
Variable Length Compression for Bitmap Indices

Fabian Corrales1, David Chiu2, and Jason Sawin1

1 Department of Mathematics and Computer Science, University of Puget Sound
2 School of Engineering and Computer Science, Washington State University

Abstract. Modern large-scale applications are generating staggering amounts of
data. In an effort to summarize and index these data sets, databases often use
bitmap indices. These indices have become widely adopted due to their dual prop-
erties of (1) being able to leverage fast bit-wise operations for query processing
and (2) compressibility. Today, two pervasive bitmap compression schemes em-
ploy a variation of run-length encoding, aligned over bytes (BBC) and words
(WAH), respectively. While BBC typically offers high compression ratios, WAH
can achieve faster query processing, but often at the cost of space. Recent work
has further shown that reordering the rows of a bitmap can dramatically increase
compression. However, these sorted bitmaps often display patterns of changing
run-lengths that are not optimal for a byte nor a word alignment. We present a
general framework to facilitate a variable length compression scheme. Given a
bitmap, our algorithm is able to use different encoding lengths for compression
on a per-column basis. We further present an algorithm that efficiently processes
queries when encoding lengths share a common integer factor. Our empirical
study shows that in the best case our approach can out-compress BBC by 30%
and WAH by 70%, for real data sets. Furthermore, we report a query processing
speedup of 1.6× over BBC and 1.25× over WAH. We will also show that these
numbers drastically improve in our synthetic, uncorrelated data sets.

1 Introduction

Many research projects, vital for advancing our understanding of the world, have be-
come prohibitively data-intensive. For example, exploration within bioinformatics gen-
erates terabytes of data per day [22]. In the field of high energy physics, the Large
Hadron Collider at CERN is projected to generate 15 petabytes of data annually [7].
To facilitate data analysis, such projects may store their results in databases which em-
ploy advanced indexing techniques. Since the bulk of this scientific data is read-only,
infrequently updated, and relatively easy to categorize into groups, bitmaps [18,15] are
highly amenable and widely used to index such data sets.

A bitmap index is a two dimensional array B[m, n] where the columns denote a
series of n bins and the rows correspond to m tuples in a relation. To transform a table
into a bitmap, each attribute is first partitioned into a series of bins that might denote
a point or a range of values. An element bi,j ∈ B = 1 if the jth attribute in the ith
tuple falls into the specified range, and 0 otherwise. While their representation can be
large in terms of space, bitmaps can be queried using highly efficient low-level bitwise
operations. To exemplify, consider an age attribute that might be partitioned into the
following three bins: a1 = [0, 20], a2 = [21, 40], a3 = [41,∞].

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 381–395, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

382 F. Corrales, D. Chiu, and J. Sawin

Table 1 shows a simple bitmap index on two attributes: age and gender after bin-
ning.To find everyone under 21 or over 40, the processor can simply apply a bitwise
OR of a1 and a3, then retrieve the succeeding tuples t2 and t3 from disk.

Table 1. An Example Bitmap

Tuples Bins
Age Gender

a1 a2 a3 gf gm

t1 0 1 0 0 1
t2 1 0 0 1 0
t3 0 0 1 0 1

The tradeoff to supporting such fast querying,
is storage costs. Bitmap indices can become very
large. But fortunately, they are typically sparse and
highly suitable for compression via run-length encod-
ing (RLE), where bit sequences can be summarized
using a nominal most significant bit (MSB) followed
by the length of its run. A well-known problem of RLE
is the fact that it may sometimes yield larger bitmaps.
For instance, assuming a byte-based RLE, uniformly
distributed bit patterns, such as (1010), will be “com-

pressed” into (10000001 00000001 10000001 00000001). Clearly, the original bit se-
quence could be more efficiently stored as a literal. Today’s compression schemes uti-
lize a run-length hybrid, i.e., a sequence of encoded bits can denote either a literal or a
run/fill of n bits.

While the overhead of decoding initially appears to conflict with query performance,
current memory-aligned compression schemes have found ways to improve both com-
pression and query performance simultaneously [2,20]. The Byte-aligned Bitmap Com-
pression (BBC) [2] and the Word Aligned Hybrid Code (WAH) [20] are commonly used
to compress and query bitmaps in databases. While both BBC and WAH are memory-
aligned, they differ in granularity (byte versus word), which affects compression ra-
tio and query execution time. As such, BBC typically generates smaller bitmaps, and
WAH, due to its word-based representation, excels at compressing extremely long runs
and allows for faster queries by amortizing multiple reads to extract bytes from words.

Because both BBC and WAH are run-length dependent, and tuple ordering is arbi-
trary in a database, efforts in row reorganization can be leveraged to produce longer runs
and achieve better compression. One drawback to certain tuple reorganization schemes,
such as Gray code ordering, is that average run length degrades as dimensionality in-
creases [16]. In Gray code ordering the first several bit vectors of a bitmap may contain
very long runs, but they become progressively shorter in each additional bit vectors. In
fact, the highest dimensional bit vectors may still exhibit a uniform distribution of bits.
We posit that it may be sensible to apply coarser encodings (e.g., WAH) to the initial
bins for aggressive compression of longer runs. As dimensionality increases, and runs
gradually become shorter, progressively finer encoding schemes may be used to achieve
greater compression. In the highest dimensionality, where runs are even less infrequent,
it may again be favorable to coarsen the encodings, because word-aligned encodings
can store and process literals more efficiently.

This paper makes the following contributions:

– We have designed and implemented a novel generalized framework, Variable
Length Compression (VLC), for encoding variably granular bitmap indices. Given
a bitmap, our VLC is able to use different encoding lengths for compression on a
per-column basis.

– We have designed an algorithm to compress bit vectors, which inputs a tuning pa-
rameter that is used to tradeoff encoding space and querying time.

– We have conducted an extensive analysis of VLC on several real data sets and com-
pare results against state-of-the-art compression techniques. We show that VLC

Variable Length Compression for Bitmap Indices 383

can out-compress Gray code ordered BBC and WAH by 30% and 70% respectively
in the best case, on real data sets. We also report a speedup of 1.6× over BBC and
1.25× over WAH.

These contributions provide a method for faster querying on large databases as well
as greater compression ratios. Our proposed VLC scheme also allows users tune the
compression of their bitmap indices. For example, if certain columns are to be queried
at higher rates they can be compressed using the larger encoding lengths to achieve
faster queries. To maintain compression efficiency the less frequently queried columns
can be compressed with smaller encoding lengths.

The remainder of this paper is organized as follows. In Section 2, we present the
necessary background on bitmap compression, including BBC, WAH, and tuple re-
ordering. Section 3 describes our Variable Length Compression framework in depth,
detailing both compression and query processing algorithms. We present our experi-
mental results in Section 4. Section 5 discusses related efforts in bitmap compression,
and we conclude our findings in Section 6.

2 Background

Bitmap compression is a well-studied field, with its roots anchored in classic run-length
encoding (RLE) schemes. However, traditional run-length techniques cannot be directly
applied to bitmap indices because the bit vectors must first be decompressed to answer
queries. This overhead would quickly dominate query processing time. Therefore, it is
highly desirable to have run-length compression schemes that can answer queries by
directly examining the bit vectors in their compressed state. In this section we present
the background on current techniques used to compress bitmap indices that achieve this
fast querying.

2.1 Byte-Aligned Bitmap Code (BBC)

Run-length encoding schemes achieve compression when sequences of consecutive
identical bits, or “runs”, are present. BBC [2] is an 8-bit hybrid RLE representation
in the form of a literal or a fill. The MSB, known as the flag bit, marks the encoding
type. In turn, a byte 0xxxxxxx denotes that the least significant 7 bits is a literal repre-
sentation of the actual bit string. In contrast, 1xnnnnnn encodes a fill which compactly
represents runs of consecutive x’s. Here, x is the fill bit which encodes the value of the
bits in the run, and the remaining 6 bits are used for the length (in multiples of 7), e.g.,
11001010 represents the sequence of 70 1’s.

BBC is compelling in that the query execution time is directly proportional to the
rate of compression. For example, suppose a database contains 77 rows and two bit
vectors: v1 and v2. Assume that v1 contains the literal 0101010 followed by a run
of 70 consecutive 1’s. Let v2 contain a sequence of 70 0’s followed by the literal
0100000. In BBC format, v1 would be encoded as (00101010 11001010) and simi-
larly, v2 = (10001010 00100000). Now envision a query which invokes v1 ∧ v2. The
query processor would read the first byte from both v1 and v2. By decoding the most
significant bit, the query processor determines that it has read a 7-bit literal from v1 and
a run of (10 × 7) = 70 0’s from v2. Next, the literal from v1 is AND’ed with a fill of
seven 0000000 from v2. Progressing further, the query processor reads and decodes the
next byte from v1. It is important to note that only seven 0’s have been processed from

384 F. Corrales, D. Chiu, and J. Sawin

the fill in v2. Thus, all that is required is simply decrement of the fill count from 10 to 9.
This demonstrates why BBC fills must be a multiple of 7. The next byte of v1 is decoded
as a run of 70 consecutive 1’s. The next 9 AND operations can be carried out in one step
by making the AND comparison once and reporting its results in the same compressed
form. The run-length count for v1 is updated to 1, and v2 to 0. Thus 63 = (9 × 7) bits
have been compared without having to decode even once. After the 9th iteration, v2’s
fills are exhausted, prompting a read of the next byte from v2. Finally, the remaining
7 bits from both bins are AND’ed to complete the query. BBC’s efficiency comes from
the presence of fills, which effectively allows the processor to amortize the number of
necessary memory accesses.

2.2 Word-Aligned Hybrid Code (WAH)

WAH [20, 19], unlike BBC, uses a 31 bit representation (32 bits including the flag
bit). This representation offers several benefits over BBC—one being that for certain
bitmaps, WAH can achieve significant speedup in query processing time when com-
pared to BBC. This speedup is due to the fact that memory is typically fetched by the
CPU a word at a time. By using a word-aligned encoding, WAH avoids the overhead
of further extracting bytes within a word that is incurred by BCC. Thus, WAH not only
compresses literals more efficiently than BBC (using 4 less flag bits per 31 bits), but it
can also process bitwise operations much faster over literals by avoiding the overhead
of byte extraction and parsing/decoding to determine if the byte is indeed a literal.

In terms of compressing runs, however, WAH typically pales compared to BBC. This
is often due to the fact that WAH’s fills can encode 230 − 1 multiples of 31 consecutive
identical bits (i.e., a maximum fill length of 33,285,996,513). In practice, runs of this
size are unlikely, which implies that many of the fill bits are unused. On the other hand,
note that the maximum number of consecutive bits that a BBC fill can represent is
(26 − 1) × 7 = 441. In large-scale or highly sparse databases, it is likely that a run can
continue far beyond this threshold, which means there can still be cases where WAH
will yield more efficient encodings for runs.

2.3 Row Reordering of Bitmaps

As described above, WAH and BBC can achieve greater compression for bitmaps that
contain longer average run-lengths.

Recent work has shown that the average run-

Lexicographical

Lexicographical Gray Code

v1 v2 v3 v1 v2 v3

Fig. 1. Row Ordering Techniques

length of a bitmap can be greatly improved by
reordering the rows [12,16,10,3]. Finding an op-
timal order of rows, however, has been proven to
be NP-Complete, and lexicographical and Gray
code ordering are widely used heuristics. Pinar,
Tao, and Ferhatosmanoglu showed that compres-
sion ratio’s can be improved by a factor of 10 for
some bitmap indices if a Gray code (i.e., consec-
utive rows differ only by a single bit) ordering is
applied [16]. Figure 1 shows the effects of lexi-
cographical and Gray code ordering on bitmaps
containing 3 vectors v1, v2, v3. The white space
represents 0’s and the black represents 1’s. Notice that both reordering algorithms tend
to produce longer runs in the first few bit vectors, but deteriorate into shorter runs (and
worse, a random distribution) of bits for the higher vectors.

Variable Length Compression for Bitmap Indices 385

In situations like this, it would be desirable to employ a varying sized compression
scheme for each bit vector. In this work, we assume that row reordering is a preprocess-
ing step, and we implemented Gray code ordered bitmaps in our experimental results.

3 Variable Length Compression

In this section, we initially discuss how using variable bit-segment lengths presents
opportunities to improve compression ratios beyond current state-of-the-art techniques,
e.g., BBC and WAH. We then describe our compression technique, Variable Length
Compression (VLC), in detail.

Due to their use of fixed bit-segment lengths to encode bit vectors, neither WAH nor
BBC generate optimal compression. To exemplify, recall that row reordered bitmaps
produce long runs in the first several bit vectors, buts increasingly shorter runs in the
later vectors. WAH’s 31-bit segment length (32 bits including the 1 flag bit) is ideal for
the first several bit vectors that potentially contain extremely long runs But after these
first few vectors, the rest might tend to have an average run-length smaller than 62 (the
shortest run-length multiple that WAH can compress), there is a higher likelihood that
many shorter runs must be represented as WAH literals, which squanders compression
opportunities. Conversely, BBC’s maximum fill code, 1x1111111, can only represent a
run of 63 × 7 = 441 x’s. With its 7-bit fixed segment length, BBC cannot efficiently
represent the long runs of the first several vectors. Any run longer than 441 would thus
require another byte to be used.

We posit that we can attain a balanced tradeoff between these representations by
using variably-sized bit segment lengths. To this end, we propose a novel run-length
compression scheme Variable Length Compression (VLC) that can vary the segment
lengths used for compression on a per bit vector basis. The flexibility of VLC enables
us to compress the initial bit vectors of a row reordered bitmap using a longer segment
length, while using a shorter length on later bit vectors. While a more robust compres-
sion can be expected using VLC, a challenge is maintaining efficient query processing
speeds.

3.1 Variable Compression Scheme

For each bit vector in the bitmap VLC compression performs the following steps: (1)
Determining segment length for bit-vector compression, (2) Vector segmentation, and
(3) Word packing.

The goal of the Segment Length Determination (SLD) algorithm is to determine
an optimal segment length for a given bit-vector. In general, given a bit vector, v =
(b1, . . . , bn), SLD returns an integer value seg len | L < seg len < H . In this paper,
we assume H to be the word-size, H = 32, and L = 2, since 2-bit segments cannot
represent fills. In this work we consider two SLD approaches: All Possible is a
brute force algorithm which simulates the compression of v using all possible segment
lengths, seg len = 3, . . . , 31. For each segment length, All Possible computes
the number of words needed to store the compressed bit vector, and it returns the length
that would achieve the best compression. If multiple segment lengths generate the same
compression ratio, then the largest segment length is returned to reduce the amount of
parsing required when the bit vector is queried—this follows the same insight behind
WAH versus BBC.

Another SLD heuristic we consider is Common Factor, which is similar to All
Possible in that it simulates the compression of individual bit vectors. However,

386 F. Corrales, D. Chiu, and J. Sawin

Common Factor also takes as input an integer parameter, base, which is used to
determine the set of segment lengths that will be used in the simulation. Specifically, it
will only consider seg len where seg len ∈ {x|3 ≤ x ≤ 31 ∧ x ≡ 0 (mod base)}.
The basis for this heuristic is to ensure that gcd(v1, v2) ≥ base any two compressed bit
vectors v1 and v2. As it will become clear later, this property greatly improves query
processing speed.

After seg len is determined, the Bit Vector Segmentation process is applied. A com-
pressed bit segment vc is defined as a sequence of seg len bits,

vc =
{

0 • x1 • . . . • xseg len (literal)
1 • x • n1 . . . • nseg len−1 (fill)

where • denotes concatenation. In the former case, the initial bit 0 denotes an uncom-
pressed segment from v, and the succeeding sequence x1, . . . , xseg len denotes the lit-
eral. In the second case, vc can represent a run by specifying 1 as the flag bit. The next
bit x is the fill bit, and n1 . . . , nseg len−1 is a number (base 2) denoting the multiple of
a run of seg len consecutive x bits. For example, if seg len = 4, the segment 10011 is
the compressed representation of 000000000000, i.e., a run of 3 × 4(= 12) 0’s.

Given this code representation, the algorithm proceeds as follows. Beginning with
the first bit in an uncompressed vector v, we let v′ denote the next seg len bits in v. We
initially encode v′ as a literal, that is, vc = 0 • v′. Next, v′ is assigned the subsequent
seg len bit sequence in v. If v′ is a sequence of identical bits x, then we verify if it can
be coalesced with vc. If v′ is not a run of seg len bits, the vc is first written to disk,
and then again assigned the literal 0 • v′. If vc indeed is a single literal containing a
(seg len)-bit run of x, then vc is converted to a fill segment, 1 • x • 0 . . . 010. A more
general case occurs if vc is already a fill-segment. When this occurs, we simply add 1 to
the run length portion. As v′ continues to be assigned subsequent segments, the above
steps are repeated.

Finally, Word Packing is used to reduce the parsing cost when executing a query
over VLC segments. Segments (both runs and literals) are fit into words. For example,
if seg len = 3, then VLC packs 8 segments (including their flag bits) in one 32 bit
word. If 32 � 0 (mod seg len + 1) then VLC appends 32 mod seg len + 1 0’s to the
end of each word. These superfluous bits are called pad bits and they are ignored by the
query algorithm. Our approach requires that each compressed bit vector be prefaced a
header byte, which stores the segment encoding length used.

In Figure 2, we show two 32-bit words, in vectors X and Y , sharing a common gcd
of 7. X is coded in seg len = 14, and Y in seg len = 7. Segment a is a fill, denoting
a run of seg len× 87(= 1218) 1’s. In other words, a is 87 consecutive 14-bit segments
of 1’s. Because each 14-bit segment is coded using 15 bits, two such segments can be
packed into a word, with the last remaining 2 bits b being padding. In the bottom word
Y , segment c is a 7-bit literal 1111110, and d is a run of seg len × 48(= 336) 0’s. e
simply denotes the remaining words in either vector.

3.2 Query Processing

Algorithms 1 and 2 are the query processing procedures over two bit vectors, X and Y
from Figure 2. As a running example, we consider performing query using a logical op
between X and Y .

Initially, we declare an empty vector Z to hold the results, and assign its base to
gcd(X, Y) = 7 (Alg1:lines 1-3). Next, we loop through all segments of X and Y

Variable Length Compression for Bitmap Indices 387

1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0. . .

. . .1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 . . .

a b

c d e

X

Y . . .

. . .

Fig. 2. Example of VLC with seg len = 14 and seg len = 7

(Alg1:line 4), and in our example, X .active is assigned to a and Y .active is assigned c
(Alg1:line 6). Next, both segments are decoded (see Algorithm 2), and this subproce-
dure invokes one of two cases. If the given segment seg is a fill, then its base reduced
down to the gcd, effectively producing (base/gcd)× its current segment run-length
(Alg2:lines 4-6). In the example, recall that a represents 87 consecutive 14-bit seg-
ments of 1’s, so a.runLen = 87. However, since the gcd is 7, we must reduce a’s base
down to 7, which effectively produces 87 × (14/7) = 174 7-bit segments in a. On the
other hand, if a were a literal, then it is split into (base/gcd) separate gcd-bit literals
(Alg2:lines 3-9).

Algorithm 1. ColumnQuery(X , Y , op)
1: Let Z be the result vector (compressed form)
2: g ← gcd(X.seg len, Y.seg len)
3: Z.seg len← g
4: while X.hasNextSegment() orY .hasNextSegment() do
5: {*modify the segments to match the GCD*}
6: Let X.active and Y .active be the next segment read from X and Y
7: decode(X.active, X.seg len, g); decode(Y .active, Y .seg len, g);
8: if isFill(X.active) andisFill(Y .active) then
9: n←min(X.active.runLen, Y .active.runLen);

10: Z.appendFill(n, (X.active.fillBit op Y .active.fillBit));
11: X.active.runLen← X.active.runLen−n;
12: Y .active.runLen← Y .active.runLen−n
13: else if isFill(X.active) andisLit(Y .active) then
14: Z.appendLit(Y .getNextLiteral() op X.active.fillValue);
15: Y .litCount← Y .litCount−1; X.active.runLen←X.active.runLen −1;
16: else if isLit(X.active) andisLit(Y .active) then
17: Z.appendLit((X.active.getLiteral() op Y .active.getLiteral()))
18: X.litCount← X.litCount −1; Y .litCount← Y .litCount−1;
19: end if
20: end while
21: return Z

Returning to Algorithm 1, the above decoding procedure prepares the two vectors to
share the same base, which allows for easy application of the bitwise op. Then there
are three cases: (1) both X and Y are fill words (Alg1:lines 8-11), (2) only X is a
fill and Y is a literal (Alg1:lines 12-14), and (3) both X and Y are literals (Alg1:lines

388 F. Corrales, D. Chiu, and J. Sawin

Algorithm 2. decode(seg, base, gcd)
1: if isFill(seg) then
2: seg.runLen← seg.runLen×(base/gcd)
3: else
4: temp← seg.getLiteral(); {* Binary representation of literal *}
5: seg.litCount← base/gcd;
6: for each partition p of gcd consecutive bits in temp do
7: seg.addLiteral(p);
8: end for
9: end if

15-18).� In our example from Figure 2, Case 2 is invoked on segments a and c. We
apply the bitwise op across X .fillValue and Y .nextLiteral(), which results in appending
(1111111) op (1111110) to Z . Because we have only processed one literal, X’s run-
length counter is decremented by 1 (Alg1:line 15). However, while Y is subsequently
assigned the next parsed segment d, X avoids this overhead, which can be significant if
d happened to exit in the next word, causing Y to read from memory.

If Case 1 is invoked, that is, when both X and Y are fills, we can simply apply op to
the single fill bit, and implicitly know that its result applies to all bits until the end of
either X’s or Y ’s current segment.s Thus, without corresponding memory accesses, we
can process min(X .active.runLen, Y .active.runLen) × gcd bits in O(1) operation of
updating the fill counts (Alg1:lines 8-12). Because of this property, the query processing
time for extremely long runs can be done in sublinear time.

4 Experimental Evaluation

In this section, we evaluate the compression ratios among BBC, WAH, and our VLC
variants over both real and synthetic data sets. We further analyze query processing per-
formance. All experiments in this section were executed on a Java 1.6 implementation
with -Xmx1024m set running on a 32-bit Windows 7 machine with 2.0 GB RAM and
an Intel Dual Core 2.4GHz processor. The bitmap data sets on which we experiment in
this study are described as follows.

– HEP (272MB) is from a real high-energy physics application containing 12 at-
tributes. Each attribute was split into ranges from 2 to 12 bins, which results in
a total of 122 columns comprised of 2,173,762 rows.

– Histo (21MB) is from an image database. The tuples represent images, and 192
columns have been extracted as color histograms of these images. The bitmap con-
tains 112,361 rows and 192 columns.

– Landsat (238MB) is derived from real satellite images, whose SVD transforma-
tion produces 275,465 rows and 522 columns.

– Stock (6.7MB) contains approximately 1080 days’ worth of stock data for 6,500
companies, resulting in a high-dimensional bitmap containing 6,500 rows and 1080
columns.

– Uni (10.3MB) is a synthetic dataset generated with random bit distribution over
100,000 rows and 100 columns.

� Note that a 4th case exists also, which is the reverse of case (2), but it is redundant here.

Variable Length Compression for Bitmap Indices 389

As an optimizing preprocessing step, all above data sets have initially been Gray code
ordered using the algorithm presented in [16].

4.1 Data Compression Analysis

We implemented WAH, BBC, and VLC and compressed all aforementioned data sets.
With VLC, we varied across all segment lengths 3 ≤ seg len ≤ 31. However, due to
space constraints, we only report four representative configurations:vlc-opt,vlc-4,
vlc-7, and vlc-9. The vlc-opt setting corresponds to using the All Possible
Segment Length Determination (SLD) algorithm to find the optimal segmentation length
for each bit vector. The compression generated byvlc-opt represents the best possible
compression our implementation of VLC can achieve. Thevlc-4, vlc-7, and vlc-9
results are produced by using the Common Factor SLD algorithm on a base of 4, 7,
and 9 respectively. For instance, bitmaps compressed in vlc-4 may contain bit vectors
encoded in segment lengths of 4, 8, 12, 16, 20, 24, and 28.

Table 2. Data Compression Size

Compression (MB)
Dataset Orig WAH BBC vlc-opt vlc-4 vlc-7 vlc-9

HEP 272.0 2.251 1.552 1.161 1.398 1.185 1.315
Histo 21.4 1.05 0.59 0.572 0.663 0.573 0.664
Landsat 238.0 28.001 18.699 16.779 16.99 18.683 22.098
Stock 6.7 0.62 0.637 0.605 0.659 0.639 0.675
Uni 10.2 0.033 0.03 0.013 0.017 0.02 0.013

Table 2 presents the size (in MB) of the compressed data sets. As expected, we ob-
serve that vlc-opt outperforms all configurations, but because the bit vectors are not
gcd-aware, the misalignment of the segments will adversely affect query performance.
Thus, we emphasize the “closeness” of the vlc-* versions to vlc-opt and that most
vlc-* configurations also out-compress both WAH and BBC. For further comparison,
we juxtapose the compression ratio of VLC over BBC and WAH in Figures 3(a) and
3(b) respectively. Expectedly, most vlc-* versions provide a modest improvement
when compared to BBC for most data sets. We can observe that for Histo, Landsat,
and Stock, BBC slightly out-compresses vlc-9. We believe this is due to BBC’s
aggressive compression of shorter runs, which appears frequently in these data sets.

Figure 3(b) depicts the comparison of VLC to WAH. Because of WAH’s longer fixed
segments, it is expected that all vlc versions should out-compress WAH, unless in the
presence of massive amounts of exponentially long runs, which are rare. In the best
case, we can observe improvement of 1.7× (for real data) and 2.54× (for synthetic
data) the compression rates of WAH using VLC. We can observe the best results for
the synthetic Uni dataset, where it becomes very clear that the optimal compression
segment length is in between the extremes of BBC and WAH. Out of 100 bit vectors,
the vlc-opt algorithm compressed 50 of these in base-9, 3 in base-13, and 47 in
base-14. In vlc-9, which is near optimal, is compressing 50 bit vectors in base-9, 48
columns in base-18, and 2 columns in base-27.

An anomalous data set is Stock, where compression gains appear difficult to
achieve. We believe there are two reasons contributing to this observation. Due to the

390 F. Corrales, D. Chiu, and J. Sawin

HEP Histo Landsat Stock Uni

1

1.5

2

2.5

3

C
om

pr
es

si
on

 R
at

io

vlc-opt
vlc-4
vlc-7
vlc-9
BBC

(a) Versus BBC

HEP Histo Landsat Stock Uni

1

1.5

2

2.5

3

C
om

pr
es

si
on

 R
at

io

vlc-opt
vlc-4
vlc-7
vlc-9
WAH

(b) Versus WAH

Fig. 3. Comparison of Compression Ratio

Stock data’s dimensionality (1080 columns), after the first several columns, Gray code
tuple ordering eventually deteriorates and begins generating columns with very short
runs, or worst case, uniformly distributed bits. Adding to this effect is that Stock’s
number of rows is small, which implies the opportunities for longer runs is made fur-
ther infrequent. This means most of the later columns are probably being represented
as literals in all compression schemes. This theory is supported by the fact that WAH
actually out-compresses most schemes (an outlier). Due to the fact that WAH only uses
one flag bit per 31-bit literal, it is by far the most efficient way to store long literals in
all schemes.

4.2 Evaluation of Query Processing Times

In this subsection, we present the query processing times. For each data set, a set of
10 queries, which vary in the amount of tuples retrieved, was generated. To execute
these queries, we split each bitmap vertically into 4 equal-sized sets of bit vectors
B1, B2, B3, B4. Each query inputs 2 bit vectors X and Y such that ∀i,j : select X ∈ Bi,
Y ∈ Bj randomly. In other words, X and Y are randomly selected from each set of bit
vectors, and we query against all combinations of bit vectors. We submitted the set of
10 queries repeatedly for all Bi, Bj combinations, and averaged the execution time to
process all 10 queries.

This experimental protocol was selected in an attempt to avoid any segmentation
length bias. By randomly selecting compressed bit vectors from different quadrants
of the bitmap, we increase the likelihood that, under vlc-*, the queried bit vectors
would be in segmentation lengths. This protocol also ensures that not all the queried
columns were selected from the first (or last) few bit vectors which would favor WAH,
or conversely, BCC in inner regions.

Figures 4(a) and 4(b) display the query time ratios between vlc-* versions and
BBC and WAH respectively. We did not include the results from vlc-opt in the
graphs as it was, on average, 10 times slower than the next slowest algorithm. This was
expected, since many of the column pairs used in the queries had gcd = 1, meaning
they had to be fully decompressed before logical operation could be applied.

Variable Length Compression for Bitmap Indices 391

HEP Histo Landsat Stock Uni

0.5

1

1.5

2

2.5

3

Q
ue

ry
in

g
Ti

m
e

R
at

io

vlc-4
vlc-7
vlc-9
BBC

(a) Versus BBC

HEP Histo Landsat Stock Uni

0.6

1

1.4

1.8

Q
ue

ry
in

g
Ti

m
e

R
at

io

vlc-4
vlc-7
vlc-9
WAH

(b) Versus WAH

Fig. 4. Comparison of Query Processing

As can be seen in both Figure 4(a) and 4(b), vlc-4 provides a less than optimal
querying efficiency. Recall that this configuration can produce segment lengths of 4,
8, 12, 16, 20, 24, and 28. While this flexibility sometimes allows for robust compres-
sion rates, in terms of query performance, if X and Y vectors vary in segment lengths
(which occurs frequently due to the large number of available base-4 options), they
must be decoded to base-4 gcd, which is costly. This observation is supported by the
performance gains from using the longer segment lengths of vlc-7 and vlc-9. Be-
cause seg len = 7 and seg len = 9 only generate {7, 14, 28} and {9, 18, 27} bases,
there will be higher probabilities where any two random bit vectors X and Y will match
base, and thus not requiring gcd-base decoding.

Furthermore, for vectors that still require base decoding, the inherently larger bases
of 7 and 9 allow bitwise operations to be amortized over a smaller base 4. These fea-
tures combined with the increase in compression allowed vlc-7 to match or improve
upon WAH’s querying times for 3 of the 5 data sets and vlc-9 out-performs WAH
on 4 of the data sets (Figure 4(b)). When compared to BBC, vlc-7 and vlc-9 had
comparable query times for Histo and Landsat, and they performed significantly
better on Hep and Uni (Figure 4(a)). For these latter data sets, vlc-7 and vlc-9
resulted in better compression than BBC and used larger segmentation lengths for most
columns. The result is that much less parsing was required during query processing.

It is interesting to note that BBC querying actually out-performed WAH for Histo
and Landsat. A closer investigation revealed that, for each of these data sets, a small
number of the 10 queries were skewing the results. In both cases, the bit vectors in these
outlier queries came from quadrants B3 and B4 of the bitmap. We surmise that these are
the columns in a Gray code ordered bitmap that led to inefficient WAH compression. In
these instances, it appears that WAH had to use a large number of literals to represent
bit vectors. Essentially, this meant that WAH had to perform a logical operation for
each bit. Conversely, due to BBC’s ability to compress short runs it was able to perform
fewer operations.

Summary and Discussion: In summary of our analysis, the results of our empiri-
cal study indicate that VLC can, on average, offer higher compression rates than ei-
ther BBC and WAH. Although not initially expected, we also presented cases where
VLC outperforms both BBC and WAH. Ignoring vlc-opt due to its prohibitive query

392 F. Corrales, D. Chiu, and J. Sawin

processing times, in the best case for real data sets, vlc-9 out-compresses BBC and
WAH by a factor of 1.3× and 1.71× respectively. These numbers jump to 2.3× and
2.54× respectively for BBC and WAH for synthetic uniform data. In all of our com-
pression experiments, the worst case was a 15% loss in compression, albeit this was
rare. In terms of query performance, we managed a speedup factor of 1.6× over BBC
and 1.25× over WAH in the best case for real data sets. These numbers grow to a 3×
speedup for BBC and 1.42× speedup for WAH for our synthetic data. In the worst case,
around a 0.6× slowdown for Stock can be seen compared to either BBC or WAH. This
suggests that VLC’s gcd decoding renders it inefficient for high dimensional data sets
with small numbers of rows, which are rare for large-scale data-intensive applications.

Our results also echo such efforts as [12], which sought a deeper understanding of
how row ordering (as well as potentially many other optimizations) truly affects bitmap
performance and compression. We view our findings as yet another example of how
careful consideration of the segmentation length used for compression is especially
important for Gray code ordered bitmaps.

5 Related Work

There is a large body of research related to bitmap indices and compression. In this
section we focus on the class of techniques most relevant to our work.

Bitmap indices [18, 15], which are closely related to inverted files [14] (frequently
occurring in information retrieval) have long been employed in traditional OLAP and IR
systems. Over the years, seminal efforts have made practical the integration of bitmaps
for general data management. For instance, works have addressed bitmap encoding is-
sues, which include considerations on bit-vector cardinality and representation to opti-
mize query processing [5, 17]. The focus in efforts are tangential to the work presented
in this paper. We offer a generalized word aligned compression scheme.

Run-length encoding (RLE) techniques [9] were popularized early through the ubiq-
uitous bit representations of data, and were particularly useful for compressing sparse
bitmaps. For example, a bit vector can be transformed to a vector containing only the
positions of 1’s, and thereby implicitly compressing the 0 bits. When the sequence is
further transformed to the differences of the positions, coding schemes, such as Elias’s
δ and γ codes and its variations [8, 13, 4], can be used to map the expectedly small
integers to correspondingly small bit representations.

These efforts, however, do not consider the impact of memory alignment, which
significantly slows the performance of bitwise logical operations, e.g., a vector which
spans two bytes would require two separate reads. Such decoding overheads would
not be very suitable for database query processing. Thus, effort towards generating
memory-aligned, CPU friendly compressed bitmaps ensued. The Byte-aligned Bitmap
Code (BBC) [2] exploits byte alignment and allows direct bit-wise comparisons of
vectors in their compressed state. Wu, et al. proposed Word-Aligned Hybrid Code
(WAH) [20, 19], which is even more amenable for processing.

Due to WAH’s success in accelerating query processing times, many variations of
WAH have also been proposed. One example is the Word-aligned Bitmap Code (WBC),
also seen in literature as Enhanced WAH (EWAH) [21]. This scheme uses a header
word to represent fill runs and literal runs. A 31-bit header word (plus the 1 MSB for
flagging) is split into two halves. The upper 16 bits following the flag bit is used to
denote the fill, and the run length, just as before. The lower 15 bits are used to de-
note the run length of literals following the fill run. This optimization can be significant

Variable Length Compression for Bitmap Indices 393

for query processing. For instance, long literal runs can be ignored (without accessing
them) when AND’d with 0’s. If a logical comparison is indeed required, the decod-
ing phase would know a priori that the next n words are literals without parsing the
flag bit.

Deliege and Pederson proposed a Position List extension to WAH (PLWAH), which
exploits highly similar words [6]. Their insight is that, often, only a single bit can com-
promise a much longer run, and typically, it is highly unlikely that all fill bits are used
in a word. Thus, their scheme first separates a bitmap into segments of wordsize − 1
bits. Words that are “nearly identical” to a fill word are identified and appended onto a
fill, rather than representing it as a literal. The five most significant bits following the
fill word’s fill and flag bits are further used to identify the position of the bits in the
nearly identical literal. We surmise that PLWAH can be used in conjunction to our VLC
scheme, which is currently being implemented.

There has also been significant amounts of work on the issue of bitmap row reorder-
ing. Because tuple order is arbitrary in a database relation, its corresponding bitmap
can thus be reordered to maximize runs. Pinar, Tao, and Ferhatosmanoglu explored the
tuple reordering problem in [16]. They proved that tuple reordering is NP-Complete,
and proposed the Gray code ordering heuristic. More recently, Lemire et al. presented
an extensive investigation into reordering efforts (including column reordering, which
is not being considered in our work) over large bitmaps [12]. Among various contri-
butions, they made several interesting observations. For one, the authors experimented
with 64-bit words and observed an interesting space-time tradeoff: while 64-bit word
compression expectedly generates indices that are twice as large, the queries are slightly
faster.

The above efforts are orthogonal to VLC — our technique allows bit vectors to be
compressed and queried using varying segment encoding lengths. We have shown that
VLC achieves greater compression in our experiments than both WAH and BBC in
most cases, when the correct segment length is chosen. Our scheme thus provides an
option to the user to encode a bitmap using specific encoding lengths to greater optimize
compression, or to use encoding lengths that would allow for faster querying on certain
columns that may be queried often. Thus, VLC is a tunable approach, which allows
users to trade-off size and performance.

6 Conclusion and Future Work

Bitmap indices have become a mainstay in many database systems, popularized due to
its fast query processing and compressibility. However, as high dimensional data con-
tinues to grow at today’s astounding pace, bitmap compression becomes increasingly
more important to minimize disk accesses when possible.

In this paper, we proposed a novel bitmap compression technique, Variable Length
Compression (VLC), which allows for robust run-length compression of ordered
bitmaps. We offer two simple heuristics on selecting encoding length per given bit
vector. Our query processing algorithm automatically decodes bit vectors to the same
coding base so that queries can be carried out efficiently. We ran an experimental study
on 4 sets of real data and 1 synthetic data set. We showed that VLC can out compress
both BBC and WAH, two of today’s state-of-the-art bitmap compression schemes, by
around 2.5× in the best case. We concede cases where VLC compression rates are less
than BBC, but only marginally. In terms of query performance, the expectation was that
VLC would lie somewhere between BBC and WAH, but remain competitive to WAH.

394 F. Corrales, D. Chiu, and J. Sawin

While this assumption was shown to be true, we also observed interesting results that
show clearly, there are cases where VLC outperforms and out compresses both BBC
and WAH. Again, we acquiesce that there are opportunities for improvement on certain
data sets.

During the evaluation process, some future work opportunities emerged. For exam-
ple, we can (and should) adapt the segment encoding lengths to query history. Because
longer segments tend to query much faster, we can dynamically relax compression rates
for frequently queried columns (and conversely, compress infrequently queried columns
more aggressively). To ensure word alignment, we currently pad in the last unused bits
of a word, a necessary storage cost. An alternative could be to fit as many represen-
tations fit into one word, then begin a representation in one word and finish it in the
following word, “stitching” the representation together. While we expect that the stitch-
ing may result in a slowdown in query times, but may also provide a substantial gain
in compression. Some obvious experimental extensions would include using larger data
sets, different row ordering algorithms combined with column re-ordering which has
been shown to increase run-lengths [1, 11], and range queries.

Acknowledgments. We would like to thank Hakan Ferhatosmanoglu (Ohio State Uni-
versity), Guadalupe Canahuate (The University of Iowa), and Michael Gibas (Teradata)
for their valuable insights and comments on this paper.

This work was generously supported in part by an Amazon Web Services (AWS in
Education) Research Award to D. Chiu at Washington State University and a Martin
Nelson Summer Award for Research to J. Sawin at the University of Puget Sound.

References

1. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-
oriented database systems. In: ACM SIGMOD International Conference on Management
of Data, pp. 671–682 (2006)

2. Antoshenkov, G.: Byte-aligned bitmap compression. In: DCC 1995: Proceedings of the Con-
ference on Data Compression, p. 476. IEEE Computer Society, USA (1995)

3. Apaydin, T., Tosun, A.Ş., Ferhatosmanoglu, H.: Analysis of basic data reordering tech-
niques. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 517–524.
Springer, Heidelberg (2008)

4. Brisaboa, N.R., Ladra, S., Navarro, G.: Directly addressable variable-length codes. In: Karl-
gren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 122–130. Springer,
Heidelberg (2009)

5. Chan, C.-Y., Ioannidis, Y.E.: An efficient bitmap encoding scheme for selection queries. In:
Proceedings of the 1999 ACM SIGMOD International Conference on Management of data
SIGMOD 1999, pp. 215–226. ACM, New York (1999)

6. Deliege, F., Pederson, T.: Position list word aligned hybrid: Optimizing space and perfor-
mance for compressed bitmaps. In: Proceedings of the 2010 International Conference on
Extending Database Technology (EDBT 2010), pp. 228–239 (2010)

7. Donno, F., Litmaath, M.: Data management in wlcg and egee. worldwide lhc computing grid.
Technical Report CERN-IT-Note-2008-002, CERN, Geneva (February 2008)

8. Elias, P.: Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, 21(2), 194–203 (1975)

9. Golomb, S.W.: Run-Length Encodings. IEEE Transactions on Information Theory 12(3),
399–401 (1966)

Variable Length Compression for Bitmap Indices 395

10. Kaser, O., Lemire, D., Aouiche, K.: Histogram-aware sorting for enhanced word-aligned
compression in bitmap indexes. In: ACM 11th International Workshop on Data Warehousing
and OLAP, pp. 1–8 (2008)

11. Lemire, D., Kaser, O.: Reordering columns for smaller indexes. Information Sciences 181
(2011)

12. Lemire, D., Kaser, O., Aouiche, K.: Sorting improves word-aligned bitmap indexes. Data
and Knowledge Engineering 69, 3–28 (2010)

13. Moffat, A., Zobel, J.: Parameterised compression for sparse bitmaps. In: SIGIR, pp. 274–285
(1992)

14. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Transactions
on Information Systems 14, 349–379 (1996)

15. O’Neil, P.E.: Model 204 architecture and performance. In: Gawlick, D., Reuter, A., Haynie,
M. (eds.) HPTS. LNCS, vol. 359, pp. 40–59. Springer, Heidelberg (1989)

16. Pinar, A., Tao, T., Ferhatosmanoglu, H.: Compressing bitmap indices by data reorganization.
In: Proceedings of the 2005 International Conference on Data Engineering (ICDE 2005),
pp. 310–321 (2005)

17. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans.
Database Syst 32 (August 2007)

18. Wong, H.K.T., Fen Liu, H., Olken, F., Rotem, D., Wong, L.: Bit transposed files. In: Proceed-
ings of VLDB 1985, pp. 448–457 (1985)

19. Wu, K., Otoo, E., Shoshani, A.: An efficient compression scheme for bitmap indices. ACM
Transactions on Database Systems (2004)

20. Wu, K., Otoo, E.J., Shoshani, A.: Compressing bitmap indexes for faster search operations.
In: Proceedings of the 2002 International Conference on Scientific and Statistical Database
Management Conference (SSDBM 2002), pp. 99–108 (2002)

21. Wu, K., Otoo, E.J., Shoshani, A., Nordberg, H.: Notes on design and implementation of
compressed bit vectors. Technical Report LBNL/PUB-3161, Lawrence Berkeley National
Laboratory (2001)

22. Zaki, M.J., Wang, J.T.L.: Special issue on bionformatics and biological data management.
Information Systems 28, 241–367 (2003)

	Variable Length Compression for Bitmap Indices

	Introduction
	Background
	Byte-Aligned Bitmap Code (BBC)
	Word-Aligned Hybrid Code (WAH)
	Row Reordering of Bitmaps

	Variable Length Compression
	Variable Compression Scheme
	Query Processing

	Experimental Evaluation
	Data Compression Analysis
	Evaluation of Query Processing Times

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

