROIs per image are sampled at the beginning, e.g. b ROIs with highest score.
Subsequent, feature extraction is performed on all ROIs as well as feature trans-
formation and clustering. In the end, there are b labels for each image, one per
ROI. To avoid images with multiple labels and to compare the results with the
first approach, it is necessary to have one label for each image. Using a GMM
for clustering, one can determine a single ROI per image, which has the highest
probability for being a member of the specific category and the image is assigned
to the label of this ROI.

4 Experimental Results

In experiments, all images of 20 object categories of the Caltech-256 dataset
selected by Tuytelaars et al. [14] are grouped. PHOG features [3] as well as the
χ2-kernel [14] are applied, and also a kernel particular for PHOG similarity [3],
which we term PHOG-kernel. As proposed by Tuytelaars et al. [14], the condi-
tional entropy is measured to evaluate a clustering. A low conditional entropy
corresponds to a high quality of the clustering.

In Fig. 1, the conditional entropy of achieved clusterings is displayed depend-
ing on the dimension of the transformed feature vectors, where 〈IMAGE〉 stands
for feature calculation on the whole image, 〈1 ROI 〉 for applying the first ap-
proach proposed in Sect. 3 and 〈1 of 10 ROIs〉 for the usage of ten ROIs per
image selecting the best one as described in the second approach. It can be seen
clearly that only using one ROI per image leads to poor clusterings according
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〈IMAGE〉 〈1 ROI 〉 〈1 of 10 ROIs〉

Fig. 1. Conditional entropy of the clusterings depending on the dimension of the trans-
formed feature vectors (number of eigenvectors used for transformation), obtained
by four spectral clustering techniques (a)–(d) and three mentioned approaches using
PHOG-kernel [3] and a GMM (best viewed in color)

Table 1. Conditional entropy of the clusterings with χ2-kernel compared to results
of [14], where different features are evaluated (that’s why there are intervals denoted)

Spectral Clustering 〈IMAGE 〉 〈1 of 10 ROIs〉
Technique (20 Eigenvectors) (40 Eigenvectors)

Kernel-PCA & GMM 1.55 1.61
Kernel-ECA & GMM 1.60 1.62
Random Walks LEM & GMM 1.56 1.67
NJW-Algorithm & GMM 1.61 1.66

Kernel-PCA & k-means [14] 1.64 − 2.35 –
NJW-Algorithm & k-means [14] 1.58 − 2.54 –

to the conditional entropy, whereas multiple ROIs show better performance. As
stated before, we also calculated features on the whole image. Indeed this leads
to the best results, but especially the NJW-Algorithm produces nearly equal
outputs comparing 〈IMAGE〉 and 〈1 of 10 ROIs〉. For clarity and due to the
lack of space, Fig. 1 only shows the results obtained by the GMM since in further
experiments, clusterings using k-means achieve a higher conditional entropy.

In comparison to the results of Tuytelaars et al. [14] using 20 eigenvectors
for feature transformation, the clusterings are better for 〈IMAGE〉, notably ob-
tained by Kernel-PCA with a conditional entropy of 1.55 (cf. Table 1). Also
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〈1 of 10 ROIs〉, using twice the number of eigenvectors, because there is an ad-
ditional performance gain for a dimension higher than 20, achieves good results
near the lower bound given by the intervals of Tuytelaars et al. [14].

5 Conclusions

The presented results show the ability of applying a general object detector in an
unsupervised object discovery framework, where the usage of multiple ROIs per
image leads to better performance. Although the proposed method of spectral
clustering of ROIs does not provide a clear quantitative performance benefit, our
approach of first detecting an object in general and subsequent discovering the
category is promising and improvements should be aspired in further work.

In our studies, it turned out that a GMM for grouping transformed feature
vectors, compared to commonly used k-means, boosts the quality of categoriza-
tions obtained by spectral techniques.

Acknowledgements. I want to thank Erik Rodner, advisor of my diploma
thesis, for his great support and Michael Kemmler for helpful suggestions.
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Abstract. Traditionally, object recognition systems are trained with
images that may contain a large amount of background clutter. One way
to train the classifier more robustly is to limit training images to their
object regions. For this purpose we present a semi-supervised approach
that determines object regions in a completely automatic manner and
only requires global labels of training images. We formulate the problem
as a kernel hyperparameter optimization task and utilize the Gaussian
process framework. To perform the computations efficiently we present
techniques reducing the necessary time effort from cubically to quadrat-
ically for essential parts of the computations. The presented approach
is evaluated and compared on two well-known and publicly available
datasets showing the benefit of our approach.

1 Introduction and Related Work

Image categorization became a well studied problem in the area of image un-
derstanding during the last years. Traditionally, one represents already labeled
training images by certain features and trains a classifier based on features and
labels. In a second step labels of unknown images can be estimated by evaluating
the response of the classifier for each image. The main assumption is the presence
of only one single dominant object per training image with only few clutter and
occlusion. Otherwise, the extracted features would not be representative for the
category given by the image label. Going one step further, researchers attempted
to overcome this limitation by using more complex classifiers [11] or by extract-
ing a large set of features [12,3]. Nevertheless, this leads to higher computation
times as well as higher memory demand in many cases. For this reason, we in-
troduce a new method to determine object regions in training images only given
the category label. Therefore, we interprete the object region in an image as a
kernel function hyperparameter and optimize the model likelihood with respect
to these hyperparameters. This allows obtaining convenient training images for a
robust training of a classification system. To reduce the computational effort we
apply two lemmata that allow computing inverse and determinant of a matrix
in quadratically time in contrast to cubically effort with standard approaches.
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Many publications directly deal with the detection or localization of objects
in images [5,8]. Many of these approaches use sliding window techniques to col-
lect hundreds of possible object regions, classify each region and return the one
classified with lowest uncertainty or best score. Obviously, this is not possible,
if the classifier was trained on images rather than on regions. An alternative are
generic object detectors, as proposed by Alexe et al. [1]. They perform detection
of arbitrary objects by defining object cues for the presence of an object— like
strong color contrast or high edge density.

To our knowledge, just a few publications directly address the determination
of object regions in training images by using class labels only. Chum et al. [4]
select the region in an image which achieves the highest similarity score to all
other images of its class, measured by similarities of visual words and edge
densities. Bosch et al. [2] present a method similar to [4] that also obtains object
regions in images by maximizing a similarity score, but evaluates the similarity
function only on a subset of the training images, instead of considering every
training example. In contrast to these approaches, we select the image region,
which gives highest probability to explain the class labels by considering only
the part of the image covered by the region.

The remainder of the paper is organized as follows. In Sect. 2 we will briefly
review classification with Gaussian processes, present our approach for object
localization with hyperparameter optimization and show techniques for efficient
computations. Experimental results are given in Sect. 3 that show the benefit
of our approach. A summary of our findings and a discussion of future research
directions conclude the paper.

2 Object Localization with Hyperparameter Optimization
in a Gaussian Processes Framework

Brief review of Gaussian Process Classification. Assume a given set of
training images

(I1, . . . , In

)
represented by certain features X =

(
x1, . . . ,xn

)
and a vector tL ∈ {−1, 1}n containing the labels of the images. Then we are
interested in estimating the general relationship between unseen examples x∗ ∈
X and their class labels t∗. If we use a kernel function κ : X × X → R that
maps each pair of features to a similarity score we can model the relation in
a probabilistic way using Gaussian processes (GP) [11]. The main assumption
is that every label ti is created by a continous latent variable yi. Then every
two labels yi, yj are expected to be jointly Gaussian and their covariance is
specified by applying the kernel function κ(xi,xj) to their inputs. As in [11]
we assume the yi to have a zero mean, which leads to P(y|X) ∼ N (0,K)
with Ki,j = κ(xi,xj). The choise of κ is crucial for the performance of the
classification system, because it defines how strong the estimated label differs
given a change in the feature vector. Therefore, to adjust the chosen kernel
function to the training data one possibility is to use a parameterized kernel
function and to optimize its hyperparameters with respect to the training data.
In the Gaussian process framework, optimization can be done by maximizing
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the model likelihood P
(
tL|X,β), which states how well the class labels can be

explained given the training data under the chosen model.

Object localization with hyperparameter optimization. If the object
region in an image is interpreted as a hyperparameter of the kernel function,
object localization becomes equivalent to optimization of hyperparameters. Let
β =

(
β1, . . . ,βn

)
be the vector of hyperparameters with βi as a representation

of the object region for the ith image, such as upper left and lower right corner
of a rectangle. Then the determination of the object regions can be done by

β∗ = argmax
β

P
(
tL | X,β

)
. (1)

If we expect only additional Gaussian noise in the labels, the logarithmic likeli-
hood in the GP regression framework can be written in closed form [14]

log P
(
tL | X,β

)
= −1

2
log det(Kβ + σ2I) − 1

2
tT
L

(
Kβ + σ2I

)−1
tL + const . (2)

In (2), Kβ denotes the GP covariance matrix computed with the parameterized
kernel function, which in our case is equal to restricting the training images to
the regions specified by β.

If we have a multi-class classification task that is tL ∈ {1, . . . ,m}n, m one-
vs-all-classifiers can be used. Assuming independent outputs of the m classifiers,
we can again compute the joint likelihood [11]

log P
(
tL | X,β

)
=

m∑
j=1

log P
(
t
(j)
L | X,β

)
, (3)

with binary label vectors t
(j)
L whose entries are equal to one if the corresponding

entry of tL is j and −1 otherwise.
To perform the optimization of (2) and (3) one typically uses non-linear op-

timization techniques like gradient descent. Caused by the descrete parameter
space this is not possible in our case. Therefore and due to the combinatorial
complexity, we use a greedy strategy as an approximation. In detail, we fix ev-
ery dimension of β except one and perform likelihood optimization according to
this dimension. This is done for every dimension and repeated for several times,
which is known as cyclic coordinate search [13]. In practice this corresponds to
fixing every image region except for one and choosing the region for this spe-
cific image that maximizes the likelihood with respect to the already computed
regions of all other images.

Methods for efficient computations. To reduce the computational effort
we draw advantage of our greedy approximation scheme. While performing the
optimization of one single dimension, the resulting kernel matrix changes only
in one row and one column. This is equal to a rank-2-update of K. Therefore
we can apply Woodbury’s formula [9] to compute the inverse of the slightly
changed covariance matrix K ′ by utilizing the already computed inverse of K.
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Table 1. Recognition rates averaged over all categories of Caltech-101. Entry x/y
denotes restricting training images to x and test images to y.

# training examples global / ROI est. / GT ROI /
per category global GT ROI GT ROI

5 39.12 40.63 49.11
10 44.89 45.55 55.17
15 48.76 49.42 58.59

This results in a computational effort from only O(n2) compared to O(n3) with
standard approaches like Cholesky decomposition. With our implementation,
this leads to a time effort of just 0.04 s for inverting a 2000 × 2000 -Matrix on
a standard PC in contrast to 12.04 s with a complete Cholesky decomposition.
Apart from that, we also benefit from using the determinant lemma (see chapter
18 of [10]). With the Schur-Complement of K on hand— which we already
needed for the efficient determination of the inverse— we are able to compute
the determinant in constant time for rank-2-modifications of K.

3 Experimental Results

To demonstrate the benefit of our approach, we performed experiments on
Caltech-101 [7] and Pascal VOC 2008 [6]. We extracted PHOG-features [2]
and BoF-features (identical setup as presented in [15]) for every image to use
both structure and color information. The results were combined with uniform
weights. As supposed in [11] we also tested weight optimization but this de-
creased the results slightly. We want to point out that we did not focus on
choosing the most promising features or optimize their extraction. To generate
region hypotheses for the greedy optimization scheme we performed a sliding
window approach. Therefore, we scaled the initial image region by a factor rang-
ing from 1.0 to 0.6 with step size of 0.1. To perform the optimization of (2) or
(3) in Sect. 2, we initialized the bounding boxes with the whole image regions
and repeated the iterations over all training images for 10 times. For the multi-
class classification task we measured recognition rates averaged over all classes
whereas we chose the average precision measure for the binary case.
Evaluation. Although Caltech-101 is not the most convenient dataset for eval-
uating the performance of an object localization system, it is one of the standard
datasets for classification tasks. Therefore, we present the results achieved with
our approach on this dataset.

As we can see in Table 1, our approach improves the quality of the training step
slightly, although there is still some space left for improvement compared to the re-
sults based on ground truth regions for training. This is due to the fact, that many
images of Caltech-101 show only one dominant object. Nevertheless, the automat-
ically determined object regions are visually meaningful as shown in Fig. 1.

Classifying images from Pascal VOC 2008 is a more challenging task. On
this difficult dataset our method showed superior performance compared to the
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Fig. 1. Good (left) and bad (right) results achieved with our approach on Caltech-101
with 15 training images per category (best viewed in color)

Table 2. Average precision rates achieved on Pascal VOC 2008 bicycle

# training examples global / ROI est. / GT ROI /
per category global GT ROI GT ROI

15 6.13 11.63 56.67
30 8.46 35.74 55.03
50 7.48 42.84 57.28

Fig. 2. Good (left) and bad (right) results achieved with our approach on Pascal VOC
2008 bicycles with 50 training images per category (best viewed in color)

standard approach, which can clearly be seen in Table 2. Although the results
obtained with our approach are a little lower than the ground truth results, the
improvement is up to a factor of six for our simple feature set. This clearly points
out the advantages of our approach for a robust training especially in difficult
classification tasks. The results confirm the fact that images restricted to their
object regions give an essential benefit for building classifiers more robustly.
Fig. 2 shows some exemplary results on Pascal VOC 2008 bicycle achieved by our
approach. Note that the bad examples are cases where the bicycle regions are too
small compared to the minimum scaling factor or are not highly representative
for the bicycle category.
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4 Conclusion and Future Work

We have shown that reducing images to their object regions allows building clas-
sifiers more robustly. Our approach showed superior performance by improving
classification results up to a factor of six for challenging tasks compared to clas-
sification based on whole images. To overcome computational limitations we
proposed techniques for efficient computations. As future work we plan to re-
place the sliding window approach with a generic object detector to reduce both
computation time and probability of choosing non-meaningful image regions.
It could also be interesting to evaluate the utility of our approach in an active
learning setup. Apart from this, we want to use our approach to localize multiple
objects per image in the test step.
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Based on an Iterative Graph Cut Algorithm
Using Time-of-Flight Cameras�
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Abstract. This work describes an approach to color image segmenta-
tion by supporting an iterative graph cut segmentation algorithm with
depth data collected by time-of-flight (TOF) cameras. The graph cut
algorithm uses an energy minimization approach to segment an image,
taking account of both color and contrast information. The foreground
and background color distributions of the images subject to segmenta-
tion are represented by Gaussian mixture models, which are optimized
iteratively by parameter learning. These models are initialized by a pre-
liminary segmentation created from depth data, automating the model
initialization step, which otherwise relies on user input.

1 Introduction

The extraction of relevant visual information from images through segmentation
is one of the most important steps in image processing and is used in many
applications, like medical imaging, driver assistance systems, and 3DTV content
creation. While for many segmentation approaches user input is mandatory, the
use of TOF cameras for segmentation purposes is another promising method.
These cameras measure per-pixel depth data through correlation of emitted and
reflected infrared light. Although technical progress has been made in the devel-
opment of TOF cameras, their limited resolution and dependency on reflectance
properties often require post-processing of the captured data.

In this work, depth data aquired from a camera setup containing TOF cameras
is used to support an interactive segmentation algorithm [9], taking advantage
of its optimization capabilites to compensate for the unreliability of the depth
data at the border region of foreground and background.

The remainder of this paper is structured as follows: After an investigation of
related work in Section 2, the segmentation procedure is described in Section 3.
Section 4 presents experimental results, while conclusions are drawn in Section 5.
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2 Related Work

Available image segmentation techniques can generally be classified into two
categories: Interactive approaches incorporate user input to narrow down the
number of feasible segmentations, while automatic approaches do not rely on
user input.

A common approach to automatic segmentation is the integration of previ-
ous knowledge about the scene, e.g. removing a known, uniform background to
extract the foreground [10]. However, this method is obviously not applicable to
the segmentation of natural images, as it requires a special capturing environ-
ment. Interactive segmentation approaches e.g. require the user to indicate defi-
nite foreground or background regions [3,9]. While generally high quality results
are produced, processing a large number of images is time-consuming. Utilizing
depth data captured by TOF cameras for segmentation purposes is also subject
of current research [1,11,4]. The authors in [11,4] automatically create a trimap
from depth data and subsequently perform matting in an uncertainty region
around the foreground. Our work combines automatic trimap generation with
iterative segmentation as described in the following section.

3 Color Image Segmentation

Our segmentation technique expands the interactive segmentation algorithm
from [9] by incorporating depth data into the creation of a preliminary segmenta-
tion, which relies on user interaction otherwise. This also limits the segmentation
to an uncertainty region around foreground objects.

3.1 Data Acquisition

Figure 1 shows a picture of the camera setup, with the central color camera C and
the two used TOF cameras T 1, T 2. The color camera is a Sony X300 (1920×1080
px), the TOF cameras are PMD CamCube 3.0 cameras (200 × 200 px). Due to
their limited resolution, two of them are combined to obtain a depth image of
the same view as the color camera. The TOF cameras are rotated slightly in
order to cover the full viewing area of the central camera. In an attempt to
minimize the amount of disocclusions, the depth images from cameras T 1 and
T 2 are then simultaneously warped into the central view using a triangle mesh
warping technique [1]. Note that from the camera setup shown in Figure 1 only
the three cameras mentioned above are used.

The resulting warped depth image (see Figure 1) features black pixel areas
for which no depth data is available, representing occluded regions not seen by
any of the TOF cameras. The image is also not free from artifacts, especially
at the border region of foreground and background, resulting from the large
resolution difference between the color image and both original depth images,
and also from general depth measurement errors. In order to disregard these
artifacts when generating a preliminary segmentation from the depth image, a
trimap is created as described in the following paragraph.
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Fig. 1. From left to right: Camera setup, color image from central camera C, warped
depth image from cameras T1, T2

3.2 Trimap Generation

In a first step, the warped depth image is tresholded to create a binary image
B with foreground and background pixel regions. The respective threshold can
be selected by user input or can also be aquired automatically [8,5]. In order to
incorporate the uncertainty of the foreground border region, a trimap is gener-
ated from the binary image B through morphological operations. Let Be be the
result of performing erosion on image B and let Bd be the result after dilation
of B. Then the definite foreground region of the trimap is given by Tfg := Be

and the uncertainty region around forground objects is given by Tun := Bd −Be.
Another dilation of the dilated binary image Bd creates the image Bdd. Then
the background region of the trimap is given by Tbg := Bdd −Bd. This limits the
background region to a narrow strip around the uncertainty region. Thus, the
black pixels of the trimap are disregarded during segmentation and are also not
considered for the creation of the background Gaussian mixture model during
clustering. This not only increases performance, but also prevents interference of
the color models by spatially distant background regions. Hence, the foreground,
uncertainty, and background regions form the trimap T := Tfg ∪ Tun ∪ Tbg, as
displayed in Figure 2(b).

3.3 Color Clustering

Based on the definite foreground and background pixel regions (Tfg, Tbg), two
Gaussian mixture models GMfg and GMbg are created by clustering the corre-
sponding color image pixels. We use a hierarchical clustering approach based on
color quantization [2]. Here each Gaussian mixture model starts with all pixels
in a single cluster C1. This cluster is then split in two by means of principal
component analysis, by first calculating the covariance matrix of C1 and then
finding its largest eigenvector e using singular value decomposition. Due to the
involved diagonalization of the covariance matrix, the variance of the now uncor-
related color data points is greatest along the direction of e. Cluster C1 is then
split into clusters C′

1, C2 by a plane perpendicular to e and passing through the
mean value of C1.

This process is continued iteratively by repeatedly splitting the cluster with
the largest variance, until the desired cluster limit has been reached. Instead of
setting this limit to a fixed number as proposed in [9], we compare all within-
cluster variances to the total variance among all clusters to abort the splitting
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process automatically. The calculated foreground and background pixel clusters
are then used to initialize the individual components of the respective Gaussian
mixture model.

3.4 Segmentation by Energy Minimization

After the Gaussian mixture models are initialized, the segmentation is performed
based on the iterated graph cut approach described in [9]. We abort the iterative
energy minimization when the fraction of pixels changing classification is below
0.01% of total image pixels.

The minimization of the energy functional employs the maximum flow al-
gorithm described in [7]. As each of the nonterminal graph vertices v has a
connection to both the source s and the sink t, all paths of the form (s, v, t) are
augmented before execution of the maximum flow algorithm to increase perfor-
mance. Additionally, after each iteration of the segmentation algorithm, the flow
on the image graph is reused from the previous iteration [3]. This significantly
improves performance of all iterations but the first, as only those edges subject
to a positive capacity change can form new augmenting paths. Likewise, as the
maximum flow algorithm starts its search for augmenting paths from a set of
active vertices, this set is consequently limited to those vertices connected to
updated edges. Also, the most recent search tree after termination of the max-
imum flow algorithm is reused for the following execution [6], preventing the
time-consuming rebuilding of the search trees at execution start.

4 Experimental Results

The segmentation algorithm was evaluated on frames of three video sequences
captured by the camera setup explained in Section 3.1. Figure 2 shows the influ-
ence of the initial clustering on the segmentation results by comparing the used
clustering algorithm to a conventional k-means approach. Also note that the
segmentation results varied using k-means due to its randomly chosen starting
cluster centers, whereas the results using the hierarchical clustering remained
invariant due to its deterministic nature.

4.1 Segmentation Performance

The run-times given in this section were obtained on a PC with a 3.16 GHz Intel
Core 2 Duo CPU and 7.8 GB of RAM. Table 1 shows performance results for the
maximum flow calculation only, Table 2 displays total segmentation times. Note
that the pixels marked black in the trimap are not used to build the image graphs.
The lower resolution images were obtained by downsampling the color images
using a mean-shift filter, scaling down erosion and dilation parameters for the
trimap generation accordingly. Experiments show that reducing the resolution to
960 × 540 pixels has almost no impact on segmentation quality but significantly
reduces computation time.
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(a) (b)

(c) (d)

Fig. 2. (a) Input image; (b) trimap generated from depth image; (c) segmentation result
using k-means (10 iterations); (d) segmentation result using our approach. Differences
in the results are highlighted by white rectangles

Table 1. Performance of the maximum flow algorithm averaged over 9 test images.
Note that the last row only shows the average run-time excluding first iterations, as
those are not affected by reusing the flow and the search trees.

resolution
240 × 135 px 480 × 270 px 960 × 540 px 1920 × 1080 px

standard Kolmogorov [7] 0.05s 0.10s 0.42s 1.88s
+ augm. terminal paths 0.02s 0.06s 0.22s 1.03s
+ reusing flow and trees 0.01s 0.02s 0.06s 0.24s

Table 2. Performance of the segmentation algorithm averaged over 9 test images,
reusing the graph, flow, and search trees after the first iteration. The last row shows
total segmentation time, with an estimated average of 9 iterations until convergence.

resolution
240 × 135 px 480 × 270 px 960 × 540 px 1920 × 1080 px

first iteration 0.13s 0.37s 1.24s 5.12s
subsequent iterations 0.04s 0.12s 0.30s 1.06s

total time 0.45s 1.33s 3.64s 13.60s
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5 Summary and Conclusion

We presented an approach to automatic color image segmentation. By using
depth data captured by TOF cameras, we managed to automate the initial-
ization procedure of the probabilistic color models. We also automatically de-
termined an optimal number of clusters for the hierarchical color clustering by
evaluating the within-cluster variances. By reusing the flow and the search trees
used during maximum flow calculation throughout the iterative segmentation,
we arrived at a performance suitable for the segmentation of image sequences.
Future work includes efforts to achieve temporal stability when segmenting video
sequences of images by introducing temporal edges, linking consecutive video
frames together. This way the amount of flickering caused by temporal arti-
facts can be reduced by incorporating knowledge about previous segmentation
results [8,5]. Also part of our investigation is the automatic removal of the back-
ground in interior scenes, which is done by estimating multiple depth tresholding
planes through clustering of surface normals [5].

References

1. Bartczak, B., Schiller, I., Beder, C., Koch, R.: Integration of a time-of-flight camera
into a mixed reality system for handling dynamic scenes, moving viewpoints and
occlusions in real-time. In: Proceedings of the 3DPVT Workshop, Atlanta, GA,
USA (2008)

2. Bouman, C., Orchard, M.: Color quantization of images. IEEE Transactions on
Signal Processing 39(12), 2677–2690 (1991)

3. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In: ICCV, pp. I:105–112 (2001)

4. Crabb, R., Tracey, C., Puranik, A., Davis, J.: Real-time foreground segmentation
via range and color imaging. Computer Vision and Pattern Recognition Work-
shop 0, 1–5 (2008)

5. Frick, A., Franke, M., Koch, R.: Time-consistent foreground segmentation of dy-
namic content from color and depth video. In: Mester, R., Felsberg, M. (eds.)
DAGM 2011. LNCS, vol. 6835, pp. 462–467. Springer, Heidelberg (2011)

6. Kohli, P., Torr, P.H.S.: Dynamic graph cuts for efficient inference in markov random
fields. IEEE Trans. Pattern Analysis and Machine Intelligence 29(12), 2079–2088
(2007)

7. Kolmogorov, V., Boykov, Y.Y.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. In: Figueiredo, M., Zerubia, J., Jain,
A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 359–374. Springer, Heidelberg
(2001)

8. Paris, S., Durand, F.: A topological approach to hierarchical segmentation using
mean shift. In: CVPR, pp. 1–8 (2007)

9. Rother, C., Kolmogorov, V., Blake, A.: ”Grabcut”: interactive foreground extrac-
tion using iterated graph cuts. ACM Trans. Graph 23(3), 309–314 (2004)

10. Smith, A.R., Blinn, J.F.: Blue screen matting. In: Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, pp. 259–268 (1996)

11. Wang, O., Finger, J., Yang, Q., Davis, J., Yang, R.: Automatic natural video
matting with depth. In: Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications, pp. 469–472 (2007)



Application of Multi-modal Features for Terrain

Classification on a Mobile System

Marc Arends

Active Vision Group, University Koblenz-Landau, 56070 Koblenz
marends@uni-koblenz.de

Abstract. This paper1 presents an approach of an extended terrain
classification procedure for an autonomous mobile robot with multi-
modal features. Terrain classification is an important task in the field
of outdoor robotics as it is essential for negotiability analysis and path
planning. In this paper I present a novel approach of combining multi
modal features and a Markov random field to solve the terrain classifica-
tion problem. The presented model uses features extracted from 3D laser
range measurements and images and is adapted from a Markov random
field used for image segmentation. Three different labels can be assigned
to the terrain describing the classes road, for easy to pass flat ground,
rough for hard to pass ground like grass or a field and obstacle for ter-
rain which needs to be avoided. Experiments showed that the algorithm
is fast enough for real time applications and that the classes road and
street are detected with a rate of about 90% in rural environments.

1 Introduction

The problem of planning an optimal path through an unknown outdoor envi-
ronment is a fundamental task in the field of mobile robotics. A save path can
only be found if the mobile system knows which terrain is negotiable and which
is not. Robots fulfilling this task can be used to automatize work in agriculture,
transportation or even for reconnaissance in hazardous territories. The field of
applications is enormous, therefore there is a lot of research in this field.

Different types of sensors are used to collect data about the robots surround-
ings. The representation of the terrain is a discretized 2D grid consisting of cells
of equal size, each representing a piece of environment. The acquisition of this
structure is introduced by Neuhaus et al. [7] and is the foundation of the classi-
fication process presented in this paper. The goal of this work is to classify each
cell, allowing a prediction, which cell is difficult or easy to pass by using laser
and image data to gain information about the structure and the appearance of
the terrain. The features work as input of a Markov random field that allows the
modeling of the assumption that terrain cells of the same class tend to appear
in groups in the environment.

In this paper the hardware setup is presented in sec. 2. The related work
is described afterwards in sec. 3. In sec. 4 I discuss the combination of used
1 Recommended for submission to YRF2011 by Prof. Dr.-Ing Dietrich Paulus.
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features and sec. 5 describes the application of the Markov random field. The
results of the performed experiments are presented in sec. 6 and sec. 7 contains
my conclusion.

2 Hardware Setup

The algorithm described in this paper is designed to be used for a combination of
3D-laser scans and camera images, mounted on a mobile robot. The sensors used
for the task are a 3D laser range finder (LRF), a Logitech HD Pro Webcam C910
which is attached to the front and two Philips SPC1300NC cameras pointed to
each side. The LRF is a Velodyne HDL-64E S2 which provides about 1.8 million
range measurements per second using 64 lasers rotating 360 degrees around its
own vertical axis. As it is not always possible to use a robot, the sensors can be
attached on a car to record sensor data. The recorded data can be replayed in
the used software framework in the same chronological order and speed it was
recorded. This allows its usage for developing and evaluating algorithms without
actually employing a robot.

3 Related Work

As mentioned before there has been a lot of research in the field of terrain clas-
sification. The approach I present in this paper is an extension to the algorithm
described by Neuhaus et al. [7] which is already implemented in the used robotics
framework. It provides the partitioning of the terrain into a cell based 2D grid
map and the computation of laser based terrain features.

Approaches using LRFs to acquire information about the geometry of an en-
vironment are widely spread. A method to gain information about the geometry
of terrain to predict the negotiability is described by Wolf et al. [10], where a
concatenation of 2D laser scans is used to create 3D data. Another approach
introduced by Vandapel et al. [8] is based on the arrangement of single 3D laser
points in a point cloud. They defined a descriptor which can be used for the
segmentation of a 3D scan into different geometric regions.

Besides the acquisition of the terrain geometry there exist methods which use
the remission values of a laser scan to distinguish between vegetation and non-
vegetation e.g. by Wurm et al. [11] or by Wellington et al. [9]. These approaches
allow the detection of obstacles like bushes or high grass.

The combination of image and laser features is not new to terrain classification
either. Wellington et al. [9] combine the color of the terrain with laser features
to improve the detection rate.

The application of Markov random fields for segmentation tasks is a common
technique in the field of image processing. However these random fields can also
be used for classification and segmentation work in terrain classification, if a
discretized 2D terrain representation is used (see [9,10]).
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4 Multi-modal Features

Features are essential for negotiability analyses. I want to distinguish between
three different terrain classes. These are road, rough and obstacle. The class road
describes surfaces, which are basically flat without rough elements like small
stones, grass or small plants which can be passed by the robot and are part
of cells of the class rough. High vegetation, walls and everything which is not
negotiable by the system is classified as obstacle.

The geometric characteristics of a terrain cell can be applied with a laser
range finder. I utilize a roughness feature fr (see [7]), which is calculated with
the help of the local distance disturbance and provides a good quantization of
how rough the surface of a cell is. The local distance disturbance describes the
difference of a laser measurement that hits a small bump and one that would
not have hit the same bump. Applying this information, a roughness value can
be calculated as follows.

fr =
σ2

d2Cell

(1)

where σ2 describes the distance variance of a laser scan and dCell the distance of
the cell hit by the corresponding scan. A detailed description of the calculation
of this features is described by Neuhaus et al. [7]. Distinguishing between rough
and obstacle cells is not always possible with this feature because these two cells
often have an equal rough surface. As an obstacle is defined as something which
is too steep for a robot to pass, I apply the difference of the highest and lowest
laser measurement within a cell as a feature fh (see [3]). These two laser features
are adequate to describe the detected classes and combining them should lead
to a successful differentiation between them.

However it is not always possible to provide enough laser scans within a cell
to calculate these features correctly. This is the reason why I decided to use
image features in addition. I make the assumption that the texture of a terrain
cell allows a prediction about its geometry. This is based on the difference in
appearance of e.g. the texture of a rough cell containing grass in comparison
to the texture of a road cell containing an asphalted surface. To examine the
texture of an image Haralick et al. [4] proposed a number of calculations to
acquire texture features. These features are computed on co-occurrence matrices
displaying how often a pixel value is inside the neighborhood of another value.
These matrices need to be computed for every cell, which needs to be analyzed.
For this, the color images need to be converted to gray level images, because
the possible number of different color values is to large for fast computations.
However, calculating the matrices and all the features for all cells is still expensive
in terms of runtime. Therefore I chose to use only 3 features which can be
calculated by iterating over a co-occurrence matrix once, namely the second
angular moment fsam, variance fv and the inverse difference moment fidm.
The detailed description of these calculation is described by Haralick et al. [4].
An alternative texture calculation is the computation of a homogeneity feature
ffh described by Knauer et al. [5]. Making the assumption that a rough terrain
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cell has an inhomogeneous texture makes this reasonable. This can be calculated
fast by using a summed area table of difference images, which only needs to be
calculated for a whole image in contrast to the co-occurrence matrices. The
homogeneity of an subimage spanned by two points is calculated as follows

fFH =
Sat(xlr + 1, ylr + 1) + Sat(xul, yul) − Sat(xul, ylr) − Sat(xlr, yul)

(xlr − xul) · (ylr − yul)
(2)

where Sat(x, y) represents an entry in the summed area table at position (x, y),
xul, yul stand for the x- respectively the y-coordinate of the upper left point and
xlr, ylr for the x- respectively the y-coordinate of the lower right point. The last
feature included is the averaged color fc of each cell, having the belief that roads,
rough terrain and obstacles like trees or bushes are different in their color.

The introduced features allow different combinations of feature vectors, con-
taining laser and image data. Therefore I can use features of different modalities
for a classification task. A probabilistic model is acquired to respect the different
kinds of features in one computation to classify the terrain.

5 Terrain Classification with a Markov Random Field

A label describing a class has to be assigned to each cell according to its cal-
culated features. For this task a Markov random field is applied allowing the
consideration of features and the classes of neighboring cells to find a terrain
classification. An introduction and a more detailed description of Markov ran-
dom fields in the field of classification can be found in several books (i.e. [6]).
I use a Markov random field model presented for image segmentation tasks by
Deng et al. [1], which assumes features to be Gaussian distributed and uses pa-
rameters to weight their impact against neighbor classes for the calculation. For
a classification result ω with regards to the observed feature vectors f , this model
allows to compute the a posteriori probability P (ω|f). The maximization of the
probability can be achieved by applying a Gibbs sampler described by Geman
and Geman [2]. This sampler works with a so called Gibbs random field. Ac-
cording to the Hammersley-Clifford theorem a Markov random field is a Gibbs
random field, which leads to the following equation

P (ω|f) =
1
Z

exp
(

− 1
T

(En + αEf )
)

(3)

where Z is a normalizing constant, T the temperature parameter, En the energy
form of the probability for the labeling according to the neighborhood relation-
ships and Ef the energy form of the distribution of the calculated features with
a weighting factor α. The calculation of the energies is described by Deng et al.
[1] and can also be applied to this context. The acquired image and laser data
and a corresponding classification result can be seen in fig. 1.
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(a) (b)

Fig. 1. Acquired laser and image data (a) and corresponding classification result with

red obstacles, brown rough terrain and gray road (b)

6 Experiments

To evaluate the algorithm with different feature combinations, classifications of
single terrain scenes are compared to a ground truth of the same scene, which was
acquired by a human annotator. Table 1 shows the results for the true positive
ratio (TPR) and false positive ratio (FPR) for each class in a field scenario. The
columns represent the used features: laser based (L), Haralick features (H), the
homogeneity feature (FH) and the color information (C).

Table 1. Results of the classification algorithm

Class/value L L + H L + FH L + C

Road/TPR 91.049 % 91.914 % 90.432 % 91.049 %

Road/FPR 1.523 % 1.146 % 1.158 % 1.372 %

Rough/TPR 74.618 % 73.828 % 75.158 % 75.293 %

Rough/FPR 1.190 % 1.103 % 1.306 % 1.422 %

Obstacle/TPR 92.826 % 91.785 % 92.881 % 92.552 %

Obstacle/FPR 3.565 % 4.426 % 3.221 % 3.118 %

7 Conclusion

The results of the experiments show that the developed algorithm works well
in a field environment. However the application of image features in addition to
the laser features do not result in a significant change of the detection rate. A
reason for this are high standard deviation values for the image features, which
are needed in the Markov random field. The variety of textures for the different
classes is much higher as predicted, therefore these values do not have enough
weight in comparison to the laser features.

In future work other image features should be examined if they provide better
possibilities for classifying terrain. I propose to fuse the image and laser data
after classifying a whole image and not only parts of it, as it is possible that
information is lost due to high distances.
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Lüthi, Marcel 196
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