SkyMap: A Trie-Based Index Structure for
High-Performance Skyline Query Processing

Joachim Selke and Wolf-Tilo Balke

Institut fiir Informationssysteme
Technische Universitit Braunschweig
Braunschweig, Germany
{selke,balke}@ifis.cs.tu-bs.de

Abstract. Skyline queries have become commonplace in many applications. The
main problem is to efficiently find the set of Pareto-optimal choices from a large
amount of database items. Several algorithms and indexing techniques have been
proposed recently, but until now no indexing technique was able to address all
problems for skyline queries in realistic applications: fast access, superior scala-
bility even for higher dimensions, and low costs for maintenance in face of data
updates. In this paper we design and evaluate a trie-based indexing technique
that solves the major efficiency bottlenecks of skyline queries. It scales grace-
fully even for high dimensional queries, is largely independent of the underlying
data distributions, and allows for efficient updates. Our experiments on real and
synthetic datasets show a performance increase of up to two orders of magnitude
compared to previous indexing techniques.

1 Introduction

Skyline queries, introduced in [2]], quickly found its way into a widespread range of data
management applications. Soon after the first skyline algorithms have been presented,
emerging fields like e-shopping or location-based services used the economic intuitive-
ness of Pareto-optimal result sets, e.g., for deriving all reasonable product alternatives
[L5U8]. The basic idea is to filter out all those items (database tuples) dominated in terms
of usefulness by other items, i.e., there is no utility function declaring a dominated item
as best choice. For example, when trying to find an inexpensive hotel close to the beach,
overpriced inland hotels can safely be excluded.

In a brief period of time, several important problem settings building on the origi-
nal skyline paradigm have been identified and individual solutions have already been
proposed, e.g., [3], [14], or [11]]. However, all these algorithms rely on specialized tech-
niques, whereas the widespread applicability of skyline queries also raises the question
of how these queries can be answered efficiently in general-purpose database systems.
This especially sparked interest in the use of indexing techniques to boost skyline query
performance (e.g., [11], [6], [L6], or [9]). Indexes are indeed the key for broad database
support for efficient skyline compution. In fact, [9]] shows that a wide variety of special
skyline queries (k-dominant skylines, skybands, subspace skylines, etc.) can be sup-
ported using a single index structure. But although indexes can dramatically speed up

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 350-B63, 2011.
(© Springer-Verlag Berlin Heidelberg 2011

SkyMap: A Trie-Based Index Structure 351

retrieval, they of course also introduce maintenance costs and tend to quickly degen-
erate on higher dimensional data. The task thus is to design a robust index structure
that (1) enables high-performance skyline processing, (2) is easy to maintain, and (3)
gracefully scales with data dimensionality.

In this paper we propose SkyMap, an innovative trie-based index structure for sky-
line query support. In a nutshell, SkyMap adopts a recursive grid-like space partitioning
approach, which facilitates efficient navigation. In contrast to traditional data-driven
space partioning with the inherent danger of degeneration over time, SkyMap takes
the problem domain into account. Since skyline computation builds on ranks rather
than absolute scores, any data set can be transformed spreading data evenly over each
dimension. Thus, an efficient data independent space partitioning scheme without de-
generation problems can be used, and the trie generally stays balanced. In particular,
we will show that for each data set there exists only a single unique SkyMap making
the resulting trie structure independent of the order in which data is inserted or deleted.

Moreover, data is only contained in the trie’s leaf nodes, which fosters efficient main-
tenance operations. Especially, expensive rebalancing operations are avoided. Naviga-
tion within the SkyMap index is particularly efficient by relying on inexpensive bitwise
operations only. The index also closely controls each node’s fan-out by limiting the split
factors, to optimize the trie’s depth-to-width ratio. Thus, the index’s degradation into a
linear list is effectively prevented.

We extensively evaluated SkyMap on different data sets and compared its performace
to the current state-of-the-art indexing schemes: approaches based on quadtrees (OSP-
SPF [16] and BSkyTree [[7]) and on UB-trees (ZB-tree [9]). Although these techniques
show their strength in different aspects (higher pruning power vs. improved mainte-
nance), SkyMap outperforms them on all counts. We show that our trie-based indexing
scheme gains an order of magnitude in query performance across the board, for skyline
maintenance even up to two orders of magnitude.

2 Related Work

The investigation of skyline processing started out with list-based approaches like the
well-known BNL algorithm [2]] and at first focused on algorithmic aspects and sophis-
ticated heuristics like presorting [4]] or limiting [1l]. However, the necessity for efficient
indexing schemes was soon recognized. Indexes allow for efficient pruning, hence large
parts of the database can immediately be excluded from costly dominance tests. The
first approaches featured efficient bitmap indexes [5] and R-trees with nearest neighbor
search [6] or branch-and-bound pruning [[1 1]. The major problem with these approaches
was that the underlying data structures did not lend themselves readily for adoption to
skylining problems. Since overlapping regions in multi-dimensional index structures
proved to pose severe performance penalties, recent approaches focus on strictly dis-
joint space partionings or efficient one-dimensional indexing using space-filling curves.

The ZB-tree [9]] is based on the UB-tree, where each data point is mapped to its
Z-address, which in turn provides a one-dimensional key for B-tree indexing. The ben-
efits of this approach for skyline processing are twofold. On one hand, through the
Z-addresses the B-tree imposes a presorting on the data, which can be exploited for
dominance tests: No database item can dominate any item having a lower Z-address.

352 J. Selke and W.-T. Balke

On the other hand, the regions covered by each tree node can easily be estimated (up-
per bound) without keeping track of minimum bounding rectangles. A major drawback
of the ZB-tree approach is that regions may overlap, which hampers effective pruning.
Moreover, the maintenance of B-trees is rather expensive in case of frequent updates,
in particular due to rebalancing operations caused by node underflows. Still, the actual
degeneration of the index structure over time is not a problem.

OSPSPF [16] and the BSkyTree [[7] focus on the problem of overlapping regions and
improve performance by disjoint space partitioning. Both approaches rely on quadtrees
and basically are alternative implementations of the same idea. Each tree node stores a
single data item, which is used to split the underyling space with respect to each dimen-
sion. The actual performance of this data-driven partitioning scheme is strongly depen-
dent on finding optimal splitting points. While a careful initial bulkloading will lead to a
perfectly balanced tree structure, frequent updates cause the index’ performance to de-
teriorate quickly. Moreover, since all nodes store actual data, deletions either ruin cache
efficiency when performing lazy deletions or force expensive reorganization operations.

In summary, we are forced to conclude that there is no single index structure offering
superior pruning power, easy maintenance, and graceful scaling.

3 Preliminaries

Henceforth, we consider a set of n database items, where each item’s utility can be
evaluated with respect to scorings over d criteria. Without loss of generality we assume
that each score lies within the interval [0, 1) and that higher values are better. Then, the
database can be represented as a set A C [0, 1) of size n.

Skylines captures the intuitive idea of Pareto optimality. Formally, given two points
x=(x1,...,x4) and y = (y1,...,y4), the point x is said to dominate y (denoted by x > y)
if and only if x # y and x; > y;, for each dimension i. Furthermore, x and y are said to
be incomparable (denoted by x || y) if and only if neither x =y, nor x > y, nor x < y.
We write x >; y if x; > y;. The skyline of a data set consists of exactly those items that
cannot be ruled out by means of Pareto dominance. Formally, the skyline of a point set A
is the set .S (A) = {x €A ’there isnoy € A such thaty > x}. Characteristic properties
of a data set A are its dimensionality d, its cardinality n, and its skyline size s := |.(A).

As a running example, consider the data set depicted in Fig.[ll Each point corre-
sponds to a database item, scored with respect to two different criteria. We see that
items A, B and C can safely be removed from further consideration since each is domi-
nated by some other item (A is dominated by F, E, and D; B is dominated by F, E, and
D; and C is dominated by D). The remaining items D, E, and F form the skyline.

4 The SkyMap Approach

The design goals for a skyline-centered indexing technique can be divided into two
categories: boosting performance and minimizing maintenance overhead. For boosting
performance, the index structure should be well-balanced, avoid overlaps between data
regions, and control the nodes’ fan-out degree to prevent degradation into a linear list.
For minimizing the maintenance overhead, all data should be collected in leaf nodes,

SkyMap: A Trie-Based Index Structure 353

0
0 02040608 1

Fig. 1. Our running example

whereas all internal nodes should be purely navigational. Expensive reorganizations of
the index structure must be avoided.

Although these goals sound contradictory, we show that it is indeed possible to
implement them within a single data structure. Looking at the overlap problem, it
quickly becomes clear that disjoint space-partitioning is needed. Combining this par-
titioning with our requirement of leaf-only data storage while minimizing reorgani-
zations definitely calls for a data-independent partitioning scheme. Of course, such a
data-independent partitioning would hurt the index structure’s balancedness whenever
the data distribution is skewed in any dimension. But can we guarantee evenly spread
data for skyline computations? Interestingly, we can.

This is because the notion of Pareto dominance, and thus the base of skyline com-
putation, does only rely on the actual score values in so far as they introduce a dom-
inance ranking between database items. That means: As long as the relative ranking
with respect to each dimension stays intact, we may arbitrarily modify all absolute
score values. In particular, we may apply a transformation to each individual dimen-
sion that spreads database items evenly. This class of mathematical transformations is
known as copulas [10]]. Copulas are computationally inexpensive and are typically ap-
plied for correlation analysis. The following (intuitive and easy-to-prove) lemma shows
that computing the skyline of a copula-transformed data set will indeed yield the data
set’s original skyline.

Lemma 1. Let A be a d-dimensional data set, f,...,fq:[0,1) — [0,1) strictly mono-

tonic increasing functions, f(x) := (fi(x1),...,fas(xa)), and f(A) = {f(x)|x € A}.
Then, x € . (A) if and only if f(x) € .7 (f(A)), for any x.

4.1 Tries

To satisfy our design goals, we chose to base the SkyMap index on tries. The term
trie refers to all tree data structures that perform a data-independent disjoint space-
partitioning and use (typically binary) strings for navigation [13]].

To give an example, Fig.Dl illustrates the difference between a binary search tree
(BST) and a 3-digit binary trie (3BT), when it comes to storing a given set of numbers.
While there is a one-to-one mapping between nodes and data items in the BST, the 3BT
differentiates between internal nodes, which are solely used for navigational purposes,
and leaf nodes, which store the actual data. Moreover, the BST is constructed only
by performing ordinal comparisons between numbers, whereas the 3BT exploits the

354 J. Selke and W.-T. Balke

O
v N\

@ O O
@/\@ 5/\1 0/\6
R o] ivv
© @ ©® © O © @

Fig. 2. A binary search tree and a 3-digit binary trie storing the set {0,1,2,4,6,7}

numbers’ binary representation. Finally, there are many different BSTs storing the data
set shown in Fig.2l whereas the 3BT is unique.

Quadtrees are the multidimensional extension of BSTs, while our SkyMap is a mul-
tidimensional extension of binary tries, which additionally provides efficient algorithms
for dominance checks. The regular and predictable structure of tries provides high mem-
ory locality and enables efficient updates of the stored data set—two key ingredients of
SkyMap. It also heavily exploits the binary representation of data points. Henceforth,
we indicate score values written in binary by the prefix 4, e.g., 0.75 = é + }‘ = 4%0.11.

For easy presentation and without loss of generality, we assume in the following that
all of A’s points are distinct.

4.2 Z-Addresses, Z-Regions, and Z-Subregions

In Section[3] we assumed without loss of generality that all data points are located in
[0,1)?. Therefore, the i-th coordinate value of the point x = (xi,...,x;) can be rep-
resented as x; = 280.a;1 0,2 -+, where 0;1,0;2,... € {0,1} are x;’s binary digits. By
interleaving the bits of all of x’s coordinate values, the Z-address of x, denoted by Z(x),
can be derived [12]:

Z(x) :'930-0‘1,1"'ad,lal,Z"'adZ"'

In general, the j-th bit of a Z-address is determined by the (((j — 1)divd) + 1)-th bit
of the (((j — 1) mod d) + 1)-th coordinate value. For example, the Z-address of the
three-dimensional point (0.125,0.75,0.5) = %(0.001,0.11,0.1) is 280.0110101.

When reversing the above situation, also each Z-address uniquely defines a d-
dimensional point in the (upper open) unit hypercube. We will use this property to
assign a rectangular region in space to each finite binary sequence as follows: Given
a number y = %0.3,3,--- € [0,1) and a non-negative integer r, we define the r-th Z-
region of y, denoted by ZR,(y), to be the set of all points whose Z-address (in binary)
begins with the sequence %0.53, - - - B;. That is,

ZR () = {x € [0,1)" | Z(x) = 201 By 2+ .

In general, any Z-region is a lower closed and upper open hyperrectangle.

Every Z-region can naturally be partitioned into smaller Z-regions as follows: Given
a number y = Z0.3,3,--- € [0,1) as well as two non-negative integers r and b, then
for any ¥1,...,% € {0, 1}, the (r+ b)-th Z-region of the number Z0.8; ---B,y1 -+ ¥ is

SkyMap: A Trie-Based Index Structure 355

[0,1)x [0,1)

[0,0.5) x [0,1) [0.5,1) x [0,1)

[0,0.5) x [0,0.5)

[0,0.5) % [05,1) [05,1) x[0,0.5)

[05,1)x[0.5,1)

0 i 0 I
ﬂo,o.zs) 0.5, 1)} ([0.25,0.5) % [0.5, 1)} ﬁo.5,0.75) x[0.5, 1)} ([075, 1) % 0.5, 1)}
__a) U F) U E) o

Fig.3. A SkyMap (b = 1, ¢ = 1) indexing our example data set

a subset of ZR,(y). In total, there are 2% such subsets, which are mutually disjoint. This
way, for any b, the Z-region ZR,(y) can be divided into 2” partitions. In the following,
we will refer to these partitions as ZR,(y)’s Z-subregions of degree b. For example,
in two-dimensional space, the degree-2 Z-subregions of the Z-region ZR(0) = [0,1)?
are ZR,(0) = [0,0.5) x [0,0.5), ZR;,(0.25) = [0,0.5) x [0.5,1), ZR,(0.5) = [0.5,1) x
[0,0.5), and ZR,(0.75) =[0.5,1) x [0.5,1).

4.3 SkyMap and Its Basic Operations

In this section, we build the skeleton of SkyMap. For this task, we turn the concepts just
presented into a recursive scheme for space decomposition.

A SkyMap index is a trie that consists of internal nodes and leaf nodes: Leaf nodes
store a list of at least one but at most ¢ data points, where c¢ is some integer we will
refer to as the capacity of a leaf node. We assume that all leaf nodes have the same
capacity. Internal nodes store an array of exactly 2” pointers to its child nodes, which
are indexed by the numbers 0 to 2” — 1, where b again is an integer parameter shared by
all nodes. We will refer to b as the split degree of an internal node (measured in bits).
Null pointers are generally allowed, but empty nodes are not permitted.

The SkyMap index has been designed to resemble the recursive splitting process of
Z-regions into all its 2” Z-subregions of degree b. In particular, each node represents
some Z-region, where the root node corresponds to the Z-region ZRg(0) = [0, 1)<,

Fig.Bl shows a normalized version of our example database and a corresponding
SkyMap indexing it. We set b = 1, which means that the data space is recursively split
along a single dimension each. The respective dimension changes from level to level.
The capacity c is set to 1, i.e., each leaf node stores a single point. To illustrate the effect
of these parameters, Fig.l] shows an alternate SkyMap with 5 =2 and ¢ = 2.

In contrast to quadtree-based approaches, where nodes may have up to 2¢ children,
in a SkyMap index the number of children of each node can easily be controlled by
setting the parameter b accordingly. That way, degradation of the trie structure to a
linear list can be avoided in higher dimensional spaces. On the other hand, b can be
chosen large enough to enable a most effective space division and pruning. Moreover,

356 J. Selke and W.-T. Balke

[0,1)x[0,1)

[0,0.5) x [0,0.5) [0,0.5) % [0.5,1)

s R

Fig. 4. A SkyMap (b = 2, ¢ = 2) indexing our example data set

[0.5,1) x [0,0.5)

[0.5,1) x [0.5,1)

by tuning the leaf capacity c, one can avoid excessive ramification of the trie but still
receive the benefits of indexing, thus exploiting the full potential of memory caches.

The most important operations required for building and maintaining an index are
bulkloading of entire data sets as well as inserting and deleting individual items. As we
will show next, these operations can be performed highly efficient in a SkyMap index.

In SkyMap, bulkloading of a given data set A is performed in top-down fashion. After
presorting the data set by Z-addresses, we recursively split the data set with respect to
Z-address prefixes of length b and create internal nodes (if the number of remaining
points is larger than c) or leaf nodes (otherwise). During this process, we completely
avoid expensive multi-dimensional point comparisons and only rely on cheap integer
comparisons and bit-shifting operations. The complete algorithm is shown in Fig.[3

To insert a new point p into an existing SkyMap (cf. Fig.[3), we traverse the trie
structure according to p’s Z-address and add p to a matching leaf node. If the leaf node
already is filled to its maximum capacity ¢, we replace it by a new internal node. Then,
the insertion process continues at the new node. Again, we do not perform explicit point
comparisons but only need to perform integer comparisons and bit shifts. Moreover, our
insertion procedure does not require expensive rebalancing operations.

In a similar fashion, points can be removed from an existing SkyMap index: First,
find the corresponding leaf node leaf and delete the point. In case leaf gets empty
by this operation, also remove leaf from the index. If necessary, recursively repeat this
cleanup process with all parental internal nodes. Moreover, the deletion algorithm keeps
track of how many points are located below each internal nodes it visits during the
cleanup process. If an internal node is detected that covers only ¢ points or less, then
this internal node is replaced by a corresponding leaf node, thus reducing the SkyMap’s
depth to the minimum possible value. Due to space limitations, we omit the pseudocode.

4.4 Analysis

Having introduced the basic structure of the SkyMap index, we now demonstrate that
it lives up to its promise. Recall the two main requirements: boosting performance and
minimizing maintenance overhead. By designing simple insert and delete operations,
which only affect a very small number of nodes and do not perform any expensive
rebalancing or restructuring, we have already fulfilled our second requirement of easy
maintenance. At the same time, due to the use of copulas for normalizing our data set
(i.e., distributing it equally across each dimension; see Lemmal[Tl), we are able to achieve
a homogeneous distribution of data points across the whole SkyMap tree (given that
data dimensions do not exhibit correlation or anti-correlation at an extreme degree).

SkyMap: A Trie-Based Index Structure 357

function BULKLOAD(A)
Presort A by Z-addresses; let P and Z be the resulting lists of points and Z-addresses
root < BULKLOAD(P, Z, 0, |A| — 1)

function BULKLOAD(P, Z, from, to)
size «— to —from+ 1
if size < c then return a new leaf node containing P[from, ... ,t0]
else
node < a new empty internal node
Z’ «— acopy of Z, in which the first b bits have been removed from each entry
pos — from
zbFrom « the first b bits of Z[from|
while pos < to do
zbPos « the first b bits of Z[pos]
if zbPos # zbFrom then
node.children[zbFrom| < BULKLOAD(P, Z’, from, pos — 1)
from «— pos
zbFrom — zPos
node.children[zbFrom| < BULKLOAD(P, Z’, from, to)
return node

function INSERT(p)
if root = null then root < a new leaf node containing only p
else
z« p’s Z-address
INSERT(p, z, root,0)

function INSERT(p, z, node, depth)
zb « the first b bits of z
if node is an internal node then
if node.children(zb] = null then node.children[zb] < a new leaf containing only p
else
7’ « z without its the first b bits
INSERT(p, z’, node.children|zb], depth+b)

else if node is a leaf node containing less than ¢ points then Add p to node
else
node’ < a new empty internal node
for each point ¢ contained in node do
qz <+ q’s Z-address without its first depth bits
INSERT(q, gz, node’, depth)
INSERT(p, z, node’, depth)
Replace node by node’ in the SkyMap index

Fig. 5. Creating a SkyMap by bulkloading and inserting a new point into an existing SkyMap

We now show that SkyMap also possesses two key ingredients of high-performance
index structures: immunity against degradation due to database updates and logarithmic
depth on average.

Lemma 2. Let the parameters b and c be fixed. Then, for any data set A, there is a
unique SkyMap indexing A, modulo sort order of points within leaves.

Proof. Assume that there are two different SkyMap indexes storing the data set A. Since
by design each point is always stored in a leaf node along its Z-address path, to be
different modulo sort order of points within leaf nodes, one of the SkyMap indexes
must contain a leaf node that is not present in the other one. Let N be this node. We
assume without loss of generality that N is located within the first index. Since any
point contained in N must also be present in some leaf node of the second index, there
must be a leaf node M in the second index at the location of one of N’s parental internal
nodes. As M can contain at most ¢ points and points are placed in the index along their

358 J. Selke and W.-T. Balke

Z-addresses, also the subtrie rooted at the internal node corresponding to M in the first
trie can contain at most ¢ points, a situation which is explicitly avoided in the deletion
procedure. Since unnecessary internal nodes can only be created by deletion tasks, this
directly corresponds to our initial assumption.

The preceding lemma makes clear that there cannot be any degradation in a SkyMap in-
dex, no matter what sequence of insertions and deletions is performed. Our next lemma
is about index behavior on deletions.

Lemma 3. Let S be a SkyMap indexing some data set A and B C A. Then, any SkyMap
indexing B only has nodes at those positions where there is a node in S.

Proof. Due to the uniqueness property of SkyMap indexes, any index S’ storing only a
subset of another index S, can be derived from S by performing a series of individual
point deletions and reordering points in leaves. By design of the delete operation, no
new nodes are being constructed, but only underflowing nodes are removed. Therefore,
S’ cannot contain a node at some position where is no node in S.

Corollary 1. (From Lemmal3) Let A be data set and B C A. Then, the maximum node
depth in any SkyMap indexing B is smaller than or equal to the maximum node depth
found in any SkyMap indexing A.

Consequently, the maximum depth of a SkyMap indexing only the skyline of A is at
most as large as the maximum depth of any SkyMap indexing the whole data set A.

Finally, let us consider the case of uniformly distributed data, which usually is a good
indicator of the general behavior of skyline data structures.

Lemma 4. Let A be a random set of size n, where each p € A is a random vector, which
has independently and uniformly been drawn from the unit hypercube [0, 1)d. Then, the
maximum depth of any SkyMap indexing A is O(logn) in expectation.

Proof. (Sketch) Since each point p has been drawn uniformly from [0, l)d , the bits of
p’s Z-address are independent random variates with equal probabilities for each of the
outcomes 0 and 1. Therefore, all points spread uniformly over all possible Z-address
prefixes, thus implying logarithmic depth.

Corollary 2. (From Lemmadland Corollary[l) The SkyMap index storing the skyline of
a random uniformly distributed data set A of size n has maximum node depth O(logn)
in expectation.

We conclude that SkyMap indexes provide the balancedness needed for quick data ac-
cess combined with robustness against degeneration caused by frequent updates.

4.5 Skyline Algorithms

To enable the actual processing of skyline queries, we still need an effective way to per-
form dominance tests on the index. Given a data point p, our ISDOMINATED operation
checks whether p is dominated by some point stored in the SkyMap. The algorithm (cf.

SkyMap: A Trie-Based Index Structure 359

function ISDOMINATED(p)
if root = null then return false
else
Z < p’s Z-address
return ISDOMINATED (p,z, root,0,{1,...,d})

function ISDOMINATED(p, z, node, depth, EQ)
if node is an internal node then
(zbo, ... ,zbp—1) < the first b bits of z
7’ « z without its first b bits

for each i = 2” —1,...,0 with node.children[i] # null do
(ibo,. .. ,ibp—1) < i in b-bit representation
EQ" — EQ

for each j = depth, ... depth+b—1 do
dim — (jmod d) + 1
if dim € EQ then
if zb; < ib; then EQ’ — EQ’\ {dim} > p <gim node
else if zb; > ib; then next i > p =4im node, continue the outer for loop
if EQ’ = 0 then return true
if ISDOM.(p, z’, node.childrenli], depth+ b, EQ’) then return true

return false
else
for each point g contained in node do
if p < ¢ then return true
return false

function SKYLINE(A)
Sort A by decreasing Z-addresses; let P be the resulting list of points
S < a new empty SkyMap index
fori=0,...,|JA|—1do
p «— Pli]
if no point in S dominates p then Insert p into S
return the set of points contained in §

Fig. 6. Checking whether a point is dominated and computing the skyline of a given data set

Fig.[6) rests on the following observation: When traversing a SkyMap index while look-
ing for points dominating p, one can skip any node (along with all its children) whose
corresponding Z-region is worse than p with respect to at least one dimension.

ISDOMINATED works as follows: The SkyMap index is traversed in depth-first search,
beginning with those nodes belonging to the largest Z-addresses to visit nodes and points
with high domination power first. At each internal node, we scan over all child nodes and
compare the length-b Z-address interval used to identify each child to the corresponding
interval in p’s Z-address. This way, we can easily determine whether p is better in some
dimension dim than the child node. If this is the case, the child can be immediately be
excluded from further traversal. While traversing the index, we continuously maintain
a set EQ of dimensions, in which the current node node and p have found to be equal
with respect to the Z-address prefix processed so far. A dimension is eliminated from
EQ if a child node is known to be better than p with respect to this dimension. During
the traversal only those dimensions still contained in EQ have to be checked. Whenever
we reach a leaf node, p is compared to each of the node’s points.

The leaf node capacity c typically will be adapted to the current hardware so that all
of the leaf node’s points can fit into the CPU cache, which supports extremely fast point
comparisons. Moreover, the set EQ can be implemented only by performing bitwise
operations on ordinary integers. The same is true for all Z-address comparisons. This
way, expensive point comparisons again can largely be avoided.

360 J. Selke and W.-T. Balke

function MDELETE(p)
if p is not contained in the skyline index then
Delete p from the data index
else
P « the set of all data points being dominated by p
Delete p from the skyline index
for each g € P do
if no point in the skyline index dominates g then
Delete g from the data index
Insert g into the skyline index

function MINSERT(p)
if some point in the skyline index dominates p then
Insert p into the data index
else
P «— the set of skyline points being dominated by p
for each g € P do
Delete g from the skyline index
Insert ¢ into the data index

Insert p into the skyline index

Fig. 7. Maintaining the skyline in case of changing data

Now, we are able to state our SKYLINE algorithm, which combines the insights of
traditional list-based skyline algorithm with the pruning power of SkyMap. It also ex-
ploits the following important monotonicity property of Z-addresses:

Lemma 5. Let p,q € [0,1)% If Z(p) > Z(q), then p # qll

Our SKYLINE algorithm works as follows: It first presorts the data set by decreasing
Z-addresses, which by the above lemma guarantees that no data point dominates any of
its predecessors. Then, an empty SkyMap index is created and the sorted list is scanned
linearly. For each point p, the function ISDOMINATED(p) is called. If it returns true,
then there already is a point in the index dominating p, thus eliminating p as a skyline
point. If the function returns false, p must be a skyline point. In this case, we insert p
into the SkyMap index, which always contains the skyline of the data points processed
so far. Fig.[6] shows the pseudocode.

For continuously maintaining the skyline of a large database, we propose to use two
SkyMap indexes, where the first indexes all current skyline points and the second all
remaining database items. To support bulkloading, insertion and deletion, we designed
three algorithms: MBULKLOAD, MINSERT, and MDELETE.

Given a data set A, MBULKLOAD creates a valid initial configuration of the two
indexes by first computing the skyline of A by means of our SKYLINE algorithm, then
removes all skyline points from A, and finally bulkloads A into the second SkyMap
index using the BULKLOAD method.

MINSERT and MDELETE require the helper function FINDDOMINATED, which re-
turns a list of all items in a SkyMap index that are dominated by a given point p. The
returned list is sorted by descreasing Z-addresses. FINDDOMINATED follows the same
approach as our ISDOMINATED function, with only two major differences: First, in-
stead of finishing the traversal at the first dominated point, each the search continues
until the whole tree has been traversed; second, all bitwise comparisons operations are
performed inverted. As FINDDOMINATED can easily be derived from ISDOMINATED’s
pseudocode, we abstain from providing an extensive description.

With the help of FINDDOMINATED, maintained insertions and deletions can be per-
formed as shown in Fig.[Zl When inserting a new point p, no special action is required
if p is dominated, whereas in case p is a new skyline point all current skyline item being
dominated by p need to be found and moved to the data index. The opposite happens
when deleting an existing point p. Here, no special action is required if p is domi-
nated. Otherwise, all index points being dominated by p need to be found and moved

TA proof of this lemma can be found in [9].

SkyMap: A Trie-Based Index Structure 361

to the skyline index if they now become new skyline points. As the result list returned
by FINDDOMINATED is ordered by decreasing Z-addresses, we can exploit the same
monotonicity property that already proved to be helpful in our SKYLINE method.

We designed our algorithms for in-memory computations. It has been demonstrated
in previous work that skylining inherently is CPU-bound and easily become intractable
if main memory is scarce (see e.g. [2] or [L6]). Fortunately, even the largest data sets so
far used in skyline research easily fit into a modern desktop computer’s main memory.

5 Evaluation

Beside our own method, we implemented the following state-of-the-art algorithms for
skyline computation and maintenance: (1) OSPSPF [16]] with the pivoting extension for
bulkloading introduced in [7], (2) the ZB-tree [9]]. Our experimental setup follows the
standard methodology used in skyline research.

Regarding our test data sets, we decided to follow the common methodology in the
skylining literature and thus used the three data generators IND (independent data di-
mensions), CORR (correlated), and ANTI (anti-correlated) as proposed in [2]. Given
parameters d and n, these algorithms randomly create data sets having independent, cor-
related, or anti-correlated dimensions, respectively. In the experiments reported below,
we did not apply any data normalization by means of copulas, as as found SkyMap’s
performance on copula-normalized data to be very similar. This indicates that our ap-
proach is quite robust with respect to data skewness.

We also wanted to evaluate our method on real-world data sets, but soon realized that
all real-world data sets traditionally used in skyline research (e.g., NBA, Corel, House-
hold) are far too small and simplistic to pose a challenge to modern skyline algorithms
and thus allow meaningful comparisons among them, a problem that already became
apparent in [[16], [[7], and [9]. To remedy this issue we decided to use a 60-dimensional
data set consisting of texture features extracted from n = 275,465 aerial images, where
the skyline consists of 26,817 points. The data set can be downloaded from the web site
of the Vision Research Lab at UCSBJ

For each of the different choices of d and n we used in our experiments, we ran-
domly generated 10 data sets with each of the three data generators. All running times
reported below are averages over the corresponding 10 skyline computations with each
algorithm. We did not report any running times below 100 ms due to measurement un-
certainty; numbers below this threshold tend to reflect arbitrary delays in memory allo-
cation and data initialization rather than actual performance and scalability.

Our programming language is Java 6. We carefully profiled and optimized all our
code to eliminate weak spots. This also included checking all our implementations
against existing original code. For example, we compared our version of the partitioning
algorithm to the code used in [16]], which the authors kindly made available to us.

All experiments have been conducted on a Linux server system equipped with two
Intel Core 17 920 2.67 GHz quad-core processors and 20 GB of main memory. However,
all our code is single-threaded and uses only a small fraction of the available memory.

2hhttp://vision.ece.ucsb.edu/download.html

http://vision.ece.ucsb.edu/download.html

362 J. Selke and W.-T. Balke

100

Running time [s]
Running time [s]

ZB-tree —4&—
OSPSPF/BSkyTree —6—

ZB-tree —&—
OSPSPF/BSkyTree —&—

SkyMap —=— SkyMap —=—
0.1 v/ R I I I I 0.1 YA I I I I
345678910 15 20 25 30 345678910 15 20 25 30
Number of dimensions d Number of dimensions d
(a) IND data, n = 100K (b) ANTI data, n = 100K
100 E 100 E

Running time [s]
Running time [s]

1L ZB-tree —&— | | 1L ZB-tree —&— | |
OSPSPF/BSkyTree —6— OSPSPF/BSkyTree —6—
SkyMap —=— SkyMap —#—
0.4 L | | | | 0.4 L | | | |
100K 200K 500K ™M M 100K 200K 500K ™M M
Number of points n Number of points n
(c) IND data, d = 12 (d) ANTI data, d = 12

Fig. 8. Skyline queries on synthetic data

Since both the ZB-tree and SkyMap depend on configuration parameters, we tried a
variety of different settings and finally ended up with a minimum node size of 20 and a
maximum node size of 50 for the ZB-tree; we chose b = 2 and ¢ = 10 for SkyMap.

5.1 Skyline Computation

We first evaluated our approach in the traditional setting of skyline queries, that is,
given a data set A, the task is to compute its skyline. To investigate the influence of data
dimensionality, we set n = 100K and varied d over a large range of values. We also
evaluated the scalability of our method with respect to n by fixing d = 12 and varying
n. Fig.[depicts our findings. Due to space limitations, we only report performance
numbers for IND and ANTI data; results for CORR data are very similar.

As we can see there is no clear winner in the comparison between the ZB-tree and
OSPSPF/BSkyTree. The ZB-tree provides better performance for larger d but is worse
than OSPSPF/BSkyTree for mid-range values of d. Scalability with respect to n is not
an issue for any of the three algorithms. However, in any case, the SkyMap approach
significantly outperforms its competitors. Even in the special case d = 12, where OSP-
SPF/BSkyTree’s performance comes closest, SkyMap can easily defend its advantage
even for different values of n. We also measured scalability in n with respect to many
other values of d, but in no case any of ZB-tree or OSPSPF/BSkyTree has been able to
perform better than SkyMap. The results on our real-world data set confirm our find-
ings: Computing the skyline takes 13.7 seconds for the ZB-tree, 10.9 seconds for OSP-
SOF/BSkyTree, and 8.6 seconds for SkyMap.

SkyMap: A Trie-Based Index Structure 363

LI e T T T T LI e T T T T

o
=]
T
o
=]
T
L

o
T
o
T

Running time [s]
Running time [s]

ZB-tree —&— ZB-tree —&—

T
T
L

OSPSPF/BSkyTree —o— OSPSPF/BSkyTree —o—
SkyMap —=— SkyMap —=—
0.1 L L L L L 0.1 L L L L L
345678910 15 20 25 30 345678910 15 20 25 30
Number of dimensions d Number of dimensions d
(a) IND data, n = 100K £ 20K (b) ANTI data, n = 100K + 20K

Fig. 9. Skyline maintenance on synthetic data

5.2 Skyline Maintenance

To investigate the performance of our method in the setting of skyline maintenance
we used to following three-step task: Given d and n, first n data points are bulkloaded
into the database and the skyline is computed. Then, 20% of the data are randomly
deleted, where after each deletion the skyline has to be maintained. Finally, a new data
set of size 20% is created randomly (according to the original data distribution) and
inserted into the database, where again after each single insertion the skyline has to be
maintained. Our results for scalability with respect to d as depicted in Fig.[0l We can see
that SkyMap consistently performs better than OSPSPF/BSkyTree, sometimes even by
two orders of magnitude. Compared to the ZB-tree, the results are twofold. In case of
very small skylines, the ZB-tree performs slightly better than SkyMap; however, when it
comes to scalability in d and skyline size, SkyMap clearly outperforms the ZB-tree. We
also measured scalability in n but always received the same scaling behavior as already
depicted in Fig.[8l Therefore, we did not include any further graphics illustrating the
fact that no method has scalability issues with respect to n.

5.3 Influence of Parameters

Finally, we investigated the influence of different parameters b and ¢ on the performance
of SkyMap indexes. To illustrate all relevant effects, we chose a skyline query example
on IND data with d = 20. Our results are depicted in Fig.[I0l We can see that regard-
less of the choice of the leaf capacity c, the retrieval performance quickly degrades for

T T T T T

Leaf capacity c=1 —+—
Leaf capacity c=2 ---x---

% 60 [~ Leaf capacity c=5 ---*--- -
.g 50 Leaf capacity c= 10 & |

Leaf capacity c=20 —-m—

Split degree b

Fig. 10. Influence of parameters b and ¢

364 J. Selke and W.-T. Balke

high split degrees b, which also explains the bad performance of OSPSPF/BSkyTree in
high-dimensional space we observed previously (recall that quadtrees always split the
surrounding space into 2¢ partitions). Moreover, our results show performance disad-
vantages for very small leaf capacities, in particular when b is large. Due to our flexible
design, we can always chose a combination of parameters that optimally exploits the
specifics of the current hardware. However, our SkyMap approach is robust enough to
work well over a wide range of parameters.

6 Conclusion

In this paper, we have shown that the current state of the art in skyling processing is
characterized by a tradeoff. One can either have high-performance indexing on static
data (OSPSPF/BSkyTree) or high-performance skyline maintenance (ZB-tree), but un-
fortunately not both. However, easy integration of skyline algorithms into existing data-
base systems calls for a single method that efficiently supports both scenarios. With our
SkyMap index we have proposed a solution that successfully resolves this issue, and
consistently outperforms previous algorithms on most data sets.

References

1. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Transac-
tions on Database Systems 33(4), 31 (2008)

2. Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proceedings of the 17th
International Conference on Data Engineering (ICDE 2001), pp. 421-430 (2001)

3. Chan, C.Y,, Jagadish, H.V,, Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-dominant sky-
lines in high-dimensional space. In: Proceedings of the 32th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2006), pp. 503-514 (2006)

4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of the
19th International Conference on Data Engineering (ICDE 2003), pp. 717-719 (2003)

5. Eng, PK., Ooi, B.C., Tan, K.L.: Indexing for progressive skyline computation. Data and
Knowledge Engineering 46(2), 169-201 (2003)

6. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for sky-
line queries. In: VLDB 2002, pp. 275-286 (2002)

7. Lee,J., Hwang, S.: BSkyTree: Scalable skyline computation using a balanced pivot selection.
In: Proceedings of the 13th International Conference on Extending Database Technology
(EDBT 2010), pp. 195-206 (2010)

8. Lee, J., Hwang, S., Nie, Z., Wen, J.R.: Navigation system for product search. In: Proceed-
ings of the 26th International Conference on Data Engineering (ICDE 2010), pp. 1113-1116
(2010)

9. Lee, K.C.K.,, Lee, W.C., Zheng, B., Li, H., Tian, Y.: Z-SKY: An efficient skyline query
processing framework based on Z-order. The VLDB Journal 19(3), 333-362 (2010)

10. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, Heidelberg (2006)

11. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-
tems. ACM Transactions on Database Systems 30(1), 41-82 (2005)

12. Sagan, H.: Space-Filling Curves. Springer, Heidelberg (1994)

13. Sahni, S.: Tries. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applica-
tions, pp. 28-1-28-20. Chapman and Hall, Boca Raton (2005)

SkyMap: A Trie-Based Index Structure 365

14. Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in subspaces. IEEE Transactions
on Knowledge and Data Engineering 19(8), 1072-1088 (2007)

15. Viappiani, P., Faltings, B., Pu, P.: Preference-based search using example-critiquing with
suggestions. Journal of Artificial Intelligence Research 27, 465-503 (2006)

16. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based
space partitioning. In: Proceedings of the 35th ACM SIGMOD International Conference on
Management of Data (SIGMOD 2009), pp. 483-494 (2009)

	SkyMap: A Trie-Based Index Structure for High-Performance Skyline Query Processing

	Introduction
	Related Work
	Preliminaries
	The SkyMap Approach
	Tries
	Z-Addresses, Z-Regions, and Z-Subregions
	SkyMap and Its Basic Operations
	Analysis
	Skyline Algorithms

	Evaluation
	Skyline Computation
	Skyline Maintenance
	Influence of Parameters

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

