

Lecture Notes in Computer Science 6861
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Abdelkader Hameurlain Stephen W. Liddle
Klaus-Dieter Schewe Xiaofang Zhou (Eds.)

Database and Expert
Systems Applications

22nd International Conference, DEXA 2011
Toulouse, France, August 29 - September 2, 2011
Proceedings, Part II

13

Volume Editors

Abdelkader Hameurlain
Paul Sabatier University, IRIT Institut de Recherche en Informatique de Toulouse
118, route de Narbonne, 31062 Toulouse Cedex, France
E-mail: hameur@irit.fr

Stephen W. Liddle
Brigham Young University, 784 TNRB
Provo, UT 84602, USA
E-mail: liddle@byu.edu

Klaus-Dieter Schewe
Software Competence Centre Hagenberg
Softwarepark 21, 4232 Hagenberg, Austria
E-mail: kd.schewe@scch.at

Xiaofang Zhou
University of Queensland, School of Information Technology
and Electrical Engineering
Brisbane QLD 4072, Australia
E-mail: zxf@uq.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23090-5 e-ISBN 978-3-642-23091-2
DOI 10.1007/978-3-642-23091-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934284

CR Subject Classification (1998): H.4, I.2, H.3, C.2, H.5, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume includes invited papers, research papers, and short papers presented
at DEXA 2011, the 22nd International Conference on Database and Expert Sys-
tems Applications, held in Toulouse, France. DEXA 2011 continued the long and
successful DEXA tradition begun in 1990, bringing together a large collection of
bright researchers, scientists, and practitioners from around the world to share
new results in the areas of database, intelligent systems, and related advanced
applications.

The call for papers resulted in the submission of 207 papers, of which 52 were
accepted as regular research papers, and 40 were accepted as short papers. The
authors of these papers come from 47 different countries. These papers discuss
a range of topics including:

– Query processing and Skyline queries
– Search (Web, Semantic Web, database)
– Data integration, transactions, optimization, and design
– Physical aspects of databases, storage
– Database semantics
– Security and privacy
– Spatial and temporal data
– Semantic Web
– Web applications
– Data mining
– Ontologies
– Distribution
– Information retrieval
– XML querying and views
– Business applications
– User support

Three internationally recognized scholars submitted papers and delivered
keynote speeches:

Patrick Valduriez: Principles of Distributed Data Management 2020?

Bernhard Thalheim: The Science of Conceptual Modelling

Gabriele Kern-Isberner: Probabilistic Logics in Expert Systems: Approaches,
Implementations, and Applications

In addition to the main conference track, DEXA 2011 also included 12 work-
shops that explored the conference theme within the context of life sciences,
specific application areas, and theoretical underpinnings.

VI Preface

We are grateful to the hundreds of authors who submitted papers to DEXA
2011 and to our large Program Committee for the many hours they spent care-
fully reading and reviewing these papers. The Program Committee was also
assisted by a number of external referees, and we appreciate their contributions
and detailed comments.

We are thankful to the Institut de Recherche en Informatique de Toulouse at
the Université Paul Sabatier for organizing DEXA 2011, and for the excellent
working atmosphere provided. In particular, we recognize the efforts of the con-
ference Organizing Committee, including Makoto Takizawa (Seikei University,
Japan; Honorary Chairperson), Abdelkader Hameurlain (IRIT, Paul Sabatier
University, France; General Chair), Riad Mokadem (IRIT, Paul Sabatier Uni-
versity; Local Organization), Vladimir Marik (Czech Technical University, Czech
Republic; Publication Chair), Franck Morvan (IRIT, Paul Sabatier University,
Toulouse, France; Workshops Co-chair), A Min Tjoa (Technical University of
Vienna, Austria; Workshops Co-chair), and Roland R. Wagner (FAW, Univer-
sity of Linz, Austria; Workshops Co-chair). Without the diligent efforts of these
people, DEXA 2011 would not have been possible.

Finally, we are especially grateful to Gabriela Wagner, whose professional
attention to detail and skillful handling of all aspects of the Program Committee
management and proceedings preparation was most helpful.

August 2011 Stephen W. Liddle
Klaus-Dieter Schewe

Xiaofang Zhou

Program Committee

Honorary Chairperson

Makoto Takizawa Seikei University, Japan

General Chair

Abdelkader Hameurlain IRIT, Paul Sabatier University, Toulouse,
France

Conference Program Chair

Stephen Liddle Brigham Young University, USA
Klaus-Dieter Schewe Software Competence Center Hagenberg and

Johannes Kepler University Linz, Austria
Xiaofang Zhou University of Queensland, Australia

Program Committee

Witold Abramowicz The Poznan University of Economics, Poland
Osman Abul TOBB University, Turkey
Rafael Accorsi University of Freiburg, Germany
Hamideh Afsarmanesh University of Amsterdam, The Netherlands
Riccardo Albertoni CNR-IMATI-GE, Italy
Toshiyuki Amagasa University of Tsukuba, Japan
Rachid Anane Coventry University, UK
Annalisa Appice Università degli Studi di Bari, Italy
Mustafa Atay Winston-Salem State University, USA
James Bailey University of Melbourne, Australia
Spiridon Bakiras City University of New York, USA
Ladjel Bellatreche ENSMA-Poitiers University, France
Morad Benyoucef University of Ottawa, Canada
Catherine Berrut Grenoble University, France
Bishwaranjan Bhattacharjee IBM Thomas J. Watson Research Center, USA
Debmalya Biswas SAP Research, Germany
Agustinus Borgy Waluyo Institute for Infocomm Research, Singapore
Patrick Bosc IRISA/ENSSAT, France
Athman Bouguettaya CSIRO, Australia
Danielle Boulanger University of Lyon, France
Omar Boussaid University of Lyon, France

VIII Program Committee

Stephane Bressan National University of Singapore, Singapore
Patrick Brezillon University Paris VI, France
Yingyi Bu Microsoft, China
Luis M. Camarinha-Matos Universidade Nova de Lisboa + Uninova,

Portugal
Yiwei Cao RWTH Aachen University, Germany
Barbara Carminati Università degli Studi dell’Insubria, Italy
Silvana Castano Università degli Studi di Milano, Italy
Barbara Catania Università di Genova, Italy
Michelangelo Ceci University of Bari, Italy
Wojciech Cellary University of Economics at Poznan, Poland
Cindy Chen University of Massachusetts Lowell, USA
Phoebe Chen La Trobe University, Australia
Shu-Ching Chen Florida International University, USA
Hao Cheng University of Central Florida, USA
Reynold Cheng The University of Hong Kong, China
Max Chevalier IRIT - SIG, Université de Toulouse, France
Byron Choi Hong Kong Baptist University, Hong Kong
Henning Christiansen Roskilde University, Denmark
Soon Ae Chun City University of New York, USA
Eliseo Clementini University of L’Aquila, Italy
Gao Cong Microsoft Research Asia, China
Oscar Corcho Universidad Politécnica de Madrid, Spain
Bin Cui Peking University, China
Emiran Curtmola University of California, San Diego, USA
Alfredo Cuzzocrea University of Calabria, Italy
Deborah Dahl Conversational Technologies, worldwide
Jérôme Darmont Université Lumière Lyon 2, France
Valeria De Antonellis Università di Brescia, Italy
Andre de Carvalho University of Sao Paulo, Brazil
Guy De Tré Ghent University, Belgium
Olga De Troyer Vrije Universiteit Brussel, Belgium
Roberto De Virgilio Università Roma Tre, Italy
John Debenham University of Technology, Sydney, Australia
Hendrik Decker Universidad Politécnica de Valencia, Spain
Zhi-Hong Deng Peking University, China
Vincenzo Deufemia Università degli Studi di Salerno, Italy
Claudia Diamantini Università Politecnica delle Marche, Italy
Juliette Dibie-Barthélemy AgroParisTech, France
Ying Ding Indiana University, USA
Zhiming Ding Chinese Academy of Sciences, China
Gillian Dobbie University of Auckland, New Zealand
Peter Dolog Aalborg University, Denmark
Dejing Dou University of Oregon, USA
Dirk Draheim Universität Innsbruck, Austria

Program Committee IX

Cedric du Mouza CNAM, France
Johann Eder University of Vienna, Austria
David Embley Brigham Young University, USA
Suzanne M. Embury The University of Manchester, UK
Christian Engelmann Oak Ridge National Laboratory, USA
Bettina Fazzinga University of Calabria, Italy
Leonidas Fegaras The University of Texas at Arlington, USA
Flavio Ferrararotti Victoria University of Wellington, New Zealand
Stefano Ferilli University of Bari, Italy
Eduardo Fernandez Florida Atlantic University, USA
Filomena Ferrucci Università di Salerno, Italy
Flavius Frasincar Erasmus University Rotterdam,

The Netherlands
Bernhard Freudenthaler Software Competence Center Hagenberg,

Austria
Hiroaki Fukuda Shibaura Institute of Technology, Japan
Steven Furnell University of Plymouth, UK
Aryya Gangopadhyay University of Maryland Baltimore County, USA
Yunjun Gao Zhejiang University, China
Manolis Gergatsoulis Ionian University, Greece
Bernard Grabot LGP-ENIT, France
Fabio Grandi University of Bologna, Italy
Carmine Gravino University of Salerno, Italy
Nathan Griffiths University of Warwick, UK
Sven Groppe Lübeck University, Germany
William Grosky University of Michigan, USA
Volker Gruhn Leipzig University, Germany
Jerzy Grzymala-Busse University of Kansas, USA
Francesco Guerra Università degli Studi di Modena e Reggio

Emilia, Italy
Giovanna Guerrini University of Genova, Italy
Antonella Guzzo University of Calabria, Italy
Abdelkader Hameurlain Paul Sabatier University, Toulouse, France
Ibrahim Hamidah Universiti Putra Malaysia, Malaysia
Wook-Shin Han Kyungpook National University, Korea
Takahiro Hara Osaka University, Japan
Theo Härder TU Kaiserslautern, Germany
Francisco Herrera University of Granada, Spain
Steven Hoi Nanyang Technological University, Singapore
Estevam Rafael Hruschka Jr. Carnegie Mellon University, USA
Wynne Hsu National University of Singapore, Singapore
Yu Hua Huazhong University of Science and

Technology, China
Jimmy Huang York University, Canada
Xiaoyu Huang South China University of Technology, China

X Program Committee

San-Yih Hwang National Sun Yat-Sen University,
Taiwan

Ionut Emil Iacob Georgia Southern University, USA
Renato Iannella Semantic Identity, Australia
Sergio Ilarri University of Zaragoza, Spain
Abdessamad Imine University of Nancy, France
Yoshiharu Ishikawa Nagoya University, Japan
Mizuho Iwaihara Waseda University, Japan
Adam Jatowt Kyoto University, Japan
Peiquan Jin University of Science and Technology, China
Ejub Kajan State University of Novi Pazar, Serbia
Anne Kao Boeing Phantom Works, USA
Stefan Katzenbeisser Technical University of Darmstadt, Germany
Yiping Ke Chinese University of Hong Kong, Hong Kong
Sang-Wook Kim Hanyang University, Korea
Markus Kirchberg Hewlett-Packard Laboratories, Singapore
Hiroyuki Kitagawa University of Tsukuba, Japan
Carsten Kleiner University of Applied Sciences and Arts

Hannover, Germany
Ibrahim Korpeoglu Bilkent University, Turkey
Harald Kosch University of Passau, Germany
Michal Krátký VSB-Technical University of Ostrava,

Czech Republic
Arun Kumar IBM India Research Lab., India
Ashish Kundu Purdue University, USA
Josef Küng University of Linz, Austria
Kwok-Wa Lam University of Hong Kong, Hong Kong
Nadira Lammari CNAM, France
Gianfranco Lamperti University of Brescia, Italy
Anne Laurent LIRMM, Université Montpellier 2, France
Mong Li Lee National University of Singapore, Singapore
Alain Toinon Leger Orange - France Telecom R&D, France
Daniel Lemire Université du Québec à Montréal, Canada
Pierre Lévy Public Health Department, France
Lenka Lhotska Czech Technical University, Czech Republic
Wenxin Liang Dalian University of Technology, China
Stephen W. Liddle Brigham Young University, USA
Lipyeow Lim IBM T.J. Watson Research Center, USA
Tok Wang Ling National University of Singapore, Singapore
Sebastian Link Victoria University of Wellington, New Zealand
Volker Linnemann University of Lübeck, Germany
Chengfei Liu Swinburne University of Technology, Australia
Chuan-Ming Liu National Taipei University of Technology,

Taiwan
Fuyu Liu University of Central Florida, USA

Program Committee XI

Hong-Cheu Liu Diwan University, Taiwan
Hua Liu Xerox Research Center at Webster, USA
Jorge Lloret Gazo University of Zaragoza, Spain
Miguel Ángel López Carmona University of Alcalá de Henares, Spain
Peri Loucopoulos Loughborough University, UK
Chang-Tien Lu Virginia Tech, USA
Jianguo Lu University of Windsor, Canada
Alessandra Lumini University of Bologna, Italy
Cheng Luo Coppin State University, USA
Hui Ma Victoria University of Wellington, New Zealand
Qiang Ma Kyoto University, Japan
Stéphane Maag TELECOM & Management SudParis, France
Nikos Mamoulis University of Hong Kong, Hong Kong
Vladimir Marik Czech Technical University, Czech Republic
Pierre-Francois Marteau Université de Bretagne Sud, France
Elio Masciari ICAR-CNR, Italy
Norman May SAP Research Center, Germany
Jose-Norberto Mazon University of Alicante, Spain
Dennis McLeod University of Southern California, USA
Brahim Medjahed University of Michigan - Dearborn, USA
Harekrishna Misra Institute of Rural Management Anand, India
Jose Mocito INESC-ID/FCUL, Portugal
Lars Mönch FernUniversität in Hagen, Germany
Riad Mokadem IRIT, Paul Sabatier University, France
Yang-Sae Moon Kangwon National University, Korea
Reagan Moore San Diego Supercomputer Center, USA
Franck Morvan IRIT, Paul Sabatier University,

Toulouse, France
Mirco Musolesi University of Cambridge, UK
Ismael Navas-Delgado University of Málaga, Spain
Wilfred Ng University of Science and Technology,

Hong Kong
Javier Nieves Acedo Deusto University, Spain
Selim Nurcan University Paris 1 Pantheon Sorbonne, France
Mehmet Orgun Macquarie University, Australia
Mourad Oussalah University of Nantes, France
Gultekin Ozsoyoglu Case Western Reserve University, USA
George Pallis University of Cyprus, Cyprus
Christos Papatheodorou Ionian University, Corfu, Greece
Marcin Paprzycki Polish Academy of Sciences, Warsaw

Management Academy, Poland
Oscar Pastor Universidad Politecnica de Valencia, Spain
Jovan Pehcevski MIT University, Skopje, Macedonia
Reinhard Pichler Technische Universität Wien, Austria
Clara Pizzuti CNR, ICAR, Italy

XII Program Committee

Jaroslav Pokorny Charles University in Prague, Czech Republic
Giuseppe Polese University of Salerno, Italy
Pascal Poncelet LIRMM, France
Elaheh Pourabbas National Research Council, Italy
Xiaojun Qi Utah State University, USA
Gerald Quirchmayr University of Vienna, Austria and University of

South Australia, Australia
Fausto Rabitti ISTI, CNR Pisa, Italy
Claudia Raibulet Università degli Studi di Milano-Bicocca, Italy
Isidro Ramos Technical University of Valencia, Spain
Praveen Rao University of Missouri-Kansas City, USA
Rodolfo F. Resende Federal University of Minas Gerais, Brazil
Claudia Roncancio Grenoble University / LIG, France
Edna Ruckhaus Universidad Simon Bolivar, Venezuela
Massimo Ruffolo University of Calabria, Italy
Igor Ruiz Agúndez Deusto University, Spain
Giovanni Maria Sacco University of Turin, Italy
Shazia Sadiq University of Queensland, Australia
Simonas Saltenis Aalborg University, Denmark
Demetrios G Sampson University of Piraeus, Greece
Carlo Sansone Università di Napoli “Federico II”, Italy
Igor Santos Grueiro Deusto University, Spain
Ismael Sanz Universitat Jaume I, Spain
N.L. Sarda I.I.T. Bombay, India
Marinette Savonnet University of Burgundy, France
Raimondo Schettini Università degli Studi di Milano-Bicocca, Italy
Klaus-Dieter Schewe Software Competence Centre Hagenberg,

Austria
Erich Schweighofer University of Vienna, Austria
Florence Sedes IRIT Toulouse, France
Nazha Selmaoui University of New Caledonia, France
Patrick Siarry Université Paris 12 (LiSSi), France
Gheorghe Cosmin Silaghi Babes-Bolyai University of Cluj-Napoca,

Romania
Leonid Sokolinsky South Ural State University, Russia
Bala Srinivasan Monash University, Australia
Umberto Straccia Italian National Research Council, Italy
Darijus Strasunskas Norwegian University of Science and

Technology (NTNU), Norway
Lena Stromback Linköpings Universitet, Sweden
Aixin Sun Nanyang Technological University, Singapore
Raj Sunderraman Georgia State University, USA
Ashish Sureka Infosys Technologies Limited, India
David Taniar Monash University, Australia
Cui Tao Brigham Young University, USA

Program Committee XIII

Maguelonne Teisseire LIRMM, Université Montpellier 2, France
Sergio Tessaris Free University of Bozen-Bolzano, Italy
Olivier Teste IRIT, University of Toulouse, France
Stephanie Teufel University of Fribourg, Switzerland
Jukka Teuhola University of Turku, Finland
Taro Tezuka Ritsumeikan University, Japan
Bernhard Thalheim Christian-Albrechts-Universität Kiel, Germany
J.M. Thevenin University of Toulouse, France
Philippe Thiran University of Namur, Belgium
Helmut Thoma University of Basel, Switzerland
A. Min Tjoa Technical University of Vienna, Austria
Vicenc Torra Universitat Autonoma de Barcelona , Spain
Farouk Toumani Université Blaise Pascal, France
Traian Truta Northern Kentucky University, USA
Vassileios Tsetsos National and Kapodistrian University of

Athens, Greece
Theodoros Tzouramanis University of the Aegean, Greece
Roberto Uribeetxebarria Mondragon University, Spain
Genoveva Vargas-Solar LSR-IMAG, France
Maria Vargas-Vera The Open University, UK
Krishnamurthy Vidyasankar Memorial University of Newfoundland, Canada
Marco Vieira University of Coimbra, Portugal
Johanna Völker University of Mannheim, Germany
Jianyong Wang Tsinghua University, China
Junhu Wang Griffith University, Brisbane, Australia
Kewen Wang Griffith University, Brisbane, Australia
Qing Wang University of Otago, Dunedin, New Zealand
Wei Wang University of New South Wales, Sydney,

Australia
Wendy Hui Wang Stevens Institute of Technology, USA
Andreas Wombacher University of Twente, The Netherlands
Lai Xu SAP Research, Switzerland
Hsin-Chang Yang National University of Kaohsiung, Taiwan
Ming Hour Yang Chung Yuan Christian University, Taiwan
Xiaochun Yang Northeastern University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Zhiwen Yu Northwestern Polytechnical University, China
Xiao-Jun Zeng University of Manchester, UK
Zhigang Zeng Huazhong University of Science and

Technology, China
Xiuzhen (Jenny) Zhang RMIT University Australia, Australia
Yanchang Zhao University of Technology, Sydney, Australia
Yu Zheng Microsoft Research Asia, China
Xiaofang Zhou University of Queensland, Australia
Qiang Zhu The University of Michigan, USA

XIV Program Committee

Yan Zhu Southwest Jiaotong University,
Chengdu, China

Urko Zurutuza Mondragon University, Spain

External Reviewers

Mohamad Othman Abdallah University of Grenoble, LIG, France
Sandra de Amo University of Uberlandia, Brazil
Laurence Rodrigues do Amaral Federal University of Goias, Brazil
Sandra de Amo Federal University of Uberlandia, Brazil
Diego Arroyuelo Yahoo! Research Latin America, Chile
Tigran Avanesov INRIA Nancy Grand Est, France
Ali Bahrami Boeing, USA
Zhifeng Bao National University of Singapore, Singapore
Devis Bianchini University of Brescia, Italy
Souad Boukhadouma University of USTHB, Algeria
Paolo Bucciol UDLAP, LAFMIA, Mexico
Diego Ceccarelli ISTI-CNR Pisa, Italy
Camelia Constantin Université Pierre et Marie Curie-Paris VI,

Paris, France
Yan Da University of Science and Technology,

Hong Kong
Matthew Damigos NTUA, Greece
Franca Debole ISTI-CNR Pisa, Italy
Paul de Vreize Bournemouth University, UK
Raimundo F. DosSantos Virginia Tech, USA
Gilles Dubois MODEME, University of Lyon-Jean

Moulin Lyon 3, France
Qiong Fang University of Science and Technology,

Hong Kong
Fabio Fassetti DEIS, University of Calabria, Italy
Ingo Feinerer Vienna University of Technology, Austria
Daniel Fleischhacker University of Mannheim, Germany
Fausto Fleites Florida International University, USA
Filippo Furfaro DEIS, University of Calabria, Italy
Claudio Gennaro ISTI-CNR Pisa, Italy
Panagiotis Gouvas Ubitech EU
Carmine Gravino University of Salerno, Italy
Hsin-Yu Ha Florida International University, USA
Allel Hadj-Ali IRISA-University of Rennes 1, France
Duong Hoang Vienna University of Technology, Austria
Enrique de la Hoz Universidad de Alcala, Spain
Hai Huang Swinburne University of Technology, Australia
Gilles Hubert IRIT, Université Paul Sabatier, Université de

Toulouse, France
Mohammad Rezwanul Huq University of Twente, The Netherlands

Program Committee XV

Saiful Islam Swinburne University of Technology, Australia
Min-Hee Jang Hanyang University, Korea
Hélène Jaudoin IRISA-University of Rennes 1, France
Lili Jiang Lanzhou University, China
Selma Khouri ESI, Algeria
Emin Yigit Koksal Bilkent University, Turkey
Theodorich Kopetzky SCCH - Software Competence Center

Hagenberg, Austria
Olivier le-Goaer University of Pau, France
Paea LePendu Stanford University, USA
Kenneth Leung University of Science and Technology,

Hong Kong
Wenxin Liang Dalian University of Technology, China
Haishan Liu University of Oregon, USA
Rosanne Liu The University of Michigan - Dearborn, USA
Xuezheng Liu Google Inc., USA
Xutong Liu Virginia Tech, USA
Yannick Loiseau LIMOS, Blaise Pascal University, France
Carlos Manuel López Enŕıquez Grenoble INP - UDLAP, LIG-LAFMIA, France
Min Luo Tokyo Institute of Technology, Japan
Laura Maag Alcatel-Lucent Bell-Labs, France
Lucrezia Macchia University of Bari, Italy
Ivan Marsa-Maestre Universidad de Alcala, Spain
Michele Melchiori University of Brescia, Italy
Ruslan Miniakhmetov South Ural State University, Chelyabinsk,

Russia
Ronald Ocampo Florida International University, USA
Anna Oganyan Georgia Southern University, USA
Ermelinda Oro ICAR-CNR, Italy
Francesco Pagliarecci Università Politecnica delle Marche, Italy
Constantin Pan South Ural State University, Chelyabinsk,

Russia
Vassia Pavlaki NTUA, Greece
Olivier Pivert IRISA-University of Rennes 1, France
Xu Pu Tsinghua University, China
Gang Qian University of Central Oklahoma, USA
Michele Risi University of Salerno, Italy
Flavio Rizzolo Business Intelligence Network (BIN), Canada
Edimilson Batista dos Santos Federal University of Rio de Janeiro, Brazil
Federica Sarro University of Salerno, Italy
Vadim Savenkov Vienna University of Technology, Austria
Wei Shen Tsinghua University, China
Grégory Smits IRISA-University of Rennes 1, France
Sofia Stamou Ionian University, Corfu, Greece

XVI Program Committee

Lubomir Stanchev Indiana University - Purdue University
Fort Wayne, USA

Chad M.S. Steel Virginia Tech, USA
Thomas Stocker University of Freiburg, Germany
Nick Amirreza Tahamtan Vienna University of Technology, Austria
Guilaine Talens MODEME, University of Lyon-Jean Moulin

Lyon 3, France
Lu-An Tang University of Illinois at Urbana Champaign,

USA
Caglar Terzi Bilkent University, Turkey
Gabriel Tolosa National University of Lujan, Argentina
Claudio Vairo ISTI-CNR Pisa, Italy
Changzhou Wang Boeing, USA
Yousuke Watanabe Tokyo Institute of Technology, Japan
Andreas Weiner University of Kaiserslautern, Germany
Yimin Yang Florida International University, USA
Soek-Ho Yoon Hanyang University, Korea
Sira Yongchareon Swinburne University of Technology, Australia
Tomoki Yoshihisa Osaka University, Japan
Jing Yuan University of Science and Technology of China,

China
Chao Zhu The University of Michigan - Dearborn, USA
Mikhail Zymbler South Ural State University, Chelyabinsk,

Russia

Table of Contents – Part II

XML Querying and Views

On Equivalence and Rewriting of XPath Queries Using Views under
DTD Constraints . 1

Pantelis Aravogliadis and Vasilis Vassalos

Incremental Maintenance of Materialized XML Views 17
Leonidas Fegaras

Ingredients for Accurate, Fast, and Robust XML Similarity Joins 33
Leonardo Andrade Ribeiro and Theo Härder

Twig Pattern Matching: A Revisit . 43
Jiang Li, Junhu Wang, and Maolin Huang

Boosting Twig Joins in Probabilistic XML . 51
Siqi Liu and Guoren Wang

Data Mining

Prediction of Cerebral Aneurysm Rupture Using Hemodynamic,
Morphologic and Clinical Features: A Data Mining Approach 59

Jesus Bisbal, Gerhard Engelbrecht, Mari-Cruz Villa-Uriol, and
Alejandro F. Frangi

Semantic Translation for Rule-Based Knowledge in Data Mining 74
Dejing Dou, Han Qin, and Haishan Liu

Mining Frequent Disjunctive Selection Queries . 90
Inès Hilali-Jaghdam, Tao-Yuan Jen, Dominique Laurent, and
Sadok Ben Yahia

A Temporal Data Mining Framework for Analyzing Longitudinal
Data . 97

Corrado Loglisci, Michelangelo Ceci, and Donato Malerba

How to Use “Classical” Tree Mining Algorithms to Find Complex
Spatio-Temporal Patterns? . 107

Nazha Selmaoui-Folcher and Frédéric Flouvat

XVIII Table of Contents – Part II

Queries and Search

Inferring Fine-Grained Data Provenance in Stream Data Processing:
Reduced Storage Cost, High Accuracy . 118

Mohammad Rezwanul Huq, Andreas Wombacher, and
Peter M.G. Apers

Approximate Query on Historical Stream Data . 128
Qiyang Duan, Peng Wang, MingXi Wu, Wei Wang, and
Sheng Huang

An Incremental Approach to Closest Pair Queries in Spatial Networks
Using Best-First Search . 136

Chunan Chen, Weiwei Sun, Baihua Zheng, Dingding Mao, and
Weimo Liu

Fast Top-K Query Answering . 144
Claus Dabringer and Johann Eder

Towards an On-Line Analysis of Tweets Processing 154
Sandra Bringay, Nicolas Béchet, Flavien Bouillot, Pascal Poncelet,
Mathieu Roche, and Maguelonne Teisseire

The Fix-Point Method for Discrete Events Simulation Using SQL and
UDF . 162

Qiming Chen, Meichun Hsu, and Bin Zhang

Semantic Web

Approximate and Incremental Processing of Complex Queries against
the Web of Data . 171

Thanh Tran, Günter Ladwig, and Andreas Wagner

Conjunctive Query Optimization in OWL2-DL . 188
Petr Křemen and Zdeněk Kouba

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 203
Jordi Creus Tomàs, Bernd Amann, Nicolas Travers, and
Dan Vodislav

Information Retrieval

The Linear Combination Data Fusion Method in Information
Retrieval . 219

Shengli Wu, Yaxin Bi, and Xiaoqin Zeng

Approaches and Standards for Metadata Interoperability in Distributed
Image Search and Retrieval . 234

Ruben Tous, Jordi Nin, Jaime Delgado, and Pere Toran

Table of Contents – Part II XIX

A Distributed Architecture for Flexible Multimedia Management and
Retrieval . 249

Mihaela Brut, Dana Codreanu, Stefan Dumitrescu,
Ana-Maria Manzat, and Florence Sedes

Business Applications

Deontic BPMN . 264
Christine Natschläger

Improving Stock Market Prediction by Integrating Both Market News
and Stock Prices . 279

Xiaodong Li, Chao Wang, Jiawei Dong, Feng Wang,
Xiaotie Deng, and Shanfeng Zhu

Querying Semantically Enriched Business Processes 294
Michele Missikoff, Maurizio Proietti, and Fabrizio Smith

Introducing Affective Agents in Recommendation Systems Based on
Relational Data Clustering . 303

João C. Xavier-Junior, Alberto Signoretti, Anne M.P. Canuto,
Andre M. Campos, Luiz M.G. Gonçalves, and Sergio V. Fialho

Converting Conversation Protocols Using an XML Based Differential
Behavioral Model . 311

Claas Busemann and Daniela Nicklas

User Support

Facilitating Casual Users in Interacting with Linked Data through
Domain Expertise . 319

Cormac Hampson and Owen Conlan

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring
Image Databases . 334

Cormac Hampson, Meltem Gürel, and Owen Conlan

Indexing

SkyMap: A Trie-Based Index Structure for High-Performance Skyline
Query Processing . 350

Joachim Selke and Wolf-Tilo Balke

A Path-Oriented RDF Index for Keyword Search Query Processing 366
Paolo Cappellari, Roberto De Virgilio, Antonio Maccioni, and
Mark Roantree

XX Table of Contents – Part II

Variable Length Compression for Bitmap Indices . 381
Fabian Corrales, David Chiu, and Jason Sawin

Queries, Views and Data Warehouses

Modeling View Selection as a Constraint Satisfaction Problem 396
Imene Mami, Remi Coletta, and Zohra Bellahsene

Enabling Knowledge Extraction from Low Level Sensor Data 411
Paolo Cappellari, Jie Shi, Mark Roantree, Crionna Tobin, and
Niall Moyna

Join Selectivity Re-estimation for Repetitive Queries in Databases 420
Feng Yu, Wen-Chi Hou, Cheng Luo, Qiang Zhu, and Dunren Che

Matching Star Schemas . 428
Dariush Riazati and James A. Thom

Ontologies

Automated Construction of Domain Ontology Taxonomies from Wikipedia 439
Damir Jurić, Marko Banek, and Zoran Skočir

Storing Fuzzy Ontology in Fuzzy Relational Database 447
Fu Zhang, Z.M. Ma, Li Yan, and Jingwei Cheng

Using an Ontology to Automatically Generate Questions for the
Determination of Situations . 456

Marten Teitsma, Jacobijn Sandberg, Marinus Maris, and
Bob Wielinga

Physical Aspects of Databases

Indexing Frequently Updated Trajectories of Network-Constrained
Moving Objects . 464

Zhiming Ding

Online Index Selection in RDBMS by Evolutionary Approach 475
Piotr Ko�laczkowski and Henryk Rybiński

Towards Balanced Allocations for DHTs . 485
George Tsatsanifos and Vasilis Samoladas

Caching Stars in the Sky: A Semantic Caching Approach to Accelerate
Skyline Queries . 493

Arnab Bhattacharya, B. Palvali Teja, and Sourav Dutta

Table of Contents – Part II XXI

Design

Generating Synthetic Database Schemas for Simulation Purposes 502
Carlos Eduardo Pires, Priscilla Vieira, Márcio Saraiva, and
Denilson Barbosa

A New Approach for Fuzzy Classification in Relational Databases 511
Ricardo Hideyuki Tajiri, Eduardo Zanoni Marques,
Bruno Bogaz Zarpelão, and Leonardo de Souza Mendes

Anomaly Detection for the Prediction of Ultimate Tensile Strength in
Iron Casting Production . 519

Igor Santos, Javier Nieves, Xabier Ugarte-Pedrero, and
Pablo G. Bringas

Distribution

LinkedPeers : A Distributed System for Interlinking Multidimensional
Data . 527

Athanasia Asiki, Dimitrios Tsoumakos, and Nectarios Koziris

A Vertical Partitioning Algorithm for Distributed Multimedia
Databases . 544

Lisbeth Rodriguez and Xiaoou Li

Diffusion in Dynamic Social Networks: Application in Epidemiology 559
Erick Stattner, Martine Collard, and Nicolas Vidot

Miscellaneous Topics

Probabilistic Quality Assessment Based on Article’s Revision History . . . 574
Jingyu Han, Chuandong Wang, and Dawei Jiang

Propagation of Multi-granularity Annotations . 589
Ryo Aoto, Toshiyuki Shimizu, and Masatoshi Yoshikawa

Author Index . 605

Table of Contents – Part I

Keynote Talks

Principles of Distributed Data Management in 2020? 1
Patrick Valduriez

The Science of Conceptual Modelling . 12
Bernhard Thalheim

Probabilistic Logics in Expert Systems: Approaches, Implementations,
and Applications . 27

Gabriele Kern-Isberner, Christoph Beierle, Marc Finthammer, and
Matthias Thimm

Query Processing

Multi-objective Optimal Combination Queries . 47
Xi Guo and Yoshiharu Ishikawa

NEFOS: Rapid Cache-Aware Range Query Processing with
Probabilistic Guarantees . 62

Spyros Sioutas, Kostas Tsichlas, Ioannis Karydis,
Yannis Manolopoulos, and Yannis Theodoridis

Reuse-Oriented Mapping Discovery for Meta-querier Customization 78
Xiao Li and Randy Chow

Database Semantics

Attribute Grammar for XML Integrity Constraint Validation 94
Béatrice Bouchou, Mirian Halfeld Ferrari, and
Maria Adriana Vidigal Lima

Extracting Temporal Equivalence Relationships among Keywords from
Time-Stamped Documents . 110

Parvathi Chundi, Mahadevan Subramaniam, and
R.M. Aruna Weerakoon

Codd Table Representations under Weak Possible World Semantics 125
Flavio Ferrarotti, Sven Hartmann, Van Bao Tran Le, and
Sebastian Link

XXIV Table of Contents – Part I

Skyline Queries

Efficient Early Top-k Query Processing in Overloaded P2P Systems 140
William Kokou Dédzoé, Philippe Lamarre, Reza Akbarinia, and
Patrick Valduriez

Top-k Query Evaluation in Sensor Networks with the Guaranteed
Accuracy of Query Results . 156

Baichen Chen, Weifa Liang, and Geyong Min

Learning Top-k Transformation Rules . 172
Sunanda Patro and Wei Wang

Security and Privacy

Privacy beyond Single Sensitive Attribute . 187
Yuan Fang, Mafruz Zaman Ashrafi, and See Kiong Ng

Privacy-Aware DaaS Services Composition . 202
Salah-Eddine Tbahriti, Michael Mrissa, Brahim Medjahed,
Chirine Ghedira, Mahmoud Barhamgi, and Jocelyne Fayn

An Empirical Study on Using the National Vulnerability Database to
Predict Software Vulnerabilities . 217

Su Zhang, Doina Caragea, and Xinming Ou

Spatial and Temporal Data

Similar Subsequence Search in Time Series Databases 232
Shrikant Kashyap, Mong Li Lee, and Wynne Hsu

Optimizing Predictive Queries on Moving Objects under Road-Network
Constraints . 247

Lasanthi Heendaliya, Dan Lin, and Ali Hurson

Real-Time Capable Data Management Architecture for
Database-Driven 3D Simulation Systems . 262

Jürgen Roßmann, Michael Schluse, Ralf Waspe, and Martin Hoppen

Collecting and Managing Network-Matched Trajectories of Moving
Objects in Databases . 270

Zhiming Ding and Ke Deng

On Guaranteeing k-Anonymity in Location Databases 280
Anh Tuan Truong, Tran Khanh Dang, and Josef Küng

Table of Contents – Part I XXV

Semantic Web Search

Smeagol: A “Specific-to-General” Semantic Web Query Interface
Paradigm for Novices . 288

Aaron Clemmer and Stephen Davies

Browsing-Oriented Semantic Faceted Search . 303
Andreas Wagner, Günter Ladwig, and Thanh Tran

An Efficient Algorithm for Topic Ranking and Modeling Topic
Evolution . 320

Kumar Shubhankar, Aditya Pratap Singh, and Vikram Pudi

Sampling the National Deep Web . 331
Denis Shestakov

A Bipartite Graph Model and Mutually Reinforcing Analysis for
Review Sites . 341

Kazuki Tawaramoto, Junpei Kawamoto, Yasuhito Asano, and
Masatoshi Yoshikawa

Storage and Search

Genetic Algorithm for Finding Cluster Hierarchies 349
Christian Böhm, Annahita Oswald, Christian Richter,
Bianca Wackersreuther, and Peter Wackersreuther

A File Search Method Based on Intertask Relationships Derived from
Access Frequency and RMC Operations on Files . 364

Yi Wu, Kenichi Otagiri, Yousuke Watanabe, and Haruo Yokota

A General Top-k Algorithm for Web Data Sources 379
Mehdi Badr and Dan Vodislav

Improving the Quality of Web Archives through the Importance of
Changes . 394

Myriam Ben Saad and Stéphane Gançarski

Web Search

Alternative Query Generation for XML Keyword Search and Its
Optimization . 410

Tetsutaro Motomura, Toshiyuki Shimizu, and Masatoshi Yoshikawa

K-Graphs: Selecting Top-k Data Sources for XML Keyword Queries 425
Khanh Nguyen and Jinli Cao

XXVI Table of Contents – Part I

Detecting Economic Events Using a Semantics-Based Pipeline 440
Alexander Hogenboom, Frederik Hogenboom, Flavius Frasincar,
Uzay Kaymak, Otto van der Meer, and Kim Schouten

Edit Distance between XML and Probabilistic XML Documents 448
Ruiming Tang, Huayu Wu, Sadegh Nobari, and Stéphane Bressan

Towards an Automatic Characterization of Criteria 457
Benjamin Duthil, François Trousset, Mathieu Roche, Gérard Dray,
Michel Plantié, Jacky Montmain, and Pascal Poncelet

Data Integration, Transactions and Optimization

A Theoretical and Experimental Comparison of Algorithms for the
Containment of Conjunctive Queries with Negation 466

Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

Data Integration over NoSQL Stores Using Access Path Based
Mappings . 481

Olivier Curé, Robin Hecht, Chan Le Duc, and Myriam Lamolle

An Energy-Efficient Concurrency Control Algorithm for Mobile Ad-Hoc
Network Databases . 496

Zhaowen Xing and Le Gruenwald

Web Applications

An Ontology-Based Method for Duplicate Detection in Web Data
Tables . 511

Patrice Buche, Juliette Dibie-Barthélemy, Rania Khefifi, and
Fatiha Säıs

Approaches for Semantically Annotating and Discovering Scientific
Observational Data . 526

Huiping Cao, Shawn Bowers, and Mark P. Schildhauer

A Scalable Tag-Based Recommender System for New Users of the
Social Web . 542

Valentina Zanardi and Licia Capra

Author Index . 559

On Equivalence and Rewriting of XPath Queries

Using Views under DTD Constraints

Pantelis Aravogliadis and Vasilis Vassalos

Department of Informatics, Athens University of Economics and Business,
Athens, Greece

Abstract. It has long been recognized that query rewriting techniques
are important tools for query optimization and semantic caching and are
at the heart of data integration systems. In particular, the problem of
rewriting queries using view definitions has received a lot of attention in
these contexts. At the same time, the XPath language has become very
popular for processing XML data, and there is much recent progress
in semantic XPath optimization problems, such as XPath containment,
and, more recently, XPath rewriting using views. In this paper we address
the open problems of finding equivalent query rewritings using views for
XPath queries and views that include the child, predicate and wildcard
features (i.e., they are in XP (/, [], ∗)) under DTD constraints. In the
process, we also develop novel containment tests for queries inXP (/, [], ∗)
under DTD constraints.

Keywords: XML data, XPath processing, query rewriting using views.

1 Introduction

XML has become a widely used standard for data representation and exchange
over the Internet. To address the increasing need to query and manipulate XML
data, the W3C has proposed the XML query language XQuery [7]. XPath [6] is
the XQuery subset for navigating XML documents, and is designed to be embed-
ded in a host language such as XQuery. XPath expressions often define compli-
cated navigation, resulting in expensive query processing. Numerous techniques
to speed up evaluation of XPath queries have been developed (e.g. [8]). Rewriting
queries using materialized views is known to provide a powerful tool for query
optimization, semantic caching, and data integration, for both relational and
semistructured data (e.g, see [12,19]), and consequently the rewriting challenge
for XPath queries and views has started receiving more attention [1,3,14,23,26].

The rewriting query using views problem is traditionally formulated in two
different ways. In the equivalent rewriting formulation, the problem is, given a
query q and a view v, to find a rewriting of q using v that is equivalent to q. This
formulation is motivated by classical query optimization and solutions to the
problem address the problem of speeding up XPath query evaluation [1,3,26].
The maximally-contained rewriting problem is the problem of finding, given a
query q and a view v, a rewriting of q using v that is contained in q and is

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 P. Aravogliadis and V. Vassalos

maximal. This problem arises mostly in the context of information integration,
where we cannot always find an equivalent rewriting due to limited coverage of
data sources [14,23].

Even though there is important progress in the equivalent rewriting problem
for various fragments of XPath (see [1,26] and also Sections 3 and 5 for more
discussion), existing work assumes the absence of schema constraints. Given the
many business, scientific and other uses of XML where schema information is
widely available, the problem of equivalent query rewriting in the presence of a
schema is at least equally important. Using Document Type Definitions (DTDs)
as our schema language, we present the following results:

– Novel sound and complete algorithms for the containment and the query
rewriting problem for XPath queries and views in XP(/,[],*) under a duplicate-
free DTD or an acyclic and choice-free DTD. The algorithms are based on a
novel containment test relying on the extraction of appropriate constraints
from the DTD.

– While the above mentioned algorithm is in PTIME for choice-free DTD,
it is in EXPTIME for duplicate-free DTD. Hence we also develop sound
polynomial algorithms for the containment and the XPath query rewriting
using views problems for XPath queries and views in XP(/,[],*) under a
duplicate-free DTD. The algorithms are shown to be complete when the
query meets a specific condition, namely its C-satisfying set (section 4.1) is
not empty.

The paper is organized as follows: Section 2 reviews the necessary material con-
cerning XPath, tree pattern queries and techniques for XPath containment. The
problem of XPath query rewriting is formally defined in Section 3, where known
results (in the absence of schema information) are also discussed. Section 4 devel-
ops the containment tests for XP (/, [], ∗) as well as the two rewriting algorithms
mentioned above. Section 5 presents the related work, and we conclude with
Section 6 where we discuss ongoing and future work.

2 XPath, DTD and XPath Containment

We first give some definitions for the XPath language and DTDs. Then we
discuss the XPath query containment problem. The definitions follow closely [15]
and [26].

2.1 XPath and Tree Pattern Queries

XML documents are modeled as rooted, ordered, unranked node-labeled trees,
called XML trees, over an infinite alphabet S. We denote all XML trees over S
as TS . Given an XML tree t, following [26], for any node n in t we denote the
subtree of t rooted at n as (t)n

sub.

On Equivalence and Rewriting of XPath Queries 3

Every XPath query in XP (/, //, [], ∗) can be represented as a labeled tree,
called a tree pattern, which we define in Definition 1.

Definition 1. A tree pattern p is a tree 〈Vp, Ep, rp, op〉 over S ∪ {∗}, where Vp

is the node set and Ep is the edge set, and: (i) Each node n ∈ Vp has a label from
S ∪ {∗}, denoted as n.label, (ii) Each edge e ∈ Ep has a label from {′/′,′ //′},
denoted as e.label, and (iii) rp, op ∈ Vp are the root and the selection node of p
respectively.

An edge with label / is called a child edge, otherwise a descendant edge. Given
a pattern p〈Vp, Ep, rt, op〉 we say that p′〈Vp′ , Ep′ , rp′ , op′〉 is a subpattern of p
if the following conditions hold: (1) Vp′ ⊆ Vp, (2) Ep′ = (Vp′ ×Vp′)∩Ep, and (3)
if op ∈ Vp′ , then op is also the selection node of p′. We denote with (p)n

sub the
subpattern of p rooted at node n ∈ Vp and containing all descendants of n. We
next provide the definition of the notion of embedding from a tree pattern to an
XML tree.

Definition 2. [15] Given an XML tree t〈Vt, Et, rt〉 and a pattern p〈Vp, Ep, rp, op〉,
an embedding from p to t is a function e : Vp → Vt, with the following properties:
(i) root preserving: e(rp) = rt, (ii) label preserving: ∀n ∈ Vp, if n.label �=′ ∗′,
then n.label = e(n).label, and (iii) structure preserving: ∀e′ = (n1, n2) ∈ Ep, if
e′.label =′ /′ then e(n2) is a child of e(n1) in t ; otherwise e(n2) is a descendant
of e(n1) in t.

Each embedding maps the selection node op of p to a node n in t. We say that
the subtree (t)n

sub of t is the result of the embedding. We can now define the
result of evaluating the tree pattern query p over an XML tree t.

Definition 3. Given a tree pattern query p and an XML tree t, then the result
of evaluating p over t, denoted as p(t), is defined as: p(t) = ∪e∈EB{(t)e(op)

sub },
where EB is the set of all embeddings from p to t.

2.2 Schema and DTDs

DTDs provide a means for typing, and therefore constraining, the structure of
XML documents. We provide a formal definition of a DTD.

Definition 4. A DTD D over a finite alphabet S consists of a start symbol,
denoted as root(D), and a mapping for each symbol a ∈ S to a regular expres-
sion over S. Every such mapping is called a rule of the DTD and the regular
expression corresponding to a is denoted as Ra.

A tree t ∈ TS satisfies a DTD D over S if root(t).label = root(D).label and, for
each node x in t with a sequence of children y1, . . . , yn, the string y1.label, . . . ,
yn.label is in L(Rx.label), i.e., in the regular language described by the regular
expression on the right-hand side of a rule with left-hand side x.label. The set
of trees satisfying DTD D is denoted as SAT (D).

4 P. Aravogliadis and V. Vassalos

In the following, we will consider two categories of DTDs, duplicate-free DTDs
and acyclic and choice-free DTDs. An acyclic and choice-free DTD does not
contain alternation in any of its rules and also does not support recursion. A DTD
is duplicate-free if in each right-hand side of any DTD rule each element name
appears at most once. According to [17] most real-wold DTDs are duplicate-free
DTDs.

2.3 XPath Query Containment

XPath query containment is central to most query rewriting algorithms. We
briefly discuss techniques applicable to this problem for subsets of the expressive
XPath fragment XP (/, //, [].∗). We also present an overview of relevant results
for XPath containment under DTD constraints, focusing especially on the use
of the chase [14,25]. Table 1 in appendix shows known complexity results for the
query containment problem with or without DTD constraints for several XPath
fragments.

Query Containment in the absence of schema. For an XML tree t and
an XPath query q we have that t |= q if q(t) �= ∅. We define the boolean XPath
query containment problem.

Definition 5. XPath query p is contained in q, denoted as p ⊆0 q, if and only
if t |= p implies t |= q , for every XML tree t.

According to [13] a more general setting of the containment problem, which is
XPath query p is contained in q, denoted as p ⊆ q, if and only if p(t) ⊆ q(t) for
every XML tree t, can be polynomially on the number of query nodes reduced
to the boolean containment problem. Also, XPath query p is equivalent to q,
denoted as p ≡ q, if and only if p ⊆ q and q ⊆ p.

We can reason about query containment using the canonical models technique
[15,20]. Although this technique provides a sound and complete algorithm for
the containment problem in XP (/, //, [], ∗), it is exponential to the number of
descendant edges of the query. On the contrary, the homomorphism technique
[15,20] provides a sound and complete polynomial algorithm only for the con-
tainment problem for the subfragments of XP (/, //, [], ∗), i.e. for XP (/, //, []),
XP (/, //, ∗) and XP (/, [], ∗).

We briefly describe the homomorphism technique as we will adapt and make
use of it in what follows.

Definition 6. A homomorphism from tree pattern q to tree pattern p is a func-
tion h : nodes(q) → nodes(p) such that: (1) The root of q must be mapped to the
root of p, (2) If (u, v) is a child-edge of q then (h(u), h(v)) is a child-edge in p,
(3) If (u, v) is a descendant-edge of q then h(v) has to be below h(u) in p, and
(4) if u is labeled with e �= ∗ then h(u) also has to carry label e.

The existence of a homomorphism is a necessary and sufficient condition for con-
tainment decision in the subfragments of XP (/, //, [], ∗), though is only sufficient
for fragment XP (/, //, [], ∗) [15].

On Equivalence and Rewriting of XPath Queries 5

Query Containment with DTDs. In the presence of a DTD, the definition
of containment between two XPath queries is as follows.

Definition 7. Given two XPath queries p, q, then q D-contains p, written
p ⊆SAT (D) q, if for every tree t ∈ SAT (D) it holds p(t) ⊆ q(t).

The containment problem for XP (/, []) in the presence of a duplicate-free DTD
is in PTIME [25] and for XP (/, //, []) under an acyclic and choice-free DTD is
also in PTIME [14]. In order to decide efficiently the containment problem the
chase technique [14,25] has been employed. The basic idea is to chase one of the
two queries with a set of constraints extracted from the DTD and then decide
containment between the queries with the homomorphism technique. Two of
these constraints, which we use in section 4.1 are the Sibling (SC) and Functional
(FC) Constraints [25]. An XML tree t satisfies the SC a: B ⇓ c if whenever a
node labeled a in t has children labeled from set B then it has a child node
labeled c. Also, t satisfies the FC a ↓ b if no node labeled a in t has two distinct
children labeled with b.

A chasing sequence of a query p by a set of Constraints C extracted from a
DTD is a sequence p = p0, . . . , pk such that for each 0 ≤ i ≤ k − 1, pi+1 is the
result of applying some constraint in C to pi , and no constraint can be applied
to pk. We define the pk expression as the chase of p by C, denoted as chaseC(p).

3 XPath Query Rewriting

We first provide the definition of the concatenation operator between two tree
patterns, as in [26].

Definition 8. Given two tree pattern queries p, q then the concatenation op-
erator, denoted as ⊕, when applied on them as p ⊕ q results in a tree pattern
constructed by merging the root of p, denoted as rp, and the selection node of
q, denoted as oq, into one node, provided that their labels are compatible that is
(1) they carry the same label or (2) at least one of them is wildcard labeled. The
merged node is labeled with their common label (case 1) or the non-wildcard label
(case 2) and rq,op are the root and the selection node of p⊕ q respectively.

Given a tree pattern query q and a DTD D, then q is D-satisfiable if there is an
XML tree t that satisfies D such that q(t) �= ∅. We now give the definition of
equivalent XPath query rewriting in the presence of a DTD.

Definition 9. Given a DTD D, an XPath query q and a view v, which are
D-satisfiable, the query rewriting problem is formulated as an: (1) Existence
Problem: Decide if q is rewritable using view v, which is decide if a compensation
query e exists s.t. e ⊕ v ≡SAT (D) q, or a (2) Construction Problem: Find this
compensation query e and thus the equivalent rewriting is the XPath expression
e⊕ v 1.
1 In the absence of intersection, we cannot use more than one view in a rewriting in
this setting.

6 P. Aravogliadis and V. Vassalos

3.1 Rewriting in the Absence of Schema

To the best of our knowledge there is no existing work addressing the problem in
Definition 9. However, the equivalent rewriting problem in the absence of schema
is addressed by Xu and Özsoyoglu [26]. The following theorem from [26] provides
a basis for deciding the equivalent rewriting existence problem.

Theorem 1. Let u, p be two tree patterns in the subfragments of XP (/, //, [], ∗),
and let the selection node of u be the i-th node in its selection path (i.e. the path
from root of u to its selection node) while np be the i-th node in the selection
path of p, then: if a compensation pattern p′ of p using u exist, the subpattern
(p)np

sub of p is a compensation pattern of p using u.

Theorem 1 reduces the equivalent rewriting existence problem to the decision
problem of whether (p)np

sub ⊕u ≡ p. Since for the subfragments of XP (/, //, [], ∗)
the equivalence problem is in PTIME, the rewriting existence problem in these
fragments is in PTIME.

4 Query Rewriting and Containment in the Presence of
DTD

In this section we address the query containment and the equivalent query rewrit-
ing problem in the presence of a DTD for the XPath fragment XP (/, [], ∗).

4.1 The XPath Fragment XP (/, [], ∗) with Duplicate-Free DTD

We discuss the containment and the equivalent rewriting problem for XPath
expressions in XP (/, [], ∗) under the assumption that the considered DTDs are
duplicate-free. In order to provide an efficient solution we will attempt to reduce
the DTD into an appropriate set of constraints, thus reducing the necessary
containment test under a DTD to a containment test under said constraints.
Then we will develop the rewriting algorithm by again appropriately utilizing
Theorem 1. Following this approach we will develop a sound algorithm. Getting
a sound and complete algorithm will require a non-trivial extension, as shown
in the remaining of section 4.1.

Query Containment for XP (/, [], ∗). Containment of queries in XP (/, [], ∗)
in the presence of a duplicate free DTD is CoNP-hard [17]. In this section we
provide a PTIME algorithm for the containment problem that is always sound,
and is complete when the query meets a particular condition (described in Defi-
nition 10 and Theorem 2). Then we proceed to give an unconditional sound and
complete EXPTIME algorithm.

Towards the efficient solution we describe first the constraints that need to
be inferred by a duplicate-free DTD D. Since the XPath fragment we consider
includes only the child axis we will see that we need to infer only Sibling (SC),
Functional (FC) [25] and the newly defined Unique child (UC) constraints. A

On Equivalence and Rewriting of XPath Queries 7

Unique child constraint, denoted as UC: a → b, declares that if a node labeled
a in an XML tree t has children, then all of them are labeled with b. Extracting
a UC from a duplicate-free DTD is in PTIME since every rule a → b or a → b∗
from a DTD D yields the a → b UC.

To handle the wildcard labeled nodes we define the corresponding wildcard
versions of the previously mentioned constraints. Let S be the finite alphabet
over which the DTD D is defined. From the set of SCs S′ ⊆ C, we extract the
wildcard applicable SCs (WSC) as follows. If in S′ there are SCs of the
form x: B ⇓ c for every x ∈ S such that x has children with labels in B, a WSC
with the form ∗: B ⇓ c is derived. Also, from the set of FCs F ⊆ C, we extract
the wildcard applicable FCs (WFC) as follows. If there are FCs in F of the
form x ↓ b for every x ∈ S, a WFC of the form ∗ ↓ b is inferred . Finally, from
the set of UCs UI ⊆ C, we extract the wildcard applicable UCs (WUC). If
there are UCs in UI of the form x → b for every x ∈ S, a WUC the form ∗ → b
is inferred.

We observe that the alphabet S from which the labels of any tree t satisfying
D come from is finite. Therefore, we note that the “options” for the wildcards in
XPath expressions in XP (DTD, /, [], ∗) are finite (we will use this observation
in the algorithms of Section 4.1). Furthermore, all the above constraints can
be extracted in PTIME, just following the definitions and utilizing the PTIME
extraction of SCs and FCs from duplicate-free DTDs [25]. In the following, we
use terms FC, SC and UC meaning also the WFC, WSC and WUC constraints.

Let p be a query in XP (/, [], ∗) and C be the set of SCs, FCs and UCs implied
by a DTD D. We describe how to chase p applying these constraints inspired by
[25]:

Sibling Constraints: Let s ∈ C be a SC of the form a: B ⇓ c or a WSC of
the form ∗: B ⇓ c, where B = {b1, . . . , bn}. Let u be a node of p with children
v1, . . . , vn, such that u.label = a for the SC case or u.label = ∗ for the WSC case
and vi.label = bi, 1 ≤ i ≤ n, and u does not have a child labeled c, then the
chase result on p will be the adding of a child-edge to p between u and c.

Functional Constraints: Let f ∈ C be a FC of the form a ↓ b or a WFC of
the form ∗ ↓ b. Let u be a node of p with distinct children v and w, such that
u.label = a for the FC case or u.label = ∗ for the WFC case and v.label =
w.label = b, then the chase result on p is the merging of v, w of p.

Unique Child Constraints: Let ui ∈ C be a UC of the form a → b or a WUC
of the form ∗ → b. Let u be a node of p with distinct wildcard or b labeled
children v1, . . . , vn (and for at least one vi, vi.label = b in the WUC case), such
that u.label = a for the UC case or u.label = ∗ for the WUC case, then the chase
result on p is turning the labels of v1, . . . , vn to b.

Lemma 1. Let D be a duplicate-free DTD. Then q ≡SAT (D) chaseC(q).

Moreover, containment of query q in p under the set of constraints C is reducible
to containment of chaseC(q) in p.

8 P. Aravogliadis and V. Vassalos

Lemma 2. Let D be a duplicate-free DTD and C be the set of FCs, SCs and
UCs implied by D. For XP (/, [], ∗) queries p and q it holds p ⊇SAT (C) q if and
only if p ⊇ chaseC(q).

Proof. See proof in [2]. ��
Given the above, we would like to show that p ⊇SAT (D) q if and only if p ⊇SAT (C)

q. As it turns out, this is not always the case for queries in XP (/, [], ∗). The
following definition adopted from [25] helps in proving the required condition
under which it holds that p ⊇SAT (D) q if and only if p ⊇SAT (C) q.

Definition 10. [25] Let q be a D-satisfiable query in XP (/, [], ∗) in the presence
of DTD D and R ⊆ SAT (D) be the set of trees with a subtree 1-1 homomorphic
to chaseC(q). We call R the C-satisfying set for q. Each tree in R has a
core subtree which is 1-1 homomorphic to chaseC(q) and each node in that core
subtree is called core node. Each node which is not a core node is called a
non-core node.

Specifically, we have proven theorem 2 using lemma 3.

Lemma 3. Let D be a duplicate-free DTD and p, q be queries in XP (/, [], ∗).
Let q be D-satisfiable, C be the set of SCs, FCs and UCs implied by D, and R
the C-satisfying set for q, such that R �= ∅. If p ⊇SAT (D) q, then for each node
w in p, either w can be mapped to a core node in every tree in R or w can be
mapped to a non-core node in every tree in R.

Theorem 2. Let D be a duplicate-free DTD and C be the set of FCs, SCs, UCs
implied by D. Let p, q be queries in XP (/, [], ∗), such that the C-satisfying set
for q R �= ∅. Then p ⊇SAT (D) q if and only if p ⊇SAT (C) q.

Proof. (if) Assume p ⊇SAT (C) q then p ⊇SAT (D) q, because SAT (C) ⊇ SAT (D).
(only if) Assume p ⊇SAT (D) q but p �⊇SAT (C) q. We will derive a contradiction.

Since there is an embedding from q to every t ∈ R and p ⊇SAT (D) q, then there
is also an embedding from p to every tree t ∈ R.

If p �⊇SAT (C) q then by lemma 2 there is no homomorphism from p to
chaseC(q). We have the following two cases:

Case A: a single path in p fails to map to any path in chaseC(q) : There is
a node x in p with parent y, such that y is mapped to a node in chaseC(q) but
no mapping from x to any node in chaseC(q) exists. We originally consider that
node y does not map to a leaf in chaseC(q), which means that x.label can not
be wildcard. So in any t ∈ R, x can never be mapped to a core node while y can
always be mapped to a core node u. Lemma 3 and p ⊇SAT (D) q imply that x
can always be mapped to a non-core node v in t ∈ R. Since v is a non-core node
and x can not be mapped to a core node, D can not imply the SC u: B ⇓ v,
where u and v are the nodes that y and x mapped in a t ∈ R and B is the set
of core node children of u. The same holds, if node y is mapped to a wildcard
labeled node in chaseC(q). This is because D can not imply the SC ∗: B ⇓ v,
which means there is a node labeled u that D can not imply the SC u: B ⇓ v.

On Equivalence and Rewriting of XPath Queries 9

So, there must be a tree U ∈ SAT (D) which has a node w labeled the same as
u and children labeled from B, but with no child labeled as v node. Then, we
can replace the non-core child subtrees of u by the non-core child subtrees of w
and still have a tree t′ ∈ R. Node x can not be mapped to any non-core node in
t′. - A contradiction.

If we consider that the path in p, which fails to map to any path in chaseC(q),
is shorter from every path in chaseC(q) (i.e. y is mapped to a leaf node in
chaseC(q)) then we have two cases: (i) For the non wildcard-labeled leaves in
chaseC(q), D can not imply the SC u: ∅ ⇓ v, which means that either p is
unsatisfiable or the arguments in the proof still hold, (ii) For the wildcard-
labeled leafs in chaseC(q), D can not imply the SC ∗: ∅ ⇓ v, which means there
is at least one node labeled say u that can not have as child a node labeled v. If
all nodes can not have as child a node v, then p is unsatisfiable. If at least one
node can have as child node v, then the proof’s arguments still hold.

Case B: each path in p can map but for some node w which is common ancestor
of nodes u and v, the two mapped paths for u and v in chaseC(q) can not be
joint on w : Let wn be the common ancestor of u, v that is closest to the root
of p, such that the path from root to u via wn (i.e. root → wn → u) maps to
a path in chaseC(q) using homomorphism h1 and the path from root to v via
wn (i.e. root → wn → v) maps to a path in chaseC(q) using homomorphism h2,
but h1(wn) �= h2(wn). Since chaseC(q) has a single root and h1(wn) �= h2(wn),
then none of these nodes labeled the same as wn is chaseC(q) root. Therefore,
wo, the root of chaseC(q), is a parent of two children labeled the same as wn

and for the root of p, say wpo, it holds h1(wpo) = h2(wpo) = wo.
Case B1 wn.label �= ∗ : Note that D can not imply the FC wo ↓ wn (since

the wn-labeled nodes in chaseC(q) would have been merged) and that means
that wo can have an unbounded number of children labeled the same as wn. Let
t be the smallest tree in R, such that the node in t that corresponds to wo in
chaseC(q) has two children nodes with labels the label of wn. Then there is no
embedding from p to t. - A contradiction.

Case B2 wn.label = ∗ : Note that D can not imply the UC wo → b and
the FC wo ↓ wn, for some label b ∈ S, where S is the alphabet from D (since
the wn-labeled nodes in chaseC(q) would have been merged) and that means
that wo can have at least two children labeled from S. Let t be the smallest
tree in R, such that the node in t that corresponds to wo in chaseC(q) has two
children nodes with labels from S. Then there is no embedding from p to t. - A
contradiction. ��
Note that in theorem 2 the direction “if p ⊇SAT (D) q then p ⊇SAT (C) q” is trivial
and always holds. The opposite direction requires R �= ∅. Example 1 describes a
case in which R = ∅ and the effects that this has in the decision of p ⊇SAT (D) q.

Example 1. Let D be a duplicate-free DTD: a → (b, c), b → (i, j), c → (k), and
let p ≡ /a[b[i][j]] and q ≡ /a[∗[i]][∗[j]] be two XPath expression in XP (/, [], ∗).
It is obvious that chaseC(q) ≡ q and also that p �⊇ chaseC(q) since there is no
homomorphism from p to chaseC(q). It is the case in the example that chaseC(q)

10 P. Aravogliadis and V. Vassalos

is not 1-1 homomorphic to any tree in SAT (D), or in other words R = ∅. Hence,
theorem 2 does not hold. Indeed, while p ⊇SAT (D) q, according to the theorem
it should not.

Deciding the emptiness of R for a query q, which is a critical condition in theorem
2, is possible as proved in theorem 3.

Theorem 3. Given an XPath query q in XP (/, [], ∗) and a duplicate-free DTD
D the problem of determining whether the C-satisfying set for q is empty, i.e.
R = ∅, is decidable.

Proof. See proof in [2]. ��

A Sound and Complete Algorithm for Query Containment. Given q, p
XPath queries in XP (/, [], ∗) and a duplicate-free DTD D we provide a sound
and complete algorithm for deciding p ⊇0 q. The basic idea is to eliminate
wildcards from q and then by utilizing theorem 2 and lemma 2 we are able to
decide the containment problem.

First we describe how to reduce a query in XP (/, [], ∗) to a disjunction of
queries in XP (/, []). We will do so by providing a useful definition and then
describing a full procedure for eliminating wildcards from q.

Definition 11. Let q be an XPath query in XP (/, [], ∗) and D be a duplicate-
free DTD over S. Let also n be the number of nodes x ∈ Vq, such that x.label = ∗.
We define as L(x1, . . . , xn) the n-ary tuple for which the following hold: (1) each
xi ∈ S, with 1 ≤ i ≤ n, (2) each xi corresponds to a wildcard-labeled node from
q and (3) the query q′, that comes from q by replacing every wildcard node with
its corresponding xi, is D-satisfiable.

The wildcard-set of q, denoted L(q), is the maximum set that contains tuples
of the form L(x1, . . . , xn).

Example 2. Let q ≡ /a/∗/g be an XPath query in XP (/, [], ∗) and the following
duplicate free DTD D: a → (b, c, d, e∗), b → (f, g, a∗), e → (f, g), c → (i),
d → (i), f → (i), g → (i).

The alphabet is S = {a, b, c, d, e, f, g, i} and the query q has only one wildcard
label. It is obvious to see that L(q) = {(b), (e)}, since /a/b/g and /a/e/g are
D-satisfiable queries.

Algorithm 1. Wildcard Elimination

Input: An XPath query q in XP (/, [], ∗) and a DTD D.
Compute wildcard-set L(q).
i ← 0
FOR EACH n-ary relation L(x1, . . . , xn) ∈ L(q) DO

i ← i + 1
qi ← replace every wildcard in q with each corresponding xi

q′ ← q′ | qi

END FOR
Output: XPath query q′ ≡ q1| . . . |qm, s.t. qi is in XP (/, [])

On Equivalence and Rewriting of XPath Queries 11

The reduction of an XPath query from XP (/, [], ∗) to XP (/, []) under a
duplicate-free DTD produces an XPath query that is formulated as the dis-
junction of a set of queries in XP (/, []). Wildcard elimination algorithm is not
polynomial due to the complexity of computing the wildcard-set. If we consider
all possible values for each wildcard labeled node in computing the wildcard set
this yields an exponential algorithm. Note that the D-satisfiability does not in-
fluence this complexity, since its complexity for XPath queries in XP (/, []) under
a duplicate-free DTD is PTIME [17]. It is obvious that the number of queries
in the disjunction is equal to the cardinality of the wildcard-set, which in worst
case is exponential to the number of the symbols in the alphabet of the DTD.

Algorithm 2 below is a sound and complete decision procedure for the query
containment problem for XPath expressions in XP (/, [], ∗). It reduces q into a
set of XPath queries in XP (/, []) using algorithm 1. Then, using the fact that an
XPath expression contains a disjunction of XPath expressions if it contains every
single expression that constitutes the disjunction, theorem 2, and lemma 2 we
can decide p ⊇0 q, since for each query in XP (/, []) R �= ∅ [25] / The complexity
is dominated by the wildcard-Set computation. Also note that chaseC(qi) is
computed considering only FCs and SCs because each qi is in XP (/, []).

Algorithm 2. Containment Check

Input:q, p in XP (/, [], ∗), a set C of SCs, FCs inferred by a duplicate-free DTD.
q′ ← Wildcard− Elimination(q)
FOR EACH qi ∈ q′ DO

qi ← chaseC(qi)
IF there is no homomorphism from p to qi

THEN RETURN “no”
END FOR
RETURN “yes”;
Output: “yes” if p ⊇0 q ; “no” otherwise.

Example 3. (continuing Example 1) Algorithm 2 first will call the Wildcard-
elimination procedure on q that results in an expression q′ ≡ /a[b[i]][b[j]]. Then
the FOR loop will be executed only once and in this execution first the chase of
q′ will be computed that is chaseC(q′) ≡ /a[b[i][j]] applying the FC a ↓ b and
then will be checked the homomorphism existence from p to chaseC(q′). Since
there exists such a homomorphism then the algorithm will output “yes” meaning
that p ⊇SAT (D) q.

A PTIME Algorithm for Query Containment. Utilizing the equivalence
p ⊇SAT (D) q if and only if p ⊇ chaseC(q), we can derive from theorem 2 and
lemma 2 a PTIME procedure for deciding containment of queries in XP (/, [], ∗)
under a duplicate-free DTD. Since theorem 2 requires the C−satisfying set R for
query q to be non-empty, the algorithm is complete only for queries with this prop-
erty. It is trivially sound since, if p ⊇ chaseC(q) then p ⊇SAT (D) q. It uses a

12 P. Aravogliadis and V. Vassalos

PTIME chase procedure inspired by [25], that in contrast to applying every rule
to the query until no other rule application changes the query, applies the rules
on q along its selection path in a way that takes into account the query p.

Algorithm 3. PTIME Containment Check

Input: q, p in XP (/, [], ∗), a duplicate free DTD D.
Step 1: Compute the chaseC(p) – C set of FCs, SCs, UCs inferred by D.

p ← chaseC(p, q, D)
Step 2: Check Containment

IF there exist a homomorphism from q to p THEN RETURN “yes”
ELSE RETURN “no”

Output: “yes” if p ⊆0 q ; “no” otherwise.

Algorithm 4. Chase(p,q,D)

Input: p, q ∈ XP (/, [], ∗), D a duplicate-free DTD.
Apply UCs to p inferred by D
Apply FCs to p inferred by D
Traverse in top-down manner expressions p, q

Find nodes x ∈ q and u ∈ p s.t.
(x.label = u.label OR u.label = ∗ OR x.label = ∗) AND (x has a child y)
AND (u has no child with y.label �= ∗ OR y.label = ∗)

IF (y.label �= ∗)
Apply the inferred SC u.label: B ⇓ y.label from D to p,
where B is the set of labels of children of u ∈ p.

ELSE −(y.label = ∗)
Apply every inferred SC u.label: B ⇓ z.label from D to p,
where B is the set of labels of children of u ∈ p.

Output: chaseC(p).

Query Rewriting for XP (/, [], ∗). For a view v and a query q in XP (/, [], ∗),
it is CoNP-hard to decide if there is a rewriting of q using v in the presence of
a duplicate free DTD D. This follows immediately from theorem 2 of [17] and
lemma 4.1 of [26]. In what follows we provide two algorithms for the query
rewriting problem described in definition 9.

A Sound and Complete Query Rewriting Algorithm. Algorithm 5 below,
when we use as containment test Algorithm 2, is a sound and complete algorithm
for the rewriting problem for queries in XP (/, [], ∗) under a duplicate-free DTD.

Algorithm 5. Query Rewriting using views

Input: q, v in XP (/, [], ∗), D a duplicate-free DTD D.
Step 1: Check rewriting existence

let ov be the output node of v
let nq be a node in q having the same position to ov

IF ((q)nq

sub ⊕ v �≡SAT (D) q) THEN RETURN “no”

On Equivalence and Rewriting of XPath Queries 13

ELSE RETURN “yes”
Step 2: Find rewriting

IF (answer is “yes”)
THEN (q)nq

sub is a compensation pattern of q using v.
Output: “yes” if q is rewritable using v and the compensation pattern (q)nq

sub.

Since the containment test is EXPTIME then algorithm 5, whose correctness
follows from theorem 1, is in EXPTIME.

Query Rewriting in PTIME. If in algorithm 5 we use instead the PTIME
containment test of section 4.1 then we obtain a PTIME query rewriting
algorithm.

Example 4 shows a simple rewriting for a query in XP (/, [], ∗).
Example 4. (continuing Example 2) Let v ≡ /a/ ∗ [f] be an XPath view in
XP (/, [], ∗) under the duplicate free DTD D defined in example 2. Algorithm 5
will generate as compensation query c ≡ / ∗ /g. Notice that chasing q with the
WSC ∗: {g} ⇓ f we get q′ ≡ /a/ ∗ [f]/g.

4.2 The XPath Fragment XP (/, [], ∗) with Acyclic and Choice-Free
DTD

We can adapt algorithm 5 to solve the query rewriting problem under acyclic
and choice-free DTD. For the wildcard-labeled children of any node of a query in
XP (/, [], ∗) under an acyclic and choice-free DTD, is easy to determine to which
label from the alphabet correspond. Therefore following the wildcard elimination
technique we obtain a PTIME algorithm for the containment problem for queries
in XP (/, [], ∗) under acyclic and choice-free DTD. This problem is shown in [4] to
be in PTIME. Therefore, we can obtain a PTIME sound and complete algorithm
for the rewriting problem.

5 Related Work

A framework for the problem of finding equivalent XPath query rewritings using
views is provided in [3]. The problem is studied extensively in [1,26] for XPath
queries in XP (/, //, [], ∗) providing either incomplete algorithms [26] or suffi-
cient conditions under which the problems can be shown to be CoNP-Complete
[1]. There is also recent work [9,21] on the problem of answering XPath queries
using multiple views via the use of node intersection. Such work expands the
scope of the XPath subset considered for the views and the rewritings, adding
intersection. Finally, in [10] Cautis et al. have looked into the problem of rewrit-
ing XPath queries using views generated by expressive declarative specifications
resulting potentially in an infinite number of views. The specifications impose
certain constraints on the structure of generated views, but these constraints are
orthogonal to DTD constraints, which are imposed on the database.

14 P. Aravogliadis and V. Vassalos

The XPath query containment problem, which is very closely related to the
XPath query rewriting problem, has been extensively studied for various XPath
fragments in [5,11,14,15,18,24,25,27], including certain constraints such as DTDs.
Relevant work have been discussed in section 2. We use and extend these results
developing algorithms for the problem under DTD constraints for an XPath
fragment with wildcard. These results are the basis for the rewriting algorithms
we propose.

6 Conclusions and Future Work

We develop sound and complete algorithms for XPath rewriting using views
in the presence of DTD constraints for the XPath fragment XP (/, [], ∗). We
also provide a novel reduction of a DTD into chase-able constraints and use it to
develop two algorithms for checking containment for the XP(/,[],*) fragment; one
is polynomial but is complete only when the query satisfies a certain condition
(not empty C-Satisfying set), the other is complete but exponential, as it relies
on the elimination of wildcards from one of the queries.

We plan to continue our investigation into efficient techniques for rewrit-
ing using views for more expressive XPath fragments including backward axes.
Moreover, following recent results for the containment of XPath fragments that
include union and intersection [22], we are working on rewriting for queries and
views for those XPath fragments.

References

1. Afrati, F., Chirkova, R., Gergatsoulis, M., Pavlaki, V., Kimelfeld, B., Sagiv, Y.:
On rewriting xpath queries using views. In: EDBT, pp. 168–179 (2009)

2. Aravogliadis, P., Vassalos, V.: Rewriting xpath queries using views under dtd con-
straints. Technical report, AUEB (2009),
http://wim.aueb.gr/papers/xpathrewrite-ext.pdf

3. Balmin, A., Ozcan, F., Beyer, K., Cochrane, R., Pirahesh, H.: A framework for
using materialized XPath views in XML query processing. In: Proc. of the 30th
VLDB Conference, pp. 60–71 (2004)

4. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs.
In: Proc. PODS 2005, pp. 25–36 (2005)

5. Benedikt, M., Koch, C.: Xpath leashed. ACM Comptuting Survey 41(1) (2008)
6. Berglund, A., Boag, S., Chamberlin, D., et al.: XML Path Language (XPath) 2.0.
W3C, http://www.w3.org/TR/XPath20

7. Boag, S., Chamberlin, D., Fernandez, M.F., et al.: XQuery 1.0: An XML Query
Language. W3C, http://www.w3.org/TR/XQuery

8. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: Proc. SIGMOD Conference, pp. 310–321 (2002)

9. Cautis, B., Deutsch, A., Onose, N.: Xpath rewriting using multiple views: Achieving
completeness and efficiency. In: Proc. WebDB 2008 (2008)

10. Cautis, B., Deutsch, A., Onose, N., Vassalos, V.: Efficient rewriting of xpath queries
using query set specifications. In: Proceedings of the VLDB Endowment, vol. 2,
pp. 301–312 (2009)

http://wim.aueb.gr/papers/xpathrewrite-ext.pdf
http://www.w3.org/TR/XPath20
http://www.w3.org/TR/XQuery

On Equivalence and Rewriting of XPath Queries 15

11. Deutsch, A., Tannen, V.: Containment and integrity constraints for xpath. In:
KRDB Workshop (2001)

12. Halevy, A.: Answering queries using views: A survey. VLDB J. 10(4), 270–294
(2001)

13. Kimelfeld, B., Sagiv, Y.: Revisiting redundancy and minimization in an xpath
fragment. In: EDBT, pp. 61–72 (2008)

14. Lakshmanan, L., Wang, H., Zhao, Z.: Answering tree pattern queries using views.
In: Proc. of the 32th VLDB Conference, pp. 571–582 (2006)

15. Miklau, G., Suciu, D.: Containment and equivalence for an XPath fragment.
Journal of the ACM 51(1) (2004)

16. Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1998)

17. Montazerian, M., Wood, P., Mousavi, S.: XPath query satisfiability is in ptime for
real-world dtds. In: XSym, pp. 17–30 (2007)

18. Neven, F., Schwentick, T.: On the complexity of XPath containment in the pres-
ence of disjunction, DTDs, and variables. In: Proc. Logical Methods in Computer
Science, vol. 2 (2006)

19. Papakonstantinou, Y., Vassalos, V.: The Enosys Markets Data Integration Plat-
form: Lessons from the trenches. In: CIKM, pp. 538–540 (2001)

20. Schwentick, T.: XPath query containment. SIGMOD Record 33(1), 101–109 (2004)
21. Tang, N., Yu, J.X., Ozsu, M.T., Choi, B., Wong, K.: Multiple materialized view

selection for xpath query rewriting. In: ICDE Proc.of the 2008, pp. 873–882 (2008)
22. ten Cate, B., Lutz, C.: The complexity of query containment in expressive frag-

ments of XPath 2.0. In: Proc. PODS 2007, pp. 73–82 (2007)
23. Wang, J., Li, J., Yu, J.X.: Answering tree pattern queries using views: a revisit.

In: Proc. EDBT (2011)
24. Wood, P.: Minimizing simple XPath expressions. In: Proc. WebDB 2001, pp. 13–18

(2001)
25. Wood, P.T.: Containment for xPath fragments under DTD constraints. In:

Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572,
pp. 297–311. Springer, Heidelberg (2002)

26. Xu, W., Ozsoyoglu, Z.M.: Rewriting XPath queries using materialized views. In:
VLDB 2001, pp. 121–132 (2005)

27. Zhou, R., Liu, C., Wang, J., Li, J.: Containment between unions of xpath queries.
In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463,
pp. 405–420. Springer, Heidelberg (2009)

16 P. Aravogliadis and V. Vassalos

Appendix

Constraints fromDTD. In section 4.1 we define the SC, FC and UC constraints
and their corresponding wildcard versions. The definition of WSC was such that
no new wildcard nodes will be added to the query after chasing it. Also, rules of
the form a ↓ ∗ are not extracted from DTD since such rules are a meaningless
abbreviation of a set of functional constraints and also according to the semantics
of chase such rules will not maintain the equivalence given in lemma 1. Finally,
note that the UC constraint declares that a node will have children all labeled the
same and obviously can not derive from SC or FC constraints.

Table 1. XPath query containment complexity with-without DTD

DTD / // [] * Complexity

without + + + PTIME [15]

without + + + PTIME [15,16]

without + + + PTIME [15]

without + + + + CoNP-Complete [15]

general + + PTIME [18]

general + + CoNP-complete [18]
duplicate-free PTIME [25]

general CoNP-hard [18]
acyclic & choice-free + + + PTIME [14]

duplicate-free CoNP-hard [17]
acyclic & choice-free + + + PTIME [4]

general + + + + EXPTIME-complete [25]

Incremental Maintenance of Materialized XML Views

Leonidas Fegaras

University of Texas at Arlington
fegaras@cse.uta.edu

Abstract. We investigate the problem of incremental maintenance of material-
ized XML views. We are considering the case where the underlying database is
a relational database and the view exposed to querying is a materialized XML
view. Then, updates to the underlying database should be reflected to the stored
XML view, to keep it consistent with the source data, without recreating the en-
tire view from the database after each source update. Unlike related work that
uses algebraic methods, we use source-to-source compositional transformations,
guided by the database and view schemata. We first translate SQL updates to pure
(update-free) XQuery expressions that reconstruct the entire database state, re-
flecting the updated values in the new state. Then, we synthesize the right-inverse
of the XQuery view function, guided by the view schema. This inverse function is
applied to the old view to derive the old database state, which in turn is mapped to
the new database state through the update function, and then is mapped to the new
view through the view function. The resulting view-to-view function is normal-
ized and translated to XQuery updates that destructively modify the materialized
view efficiently to reflect the new view values.

1 Introduction

We address the problem of incremental maintenance of materialized XML views. That
is, given a materialized XML view over a database and an update against the database,
our goal is to generate view updates so that the new view after the updates is exactly
the same as the view we would have gotten if we had applied the view to the updated
source data. We are considering the case where the underlying database is a relational
database and the view exposed to querying is a materialized XML view, stored in a
native XML database. A native XML database is a specialized database that supports
storage, indexing methods, and query processing techniques specially tailored to XML
data. There are already many native XML database management systems available, in-
cluding Oracle Berkeley-DB XML, Qizx, Natix, etc. Our framework is targeting those
native XML databases that support the XQuery Update Facility (XUF) [16] for updat-
ing XML data. Exporting data through materialized XML views is very important to
data integration, not only because it speeds up query processing, but also because it
provides a light-weight interface to data services, without exposing the main database.
The incremental maintenance of materialized views is important for applications that
require freshness of view data, but it is too expensive to recompute the view data every
time the source data change.

In our framework, SQL updates are translated to plain XQueries applied to a canon-
ical view of the relational database. More specifically, we derive a pure update function

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 17–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

18 L. Fegaras

that maps the old database to the new database. Then, we synthesize the right-inverse of
the XQuery view function, guided by the view schema. This inverse function is applied
to the old view to derive the old database state, which in turn is mapped to the new
database state through the update function, and then mapped to the new view through
the view function. Although correct, the resulting view-to-view function can be very
inefficient. We provide methods to optimize this program and translate it into efficient
XQuery updates, so that only the relevant parts of the materialized view are updated.
More specifically, our framework performs the following tasks:

1. We map the underlying relational database DB to the XML data db using a canoni-
cal view of relational data. This wrapper, which is a virtual XML view, allows us to
refer to relational data within the XQuery data model without any model extension.

2. We express the source SQL updates in pure (update-free) XQuery code over the
virtual XML view, as a function u from the old to the new database state that re-
constructs the entire canonical XML view of the relational database, reflecting the
updates.

3. Given a view, view, expressed in XQuery, we synthesize the XQuery expression
view′ that is a right-inverse of view, such that view(view′(V)) = V for any
valid view instance V (that is, view must be a surjective function). Note that,
view′(view(DB)) is not necessarily equal to DB; it is equal to DB for isomorphic
views only, which are uncommon.

4. The composition F (V) = view(u(view′(V))) is a function from the old view V to
the new view (after the updates), where view′(V) creates an entire source database
from the view V , then u reconstructs this database to reflect the updates, and finally
view maps the new database to the new view. We use normalization techniques to
optimize F (V) so that the resulting program avoids the reconstruction of most parts
of the intermediate database data.

5. Finally, we rewrite the normalized XQuery expression F (V) into efficient XQuery
updates that destructively modify the original view V using the XQuery Update
Facility (XUF). That is, the resulting program is a direct view update expressed in
XUF that, in most cases, does not access the underlying database.

The key contribution of our work is in the development of a novel framework for the
incremental maintenance of materialized XML views that uses source-to-source, com-
positional transformations only. Unlike related approaches that use framework-specific
algebras to achieve a similar goal [10,12], our work can be incorporated into any ex-
isting XQuery engine. Since it breaks the task of view maintenance into a number of
more manageable tasks that are easier to implement and verify their correctness, it has
the potential of becoming a general methodology for incremental view maintenance.

The most important limitation of our approach is that both the inverse synthesis
(Step 3) and the XUF generation (Step 5) algorithms are schema-based. That is, they re-
quire that both the underlying relational and the XML view schemata be known at query
translation time. The second limitation is that our algorithms are heuristics that work
only in certain cases, such as they can handle one-to-one and one-to-many but they can-
not handle many-to-many joins in the view definition. Finally, due to the lack of space,
we have not covered some parts the XQuery/XUF syntax, such as descendant-or-self

Incremental Maintenance of Materialized XML Views 19

steps, but we believe that there is no fundamental reason why our framework cannot be
extended to cover most of the XQuery syntax.

2 Related Work

Although the problem of incremental view maintenance has been extensively studied
for relational views (see [11] for a literature survey), there is still little work on XML
view maintenance [3,1]. One of the earliest works on incremental maintenance of ma-
terialized views over semi-structured data was for the Lorel query language [2], which
was based on the graph-based data model OEM. Their method produces a set of queries
that compute the updates to the view based upon an update of the source. Although there
are already a number of proposals for XQuery update languages, there is now a W3C
candidate recommendation, called XQuery Update Facility (XUF) [16]. El-Sayed et
al [12] use an algebraic approach for incremental XQuery view maintenance, where an
update to the XML source is transformed into a set of update primitives that are prop-
agated through the XML algebra tree and become incremental update primitives to be
applied to the result view. The work by Sawires et al [14] considers the view mainte-
nance problem for simple XPath views (without value-based predicates). It reduces the
frequency of view recomputation by detecting cases where a source update is irrele-
vant to a view and cases where a view is self-maintainable given a base update. BEA’s
AquaLogic Data Services Platform allows developers to specify inverse functions that
enable its XQuery optimizer to push predicates and perform updates on data services
that involve the use of such functions [13]. Finally, although not directly applicable
to incremental view maintenance, the inverse problem of updating XML views over
relational data by translating XML view updates to embedded SQL updates has been
studied by earlier work (see for example [4,6]).

3 Our Framework

In this section, we use an XML view example to describe our approach to the incre-
mental maintenance of XML views. Consider a bibliography database described by the
following relational schema:

Article (aid, title, year)
Author (aid, pid)
Person (pid, name, email)

where the attributes Author.aid and Author.pid are foreign keys that reference the keys
Article.aid and Person.pid, respectively. An XML view over a relational database can be
defined over a canonical XML view of relational data, as is done in SilkRoute [9] and
many other systems. The canonical XML view of the bibliography relational schema
has the following XML type:

element DB {
element Article {

element row { element aid { xs: int }, element title { xs: string },
element year { xs: string } }∗ },

20 L. Fegaras

element Author {
element row { element aid { xs: int }, element pid { xs: int } }∗ },

element Person {
element row { element pid { xs: int }, element name { xs: string },

element email { xs: string } }∗ } }
that is, a relational table is mapped to an XML element whose tag name is the table
name and its children are row elements that correspond to the table tuples. In addition,
this type satisfies the following key constraints:

key { /DB/Article /row, aid / data () }
key { /DB/Author/row, (aid , pid)/ data () }
key { /DB/Person/row, pid / data () }

As in XML-Schema [15], for a key { p1, p2 }, the selector path p1 defines the applicable
elements and the field path p2 defines the data that are unique across the applicable
elements. For example, key { /DB/Article/row, aid/data() } indicates that the aid elements
are unique for the Article rows.

Given this canonical view $DB of the relational database, an XML view, view($DB),
can be defined using plain XQuery code:

view($DB) = <bib>{
for $i in $DB/Article/row
return < article aid=’{$i / aid / data()}’>{

$i / title , $i / year ,
for $a in $DB/Author/row[aid=$i/aid]
return <author pid=’{$a/pid / data()}’>{

$DB/Person/row[pid=$a/pid]/name/data()
}</author>

}</ article > }</bib>

This code converts the entire canonical view of the relational database into an XML
tree that has the following type:

element bib {
element article {

attribute aid { xs: int },
element title { xs: string }, element year { xs: string },
element author { attribute pid { xs: int }, xs: string }∗ }∗ }

We assume that this view is materialized on a persistent storage, which is typically a
native XML database. Our goal is to translate relational updates over the base data to
XQuery updates (expressed in XUF) that incrementally modify the stored XML view to
make it consistent with the base data. Our framework synthesizes a right-inverse functon
view’ of the view function, view, such that, for all valid view instances V , view(view’(V))
is equal to V . Since an inverted view reconstructs the relational database from the view,
it must preserve the key constraints of the relational schema. This is accomplished with
an extension of the FLWOR XQuery syntax that enforces these constraints. In its sim-
plest form, our FLWOR syntax may contain an optional ‘unique’ part:

for $v in e where p($v) unique k($v) return f ($v)

Incremental Maintenance of Materialized XML Views 21

where p($v), k($v), and f ($v) are XQuery expressions that depend on $v. The unique k($v)
part of the FLWOR syntax skips the duplicate nodes $v from e, where the equality for
duplicate removal is modulo the key function k($v). More specifically, let the result of
e be the sequence of nodes (x1, . . . , xn). Then the result of this FLWOR expression is
the sequence concatenation (y1, . . . , yn), where

yi =

⎧⎨⎩
() if ¬p(xi)
() if ∃j<i : k(xj) = k(xi)
f(xi) (otherwise)

Based on this extended syntax, we can define a function view’($V) that is precisely the
right-inverse of the previous view:

view’($V) = <DB><Article>{ for $ii in $V/article
unique $ii /@aid/data()
return <row><aid>{$ii/@aid/data()}</aid>

{$ii / title , $ii / year}</> }</Article>
<Author>{ for $ia in $V/ article , $aa in $ia / author

unique ($ia /@aid/data (), $aa/@pid/data ())
return <row><aid>{$ia/@aid/data()}</aid>

<pid>{$aa/@pid/data()}</pid></row>}</Author>
<Person>{ for $ip in $V/ article , $ap in $ip / author

unique $ap/@pid/data()
return <row><pid>{$ap/@pid/data()}</pid>

<name>{$ap/data()}</name>
<email>∗</email></row> }</Person></DB>

In fact, our framework is capable of synthesizing this function automatically from the
view function for many different forms of XQuery code. It will also generate the unique
constraints automatically from the DB schema key constraints. For example, our system
will infer that the applicable key for the first for-loop in view’($V) is
key { /DB/Article/row, aid/data() }, given that the for-loop body has the same type as
/DB/Article/row and is inside DB and Article element constructions. By applying the
field path ./aid/data() to the for-loop body and normalizing it, our system will add the
constraint unique $ii/@aid/data() to the for-loop. (Note that this heuristic method is ap-
plicable to relational key constraints only, where the key selector type corresponds to a
relational table.) We can see that the unique parts of the for-loops in the inverted view
are necessary in order to reconstruct the relational data without duplicate key values.
The star in the email element content indicates that it can be any value, since this value
is not used in the view. Stars in the inverted view signify that the view itself is a sur-
jective function, so that we may not be able to reconstruct the complete database from
the view. As we will show next, when our framework synthesizes the incremental view
updates, the results of the inverted view must always pass through the view function to
derive a view-to-view function, which eliminates the star values.

To show that view(view’($V)) is indeed equal to $V, we have to use normalization
rules and the properties of the key constraints. More specifically, view(view’($V)) is:

<bib>{
for $i in view’($V)/ Article /row

22 L. Fegaras

return < article aid=’{$i / aid / data()}’>{
$i / title , $i / year ,
for $a in view’($V)/Author/row[aid=$i/ aid]
return <author pid=’{$a/pid / data()}’>{

view’($V)/Person/row[pid=$a/pid]/ name/data() }</author>
}</ article > }</bib>

XQuery normalization reduces general XQueries to normal forms, such as to for-loops
whose domains are simple XPaths. In addition to fusing layers of XQuery compositions
and eliminating their intermediate results, normal forms are simpler to analyze than
their original forms. Normalization can be accomplished with the help of rules, such as:

for $v in (for $w in e1 return e2) return e3 = for $w in e1, $v in e2 return e3

to normalize the for-loop domain. If we expand the view’($V) definition and normalize
the resulting code, we get the following code:

<bib>{
for $ii in $V/ article
unique $ii /@aid/data()
return < article aid=’{$ii /@aid/data()}’>{

$ii / title , $ii / year ,
for $ia in $V/ article , $aa in $ia / author
where $ia/@aid/data()= $ii /@aid/data()
unique ($ia /@aid/data (), $aa/@pid/data ())
return <author pid=’{$aa/@pid/data()}’>{

for $ip in $V/ article , $ap in $ip / author
where $ap/@pid/data()=$aa/@pid/data()
unique $ap/@pid/data()
return $ap/data ()

}</author>
}</ article > }</bib>

To simplify this code further, we would need to take into account the key constraints
expressed in the unique parts of the for-loops. A general rule that eliminates nested
for-loops is:

for $v1 in f1($v) , . . . , $vn in fn($v)
return g(for $w1 in f1($w) , . . . , $wn in fn($w)

where key($w) = key($v) unique key($w) return h($w))
= for $v1 in f1($v) , . . . , $vn in fn($v) return g(h($v))

where key, g, h, f1, . . . , fn are XQuery expressions that depend on the XQuery vari-
ables, $v and $w, which are the variables $v1, . . . , $vn and $w1, . . . , $wn, respectively.
This rule, indicates that if we have a nested for-loop, where the inner for-loop variables
have the same domains as those of the outer variables, modulo variable renaming (that
is, fi($v) and fi($w), for all i), and they have the same key values, for some key func-
tion, then the values of $w must be identical to those of $v, and therefore the inner
for-loop can be eliminated. We can apply this rule to our previous normalized code, by
noticing that the outer for-loop is over the variables $ia and $aa and the inner for-loop
is over the variables $ip and $ap, where the key is $ap/@pid/data() and the predicate is
$ap/@pid/data()=$aa/@pid/data(). This means that the code can be simplified to:

Incremental Maintenance of Materialized XML Views 23

<bib>{
for $ii in $V/ article
unique $ii /@aid/data()
return < article aid=’{$ii /@aid/data()}’>{

$ii / title , $ii / year ,
for $ia in $V/ article , $aa in $ia / author
where $ia/@aid/data()= $ii /@aid/data()
unique ($ia /@aid/data (), $aa/@pid/data ())
return <author pid=’{$aa/@pid/data()}’>{ $aa/data () }</author>

}</ article > }</bib>

Similarly, we can apply the same rule to the resulting XQuery by noticing that the outer
for-loop is over the variable $ii and the inner for-loop is over the variable $ia, where the
key is $ia/@aid/data(), and simplify the code further:

ID($V) = <bib>{
for $ii in $V/ article
unique $ii /@aid/data()
return < article aid=’{$ii /@aid/data()}’>{

$ii / title , $ii / year ,
for $aa in $ii / author
return <author pid=’{$aa/@pid/data()}’>{ $aa/data () }</author>

}</ article > }</bib>

ID($V) is precisely the copy function applied to the view $V, which copies every node
in the view. That is, ID($V) is equal to $V.

Consider now an SQL update over the base relational tables:

update Article set year=2009
where exists (select ∗ from Author a, Person p

where a.aid=aid and a.pid=p.pid and p.name=’Smith’ and title =’XQuery’)

which finds all articles authored by Smith that have XQuery as title and replaces their
year with 2009. This update can be written in plain XQuery U($DB) over the canonical
XML view $DB of the relational database that reconstructs the database reflecting the
updates:

<DB><Article>{
for $iu in $DB/Article/row
return if some $au in $DB/Author/row, $pu in $DB/Person/row

satisfies $au/aid = $iu / aid and $au/pid = $pu/pid
and $pu/name = ’Smith’ and $iu/ title = ’XQuery’

then <row>{$iu/aid, $iu/ title }<year>2009</year></row>
else $iu

}</Article>{$DB/Person, $DB/Author}</DB>

The new view after the update can be reconstructed from the old view $V using
view(U(view’($V))). First, after normalization, U(view’($V)) becomes:

<DB><Article>{
for $ii in $V/ article
return if some $aa in $ii / author

satisfies $aa/ data () = ’Smith’ and $ii / title = ’XQuery’

24 L. Fegaras

then <row><aid>{$ii/@aid/data()}</aid>{$ii/title,<year>2009</year>}</row>
else <row><aid>{$ii/@aid/data()}</aid>{$ii/title, $ii / year}</row>

}</Article>{...}</DB>

where . . . are the Author and Person parts of view’($V) (they are not affected by the
update). Similarly, after normalization, view(U(view’($V))) becomes:

<bib>{ for $ii in $V/ article
return if some $aa in $ii / author

satisfies $aa/ data () = ’Smith’ and $ii / title = ’XQuery’
then < article aid=’{$ii /@aid/data()}’>{

$ii / title , <year>2009</year>,
for $aa in $ii / author
return <author pid=’{$aa/@pid/data()}’>{$aa/data()}</author>

}</ article >
else $ii }</bib>

Compare now this XQuery with the view copy function, ID($V) (the result of
view(view’($V)) found previously). We can see that, for each $ii, if the if-then-else con-
dition is true, then their article elements are identical, except for the $ii/year component,
which is <year>2009</year> in the new view. If we ignore the identical components,
we can derive view(U(view’($V))) from the original view $V by just updating those com-
ponents that differ. This means that the XUF update:

for $ii in $V/ article
return if some $aa in $ii / author ,

satisfies $aa/ data () = ’Smith’ and $ii / title = ’XQuery’
then replace node $ii / year with <year>2009</year>
else ()

will destructively modify the view to become the modified view after the update U. In
the extended version of this paper [8], we present a heuristic, conservative algorithm
that, given a view mapping from the old view to the new view, finds those program
fragments that differ from the identity view mapping and generates an XUF update for
each one. For this algorithm to be effective, it is essential that the view mapping pro-
gram be normalized to make program equivalence more tractable (which is undecidable
in general). It basically compares if the two programs are identical, modulo variable re-
naming, but it also takes into account the possible alternatives in sequence construction.

4 Synthesizing the Right-Inverse

Given that XQuery is computationally complete, one of hardest tasks for updating mate-
rialized views is to synthesize the inverse function of a view expressed in XQuery. This
task becomes even harder when the underlying database is relational because the view
must be expressed in terms of joins, which in general do not have an inverse function.
In this section, we briefly sketch our heuristic algorithm that synthesizes the inverse of
a view mapping. The full details of the algorithm as well as the proof of its correctness
are given in the extended version of this paper [8]. Our inversion algorithm can handle
many XQuery forms that are used frequently in real view mapping scenarios, including

Incremental Maintenance of Materialized XML Views 25

views that use one-to-one and one-to-many joins. Our program synthesis algorithm is
guided by the type (schema) of the view source code, which can be inferred from the
input schema of the view (the schema of the underlying relational database).

Given an XQuery expression, f(x), that depends on the variable x (a shorthand for
the XQuery variable $x), the right-inverse Ix(f(x), y) is an XQuery expression g(y)
that depends on y, such that y = f(x) ⇒ x = g(y). This definition implies that
f(g(y)) = y, which means that g(y) = Ix(f(x), y) is the right-inverse of f(x). In
this Section, we present the rules for extracting Ix(e, y) for most forms of XQuery
expression e. Some Ix rules may return an error, which is denoted by ⊥. For example,
if the view is y = if x>4 then x-1 else x+2 then the right-inverse is:

x = if y+1>4 then (if y-2>4 then y+1 else ⊥) else y-2
that is, if y is equal to 4, 5, or 6, then x must be a ⊥ value since this y can be produced
in two different ways (e.g., both x=2 and x=5 produce y=4). Some rules may also return
∗, which indicates that it can be any XML node of the proper type. For example, if the
type of x is element A { element B xs:int, element C xs:int }, then the right-inverse of
y = x/C is x = <A>{∗,y/self::C}, which indicates that x/B can be any B element.

The most difficult expression to invert is XQuery sequence concatena-
tion, because, in contrast to regular tuples and records, nested sequences
are flattened out to sequences of XML nodes or base values. For ex-
ample, if the type of x is element A { element B xs:int, element C xs:int },
then, for y = (x/B,x/C), we would like to derive x = <A>{y/self::B,
y/self::C}. That is, since y1 = x1/B implies x1 = <A>{y1/self::B,∗} and
y2 = x2/C implies x1 = <A>{∗,y2/self::C}, the goal is to derive the previous
solution for y = (x/B,x/C) = (y1,y2). But we must have x=x1=x2, in order to have a valid
solution for x. By looking at x1 and x2, this can only be done if we match x1 with
x2, since ∗ matches with any expression. In fact, as we will see next, we would need
a unification algorithm that also matches variables with expressions by binding these
variables to these expressions.

Consider now the inversion of a for-loop, such as

y = for $v in x/C/data() return $v+1
We can see that y must be equal to the sequence of integers $v+1. Thus, each value $v
must be equal to an element of y minus one, which implies that

(for $w in y return $w-1) = x/C/data()
which can be solved for x since it has the form y’ = x/C/data(). Therefore, to invert a
for-loop, we must first invert the for-loop body with respect to the for-loop variable,
and then invert the for-loop domain with respect to x. This rule works correctly if the
for-loop body does not refer to a non-local variable (a variable other than the for-loop
variable). But references to non-local variables are very common in a view mapping
over a relational database, as we can see from the view($DB) example in Section 3. In
fact, these non-local references correspond to joins. Consider, for example, the follow-
ing non-local reference to $x in the body of a for-loop on $y:

for $x in e1
return <A>{. . . for $y in e2 return {. . . $x . . . }. . . }

26 L. Fegaras

When we invert the body of the inner loop . . . $x . . . with respect to the loop
variable $y, we encounter the non-local variable $x. Then, at this point of the inversion
process, instead of a solution $y = . . . , we get a solution $x = This solution must
be matched (unified) with the solution for $x found in other places in the body of the
outer for-loop. We use a special binding list, called the Inverted Vars (IV) that binds
variables to their inverted expressions. When we find a new non-local contribution, such
as the previous $x = . . . , we unify it with the existing binding of the variable in IV , if
exists. This contribution to a for-loop variable from IV is added to the solution found
by inverting the for-loop body with respect to this variable.

The case that really needs unification instead of matching is when inverting equal-
ity predicates in FLWOR or XPath conditions. Consider, for example, the inversion
y = $x/Person/row[pid=$a/pid] taken from the view($x) definition in Section 3. The con-
dition pid=$a/pid is very important because it specifies a join between Author and Person.
This predicate should provide a new contribution to the $a solution that has its $a/pid
equal to the Person’s pid. This can be done by solving y = $x/Person/row, then solving
w = $a/pid and w = y/pid, where w is a new (fresh) unification variable, and then unifying
the two solutions to yield a binding for w that makes the predicate y/pid=$a/pid true. That
is, y = $x/Person/row will give us a solution for y, then w = y/pid will give us a solution
for w, and finally w = $a/pid will give us a contributing solution for $a.

Our unification algorithm for XQuery expressions is based on XQuery code equal-
ity. Given that code equality is undecidable in general, our unification algorithm uses
heuristics to check for identical XQuery program structures, modulo variable renaming.
For example, a for-loop can be unified with another for-loop as long as their correspond-
ing for-loop domains, predicates, and bodies unify. In addition, ∗ unifies with anything
while the unification of a variable with an expression binds the variable to the expres-
sion (as long as there are no cyclic references). The following are some of the unification
rules. The outcome of the unification unify(e1, e2) is either ⊥ (failure to unify) or the
unified expression along with possible new bindings from XQuery variables (which are
the unification variables) to their bindings (XQuery expressions).

We are now ready to give some of the rules for Ix. The simplest case of an XQuery
expression is a variable. If this variable is equal to the inversion variable x, then x = y:

Ix($x, y) = y (1)

If the variable is different from x, then

Ix($v, y) = ∗ (2)

that is, the solution for x is ∗, which does not contribute any information about x. But,
as a side-effect, the Inverted Vars, IV , is extended with the binding from v to y, if v is
not already bound in IV ; if v has already a binding in IV , which is accessed by IV [v],
it is replaced with unify(IV [v], y). That is, we are contributing a new solution y to v.

XQuery constants do not contribute any solution to x but they pose a restriction on
the y value:

Ix(c, y) = if y = c then ∗ else ⊥ (3)

Incremental Maintenance of Materialized XML Views 27

Simple arithmetic expressions with a constant operand can be easily inverted in a
straightforward way. For example:

Ix(e + c, y) = Ix(e, y − c) (4)

For an if-then-else expression if p then e1 else e2, we invert both the true and false
parts: x1 = Ix(e1, y) and x2 = Ix(e2, y). If x1 unifies with x2, then

Ix(if p then e1 else e2, y) = unify(x1, x2) (5)

otherwise, we would have to consider the predicate value for x = x1 and x = x2:

Ix(if p($x) then e1 else e2, y) = if p(x1) then (if p(x2) then x1 else ⊥) else x2

(6)

That is, if p(x1) is true, then y must be equal to e1, but if in addition p(x2) is false, then
y must also be equal to e2, which means that x must be equal to both x1 and x2, which
is assumed false.

The inverse of an XPath step of the form e/axis::test can be found by consider-
ing the inferred type of the XQuery expression e. If the type of e is inferred to be:
element B { . . . , element A t, . . . }, then:

Ix(e/A, y) = Ix(e, {∗, . . . , y/self::A, . . . , ∗}) (7)

That is, e must be an element construction whose all but the A children are ∗, while the
A children must satisfy e/A = y. The other forward XPath steps of the form e/axis::test
can be handled in the same way: since we can infer the type of e, we can embed y into
a number of element constructions, c(y), so that c(y)/axis::test = y. In addition, if the
schema is not recursive, backward steps can always be translated to equivalent forward
steps.

For the element content, we have:

Ix(e/data(), y) = Ix(e, {y}) (8)

given that e is inferred to be of type: element B t. Finally, for an element construction,
we have:

Ix(<A>{e}, y) = Ix(e, y/self::A/node()) (9)

which imposes the restriction that y be an element tagged A and gives the solution that
e be the y element content.

As we discussed at the beginning of this section, we can invert a for-loop by inverting
the loop body with respect to the for-loop variable, and then invert the for-loop domain
with respect to x, given that y is now the result of the inverted loop body:

Ix(for $v in e1 return e2, y) = Ix(e1, for $v′ in y return Iv(e2, $v′)) (10)

28 L. Fegaras

For example, if y = for $v in x return $v+1, then we invert $v’=$v+1 with respect to $v
to get $v=$v’-1 and we get x = for $v’ in y return $v’-1. Note that, by definition, $v =
Iv(e2, $v′). After this solution for $v is calculated, we may have a binding IV [v] in
Inverted Vars that accumulates non-local references to the variable $v in e2, as we
discussed earlier (for example, when $v is referenced in the body of an inner for-loop in
e2). These contributions must be merged using unify(Iv(e2, $v′), IV [v]), which unifies
all solutions to $v. Then, Rule (10) becomes:

Ix(for $v in e1 return e2, y) (10’)

= Ix(e1, for $v′ in y return unify(Iv(e2, $v′), IV [v]))

Also note that Rule (10) can only apply if the loop body is not of a sequence type. For
example, it cannot invert y = for $v in x return ($v,$v+1). Finally, if the for-loop has a
predicate, p($v), that depends on the loop variable, we move the predicate to the loop
domain and use Rule (12) described next:

Ix(for $v in e1 where p($v) return e2, y) (11)

= Ix(for $v in e1[p(.)] return e2, y)

Inverting an equality predicate, y = e[e1 = e2], could be as easy as inverting y = e.
The equality e1 = e2 though may give us more information about the inverse code
since it relates data produced by two different places in the view code. The most com-
mon example is a nested for-loop, which corresponds to a relational join, as we saw in
Section 3. Thus, in addition to the solution Ix(e[e1 = e2], y) = Ix(e, y), we have more
contributions from the predicate. To calculate these contributions using our inversion
algorithm, we let $z be the current context of the predicate (the XQuery dot), where
$z is an XQuery variable, we let $w be the result of each branch of the equality, where
$w is an another XQuery variable, and we invert $w = e1 and $w = e2 with respect
to $z using Iz(e1, $w) and Iz(e2, $w). All these solutions are unified, which provide
a binding for $w, and which in turn is used to eliminate $w from the solutions. More
specifically:

Ix(e[e1 = e2], y) = Ix(e, unify(unify(y, Iz(e′1, $w)), Iz(e′2, $w))) (12)

where e′1/e′2 is equal to e1/e2 with the current context (the dot) replaced with $z.
Consider, for example, inverting a part of the view defined in Section 3:

Ix(y, $x/Author/row[aid=$i/aid])
Based on Rule (12), it is equal to

Ix($x/Author/row, unify(unify(y, Iz($z/aid,$w)), Iz($i/aid,$w)))
for some new variables $z and $w. Using our inversion rules, Iz($z/aid,$w) gives the so-
lution $z = <row>{$w/self::aid,*}</row> (an Author row), while Iz($i/aid,$w) gives the
solution $z = ∗, but accumulates the contribution $i = <row>{$w/self::aid,*,*}</row>

(an Article row). Given that y=<row>{y/aid,y/pid}</row>, if the solutions for
$z are unified with y, we get $w = y/aid and the contribution to $i becomes
<row>{y/aid,*,*}</row>.

Incremental Maintenance of Materialized XML Views 29

As we discussed earlier, the most difficult case to handle is XQuery sequence con-
catenation because nested sequences are flattened out to sequences of XML nodes or
base values. Let y = (e1, e2) (recall that in XQuery a sequence (e1, e2, . . . , en) can be
written using binary sequence concatenations ((e1, e2), . . . , en)). If the types of e1 and
e2 are basic types (such as strings), then y must be a sequence of two values, (y[1], y[2]).
In that case, let x1 be the solution of y[1] = e1 and x2 be the solution of y[2] = e2.
Then, the solution for x must be unify(x1, x2), which will fail if x1 and x2 are incom-
patible. In general, e1 and e2 can be of any type, including sequence types. What is
needed is a method to split y into two components y1 and y2 so that y1/y2 have the
same type as e1/e2, respectively. Then the inverse of y = (e1, e2) would be the uni-
fication of the inverses for y1 = e1 and y2 = e2. This splitting is accomplished with
the function split(t1, t2, y) that derives two predicates, p1 and p2, to break y into two
components (y1, y2) so that y1 = y[p1] and y2 = y[p2], and the types of y1/y2 match
those of e1/e2, respectively. The inverse rule for sequences is:

Ix((e1, e2), y) = unify(Ix(e1, y[p1]), Ix(e2, y[p2])) (13)

where e1/e2 have types t1/t2 and (p1, p2) = split(t1, t2, .). Here are some of the rules
for the split function:

split(element At1, element At2, y) = split(t1, t2, y/self::A/node()) (S1)

split(element At1, element B t2, y) = (y/self::A, y/self::B) (S2)

split(xs:string, xs:string, y) = (y[1], y[2]) (S3)

split(t1, t2, y) = ⊥ (otherwise) (S4)

Rule (S1) indicates that if the types we try to discriminate are elements with the same
tag, then we can only split y if we consider the content of y. On the other hand, Rule (S1)
indicates that if the types are elements with different tags, A and B, then we can simply
split y to y/self::A and y/self::B.

For example, from Rules (13) and (S3), the inverse of y = (x-1,x*2) is
unify(Ix(y[1],x-1),Ix(y[2],x*2)), which is equal to unify(y[1]+1,y[2]/2). Finally, after unifi-
cation, we get x = if y[1]+1=y[2]/2 then y[1]+1 else ⊥.

5 Implementation and Evaluation

The algorithms described in this paper have already been implemented in Haskell and
the presented examples have been tested. The source code is available at:

http://lambda.uta.edu/MaterializedViews.hs

Although this code has not been incorporated into our XQuery DBMS, HXQ [6], we
have used HXQ to evaluate the feasibility of our approach on incremental view mainte-
nance. HXQ is a fast and space-efficient translator from XQuery to embedded Haskell
code. It takes full advantage of Haskell’s lazy evaluation to keep in memory only those
parts of XML data needed at each point of evaluation, thus performing stream-based
evaluation for forward queries. In addition to processing XML files, HXQ can store
XML documents in a relational database by shredding XML into relational tuples and

30 L. Fegaras

view size tuples view recreation view update
(MBs) ×1000 time (secs) time (msecs)
0 14 130 164 23
1 29 290 191 22
2 47 470 233 27
3 70 380 215 20
4 98 540 256 19
5 130 730 310 21
6 162 910 371 24
7 185 1040 416 32
8 188 1060 423 33
9 191 1070 429 42
10 194 1090 439 39
11 198 1110 448 47
12 203 1140 459 53
13 209 1170 472 69
14 216 1210 491 68
15 223 1250 511 75
16 230 1290 530 72
17 239 1350 556 78
18 249 1410 588 80
19 262 1490 625 90

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 50 100 150 200 250 300

(v
ie

w
 r

ec
re

at
io

n
tim

e)
/(

vi
ew

 u
pd

at
e

tim
e)

/1
00

0
view size in MBs

Fig. 1. A) Evaluation over a Number of XML Views. B) View Update vs. View Recreation

by translating XQueries over the shredded documents into embedded optimized SQL
queries. The mapping to relational tables is based on the document’s structural sum-
mary, which is derived from the document data rather than from a schema. It uses hybrid
inlining to inline attributes and non-repeating elements into a single table, thus resulting
to a compact relational schema.

Our experimental setup consists of a 2.2GHz Intel Core 2 Duo with 2GB memory,
running Haskell ghc-6.10.3 on a 32-bit Linux 2.6.27 kernel. Our experimental XML
data were derived from the DBLP XML document [5] of size 420MB. We fed this
document into our HXQ DBMS, which shredded and stored the DBLP data into the
MySQL database. The resulting MySQL database consists of 4.3 million tuples. Then,
we created 20 materialized XML views of this database, viewi, i ∈ [0, 19], using the
following view mappings:

viewi = <dblp>{$DB//inproceedings[year mod 20 <= i]}</dblp>

that is, each viewi had progressively more elements, with view19 the largest that con-
tained all inproceedings records of DBLP. Each XML view was materialized into a
relational database in MySQL. More specifically, the results of each view mapping was
dumped to an XML document, and this document was parsed, shredded, and stored by
HXQ into MySQL automatically. Then, for each view, viewi, we evaluated the follow-
ing XQuery update:

Ui = for $x in viewi // inproceedings [author=’Leonidas Fegaras ’]
return replace value of node $x/year with 2000

Figure 1.A shows our results for each viewi. The second column is the XML document
size in MBs generated for each view, while the third column is the number of tuples (in
thousands) in the materialized view. The fourth column is the time in seconds needed
to create the materialized view from scratch by 1) evaluating the view query against
the base relational database, 2) by dumping the view results to an XML document, and

Incremental Maintenance of Materialized XML Views 31

3) by shredding and storing the resulting document into the materialized view. This
would also be the time needed to recreate the view after each update. The fifth column
is the time in milliseconds needed for each update Ui against the materialized view.
Figure 1.B draws the ratio between the fourth and fifth column data (divided by 1000)
against the second column (view size). We can see that the performance gain of updating
the materialized view against recreating the view is between 7,000 and 15,000 times.

6 Conclusion

At a first glance, it may seem counter-intuitive to transform an efficient program with
updates to an inefficient program that reconstructs the entire database, just to translate it
back to updates at the end. But, as we show in this paper, this is a very effective way to
incorporate source updates into a view, without requiring any substantial modification
to the existing XQuery model. Since it is based on compositional transformations that
are easy to validate, our approach has the potential of becoming a general methodology
for incremental view maintenance.

References

1. Abiteboul, S., Bourhis, P., Marinoiu, B.: Efficient Maintenance Techniques for Views over
Active Documents. In: EDBT (2009)

2. Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., Wiener, J.L.: Incremental Maintenance for
Materialized Views over Semistructured Data. In: VLDB 1998 (1998)

3. Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y.: Structured Materialized Views
for XML Queries. In: VLDB 2007 (2007)

4. Braganholo, V.P., Davidson, S.B., Heuser, C.A.: From XML View Updates to Relational
View Updates: old solutions to a new problem. In: VLDB 2004 (2004)

5. DBLP XML records, the DBLP Computer Science Bibliography,
http://dblp.uni-trier.de/xml/

6. Fegaras, L.: Propagating Updates through XML Views using Lineage Tracing. In: ICDE
2010 (2010)

7. Fegaras, L.: A Schema-Based Translation of XQuery Updates. In: Lee, M.L., Yu, J.X., Bel-
lahsène, Z., Unland, R. (eds.) XSym 2010. LNCS, vol. 6309, pp. 58–72. Springer, Heidelberg
(2010), http://lambda.uta.edu/xuf10.pdf

8. Fegaras, L.: Incremental Maintenance of Materialized XML Views (Extended Paper),
http://lambda.uta.edu/views10.pdf

9. Fernandez, M., Kadiyska, Y., Suciu, D., Morishima, A., Tan, W.-C.: SilkRoute: A Framework
for Publishing Relational Data in XML. In: TODS 2002, vol. 27(4) (2002)

10. Foster, J.N., Konuru, R., Simeon, J., Villard, L.: An Algebraic Approach to XQuery View
Maintenance. In: PLAN-X 2008 (2008)

11. Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Techniques, and
Applications. IEEE Bulletin on Data Engineering 18(2) (1995)

12. El-Sayed, M., Wang, L., Ding, L., Rundensteiner, E.A.: An Algebraic Approach for Incre-
mental Maintenance of Materialized XQuery Views. In: WIDM 2002 (2002)

13. Onose, N., Borkar, V.R., Carey, M.: Inverse Functions in the AquaLogic Data Services Plat-
form. In: VLDB 2007 (2007)

http://dblp.uni-trier.de/xml/
http://lambda.uta.edu/xuf10.pdf
http://lambda.uta.edu/views10.pdf

32 L. Fegaras

14. Sawires, A., Tatemura, J., Po, O., Agrawal, D., El-Abbadi, A., Candan, K.S.: Maintaining
XPath Views in Loosely Coupled Systems. In: VLDB 2006 (2006)

15. W3C. XML Schema (2000), http://www.w3.org/XML/Schema
16. W3C. XQuery Update Facility 1.0. W3C Candidate Recommendation 1 (June 2009),

http://www.w3.org/TR/xquery-update-10/

http://www.w3.org/XML/Schema
http://www.w3.org/TR/xquery-update-10/

Ingredients for Accurate, Fast, and Robust

XML Similarity Joins

Leonardo Andrade Ribeiro1,� and Theo Härder2

1 Department of Computer Science,
Federal University of Lavras, Brazil

laribeiro@dcc.ufla.br
2 AG DBIS, Department of Computer Science,

University of Kaiserslautern, Germany
haerder@cs.uni-kl.de

Abstract. We consider the problem of answering similarity join queries
on large, non-schematic, heterogeneous XML datasets. Realizing simi-
larity joins on such datasets is challenging, because the semi-structured
nature of XML substantially increases the complexity of the underlying
similarity function in terms of both effectiveness and efficiency. More-
over, even the selection of pieces of information for similarity assessment
is complicated because these can appear at different parts among doc-
uments in a dataset. In this paper, we present an approach that jointly
calculates textual and structural similarity of XML trees while implic-
itly embedding similarity selection into join processing. We validate the
accuracy, performance, and scalability of our techniques with a set of
experiments in the context of an XML DBMS.

Keywords: XML, Similarity Join, Fuzzy Duplicate Identification.

1 Introduction

As XML continues its path to becoming the universal information model, large-
scale XML repositories proliferate. Very often, such XML repositories are non-
schematic, or have multiple, evolving, or versioned schemas. In fact, a prime
motivation for using XML to directly represent pieces of information is the ability
of supporting ad-hoc or “schema-later” settings. For example, the flexibility of
XML can be exploited to reduce the upfront cost of data integration services,
because documents originated from multiple sources can be stored without prior
schema reconciliation and queried afterwards in a best-effort manner.

Of course, the flexibility of XML comes at a price: loose data constraints
can also lead to severe data quality problems, because the risk of storing in-
consistent and incorrect data is greatly increased. A prominent example of such
problems is the appearance of the so-called fuzzy duplicates, i.e., multiple and
non-identical representations of a real-world entity [1]. Complications caused by

� Work done at the University of Kaiserslautern, Germany.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 33–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 L.A. Ribeiro and T. Härder

CD

album

genre

title

producer

artist

"rock"

"Abey Road"

"Martin"

name

"Beatles"

staff

CD

artist

producer

namealbum

"Marzin"

"Beates" "rock/pop"title

"Abbey Road"

genre

1) 2)

Fig. 1. Heterogeneous XML data

such redundant information abound in common business practices. Some exam-
ples are misleading results of decision support queries due to erroneously inflated
statistics, inability of correlating information related to the same customer, and
unnecessarily repeated operations, e.g., mailing, billing, and leasing of equip-
ment. For relational data, fuzzy duplicate identification is often needed on text
fields owing to misspellings and naming variations. For XML — commonly mod-
eled as a labeled tree— , this task is even more critical, because also structure,
in addition to text, may present deviations. For instance, consider the sample
data from music inventory databases shown in Fig. 1. Subtrees 1) and 2) in Fig.
1 apparently refer to the same CD. However, the use of conventional operators
based on exact matching to group together such duplicate data is futile: subtree
1) is arranged according to album, while subtree 2) is arranged according to
artist, there are extra elements (staff in subtree 1), and several typos in the
content of text nodes (e.g., ”Beatles“ and ”Beates“).

In this paper, we present the design and evaluation of an approach to XML
similarity joins. In Sect. 2, we present the main ingredients of our approach,
which are the decomposition of the computation into three components that can
be independently dealt with and a strategy for delimiting textual and structural
representations based on XML path similarity. We formally define the logical
similarity join operator, which implicitly incorporates similarity selection as sub-
operation in Sect. 3. Then, in Sect. 4, we demonstrated that our approach can
be applied flexibly to assess the similarity of ordered and unordered trees, deal
with large datasets, and deliver accurate results with a set of experiments in the
context of an XML DBMS. Related work is discussed in Sect. 5, before we wrap
up with the conclusions in Sect. 6.

2 Main Ingredients

2.1 Similarity Functions

We focus on the class of token-based similarity functions, which ascertains the
similarity between two entities of interest by measuring the overlap between their
set representations. We call such set representation the profile of an entity, the
elements of the profile are called tokens ; optionally, a weighting scheme can be
used to associate weights to tokens. Token-based similarity functions allow mea-
suring textual and structural similarity in a unified framework and provide a very

Ingredients for Accurate, Fast, and Robust XML Similarity Joins 35

Fig. 2. Evaluation of token-based similarity functions

rich similarity space by varying profile generation methods, weighting schemes,
set similarity functions, or any combination thereof. Moreover, these functions
are computationally inexpensive and we can leverage a wealth of techniques for
similarity joins on strings (see [2] and references therein). Fig. 2 illustrates the
three main components of token-based similarity functions and the evaluation
course along them towards a similarity value.

Profile Generation. The profile of an entity is generated by splitting its repre-
sentation into a set of tokens; we call this process tokenization. The idea behind
tokenization is that most of the tokens derived from significantly similar entities
should agree correspondingly. For XML, tokenization can be applied to text,
structure, or both. We next describe methods capturing text and structure in
isolation; methods that generate tokens conveying both textual and structural
information are employed in Sect. 4.

A well-known textual tokenization method is that of mapping a string to
a set of q-grams, i.e., substrings of size q. For example, the 2-gram profile of
the string ”Beatles“ is {’Be’, ’ea’, ’at’, ’tl’, ’le’, ’es’}. Structural tokenization
methods operate on element nodes capturing labels1 and relationships. A simple
structural (path) tokenization method consists of simply collecting all element
node labels of a path. Thus, the profile of the path /CD/album/artist/name
would be {’CD’, ’album’, ’artist’, ’name’}. Note that, as described, the result of
both tokenization methods could be a multi-set. We convert a multi-set to sets
by concatenating the symbol of a sequential ordinal number to each occurrence
of a token. Hence, the multi-set {’a’,’b’,’b’} is converted to {a◦1, b◦1, b◦2} (the
symbol ◦ denotes concatenation).

Weighting Schemes. In many domains, tokens show non-uniformity regarding
some semantic properties such as discriminating power. Therefore, the definition
of an appropriate weighting scheme to quantify the relative importance of each
token for similarity assessment is instrumental in obtaining meaningful similar-
ity results. For example, the widely used Inverse Document Frequency (IDF)
weights a token t as follows: IDF (t)=ln(1 + N/ft), where ft is the frequency
of token t in a database of N documents. The intuition of IDF is that rare
tokens usually carry more content information and are more discriminative. Be-
sides statistics, other kinds of information can be used to calculate weights. The
1 We assume that element labels are drawn from a common vocabulary. Semantic
integration of vocabulary (or ontology) is a closely related but different problem
from similarity matching of structure and textual content, which is our focus here.

36 L.A. Ribeiro and T. Härder

Level-based Weighting Scheme (LWS) [3] weights structural tokens according to
node nesting depth in a monotonically decreasing way: given a token t derived
from a node at nesting level i, its weight is given by LWS(t) = eβi, where β ≤ 0 is
a decay rate constant. The intuition behind LWS is that in tree-structured data
like XML more general concepts are normally placed at lower nesting depths.
Hence, mismatches on such low-level concepts suggest that the information con-
veyed by two trees is semantically “distant”.

Set Similarity. Tokenization delivers an XML tree represented as a set of to-
kens. Afterwards, similarity assessment can be reduced to the problem of set
overlap, where different ways to measure the overlap between profiles raise vari-
ous notions of similarity. In the following, we formally define the Weighted Jac-
card Similarity, which will be used in the rest of this paper. Several other set
similarity measures could however be applied [2].

Definition 1. Let P1 be a profile and w(t,P1) be the weight of a token t in P1

according to some weighting scheme. Let the weight of P1 be given by w(P1) =∑
t∈P1

w(t,P1). Similarly, consider a profile P2. The Weighted Jaccard Similar-
ity between P1 and P2 is defined as WJS(P1,P2) = w(P1∩P2)

w(P1∪P2)
, where w(t,P1 ∩

P2) = min(w(t,P1), w(t,P2)).

Example 1. Consider the profiles P1 ={〈’Be’, 5〉,〈’ea’, 2〉,〈’at’, 2〉,〈’tl’, 2〉,〈’le’,
1〉,〈’es’, 4〉} and P2 ={〈’Be’, 5〉,〈’ea’, 2〉,〈’at’, 2〉,〈’te’, 1〉,〈’es’, 4〉}—note the
token-weight association, i.e., 〈t, w(t)〉. Therefore, we have WJS(P1,P2) ≈ 0.76.

2.2 XML Path Clustering

There are several challenges to realizing similarity joins on heterogeneous XML
data. Regarding effectiveness, structural and textual similarities have to be cal-
culated and combined. Text data needs to be specified, because often only part of
the available textual information is relevant for similarity matching, and can be
only approximately selected, because the underlying schema is unknown or too
complex. Regarding efficiency, it is important to generate compact profiles and
avoid repeated comparisons of structural patterns that may appear many times
across different XML documents. Next, we briefly review our approach based on
path clustering, which provides the basis for tackling all the issues above. For a
detailed discussion, please see [3].

Our approach consists of clustering all path classes of an XML database in
a pre-processing step. Path classes uniquely represent paths occurring at least
once in at least one document in a database. The similarity function used in
the clustering process is defined by the path tokenization method and the LWS
weighting scheme described earlier and some set similarity function like WJS. As
a result, we obtain the set PC = {pc1, . . . , pcn}, where pci is a cluster containing
similar path classes and i is referred to as Path Cluster Identifier (PCI). Given
a path p appearing in some document, we say that p ∈ pci iff the path class of p
is in pci. Further, we can reduce similarity matching between paths to a simple

Ingredients for Accurate, Fast, and Robust XML Similarity Joins 37

CD

album

genre

title

producer

artist

name

staff

artist

producer

namealbum

title

genre

(1) (2) (3) (4)

(3) (4) (1) (2)

(PCI)

Fig. 3. Path synopsis annotated with PCI values

equality comparison between their corresponding PCIs, because the actual path
comparison has already been performed during the clustering process.

Prior to clustering, all path classes of a database have to be first collected.
This can be done in a single pass over the data. Preferably, we can use the so-
called Path Synopsis (PS), a tree-structured index providing and maintaining a
structural summary of an XML database [4]. Each node in a PS represents a
(partial) path class. Fig. 3 depicts the PS of the sample database shown in Fig.
1 annotated with PCI values, where similar paths have the same PCI.

PCI values are used to guide the selection of text data that will compose the
textual representation of an entity. For this, we define the set PCt ⊆ PC : only
text nodes appearing under a path in PCt are used to generated tokens convey-
ing textual information. We let users specify the PCt set by issuing simple path
queries like /a/b/c, which are approximately matched against the elements of
PC . The K path clusters with highest similarity to each path query are selected
to form PCt . To enable very short response times, path clusters are represented
by a single cluster representative, to which path queries are compared, and im-
plemented as little memory-resident inverted lists. The PCt can be interactively
or automatically constructed, in which path queries are embedded into the main
similarity join query. In the following, we assume that PCt is given.

3 Tree Similarity Join

We are now ready to define our Tree Similarity Join (TSJ) operator. This op-
erator takes as input two XML databases and outputs all pairs of XML trees
whose similarity is greater than a given threshold.

Definition 2. Let D1 and D2 be two XML databases and exp(D) be an XPath or
XQuery expression over a database D. Further, let tok be a tokenization method
that, given a set PCt of PCIs, maps an XML tree T to a profile tok [PCt](T),
ws be a weighting scheme that associates a weight to every element of a given
input set, and ss be a set similarity measure. Let sf be the similarity function
defined by the triple 〈tok[PCt], ws, ss〉, which returns the similarity between two
XML trees T1 and T2, sf (T1, T2) as a real value in the interval [0, 1]. Finally
let τ be a similarity threshold, also in the interval [0, 1]. The Tree Similarity
Join between the tree collections specified by exp1 (D1) and exp2 (D2), denoted
by TSJ (exp1 (D1), exp2 (D2), sf, τ), returns all scored tree pairs 〈(T1, T2), τ ′〉 s.t.
(T1, T2) ∈ exp1 (D1)× exp2 (D2) and sf (T1, T2) = τ ′ ≥ τ .

38 L.A. Ribeiro and T. Härder

Note that we can evaluate TSJ over the same database by specifying D1 = D2

or over a single XML tree collection by specifying exp1 (D1)=exp2 (D2) or simply
omitting the second parameter (hence, defining a self-similarity join).

The course of the TSJ evaluation closely follows that of token-based simi-
larity functions shown in Fig. 2. A pre-step consists of accessing and fetching
the trees into a memory-resident area, forming the input of TSJ. To this end,
we can fully leverage the query processing infrastructure of a host XML DBMS
environment to narrow the similarity join processing to the subset of XML doc-
uments (or fragments thereof) specified by the query expression. The next steps,
1) Profile Generation, 2) Weighting, and 3) Set Similarity can be independently
implemented and evaluated in a pipelined fashion. Profile Generation produces
tokens capturing only structure and structure in conjunction with text. As gen-
eral strategy, text data appearing under a path in PCt is converted to a set of
q-grams and appended to the corresponding structural tokens. Note that, be-
cause the set PCt is obtained by similarity matching between path queries and
the elements of PC (recall Sect. 2.2), this strategy implicitly embeds similarity
selection into the join processing. The realization of Weighting is straightfor-
ward. For certain weighting schemes, such as IDF, we need the frequency of
all tokens in the database. We can store and easily maintain this information
in a simple memory-resident token-frequency table. (Assuming four bytes each
for the hashed token value and its frequency, 1.3 million tokens would require
around 10MB memory space, which is hardly an issue with modern computers.)
Set Similarity is implemented by the set similarity join algorithm based on in-
verted lists presented in [2]. This algorithm requires sorting the tokens of each
profile in increasing order of frequency in the data collection as well as sorting
the profiles in increasing order of their size. The sorting of tokens is done in
step 2) using the token-frequency table, while we only need an additional sort
operator to deliver sorted profiles to step 3).

The TSJ evaluation is completely done “on-the-fly”, i.e, we do not rely on
any indexing scheme to provide access or maintenance on pre-computed profiles.
Besides avoiding the issue of index update in the presence of data updates, steps
2) and 3) do not take an exceedingly large fraction of the overall processing
time. Finally, we note that on-the-fly evaluation is the only option in virtual
data integration scenarios where the integrated data is not materialized.

4 Experiments

The objectives of our empirical experiments are to measure accuracy of the
similarity functions (i), overall performance of the TSJ operator (ii), relative
performance of the TSJ components (iii), their scalability (iv), and to compare
the performance of TSJ using different similarity functions.

We used two real-world XML databases on protein sequences: SwissProt
(http://us.expasy.org/sprot/) and PSD (http://pir.georgetown.edu/). We
deleted the root node of each XML dataset to obtain sets of XML documents.
The resulting documents are structurally very heterogeneous. On average, Swis-
sProt has a larger number of distinct node labels and exhibits larger and wider

Ingredients for Accurate, Fast, and Robust XML Similarity Joins 39

trees. We defined the set PCt by issuing two path queries for each dataset:
/Ref/Author and Org on SwissProt and organism/ formal and sequence on
PSD. The resulting text data on PSD is about 2x larger than on SwissProt.

Using these datasets, we derived variations containing fuzzy duplicates by
creating exact copies of the original trees and then performing transformations,
which aimed at simulating typical deviations between fuzzy duplicates appearing
in heterogeneous datasets and those resulting from schema evolution, text data
entry errors, and the inherent structural heterogeneity that naturally emanates
from the XML data model. Transformations on text nodes consist of word swaps
and character-level modifications (insertions, deletions, and substitutions); we
applied 1–5 such modifications for each dirty copy. Structural transformations
consist of node operations (e.g., insertions, deletions, inversions, and relabeling)
as well as deletion of entire subtrees and paths. Insertion and deletion operations
follow the semantics of the tree edit distance [5], while node inversions switch
the position between a node and its parent; relabeling changes the node’s label.

Error extent was defined as the percentage of tree nodes which were affected
by the set of structural modifications. We considered as affected such nodes
receiving modifications (e.g., a rename) and all its descendants. We classify the
fuzzy copies generated from each data set according to the error extent used: we
have low (10%), moderate (30%), and dirty (50%) error datasets. IDF is used as
weighting scheme and WJS as set similarity function. All tests were performed
on an Intel Xeon Quad Core 3350 2,66 GHz, about 2.5 GB of main memory.
Finally, we conduct our experiments in the context of an XML DBMS platform
called XML Transaction Coordinator (XTC) [4].

4.1 Accuracy Results

In our first experiment, we evaluated and compared the accuracy of similarity
functions for ordered and unordered XML trees. For ordered trees, we employ
epq-grams [6], an extension of the concept of pq-grams [7]. For unordered trees,
we can exploit the fact that PCIs are already used to represent similar paths.
For this, we simply use the PCIs corresponding to the set of paths of a tree
to generate its profile: PCIs of a tree appearing in PCt are appended to each
q-gram generated from the corresponding text node and the remaining PCIs are
used to directly represent structural tokens. We did not apply node-swapping
operations when generating the dirty datasets; our comparison between similar-
ity functions for unordered and ordered trees is fair. To evaluate accuracy, we
used our join algorithms as selection queries, i.e., as the special case where one
of the join partners has only one entry. We proceeded as follows. Each dataset
was generated by first randomly selecting 500 subtrees from the original dataset
and then generating 4500 duplicates from them (i.e., 9 fuzzy copies per subtree,
total of 5000 trees). As the query workload, we randomly selected 100 subtrees
from the generated dataset. For each queried input subtree T , the trees TR in
the result are ranked according to their calculated similarity with T ; the relevant
trees are those generated from the same source tree as T .

We report the non-interpolated Average Precision (AP), which is given by
AP = 1

#relevanttrees ×
∑n

r=1 [P (r)× rel(r)], where r is the rank, n the number

40 L.A. Ribeiro and T. Härder

(a) SwissProt, varying error extent (b) PSD, varying error extent

Fig. 4. MAP values for different similarity functions on differing datasets

of subtrees returned. P (r) is the number of relevant subtrees ranked before r,
divided by the total number of subtrees ranked before r, and rel(r) is 1, if the
subtree at rank r is relevant and 0 otherwise. This measure emphasizes the
situation, where more relevant documents are returned earlier. We report the
mean of the AP over the query workload (MAP).

Figure 4 shows the results. Our first observation is that both similarity func-
tions obtain near perfect results on low-error datasets. This means that dupli-
cates are properly separated from non-duplicates and positioned on top of the
ranked list. Even on dirty datasets, the MAP values are above 0.7 on SwissProt
and 0.9 on PSD. In this connection, we observe that the results on SwissProt
degrade more than those of PSD as the error extent increases. The explanation
for this behavior lies on the flip side of structural heterogeneity: while providing
good identifying information, structural heterogeneity severely complicates the
selection of textual information and, thus, the set PCt is more likely to contain
spurious PCIs, especially on dirty datasets. Indeed, a closer examination on the
dirty dataset of SwissProt revealed that PCt contained, in fact, several unre-
lated paths. On the other hand, the results are quite stable on PSD, i.e., MAP
values do not vary too much on a dataset and no similarity function experienced
drastic drop in accuracy along differing datasets. Finally, PCI has overall better
accuracy than EPQ (the only exception is on the dirty dataset of PSD).

4.2 Runtime Performance and Scalability Results

In this experiment, we report the runtime results for fetching the input trees
(SCAN), Profile Generation and Weighting steps (collectively reported as SET-
GEN), set collection sorting (SORT), and set similarity join (JOIN). Note that
PCI and EPQ are abbreviated by P and E, respectively. We generated datasets
varying from 20k to 100k, in steps of 20k. Finally, we fixed the threshold at 0.75.

The results are shown in Fig. 5. On both datasets, SCAN, SETGEN, and SORT
perfectly scale with the input size. Especially for SCAN, this fact indicates that we
achieved seamless integration of similarity operatorswith regularXQuery process-
ing operators of XTC. SCAN is about 80% faster on PSD (Fig. 5(b)) as compared
to SwissProt (Fig. 5(a)), because characteristics of the PSD dataset lead to bet-
ter compression rates of the storage representation. As a result, fewer disk blocks

Ingredients for Accurate, Fast, and Robust XML Similarity Joins 41

(a) SwissProt, 20–100k trees (b) PSD, 20–100k trees

Fig. 5. TSJ execution steps on an increasing number of trees

need to be read during the tree scan operation. On the other hand, SETGEN is
about 2x slower on PSD as compared to SwissProt for both similarity functions.
The text data of PSD defined by the path queries is larger than those of SwissProt,
which results in larger sets and, in turn, higher workload for sorting and weighting
operations. SETGEN is more than 3x faster on PCI as compared to EPQ. Because
paths are provided for free by the path-oriented storage model, PCI-based profile
generation simply consists of accessing the PCR-PCI table and splitting strings
into sets of q-grams. On both datasets and for both similarity functions, SORT
consumes only a small fraction of the overall processing time. In comparison to
the other TSJ components, JOIN takes only up to 20% of the overall processing
time on SwissProt, whereas it takes up to 60% on PSD ; on the other hand, JOIN
exhibits worst scalability.

5 Related Work

There is an extensive research literature on XML similarity, in which a large part
is based on the concept of tree edit distance [5]. Despite its popularity, the tree
edit distance is computationally expensive—worst case complexity of O(n3),
where n is n is the number of nodes [8] —and, therefore, impractical for use
in datasets with pontentially large trees. Guha et al. [9] proposed a framework
where expensive distance computations are limited by using filters and a pivot-
based approach to map trees into a vector space. Augsten et al. presented the
concept of pq-grams to efficiently approximate the tree edit distance on ordered
[7] and unordered trees [10]. Neither Guha et al. [9] nor Augsten et al. [7,10]
considers textual similarity. Weis and Naumann [11] proposed a framework for
XML fuzzy duplicate identification. As in our approach, users can specify the
textual information using selection queries. However, the framework only sup-
ports structured queries, which prevents its use on heterogeneous datasets.

Dalamagas et al. [12] exploited structural summaries to cluster XML doc-
uments by structure. Joshi et al. [13] employed the bag-of-tree-paths model,
which represents tree structures by a set of paths. Our aim is completely dif-
ferent from these two previous approaches. We do not cluster XML documents
directly; rather, we cluster paths to derive compact structural representations

42 L.A. Ribeiro and T. Härder

that can be, afterwards, combined with textual representations to calculate the
overall tree similarity. Finally, this paper builds upon our own previous work on
similarity for ordered trees [6], unordered trees [3], and set similarity joins [2].

6 Conclusion

We presented the design and evaluation of an approach to XML similarity joins.
Focusing on token-based similarity functions, we decomposed the original prob-
lem into three components suitable for pipelined evaluation, namely, profile gen-
eration, weighting, and set similarity. XML tree profiles comprise tokens that
capture structural information only and tokens representing structure together
with user-defined pieces of textual information. In this context, we identified
the need for similarity-based selection of text nodes to evaluate similarity joins
on heterogeneous XML datasets— a so far neglected aspect— and proposed an
approach that implicitly embeds similarity selection into join processing. We
experimentally demonstrated that our approach can be applied flexibly to as-
sess the similarity of ordered and unordered trees, deal with large datasets, and
deliver accurate results even when the data quality decreases.

References

1. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. TKDE 19(1), 1–16 (2007)

2. Ribeiro, L.A., Härder, T.: Generalizing prefix filtering to improve set similarity
joins. Information Systems 36(1), 62–78 (2011)

3. Ribeiro, L.A., Härder, T., Pimenta, F.S.: A cluster-based approach to xml similar-
ity joins. In: IDEAS, pp. 182–193 (2009)

4. Mathis, C.: Storing, Indexing, and Querying XML Documents in Native XML
Database Systems. PhD thesis, Technische Universität Kaiserslautern (2009)

5. Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM 26(3), 422–433
(1979)

6. Ribeiro, L., Härder, T.: Evaluating performance and quality of XML-based simi-
larity joins. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS,
vol. 5207, pp. 246–261. Springer, Heidelberg (2008)

7. Augsten, N., Böhlen, M.H., Gamper, J.: The pq-gram distance between ordered
labeled trees. TODS 35(1) (2010)

8. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

9. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Integrating xml data
sources using approximate joins. TODS 31(1), 161–207 (2006)

10. Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate joins for
data-centric xml. In: ICDE, pp. 814–823 (2008)

11. Weis, M., Naumann, F.: Dogmatix tracks down duplicates in xml. In: SIGMOD,
pp. 431–442 (2005)

12. Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.K.: A methodology for clustering
xml documents by structure. Information Systems 31(3), 187–228 (2006)

13. Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S.: A bag of paths model for
measuring structural similarity in web documents. In: SIGKDD, pp. 577–582 (2003)

Twig Pattern Matching: A Revisit

Jiang Li1, Junhu Wang1, and Maolin Huang2

1 School of Information and Communication Technology
Griffith University, Gold Coast, Australia

Jiang.Li@griffithuni.edu.au, J.Wang@griffith.edu.au
2 Faculty of Engineering and Information Technology
The University of Technology, Sydney, Australia

maolin@it.uts.edu.au

Abstract. Twig pattern matching plays a crucial role in xml query pro-
cessing. In order to reduce the processing time, some existing holistic one-
phase twig pattern matching algorithms (e.g., HolisticTwigStack [3],
TwigFast [5], etc) use the core function getNext of TwigStack [2] to ef-
fectively and efficiently filter out the useless elements. However, using
getNext as a filter may incur other redundant computation. We propose
two approaches, namely re-test checking and forward-to-end, which can
avoid the redundant computation and can be easily applied to both holis-
tic one-phase and two-phase algorithms. The experiments show that our
approach can significantly improve the efficiency by avoiding the redun-
dant computation.

1 Introduction

The importance of fast processing of xml data is well known. Twig pattern
matching, which is to find all matchings of a query tree pattern in an xml data
tree, lies in the center of all xml processing languages. Therefore, finding efficient
algorithms for twig pattern matching is an important research problem.

Over the last few years, many algorithms have been proposed to perform twig
pattern matching. Bruno et al [2] proposed a two-phase holistic twig join al-
gorithm called TwigStack, which breaks the query tree into root-to-leaf paths,
finds individual root-to-path solutions, and merges these partial solutions to
get the final result. One vivid feature of TwigStack is the efficient filtering of
useless partial solutions through the use of function getNext. Later on several
one-phase holistic algorithms (e.g., [3], [5]) also use getNext to filter out use-
less elements. Using getNext as a filter can efficiently discard useless elements.
However, getNext may incur other redundant computation. Li et al [4] try to re-
solve the redundant computation and propose TJEssential, but their approach
involves much overhead and can not avoid some important types of redundant
computation.

In this paper, we propose a different approach to avoid redundant compu-
tation, and this approach imposes less overheads and can be easily applied to
both holistic one-phase and two-phase twig pattern matching algorithms that

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 43–50, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

44 J. Li, J. Wang, and M. Huang

root

a1

a2

a3

d1

e1 e2

b1

c1
c2

a4

a5

b2

c3

e3

e4

a6

(a) t

a

b

c

d

e

(b) Q

Fig. 1. Example data tree t and tree pattern Q

are based on TwigStack. We present the algorithms TwigFast* and TwigStack*
which extend TwigFast and TwigStack respectively by applying our proposed
approach.

The rest of the paper is organized as follows. Section 2 provides background
knowledge and recalls the major features of getNext and TwigFast. Redundant
computation in getNext is explained in Section 3. Our approach for resolving
redundant computation is presented in Section 4. The experiment results are
reported in Section 5. Finally, Section 6 concludes this paper.

2 Terminology and Notation

An xml document is modeled as a node-labeled tree, referred to as the data tree.
A twig pattern is also a node-labeled tree, but it has two types of edges: /-edge
and //-edges, which represent parent-child and ancestor-descendent relationships
respectively. The twig matching problem is to find all occurrences of the twig
pattern in the data tree. For data trees, we adopt the region coding scheme [2].
Each node v is coded with a tuple of three values: (v.start, v.end: v.level).

Below, we will use elements to refer to nodes in a data tree, and nodes to refer
to nodes in a twig pattern. For each node n, there is a stream, Tn, consisting
of all elements with the same label as n arranged in ascending order of their
start values. For each stream Tn, there exists a pointer PTn pointing to the
current element in Tn. The function Advance(Tn) moves the pointer PTn to the
next element in Tn. The function getElement(Tn) retrieves the current element
of Tn. The function isEnd(Tn) judges whether PTn points to the position after
the last element in Tn. In addition, for node n, the functions isRoot(n) (resp.
isLeaf (n)) checks whether node n is the root (resp. leaf), and parent(n) (resp.
children(n)) returns the parent (resp. set of children) of n. ancestors(n) (resp.
descendants(n)) returns the set of ancestors (resp. set of descendants) of n.

3 Deficiencies in Previous Algorithms

Many previous twig pattern matching algorithms use getNext of TwigStack
to filter out useless elements. However, getNext may bring other redundant
computation. In this section, we explain where the redundant computation comes

Twig Pattern Matching: A Revisit 45

Table 1. Example of redundant calls of getNext

Step getNext(a) getNext(b) getNext(c) getNext(d) getNext(e)

1 a(a1) b c d e
2 a(a2) b c d e
3 a(a3) b c d e
4 d(d1) b c d e
5 e(e1) b c e e
6 e(e2) b c e e
7 e(e3) b c e e
8 e(e4) b c e e
9 b(b1) b c d e
10 c(c1) c c
11 c(c2) c c
12 b(b2) b c d e
13 c(c3) c c

from. For ease of understanding, we use the query and data tree in Fig. 1 to
exemplify the redundant computation of getNext. We present each step1 of
calling getNext over the root of the query tree (i.e., a) in Table 1.

Basically, the redundant computation mainly comes from the following redun-
dant test and late end.

Redundant test. redundant test is making redundant calls of getNext over
some nodes in the query tree. The current elements of these nodes did not
change in the previous step. Consider the data tree t and query Q in Fig. 1.
a1-a3 are self-nested nodes. After we found a1 has a solution extension in step 1,
it is unnecessary to call getNext over the query trees rooted at the nodes b and
d when testing whether a2 has a solution extension. This is mainly because the
current elements of the nodes b, c, d and e do not change during and after step 1.
This also happens on a3 when checking if a3 has a solution extension. Therefore,
the calls of getNext over the nodes b, c, d and e in step 2-3 are redundant,
and they are grayed in Table 1. For the similar reason, it is unnecessary to call
getNext over the nodes b, c, d and e in step 4. This also happens in step 9 and
12, and the calls of getNext over d and e are redundant. Furthermore, during
step 5-7, the calls of getNext over the subtree rooted at node b are redundant.

Late end. late end is wasting time on the elements that will not contribute to
any solutions when some cursors of the streams reach ends. Suppose there are no
elements to be processed in the stream of node q, it is possible to skip all the rest
of the elements in the streams of nodes ancestors(q) and descendants(q). This
can avoid some calls of getNext and the time spent on scanning the elements
in some streams. For the example above, when there are no elements left in the
stream Td after step 4, we can directly set PTa to the end because the remaining
elements in stream Ta will not contribute to any solutions. Then, when we found
the rest of the elements in the streams of descendant(q) will not contribute any
solutions, we can set the PT pointers of these streams to the ends. In Table 1,
calls of getNext in step 8 and 13 are redundant and can be pruned.

1 In this paper, a step is a call of getNext over the root of a query tree including the
recursive calls.

46 J. Li, J. Wang, and M. Huang

Algorithm 1. getNext*(q)
1: if isLeaf(q) then
2: return q

3: for qi ∈ children(q) do
4: if qi.retest = true then
5: ni = getNext*(qi)
6: if ni �= qi then
7: qi.retest = true
8: return ni

9: nmin = min argqi∈children(q) nextL(Tqi
)

10: nmax = max argqi∈children(q) nextL(Tqi
)

11: while (nextR(Tq) < nextL(Tnmax)) do
12: Advance(Tq)

13: if nextL(Tq) < nextL(Tnmin
) then

14: q.retest = false
15: return q
16: else
17: nmin.retest = true
18: return nmin

4 Approach for Avoiding Redundant Computation

4.1 Re-test Checking

Our solution for redundant test is called re-test checking and is mainly based on
the following observation:

Observation. getNext(n) is used for testing whether a solution extension can
be found for the current element of node n. Suppose getNext has been called over
the node n before. If the current element of any node in the query tree rooted
at n changes, it is necessary to call getNext(n) again for re-testing. Otherwise,
getNext(n) does not need to be called.

We introduce an extra value retest for each query node to record whether
getNext need to be called on this node in the next step. The initial value of
retest is true, and this value is dynamic during computation. The new version
of getNext is presented in Algorithm 1.

getNext* has the following properties: (1) Given a query rooted at Q, getNext*
is only called over the nodes whose value of retest is true, including the nodes
that have not been tested by getNext* before and the nodes have been tested by
getNext* but need to be tested again. (2) Suppose getNext* has been called over
each node at least once. If getNext*(Q) returns a node n in a step, getNext* will
only be called over the nodes on the path from Q to n in the next step. The number
of times getNext* is called will be bounded by the maximal depth of the query
tree in the following steps.

With the properties above, the number of times getNext* is called can be
significantly reduced, particularly when the query tree has many branches.

4.2 Forward-to-End

When the pointer PTn of the stream Tn reaches the end, the rest of the elements
in the streams of n’s ancestors and descendants may become useless. Therefore,

Twig Pattern Matching: A Revisit 47

Algorithm 2. Forward-to-end
1: procedure ForwardAnstoEnd(n)
2: for each p in ancestors(n) do
3: ForwardtoEnd(Tp)

4: procedure ForwardDestoEnd(n)
5: for each d in descendants(n) do
6: ForwardtoEnd(Td)

Algorithm 3. TwigFast*(Q)
1: initialize the list Lni

as empty, and set ni.tail = 0, for all ni ∈ Nodes(Q);

2: while ¬end(Q) do
3: nact = getNext*(root(Q))
4: vact = getElement(nact)
5: if ¬isRoot(nact) then
6: SetEndPointers(parent(nact), vact.start)

7: if isRoot(nact) ∨ parent(nact).tail �= 0 then
8: if ¬isLeaf(nact) then
9: SetEndPointers(nact, vact.start)
10: for nk ∈ children(nact) do
11: vact.startnk

= length(Lnk
) + 1

12: vact.cancestor = nact.tail
13: nact.tail = length(Lnact) + 1

14: append vact into list Lnact

15: else if isEnd(Tparent(nact)) = true then

16: ForwardDestoEnd(parent(nact))

17: Advance(Tnact)

18: if isEnd(Tnact) = true then

19: ForwardAnstoEnd(nact)

20: SetRestEndPointers(Q, ∞)

we need to find a solution to skip these useless elements. In our approach
forward-to-end, we select two time points for skipping. Consider a query tree
rooted at Q. Suppose getNext(Q) returns node n in a step, and PTn reaches
the end after calling Advance(Tn). The two time points for skipping the rest of
the elements in the streams of n’s ancestors and descendants are as follows:

Time point 1. We immediately skip the rest of the elements in the streams
of n’s ancestors after calling Advance(Tn) because we can not find any solution
extension for them in the following steps.

Time point 2. We can not immediately skip the rest of the elements in the
streams of n’s descendants after calling Advance(Tn) because they are still po-
tential elements that may contribute to final solutions. We have to wait un-
til there are no elements in the stack Sn for the two-phase algorithms that
use stacks for storing intermediate results and all the end positions in the list
Ln have been set for the one-phase algorithms that use lists for storing final
results.

The pseudocode of skipping the rest of the elements in the streams of the
node n and n’s ancestors and descendants is shown in Algorithm 2.

48 J. Li, J. Wang, and M. Huang

Algorithm 4. TwigStack*(Q)
1: while ¬end(Q) do
2: nact = getNext*(root(Q))
3: vact = getElement(nact)
4: if ¬isRoot(nact) then
5: CleanStack(parent(nact), vact.start)

6: if isRoot(nact) ∨ ¬empty(Sparent(nact)) then

7: CleanStack(nact, vact.start)
8: MoveStreamtoStack(Tqact , Sqact , pointer to top(Sparent(Sqact)))

9: if ¬isLeaf(nact) then
10: ShowSolutionswithBlocking(Snact , 1)

11: Pop(Snact)

12: else if isEnd(Tparent(nact)) = true then

13: ForwardDestoEnd(parent(nact))

14: Advance(Tnact)

15: if isEnd(Tnact) = true then

16: ForwardAnstoEnd(nact)

17: mergeAllPathSolutions()

Query

TwigFast TwigFast*

P
ro

ce
ss

in
g

tim
e

(m
s)

TQ1 TQ2 TQ3 TQ4 TQ5

(a) low frequency on non-
leaf nodes

Query

TwigFast TwigFast*

TQ6 TQ7 TQ8 TQ9 TQ10

P
ro

ce
ss

in
g

tim
e

(m
s)

(b) low frequency on leaf
nodes

Query

TwigFast TwigFast*

P
ro

ce
ss

in
g

tim
e

(m
s)

TQ11 TQ12 TQ13 TQ14 TQ15

(c) all nodes with high fre-
quencies

Fig. 2. Processing time of queries with different characteristics

4.3 TwigFast* and TwigStack*

Algorithm 3 and 4 extend the algorithm TwigFast and TwigStack respectively
by applying re-test checking and forward-to-end.

5 Experiments

In this section, we present the experiment results on the performance of
TwigFast* against TwigFast [5] and TwigStack* against TwigStack [2] and
TJEssential [4], with both real-world and synthetic data sets. The algorithms
are evaluated with the metrics of processing time. We selected the queries with
different characteristics for more accurate evaluation.

We implemented TwigFast*, TwigFast, TwigStack*, TwigStack and
TJEssential in C++. All the experiments were performed on 1.7GHz Intel
Pentium M processor with 1G RAM. The operating system is Windows 7. We
used the following three data sets for evaluation: TreeBank [1], DBLP [1] and
XMark [6]. The queries for evaluation are listed in Table 2, which contain ‘//’
and ‘/’ edges.

Performance of answering the queries with different characteristics.In
order to make the experiments more objective, we selected the queries with differ-

Twig Pattern Matching: A Revisit 49

Table 2. Queries over TreeBank, DBLP and XMark

Data set Query XPath expression

TreeBank TQ1 //V//S
TreeBank TQ2 //ADV[/S][/PP]//NP
TreeBank TQ3 //A//S//VP
TreeBank TQ4 //ADJ[//NN]//DT
TreeBank TQ5 //VP//ADV[//VP][//NP]//S

TreeBank TQ6 //S[/NP]//CONJ
TreeBank TQ7 //NP[//NP][//PP]// NL
TreeBank TQ8 //S[/VP/NP]// HASH
TreeBank TQ9 //S[/ADV][//PP]/NP
TreeBank TQ10 //VP[//NP][//PP]//FILE

TreeBank TQ11 //VP[/NP//NP][//S[//PP]/VP]//NN
TreeBank TQ12 //NP/S[//VP[//NN][//PP]/NP]//VBN
TreeBank TQ13 //S//VP//PP[//NP//VBN]//IN
TreeBank TQ14 //S//VP//PP[//NN][//NP[//CD]//VBN]//IN
TreeBank TQ15 //S[//VP//PP//NP][//S[//PP//JJ]//VBN]//PP//NP// NONE

TreeBank TQ16 //S/VP/NP[//VP/NP//ADJ][//NP[//PP//VBN]//DT]//NN
TreeBank TQ17 //S[/VP/NP[//ADV]//VBN]//VP
TreeBank TQ18 //S[//VP//NP//JJ]//NP/PP//ADJ
TreeBank TQ19 //S[/VP[//NP//JJ]/PP//NN]//V
TreeBank TQ20 //S[/VP[//NN][//PP]//A]//ADJ

DBLP DQ1 //dblp/inproceedings[/title]/author
DBLP DQ2 //dblp/article[/author][//title]//year
DBLP DQ3 //dblp//inproceedings[//cite][//title]//author
DBLP DQ4 //dblp//article[//author][//title][//url][//ee]//year
DBLP DQ5 //article[//volume][//cite]//journal

XMark XQ1 //item[/location]/description//keyword
XMark XQ2 //people//person[//address/zipcode]/profile/education
XMark XQ3 //item[/location][//mailbox/mail//emph]//description//keyword
XMark XQ4 //people//person[//address//zipcode][//id]//profile[//age]//education
XMark XQ5 //open auction[//annotation//parlist]//bidder//increase

ent characteristics over the TreeBank dataset. For the queries TQ1-TQ5, there is
at least one non-leaf node with low frequency in each query. On the contrary, the
nodes with low frequencies appear on leaf nodes in the queries TQ6-TQ10. For the
queries TQ11-TQ15, all the nodes have high frequencies. We compare TwigFast*
with TwigFast on these three types of queries. The results are shown in Fig. 2.
As shown in this figure, TwigFast* achieves better performance than TwigFast
on all these three types of queries, and is more than 30% faster than TwigFast on
most queries. The better performance of TwigFast* on the queries TQ1-TQ10
suggests that the forward to end approach can avoid the redundant computation
brought by late end. On the other hand, TwigFast* achieves better performance
than TwigFast on the queries TQ11-TQ15 mainly because re-test checking ap-
proach avoids a large amount of unnecessary calls of getNext.

Performance of answering the queries over different datasets. We first
compare TwigFast* with TwigFast over the datasets TreeBank, DBLP and
XMark. The queries TQ16-TQ20 over TreeBank dataset mix different character-
istics we mentioned above. The results are shown in Fig. 3. As shown in this fig-
ure, TwigFast* has better efficiency than TwigFast on all of the queries over the
three datasets. Then we compare TwigStack*with TwigStack and TJEssential
over the datasets TreeBank, DBLP and XMark. The results are shown in Fig. 4.

50 J. Li, J. Wang, and M. Huang

Query

TwigFast TwigFast*

P
ro

ce
ss

in
g

tim
e

(m
s)

TQ16 TQ17 TQ18 TQ19 TQ20

(a) TreeBank

Query

TwigFast TwigFast*

P
ro

ce
ss

in
g

tim
e

(m
s)

DQ1 DQ2 DQ3 DQ4 DQ5

(b) DBLP

Query

TwigFast TwigFast*

P
ro

ce
ss

in
g

tim
e

(m
s)

XQ1 XQ2 XQ3 XQ4 XQ5

(c) XMark

Fig. 3. TwigFast vs TwigFast*

Query

TwigStack TJEssential TwigStack*

P
ro

ce
ss

in
g

tim
e

(m
s)

TQ16 TQ17 TQ18 TQ19 TQ20

(a) TreeBank

Query

TwigStack TJEssential TwigStack*
P

ro
ce

ss
in

g
tim

e
(m

s)

DQ1 DQ2 DQ3 DQ4 DQ5

(b) DBLP

Query

TwigStack TJEssential TwigStack*

P
ro

ce
ss

in
g

tim
e

(m
s)

XQ1 XQ2 XQ3 XQ4 XQ5

(c) XMark

Fig. 4. TwigStack, TJEssential vs TwigStack*

From the results, we can see that both TJEssential and TwigStack* achieves
better performance than TwigStack by resolving the redundant computation
even though they use different approaches. Additionally, TwigStack* is a littler
faster than TJEssential because TwigStack* can avoid some redundant compu-
tation that TJEssential can not avoid and TwigStack* imposes less overheads.

6 Conclusion

We presented the approaches re-test checking and forward-to-end, which can be
easily applied to both holistic one-phase and two-phase twig pattern matching
algorithms that are based on TwigStack, to resolve the redundant computation
in getNext. Two algorithms TwigFast* and TwigStack* were presented. The
better performance of our algorithms has been verified in our experiments.

References

1. http://www.cs.washington.edu/research/xmldatasets/
2. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: SIGMOD Conference, pp. 310–321 (2002)

3. Jiang, Z., Luo, C., Hou, W.-C., Zhu, Q., Che, D.: Efficient processing of XML twig
pattern: A novel one-phase holistic solution. In: Wagner, R., Revell, N., Pernul, G.
(eds.) DEXA 2007. LNCS, vol. 4653, pp. 87–97. Springer, Heidelberg (2007)

4. Li, G., Feng, J., Zhang, Y., Zhou, L.: Efficient holistic twig joins in leaf-to-root
combining with root-to-leaf way. In: Kotagiri, R., Radha Krishna, P., Mohania, M.,
Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 834–849. Springer,
Heidelberg (2007)

5. Li, J.,Wang, J.: Fastmatching of twig patterns. In: Bhowmick, S.S., Küng, J.,Wagner,
R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 523–536. Springer, Heidelberg (2008)

6. Schmidt, A., Waas, F., Kersten, M., Florescu, D., Manolescu, I., Carey, M., Busse,
R.: The XML benchmark project. Technical Report INS-R0103, CWI (April 2001)

http://www.cs.washington.edu/research/xmldatasets/

Boosting Twig Joins in Probabilistic XML

Siqi Liu and Guoren Wang

School of Information Science and Engineering, Northeastern University, China

Abstract. In practice, uncertainty of data is inherent. Probabilistic
XML has been proposed to manage semistructured uncertain data. In
this paper, we study twig query evaluation over probabilistic XML with
probability thresholds. First we propose an encoding scheme for proba-
bilistic XML. Then we design a novel streaming scheme which enables us
to prune off useless inputs. Based on the encoding scheme and streaming
scheme, we develop an algorithm to evaluate twig queries over proba-
bilistic XML. Finally, we conduct experiments to study the performance
of our algorithm.

1 Introduction

Data are inherently uncertain in many applications. The semistructured XML
model is more flexible and natural to represent uncertain data compared with
the relational model. Various probabilistic XML models have been proposed
and studied [1–5]. Among the studied models, there is a tradeoff between the
expressiveness and the efficiency of query evaluation [2].

Evaluating twig queries over probabilistic XML, we need not only the query
answers but also the probability of each answer. Since we are not interested in the
answers with low probabilities in most situations, a probability threshold is usu-
ally given, requiring only returning the answers satisfying it. In [2, 6], Kimelfeld
et al. defined several semantics of twig queries and studied the evaluation of
twig queries with projection. They focused on the evaluation of probabilities
and left the work of finding the matches to traditional algorithms, which are
not efficient enough. Therefore, algorithms specifically designed for twig query
evaluation over probabilistic XML have been proposed [7, 8].

In this paper, we focus on the problem of evaluating twig queries with prob-
ability thresholds over probabilistic XML (p-documents). The data model we
adopt is similar to PrXML{ind,mux} [4]. For p-documents, we propose an en-
coding scheme, pDewey, in Sect. 3, and a streaming scheme, Tag+Probability, in
Sect. 4. In Sect. 5 we develop an algorithm, pTJFastTP, for twig query evaluation
over p-documents with probability thresholds. In Sect. 6 we conduct experiments
to compare our algorithm with the algorithm in [8].

2 Preliminaries

2.1 Data Model

An XML document is a tree d. V (d) denotes the set of nodes. E(d) denotes the
set of edges. Figure 1(b) is an XML document. Additional numbers are used to

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 51–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

52 S. Liu and G. Wang

distinguish different nodes with the same tag. A p-document is a weighted tree
P with ordinary nodes (o-nodes) and distributional nodes (d-nodes). An o-node
is same as a node in XML documents. A d-node defines a random selection over
its children. The weight of an edge e, denoted as Pr(e), specifies the probability
that the parent selects the child. If e emanates from a d-node, it is a positive
real in [0, 1]; otherwise, it is 1. Figure 1(a) is a p-document.

A p-document generates an XML document randomly by: First, each d-node
randomly selects its children. The selections of an ind (mux) node are indepen-
dent (mutually exclusive). Second, all d-nodes are removed. If the parent of any
node is removed, it becomes the child of its lowest ancestor. D denotes the set
of all possible documents. For each d ∈ D, Pr(d) denotes the probability that P
generates d. Pr(d) =

∏
e∈V (d) Pr(e). For each o-node v ∈ V (P), Pr(v) denotes

the probability that v appears in a random document. It equals the product of
Pr(e) for all edges e in the path from the root to v.

R

D2E1C2D1C1

B1A1

ind muxmux

0.8 0.7 0.6 0.3 0.9

ind

ind

D3 C3

0.8 0.4 0.6

0.5 0.2

(a)

R

D2C2D1C1

B1A1

(b)

A

C D

(c)

Fig. 1. Data model samples: (a) p-document, (b) XML document and (c) twig pattern

2.2 Twig Patterns and Answers

A twig pattern Q is a tree with parent-child edges and ancestor-descendant
edges. A predicate predn(·) is associated with each node n. A match of Q in
an XML document d is a mapping φ : V (Q) → V (d) such that (i) for all
n ∈ V (Q), predn(φ(n)) is true, (ii) the relationship on the edge between any two
nodes n, m ∈ Q is satisfied by φ(n), φ(m). The image of φ is called an answer.
Q(d) denotes the set of all answers. Figure 1(c) is a twig pattern. A double line
represents a descendant edge. The predicates are matching of tags.

For a p-document P , Q(P) =
⋃

d∈D Q(d). For an answer t ∈ Q(P), Pr(t) de-
notes theprobability that tappears in a randomdocumentgeneratedbyP .Pr(t) =∏

e∈E(r) Pr(e) where r is the minimal subtree of P that has the same root of P and
contains all the nodes in t. We define Pr(e1) ·Pr(e2) = 0 where e1 and e2 emanate
from the same mux node and e1 �= e2. In this paper, we are only interested in the
answers of which the probabilities are above a given threshold PT .

3 Encoding Scheme: pDewey

Inspired by PEDewey[9] we propose a new encoding scheme pDewey based on
extended Dewey[10]. Two types of tag sets are necessary for pDewey: (i) For

Boosting Twig Joins in Probabilistic XML 53

each tag t in a p-document, CT (t) contains the tags of all the children of nodes
with tag t. (ii) DT = {ind, mux} contains all tags of d-nodes. In the process of
getting CT (t), we ignore all d-nodes. A pDewey label is composed of a Dewey
label (DLabel) and a probabilistic label (PLabel). A DLabel is an integer vector.
For each node v, DLabel(v) = DLabel(p).x where p is the parent of v. According
to the type of v we assign the value of x as follows.

1. For an o-node, suppose that a is the lowest ordinary ancestor of v, tag(v) is
the k-th tag in CT (tag(a)) and |CT (tag(a)) | = l. Ignoring d-nodes,
(a) if v is the first ordinary child of a, then x = k;
(b) otherwise, suppose that the last integer assigned to the left ordinary

sibling of v is y, then

x =

{⌊
y
l

⌋ · l + k if (y mod l) < k,(⌊
y
l

⌋
+ 1
) · l + k otherwise.

2. For a d-node, suppose that tag(v) is the i-th tag in DT and |DT | = m,
(a) if v is the first distributional child of p, then x = −m if i=0, otherwise

x = −i.
(b) otherwise, suppose that the last integer assigned to the left distributional

sibling of v is y, then

x =

{⌊
y
m

⌋ ·m− i if ((−y) mod m) < i,(⌊
y
m

⌋− 1
) ·m− i otherwise.

For each node, we assign a PLabel along with the DLabel. The PLabel is a
float vector. For each node v, PLabel(v) = PLabel(p).x where p is the parent of
v. Suppose that the last component of PLabel(p) is y, then x = y · Pr (e(p, v)).
If v is an o-node, we can infer that x = Pr(v). Figure 2 shows the pDewey labels
of the nodes in the p-document in Fig. 1(a).

From the pDewey label of each node, we can get the labels, tags and prob-
abilities of all its ancestors. For two nodes a and b, a is the ancestor of b if
DLabel(a) is a prefix of DLabel(b). Additionally if ignoring all negative integers
DLabel(a).length = DLabel(b).length− 1, then a is the parent of b.

4 Streaming Scheme

In our algorithm, the inputs are streams consisting of the nodes satisfying the
predicates on the leaves of the twig. In previous algorithms, nodes with the
same tag are partitioned into the same stream. We propose a novel stream-
ing scheme Tag + Probability for p-documents using both tags and probabil-
ities of nodes to partition them. First, we introduce probability evaluation as
preliminaries.

54 S. Liu and G. Wang

4.1 Probability Evaluation

Evaluating twig queries in p-documents, we must return the probability along
with each answer. With pDewey encoding it is possible to evaluate the proba-
bility of an answer only from its leaves.

For an answer t = (n1, n2, . . . , nm), suppose that f1, f2, . . . , fl are all the leaves
in t. Since the existence of a leaf guarantees the existence of all its ancestors,

Pr(t) = Pr (∧m
i=1ni) = Pr

(∧l
j=1fj

)
= Pr (f1) ·

l∏
j=2

Pr
(
fj| ∧j−1

k=1 fk

)
(1)

4.2 Tag + Probability Streaming Scheme

In ordinary tag stream, each input stream consists of all nodes of the same tag
sorted in ascending lexicographical order. Tag + Probability streaming scheme
partitions every tag stream into several parts according to the probabilities of
the nodes in the stream.

First, we partition the range of probability, [0, 1], into k intervals, r1, r2, . . . , rk,
where ri is [loweri, upperi) (rk is [lowerk, 1]). Then we partition each tag stream
t into k streams, t1, t2, . . . , tk, such that for each ti, ∀v ∈ ti, P r(v) ∈ ri and all
nodes preserve their order. The streams can be generated directly from the p-
document without the tag streams.

4.3 Pruning Streams

Using Tag+Probability streaming scheme, we associate each leaf f of twig with
a set of streams Tf which contains k streams t1f , t2f , . . . , tkf satisfying the predicate
of f . At the beginning of query evaluation, we prune off streams by: (i) Find i
such that PT ∈ ri. (ii) Remove all tjf such that j < i. The correctness follows
from (1). We use a simple example to show the benefits of Tag + Probability
streaming scheme and the pruning technique.

Example 1. The top of Fig. 3 shows a tag stream of A. The probability is below
each node. In the bottom, [0, 1] is partitioned into four equal-sized intervals.
The original stream is partitioned into corresponding four streams. Each node is
selected into the stream such that its probability is in the corresponding interval.
Note that their order is preserved. When evaluating a query with a threshold
0.5 we prune off the streams below the threshold, which in the figure is the two
streams below the dotted line.

5 Algorithm pTJFastTP

In this section, we describe the algorithm pTJFastTP which evaluates twig
queries with probability thresholds over p-documents. First, we introduce some
notations and operations.

Boosting Twig Joins in Probabilistic XML 55

Node DLabel PLabel

R (0) (1)

A1 (0).(-1).(0) (1).(1).(0.8)

C1 (0).(-1).(0).(-1).(0) (1).(1).(0.8).(0.8).(0.64)

D1 (0).(-1).(0).(-1).(1) (1).(1).(0.8).(0.8).(0.56)

B1 (0).(-1).(1) (1).(1).(0.4)

C2 (0).(-1).(1).(-2).(0) (1).(1).(0.4).(0.4).(0.24)

E1 (0).(-1).(1).(-2).(2) (1).(1).(0.4).(0.4).(0.12)

D2 (0).(-1).(1).(-4).(4) (1).(1).(0.4).(0.4).(0.36)

D3 (0).(-1).(-1).(3) (1).(1).(0.6).(0.3)

C3 (0).(-1).(-1).(6) (1).(1).(0.6).(0.12)

Fig. 2. pDewey encoding

A1
0.58

A2
0.46

A3
0.90

A4
0.76

A5
0.25

A6
0.12

A7
0.66

A8
0.33

 A6r1 [0.00,0.25)

 A2 A5 A8r2 [0.25,0.50)

 A1 A7r3 [0.50,0.75)

 A3 A4r4 [0.75,1.00]

PT=0.50

Fig. 3. Tag + Probability streaming
scheme and pruning technique

5.1 Notations and Operations

For a twig pattern q, leaves(q) is the set of leaves. With each leaf f , we associate
a stream set Tf consisting of the streams satisfying the predicate of f . The
following operations are defined on Tf : head(Tf) returns the node with the
minimal encoding in the heads of all the streams. min(Tf) returns the stream
containing head(Tf). advance(Tf) advances min(Tf) till its head matches pf .
eof(Tf) checks if all the streams end. Each branch node b is associated with a
set Sb containing the roots of answers to the sub-twig rooted at b. For each leaf
f in twig patterns and p-documents, pf denotes the path from the root to f .

5.2 pTJFastTP

Algorithm 1 evaluates a twig pattern q with a probability threshold PT and
outputs answers that match q and satisfy PT . The algorithm consists of two
phases. In the first phase, it outputs solutions that match the path patterns.
In the other phase, all the path solutions are joined into complete answers and
the probabilities are evaluated. We describe the details of this phase in the next
subsection.

At the beginning, pTJFastTP prunes off the streams that cannot satisfy PT .
In the main loop (line 2 to 6), it iteratively get the next node to process and
output the path solutions derived from it according to the associated sets of
branch nodes. When all streams end, it joins the path solutions and evaluates
the probabilities.

Function getNext(q) traverses the twig q top-down recursively. For each branch
node b, it identifies for the sub-twig rooted at b all the answers that can be formed
by phead(Tf) for all f ∈ leaves(b). Then, it updates Sb with the nodes matching b
in the answers. Finally, it returns the leaf f of b such that head(Tf) is minimal for
all f ∈ leaves(b).

5.3 Pruning in Merge-Join

In merge-join, we incrementally build answers by joining the existing partial
answers. Suppose that two existing partial answers are t1 and t2, which can be

56 S. Liu and G. Wang

Algorithm 1. pTJFastTP(q,PT)
1: Prune streams in Tf for each f ∈ leaves(q)
2: while ∃f ∈ leaves(q) : ¬eof(Tf) do
3: n ← getNext(q)
4: Output path solutions {s|s ⊆ phead(Tn) ∧ s matches pn ∧ ∀e ∈

s, e matches a branch node b → e ∈ Sb}
5: advance(Tn)
6: end while
7: Merge-join all the path solutions and evaluate the probabilities

joined to t3. For probability evaluation, we need join them as in the p-document
instead of as in the twig. That is, we iteratively join each path in t2 to t1.
We join a path pf with a tree (partial answer) t by: First, find out the join
point NLCA(f, t), which is defined as the nearest one to f in {LCA(f, f ′)|f ′ ∈
leaves(t)} (LCA(f, f ′) is the lowest common ancestor of f and f ′). Then, com-
pute the probability of the result t′ as: Pr(t′) = Pr(t) · Pr(f)/Pr(NLCA(f, t))
except that if NLCA(f, t) is of type mux it is 0.

We propose a pruning strategy in merge-join. We maintain Prmin(t) =
min{Pr(f)|f ∈ leaves(t)} for each tree t. Before joining t and pf , we check
Pr(f) ·Pr(t)/Prmin(t) < PT . If it is true, we are guaranteed that Pr(t′) < PT
(because Pr(NLCA(f, t)) > Prmin(t)) and thus abandon this join. Additionally,
after the computation of Pr(t′) we discard t′ if Pr(t′) cannot satisfy PT .

6 Experimental Evaluation

Experimental setup. We implemented pTJFastTP and ProTwig in JDK 1.6.
All experiments were running on a PC with 3.20GHz Intel Core i3 CPU and
3.18GB RAM running Windows 7. We allocated 1GB of memory for the Java
virtual machine.

We implemented an algorithm to randomly convert an XML document into a
p-document. It traverses the original document in preorder and randomly inserts
d-nodes between a node and its children. We used both real-world (DBLP) and
synthetic (XMark) datasets for our experiments.

In the following experiments, pTJFastTP adopts a default Tag +Probability
stream scheme partitioning [0, 1] into ten equal-sized intervals and each tag
stream into ten corresponding streams. The default probability threshold is 0.5.
For lack of space we only show some representative experiments.

Varying threshold. We compare their performance over DBLP with different
thresholds. From Fig. 4 we see that, pTJFastTP always outperforms ProTwig,
and the gap between the two algorithms becomes wider with the increase of the
probability threshold. The reason is that with a greater probability threshold
pTJFastTP prunes off more inputs while ProTwig has to read them all.

Boosting Twig Joins in Probabilistic XML 57

(a) Number of nodes read (b) Execution time

Fig. 4. Vary probability threshold

Scalability. We compare the scalability of the two algorithms. We use seven
different sizes of data generated by XMark with varying factors from 1 to 7.
From Fig. 5 we see that pTJFastTP is far more scalable than ProTwig. The
reason is that though the size of total inputs increases, the size of useless inputs
pruned off by pTJFastTP also increases. So the I/O cost remains low.

(a) Number of nodes read (b) Execution time

Fig. 5. Vary data size

7 Related Work

For evaluating twig queries over probabilistic XML, Kimelfeld et al. developed
an algorithm, EvalDP, in [6], which was optimized and extended in [2]. Their
work focused on the probability evaluation. In [7] Li et al. proposed a holistic
method based on TwigStack [11]. In [8] Ning et al. proposed ProTwig based on
TJFast [10]. These two algorithms focused on the query evaluation.

The extended Dewey encoding scheme was proposed in [10] for ordinary XML.
In [9], Ning et al. extended it to PEDewey for p-documents. Our encoding
scheme, pDewey, has two main differences from PEDewey: (i) In PEDewey,
negative constant is used to represent d-nodes, which lead to that the differ-
ent d-nodes having the same parent cannot be distinguished. So it cannot join
two path correctly. For example, it cannot join pC1 and pD2 in the p-document in

58 S. Liu and G. Wang

Fig. 1(a), because it cannot distinguish the mux nodes in the two paths. Whereas
pDewey does not have this flaw. (ii) In PEDewey, getting the probability of a
node costs O(d) where d is the depth of the p-document. Whereas in pDewey, it
costs O(1).

The concept of streaming scheme was proposed in [12] to boost holism in
TwigStack. They developed two streaming schemes for ordinary XML.

8 Conclusion

In this paper, we propose an algorithm pTJFastTP to evaluate twig queries with
probability thresholds over p-documents. It adopts the encoding scheme pDewey,
which incorporates information of distributional nodes and probabilities into
extended Dewey. Thus we can efficiently get the tags and probabilities of the
ancestors of any node. We propose Tag + Probability streaming scheme, with
which pTJFastTP can prune off useless inputs to reduce I/O cost. In merge-join,
a pruning strategy is proposed to prune off useless partial answers. The results
of experiments show the advantages of pTJFastTP in various aspects.

References

1. Abiteboul, S., Kimelfeld, B., Sagiv, Y., Senellart, P.: On the expressiveness of
probabilistic XML models. VLDB Journal 18(5), 1041–1064 (2009)

2. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query evaluation over probabilistic
XML. VLDB Journal 18(5), 1117–1140 (2009)

3. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query efficiency in probabilistic XML
models. In: SIGMOD 2008, pp. 701–714. ACM, Canada (2008)

4. Kimelfeld, B., Sagiv, Y.: Modeling and querying probabilistic XML data. SIGMOD
Record 37(4), 69–77 (2008)

5. Senellart, P., Abiteboul, S.: On the complexity of managing probabilistic XML
data. In: PODS 2007, pp. 283–292. ACM, China (2007)

6. Kimelfeld, B., Sagiv, Y.: Matching twigs in probabilistic XML. In: VLDB 2007,
pp. 27–38. VLDB Endowment (2007)

7. Li, Y., Wang, G., Xin, J., Zhang, E., Qiu, Z.: Holistically twig matching in proba-
bilistic XML. In: ICDE 2009, pp. 1649–1656. Inst. of Elec. and Elec. Eng. Computer
Society, China (2009)

8. Ning, B., Li, G., Zhou, X., Zhao, Y.: An efficient algorithm for twig joins in prob-
abilistic XML. In: PIC 2010, vol. 1, pp. 622–626. IEEE Computer Society, China
(2010)

9. Ning, B., Liu, C., Yu, J.X., Wang, G., Li, J.: Matching top-k answers of twig
patterns in probabilistic XML. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe,
C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 125–139. Springer, Heidelberg (2010)

10. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From region encoding to extended dewey:
On efficient processing of XML twig pattern matching. In: VLDB 2005, vol. 1, pp.
193–204. ACM, Norway (2005)

11. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: Optimal XML pattern
matching. In: SIGMOD 2002, pp. 310–321. ACM, United states (2002)

12. Chen, T., Lu, J., Ling, T.: On boosting holism in XML twig pattern matching
using structural indexing techniques. In: SIGMOD 2005, pp. 455–466. ACM, New
York (2005)

Prediction of Cerebral Aneurysm Rupture Using

Hemodynamic, Morphologic and Clinical
Features: A Data Mining Approach

Jesus Bisbal1,2, Gerhard Engelbrecht1,2, Mari-Cruz Villa-Uriol1,2,
and Alejandro F. Frangi1,2,3

1 Center for Computational Imaging and Simulation Technologies in Biomedicine
(CISTIB), Universitat Pompeu Fabra (UPF), Barcelona, Spain

2 Networking Biomedical Research Center on Bioengineering, Biomaterials and
Nanomedicine (CIBER-BBN)

3 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
jesus.bisbal@upf.edu

Abstract. Cerebral aneurysms pose a major clinical threat and the cur-
rent practice upon diagnosis is a complex, lengthy, and costly,multi-criteria
analysis, which to date is not fully understood. This paper reports the
development of several classifiers predicting whether a given clinical case
is likely to rupture taking into account available information of the patient
and characteristics of the aneurysm.
The dataset used included 157 cases, with 294 features each. The broad

range of features include basic demographics and clinical information, mor-
phological characteristics computed from the patient’s medical images, as
well as results gained from personalised blood flow simulations.
In this premiere attempt the wealth of aneurysm-related information

gained from multiple heterogeneous sources and complex simulation pro-
cesses is used to systematically apply different data-mining algorithms
and assess their predictive accuracy in this domain. The promising re-
sults show up to 95% classification accuracy. Moreover, the analysis also
enables to confirm or reject risk factors commonly accepted or suspected
in the domain.

Keywords: Data mining, complex data, classifiers, association rules,
feature discretization, feature selection, decision support, aneurysm rup-
ture, biomedicine.

1 Introduction

An aneurysm is a localized, blood-filled dilation of a blood vessel caused by dis-
ease or weakening of the vessel wall. If left untreated, it can burst leading to
severe haemorrhage and sudden death [2]. The current practice involves a com-
plex and multi-criteria analysis, which aims to assess the risk of undertaking no
action confronted with the inherent risk of performing an invasive treatment.
However, the complexity of the potentially influencing factors leading to rupture

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 59–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 J. Bisbal et al.

of a cerebrovascular aneurysm is, to a large extend, still unknown and conse-
quently preventive treatment is offered to almost all patients. Moreover, despite
the misgivings of the clinical practitioners, there is still insufficient evidence to
support a non-interventional treatment. Also the economic dimension of unnec-
essary interventional or surgical procedures is significant with estimated costs of
several hundred million Euros per annum in Europe alone [12,20].

This paper aims to contribute towards a more complex understanding of the
associations among the potential risk factors of a cerebral aneurysm. The ap-
proach aims to exploit the wealth of aneurysm- related information gained from
multiple heterogeneous sources and complex simulation processes by systemat-
ically applying different state-of-the-art data mining techniques. This resulted
in several classifiers predicting whether a given clinical case is likely to rupture,
with classification accuracy as high as 95%. The broad range of features con-
sidered in the prediction include basic demographics and clinical information of
the patient, morphological characteristics about the aneurysm computed from
the patient’s medical images, as well as results gained from personalised blood
flow simulations. Especially morphological, flow, and structural characteristics
are reported to be different for ruptured and unruptured aneurysms [24,26].

The basic objective of this paper is to provide decision support predicting
whether a given clinical case is likely to rupture or not. Therefore, different pre-
diction models, by means of six different classifier algorithms, are utilized in order
to automatically differentiate between ruptured and unruptured cases. Figure 1
presents an overview of the prediction process including the input processing, the
used classifier algorithms and the obtained results. The extracted set of strong
predictive rules which, according to our dataset, associates specific feature values
with aneurysm rupture status contributes to underpin clinical assumptions and
to the accepted knowledge of relationships between certain characteristics of the
patient and/or aneurysm, which to date are not fully understood.

Fig. 1. Flowchart summarising the paper organisation and the prediction process

The dataset used as a starting point for the prediction process was taken
from the @neurIST project [9]. It contains a large amount of potential features
to be used, but the actually considered features have been reduced to those more
likely to be relevant to differentiate between ruptured and unruptured cases. To
the best of the authors’ knowledge, this is the first attempt to systematically

Prediction of Cerebral Aneurysm Rupture 61

apply these data mining algorithms to this specific and complex clinical domain,
including such heterogeneous multimodal data. Conclusions are also drawn from
a population significantly larger than used in previous studies in this application
domain.

The remainder of this paper is organized as follows: Section 2 summarizes
related work. Sections 3 to 5 follow the process of the prediction as shown in
Figure 1, where the numbers indicate the sections and subsections. Finally, the
main conclusions are summarised in Section 6, and Section 7 presents a number
of future directions for this research.

2 Related Work

The application of data mining techniques for decision support in the clinical
domain is receiving increased scientific attention with the general objective to
predict severe conditions (e.g. cancer, heart failure or aneurysm rupture) from
the vast and growing amounts of data generated in the biomedical domain.
Data mining techniques have clearly been applied more extensively to specific
biomedical domains, such as breast cancer [1,19] and cardiology [14,21].

Table 1. Summary of previous contributions related to the objectives of this paper

Ref. Domain Feature Types Techniques Used Results

[1] Breast Cancer
Image mean, variance, Association Rules Accuracy 69.11%
skewness and kurtosis Neural Networks Inconsistent, 89.2%

[19] Breast Cancer
as [1], entropy,

Association Rules Accuracy 96.7%
invariant moments

[14]
Coronary Heart Thickness carotid SVM,CPAR, Accuracy 90%

Disease artery, ECG calc. Bayes,C4.5,MDA SVM and CPAR

[13]
Coronary Cal- Location, texture- SVM hierarchical

Accuracy 92.6%
cium Detection based features multiple ensemble

[23]
Cerebral

Only morphological
Linear discriminant

Accuracy 77.9%
aneurysms analysis (LDA)

[6,7]
Cerebral

Only hemodynamics
Good

Aneurysms discriminants

[26]
Cerebral Morphological and Multivariate re- No classifiers

Aneurysms hemodynamics gression analysis Good discriminants

[8,10]
Cerebral Clinical, Decision tree, Association studies

Aneurysms literature, genetics text mining personal assessment

Related prediction approaches and association studies of cerebral aneurysm
rupture are typically based on other techniques than data mining and utilize very
specific data about the hemodynamics [7,6] and/or morphology of an aneurysm
[23,26]. Data mining algorithms in the context of cerebral aneurysms have been
applied by the application suites of the @neurIST project, i.e. @neuLink [10]
to link clinical and genetic information to public literature and use the linked
knowledge for an individual risk assessment in @neuRisk [8].

Table 1 summarises the related work by showing the specific biomedical appli-
cation domain, the features considered for the prediction or analysis, the tech-
niques used and the most relevant results achieved. The approach presented

62 J. Bisbal et al.

in this paper goes beyond previous works, by applying different data-mining
technologies in the cerebral aneurysm domain and by considering a larger and
broader set of descriptors (i.e. clinical information along with computed hemo-
dynamic and morphologic data).

3 Data Collection and Pre-processing

A central objective of this work was to automatically categorise cerebral
aneurysms according to their rupture status using different state-of-the-art data
mining techniques. In line with the processing flow shown in Figure 1, classifi-
cation models have been created and applied with a selected set of features and
then the accuracy of the classifiers has been tested with new aneurysm instances.
The potential set of features is extremely large and inherently multimodal, since
they are derived from heterogeneous sources:

Clinical Information. Data traditionally used for clinical care, such as de-
mographics (e.g. age, gender), lifestyle (e.g. smoker status), and aneurysm
anatomical location and type.

Morphological Analysis. Image processing techniques are applied to obtain
morphological descriptors about an aneurysm, such as aspect ratio, non-
sphericity index, volume, or Zernike moment invariants [17].

Hemodynamic Analysis. Blood flow simulations using computational fluid
dynamics are used to compute characteristics of the blood flow and pressure,
as well as their impact on the vessel wall.

The heterogeneity of the considered data underpins the complexity involved
in discovering correlations and dependencies among seemingly unrelated fac-
tors. This paper represents an initial attempt to systematically exploit the data
through data mining techniques.

3.1 Experimental Dataset

The dataset used for experimental evaluation of this work originated in the
@neurIST project focused on advancing the management of cerebral aneurysms
using information technology. All the clinical information relevant for this pur-
pose was captured in a large virtual patient information system federated across
Europe. The data representation followed the Clinical Reference Information
Model (CRIM) [11] and was captured in the clinical context either by a research
personnel or drawn directly from hospital electronic records. The CRIM exposed
up to 1286 clinical attributes for each subject including basic demographics and
lifestyle, clinical history including all examinations (e.g. blood analysis), treat-
ment details, medications and all basic information available about aneurysms
(e.g. location or type).

In total data of 1420 subjects suspected aneurysms has been collected, but
fortunately only 1000 subjects actually had one or more aneurysms. A total of
900 image studies were collected for subjects with confirmed aneurysms, and 550

Prediction of Cerebral Aneurysm Rupture 63

of these belonged to an image modality (3DRA) which enables the computation
of hemodynamic and morphological descriptors of an aneurysm. These features
were derived using complex and time-consuming analyses [24]. Clinical informa-
tion as well as hemodynamic and morphological characteristics of almost 200
aneurysms were available from the project. Unfortunately, missing clinical data
items (e.g. patient age, weight, or the clinical confirmation of aneurysm’s loca-
tion) in some of the records lead to a total of 157 cases with complete information
used for this work.

Although the considerable wealth of data contained in the @neurIST informa-
tion system is not yet fully exploited, the number of instances described above
still make it a larger dataset than those reported in previous studies of cerebral
aneurysms [6,7,26].

3.2 Feature Extraction

As outlined in Section 1, a wide variety of aneurysm characteristics are currently
believed to influence rupture. This, in turn, demands a significant heterogeneity
and multimodality of the data needed to create the features included in the
prediction models.

Table 2. Clinical Features

Num. Feature Name Description/Values

1 Gender Male, Female
2 Age Positive integer ∈ [22,84]
3 Smoking Status No, Yes-still, Yes-quit

4 Hypertension Status
No, Yes-controlled,

Yes-poorly controlled

5
Height Used to compute
Width Body Mass Index (BMI)

6 Location of aneurysm 24 categorical values
7 Laterality of aneurysm Left, Right, Midline
8 Status of aneurysm Ruptured, UnRuptured

9 Aneursym Type
Saccular-Bifurcation, -Side Wall

Fusiform-Dissecting, -Non Dissecting
10 Aneursym Aspect Rough, Smooth

Regarding clinical information, Table 2 shows the set of features used as input
for the models. Some of these features apply to the patient, and some others
specifically to each aneurysm.

The collection of morphological descriptors used in our experiments has been
detailed and computed following the workflow described in [24]. Table 3 shows
this set of morphological features. Those include two large feature vectors gener-
ated by the extraction of so-called Zernike-moment invariants (ZMI)1 [17], which
can be computed for the surface and for the volume of an aneurysm.

Finally, the hemodynamic features, which were also computed with the work-
flow detailed in [24], are extracted through two coupled analyses. The first one
1 Three-dimensional morphological descriptors which, up to a level of detail, the shape
can be recovered.

64 J. Bisbal et al.

Table 3. Morphological Features

Num. Feature Name Description

11 Volume Volume of the aneurysm dome
12 Surface Surface area of the aneurysm dome
13 Neck Surface Surface area of the neck of an aneurysm
14 Neck Width Width of the neck of an aneurysm
15 Depth Depth of an aneurysm
16 Aspect Ratio Depth/neck width

17 Non-Sphericity Index
Quantifies the difference between the aneurysm

shape and a perfect circumscribed sphere
18-138 Surface ZMI Surface-based Zernike Moments Invariants
139-259 Volume ZMI Volume-based Zernike Moments Invariants

is a 1D model of the human systemic circulation, and predicts the flow rate and
pressure waveforms at predefined points in the affected vessel. The second is a
3D analysis, which used the results from the first as boundary conditions. Table
4 highlights the types of available features. For the sake of clarity, not all features
are listed here. We omitted (called ’other calculations’) those that represent the
values of features at different time points during the cardiac cycle (systole or di-
astole), or the maximum, minimum, and average of these values. Further specific
examples are shown in Table 5 and Table 7. The reader is referred to [6,7,24,26]
for a detailed description of such features.

Table 4. Hemodynamic Features

Num. Feature Name Description

260
Wall Shear Stress Frictional tangential force exerted by

(WSS) blood flow on endothelial layer

261
Oscillatory Shear Index Measure of oscillation of shear forces on

(OSI) endothelial layer over cardiac cycle
262 Velocity at Peak Systole Mean speed of blood-flow inside the aneurysm at peak systole
263 Flow Type Shear-driven, momentum-driven or mixed type of blood-flow
264 Flow Stability Stable or unstable blood-flow inside the aneurysm

265 Viscous Dissipation
Rate at which mechanical energy is converted

into heat inside the aneurysm
266 Area Elevated WSS Area in which the WSS is above average

267 Velocity in Aneurysm
Mean speed of blood-flow in the aneurysm

during the cardiac cycle

268 Influx Area at Neck
Area of the neck surface in which blood flows

into the aneurysm
269 Number Vortexes Number of vortexes of the blood-flow in the aneurysm

270 Energy Flux
Kinetic energy created by the blood-flow through

the aneurysm during the cardiac cycle
271-294 (other calculations related to these features)

The description above indicates the interdisciplinary nature of the effort
required to incorporate the full wealth of data in our experiments. Although the
main outcomes reported here are related to the data mining field, feature extrac-
tion was certainly a large undertaking and required collaboration between medi-
cal image processing, computerised fluid dynamics, clinicians, and data modelling
experts.

Prediction of Cerebral Aneurysm Rupture 65

3.3 Feature Selection

The set of potentially useful features are in the order of hundreds for medical
images alone [19]. In the context of our work, the situation is further compli-
cated by the introduction of hemodynamic features, and a large clinical schema.
However, considering the whole feature set can lead to the curse of dimensional-
ity problem, where the significance of each feature decreases [19]. This, in turn,
reduces the accuracy of classification algorithms.

Feature selection aims at identifying the subset of features that are more rele-
vant for the task at hand. In this case, differentiating between ruptured and unrup-
tured aneurysms. All the continuous features described in Section 3.1 were tested
for statistical significance, following [18]. This algorithm essentially considers, for
each feature independently, the values for all the ruptured cases, and the values
for the unruptured cases. Then it applies a t-test to compare whether there is suf-
ficient evidence that these two sets of values belong to different populations. At a
90% confidence level, the set of relevant features is shown in Table 5. In this table,
‘ZMI’ stands for the obove-mentioned Zernike moment invariants [17].

Table 5. Statistically Significant Features (sorted by ‘p-value’)

Feature Name p-value

Non-Sphericity Index 0,00002
Relative Area Elevated Press Gauge at Peak 0,00027

ZMI Surface 8 0,00064
Absolute Area Elevated Press Gauge at Peak 0,00087

Max OSI 0,00185
Number Vortexes in Aneurysm at Peak 0,00628
Avg Velocity in Aneurysm Time Avg 0,00811
Relative Area Elevated WSS at Peak 0,00885

ZMI Surface 1 0,01587
Relative Area WSS Above Threshold Time Avg 0,03136

Relative Influx Areaatneckatpeak 0,06821
Max Velocity in Aneurysm Time Avg 0,07619
Absolute Influx Area at Neck at Peak 0,08289

Absolute Area Elevated OSI 0,09356
Relative Area WSS Below Threshold Time Avg 0,09746

ZMI Volume 45 different features

This process produced an 80% dimensionality reduction. The resulting rel-
evant features are consistent with a recent study which focuses on identifying
good discriminant features for intracranial aneurysm rupture [26]. Our results
are a superset of those obtained in this other study, except for the non-sphericity
index which is highly relevant in our dataset. It must also be noted that [26] did
not include moment invariants [17] in their study, which accounts for a large part
of the dimensions to be dealt with in our work. Finally, all categorial features
shown in Table 2 were also included when building the classifiers in this paper.
In total, 71 different features were used.

3.4 Feature Discretisation

The features shown in Table 5 all take continuous values. Not all prediction mod-
els reported in Section 4 can be applied to continuous values, but but require these

66 J. Bisbal et al.

features to be previously discretised. Discretisation algorithms have played an im-
portant role in data mining and knowledge discovery. They not only produce a
concise summarisation of continuous attributes to help the experts understand the
data more easily, but also make learning more accurate and faster [22].

The discretisation process applied the OMEGA algorithm [19]. This scheme
does not create an equidistant discretisation, by which all intervals of a given
feature would have the same size. In contrast, it computes an inconsistency
rate for each interval, which is directly proportional to the number of different
classes (in our case, ’ruptured’ or ’unruptured’) of the instances that belong to
the interval. The algorithm defines the intervals so that the inconsistency rate
falls below a user-defined threshold (in our case tunned to 35%, [19] used 30%).

The OMEGA algorithm can also be used to complement the feature selection
process described in Section 3.3. If the global inconsistency rate resulting from
discretising a given feature falls above the user-defined threshold, it is recom-
mended not to use such feature in the training process, as it is likely to reduce
the classifier’s accuracy [19]2.

4 Prediction Model

This section describes the set of classifiers3 we have experimented with and
compared in order to develop a prediction model for the rupture of an aneurysm.

SVM (Support Vector Machines). SVM is a collection of methods for clas-
sification of both linear and non-linear data [3,14,25]. It transforms the origi-
nal data into a high dimensional space, from where a hyper-plane is computed
to separate the data according to the class of each instance. A new instance
can be classified by mapping it into a point into the same dimensional space,
which is already divided (classified) by the hyper-plane.

Decision Tree. A decision tree is a classifier that recursively partitions the
training dataset until each partition belongs to (mainly) one class. Decid-
ing which feature to use at each partitioning step determines the accu-
racy of the classifier. Information gain measures are used in this context
[25].

Bayesian Classifier. This classifier assigns the highest posterior probability
class using the prior probability computed from the observed instances. This
approach usually performs well in practice [25], even if it makes two as-
sumptions that do not necessarily hold. Firstly, all features are assumed to
be independent. Secondly, numeric values are assumed to follow a normal
distribution for each feature.

2 Features ‘Number Vortexes in Aneurysm at Peak’ and ‘Relative Area WSS Below
Threshold Time Avg’ of Table 5 would have been removed this way. However, the
results reported in this paper did not apply this possibility, taking a conservative
approach not to exclude too many features.

3 Prototyped using KNIME, http://www.knime.org/, except for CPAR

http://www.knime.org/

Prediction of Cerebral Aneurysm Rupture 67

Fuzzy Rules. This algorithm generates rules which are fuzzy intervals in higher
dimensional spaces. These hyper-rectangles are defined by trapezoid fuzzy
membership functions for each dimension. Each rule consists of one fuzzy
interval for each dimension plus the target classification columns along with
a number of rule measurements node [4].

Neural Networks. Neural networks are often used for predicting numerical
quantities [25]. The networks are composed of non-linear computational
elements arranged in patterns reminiscent of biological neural networks.
Computational elements are arranged in several layers via weights that are
adapted during the training phase. Probabilistic neural networks [5] were
used in our experiments, as they do not require the network topology to be
defined in advance, produce more compact representations, and show better
performance than traditional multilayer perceptions.

Predictive Association Rules. Classification based on Predictive Associa-
tive Rules (CPAR) [27]4 is a rule induction algorithm that avoids generating
large item sets collections, as is the case of more traditional association rule
algorithms such as FP-growth. Rules are created for each of the classes in
the training set. These rules are incrementally constructed by adding at-
tributes to the antecedent. A measure of ‘gain’ in the classifier’s accuracy is
computed in order to select which attribute to add to the antecedent of a
rule.

The input data to this algorithm must be binary. This is achieved by first
discretising the continuous features, see Section 3.4. Then, a new feature is
created for each interval, and value 1 is assigned to the feature representing
the appropriate interval each instance belongs to.

Table 6. Results for Classifiers’ Performance (in %)

Classifier TP FP Precision Recall Specificity Class

SVM Binary
95.2 4.8 95.2 96.3 94.7 Unruptured
95.9 4.1 95.9 94.7 96.3 Ruptured

SVM
75.3 24.7 75.3 70.7 74.7 Unruptured
70.0 30.0 70.0 74.7 70.7 Ruptured

Decision 60.0 40.0 60.0 58.5 57.3 Unruptured
Tree 55.8 44.2 55.8 57.3 58.5 Ruptured

Naive Bayes
68.7 31.3 68.7 69.5 65.3 Unruptured
66.2 33.8 66.2 65.3 69.5 Ruptured

Fuzzy Rules
63.6 36.4 63.6 72.1 54.8 Unruptured
64.2 35.8 64.2 54.8 72.1 Ruptured

Neural 64.6 35.4 64.6 75.6 54.7 Unruptured
Networks 67.2 32.8 67.2 54.7 75.6 Ruptured

CPAR
75.4 24.6 75.4 86.0 68.0 Unruptured
48.6 51.4 48.6 48.6 58.6 Ruptured

4 Implementation modified from
http://www.csc.liv.ac.uk/\simfrans/KDD/Software/

http://www.csc.liv.ac.uk/$sim $frans/KDD/Software/

68 J. Bisbal et al.

5 Experimental Results

All classifiers discussed in Section 4 have been used to develop a prediction model
of aneurysm rupture, and compare their respective accuracies, using a ten-fold
cross-validation [25] approach.

5.1 Classification Performance

Table 6 summarises the performance of the different classifiers. Column ‘true
positives’ (TP) is the number of instances that have been correctly classified.
Analogously for ‘false positives’ (FP). Precision is the proportion of instances
in a given class which are correctly classified. The recall (or sensitivity) mea-
sures the proportion of true positives which are correctly identified as such. The
specificity is the proportion of negatives which are correctly identified.

It should be noted that SVM is designed to operate on continuous values.
However, the discretised dataset, described in Section 3.3, was used also in these
experiments with SVM, and the resulting accuracy outperformed that obtained
without discretization. This approach is referred to as ’SVM Binary’.

Fig. 2 shows the overall classification accuracy achieved by each classifier.
Clearly, the Supporting Vector Machines (SVM) approach, with the discretised
and binary input, outperforms all other methods.

Fig. 2. Summary of Classifiers’ Accuracy

5.2 Association Rules and Risk Factors

The outcome of a classification based on predictive association rules (CPAR), in
addition to showing an accuracy comparable to other methods (besides SVM),
has also another essential added value. The rules generated to construct the
classifier explicitly identify features and feature values that strongly influence
the aneurysms rupture status. As justified in Section 1, this domain is not yet
sufficiently understood as to justify treatments other than invasive intervention.

Prediction of Cerebral Aneurysm Rupture 69

Table 7. List of Aneurysm Rupture Predictive Association Rules

Num. Accuracy Status Rule Body (feature values)

1 92% Unruptured ← Location: Intracavernous internal carotid
2 90% Unruptured ← Location: Ophthalmic segment carotid, Side: Left

4 88% Unruptured ← Location: Intracavernous internal carotid,
Number Vortexes in Aneurysm at Peak = 1

22 83% Unruptured ← NON Sphericity Index ∈ 17 [0.20634225,0.213549286]
27 80% Unruptured ← NON Sphericity Index ∈ 26 [0.287403159,0.291000392]
33 80% Ruptured ← NON Sphericity Index ∈ 8 [0.14925828,0.155347234]
13 86% Unruptured ← Female, Side: null

15 85% Ruptured ← Number Vortexes in Aneurysm at Peak = 2,
Side: Right , HyperTension: No, Aneurysm Type: Saccular - Bifurcation

30 80% Ruptured ← Number Vortexes in Aneurysm at Peak ∈ [4.0,7.0]
6 88% Unruptured ← Absolute Area Elevated OSI ∈ 9 [5.8E-7,6.77E-7]
10 87% Unruptured ← Absolute Area Elevated OSI ∈ 5 [2.19E-7,3.93E-7]
23 83% Unruptured ← Absolute Area Elevated OSI ∈ 18 [1.72E-6,2.09E-6]
29 80% Unruptured ← Absolute Area Elevated OSI ∈ 12 [7.05E-7,7.95E-7
26 81% Ruptured ← Absolute Area Elevated OSI 25 [4.23E-6,5.53E-6]
8 88% Ruptured ← ZMI Surface 8 ∈ 26 [0.137805704,0.143486214]
35 80% Ruptured ← ZMI Surface 8 ∈ 14 [0.099828474,0.101293597]
21 84% Ruptured ← ZMI Surface 1 ∈ 20 [3.4E-9,6.49E-9]
36 75% Unruptured ← Avg Velocity in Aneurysm Time ∈ Avg 26 [0.04449,0.06722]
3 90% Ruptured ← Avg Velocity in Aneurysm Time ∈ Avg 25 [0.03688,0.04449]
18 85% Ruptured ← Avg Velocity in Aneurysm Time ∈ Avg 8 [0.01281,0.01382]
31 80% Ruptured ← Avg Velocity in Aneurysm Time Avg ∈ 10 [0.0152,0.01653]
39 71% Ruptured ← Avg Velocity in Aneurysm Time Avg ∈ 29 [0.07305,0.09617]
28 80% Unruptured ← Absolute Area Elevated Press Gauge at Peak ∈ 6 [5.8E-7,7.33E-7]
37 75% Unruptured ← Absolute Area Elevated Press Gauge at Peak ∈ 2 [7.93E-8,1.57E-7]
34 80% Ruptured ← Absolute Area Elevated Press Gauge at Peak ∈ 8 [8.3E-7,9.55E-7]
5 88% Unruptured ← Relative Area Elevated WSS at Peak ∈ 33 [17.7,42.6000000001], Smoker: No
38 75% Unruptured ← Relative Area Elevated WSS at Peak ∈ 12 [1.6,1.8]
7 88% Ruptured ← Relative Area Elevated WSS at Peak ∈ 13 [1.8,2.3]
25 83% Ruptured ← Relative Area Elevated WSS at Peak ∈ 19 [3.9,4.5]
24 83% Ruptured ← Relative Area Elevated Press Gauge at Peak ∈ 11 [2.3,3.3]
9 87% Unruptured ← Relative Area WSS Below Threshold Time Avg ∈ 8 [4.3,7.3]
20 85% Ruptured ← Relative Area WSS Below Threshold Time Avg ∈ 10 [11.3,16.7]
11 87% Ruptured ← Relative in Flux Area at Neck at Peak ∈ 6 [33.5,37.2]
19 85% Ruptured ← Relative in Flux Area at Neck at Peak ∈ 30 [58.8,63.7]
16 85% Ruptured ← Relative in Flux Area at Neck at Peak ∈ 8 [37.8,39.0]
14 85% Unruptured ← Absolute in Flux Area at Neck at Peak ∈ 29 [1.04E-5,1.11E-5]
32 80% Ruptured ← Absolute in Flux Area at Neck at Peak ∈ 25 [7.6E-6,8.09E-6]
12 87% Ruptured ← Max Velocity in Aneurysm Time Avg ∈ 27 [0.8205,0.9355]
17 85% Ruptured ← Max Velocity in Aneurysm Time Avg ∈ 32 [1.326,1.643]

It is expected that this type of rules can contribute to structure the accepted
knowledge in the domain.

Table 7 shows the set of 39 rules generated by this classifier. It includes the
Laplace accuracy of each rule, calculated as follows:

Accuracy =
Nc + 1

Ntot + Number of Classes

being,
Nc = Number of records in training set with all attributes in the rule, i.e. support.
Ntot = Number of records in training set with all the attributes in the rule’s body.

This table groups together all those rules that contain the same features
in their body, so that the influence of these features in predicting rupture is

70 J. Bisbal et al.

highlighted. The rule number would result from sorting all rules according to
their accuracy. For example, rule number 1 states that a given aneurysm location
(Intracavernous internal carotid), is very strongly correlated to aneurysms that
do not rupture. Also, rules number 22, 27, and 33 correlate the non-sphericity
index [24] to the rupture status of an aneurysm, so that a low value of such in-
dex often appears with a ruptured aneurysm. For discretised features, the rules
show the interval number the value would belong to, plus the actual limits of
the interval. For example, the body: NON Sphericity Index ∈ 8 [0.14,0.15], indi-
cates that the value belongs to the eight interval generated by the discretisation
algorithm. Intervals with smaller limits have lower internal numbers.

Conversely, it is also interesting to observe how some features have surpris-
ingly not been identified as strongly correlated to ruptured status. Specifically,
’smoking status’ does not appear associated to ruptured aneurysms. This would
suggest that, according to our dataset, there is no evidence to consider this a risk
factor. A similar conclusion can be drawn about ’hypertension status’. These are
two examples of risk factors, commonly accepted in this domain, which can not
been confirmed by our dataset, which is, as stated above, of significant size as
compared to other studies in the same domain.

6 Conclusions

This paper has presented some initial results of applying data mining techniques
to a complex biomedical domain, with the goal of predicting the rupture of
cerebral aneurysms. The features used in this context are of very different nature,
and exploit the latest advances in medical image processing, and hemodynamic
simulations, together with the state-of-the-art clinical knowledge of this domain.

It has described how 6 well-known classifiers were used to create such pre-
diction models based on these features. The results show that SVM (supporting
vector machines) offer the best results (as was expected from related studies
applied to other clinical conditions [14]), with accuracy rates as high as 95%.

The CPAR algorithm used in the discussion of Section 5.2 was run several
times. The predictive association rules shown in Table 7, however, are those
mined in one of these executions, for which the reported accuracy of the classifier
was 86%. These set of predictive association rules represents the first attempt to
explicitly capture the strong evidence and causal relationship between feature
values and aneurysm ruptured status, according to our dataset.

7 Future Work

Future research will address mainly two lines of work, the data pre-processing
step and the prediction model. Section 3.1 pointed out how missing values sig-
nificantly reduced the size of the dataset available in practice. The instances
with missing values were simply eliminated. Mining over incomplete data is still
a research challenge, and some approaches exist, such as expectation maximisa-
tion [15] and conceptual reconstruction [16]. These need to be evaluated in the

Prediction of Cerebral Aneurysm Rupture 71

context of this complex application domain. The main goal is to estimate the
most appropriate values for these missing features, so that they do not alter the
role of the feature in the classification model, but the other feature values that
have indeed been informed can be used to strengthen the accuracy and support
of the prediction models. This would be the case if the models could be built
from close to 500 instances, instead of the current 157 (see Section 3.1).

The feature discretisation being used [19] defines the so-called cut-points in the
feature values every time a change in the category (ruptured/unruptured) of the
instances is observed. Typically near the interval limits there are several instances
of different categories and this could lead to many different small intervals, which
are likely to confuse the classifiers. In case of discrete features, furthermore, this
could cause that the inconsistency rate calculated by the algorithm differs from
the one actually present in the dataset used to build the prediction model.

The feature selection approach used in this paper is essentially based on sta-
tistical significance, which considers each feature in isolation. The outcomes are
comparable to those obtained in [26], which used multivariate logistic regression
analysis. However, since the outcomes of the selection process are contradict-
ing the somewhat accepted clinical knowledge in the field (e.g. age and body
mass index of the patient, and aspect ratio of an aneurysm are not statistically
significant), further work is needed in this direction.

Regarding the prediction model, the explanation power of association rules
cannot be underestimated, particularly for a domain which still lacks sufficient
evidence on the best course of treatment (see Section 1). Further work is needed
in order to produce a set of predictive rules which are common over all runs,
thus not dependent on the actual sampling of the instances used for training.

Finally, the data used in this work is of very different nature (clinical, hemo-
dynamics and morphological), and even of different quality, in the sense that
a clinical observation is likely to be more reliable than a value derived from a
simulation, which relies on a number of assumptions (e.g. boundary conditions
which are themselves results of a simulation, material properties). It would be
necessary to quantify the uncertainty introduced by these differences, for ex-
ample, in the prediction models, and even in the accuracy of each individual
predictive association rule (depending on which features it includes in its body).

Acknowledgments. This work was partially funded by the Integrated Project
@neurIST (FP6-IST-027703), which was co-financed by the European Commis-
sion, and by the Spanish Ministry of Innovation and Science (MICINN) through
the cvREMOD project (CEN-20091044) under the CENIT programme of the
Industrial and Technological Development Center.

References

1. Antonie, M., Zäıane, O., Coman, A.: Application of data mining techniques for
medical image classification. In: Proceedings of the Second International Workshop
Multimedia Data Mining, with ACM SIGKDD, pp. 94–101 (2001)

72 J. Bisbal et al.

2. Benkner, S., Arbona, A., Berti, G., Chiarini, A., Dunlop, R., Engelbrecht, G.,
Frangi, A.F., et al.: @neurIST: Infrastructure for advanced disease management
through integration of heterogeneous data, computing, and complex process-
ing services. IEEE Transactions on Information Technology in Boimedicine 14,
126–131 (2010)

3. Bennett, K.P., Campbell, C.: Support vector machines: Hype or hallelujah?
SIGKDD Explorations Newsletter 2, 1–13 (2000)

4. Berthold, M.R.: Mixed fuzzy rule formation. International Journal of Approximate
Reasoning 32(2-3), 67–84 (2003)

5. Berthold, M.R., Diamond, J.: Constructive training of probabilistic neural net-
works. Neurocomputing 19(1-3), 167–183 (1998)

6. Cebral, J., Mut, F., Weir, J., Putman, C.: Association of hemodynamic charac-
teristics and cerebral aneurysm rupture. American Journal of Neuroradiology 32,
264–270 (2011)

7. Chien, A., Castro, M., Tateshima, S., Sayre, J., Cebral, J., Vinuela, F.: Quantitative
hemodynamic analysis of brain aneurysms at different locations. American Journal
of Neuroradiology 30, 1507–1512 (2009)

8. Dunlop, R., Arbona, A., Rajasekaran, H., Lo Iacono, L., Fingberg, J., Summers, P.,
Benkner, S., Engelbrecht, G., Chiarini, A., Friedrich, C.M., Moore, B., Bijlenga, P.,
Iavindrasana, J., Hose, R.D., Frangi, A.F.: @neurIST - chronic disease management
through integration of heterogeneous data and computer-interpretable guideline
services. Stud. Health Technol. Inform. 138, 173–177 (2008)

9. Frangi, A.F., Hose, R., Ruefenacht, D.: The @neurIST project: Towards under-
standing cerebral aneurysms (2007)

10. Friedrich, C.M., Dach, H., Gattermayer, T., Engelbrecht, G., Benkner, S.,
Hofmann-Apitius, M.: @neurIST - chronic disease management through integration
of heterogeneous data and computer-interpretable guideline services. Stud. Health
Technol. Inform. 138, 165–172 (2008)

11. Iavindrasana, J., Depeursinge, A., Ruch, P., Spahni, S., Geissbuhler, A., Müller, H.:
Design of a decentralized reusable research database architecture to support data
acquisition in large research projects. Stud. Health Technol. Inform. 129, 325–329
(2007)

12. Johnston, S., Wilson, C.B., Halbach, V., Higashida, R., Dowd, C., McDermott,
M., Applebury, C., Farley, T., Gress, D.: Endovascular and surgical treatment of
unruptured cerebral aneurysms: comparison of risks. Annals of Neurology 48, 11–19
(2000)

13. Kurkure, U., Chittajallu, D., Brunner, G., Le, Y., Kakadiaris, I.: A supervised
classification-based method for coronary calcium detection in non-contrast CT.
International Journal of Cardiovascular Imaging 26, 9817–9828 (2010)

14. Lee, H.G., Nohand, K.Y., Ryu, K.H.: A data mining approach for coronary heart
disease prediction using HRV features and carotid arterial wall thickness. In: Pro-
ceedings of the 2008 International Conference on BioMedical Engineering and In-
formatics, pp. 200–206. IEEE Computer Society, Los Alamitos (2008)

15. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley,
Chichester (2002)

16. Parthasarathy, S., Aggarwal, C.: On the use of conceptual reconstruction for min-
ing massively incomplete data sets. IEEE Transactions on Knowledge and Data
Engineering 15(6), 1512–1521 (2003)

17. Pozo, J.M., Villa-Uriol, M.C., Frangi, A.F.: Efficient 3D geometric and Zernike
moments computation from unstructured surface meshes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 33, 471–484 (2011)

Prediction of Cerebral Aneurysm Rupture 73

18. Ribeiro, M., Balan, A., Felipe, J., Traina, A., Traina, C.: Mining Complex Data,
Studies in Computational Intelligence. In: Mining Statistical Association Rules to
Select the Most Relevant Medical Image Features, vol. 165, pp. 113–131. Springer,
Heidelberg (2009)

19. Ribeiro, M., Traina, A.M., Traina, C., Rosa, N., Marques, P.: How to improve med-
ical image diagnosis through association rules: The IDEA method. In: Proceedings
of the 21st IEEE International Symposium on Computer-Based Medical Systems,
pp. 266–271. IEEE Computer Society, Los Alamitos (2008)

20. Roos, Y.B., Dijkgraaf, M.G., Albrecht, K.W., Beenen, L.F., Groen, R.J., de Haan,
R.J., Vermeulen, M.: Direct costs of modern treatment of aneurysmal subarachnoid
hemorrhage in the first year after diagnosis. Stroke 33, 1595–1599 (2002)

21. Tan, X., Han, H.P.Q., Ni, J.: Domain knowledge-driven association pattern mining
algorithm on medical images. In: Proceedings of the 2009 Fourth International
Conference on Internet Computing for Science and Engineering, pp. 30–35 (2009)

22. Tsai, C., Lee, C., Yang, W.: A discretization algorithm based on class-attribute
contingency coefficient. Information Sciences 731, 714–731 (2008)

23. Valencia, C., Villa-Uriol, M.C., Pozo, J.M., Frangi, A.F.: Morphological descriptors
as rupture indicators in middle cerebral artery aneurysms. In: EMBC, Buenos
Aires, Argentina, pp. 6046–6049 (September 2010)

24. Villa-Uriol, M.C., Berti, G., Hose, D.R., Marzo, A., Chiarini, A., Penrose, J., Pozo,
J., Schmidt, J.G., Singh, P., Lycett, R., Larrabide, I., Frangi, A.F.: @neurIST com-
plex information processing toolchain for the integrated management of cerebral
aneurysms. Interface Focus (2011)

25. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

26. Xiang, J., Natarajan, S.K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L.N., Sid-
diqui, A.H., Levy, E.I., Meng, H.: Hemodynamic-morphologic discriminants for
intracranial aneurysm rupture. Stroke 42, 144–152 (2011)

27. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In:
Proceedings SIAM International Conference on Data Mining, pp. 331–335 (2003)

Semantic Translation for Rule-Based Knowledge

in Data Mining

Dejing Dou, Han Qin, and Haishan Liu

Computer and Information Science Department
University of Oregon

Eugene, Oregon 97403, USA
{dou,qinhan,ahoyleo}@cs.uoregon.edu

Abstract. Considering data size and privacy concerns in a distributed
setting, it is neither desirable nor feasible to translate data from one re-
source to another in data mining. Rather, it makes more sense to first
mine knowledge from one data resource and then translate the discov-
ered knowledge (models) to another for knowledge reuse. Although there
have been successful research efforts in knowledge transfer, the knowl-
edge translation problem in the semantically heterogenous scenario has
not been addressed adequately. In this paper, we first propose to use
Semantic Web ontologies to represent rule-based knowledge to make the
knowledge computer “translatable”. Instead of an inductive learning ap-
proach, we treat knowledge translation as a deductive inference. We elab-
orate a translation method with both the forward and backward chaining
to address the asymmetry of translation. We show the effectiveness of our
knowledge translation method in decision tree rules and association rules
mined from sports and gene data respectively. In a more general context,
this work illustrates the promise of a novel research which leverages on-
tologies and Semantic Web techniques to extend the knowledge transfer
in data mining to the semantically heterogeneous scenario.

1 Introduction

Information resources distributed across the Internet present structurally and se-
mantically heterogeneous data that are hard to process automatically for knowl-
edge acquisition. These resources include online databases, web services and the
Semantic Web [6]. They provide a unique and challenging opportunity for knowl-
edge acquisition in new and meaningful ways. Although standards such as SQL,
XML, and OWL [1] reduce the syntactic diversity, it is unreasonable to expect
schemas or ontologies that describe the structure and semantics of data to be
few in number [7]. A variety of heterogeneity has been observed in different data
analysis tasks [17]. It will be extremely helpful for data analysts to have a sys-
tem that can automatically reuse the knowledge mined from one data resource
to another. The traditional data mining solution to the semantic heterogeneity
is to first apply data translation or data integration as a pre-processing step to
either translate data from one schema to another or integrate data from several

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 74–89, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Semantic Translation for Rule-Based Knowledge in Data Mining 75

resources into a centralized location (e.g., a data warehouse). However, the data
translation or integration approach is not ideal because of following two reasons:
(i) communication and storage costs make transferring huge volumes of data
infeasible; (ii) individual sites want to maintain privacy (e.g., SSN) and do not
want to share this information with other parties.

Knowledge translation is a method to overcome semantic heterogeneity by
translating knowledge from one data resource (source) to another (target) to
make the knowledge reusable or comparable. It is closely related to knowledge
transfer or transfer learning which focuses on applying knowledge gained in
solving one problem to a different but related problem. However, to make exist-
ing knowledge transfer algorithms work, it is necessary that the target domain
has enough or at least auxiliary training data. It may not be true in the real
world problems. For example, a new credit card company without historical data
wants to use the classification model generated by its collaborative credit card
company to determine whether applicants to this new company are qualified or
not. The new company and its collaborative company may use different schemas
to store their applicants’ data. One way is to translate the applicants’ data of
the new company to the schema of its collaborator’s and use the collabora-
tor’s classification model to conduct prediction. However, due to communication
costs and privacy issues, it is plausible to translate only knowledge described
using its collaborator’s schema to the new company’s schema without carrying
out data translation. It is surprising that little research in knowledge trans-
fer has been done in the semantically heterogeneous scenario where two data
resources have different but semantically related representations. For example,
the semantic heterogeneities between the attributes describing two credit com-
pany databases may include synonyms (e.g., salary vs. pay), subsumption (e.g.,
graduate student status vs. student status) or functional (e.g., concatenation of
customer firstname and customer lastname vs. customer fullname) and so forth.
It is hard to say that we can directly apply knowledge transfer algorithms to solve
the knowledge translation problem in the semantically heterogeneous scenario.

To solve the knowledge translation problem, we first identify two critical the-
oretical challenges need to be addressed: i) there is no standard formal language
to represent semantics of mined knowledge. Previous data mining research in
exploring mined knowledge mainly focuses on visualization for aiding human
comprehension. Although some XML-based languages, e.g., Predictive Model
Markup Language (PMML), have been developed to represent a standard syn-
tax for mined knowledge, few work has been done for helping computers “un-
derstand” the semantics of knowledge automatically. We need to represent the
knowledge in a way that is computer “translatable” from the source to the tar-
get if the source and target use different but semantically related schemas. And
ii) what criteria can justify a correct translation remains a theoretically hard
problem when we try to design algorithms for knowledge translation.

To address these two challenges, in this paper, after introducing more re-
lated work (Section 2), we propose to use the standard Semantic Web ontology
languages to formally represent the rule-based knowledge, such as decision tree

76 D. Dou, H. Qin, and H. Liu

rules and association rules (Section 3). Ontologies, which have been used for for-
mal specification of conceptualization in traditional knowledge engineering and
the emerging Semantic Web, will be used for representing IF-THEN data min-
ing rules. We then give definition of correctness and completeness of knowledge
translation based on the soundness of formal inference. We point out the asym-
metry of translation based on our definitions. The conditions of rules can be
translated from the source to the target by backward chaining with generalized
modus ponens. The conclusions of rules can be translated from the source to the
target by forward chaining (Section 4). We show the effectiveness of our knowl-
edge translation method through two case studies in real world data (Section 5).
We discuss the uncertainty issues in knowledge translation and its extension to
distributed data mining as our future work (Section 6). We finally conclude the
paper with our contributions in Section 7.

2 Related Work

Knowledge transfer and distributed data mining are major research areas which
also deal with heterogeneous data and knowledge resources in data mining.

Knowledge transfer focuses on applying knowledge gained in solving one prob-
lem to a different but related problem. It is also treated as one kind of knowledge
reuse. Gao et al. [15] proposed a locally weighted ensemble framework to com-
bine multiple models. Gupta et al. [16] presented an algorithm for leveraging
heterogeneous data resources and algorithms using different algorithms for each
knowledge resource (e.g., Wikipedia). Eaton [14] proposed a method on learning
across multiple resolutions of input and applied this technique to the problem
of knowledge transfer in multitask learning. However, most knowledge transfer
researches in data mining focus on the source and target data resources with
different models, structures or distributions. None of them has discussed the se-
mantic heterogeneities, such as synonyms, subsumption and functions, between
the source and target. Also, previous knowledge transfer research does not handle
the scenario that there is no data in the target resource.

In distributed data mining (DDM), the heterogeneity that has been stud-
ied is mainly focused on the scenario where only incomplete knowledge can be
observed at each local site [19]. It is also termed as vertical fragmentation in
DDM literature [8,20]. Although vertical fragmentation is not the same as the
semantically heterogeneous scenario we focus on in this paper, some previous
experience is helpful. Of particular interest, Caragea and colleagues [8] used at-
tribute value taxonomy (AVT) to represent the semantics of local data resources.
A user ontology and a set of simple interoperation constraints (e.g., equivalence
and subsumption) between the data resource ontology and user ontology are
first specified manually. Then mappings between local ontologies and the user
ontology can be derived and used to answer statistical queries. In the paper,
we prefer to use mappings to translate the generated knowledge instead of only
translating the statics of queries.

Semantic Translation for Rule-Based Knowledge in Data Mining 77

3 Formal Representation of Rule-Based Knowledge

To formally represent mined knowledge, it is important to understand the se-
mantics of the knowledge. We basically borrow the ideas of the Semantic Web [6]
which targets at making the web data computer “understandable” and sharable
among software agents.

Different data mining tools (e.g., Weka [22], XLMiner [4]) may use different
syntax and semantics to represent results (e.g., decision trees). The previous data
mining research has focused on the visualization of mined knowledge to help
human understanding. However, to enable automatic knowledge translation, we
represent the knowledge in a formal way that computers can “understand” and
process. To that end, we choose ontologies, which are formal specifications of
conceptualization, to formally describe the mined knowledge (e.g., decision tree
rules and association rules). Specifically, we leverage the research progress in the
Semantic Web on Web Ontology Language (OWL [1]) and one of its related rule
languages, SWRL [3], to help formally represent data mining knowledge. Both
OWL and SWRL are based on fragments of first order logic (i.e., Description
Logics and Horn Logic).

Ontologies can be designed by domain experts manually or be mined from
data resources semi-automatically [10]. Once the ontologies are constructed, the
classes, properties and axioms of ontologies will be used to describe the knowl-
edge discovered from that data resource. For example, one decision tree rule
from a credit card company data can be represented in SWRL. The SWRL uses
OWL/RDF syntax which is space consuming. To save the space, we use the
general first order logic (FOL) syntax to represent SWRL rules in the paper:

∀x, y Applicant(x) ∧ age(x, y) ∧ (y > 30) ∧ grad student(x, “Y ”)→ credit(x, “Good”)

where “Applicant” is an OWL class (i.e.,unary predicate), “age”, “>”, “grad-
uate student”, and “credit” are OWL properties (i.e., binary predicates). This
rule means: “IF an applicant’s age is larger than 30 AND the applicant is a
graduate student, THEN his or her credit is good”.

The semantic heterogeneities between two data resources are represented in
a formal way with ontological concepts as well. For example, if one credit card
company uses the “age” concept but another one uses “birth year” to record the
applicants’ information, the heterogeneity or mapping between them can also be
represented in SWRL:

∀x, y birth year(x, y)→age(x, Current year − y)
∀x, y age(x, y)→birth year(x, Current year − y)

where “Current year” is a constant of number (e.g., 2011). We notice that RIF [2]
is the rule interchange format for the Semantic Web currently under discussion
at W3C. As long as RIF becomes a W3C standard, we will change our rep-
resentation and implementation from SWRL to RIF. The major point of this

78 D. Dou, H. Qin, and H. Liu

paper is that we need an ontology-based rule language to represent data mining
knowledge to enable formal reasoning and translation.

4 Knowledge Translation

After we use OWL and SWRL (or RIF) to represent rule-based knowledge and
mappings, we can discuss the knowledge translation problem in a formal way.

4.1 Formal Definitions

We first formally define the correctness and completeness of knowledge transla-
tion (KT).

Definition 1. Knowledge Translation (KT): Let Ks be the knowledge mined
from the source resource with ontology Os, Ot be the target ontology, and the set
of mapping rules between Os and Ot be Σ. Knowledge translation (KT) is the
process to translate Ks represented by Os to the knowledge Kt represented by
Ot according to Σ. We use the symbol �K to indicate the process of knowledge
translation.

Since Ks and Kt can be described by ontology languages, they are a set of logical
true statements. Σ are also a set of logical true statements as rules.

Definition 2. Correctness of KT: Let Kt be the translated knowledge deter-
mined by some algorithm. The Kt is considered as a correct translation from
Ks with Σ only if Kt is a semantic consequence of Σ and Ks: (Ks; Σ) �K

Kt only if (Ks; Σ)�Kt, where � means the semantic consequence (i.e., a logical
entailment). It can be implemented using inference as long as the inference is
sound: (Ks; Σ)�Kt ⇒ (Ks; Σ)�Kt, where � means an inference.

The above definition for correctness means that if Ks and Σ are true, a cor-
rect translation will guarantee that Kt is also true. A correct translation can
be implemented by a sound inference. On the contrary, a simple rewriting of
rules cannot guarantee to be sound. What kind of inference algorithms can be
considered as sound will be further discussed later in this section. Also, if the Σ
is 100% true, we expect that Kt has the same accuracy as Ks according to the
translated data if it is a correct translation. If the mappings in Σ are not 100%
true (i.e., with some uncertainty), the accuracy of Kt depends on the quality of
mappings as well. We consider the later a harder problem and further discuss it
in Section 6.

Definition 3. Completeness of KT: Let Kt be the translated knowledge gen-
erated by some algorithm. Kt is considered as a complete translation from Ks

according to Σ only if all statements in Ks can be translated to Kt correctly.

However, a knowledge translation may not be complete if not all concepts in Os

can be mapped to concepts in Ot. It is normally the case for real world data
resources. Therefore, we do not focus on getting a fully complete knowledge
translation in this research but we will propose a way to handle the uncertainty
of mappings in Section 6.

Semantic Translation for Rule-Based Knowledge in Data Mining 79

4.2 Asymmetry of Knowledge Translation

Continue with the decision tree rule from a credit card company (e.g., C1) data:

∀x, y Applicant(x) ∧ age(x, y) ∧ (y > 30) ∧ grad student(x, “Y ”)→ credit(x, “Good”)

If another credit card company (e.g.,C2) uses different but semantically related at-
tributes to describe its applicants: “birth year”, “student” and “credit ranking”.
The mapping rules between corresponding attributes look like:

∀x Applicant(x) ↔ applicant(x)
∀x, y birth year(x, y)→age(x, Current year − y)
∀x, y age(x, y)→birth year(x, Current year − y)
∀x grad student(x, “Y ”) → student(x, “Y ”)
∀x, y credit(x, y) ↔ credit ranking(x, y)

A simple rewriting (e.g., “age” ⇒ “Current year” minus “birth year”, “gradu-
ate student” ⇒ “student”, and “credit” ⇒ “credit ranking”) based on the map-
pings from the source C1 to the target C2 will get:

∀x, y Applicant(x)∧student(x, “Y ”) ∧birth year(x, y)∧(Current year−y > 30)
→ credit ranking(x, “Good”)

Careful readers will find that this rule for C2 based on the simple rewriting
is not necessarily correct nor semantically equivalent to the original rule in C1
because that an applicant is a student does not necessarily mean that he or she
is a graduate student. However, if C2 uses “PhD student”, “MS student” and
“undergraduate student” to describe their student applicants, the mappings are:

∀x grad student(x, “Y ”) ← PhD student(x, “Y ”)
∀x grad student(x, “Y ”) ← MS student(x, “Y ”)

And the translated rules will be:

∀x, y Applicant(x)∧PhD student(x, “Y ”) ∧birth year(x, y)∧(Current year−
y > 30) → credit ranking(x, “Good”)

∀x, y Applicant(x)∧MS student(x, “Y ”) ∧ birth year(x, y)∧ (Current year−
y > 30) → credit ranking(x, “Good”)

Both translated rules are correct. Therefore, given our formal definition for
the correctness of knowledge translation, translation exhibits certain asymme-
tries that one must be aware of. The translation of condition is different from
the translation of conclusion. Assume mined IF-THEN rules are in the form of
L → R where L is the condition (left side) as the conjunctions of literals and R
is the conclusion (right side) as the conjunctions of literals. Consider a general

80 D. Dou, H. Qin, and H. Liu

IF-THEN rule:

∀x1, x2 . . . P1(X) ∧ · · · ∧ Pn(X) → Q1(X) ∧ · · · ∧Qm(X)

where X is the set of quantified variables x1, x2 . . . and constants, the translation
of the condition (P1(X)∧· · ·∧Pn(X)) is not the same process as the translation
of the conclusion (Q1(X)∧ · · · ∧Qm(X)). We will subscript the symbol � with
a “L” to indicate the condition translation (�L), and with a “R” to indicate
the conclusion translation (�R) in the rest of the paper.

If we transform the IF-THEN rule to the conjunctive normal form (CNF), it
becomes:

∀x1, x2 . . .¬P1(X) ∨ · · · ∨ ¬Pn(X) ∨ (Q1(X) ∧ · · · ∧Qm(X))

Instead (not surprisingly), negation ends up involving the same asymmetry as
the condition and conclusion translations. Assume that R is an expression which
can be derived from Σ and ¬P by inference. Using the deduction theorem in
first-order logic and considering that ¬P → R is equivalent to ¬R → P , we
know that

(Σ;¬P) � R ⇔ Σ � (¬P → R) ⇔ Σ � (¬R → P) ⇔ (Σ;¬R) � P

This gives us a way to translate negations. We can think of P as a “ground
condition” (θ(P) = P): Given P , try to find a P

′
, which satisfies (Σ; P

′
) � P .

But this is just the problem of translating the condition P : (Σ; P) �L P
′
.

Therefore, if the condition translation of P is P
′
, ¬P

′
can be derived from Σ

and ¬P by the conclusion translation and vice versa:

(Σ; P) �L P
′ ⇒ (Σ;¬P) �R ¬P

′

(Σ; P) �R P
′ ⇒ (Σ;¬P) �L ¬P

′

A similar discussion and a proof on asymmetry of translation are in [11,12].

4.3 Design and Implementation

To address the asymmetry of translation for rule-based knowledge, we extended
our open source inference engine, OntoEngine [13], to conduct both condition
translation (�L) and conclusion translation (�R) for IF-THEN rules. The basic
idea for the translation is:

For each IF-THEN rule in the source, we conduct the condition transla-
tion using backward chaining with generalized modus ponens and conduct the
conclusion translation using forward chaining with generalized modus ponens.
Then we combine the results from backward chaining and forward chaining to
a new translated rule in the target. Our contribution is to design a method
by combing both backward and forward chaining to address the asymmetry of
translation for data mining rules. The knowledge translation algorithm is de-
scribed in Algorithm 1. The generalized modus ponens is a well known sound

Semantic Translation for Rule-Based Knowledge in Data Mining 81

inference procedure. We will illustrate the detail of how our method works with
the case studies in Section 5.

OntoEngine is a free downloadable inference engine from SemWebCentral.org.
It mainly handles the translation of Semantic Web data (RDF assertions) by for-
ward chaining and the translation of Semantic Web queries by backward chain-
ing. To translate the data mining rules (e.g., decision tree rules and association
rules), the major extension we have made in the implementation is to make Onto-
Engine be able to handle the translation of numeric comparisons (i.e., “>”, “<”,
“=”, “>=” and “<=”) as binary predicates and the inference with arithmetic
operators (i.e., “+”, “−”, “×” and “÷”) which are not trivial for reasoning.

Algorithm 1. Knowledge Translation (KT)
Input: : Rule P1(X) ∧ · · · ∧ Pn(X) → Q1(X) ∧ · · · ∧ Qm(X) in the source ontology.
The mapping rules Σ between the source and target.

Output: : Rule in the target ontology: P ′
1(X) ∧ · · · ∧ P ′

u(X)→ Q′
1(X) ∧ · · · ∧ Q′

v(X)
PT = null
for all predicate Pi, 1 ≤ i ≤ n do
Query Pt = BackwardChaining (Pi)
if PT == null then

PT = Pt

else
if Pt != null then

PT = PT ∧ Pt

end if
end if

end for

QT = null
for all predicate Qj , 1 ≤ j ≤ m do
Fact Qt = ForwardChaining (Qj)
if QT == null then

QT = Qt

else
if Qt != null then

QT = QT ∧ Qt

end if
end if

end for

if PT != null and QT != null then
P ′

1(X) ∧ · · · ∧ P ′
u(X) ⇐ PT

Q′
1(X) ∧ · · · ∧ Q′

v(X) ⇐ QT

end if

82 D. Dou, H. Qin, and H. Liu

Function BackwardChaining (Query Q)
Query Qr = null
if Q’s predicate is in the target ontology then

Qr = Q
else

while ∃ M (∀x1 . . . xk, Pm1 ∧ · · · ∧ Pmi · · · ∧ Pmw → ∃z1 . . . zl, Qm1 ∧ · · · ∧
Qmj · · · ∧ Qmr) in Σ, Q’s predicate is the same as Qmj in M do
New Query QN = ModusPonens(Q, M)
Qr = BackwardChaining (QN)

end while
end if
Return Qr

Function ForwardChaining (Fact F)
Fact Fr = null
if F ’s predicate is in the target ontology then

Fr = F
else

while ∃ M (∀x1 . . . xk, Pm1 ∧ · · · ∧ Pmi · · · ∧ Pmw → ∃z1 . . . zl, Qm1 ∧ · · · ∧
Qmj · · · ∧ Qmr) in Σ, F ’s predicate is the same as Pmi in M do
New Fact FN = ModusPonens(F , M)
Fr = ForwardChaining (FN)

end while
end if
Return Fr

Function ModusPonens (Object O, Mapping M)
Object Or = null
if O is a Query then
Query Qr = O; Substitutions = { }
if Qr is Qmj(?xj , ?yj) and one predicate in the conclusion of M is Qmj(xj , yj)
then

Substitutions = Substitutions + {xj/?xj , yj/?yj}
end if
if Substitutions is not empty then

Or = Substitute the variables in the condition (i.e., Pm1∧· · ·∧Pmi · · ·∧Pmw)
of M .

end if
end if
if Q is a Fact then
Fact Fr = O; Substitutions = { }
if Fr is Pmi(xi, yi) and one predicate in the condition of M is Pmi(?xi, ?yi) then

Substitutions = Substitutions + {?xi/xi, ?yi/yi}
end if
if Substitutions is not empty then

Or = Substitute the variables in the conclusion (i.e., Qm1∧· · ·∧Qmj · · ·∧Qmr)
of M .

end if
end if
Return Or

Semantic Translation for Rule-Based Knowledge in Data Mining 83

5 Case Studies

5.1 Translation of NBA Classification Rules

In the first case study, which we focused on the translation of decision tree rules,
we first extracted data from two popular sports web sites about NBA: the NBA
official site1 and the Yahoo Sports NBA site2 and put them into two databases
which we called NBA and NBAYahoo. We then generated two ontologies by
transforming relations to OWL classes and attributes to data type properties.
Therefore the decision tree rules mined from each database can be represented
in OWL and SWRL.

Since both sites collect the data about the same specific domain (i.e., NBA),
the data are highly overlapping. However, these two databases use different but
semantically related attributes to describe NBA players and teams. For example,
in NBA the unit of player height is meter but in NBAYahoo it is foot. NBA
uses “position” but NBAYahoo uses “playerposition” to describe the positions
of players. Therefore the mappings between NBA and NBAYahoo look like:

1 ∀x @NBA:Player(x) ↔ @NBAYahoo:Player(x)
2 ∀x, y @NBA:height(x, y) → @NBAYahoo:height(x, y/0.3048)
3 ∀x, y @NBAYahoo:height(x, y) → @NBA:height(x, y ∗ 0.3048)
4 ∀x, y @NBA:weight(x, y) ↔ @NBAYahoo:weight(x, y)
5 ∀x, y @NBA:position(x, y) ↔ @NBAYahoo:playerposition(x, y)

where we use “@NBA:” and “@NBAYahoo:” as namespaces to distinguish the
concepts which are from two databases or ontologies but have the same names
(e.g., “Player”, “height”, and “weight”).

We ran the C4.5 decision tree learning algorithm (J48 in WEKA [22]) in the
NBA database and got 11 rules with high accuracy to classify the positions of
players based on the “player” table or to classify whether a team will play in
playoff based on the “team” table. The overall accuracy of the 11 classification
rules is 85.7% (342/399). To show the translation process, we take one example:

∀x, y, z@NBA:Player(x) ∧ Float(y) ∧ Float(z) ∧@NBA:height(x, y)∧
@NBA:weight(x, z)∧(y < 1.96)∧(z <= 218) → @NBA:position(x, ‘Guard′)

This rule means if a player’s height is less than 1.96 meters and weight is less
than or equal to 218 pounds, the player is very likely to have the position as
“Guard.” The accuracy of this rule is 96.3%. To translate this rule, the first step
is conducting the condition translation (�L) as backward chaining from NBA
to NBAYahoo. Note,

@NBA:P layer(x)∧ F loat(y) ∧ F loat(z) ∧ @NBA:height(x, y) ∧ @NBA:weight(x, z)

∧(y < 1.96) ∧ (z <= 218)

1 http://www.nba.com
2 http://sports.yahoo.com/nba

 http://www.nba.com
 http://sports.yahoo.com/nba

84 D. Dou, H. Qin, and H. Liu

is the condition of the rule in the NBA ontology. Our inference engine does the
backward chaining with mapping rule 1, 3, and 4 and generates the condition of
the rule in the NBAYahoo ontology:

@NBAYahoo:Player(x) ∧ Float(y) ∧ Float(z) ∧@NBAYahoo:height(x, y)
∧@NBAYahoo:weight(x, z) ∧ (y < 6.42) ∧ (z <= 218)

Similarly, our inference engine conducts the conclusion translation (�R) as
forward chaining from NBA to NBAYahoo. The conclusion of the rule (i.e.,
@NBA:position(x, ‘Guard’)) is translated to @NBAYahoo:playerposition(x,
‘Guard’) with mapping rule 5. Then the inference engine combines the results
from both the condition translation and conclusion translation with quantifiers:

∀x, y, z@NBAYahoo:Player(x)∧Float(y)∧Float(z)∧@NBAYahoo:height(x, y)∧
@NBAYahoo:weight(x, z) ∧ (y < 6.42) ∧ (z <= 218)

→ @NBAYahoo:playerposition(x, ‘Guard′)

This is the translated classification rule in NBAYahoo. We tested the accuracy
of the translated rule in the NBAYahoo data and got a 97.2% accuracy. We ran
J48 in WEKA in the NBAYahoo data directly, the most similar rule to the above
translated rule is

∀x, y, z@NBAYahoo:Player(x)∧Float(y)∧Float(z)∧@NBAYahoo:height(x, y)∧
@NBAYahoo:weight(x, z) ∧ (y < 6.42) ∧ (z <= 213)

→ @NBAYahoo:playerposition(x, ‘Guard′)

in which only the splitting point of weight is different (213 vs. 218) and this
rule has a 98.5% accuracy. Figure 1 shows the accuracy of all 11 rules mined
from NBA, 11 translated rules to NBAYahoo and 11 most similar rules mined
directly from NBAYahoo. For most cases translated rules are as accurate as rules
mined directly from NBAYahoo. Rule 1-7 are about “position” of “player” and
rules 8-11 are about “playoff” for “team”.

Fig. 1. Accuracy of Classification Rules of the NBA Domain

Semantic Translation for Rule-Based Knowledge in Data Mining 85

We tested all 11 translated rules in the NBAYahoo data. The overall accu-
racy is 82.1% (431/525). Compared with the overall accuracy of rules we mined
directly from the NBAYahoo data as 80.9% (425/525), translated rules have
similar overall accuracy as directly mined rules.

We also tested the scalability of our knowledge translation system. For all
“player”, “team” and “scores” data tables, we selected different attributes as
classification labels and got a large number of classification rules using WEKA.
Although many of them are not meaningful or with low accuracy, they are use-
ful for the scalability test. Figure 2 shows that when the number of the rules
increases, the processing time of the translation process increases linearly. The
testing process was performed on a regular PC with an AMD Athlon Dual-Core
Processor 1.90 GHz and 4.00GB memory.

Fig. 2. Scalability of Classification Rule Translation

5.2 Translation of ZFIN and MGI Gene Association Rules

In the second case study, which we focused on the translation of association
rules, we obtained the data and schemas from NIH model organisms which sup-
port different online gene databases, such as ZFIN 3 (the zebrafish gene) and
MGI 4 (the mouse gene). Genetic researchers normally gather knowledge across
different species because the genes from different species are potentially related
to each other although their data are not overlapping. Comparing the patterns
mined from different gene databases are meaningful to domain experts. How-
ever, different gene databases use different table names and attributes which
make the comparison hard. For both gene databases we tried association rule
mining. Then we translated association rules from MGI to the ZFIN schema (on-
tology) and compared them with the rules mined from ZFIN directly. Domain
experts helped us to specify some mappings between MGI and ZFIN so that
we could process the translation. The motivation for knowledge translation is
that domain experts can compare the association rules from different databases
involving shared concepts.

3 http://www.zfin.org
4 http://www.informatics.jax.org

 http://www.zfin.org
 http://www.informatics.jax.org

86 D. Dou, H. Qin, and H. Liu

In this case study, we mainly focused on MGI’s “Marker list” and ZFIN’s
“Marker” tables and their attributes. These two tables both describe the infor-
mation about gene expressions. We got 20 meaningful association rules from the
MGI data by using Apriori in WEKA and successfully translated 10 of them to
ZFIN. It means 10 of 20 meaningful rules from MGI have corresponding rules as
a subset of all rules mined from ZFIN directly. The reason why the rest 10 rules
were not translated to ZFIN is that one attribute (i.e, MGI’s “cytogeneticOff-
set”) has no counterpart in the ZFIN database. This is because that the ZFIN
group did not collect these information.

For the 10 rules related to MGI’s “chromosome” and “cM position” that indi-
cate the position of the marker on the chromosome in mouse genes, it is straight-
forward to translate them to ZFIN in the similar way as our inference engine
does for NBA classification rules. The original data for MGI’s “cM position” are
numbers. We took one preprocessing step to categorize them by selecting some
intervals based on its range. For example, one association rule mined from MGI,

∀x @MGI:Marker list(x) ∧ @MGI:cM position(x, 16)→ @MGI:chromosome(x, ‘1′)

means if the Marker position on the chromosome is 16, this corresponds to
chromosome ‘1’ in the MGI database. To translate this rule, three mappings,

6 ∀x, y @MGI:Market list(x) ↔ @ZFIN:Marker(x)
7 ∀x, y @MGI:cM position(x, 16) ↔ @ZFIN:lg location(x, 20)
8 ∀x, y @MGI:chromosome(x, ‘1′) ↔ @ZFIN:or lg(x, ‘22′)

need to be applied. Note that the ZFIN group uses or lg(x, ‘22’) (linkage groups)
rather than chromosome numbers to identify chromosomes. This is because un-
like most species, it is hard to readily distinguish one zebrafish chromosome from
another using visual techniques. Therefore one linkage group in a zebrafish model
includes a set of potential chromosomes and is comparable to a chromosome in a
mouse model. The “or” prefix stands for “Oregon” since there are many groups
working on linkage groups and the ZFIN group is in Oregon.

The backward chaining for the condition with mapping rule 6 and 7 generates:
@ZFIN:Marker(x)∧@ZFIN:lg location(x, 20) and the forward chaining for the
conclusion with mapping rule 8 generates: @ZFIN:lg location(x, 20). Finally
the combination generates the translated rule:

∀x @ZFIN:Marker(x) ∧@ZFIN:lg location(x, 20) → @ZFIN:or lg(x, ‘22′)

The confidence of the original rule in MGI is 67% and the confidence of the
translated rule in ZFIN is 56%. Considering the large size of data instances
in ZFIN and MGI, although both confidences are not high, this translation
and comparison actually shows that there are some similar patterns (associa-
tions) with similar confidences in both of the ZFIN and MGI data. From domain

Semantic Translation for Rule-Based Knowledge in Data Mining 87

Fig. 3. Confidence of Association Rules of the Gene Domain

experts’ view, this rule also shows there is a marker cluster at a specific location
of linkage group 22. Figure 3 shows the confidences of all 10 rules mined from
the MGI data, the translated rules from MGI to ZFIN, and the corresponding
rules mined from the ZFIN data.

Since the association rule translation process is basically the same as the clas-
sification rule translation, we did not perform scalability tests in this case study.
Instead, it is more interesting for us to discuss the situation where 10 out of 20
rules are not translatable because MGI’s “cytogeneticOffset” has no counterpart
in the ZFIN database. For example, one association rule:

∀x @MGI:Marker list(x) ∧@MGI: Organism key(x, ‘1′)∧
@MGI:cytogeneticOffset(x, ‘p′) → @MGI:chromosome(x, ‘5′)

means that if one “Marker” has an organism key as ‘1’ and cytogeneticOffset as
‘p’, the corresponding chromosome will be ‘5’. For MGI’s Organism key(x,‘1’) it
should be translated to ZFIN’s organism(x, ‘mouse’) and MGI’s chromosome(x,
‘5’) should be translated to ZFIN’s or lg(x, ‘24’). However for MGI’s cytogeneti-
cOffset(x, y) we could not do any translation. Cytogenetics is a set of genetics
which describes the structure and function of the chromosome. For the MGI
group cytogenetics offset is a very interesting and important attribute while the
ZFIN group does not study it because zebrafish genes are not as complex as
mouse genes and also too small to collect cytogenetics offset data. But domain
experts in ZFIN believe rules with this attribute are interesting and meaningful.
The suggestion was to create a “cytogeneticOffset” attribute in ZFIN and the
rest 10 rules can be translated successfully. For example, one translated rule is:

∀x @ZFIN:Marker(x) ∧@ZFIN:organism(x, ‘mouse′)∧
@ZFIN:cytogeneticOffset(x, ‘p′) → @ZFIN:or lg(x, ‘24′)

6 Discussion and Future Work

In our work, we have specified the mappings among data resources manually. Al-
though it is a one-time job compared with potential applications for translating

88 D. Dou, H. Qin, and H. Liu

large number of various data mining rules, mapping specification is still time con-
suming. Some automatic or semi-automatic mapping discovery tools, such as
schema mapping [5,18] and ontology mapping tools [21], will be helpful. However,
there must be some uncertainty with the automatically discovered mappings. It
also happens for the mappings specified by human experts, because sometime it is
hard to say what exact mappings are among attributes.

To handle mappings with uncertainty, one promising way is to extend Seman-
tic Web ontologies with Markov logic [9], which combines first-order logic with
Markov random fields, to represent knowledge and mappings as Markov logic
networks (MLNs). The knowledge translation with uncertain mappings can be
a process using both logic inference and probabilistic inference.

We also plan to apply knowledge translation algorithms for distributed data
mining (DDM) systems in a client-server model. The clients will be data ana-
lysts and a DDM server will connect to local data resources. The data mining
tasks will run on local resources. The output from local data resources is the
mined knowledge based on local ontologies. Given the mappings between local
data resources and the user site, the system will apply appropriate knowledge
translation algorithms to first translate the knowledge to the user ontology, then
the knowledge from multiple resources can be combined as if in the homogeneous
scenario (i.e., the same user ontology).

7 Conclusions

Major contributions of this research to data mining and the Semantic Web are:

– It is novel to research how to translate the mined knowledge from one data
resource to another semantically heterogeneous one. This work can be ap-
plied to knowledge transfer and potentially to distributed data mining in the
semantically heterogeneous scenario.

– The formal representation of mined knowledge leverages the ideas of the Se-
mantic Web to make the knowledge computer “understandable” and “trans-
latable”. It is a key step to make the mined knowledge sharable among
software agents.

– The general nature of our approach makes it applicable to any domain,
especially to biomedical sciences, where large amounts of data are already
publicly available from different labs but are semantically heterogeneous.

In our future work, we need to consider the uncertainty of mappings. We also
plan to extend our knowledge translation methods to distributed data mining.

Acknowledgment. We thank Xiang Shao, Sridhar Ramachandran, and Tom
Conlin in the ZFIN group for providing domain knowledge on genetic data,
database mappings, and valuable comments.

Semantic Translation for Rule-Based Knowledge in Data Mining 89

References

1. OWL Web Ontology Language, http://www.w3.org/TR/owl-ref/
2. Rule Interchange Format (RIF), http://www.w3.org/2005/rules/
3. SWRL: A Semantic Web Rule Language Combining OWL and RuleML,

http://www.w3.org/Submission/SWRL/

4. XLMiner: Data Mining in Excel, http://www.resample.com/xlminer/index.shtml
5. An, Y., Borgida, A., Miller, R.J., Mylopoulos, J.: A semantic approach to discov-
ering schema mapping expressions. In: ICDE, pp. 206–215 (2007)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5) (May 2001)

7. Bruijn, J.D., Polleres, A.: Towards an Ontology Mapping Specification Language
for the Semantic Web. Technical report, DERI (June 2004)

8. Caragea, D., Zhang, J., Bao, J., Pathak, J., Honavar, V.G.: Algorithms and soft-
ware for collaborative discovery from autonomous, semantically heterogeneous, dis-
tributed information sources. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005.
LNCS (LNAI), vol. 3734, pp. 13–44. Springer, Heidelberg (2005)

9. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan &
Claypool, CA (2009)

10. Dou, D., Frishkoff, G., Rong, J., Frank, R., Malony, A., Tucker, D.: Development of
NeuroElectroMagnetic Ontologies (NEMO): A Framework for Mining Brainwave
Ontologies.. In: KDD, pp. 270–279 (2007)

11. Dou, D., McDermott, D.: Deriving Axioms Across Ontologies. In: AAMAS,
pp. 952–954 (2006)

12. Dou, D., McDermott, D.: Towards theory translation. In: Baldoni, M., Endriss,
U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327, pp. 16–28. Springer, Heidelberg
(2006)

13. Dou, D., McDermott, D.V., Qi, P.: Ontology Translation on the Semantic Web.
Journal on Data Semantics 2, 35–57 (2004)

14. Eaton, E.: Multi-resolution learning for knowledge transfer. In: AAAI (2006)
15. Gao, J., Fan, W., Jiang, J., Han, J.: Knowledge transfer via multiple model local

structure mapping. In: KDD, pp. 283–291 (2008)
16. Gupta, R., Ratinov, L.-A.: Text categorization with knowledge transfer from het-

erogeneous data sources. In: AAAI, pp. 842–847 (2008)
17. Liu, H., Dou, D.: An Exploration of Understanding Heterogeneity through Data

Mining. In: Proceedings of KDD 2008 Workshop on Mining Multiple Information
Sources, pp. 18–25 (2008)

18. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L.-L., Ho, C.T.H., Fagin, R., Popa,
L.: The clio project: Managing heterogeneity. SIGMOD Record 30(1), 78–83 (2001)

19. Park, B.-H., Kargupta, H.: Distributed data mining: Algorithms, systems, and
applications. In: Ye, N. (ed.) Data Mining Handbook (2002)

20. Provost, F.J., Buchanan, B.G.: Inductive policy: The pragmatics of bias selection.
Machine Learning 20(1-2), 35–61 (1995)

21. Qin, H., Dou, D., LePendu, P.: Discovering Executable Semantic Mappings Be-
tween Ontologies. In: ODBASE, pp. 832–849 (2007)

22. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

http://www.w3.org/TR/owl-ref/
http://www.w3.org/2005/rules/
http://www.w3.org/Submission/SWRL/
http://www.resample.com/xlminer/index.shtml

Mining Frequent Disjunctive Selection Queries

Inès Hilali-Jaghdam1,2, Tao-Yuan Jen1, Dominique Laurent1, and Sadok Ben Yahia2

1 ETIS - CNRS - ENSEA, University of Cergy Pontoise, F-95000, France
2 Computer Sc. Dept, Faculty of Sciences of Tunis, University Campus, 1060 Tunis, Tunisia

{ines.hilali-jaghdam,jen,dlaurent}@u-cergy.fr,
sadok.benyahia@fst.rnu.tn

Abstract. In this paper, we address the issue of mining frequent disjunctive se-
lection queries in a given relational table. To do so, we introduce a level-wise al-
gorithm to mine such queries whose selection condition is minimal. Then, based
on these frequent minimal queries, and given any disjunctive selection query, we
are able to decide whether its frequent or not. We carried out experiments on
synthetic and real data sets that show encouraging results in terms of scalability.

Keywords: Level-wise algorithms, frequent query, disjunctive query mining.

1 Introduction

The extraction of frequent patterns from data sets has motivated many research efforts
during the last two decades. However, the extraction of disjunctive queries grasped little
attention despite the interest that applications could benefit from this kind of queries.
As examples of such applications, we mention the different explanations of symptoms
observed in an incorrect diagnosis, the ambiguities in the comprehension of the natural
language, biological inheritance that consists in knowing if an offspring cell becomes
predisposed to such or such characteristic of its parents, etc. In this paper, we study
the mining of all minimal disjunctive frequent queries from a relational table Δ defined
over a set of attributes U . In addition, we show that these queries constitute a concise
representation, in the sense that, given a disjunctive selection query, we are able to say
whether it is frequent according to a support threshold.

The remainder of this paper is organized as follows. Section 2 discusses related work,
and Section 3 states basic definitions and properties of disjunctive selection queries.
Section 4 focuses on mining frequent minimal disjunctive selection queries, through a
level-wise algorithm, called DISAPRIORI. Experimental results are reported in Section
5, and Section 6 concludes the paper and discusses future work.

2 Related Work

In the literature, a wealthy number of approaches were interested in the extraction of
frequent objects based on conjunctive criteria. In the transactional database case, among
well known approaches, we mention frequent itemsets [3], frequent closed patterns [4],
minimal generator patterns [5], and frequent maximal patterns [6]. In the relational

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 90–96, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Mining Frequent Disjunctive Selection Queries 91

database case, some pioneering work addressing the extraction of frequent conjunctive
queries are [7–9]. In [7], the authors consider conjunctive projection-selection queries
extracted from a relational table. The approach in [8] is an extension of [7], since [8]
considers conjunctive projection-selection-join queries where joins are performed along
keys and foreign keys in the presence of functional and inclusion dependencies in a
star schema. In [9], the authors consider the general case of any relational database,
from which frequent conjunctive projection-selection-join queries are mined. The main
difference between [8] and [9] is that, in [8], functional and inclusion dependencies
holding in a star schema are explicitly used to optimize the computations, whereas in
[9], any database schema can be handled, but no dependency is taken into account.

On the other hand, the extraction of objects according to disjunctive criteria was
mainly studied for transactional databases. In [10], inclusion-exclusion identities are
introduced to derive disjunctive supports, based on conjunctive ones. In [11], a closure
operator was presented in order to map many disjunctive itemset to a unique one called
the disjunctive closed itemset. However, to the best of our knowledge, the issue of min-
ing disjunctive queries from a relational table has not been addressed in the literature.

3 Disjunctive Selection Queries

In this section, we introduce the basic definitions and properties of our approach. We
assume that the reader is familiar with standard notation of the relational model of
databases (see [12]). We assume that we are given a relational table Δ defined over the
attribute set U , also called the universe. Every attribute A in U is associated with a set
of values, called the domain of A and denoted by dom(A). The notion of disjunctive
selection query is defined as follows.

Definition 1. Given a relational table Δ defined over U , a disjunctive selection query
is a relational query of the form σ(A1=a1)∨...∨(An=an)(Δ), where n ≥ 1 and for every
i in {1, . . . , n}, Ai is in U and ai in dom(Ai).

Given a disjunctive selection query q, the support of q in Δ, denoted by supΔ(q), or
simply by sup(q) when Δ is understood, is the cardinality of the answer to q in Δ. Given
a support threshold minsup, q is said to be frequent in Δ, if supΔ(q) ≥ minsup.

Example 1. Considering the relational table Δ shown in Table 1, we have U = {Cid,
Cname, Caddr, Pid, Ptype, Qty}, where attributes have the following intuitive meaning:

– Cid, Cname and Caddr represent respectively Identifier, Name, and Address of cus-
tomers,

– Pid and Ptype represent respectively the Identifier and Type of products, and
– Qty represents the quantity sold for a given customer and a given product.

Let us consider the queries q1 = σ(Cname=John)(Δ), q2 = σ(Cid=C2)(Δ) and q3 =
σ(Cname=John)∨(Cid=C2)(Δ). These queries are clearly disjunctive selection queries,
and it is easy to check from Table 1 that sup(q1) = 2, sup(q2) = 2 and sup(q3) = 4.
Thus, setting minsup equal to 3, q3 is frequent while q1 and q2 are not.

Disjunctive selection queries are compared according to the following definition.

92 I. Hilali-Jaghdam et al.

Table 1. The table Δ

Cid Pid Cname Caddr Ptype Qty
c1 p1 John Paris milk 10
c1 p2 John Paris beer 10
c2 p1 Mary Paris milk 1
c2 p3 Mary Paris beer 5
c3 p3 Paul NY beer 10
c4 p4 Peter Paris milk 15

Definition 2. For all disjunctive selection queries q1 = σ(A11=a11)∨...∨(A1n1=a1n1)(Δ)
and q2 = σ(A21=a21)∨...∨(A2n2=a2n2)(Δ), q1 is said to be a sub-query of q2 if for every
i in {1, . . . , n1}, there exists j in {1, . . . , n2} such that A1i = A2j and a1i = a2j .

Given a support threshold minsup, the disjunctive selection query
q = σ(A1=a1)∨...∨(An=an)(Δ) is said to be frequent minimal with respect to minsup,
or frequent minimal when minsup is clear from the context, if q is frequent and either
n = 1 or no sub-query of q is frequent.

In the context of Example 1, q1 and q2 are the only sub-queries of q3. Since q1 and q2

are not frequent while q3 is frequent, q3 is frequent minimal with respect to minsup.
It turns out that frequent minimal queries play a key role in our approach, since

mining only these queries is enough to know all frequent disjunctive queries. This result
is based on the following monotonicity property, whose easy proof is omitted.

Proposition 1. For all disjunctive queries q1 and q2, if q1 is a sub-query of q2 then
sup(q1) ≤ sup(q2).

As a consequence of Proposition 1, if q is not frequent then any sub-query q′ of q is not
frequent either. In other words, if q′ is frequent and if q′ is a sub-query of q, then q is
frequent. This explains why all frequent disjunctive selection queries can be obtained
from the minimal frequent selection queries.

It is however important to notice that, based on frequent minimal queries and their
supports, it is not possible in general to compute the support of any frequent disjunctive
selection query. Indeed, let q1 = σD1(Δ) and q2 = σD2 (Δ) be two frequent minimal
queries, and consider the disjunctive selection query q = σD1∨D2(Δ). Since the an-
swer to q is the union of those to q1 and q2, we have sup(q) = sup(q1) + sup(q2) −
sup(σD1∧D2(Δ)). Thus, computing the support of q requires to know the support of
σD1∧D2(Δ), which is not a disjunctive selection query. In the next section, we show a
particular case where the support of q can be inferred from those of q1 and q2.

4 Mining Frequent Minimal Selection Queries

In this section, we show how to mine frequent minimal queries, using level-wise strat-
egy as in Apriori ([3]). Our algorithm, called DISAPRIORI, proceeds as follows:

1. At level 1, the algorithm computes the supports of every query σ(A=a)(Δ) for every
A in U and every a in dom(A) appearing in Δ. For every q = σ(A=a)(Δ), if

Mining Frequent Disjunctive Selection Queries 93

Algorithm 1. DISAPRIORI Algorithm
Data: The table Δ and a support threshold minsup
Results: The set Freq of all frequent minimal queries
F1 = {q | q = σ(A=a)(Δ) and sup(q) ≥ minsup}
¬F1 = {q | q = σ(A=a)(Δ) and sup(q) < minsup}
For k = 2, ¬Fk−1 �= ∅, k ++ do

Dk = DisApriori-Gen(¬Fk−1)
Foreach t ∈ Δ do

Foreach D ∈ Dk do
/*D = (A1 = a1) ∨ . . . ∨ (Ak = ak) */
If ∃j ∈ {1, . . . , k} such that t.Aj = aj then

supp(σD(Δ)) + +
End

end
end
Fk = {σD(Δ) | D ∈ Dk and sup(σD(Δ)) ≥ minsup}
¬Fk = {σD(Δ) | D ∈ Dk and sup(σD(Δ)) < minsup}

end
return Freq =

⋃
k Fk and ¬Freq =

⋃
k ¬Fk

sup(q) < minsup then q and its support are stored in a set denoted by ¬F1.
Otherwise, q is a frequent minimal query, in which case it is stored, along with its
support, in another set denoted by F1.

2. At any level i > 1, the candidate disjunctions Dk are generated from those in the
queries of ¬Fk−1 to form disjunctions of size k. The corresponding disjunctive
selection queries are pruned using Proposition 1; that is, if a sub-query of a query q
appears to be in Fk−1, then q is frequent but not minimal. As such a query has not
to be processed, its disjunction is removed from the candidate set Dk.

3. For every disjunction D remaining in Dk, the support of q = σD(Δ) is computed.
If sup(q) < minsup then q and its support is put in ¬Fk , otherwise, q is frequent
minimal, and so, it is put along with its support in Fk.

The processing above is iterated while Dk is not empty. In the end of the processing, we
know (i) all non frequent disjunctive queries and their supports, and (ii) all frequent
minimal queries and their supports. Algorithm 1 gives full details on the steps men-
tioned above, except for step 2, which generates and prunes candidate disjunctions in
exactly the same way as candidate itemsets are generated and pruned in Apriori ([3]).

We recall that, based on the output of Algorithm 1, given a disjunctive selection
condition q is frequent if and only if Freq contains a query q′ such that q′ is a sub-
query of q. Moreover, if the disjunction in q involves only one attribute, then sup(q)
can be deduced from those output by Algorithm 1.

Indeed, let q = σD(Δ) where D = (A = a1) ∨ . . . ∨ (A = an). If Freq contains
no query q′ such that q′ is a sub-query of q, then q is not frequent and so, q is stored in
¬Freq along with its support. Otherwise, we proceed by induction on n as follows:

– The case n = 1 is trivial, since the supports of all queries σ(A=a1)(Δ) are stored in
the output of Algorithm 1.

94 I. Hilali-Jaghdam et al.

– Assume now that for all k ≤ n, the supports of all queries of the form σDk
(Δ),

where Dk = (A = a1)∨. . .∨(A = ak), are known and let q = σD(Δ), where D =
(A = a1)∨. . .∨(A = an)∨(A = an+1). In this case, denoting by Dn the selection
condition (A = a1) ∨ . . . ∨ (A = an), we first notice that if (A = an+1) occurs
in Dn, then D is equivalent to Dn and so, sup(q) = sup(σDn(Δ)). Otherwise, we
have sup(q) = sup(σDn(Δ)) + sup(σ(A=an+1)(Δ)) − sup(σDn∧(A=an+1)(Δ)),
and we know that the last support is 0 since, for any i = 1, . . . , n, Δ contains
no tuple tuple t such that t.A = ai and t.A = an+1. Therefore, we obtain that
sup(q) = sup(σDn(Δ)) + sup(σ(A=an+1)(Δ)).

However, it is unknown to the authors if there exist further cases where the supports of
disjunctive selection queries can be deduced from the output of Algorithm 1.

5 Experiments

Algorithm 1 has been implemented in C++ and run on a computer with 3 Go main
memory running on Linux Ubuntu.

Table 2. The database characteristics of the first experiments

Base |Δ| � Attributes
Nursery 12960 8
Solar Flare 1066 10
Balance Scale 625 4

Our first experiments use benchmark databases from http://archive.ics.
uci.edu/ml/datasets.html whose characteristics are given in Table 2. The ex-
periments on these databases report on the runtime over the size of the table Δ, which
we denote by |Δ|, in the case where the minimum support threshold is fixed to 0.5×|Δ|.
To do so, we selected increasing numbers of tuples from the underlying table Δ in order
to plot the evolution of runtime with respect to the size of Δ.

As can be seen from Figure 1, runtime increases exponentially with respect to the
size of Δ, except for Nursery. This is due to the fact that, in this data set, few values
per attribute are present in the table, thus implying that the number of processed queries
remains quite low, as compared to the other data sets. These experiments clearly show
that runtime increases when the size of the table increases. In fact, due to the particular
form of disjunctive selection queries considered in this paper, runtime increases with
respect to the overall number of values present in the table Δ, whatever their attribute
domain.

Our second experiments report on the runtime spent with respect to different values
of the minimum support threshold, in the cases where the size of the table is set to
100, 300 and 500. To do this, we used data sets generated by our own data generator,
adapted from the one by IBM (www.almaden.ibm.com). Tables with 3 attributes

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
www.almaden.ibm.com

Mining Frequent Disjunctive Selection Queries 95

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000

tim
e(

se
c)

diffrent values of instances

#instances

|Nursery|
|Flare|

|Balance|

Fig. 1. Runtime over the size of Nursery, SolarF lare and Balance databases

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tim
e(

se
c)

diffrent values of supports

support

|100 tuples|
|300 tuples|
|500 tuples|

Fig. 2. Runtime over the minimum support threshold value

and random values over these attributes have been generated. Experiments were run on
these tables for support thresholds equal to ρ× |T |, where ρ ranges from 0.1 up to 0.9.

Figure 2 shows so the behavior of runtime with respect to these different values
of the minimum support threshold. It can be seen that, in all cases, runtime becomes
roughly stable, reaching its maximum value, for ρ = 0.3. This is due to the fact that the
supports of most frequent minimal queries are less than 0.3× |Δ|, and so, in this case,
increasing the support does not imply any significant runtime increase. More generally,
as compared to the case of mining frequent conjunctive queries (see [8]), we observe
a totally different behavior of runtime with respect to support: in the conjunctive case,
runtime decreases with the support, whereas in the disjunctive case, runtime increases
with the support. This is so because in the disjunctive case, the higher the support, the
more unfrequent disjunctions.

96 I. Hilali-Jaghdam et al.

6 Conclusion and Further Work

In this paper, we have addressed the problem of mining frequent minimal disjunctive
selection queries from a relational table, using a level-wise strategy, and we have shown
that given any disjunctive selection query, the output of our algorithm allows to deter-
mine whether this query is frequent or not. Experiments on real and synthetic data sets
show that our approach is realistic in terms of runtime.

As future work, we will consider constraints, such as functional dependencies for
optimizing the computation of frequent disjunctive queries. We also plan to extend our
approach from selection to projection-selection-join queries.

References

1. Weiss, G.M., Zadrozny, B., Saar-Tsechansky, M.: Guest editorial: special issue on utility-
based data mining. Data Mining and Knowledge Discovery 17(2), 129–135 (2008)

2. Nambiar, U.: Supporting Imprecision in Database Systems. In: Wang, J. (ed.) Encyclopedia
of Data Warehousing and Mining, pp. 1884–1887 (2009)

3. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of asso-
ciation rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328 (1996)

4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using
closed itemset lattices. Information Systems 24(1), 25–46 (1999)

5. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining Minimal Non-
redundant Association Rules Using Frequent Closed Itemsets. In: Palamidessi, C., Moniz
Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey,
P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)

6. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: In IEEE Interna-
tional Conference on Data Mining, pp. 163–170. IEEE Computer Society, Los Alamitos
(2001)

7. Jen, T.Y., Laurent, D., Spyratos, N.: Mining all frequent projection-selection queries from a
relational table. In: Int. Conference on Extending Database Technology, pp. 368–379. ACM
Press, New York (2008)

8. Jen, T.Y., Laurent, D., Spyratos, N.: Mining frequent conjunctive queries in star schemas. In:
Int. Database Engineering Applications Symposium, pp. 97–108 (2009)

9. Goethals, B., Le Page, W., Mannila, H.: Mining association rules of simple conjunctive
queries. In: Int. Conference SIAM-SDM, pp. 96–107 (2008)

10. Galambos, J., Simonelli, I.: Bonferroni-type Inequalities with Applications. Springer, Hei-
delberg (2000)

11. Hamrouni, T., Yahia, S.B., Nguifo, E.M.: Sweeping the disjunctive search space towards
mining new exact concise representations for frequent itemsets. Data and Knowledge Engi-
neering 68(10), 1091–1111 (2009)

12. Ullman, J.: Principles of Databases and Knowledge-Base Systems, vol. 1. Computer Science
Press, Rockville (1988)

A Temporal Data Mining Framework for

Analyzing Longitudinal Data

Corrado Loglisci, Michelangelo Ceci, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70125 Bari - Italy

Abstract. Longitudinal data consist of the repeated measurements of
some variables which describe a process (or phenomenon) over time.
They can be analyzed to unearth information on the dynamics of the
process. In this paper we propose a temporal data mining framework to
analyze these data and acquire knowledge, in the form of temporal pat-
terns, on the events which can frequently trigger particular stages of the
dynamic process. The application to a biomedical scenario is addressed.
The goal is to analyze biosignal data in order to discover patterns of
events, expressed in terms of breathing and cardiovascular system time-
annotated disorders, which may trigger particular stages of the human
central nervous system during sleep.

1 Introduction

Domains of the real world that evolve over time, such as biomedical processes,
human beings behaviours, physical and natural phenomena, can be described
by a finite set of variables whose repeated measurement generates a particular
class of multidimensional time-series known as longitudinal data [10]. Normally,
longitudinal data represent the complete evolution or dynamics of a process
over time and therefore they can convey relevant information. However, the
complexity of longitudinal data makes their interpretation difficult and resorting
to automatic techniques of analysis becomes necessary. Traditionally, most of
attention has been paid by the classical computational statistics techniques,
which anyway can suffer from problems coming from the hight dimensionality
of the collected data, from heterogeneity of data types and from the need of
handling the intrinsic temporal nature of longitudinal data.

In this regard, a relevant role can be played by data mining approaches. One
of the first proposed methods is the querying and mining system described in
[3] where the authors investigated three different tasks for temporal association
rules discovery, namely the discovery of valid time periods during which asso-
ciation rules hold, the discovery of possible periodicities that association rules
have, and the discovery of association rules with temporal features, where the an-
alyzed data are represented in the simplified representation of the transactions.
Another interesting approach is presented in [8] which reports a methodology to
pre-process time-series and discover frequent patterns from the pre-processing

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 97–106, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

98 C. Loglisci, M. Ceci, and D. Malerba

results. In particular, the patterns are organized according to an hierarchical
structure built on the temporal concepts of duration, coincidence and partial
order.

In this paper, we propose a temporal data mining approach that aims at
supporting the tasks of analyzing and interpreting the evolution of a dynamic
process. It mines time-varying data and discovers patterns of time-annotated
complex events which can trigger particular stages of the process. A complex
event is associated to a variation or change while a stage corresponds to a specific
state of the process which holds in a period of time. Two consecutive stages
represent two different states and together they depict a transition in the process.
So, given two consecutive stages, we assume that whatever happens in the first
stage may affect the second one, and, since two consecutive stages are different
each other, the events which occur in the first stage and do not occur in the
second one can be responsible of the transition of the process towards the second
stage. Therefore, the transition can be ascribed to these events.

Patterns are discovered from the events detected on a collection of pairwise
stages of interest. Such a collection is properly created in order to consider only
pairs of stages which depict similar transitions. The usage of pattern discovery
is therefore addressed to find out the most frequent (and maybe significant)
complex events which can determine similar transitions and, thus, can trigger
analogous stages.

The paper is organized as follows. In next section we define the problem in
terms of four sub-problems. The computational solution for them is described
in Section 3. An application to the case of a biomedical scenario is presented in
Section 4. Finally, conclusions are drawn.

2 Problem Formulation

Before formally defining the problem of interest, we introduce some necessary
concepts. Let P : {a1, . . . , am} be the finite set of real-valued variables (e.g.,
{blood oxygen, heart rate, respiration rate}), longitudinal data form a collection
Mp of time-ordered measurements of the variables in P .

A stage Sj is a 4-tuple Sj = 〈tsj , tej, Cj , SVj〉, where [tsj ..tej] (tsj , tej ∈ τ ,
tsj ≤ tej)1 represents the time-period of the stage, while Cj : {f1, f2, . . .} is
a finite set of fluents, namely facts or properties in terms of variables P that
are true during the time-period [tsj ..tej]. SVj is the set {sv1, . . . , svk, . . . , svm}
containing m symbolic values such that svk is a high-level description of the
parameters ak ∈ P during [tsj ..tej].

An example of stage is S1 : 〈t1, t10, { blood oxygen ∈ [6500;6700], heart rate
∈ [69;71], respiration rate ∈ [2300;5500]}, {blood oxygen is INCREASE, heart
rate is STEADY, respiration rate is INCREASE} 〉 which can be interpreted as
follows: S1 is associated with the period of time [t1, t10] and is characterized by
the fact (fluent) that the variables blood oxygen, heart rate and respiration rate
1 τ is a finite totally ordered set of time-points. Henceforth, the corresponding order
relation is denoted as ≤.

A Temporal Data Mining Framework for Analyzing Longitudinal Data 99

have values respectively in [6500; 6700], [69; 71], [2300; 5500] and have increasing,
steady and increasing trend, respectively.

An event e is a signature e = 〈tF , tL, Ea, IEa, SEa〉, where [tF ..tL] is the
time-interval when event e occurs (tF , tL ∈ τ), Ea : {ea1, . . . , eak, . . . , eam′}
is a subset of P and contains m’ distinct variables which take values in the in-
tervals IEa : [inf1, sup1], . . . , [infk, supk], . . . [infm′ , supm′], respectively, during
[tF ..tL]. Finally, SEa : {sv1, . . . , svk, . . . , svm′} is a set of m′ symbolic values
associated to Ea. In particular, IEa is a quantitative description of the event,
while SEa is a qualitative representation of the trend of values taken by each
eak during [tF ..tL].

Two examples of events are e1 : 〈t1, t5, {bloodoxygen}, {[6300; 6800]},
{DECREASE}〉and e2 : 〈t6, t10,{bloodoxygen},{[6600; 7000]}, {INCREASE}〉
which can interpreted as follows: e1 (e2) is associated with the time-period
[t1, t5] ([t6, t10]) during which the variables blood oxygen ranges in [6300; 6800]
([6600; 7000]) and has a decreasing (increasing) trend. Trivially, a sequence 〈e1, e2〉
is an ordered list of events when, given [tF1..tL1], [tF2..tL2] of e1 and e2 respec-
tively, tF1 is the immediate predecessor of tF2 in τ .

The notions above introduced suggest to resort to representation formalisms
able to suitably handle the complex formulation of the events. Indeed, we re-
sort to first-order logic formalism and approaches synthesized in Inductive Logic
Programming (ILP)[9] which permit us to naturally deal with the intrinsic com-
plexity of the longitudinal data and handle the structural and relational aspects
of events and sequences as above defined. The events are modeled in a logical
formalism (Datalog language [2]) and represented as ground atoms. A ground
atom is an n-ary logic predicate symbol applied to n constant terms, while a
non-ground atom is an n-ary predicate symbol applied to n constant and vari-
able terms. For instance the sequence e1, e2 before introduced is so represented:

sequence(seq1). event(seq1,e1). time tF(e1,1). time tL(e1,5). parameter of(e1,p1). is a

(p1,blood oxygen). value interval(p1,’[6300;6800]’). symbolic value(p1,’DECREASE’).

event(seq1,e2). time tF (e2,6). time tL(e2,10). parameter of(e2,p2). is a(p2,

blood oxygen). value interval(p2,’[6600;7000]’). symbolic value(p2,’INCREASE’).

where sequence(seq1) is the atom which identifies the sequence seq1 through the
predicate sequence(); event(seq1, e1) is the atom which relates the sequence seq1

to the event e1 through event(); time tF (e1, 1) is the atom which assigns the spe-
cific value 1 to the attribute time tF of e1 through time tF (); variable of(e1, p1)
is the atom which relates the event e1 to the variable p1 through parameter of ();
is a(p1, blood oxygen) is the atom which assigns a specific value blood oxygen to
p1 through is a(), value interval(p1,’[6300;6800]’) is the atom which assigns
a specific interval of values [6300;6800] to p1 through value interval() and sym-
bolic value(p1,’DECREASE’) is the atom which assigns a specific symbolic value
DECREASE to p1 through symbolic value().

We can now formally define a temporal pattern: a temporal pattern TP is a set
of atoms p0(t10), p1(t11, t

2
1), p2(t12, t

2
2), . . . , pr(t1r, t

2
r), where p0, pi, i = 1, . . . , r, are

logic predicate symbols while tji are either constants or variables, which identify

100 C. Loglisci, M. Ceci, and D. Malerba

sequences, events or variables in TP . Among these logic predicates we can have
predicates able to express possible temporal relationships between two events e1,
e2 according to the Allen temporal logic[1]. For instance, the temporal pattern

Tp: sequence(Q), event(Q, E1), event(Q, E2), before(E1, E2), parameter of(E1, P1), is a(P1,

blood oxygen), value interval(P1,’[6300;7000]’), symbolic value(P1, steady), is a

(P2, respiration rate), value interval(P2,’[2300;5500]’), symbolic value(P2, strong increase)

expresses the fact that, for a subset of sequences, the event E1 is followed by E2,
where in E1 the blood oxygen has steady trend and ranges in [6300;7000] while
in E2 the respiration rate is strongly increasing with values in [2300;5500].

Considering the concepts so far defined, the problem of interest in the pro-
posed framework can be divided in four sub-problems formalised as follows:

1. Given: longitudinal data Mp : {Mpt1, Mpt2, . . . , Mptn}; Find : a finite set
S : {S1, S2, . . .} of consecutive stages which represent distinct sub-sequences
of Mp.

2. Given: a criterion CS to collect pairwise stages of interest from S; Find : a
collection R of pairwise stages (Sj , Sj+1) which satisfy the criterion CS.

3. Given: the collection R; Find : a set ES of sequences 〈e1, e2, . . .〉 of events
for each pair (Sj , Sj+1) in R.

4. Given: the set ES and a user-defined threshold minF ; Find : temporal pat-
terns in ES whose support exceeds the threshold minF.

A computational solution to these sub-problems is described in Section 3.

3 Temporal Data Mining Framework

3.1 Determination of Stages

A stage can be seen as one of the steps of dynamics characterized by numerical
(Cj), symbolic ({sv1, ..., svh, ..., svm}) and temporal ([tsj ..tej]) properties. In
other words, a stage corresponds to one of the distinct segments of Mp. The
components tsj , tej, Cj are obtained by resorting to the method we proposed in
[5] which is here shortly described. The periods of time [tsj .. tej] are obtained
by means of a two-stepped technique of temporal segmentation. In particular,
it first identifies a series of change-points and recursively partitions Mp in a
succession of multi-variate segments until the variability of each variable ah

does not exceed a user-defined threshold ω. Then, it merges together consecu-
tive segments if the variables in the segments are statistically correlated w.r.t.
user-defined maximum threshold ρ of correlation. The duration [tsj ..tej] of each
stage is forced to be bigger than a user-defined minimum threshold minSD. This
segmentation produces a sequence of segments of Mp that differ each other, and
it guarantees that two consecutive segments have different fluents: given three
consecutive segments, [tsj−1..tej−1], [tsj..tej], [tsj+1..tej+1], the fluents Cj as-
sociated to [tsj..tej] are conditions which hold in [tsj..tej] but neither in the
previous [tsj−1..tej−1] nor in the next [tsj+1..tej+1] segments. The generation

A Temporal Data Mining Framework for Analyzing Longitudinal Data 101

of fluents Cj is solved with the inductive logic programming approach used in
[5] which permits to determine Cj as the set of interval-valued atomic formulae
which characterizes the measurements included in [tsj.. tej] and discriminates
them from those of [tsj−1.. tej−1] and [tsj+1.. tej+1]. This way, we can deter-
mine each stage of dynamics and distinguish it from each other with a rigorous
description. Finally, the values of the elements SVj of Sj are derived by means
a function Θ : Π → Λ which provides an high-level representation λ ∈ Λ of the
most relevant features π ∈ Π of data: Θ returns, for each variable ak, a repre-
sentation of the slope of the regression line built on the values taken by ak in
the time interval [tsj ..tej]. For instance, the slope values ranging in the interval
(0.2, 1] are described as INCREASE.

3.2 Collection of Pairwise Stages

A collection R of pairwise stages is properly created in order to study the tran-
sition between similar pairs of stages through the discovery of the events which
most frequently trigger analogous stages.

Pairwise stages appropriate for R are identified on the basis of a similarity
value: pairs whose first stages and second stages have similarity value which
exceeds a user-defined numerical threshold CS (CS ∈ [0; 100]) are considered.
For instance, two pairs (Sj , Sj+1), (Sk, Sk+1) are collected in R if the simi-
larity between Sj and Sk and the similarity between Sj+1 and Sk+1 exceeds
CS. In this work the similarity between two stages Sj and Sk corresponds
to the similarity between their fluents Cj , Ck

2 under the assumption that the
symbolic values SVj , SVk are identical. Since the fluents are sets of interval-
valued data (section 3.1), the similarity between Cj and Ck is so formulated:
Sim(Cj , Ck) = (

∑
fj∈Cj ,fk∈Ck

(1 −Diss(fj, fk))/(|Cj | ∗ |Ck|)) ∗ 100, where fj(fk)

is a single interval-valued formula of Cj (Ck). To compute Diss(fj, fk) we
resort to dissimilarity functions specific for interval-valued data. In particu-
lar, we consider the Gowda and Diday’s [4] dissimilarity measure defined as:
Diss(fj, fk) =

∑
h=1...|P |

δ(fjh
, fkh

), where, fjh
, fkh

are the intervals assumed by

the parameter ah, |P | is number of intervals (variables), and δ(fjh
, fkh

) is ob-
tained considering three types of dissimilarity measures incorporating different
aspects of similarity, namely δ(fjh

, fkh
) = δπ(fjh

, fkh
)+δs(fjh

, fkh
)+δc(fjh

, fkh
),

(δπ, δc, δs ∈ [0, 1]). It should be noted that several collections of similar transi-
tions can be actually created from the pairs of stages in S: the resulting collection
R is selected by the user in the set of possibly overlapping collections.

3.3 Detection of Complex Events

Once the collection R of pairwise stages has been identified, for each pair
(Sj , Sj+1) we look for events which may trigger the transition from Sj to Sj+1.
2 The notion of similarity between two stages does not concern the time-periods
[tsj ..tej], i.e., two stages can be similar although they are associated to different
time-periods.

102 C. Loglisci, M. Ceci, and D. Malerba

Events are detected by resorting to the method we proposed in [6] which permits
us to exploit the assumption for which events occurring during the time interval
[tsj ..tej] should not occur in [tsj+1..tej+1]. The blueprint is to mine first candi-
date events then to select from these the events deemed statistically interesting.
The algorithm for mining candidate events {e | e = 〈tF , tL, Ea, IEa, SEa〉} pro-
ceeds by iteratively scanning the measurements included in the stages Sj (i.e.,
{Mptsj , . . . , Mptej}) and Sj+1 (i.e., {Mptsj+1 , . . . , Mptej+1}) with two adjacent
time-windows which slide back in time. The candidates are identified by finding
variations in the measurements between the windows w and w′. At the first iter-
ation, the time-windows w, w′ (w′ immediately follows w) correspond to the last
part of Sj and to the complete Sj+1, respectively. If a candidate is found then
the next candidate is searched for the pair (w′′,w), where the new time-window
w′′ has the same size of w. Otherwise, the next candidate is searched for the
pair (w′′,w′), where w′′ is strictly larger than w. At the end of a single scan a
sequence of candidates is obtained.

The intuition underlying the detection of candidate events for a given couple
of windows (w, w′) is that the intrinsic dependence of two variables in P may
change between the two adjacent time-windows. This idea is implemented in the
following strategy: for each variable ai two multiple linear regression models are
built on the remaining variables in P by considering the distinct measurements
in w and w′ respectively:

ai = β′
0 + β′

1a1 + . . . + β′
i−1ai−1 + β′

i+1ai+1 + . . . + β′
mam,

ai = β′′
0 + β′′

1 a1 + . . . + β′′
i−1ai−1 + β′′

i+1ai+1 + . . . + β′′
mam,

The couple of regression models which guarantees the lowest predictive informa-
tion loss is selected. Let ah be the variable for which the lowest predictive infor-
mation loss is obtained, the set of parameters Ea = {ak ∈ P−{ah}| |β′

k−β′′
k | ≤

σk}3 is selected and associated with the time window w : [tF ..tL] to form the
event e : 〈tF , tL, Ea, IEa, SEa〉. The set Ea is further filtered in order to remove
those parameters for which no interval of values which discriminates the mea-
surements in w from those in w′ can be generated. This permits also to determine
the element IEa. In particular, for each ak ∈ Ea the interval [infk, supk] is com-
puted by taking the minimum (infk) and maximum (supk) value of ak in w. If
[infk, supk] is weakly consistent with respect to values taken by ak during the
time window w′ then ak is kept, otherwise it is filtered out. Weak consistency is
verified by computing the weighted average of the zero-one loss function on the
measurements in w′, where weights decrease proportionally with the time points
in w′. Finally, the filtered set of m′ variables will be associated with a set of
intervals {[inf1, sup1], . . ., [infk, supk], . . ., [infm′, supm′]}, which corresponds
to the quantitative description IEa of the event e : 〈tF , tL, Ea, IEa, SEa〉. The
set SEa : {sv1, . . . , svk, . . . , svm} is determined through the same technique of
temporal abstraction introduced in the section 3.1. It contains a symbolic value

3 σk is automatically determined and is the standard deviation of the k-th coefficient of
linear regression models computed on non-overlapping time-windows of size tL − tF

over (Sj , Sj+1).

A Temporal Data Mining Framework for Analyzing Longitudinal Data 103

for each ak and each svk denotes the slope of the regression line built on the
data in [tF ..tL].

Once the candidates for each single pair (Sj , Sj+1) in R have been gener-
ated, the sequence with the most statistically interesting events is identified by
selecting the most supported events. An event eu is most supported if it meets
the following two conditions: 1) there exists a set of candidates {e1, e2, . . . , et}
which contains the same information of eu, that is: ∀eq, q = 1, . . . , t, eq �= eu,
the set of parameters Ea associated to eq includes the set of parameters as-
sociated to eu, the time interval [tF , tL] associated to eq includes the time in-
terval associated to eu, and, finally, the set of symbolic values SEa and the
intervals IEa associated to the parameters of eq coincide; 2) no event ev ex-
ists whose information is contained in a set of candidates {e1, e2, . . . , et′} with
|{e1, e2, . . . , et′}| > |{e1, e2, . . . , et}|. The support of the event eu is computed
as follows: let {e1, e2, . . . , ez} be the set of candidates such that the time in-
terval associated to each of them contains that of eu and {e1, e2, . . . , et} be
the set of candidates as described at the point 1), then the support of eu is
supp(eu) = (t + 1)/z. The sequence of the most supported events for each pair
of disease stages (Sj , Sj+1) ∈ R forms the set ES of sequences of events.

3.4 Discovery of Temporal Patterns

Discovery of temporal patterns from ES is performed by resorting to the ILP
method for frequent patterns mining implemented in SPADA [7]. The sequences
generated in the section 3.3 are modeled with the logic predicates introduced
in the section 2 and stored as sets of ground atoms in the extensional part
DE of a deductive database D [2]. The intensional part DI of the database
D is defined with the predicates based on Allen temporal logic [1]: DI rep-
resents background knowledge on the problem (e.g., precedence relationships
between two events through the predicate before()) and allows to entail addi-
tional atoms by applying these predicates to the extensional part. For example,
give two sample sequences seq1 : 〈e1, e2〉, seq2 : 〈e3, e4〉 the extensional part
DE of D would include the following ground atoms: sequence(seq1). sequence(seq2).

event(seq1,e1). event(seq1,e2).event(seq2,e3).

event(seq2,e4). time tF(e1,10). time tL(e1,15). time tF(e2,22). time tL(e2,25).

time tF(e3,90). time tL(e3,110). time tF(e4,170). time tL(e4,190).

where the constants seq1 and seq2 denote two distinct sequences, while the
constants e1, e2, e3, e4 identify four events. The intensional part DI is formulated
as the logic program:

before(E1, E2) ← event(S, E1),event(S, E2), E1 �= E2, time tL(E1,T1), time tF(E2,T2),

T1<T2, not(event(S, E3), E3 �= E1, E3 �= E2, time tF(E3,T3F), time tL(E3,T3L), T1<T3F,

T3L<T2)

by considering the atoms in DE the ground atoms before(e1, e2), before(e3, e4)
are entailed and added to DE .

By following the level-wise method integrated in SPADA, the process of tem-
poral patterns discovery performs a search in the space of patterns and finds

104 C. Loglisci, M. Ceci, and D. Malerba

out patterns whose support is greater than the user-defined threshold minF
(frequent patterns) while it prunes those with support less than minF (infre-
quent patterns). The support of a pattern P is the percentage of sequences in
D which covers the pattern P . The implementation of the anti-monotonicity of
the support in the system guarantees the effectiveness of the level-wise method.

4 Application to Biomedical Data

In this section we explore the applicability of the proposed framework to a sce-
nario of biomedicine. In particular, we focus on the analysis of data observed
during a polysomnography, namely longitudinal data which describe the dynamic
process of the human sleep, in order to investigate sleep disorders. Sleep disor-
ders represent an issue of great importance and widely investigated in medicine
because some serious diseases are accompanied by typical sleep disturbances.
This attracts the interest of several scientific communities and, in this work, it
is studied to discover patterns of events, in terms of breathing and cardiovascu-
lar system time-annotated disorders, which may trigger particular stages of the
human central nervous system during sleep.

Dataset Description. The dataset4 has been created by sampling measure-
ments at 1 second of a patient from 21.30 p.m. to 6.30 a.m. Physiological pa-
rameters are eeg (electroencephalogram), leog, reog (electrooculograms), emg
(electromyogram), ecg (electrocardiogram), airflow, (nasal respiration), thorex
(thoracic excursion), abdoex (abdominal excursion), pr (heart rate) and saO2
(arterial oxygen saturation). Where, ecg, airflow, thorex, abdoex, pr, saO2 de-
scribe the cardiovascular and respiratory systems, while eeg, leog, reog, emg de-
scribe the central nervous system.

Results. Different sets S of disease stages are obtained by tuning minSD
[5]. For each S, several collections R are created by setting CS to 60, 70, 80.
Pattern are discovered from these collections by setting the threshold minF to
5% (Table 1). As we can see the number of discovered patterns (#patterns) is
strongly dependent on the minimum duration of the stages. Indeed, the greater
the stages, the higher the dissimilarity between the stages and the lower the
number of similar pairwise stages (cardinality of R). This can be due to the
fact that the fluents of stages with longer duration characterize and discriminate
an higher number of physiological measurements. Therefore, they tend to be
too specific for the set of data to characterize and very dissimilar from other
fluents. In these cases, the cardinality of R is lower and this produces a set ES
with a small number of sequences where it could be difficult to discover frequent
patterns.

A first interesting result is produced when the minimum duration is set to
60 secs and CS to 60. In this case a set ES of nine sequences (as many the
pairs of stages) of complex events is identified, while 579 frequent patterns are
discovered. Among them, the most frequent one, which can trigger the transition
depicted by the 9 pairs of stages, is so described:
4 Accessible at http://www.physionet.org/physiobank/

http://www.physionet.org/physiobank/

A Temporal Data Mining Framework for Analyzing Longitudinal Data 105

Table 1. Patterns and stages discovered by tuning the minimum duration and CS

minimal duration (secs) |S| CS |R| #pattern

60 139

60 9 pairwise stages 579
70 3 pairwise stages 112
80 0 0

120 126

60 6 pairwise stages 63
70 3 pairwise stages 34
80 0 0

300 31

60 3 pairwise stages 7
70 1 pairwise stages 4
80 0 0

sequence(S), event(E1, S), event(E2, S), event(E3, S), before(E1, E2), before(E2, E3),

parameter of(E1, P1), is a(P1, abdoex), value interval(P1,′ [−1.412, 0.722]′), symbolic value(P1,

′STRONG INCREASE′), parameter of(E2, P2), is a(P2, airflow), value interval(P2,

′[−2.322, 3.482]′), symbolic value(P2,′ STRONG DECREASE′), parameter of(E3, P3), is a(P3,

saO2), value interval(P3,′ [94.013, 95.012]′), symbolic value(P3,′ DECREASE′) [support = 21.4%]

This pattern involves both temporal predicates (before()), structural predicates
(e.g., parameter of()) and properties (e.g., symbolic value()) and it is sup-
ported by a percentage of 21.4% of the total sequences.

Patterns with more predicates but with lower support are rather discovered
at higher values of the minimal duration. For instance, one pattern mined when
the minimal duration is 120 secs and CS=60 is the following:

sequence(S), event(E1, S), event(E2, S), event(E3, S), before(E1, E2), before(E2, E3),

before(E3, E4), parameter of(E1, P11), is a(P11, thorex), value interval(P11,′ [−3.984, 3.984]′),

symbolic value(P11,′ INCREASE′), parameter of(E2, P21), is a(P21, abdoex), value interval(P21,

′[−1.757, 1.82]′), symbolic value(P21,′ STRONG INCREASE′), parameter of(E2, P22), is a(P22,

thorex), value interval(P22,′ [−0.91, 2.071]′), symbolic value(P22,′ STRONG INCREASE′),

parameter of(E3, P3), is a(P3, saO2), value interval(P3,′ [97.010, 98.009]′), symbolic value(P3,

′DECREASE′), parameter of(E4, P4), is a(P3, abdoex), value interval(P3,′ [−1.663, 1.443]′),

symbolic value(P3,′ STEADY ′) [support = 7.14%]

This pattern demonstrates empirically that when the stage duration is higher,
then the frequency of temporal pattern is lower. Indeed, a larger value of the
minimal duration leads to the generation of wider time-windows and a numerous
set of complex events, many of which are so different to reduce the frequency
of patterns of events. This observation is also confirmed by the accuracy of
the results (Table 2) of the method of event detection (subsection 3.3). Indeed,
when the minimal duration is 120 secs (Table 2 right) the number of true positive
events (sensitivity) decreases while the number of false positive events increases,
and this leads to avoid that the true positive events contribute to form the
final set of frequent patterns. True positive events are defined by asking domain
experts to manually identify physiological parameters expected to be involved
in known events.

106 C. Loglisci, M. Ceci, and D. Malerba

Table 2. Accuracy of the event detection for minimal duration set to 60 secs (left) and
120 secs (right) and CS to 60

[tF ..tL]width sensitivity (%) specificity (%)
10 71 44
15 68 46
20 64 43
25 70 48
30 71 48

[tF ..tL]width sensitivity (%) specificity (%)
20 67 39
30 62 42
40 59 40
50 64 36
60 66 41

5 Conclusions

We investigated some issues raising when analyzing longitudinal data and pro-
posed a combined approach driven by only data which does not (necessarily)
rely on domain knowledge. Given the characteristic of longitudinal data to rep-
resent a dynamic process, the approach can have particular usefulness in the
initial or preliminary investigations of the processes, as the experiments empiri-
cally prove. As future work we plan to explore the possibilities to integrate other
forms of temporal data describing the same process into the several tasks of the
framework.

Acknowledgment. This work is in partial fulfillment of the research objectives
of the project ATENEO-2010: ”Modelli e Metodi Computazionali per la Scoperta
di Conoscenza in Dati Spazio-Temporali”.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun.
ACM 26(11), 832–843 (1983)

2. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

3. Chen, X., Petrounias, I.: A framework for temporal data mining. In: Quirchmayr,
G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460,
pp. 796–805. Springer, Heidelberg (1998)

4. Diday, E., Esposito, F.: An introduction to symbolic data analysis and the sodas
software. Intell. Data Anal. 7(6), 583–601 (2003)

5. Loglisci, C., Berardi, M.: Segmentation of evolving complex data and generation of
models. In: ICDMWorkshops, pp. 269–273. IEEE Computer Society, Los Alamitos
(2006)

6. Loglisci, C., Malerba, D.: Discovering triggering events from longitudinal data.
In: ICDM Workshops, pp. 248–256. IEEE Computer Society Press, Los Alamitos
(2008)

7. Malerba, D., Lisi, F.A.: An ILP method for spatial association rule mining. In:
First Workshop on Multi-Relational Data Mining, pp. 18–29 (2001)

8. Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. SIGKDD
Explorations 9(1), 41–55 (2007)

9. Muggleton, S.: Inductive Logic Programming. Academic Press, London (1992)
10. Singer, J.D., Willet, J.B.: Applied longitudinal data analysis. Modelling change

and event occurrence. Oxford University Press, Inc., Oxford (2003)

How to Use ”Classical” Tree Mining Algorithms

to Find Complex Spatio-Temporal Patterns?�

Nazha Selmaoui-Folcher and Frédéric Flouvat

University of New Caledonia, PPME, BP R4, F-98851 Nouméa, New Caledonia
{nazha.selmaoui,frederic.flouvat}@univ-nc.nc

Abstract. These last years an increasing amount of spatio-temporal
data has been collected to study complex natural phenomena (e.g. natu-
ral hazards, environmental change, spread of infectious diseases).
Extracting knowledge to better understand the dynamic of these phe-
nomena is a challenging task. Existing works typically use patterns (e.g.
sequences, trees, graphs) to model the dynamic of the phenomenon. How-
ever, the spatio-temporal properties captured by these patterns are often
limited. For example, they hardly capture the spatial and temporal in-
teractions of factors in different districts when studying the spread of
a virus. In this paper, we define a new type of pattern, called complex
spatio-temporal tree, to better capture the spatio-temporal properties of
natural phenomena. Then, we show how a ”classical” tree mining algo-
rithm can be used to extract these complex spatio-temporal patterns. We
experiment our approach on three datasets: synthetic data, real dengue
data and real erosion data. The preliminary results highlighted the in-
terest of our approach.

Keywords: spatio-temporal data mining, unordered tree mining algo-
rithms, complex spatio-temporal trees, data pre-processing.

1 Introduction

These last years an increasing amount of spatio-temporal data has been col-
lected to study complex natural phenomena (e.g. natural hazards, environmental
change, spread of infectious diseases). Extracting knowledge to better understand
the dynamic of these phenomena is a challenging task. For example, an epidemic
of dengue fever is characterized by a set of interacting factors, causing the spread
of the disease in space and time. It is important to know, in this example, how
and which factors have an effect on disease spread. Even if the global influence
of environmental factors (water points, nearby mangrove, rainfall, humidity etc.)
is known, the impact of all the factors together with their interactions stills an
open problem. An other example of application having such properties is soil
erosion evolution (progression or movement). The study of soil erosion dynamic
is an important problem in natural risk. This phenomenon is also impacted by
� This work is funded by French contract ANR-2010-COSI-012 FOSTER.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 107–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

108 N. Selmaoui-Folcher and F. Flouvat

a set of environmental factors (soil type, vegetation, etc.) with circumstances
evolving in space and time (cyclone, depression, heavy rain, etc.). To address
these issues, experts need methods to discover and model the dynamic of such
phenomena. Spatio-temporal data mining methods aim at finding solutions to
better understand and describe these complex phenomena. Existing works [20]
typically use patterns (e.g. sequences, trees, graphs) to model the dynamic of the
phenomenon. However, the spatio-temporal properties of our phenomena (e.g.
dengue and erosion) cannot be totally captured by these patterns.

To deal with this problem, we define a new type of pattern, called complex
spatio-temporal tree, to better capture the spatio-temporal properties of natural
phenomena. We also propose an efficient method to capture the dynamic of such
phenomenom from raw data (i.e. data where the spatio-temporal dynamic is
implicit). This method constructs a tree forest revealing the evolution of the
different variables in space and time. Then, we show how a ”classical” tree mining
algorithm can be used to extract these complex spatio-temporal patterns. Results
are presented on real Dengue and Erosion data sets, and on a synthetic data set.

2 Related Works

Several studies have been conducted on spatial patterns or temporal patterns
considering only one dimension at time [20]. Recently, more works analyze jointly
spatial and temporal aspects. These works deal with two major problems: tra-
jectory mining [20,4,8,21,12] and event sequence mining [17,18,14,5,11].

In trajectory mining, the input of algorithms is a database of known tra-
jectories. In [4,21,7], authors characterize the trajectories of moving objects by
sequences of (l, t), where l is an object location at time t. Their problem is to
extract frequent trajectories. [8] uses temporally annotated sequences to define
the problem of trajectory mining. Most of these approaches are based on data in
which the phenomenon (i.e. the moving object) and its dynamic are well iden-
tified. In many spatio-temporal applications, we don’t have such informations.
We only have raw data where the spatio-temporal dynamic of the phenomenon
is implicit.

In event sequence mining, Mohan et al. [11] are looking for cascading spatio-
temporal events whose instances are located together and occurred in successive
slot time. The database is a set of boolean spatio-temporal even types and their
instances. To extract such patterns, the authors use the co-locations concept [5].
The patterns studied in these works allow to follow the evolution of events in
space and time, but don’t take into account events environment (for example
soil type for erosion problem, or humidity for Dengue spread). Qian et al. [14]
study the spread of co-occurences phenomena over the zonal space. The notion
of spread patterns is similar to trajectory, since they track the trajectories of
each set of features individually.

The existing works cited above cannot be applied to our problems. On one
hand, the available database is not a set of spatio-temporal sequences where the

How to Use ”Classical” Tree Mining Algorithms 109

phenomenon and its dynamic are clearly identified. On the other hand, we are
looking for patterns representing the evolution of a phenomenom in relation with
its environment (and not only the evolution of some individual events).

3 Basic Concepts and Definitions

Spatio-temporal database. Let consider a set of ordered time T = {t1 < t2 <
... < t|T |}, a set of geo-referenced geographical zone Z = {z1, z2, ..., z|Z|}, and a
set of boolean attributes I = {i1, i2, ..., i|I|} characterizing each zone in a given
time. We define Ωt as triplet (Z, I,"B) where "B ⊆ ZxI is the relationship
such that "B(z, i) = 1 if the attribute i ∈ I cover z ∈ Z at time t. Ωt is called
temporal layer and Ω =

⋃
t∈T

Ωt is called a spatio-temporal database. For

example, in figure 1, T = {t1, t2, t3}, Z = {z1, z2, z3, z4, z5, z6, z7, z8, z9, z10} et
I = {i1, i2, i3, i4, i5, i6}. (a),(b) and (c) represent respectively Ωt1 , Ωt2 , Ωt3 , and
constitute a spatio-temporal database Ω at time t1, t2 et t3.

Fig. 1. Example of spatio-temporal database

Complex spatio-temporal trees. Let X ⊆ I be a set of boolean attributes
called itemset [1]. Let z ∈ Z, (X, z) is a ge-referenced itemset, if X is
located in z. Let "n ⊆ ZxZ be a neighbourhood relationship such that
"n(za, zb) = 1 si za and zb are neighbors in Z . A complex spatio-temporal
tree T = (V, E) is a tree with V as a set of itemsets. E is a set of edges (Xt, Xt′)
located in neighbor zones and successive times (Xt, Xt′ ∈ V). For example, in
Ωt1 (figure 1(a)), itemset {A, B} is located in zone z7. In Ωt2 (figure 1(b)), {C}
is located in zones z3 and z5. z7 is a neighbor ("n adjacency relationship) of z3,
({A, B}, {C}) ∈ E is an edge of complex spatio-temporal tree T (see figure 2(d)).
Likewise, z8 is a neighbor of z5, then ({A}, {C}) ∈ E (see figure 2(d)). At time
t3 (figure 1(c)), the itemset {D, E, F} is located in zone z2. z3 is a neighbor of
z2, the edge ({C}, {D, E, F}) is created in E (figure 2(e)).

Complex subtree mining. Given a spatio-temporal database and a user-
defined threshold minoccur. The problem of complex subtree mining is to extract
unordered, embedded or induced (depending on application) complex subtrees
where the total number of occurrences (i.e. weighted support) is greater or equal
than minoccur (see [22]).

110 N. Selmaoui-Folcher and F. Flouvat

Fig. 2. Example of spatio-temporal trees generated from database of figure 1

4 Discovering Complex Spatio-temporal Trees from Raw
Data

4.1 Incremental Construction of a Spatio-temporal Tree Forest

In many applications (e.g. natural hazards, environmental changes, spread of
infectious diseases), the phenomenom to study and its dynamic are not clearly
identified (to the opposite of applications such as trajectory mining). In other
words, the database is not composed of spatio-temporal data sequences or trees
representing the evolution in space and time of particular objects. Thus, to dis-
cover spatio-temporal patterns from raw data, the first step is to capture the
dynamic of the phenomenom. The principle of our approach is to incrementally

Fig. 3. Construction of a spatio-temporal data tree forest

How to Use ”Classical” Tree Mining Algorithms 111

construct a data tree forest, where the vertices of the trees represent the evolution
of neighboring areas in space and time (see example in figure 3).

This construction follows the steps bellow:

Step 1 : zones characterization at time t and t+1. Each zone is associated
to a set of items. This itemset represents different characteristics of the zone at a
given time (e.g. temperature, nature of the ground, number of school, depending
of the application). For example, {A, B} characterizes the zone Z7 at time t1
(figure 1). This association iemset-zone is called a geo-referenced itemset. The
step 1 of our approach finds all these geo-referenced itemsets and associates to
each one a vertex of the spatio-temporal data tree.
Step 2 : evolution of neighboring zones between time t and t + 1. This
step generates the edges of the data tree forest. We recall that an edge of our
spatio-temporal trees represents the evolution of two neighbor zones (i.e. the
evolution of their itemsets) between time t and t + 1. In other words, an edge
(p′from, p′to) is such that itemsets p′from and p′to are geo-referenced itemsets of
Ωt and Ωt+1 in neighbor zones w.r.t. relationship "n.
Step 3 : tree extension This last step extends existing trees and updates the
spatio-temporal tree forest STF�n . An edge (p′from, p′to) ”extends” (i.e. is added
to) a tree of STF�n , if there exists a leaf with itemset pleaf= p′from occurring
at the same time (Ωt) and in the same zone (zfrom). If there is no possible
extension, then a new tree with edge (p′from, p′to) is created in STF�n .

Fig. 4. Construction of a spatio-temporal data tree forest compatible with ”classical”
tree mining algorithms

In this paper, our objective is to extract complex spatio-temporal frequent
subtrees using ”classical” tree mining algorithms. However, these algorithms
don’t consider trees with itemsets in the vertices. They cannot extract the sub-
trees related to the sub-itemsets in the vertices. For example, they study the sub-
tree T = (Vt, Et), with Vt = {{C}, {D, E, F}} and Et = { ({C}, {D, E, F}) },
but they don’t consider subtrees such as T ′ = (Vt′ , Et′), with Vt′ = {{C}, {D, E}}
and Et′ = { ({C}, {D, E}) }, or T ′′ = (Vt′′ , Et′′), with Vt′′ = {{C}, {D}} and
Et′′ = { ({C}, {D}) }.

112 N. Selmaoui-Folcher and F. Flouvat

To deal with this problem, we need to integrate those sub-itemsets in the data
trees. A zone will be characterized by all its sub-itemsets (except ∅). The step 1
will generate this set of geo-referenced itemsets for each zone. Then, to construct
the edges of the tree forest, the step 2 will execute a cartesian product between
itemsets in neighbor zones between time t and t + 1 . Figure 4 illustrates these
modifications on the same example used in figure 3.

The number of vertices can be huge (until several millions) making the con-
struction and mining of the data forest difficult. We have developed several
mechanisms to improve the scalability of our approach. These mechanisms will
be discussed in section 5.

4.2 Mining Embedded/Induced Spatio-temporal Subtrees

Recently subtree mining has received a lot of attention in the data mining com-
munity [2,19,6,13,22,15,16,3,9]. Our idea is to take advantage of all this work
to extract new type of patterns. More particularly, we will focus on unordered
subtree mining algorithms (since our vertices are unordered).

The approach described in the previous section generates a tree forest such as
all the complex spatio-temporal subtrees can be found using either an induced or
embedded (unordered) subtree mining algorithm. The choice between ”induced”
and ”embedded” depends on the application. If induced subtrees are chosen, the
resulting patterns will represent the evolution of neighboring zones time after
time. If embedded subtrees are chosen, it will also extract patterns representing
the evolution between time t and t + i, where i > 1.

Another point need to be considered: the measure and the predicate used to
extract frequent patterns. The number of occurrences (also called the weighted
support) is the frequency measure, since the spatio-temporal dynamic of the
studied phenomenon can appear several times in the same data tree of the for-
est. Thus, we define the predicate as ”a subtree is frequent if its number of
occurrences is greater or equal than a given threshold”. The main problem of
this predicate is that it is not always monotone, which is necessary to use most
tree mining algorithms. Let consider the example on figure 5. Suppose that we
construct the spatio-temporal data forest and mine this forest with a tree mining
algorithm. The mining algorithm will extract different subtrees among them the
subtrees T and T ′ with support 3 and 1, respectively. If the support threshold
is 2, T will be frequent but not T ′, although T ′ is a subtree of T . Thus, the
anti-monotonicity property is not satisfied.

To avoid this problem, we propose a fusion strategy. The principle is to merge
sibling vertices having the same itemset. On figure 6, the two vertices with {Y }
are merged (and the edges are modified in consequence), as well as the two
vertices with {Y }. Thus, the meaning of an edge in the spatio-temporal trees
is slightly different. With this solution, an edge with itemset I1 and itemset I2
means that I2 appears in at least one neighboring zone of I1 in the next time.

Note that the fusion solution modifies the definition of the extracted patterns.
The number of occurrences and extracted patterns w.r.t. this new definition
are correct, but it will underestimate (and maybe miss) some subtrees w.r.t.

How to Use ”Classical” Tree Mining Algorithms 113

Fig. 5. Example of ”incompatible” data tree

Fig. 6. Transforming an ”incompatible” data tree in ”compatible” data trees

the initial definition of complex spatio-temporal trees. For example, the subtree
having edges ({A, D}, {X}) and ({X}, {Y }) will be counted once (figure 6). It
represents the occurrence of X in at least one neighbor of {A, D}, followed by
the occurrence of {Y } in at least one neighbor of {X}. However, if we consider
the real data, the dynamic induced by this subtree appears twice.

5 Improving Performances

In this section, we propose a new data structure to improve the construction
of the spatio-temporal data forest (step 3). This data structure, called a STP-
tree (Spatio-Temporal Pattern tree), is based on a prefix tree associated with
an array ZR (Zonal References). Each vertex of the STP-tree stores an itemset
and a counter representing a number of occurrences. Each cell of the array ZR
represents a zone and stores a list of vertices which have been added or updated
in the data forest during the last iteration. In other words, all extendable vertices
from zone zfrom are referenced in the ZR[zfrom] cell. Therefore, the prefix tree is
used to compress the data forest and the array is used to improve its construction.
Figure 7 shows an example of STP-tree. Only itemsets P5, P6 and P7 are linked
to ZR since they are the last vertices added or updated in the data tree at time
t3. This combination of a prefix tree and a ”spatial” array drastically improves
the performances of step 3 at the spatio-temporal data forest construction. Recall
that this step extends data trees, which consists in updating the dynamic found

114 N. Selmaoui-Folcher and F. Flouvat

Fig. 7. Example of STP-tree

between time t and t + 1. Suppose that itemset P6 at time t2 is located at a
neighbor zone of P5 at time t3 (zones Z5 and Z8 in figure 7). A question of step
3 is ”does the edge (P5, P6) can extend trees constructed until time t2?”. If we
look the example, it is clearly yes, since we have between time t1 and t3, the
dynamic ”P3− > P5− > P6”. So, a naive approach would have been to explore
all the forest to find vertices having itemset P5 at time t2 in the same zone
of itemset P5 of (P5, P6). With our STP-tree, we don’t need to explore all the
vertices of the forest. At time t3, we only have to look if the itemset P5 appears
in the cell ZR[Z8] and to link this vertex with a new vertex P6.

6 Experimental Results

The proposals discussed in this paper have been integrated in a C++ proto-
type. We use the SLEUTH algorithm to extract frequent embedded unordered
subtrees [22]. Our experiments were done on three data sets: a real soil erosion
dataset, a real dengue dataset and a synthetic dataset. The soil erosion dataset
represents the evolution of soil erosion in an area of New Caledonia.This dataset
is composed of 5 dates (years) and 23 zones. It studies soil erosion w.r.t. 22 en-
vironmental attributes (443 items). The dengue dataset represents the spread of
a dengue epidemic in Noumea (New Caledonia). This dataset is composed of 12
dates (months) and 32 zones (the districts of Noumea). It studies dengue w.r.t.
10 attributes (20 items). The synthetic dataset has been generated to experiment
our approach on a dataset with more dates and more zones. It is composed of
700 dates, 2000 zones and 40 items.

Figure 8 shows the total execution time, i.e. time to construct the spatio-
temporal data forest added to time to extract frequent subtrees. The spatial
minimum support threshold (i.e. the one used for frequent closed itemsets min-
ing) is fixed. These figures show the influence of the minimum number of oc-
currences threshold used to extract frequent subtrees. The table 1 details the
characteristics of the spatio-temporal data forest constructed and frequent sub-
trees mined, for some of the previous thresholds. As show by this figure and this
table, our approach is robust w.r.t. the complexity of the studied data (number

How to Use ”Classical” Tree Mining Algorithms 115

 9

 10

 11

 12

 13

 14

 15

 16

 1 10 100

T
o
ta

l
T

im
e
 (

se
c
)

Minimum occurrence threshold for subtrees

minsup=0. 2
minsup=0. 4
minsup=0. 3

 10

 100

 1000

 100 1000 10000 100000

Minimum occurrence threshold for subtrees

Erosion dataset (minsup=0.75)
Erosion dataset (minsup=0.7)

Dengue dataset (minsup=0.66)

Fig. 8. Execution time with frequent tree mining for the synthetic dataset (left plot)
and the real datasets (right plot)

Table 1. Spatio-temporal forest and frequent subtrees characteristics

Synthetic dataset Erosion dataset Dengue dataset
minoccur=5 minoccur=2000 minoccur=440000

number of 1243 7 998 337 2 568 116
data trees
number of 3 327 16 713 677 5 540 034

vertices in the forest
number of 15 059 128 18

frequent subtrees
max. number of vertices 14 11 3

in a frequent subtree

of zones, number of dates and size of spatio-temporal forests). It also highlights
the good scalability of the SLEUTH tree mining algorithm.

7 Conclusion and Perspectives

This work concerns spatio-temporal data mining. One of the challenging task,
in this emerging domain, is to extract knowledge to understand dynamic of
spatio-temporal phenomena (spread epidemic, soil erosion evolution, etc.). In
this purpose, we proposed an efficient method to generate a spatio-temporal
data forest to represent these spatio-temporal phenomena. This method takes
advantage of a new data structure based on a prefix tree and spatial array. The
concept of complex spatio-temporal subtrees has be defined to better reflect the
evolution in space and time of such phenomena. We also show how ”classical”
tree mining algorithms can be used to extract these new patterns. We experi-
ment our approach on three datasets: synthetic data, real dengue data and real
erosion data. The preliminary results highlighted the interest of our approach.
There are many perspectives for this work. An important perspective is to pro-
pose a more convenient strategy for mining these complex subtrees (i.e. tree with
itemsets in nodes). Indeed, some subtrees cannot be mined because they don’t

116 N. Selmaoui-Folcher and F. Flouvat

satisfy the monotone property. We also plan to extend experimental results with
experts in order to add new constraints. An other perspective is to develop an
interactive visualization interface of complex spatio-temporal patterns.

Acknowledgments. We wish to thank especially Professor Mohammed J. Zaki
for providing the SLEUTH source code. We also wish to thank the project ”Pre-
vention and prediction of dengue epidemics in New Caledonia” IRD-DASSNC-
UNC-IPNC-MeteoFrance for giving us the Dengue data set.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499.
Morgan Kaufmann, San Francisco (1994)

2. Asai, T., Arimura, H., Uno, T., Nakano, S.I.: Discovering frequent substructures in
large unordered trees. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003.
LNCS (LNAI), vol. 2843, pp. 47–61. Springer, Heidelberg (2003)

3. Balcázar, J.L., Bifet, A., Lozano, A.: Mining frequent closed rooted trees. Machine
Learning 78(1-2), 1–33 (2010)

4. Cao, H., Mamoulis, N., Cheung, D.W.: Mining frequent spatio-temporal sequential
patterns. In: ICDM, pp. 82–89. IEEE Computer Society, Los Alamitos (2005)

5. Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A.: Mixed-drove spatiotemporal co-
occurrence pattern mining. IEEE Trans. Knowl. Data Eng. 20(10), 1322–1335
(2008)

6. Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: Cmtreeminer: Mining both closed and
maximal frequent subtrees. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004.
LNCS (LNAI), vol. 3056, pp. 63–73. Springer, Heidelberg (2004)

7. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr., J.H.: Migration motif: a spatial
- temporal pattern mining approach for financial markets. In: KDD, pp. 1135–1144
(2009)

8. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
KDD, pp. 330–339 (2007)

9. Jiménez, A., Berzal, F., Talavera, J.C.C.: Frequent tree pattern mining: A survey.
Intell. Data Anal. 14(6), 603–622 (2010)

10. Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.): Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, August 22-25. ACM Press, USA (2004)

11. Mohan, P., Shekhar, S., Shine, J.A., Rogers, J.P.: Cascading spatio-temporal pat-
tern discovery: A summary of results. In: SDM, pp. 327–338 (2010)

12. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location pre-
dictor on trajectory pattern mining. In: KDD, pp. 637–646 (2009)

13. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a dif-
ference. Kim et al [10], 647–652

14. Qian, F., He, Q., He, J.: Mining spread patterns of spatio-temporal co-occurrences
over zones. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2009. LNCS, vol. 5593, pp. 677–692. Springer,
Heidelberg (2009)

How to Use ”Classical” Tree Mining Algorithms 117

15. Tan, H., Dillon, T.S., Hadzic, F., Chang, E., Feng, L.: Imb3-miner: Mining in-
duced/embedded subtrees by constraining the level of embedding. In: Ng, W.-K.,
Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918,
pp. 450–461. Springer, Heidelberg (2006)

16. Termier, A., Rousset, M.C., Sebag, M., Ohara, K., Washio, T., Motoda, H.: Dryade-
parent, an efficient and robust closed attribute tree mining algorithm. IEEE Trans.
Knowl. Data Eng. 20(3), 300–320 (2008)

17. Hsu, W., Mong Li Lee, J.W.: Mining generalized flow patterns. In: Temporal and
Spatio-Temporal Data Mining, pp. 189–208. IGI Publishing (2009)

18. Hsu, W., Mong Li Lee, J.W.: Mining spatio-temporal trees. In: Temporal and
Spatio-Temporal Data Mining, pp. 209–226. IGI Publishing (2009)

19. Xiao, Y., Yao, J.F., Li, Z., Dunham, M.H.: Efficient data mining for maximal
frequent subtrees. In: ICDM, pp. 379–386. IEEE Computer Society, Los Alamitos
(2003)

20. Yao, X.: Research issues in spatio-temporal data mining. In: White paper UCGIS
(2003)

21. Yuan, M.: Toward knowledge discovery about geographic dynamics in spatiotempo-
ral databases. In: Han, J., Miller, H.J. (eds.) Geographic Data Mining and Knowl-
edge Discovery, pp. 347–365. Taylor and Francis, Abington (2008)

22. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundam.
Inform. 66(1-2), 33–52 (2005)

Inferring Fine-Grained Data Provenance

in Stream Data Processing:
Reduced Storage Cost, High Accuracy

Mohammad Rezwanul Huq, Andreas Wombacher, and Peter M.G. Apers

University of Twente, 7500 AE Enschede, The Netherlands
{m.r.huq,a.wombacher,p.m.g.apers}@utwente.nl

Abstract. Fine-grained data provenance ensures reproducibility of re-
sults in decision making, process control and e-science applications.
However, maintaining this provenance is challenging in stream data pro-
cessing because of its massive storage consumption, especially with large
overlapping sliding windows. In this paper, we propose an approach to
infer fine-grained data provenance by using a temporal data model and
coarse-grained data provenance of the processing. The approach has been
evaluated on a real dataset and the result shows that our proposed in-
ferring method provides provenance information as accurate as explicit
fine-grained provenance at reduced storage consumption.

1 Introduction

Stream data processing often deals with massive amount of sensor data in
e-science, decision making and process control applications. In these kind of
applications, it is important to identify the origin of processed data. This en-
ables a user in case of a wrong prediction or a wrong decision to understand
the reason of the misbehavior through investigating the transformation process
which produces the unintended result.

Reproducibility as discussed in this paper means the ability to regenerate
data items, i.e. for every process P executed on an input dataset I at time t
resulting in output dataset O, the re-execution of process P at any later point
in time t′ (with t′ > t) on the same input dataset I will generate exactly the
same output dataset O. Generally, reproducibility requires metadata describing
the transformation process, usually known as provenance data.

In [1], data provenance is defined as derivation history of data starting from
its original sources. Data provenance can be defined either at tuple-level or at
relation-level known as fine-grained and coarse-grained data provenance respec-
tively [2]. Fine-grained data provenance can achieve reproducible results because
for every output data tuple, it documents the used set of input data tuples and
the transformation process itself. Coarse-grained data provenance provides sim-
ilar information on process or view level. In case of updates and delayed arrival
of tuples, coarse-grained data provenance cannot guarantee reproducibility.

Applying the concept of fine-grained data provenance to stream data pro-
cessing introduces new challenges. In stream data processing, a transformation

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 118–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Inferring Fine-Grained Data Provenance in Stream Data Processing 119

process is continuously executed on a subset of the data stream known as a
window. Executing a transformation process on a window requires to document
fine-grained provenance data for this processing step to enable reproducibility.
If a window is large and subsequent windows overlap significantly, then the
provenance data size might be bigger than the actual sensor data size. Since
provenance data is ’just’ metadata, this approach seems to be too expensive.

In [3], we initially propose the basic idea of achieving fine-grained data prove-
nance using a temporal data model. In this paper, we extend and complete our
work to infer fine-grained data provenance using a temporal data model and
coarse-grained data provenance. Adding a temporal attribute (e.g. timestamp)
to each data item allows us to retrieve the overall database state at any point
in time. Then, using coarse-grained provenance of the transformation, we can
reconstruct the window which was used for the original processing and thus en-
suring reproducibility. Due to the plethora of possible processing operations, a
classification of operations is provided indicating the classes applicable to the
proposed approach. In general, the approach is directly applicable if the process-
ing of any window produces always the same number of output tuples. Eventu-
ally, we evaluate our proposed technique based on storage and accuracy using a
real dataset.

This paper is structured as follows. In Section 2, we provide a detailed de-
scription of our motivating application with an example workflow. In Section 3,
we discuss existing work on both stream processing and data provenance briefly.
In Section 4, we explain our approach and associated requirements followed by
the discussion on few issues in Section 5. Next, we present the evaluation of our
approach in Section 6. Finally, we conclude with hints of future research.

2 Motivating Scenario

RECORD1 is one of the projects in the context of the Swiss Experiment, which
is a platform to enable real-time environmental experiments. One objective of
the RECORD project is to study how river restoration affects water quality,
both in the river itself and in groundwater. Several sensors have been deployed
to monitor river restoration effects. Some of them measure electric conductivity
of water. Increasing conductivity indicates the higher level of salt in water. We
are interested to control the operation of the drinking water well by facilitating
the available online sensor data.

Based on this motivating scenario, we present a simplified workflow, that will
also be used for evaluation. Fig. 1 shows the workflow based on the RECORD
project. There are three sensors, known as: Sensor#1, Sensor#2 and Sensor#3.
They are deployed in different locations in a known region of the river which is
divided into a grid with 3 × 3 cells. These sensors send data tuples, containing
sensor id, (x,y) coordinates, timestamp and electric conductivity, to source pro-
cessing element named PE1, PE2 and PE3 which outputs data tuples in a view
V1, V2 and V3 respectively. These views are the input for a Union processing
1 http://www.swiss-experiment.ch/index.php/Record:Home

http://www.swiss-experiment.ch/index.php/Record:Home

120 M.R. Huq, A. Wombacher, and P.M.G. Apers

Fig. 1. Workflow based on RECORD scenario

element which produces a view Vunion as output. This view acts as an input to
the processing element Interpolate. The task of Interpolate is to calculate the
interpolated values for all the cells of the grid using the values sent by the three
sensors and store the interpolated values in the view Vinter . Next, Vinter is used
by the Visualization processing element to produce a contour map of electric
conductivity. If the map shows any abnormality, researchers may want to re-
produce results to validate the previous outcome. The dark-shaded part of the
workflow in Fig. 1 is considered to evaluate our proposed approach.

3 Related Work

Stream data processing engines reported in [4], [5], [6]. These techniques pro-
posed optimization for storage space consumed by sensor data. However, nei-
ther of these systems maintain provenance data and cannot achieve reproducible
results.

Existing work in data provenance addresses both fine and coarse-grained data
provenance. In [7], authors have presented an algorithm for lineage tracing in
a data warehouse environment. They have provided data provenance on tuple
level. LIVE [8] is an offshoot of this approach which supports streaming data.
It is a complete DBMS which preserves explicitly the lineage of derived data
items in form of boolean algebra. However, both of these techniques incur extra
storage overhead to maintain fine-grained data provenance.

In sensornet republishing [9], the system documents the transformation of
online sensor data to allow users to understand how processed results are de-
rived and support to detect and correct anomalies. They used an annotation-
based approach to represent data provenance explicitly. In [10], authors proposed
approaches to reduce the amount of storage required for provenance data. To
minimize provenance storage, they remove common provenance records; only
one copy is stored. Their approach has less storage consumption than explicit
fine-grained provenance in case of sliding overlapping windows. However, these
methods still maintain fine-grained data provenance explicitly.

Inferring Fine-Grained Data Provenance in Stream Data Processing 121

4 Proposed Solution

4.1 Provenance Inference Algorithm

The first phase of our provenance inference algorithm is to document coarse-
grained provenance of the transformation which is an one-time action, performed
during the setup of a processing element. The algorithms for the next two phases
are given here along with an example. To explain these algorithms, we consider a
simple workflow where a processing element takes one source view as input and
produces one output view. Moreover, we assume that, sampling time of source
view is 2 time units and the window holds 3 tuples. The processing element will
be executed after arrival of every 2 tuples. t1, t2 and so on are different points
in time and t1 is the starting time.

Document Coarse-grained Provenance: The stored provenance informa-
tion is quite similar to process provenance reported in [11]. Inspired from this,
we keep the following information of a processing element specification based
on [12] and the classification introduced in Section 4.2 as coarse-grained data
provenance.

– Number of sources: indicates the total number of source views.
– Source names: a set of source view names.
– Window types: a set of window types; the value can be either tuple or time.
– Window predicates: a set of window predicates; one element for each source.

The value actually represents the size of the window.
– Trigger type: specifies how the processing element will be triggered for exe-

cution. The value can be either tuple or time.
– Trigger predicate: specifies when a processing element will be triggered for

execution. If trigger type is tuple and the value of trigger predicate is 10, it
means that the processing element will be executed after the arrival of every
10th tuple.

Algorithm 1: Retrieve Data & Reconstruct Processing Window Algorithm

Input: A tuple T produced by processing element PE, for which fine-grained
provenance needs to be found

Output: Set of input tuples IPw
j for each source j which form processing

window Pw to produce T

TransactionTime ← getTransactionTime(PE, T);1

noOfSources ← getNoOfSources(PE);2

for j ← 1 to noOfSources do3

sourceView ← getSourceName(PE, j);4

wType ← getWindowType(sourceView);5

wPredicate ← getWindowPredicate(sourceView);6

IPw
j ← getLastNTuples(sourceView, TransactionTime, wType, wPredicate);7

end8

122 M.R. Huq, A. Wombacher, and P.M.G. Apers

Fig. 2. Retrieval, Reconstruction and Inference phases of Provenance Algorithm

Retrieve Data & Reconstruct Processing Window: This phase will be
only executed if the provenance information is requested for a particular output
tuple T generated by a processing element PE. The tuple T is referred here as
chosen tuple for which provenance information is requested (see Fig. 2.A).

We apply a temporal data model on streaming sensor data to retrieve appro-
priate data tuples based on a given timestamp. The temporal attributes are: i)
valid time represents the point in time a tuple was created by a sensor and
ii) transaction time is the point in time a tuple is inserted into a database.
While valid time is anyway maintained in sensor data, transaction time attribute
requires extra storage space.

The method of retrieving data and reconstructing processing window is given
in Algorithm 1. The transaction time of the chosen tuple and number of par-
ticipating sources are retrieved in line 1 and 2. Then, for each participating
source view, we retrieve it’s name, window type and window predicate in line
4-6. Then, we retrieve the set of the input tuples which form the processing
window based on the chosen tuple’s transaction time in line 7. If window type
is tuple, we retrieve last n tuples added to the source view before the Transac-
tionTime where n is the window predicate or window size. On the contrary, if
window type is time, we retrieve tuples having transaction time ranging within
[TransactionT ime− wPredicate, TransactionT ime). The retrieved tuples re-
construct the processing window which is shown by the tuples surrounded by a
dark shaded rectangle in Fig. 2.B.

Identifying Provenance: The last phase associates the chosen output tuple
with the set of contributing input tuples based on the reconstructed window in
the previous phase. This mapping is done by facilitating the output and input
tuples order in their respective view. Fig. 2.C shows that the chosen tuple in
the output view maps to the 2nd tuple in the reconstructed window (shaded
rectangle in source view). To compute the tuple position and infer provenance,
some requirements must be satisfied which are discussed next.

Inferring Fine-Grained Data Provenance in Stream Data Processing 123

4.2 Requirements

Our provenance inference algorithm has some requirements to be satisfied. Most
of the requirements are already introduced to process streaming data in existing
literature. In [9], authors propose to use transaction time on incoming stream
data as explicit timestamps. Ensuring temporal ordering of data tuples is
one of the main requirements in stream data processing. This property ensures
that input tuples producing output tuples in the same order of their appearance
and this order is also preserved in the output view. Classification of opera-
tions is an additional requirement for the proposed approach.

In our streaming data processing platform, various types of SQL operations
(e.g. select, project, aggregate functions, cartesian product, union) and generic
functors (e.g. interpolate, extrapolate) are considered as operations which can
be implemented inside a processing element. Each of these operations takes a
number of input tuples and maps them to a set of output tuples.

Constant Mapping Operations are PEs which have a fixed ratio of mapping
from input to output tuples per window, i.e. 1 : 1, n : 1, n : m. As for example:
project, aggregates, interpolation, cartesian product, and union. Variable Map-
ping Operations are PEs which have not a fixed ratio of mapping from input to
output tuples per window, e.g. select and join. Currently, our inference algorithm
can be applied directly to constant mapping operations. Each of these operations
has property like Input tuple mapping which specifies the number of input tu-
ples per source contributed to produce exactly one output tuple and Output tuple
mapping which refers to the number of output tuples produced from exactly one
input tuple per source. Moreover, there are operations where all sources (e.g.
join) or a specific source (e.g. union) can contribute at once. These information
should be also documented in coarse-grained data provenance.

4.3 Details on Identifying Provenance Phase

Algorithm 2 describes the approach we take to identify the correct provenance.
First, we retrieve our stored coarse-grained provenance data in line 2-5. For op-
erations where only one input tuple contributes to the output tuple (line 6), we
have to identify the relevant contributing tuple. In case there are multiple sources
used but only one source is contributing (line 7), a single tuple is contributing.
Based on the temporal ordering, the knowledge of the nested processing of multi-
ple sources, the contributing source and the output tuple mapping, the position
of the tuple in the input view which contributed to the output tuple can be
calculated (line 9). The tuple is then selected from the contributing input source
in line 10.

If there is one source or there are multiple sources equally contributing to
the output tuple, the position of the contributing tuple per source has to be
determined (line 13). The underlying calculation is again based on the knowledge
of the nested processing of multiple sources, the contributing source and the
output tuple mapping, the position of the tuple in the input view j. In line 14
the tuple is selected based on the derived position from the set of input tuples.

124 M.R. Huq, A. Wombacher, and P.M.G. Apers

Algorithm 2: Identifying Provenance Algorithm

Input: Set of input tuples IPw
j for each source j which form processing window

Pw to produce T
Output: Set of input tuples I which contribute to produce T
I = ∅;1

inputMapping ← getInputMapping(PE);2

outputMapping ← getOutputMapping(PE);3

contributingSource ← getContributingSource(PE,T);4

noOfSources ← getNoOfSources(PE);5

if inputMapping = 1 then /* only one input tuple contributes */6

if noOfSources > 1 ∧ contributingSource = Specific then7

parent ← getParent(PE,T);8

tuplePosition ← getPosition(PE,T, parent, outputMapping);9

I ← selectTuple(IPw
parent, tuplePosition);10

else11

for j ← 1 to noOfSources do12

tuplePosition ← getPosition(PE,T, j, outputMapping);13

I ← selectTuple(IPw
j , tuplePosition) ∪ I ;14

end15

end16

else /* all input tuples contribute */17

for j ← 1 to noOfSources do18

I ← IPw
j ∪ I ;19

end20

21

In cases where all input tuples contribute to the output tuple independent
of the number of input sources, all tuples accessible of all sources (line 18) are
selected. Thus, the set of contributing tuples is the union of all sets of input
tuples per source (line 19).

5 Discussion

The proposed approach can infer provenance for constant mapping operations.
However, variable mapping operations have not any fixed mapping ratio from
input to output tuples. Therefore, the approach cannot be applied directly to
these operations. One possible solution might be to transform these operations
into constant mapping operations by introducing NULL tuples in the output.
Suppose, for a select operation, the input tuple which does not satisfy the se-
lection criteria will produce a NULL tuple in the output view, i.e. a tuple with
a transaction time attribute and the remaining attributes are NULL values. We
will give an estimation of storage overhead incurred by this approach in future.

Our inference algorithm provides 100% accurate provenance information un-
der the assumption that the system is almost infinitely fast, i.e. no processing

Inferring Fine-Grained Data Provenance in Stream Data Processing 125

delay. However, in a typical system due to other working load, it is highly prob-
able that a new input tuple arrives before the processing is finished and our
inference algorithm may reconstruct an erroneous processing window inferring
inaccurate provenance. In future, we will address this limitation.

6 Evaluation

6.1 Evaluating Criteria and Datasets

The consumption of storage space for fine-grained data provenance is our main
evaluation criteria. Existing approaches [8], [9], [10] record fine-grained data
provenance explicitly in varying manners. Since these implementations are not
available, our proposed approach is compared with an implementation of a fine-
grained data provenance documentation running in parallel with the proposed
approach on the Sensor Data Web2 platform.

To implement the explicit fine-grained data provenance, we create one prove-
nance view for each output view. This provenance view documents output tuple
ID, source tuple ID and source view for each tuple in the output view. We
also assign another attribute named as tuple ID which is auto incremental and
primary key of the provenance view.

To check whether both approaches produce the same provenance information,
explicit fine-grained provenance information is used as a ground truth and it is
compared with the fine-grained provenance inferred by our proposed approach,
i.e. the accuracy of the proposed approach.

For evaluation, a real dataset3 measuring electric conductivity of the water,
collected by the RECORD project is used . The experiments (see Section 2) are
performed on a PostgreSQL 8.4 database and the Sensor Data Web platform.
The input dataset contains 3000 tuples requiring 720kB storage space which is
collected during last half of November 2010.

6.2 Storage Consumption

In this experiment, we measure the storage overhead to maintain fine-grained
data provenance for the Interpolation processing element based on our motivat-
ing scenario (see Section 2) with overlapping and non-overlapping windows. In
the non-overlapping case, each window contains three tuples and the operation is
executed for every third arriving tuple. This results in about 3000÷3×9 = 9000
output tuples since the interpolation operation is executed for every third input
tuple and it produces 9 output tuples at a time, requires about 220kB space.
In the overlapping case, the window contains 3 tuples and the operation is ex-
ecuted for every tuple. This results in about 3000 × 9 = 27000 output tuples
which require about 650kB. The sum of the storage costs for input and output
tuples, named as sensor data, is depicted in Fig. 3 as dark gray boxes, while the
provenance data storage costs is depicted as light gray boxes.
2 http://sourceforge.net/projects/sensordataweb/
3 http://data.permasense.ch/topology.html#topology

http://sourceforge.net/projects/sensordataweb/
http://data.permasense.ch/topology.html#topology

126 M.R. Huq, A. Wombacher, and P.M.G. Apers

Fig. 3. Storage space consumed by Explicit and Inference method in different cases

From Fig. 3, we see that for explicit approach, the amount of required prove-
nance information is more than twice the amount of actual sensor data in the
best case (non-overlapping). On the contrary, the proposed inference approach
requires less than half the storage space to store provenance data compared to
the actual sensor data in non-overlapping cases and at least 25% less space in
overlapping cases. As a whole, for interpolation, inferring provenance takes at
least 4 times less storage space than the explicit approach. Therefore, our pro-
posed approach clearly outperforms the explicit method. This is because the
proposed approach adds only one timestamp attribute to each input and out-
put tuple whereas the explicit approach adds the same provenance tuple several
times because of overlapping sliding windows. Our proposed approach is not
dataset dependent and also has window and trigger independent storage cost.
The overhead ratio of provenance to sensor data depends on the payload of input
tuples.

Additional tests confirm the results. We perform experiments for project and
average operation with same dataset and different window size. In project opera-
tion, our method takes less than half storage space to maintain provenance data
than the explicit method. For average operation, our proposed inference method
takes at least 4 times less space than the explicit method. Please be noted that
this ratio depends on the chosen window size and trigger specification. With the
increasing window size and overlapping, our approach performs better.

6.3 Accuracy

To measure the accuracy, we consider provenance data tuples documented by ex-
plicit fine-grained data provenance as ground truth. Our experiment shows that
the proposed inference method achieves 100% accurate provenance information.
In our experiments, the processing time is much smaller than the minimum value
of sampling time of data tuples, i.e. no new tuples arrive before finish process-
ing, as discussed in Section 5). This is why, inference method is as accurate as
explicit approach. These results are confirmed by all tests performed so far.

Inferring Fine-Grained Data Provenance in Stream Data Processing 127

7 Conclusion and Future Work

Reproducibility is a requirement in e-science, decision making applications to an-
alyze past data for tracing back problems in the data capture or data processing
phase. In this paper, we propose a method of inferring fine-grained data prove-
nance which reduces storage cost significantly compared to explicit technique
and also provides accurate provenance information to ensure reproducibility.
Our proposed approach is dataset independent and the larger the subsequent
windows overlap, the more the storage reduction is. In future, we will address
limitations in case of longer and variable delays for processing and sampling data
tuples to ensure reproducibility at low storage cost.

References

1. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31–36 (2005)

2. Buneman, P., Tan, W.C.: Provenance in databases. In: SIGMOD: Proceedings
of the 2007 ACM SIGMOD International Conference on Management of Data,
pp. 1171–1173. ACM, New York (2007)

3. Huq, M.R., Wombacher, A., Apers, P.M.G.: Facilitating fine grained data prove-
nance using temporal data model. In: Proceedings of the 7th Workshop on Data
Management for Sensor Networks (DMSN), pp. 8–13 (September 2010)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues
in data stream systems. In: Proceedings of the Twenty-First ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 1–16. ACM,
New York (2002)

5. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data
stream management. The VLDB Journal 12(2), 120–139 (2003)

6. Abadi, D., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., et al.: The design of the
borealis stream processing engine. In: Second Biennial Conference on Innovative
Data Systems Research (CIDR 2005), Asilomar, CA, pp. 277–289 (2005)

7. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
VLDB Journal 12(1), 41–58 (2003)

8. Sarma, A., Theobald, M., Widom, J.: LIVE: A Lineage-Supported Versioned
DBMS. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187,
pp. 416–433. Springer, Heidelberg (2010)

9. Park, U., Heidemann, J.: Provenance in sensornet republishing. Provenance and
Annotation of Data and Processes, 280–292 (2008)

10. Chapman, A., Jagadish, H., Ramanan, P.: Efficient provenance storage. In: Pro-
ceedings of the 2008 ACM SIGMOD International Conference on Management of
Data, pp. 993–1006. ACM, New York (2008)

11. Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: Provenance management for data
driven workflows. International Journal of Web Services Research 5, 1–23 (2008)

12. Wombacher, A.: Data workflow - a workflow model for continuous data processing.
Technical Report TR-CTIT-10-12, Centre for Telematics and Information Tech-
nology University of Twente, Enschede (2010)

Approximate Query on Historical Stream Data

Qiyang Duan1, Peng Wang1, MingXi Wu2, Wei Wang1, and Sheng Huang1,3

1 Fudan Unversity, No. 220, Handan Road, Shanghai, 200433, China
{qduan,pengwang5,weiwang1}@fudan.edu.cn
2 Oracle Corporation, Redwood shores, CA 94065, USA

mingxi.wu@oracle.com
3 399 Keyuan RoadShanghai, 201203, China

huangssh@cn.ibm.com

Abstract. We present a new Stream OLAP framework to approximately answer
queries on historical stream data, in which each cell is extended from a single
value to a synopsis structure. The cell synopses can be constructed by the ex-
isting well researched methods, including Fourier, DCT, Wavelet, PLA, etc. To
implement the Cube aggregation operation, we develop algorithms that aggre-
gate multiple lower level synopses into a single higher level synopsis for those
synopsis methods. Our experiments provide comparison among all used synopsis
methods, and confirm that the synopsis cells can be accurately aggregated to a
higher level.

Keywords: Approximate Query, Synopsis, Stream, OLAP, Fourier, DCT, PLA,
Wavelet.

1 Introduction

Recently stream data management becomes a distinct topic apart from other data types
because of its unique nature: continuously growing large volume. Because of this,
stream data can only be saved for a short period, e.g., in a sliding window [1]. His-
torical data beyond the sliding window is simply discarded. However, many real life
applications demand range or similarity queries against the historical data. For exam-
ple, in a system workload database, users want to understand the average workload
between 6:00AM and 7:00AM in a specific month in a past year. This information is
precious for capacity planning, workload distribution allocation [1]. It is not hard to
imagine a range query example in such an application:

Select sum(workload)/count(workload) from workload tab
where time between 6:00AM and 7:00AM and date = ’January 2006’;

Since it is impossible to store the entire stream we have seen, in order to answer queries
on the historical data, one has to build a data synopsis to capture the historical infor-
mation and use it to answer queries to the past data. There have been some researches
about approximate query [2] over extremely large data in the last decade, to name a
few, Wavelet [3–6], DCT [7], and PLA [8] based approximate queries. However, even
though the size of a synopsis is greatly compressed comparing to the original data, due
to the continuous growing nature of a data stream, if we simply lay down each synopsis

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 128–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Approximate Query on Historical Stream Data 129

one by one, the storage size will eventually limit the number of synopsis structures we
can save and query.

In this paper, we propose A Historical Stream Data Archive and Query Frame-
work, which includes the following technical contributions:

1. We show how different synopses can be easily embedded into the new Synopsis
Cube Model and how to aggregate them over the time dimension. The new Synop-
sis Cube can answer fine level OLAP queries over historical data, which overcomes
a major limitation of the Stream Cube model [9]. We design the aggregation algo-
rithms for those widely known synopses: Fourier, DCT, Wavelet, and PLA.

2. We present the query technique over PLA and Fourier synopsis and compared the
latter with the DCT query. Though it was widely conceived that DCT always per-
forms better than Fourier, our experiments showed that Fourier can achieve better
performance than DCT in some data sets.

This paper is organized as follows. Section 2 reviews the necessary background re-
lated to the paper. Section 3 to Section 5 detail our techniques. The experiments are
reported in Section 6. Section 7 concludes the paper.

2 Background

2.1 Fourier/DCT Based Approximate Query

We refer readers to [10, 11] for Fourier Transformation families, including FFT, DFT,
DCT, etc. In this paper, we use f(x)(x ∈ T) to denote stream value at time x. Then the
Discrete Fourier Transform of f(x) is defined as: F (u) =

∑N−1
n=0 f(x)e−i2πux/Nd(x).

J. Lee et al. [12] and M. Hsieh et al. [7] proposed using a small number of transformed
DCT coefficients to represent original data stream and answer range queries.

2.2 Haar Wavelet

We use an example of 8 data points stream S = {5, 7, 1, 9, 3, 5, 2, 4} to show case
how the Haar Wavelet transformation [3, 4, 6] works. There are always two types
of Wavelet coefficients: the Average Coefficient and the Detail Coefficient. In each
transformation step, every two adjacent data points are transformed to be one aver-
age coefficient and one difference value. The difference value is then saved to the
end of whole stream as a detail coefficient. For example, the first two values {5, 7}
of S become the first average coefficient {6} and the 5th detail coefficient {−1}
in W1 = {6, 5, 4, 3,−1,−4,−1,−1} after the first iteration. Then the same pro-
cedure is repeated until there are only one average value at the head and all the
other detail coefficients at the end for different resolution levels, and we have W =
{4.5, 1, 0.5, 0.5, 1,−1,−4,−1,−1}. We will refer to Haar Wavelet simply as Wavelet
in the rest of this paper.

2.3 Piecewise Linear Approximation (PLA)

The Piecewise Linear Approximation (PLA, [8]) partitions the original stream data into
multiple smaller streams clips, and approximates each clip by a straight line. Let S be

130 Q. Duan et al.

one stream clip and S = {s1, s2, ..., sN}. PLA uses a line segment s′t of two parameters
a and b to approximate the stream clip, i.e. St ≈ s′t = at + b. The equation 1 provides
analytical formulas to calculate the two parameters a, b from the stream clip S.

a =
12
∑N

t=1 (t− (N+1)
2)st

N(N + 1)(N − 1)
, b =

6
∑N

t=1 (t− (2N+1)
3)st

N(N + 1)(N − 1)
(1)

.

2.4 Stream Cube and Tilted Time Model

Fig. 1. Natural Tilted Time Window

To build an OLAP model on the stream data,
Han et al. [9] proposed a Tilted Time Frame Di-
mension, along which the cell values are grad-
ually aggregated from a higher resolution to a
lower resolution. Fig.1 shows a natural tilted time
window model [9]. In Fig.1, the values from the
most recent 4 quarter hours are saved in a Stream
Cube. Once we reach the beginning of the next hour, the 4 quarter hour cells are aggre-
gated into only one cell in the hour level. Then all the incoming data for the next hour
will be saved at the quarter hour level again. In this fashion, for one year data, we only
need cells for the last 12 months, 31 days, 24 hours, and 4 quarter hours. As a result,
there are only 12 + 31 + 24 + 4 = 71 cells for the entire year in the tilted time window
model, which is a great saving in storage comparing with the naive MOLAP method
demanding 12 * 31 * 24 * 4 = 35,712 cells.

3 The Synopsis Cube

We build our Synopsis Cube using Tilted Time Dimension[9]. According to Section
2.4, for the data of 5 years ago, only one sum value is saved for each year, even though
in original stream, there could be millions of data points. We took for granted that this
sum value should be the most important feature out of the whole data stream. Then,
why not save a bit more information beyond a simple SUM value?

Now, in those distant cells, we extend the simple numerical measures to be some
synopsis structures to save more than one features representing the original data falling
in that cell. We call the new extended cell a Synopsis Cell and the Cube using this cell a
Synopsis Cube. Any feature extraction method can be used to construct a synopsis cell,
as long as we can design the two most important operators for it: Aggregation, and
Query. In this paper, we construct our Synopsis Cells by those four methods: Fourier,
DCT, Wavelet, and PLA.

To maximize the compatibility with the traditional OLAP cube, each synopsis cell
(denoted by SC) is defined as a tuple with five attributes: SC =< T, S, C, M, Syn >.
In a synopsis cell, T is the type of synopsis method used; S is the sum of all the data
points in the original stream f(x); C is the count of all the data points; M is the number
of coefficients saved into the synopsis cell, which is also the length of the next attribute
Syn; Syn is the saved most important coefficients from different synopsis methods.

Approximate Query on Historical Stream Data 131

Syn for a Fourier, DCT or Wavelet synopsis cell is an array of the coefficient index and
coefficient pairs, i.e. Syn = {< uj , F (uj) >| j = 1, 2, ..., M}, while Syn for PLA
synopsis cell is an array of parameter pairs, i.e. Syn = {< aj, bj >| j = 1, 2, ..., M}.

4 Aggregating the Synopsis Cells

In the Stream Cube model, at the end of each time period (day, month, etc), lower
level OLAP measures must be aggregated to a higher level one by certain arithmetic
operations, like SUM. Likewise, in a Synopsis Cube, at the end of each time period, all
the lower level synopsis cells should also be aggregated to a higher level synopsis cell.

We can support as many levels as end users want, but only two levels are involved in
each aggregation operation. Let L1 be the lower level, in which all stream clips are of
a same length L1, and L2 be the higher level with length L2. Let L = L1 ∗ L2 be the
total length of the original stream data.

4.1 Aggregating Fourier Synopsis

We use F (u) to denote the lower level Fourier Coefficients and F ′(u) for the aggregated
Fourier coefficients on L2. Here the same u is used because the aggregated Fourier
synopsis still represents the lowest level data as in the original Stream f(x), no matter
on which level this synopsis is aggregated. Let x be the index of the concatenated stream
of all L1 stream clips, then x can be expressed as x = zL1 + y, z ∈ (1, 2, ..., L2), y ∈
(1, 2, ..., L1). Similarly, let u be the frequency index of the concatenated L1 frequency
space. Then u can be expressed as u = zL1 + w, in which w is the frequency index
in corresponding z-th stream clip from L1. Let Fz(w) denote the Fourier coefficient at
frequency w on the z-th stream clip from L1. Then the aggregated Fourier coefficient
F ′(u) can be approximately calculated by equation 2:

Fz(w) =

(
L1∑

y=1

f(zL1 + y)e−2πiw y
L1

)

F ′(u) ≈
L2∑

z=1

{
e−2πiu z

L2

(
Fz(floor(

u

L2
))
)}

(2)

The aggregation of DCT synopsis is similar to Fourier one, due to the fact that DCT
is only the real part of Fourier Transformation[7]. Therefore, we skip the aggregation
formula for DCT synopsis.

4.2 Aggregating Wavelet

The aggregation of Wavelet Synopsis Cells is more straightforward than the Fourier/
DCT one. There are two phases in the wavelet aggregation process: coefficient shuffle
and wavelet transform. Since the Wavelet transform always happens on local blocks,
the detail coefficients from L1 can be used directly in L2. In the shuffle phase, we

132 Q. Duan et al.

move the Wavelet detail coefficients from L1 to the tailing positions of L2, and the
average coefficients from L1 to the head of L2. Then, in Wavelet Transform phase,
we simply apply the wavelet transformation algorithm from Section 2.2 again on all
average coefficients, and concatenate the result with all shuffled L1 detail coefficients.
Table.1 shows one example of this aggregation.

We can verify that the aggregated L2 coefficients are exactly same as directly trans-
formed from original stream data. In other word, this is a lossless aggregation.

Table 1. Haar Wavelet Aggregation Demonstration

Step Name Transformed Stream Data
Original Stream S1 = {5, 7, 1, 9}, S2 = {3, 5, 2, 4}, S3 = {8, 4, 5, 9}, S3 = {1, 3, 7, 5}

L1 Wavelet W1 = {5.5,−0.5, 1, 4}, W2 = {3.5,−0.5, 1, 1},
Synopses W3 = {6.5, 0.5,−2, 2}, W4 = {4, 2, 1,−1}

After shuffle W = {[5.5, 3.5, 6.5, 4],−0.5,−0.5, 0.5, 2, 1, 4, 1, 1,−2, 2, 1,−1}
Transform Again W = {4.875, 0.3750, −1,−1.25,−0.5,−0.5, 0.5, 2, 1, 4, 1, 1,−2, 2, 1,−1}

4.3 Aggregating PLA

Equations 3, 4 give the formulas to calculate a high level line segment parameter pair
< A, B > from the low level parameters {< ap, bp >| p = 1, 2, ..., L1}.

A =
12

L(L+ 1)(L − 1)
L2∑

p=1

L1{(L1 ∗ (p − 1)− L+ 1

2
)(

L1 + 1

2
ap + bp) +

L1
2

3
ap +

L1

2
bp}

(3)

B =
6

L(1− L)

L2∑
p=1

L1{(L1 ∗ (p − 1)− 2N + 1

3
)(

L1 + 1

2
ap + bp) +

L1
2

3
ap +

L1

2
bp} (4)

5 Querying the Stream Cube

A range query Q(m : n) can be answered over any of the four types of the synopsis
cells directly, without reconstructing the original stream data. Technique from [12] can
answer query QD(mk : nk) over a DCT synopsis cell, and the method from Vitter and
Wang [3] can be deployed over a Wavelet synopsis cell. Equations 5 and 6 give the
range query execution formulas over Fourier and PLA synopses respectively. Equations
5 and 6 are derived by integrating the Fourier sinusoid and PLA line functions.

QF (mk : nk) =
M∑

j=1

{
F (uj)
i2πuj

(
e

uj
N i2πnk − e

uj
N i2πmk

)}
(5)

QP (mk : nk) =
1
2
ak(n2

k −m2
k) + bk(nk −mk) (6)

Approximate Query on Historical Stream Data 133

The similarity query can be executed over the saved coefficients in a similar manner
as from the GEMINI framework [8, 13]. However, the Gemini framework can only
work on a short period sliding window, while our Synopsis Cube can approximately
save the Stream Data to a far distant history, and provide query capabilities.

6 Experiments

We validate our aggregation algorithms accuracy, and compare the synopsis cube per-
formance using all the different synopsis methods. The experiments are conducted on
various public real life datasets, including Mean monthly air temperature at Nottingham
Castle, average wind speed at Ireland, DJI stock index (1980→2010), Power usage,
Darwin sea level pressures, Buoy Sensor, Random Walk, etc[14]. The hardware config-
uration for all the experiments is Intel CPU U7600, 2GB Memory, running Windows
XP system. All testing programs are coded and executed in Matlab 7.5. The testing
program for Haar Wavelet query is implemented according to [3].

6.1 Range Query Accuracy over Aggregated Synopses Cells

Setup: We want to test the correctness of the aggregation algorithms from section 4. We
tested three types of aggregated synopses: Fourier, Wavelet, and PLA. In this test we
truncate and split each data stream into 32 smaller stream clips to simulate a stream data
with 2 levels. Each lower level data stream contains 128 data points. We then compare
the absolute query error on directly generated synopses from the original stream against
the query error on the aggregated synopses from lower level ones.

Discussion: We tested all the data sets on hand, but due to text limitation, listed results
on 3 streams only in Table 2. In this table, we see that the columns Wavelet Direct and
Wavelet Aggr contain identical value, which means the query error are exactly same
over the directly acquired synopsis and the aggregated synopsis. The value of column
PLA Aggr is slightly higher than PLA Direct, but we believe that this difference is
caused by the program boundary treatment. Fourier Aggr is ok on the Wind data (with
strong periodical patterns), but too bad on the other two datasets.

Conclusion: This experiment confirmed correctness of our synopsis aggregation
method. Also from the experiment, we can conclude that Wavelet and PLA shall work
better than Fourier method in the aggregation operation.

Table 2. Range Query Error on aggregated synopsis

Data Set Avg Real Fourier Fourier Wavelet Wavelet PLA PLA
Value Direct Error Aggr Error Direct Error Aggr Error Direct Error Aggr Error

Stock 3.549 0.113 0.888 0.885 0.885 0.111 0.112
Buoy -0.297 0.187 0.493 0.480 0.480 0.229 0.228
Wind 49.733 11.288 12.954 15.960 15.960 11.954 11.963

134 Q. Duan et al.

6.2 Minimum Balanced Cost of Different Synopses

Setup: On each different dataset, we want to test which synopsis method performs the
best in our Synopsis Cube by comparing a balanced Cost c = E

ME + M
N . Here E is

the average query error of a range query using M coefficients, ME is the maximum
query error of all possible M , and N is the length of Stream Data. The minimum cost c
of all possible M is recorded for each synopsis method and compared among the four
different ones. This result can help select the best synopsis method on each dataset. Ding
et al. already provided a comprehensive comparison on similarity query performance
of different synopsis methods [15].

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

i−th dataset

M
in

 C
os

t

Fourier
DCT
Wavelet
PLA

Fig. 2. Minimum Cost by four synopses

Discussion: We have tested the query errors
on all 63 data sets [14]. Fig.2 shows the min-
imum cost from four different methods on
all data sets. To easily compare minimum
costs on all different datasets, we divide the
four minimum costs of different synopses on
each dataset by the maximum value among
the four. In Fig.2, X-axis is the data set we
tested, and Y-axis is the normalized minimum
costs from the four methods. On each data
set, exactly four points are plotted showing
the costs, and the lowest one indicates the
best synopsis method. In the 63 tested data streams, Fourier synopsis yielded the lowest
cost for 7 times, DCT for 5 times, and PLA for 51 times. The Fourier and DCT methods
outperform other methods on those data sets containing certain periodic patterns, like
burst, ballbeam, etc.

7 Conclusion

In this paper, we have shown an end-to-end solution of a Synopsis OLAP Cube using
the Tilted Time frame and some well researched synopsis methods, including Fourier,
DCT, Wavelet, and PLA. We devised necessary techniques to aggregate multiple lower
level synopses into one higher level synopsis, and we also presented the range query
techniques over each type of synopsis cells. Our experiments showed the performance
comparison of different synopsis methods and also proved the correctness of our syn-
opsis aggregation technique.

Acknowledgement. This work is supported in part by Chinese Tech Project
2010ZX01042-003-004, NSFC Key Program 61033010, Science and technology com-
mission of shanghai municipality 10dz1511000, and IBM CRL UR project
JSA201007005.

References

1. Reeves, G., Liu, J., Nath, S., Zhao, F.: Managing massive time series streams with multi-
scale compressed trickles. In: PVLDB, vol. 2(1), pp. 97–108 (2009), http://www.vldb.
org/pvldb/2/vldb09-434.pdf

http://www.vldb.org/pvldb/2/vldb09-434.pdf
http://www.vldb.org/pvldb/2/vldb09-434.pdf

Approximate Query on Historical Stream Data 135

2. Aggarwal, C.C., Yu, P.S.: A Survey of Synopsis Construction in Data Streams,
pp. 169–207. Springer, US (2007), http://www.springerlink.com/content/
wx43561lv4678637/

3. Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates of sparse
data using wavelets. In: SIGMOD Conference, pp. 193–204 (1999)

4. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query processing us-
ing wavelets. VLDB J. 10(2-3), 199–223 (2001), http://link.springer.de/link/
service/journals/00778/bibs/1010002/10100199.htm

5. Yun-Bo Xiong, Y.-F.H., Liu, B.: Approximate query processing based on wavelet transform.
In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics,
Dalian, pp. 13–16 (2006)

6. Karras, P., Mamoulis, N.: The haar+ tree: A refined synopsis data structure. In: ICDE,
pp. 436–445. IEEE, Los Alamitos (2007), http://dx.doi.org/10.1109/ICDE.
2007.367889

7. Hsieh, M.-J., Chen, M.-S., Yu, P.S.: Approximate query processing in cube streams. IEEE
Trans. Knowl. Data Eng. 19(11), 1557–1570 (2007),
http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190622

8. Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable PLA for efficient similarity search.
In: Proceedings of the 33rd International Conference on Very Large Data Bases, Austria,
September 23-27, pp. 435–446. ACM, New York (2007)

9. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream cube:
An architecture for multi-dimensional analysis of data streams. Distributed and Parallel
Databases 18(2), 173–197 (2005),
http://dx.doi.org/10.1007/s10619-005-3296-1

10. Stein, E.M., Shakarchi, R.: Fourier Analysis I: An Introduction, pp. 134–140. Princeton Uni-
versity Press, Princeton (2003)

11. Smith.III, J.O.: Mathematics Of The Discrete Fourier Transform (DFT) With Audio Appli-
cations. W3K Publishing (2007)

12. Lee, J.-H., Kim, D.-H., Chung, C.-W.: Multi-dimensional selectivity estimation using com-
pressed histogram information. In: Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 205–214. ACM, New York (1999),
http://doi.acm.org/10.1145/304182.304200

13. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series
databases. In: Proceedings of ACM SIGMOD, Minneapolis, MN, pp. 419–429 (1994)

14. Duan, Q.: Stream data collection (2011), http://sites.google.com/site/
qiyangduan/publications/stream-data-set

15. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and mining
of time series data: experimental comparison of representations and distance measures.
In: PVLDB, vol. 1(2), pp. 1542–1552 (2008), http://www.vldb.org/pvldb/1/
1454226.pdf

http://www.springerlink.com/content/wx43561lv4678637/
http://www.springerlink.com/content/wx43561lv4678637/
http://link.springer.de/link/service/journals/00778/bibs/1010002/10100199.htm
http://link.springer.de/link/service/journals/00778/bibs/1010002/10100199.htm
http://dx.doi.org/10.1109/ICDE.2007.367889
http://dx.doi.org/10.1109/ICDE.2007.367889
http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190622
http://dx.doi.org/10.1007/s10619-005-3296-1
http://doi.acm.org/10.1145/304182.304200
http://sites.google.com/site/qiyangduan/publications/stream-data-set
http://sites.google.com/site/qiyangduan/publications/stream-data-set
http://www.vldb.org/pvldb/1/1454226.pdf
http://www.vldb.org/pvldb/1/1454226.pdf

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 136–143, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Incremental Approach to Closest Pair Queries in
Spatial Networks Using Best-First Search

Chunan Chen1, Weiwei Sun1,*, Baihua Zheng2, Dingding Mao1, and Weimo Liu1

1 School of Computer Science, Fudan University, Shanghai, China
{chenchunan,wwsun,maodingding,liuweimo}@fudan.edu.cn

2 Singapore Management University
bhzheng@smu.edu.sg

Abstract. This paper addresses the problem of k Closest Pairs (kCP) query in
spatial network databases. A Best-First search approach namely BFCP (Best-
First Closest Pair) is proposed. Given two data sets of objects in a spatial
network, BFCP first finds the 1st CP by computing the 1st NN (nearest
neighbor) of each object in the set with smaller cardinality. Then BFCP
retrieves the 2nd , 3rd , … , kth CP in an incremental way by searching the next
NN of the currently found CP’s source point. Furthermore, a novel buffer
replacement policy called MDU (Minimum Distance Unit) is proposed to
reduce I/O cost of BFCP. Unlike LRU, which records only the last reference
time, the MDU policy considers both temporal locality and spatial locality
when selecting a buffer page as the victim. A comprehensive experimental
study is conducted to demonstrate the advantage of BFCP and MDU.

Keywords: Closest Pair, Spatial networks, Location-based services, Buffer
management.

1 Introduction

Spatial databases have attracted lots of attentions in the past decade with the advances
in mobile computing and popularity of location-based services. In this paper, we
focus on k Closest Pair (kCP) query in a Spatial Network Database (SNDB), which is
commonly used in real applications related to traffic monitoring and route planning in
city road map. Given two datasets S and T, object pairs (si, ti) ∈ S ×T are sorted based
on non-descending order of the network distance between si and ti and a k Closest Pair
query is to return k pairs of objects with minimal distances. kCP query is a common
query in SNDB, and is widely used in many applications such as GIS. For example,
consider a businessman who wants to take one day off his busy schedule to visit some
place of attraction in Shanghai. In order to save time, he wants to stay in a hotel that is
near to some place of attraction. A kCP query can be issued to find k pairs of scenic
spot and hotel.

kCP queries have been well studied in Euclidean spaces, where the Euclidean
distance between two objects is employed to measure the distance between them.

* Corresponding author.

 An Incremental Approach to Closest Pair Queries in Spatial Networks 137

Typically, objects are stored in two R-trees [1] and they are traversed by branch-and-
bound search approaches [2]. However, the distance between two objects in SNDB is
determined by their shortest path but not the Euclidean distance. To tackle this issue,
two techniques, namely CPER (Closest Pair Euclidean Restriction) and CPNE
(Closest Pair Network Expansion) are proposed [3]. CPER uses the Euclidean
distance as the lower bound of the network distance between two points. It first
employs the R-tree based kCP query algorithm to get the candidates of the kCP in
spatial network and further finds the exact network distance of each candidate pair to
confirm the final result in the refinement step. This approach suffers from poor
performance when there is a big difference between the Euclidean distance and
network distance, which is of frequent occurrence in reality. CPNE finds the kNN of
each object in S∪T based on network expansion. It then uses the maximum distance
of the current kCP result as the upper bound for pruning; however, this upper bound
might be very loose. As a result, CPNE spends time to search for many unnecessary
NNs in the kCP search procedure and the cost of this approach is very expensive.
Another existing solution to kCP query in SNDB is the Top-k Distance Join algorithm
introduced in [4]. It pre-computes the shortest path between each pair of nodes in a
spatial network and stores all the paths in a quad-tree, which suffers from additional
storage cost and is not suitable in cases that the network structure changes frequently.

In this paper, we study the problem of kCP query when the sizes of the two data
sets are of great difference and/or the value of k is very large. To the best of our
knowledge, CPNE requires the least CPU time and I/O cost among all the existing
work. However, the search performance of kCP query can be still improved without
pre-computation. The contributions of this paper can be summarized as follows:

 An efficient incremental approach called BFCP (Best-First Closest Pair) is

proposed. Like CPNE, BFCP finds the kCP by computing the kNN of the
objects in one of the given sets. Unlike CPNE, BFCP uses a best-first search to
find the kCP in an incremental way so that it saves the computations of some
unnecessary NNs. We conduct a theoretical analysis and extensive experimental
study to demonstrate the advantage of BFCP over CPNE.

 A novel buffer replacement policy called Minimum Distance Unit (MDU) is
proposed. It considers both the temporal locality and spatial locality of buffer
pages when selecting a victim, which further boosts up the I/O cost of BFCP.

The rest of the paper is organized as follows. Section 2 overviews kNN queries and

kCP queries in SNDB. Section 3 and Section 4 present the BFCP algorithm and the
MDU buffer replace policy. Section 5 reports the experimental study results, and
Section 6 concludes our work and discusses some future work.

2 Related Work

In this section, we briefly review existing works related to kCP query processing in
SNDB, including disk-based storage schema for spatial network, kNN/kCP query in
SNDB, and buffer management strategy.

138 C. Chen et al.

2.1 Disk-Based Storage Schema of Spatial Network

A spatial network usually is modeled as a graph G consisting of vertex set V and edge
set E. In most of the real-world applications, a spatial network normally contains at
least thousands of vertices, and hence it is not practical to process all executions in the
main memory. The main challenge of the disk storage of a network graph is how to
cluster the adjacent nodes in the same page to reduce the I/O cost when accessing a
graph. In the literature, different approaches have been proposed, including the
connectivity-cluster access method (CCAM) [5] and Hilbert-curve based method [3].
Due to the simplicity and optimal locality of Hilbert curve, we employ the Hilbert-
curve-based network storage schema to process kCP queries in this paper and further
discuss how to reduce I/O cost by improving the performance of the buffer manager.

2.2 kNN Query and kCP Query in SNDB

Given a query point q and a set of objects S, a kNN query is to find the k closest
objects in S to the query point q. Several algorithms have been proposed to support
kNN query in spatial network. [3] introduces Incremental Euclidean Restriction (IER)
and Incremental Network Expansion (INE). Some pre-computation based solutions to
kNN query are proposed in [7-11]. Closest pair query is another important query in
spatial databases. A well-known solution to kCP queries in Euclidean spaces is the
heap algorithm proposed in [2]. In order to support kCP query in SNDB, CPER and
CPNE are proposed in [3]. The Top-k Distance Join algorithm in spatial networks
proposed in [4] is a technique based on the SILC framework introduced in [9].

2.3 Buffer Replacement Policy

Efficient buffer management (e.g., LRU (Least Recently Used) [12] and LRU-K [13])
is an effective technique to reduce the I/O cost. Some page replacement policies for
spatial databases have been proposed in recent years such as LRD-Manhattan [14]
and a self-tuning page replacement strategy [15]. Like the self-tuning page
replacement policy, MDU proposed in this paper selects the victim based on both the
temporal locality and spatial locality. The innovation of MDU is that it explores the
spatial locality in a network environment and works efficiently in our BFCP
algorithm.

3 A Best-First kCP Algorithm

3.1 Problem Definition and Search Algorithm

In this paper, we model the spatial network as a graph and use the Hilbert-curve based
schema introduced in [3] to store the graph in the disk. The network distance of two
nodes v and u is noted as D(v, u), and a pair <si, ti’>∈ S × T is denoted as pj. kCP
query is formally defined in Definition 1.

 An Incremental Approach to Closest Pair Queries in Spatial Networks 139

Definition 1. k Closest Pair (kCP) query. Given a network G(V, E) and two data sets of objects
S and T (S, T ⊆ V), a kCP query is to find the k pairs pj ∈ S × T such that ∀pj ∈ P = { p1,
p2 , …, pk }, ∀pi ∈S × T - P, D(pj) ≦ D(pi).

The kCP of S and T can be evaluated incrementally by computing the 1st NN from T
for each point in S and searching the next NN of the current CP iteratively. We call
this approach a “Best-First” approach because it only finds the next NN of the current
CP retrieved during the search procedure. The pseudo code of BFCP is shown in
Algorithm 1. It uses a priority queue Q to store the candidate pairs, which is a
memory-based data structure and sorts the candidate pairs in a min-heap according to
the pairs’ distance. First, BFCP retrieves the 1st NN for each object in S based on the
INE approach proposed in [3]. All the pairs found in this step will be inserted into the
priority queue (lines 2-5). Second, BFCP finds the 1st, 2nd, 3rd,..., kth CP in a
incremental way (lines 6-12). In each iteration, the head pair <s, t> is popped out as
the next CP and the next NN of s is retrieved to form a new entry in Q.

Algorithm 1: BFCP(S, T, k)
Input: G(V, E), Set S and T (|S| < |T|), an integer k.
Output : kCP of S and T.

1. count ← 0, Q←NewPriorityQueue()
2. for each object si in the set S do
3. si.1NN = INE_1NN(si)
4. ENQUEUE(Q, D(si, si.1NN), <si, si.1NN>)
5. enddo
6. while(count ≤ k) do
7. <s, t> ← DEQUEUE (Q)
8. Report the pair <s, t> as the next closest pair
9. count ← count + 1

10. tnext ← INE_NextNN(s)
11. ENQUEUE(Q, D(s, tnext), < s, tnext >)
12. enddo

4 The MDU Buffer Replacement Policy

In section 3, we propose BFCP algorithm to reduce the number of NN computations.
In this section, we introduce a new buffer management strategy, namely Minimum
Distance Unit (MDU), to further cut down the I/O cost of BFCP. In the following, we
first explain the issue of employing the LRU buffer replacement policy in BFCP, and
then we describe the MDU buffer replacement in detail.

As mentioned in section 2.1, we use Hilbert-curve-based network storage schema
to store the road network in disk, which tries to cluster the adjacent nodes in the same
page. When a graph operation needs to access the information of a node u, the page
containing u is loaded into the main memory. This page will remain in the buffer till it
is replaced. Without loss of generality, we assume LRU is the default buffer
management policy. For a given object si ∈ S, BFCP will load the page p0 containing
the 1st NN of si when retrieving si’s nearest neighbor. However, the page p0 has a high

140 C. Chen et al.

chance to be replaced by LRU while BFCP retrieves the 1st NN of other objects in S.
However, if the distance between si and its 1st NN is very small, BFCP needs to find
out the 2nd NN of si, which is probably located in the page p0, due to the spatial
locality of the storage schema. Consequently, LRU might not be a proper buffer
management strategy for BFCP.

In order to design a policy to reduce the I/O cost of BFCP, we propose MDU
policy. It associates a “distance” parameter with each page p and is defined as
follows. Given a page p loaded into memory when searching for j-th NN (i.e., s.jNN)
of object s ∈ S, the distance of p is set to the network distance between s and s.jNN.

dis(p) = D(s, s.jNN)

In addition, the last reference time of each buffer page is still useful. For example,
consider a page p0 which contains only a source point s and its 1st NN. Page p0 might
have a very small distance value, but it will not contribute to the search other than
searching s.1NN. Because of its small dis(p) value, it will not be replaced.
Consequently, we also record the last reference time of each buffer page and hence
those pages that have small distance but have not been accessed for a long time could
be identified and replaced as well.

Therefore, MDU records two attributes for each buffer page p: the last reference
time t(p) and the distance dis(p). If a page replacement is required at the time of tnow,
it selects the page having largest TD value, with TD defined in the following.

() ()
() = (1-) 0 1now

now max

t - t p dis p
TD p +

t dis
λ λ λ× × ≤ ≤

Notice that parameters tmax and dismax are used to normalize the last reference time
t(p) and the distance dis(p) as they have different scales. Here tmax is set to tnow, the
largest last access time of all the buffer pages, and dismax is set to the largest distance
dis(p) of all the buffer pages. The parameterλis a tradeoff between the spatial
locality and temporal locality, when selecting a page to be replaced in the MDU
policy. The effect of λwill be discussed in section 5.

5 Experimental Evaluation

In this section, we present the experimental study conducted to evaluate the
performance of BFCP and other existing solutions. The real road network of
California [16], consisting of 21,048 nodes and 21,693 edges, is used as the sample
dataset. The nodes of graph correspond to the junctions of the road network. The
graph was stored on disk according to the storage schema introduced in [3]. The page
size is set to 4KB and the buffer size of both LRU and MDU is set to 10% of the size
of the data set on disk. As kCP query involves two datasets, we randomly sample the
nodes from the road networks to form datasets S and T, with their ratio (i.e., |S|/|T|)
controlled by a parameter. All the experiments are run on a Genuine 1.8GHZ CPU
desktop computer with 3GB memory. For each experiment, we execute 200 queries
and report the average result.

 An Incremental Approach to Closest Pair Queries in Spatial Networks 141

In section 5.1, we compare the performance of BFCP with CPNE, which is known
to incur the smallest CPU time and I/O cost when the datasets S and T have very
different cardinalities among all the online-computing algorithms for the kCP query
problem. In section 5.2, we explore the performance of MDU and compare it with
LRU, the most widely used page replacement policy.

5.1 Performance Comparison of BFCP and CPNE

We evaluated the performance of BFCP and CPNE with respect to the number of
NNs computations, CPU time and I/O cost, with different properties such as the size
of the two object sets and the value of k. As mentioned previously, we focus on the
cases where the cardinality difference between data sets S and T is large and/or k is
large. Consequently, the size of S varies from 0.0025|N| to 0.01|N|, while that of T
ranges from 0.025|N| to 0.1|N|, with |N| the number of the nodes in the road network.
The value of k ranges from 100 to 250. Notice that in this set of experiments, LRU is
employed as the default buffer management policy for both BFCP and CPNE. The
impacts of the three parameters on the performance of the two algorithms are shown
in Figures 1 to 3. As we can see in the figures, BFCP outperforms CPNE in both CPU
time and I/O cost, for the number of NNs computations (denoted as #NN) incurred in
BFCP is far less than that incurred in CPNE.

0.0025 0.0050 0.0075 0.0100

150

300

450

600

 cardinality ratio - |S|/|N|

N
um

be
r

of
 N

N

 CPNE
 BFCP

0.0025 0.0050 0.0075 0.0100

0.2

0.3

0.4

0.5

0.6

 cardinality ratio - |S|/|N|

C
P

U
 ti

m
e

(s
ec

s)

 CPNE
 BFCP

0.0025 0.0050 0.0075 0.0100
300

400

500

600

700

800

P
ag

e
A

cc
es

se
s

cardinality ratio - |S|/|N|

 CPNE
 BFCP

(a) |S| vs. #NN (b) |S| vs. CPU-time (c) |S| vs. I/O Cost

Fig. 1. The Impact of |S| (|T|=0.1|N|, k=100)

0.025 0.050 0.075 0.100
150

300

450

600

 cardinality ratio - |T|/|N|

N
U

m
be

r
of

 N
N

 CPNE
 BFCP

0.025 0.050 0.075 0.100

0.5

1.0

1.5

2.0

2.5

 cardinality ratio - |T|/|N|

C
P

U
 ti

m
e

(s
ec

s)

 CPNE
 BFCP

0.025 0.050 0.075 0.100
400

800

1200

1600

2000

P
ag

e
A

cc
es

se
s

cardinality ratio - |T|/|N|

 CPNE
 BFCP

(a) |T| vs. #NN (b) |T| vs. CPU-time (c) |T| vs. I/O Cost

Fig. 2. The Impact of |T| (|S|=0.01|N|, k=100)

142 C. Chen et al.

100 150 200 250

200

400

600

800

1000

1200

1400

k

N
um

be
r

of
 N

N

 CPNE
 BFCP

100 150 200 250

0.4

0.8

1.2

1.6

k

C
P

U
 ti

m
e

(s
ec

s)

 CPNE
 BFCP

100 150 200 250

0

400

800

1200

P
ag

e
A

cc
es

se
s

k

 CPNE
 BFCP

(a) k vs. #NN (b) k vs. CPU-time (c) k vs. I/O Cost

Fig. 3. The Impact of k (|S|=0.01|N|, |T|=0.1|N|)

5.2 Performance Comparison of MDU and LRU

In the second set of experiments, we evaluate the performance of MDU buffer
replacement policy, compared with LRU.

Impact of λ. We first evaluate the effect of parameter λon the performance of
MDU. It is observed that MDU with λ= 0.4 has the best performance (see Figure
4(a)).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
120

150

180

210

240

270

300

P
ag

e
A

cc
es

s

 k = 25
 k = 50
 k = 75
 k = 100

(a) λvs. I/O Cost

25 50 75 100

6

8

10

12

14

pe
rf

or
m

an
ce

 g
ai

n
(p

er
ce

nt
)

k

 (LRU-MDU)/MDU

(b) k vs. I/O Cost

Fig. 4. The Impact of λ (|S|=0.01|N|, |T|=0.1|N|)

MDU and LRU. Next, we compare MDU with λ＝ 0.4 against LRU under
different k values. We report the performance gain, as defined in the following:

BFCP-LRU - BFCP-MDU
performance gain = 100%.

BFCP-MDU
×

As shown in Figure 4(b), MDU outperforms LRU by reducing the false hits
significantly. For example, when k = 100, MDU achieves a performance gain of about
15%.

6 Conclusion

In this paper, we present a Best-First solution (BFCP) to kCP queries in SNDB. In
addition, a novel buffer replacement policy is proposed to reduce the false hits in our

 An Incremental Approach to Closest Pair Queries in Spatial Networks 143

algorithm. The performance of BFCP and MDU is tested on a real world network.
The results show that BFCP performs well, and MDU buffer replacement policy can
further improve its performance. We plan to explore the to monitoring of kCPs in a
dynamic network environment in the future. One possible solution is to maintain a
minimum spanning tree of each pair and update the result of kCPs through rebuilding
the structure of the minimum spanning trees.

Acknowledgment. This research is supported in part by the National Natural Science
Foundation of China (NSFC) under grant 61073001.

References

1. Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD
(1984)

2. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest Pair Queries
in Spatial Databases. In: SIGMOD (2000)

3. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network
Databases. In: VLBD (2003)

4. Sankaranarayanan, J., Samet, H.: Distance Join Queries on Spatial Networks. In: GIS
(2006)

5. Shekhar, S., Liu, D.: CCAM: A Connectivity-Clustered Access Method for Networks and
Network Computations. TKDE 19(1), 102–119 (1997)

6. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous Nearest Neighbor
Monitoring in Road Networks. In: VLDB (2006)

7. Kolahdouzan, M., Shahabi, C.: Voronoi-Based K Nearest Neighbor Search for Spatial
Network Databases. In: VLDB (2004)

8. Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.: A Road Network Embedding Technique
for k Nearest Neighbor Search in Moving Object Databases. Geoinformatica 7(3),
255–273 (2003)

9. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable Network Distance Browsing in
Spatial Databases. In: SIGMOD (2008)

10. Sankaranarayanan, J., Samet, H.: Distance Oracles for Spatial Networks. In: ICDE (2009)
11. Sankaranarayanan, J., Samet, H.: Path Oracles for Spatial Networks. In: VLDB (2009)
12. Effelsberg, W.: Principles of Database buffer Management. ACM TODS 9(4), 560–595

(1984)
13. O’Neil, E.J., Neil, P.E.O., Weikum, G.: The LRU-K Page Replacement Algorithm for

Database Disk Buffering. In: SIGMOD (1993)
14. Papadopoulos, A., Manolopoulos, Y.: Global Page Replacement in Spatial Databases. In:

DEXA (1996)
15. Brinkhoff, T.: A Robust and Self-tuning Page Replacement Strategy for Spatial Database

Systems. In: DEXA (2002)
16. Digital Chart of the World Server, http://www.maproom.psu.edu/dcw/

Fast Top-K Query Answering

Claus Dabringer and Johann Eder �

Alps Adria University Klagenfurt, Department of Informatics Systems
{Claus.Dabringer,Johann.Eder}@aau.at

Abstract. Efficient retrieval of the most relevant (i.e. top-k) tuples is an
important requirement in information management systems which access
large amounts of data. In general answering a top-k query request means
to retrieve the k objects which score best for an objective function. We
propose some improvements to the best position algorithm (BPA-2) [2].
To the best of our knowledge BPA-2 is currently the fastest available
top-k query answering approach based on the widely known and applied
Threshold Algorithm (short TA) of Fagin et al. [5]. Our proposed im-
provements lead to significantly reduced time and memory consumption
and better scalability compared to BPA-2: (1) we dynamically create
value rather than object based index structures out of the query re-
strictions posed by the user, (2) we introduce look-ahead techniques to
process those index structures. While BPA-2 processes all pre-calculated
indexes in parallel we always examine the most promising indexing struc-
ture next. We prototypically implemented our fast top-k query answering
(FTA) approach. Our experiments showed an improvement by one to two
orders of magnitude over BPA-2.

Keywords: Top-K Query Answering, Approximate Querying, Result
Ranking.

1 Introduction

In many application areas like search in real-estate databases, product catalogs
or scientific databases (such as biobanks [4]) we are frequently confronted with
overspecified queries, where users do not expect that all restrictions are satisfied
but they rather state their preferences or ideal query results. In traditional query
evaluation such queries return few or no results missing acceptable answer. Users
have to repeat the queries slightly relaxing the restrictions several times to satisfy
their information need. Top-k queries provide an approach to efficiently answer
such queries: They return the best k tuples according to an objective function.
The efficient retrieval of the top-k tuples matching the ideal object described
through a query without scoring each object in a database has attracted a lot of
research attention (see [7] for an overview). In this paper we focus on monotonous
objective functions, in particular on functions which are monotonous in each

� The work reported here was supported by the Austrian Ministry of Science and
Research within the program GENAU - project GATIB II.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 144–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fast Top-K Query Answering 145

attribute. We often see such functions when the overall score is expressed as
(weighted) sum or product of the degrees to which each restriction is fulfilled. In
[3] we showed that the usage of appropriate indexing techniques can speed up
query answer times by a factor of two to five. This work is a further development
of [3]. The major contributions of this work are:

– Improved performance for top-k queries by one or two orders of magnitude.
– The query answering process is improved with the help of a novel look-ahead

technique which always process the most promising index next.
– FTA basically uses a heuristic to determine the next index to examine.

Our algorithm can be classified according to the categorization for top-k ap-
proaches introduced by Ilya et al. in [7] as follows: Query Model : top-k selection
and top-k join, Data & query certainty: certain data, exact methods, Data ac-
cess : both sorted and random, Implementation level : application level, Ranking
function: monotone.

The rest of the paper is organized as follows: In section 2 we give a short
overview on related work and point out areas where the different approaches
can be further improved. We present our approach in section 3. In section 4 we
take a detailed look into the performance of our approach and evaluate it against
the best position algorithm BPA-2. In section 5 we draw some conclusions.

2 Related Work

The well known and widely applied Threshold Algorithm of Fagin et al. (in
short TA) [5] uses a pre-calculated index structure for evaluation of similarity. It
basically assumes m grades for each object in a database where m is the number
of different attributes. Fagin assumes for every attribute a sorted list which stores
each object and its similarity under a certain attribute value. TA processes the
given lists row by row and maintains a buffer of objects most similar to the ideal
object specified by the input query. Since the lists are ordered TA stops in case
k-objects have been identified and no unseen object has the chance of achieving
a higher score than the object with the lowest score stored in the buffer. The
fastest known approach based on TA’s idea is BPA-2 [2]. It relies on the same
assumptions as TA does, but incorporates an earlier stopping condition. For each
sorted list BPA-2 maintains the so called best position, i.e. the greatest position
such that any lower position in the list has already been examined. In each step
BPA-2 examines the next position after the best position in each list and does
random access to all other lists to find the similarity values of the processed
object there. With that technique BPA-2 achieves two improvements over TA:
(1) it avoids duplicate access to one and the same object and (2) it can stop
much earlier than TA does. In [2] the authors showed that BPA-2 can improve
query answering performance of TA up to eight times.

In [3] we already showed that the usage of different indexing techniques can
improve query answering times and memory requirements by a factor of two to
five. We generate an index entry for each distinct attribute value and proposed a

146 C. Dabringer and J. Eder

parallel stepwise processing of the generated indexes. Nevertheless, this parallel
stepwise processing of the index lists leads to examining many objects which
do not make it in the answer set. Therefore, we propose a novel look-ahead
technique and process always the most promising index structure next, i.e. our
heuristic is to choose the index structure with the highest similarity value in the
next position.

3 Top-K Query Answering

Our fast top-k query answering (FTA) approach is able to find the top-k objects
that satisfy the restrictions of an input query best. The approach is generic and
works not only on single relations but also on whole databases.

Supported Queries. We support a great range of queries which may contain
an arbitrary number of attributes from different tables as well as restrictions
affecting attributes from different tables. The restrictions can be very versatile
e.g. we are supporting any binary operator available in standard SQL as well
as range operators like BETWEEN. Restrictions composed of binary operators
consist of a left-hand attribute, an operator and a right-hand attribute or value.
An example restriction would be: age = 30. Additionally we introduce the op-
erator ’˜’. All restrictions formulated with ’˜’ as its operator are treated as soft
restrictions. Thus they are used for searching similar objects in case not enough
objects satisfied the strict restrictions.

Necessary Functions. One of the basic concepts of FTA is its flexibility since
users may customize and thus affect the ranking by providing a user defined
similarity and an objective function to the approach. FTA basically needs these
two functions to find the most interesting objects in a database. The functions
can be adapted by the user to reflect their needs appropriate, but FTA also works
out of the box since it is equipped with two standard functions. For FTA the
similarity function must be able to calculate the similarity between two values
of an attribute in a relation. The objective function is used by FTA to calculate
the rank or score of objects. It should reflect how well an object fulfils the given
restrictions, i.e. how similar an object’s attribute values are to the values in the
restrictions. These two functions can be passed to FTA in an initialization step
which precedes the actual searching for interesting objects. A concrete example
for both functions is given in section 4 where we instantiate the FTA approach.

3.1 How FTA Works

In contrast to traditional top-k approaches [6,5,9,2] which maintain preprocessed
index lists only on attribute level, FTA uses the provided similarity function to
efficiently retrieve a sorted similarity list (i.e. index) for any distinct attribute
value. Using the given similarity function our approach is able to generate sim-
ilarity lists during query processing. Since the index contains distinct attribute
values only, the memory requirements of the FTA approach are proportional to

Fast Top-K Query Answering 147

the selectivity of the restricted attributes. This leads to a significant speedup
compared to approaches which calculate similarity measures for each object un-
der each attribute [3]. Here we additionally introduce a novel look-ahead tech-
nique, which always processes the most promising index next.

Basically the FTA approach can be divided into two phases, (1) an initializa-
tion phase and (2) a processing phase. Within the first phase FTA is initialized
with two functions, namely the similarity function and the objective function.
The further FTA creates an index lookup structure based on the given restric-
tions. The second phase processes the index lists and fetches new objects until no
more objects are available or enough objects have been published. The following
piece of pseudo-code shows the process of obtaining the top-k objects for a given
list of restrictions.

program FTA (IN string tableName, IN Set restr, IN Number K,
IN Func Sim, IN Func Objective, OUT Set<object> objs)

var idx: Set<LookupTable>, buf: Set<object>, pubCnt: Number
begin

SetFunctions(Sim, Objective);
CreateIndexTables(restr, OUT idx);

while pubCnt < K and objects available
fetchObjects(tableName, idx, IN_OUT buf);
pubCnt := publishObjects(buf, idx, K, IN_OUT objs);

end-while
end.

The approach basically needs five input parameters. (1) The tableName is the
name of a certain relation containing the data to be searched. If more than one
table is involved in a top-k request we first generate a view joining together all
needed tables. (2) The restrictions which should be satisfied by the result tuples.
(3) The amount specifying the number of objects returned by the algorithm is
given via parameter K. (4) The reference to the similarity function which should
be used. (5) A reference to the objective function used for scoring the tuples
in the database. The output produced by the FTA approach is a sorted list of
K-objects. The search loop stops if K-objects have been published or in the case
there are no more objects in the database. In the following we take a deeper
look into the major parts of the FTA approach. We assume a relation R which
contains attributes a1 (number of seats), a2 (type of car).

Generation of index lookup tables. The final step in the initialization phase
is the generation of a set of index lookup tables for each restriction in the input
set. FTA creates all needed indexes during query processing very fast. Each of
the indexes contains all distinct values of a certain attribute and its similarity
to the restriction specified by the user. All indexes are ordered descending by
the similarity, i.e the best match is on top. The similarity is calculated using
the similarity function specified in the first step of the initialization. In example
ex-1 we assume the user specified the following restrictions as input parameters

148 C. Dabringer and J. Eder

Table 1. Generated index structures for example ex-1 sorted descending

(a) Similarity to
value 5 in R.a1

a1 Similarity

5 1

6 0,95

4 0,8

... ...

(b) Similarity to value
’Sedan’ in R.a2

a2 Similarity

Coupe 0,85

Van 0,4

SUV 0,3

... ...

for our FTA approach: (1) a1 ˜5, (2) a2 ˜sedan. Generating the index struc-
tures for example ex-1 results in an output like shown tables 1a, 1b. Within
CreateIndexTables all generated indexes are collected and returned to the FTA-
method. The created index tables allow a fast locating of interesting objects in
the processing phase which is described next.

Look Ahead. After the generation of an index structure for each restricted
attribute the lists are processed top-down, i.e. row by row from highest similarity
to the lowest. In contrast to BPA-2 and Fagin’s TA the FTA approach does not
process all lists in parallel. It maintains a separate current row-number ri for
each index i. With the help of the row-numbers FTA looks ahead to identify the
most promising index: i.e the index i for which i[ri + 1] is highest.

Fetching Objects. Within fetchObjects FTA makes use of the described look-
ahead technique to find the most promising index. It iterates over all available
indexes and searches the one with the highest similarity value in the next row.
Afterwards the best index is used to build a query and to fetch the next objects.
Finally all found objects are added to a buffer, iff the objects are not already
contained in it. For all added objects FTA computes the total score the objective
function. The function fetchObjects is called repeatedly by FTA and always
chooses the best index structure to search for objects. Assuming table 1a and
table 1b as the lookup structures FTA searches for objects with the following
attributes:

– Call-1: value 5 on attribute R.a1
– Call-2: value 6 on attribute R.a1
– Call-3: value ’Coupe’ on attribute R.a2
– ...

With the help of this look-ahead technique the FTA approach can ensure that
it always processes the most promising index next. This look-ahead technique
prevents from fetching objects of indexes with very low similarity values. Thus
the top-k objects can often be found without stepping down indexes that con-
tribute too little to the overall score w.r.t the objective function. Due to this
intelligent fetching FTA heavily utilizes the interesting indexes while it spares
the processing of minor interesting ones.

Fast Top-K Query Answering 149

Calculating the score of objects. FTA builds a list of similarity values for
a certain object with the help of the lookup tables. Since these index structures
store all distinct attribute values and their similarity values FTA can directly
obtain the similarity for each restricted attribute without a query against the
database. With the help of the user given objective function FTA calcuates the
score for the list of similarity values. The calculation of the objects’ score is
applied two times within FTA. (1) It is used to calculate the score of all objects
gathered within fetchObjects. The obtained score is then used within publishOb-
jects to decide whether to publish an object or not. (2) In publishObjects it is
used to calculate the maximum achievable score of all unseen objects. This is
done by creating an ideal object out of current rows from the lookup tables and
calculating its score. The maximum achievable score is used to publish objects
that have a higher score than all unseen objects.

Publishing Top-K objects. An object can be published (i.e. returned to the
user), if it is certainly in the answer set, i.e. the object is for sure within the top-k
objects for a query with the given restrictions. At the beginning of publishObjects
the score of a hypothetical best matching object is computed. Therefore, an
object with the values which are located in the row to be processed next is
created. After that the score of this object is calculated with the help of the
objective function. Since all indexes are ordered by decreasing similarity and the
objective function is monotonous we can conclude that each unseen object for
sure achieves a score which is lower or equal to the score of the hypothetical
object. This stems from the fact that each unseen object is located at least one
row after the current in at least one of the lookup tables. See [5] for a theoretical
justification for this publishing process.

4 Prototype and Experiments

FTA is a generic approach giving the possibility to define a similarity and an
objective function to influence the scoring mechanism. In section 3 we primar-
ily focused on how these two functions are used within FTA without talking
about concrete functions. Below we present two potential candidates for these
functions.

Similarity Function(s). When measuring the similarity between attribute val-
ues we distinguish between numerical values and categorical data. One possibil-
ity to calculate the similarity between two numerical values is the usage of the
Euclidean Distance [8]. It models the similarity in a way that the farther two
values are apart from each other, the smaller their similarity is. One possible
similarity function for categorical data is the inverse document frequency [10,1].
Implementations of these two similarity functions have been used during our
experiments.

Objective Function. Within our experiments we used the weighted sum of
all similarities as our objective function. With the definition of weights it is

150 C. Dabringer and J. Eder

possible to support user preference queries, e.g. by specifying how important
each restriction is.

Implementation. We implemented all algorithms described throughout this
paper in a 3-tier architecture: (1) the DB-layer containing our FTA approach
with the described similarity and objective function as well as BPA-2. This layer
is completely embedded in the database and thus implemented in PL-SQL as
stored procedures. (2) A database access layer which is used for sending queries to
a database and receiving results. (3) A QBE-GUI which allows easy specification
of top-k queries.

4.1 Experimental Setup

To make a more accurate statement about the performance of FTA we carried
out a detailed analysis and compared it with BPA-2. Within this paper we will
primarily focus on comparing the query answer time and the memory require-
ments of both approaches.

The Underlying Data Model. The data model used during the experiments
was a single relation containing nine attributes. Table 2 gives an overview on
the chosen datatypes and the selectivity of each attribute. The selectivity is
calculated as the inverse of the amount of distinct attribute values in the given
relation.

Table 2. Attribute characteristics of our test relation

Name Type Selectivity

a1 numerical 0.5

a2 numerical 0.1

a3 categorical 0.04

a4 numerical 0.02

a5 categorical 0.01

a6 numerical 0.004

a7 categorical 0.002

a8 categorical 0.001

a9 numerical 0.0001

Test Database. The test database was filled with randomly generated data. The
attributes of our test relation(s) are not correlated and their values are equally
distributed. Since BPA-2 holds all objects in memory an index on database level
does not affect query answering time for BPA-2. On the other hand FTA could
additionally benefit from such an index. When indexing the search attributes on
database level we found that FTA could improve its query answering time at
an average of 1,5. Nevertheless to ensure a fair comparison between FTA and
BPA-2 we decided to compare the query answering times without support of
database indexing techniques.

Fast Top-K Query Answering 151

Test Scenarios. For providing a meaningful analysis we adapted three param-
eters in our scenarios. (1) size of the relation: 10k, 20k, 50k, 100k, 200k and
500k entries, (2) amount of tuples to be returned: 10, 20, 50, 100, 250, 500, 1000
and (3) number of restricted attributes: 1 up to 9. The queries (Q1, Q2, ... Q9)
posted in the test runs were constructed in the following way: Query Q1 restricts
attribute a1, query Q2 additionally restricts attribute a2. Finally query Q9 re-
stricts all available attributes and thus has the lowest selectivity of all posted
queries. All these parameters were used in each possible combination for FTA
and for BPA-2. This gives 378 queries to be executed for both algorithms and a
profound basis to compare the two approaches.

4.2 Discussion of Results

Within this section we present six diagrams generated from the data produced
by our test runs. For comparing the two approaches we also defined ratios for
the query answer time (qat) and for the memory requirements:

1. ratioqat = qatBPA−2/qatFTA.
2. ratiomem = bufferdObjectsBPA−2/bufferdObjectsFTA

For the calculation of buffered objects we counted all objects fetched from the
database and stored in internal buffers for handling by the algorithms. For each
of the buffered objects both approaches calculated the objective function. We
did not take into consideration that BPA-2 maintains one list for each restriction
where all objects of the relation are stored. That would make the comparison
even worse for BPA-2. Thus we only counted all objects examined while stepping
down the sorted lists of BPA-2.

Figure 1,3,5 show the query answer time, ratioqat and ratiomem for a relation
with 500k entries and varying K. In figure 1 we observe that FTA grows in
a seemingly exponential way when the number of searched objects increases.
However for large databases the query answer time is still reasonable and for
FTA always by a factor of 10 to 35 below BPA-2. This information is illustrated
in figure 3 where the ratio for the query answer time between FTA and BPA-2 is
shown. We can also see that ratioqat is almost constant even when the number
of searched objects increases. The bursts were the ratioqat is increasing rapidly
stem from situations where FTA quickly finds enough objects in one of the best
indexes. Since BPA-2 always accesses one index after the other many minor
important objects are fetched and processed. This fetching and processing is
costly and results in a much higher query answer time. The further we can see
that for a reasonable amount of searched objects ratiomem (figure 5) is mostly
between two and six. Comparing these curves we can see that they are quite
similar to the ratioqat in figure 3.

In figures 2,4,6 we show the query answer time, ratioqat and ratiomem for
searching the top-100 objects in relations with varying size. The query answer
time (figure 2) and also the ratioqat (figure 4) grow in a seemingly exponen-
tial way. We can see that FTA gets much better than BPA-2 when the size of
the relation grows. The further the ratiomem also grows steadily when the size of

152 C. Dabringer and J. Eder

Fig. 1. Query answer times of FTA on
a relation with 500k objects and vary-
ing search amount K

Fig. 2. Query answer times of FTA for
searching the top-100 objects in rela-
tions with different size

Fig. 3. Ratio of query answer times on
a relation with 500k objects and vary-
ing search amount K

Fig. 4. Ratio of query answer times
searching the top-100 objects in rela-
tions of different size

Fig. 5. Ratio for amount of examined
objects on a relation with 500k objects
and varying search amount K

Fig. 6. Ratio for amount of examined
objects searching the top-100 objects in
relations of different size

Fast Top-K Query Answering 153

the relations gets larger. We can conclude that FTA compared to BPA-2 gets
better the larger the amount of objects in the search relation is.

Additionally, we found that (1) when posting two queries with equal selectivity
the query with fewer restricted attributes can be answered faster, and (2) when
posting two queries with an equal amount of restricted attributes the query with
the higher selectivity can be answered faster. In summary, FTA was faster for
most test cases by one to two orders of magnitude.

5 Conclusion

The goal of all these efforts is to reduce the effort for users to retrieve relevant in-
formation from large databases where they typically fall into the recall/precision
trap. We have shown that our algorithm for computing the top-k tuples outper-
forms BPA-2 of Akbarinia et al. [2]. To the best of our knowledge BPA-2 is
the fastest top-k query answering approach based on the well known TA of Fa-
gin et al. In our experiments FTA returned the k-objects 10 to 35 times faster
than BPA-2. This performance speedup is achieved with the help of a different
value based indexing structure and a novel look-ahead technique. The gain for
query answering is the greater the smaller the fraction of returned tuples vs.
the database size. In typical application areas for such queries, this ratio is typ-
ically large. Additionally, our algorithm proved to have much smaller memory
requirements compared to BPA-2.

References

1. Agrawal, S., Chaudhuri, S.: Automated ranking of database query results. In:
CIDR, pp. 888–899 (2003)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: Proc. of the 33rd Intl. Conf. on VLDBs, VLDB 2007 (2007)

3. Dabringer, C., Eder, J.: Efficient top-k retrieval for user preference queries. In:
Proc. of the 26th ACM Symposium on Applied Computing (2011)

4. Eder, J., Dabringer, C., Schicho, M., Stark, K.: Information systems for federated
biobanks. Trans. on Large Scale Data and Knowledge Centered Systems (2009)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Proc. of the 2001 ACM Symp. on Principles of Database Systems. ACM, New
York (2001)

6. Guntzer, U., Balke, W.-T., Kiessling, W.: Optimizing multi-feature queries for
image databases. In: Proc. of the 26th Int. Conf. on VLDBs, pp. 419–428. Morgan
Kaufmann, San Francisco (2000)

7. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. ACM Comput. Surv. 40(4), 1–58 (2008)

8. Lesot, M., Rifqi, M., Benhadda, H.: Similarity measures for binary and numerical
data. Int. J. Knowl. Eng. Soft Data Paradigm. 1, 63–84 (2009)

9. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible
databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)

10. Robertson, S.: Understanding inverse document frequency: on theoretical argu-
ments for idf. Journal of Documentation 60, 503–520 (2004)

Towards an On-Line Analysis of Tweets

Processing

Sandra Bringay1,2, Nicolas Béchet3, Flavien Bouillot1,
Pascal Poncelet1, Mathieu Roche1, and Maguelonne Teisseire1,4

1 LIRMM – CNRS, Univ. Montpellier 2, France
{bringay,bouillot,poncelet,mroche}@lirmm.fr

2 Dept MIAp, Univ. Montpellier 3, France
3 INRIA Rocquencourt - Domaine de Voluceau, France

nicolas.bechet@inria.fr
4 CEMAGREF – UMR TETIS, France
maguelonne.teisseire@cemagref.fr

Abstract. Tweets exchanged over the Internet represent an important
source of information, even if their characteristics make them difficult to
analyze (a maximum of 140 characters, etc.). In this paper, we define a
data warehouse model to analyze large volumes of tweets by proposing
measures relevant in the context of knowledge discovery. The use of data
warehouses as a tool for the storage and analysis of textual documents
is not new but current measures are not well-suited to the specificities
of the manipulated data. We also propose a new way for extracting the
context of a concept in a hierarchy. Experiments carried out on real data
underline the relevance of our proposal.

1 Introduction

In recent years, the development of social and collaborative Web 2.0 has given
users a more active role in collaborative networks. Blogs to share one’s diary,
RSS news to track the lastest information on a specific topic, and tweets to pub-
lish one’s actions, are now extremely widespread. Easy to create and manage,
these tools are used by Internet users, businesses or other organizations to dis-
tribute information about themselves. This data creates unexpected applications
in terms of decision-making. Indeed, decision makers can use these large volumes
of information as new resources to automatically extract useful information.

Since its introduction in 2006, the Twitter website1 has developed to such
an extent that it is currently ranked as the 10th most visited site in the world2.
Twitter is a platform of microblogging. This means that it is a system for sharing
information where users can either follow other users who post short messages
or be followed themselves. In January 2010, the number of exchanged tweets
reached 1.2 billion and more than 40 million tweets are exchanged per day3.
1 http://twitter.com
2 http://www.alexa.com/siteinfo/twitter.com
3 http://blog.twitter.com/2010/02/measuring-tweets.html

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 154–161, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://twitter.com
http://www.alexa.com/siteinfo/twitter.com
http://blog.twitter.com/2010/02/measuring-tweets.html

Towards an On-Line Analysis of Tweets Processing 155

When a user follows a person, the user receives all messages from this person, and
in turn, when that user tweets, all his followers will receive the messages. Tweets
are associated with meta-information that cannot be included in messages (e.g.,
date, location, etc.) or included in the message in the form of tags having a special
meaning. Tweets can be represented in a multidimensional way by taking into
account all this meta-information as well as associated temporal relations. In this
paper, we focus on the datawarehouse [1] as a tool for the storage and analysis
of multidimensional and historized data. It thus becomes possible to manipulate
a set of indicators (measures) according to different dimensions which may be
provided with one or more hierarchies. Associated operators (e.g., Roll-up, Drill-
down, etc.) allow an intuitive navigation on different levels of the hierarchy.

This paper deals with different operators to identify trends, the top-k most
significant words over a period of time, the most representative of a city or
country, for a certain month, in a year, etc. as well as the impact of hierarchies
on these operators. We propose an adapted measure, called TF -IDFadaptive,
which identifies the most significant words according to level hierarchies of the
cube (e.g., on the location dimension). The use of hierarchies to manage words in
the tweets enables us to offer a contextualization in order to better understand
the content. We illustrate our proposal by using the MeSH4 (Medical Subject
Headings) which is used for indexing PubMed articles5.

The rest of the paper is organized as follows. Section 2 describes a data model
for cubes of tweets and details the proposed measure. In Section 3, we consider
that a hierarchy on the words in tweets is available and propose a new approach
to contextualize the words in this hierarchy. We present some results of con-
ducted experiments in Section 4. Before concluding by presenting future work,
we propose a state-of-the-art in Section 5.

2 What Is the Most Appropriate Measure for Tweets?

2.1 Preliminary Definitions

In this section we introduce the model adapted to a cube of tweets. According
to [2], a fact table F is defined on the schema D = {T, . . . , Tn, M} where Ti

(i = 1, .., n) are the dimensions and M stands for a measure. Each dimension Ti

is defined over a domain D partitioned into a set of categories Cj . We thus have
D = ∪jCj . D is also provided with a partial order #D to compare the values
of the domain D. Each category represents the values associated with a level of
granularity. We note e ∈ D to specify that e is a value of the dimension D if there
is a category Cj ⊆ D such that e ∈ ∪jCj . Note that two special categories are
distinguished and are present on all dimensions: ⊥D et $D ∈ CD corresponding
respectively to the level of finer and higher granularity. In our approach, the
partial order defined on the domains of the dimensions stands for the inclusion
of keywords associated to the values of the dimensions. Thus, let e1, e2 ∈ ∪jCj

be two values, we have e1 #D e2 if e1 is logically contained in e2.
4 http://www.ncbi.nlm.nih.gov/mesh
5 http://www.ncbi.nlm.nih.gov/PubMed/

http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/PubMed/

156 S. Bringay et al.

2.2 The Data Model

We instantiate the data model of the previous section to take into account the
different dimensions of description and propose a specific dimension to the words
associated to tweets.

Let us consider, for example, the analysis of tweets dedicated to the Duncan
diet (e.g., ”The Dukan diet is the best diet ever, FACT!!! Its just meat for me
for the next 5 day YEESSS”). We wish, for example, to follow the comments or
opinons of different people on the effectiveness of a diet. In order to extract the
tweets, we query Twitter using a set of seed words: Duncan, diet, slim, protein,
etc.. In this case, the original values of the word dimension are dom(word) = {
Duncan, diet, slim, protein, ...}.

Figure 1 illustrates the data model. We find the dimension (location ⊥location

= City ≤ State ≤ Country ≤ $location), and the dimension time (⊥time =
day ≤ month ≤ semester ≤ year ≤ $time).

Fig. 1. The schema related to a diet application

The domain of the word dimension is that of the seed words with the words
appearing frequently with them. In the fact table, several measures may be used.
Traditionally it is the TF-IDF. This issue is addressed in the next section.

2.3 Towards an Appropriate Measure

Relying only on knowledge of the hierarchy in a cube does not always allow
a good aggregation (i.e., corresponding to a real situation). For instance, the
characteristics of the words in tweets are not necessarily the same in a State and
in a City. The aggregation measure that we propose is based on approaches from
Information Retrieval (IR).

In our process, the first step is to merge the number of occurrences of words
specific to a level. More precisely, we list all the words located in tweets that
match a given level (e.g., City, State, Country). If the user wishes to focus the
search on a specific City, the words from the tweets coming from this city form a
vector. We can apply this same principle to the State by using a Roll-up operator.
The aim of our work is to highlight the discriminant words for each level.

Towards an On-Line Analysis of Tweets Processing 157

Traditionally, TF -IDF measure gives greater weight to the discriminant
words of a document [3]. Like [4], we propose a measure called TF -IDFadaptative

aiming to rank the words according to the level where the user is located and
defined as follows:

TFi,j − IDF k
i =

ni,j∑
k nk,j

× log2
|Ek|

|{ek
j : ti ∈ ek

j }|
(1)

where |Ek| stands for the total number of elements of type k (in our example,
k = {City, State, Country}) which corresponds to the level of the hierarchy that
the decision maker wants to aggregate. |{ej : ti ∈ ej}| is relative to the number
of elements of type k where the term ti appears.

3 A Hierarchy of Words for Tweets

In this section, we adopt a hierarchy on the words to allow the contextualization
of words in tweets.

3.1 The Data and the Model

For the hierarchy, we use the MeSH (Medical Subject Headings)6 National Li-
brary of Medicine’s controlled vocabulary thesaurus. It consists of sets of terms
naming descriptors in a twelve-level hierarchy that permits the search to be car-
ried out at various levels of specificity. At the most general level of the hierarchi-
cal structure are very broad headings such as ”Anatomy” or ”Mental Disorders”.
More specific headings are found at more narrow levels, such as ”Ankle” and
”Conduct Disorder”. In 2011, 26,142 descriptors are available in MeSH. There
are also over 177,000 entry terms that assist in finding the most appropriate
MeSH Heading, for example, ”Vitamin C” is an entry term to ”Ascorbic Acid”.

The data model is updated to take into account this new dimension. Compared
to the previous model (See Figure 1) the dimension ”Word” has been replaced
by MeSHWord. MeSHWord has a partial order, #MeSHWord, to compare the
different values of the domain. One of the main problems with the use of this
thesaurus is that different terms may occur at various levels in the hierarchy.
This ambiguity raises the problem of using operators like Roll-up or Drill-down
to navigate in the cube. In order to illustrate this problem let us consider the
following example.

Example 1. Let us consider the following tweet: ”pneumonia & serious nerve
problems. can’t stand up. possible myasthenia gravis treatable with meds.”. If
we look in MeSH for the descriptor pneumonia, we find this term occurring in
several places (See Figure 2). Depending on the position in the hierarchy, a Roll-
up operation on pneunomia will not give the same result (i.e., ”respiratory tract
diseases” versus. ”lung diseases”).

6 http://www.nlm.nih.gov/pubs/factsheets/mesh.html

http://www.nlm.nih.gov/pubs/factsheets/mesh.html

158 S. Bringay et al.

Fig. 2. An example of the MeSH thesaurus

3.2 How to Identify the Context of a Tweet?

We have shown in Example 1, the difficulty of locating the context of a term in
the hierarchy. However, a closer look at the tweet shows that the words them-
selves can be helpful to determine the context. In order to disambiguate pol-
ysemous words in the hierarchy of MeSH, we adapt the AcroDefMI3 method
described in [5] where the authors show the efficiency of this method in a biomed-
ical context. This measure is based on the Cubic Mutual Information [6] that
enhances the impact of frequent co-occurrences of two words in a given context.
For a context C, AcroDefMI3 is defined as follows:

AcroDefC
MI3(m1, m2) =

(nb(m1 and m2 and C))3

nb(m1 and C)× nb(m2 and C)
(2)

In our case, we want to calculate the dependence between a word m to disam-
biguate and different words mt of the tweets using the context of the hierarchy
(i.e., parents p of the word m).

Example 2. Let us consider the word ’pneunomia’ to disambiguate in Example
1. Here we calculate the dependence between this word m and the other words
following ’pneumonia’ (nouns, verbs, and adjectives are selected with a Part-of-
Speech process): ’serious’ and ’nerve’. This dependence is calculated regarding
the context of both possible fathers in the MeSH hierarchy. In order to predict
where in the MeSH thesaurus we have to associate the word ’pneunomia’, we
perform the following operations:

– nb(pneunomia, mt, ”lung diseases”) = 227 (number of returned pages with the queries

’pneunomia serious ”lung diseases”’ and ’pneunomia nerve ”lung diseases”’)

– nb(pneunomia, mt, ”respiratory tract infections”) = 496

The dependence of the terms is given by:

– AcroDef”lung diseases”

MI3 (pneunomia, mt) = 0.02

– AcroDef”respiratory tract infections”

MI3 (pneunomia, mt) = 0.11

Thus, in the tweet from Example 1, for the word pneunomia, we will preferably
do the aggregation at the level of the concept ’respiratory tract infections’ of the
MeSH.

Towards an On-Line Analysis of Tweets Processing 159

Note that this step of disambiguation, which is essential for data from MeSH,
is quite costly in terms of the number of queries. It therefore seems more appro-
priate to call these functions during the ETL process rather than carrying out
such processing when browsing the cube.

4 Experiments

In order to evaluate our approach, several experiments were conducted. These
were performed using PostgreSQL 8.4 with the Pentaho Mondrian 3.20 environ-
ment. To extract the tweets related to the vocabulary used in MeSH, we focus
on the tweets related to ”Disease” and queries Twitter by using all the terms
of the corresponding hierarchy. We collected 1,801,310 tweets in English from
January 2011 to February 2011. In these experiments, we analyze the first words
returned by the TF-IDFadaptive (highest scores). For example, the following ta-
ble presents the first 12 words of tweets in the United States, for the State of
Illinois and the City of Chicago during the month of January 2011.

United Sates Illinois Chicago

wart risk risk
pneumonia vaccination wart
vaccination wart pneumonia

risk pneumonia wood
lymphoma wood colonoscopy

common cold colonoscopy x-ray
disease x-ray death

meningitis encephalitis school
infection death vaccination
vaccine school eye infection

life eye infection patient
hepatitis man russia

Now we consider an example of the application of our approach. Figures 3
and 4 visualize the worldwide coverage of the words hepatitis and pneunomia
excluding the United States, the United Kingdom, and Canada. This coverage
is obtained by fixing the location dimension and by examining the frequency of
the Word over the period.

Fig. 3. Distribution of the use of the word
hepatitis

Fig. 4. Distribution of the use of the word
pneunomia

Finally we evaluated the prediction measure (i.e., AcroDefMI3) within the
MeSH hierarchy (see section 3.2). We extracted more than 5,000 Facebook mes-
sages (the same kind of messages as tweets) from the food topic. These messages

160 S. Bringay et al.

contain at least one polysemous term (i.e. a term which can be associated to
the hierarchy food and beverages) and one or two other hierachies of MeSH:
Eukaryota, lipids, plant structures, and so forth. A correct prediction means
that AcroDefMI3 associates this polysemous term with the food and beverages
concept. In the following table, three types of elements are used in order to
characterize the hierarchy (context of the AcroDefMI3 measure): Father (F),
grand-father (GF), and father + grand-father (FGF). This table shows that (1)
the use of more generic information (grand-father) is more relevant, (2) the asso-
ciation of all the available information improves the quality of the prediction. In
our future work we plan to add other hierarchical information (e.g. son, cousins).

Elements of the hierarchy used F GF FGF

Prediction 60.8% 63.6% 68.0%

5 Related Work

The analysis of textual data from tweets has recently been addressed in many
research studies and many proposals exist. For example, in [7], the authors pro-
pose analyzing the content of the tweets in real time to detect alarms during
an earthquake. The authors of TwitterMonitor [8] present a system to auto-
matically extract trends in the stream of tweets. A quite similar approach is
proposed in [9]. However, to the best of our knowledge, most existing studies
mainly focus on a specific analysis of tweets and do not provide general tools for
the decision maker (i.e., for manipulating the information embedded in tweets
according to their needs). Thus, few studies have been interested in the use of
cubes to manage tweets. Recent work has focused on integrating textual data
in data warehouses. In this context, aggregation methods suitable for textual
data have been proposed. For example, in [10], the authors propose using Natu-
ral Language Processing techniques to aggregate the words with the same root
or the same lemmas. They also use existing semantic tools such as Wordnet
or Roget to group words together. Apart from using morpho-syntactic and se-
mantic knowledge, other studies consider numerical approaches from the field
of Information Retrieval (IR) to aggregate textual data. Thus, the authors of
[11] propose aggregating documents according to keywords by using a semantic
hierarchy of words found in the datawarehouses and some measures from IR.
Such methods from IR are also used in the work of [2] which takes into account
a ”context” and ”relevance” dimension to build a datawarehouse of textual data
called R-cube. Other approaches add a new specific dimension. For example, in
[12], the authors add a ”topic” dimension and apply the PLSA approach [13] to
extract the themes representing the documents in this new dimension. Finally, in
[14] the authors propose aggregating parts of documents to provide the decision
maker with words specific to the aggregation. In this context, the authors use
a first function to select the most significant words using the classical TF -IDF
measure.

Towards an On-Line Analysis of Tweets Processing 161

6 Conclusion

In this paper we proposed a new approach to analyze tweets from their mul-
tidimensional characteristics. The originality of our proposal is to define and
manipulate cubes of tweets. We have shown through two different models and
applications: no predefined hierarchy on tweets (i.e., diet analysis) and existing
hierarchy (i.e., using the MeSH thesaurus), that the analysis of tweets requires
the definition of new measures and that a contextualization step is relevant.

Future work involves several issues. First we want to extend the proposed
approach to take into account opinions or feelings expressed in the tweets. Recent
studies analyze the mood of people (e.g., http://twittermood.org/). We want to
enhance these approaches by analyzing the content of tweets and thus be able
to automatically extract knowledge such as: who are the people who followed a
diet and are dissatisfied? Secondly, we wish to consider tweets as available in the
form of a stream and propose new techniques for efficiently storing the data.

References

1. Codd, E., Codd, S., Salley, C.: Providing OLAP (On-Line Analytical Processing)
to User-Analysts: An IT Mandate. In: White Paper (1993)

2. Pérez-Mart́ınez, J.M., Llavori, R.B., Cabo, M.J.A., Pedersen, T.B.: Contextual-
izing data warehouses with documents. Decision Support Systems 45(1), 77–94
(2008)

3. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

4. Grabs, T., Schek, H.J.: ETH Zurich at INEX: Flexible Information Retrieval from
XML with PowerDB-XML. In: Grabs, T., Schek, H.J. (eds.) XML with PowerDB-
XML. INEX Workshop, pp. 141–148. ERCIM Publications (2002)

5. Roche, M., Prince, V.: Managing the acronym/expansion identification process for
text-mining applications. Int. J. of Software and Informatics 2(2), 163–179 (2008)

6. Daille, B.: Approche mixte pour l’extraction automatique de terminologie: statis-
tiques lexicales et filtres linguistiques. PhD thesis, Université Paris 7 (1994)

7. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake Shakes Twitter Users: Real-time
Event Detection by Social Sensors. In: Proceedings of WWW, pp. 851–860 (2010)

8. Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter
stream. In: Proceedings of SIGMOD, Demonstration, pp. 1155–1158 (2010)

9. Benhardus, J.: Streaming trend detection in twitter. In: National Science Founda-
tion REU for Artificial Intelligence, NLP and IR (2010)

10. Keith, S., Kaser, O., Lemire, D.: Analyzing large collections of electronic text using
olap. Technical Report TR-05-001, UNBSJ CSAS (2005)

11. Lin, C.X., Ding, B., Han, J., Zhu, F., Zhao, B.: Text Cube: Computing IR Measures
for Multidimensional Text Database Analysis. In: Proc. of ICDM, pp. 905–910
(2008)

12. Zhang, D., Zhai, C., Han, J.: Topic cube: Topic modeling for olap on multidimen-
sional text databases. In: Proc. of SIAM, pp. 1123–1134 (2009)

13. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of Uncertainty in
Artificial Intelligence, UAI 1999, pp. 289–296 (1999)

14. Pujolle, G., Ravat, F., Teste, O., Tournier, R.: Fonctions d’agrégation pour
l’analyse en ligne (OLAP) de données textuelles. Fonctions TOP KW et AVG KW
opérant sur des termes 13(6), 61–84 (2008)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 162–170, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Fix-Point Method for Discrete Events Simulation
Using SQL and UDF

Qiming Chen, Meichun Hsu, and Bin Zhang

HP Labs
Palo Alto, California, USA

Hewlett Packard Co.
{qiming.chen,meichun.hsu,bin.zhang2}@hp.com

Abstract. In this work we focus on leveraging SQL’s expressive power and
query engine’s data processing capability for large scale discrete event
simulation.

The challenge of using SQL query for discrete event simulation is that the
simulation involves concurrent operations where the past events, the future
events and the pending events (not fully instantiated yet) must be taken into
account; but a SQL query is a set-wise operation that only cares of the current
state. Specifically when the pending events are recursively generated as a result
of processing primary events, there is no way to “insert” them back to the
chronological sequence of input data, or to introduce a “clock” to the query
processing. Due to these difficulties, there is no effort on using SQL query for
discrete event simulation has been reported yet.

We propose a mechanism for discrete event simulation, where a
chronological sequence of input records, which bear pending events, are
processed by a SQL query recursively until reaching the fixpoint with all the
pending events instantiated. This approach is characterized by leveraging the
pipelined query processing to serialize concurrent events as well as to scope
event chaining, and in this way to generate concurrent events incrementally and
efficiently. Our experience reveals its flexibility and scalability.

1 Introduction

Discrete event simulation helps users to diagnose the operations, identify the
bottlenecks, and understand the performance KPIs (Key Performance Indicators) of a
system such as worker utilization, on-time delivery rate, customer waiting time,
etc1,5,6]. Complex event simulation is the counterpart of Complex Event Processing
(CEP) [3]; they share the principles in concurrent event serialization, propagation, etc.

In discrete-event simulation, the operation of a system is represented as a
chronological sequence of events. An event occurs at an instant time and marks a
change of state in the system. As a result of processing a primary event, other pending
events (not fully instantiated) may be subsequently created; the event propagation
may be chained since a pending event may further result in other pending events.
When multiple queues exist, concurrent events may present to each of them, even if
the primary events are ordered by time. In the conventional event simulation, for

 The Fix-Point Method for Discrete Events Simulation Using SQL and UDF 163

time- sequencing the instantiated and pending events, typically a system clock is used
for pointing to the next event.

The major challenge of using SQL query for discrete event simulation lies in that
discrete event simulation involves concurrent operations where both past events and
future events must be taken into account; however, a SQL query is a set-wise
operation that only cares of the current state. In query based event processing, the
input tuples, that bear the primary events to be instantiated, are processed
sequentially, but the subsequently derived pending events are hidden from the input
sequence, and there is no way to “insert” them back to the input data; it is also
difficult to associate a “clock” to the query processing. Due to these difficulties, to the
best of our knowledge, so far no effort on using SQL query for discrete event
simulation has been reported.

Motivated by integrating events simulation with data warehousing for scalability
and data-access efficiency [2-4], we research into the issues of using SQL query with
User Defined Functions (UDFs) to generate discrete event simulation data, where a
chronological sequence of input records, which bear pending events, are processed by
a SQL query recursively until reaching the fixpoint with all the pending events
instantiated. This approach is characterized by leveraging the pipelined query
processing to serialize concurrent events as well as to scope event chaining, and in
this way to generate concurrent events incrementally and efficiently. Our experience
reveals its flexibility and scalability.

2 Discrete Event Simulation Using SQL

For easy understanding let us start with an example where customers access services;
we consider a service_access event as a composite event with the time for a customer
to arrive the queue of a service and the time to leave the service. A service_access
event with the time of entering the queue instantiated but the time of leaving the
service not instantiated yet, is called a pending event. A pending event is instantiated
by filling the time departing from the service; the instantiation of a pending event may
result in another pending event (e.g. a customer arrives the queue of another service).
Hereafter by events we refer to such service_access events.

The query for generating events is applied to a sequence of Event Bearing Records
(EBR) which bear the events, either instantiated or not. In the above example, an EBR
is the trajectory of a customer of accessing several services, e.g. when the customer
arrives queue A, leaves A, arrives queue B,… etc. If N customers are concerned then
there will be N EBRs (trajectories). The simulation is to fill in the time entries of the
trajectory of each customer based on the preset or randomly generated plan (the
planned order of accessing the services), as well as the concurrent events of other
customers. Once all the trajectories are fully instantiated, various events and system
statuses, such as the length of a given queue at a given time, the average waiting time,
etc, can be derived from these trajectories. In this sense, event generation is made by
EBR instantiation.

We consider three services A, B, C and accordingly three customer queues - one
for a service. Each service is associated with an individual random number generator
for assigning, on the fly, a random service-time in minutes within a given range.

164 Q. Chen, M. Hsu, and B. Zhang

There exist 15 possible routes for a customer to access one or more services, such
as <A>, <A, C>, <C, A>, <B, C, A>, …etc, which are referred to as routing plans and
identified by integers. We record the trajectory of a customer in an EBR with the
following attributes.

[custID, eventTime, planID, nextService, arriveA, departA, arriveB, departB, arriveC, departC]

where

− a (composite) event for a customer to access a service is identified by custID,
serviceID, timeArrive, timeDepart; if the value of timeDepart has not been determined
yet, we call it a pending event;

− the time a customer arrives to the queue of the “nextService” is given as the value
of “eventTime” and abbreviated by Tnpe, which characterizes the next pending
event. Note that Tnpe is not a static, but an updatable timestamp.

Initially, a EBR is only filled with customer ID, routing plan ID, the first service

ID and the corresponding eventTime, Tnpe, i.e. the customer-arrival time to the first
service queue, such as

[5, ‘9:20’, 6, ‘C’, 0, 0, 0, 0, 0, 0]

The time entries of arriving and departing A, B and C, if applicable by the plan, are
filled step by step during the simulation, representing the trajectory of a customer in
accessing these services. When all the applicable entries are filled, we say that the
EBR is fully instantiated, or completed. From the EBRs of all customers, the system
state and event at any time can be derived, and therefore we turn our event generation
task to the instantiation of these EBRs which log the events.

The EBRs containing pending events are buffered with a UDF and processed in the
ascending order of Tnpe. Before processing an input EBR (either updated or completed
depending on its plan), with Tnpe, t, all the buffered EBRs with Tnpe, earlier than t must
be processed in the ascending order of Tnpe; if a further pending event e with Tnpe
within t, is derived as a result of processing a buffered EBR, the EBR will be
(logically) moved back and inserted in the position consistent with the time order, and
processed again later for instantiating event e. As the basic rule, a pending event can
be instantiated only when all the related history (e.g. related to the same service) is
known.

Based on this mechanism, the input EBR is actually processed last, after all the
buffered EBRs with Tnpe, earlier than t have been processed. This is because the history
of events before t is fully known, after t is not fully known. We limit the cascade
generation of pending events later than t to make the computation consistent (since the
Tnpe of the next query input is unknown) and incremental; this will be explained later.

A EBR is completed if all the applicable service specific arrival time and departure
time are non-zero; in this case the Tnpe is filled with 0 and the next service is filled
with NULL. In the above example, EBR

[5, 0, 6, NULL, 0, 0, ‘9:30’, ‘9:45’, ‘9:20’, ‘9:30’]

is completed thus no further processing required; it indicates that customer 5 with
plan 6 accesses service C from 9:20 to 9:30, then accesses service B from 9:30 to
9:45.

 The Fix-Point Method for Discrete Events Simulation Using SQL and UDF 165

In summary, with our algorithm, a chronological sequence of EBRs, L, is
processed one by one. During the processing of an input EBR, with Tnpe as t, the EBRs
previously buffered and subsequently updated with Tnpe earlier than t are processed as
well. The completed EBRs are put in a new chronological sequence, L’. By the end of
processing L, all the incomplete EBRs remained in the cache will be appended to L’
to be process in the next run, until all the EBRs become completed. Such incremental
and recursive treatment is suitable for SQL query implementation. The events and
the status of the simulated system, such as the average waiting time distribution over a
time period, etc, can be easily derived from the EBRs using SQL.

An EBR is defined as a composite type (a tuple); thus the above ESF returns tuples
to feed in the query. The initial customer trajectory table can be loaded by a query
using ESF function scan, as

 INSERT INTO trajectories SELECT * FROM init_event_gen (5, 420, 540);

In the following we discuss how to use SQL and UDF to generate simulation data.
Note that although a query operation is set-oriented, the query evaluation is tuple-by-
tuple pipelined; thus we do not rely on the query result, but rely on the process of
query evaluation, to guarantee the serialization in discrete event simulation.

As the simulation query may generate subsequent pending events to be held in
EBRs as a result of event processing. When a pending event is instantiated, a further
pending event may be resulted, so on and so forth. As mentioned earlier, a pending
event cannot be processed without the full knowledge about the events before it for
access the same queue. How to infer such prior knowledge and act accordingly in a
query with UDF, presents the major challenge.

3 Fix-Point Query Evaluation for Discrete Events Simulation

We developed a mechanism to generate discrete event simulation data by recursively
evaluating a SQL query, i.e. recursively applying the same query to its last result, to
the fixpoint with no new results generated. The input as well as the output of the
query is a chronological sequence of EBRs. An execution of the query updates the
input EBRs based on their plans and the system status, using UDFs. In each
subsequent run, the completed EBRs are just pass-through (directly returned as it); the
incomplete ones are processed steps further. Eventually, all the EBRs are fully
instantiated from the initial EBRs, R0, by applying a query Q recursively, i.e.

Q(…Q(Q(R0))…)

to the fixpoint, i.e. no new results are derivable.
The key to this mechanism is relying on pipelined query processing to serialize

event processing, and correctly streamlining event derivation and pending event
processing.

Event Generation along with EBR Evolvement. In the example given above, a
EBR records the trajectory of a customer with multiple service_access (composite)
events, each records when the customer arrives the service queue and departs from the
service; if the value of timeArrival has, but timeDepart has not, been determined, it is

166 Q. Chen, M. Hsu, and B. Zhang

treated as a pending event. An EBR has at most one pending event at any time; its
state bears the historical and next step trajectory of the customer.

A chronological sequence of EBR tuples are processed by the query with UDFs.
The UDF is provided with a buffer to keep the EBRs containing pending events in the
ascending order of Tnpe. On each input EBR, the UDF acts in the following way.

− An input EBR with Tnpe, t is first put in the buffer, and together with other buffered
EBRs with Tnpe earlier than t, processed in the ascending time order.

− If a further pending event e having Tnpe within t, is derived as a result of
instantiating a buffered EBR, that EBR will be moved back and inserted in the
position consistent with the time order, and processed again later for instantiate
event e.

− Completed EBRs are returned from the UDF and removed from the buffer.

To make the order of processing pending events deterministic, we defined a
priority order of services, say, A, B, C, and use the order of custIDs as the priority
order of customers, such that in the events with the same timestamps, the one with
higher service priority is considered the earlier event; if they have the same service
priority, the one with higher customer priority is considered the earlier event. Note
that no customer can access more than one service at a time.

The serialization concurrent event simulation is triggered and controlled by the
query processing, which allows us to avoid the difficulty of handling clock in
querying.

As the basic rule, a pending service_access event in a EBR with timestamp (Tnpe) t
can be instantiated only when all the related history (e.g. related to the same service)
is known, i.e., after all the related pending events earlier than t have been processed.
For the same reason, a pending event with time stamp beyond t cannot be generated.
We limit the scopes of pending event generation and processing based on this rule for
computation consistency, and based on the pipelined query processing for incremental
simulation.

Cut Point of Event Processing and Derivation wrt Each Input Tuple. Triggered
by handling a query input tuple (EBR) with Tnpe as t, the previous pending events with
Tnpe earlier than t will be instantiated based on the above rule. Although instantiating
one pending event may result in another pending event. We have the pending events
later than t left to the subsequent tuple processing, or event the next cycle query
processing.

Refer to Fig. 1, the input EBRs are ordered by time. A UDF, evolve(), is introduced
that is a table function with one EBR tuple (as a composite value) as its input and a
set of EBRs as output where the result set may be empty for a particular invocation.
This UDF may buffer an input EBR, instantiate its pending event, as well as process
the previously buffered EBRs with pending events. It is also provided with the
random number generators, one for each service, for assigning a random service time
per customer_arrival event. It may return the input EBR, the updated EBR or nothing
in an invocation.

 The Fix-Point Method for Discrete Events Simulation Using SQL and UDF 167

Fig. 1. The forming of concurrent events as a result of processing input events sequence

The query for generating customers’ trajectories may be written as

SELECT evolve(t.*, 10000) FROM (SELECT * FROM trajectories ORDER BY eventTime) t;

where 10000 is the maximal number of EBRs buffered.
The rules for naïve evaluation are simple; certain optional optimization will be

discussed later.

− For each input EBR, say ebrt if it is a completed EBR, or the buffer size already
reaches the given limit, then it is returned; otherwise it is buffered. A primary
event, say et with timestamp t, is read from ebrt and processed together with the
already buffered and cascade derived pending events with timestamps earlier than
t. Any complete EBR after the above processing is removed from the buffer and
sent to the output. After processing the last tuple, all the remaining EBRs are
output from the table UDF, to be processed in the next run of the query.

− The fixpoint can be easily checked to see whether the query

SELECT * FROM trajectories WHERE eventTme > 0;

 returns NULL.

Let us use Xt to represent a pending event to access service X with
customer_arrival time (i.e. Tnpe) t. In the first run, the input events, the pending events
as a result of processing the input events, the events processed as triggered by the
input events, and the content of the buffer relating to service B are shown below.

Time Input pending
event

Events
processed

Forward event Buffered events for B

9:00 A9:00 A9:00 B9:11 B9:11

9:10 A9:10 A9:10 B9:21 B9:11, B9:21

9:15 B9:15 B9:11, B9:15 B9:21

9:20 C9:20 C9:20 B9:30 B9:21, B9:30

9:22 B9:22 B9:21, B9:22 B9:30

Service A

Service B

Service C
9:20

9:00 9:10

9:15 9:22 9:11
9:21

9:30

9:00

9:10

9:15

9:20

9:22

A

A

B

C

B

Input events

derived events

A

B

C

168 Q. Chen, M. Hsu, and B. Zhang

Then in the second run, all the completed EBRs are copied from query input to query
output (or filtered), only the following event is processed.

Time Input pending
event

Events
processed

Forward event Buffered events for B

9:30 B9:30 B9:30

After the second run, the recursion reaches the fixpoint, meaning that all the

planned customer trajectories are generated.
Given the initial EBRs

[5, ‘9:00’, 4, ‘A’, 0, 0, 0, 0, 0, 0]; [6, ‘9:10’, 4, ‘A’, 0, 0, 0, 0, 0, 0]; [7, ‘9:15’, 2, ‘B’, 0, 0, 0, 0, 0, 0];
[8, ‘9:20’, 6, ‘C’, 0, 0, 0, 0, 0, 0]; [9, ‘9:22’, 2, ‘B’, 0, 0, 0, 0, 0, 0]

After first iteration, they become

These EBRs become the input of the next run; after the second iteration

After this run, the simulation data generation is completed.
In short, the query runs a single query iteratively, and in each iteration, processes

the whole temporal events (e.g. from 9am to 4pm), rather than by low-level code step
by step following the clock. In each run, it is guaranteed that any incomplete EBR
will be evolved at least one step.

The optional optimization is to extract the completed EBRs from the input of next
iteration for reduced data load, which can be easily accomplished by filter the query
results of the last run on condition “eventTime > 0” before the next run.

There exist various options to organize the SQL statements for generating the
simulation data. Below is one option to write a query to be run iteratively: having
the trajectory table extended with an additional integer attribute cycle to distinguish
the EBRs generated in different executions of the query.

9:22 (complete) [9, 0, 2, NULL, 0, 0, ‘9:22’, ‘9:27’, 0, 0]

9:20 [8, ‘9:30’, 6, ‘B’, 0, 0, ‘9:30’, 0, ‘9:20’, ‘9:30’]

9:15 (complete) [7, 0, 2, NULL, 0, 0, ‘9:15’, ‘9:20’, 0, 0]

9:10, 9:22 (complete) [6, 0, 4, NULL, ‘9:10’, ‘9:21’, ‘9:21’, ‘9:26’, 0, 0]

9:00, 9:15 (complete) [5, 0, 4, NULL, ‘9:00’, ‘9:11’, ‘9:11’, ‘9:16’, 0, 0]

Updated Time EBR

-[9, 0, 2, NULL, 0, 0, ‘9:22’, ‘9:27’, 0, 0]

9:30 [8, 0, 6, NULL, 0, 0, ‘9:30’, ‘9:35’, ‘9:20’, ‘9:30’]

-[7, 0, 2, NULL, 0, 0, ‘9:15’, ‘9:20’, 0, 0]

-[6, 0, 4, NULL, ‘9:10’, ‘9:21’, ‘9:21’, ‘9:26’, 0, 0]

-[5, 0, 4, NULL, ‘9:00’, ‘9:11’, ‘9:11’, ‘9:16’, 0, 0]

Updated Time EBR

 The Fix-Point Method for Discrete Events Simulation Using SQL and UDF 169

INSERT INTO trajectories
 SELECT cycle+1, evolve(t.*, 10000) FROM
 (SELECT * FROM trajectories ORDER BY eventTime) t
WHERE cycle = (SELECT MAX(cycle) FROM trajectories);

Using the above query, the complete trajectories may be generated in different
cycles but can be easily retrieved under the time = 0 or nextService = NULL
condition.

Incremental Event Generation. The proposed event generation is linearly scalable
because it proceeds incrementally along a moving buffer of EBRs. A chronological
sequence of input EBRs is processed one by one. Handled by a table UDF, the event
generation is triggered by processing each input EBR, ebrt with Tnpe as t, together with
those buffered EBRs with Tnpe earlier than t.

4 Experiments and Conclusions

We have implemented the proposed approach on the extended PostgreSQL query
engine, and demonstrated its merit by the discrete event generation for a proprietary
enterprise application. We tested the scalability of using SQL query to generate
discrete event simulation data, and leant that it can scale linearly to very large size of
input data. Most stand-alone simulation programs include a clock to keep track of the
current simulation time, and require buffering all pending events in memory, which
limits their scalability. The execution time of simulation varies wrt the number of
service queues, as well as the throughput of the events, e.g. the number of customers
and their arrival intervals, which is represented by the length of the UDF buffer. We
set 20 hypothetic services and generated the input data in such a time intervals that
keeps the UDF buffer size less than 10000, which means the more input data, the
longer the time covered by the simulation. To focus, we omit further data derivation
and analysis on the customer trajectories, and use the following basic query that is
listed before:

SELECT evolve(t.*, 10000) FROM (SELECT * FROM trajectories ORDER BY eventTime) t

It runs 3 cycles to reach the fixpoint. In each subsequent run, the completed EBRs,
if not filtered from input (not shown here), are just pass-through the UDF (directly
returned as it); the incomplete ones are further processed. The experimental results are
shown in Fig 2.

These experimental results are measured on HP xw8600 with 2 x Intel Xeon
E54102 2.33 Ghz CPUs and 4 GB RAM, running Windows XP (x86_32) and
PostgreSQL 8.4.1; these results show that the simulation time is roughly linear to the
input size, thus our approach can deal with very big data set, relying on the scalability
of the database system. When the simulation task require the data already stored in the
database, push data-intensive computation down to the data management layer allows
fast data access and reduced data move. Further, our approach makes the event
generation incremental thus limiting the memory consumption. All these contribute to
high scalability and performance.

170 Q. Chen, M. Hsu, and B. Zhang

Query execution time for events generation

0

500

1,000

1,500

1M 10M 20M 50M 100M

number of EBRs

q
u
er

y
ex

ec
u
ti
o
n
 t
im

e

(s
ec

)

Fig. 2. Query time for discrete event generation with respect to input volume

With our approach, a chronological sequence of input records, which bear pending
events, are processed by a SQL query recursively until reaching the fixpoint with all
the pending events instantiated. This approach is characterized by leveraging the
pipelined query processing to serialize concurrent events and to scope event chaining,
and in this way to generate concurrent events incrementally and efficiently. Since the
proposed discrete event simulation approach is integrated with data warehousing, it
can be elaborated for knowledge discovery, information prediction and forecasting.

References

1. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of modeling and simulation: Integrating
discrete event and continuous complex dynamic systems, 2nd edn. Academic Press, London
(2000)

2. Bryant, R.E.: Data-Intensive Supercomputing: The case for DISC. CMU-CS-07 128 (2007)
3. Chen, Q., Hsu, M., Zeller, H.: Experience in Continuous analytics as a Service (CaaaS). In:

Proc. EDBT (2011)
4. DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S., Krioukov,

A.: Clustera: An Integrated Computation And Data Management System. In: VLDB 2007
(2008)

5. Robinson, S.: Simulation - The practice of model development and use. Wiley, Chichester
(2004)

6. Tan, K.L., Thng, L.-J.: SNOOPY Calendar Queue. In: Proc. 32nd Winter Simulation
Conference (2000)

Approximate and Incremental Processing of

Complex Queries against the Web of Data

Thanh Tran, Günter Ladwig, and Andreas Wagner

Institute AIFB, Karlsruhe Institute of Technology, Germany
{ducthanh.tran,guenter.ladwig,a.wagner}@kit.edu

Abstract. The amount of data on the Web is increasing. Current exact
and complete techniques for matching complex query pattern against
graph-structured web data have limits. Considering web scale, exactness
and completeness might have to be traded for responsiveness. We pro-
pose a new approach, allowing an affordable computation of an initial
set of (possibly inexact) results, which can be incrementally refined as
needed. It is based on approximate structure matching techniques, which
leverage the notion of neighborhood overlap and structure index. For ex-
act and complete result computation, evaluation results show that our
incremental approach compares well with the state of the art. Moreover,
approximative results can be computed in much lower response time,
without compromising too much on precision.

1 Introduction

Recently, large amounts of semantic data has been made publicly available
(e.g., data associated with Web pages as RDFa1 or Linked Data2). The effi-
cient management of semantic data at Web-scale bears novel challenges, which
have attracted various research communities. Several RDF stores have been im-
plemented, including DB-based solutions such as RDF-extensions for Oracle and
DB2, Jena, Sesame, Virtuoso or native solutions for RDF like OWLIM, HStar,
AllegroGraph, YARS [10], Hexastore [17] and RDF-3X [14]. Recently, also IR
technologies, in particular the inverted index has been proposed for managing
RDF data [18].

We observe that all these systems focus on computing complete and exact
answers. Exact matching in a Web setting (with billions of RDF triples), how-
ever, results in unacceptable response times especially w.r.t. complex SPARQL3

queries. The success of current Web search engines suggest that exact matching
might be not needed. A more practical direction towards responsive and scal-
able solutions for Web-scale semantic data management is approximate matching
equipped with sophisticated mechanisms for ranking. In this paper, we focus on
the problem of approximate matching and how to refine matches incrementally.
1 http://w3.org/TR/xhtml-rdfa-primer/
2 http://www.w3.org/DesignIssues/LinkedData.html
3 http://www.w3.org/TR/rdf-sparql-query/

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 171–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf-sparql-query/

172 T. Tran, G. Ladwig, and A. Wagner

Fig. 1. a) A data graph, b) its structure index graph and c) a query graph

Contribution. We propose an approach for matching complex query patterns
against the Web of Data. Our approach allows an “affordable” computation of an
initial set of approximate results, which can be incrementally refined as needed.
Our main contributions are:

– We propose a pipeline of operations for graph pattern matching, where results
can be obtained in an incremental and approximate manner. We thereby
allow a trade-off between precision and response time.

– Via four phases, results are reported early and can be incrementally refined
as needed: First, entities matching the query are computed. Then, structural
relationships between these entities are validated in the subsequent phases.
To our knowledge, this is the first proposal towards a pipelined processing of
complex queries for incremental result
computation.

– For processing structural relationships, we introduce a novel approximate
structure matching technique based on neighborhood overlap and show how
it can be implemented efficiently using Bloom filters [3]. Another approxi-
mation is introduced for result refinement, which instead of using the large
data graph, operates at summary level.

– Via a benchmark, we show that our incremental approach compares well
w.r.t. time needed for computing exact and complete results. Further, it is
promising w.r.t. approximate result computation.

Outline. In Section 2, we define the problem, describe the state-of-the-art and
compare it to our approach. We discuss entity search in Section 3. In Section
4, we present our approximate structure matching technique, followed by the
refinement phase in Section 5. We present an evaluation in Section 6. Finally,
we conclude with Section 7.

Approximate and Incremental Processing of Complex Queries 173

2 Overview

In this section, we define the problem, discuss the state-of-the-art, highlight our
main contributions and compare them with related work.

Definition 1. A data graph G is a tuple (V, L, E) where V is a set of nodes
connected by labeled edges l(v1, v2) ∈ E ⊆ V × V with v1, v2 ∈ V and l ∈ L.
Further, V is the union VE % VD with VE representing entity nodes and VD

representing data nodes. E is the union E = ER % EA, where ER ⊆ VE × VE

represents relations between entity nodes and EA ⊆ VE × VD stands for entity
attributes.

Note, our graph-structured data model is of interest in the Semantic Web and
database community, as it captures RDF4, XML and relational data. Further,
we consider conjunctive queries, a fragment of many query languages (e.g., SQL
and SPARQL).

Definition 2. A conjunctive query q = (Vv % Vc, Pr % Pa) is an expression
p1 ∧ . . . ∧ pn, where pi ∈ Pr % Pa are query atoms of the form p(n1, n2) with
n1 ∈ Vv,n2 ∈ Vv % Vc being variables Vv or constants Vc otherwise, and pi

are called predicates. We distinguish between relation query atoms pr ∈ Pr

and attribute query atoms pa ∈ Pa, where pr and pa are drawn from labels
of relation edges ER and attribute edges EA respectively. Relation query atoms
paths (pr1 , . . . , prk

) contained in q have maximum length kmax.

Note, conjunctive queries can be conceived as graph patterns (corresponding to
basic graph patterns in SPARQL). Fig. 1a, 1c depict a data and a query graph
q(Vq = Vv % Vc, Pq = Pr % Pq), with atoms as edges and variables (constants)
as nodes. A match of a conjunctive query q on a graph G is a mapping μ from

Bisimulation

1. Entity
Search

Final
Results

Conjunctive
Queries

Indexing Entities &
Entities’ Neighborhood

2. Intersecting Entities’
Neighborhood

3. Structure-based
Result Refinement

4. Structure-based
Answer Computation

Relation
Index

Entity &
Neigborhood

Index

Structure
Index

Structure-based
Partitioning & Indexing

RDF DATA

Intermediate, Approximately Matched Results

Fig. 2. Offline data preprocessing and online query answering

4 http://www.w3.org/TR/rdf-primer/

http://www.w3.org/TR/rdf-primer/

174 T. Tran, G. Ladwig, and A. Wagner

variables and constants in q, to vertices in G such that the according substitution
of variables in the graph representation of q would yield a subgraph of G. Query
processing is a form of graph pattern matching, where the resulting subgraph of
G exactly matches q. All such matching subgraphs are returned. As opposed to
such an exact and complete query processing, an approximate procedure might
output results, which only partially match the query graph (i.e., a result matches
only some parts of q). A query processing procedure is incremental, when results
computed in the previous step are used for subsequent steps.

Related Work. Much work in RDF data management targets orthogonal prob-
lems, namely data partitioning [1] and indexing [10,17]. We now discuss related
approaches that focus on the problem of query processing.

– Query Processing. Matching a query against a data graph is typically per-
formed by retrieving triples and joining them along the query atoms. Join
processing can be greatly accelerated, when the retrieved triples are already
sorted. Sorting is the main advantage of vertical partitioning [1] and sextu-
ple indexing [17] approaches, which feature data partitioning and indexing
strategies that allow fast (nearly linear) merge joins. Further efficiency gains
can be achieved by finding an optimal query plan [14].

– Approximate Query Processing. Above approaches deal with exact and com-
plete query processing. In the Semantic Web community, notions for struc-
tural [11] and semantic approximation [7] have been proposed. So far, the
focus is on finding and ranking answers that only approximately match a
query. In database research, approximate techniques have been proposed
for “taming the terabytes” [8,5,2]. Here, focus lies on efficiency. Instead of
using the actual data, a query is processed over an appropriate synopsis
(e.g., histograms, wavelets, or sample-based). Further, a suitable synopsis
for XML data as been suggested [15], in order to compute approximate an-
swers to twig-pattern queries. Unlike approaches for flat relational data [8],
the synopsis used here takes both structural and value-based properties of
the underlying data into account. Essentially, the synopsis is a structural
summary of the data, which is augmented with statistical information (e.g.,
count or value distribution) at nodes and edges.

– Incremental Query Processing. Related to our incremental approach is work
on top-k query processing. Different algorithms for top-k query processing
have been proposed [12]. Here, the goals is to not compute all results, but
to allow early termination by processing only the k best results.

Overview of our Approach. Fig. 2 illustrates the main concepts and tech-
niques of our approach. The data graph is broken down into two parts. While
attribute edges a ∈ EA are stored in the entity index, relations r ∈ ER are
stored in the relation index. Also, a summary of the data (structure index [16])
is computed during data preprocessing. These indexes are employed in various
operators in the pipeline, which we propose for query processing. We rely on
sorted merge join and reuse related techniques [1,17]. However, as opposed to
such exact and complete techniques, operations in our pipeline match the query

Approximate and Incremental Processing of Complex Queries 175

against the data in an approximate way to obtain possibly incorrect answers
(which are refined during the process). Instead of operating on all intermediate
answers, it is possible to apply a cutoff or let the user choose the candidates at
every step.

Firstly, we decompose the query into entity queries and perform an entity
search (ES), storing the results in sorted entity lists with a maximum length of
cutoff . These results match attribute query atoms only. The next step is approx-
imate structure matching (ASM): we verify if the current results also match the
relation query atoms. By computing the overlap of the neighborhood of the enti-
ties obtained from the previous step, we verify if they are “somehow” connected,
thereby matching the relation query atoms only in an approximate way. Dur-
ing structure-based result refinement (SRR), we further refine the matches by
searching the structure index (a summary of the data) for paths, which “might”
connect entities via relation query atoms. Only in the final step (structure-based
result computation (SRC)), we actually use edges in the data graph to verify if
these connections indeed exist, and output the resulting answers (exactly match-
ing the query).

Example 1. During ES, we obtain 4 entity queries {qx, qz, qu, qv} from the initial
query (Fig. 1c), and the corresponding results {(p1, p3, p5, p6), i1,
u1, c1}, for a cutoff ≤ 4. This and the results of the subsequent refinement
steps are summarised in Table 1. During ASM, we find that all p1, p3, p5 are
somehow connected with the other entities, leading to 3 tuples. During SRR,
we find out that p5 is in the extension E6, and that this structure index node
has no incoming supervise edge. Thus, p5 cannot be part of an answer to qx.
During SRC, we observe that the previous approximate techniques lead to one
incorrect result: p3 could not be pruned through ASM, because p3 knows p1,
and is thus “indirectly” connected with the other entities i1, u1, c1. p3 could also
not be pruned through SRR, because when looking only at the summary (i.e.,
structure index), p3 exhibits the same structure as p1 (i.e., it is also in E2) and
thus, must be considered as a potential result. Clearly, using SRC we can not
find out that p3 is actually not connected with i1 via worksAt (thus, could be
ruled out).

Design Rationales and Novelties. Our design is based on the observation
that state-of-the-art techniques perform well w.r.t queries containing highly se-
lective atoms (e.g., attribute atoms with a constant). Query atoms contain-
ing variables (e.g., relation query atoms), on the other hand, are more expen-
sive. Considering Web-scale, these query atoms become prohibitive. Processing
type(x, y) or friendOf (x, y) for instance, requires millions of RDF triples to be re-
trieved. When dealing with complex graph patterns having many relation query
atoms (that might involve a large number of triples), we propose a pipeline of
operations, which starts with “cheap” query atoms to obtain an initial set of
approximate answers, and incrementally continues with refining operations via
more expensive query atoms.

Work on data partitioning and indexing [1,10,17] are orthogonal, and com-
plement our solution. Also, existing techniques for exact and complete query

176 T. Tran, G. Ladwig, and A. Wagner

processing based on sorted merge join are adopted [1,17]. Building upon these
previous works, we present the first solution towards a pipelined processing of
complex queries on Web data, enabling results to be computed approximately,
incrementally, and reported early.

Table 1. The different re-
sults for ES, ASM, SRR
and SRC

ES
qx qz qu qv

p1 i1 u1 c1
p3 i1 u1 c1
p5 i1 u1 c1
p6 i1 u1 c1

ASM
qx qz qu qv

p1 i1 u1 c1
p3 i1 u1 c1
p5 i1 u1 c1

SRR
qx qz qu qv

p1 i1 u1 c1
p3 i1 u1 c1

SRC
qx qz qu qv

p1 i1 u1 c1

In particular, our approach is the first approximate
technique for querying RDF data, which is capable
of trading precision for time: approximately matched
results can be reported early, and when needed, re-
sult precision can be improved through several sub-
sequent refinement steps. Compared to existing tech-
niques, the structure refinement step (SRR) resembles
a technique for approximate twig pattern matching
[15]. The difference is that our structure index is a
synopsis for general graph-structured data, while the
synopsis employed in [15], is for hierarchical XML data
only. Different from any previous techniques, we in-
troduce an additional level of approximation. This is realized by ASM, a novel
approximate join operator that exploits the notion of neighborhood overlap for
structure matching.

As opposed top-k approaches, our incremental approach does not compute the
best, but all approximate results, which are then iteratively refined in several
steps. In particular, we do not focus on ranking aspects in this work and simply
apply a predefined cutoff to prune large results.

Fig. 3. a) The transformed query graph obtained in ES, b) the structure index match
computed in SRR and c) SRC through joins along the structure index match

3 Entity Search

Let us first describe offline entity indexing and then online entity search.

Entity Indexing. Attributes a ∈ EA that refer to a particular entity are
grouped together and represented as a document (ENT-doc) in the inverted
index. We use structured document indexing – a feature supported in standard
IR engines such as Lucene – to store entities’ attributes values in different fields:
we have (1) extension id : the entity’s extension id (used for SRR, c.f. Sec. 5);

Approximate and Incremental Processing of Complex Queries 177

(2) denotations : the entity’s URI and names; (3) attributes : concatenation of
attribute/value; (4) k-neighborhood : neighbor entities reachable via paths with
max. length k.

Query Decomposition. The goal is to parse the query graph q for computing
intermediate results as follows:

– Entity queries QE. Each entity query qvar ∈ QE is composed of a set of
attribute query atoms pa(var , con) ∈ Pa. Every qvar requires entities var to
have attribute values, matching the specified constants con ∈ Vc.

– Maximum distance. dmax
qx

is the max. distance between an entity query qx ∈
QE and the other qy ∈ QE , where distance dqx(qy) between qx and qy is the
length of the shortest path of relation atoms connecting the variable nodes
x and y.

– Transformed query. q′(QE ⊆ Vq′ , Pr) contains entity queries qe ∈ QE as
nodes and relation query atoms pr ∈ Pr connecting these nodes. This is a
compact representation of q, where attribute query atoms pa are collapsed
into the entity queries qe, i.e., each entity query node in q′ represents a set
of attribute query atoms from q.

For result computation, we select an attribute query edge pa(var, con) ran-
domly and create an entity query qvar for the node var. Other attribute query
edges referring to the same node var are added to qvar. Starting with this en-
tity query node, we construct the transformed query graph q′ by breadth-first-
searching (BFS) q. We add visited relation query atoms as edges to the trans-
formed query, and when attribute query atoms are encountered, we use them to
create entity queries in same way as we did for pa(var, con). During the traver-
sal, the length of visited relation chains are recorded. This allows us to compute
the distance for every entity query pair. That is, for every entity query qx, we
compute its distance dqx(qy) to other entity queries qy. Finally, the maximum
distance is computed for every entity query qx from this information, i.e., dmax

qx

= arg max{dqx(qy) : qx, qy ∈ QE}.
Processing Entity Queries. Every entity query is evaluated by submitting its
attribute query atoms as a query against the entity index, i.e., qe = {pa1(e, con1),
. . . , pan(e, conn)} is issued as a conjunction of terms “pa1//con1,. . . , pan//conn”.
We use Lucene as the IR engine for indexing and for answering entity queries
specified as keywords. Given qe, this engine returns a sorted list of matching
entities, where the maximum length of the list is less than a predefined cutoff
value.
Example 2. The query q shown in Fig. 1c is decomposed into the entity queries
qx, qz, qu, qv, resulting in the transformed query q′ (Fig. 3a). For this, we start
with age(x, 29) to create qx = {age(x, 29)}. Then, we traverse the relation edges
to obtain q′ = {qx, worksAt(qx, z), authorOf(qx, y)}. Further, encountering
name(z, AIFB) results in z = qz = {name(z, AIFB)}. The process contin-
ues for the remaining edges of q. For entity search, entity queries like qx for
instance, is submitted as “age//29” to obtain the list of entities (p1, p3, p5, p6).

178 T. Tran, G. Ladwig, and A. Wagner

4 Approximate Structure Matching

So far, the entity query parts of q have been matched, while the remaining
pr still have to be processed. Typically, this structure matching is performed
by retrieving triples for the entities computed previously (i.e., edges e ∈ ER

matching pr), and joining them along pr. Instead of an equi-join that produces
exactly matched results, we propose to perform a neighborhood join based on
the intersection of entities’ neighborhoods. We now define this novel concept
for approximate structure matching and discuss suitable encoding and indexing
techniques.

Definition 3. The k-neighborhood of an entity e ∈ VE is the set Ee
nb ⊂ VE

comprising entities that can be reached from e via a path of relation edges er ∈ ER

of maximum length k. A neighborhood overlap e1 ��nb e2 between two entities
e1, e2 is an evaluation of the intersection Ee1

nb ∩Ee2
nb, and returns true iff e1 ��nb

e2 �= ∅ s.t. e1 is connected with e2 over some paths of relations e ∈ ER, otherwise
it returns false. A neighborhood join of two sets E1 ��nb E2 is an equi-join
between all pairs e1 ∈ E1, e2 ∈ E2, where e1 and e2 are equivalent iff e1 ��nb e2

returns true.

Managing neighborhood via Bloom filters. For every entity node e ∈ VE ,
we compute its k-neighborhood via BFS. Then, all elements in this neighborhood
(including e) are stored in the entity index using the neighborhood field. We store
the neighborhoods of entities as Bloom filters [3], a space-efficient, probabilistic
data structure that allows for testing whether an element is a member of a set
(i.e., the neighborhood). While false negatives are not possible, false positives
are. The error probability is (1 − e−f×n/m)f , where m is the size of the Bloom
filter in bits, n is the number of elements in the set and f is the number of hash
functions used [3]. During the neighborhood computation, we count the number
of neighbors n for each entity, and set the parameter m and f according to a
probability of false positive that can be configured as needed.

Approximate matching via Bloom filters. Checking for connection between
two entity queries qe1 , qe2 ∈ QE can be achieved by loading candidate triples
matching query edges pr and then performing equijoins between the candidates
and the entities E1, E2 obtained for qe1 , qe2 . However, because this may become
expensive when a large number of triples match edges pr, we propose to check for
connections between these entities in an approximate fashion via a neighborhood
join E1 ��nb

Efilter
E2. This operates on the Bloom filters associated with the

entities only, i.e., does not require retrieval and join of triples. In particular, the
join is evaluated by processing e1 ��nb e2 for all e1 ∈ E1 and e2 ∈ E2 in a nested
loop manner, using the filters of elements in E1 or E2 denoted by Efilter .

For processing e1 ��nb
e2

e2, we evaluate if e1 ∈ Ee2
nb using the filter of e2. Per-

forming neighborhood overlap this way requires that the neighborhood index
built for e2 covers e1, i.e., k ≥ de2(e1). This means that for supporting queries
with relation paths of a maximum length kmax

q , we have to provide the appro-
priate neighborhood index with k = kmax

q . Note that for checking connections

Approximate and Incremental Processing of Complex Queries 179

between entities in the lists E1 and E2 along a chain of k query atoms pr, only
one set of Bloom filters has to be retrieved to perform exactly one neighborhood
join, while with the standard approach, k + 1 equi-joins have to be performed
on the triples retrieved for all pr.

The approximate matching procedure based on this neighborhood join concept
is shown in Alg. 1. It starts with the center query node qcenter , i.e., the one
with lowest eccentricity such that maximum distance to any other vertex is
minimized (where eccentricity(qx) = dmax

qx
, the distance information computed

previously). From qcenter , we process the neighbor query nodes by traversing
them in depth-first search (DFS) fashion. For every qneighbor in the current DFS
path, we neighborhood join the entities associated with this node with entities
in the result table A (line 1). Note, at the beginning, we marked the center
node as qfilter . This is to indicate that filters of Eqcenter should be used for
neighborhood join as long as possible, i.e., until finding out that Eqneighbor

is at
a distance greater than k. In this case, we proceed with the filters of EqlastSeen

,
the elements lastly processed along the path we currently traversed (line 1). By
starting from qcenter, we aim to maximize the “reusability” of filters.

Example 3. The 2-neighborhoods for p1, p3, p5 and p6 are shown in Fig. 3a. For
instance, for p1 the neighborhood is obtained by BFS to reach the 1-hop neigh-
bors p3, i1 and a1 and finally, the 2-hops neighbors p5, u1 and c1. In Fig. 2a, we
illustrate the bloom filter encoding of the neighborhood of p3, using three hash
functions. We start with entities for qx (Fig. 3a), as it has the lowest eccentricity
of 2, i.e., qx = qcenter . Via BFS of the query starting from qx, we arrive at the 1-hop
neighboring query nodes qz and y. First, we use the filters of Eqx (k = 2) to check
for overlap between entities Eqx and Eqz , i.e., lookup if i1 is in any of the filters
retrieved for p1, p3, p5 and p6 (Fig. 2b) – to find out that e1 ��nb pn �= ∅, except
for pn = p6. Since y is not an entity query, no processing is required here. When
encountering 2-hops neighboring nodes qu and qv, we find that the current filters

Algorithm 1: Approximate Matching based on Neighborhood Join

Input: Transformed query q′(QE ⊆ Vq′ , pr(x, y) ∈ Pr). Every entity query
qe ∈ QE is associated with a set of entities Eqe .

Result: Table A, where each row represents a set of connected entities.
qcenter ← ARGMIN{eccentricity(qi) : qi ∈ QE}1

qfilter ← qcenter2

A ← Eqcenter3

while ∃qe ∈ QE : ¬visited(qe) do4

qneighbor ← qe ∈ QE obtained via DFS along pr from qcenter5

if dqfilter (qneighbor) > k then6

qfilter ← qlastSeen, where qlastSeen is the one lastly seen along the path7

currently traversed via DFS
end8

A ← A ��nb
Eqfilter

Eqneighbor9

end10

return A11

180 T. Tran, G. Ladwig, and A. Wagner

are still usable, because distance to these nodes dqx(qu), dqx(qv) = k = 2. If k = 1
instead, we would need to retrieve the filter of i1 to check for set membership of
u1, i.e., set qfilter = qz for processing qu.

5 Structure-Based Result Refinement and Computation

Result of the previous step is a set of tuples. Every tuple is a set of entities that
are somehow connected, i.e., connected over some unknown paths. During refine-
ment, we want to find out whether they are really connected via paths captured
by query atoms. For this, we propose the structure-based result refinement, which
helps to refine the previous results by operating against a summary called the
structure index. Using the summary, we check if tuples computed in the previous
step match query relation paths. If so, the final step called structure-based result
computation is performed on the refined tuples.

Structure Index for Graph Structured Data. Structure indexes have been
widely used for semi-structured and XML data [4,13,6]. A well-known concept
is the dataguide [9], which is a structural description for rooted data graphs.
Dataguide nodes are created for groups of data nodes that share the same in-
coming edge-labeled paths starting from the root. Similar to this concept, a
structure index has been proposed for general data graphs [16]. Nodes in a
structure index stand for groups of data elements that have equal structural
“neighborhood”, where equal structural neighborhood is defined by the well-
known notion of bisimulation. Accordingly, two graph nodes v1, v2 are bisimilar
(v1 ∼ v2), if they cannot be distinguished by looking only at their outgoing
or incoming “edge-labeled trees”. Pairwise bisimilar nodes form an extension.
Applying the bisimulation ∼ to the graph G(V, L, E) of our data graph that
contains relation edges only, results in a set of such extensions {[v]∼ | v ∈ V }
with [v]∼ := {w ∈ V | v ∼ w}. These extensions form a complete partition of the
entity nodes V of the data graph, i.e., form a family P∼ of pairwise disjoint sets
whose union is V . Based on this notion of bisimulation, the structure index graph
G∼ of G(V, L, E) can be defined in terms of extensions and relations between
them. In particular, extensions from the partition P∼ form the vertices of G∼.
An edge with label l links E1, E2 ∈ P∼ of G∼ iff G contains an l-edge linking
an element in the extension E1 to some element in extension E2.

Example 4. The data graph shown in Fig. 1a can be partitioned into 8 exten-
sions, shown as nodes of the index graph in Fig. 1b. For instance, p1 and p3 are
grouped into the extension E2 because they are bisimilar, i.e., both have incom-
ing supervise and knows links and both have the same outgoing trees (paths)
of edges knows, (worksAt, partOf) and (authorOf, conference).

It has been shown that the structure index is appropriate for investigating struc-
tures that can be found in the data [16]. In particular, it exhibits a property that
is particularly useful for our approach:

Approximate and Incremental Processing of Complex Queries 181

Algorithm 2: Structure-based Result Refinement using Structure Index

Input: Transformed query q′(Vq′ , pr(qs, qt) ∈ Pr). Entity query nodes
QE ⊆ Vq′ . Table Am×n(qe1 , ..., qen), where each row represents a set of
somehow connected entities. Structure index graph G∼(V ∼, E∼).

Data: EXTqe(qe, ext(qe)) is a two column table containing the results e ∈ Eqe

of qe and their extensions ext(e). E∼(source(r), target(r)) is a two
column table containing source and target nodes of the edge r.

Result: Refined table of entities A. Intermediate result table M(c1, ..., cn)
containing entities and entity extensions, where cn denotes a query qe

or an extension ext(qe).
for pr(q1, q2) ∈ Pr do1

E∼(eq1 , eq2)← {r∼(x, y) ∈ E∼|pr = r∼}2

for qn ∈ {q1, q2} do3

if qn ∈ QE then E∼(eq1 , eq2)← E∼(eq1 , eq2) ��qn EXTqn4

end5

if M = ∅ then M = E∼(eq1 , eq2)6

else M ← E∼(eq1 , eq2) ��qn M7

A ← πq∈QE (M)8

end9

return A and M10

Property 1. If there is a match of a query graph on a data graph G, the query
also matches on the index graph G∼. Moreover, nodes of the index graph matches
will contain all data graph matches, i.e., the bindings to query variables.

Structure-based Result Refinement. Property 1 ensures that nodes of the
index graph matches will contain all data graph matches, i.e., the bindings to
query variables. Therefore, entities computed in the previous step can only be
answers to the query, when they are contained by some matches of the query on
the structure index graph. Drawing upon this observation, Alg. 2: (1) matches
the transformed query graph q′ against the structure index and (2) checks if
the resulting index graph matches contain the previously computed entities in
table A. For index graph matching, edges E∼ of the index graph are retrieved
(line 2) and joined along the query atoms pr(q1, q2) ∈ Pr. When entity query
nodes are encountered, i.e., qn is an element of QE , we check if entities previously
computed for qn (stored in A) are contained in the matching extensions retrieved
for qn. For this, we use the extensions associated with these entities (as stored in
ENT-doc) to construct an extension table EXTqn and join this table with E∼.
Thereby, extensions that do not contain entities in A are discarded during the
computation. After processing all edges, M contains only index matches, which
connect entities in A. Finally, by projecting on the attributes qe, we obtain the
refined entities A from M (line 2).

Example 5. This example demonstrates refining result table A = {(p1, i1,
u1, c1), (p3, i1, u1, c1), (p5, i1, u1, c1)}. The result of the refinement step is one in-
dex match (Fig. 3b). To obtain the index match, we can, e.g., start with the query

182 T. Tran, G. Ladwig, and A. Wagner

atom supervise(w, qx). For this, one matching edge supervise∼ = {(E1, E2)}
is retrieved from G∼. supervise∼ is joined with the extension table for qx,
i.e., {(E1, E2)} ��qx {(E2, p1), (E2, p3)}. This results in supervise∼ = {(E1,
E2, p1), (E1, E2, p3)}, i.e., extension E2 obtained for qx contains entities p1, p3
(previously computed for qx). Thus, no match is discarded in this case. We con-
tinue with authorOf(qx, y) to obtain authorOf∼ = {(E6, E4), (E2, E4)}. By
joining on qx, i.e., {(E6, E4), (E2, E4)} ��qx {(E2, p1), (E2, p3)}, we obtain
{(E2, p1, E4), (E2, p3, E4)}, i.e., we discard the extension E6, as it does not
contain p1, p3. Since y is not an entity query, we do no need to check if the exten-
sion E4 contains entities in A. Now, M = authorOf∼ �� supervise∼, i.e., M =
{(E1, E2, p1), (E1, E2, p3)} ��qx {(E2, p1, E4), (E2, p3, E4)} = {(E2, E2, p1, E4),
(E1, E2, p3, E4)}. This process continues for the remaining query atoms to
obtain M = {(E1, E2, p1, E4, E3, i1, E5, u1, E6, c1), (E1, E2, p3, E4, E3, i1,
E5, u1, E6, c1)}. Projecting M on the attributes q ∈ QE results in A = {(p1, i1,
u1, c1), (p3, i1, u1, c1)}.

Complete Structure-based Result Computation. Finally, results which
exactly match the query are computed by the last refinement. Only for this
step, we actually perform joins on the data. To improve efficiency, we do not
retrieve and join data along the query atoms in a standard way [1]. Instead, we
incrementally refine the results, i.e., reuse the index matches and the entities
associated with them as stored in the intermediate result set M . Given the
index graph match G∼

q , the algorithm for result computation iterates through
the edges l∼q ([e1]∼, [e2]∼) ∈ L∼ of G∼

q , retrieves matching triples, and joins them.
However, if results exist, i.e., there are entities contained in [e1]∼ or [e2]∼ such
that [e1]∼.E ∨ [e2]∼.E �= ∅, they are taken into account. In particular, only
triples lmq (e1, e2), where e1 ∈ [e1]∼.E and e2 ∈ [e2]∼.E are retrieved from the
data graph. In Fig. 3c, we see the triples that are retrieved and joined to obtain
the final result of the query. Only by inspecting the actual triples along this
structure index match, we note that p3 is not connected with the other entities.

6 Evaluation

We conducted a complexity analysis for our approach. Given a query graph with
bounded size, we can prove that the complexity of query processing is polyno-
mial, which is more promising than the worst-case exponential complexity of
exact and complete graph-pattern matching. Due to space reasons, the details
were omitted here but can be found in our technical report.5 In this section, we
present empirical performance results and also analyze the efficiency-precision
trade-off to shed light on the incremental and approximate features of our
approach.

Systems. We have implemented the incremental process (INC) based on vertical
partitioning and sextuple indexing [1,17]. To compare our solution with the ex-
act and complete approach [1], we implement sorted-merged equi-join using the
5 http://people.aifb.kit.edu/awa/ApproxIncrementalQueryProcessing.eps

http://people.aifb.kit.edu/awa/ApproxIncrementalQueryProcessing.eps

Approximate and Incremental Processing of Complex Queries 183

Table 2. Statistics for the data graphs and indexes

Data(#Edges) Data(MB) EntityIdx(MB) RelIdx(MB) StrucIdx(KB) Schema(KB)
DBLP 12,920,826 2,084 2210 2,311 132 28
LUBM5 722,987 122 142 112 100 24
LUBM10 1,272,609 215 253 198 80 24
LUBM50 6,654,596 1,132 1391 1,037 82 24

same data partitions and indexes (VP). Since query optimization as proposed
for the RDF-3X [14] is orthogonal, all experiments here were performed with-
out optimization, i.e., based on fixed query plans (same for both approaches).
There is no appropriate baseline for the approximate and incremental features of
our solution. ASM is based on Bloom filter, which has not been applied to this
problem of structure matching before. Also, there is no alternative for SRR. We
have already pointed out (related work) that, while SRR is based on a summary,
which is conceptually similar to the synopsis previously proposed for approxi-
mate query processing, it is not clear how to extend these concepts to graph-
structured data and in particular, to use them in a pipeline. Our implementation
is freely available.6

Datasets. We used DBLP, which captures bibliographic information. Further,
we used the LUBM data generator to create 3 datasets for 5, 10 and 50 univer-
sities (Table 2). Note that the structure indexes were consistently bigger than
the schemas, but were of magnitudes smaller than the data graphs.

Queries. For studying the proposed algorithms in a principled way, test queries
were generated via random data sampling. We generated queries ranging from
simple path-shaped to graph-shaped queries. For this, we use as parameters the
maximum number of constants conmax, the maximum number of paths pmax,
the maximum path length lmax and the maximum number of cycles cycmax in
the query graph. We sampled constants from data values VD of the data graph.
Paths and cycles were sampled from data graph edges E. The parameters used
in the experiments are conmax = 20, pmax = 6, lmax = 3, cycmax = 2.

Setting. We used a machine with two Intel Xeon Dual Core 2.33 GHz processors
and 48GB of main memory running Linux (2GB were allocated to JVM). All
data and indexes were stored on a Samsung SpinPoint S250 200GB, SATA II.
All components have been implemented in Java 5. The bit-vector length and
the number of hash functions used for Bloom filter encoding were computed to
reach the configured probability of false positive of 0.1%. Neighborhood indexes
were created for k = 3. All times represent the average of 10 runs of 80 queries
generated for DBLP, and 80 queries for LUBM. For different steps of INC, we
computed the precision using the formula: precision = (|correct results| ∩ |results
retrieved|)/|results retrieved|. A result of an entity query in ES is correct, if it
is contained in the respective column of the final result table. The precision for
ES is computed as the average precision obtained for all entity query nodes of

6 http://code.google.com/p/rdfstores/

http://code.google.com/p/rdfstores/

184 T. Tran, G. Ladwig, and A. Wagner

Fig. 4. Query processing times for a) different datasets and b) different query shapes

q. A tuple computed during ASM and SRR is correct, if it is contained as a row
in the final result table.

Average Processing Time. For INC, we decomposed total processing time
into times for ES, ASM, SRR and SRC. Averaging the processing time over
80 queries, we obtained the results shown in Fig. 4a. The time needed for ES
is only a small fraction of the total time. Times for SRR and SRC make up
a greater portion, and ASM constitutes the largest share. Thus, these results
suggest that users can obtain an initial set of results in a small fraction of time
via ES. In particular, instead of waiting for all exact results, users might spend
only 6, 71 or 84 percent of that times when they choose to finish after ES,
ASM or SRR respectively. The comparison of total times shows that INC was
slower than VP for LUBM5 and LUBM10, but faster for the larger datasets
LUBM50 and DBLP. While these results might change with query optimization,
this promising performance indicates that our incremental approach was able to
effectively reuse intermediate results.

The Effect of Data Size. We have measured total time for LUBM of different
data sizes (shown in Table 2). As illustrated in Fig. 4a, query processing time
increased linearly with the size of the data, for both VP and INC. Further, INC
became relatively more efficient as the data size increased. It can be observed
that the share of total time from ASM decreased with the data size, i.e., the gain
from ASM unfolded as the dataset grew larger. This is particularly important
in the Data Web context; ASM can help to quickly obtain initial results from a
large amount of data.

The Effect of Query Complexity. Considering query complexity, we classified
the 80 queries into three classes according to query shape. As shown in Fig. 4b,
INC did not perform well on path queries. For this type of queries, ASM was
particularly expensive. This is because in many cases, the reusability of Bloom
filters was low (i.e., when path length was higher than k). Filter loading and
nested loop joins became the bottleneck, resulting in slightly higher processing
times compared to VP.

The Effect of Relation Path Length k. In another experiment we classified
queries into three classes according to the length of the longest relation path (i.e.,

Approximate and Incremental Processing of Complex Queries 185

Fig. 5. Effect of neighborhood distance on a) processing times and b) precision

the neighborhood distance between entities, respectively). As shown in Fig. 5a,
queries with longer relation paths required more time, for both VP and INC.
For INC, the share contributed by ASM remained relatively constant, suggesting
that this step can be performed efficiently even for long relation paths. Thus,
ASM can also help to deal with complex queries with long relation paths.

Precision. The average precision for the different steps at various k is shown
in Fig. 5b. The precision for ES was relatively constant (0.3 - 0.4). This was
expected, because k should have no effect on the quality of entity search. For
ASM and SRR, precision decreased with larger k. The highest precision obtained
for ASM was 0.56 and this increased to 0.62 after SRR.

Fig. 6. Precision vs. time

Time-Precision Trade-off.
We illustrate average time
and precision for different
steps in Fig. 6. Clearly,
through the incremental re-
finement steps, both preci-
sion and processing times in-
creased. There are some out-
liers – however, overall, a
trend may be noticed: ES pro-
duces fast results at low preci-
sion, i.e., below 50 % for most
cases. Precision can be largely
improved through ASM, i.e., in 30 % of the cases, ASM drove precision from
50 % up to 80 %. For most of these cases (60 %), the amount of additional
processing was less than 10 % of total time.

7 Conclusion and Future Work

We proposed a novel process for approximate and incremental processing of com-
plex graph pattern queries. Experiments suggest that our approach is relatively
fast w.r.t exact and complete results, indicating that the proposed mechanism for

186 T. Tran, G. Ladwig, and A. Wagner

incremental processing is able to reuse intermediate results. Moreover, promis-
ing results may be observed for the approximate feature of our solution. Initial
results could be computed in a small fraction of total time and can be refined via
approximate matching at low cost, i.e., a small amount of additional time. We
believe that our approach represents the appropriate paradigm, and embodies
essential concepts for dealing with query processing on the Web of data, where
responsiveness is crucial. At any time, users should be able to decide if and
for which results exactness and completeness is desirable. As future work, we
will elaborate on ranking schemes, based on which we plan to integrate top-k
techniques into the pipeline.

Acknowledgements. Research reported in this paper was supported by the
German Federal Ministry of Education and Research (BMBF) in the Collab-
Cloud (grant 01IS0937A-E) and iGreen (grant 01IA08005K) projects.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data
management using vertical partitioning. In: VLDB, pp. 411–422 (2007)

2. Babcock, B., Chaudhuri, S., Das, G.: Dynamic Sample Selection for Approximate
Query Processing. In: SIGMOD Conference, pp. 539–550 (2003)

3. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors.
Commun. ACM 13(7), 422–426 (1970)

4. Buneman, P., Davidson, S., Fernandez, M., Suciu, D.: Adding structure to unstruc-
tured data. In: ICDT, pp. 336–350. Springer, Heidelberg (1997)

5. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query
Processing Using Wavelets. In: VLDB, pp. 111–122 (2000)

6. Chen, Q., Lim, A., Ong, K.W.: D(k)-index: an adaptive structural summary for
graph-structured data. In: SIGMOD, pp. 134–144. ACM, New York (2003)

7. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F.L.: Searching the Se-
mantic Web: Approximate Query Processing Based on Ontologies. IEEE Intelligent
Systems 21(1), 20–27 (2006)

8. Garofalakis, M.N., Gibbons, P.B.: Approximate Query Processing: Taming the
TeraBytes. In: VLDB (2001)

9. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-
tion in semistructured databases. In: VLDB, pp. 436–445 (1997)

10. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the
Web. In: LA-WEB (2005)

11. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Ranking approximate answers to se-
mantic web queries. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,
T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009.
LNCS, vol. 5554, pp. 263–277. Springer, Heidelberg (2009)

12. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. ACM Comput. Surv. 11, 1–11 (2008)

13. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for
branching path queries. In: SIGMOD, pp. 133–144 (2002)

14. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1),
647–659 (2008)

Approximate and Incremental Processing of Complex Queries 187

15. Polyzotis, N., Garofalakis, M., Ioannidis, Y.: Approximate xml query answers. In:
SIGMOD 2004, pp. 263–274. ACM, New York (2004)

16. Tran, D.T., Ladwig, G.: Structure index for RDF data. In: Workshop on Semantic
Data Management at VLDB (September 2010)

17. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. In: PVLDB, vol. 1(1), pp. 1008–1019 (2008)

18. Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: An IR approach
to scalable hybrid query of semantic web data. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mi-
zoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 652–665. Springer, Heidelberg (2007)

Conjunctive Query Optimization in OWL2-DL

Petr Křemen and Zdeněk Kouba

Department of Cybernetics, Czech Technical University in Prague, Czech Republic
{petr.kremen,kouba}@fel.cvut.cz

Abstract. Conjunctive query answering is becoming a very important
task on the Semantic Web as the adoption of SPARQL query language
increases. There is considerable work done in the area of optimizing con-
junctive query answering for RDF and OWL2-DL ontologies, in the lat-
ter case namely for queries without undistinguished variables. However,
there has not been much emphasis on how to handle queries with both
distinguished and undistinguished variables efficiently. In this paper, we
present a novel algorithm for answering conjunctive queries over OWL2-
DL ontologies with undistinguished variables efficiently. These optimiza-
tions are implemented in the Pellet query engine and our experimental
evaluation shows that the new optimization improves the query perfor-
mance significantly.

Keywords: OWL2-DL, conjunctive query, optimization.

1 Introduction

Since the very beginning, lots of research efforts in description logics have been
spent to study properties [2], [10] and optimizations [8] of tableau algorithm
consistency checks and their basic inference tasks, like instance checking (e.g.
check whether an individual Jan is an instance of a concept Student), instance
retrieval (e.g. give me all married students - instances of the concept Student�
∃hasMarried · $), or role fillers retrieval (e.g. give me all individuals that take
the course Math). However, in practical applications basic inferences often do
not suffice and a richer query language is required. The most widely accepted
generalization of the basic inference tasks are conjunctive queries [13], [3].

So far, significant attention has been paid to boolean queries, i.e. queries that
test just the possibility to map a query pattern to all models of an ontology,
without retrieving any variable binding. In [13] the problem of answering boolean
queries is reduced to the description logics satisfiability for the ALC language
[2]. To get rid of variables, the authors use rolling-up technique to replace a
general boolean query with a set of instance retrievals or instance checks. Al-
though for ALC the proposed technique works fine, the authors noticed that its
generalization beyond ALC is problematic and it is possible only (i) for logics
employing the tree-model property [2], or (ii) for queries that do not contain
undistinguished variables in a cycle (we will often handle a query as a query
graph, see Definition 2 and [13]).

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 188–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Conjunctive Query Optimization in OWL2-DL 189

These limitations of boolean query answering using tableau algorithms and
rolling-up technique were overcome in [15] by introducing a specialized tableau
algorithm to directly check entailment of boolean queries over SHIQ ontologies.
This modified tableau algorithm extends the standard one for consistency check-
ing in SHIQ [12] with a novel blocking condition1. However, this technique to
be applicable requires all roles in a conjunctive query to be simple, i.e. not tran-
sitive and without transitive subroles. As discussed in [15], the same approach
can be generalized to unions of boolean conjunctive queries in a straightforward
manner.

The presence of transitive roles in query atoms is handled in [5] and [6]
for description logics SHIQ and SHOQ. In both works, the respective logic
(SHIQ/SHOQ) is extended with role conjunction construct to capture “short-
cuts” introduced by a transitive role. This work has shown that the problem of
answering conjunctive queries for both of these subsets is decidable. However,
there is still no decision procedure for conjunctive query answering in the lan-
guage as expressive as SHOIN (resp. SROIQ), a logic backing the OWL-DL
[16] (resp. OWL2-DL [1]) language without data types.

Based on this analysis, we complement the current techniques for conjunc-
tive query answering with an optimization technique that significantly decreases
execution times when both distinguished and undistinguished variables (see Def-
inition 1) are present. Comparing to [5], [6], and [15], our optimizations are appli-
cable to conjunctive queries without cycles through undistinguished variables for
a wide range of description logics, including SHOIN and SROIQ. For SHIN ,
the presented techniques can be complemented by an ABox summarization [4] to
avoid full computation of the completion forests for efficient evaluation of queries
without undistinguished variables. The algorithms presented later in this paper
were designed on the top of a standard tableau algorithm for consistency check-
ing of OWL2-DL ontologies in the Pellet reasoner and in OWL2Query2, our
novel expressive query engine for OWL2-DL.

2 Preliminaries

We shortly recall notions relevant to query answering techniques described below.
First, an overview of SROIQ relevant for understanding this paper is introduced.
Next, current optimization techniques for basic reasoning services are presented.

2.1 Conjunctive Queries for SROIQ

For the sake of brevity, we use the description logic syntax instead of OWL2-DL
and we do not consider concrete domains and data types. Readers unfamiliar
with OWL2-DL, or SROIQ should refer to [1] and/or [9].
1 That preserves the blocking in a tableau algorithm to occur too early and thus
ensures existence of a syntactic mapping from a boolean query to each of resulting
completion forests if such a mapping exists.

2 http://krizik.felk.cvut.cz/km/owl2query

http://krizik.felk.cvut.cz/km/owl2query

190 P. Křemen and Z. Kouba

Consider finite sets CN , RN , IN of concept names, role names and individ-
uals, respectively. We denote elements of CN as A(k), elements of RN as S(k)

elements of IN and i(k). C(k) (resp. R(k)) denotes a concept (resp. role), built
up using SROIQ concept constructors, e.g. ∃R · C, or C1 � C2 (resp. role con-
structors, e.g. R−). A SROIQ ontology K is a set of SROIQ axioms (defined
in [9]), e.g. concept assertion C(i) or concept subsumption C1 # C2.

The semantics is defined using a first-order interpretation I = (ΔI , ·I), where
ΔI is the interpretation domain and interpretation function ·I maps elements
from CN (RN) to the subsets of ΔI (ΔI ×ΔI) and elements from IN to the
elements of ΔI . The interpretation function is extended to general concepts/roles
according to the semantics of concept/role constructors (defined in [9]), e.g.
(∃R ·C)I = {x ∈ ΔI |∃y ∈ ΔI : (x, y) ∈ RI∧y ∈ CI , or (C1�C2)I = (CI

1 ∩CI
2),

or (R−)I = {(x, y)|(y, x) ∈ RI}.
An axiom α of the form C(i) (resp. C1 # C2) is satisfied by interpretation I

(I is a model of α), denoted as I |= α, if iI ∈ CI (resp. CI
1 ⊆ CI

2) and similarly
for other axiom types. A set X of axioms is satisfied by I (I is a model of X),
denoted as I |= X , whenever I |= α for each α ∈ X . An axiom α is a logical
consequence of a set X2 of axioms (X2 |= α) if I |= α, whenever I |= X2. A set
X3 of axioms is consistent if I |= X3 for some I.

Definition 1 (Query Syntax). A conjunctive ABox query Q (or simply query
Q) is a list

Q = [q1, . . . , qM] (1)

where each query atom ql is of the form C(•), or R(•, •) and each argument • is
either an individual ik ∈ IN , or a distinguished variable ?vk ∈ {?v1, . . . , ?vN} =
H(Q) ⊆ V (Q), or an undistinguished variable !vk ∈ V (Q), where the set of
all variables V (Q) is disjoint from all CN, RN, IN . Furthermore, H(Q) (resp.
U(Q), resp. I(Q)) is the set of distinguished variables (resp. undistinguished vari-
ables, resp. individuals) in Q. A semi-ground atom is a query atom q containing
no distinguished variable and a boolean query is a query where H(Q) = {}.

A function B = {?v1 (→ i1, . . . , ?vN (→ iN} is a binding for Q. Each strict
subset of B is a partial binding for Q. An application ql|B of a binding B
to query atom ql results in a new query atom q′l, where each variable ?vk is
replaced by an individual ik = B(?vk). An application of a binding B to a query
Q = [q1, . . . , qM] is a query Q|B = [q1|B, . . . , qM |B].

Definition 2 (Query Graph). A graph of a conjunctive query Q is a directed
labeled graph GQ = (V , E ,L), where the set of vertices V is the set of distinguished
variables, undistinguished variables and individuals that occur in some q ∈ Q.
The set of directed edges E is a set of pairs (x, y), where R(x, y) ∈ Q and the
labeling L is defined as L(x) = {C|C(x) ∈ Q} and L(x, y) = {R|R(x, y) ∈ Q}. A
query Q has a cycle over U ⊆ V whenever the undirected subgraph Sub(GQ,U)
of GQ induced by U contains a cycle. A query Q has a cycle, if Q has a cycle
over V.

Example 1. Let’s take the following query (with the query graph shown in
Figure 1) into the LUBM dataset [7]. “Find all students (?v1) that take courses

Conjunctive Query Optimization in OWL2-DL 191

(?v2) taught by their advisors (!v4). Retrieve also the courses and the affiliation
(?v3) of the students” :

Q1 = [advisor(?v1, !v4), teacherOf(!v4, ?v2), Employee(!v4),
takesCourse(?v1, ?v2), memberOf(?v1, ?v3)] ,

and thus H(Q1) = {?v1, ?v2, ?v3} and U(Q1) = {!v4}.

Fig. 1. Query graph GQ1 for Q1. Although the undirected counterpart of GQ1 contains
a cycle ?v1, ?v2, !v4, the only undistinguished variable in the cycle is !v4.

Definition 3 (Query Semantics). A boolean query Q is satisfied by a model
I = (ΔI , ·I) of K (denoted as I |= Q) if there is an extension ν of ·I that maps
each distinguished and undistinguished variable in the query to an element of ΔI,
such that for each query atom C(x) ∈ Q, resp.R(x, y) ∈ Q the following holds:
ν(x) ∈ CI , resp. (ν(x), ν(y)) ∈ RI. Q is a logical consequence of K, denoted as
K |= Q, if I |= Q for each model I of K. A (partial) binding B for a (possibly
non-boolean) query Q′ is valid iff the boolean query comprising all semi-ground
atoms from Q′|B is a logical consequence of K.

Intuitively, a boolean query is a logical consequence of an ontology K, if the
graph (pattern) represented by the query “can be mapped” to each model of K.

In the rest of the paper, we assume only conjunctive queries, the graph of
which is connected. Each query, a graph of which contains more connected com-
ponents, can be split into several queries that can be evaluated independently
for efficiency reasons and their results combined in the end, see [17]. Note that,
as stated before, all techniques described in this paper apply only to queries
without cycles over undistinguished variables.

2.2 Optimizations of Basic Reasoning Services

For the purpose of this paper a SROIQ tableau-based reasoner [11] provides the
following optimized services for an ontology K, a concept C and an individual i:

– consistency checking CC(K) returns true, iff K is consistent, false otherwise.
– instance checking IC(K, C, i) returns true, iff K |= C(i), false otherwise.
– instance retrieval IR(K, C) returns all i ∈ IN , for which K |= C(i).

192 P. Křemen and Z. Kouba

Although both IR and IC can be reduced to one or more CC operations
(see [10]), we consider these operations as a well-defined interface to a tableau
reasoner, as (i) they are implemented in the state of the art tableau-based rea-
soners, including Pellet, Fact++3, or RacerPro, and (ii) they are very efficiently
optimized, as sketched in the rest of this section.

Since both IC and IR services of a SROIQ tableau reasoner require the
queried ontology to be consistent, let’s shortly recall the structures created dur-
ing an initial consistency check using a tableau algorithm run for SROIQ. During
a consistency check of a SROIQ ontology K using a tableau algorithm, a set
of completion graphs (see [8] and [15]) is evolved by applying completion rules.
Each of the completion graphs is a finite representation of a (possibly infinite)
set of potential models of K. If there is no applicable rule and there exists at
least one completion graph that does not contain a clash (such a graph is called
a completion), the algorithm terminates with the result that K is consistent.
Obvious non-instances using completion optimization of IC and IR refuses each
C(i) or R(i, j) inference that is in clash with some completion.

While a completion is a finite representation of one or more models, a precom-
pletion represents all models ofK, being the largest subgraph of a completion not
depending on any nondeterministic completion rule, like � − rule, or ≤ −rule,
see [11]. Obvious instances using precompletion optimization of IC and IR makes
use of precompletions to cache class and property assertion inferences C(i), or
R(i, j) that are valid in all models of K.

In addition to caching completion and precompletion information, IR can
be further optimized using methods presented in [8], namely binary instance
retrieval and its variants. A naive way of finding all instances of a concept C is
to perform an instance check K |= C(i) for each individual i mentioned in K
(linear instance retrieval). Binary instance retrieval optimization tries to reduce
the number of instance checks by checking many individuals being instances of
C during a single tableau algorithm run a using divide and conquer strategy.

3 Query Evaluation Methods

This section presents methods, that are used in state-of-the-art SROIQ tableau
reasoners for evaluation of conjunctive queries without cycles over undistin-
guished variables. Let’s have an ontology K, a SROIQ tableau reasoner as spec-
ified in Section 2.2, and a conjunctive query Q without cycles of undistinguished
variables. Before evaluating Q against K it is necessary to check consistency of
K. If the initial consistency check fails, the query answering procedure stops
with an empty result (for non-boolean Q) or false (for boolean Q). If the initial
consistency check succeeds, the tableau reasoner constructs the completion and
precompletion structures along the way, as described in Section 2.2. Let’s assume
that K is consistent.

3 http://code.google.com/p/factplusplus

http://code.google.com/p/factplusplus

Conjunctive Query Optimization in OWL2-DL 193

3.1 Boolean Queries

A simple way to enforce the semantics of a boolean query Q, shown in Algorithm
1, is presented in [13]. This algorithm makes use of so called rolling-up technique,

Algorithm 1. Evaluation of Boolean Queries
Input: consistent K, a boolean query Q.
Output: true if K |= Q, false otherwise
1: function evalBool(K, Q)
2: if some q ∈ Q references an individual i then
3: if IC(K, roll(Q, i), i) then return true

4: else
5: if CC(K ∪ {roll(Q, !v) � ⊥}) = false for !v ∈ U(Q) then return true

6: return false

represented by function roll(Q, x), that transforms a boolean query Q, for
which Sub(GQ, V (Q)) is a tree4, into a single C(•) query atom. The rolling-
up technique describes a query Q by a complex concept description “from the
position of a given term x”, by iteratively replacing each query atom R(x, y)
with a query atom (∃R ·CY)(x), where CY is a concept that represents the rest
of the query rolled-up into y in a similar way. As presented in [13], Algorithm
1 is a decision procedure for boolean queries Q for which Sub(GQ, U(Q)) is a
tree. On line 3 boolean queries with at least one individual are evaluated by a
single IC call, while line 5 handles queries with only undistinguished variables as
follows: whenever roll(Q, !v) # ⊥ is the cause for inconsistency, it must be the
case that (roll(Q, !v))I is non-empty in each model I of K, and thus I |= Q.

Example 2. Let’s continue with Example 1 and consider Q1g = Q1|B12, where
B12 = {?v1 (→ Jim, ?v2 (→ Math, ?v3 (→ DeptMath} :

Q1g = [advisor(Jim, !v4), teacherOf(!v4, Math), Employee(!v4),
takesCourse(Jim, Math), memberOf(Jim, DeptMath)].

Q1g can be evaluated by rolling-up e.g. into Jim, obtaining roll(Q1g, Jim) =
CJim, where

CJim = ∃advisor · (Employee � ∃teacherOf · {Math}) � ∃takesCourse · {Math}
�∃memberOf · {DeptMath}

and checking IC(K, CJim, Jim), as described in Algorithm 1.

4 Individuals are not considered in the subgraph, as they do not violate the applica-
bility of the rolling-up technique: each individual i can be forked into two vertices
to break the cycle without any semantic impact, as iI = ν(i) for any extension ν of
the interpretation function I.

194 P. Křemen and Z. Kouba

3.2 Queries without Undistinguished Variables

The authors of [17] present an algorithm for evaluating queries without undistin-
guished variables. To make their algorithm compliant with the rest of this paper,
we modify their description by introducing two functions, resulting in Algorithm

Algorithm 2. Eval. of Queries without Undist. Variables
Input: consistent K, a queryQ = [q1, . . . , qN], a binding B and a set β of valid bindings

B′ for Q found so far.
Output: a set β of all valid bindings B′ for Q
1: function eval(K, Q, B, β)
2: if Q = [] then return β ∪ {B}
3: [q, qp1 , . . . , qpN−1]← next(K, Q, B)
4: for B′ ∈ evalAtom(K, q|B, B) do β ← eval(K, [qp1 , . . . , qpN−1], B

′, β)

2: (i) next(K, Q, B) returns a query that is a reordering of atoms of Q. As dif-
ferent orderings of the same set of atoms are interpreted equally (see Definition
3) a naive implementation of next(K, Q, B) might return Q. Reordering query
atoms that preserves connectedness of the evaluated query, and minimizes the
number of tableau reasoner runs is discussed in [17].

Algorithm 3. Evaluation of a query atom
Input: consistent K, a query atom q, binding B
Output: a set of all (partial) bindings B′ ⊇ B such that K |= q|B′

1: function evalAtom(K, q, B)
2: if q = C(i) then return IC(K, C, i)

3: if q = R(i,j) then return IC(K, (∃R · {j}), i)
4: β = {}
5: if q is C(?x) then
6: for i ∈ IR(K, C) do β ← β ∪ {B ∪ {?x �→ i}}
7: else if q is R(?x, i) (resp. R(i, ?x)) then
8: for j ∈ IR(K, (∃R · {i})), resp. (∃R− · {i}) do β ← β ∪ {B ∪ {?x �→ j}}
9: else if q is R(?x, ?y) then
10: for i ∈ IR(K, (∃R · �)) do
11: for j ∈ IR(K, (∃R− · {i})) do β ← β ∪ {B ∪ {?x �→ i, ?y �→ j}}
12: return β

(ii) Given the current binding B, the function evalAtom(K, q, B), shown
in Algorithm 3, finds all (partial) bindings B′ ⊇ B such that K |= q|B′. For
example, evalAtom(K, teacherOf(?x, Math), {}) returns a set {Bk} of bindings
Bk = {?x (→ ik}, where ik ∈ IR(K, ∃teacherOf · {Math}). Algorithm 2 is

Conjunctive Query Optimization in OWL2-DL 195

executed by a call eval(K, Q, {}, {}) that recursively searches the state space of
possible (partial) bindings and backtracks once all query atoms are evaluated.
The soundness of Algorithm 2 and Algorithm 3 is presented in [17].

3.3 Handling Undistinguished Variables

In practical applications queries with both distinguished and undistinguished
variables are the most common. This section describes techniques for evaluat-
ing conjunctive queries without cycles over undistinguished variables that were
implemented in the Pellet reasoner, yet not published so far. Techniques de-
scribed in this section try to reduce the number of calls to IC (some of which
might require consistency checks). As shown in the examples below, even if ob-
vious non-instances using completion and obvious instances using precompletion
optimizations mentioned in Section 2.2 prevent other than a single (initial) con-
sistency check to occur, the number of IC calls might be still prohibitive for an
efficient evaluation.

Naive Evaluation Strategy. The naive way to evaluate conjunctive queries is
described in Algorithm 4. On line 3, each distinguished variable is replaced with

Algorithm 4. Naive Evaluation Strategy
Input: consistent K, a non-boolean query Q
Output: a set β of all valid bindings B′ for Q
1: function evalNaive(K,Q)
2: β ← {}
3: for each B = {?v1 �→ i1, . . . , ?vN �→ iN}, ?vk ∈ H(Q),ik ∈ IN do
4: if IC(K, roll(Q|B, i1), i1) then β ← β ∪ {B}
5: return β

an individual mentioned in K and the resulting boolean query is evaluated using
the evalBool function described in Algorithm 1. The Algorithm 4 is clearly
sound, as it simply tries all possible bindings. However, as shown in Example 3,
the exponential blow-up is what makes it unusable for queries with more than
one distinguished variable.

Example 3. Let’s evaluate Q1, see Example 1, against the LUBM(1) dataset. As
LUBM(1) contains more than 17000 individuals the variable substitution results
in about 170003 = 5×1012 of different boolean queries to be checked on line 4 of
Algorithm 4. Even if checking logical consequence of each of them might be cheap
in this case (the boolean queries can be matched against precompletion and thus
the only interaction with the tableau reasoner remains the initial consistency
check that constructs the precompletion), Q1 evaluation still fails to terminate
within reasonable time due to the huge number of required IC operations.

196 P. Křemen and Z. Kouba

Simple Evaluation Strategy. As noticed in [17], for queries with distinguished
variables, the rolling-up technique can be used as a preprocessing step to reduce
the number of boolean queries to be tested using evalBool function. This
approach results in Algorithm 5. For each distinguished variable ?v a concept
roll(Q, ?v) is computed and instances of this concept are retrieved using the
optimized IR service (line 3), as mentioned in Section 2.2. Then, each individual
from the retrieved set INv = IR(K,roll(Q, ?v)) is used as a candidate for ?v
in the subsequent evalBool calls. The soundness of this algorithm is ensured
by the fact that the rolling-up technique typically describes only a subset of Q
(as it breaks some of the cycles), but not a superset and thus cannot discard any
binding that would be valid for Q.

Algorithm 5. Simple Evaluation Strategy
Input: consistent K, a non-boolean query Q
Output: a set β of all valid bindings B′ for Q
1: function evalSimple(K,Q)
2: β ← {}, δ ← {}
3: for ?v ∈ H(Q) do δ(?v)← IR(K,roll(Q, ?v))

4: for each B = {?v1 �→ i1, . . . , ?vN �→ iN}, ?vk ∈ H(Q),ik ∈ δ(?vk) do
5: if IC(K, roll(Q|B, i1), i1) then β ← β ∪ {B}
6: return β

Example 4. Evaluating Q1 against LUBM(1) using Algorithm 5, Q1 is rolled up
into each distinguished variable ?v1, ?v2 and ?v3. For ?v3, we get :

roll(Q1, ?v3) =
(∃memberOf− · (∃advisor · (Employee

�∃teacherOf · ∃takesCourse− · $ � ∃takesCourse · $)
)

For each vi an IR call is required. Due to the optimizations sketched in Section
2.2, the number of evalBool (and thus IC) calls is significantly less than in
Algorithm 4. In case of Pellet, none of these instance retrieval executions requires
a consistency check and prune the number of candidates to about 3300 for ?v1,
about 1500 for ?v2 and 15 for ?v3. Thus, the number of boolean queries, logical
consequence of which is to be checked by evalBool, is reduced to about 3300×
1500× 15, i.e. 75× 106, still with just one (initial) consistency check.

On the other hand, each partial combination of invalid bindings is checked
many times on line 5 of Algorithm 5. However, as shown in the next section, it
is not necessary to try to extend partial binding (?v1 (→ Jim, ?v2 (→ Math) with
a binding for ?v3, whenever K |= takesCourse(Jim, Math) does not hold. This
observation could significantly reduce the number of evalBool calls on line 5.

4 Optimizing Rolling-Up Technique

None of the techniques presented in Section 3.3 takes into account the partial
bindings for IR and IC operations which causes the rolling-up technique to lose

Conjunctive Query Optimization in OWL2-DL 197

information about distinguished variable bindings of all but one (the variable to
which the query is rolled-up) distinguished variables in the query. In this section
we present a novel technique that makes use of the current binding to make the
IR calls more selective and reduces the number of IC calls.

4.1 Cores

The main idea of the core evaluation strategy is that parts of a query Q that
contain undistinguished variables can be localized to cores that are evaluated
separately (as special query atoms COREγ , see below), while the rest of the
query is evaluated as a query without undistinguished variables using Algorithm
2. As a result, invalid partial bindings are pruned at early stages of the query
processing, even before other distinguished variables and some (or all) of the
undistinguished variables have to be evaluated.

Definition 4 (Core). Consider a query Q = [q1, . . . , qZ , qZ+1, . . . , qN] with
H(Q) �= {} and U(Q) �= {}, where no query atom from D(Q) = [q1, . . . , qZ] con-
tains an undistinguished variable, each query atom from C(Q) = [qZ+1, . . . , qN]
contains an undistinguished variable. A core is a query γ ⊆ C(Q), such that
graph Gγ of γ is a maximal connected component of the graph GC(Q). A sig-
nature sig(γ) = H(Q) ∪ I(Q) of γ is a set of all distinguished variables and
individuals referenced in γ.

Note that the ordering of query atoms in Q in Definiton 4 is not a limitation,
as all query atom orderings are interpreted equally, see Definition 3. Definition
4 shows how to construct cores: connected components are built from GC(Q), a
complex example of which is shown in Figure 2.

Fig. 2. Extracting cores from a query QX = [p7(?x, c), v(?z, ?x), p1(?y, !b1), p2(!b1, ?z),
p3(?z, !b4), p4(!b1, !b3), p5(!b2, !b3), p6(!b3, ?x), p8(c, !b5)]. Dotted arrows represent the
edges of GC(QX) that build up the cores γ1, γ2, γ3, while simple arrows represent
edges of GD(QX). The grey rounded rectangles demark the cores extracted from the
QX (maximal connected components of GC(QX)).

198 P. Křemen and Z. Kouba

4.2 Core Evaluation

Introduction of cores allows us to transform the query Q = [q1, . . . , qZ , qZ+1, . . . ,
qN] into a new query Q′ = [q1, . . . , qZ , COREγ1 , . . . , COREγK] with U(Q′) = {}
as all atoms from Q with undistinguished variables are replaced with CORE
query atoms, one for each core γ1, . . . , γK extracted from Q. The transformed
query Q′ can be evaluated by Algorithm 6.

Algorithm 6. Core Evaluation
The same as Algorithm 2 introduced in Section 3.2, where the call evalAtom in
line 4 is replaced with the call evalAtomUV.

The function evalAtomUV is an extended version of evalAtom that han-
dles also atoms of type COREγ . The function returns all (partial) bindings
B′ ⊇ B such that (i) K |= q|B′ if q = C(•) or q = R(•, •), like evalAtom(), or
(ii) B′ is a valid binding for γ if q = COREγ .

Algorithm 7. Evaluation of an Atom in a Transformed Query
Input: consistent K, a regular query atom q or a COREγ atom, current binding B
Output: a set of all (partial) bindings B′ ⊇ B such that K |= q|B′, resp. K |= γ|B′

1: function evalAtomUV(K, q, B)
2: if q is COREγ then
3: β = {}
4: γ′ ← γ|B
5: if H(γ′) = {} and evalBool(K, γ′) then
6: β ← β ∪ {B}
7: else
8: for B′ ∈ evalSimple(K, γ′) do
9: β ← β ∪ {B′}
10: return β
11: else
12: return evalAtom(K, q, B)

Example 5 (Query Transformation). Using the core evaluation technique for
evaluating Q1 from Example 4 requires its transformation into a single core
γ and the transformed version Q′

1 of Q1 :

γ = [Employee(!v3), advisor(?v1, !v4), teacherOf(!v4, ?v2)],
Q′

1 = [advisor(?v1, ?v2), memberOf(?v1, ?v3), COREγ].

At this point Q′
1 is evaluated using the eval function in Algorithm 6. Thus,

first candidate bindings for ?v1, ?v2 and ?v3 are pruned iteratively using op-
timized IR operations (lines 8, 10 and 11 of Algorithm 3) instead of checking

Conjunctive Query Optimization in OWL2-DL 199

each candidate binding B of variables ?v1, ?v2 and ?v3 using IC (line 5 of Algo-
rithm 5). Next, when evaluating COREγ a single IC (line 7 of Algorithm 7) is
required for each boolean γ|B, the number of which is significantly less than in
Example 4.

Proposition 1 (Correctness). Algorithm 6 generates the same set of results
for query Q′ = [q1, . . . , qZ , COREγ1 , . . . , COREγK] as the Algorithm 4 (and 5)
for query Q = [q1, . . . , qZ , qZ+1, . . . , qN], where Q′ is a transformation of Q as
described in Section 4.2.

Proof. The following reasoning relies on the soundness of Algorithm 1 for boolean
queries, Algorithm 2 for queries without undistinguished variables and Algorithm
4, Algorithm 5 for queries with undistinguished variables. Let’s take a binding
B valid for Q, found by Algorithm 4. Since D(Q) = [q1, . . . , qZ] is a subquery
(without undistinguished variables) of both Q and Q′, B is valid for D(Q) and
thus it will be found by Algorithm 2 for queries with distinguished variables.
For each atom COREγj , the query γj , for 1 ≤ j ≤ K is constructed only from
some atoms of C(Q) = [qZ+1, . . . , qN], and is evaluated with Algorithm 7, which
passes the core to the function evalBool on line 5, or to function evalSimple,
on line 8. Thus, since B is valid for Q, it must be also valid for γj .

Let’s take a binding B found by Algorithm 6. Since Algorithm 2 is sound, B
is valid for D(Q), as functions evalAtom and evalAtomUV do not differ on
atoms without undistinguished variables. Since each atom of C(Q) is present in
some core γj , for 1 ≤ j ≤ K, it must have been evaluated by function evalBool,
or evalSimple in Algorithm 7, when evaluating a core atom COREγj . There-
fore, B is valid for C(Q) and thus also for Q.

The core evaluation tries to evaluate as many query atoms as possible using
the atom-by-atom state space search for queries with distinguished variables
(Algorithm 2). This allows the algorithm to apply of the current variable binding
to the query to make the IC and namely IR operations as selective as possible.
The nature of Algorithm 2 allows for application of further optimizations that
reflect the query shape, e.g. query reordering, described in [17].

5 Experiments

This section evaluates the described optimization techniques, implemented in the
query engine of the open-source OWL2-DL reasoner Pellet, on two benchmark
datasets. The LUBM dataset [7] has expressivity SHI(D). The dataset has a
dominant ABox part with approx. 17000 individuals in LUBM(1), while the
TBox consists of just several tens of classes and properties. The second dataset
is UOB [14], a SHOIN (D) extension of LUBM. Since neither of the benchmarks
contains conjunctive queries with undistinguished variables a new query set was
created.

Before executing each of the queries in the subsequent sections an initial
consistency check is performed. Its execution times range from 800 ms to 1100
ms for LUBM and from 1800 ms to 2100 ms for UOB. All tests were run on
Intel(R) Core(TM)2 CPU 6400 at 2.13GHz with 3GB RAM.

200 P. Křemen and Z. Kouba

5.1 Performance of the Undistinguished Variables Optimizations

To present the efficiency of the core evaluation strategy, we will use the following
queries. The chosen query set does not contain any query that is itself just a
single core, since for those queries the core evaluation performance is the same for
both the original execution and the core evaluation strategy. As can be observed
from the nature of the core evaluation strategy in Section 4.2, Algorithm 6 is
beneficial only for queries that contain some non-core atoms.

Example 6 (An acyclic query with one undistinguished variable). “Retrieve all
teachers of some course that is taken by at least one student.”

Q2 = [teacherOf(?v1, ?v2), takesCourse(!v3, ?v2)]

Example 7 (Difference between dist. and undist. variables). “Get all members of
a research group together with courses they take and teachers of these courses”.

Q3 = [worksFor(?v1 , ?v2), ResearchGroup(?v2),
takesCourse(?v1, ?v3), teacherOf(?v4, ?v3)]

Q4 is the same as Q3 but with ?v2 replaced by !v2.

Example 8 (A query with two undistinguished variables, one of which is in a
cycle (a modified version of Q1)). “Get all students that are members of some
part of some organization and whose advisor teaches a course they take. Get
also the courses.”:

Q5 = [advisor(?v1, !v4), teacherOf(!v4, ?v2), Employee(!v4),
takesCourse(?v1, ?v2), memberOf(?v1, !v3)]

In addition to these queries, we augment the test set with Q1 to complete the
analysis in Example 1. The test results are shown in Table 15.

Both the LUBM and UOB performance results show that the more distin-
guished variables the query contains, the worse the performance of the original
execution is and that the core optimization technique overtakes the optimized
strategy by at least an order of magnitude.

The importance of undistinguished variables is presented by queries Q3 and
Q4. For both LUBM and UOB the query Q3 has no results, since there is no
person working for an explicitly asserted ResearchGroup. On the other hand,
Q4 that matches also inferred ResearchGroup instances has more than 1000
results in both cases.
5 The UOB vocabulary slightly differs from the LUBM one. First, both ontologies
have different namespaces that are omitted to improve readability of the paper.
Second, some classes and properties have different names, in our case memberOf
and advisor in LUBM correspond to isMemberOf and isAdvisedBy in UOB. For
UOB all presented queries were adjusted accordingly.

Conjunctive Query Optimization in OWL2-DL 201

Table 1. Performance evaluation of the core strategy over the LUBM(1) and UOB(1)
DL dataset. The rows labeled simple denote the simple evaluation strategy as described
in Example 1, while the rows labeled with core denote the evaluation using cores.
Each row corresponds to the average over 10 independent runs. The query evaluation
took T ime ms (without the initial consistency check), results denotes the number of
bindings valid for the query and NB = (NIC + |IN |NIR)/10

3, where NIC is the count
of IC calls and NIR is the count of IR calls.

LUBM(1) UOB(1)

results NB time [ms] results NB time [ms] engine

Q1 208
622673 74030

184
569650 132020 simple

30028 1800 54562 5100 core

Q2 1621
875340 5180

2256
1573345 10510 simple

3249 910 4517 2280 core

Q3 0
541 330

0
878 800 simple

541 310 878 380 core

Q4 1099
924238 26130

2262
1581081 15010 simple

24216 1320 46838 3760 core

Q5 208
4998812 38150

184
6015688 45512 simple

30028 2360 54562 4720 core

6 Conclusion

Introduced optimization techniques made evaluation of queries with undistin-
guished variables efficient enough to be compared to evaluation of conjunctive
queries with distinguished variables. Still, during the implementation of these
optimization in the Pellet reasoner it turned out that evaluation of cores is still
the major bottleneck for queries with undistinguished variables. Thus next work
will study the overall impact of different core evaluation strategies to avoid as
many instance checks as possible.

The presented algorithm was implemented and tested on top of a tableau
algorithm for OWL2-DL consistency checking in the Pellet reasoner and the
OWL2Query engine. Still, its integration with another tableau-based inference
engine, like [15], to handle cycles of undistinguished variables seems beneficial
and will be studied in detail in the future.

Acknowledgements. The authors would like to thank Evren Sirin for his help
during integration of the proposed techniques into the Pellet reasoner. Finan-
cially, this work was supported partially by the grant No. MSM 6840770038
“Decision Making and Control for Manufacturing III” of the Ministry of Ed-
ucation, Youth and Sports of the Czech Republic and partially by the grant
No. 2/2011/OVV “Defects in immovable cultural heritage objects: a knowledge-
based system for analysis, intervention planning and prevention” of the Ministry
of Culture of the Czech Republic.

202 P. Křemen and Z. Kouba

References

1. OWL 2 Web Ontology Language Document Overview (2009),
http://www.w3.org/TR/2009/PR-owl2-overview-20090922/

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Peter, P.-S.: The Description
Logic Handbook, Theory, Implementation and Applications, Cambridge (2003)

3. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the Decidability of Query Con-
tainment under Constraints. In: Proceedings of Principles on Database Systems
1998, pp. 149–158 (1998)

4. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun,
X.: Scalable Grounded Conjunctive Query Evaluation over Large and Expressive
Knowledge Bases. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 403–418.
Springer, Heidelberg (2008)

5. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive Query Answering in the
Description Logic SHIQ. In: Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, IJCAI 2007 (2007)

6. Glimm, B., Horrocks, I., Sattler Conjunctive, U.: Query entailment for SHOQ.
In: Proc. of the 2007 Description Logic Workshop (DL 2007). CEUR Electronic
Workshop Proceedings, vol. 250, pp. 65–75 (2007), http://ceur-ws.org/Vol-250

7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Journal of Web Semantics 3(2-3), 158–182 (2005)

8. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval.
J. Autom. Reason. 41(2), 99–142 (2008)

9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible sroiq. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 57–67. AAAI Press, Menlo Park
(2006)

10. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. J. Web Sem. 1(4), 345–357 (2004)

11. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 448–453. Morgan,
San Francisco (2005)

12. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, Springer,
Heidelberg (2000)

13. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic aboxes.
In: AAAI/IAAI, pp. 399–404 (2000)

14. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL on-
tology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 125–139. Springer, Heidelberg (2006)

15. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via tableaux. J. Autom. Reason. 41(1), 61–98 (2008)

16. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Owl web ontology language semantics
and abstract syntax section 5. rdf-compatible model-theoretic semantics. Technical
report, W3C (December 2004)

17. Sirin, E., Parsia, B.: Optimizations for answering conjunctive ABox queries.
Description Logics (2006)

http://www.w3.org/TR/2009/PR-owl2-overview-20090922/
http://ceur-ws.org/Vol-250

RoSeS: A Continuous Content-Based Query
Engine for RSS Feeds�

Jordi Creus Tomàs1, Bernd Amann1, Nicolas Travers2, and Dan Vodislav3

1 LIP6, CNRS – Université Pierre et Marie Curie, Paris, France
2 Cedric/CNAM – Conservatoire National des Arts et Métiers, Paris, France

3 ETIS, CNRS – University of Cergy-Pontoise, Cergy, France

Abstract. In this paper we present RoSeS (Really Open Simple and Efficient
Syndication), a generic framework for content-based RSS feed querying and ag-
gregation. RoSeS is based on a data-centric approach, using a combination of
standard database concepts like declarative query languages, views and multi-
query optimization. Users create personalized feeds by defining and composing
content-based filtering and aggregation queries on collections of RSS feeds. Pub-
lishing these queries corresponds to defining views which can then be used for
building new queries / feeds. This naturally reflects the publish-subscribe nature
of RSS applications. The contributions presented in this paper are a declarative
RSS feed aggregation language, an extensible stream algebra for building effi-
cient continuous multi-query execution plans for RSS aggregation views, a multi-
query optimization strategy for these plans and a running prototype based on a
multi-threaded asynchronous execution engine.

1 Introduction

In its origins the Web was a collection of semi-structured (HTML) documents con-
nected by hypertext links. This vision has been valid for many years and the main effort
for facilitating access to and publishing web information was invested in the develop-
ment of expressive and scalable search engines for retrieving pages relevant to user
queries. More recently, new web content publishing and sharing applications that com-
bine modern software infrastructures (AJAX, web services) and hardware technologies
(handheld mobile user devices) appeared on the scene. The web contents published by
these applications is generally evolving very rapidly in time and can best be character-
ized by a stream of information entities. Online media, social networks and microblog-
ging systems are among the most popular examples of such applications, but the list of
web applications generating many different kinds of information streams is increasing
every day.

In our work we are interested in RSS1 and ATOM [17] as standard formats for pub-
lishing information streams. Both formats can be considered as the continuous counter-
part of static HTML documents for encoding semi-structured data streams in form of

� The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR),
under grant ROSES (ANR-07-MDCO-011) “Really Open, Simple and Efficient Syndication”.

1 RSS stands for (1) Rich Site Summary, (2) RDF Site Summary and (3) Really Simple
Syndication.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 203–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

204 J. Creus Tomàs et al.

dynamically evolving documents called feeds. They both use very similar data models
and follow the design principles of web standards (openness, simplicity, extensibility,
genericity) for generating advanced web applications.

The following example illustrates the usage of RSS2 in the context of social net-
works. Consider some user Bob who is registered to various different social media sites
like Facebook, Twitter, Blogger, Flickr, YouTube etc. as a publisher, as a reader or both.
All of these sites propose different kinds of services for publishing and annotating any
kind of web contents (web pages, images, videos). Bob rapidly feels the need of a
unique interface for observing the different information streams at a glance. This kind
of service can be provided by social web sites or other mashup interfaces like NetVibes
or iGoogle in form of widgets for building mashup pages. A more flexible data-centric
solution consists in aggregating RSS streams. Instead of building mashup pages merg-
ing different information streams, Bob can use an RSS aggregator like for example
Google Reader to subscribe to different kinds of RSS services proposed by the various
social networks and media sites. This aggregator provides a uniform interface for creat-
ing new personalized information streams composing and filtering items published by
collections of source feeds. A more detailed description of how RSS aggregation can
be used for combining social information streams is described in Section 4.1.

Another widely used application of RSS concerns news aggregation. RSS has be-
come the standard format used by professional information publishers like journals
and magazines for broadcasting news on the web. Combined with an adapted publish-
subscribe middle-ware, this offers an efficient way for the personalized delivery of
news. News aggregators like Google News enable personalization by defining and pub-
lishing RSS views over collections of news feeds. Each such view is defined by a declar-
ative query which merges and filters news of a possibly important number of source
feeds (for example all major French journals). Following the publish-subscribe prin-
ciple, these views can be reused for building other streams and the final result is an
acyclic graph of union/filtering queries on all the sources. One of the issues tackled in
this paper concerns the optimization of such plans.

In this paper we present RoSeS (Really Open Simple and Efficient Syndication), a
generic framework for content-based RSS feed querying and aggregation. Our frame-
work is based on a data-centric approach, based on the combination of standard database
concepts like declarative query languages, views and multi-query optimization. Users
create personalized feeds by defining and composing content-based filtering and ag-
gregation queries on collections of RSS feeds. Publishing these queries corresponds to
defining views which can then be used for building new queries / feeds. This naturally
reflects the publish-subscribe nature of RSS applications. RoSeS is based on a simple
but expressive data model and query language for defining continuous queries on RSS
streams. Combined with efficient web crawling strategies and multi-query optimiza-
tion techniques, it can be used as a continuous RSS stream middle-ware for dynamic
information sources. The main contributions presented in this paper are:

– A declarative RSS feed aggregation language for publishing large collections of
structured queries/views aggregating RSS feeds,

2 In the following we will use the term RSS for both formats, RSS and ATOM.

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 205

– An extensible stream algebra for building efficient continuous multi-query execu-
tion plans for RSS streams,

– A flexible and efficient cost-based multi-query optimization strategy for optimizing
large collections of publication queries,

– A running prototype based on multi-threaded asynchronous execution of query
plans.

The rest of the paper is organized as follows. Section 2 compares our system with
other existing RSS aggregation systems and introduces related work on data stream
processing and multi-query optimization. Section 3 describes the overall RoSeS archi-
tecture. The RoSeS data model, language and algebra are presented in Section 4 and
correspond to the first important contribution of our paper. Section 5 is devoted to the
second important contribution about query processing and multi-query optimization.
Section 6 discusses future work.

2 Related Work

Content-based Feed Aggregation: There exists a huge number of tools and portals pro-
viding different kinds of services for using RSS feeds. These services range from simple
web browser extensions for subscribing to and consulting RSS feeds to rich news ag-
gregation web sites like Google News for building personalized information spaces by
filtering and clustering news generated by hundreds or thousands of media sites. Feed
registries like FeedZilla, Search4rss and Syndic8 maintain collections of RSS feeds
which can be accessed by simple keyword search interfaces and a non-personalizable
set of hierarchically organized categories for describing and retrieving feeds. Aggre-
gation is often limited to the visual agregation of widgets in a web page (Netvibes,
Feedzilla) or the creation of collections (Google Reader).

Opposed to graphical and procedural feed agregation techniques, we are interested in
content-based feed filtering and aggregation for building personalized feeds that can be
shared with other users. GoogleReader3 is a RSS feed registry and feed reader which al-
lows Google users to create a personalized hierarchy of RSS feed collections. Feeds can
be discovered by keyword search and new feeds can be added manually. GoogleReader
also integrates the Google social network features for sharing and recommending feeds.
With respect to content-based feed aggregation, Google Reader allows users to publish
all items generated by a collection of feeds as a new ATOM feed and provides a search
interface for searching items in user defined collections. It is worth mentioning that it
is not possible to publish such filtered collections as new feeds.

The aggregation approach proposed by YahooPipes![1] is probably the most simi-
lar to ours. YahooPipes! is a web application for building so-called pipes generating
mashups from several RSS feeds and other external web sources/services. A pipe is a
visual representation of the Yahoo! Query Language (YQL) [2] which is an SQL-like
language for building tables aggregating information from external web sources (and
in particular RSS feeds). To our knowledge, pipes are relational expressions querying
a database storing the items of each feed. Whereas YQL is more expressive than our

3 Google reader is available at http://wwww.google.com/reader.

http://wwww.google.com/reader.

206 J. Creus Tomàs et al.

algebra, all queries are evaluated independently on demand which excludes MQO tech-
niques as proposed by our solution.

Data stream processing: RoSeS is to our knowledge the first system based on contin-
uous query processing for aggregating feeds. There is a large amount of previous work
on processing data streams and providing new continuous algebras and query languages
[9,13,21,23,3,29]. Most of these languages are based on a snapshot semantics (the re-
sult of a continuous query at some time instant t correspond to the result of a traditional
one-shot query on a snapshot of its argument) and redesign relational operators with a
pipe-lining execution model using inter-operator queues. They also introduce different
kinds of time-based and count-based window operators (sliding, tumbling, landmark)
for computing aggregates and joins [13]. The semantics of our data stream model and
algebra is strongly influenced by this work. The main originality of our algebra with
respect to existing algebra concerns our definition of annotation join which facilitates
the rewriting and optimization of the algebraic query plans (see section 4.2).

Since RSS and Atom are encoded with XML, we also explored existing approaches
for querying XML streams. XML streaming systems are concerned with the continuous
evaluation of XPath [14,25] and XQuery [19,4] expressions. The rich semi-structured
semantics of XML increases the complexity of the underlying query languages and
their implementation. RSS feeds are simple streams of flat XML fragments which do
not need highly expressive XML path expressions and we decided to follow a simple
attribute/value approach which is more efficient and sufficiently expressive for encoding
RSS data.

Multi-query optimization: Publications are stored continuous queries which might be
similar in the sense that they share filtering conditions on the same input streams.
This naturally calls for the application of efficient multi-query optimization techniques.
Multi-query optimization (MQO) has first been studied in the context of DBMS where
different users could request complex (one-shot) queries simultaneously to the system
[27]. Most MQO techniques exploit the fact that multiple queries can be evaluated more
efficiently together than independently, because it is often possible to share state and
computation [11]. Solutions using this observations are based on predicate indexing
[28], sharing states in global NFA [11]), join graphs [15] and sub-query factorization
[9,3,7]. We followed the latter approach which appeared to be the most promising for a
cost-based multi-query optimization solution.

Publish/subscribe systems aim to solve the problem of filtering an incoming stream
of items (generally generated by a large collection of source streams) according to topic-
based or content-based subscriptions. Different techniques propose efficient topic-
clustering algorithms [22,24], appropriate subscription index structures [20,12,6], and
distributed stream processing [26,18]. These techniques mainly focus on the parallel
processing and efficient indexing of conjunctive keyword queries, which are less ex-
pressive than our aggregation queries. However, they share some issues and solutions
which are conceptually similar to the MQO problem mentioned before.

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 207

3 RoSeS Architecture

The RoSeS system is composed of five modules for processing RSS feeds and manag-
ing meta-data about users, publications and subscriptions. As shown in Figure 1, RSS
feeds are processed by a three layered architecture where the top layer (acquisition) is
in charge of crawling the collection of registered RSS feeds (in the following called
source feeds), the second layer (evaluation) is responsible for processing a continuous
query plan which comprises all publication queries and the third layer (diffusion) deals
with publishing the results according to the registered subscriptions (see Section 4). The
remaining two modules (catalog and system manager) provide meta-data management
services for storing, adding, updating and deleting source feeds, publication queries and
subscriptions.

Fig. 1. RoSeS System architecture

Acquisition: The main task of this module is to transform evolving RSS documents
into a continuous stream of RoSeS items which can be processed by the evaluation
module. This transformation includes an efficient refresh strategy optimizing the band-
width usage. In [16], we propose a best-effort strategy for refreshing RSS documents
under limited bandwidth, which introduces the notion of saturation for reducing infor-
mation loss below a certain bandwidth threshold. The freshness efficiency is not in the
scope of this paper.

Evaluation: The core of the RoSeS system is an algebraic multi-query plan which
encodes all registered publication queries. The evaluation of this query plan follows
an asynchronous pipe-lined execution model where the evaluation module (1) contin-
uously evaluates the set of algebraic operations according to the incoming stream of
RoSeS items, and (2) manages the addition, modification and deletion of publication
queries.

208 J. Creus Tomàs et al.

Diffusion: This module is responsible for transforming RoSeS items into different out-
put formats and notifying new items to corresponding user subscriptions. The goal of
this module is to define the way items are rewritten with annotations, in given formats
(SMS, email, RSS/Atom feed. . .).

4 RoSeS Data Model and Language

4.1 The RoSeS Language

The language we have implemented in the RoSeS system provides instructions for
registering new source feeds (register), defining new publications (publish) and cre-
ating subscriptions (subscribe). We will shortly describe these language components
completed by an example. The component we are most interested in this article are
publication queries, which will be studied in more detail in section 4.2.

The publication language has been designed to respond to several desiderata: to be
expressive but simple to use, to facilitate most common operations and to be appropri-
ate for large scale multi-query optimization. In RSS syndication, the most commonly
used aggregation is based on large unions combined with filtering. RoSeS enforces the
simplicity in use of its declarative publication language, by favoring the expression of
large unions, combined with targeted filtering and joins.

A publication query contains three clauses:

– A mandatory from clause, which specifies the input feeds that produce output
items, called main feeds.

– Zero, one or several join clauses, each one specifying a join with a secondary feed.
Secondary feeds only produce annotations (no output) to main feed elements.

– An optional where clause for filtering conditions on main or secondary feeds.

The registering language allows defining new source feeds coming either from ex-
ternal RSS/Atom feeds, or from internal materialized publications. Note that RoSeS
does not allow item transformation in publications (virtual feeds). However, transfor-
mations are possible if the resulting feed is materialized and registered as a new source
feed at the acquisition level. Transformations are expressed through XSLT stylesheets
that transform a RoSeS item structure into an other. Transformations may use annota-
tions produced by joins (e.g., include corresponding links to photos of feed MusePho-
toStream at materialization time, in Example 2 below).

The subscription language allows defining subscriptions to existing publication/-
source feeds. A subscription specifies a feed, a notification mode (RSS, mail, etc.),
a periodicity and possibly a transformation. Subscription transformations are expressed
by XSLT stylesheets, but unlike registering transformations, the output format is free.

Example 1. Suppose Bob regularly organizes with his friends outings to rock concerts.
He therefore defines a publication RockConcertStream, including items about concerts
from his friends messages (feeds FriendsFacebookStream and FollowedTwitterStream),
and rock concert announces from feed EventAnnounces.

For this, he first registers the corresponding source streams in the system and creates
a new publication RockConcertStream:

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 209

register feed http://www.facebook.com/feeds/friends notes.php?id=x&key=y&format=rss20
as FriendsFacebookStream;

register feed http://www.infoconcert.com/rss/news.xml as EventAnnounces;
register feed http://twitter.com/statuses/user timeline/174451720.rss FollowedTwitterStream;
create feed RockConcertStream

from (FriendsFacebookStream | EventAnnounces as $ca | FollowedTwitterStream) as $r
where $ca[title contains ’rock’] and $r[description contains ’concert’];

Notice that the from clause allows defining groups (unions) of feeds, identified by
variables and used then to express conditions on the group in the where clause. Here
filtering conditions are expressed on EventAnnounces (title contains ’rock’) and on
grouped feeds (description contains ’concert’).

Example 2. Then Bob, who is a fan of the Muse rock group, creates feed MusePho-
toStream with items about Muse, annotated with photos. Items come from feeds Rock-
ConcertStream (those talking about Muse) and MuseNews, while photos come from two
secondary feeds: FriendsPhotos with photos published by his friends and MusicPhotos
(only for category ’rock’). Annotation is realized by join, each item from the main feed
($main) is annotated with photos in the last 3 months from secondary feed items having
similar titles. Notice that a join specifies a window on a group of secondary feeds, a
main feed (through a variable) and a join predicate.

register feed http://muse.mu/rss/news.rss as MuseNews;
create feed MusePhotoStream

from (RockConcertStream as $r | MuseNews) as $main
join last 3 months on (MusicPhotos as $m | FriendsPhotos)

with $main[title similar window.title]
where $r[description contains ’Muse’] and $m[category = ’rock’];

register feed MusePhotoStream apply ’IncludePhotos.xsl’ as MuseWithPhotos;

The final example shows two subscriptions to the RockConcertStream publication:
the first one extracts item titles (’Title.xsl’ transformation) and sends them by mail every
3 hours, the second one simply outputs an RSS feed refreshed every 10 minutes.

subscribe to RockConcertStream apply ’Title.xsl’ output mail ’me@mail.org’ every 3 hours;
subscribe to RockConcertStream output file ’RockConcertStream.rss’ every 10 minutes;

4.2 Data Model and Algebra

The RoSeS data model borrows from state-of-the-art data stream models, while propos-
ing specific modeling choices adapted to RSS/Atom syndication and aggregation.

A RoSeS feed corresponds to either a registered external RSS/Atom (source) feed,
or to a publication (virtual) feed. A feed is a couple f = (d, s), where d is the feed de-
scription and s is a RoSeS stream. Description is a tuple, representing usual RSS/Atom
feed properties: title, description, URL, etc.

210 J. Creus Tomàs et al.

A RoSeS stream is a data stream of annotated RoSeS items. More precisely, a
RoSeS stream is a (possibly infinite) set of elements e = (t, i, a), where t is a times-
tamp, i a RoSeS item, and a an annotation, the set of elements for a given timestamp
being finite. Annotation links joined items to an element. An annotation is a set of cou-
ples (j, A), where j is a join identifier and A is a set of items - the annotation is further
detailed in the join operator below.
RoSeS items represent data content conveyed by RSS/Atom items. Despite the adop-

tion of an XML syntax, RSS and Atom express rather flat text-oriented content struc-
ture. Extensions and deeper XML structures are very rarely used, therefore we made the
choice of a flat structure, as a set of typed attribute-value couples, including common
RSS/Atom properties: title, description, link, author, publication date, etc. Extensibil-
ity may be handled by including new, specific attributes to RoSeS items - this enables
both querying any feed through the common attributes and addressing specific attributes
(when known) of extended feeds.

A RoSeS window expresses subsets of a stream’s items valid at various moments.
More precisely, a window w on a stream s is a set of couples (t, I), where t is a times-
tamp and I is the set of items of s valid at t. Note that (i) a timestamp may occur
only once in w, and (ii) I contains only items that occur in s before (or at) timestamp
t. We note w(t) the set of items in w for timestamp t. Windows are used in RoSeS
only for computing joins between streams. RoSeS uses sliding windows of two types:
time-based (last n units of time) and count-based (last n items).

Publication definition is based on five main operators for composingRoSeS streams.
We distinguish conservative operators (filtering, union, windowing, join), that do not
change the content of the input items, i.e. they output only already existing items, from
altering operators (transformation), that produce new items.

Subscribed publications are translated into algebraic expressions as shown in the
following example for RockConcertStream and MusePhotoStream (for space reasons
abbreviated feed names and a simplified syntax are used).

RConcert = σ′concert′∈desc(FFacebook ∪ σ′rock′∈title(EAnnounces) ∪ FTwitter)
MPhoto = (σ′Muse′∈desc(RConcert) ∪MNews) ��title∼w.title

ωlast 3 m(σcat=′rock′(MPhotos) ∪ FPhotos)

The algebra is defined in the rest of this section and the evaluation of algebraic ex-
pressions is detailed in section 5.

A central design choice for the RoSeS language is to express only conservative
operators in the publication language. The advantage is that conservative operators
have good query rewriting properties (commutativity, distributivity, etc.), which favor
both query optimization and language declarativeness (any algebraic expression can
be rewritten in a normalized form corresponding to the declarative clauses of the lan-
guage). Expressiveness is preserved first by allowing join, the most powerful operator,
filtering, union and windowing in the publication language. Next, transformation can
be used in defining new materialized source feeds. Notice that transformations may use
join annotations, and consequently improve (indirectly) the expressive power of joins.

Filtering outputs only the stream elements that satisfy a given item predicate, i.e.
σP (s) = {(t, i, a) ∈ s| P (i)}. Item predicates are boolean expressions (using

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 211

conjunctions, disjunctions, negation) of atomic item predicates that express a condi-
tion on an item attribute; depending on the attribute type, atomic predicates may be:

– for simple types: comparison with value (equality, inequality).
– for date/time: comparison with date/time values (or year, month, day, etc.).
– for text: operators contains (word(s) contained into a text attribute), similar (text

similar to another text).
– for links: operators references/extends (link references/extends an URL or host),

shareslink (attribute contains a link to one of the URLs in a list).

Note that RoSeS allows applying text and link predicates to the whole item - in this
case the predicate considers the whole text or all the links in the item’s attributes.

Union outputs all the elements in the input streams, i.e.
⋃

(s1, ..., sn) = s1∪ ...∪sn.
Union may be expressed explicitly, by enumerating input streams, or implicitly, through
a query over the existing feeds.

Windowing produces a window on the input stream conforming to the window spec-
ification, i.e. ωt,spec(s) and ωc,spec(s) define a time-based, respectively a count-based
sliding window, where spec expresses a duration, respectively a number of items.

Join takes a (main) stream and a window on a (secondary) stream. RoSeS uses a
conservative variant of the join operation, called annotation join, that acts like a semi-
join (main stream filtering based on the window contents), but keeps a trace of the
joining items by adding an annotation entry. A join ��P (s, w) of identifier j outputs
the elements of s for which the join predicate P is satisfied by a non-empty set I of
items in the window, and adds to them the annotation entry (j, I). More precisely, ��P

(s, w) = {(t, i, a′)| (t, i, a) ∈ s, I = {i′ ∈ w(t)| P (i, i′)}, |I| > 0, a′ = a ∪ {(j, I)}}.
Transformation modifies each input element following a given transformation func-

tion, i.e. τT (s) = {T (t, i, a)| (t, i, a) ∈ s}. It is the only altering operator, whose use is
limited to produce subscription results or new source feeds, as explained above.

5 Query Processing

5.1 Query Graphs

Query processing consists in continuously evaluating a collection of publication queries.
This collection is presented by a multi-query plan composed of different physical oper-
ators reflecting the algebraic operators presented in Section 4.2 (union, selection, join
and window). Query execution is based on a pipe-lined execution model where a query
plan is transformed into a graph connecting sources, operators and publications by inter-
operator queues or by window buffers (for blocking operators like join). A query plan
for a set of queries Q can then be represented as a directed acyclic graph G(Q) as
shown in Figure 2. Graph in Figure 2 represents one possible physical query plan for
the following set of publications: p1 = σ1(s1 ∪ s2), p2 = (s3 ∪ s4) ��1 ω1(s5),
p3 = σ2(p1 ∪ s6). As we can see, window operators produce a different kind of output,
window buffers, which are consumed by join operators. View composition is illustrated
by an arc connecting a publication operator to an algebraic operator (p1 is connected to
union∪3). Observe also that transform operators are applied after publication operators.

212 J. Creus Tomàs et al.

Fig. 2. Evaluation module architecture

The next section presents query graph processing and the underlying cost-model that
is implemented in the current system. Section 5.3 introduces our optimization tech-
niques (not yet implemented) that improve processing performances.

5.2 Query Evaluation and Cost-Model

As explained in the previous section, a set of publication queries is translated into a
multi-query plan composed of operators connected by read/write queues or by window
buffers. New items are continuously arriving to this graph and have to be consumed by
the different operators. We have adopted a multi-threaded pipe-lining execution model
which is a standard approach in continuous query processing architectures. Query exe-
cution is done as follows. The query graph is observed by a scheduler that continuously
decides which operators (tasks) must be executed (see Figure 2). The scheduler has at
his disposal a pool of threads for executing in parallel a fixed number of threads (the
naive solution of attaching one thread to each operator rapidly becomes inefficient /
impossible due to thread management overhead or system limitations). The choice of
an inactive operator to be evaluated is influenced by different factors depending on the
input buffer of each operator (the number and/or age of the items in the input queue).

Based on this execution model, we define a cost model for estimating the resources
(memory, processor) necessary for the execution of a query plan. Compared to the cost
estimation of a traditional query plan which is based on the size of the input data, the
estimation parameters of a continuous plan must reflect the streaming nature of the data.
We adapt a simplified version of the model presented in [5] and define the cost of each
operator op as a function of the publishing rate R(b) of its input buffer(s) b (and the size
S(w) of input windows w, for join operators).

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 213

Table 1. Cost model

Operator Output rate Memory Processing cost
σp(b) sel(p) ∗ R(b) const const ∗ R(b)
∪(b1, ..., bn)

∑
1≤i≤n R(bi) 0 0

��p (b, w) sel(p) ∗ R(b) const R(b) ∗ S(w)
ωd(b) 0 S = const or S = d ∗ R(b) const

As we can see in table 1, the cost of each operator strongly depends on the publishing
rate of its input buffer(s). The selection operator assumes a constant execution cost for
each item (a more precise model could take account of the size of each item, but since
items are in general small text fragments we ignore this detail in our model). Memory
cost of selection is also constant (the size of the operator plus the size of one item).
The publishing rate of the selection operator reduces the rate of its input buffer by the
selectivity factor sel(p) ∈ [0, 1] depending on the selection predicate p. Union generates
an output buffer with a publishing rate corresponding to the sum of its input buffer rates.
We assume zero memory and processing cost since each union can be implemented by
a set of buffer iterators, one for each input buffer. The join operator generates an output
buffer with a publishing rate of sel(p) ∗ R(b) where R(b) is the publishing rate of the
primary input stream and sel(p) ∈ [0, 1] corresponds to the probability that an item in b
joins with an item in window s using join predicate p. This is due to the behavior of the
annotation join: one item is produced by the join operator when a new item arrives on
the main stream and matches at least one item in the window. Then the item is annotated
with all matching window items. So the processing cost of the join operator corresponds
to the product R(b) ∗ S(w), where S(w) is the size of the join window w. The window
operator transforms the stream into a window buffer where the size depends on the size
of the window (count-based window) or on the time-interval d and the input buffer rate
R(b) (time-based window). It is easy to see that the input buffer rate of each operator
strongly influences the global cost of the execution plan (the sum of the cost of all
operators) and we will describe in the following section how we can reduce this rate by
pushing selections and joins towards the source feeds of the query plan.

5.3 Query Graph Optimization

An important originality of our framework with respect to other multi-query optimiza-
tion solutions lies in the explicit integration of a cost model. This makes it more expres-
sive than other approaches without cost model. As mentioned before, our optimization
strategy is based on the heuristic that selections and joins should be applied as early as
possible in order to reduce the global cost of the plan. We use traditional rewriting rule
for algebraic expressions (distributivity of selection over union, commutativity of se-
lection with join and transforming selections into a cascade of selections). Observe that
commutativity with join is possible because of the particular nature of our annotation
joins which do not modify the input items and guarantee that all subsequent selections
only apply to these items. We will describe the whole process in the following.

214 J. Creus Tomàs et al.

The optimization process can be decomposed into two phases: (a) a normalization
phase which applies all rewriting rules for pushing selections towards their source feeds
and for distributing joins over union and (b) a factorization phase of the selection pred-
icates of each source based on a new cost-based factorization technique.

Query normalization: The goal of the first phase is to obtain a normalized query plan
where all filtering selections are applied first to each source before applying joins and
unions. This is possible by iteratively applying distributivity of selections on unions
and commutativity between selection and join. It is easy to show that we can obtain an
equivalent plan which is a four level tree where the leaves of the tree are the sources in-
volved in the query (first level), the second level nodes are the selection operators which
can be applied to each source (leaf), the third level are window/join operators operators
applied to the results of the selections and the final (fourth) level are unions applied
to the results of the selections/windowed-joins to build the final results. Normalization
also flattens all cascading selection paths into a single conjunctive selection. This mod-
ification might increase the cost of the resulting normalized graph with respect to the
original graph. However, as we will show at the end of this section this increase is only
temporary and compensated by the following factorization phase.

We will explain our approach by a simple example without join operations. Suppose
the three publication queries shown in Figure 3, publication p3 (p3 = σd(p2 ∪ s5)) is
defined over another publication p2, with a filtering operation (σa∧c). Here, the nor-
malization process consists in pushing all the selection operations through the pub-
lication tree to the sources. This lets us obtain the normal form shown in Figure 4:
p3 = σa∧c∧d(s2) ∪ σa∧c∧d(s3) ∪ σa∧c∧d(s4) ∪ σd(s5)

Fig. 3. Query graph Fig. 4. Normalized query graph

Query factorization: Normalization generates a global query plan where each source
s is connected to a set of selection predicates P (s). Factorization consists in build-
ing a minimal filtering plan for each source. To find a best operator factorization,
we proceed in two steps: we first generate for each source a predicate subsumption
graph which contains all predicates subsuming the set of predicates in P (s). Each
subsumption link in this graph is labeled by a weight corresponding to the output rate
of the source node (source or filtering operation). It is easy to show that any sub-tree
of this graph covering the source s (root) and all predicates in P (s) corresponds to

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 215

Fig. 5. Subsumption Graph for s2 and Steiner Tree

a filtering plan which is equivalent to the original plan where the cost is obtained by
the sum of all arc weights in the tree. Based on this observation we then try to find
a Steiner tree [8], which corresponds to a sub-tree of minimal cost covering all initial
predicates. The idea of this procedure is illustrated in Figure 5 showing a subsump-
tion graph for the source s2 and a minimal Steiner tree of this graph (in bold). The
selection operators corresponding to s2 are (fig. 4) σa∧b, σa∧c, σa∧c∧d. The subsump-
tion graph is composed of these three operators, the operators corresponding to the
sub-expressions of the three initial operators: σa, σb, σc, σd, σa∧d and σc∧d, and the
subsumption arcs between all these operators (σa → σa∧b, σb → σa∧b, ...). Subsump-
tion graph arcs are populated with weights, which represent the estimated evaluation
cost of using that arc. They correspond to the product between the involved source’s
publishing rate and the estimated selectivity of the operator predicate at the tail of the
arc (e.g., cost(σa → σa∧b) = rate(s2) · selectivity(a)). Then a Steiner tree algorithm
can be run over the subsumption graph to find the best factorization tree. In our example
with selection operators for source s2, the resulting tree can be seen in Figure 5.

The Steiner tree problem [8] is known to be NP-complete and we have developed
an approximate algorithm which exploits the particular properties of a filtering plan (all
outgoing arcs of a node have the same weight and the weight is monotonically decreas-
ing with the depth of the node in the graph). This algorithm is based on a local heuristic
for dynamically building the subsumption graph by choosing the most selective sub-
suming predicates. Whereas it will find only an approximate solution, it can incremen-
tally add new predicates generated by new publication queries. A detailed description
of the whole process is outside the scope of this paper.

It is easy to show that the final filtering plan has less cost than the initial filtering
plan. Normalization can increase the cost of the filtering plan by replacing cascading
selection paths by a conjunction of all predicates on the path. However, it can be shown
that the subsumption graph regenerates all these paths and the original plan is a sub-tree
of this graph. Since the Steiner tree is a minimal sub-tree for evaluating the initial set
of predicates, its cost will be at most be the cost of the initial graph. For example, the
cost for source s2 in the original plan (Figure 3) roughly is twice the publishing rate of

216 J. Creus Tomàs et al.

s2 (both selections σa∧b and σa∧c are applied to all items generated by s2). This cost is
reduced to its half in the final Steiner tree by introducing the additional filter a.

6 Conclusion and Future Work

In this paper we have presented RoSeS, a large-scale RSS feed aggregation system
based on a continuous multi-query processing and optimization. Our main contributions
are a simple but expressive aggregation language and algebra for RSS feeds combined
with an efficient cost-based multi-query optimization technique. The whole RoSeS ar-
chitecture, feed aggregation language and continuous query algebra have been imple-
mented [10] and first experiments show that the system is able to manage thousands
of publications within reasonable system resources. We are currently extending this
system by the multi-query optimization strategy described in Section 5.3 and some pre-
liminary experiments show that the optimization phase scales well with respect to the
number of filters. A deeper discussion concerning scalability is outside the scope of this
paper.

The most important issue we are addressing now concerns two intrinsic dimensions
of dynamicity in continuous query processing systems like RoSeS. Users who contin-
uously modify the query plan by adding, deleting and updating publication queries in-
troduce the first dimension of dynamicity. The second one is brought by sources, which
generally have a time-varying publishing behavior in terms of publishing rate and con-
tents. Both dimensions strongly influence the evaluation cost of a query plan and need
a continuous re-optimization strategy in order to compensate performance loss.

A standard approach [31,30] to this problem consists in periodically replacing a
query plan P by a new optimized plan O (query plan migration). The problem here is
to estimate this difference efficiently without rebuilding the complete optimal plan. We
are currently studying such a cost-based threshold re-optimization approach adapted
to our context. The basic idea is to keep the subsumption graphs generated for each
source during optimization. These subsumption graphs can be maintained at run-time
by adding and deleting source predicates and updating the statistics concerning each
source (selectivity, publishing rate). Using an appropriate threshold measure, it is then
possible to recompute the optimal Steiner trees and update the corresponding query
plan fragments.

References

1. The yahoo! pipes feed aggregator, http://pipes.yahoo.com
2. Yahoo! query language, http://developer.yahoo.com/yql
3. Arasu, A., Babu, S., Widom, J.: The CQL continuous Query Language: Semantic Founda-

tions and Query Execution. In: VLDB, pp. 121–142 (2006)
4. Botan, I., Fischer, P., Florescu, D., Kossman, D., Kraska, T., Tamosevicius, R.: Extending

XQuery with Window Functions. In: VLDB, pp. 75–86 (2007)
5. Cammert, M., Krmer, J., Seeger, B., Vaupel, S.: A cost-based approach to adaptive resource

management in data stream systems. In: TKDE, vol. 20, pp. 230–245 (2008)
6. Chandramouli, B., Phillips, J.M., Yang, J.: Value-based notification conditions in large-scale

publish/subscribe systems. In: VLDB, pp. 878–889 (2007)

http://pipes.yahoo.com
http://developer.yahoo.com/yql

RoSeS: A Continuous Content-Based Query Engine for RSS Feeds 217

7. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J., Hong, W.,
Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In: CIDR (2003)

8. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation
algorithms for directed steiner problems. In: Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms SODA 1998, pp. 192–200. Society for Industrial and
Applied Mathematics (1998)

9. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System
for Internet Databases. In: SIGMOD Record, pp. 379–390 (2000)

10. Creus, J., Amann, B., Travers, N., Vodislav, D.: Un agrégateur de flux rss avancé. In: 26e

Journées Bases de Données Avancées, demonstration (2010)
11. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive publish/-

Subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896,
pp. 627–644. Springer, Heidelberg (2006)

12. Fabret, F., Jacobsen, A., Llirbat, F., Pereira, J., Ross, K., Shasha, D.: Filtering algorithms and
implementation for very fast publish/subscribe systems. In: SIGMOD Record, pp. 115–126
(2001)

13. Golab, L., Özsu, M.T.: Issues in Data Stream Management. SIGMOD Record 32(2), 5–14
(2003)

14. Gupta, A.K., Suciu, D.: Stream Processing of XPath Queries with Predicates. In: SIGMOD
Record, pp. 419–430 (2003)

15. Hong, M., Demers, A.J., Gehrke, J., Koch, C., Riedewald, M., White, W.M.: Massively
Multi-Query Join Processing in Publish/Subscribe Systems. In: SIGMOD Record, pp. 761–
772 (2007)

16. Horincar, R., Amann, B., Artières, T.: Best-effort refresh strategies for content-based RSS
feed aggregation. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488,
pp. 262–270. Springer, Heidelberg (2010)

17. I.E.T.F. IETF. Atompub status pages. URL retrieved (2011), -02-12.,
http://tools.ietf.org/wg/atompub

18. Jun, S., Ahamad, M.: FeedEx: Collaborative Exchange of News Feeds. In: WWW,
pp. 113–122 (2006)

19. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: FluXQuery: An Optimizing
XQuery Processor for Streaming XML Data. In: VLDB (2004)

20. König, A.C., Church, K.W., Markov, M.: A Data Structure for Sponsored Search. In: ICDE,
pp. 90–101 (2009)

21. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics and Evaluation Tech-
niques for Window Aggregates in Data Streams. In: SIGMOD Record, pp. 311–322 (2005)

22. Li, X., Yan, J., Deng, Z., Ji, L., Fan, W., Zhang, B., Chen, Z.: A Novel Clustering-Based RSS
Aggregator. In: WWW, pp. 1309–1310 (2007)

23. Luo, C., Thakkar, H., Wang, H., Zaniolo, C.: A Native Extension of SQL for Mining Data
Streams. In: SIGMOD Record, pp. 873–875 (2005)

24. Milo, T., Zur, T., Verbin, E.: Boosting topic-based publish-subscribe systems with dynamic
clustering. In: SIGMOD Record, pp. 749–760 (2007)

25. Peng, F., Chawathe, S.: XPath Queries on Streaming Data. In: SIGMOD Record,
pp. 431–442 (2003)

26. Rose, I., Murty, R., Pietzuch, P.R., Ledlie, J., Roussopoulos, M., Welsh, M.: Cobra: Content-
based filtering and aggregation of blogs and rss feeds. In: NSDI (2007)

27. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13, 23–52 (1988)
28. Whang, S.E., Garcia-Molina, H., Brower, C., Shanmugasundaram, J., Vassilvitskii, S., Vee,

E., Yerneni, R.: Indexing boolean expressions. VLDB Endow 2, 37–48 (2009)

http://tools.ietf.org/wg/atompub

218 J. Creus Tomàs et al.

29. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing over Streams. In:
SIGMOD Record, pp. 407–418 (2006)

30. Yang, Y., Krämer, J., Papadias, D., Seeger, B.: Hybmig: A hybrid approach to dynamic plan
migration for continuous queries. TKDE 19(3), 398–411 (2007)

31. Zhou, Y., Salehi, A., Aberer, K.: Scalable delivery of stream query result. VLDB Endow 2,
49–60 (2009)

The Linear Combination Data Fusion Method in

Information Retrieval

Shengli Wu1,2, Yaxin Bi2, and Xiaoqin Zeng3

1 School of Computer Science and Telecommunication Engineering
Jiangsu University, Zhenjiang, China

2 School of Computing and Mathematics
University of Ulster, Northern Ireland, UK

3 College of Computer and Information Engineering
Hehai University, Nanjing, China

Abstract. In information retrieval, data fusion has been investigated by
many researchers. Previous investigation and experimentation demon-
strate that the linear combination method is an effective data fusion
method for combining multiple information retrieval results. One advan-
tage is its flexibility since different weights can be assigned to different
component systems so as to obtain better fusion results. However, how
to obtain suitable weights for all the component retrieval systems is still
an open problem.
In this paper, we use the multiple linear regression technique to ob-

tain optimum weights for all involved component systems. Optimum is
in the least squares sense that minimize the difference between the es-
timated scores of all documents by linear combination and the judged
scores of those documents. Our experiments with four groups of runs
submitted to TREC show that the linear combination method with such
weights steadily outperforms the best component system and other ma-
jor data fusion methods such as CombSum, CombMNZ, and the linear
combination method with performance level/performance square weight-
ing schemas by large margins.

1 Introduction

In information retrieval, the data fusion technique has been investigated by
many researchers and quite a few data fusion methods such as CombSum [7,8],
CombMNZ [7,8], the linear combination method [2,19,20,21,23],the multiple cri-
teria approach[6], the correlation method [26,27], Borda count [1], Condorcet
fusion [14], Marcov chain-based methods [4,16], and others [5,9,11,17,28], have
been presented and investigated. Previous research demonstrates that, generally
speaking, data fusion is an effective technique for obtaining better results.

Data fusion methods in information retrieval can be divided into two cate-
gories: score-based methods and rank-based methods. These two different types
of methods apply to different situations. If some or all component systems
only provide a ranked list of documents as the result of a query, then rank-
based methods can be applied. If every component system provides scores for

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 219–233, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

220 S. Wu, Y. Bi, and X. Zeng

all retrieved documents, then score-based methods can be applied. In all these
methods, CombSum [7,8], CombMNZ [7,8], Borda count [1] 1, the correlation
method [26,27], the linear combination method [2,19,20,21,23] are score-based
methods, while Condorcet fusion [14], Marcov chain-based methods [4,16], and
the multiple criteria approach[6] are rank-based methods.

Among all those score-based data fusion methods, the linear combination
method is very flexible since different weights can be used for different compo-
nent systems. It is especially beneficial when component systems involved vary
considerably in performance and dissimilarity between each other. However, how
to assign suitable weights to the component systems involved is a crucial issue
that needs to be carefully investigated.

Some previous investigation (e.g., in[1,18]) took a simple performance level
policy. That is, for every component system, its average performance (e.g., av-
erage precision) is measured using a group of training queries, then the value
obtained is used as the weight for that component system correspondingly. Some
alternatives to the simple performance level weighting schema was investigated
in [23]. On the other hand, both system performance and dissimilarities between
systems were considered in [27] to determine all systems’ weights. Although these
weighting schemas can usually bring performance improvement over CombSum
and CombMNZ – the two commonly used data fusion methods that assign equal
weights to all component systems, it is very likely that there is still room for
further improvement since all these weighting schemas are heuristic in nature.

In this paper we investigate a new approach, multiple linear regression, to
training system weights for data fusion. Our experiments demonstrate that this
approach is more effective than other approaches. To our knowledge, multiple
linear regression has not been used for such a purpose before, thought it has
been used in various other tasks in information retrieval.

A related issue is how to obtain reliable scores for those retrieved documents.
Sometimes scores are provided by component retrieval systems, but usually those
raw scores from different retrieval systems are not comparable and some kind of
score normalization is needed before fusing them. An alternative is to convert
ranking information into scores if raw scores are not available or not reliable.
Different models [1,3,12,15,22] have been investigated for such a purpose. In this
piece of work, we use the logistic regression model for it. This technique has been
investigated for distributed information retrieval [3,15], but not for data fusion
before.

The rest of this paper is organized as follows: in Section 2 we review some
related work on data fusion. Then in Section 3 we discuss the linear combination
method for data fusion and especially the two major issues involved. Section 4
presents the experiment settings and results for evaluating a group of data fusion
methods including the one presented in this paper. Section 5 is the conclusion.

1 Borda count is a little special. It does not require that scores are provided by com-
ponent systems for retrieved documents. It converts ranking information into scores
instead. Since it uses the same combination algorithm as CombSum (or CombMNZ)
for fusion, we classify it as a score-based method.

The Linear Combination Data Fusion Method in Information Retrieval 221

2 Related Work

In this section we review some previous work on the linear combination method
and score normalization methods for data fusion in information retrieval.

Probably it was Thompson who reported the earliest work on the linear com-
bination data fusion method in [18]. The linear combination method was used
to fuse results submitted to TREC 1. It was found that the combined results,
weighted by performance level, performed no better than a combination using
uniform weights (CombSum). Weighted Borda count [1] is a variation of per-
formance level weighting, in which documents at every rank are assigned cor-
responding scores using Borda count, and then the linear combination method
with the performance level weighting is used for fusion. Another variation is, ev-
ery system’s performance can be estimated automatically without any training
data, then the linear combination method can be applied [24].

In a piece of work done by Wu et. al. [23], their experiment shows that, using
the power function of performance with a power value between 2 and 6 can
lead to slightly better fusion results than performance level weighting. On the
other hand, in Wu and McClean’s work [26,27], both system performance and
dissimilarities among systems were considered. In their weighting schema, any
system’s weight is a compound weight that is the product of its performance
weight and its dissimilarity weight. The combination of performance weights
and dissimilarity weights was justified using statistical principles and sampling
theories by Wu in [21].

Bartell and Cottrell [2] used a numerical optimisation method, conjugate gra-
dient, to search for good weights for component systems. Because the method is
time-consuming, only 2 to 3 component systems and the top 15 documents re-
turned from each system for a given query were considered in their
investigation.

Vogt and Cottrell [19,20] analysed the performance of the linear combination
method. In their experiments, they used all possible pairs of 61 systems submit-
ted to the TREC 5 ad-hoc track. Another numerical optimisation method, golden
section search, was used to search for good system weights. Due to the nature
of the golden section search, only two component systems can be considered for
each fusion process. Generally speaking, these brute-force search methods are
very time-consuming and their usability in many applications are very limited.

An associated problem is how to obtain reliable scores for retrieved docu-
ments. This problem is not trivial by any means. Sometimes component infor-
mation retrieval systems provide scores for their retrieved documents. However,
those raw scores from different retrieval systems may not be comparable. Some
kind of normalization is required for those raw scores. One common linear score
normalization method is: for any list of scores (associated with a ranked list
of documents) for a given topic or query, we map the highest score into 1, the
lowest score into 0, and any other scores into a value between 0 and 1 by using
the formula.

222 S. Wu, Y. Bi, and X. Zeng

n score =
(raw score−min score)
(max score −min score)

(1)

Here max score is the highest score, min score is the lowest score, raw score
is the score to be normalized and n score is the normalized score of raw score.
This normalization method was used by Lee [10] and others in their experiments.

The above zero-one normalization method can be improved in some situa-
tions. For example, in the TREC workshop, each system is usually required to
submit 1000 documents for any given query. In such a situation, the top-ranked
documents in the list are not always relevant, and the bottom-ranked documents
are not always irrelevant. Therefore, Wu, Crestani, and Bi [25] considered that
[a, b] (0 < a < b < 1) should be a more suitable range than [0,1] for score
normalization. Experiments with TREC data were conducted to support this
idea.

Two other linear score normalization methods, SUM and ZMUV (Zero-Mean
and Unit-Variance), were investigated by Montague and Aslam [13]. In SUM,
the minimal score is mapped to 0 and the sum of all scores in the result to 1. In
ZMUV, the average of all scores is mapped to 0 and their variance to 1.

If only a ranked list of documents is provided without any scoring information,
then we cannot use the linear combination method directly. One usual way of
dealing with this is to assign a given score to documents at a particular rank. For
example, Borda count [1] works like this: for a ranked list of t documents, the
first document in the list is given a score of t, the second document in the list is
given a score of t− 1, ..., the last document in the list is given a score of 1. Thus
all documents are assigned corresponding scores based on their rank positions
and CombSum or the linear combination method can be applied accordingly.

Some non-linear methods for score normalization have also been discussed
in [3,12,15,22]. In [12], an exponential distribution for the set of non-relevant
documents and a normal distribution for the set of relevant documents were
used, then a mixture model was defined to fit the real score distribution. The
cubic regression model for the relation between documents’ rank and degree of
relevance was investigated in [22]. The logistic regression model were investigated
in [3,15] in the environment of distributed information retrieval. However, this
model can also be used in data fusion without any problem.

3 The Linear Combination Method

Suppose we have n information retrieval systems ir1, ir2, ..., irn, and for a
given query q, each of them provides a result ri. Each ri comprises a ranked list
of documents with associated scores. The linear combination method uses the
following formula to calculate score for every document d:

M(d, q) =
n∑

i=1

βi ∗ si(d, q) (2)

The Linear Combination Data Fusion Method in Information Retrieval 223

Here si(d, q) is the normalized score of document d in result ri, βi is the weight
assigned to system iri, and M(d, q) is the calculated score of d for q. All the
documents can be ranked according to their calculated scores.

There are two major issues that need to be considered for using the linear
combination method properly. Firstly, for every document retrieved by a retrieval
system, it should have a reliable score that indicates the degree of relevance of
that document to the query. Secondly, appropriate weights need to be assigned
to all component systems for best possible fusion results. Next let us discuss
these two issues one by one.

In this research, we use the binary logistic regression model to estimate the
relation between ranking position of a document and its degree of relevance,
because we consider it is a good, reliable method. However, some other score
normalization methods may also be able to achieve similar results presented in
this paper.

The logistic model can be expressed by the following equation

score(t) =
ea+b∗t

1 + ea+b∗t
=

1
1 + e−a−b∗t

(3)

In Equation 3, score(t) is the degree of the document at rank t being relevant
to the query. a and b are two parameters. As in [3], we use ln(t) to replace t in
the above equation 3:

score(t) =
ea+b∗ln(t)

1 + ea+b∗ln(t)
=

1
1 + e−a−b∗ln(t)

(4)

The values of parameters a and b can be decided by some training data, as
we shall see later in Section 4.

The second issue is how to train weights for all the component systems in-
volved. In our work we use the multiple linear regression model to do this.

Suppose there are m queries, n information retrieval systems, and a total
of r documents in a document collection D. For each query qi, all information
retrieval systems provide scores for all the documents in the collection. Therefore,
we have (si

1k, si
2k, ..., si

nk, yi
k) for {i=(1, 2, ..., m), k=(1, 2, ..., r) }. Here si

jk stands
for the score assigned by retrieval system irj to document dk for query qi; yi

k

is the judged relevance score of dk for query qi. If binary relevance judgment is
used, then it is 1 for relevant documents and 0 otherwise.

Now we want to estimate

Y = {yi
k; i = (1, 2, ..., m), k = (1, 2, ..., r)}

by a linear combination of scores from all component systems. The least squares
estimates of the β’s are the values β̂0, β̂1, β̂2, ..., and β̂n for which the quantity

q =
m∑

i=1

r∑
k=1

[yi
k − (β̂0 + β̂1s

i
1k + β̂2s

i
2k + ... + +β̂nsi

nk)]
2

(5)

224 S. Wu, Y. Bi, and X. Zeng

is a minimum. This is partly a matter of mathematical convenience and partly
due to the fact that many relationships are actually of this form or can be
approximated closely by linear equations. β0, β1, β2,..., and βn, the multiple
regression coefficients, are numerical constants that can be determined from
observed data.

In the least squares sense the coefficients obtained by multiple linear regression
can bring us the optimum fusion results by the linear combination method, since
they can be used to make the most accurate estimation of the relevance scores of
all the documents to all the queries as a whole. In a sense this technique for fusion
performance improvement is general since it is not directly associated with any
special metrics. In information retrieval, all commonly used metrics are rank-
based. Therefore, efforts have been focused on how to improve rankings. This
can partially explain why a method like this has not been investigated. However,
theoretically, this approach should work well for any reasonably defined rank-
based metrics including average precision or recall-level precision and others,
since more accurately estimated scores for all the documents are able for us to
obtain better rankings of those documents.

In the linear combination method, those multiple regression coefficients, β1,
β2,..., and βn, are be used as weights for ir1, ir2,..., irn, respectively. Note that
we do not need to use β0 to calculate scores, since the relative ranking positions
of all the documents are not affected if a constant β0 is added to all the scores.

4 Experiments

In this section we present our experiment settings and results with four groups
of runs submitted to TREC (TRECs 5-8, ad hoc track). Their information is
summarized in Table 1.

Table 1. Information of the four groups of runs submitted to the ad-hoc track in
TREC

Group Total Number Number of Number
of runs selected runs of queries

TREC 5 61 53 50
TREC 6 74 57 50
TREC 7 103 82 50
TREC 8 129 108 50

We only use those runs that include 1000 documents for every query. In each
year group, some runs include fewer than 1000 documents for some queries.
Removing those runs with fewer documents provides us a homogeneous environ-
ment for the investigation. Anyhow, we are still left with quite a large number
of runs in each year group.

In some runs, the raw scores assigned to documents are not reasonable. There-
fore, we do not use those raw scores in our experiment. Instead, we use the binary

The Linear Combination Data Fusion Method in Information Retrieval 225

Table 2. Coefficients obtained using binary logistic regression

Group a b

TREC 5 .821 -.692
TREC 6 .823 -.721
TREC 7 1.218 -.765
TREC 8 1.362 -.763

logistic model to generate estimated scores for documents at different ranks. In
each year group, all the runs are put together. Then we use ln(t) as the indepen-
dent variable and score(t) as the dependant variable to obtain the coefficients
of the logistic model. The coefficients we obtain are shown in Table 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900 1000

A
ss

ig
ne

d
sc

or
e

to
 d

oc
um

en
ts

Ranking position

Trec 5 score
Trec 6 score
Trec 7 score
Trec 8 score

Fig. 1. Corresponding scores of documents at different ranks based on the logistic
model (coefficients are shown in Table 2)

Note that in a year group, for any query and any result (run), the score
assigned to any document is only decided by the ranking position of the docu-
ment. For example, for TREC 7, we obtain a=1.218 and b=-.765. It follows from
Equation 4 that

score(t) =
1

1 + e−1.218+0.765∗ln(t)
(6)

Therefore, score(1) = 0.7717, score(2) = 0.6655,..., and so on. On the one hand,
such scores are reliable since they come from the logistic regression model with
all the data. On the other hand, such scores are not optimum by any means since

226 S. Wu, Y. Bi, and X. Zeng

we treat all submitted runs and all queries equally. As a matter of fact, there is
considerable variance from query to query, from one submitted run to another.

In Table 2, it can be noticed that the two pairs of parameters obtained in
TREC 5 and TREC 6 are very close to each other, the two pairs in TREC 7
and TREC 8 are very close to each other, while it seems that the parameters in
TRECs 5 & 6 are quite different from that in TRECs 7 & 8. However, the actual
difference between TRECs 5 & 6 and TRECs 7 & 8 may not be as big as those
parameters look like. In order to let us have a more intuitive understanding of
them, we use a graph (Figure 1) to present the calculated scores based on those
parameters. In Figure 1, we can see that all four curves are very close to each
other. This demonstrates that all of them are very similar indeed.

With such normalized scores for the runs submitted, the next step is to use
multiple linear regression to train system weights and carry out fusion experi-
ments. For all 50 queries in each year group, we divided them into two groups:
odd-numbered queries and even-numbered queries. First we used odd-numbered
queries to train system weights and even-numbered queries to test data fusion
methods; then we exchanged their positions by using even-numbered queries to
train system weights and odd-numbered queries to test data fusion methods.

The file for linear multiple regression is a m row by (n + 1) column table.
Here m is the total number of documents in all results and n is the total number
of component systems involved in the fusion process. In the table, each record
i is used for one document di (1 ≤ i ≤ m) and any element sij (1 ≤ i ≤ m,
1 ≤ j ≤ n) in record i represents the score that document di obtains from
component system irj for a given query. Any element si(n+1) is the judged score
of di for a given query. That is, 1 for relevant documents and 0 for irrelevant
documents. The file can be generated by the following steps:

1. For each query, go through steps 2-5.
2. If document di occurs in at least one of the component results, then di is put
into the table as a row.
3. If document di occurs in result rj , then the score sij is calculated out by the
logistic model (parameters are shown in Table 2).
4. If document di does not occur in result rj , then a score of 0 is assigned to sij .
5. Ignore all those documents that are not retrieved by any component systems.

The above step 5 implies that any document that is not retrieved will be as-
signed a score of 0. Apart from the linear combination method with the trained
weights by multiple regression (referred to as LCR later in this paper), Comb-
Sum, CombMNZ, the linear combination method with performance level weight-
ing (referred to as LCP), and the linear combination method with performance
square weighting (referred to as LCP2) are also involved in the experiment. For
LCP and LCP2, we also divide all queries into two groups: odd-numbered queries
and even-numbered queries. A run’s performance measured by average precision
on odd-numbered queries (AP (odd)) is used for the weighting of even-numbered
group (weightLCP (even)) and vice versa.

The Linear Combination Data Fusion Method in Information Retrieval 227

4.1 Experiment 1

We first investigated the situation with various different number of component
systems, from 3, 4, ..., to up to 32 component systems. For each given number
k (3 ≤ k ≤ 32), 200 combinations were randomly selected and tested. Eight
metrics, including average precision, recall-level precision, precision at 5, 10, 15,
20, 30, and 100 document level, were used for performance evaluation. But in
the rest of this paper, we only report three of them, which are average precision,
recall-level precision, and precision at 10 document level. Results with other
metrics are not presented because they are very similar to ones presented.

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 4 8 12 16 20 24 28 32

P
er

fo
rm

an
ce

 (
av

er
ag

e
pr

ec
is

io
n)

 o
f t

he
 fu

se
d

re
su

lts

Number of runs used for fusion

Best System
CombSum
CombMNZ

LCP
LCP2
LCR

Fig. 2. Performance comparison of different data fusion methods (average of 4 groups
and 200 combinations for each given number of component systems, average precision)

Figures 2, 3, and 4 show average precision(AP), recall-level precision(RP), and
precision at 10 document level(P10), respectively, of all data fusion methods in-
volved over 4 year groups. From Figures 2-4, we can see that LCR is the best.
In the following, we compare them using the metric of average precision(AP)
and the average of 4 year groups and 200 combinations for each given num-
ber of component systems. When 3 component systems are fused, LCR outper-
forms LCP, LCP2, CombSum, CombMNZ, and the best component systems by
1.78%, -0.14%, 11.02%, 9.95%, and 6.08%; when 16 component systems are fused,
LCR outperforms LCP, LCP2, CombSum, CombMNZ, and the best component
systems by 14.22%, 8.82%, 22.50%, 23.64%, and 14.67%; when 32 component
systems are fused, LCR outperforms LCP, LCP2, CombSum, CombMNZ, and
the best component systems by 23.71%, 16.94%, 32.50%, 34.39%, and 18.05%,
respectively.

From Figures 2-4, we have a few further observations. Firstly, we can see that
LCR consistently outperforms all other methods and the best component system

228 S. Wu, Y. Bi, and X. Zeng

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 4 8 12 16 20 24 28 32

P
er

fo
rm

an
ce

 (
re

ca
ll-

le
ve

l p
re

ci
si

on
)

of
 th

e
fu

se
d

re
su

lts

Number of runs used for fusion

Best System
CombSum
CombMNZ

LCP
LCP2
LCR

Fig. 3. Performance comparison of different data fusion methods (average of 4 groups
and 200 combinations for each given number of component systems, recall-level
precision)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 4 8 12 16 20 24 28 32

P
er

fo
rm

an
ce

 (
pr

ec
is

io
n

at
 1

0
do

cu
m

en
t l

ev
el

)
of

 th
e

fu
se

d
re

su
lts

Number of runs used for fusion

Best System
CombSum
CombMNZ

LCP
LCP2
LCR

Fig. 4. Performance comparison of different data fusion methods (average of 4 groups
and 200 combinations for each given number of component systems, precision at 10
document level)

The Linear Combination Data Fusion Method in Information Retrieval 229

by a large margin. The only exception is LCP2, which is slightly better than LCR
when fusing 3 component systems (AP: 0.14% improvement for 3 component
systems, -0.30% for 4 component systems, and -0.80% for 5 component systems).
As the number of component systems increase, the difference in performance
between LCR and all other data fusion methods increase accordingly.

Secondly, LCP2 is always better than LCP, which confirms that performance
square weighting is better than performance level weighting [23]. The difference
between them is increasing with the number of component systems for some-
time, and then becomes stable. Let us take average precision as an example: the
differences are 1.92% for 3 component systems, 2.40% for 4 component systems,
2.76% for 5 component systems,..., 4.96% for 16 component systems. Then it
stabilizes at 5.50% to 5.80% when the number reaches 20 and over. Two-tailed
t test was carried out to compare the difference between these two methods.
It shows that the differences are always highly significant (p-value < 2.2e-16)
whether 3, 4, 5, or more component systems are fused.

Thirdly, compared with the best component system, LCP and LCP2 perform
better when a small number of component systems are fused. However, there are
significant difference when different metrics are used for evaluation. Generally
speaking, average precision is the metric that favours LCP and LCP2, while
precision at 10 document level favours the best component system. For LCP2,
if average precision is used, then it is always better than the best component
system; if recall-level precision is used, then it is better than the component
system when 20 or fewer component systems are fused; if precision at 10 docu-
ment level is used, then the number of component systems decreases to 8 or 9
for it to outperform the best component system. For LCP, 16, 12, and 4 are the
maximum numbers of component systems can be involved for it to beat the best
component system, if AP, RP, and P10 are used, respectively.

Fourthly, CombSum and CombMNZ perform badly compared with all the lin-
ear combination data fusion methods and the best component system. It demon-
strates that equally treating all component systems is not a good fusion policy
when a few poorly performed component systems are involved.

Fifthly, as to effectiveness, the experimental results demonstrate that we can
benefit from fusing a large group of component systems no matter which fusion
method we use. Generally speaking, the more component systems we fuse, the
better fusion result we can expect. This can be seen from all those curves that
are increasing with the number of component systems in all 3 figures.

Finally, it demonstrates that LCR can cope well with all sorts of component
systems that are very different in effectiveness and reciprocal similarity, even
some of the component systems are very poor. It can bring effectiveness im-
provement steadily for different groups of component systems no matter which
rank-based metric is used.

4.2 Experiment 2

Compared with some numerical optimisation methods such as conjugate gradi-
ent and golden section search, the multiple linear regression technique is much

230 S. Wu, Y. Bi, and X. Zeng

more efficient and much more likely to be used in real applications. However, if
a large number of documents and a large number of information retrieval sys-
tems are involved, then efficiency might be an issue that needs to be considered.
For example, in some dynamic situations such as the Web, documents are up-
dated frequently. Weights may need to be calculated quite frequently so as to
obtain good performance. Therefore, we consider how to use the linear regression
technique in a more efficient way.

In Experiment 1, we used all 1000 documents for every query to form two
training data sets: odd-numbered group and even-numbered group. Then the
multiple linear regression applied to these data sets to obtain weights. This time
we did not use all 1000 documents, but the top 20 documents for each query
to form training data sets. Then the multiple linear regression was applied as
before.

We carried out the experiment to compare the performance of the linear com-
bination data fusion method with two groups of different weights. One group uses
the training data set of all 1000 documents, as in Experiment 1; the other group
uses the training data set that only includes top 20 documents for each of the
queries. Apart from that, the methodology in this experiment is just the same as
in Experiment 1. As a matter of fact, we reused the result in Experiment 1. We
just rerun the experiment with weights obtained by using the 20-document train-
ing set. The number of combinations and all the component systems involved in
each combination run are just the same as in Experiment 1. The experimental
result is shown in Figure 5. In Figure 5, LCR 1000 represents the LCR method
using the 1000-document training set and LCR 20 represents the LCR method
using the 20-document training set. Note that LCR 1000 is exactly the same as
LCR in Experiment 1. In Figure 5, for AP, RP, and P10, the curves of LCR 1000
and LCR 20 overlap with each other and are totally indistinguishable. In almost
all the cases, the difference between them is less than 0.3%. this demonstrates
that using the top-20 documents for each of the queries as training data set can
do the same job, no better and no worse, as using all 1000 documents. Obviously,
using fewer documents in training data set is beneficial if considering the aspect
of efficiency.

We also measured the time needed for weighting calculation by the multi-
ple linear regression. A personal computer 2, which installed R with Windows
interface package “Rcmdr”, and two groups of data, TREC 5 and TREC 7 (even-
numbered queries) were used for this part of the experiment. The time needed for
the multiple linear regression is shown in Table 3. Note that in this experiment,
for a year group, we imported data of all component systems into the table and
randomly selected 5, 10, 15, and 20 from them to carried out the experiment. It
is probably because the TREC 7 group comprises more component systems (82)
than the TREC 5 group does (53), it took a little more time for the multiple
regression to deal with TREC 7 than TREC 5 when the same number of compo-
nent systems (5, 10, 15, or 20) are processed. We can see that roughly the time

2 It is installed with Intel Duo core E8500 3.16GHz CPU, 2 GB of RAM and Windows
operating system.

The Linear Combination Data Fusion Method in Information Retrieval 231

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 4 8 12 16 20 24 28 32

P
er

fo
rm

an
ce

 o
f t

he
 fu

se
d

re
su

lts

Number of runs used for fusion

LCR_1000(AP)
LCR_20(AP)

LCR_1000(RP)
LCR_20(RP)

LCR_1000(P10)
LCR_20(P10)

Fig. 5. Performance comparison of the linear combination fusion methods with two
groups of different weights trained using different data sets (average of 4 groups and
200 combinations for each given number of component systems)

Table 3. Time (in seconds) needed for each multiple linear regression run

TREC 5 TREC 7
No. of variables

1000 20 1000 20

5 1.20 0.06 1.40 0.07
10 1.60 0.08 1.70 0.09
15 2.00 0.10 2.80 0.12
20 2.70 0.14 3.60 0.14

needed for the 20-document data set is 1/20 of the time for the 1000-document
data set, though the number of records in the 20-document data set is 1/50 of
that in the 1000-document data set. But a difference like this may still be a
considerable advantage for many applications. It is also possible to speed up the
process if we only upload those data needed into the table.

5 Conclusion

In this paper we have investigated a new data fusion method that uses the
multiple linear regression to obtain suitable weights for the linear combination
method. The weights obtained in this way is optimum in the least squares sense of
estimating relevance scores of all related documents by linear combination. The
extensive experiments with 4 groups of runs submitted to TREC have demon-
strated that it is a very good data fusion method. It outperforms other ma-
jor data fusion methods such as CombSum, CombMNZ, the linear combination
method with performance level weighting or performance square weighting, and

232 S. Wu, Y. Bi, and X. Zeng

the best component system, by large margins. We believe this piece of work is
a significant progress to the data fusion technique in information retrieval and
can be used to implement more effective information retrieval systems.

References

1. Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of the 24th
Annual International ACM SIGIR Conference, New Orleans, Louisiana, USA,
pp. 276–284 (September 2001)

2. Bartell, B.T., Cottrell, G.W., Belew, R.K.: Automatic combination of multiple
ranked retrieval systems. In: Proceedings of ACM SIGIR 1994, Dublin, Ireland,
pp. 173–184 (July 1994)

3. Calvé, A.L., Savoy, J.: Database merging strategy based on logistic regression.
Information Processing & Management 36(3), 341–359 (2000)

4. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the Tenth International World Wide Web Conference,
Hong Kong, China, pp. 613–622 (May 2001)

5. Efron, M.: Generative model-based metasearch for data fusion in information re-
trieval. In: Proceedings of the 2009 Joint International Conference on Digital Li-
braries, Austin, USA, pp. 153–162 (June 2009)

6. Farah, M., Vanderpooten, D.: An outranking approach for rank aggregation in
information retrieval. In: Proceedings of the 30th ACM SIGIR Conference,
Amsterdam, The Netherlands, pp. 591–598 (July 2007)

7. Fox, E.A., Koushik, M.P., Shaw, J., Modlin, R., Rao, D.: Combining evidence from
multiple searches. In: The First Text REtrieval Conference (TREC-1), Gaither-
burg, MD, USA, pp. 319–328 (March 1993)

8. Fox, E.A., Shaw, J.: Combination of multiple searches. In: The Second Text RE-
trieval Conference (TREC-2), Gaitherburg, MD, USA, pp. 243–252 (August 1994)

9. Juárez-González, A., Montes y Gómez, M., Pineda, L., Avendaño., D., Pérez-
Coutiño, M.: Selecting the n-top retrieval result lists for an effective data fusion.
In: Proceedings of 11th International Conference on Computational Linguistics and
Intelligent Text Processing, Iasi, Romania, pp. 580–589 (March 2010)

10. Lee, J.H.: Analysis of multiple evidence combination. In: Proceedings of the 20th
Annual International ACM SIGIR Conference, Philadelphia, Pennsylvania, USA,
pp. 267–275 (July 1997)

11. Lillis, D., Zhang, L., Toolan, F., Collier, R., Leonard, D., Dunnion, J.: Estimating
probabilities for effective data fusion. In: Proceeding of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, Geneva,
Switzerland, pp. 347–354 (July 2010)

12. Manmatha, R., Rath, T., Feng, F.: Modelling score distributions for combining the
outputs of search engines. In: Proceedings of the 24th Annual International ACM
SIGIR Conference, New Orleans, USA, pp. 267–275 (September 2001)

13. Montague, M., Aslam, J.A.: Relevance score normalization for metasearch. In:
Proceedings of ACM CIKM Conference, Berkeley, USA, pp. 427–433 (November
2001)

14. Montague, M., Aslam, J.A.: Condorcet fusion for improved retrieval. In: Proceed-
ings of ACM CIKM Conference, USA, pp. 538–548 (November 2002)

15. Nottelmann, H., Fuhr, N.: From retrieval status values to probabilities of relevance
for advanced ir applications. Information Retrieval 6(3-4), 363–388 (2003)

The Linear Combination Data Fusion Method in Information Retrieval 233

16. Renda, M.E., Straccia, U.: Web metasearch: rank vs. score based rank aggrega-
tion methods. In: Proceedings of ACM 2003 Symposium of Applied Computing,
Melbourne, USA, pp. 847–452 (April 2003)

17. Shokouhi, M.: Segmentation of search engine results for effective data-fusion. In:
Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425,
pp. 185–197. Springer, Heidelberg (2007)

18. Thompson, P.: Description of the PRC CEO algorithms for TREC. In: The First
Text REtrieval Conference (TREC-1), Gaitherburg, MD, USA, pp. 337–342 (March
1993)

19. Vogt, C.C., Cottrell, G.W.: Predicting the performance of linearly combined IR
systems. In: Proceedings of the 21st Annual ACM SIGIR Conference, Melbourne,
Australia, pp. 190–196 (August 1998)

20. Vogt, C.C., Cottrell, G.W.: Fusion via a linear combination of scores. Information
Retrieval 1(3), 151–173 (1999)

21. Wu, S.: Applying statistical principles to data fusion in information retrieval.
Expert Systems with Applications 36(2), 2997–3006 (2009)

22. Wu, S., Bi, Y., McClean, S.: Regression relevance models for data fusion. In: Pro-
ceedings of the 18th International Workshop on Database and Expert Systems
Applications, Regensburg, Germany, pp. 264–268 (September 2007)

23. Wu, S., Bi, Y., Zeng, X., Han, L.: Assigning appropriate weights for the linear
combination data fusion method in information retrieval. Information Processing
& Management 45(4), 413–426 (2009)

24. Wu, S., Crestani, F.: Data fusion with estimated weights. In: Proceedings of the
2002 ACM CIKM International Conference on Information and Knowledge Man-
agement, McLean, VA, USA, pp. 648–651 (November 2002)

25. Wu, S., Crestani, F., Bi, Y.: Evaluating score normalization methods in data fusion.
In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182,
pp. 642–648. Springer, Heidelberg (2006)

26. Wu, S., McClean, S.: Data fusion with correlation weights. In: Proceedings of the
27th European Conference on Information Retrieval, pp. 275–286. Santiago de
Composite, Spain (2005)

27. Wu, S., McClean, S.: Improving high accuracy retrieval by eliminating the un-
even correlation effect in data fusion. Journal of American Society for Information
Science and Technology 57(14), 1962–1973 (2006)

28. Zhou, D., Lawless, S., Min, J., Wade, V.: A late fusion approach to cross-lingual
document re-ranking. In: Proceedings of the 19th ACM Conference on Information
and Knowledge Management, Toronto, Canada, pp. 1433–1436 (October 2010)

Approaches and Standards for Metadata

Interoperability in Distributed Image
Search and Retrieval

Ruben Tous, Jordi Nin, Jaime Delgado, and Pere Toran

Universitat Politècnica de Catalunya (UPC BarcelonaTech), Barcelona, Spain
rtous@ac.upc.edu, nin@ac.upc.edu, jaime.delgado@ac.upc.edu,

ptoran@ac.upc.edu

Abstract. This paper addresses the general problem of how building a
distributed image search&retrieval system that copes with metadata het-
erogeneity. Firstly, We analyze the usage of metadata in current image
repositories, the different metadata schemas for image description and
their semantic relationships. After, we provide a general classification
for the different approaches which provide a unified interface to search
images hosted in different systems without degrading query expressive-
ness. This paper analyzes how these approaches can be implemented
on top of the latest standards in the area, ISO/IEC 15938-12 (MPEG
Query Format) for the query interface interoperability and ISO/IEC
24800 (JPSearch) for the definition and management of translations be-
tween metadata schemas. Finally, we provide insights into an example
of a real distributed image search&retrieval system which provides real
time access to Flickr, Picassa and Panoramio.

Keywords: metadata, interoperability, image, information retrieval,
standards, jpsearch, mpqf.

1 Introduction

Nowadays, digital images are being generated, distributed and stored
worldwide at an ever increasing rate. Consequently, in the recent years, image
Search&Retrieval tasks arise as an important issue. There are multiple systems,
however, almost every one provides a different search interface and multimedia
metadata description format. This fact prevents users from experiencing a unified
access to the repositories. Systems aiming to provide a unified query interface to
search images hosted in different systems without degrading query expressive-
ness need to address several questions which include but are not limited to the
following:

– Is the system going to harvest all the metadata and store them locally? How
frequently do the data change and how is the system going to cope with data
volatility?

– Which metadata schema or schemas are going to be exposed to user queries?
Is the system going to expose a mediated/pivot schema?

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 234–248, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Approaches and Standards for Metadata Interoperability 235

– How the mappings among the underlying target metadata schemas are going
to be generated?

– Which formalism is going to be used to describe the mappings?
– How is the system going to use the mappings during querying?

Currently many standardization efforts are trying to provide answers to some
of these questions. Two of the most relevant initiatives are the ISO/IEC 15938-
12:2008 (MPEG Query Format or simply MPQF) [5,10,13] and ISO/IEC 24800
(JPEG’s JPSearch framework) [14,15]. While MPQF offers a solution for the
query interface interoperability, JPSearch (whose Part 3 makes use of MPQF)
faces the difficult challenge to provide an interoperable architecture for images
metadata management.

This paper provides an analysis of the current approaches and standards for
metadata interoperability in distributed image search&retrieval systems. In or-
der to better feature the problem being faced, firstly the paper examines the
main metadata schemas currently used for image description and identifies their
semantic relationships. Secondly, the paper provides a classification of the differ-
ent approaches and evaluates their advantages and drawbacks. Thirdly, the paper
analyzes how distributed image search&retrieval systems can be implemented on
top of the ISO/IEC 15938-12 and ISO/IEC 24800 standards. Finally, the paper
provides insights into an example real distributed image search&retrieval system
which provides real time access to Flickr, Picassa and Panoramio.

2 Topology of Digital Image Description Metadata
Models

In order to better feature the image metadata heterogeneity problem, let’s first
study which are the main metadata schemas used for image description and
which are their relationships. We have selected the following list of metadata
schemas, which is not comprehensive, but allows the reader to obtain some con-
clusions that can be easily extrapolated:

– Flickr. Metadata schema [19] representing the image description model of
Flickr, the most popular image hosting and video hosting website.

– Picasa. Metadata schema [22] representing the image description model of
Picasa, Google’s image organizer, image viewer an integrated photo-sharing
website.

– Panoramio. Metadata schema [20] representing the image description model
of Panoramio. A geolocation-oriented photo sharing website.

– Photobucket. Metadata schema [21] representing the image description model
of Photobucket, an image hosting, video hosting, slideshow creation and
photo sharing website usually used for personal photographic albums, remote
storage of avatars displayed on internet forums, and storage of videos.

– DeviantART. Metadata schema [18] representing the image description model
of DeviantART, an online community showcasing various forms of user-made
artwork.

236 R. Tous et al.

– ORDImage. Metadata schema of the Oracle Multimedia’s ORDImage type,
which supports the storage, management, and manipulation of image data.

– DICOM. Metadata schema of the Digital Imaging and Communication in
Medicine (DICOM), a standard for handling, storing, printing, and trans-
mitting information in medical imaging.

– MPEG-7. Metadata schema of ISO/IEC 15938 (Multimedia Content De-
scription Interface).

– Dublin Core. Metadata schema of Dublin Core (ISO Standard 15836, and
NISO Standard Z39.85-2007).

– JPSearch Core Schema. Metadata schema of ISO/IEC 24800-2 (JPSearch
Core Schema).

– EXIF. Exchangeable image file format is a specification for the image file for-
mat used by digital cameras (including smartphones) and scanners. it latest
version dated April 2010 (2.3) was jointly formulated by JEITA (Japan Elec-
tronic Industries Development Association) and CIPA (Camera & Imaging
Products Association).

To visualize and compare the different schemas, we have used OpenII [24],
a novel schema management tool. OpenII is a suite of open-source tools for
information integration (II). The suite includes the following components:

– Affinity is a clustering tool for entire schemas. It groups schemas using hi-
erarchical clustering techniques.

– Harmony is a semi-automated tool that finds the correspondences across two
data schemas using a set of semantic matchers.

– Proximity visualizes in a graphical way the inclusion/exclusion relations be-
tween a selected reference model and all the others.

– Unity semi-automatically produces a common vocabulary, based on aligning
the schema elements in a set of source schemas. The vocabulary consists of
a list of canonical terms the source schemas agree on.

– Yggdrasil is a repository implementing an entity relationship metamodel
(called M3) for both schemas and mappings. This repository is implemented
on top of a Postgres database. Yggdrasil allows for importing / exporting
XML Schemas.

We have used OpenII to find the relationships among the different schemas,
and to visualize the topology of the different image description metadata mod-
els. Figure 1 shows the results of clustering all the metadata models with the
the OpenII’s Affinity tool. EXIF and MPEG-7, being the more comprehensive
and general schemas, appear clustered together at the bottom of the figure.
Schemas from generic image hosting websites, such as the ones from Flickr, Pi-
casa, Panoramio, Photobucket or DevianART, appear clustered together at the
top-left of the figure, with ORDImage not far away. These schemas are flat and
simple, and they have significant overlappings. DICOM, a specialized schema for
medical image tagging, appears at the right of the figure, while the JPSearch
Core Schema appears at the top.

Approaches and Standards for Metadata Interoperability 237

Fig. 1. Relations found for all the schemas using the OpenII’s Affinity tool

(a) JPCS and Flickr (b) JPCS and DICOM (c) JPCS and EXIF

(d) EXIF and Flickr (e) EXIF and Dublin (f) EXIF and MPEG-7

Fig. 2. Relationship between different schemas obtained using the OpenII’s Proximity
tool

238 R. Tous et al.

We have also used OpenII to find one-to-one relationships between schemas.
The OpenII’s Harmony tool allows to automatically obtain the correspondences
between two given metadata schemas. Due to the lack of space, we do not include
the produced mappings, however, in figure 2 we show the inclusion/exclusion re-
lations between some selected schemas using the harmony tool. Figures 2.(a)
and 2.(d) depict that the Flickr metadata information is completely included
in the JPSearch Core Schema and EXIF, two general image tagging schemas.
Figure 2.(c) shows that EXIF metadata is more general and includes more in-
formation than JPCS schema. Additionally, this figure shows that most of the
JPCS information (85%) is also included in EXIF. Similar conclusions can be
extracted from the Figure 2.(f) where we compare EXIF and MPEG-7 schemas,
in this case we also see that MPEG-7 includes more information than JPCS (by
comparing the relative sizes of both schemas in Figures 2.(c) and 2.(f)).

Figure 2.(b) illustrates that only the 76% of the DICOM metadata information
is shared by JPCS, this has sense because DICOM schema has medical specific
information such as patient position or patient orientation. Finally, we would
like to comment Figure 2.(e), where we show the relation between EXIF and
Dublin core schema. Both schemas are general but the Dublin schema clearly
has less information than EXIF, and Dublin information is completely included
in EXIF.

3 Approaches to Metadata Interoperability in
Distributed Image Search&Retrieval

In this section we provide an overview to the three approaches that we propose to
classify the different solutions for the image metadata interoperability problem.
Each approach is labelled with a double title. The first part of the title always
refers to the most characteristic concept that identifies the architecture of each
proposal: Simple Aggregator, Multiple Aggregator and Broker. The second part
of the title illustrates the implementation issues implied in each approach. In the
Simple Aggregator approach it is necessary to deal with Metadata Conversion
issues, while in the Multiple Aggregator approach it is necessary to focus on In-
ference. Finally, in the Broker approach it is necessary to face Query Rewriting
related topics. The architecture in each of the approaches is subdivided into three
subsystems: the Querying subsystem, the Central subsystem and the Metadata
subsystem. The Querying subsystem manages the queries that the user inputs.
The Metadata subsystem represents the different external systems that the Cen-
tral subsystem makes transparently interoperable. We have focused mainly in
the Central and Metadata subsystems.

3.1 Simple Format Metadata Aggregator/Metadata Conversion

The main idea of this approach is that we have a centralized system, called
Aggregator, which holds all the metadata needed to satisfy the user queries. The
key issue is that we have an intermediate metadata format for the Aggregator.

Approaches and Standards for Metadata Interoperability 239

Thus, all the supported formats need to provide a mapping mechanism to convert
from their own metadata format to the Aggregator metadata format. Figure 3
presents the basic Simple Format Metadata Aggregator (SFMA) architecture
diagram. The Aggregator (that is part of the Central subsystem) receives a
query. As we said, in order to answer to that query the Aggregator needs to
have all the external metadata formats available and converted into its own one.
All supported external Metadata Formats (F1, F2, ... , Fn) need to provide some
mapping mechanism (F1 to FA, F2 to FA, ... ,Fn to FA) to map from their own
format to the one supported by the Aggregator (FA). Thus, assuming that the
Aggregator has all the information obtained from the external metadata formats
converted to its own metadata format, the system uses this metadata database
to obtain the results demanded and send back them to the user.

Fig. 3. Basic architecture for the ”Simple Format Metadata Aggregator” (SFMA)
approach

In Figure 3 we have also added the different databases distribution used by the
system. It is interesting to include this information in the figure to compare the
different distributions of the databases that every approach implies. Basically,
we will have two types of databases: (1) resource databases and (2) metadata
databases. In the resource database is where the actual resources we search
for are located, i.e. the image file. On the other hand, the metadata database
contains all the metadata information associated to the images of the resource
database. In the SFMA approach, the metadata database is located at the Cen-
tral subsystem. It aggregates the different metadata databases into a single one
labelled MDBA, which is the unique metadata database that the system uses.
However, the resource databases (RDB1, RDB2, ... , RDBn) may remain at the

240 R. Tous et al.

external systems and the Aggregator obtains the resource directly from there
after the query Q has been solved. This approach greatly simplifies the query
evaluation process, but does still require a solution for metadata conversion.

3.2 Multiple Format Metadata Aggregator/Inference

In this model, the Aggregator is able to answer queries using previously loaded
information (metadata and mapping information) from the external metadata-
based systems that the Central subsystem supports.

The main characteristic of the Multiple Format Metadata Aggregator (MFMA)
approach (see Figure 4) is that it is entirely based on ontologies and an ontol-
ogy Reasoner [2]. Thus, the information that the Aggregator expects from every
external system (and needs to be preloaded before receiving any query) is an on-
tology representing each external metadata format (F1, F2, ... , Fn) and another
ontology that provides the mapping from a given external metadata format to
the internal metadata format of the Aggregator (F1 to FA, F2 to FA, ... ,Fn

to FA). In addition to that, the Aggregator also needs to have the metadata
information of the actual content that the user is querying for preloaded. This
metadata is stored in a metadata database (MDBA) in the form of ontology in-
dividuals (extracted from or provided by the external systems in the Metadata
subsystem).

So, when the Aggregator receives a query, the Reasoner expands all the on-
tology information using the mappings provided and infers the results before
sending them back to the user. Typically, the results will be direct links to the

Fig. 4. Basic architecture for the ”Multiple Format Metadata Aggregator” (MFMA)
approach

Approaches and Standards for Metadata Interoperability 241

external Resource Databases (RDB1, RDB2, ..., RDBn) of the supported sys-
tems, where the actual content (i.e. images, videos, music...) is stored.

Examples of the MFMA approach include all the projects providing seman-
tic search capabilities over Linked Data [7] related datasets. Linked Data is a
way of exposing RDF metadata and interlinking them. In the years significant
amounts of data have been generated, increasingly forming a globally connected,
distributed data space. DBpedia [8] is an example for such a source in the Web
of Data. In the case of multimedia there are examples such as the The Linked
Movie DataBase (LinkedMDB) [16], which contains semantic metadata from
several movie-related data sources, or DBtune [4], a collection of music-related
data sets.

such as DBpedia [8]

3.3 Broker/Query Rewriting

The Broker acts as an intermediary agent communicating the system user to
several external systems. The Broker approach is the only one that does not rely
on the local storage of significant amounts of metadata (even though it needs
to temporally store certain metadata for query reprocessing). It is based on the
definition of a mediated schema, FB , query rewritting and query reprocessing.
This approach can be seen as a reformulation of some issues already faced by the
Data Integration community, such as the classic global-as-view approach or GAV
[1](TSIMMIS)[3][11] and the classic local-as-view approach or LAV [17][12][6].
However, there’s a more recent definition of the Broker approach in [25]. Figure
4 shows the basic Broker architecture diagram.

Fig. 5. Basic architecture for the ”Broker” approach

The Broker receives a query (QB) in the metadata format FB , it rewrites
it once for every metadata format that is supported (F1, F2, ..., Fn) via the
corresponding interface (FB ↔ F1, FB ↔ F2, ..., FB ↔ Fn). The queries Q1,
Q2, ..., Qn are generated and sent to every external system. The resulting data

242 R. Tous et al.

is processed back again by the corresponding interface, mapped back to the
metadata format FB and presented to the user. The local reprocessing of results
allows answering queries addressing properties not available at the source’s query
interfaces but included in the result sets. When a source does not include a
metadata field neither in the query interface nor in the result set the source
cannot be used for a query addressing this metadata field and the user must be
properly informed.

In the Broker approach, we have all the metadata databases (MDB1, MDB2,
..., MDBn) and all the resource databases (RDB1, RDB2, .., RDBn) at the
metadata subsystem, so there is no need to maintain any kind of central database
at the Central subsystem.

As we can see, from the architectural point of view this approach could be
classified as a Broker based model, but from the implementation point of view
we could talk about a Query Rewriting scenario [9]. The reason is that the main
responsibility of the Broker system is to rewrite every query that receives and
propagate it to all supported external systems.

3.4 Approaches Comparison

The Simple Format Metadata Aggregator is strongly related to the Metadata
Conversion topic. All the incorporated metadata formats are converted to the in-
ternal metadata format of the aggregator before the system is ready to answer to
user queries. This approach has probably a more static and deterministic nature
in the sense that its behavior is easier to predict because of the absolute control of
the metadata information that it offers. SFMA systems are easy to design and
implement and offer better performance than the other approaches. However,
the need to harvest and locally store all the metadata can become a problem if
the amount of metadata or their volatility is too big. This approach would prob-
ably be suitable for closed applications such as local multimedia repositories for
multimedia players or file indexers.

The Broker approach requires a more complex design and implementation, it
avoids the problems related to scalability and volatility. However, its performance
is sensible to eventual problems (e.g. delays or unavailability) in the underlying
databases. This approach would be suitable for distributing queries among big
Internet image hosting services such as Flickr, Picassa or Panoramio.

The Multiple Format Metadata Aggregator is entirely based on the concept
of Inference in ontologies through a reasoner. In this approach we also need
to build a centralized metadata database in the Central subsystem. However,
this time we do not need to perform metadata conversion before including the
metadata information into the central database, the semantic correspondences
are considered by the inference reasoner on-the-fly. MFMA systems have small
design complexity, being the main task the ontology mapping design. Besides,
the inclusion of support new formats is straighforward, only requiring to be fed
the knowledge base with the corresponding new ontologies and mappings.

Approaches and Standards for Metadata Interoperability 243

4 Standards for Metadata Interoperability in Distributed
Image Search&Retrieval

In this section we describe two metadata interoperability standards for image
search&retrieval. The first one, MPQF, proposed by the MPEG working group
and the second one, JPsearch, proposed by the JPEG committee.

4.1 ISO/IEC 15938-12:2008 Standard (MPEG Query Format or
MPQF)

A key element in all the different approaches to distributed image search&retrieval
is the interchange of queries and API calls among all the involved parties. The us-
age of different proprietary interfaces for this task makes extremely difficult the
deployment of distributed image search services without degrading the query
expressiveness. The progressive adoption of an unified query interface would
greatly alleviate this problem. For its features, we conclude that the ISO/IEC
15938-12:2008 standard (MPEG Query Format or MPQF) is the most suited
language for this purpose. MPQF is an XML-based query language that defines
the format of queries and replies to be interchanged between clients and servers
in a distributed multimedia information search&retrieval context. MPQF is an
XML-based in the sense that all MPQF instances (queries and responses) must
be XML documents. Formally, MPQF is Part 12 of ISO/IEC 15938, ”Informa-
tion Technology - Multimedia Content Description Interface” (MPEG-7 [23]).
However, the query format was technically decoupled from MPEG-7 and it is
now metadata-neutral. So, MPQF is not coupled to any particular metadata
standard.

Example in Code1. shows an input MPQF query asking for JPEG images taken
after the 2011/01/15 with the keyword ”Tokyo” somwhere in their metadata.

4.2 ISO/IEC 24800 Standard (JPSearch)

The selection of a unified query interface is not enough to guarantee interop-
erability if it is not accompanied with a proper mechanism to manage meta-
data heterogeneity. The need of dealing with the management of metadata
translations is a common factor in all the approaches to distributed image
search&retrieval. Currently there is a standard solution to this problem pro-
posed by the JPEG Committee, named JPSearch (ISO/IEC 24800). JPSearch
provides a set of standardized interfaces of an abstract image retrieval frame-
work. On one hand, JPSearch specifies the pivot JPSearch’s Core Metadata
Schema as the main component of the metadata interoperability strategy in
ISO/IEC 24800. The core schema contains a set of minimal core terms which
serve as metadata basis supporting interoperability during search among mul-
tiple image retrieval systems. The core schema is used by clients to formulate,
in combination with the MPEG Query Format, search requests to JPSearch
compliant search systems. In addition to the definition of JPSearch Core Meta-
data Schema, ISO/IEC 24800 provides a mechanism which allows a JPSearch

244 R. Tous et al.

Code 1. Example MPQF input query
<MpegQuery>

<Query>

<Input>

<OutputDescription>

<ReqField>title</ReqField>

<ReqField>date</ReqField>

</OutputDescription>

<QueryCondition>

<TargetMediaType>image/jpg

</TargetMediaType>

<Condition xsi:type="AND">

<Condition xsi:type="QueryByFreeText">

<FreeText>Tokyo</FreeText>

</Condition>

<Condition xsi:type="GreaterThanEqual">

<DateTimeField>date</DateTimeField>

<DateValue>2011-01-15</DateValue>

</Condition>

</Condition>

</QueryCondition>

</Input>

</Query>

</MpegQuery>

compliant system taking profit from proprietary or community-specific meta-
data schemas. A translation rules language is defined, allowing the publication
of machine-readable translations between metadata terms belonging to propri-
etary metadata schemas and metadata terms in the JPSearch Core Metadata
Schema. Users can choose which metadata language to use in a JPSearch-based
interaction (annotation, querying, etc.) if the proper translations are available.

On the other hand, JPSearch specifies JPSearch Translation Rules Declara-
tion Language (JPTRDL). JPTRDL allows the publication of machine-readable
translations between metadata terms belonging to proprietary metadata schemas
and metadata terms in the JPSearch Core Metadata Schema. Users can choose
which metadata language to use in a JPSearch-based interaction if the proper
translations are available. Code 2. shows a one-to-many translation rule which
maps the JPSearch Core Schema date element into three fields.

4.3 JPSearch Registration Authority

According to the JPSearch specification, ISO/IEC 24800 compliant systems can
manage multiple proprietary or community-specific metadata schemas, besides
the JPSearch Core Metadata Schema. The multiplicity of schemas is solved
by allowing the publication of machine-readable translations between metadata
terms belonging to proprietary metadata schemas and metadata terms in the

Approaches and Standards for Metadata Interoperability 245

Code 2. Example JPSearch translation rule
<?xml version="1.0" encoding="iso-8859-1"?>

<TranslationRules>

<TranslationRule xsi:type="OneToManyFieldTranslationType">

<FromField xsi:type="FilteredSourceFieldType">

<XPathExpression>date</XPathExpression>

<FilterWithRegExpr>(\d\d)/(\d\d)/(\d\d\d\d)</FilterWithRegExpr>

</FromField>

<ToField xsi:type="FormattedTargetFieldType">

<XPathExpression>day</XPathExpression>

<ReplaceWithRegExpr>£1</ReplaceWithRegExpr>

</ToField>

<ToField xsi:type="FormattedTargetFieldType">

<XPathExpression>month</XPathExpression>

<ReplaceWithRegExpr>£2</ReplaceWithRegExpr>

</ToField>

<ToField xsi:type="FormattedTargetFieldType">

<XPathExpression>year</XPathExpression>

<ReplaceWithRegExpr>£3</ReplaceWithRegExpr>

</ToField>

</TranslationRule>

</TranslationRules>

JPSearch Core Metadata Schema. In order to rationalize the usage of schemas
and translation rules across different JPSearch systems, Subclause 3.3.3 of Part
2 of ISO/IEC 24800-2 specifies that a global authority for schemas and their
translation rules will be established where all JPSearch compliant retrieval ap-
plications can obtain the information needed.

The establishment of a JPSearch Registration Authority (JPSearch RA) was
formally approved during the 54th JPEG meeting in Tokyo, Japan, in February
2011, and will be operative in July 2011. The JPSearch RA will maintain a list of
Metadata Schemas together with their related Translation Rules, if any. Those
schemas and rules will be directly stored in the JPSearch RA web site or the
JPSearch RA web site will provide a link to an external organization in charge
of keeping that information updated. Registration forms will be available from
the Registration Authority. Any person or organization will be eligible to apply.
More information about the JPSearch RA can be obtained at www.iso.org/iso/
maintenance agencies/or directly at the JPEG home page (www.jpeg.org).

5 Example Real Distributed Image Search&Retrieval
System

As a proof of concept, now we will describe an example real system that we have
developed at the Distributed Multimedia Applications Group (DMAG, UPC
BarcelonaTech). This experience is of special interest to the scope of this paper

246 R. Tous et al.

because it consists on a real implementation of the most complex approach, the
only one which suits the requirements of a large scale web image hosting services
aggregator, i.e. the Broker approach. The software we have developed provides
a centralized place for searching images from Panoramio, Picasa and Flickr. Our
system is compliant with the current version of the ISO/IEC 15938-12:2008 and
ISO/IEC 24800 standards. Because the system follows the Broker architectural
approach, there is a subsystem that receives MPQF queries addressing meta-
data in JPsearch format (extended with some image specific fields and with
some EXIF fields, like the camera make and model) and rewrites them once
for every metadata format that is supported (Panoramio, Picasa and Flickr).
The system is split into two modules: a central application that implements a
broker-based metadata aggregator and a web portal as the user front-end. Mod-
ules communicate each other by using MPQF queries.

Figure 6 shows a screenshot of the system’s web front-end. In order to enable
the maximum query expressiveness, the search form can be duplicated, as it is
shown in this figure, allowing launching multi-queries. In fact, they will be all
assembled with an OR operand and sent to the application using a single MPQF
query, but the applications MPQF interpreter will split it into several searches,
one by each form, and the broker will launch them in parallel.

Fig. 6. Example web form

Approaches and Standards for Metadata Interoperability 247

6 Conclusions

This paper has analyzed the current approaches and standards for metadata
interoperability in distributed image search&retrieval. From the analysis of the
main metadata schemas currently used for image description we conclude that
they contain sigificant overlappings, but their specificity and constant evolution
disallows any approach relying on a unified model. We have classified the several
solutions that face this problem into three different approaches, the Simple For-
mat Metadata Aggregator, the Multiple Format Metadata Aggregator and the
Broker. We conclude that only the Broker approach suits the requirements of a
large scale web image hosting services aggregator, while implying more complex-
ity and performance constraints. Both the Simple Format Metadata Aggregator
and the Multiple Format Metadata Aggregator suit situations with less chal-
lenges in terms of scalability and volatility, but offer better performance and are
more simple to design and manage. We have also analyzed how a distributed
image search&retrieval system, independently of the approach it uses, can be
implemented on top of the ISO/IEC 15938-12 and ISO/IEC 24800 standards.
Finally, we have described an example real distributed image search&retrieval
system which provides real time access to Flickr, Picassa and Panoramio.

Acknowledgments. This work has been partly supported by the Spanish gov-
ernment (TEC2008-06692-C02-01).

References

1. Adali, S., Candan, K.S., Papakonstantinou, Y., Subrahmanian, V.S.: Query caching
and optimization in distributed mediator systems. In: SIGMOD Conference,
pp. 137–148 (1996)

2. Amann, B., Beeri, C., Fundulaki, I., Scholl, M.O.: Ontology-Based Integration
of XML Web Resources. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 117–131. Springer, Heidelberg (2002)

3. Sudarshan, S., Chawathe, S.S., Hector, G.-M., Hammer, J., Ireland, K., Papakon-
stantinou, Y., Ullman, J.D., Widom, J.: The tsimmis project: Integration of het-
erogeneous information sources. In: IPSJ, pp. 7–18 (1994)

4. Dbtune - serving music-related rdf since (2007), http://dbtune.org/
5. Döller, M., Tous, R., Gruhne, M., Yoon, K., Sano, M., Burnett, I.S.: The MPEG
Query Format: On the Way to Unify the Access to Multimedia Retrieval Systems.
IEEE Multimedia 15(4) (2008); ISSN: 1070-986X

6. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:
PODS 1997: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pp. 109–116. ACM Press, New York
(1997)

7. Schandl, B., et al.: Linked data and multimedia: The state of affairs. Multimedia
Tools and Applications, 1–34 (2011)

8. Bizer, C., et al.: Dbpedia - a crystallization point for the web of data. J. Web
Sem. 7(3), 154–165 (2009)

http://dbtune.org/

248 R. Tous et al.

9. Gergatsoulis, M., Bountouri, L., Gaitanou, P., Papatheodorou, C.: Query Transfor-
mation in a CIDOC CRM Based Cultural Metadata Integration Environment. In:
Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010.
LNCS, vol. 6273, pp. 38–45. Springer, Heidelberg (2010)

10. Gruhne, M., Tous, R., Döller, M., Delgado, J., Kosch, H.: MP7QF: An MPEG-7
Query Format. In: Proceedings of the 3rd International Conference on Automated
Production of Cross Media Content for Multi-Channel Distribution (AXMEDIS
2007), Barcelona, Spain, pp. 15–18 (November 2007)

11. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: Proceedings of the Twenty-third International Confer-
ence on Very Large Databases, pp. 276–285. VLDB Endowment, Athens (1997),
http://citeseer.ist.psu.edu/article/haas97optimizing.html

12. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information
sources using source descriptions. In: Proceedings of the Twenty-Second Interna-
tional Conference on Very Large Databases, Bombay, India, pp. 251–262. VLDB
Endowment, Saratoga (1996),
http://citeseer.ist.psu.edu/levy96querying.html

13. ISO/IEC 15938-12:2008 Information Technology - Multimedia Content Description
Interface - Part 12: Query Format (2008)

14. ISO/IEC 24800-3:2010 Information technology - JPSearch - Part 3: JPSearch
Query format (2010)

15. ISO/IEC 24800-2:2011 Information technology - JPSearch - Part 2: Registration,
identification and management of schema and ontology (2011)

16. The linked movie database (linkedmdb), http://www.linkedmdb.org/
17. Manolescu, I., Florescu, D., Kossmann, D.K.: Answering XML queries over het-

erogeneous data sources. In: Proceedings of the 27th International Conference on
Very Large Data Bases, pp. 241–250 (2001)

18. Deviantart webpage, http://www.deviantart.com/
19. Flickr webpage, http://www.flickr.com/
20. Panoramio webpage, http://www.panoramio.com/
21. Photobucket webpage, http://photobucket.com/
22. Picasa webpage, http://picasa.google.com/
23. ISO/IEC 15938 Version 2. Information Technology - Multimedia Content Descrip-

tion Interface, MPEG-7 (2004)
24. Seligman, L., Mork, P., Halevy, A., Smith, K., Carey, M., Chen, K., Wolf, C., Mad-

havan, J., Kannan, A., Burdick, D.: Openii: an open source information integration
toolkit. In: ACM Int. Conf. on Management of data (SIGMOD),
pp. 1057–1059 (2010)

25. Tous, R., Delgado, J.: Advanced Meta-Search of News in the Web. In: 6th Inter-
national ICCC/IFIP Conference on Electronic Publishing (elPub 2002), Karlovy
Vary, Czech Republic (November 2002)

http://citeseer.ist.psu.edu/article/haas97optimizing.html
http://citeseer.ist.psu.edu/levy96querying.html
http://www.linkedmdb.org/
http://www.deviantart.com/
http://www.flickr.com/
http://www.panoramio.com/
http://photobucket.com/
http://picasa.google.com/

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 249–263, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Distributed Architecture for Flexible Multimedia
Management and Retrieval

Mihaela Brut, Dana Codreanu, Stefan Dumitrescu,
Ana-Maria Manzat, and Florence Sedes

Universite de Toulouse – IRIT – UMR 5505,
31062 Toulouse, France

{Firstname.lastname}@irit.fr

Abstract. Developing an efficient system that manages distributed multimedia
content supposes to minimize resource consumption while providing the most
relevant results for a user’s query in the shortest time. This paper presents
LINDO, a generic architecture framework for distributed systems that acquires
efficiency in multimedia indexing and retrieval. Three characteristics
particularize it: (1) it differentiates between implicit algorithms executed over
all the multimedia content at the acquisition time, and explicit algorithms,
executed on demand for answering a specific need; (2) it stores and processes
multimedia content and metadata locally, instead of transferring and indexing it
on a central server; (3) it selects a set of relevant servers for query execution
based on the user query semantic processing and on the system knowledge,
including descriptions of distributed servers, multimedia content and indexing
algorithms. The paper relies on a concrete implementation of the LINDO
framework in order to validate this contribution.

1 Introduction

The development of a distributed multimedia system must balance the efficiency
principle to minimize resource consumption while providing the most relevant results
for a user’s query in the shortest time. The system needs to locate relevant multimedia
contents in an environment that consists of an increasing number of machines with
different capabilities, each hosting large multimedia collection. The efficient content
indexation is a key issue for the management and retrieval of relevant information.
Indexing is based on a set of algorithms, which generate diverse and heterogeneous
multimedia metadata, but which are usually highly resources consuming.

Designing a distributed multimedia system requires a number of choices [1]:
indexing based on a fixed or variable set of algorithms, algorithms executed over the
entire multimedia collection or only over a filtered sub-collection, the whole set of
algorithms being itself filtered or not before their effective execution, indexing in a
distributed manner, on the same location as the content, or in a centralized one, by
transferring the content to an indexation server (e.g., Web services), a decision
regarding the distributed or the centralized placement of the multimedia metadata.

250 M. Brut et al.

The LINDO1 project (Large scale distributed INDexation of multimedia Objects),
specifies a generic architectural solution that guides the design and the development
of any distributed multimedia information system relying on indexing facilities. The
paper illustrates how LINDO differentiates from other multimedia distributed systems
by capitalizing and improving the state of the art results concerning the above
mentioned decisions. Thus, three characteristics of the LINDO framework are
elicited:

• it differentiates between implicit algorithms executed over all the multimedia
content at acquisition time, and explicit algorithms, executed on demand for
answering a specific need;

• it processes multimedia content locally, instead of transferring and indexing it on a
central server;

• it selects a set of relevant servers for query execution based on the user query
semantic processing and on the system knowledge, including descriptions of
distributed servers, multimedia content and indexing algorithms.

In this way, the solution we adopted in LINDO prevents from executing at once all
indexing algorithms by defining a method that determines the relevant set of
algorithms for a user’s query. These algorithms are executed only on a multimedia
sub-collection, which is also selected according to the query. Indexing algorithms will
only be run on the multimedia content location. Algorithms and multimedia content
filtering is done with respect to a developed centralized knowledge repository. This
repository gives an overview of the system, including semantic descriptions of the
distributed servers and indexing algorithms functionalities, as well as summaries of
the multimedia metadata extracted and stored on each remote server. It also enables
the selection of the relevant remote servers where the user’s query will be executed.

Similar approaches adopted by distributed multimedia systems are exposed in
Section 2. The architecture, as well as the content indexation and retrieval
mechanisms of these systems are presented, while emphasizing the characteristics that
differentiate them from LINDO. The LINDO framework is described in Section 3
through its generic architecture, as well as through its indexing and querying
mechanisms. A testing implementation of the LINDO system is presented in Section
4, also detailing the architecture topology and the indexing and retrieval mechanisms.
Finally, conclusions and future work directions are provided.

2 Related Work

The requirements to design an information system that manages distributed
multimedia contents are:

R1. Fixed or variable set of indexing algorithms (IA) for multimedia contents
indexation;

R2. Algorithms executed at acquisition time or at user’s query;
R3. Selection of algorithms or not, according to the user’s query;

1 http://www.lindo-itea.eu/

 A Distributed Architecture for Flexible Multimedia Management and Retrieval 251

R4. Distributed executing, in the same location as the multimedia contents
storage, or centralized, on an indexation server where the multimedia
contents are transferred;

R5. Filtering multimedia content or not before indexing;
R6. Management of multimedia metadata obtained as results of indexing process

in distributed way, on each server that stores multimedia content, or in
centralized one, through a unique metadata collection;

R7. At the query moment, selection or not of the relevant remote servers (RS)
according to the query, in order to only send the query to these servers.

In the design of the LINDO framework we considered all these aspects after a
careful study of the existing state of the art. Systems and approaches in which
multimedia contents are distributed adopt various techniques to accomplish content
indexing and retrieval. A large part of these approaches addresses only partially the
above mentioned issues according to their main objective.

The CANDELA project (Content Analysis and Network DELivery Architectures)2
proposes a generic distributed architecture for video content analysis and retrieval [2].
Multiple domain specific instantiations are realized (e.g., personal mobile multimedia
management [3], video surveillance [4]). The indexation is done on the distributed
servers at acquisition time. The resulting metadata can be distributed over the
network. However, the indexation algorithms are a priori selected and pre installed.

The KLIMT project (Knowledge InterMediation Technologies) [5] proposes a
Service Oriented Architecture middleware for easy integration of heterogeneous
content processing applications over a distributed network. The indexing algorithms
are considered as web services. The query is limited to pre-defined patterns that
match a set of rules for the algorithms’ execution sequence. After such a secquence
selection, the content is analyzed and the metadata is stored in a centralized database.

The WebLab3 project proposes an integration infrastructure that enables the
management of indexation algorithms as web services in order to be used in the
development of multimedia processing applications [6]. These indexing services are
handled manually through a graphical interface. For each specific application a fixed
set of indexing tools is run. The obtained metadata is stored in a centralized database.

The VITALAS4 project (Video & image Indexing and retrieval in the Large Scale)
capitalizes the WebLab infrastructure in a distributed multimedia environment [7].
The architecture enables the integration of partner’s indexation modules as web
services. The multimedia content is indexed off-line, at acquisition time, on different
indexing servers. No selection of indexing algorithms based on user query is done.

In [8], the authors propose a system that implements a scalable distributed
architecture for multimedia content processing. The architecture is service oriented
allowing the integration of new indexing tools. The indexation is distributed and the
metadata produced are attached to the multimedia document.

In order to avoid the transfer of the multimedia content in the context of a
distributed search engine, [9] propose to use mobile agents that migrate from one
server to another for indexing the content. The resulted metadata can be either

2 http://www.hitech-projects.com/euprojects/candela
3 http://weblab-project.org/
4 http://vitalas.ercim.org/

252 M. Brut et al.

centralized or distributed over the network. In the latter case, a user’s query is sent to
all the remote servers. The authors prove that transferring the indexing algorithms at
the content location is more efficient than transferring the content to a central
indexing facility.

Table 1. A comparative overview of some representative systems

System
name

Set of
IA

IA
execution
moment

IA
selection

IA
execution
location

MM
content
filtering

Metadata
manage-

ment

RS
selec-
tion

Candela

Fixed
Acquisi-
tion time

Not done
Distributed

servers
Not done

Distributed
DB

Not
specified

KLIMT Variable
Query

moment
Done

Indexation
servers

Not
specified

Centralized
DB

Not
done

Weblab Fixed
Query

moment
Done

manually
Indexation

servers
Not

specified
Centralized

DB
Not
done

Vitalas Variable
Acquisi-
tion time

Not done
Indexation

servers
Not

specified
Distributed

DB
Not

specified

[8] Variable
Acquisi-
tion time

Not
specified

Distributed
servers

Not done Distributed
Not

specified

[10] propose to store on a central server a hierarchy of interest concepts that

describe the content stored in the distributed servers. This hierarchy is used to select
the servers that are relevant to a query. It is a priori constructed and maintained
manually. The authors prove that sending the query to some servers only answers
faster than sending the query to each server, while the same precision is maintained.

As can be noticed, each information system for distributed multimedia
management considers only a part of the above mentioned issues that contribute to the
overall system efficiency. This is the reason why the LINDO framework was
developed such as to provide solutions for each issue.

Further we present the LINDO framework and explain how it provides support for
acquiring efficiency for the mentioned requirements.

3 The LINDO Framework Architecture

The LINDO project’s idea was not to define yet another multimedia information
indexing solution but rather to reuse existing indexing frameworks into a common
architecture. As illustrated latter, this architecture was designed such as to provide
efficient solutions to the mentioned issues in order to enable reduced resource
consumption and to enhance the context for giving relevant results to the user query.

We have defined the LINDO generic architecture over two main components: (1)
remote servers (§3.1) which acquire, index and store multimedia contents, and (2) a
central server (§3.2) which has a global view of the overall system. Even though our
proposal is based on this classical approach for distributed systems, it presents two
advantages. First, each remote server is independent, i.e., it can perform uniform as
well as differentiated indexations of multimedia contents. For instance, some remote
servers may index in real time acquired multimedia contents, while others may

 A Distributed Architecture for Flexible Multimedia Management and Retrieval 253

proceed to an off-line indexation. Secondly, the central server can send relevant
indexation routines or queries to relevant remote servers, while the system is running.

In the following, the role of each framework’s component in the fulfillment of the
requirements R1 to R7 mentioned in the beginning of Section 2 is presented.

Fig. 1. LINDO Framework Architecture

3.1 The Remote Server Components

The remote servers in LINDO-based systems store and index all acquired multimedia
contents, to provide answers to user queries. Hence, several modules have been
defined and linked together in order to cover all these tasks:

• The Storage Manager (SM) stores the acquired multimedia contents. Through the
Transcode module, acquired multimedia contents can be transcoded into several
formats. This allows a user to download different encodings of the desired content.

• The Access Manager (AM) provides methods for accessing multimedia contents
stored in the SM. Apart from accessing an entire content, different fragments of
one multimedia content can be selected (for multimedia filtering, in case of R5).

• The Feature Extractors Manager (FEMrs) is in charge of managing and executing
a set of indexing algorithms over the acquired multimedia contents. At any time,
new algorithms can be uploaded into this module, while others can be removed or
updated. It can permanently run the algorithms over all the acquired contents or it
can execute them on demand only on certain multimedia contents (thus enabling
the deployment of the necessary algorithms for a user query for R1 and R2).

• The Time Remote Server handles time synchronization with the central server.
• The Metadata Engine (MDErs) collects and aggregates all extracted metadata

about the multimedia contents stored in the SM. Naturally, the metadata stored in

254 M. Brut et al.

this module can be queried in order to retrieve some desired information (thus, the
distributed management of metadata is enabled for R6).

• The Service Description Controller (SCD) stores the remote server description,
e.g., its location, its capacities, the acquisition context (useful for enabling the
remote servers selection for R5 and R7).

3.2 The Central Server Components

The central server can control the remote indexation processes, and it can answer or
forward user queries. Thus, a central server is composed of the following
components:

• The Terminal Interface (TI) enables a user to specify queries and displays the
obtained results. Other functionalities are included in the TI, such as visualization
of metadata collections and management of indexing algorithms (thus a variable
set of indexing algorithms is possible for R1).

• The Metadata Engine (MDEcs) gives a global view of the system. It can contain
some extracted metadata about multimedia contents, some contextual information
about the system, the remote servers’ descriptions, the descriptions of the available
indexing algorithms, etc. It is a system knowledge repository that enables efficient
solutions for multiple issues: algorithm selection according to a user query (for R2
and R3); filtering of the multimedia content for R5; distributed metadata
management for R6; the selection of relevant remote servers for R7.

• The Feature Extractors Manager (FEMcs) manages the entire set of indexing
algorithms available in the system. This module communicates with its equivalent
on the remote server side in order to install new indexing algorithms if it is
necessary or to ask for the execution of a certain indexing algorithm on a
multimedia content, or part of multimedia content. Thus, the management of a
variable algorithms set is possible for R1. Their remote deployment and execution
is also possible for R4.

• The Request Processor (RP) treats some queries on the MDEcs or forwards them
to specific remote server metadata engines. Moreover, through the FEMcs, it can
decide to remotely deploy some indexing algorithms. Thus, the RP has an essential
contribution to the content filtering and to the selection of the relevant algorithms
and remote servers for R3, R5 and R7.

• The Results Aggregator (RA) aggregates the results received from all the queried
metadata engines and sends them to the TI, which displays them.

• The Translation module homogenizes the data stored into the MDEcs coming from
the MDErs, the remote SDCrs and the FEMcs. Hence, this module unifies all
descriptions in order to provide the system global view.

• The Time Central Server provides a unique synchronization system time.
• The Service Description Controller (SDCcs) collects all remote server descriptions

(useful for enabling the remote servers selection for R5 and R7). It manages the
integration in the system of new remote servers, their removal and the change in
their functioning state (e.g., if the server is temporarily down or it is active).

 A Distributed Architecture for Flexible Multimedia Management and Retrieval 255

3.3 Indexing and Querying Mechanisms

In order to reduce resource consumption, the architecture allows the multimedia
contents indexation to be accomplished at acquisition time (i.e., implicit indexation)
and on demand (i.e., explicit indexation). This avoids executing all indexing
algorithms at once (thus a solution for R2 issue is available).

When a remote server acquires new multimedia content, the SM stores it and then
the FEMrs starts its implicit indexation by executing a predefined set of indexing
algorithms. This algorithm set is established according to the server particularities.

Once the execution of an indexing algorithm is achieved, the obtained metadata is
forwarded to the Filtering module. The filtered metadata is then stored by the MDErs
in its metadata collection. In order to avoid the transmission of the whole collection of
metadata computed on the remote servers, the MDErs only sends, at a given time
interval, a summary of these metadata to the Translation Module on the central server.
[11] (the distributed metadata management is adopted for R6). Once translation is
done, the metadata are sent to the MDEcs to be stored and further used in the
querying process. Thus, the implicit indexation process is achieved.

The query process begins with the query specification through the TI. The user’s
query is sent to the RP module in order to be executed over the metadata collections.
In this process, the RP analyses the query in order to select, based on the metadata
summaries from MDEcs, the active remote servers that could provide answers to the
query. Among the servers that were not thus selected there could be some servers that
contain relevant information, but that has not been indexed with the suitable
algorithms (the servers’ selection relies upon their metadata summary, obtained
mainly from the implicit algorithms’ metadata; so, maybe among these algorithms
there are not the most relevant for the current query). For this reason, our solution
detects such supplementary algorithms [12] and starts their execution (i.e., explicit
indexation) on a sub-collection of multimedia contents (developing thus efficient
solution for R3 and R5). The query is sent for execution to all the selected servers.
The top-ranked relevant results obtained from these remote servers are sent to the RA,
which combines them in order to obtain a global ranked results list that is displayed to
the user in the TI.

An important remark is that the two kinds of indexation can be mixed in the
LINDO system, i.e., on some remote servers only the implicit indexation can be
accomplished, while on others only the explicit indexation is done, and finally on
others both indexation processes can be performed. The implementation of these two
workflows will be detailed in the next section.

4 LINDO System Evaluation

As illustrated before, the LINDO framework was conceived to provide support for
efficient handling of all the seven design requirements. The aim of the project was to
build a real system, so we could evaluate our framework in different scenarios.

We further present the topology of the system employed in the evaluation. We will
also illustrate with some examples how the multimedia indexing and the query
processes are flexibly accomplished on this topology:

256 M. Brut et al.

(1) Multimedia indexing is performed locally, on each remote server, while
being coordinated at the central server level;

(2) Explicit indexing is employed only when necessary, namely when a query
doesn’t receive satisfactory results. Thus, for a certain query, all the suitable
results are located and retrieved.

We will emphasize, while presenting this concrete implementation, how all the
seven issues receive an efficient solution.

4.1 The LINDO System Topology Used for Evaluation

In the development of the testing system architecture, we considered multiple remote
servers, located in different countries that instantiate modules of the proposed
architecture, and that concern different domains (video surveillance, broadcast).

The topology of the LINDO testing system is composed of a central server and
three remote servers, located in Paris and in Madrid. Two remote servers are
dedicated to video surveillance and they store, index and query video contents
acquired in real time. The third remote server manages multimedia contents for the
broadcast domain.

In the following, we detail the particularities of each architecture module
instantiation on each one of these servers, either remote or central.

Fig. 2. The LINDO testing system topology

The generic architecture of a remote server was instantiated for each one of the
three remote servers. The instantiations maintained the architecture’s modules, while
adopting a different implementation of their functionalities:

• For the SM module, a proprietary software developed in C language by one of the
partners was adopted for a video surveillance remote server as well as for the

 A Distributed Architecture for Flexible Multimedia Management and Retrieval 257

broadcast remote server; for the other video surveillance remote server, a software
produced by another partner was employed. It manages the splitting, naming and
storing manner of the multimedia content (Thales CCTV, WiLix).

• Similarly, two different implementations (in Java and C#) of the FEM module
were adopted for the two video surveillance remote servers, while the broadcast
and the central server employed the Java implementation;

• The same MDE module was integrated in all the three remote servers. This module
was developed in Java and uses the XML native Oracle Berkley DB XML5
database for storing the metadata;

• The Filtering module was not included in the broadcast remote server;
• A Java implementation of the Service Description Controller was instantiated on

each remote server and on the central server as well.

This topology proves that the LINDO architecture enables each partner to develop
his own implementation of each module, while respecting the interfaces and data
format requirements.

The characteristics of each remote server in terms of multimedia content and
implicit indexing algorithms are presented in the following.

First video surveillance remote server, installed in Paris:

• Manages multimedia contents acquired from two video surveillance cameras
situated in a train station and watching the main hall and parking.

• Stores audio and video contents acquired in real time in the SM module, which in
this case is the software developed in C language.

• Contains implicit indexing algorithms managed by the FEMrs. The indexing
algorithms (executed on Windows and Linux environments) for video content are
in charge with person and car counting and intrusion detection for indoor and
outdoor environments, as illustrated in Table 1. For audio content, the speaker
change detection is available.

Table 2. Indexing algorithms for video content on the Paris video surveillance remote server

 Indoor Outdoor
Intrusion - Presence of people - Presence of people & vehicles

Counting - Number of people
- Main color of the upper part
of the people

- Number of people, number of vehicles
- Main color of the people upper part.
- Main color of vehicles

5 http://www.oracle.com/technology/products/berkeley-
 db/xml/index.html

258 M. Brut et al.

• Handles the metadata provided by the indexing algorithms in a uniform XML data
format [13] as well as the descriptions of the installed indexing algorithms. All this
information is stored by the MDErs. A fragment of the person detection indexing
algorithm description is shown in Table 2.

Table 3. XML algorithm description

<AlgorithmModel AlgoName="Person Detection" MediaType="Video">
<InputParameters>
 <InputParamFileFormat>xml</InputParamFileFormat>
<ImageParameters/>
<Feature>Local Semantic Features</Feature>
</InputParameters>
 <OutputObject Type="Metadata">
 <MetadataObject>
 <MetadataObjectDescription>location of the detected persons</MetadataObjectDescription>
 </MetadataObject>
 </OutputObject></AlgorithmModel>

• The SDC module contains an XML based description of the specific characteristics
and context for this remote server (e.g., the IP address, the deployed indexing
algorithms, the spatial topology of the location, the installed cameras and their
characteristics). An example of such description is provided in Table 3.

Table 4. Remote server description

<RemoteServer id="rs1" name="Remote Server 1">
 <localisation>train station, Paris, France</localisation>
 <description>Manages content from cameras located in the main hall of the station and in the
parking of the station</description>
 <devices>
 <camera id="c1Paris"> <description>located in the main hall </description> </camera>
 </devices>
 <indexingAlgorithms>
 <indexingAlgorithm id="ia2rs1" name="pedestrian detection" mediaType="video">
 <description>Detects pedestrians in a parking and their predominant color</description>
 </indexingAlgorithm>
 </indexingAlgorithms>
</RemoteServer>

The second video surveillance remote server, installed in Madrid:

• Manages and stores video contents acquired in real time from a video surveillance
camera situated at the entrance into a security control room, using a software
produced by a local partner;

• Contains an indexing algorithm for person and color detection in indoor
environments. The description of this algorithm and its output follow the same
formats as the algorithms installed on the Paris remote server;

 A Distributed Architecture for Flexible Multimedia Management and Retrieval 259

• The SDC stores locally the description of the remote server, which is similar with
the one provided in Table 3.

The third remote server, designed for the broadcast domain:

• Stores video content resulted from BBC journals using the same software for the
SM as the video surveillance remote server from Paris;

• Contains a speech-to-text indexing algorithm based on Microsoft technology,
which processes the audio stream of video files. The output of this algorithm
follows the metadata format defined in the project.

The Central Server complies with the architecture presented in Figure 1 and has the
following characteristics:

• FEMcs manages the indexing algorithm global collection where, alongside with all
the implicit indexing algorithms installed on the remote servers, a supplementary
set of explicit indexing algorithms are installed (abandoned luggage detection [14],
shape detection, color detection, shout detection, etc. [15])

• MDEcs manages multiple data: descriptions of each remote server, abstracts of the
multimedia metadata from each remote server, descriptions of indexing algorithms.

• Contains also the TI, the RP and the RA modules.

4.2 Multimedia Indexing

The indexing algorithms enumerated above for each remote server are implicit
indexing algorithms that are selected according to each server’s characteristics. These
algorithms index all the multimedia contents at the acquisition time. For example, on
the remote server from Madrid only the algorithm for person detection in indoor
environments is installed because it is a priori enough for processing the video
captured with a camera at the entrance of a security control room. On the contrary, all
the indexing algorithms presented in Table 1 are necessary on the video surveillance
remote server in Paris because this server manages content from the main hall and
parking of a train station.

These implicit video indexing algorithms produce metadata for each video frame. In
order to reduce the size of the generated metadata, the Filtering module aggregates the
metadata associated with consecutive frames that refer to the same detection. For
example, for the Paris server, Table 4 contains the metadata obtained after the Filtering
process was applied on the metadata generated by the person detection algorithm.

Table 5. Metadata aggregation result

<document src=”stream1”>
 <video capturedBy="cam1_Paris">
 <object type="Person" id="0">
 <localisation confidence="100">
 <period start_time="2010-07-28T11:07:35" end_time="2010-07-28T11:07:55"/>
 <area>control room</area>
 </localisation>
 <property name="color">red</property>
 </object>
 </video> </document>

260 M. Brut et al.

Periodically, a Web service sends to the central server a metadata summary that
contains the essential detected information on each remote server (thus the R6 is
handled). In our experiments we send this abstract each hour. Because we are dealing
with multimedia contents from two different domains (i.e., video surveillance and
broadcast) the metadata summary is built differently, according to the domain:

• for video surveillance: the summary consists in statistics based on the metadata
obtained in the last hour of recording;

• for broadcast: the summary will be also accomplished on the metadata that was
generated by the indexation of the multimedia content during the last hour, but will
consist in the titles and participants for each broadcast content (article, show, etc.).

This summary is concatenated to the other information in the MDEcs, and thus a
complete view of the system is obtained on the central server. This overview is the
basis for further treatment of the user’s query, in the context of explicit indexation, as
detailed in the next section.

4.3 Query Processing

The user formulates the query in the TI through a graphic interface that enables him to
specify five query components: the query itself (as free text), the location (free text),
time span (calendar-based), domain (checkbox list) and the media format (video,
image, audio or text).

As further detailed, the query is processed in order to select the remote servers
(according R7) that are currently in a functional state (active), the sub-set of explicit
indexing algorithms (R3), as well as the sub-collection of the multimedia content
(R5). Figure 3 shows the logical steps that happen when a user queries the system.

Fig. 3. Query processing diagram

In order to process the query, the first task of the RP is to select a set of active
nodes on which the query will be executed. The selection is done into two steps. In

 A Distributed Architecture for Flexible Multimedia Management and Retrieval 261

the first step every node that does not match for its location and domain with the user
query (location and domain fields) is rejected. The set of remaining nodes then goes
into the second filter. In this step, the user’s query is applied to the metadata summary
stored on the central server that corresponds to all of these remote servers. Two sub-
sets of nodes will result, the first containing nodes that match the query, and the
second one containing the remaining nodes that do not match the query.

The query is then directly sent to the first set of matching nodes. For the nodes in
the second set, a list of relevant explicit algorithms is first determined. The required
algorithms are found by means of similarity between each algorithm description and
the user query. For each remote server, only the algorithms that have not been applied
will be deployed and executed. This ensures that these nodes will also be able to
provide a final answer to the query.

For illustrating these filtering operations during querying processing, we examine
in the following the query mechanism on some concrete query examples.

Q1. Location: Paris; Domain: broadcast; Time: 14 July 2010; Query content:
Sarkozy speech.
The first filtering step will select only the broadcast remote server from Paris
(location is matched directly). During the second filtering step, the query content is
searched inside the metadata summaries for the date of 14 July 2010 on the central
server (the text “Sarkozy speech” is matched over these metadata, based on a
semantic processing as will be presented at Q3). Supposing this search is successful,
the query is further sent to the metadata collection from the Paris broadcast server.
Based on this search, the concrete corresponding audio and video BBC news are
located and provided as results.

Q2. Domain: video surveillance; Time: 8 March 2011; Query content: woman in red.
The first filtering step will select the two video surveillance remote servers, from
Paris and Madrid. During the second filtering step, the query content is searched
inside the metadata summaries for the date of 8 March 2011 from the central server
(the text “woman in red” is matched over the metadata summaries corresponding to
the 8 of March, according the semantic processing described at Q3). Supposing the
both remote servers confirm the existence of such information, the query is sent to
Paris and Madrid. The returned results are merged by the RA and presented to the user
via the TI. It can be noticed that in both Q1 and Q2, the right branch of the diagram
represented in Figure 3 is followed.

Q3. Location: Paris; Domain: video surveillance; Time: 8 March 2011; Query
content: abandoned bag by women in red.
After first filtering, the Paris server is selected. In the second filtering step, the
metadata summaries are queried (using the same technique as described below), but
no result is obtained. This means that either no results actually exist, or on the Paris
server the algorithms that detect persons and static objects have not been executed.

We have to determine the appropriate algorithms to be run based solely on the
user’s query. For this purpose, an analysis is first performed on the query to obtain so-
called query chunks (usually, a chunk is a noun phrase composed of a noun and its

262 M. Brut et al.

modifiers). A shallow parsing of the query will obtain two distinct chunks: “abandoned
bag” and “women in red”. Then, for each chunk, plural nouns are inflected (“women”-
>”woman”).

Next, the query chunks are matched to every algorithm description available on the
central server, which are themselves pre-processed in the same way. The matching is
done separately for every query chunk. For example, the algorithm that has the
description “stationary left or abandoned luggage or object” will match query chunk
“abandoned bag” due to the exact adjective match “abandoned” and to the fact that
“luggage” matches “bag” because both have “container” as hypernym. The chunk-
chunk match score is obtained by computing similarity between words, using the JCN
- Jiang and Conrath [16] similarity measure between their synonyms and also by
matching adjectives’ and adverbs’ synsets using WordNet6. JCN was chosen among
other similarity measures because of its better performance [17]. The same applies for
the person detection algorithm having the description “person and color detection
algorithm” that matches to the query chunk “women in red” due to the fact that
“woman” is a “person” and “red” is a “color” (direct hypernym relations mean good
JCN score). The final score for each algorithm is the sum of the highest similarity
scores between algorithm chunks and query chunks. This avoids score imbalance due
to variable algorithm description lengths. The top candidate algorithms are chosen.

A check is performed to see if they had already run on the selected remote server.
If every candidate algorithm has already run, that means that the initial search in the
metadata on the central server yielded correctly no results. In our case, the algorithm
that detects stationary objects was not run, and it is deployed for processing on the
remote server.

5 Conclusions

In this paper we presented a framework that supports the design of an efficient
distributed multimedia system by minimizing resource consumption while providing
the most relevant results in the shortest time.

This framework was developed in the context of the LINDO project, and acquires
efficiency in multimedia indexing and retrieval through three particularities: (1) it
differentiates between implicit and explicit indexation; (2) it processes multimedia
content locally, instead of transferring and indexing it on a central server; (3) it selects
a set of relevant servers for query execution. The paper presented also a concrete
implementation of the LINDO framework, which validates this contribution.

In the future, we will study how the LINDO indexing and retrieval mechanisms
could be applied on some existing multimedia distributed repositories in order to
intelligently handle their knowledge. In order to improve these mechanisms, we also
plan to develop semantically enhanced algorithm descriptions that will enable to
define better criteria for algorithm selection.

Acknowledgments. This work has been supported by the EUREKA project LINDO
(ITEA2 – 06011).

6 http://wordnet.princeton.edu/

 A Distributed Architecture for Flexible Multimedia Management and Retrieval 263

References

1. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, Hardcover (2011)
2. Petkovic, M., Jonker, W.: Content-Based Video Retrieval, A Database Perspective.

Multimedia Systems and Applications, vol. 25 (2003)
3. Pietarila, P., Westermann, U., Järvinen, S., Korva, J., Lahti, J., Löthman, H.: CANDELA -

storage, analysis, and retrieval of video content in distributed systems. In: The IEEE
International Conference on Multimedia and Expo. pp. 1557–1560 (2005)

4. Merkus, P., Desurmont, X., Jaspers, E.G.T., Wijnhoven, R.G.J., Caignart, O., Delaigle, J.-
F., Favoreel, W.: Candela- Integrated storage, analysis and distribution of video content for
intelligent information system. In: European Workshop on the Integration of Knowledge,
Semantics and Digital Media Technology (2004)

5. Conan, V., Ferran, I., Joly, P., Vasserot, C.: KLIMT: Intermediations Technologies and
Multimedia Indexing. In: International Workshop on Content-Based Multimedia Indexing,
pp. 11–18 (2003)

6. Giroux, P., Brunessaux, S., Brunessaux, S., Doucy, J., Dupont, G., Grilheres, B.,
Mombrun, Y., Saval, A.: Weblab: An integration infrastructure to ease the development of
multimedia processing applications. In: the 21st Conference on Software & Systems
Engineering and their Applications (2008) (published online)

7. Viaud, M.-L., Thievre, J., Goeau, H., Saulnier, A., Buisson, O.: Interactive components for
visual exploration of multimedia archives. In: The International Conference on Content-
based Image and Video Retrieval, pp. 609–616. ACM Press, New York (2008)

8. Thong, J.M.V., Blackwell, S., Weikart, C., Hasnian, A., Mandviwala, A.: Multimedia
Content Analysis and Indexing: Evaluation of a Distributed and Scalable Architecture,
Technical report, HPL-2003-182 (2003)

9. Roth, V., Peters, J., Pinsdorf, U.: A distributed content-based search engine based on
mobile code and web service technology. Scalable Computing: Practice and
Experience 7(4), 101–117 (2006)

10. Hinds, N., Ravishankar, C.V.: Managing metadata for distributed information servers. In:
The 31st Hawaii International Conference on System Sciences, pp. 513–522 (1998)

11. Laborie, S., Manzat, A.-M., Sedes, F.: Managing and querying efficiently distributed
semantic multimedia metadata collections. IEEE MultiMedia Special Issue on Multimedia-
Metadata and Semantic Management 16, 12–21 (2009)

12. Brut, M., Laborie, S., Manzat, A.-M., Sèdes, F.: A Framework for Automatizing and
Optimizing the Selection of Indexing Algorithms. In: Sartori, F., Sicilia, M.Á.,
Manouselis, N. (eds.) MTSR 2009. Communications in Computer and Information
Science, vol. 46, pp. 48–59. Springer, Heidelberg (2009)

13. Brut, M., Laborie, S., Manzat, A.M., Sedes, F.: A Generic Metadata Framework for the
Indexation and the Management of Distributed Multimedia Contents. In: The Third
International Conference on New Technologies, Mobility and Security, pp. 1–5 (2009)

14. Gasteratos, A., Vincze, M., Tsotsos, J., Miezianko, R., Pokrajac, D.: Detecting and
Recognizing Abandoned Objects in Crowded Environments. In: Computer Vision
Systems. LNCS, pp. 241–250. Springer, Heidelberg (2008)

15. Snoek, C.G., Worring, M.: Multimodal video indexing: A review of the state of the art.
Multimedia Tools and Applications 25, 5–35 (2005)

16. Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E.G.M., Milios, E.E.: Semantic
similarity methods in wordNet and their application to information retrieval on the web.
In: the 7th International Workshop on Web Information and Data Management, pp. 10–16
(2005)

17. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy.
In: International Conference on Research in Computational Linguistics, pp. 19–33 (1997)

Deontic BPMN

Christine Natschläger

Software Competence Center Hagenberg GmbH, Austria
christine.natschlaeger@scch.at

www.scch.at

Abstract. The Business Process Model and Notation (BPMN) is main-
tained by the Object Management Group (OMG) and a widely-used
standard for process modeling. A drawback of BPMN, however, is that
modality is implicitly expressed through the structure of the process flow.
All activities are implicitly mandatory and whenever something should
be optional, a gateway or event is used to split the process flow and offer
the possibility to execute the task or to do nothing. This requires a com-
prehensive understanding of the whole process to identify mandatory,
optional and alternative activities.
The paper addresses this issue and extends BPMN with deontic logic

to explicitly highlight modality. After a detailed study of modality ex-
pressed through various BPMN elements, an approach based on path
exploration is introduced to support the deontic analysis. The result is
an algebraic graph transformation from BPMN to Deontic BPMN dia-
grams, reducing the structural complexity and allowing better readability
by explicitly highlighting the deontic classification. The understandabil-
ity of Deontic BPMN is studied by means of a preliminary survey.

Keywords: BPMN, Deontic Logic, Modality, Graph Transformation.

1 Introduction

The Business Process Model and Notation (BPMN) [1] is a standard maintained
by the Object Management Group (OMG) and aims at business analysts and
technical developers. BPMN supports the graphical representation of business
processes; however, if someone wants to express normative concepts like obli-
gations, alternatives and permissions (deontic logic), (s)he may have to split
the process flow with additional BPMN elements, since an explicitly optional
activity is not available. This complicates the identification of mandatory and
optional activities and leads to more complex process diagrams. The following
issues will be addressed within this paper:

1. Study BPMN elements that express modality.
2. Extend BPMN with deontic logic.
3. Execute deontic analysis based on path exploration approach.
4. Perform algebraic graph transformation from BPMN to Deontic BPMN.
5. Evaluate the Deontic BPMN approach based on a preliminary survey.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 264–278, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.scch.at

Deontic BPMN 265

Before continuing with the motivation, deontic logic will be introduced. De-
ontic logic is defined as the logical study of the normative use of language and its
subject matter is a variety of normative concepts including obligation (O), pro-
hibition (F), permission (P) and commitment (conditional obligation) [2]. These
concepts can be linked with the logical connectives for negation (¬), conjunction
(∧), disjunction (∨) and contravalence (∨̇). While monadic deontic logic consid-
ers unconditional normative concepts, conditional obligations are part of dyadic
deontic logic (compare [3]) in which obligations and permissions are conditional
on certain circumstances. In addition, the concepts of agency and deontic logic
are necessary if users and roles have to be considered (compare [4]).

2 Motivation

In BPMN all activities are implicitly mandatory and whenever something should
be optional, a gateway or event has to be used to split the process flow and offer
the possibility to execute the task or to do nothing. This approach leads to the
following problems:

1. Limited readability: It is difficult to identify mandatory, optional and alter-
native activities at first sight.

2. Complex structure: Additional elements are necessary for expressing modal-
ity and complicate the structure of the diagram.

3. Duplication: Various roles with different normative concepts for the same
activity may require duplication of the activity.

Problems with implicit modality have also been observed within an industrial
project in which an order execution process was designed. In this process several
activities are optional or present special cases. The resulting graphical represen-
tation is complex and a distinction of mandatory and optional activities would
have been advantageous. An extract of the process is described in section 5.

After studying the related work in section 3, the first goal of ongoing research
is to investigate BPMN elements that express modality and to highlight the
deontic concepts (see section 4). This will reduce the structural complexity, since
the number of gateways and/or sequence flows in a Deontic BPMN diagram is
equal or less compared to the original BPMN diagram. As it is not possible to
analyze deontic concepts directly within a BPMN diagram, section 5 presents a
path exploration approach. The transformation from BPMN to Deontic BPMN
is then based on algebraic graph transformation and described in section 6.
Afterwards, section 7 evaluates the understandability of the approach within a
preliminary survey. Finally, the conclusion sums up the main results in section 8.

3 Related Work

Considering deontic logic, an overview of the main applications in computer
science is given by Wieringa and Meyer [5]. In addition, Broersen and van der

266 C. Natschläger

Torre identify ten problems of deontic logic and normative reasoning in com-
puter science [6]. One problem is how to combine legal ontologies, normative
systems, business process notations and compliance checking tools. Regarding
this issue, the authors recommend the Semantics of Business Vocabulary and
Business Rules (SBVR) for interaction between norms and business processes.
SBVR expresses modality with alethic or deontic logic [7], however, it does nei-
ther consider the influence on the process flow (e.g., readability or reduction of
structural complexity) nor the deontic analysis or transformation.

According to Goedertier and Vanthienen [8], most process modeling languages
like BPMN, BPEL and UML Activity Diagrams are procedural and only implic-
itly keep track of why design choices have been made. Therefore, this publication
presents a vocabulary for declarative process modeling that supports business
concerns, execution scenario, execution mechanism, modality, rule enforcement
and communication. Considering modality, procedural modeling only specifies
what must be the case while declarative process modeling supports must, ought
and can based on deontic logic. In [9], the same authors introduce a language
to express temporal rules about obligations and permissions in business interac-
tion called Penelope. The publications provide a good foundation for the current
research. However, the focus of the normative concepts is more on agents and
temporal constraints, whereas deontic analysis, transformation or optimization
capabilities are not presented at all.

Other publications focus on the formal model of normative reasoning and
deontic logic in combination with business rules and process modeling. Padman-
abhan et al. consider process modeling and deontic logic in [10]. They develop
a logical framework based on multi-modal logic to capture the normative po-
sitions among agents in an organizational setting. Furthermore, Governatori et
al. present a language for expressing contract conditions in terms of deontic
concepts called Business Contract Language (BCL) [11]. However, these publi-
cations do not provide a detailed study of modality, but rather focus on agents
and their contractual relationships.

Further approaches assure business process compliance based on deontic logic.
According to Sadiq et al. [12], process and control modeling are two distinct
specifications, but convergence is necessary to achieve business practices that
are compliant with control objectives. The authors propose a Formal Contract
Language (FCL) as formalism to express normative specifications. This language
is a combination of defeasible logic and a deontic logic of violations. Ghose and
Koliadis present an approach to enhance business process modeling notations
with the capability to detect and resolve compliance related issues [13]. They
define a framework for auditing BPMN process models and suggest that activity,
event and decision inclusion may be defined with deontic modalities.

Furthermore, an approach by Weigand et al. provides a bridge between inter-
operable transactions and business process models based on deontic logic [14].

Although several other approaches use deontic logic within process modeling,
none of them studies the influence on the process flow (e.g., readability and
optimization capabilities) or provides a deontic analysis and transformation.

Deontic BPMN 267

4 Deontic BPMN

This section analyses the possibilities of BPMN 2.0 to express that something
has to be done (Fig. 1a), can be done (Fig. 1b) or that the user can choose
what to do (Fig. 1c). Some BPMN gateways and events can split the process
flow and thereby offer optionality and choice. The goal of Deontic BPMN is
to identify optional and alternative activities and to improve the readability
of BPMN diagrams by highlighting those activities. This reduces the number
of BPMN elements and allows the reader to identify at first glance what is
mandatory and what is optional. This extension is called Deontic BPMN.

4.1 Empty Task

As a first step, an empty task (Phi or Φ) is introduced to highlight that the
user has the possibility to do nothing (see Fig. 1d). This empty task is inserted
whenever a sequence flow directly connects a split with a merge (see Fig. 1b).

If a Parallel Gateway has a Phi-Branch, then this branch can be removed:

A ∧ Φ = A A ∧B ∧ Φ = A ∧B

All other paths that follow a Parallel Gateway are mandatory. In Deontic BPMN
a mandatory activity is highlighted with an orange background color (or dark
grey) and by surrounding the text with O() for obligatory.

If a Phi-Task is part of another gateway, then the deontic concept of permis-
sion or alternative (see section 4.2) is fulfilled.

4.2 Permission and Alternative

In BPMN, an optional (or permissible) activity as well as an alternative can
be expressed with gateways (exclusive, inclusive, complex or event-based) or
events (boundary events). If an outgoing path provides a Phi-Task, then all other
paths are called optional. Otherwise, if no outgoing path provides a Phi-Task,
then, in most cases, the outgoing paths are alternatives. The respective BPMN
elements, except for Complex Gateway (synchronization semantics similar to
Inclusive Gateway) and Event-Based Gateway (similar to Exclusive Gateway),
are described in the following subsections.

Exclusive Gateway: An Exclusive Gateway (XOR) provides a gating mecha-
nism where only one of the outgoing paths can be taken. If one of the outgoing
paths leads to a Phi-Task (see Fig. 1d), then all other paths are optional:

A ∨̇ Φ = P (A) A ∨̇ B ∨̇ Φ = P (A) ∨̇ P (B)

In Deontic BPMN an optional activity is highlighted with a green background
color (or middle grey) and by surrounding the text with P() for permissible. The
mentioned adaptions are compliant with the BPMN Specification [1]. If there is
only one other branch beneath the Phi-Branch, then the surrounding gateways
can be removed. The semantics of an optional task is that if a token reaches the

268 C. Natschläger

(a) Obligation: O(A)
(b) Permission: P(A)

(c) Alternative: X(A) ∨̇ X(B)

(d) Empty Task (Phi-Task)
(e) Alternative Tasks

(f) Optional Task

(g) Inclusive Gateway

(h) Optional with Requires

(i) Nested Exclusive Gateways (j) Gateway with Decision

Fig. 1. BPMN and Deontic BPMN Diagrams

task it can either be executed or not. The BPMN diagram in Fig. 1d can be
transformed to Fig. 1f with the same semantics.

If no outgoing path leads to a Phi-Task, then all paths are alternatives. The
deontic logic for alternatives can be expressed as follows [15]:

X(A1, A2) = (O(A1) ∨O(A2)) ∧ ¬(P (A1) ∧ P (A2))

In our approach, both activities can be marked separately (X(A) ∨̇ X(B)) and
are highlighted with a yellow background color (or light grey) (see Fig. 1e). The
semantics of an alternative task is that it is mandatory to execute the task if no
alternative task was executed and forbidden if an alternative task was executed.

Inclusive Gateway: According to the BPMN Specification [1], after an Inclu-
sive Gateway (OR) all combinations of outgoing paths may be taken, from zero
to all. The BPMN Specification recommends that it should be designed that at
least one path is taken, but this is not mandatory. If no outgoing path is selected,
then an exception will be thrown. If at least one outgoing path is taken (e.g.,
default path), then an Inclusive Gateway can be defined as follows:

A OR B ≡ (A ∨̇ B) ∨̇ (A ∧B)

Deontic BPMN 269

If one of the outgoing paths leads to a Phi-Task, then the structure (A OR B
OR Φ) can be transformed as follows:

φ ∨̇ A ∨̇ B ∨̇ (A ∧B) ∨̇ (A ∧ φ) ∨̇ (B ∧ φ) ∨̇ (A ∧B ∧ φ)
φ ∨̇ A ∨̇ B ∨̇ (A ∧B)
P (A ∨̇ B ∨̇ (A ∧B))

P (A ∨B)

According to theorem OK6 of [2], the last row is equal to P(A) ∨ P(B), so the
result is an Inclusive Gateway with two optional tasks (see Fig. 1g).

If at least one outgoing path is taken but no path leads to a Phi-Task, then
the structure (A OR B OR C) can be transformed as follows:

(P (A) ∧O(A|¬B ∧ ¬C)) ∨ (P (B) ∧O(B|¬A ∧ ¬C)) ∨ (P (C) ∧O(C|¬A ∧ ¬B)

If no default path is defined and zero outgoing paths can be taken, then the
possibility of an exception has to be considered. In the following, every path has
a condition, for example, if condition C1 is true then task A is executed and so
on. The structure (A OR B OR C) can be transformed as follows:

(C1 ↔ A) ∧ (C2↔ B) ∧ (C3 ↔ C) ∧ ((¬C1 ∧ ¬C2 ∧ ¬C3)↔ Exception)
(O(A|C1 ∨ (¬C2 ∧ ¬C3)) ∧ F (A|¬C1))∧
(O(B|C2 ∨ (¬C1 ∧ ¬C3)) ∧ F (B|¬C2))∧
(O(C|C3 ∨ (¬C1 ∧ ¬C2)) ∧ F (C|¬C3))

If neither condition C1, C2 or C3 is true, then it is simultaneously mandatory
and forbidden to execute any task. Therefore, an exception will be thrown during
evaluation of the deontic tasks based on the contradictions.

Event: An event is something that “happens” during the course of a process [1].
Not all events lead to deontic concepts, e.g., a catching event in the process flow
waits for the event and initializes no branches. If an event occurs, then several
events can catch and start a new flow, however, the flows are mandatory and
executed in parallel. Relevant for a deontic classification are only interrupting
boundary events, since either the outgoing path of the activity or of the boundary
event is taken. The deontic analysis is similar to that of an Exclusive Gateway.

4.3 Requires

In some cases, the deontic transformation of a BPMN construct needs the speci-
fication of a precondition to provide the same semantics. This precondition (also
called requires) is defined within dyadic deontic logic [3]. The deontic notation
is O(A|B) or P(A|B) (concatenation of several preconditions with ∧ or ∨).

An example for the necessity of preconditions are nested gateways as shown
in Fig. 1i. In this example task B is optional but can only be executed if task A
was executed before. Therefore, task A is specified as precondition in Fig. 1h.

270 C. Natschläger

Preconditions are also necessary for situations where a user is not free to
select the outgoing path. This would be the case if conditions or events are in-
volved (Event-Based Gateway or Boundary Event). Fig. 1j, for example, shows
an Exclusive Gateway with the decision “Has Errors?” and two outgoing flows.
The first flow represents “Yes” and leads to a task “Correct Errors”. The sec-
ond flow represents “No” and nothing (Φ) has to be done. However, the task
“Correct Errors” is not optional, but mandatory under the precondition that
errors exist and forbidden if no errors exist: (O(CorrectErrors|HasErrors) ∧
F(CorrectErrors|¬HasErrors)). A pragmatic rule can further define that the for-
bidden part can be omitted. Note that the conditions of the example are complete
(no other answer is possible) and distinct (not possible that “Yes” and “No” are
simultaneously true). It is also possible to transform gateways with incomplete or
overlapping conditions; however, the transformation is more complex and cannot
be described in this publication due to space limitations.

Remark: The presented scenarios have one task per path. If a path has a
sequence of tasks, then preconditions or sub-processes, which encapsulate the
sequence of tasks and are marked according to the deontic analysis, can be used.

4.4 Multiple Deontic Classifications

Multiple deontic classifications are necessary for unstructured diagrams. For ex-
ample, in Fig. 2 task A is addressed by different split gateways. In this case, task
A must be marked as alternative and as optional (X(A) ∧ P(A)). The gateways
of the optional structure can be removed, if preconditions are used.

Fig. 2. Multiple Deontic Classifications Fig. 3. Cyclic Graph

5 Path Exploration

A BPMN diagram is a directed cyclic graph, which can have complex structures.
In path exploration all possible paths through the BPMN diagram are described
within a tree structure that only includes the splits. The deontic analysis com-
pares the paths afterwards and whenever an activity is found in every path, it
is mandatory. If an activity is only found in some paths it may be optional or
alternative, depending on whether the previous split has or has not a Phi-Task
in an alternative path. In addition, references are used to cope with loops. Since
path exploration duplicates the sequence flows and activities for different paths,
it can neglect merging gateways and, nevertheless, reach all activities. Further-
more, this approach supports activities with multiple deontic classifications.

Deontic BPMN 271

Fig. 4. Acyclic Diagram Fig. 5. Path Exploration for Fig. 4

In a first step only acyclic BPMN diagrams are studied. A simple example is
shown in Fig. 4 with the resulting path exploration being displayed in Fig. 5.

Whenever a split is found in the BPMN diagram, a sub-process is used for
each alternative path and marked according to the deontic logic. The sub-process
ends, if a task is part of each alternative path, e.g., task G is mandatory in all
paths, therefore, the sub-processes Sub1 and Sub4 end before task G. A sub-
process can have a precondition, if it is a nested split or if the user is not free
to select the outgoing paths (see section 4). If there is only one task in a sub-
process, then the deontic constraint of the sub-process directly applies to the
task, e.g., in the final Deontic BPMN diagram task C can be marked as optional
and sub-process Sub2 can be removed. A major advantage of using sub-processes
is that they show a hierarchy of deontic classifications, e.g., task C is an optional
task in an alternative path.

Parallel Gateways do not lead to deontic constraints since all paths are exe-
cuted and, therefore, mandatory regarding deontic logic. In path exploration it
is allowed to insert several paths for all possible ordering combinations, however,
it is recommended to insert only one path with irrelevant order.

Inclusive Gateways are more complex since all combinations of paths can be
taken. The different cases are distinguished according to section 4.2.

In path exploration, all paths are presented in a tree structure. Therefore,
several Start Events, as allowed by the BPMN Specification [1], are not pre-
sentable. As a solution to this problem, a virtual Start Event with a splitting
gateway that references all original Start Events is introduced. The splitting
gateway must be of the same type as the merging gateway that is used to join
the different branches of the original Start Events. In addition, BPMN allows
several End Events within a process flow. Whenever an End Event finishes a
branch after a split or splitting event, all other branches remain in their sub-
process until they reach their own End Event.

272 C. Natschläger

Fig. 6. Unstructured Acyclic Diagram Fig. 7. Path Exploration for Fig. 6

With this approach also unstructured acyclic diagrams can be described, e.g.,
scenarios with merging gateways joining paths from different splits or tasks that
require multiple deontic classifications (see Fig. 6). The path exploration for this
example is shown in Fig. 7. Task J is once in an optional and several times in
an alternative path thereby allowing multiple deontic classifications.

Considering cyclic graphs, iterations have no deontic influence, since the ele-
ments in between are just repeated and the only question is how often a task is
executed. The only exception is a while loop (task is part of a path going back-
wards), which provides the possibility to execute a task 0..n times. Whenever
a task in a loop might not be executed at all, this task is deontically classified
similar to normal gateways as described in section 4. Considering the example
shown in Fig. 3, tasks A and C are always executed and, therefore, mandatory.
Task A might be executed 1..n times, but this has no deontic influence. However,
considering the loop, a decision between tasks B and C is made until task C is
chosen. Task B is not required to be executed at all and is, therefore, an alter-
native to task C. However, task C remains mandatory since it must be executed
sooner or later.

A BPMN diagram showing an extract of the order execution process men-
tioned in section 2 is displayed in Fig. 8. The process comprises the following
tasks: Approve Order (AO), Create/Modify Appointment (CMA), Remove Ap-
pointment (RA), Approve Appointment (AA), Reject Appointment (RJA), Order
in Progress (OP) and Execute Order (EO). To specify all possible flows, 10 ex-
clusive gateways and 27 sequence flows are necessary. The corresponding Deontic
BPMN diagram is shown in Fig. 9 and only needs 4 exclusive gateways and 15
sequence flows to express all possible flows.

Deontic BPMN diagrams provide two advantages with respect to usability.
Firstly, mandatory and optional activities can be distinguished at first sight
based on the colored highlighting. Secondly, the number of gateways and se-
quence flows in a Deontic BPMN diagram is equal or less compared to the orig-
inal BPMN diagram thereby reducing the complexity of the diagram. It is still
necessary to decide whether an optional activity is executed or not but instead
of describing this decision through separate gateways and alternative paths, the

Deontic BPMN 273

Fig. 8. BPMN Example Fig. 9. Deontic BPMN based on Fig. 8

decision is described within the corresponding activity. The advantages are ac-
companied by additional deontic constructs requiring a basic understanding by
the user. However, these constructs (e.g., preconditions) are only relevant for a
more detailed understanding of the process.

6 Algebraic Graph Transformation

The algebraic graph transformation approach was initiated by Ehrig, Pfender,
and Schneider (see [16]). The main idea of graph transformation is the rule-based
modification of graphs from a source to a target graph [17]. The algebraic graph
transformation approach is based on pushout constructions, where pushouts are
used to model the gluing of graphs. This approach is supported by a tool called
the Attributed Graph Grammar (AGG) [17].

The transformation from BPMN to Deontic BPMN (called DeonticGTS) is
based on an algebraic graph transformation approach and specified with the help
of the AGG tool. However, the transformation is currently limited to:

– structured diagrams,
– a basic set of BPMN elements (only some gateways without conditions, no

intermediate events, only tasks, ...), and
– only one task per path after a gateway (also prohibiting nested gateways).

Nevertheless, DeonticGTS provides the most important transformations, but
will be extended within further work based on the afore mentioned limitations.

In a first step, the Type Graph of DeonticGTS is specified and shown in
Fig. 10. It defines a set of node and edge types as well as the generalization
relationships between them. The basic element is Node with the derived types
Gateway, DeonticTask, BpmnTask and Event. The concrete gateways (parallel,
inclusive and exclusive) can either be presented as colored rectangles or as images
corresponding with the BPMN element. Some DeonticTasks define attributes
for preconditions and all are colored as suggested in section 4. The only edge

274 C. Natschläger

Fig. 10. Type Graph of DeonticGTS

type is called SF and represents sequence flows. The allowed target, source and
cardinality of a sequence flow is specified by further relationships shown in the
Type Graph. Furthermore, there is one element called MeasuredValues which is
used to count the number of gateways and sequence flows.

Afterwards 21 transformation rules with corresponding negative application
conditions are specified on four different layers. Layering offers a kind of ordering,
since all rules on one layer are executed before the next layer is considered.
The rules cover sequences, gateways (parallel, exclusive and inclusive) as well
as iterations. Three rules concerning Exclusive Gateways with a Phi-Branch are
presented in more detail and shown in Fig. 11.

Fig. 11. Three Rules for transforming Exclusive Gateways with Phi-Branch

The first rule is called “ExclusiveWithPhiDualRule” and transforms an Ex-
clusive Gateway with a task and a Phi-Branch into an optional task. A negative
application condition forbids further alternative paths in order to avoid a vio-
lation of dangling conditions. The element MeasuredValues highlights that the
transformation leads to a reduction of two gateways and three sequence flows.

The second rule is called “ExclusiveWithPhiMultipleRuleBase” and trans-
forms an Exclusive Gateway with two tasks and a Phi-Branch into an Exclusive

Deontic BPMN 275

Gateway with two optional tasks. The transformation reduces the number of
sequence flows by one.

The third rule is called “ExclusiveWithPhiMultipleRuleExtended” and trans-
forms every additional task into an optional task. This rule can be applied mul-
tiple times. If, for example, an Exclusive Gateway has one Phi-Branch and four
other tasks, then the second rule is applied once and the third rule twice.

After defining the transformation rules, a graph can be created for every
concrete BPMN model and is then transformed to Deontic BPMN. The AGG
tool also computes the critical pairs and proves termination of the rules. This
eases the proof for local confluence and, since the graph transformation system
is terminating, also for global confluence.

7 Evaluation

The deontic artifacts are evaluated in terms of optimization and understandabil-
ity based on the following methods:

Optimization: The optimization capabilities can be proven with algebraic graph
transformation, since every rule leads to equal or less gateways and/or sequence
flows and thereby reduces the structural complexity.

Controlled Experiment: Gemino and Wand explore differences between two mod-
eling techniques (see [18]) and conducted an experiment with 77 participants an-
swering problem solving questions. Interestingly, the evaluation showed that the
more complex modeling technique provides better clarity. Since reduced com-
plexity doesn’t automatically lead to better clarity, it is also necessary to study
the understandability of Deontic BPMN within a controlled experiment.

The understandability of Deontic BPMN is studied within a preliminary sur-
vey, which was answered by 22 post-graduate computer scientists. The survey
starts with an introduction to BPMN and Deontic BPMN including several ex-
amples as well as some pretest questions concerning the experience with (process)
modeling languages in general and BPMN in particular.

Afterwards four examples are presented, each expressed with a BPMN and a
Deontic BPMN model. Examples 1-3 are shown in Fig. 12, 13 and 14. Example
4 is based on the extract of the order execution process shown in Fig. 8 and 9.

To avoid a recognition of models expressing the same example, corresponding
tasks received different names and the order of examples (e.g. first BPMN or
Deontic BPMN diagram), elements (e.g. first parallel or exclusive gateway) and
questions varies. The respondents then answered 17 questions for each model
type as, for example, which tasks always have to be accomplished, or in which
order the tasks can be executed.

According to Melcher et al. [19], the four aspects concurrency, exclusiveness,
order and repetition are important for structural process understandability. How-
ever, the transformation to Deontic BPMN only influences the aspects exclusive-
ness, which defines whether a task is always, sometimes or never executed, and
order. Therefore, all questions of the survey address these two aspects.

276 C. Natschläger

Fig. 12. Example 1

Fig. 13. Example 2 Fig. 14. Example 3

After finishing the survey, the wrong answers are divided in false-positives
(FP) (answer is selected although wrong) and false-negatives (FN) (answer is
not selected although true). If a question only allows a single answer (Q4-6, Q9-
13), then an answer is only counted once as FP (otherwise every mistake would
be doubled). An overview of all mistakes is shown in Fig. 15.

Fig. 15. Summary of Mistakes in BPMN and Deontic BPMN Diagrams

In summary, 204 mistakes emerged in the BPMN models compared to 176
mistakes in the Deontic BPMN models. So the number of mistakes could be
reduced by 13.7%. However, there are two major reasons why the percentage is
not higher:

Deontic BPMN 277

Fig. 16. Comparison of Understandability based on Preferences

1. Known BPMN vs. unknown Deontic BPMN: According to the pretest ques-
tions most respondents have experience with BPMN but not with Deontic
BPMN. Thus, several respondents mixed the colors or the deontic concepts.

2. Preconditions: The survey showed that preconditions decrease the under-
standability, especially in combination with multiple deontic classifications
(as shown in example 3). In total, 53 mistakes were made in Deontic BPMN
models due to misunderstanding of preconditions. Therefore, preconditions
will be revised within further work to make them better understandable.

Considering these explanations, the results of the survey are satisfying. Fur-
thermore, all respondents have been asked whether they prefer the BPMN or the
Deontic BPMN diagram. The answers are shown in Fig. 16. The BPMN model
was only favored in example 3, since this example was easy to understand in
BPMN, but required multiple deontic classifications and preconditions in De-
ontic BPMN. In all other examples, the Deontic BPMN model was preferred,
especially for more complex process flows as shown in example 4.

8 Conclusion

This paper presents the results of an ongoing research in which BPMN is ex-
tended with deontic logic to identify normative concepts. The Deontic BPMN
diagram highlights modality, reduces the structural complexity and avoids dupli-
cation of the process flow. The automatic analysis of a BPMN diagram is based
on a path exploration approach, which provides all possible paths through the
BPMN diagram in a tree structure. The transformation from BPMN to Deontic
BPMN is then based on algebraic graph transformation. Finally, a preliminary
survey is presented to study the understandability.

The focus of further work is to revise preconditions, to extend the transfor-
mation from BPMN to Deontic BPMN and to support agent collaboration.

278 C. Natschläger

Acknowledgements. The project Vertical Model Integration is supported
within the program “Regionale Wettbewerbsfähigkeit OÖ 2007-2013” by the
European Fund for Regional Development as well as the State of Upper Austria.

References

1. Business Process Model and Notation (BPMN) 2.0,
http://www.omg.org/spec/BPMN/2.0

2. Åqvist, L.: Deontic Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic, 2nd edn., vol. 8, pp. 147–264. Kluwer Academic, Dordrecht (2002)

3. Lewis, D.: Semantic Analyses For Dyadic Deontic Logic. In: Stenlund, S. (ed.)
Logical Theory and Semantic Analysis. D.Reidel Publishing Company(1974)

4. Horty, J.: Agency and Deontic Logic. Oxford University Press, New York (2001)
5. Wieringa, R.J., Meyer, J.-J.C.: Applications of Deontic Logic in Computer Science:
A Concise Overview. In: Deontic Logic in Computer Science: Normative System
Specification. Wiley, Chichester (1993)

6. Broersen, J., Van der Torre, L.: Ten problems of deontic logic and normative rea-
soning in computer science. Tutorial for ESSLLI (2010)

7. Semantics of Business Vocabulary and Business Rules (SBVR) 1.0,
http://www.omg.org/spec/SBVR/1.0

8. Goedertier, S., Vanthienen, J.: Declarative Process Modeling with Business Vocab-
ulary and Business Rules. In: Proc. of Object-Role Modeling, ORM (2007)

9. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes from Obli-
gations and Permissions. In: 2nd Work. on Business Processes Design (BPD) (2006)

10. Padmanabhan, V., Governatori, G., Sadiq, S., Colomb, R., Rotolo, A.: Process
Modelling: The Deontic Way. In: Asia-Pacific Conf. on Conceptual Modeling (2006)

11. Governatori, G., Milosevic, Z.: A Formal Analysis of a Business Contract Language.
Int. Journal of Cooperative Information Systems (2006)

12. Sadiq, S., Governatori, G., Namiri, K.: Modeling Control Objectives for Business
Process Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714. Springer, Heidelberg (2007)

13. Ghose, A.K., Koliadis, G.: Auditing Business Process Compliance. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 169–180. Springer, Heidelberg (2007)

14. Weigand, H., Verharen, E., Dignum, F.P.M.: Interoperable transactions in business
models: A structured approach. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos,
J. (eds.) CAiSE 1996. LNCS, vol. 1080, Springer, Heidelberg (1996)

15. Asirelli, P., ter Beek, M., Gnesi, S., Fantechi, A.: A deontic logical framework for
modelling product families. In: 4th Int. Work. on Variability Modelling of Software-
intensive Systems (2010)

16. Ehrig, H., Pfender, M., Schneider, H.J.: Graph Grammars: an Algebraic Approach.
In: Proceedings of FOCS 1973. IEEE, Los Alamitos (1973)

17. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

18. Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: Comparison
of mandatory and optional properties. Data&Knowledge Engineering 55 (2005)

19. Melcher, J., Mendling, J., Reijers, H.A., Seese, D.: On Measuring the Understand-
ability of Process Models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM
2009. Lecture Notes in Business Information Processing, vol. 43, pp. 465–476.
Springer, Heidelberg (2010)

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/SBVR/1.0

Improving Stock Market Prediction by

Integrating Both Market News and Stock Prices

Xiaodong Li1, Chao Wang2, Jiawei Dong2, Feng Wang3,
Xiaotie Deng1,4, and Shanfeng Zhu2�

1 Department of Computer Science, City University of Hong Kong, Hong Kong
xiaodonli2@student.cityu.edu.hk

2 Shanghai Key Lab of Intelligent Information Processing and School of Computer
Science, Fudan University, Shanghai 200433, China

zhusf@fudan.edu.cn
3 School of Computer and State Key Lab of Software Engineering, Wuhan

University, Wuhan 430072, China
4 Department of Computer Science, University of Liverpool, Liverpool, UK

Abstract. Stock market is an important and active part of nowadays
financial markets. Addressing the question as to how to model financial
information from two sources, we focus on improving the accuracy of
a computer aided prediction by combining information hidden in mar-
ket news and stock prices in this study. Using the multi-kernel learning
technique, a system is presented that makes predictions for the Hong
Kong stock market by incorporating those two information sources. Ex-
periments were conducted and the results have shown that in both cross
validation and independent testing, our system has achieved better di-
rectional accuracy than those by the baseline system that is based on
single one information source, as well as by the system that integrates
information sources in a simple way.

Keywords: Stock market prediction; Information integration; Multi-
kernel learning.

1 Introduction

Stock market is an important and active part of nowadays financial market.
Both investors and speculators in the market would like to make better profit
by analyzing market information. In Efficient Market Hypothesis (EMH, pro-
posed by Fama [1]), it is thought that stock prices have already included and
revealed all the information in the market, and that random walk is the most
natural and possible way the stock market should behave. However, researchers
in behavioral finance argue that EMH may not be right because of irrational be-
havior of players who are influenced by various kinds of market information as
well as their psychological interpretation of the information [2]. Although there

� Corresponding author.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 279–293, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

280 X. Li et al.

are differences between those two theories, neither of them ignores the effect of
market information.

News articles, known as one of the most important part of market information,
are widely used and analyzed by investors. With the development of Internet,
both the speed of news broadcasting and the amount of news articles have been
changing tremendously: 1) Bloomberg1 and Thomson Reuters2 could provide
investors around the world with real-time market news by network; and 2) the
number of online news articles could be thousands of times than that in the
past newspaper-only age. With such a big volume of information, more and
more institutions rely on the high processing power of modern computers for
information analysis. Predictions given by support systems could assist investors
to filter noises and make wiser decisions. How to model and analyze market
information so as to make more accurate predictions thus becomes an interesting
problem.

Researchers with computer science background have studied this problem, and
some works modeled it as a classification problem [3,4,5,6]. Their algorithm could
give a directional prediction (up/hold/down) based on the newly released news
articles. Text classification, however, only considers news articles’ impact, but
ignores information hidden in the prices shortly before news is released. Taking
into consideration both news articles and short-time history price, we believe that
positive news may not always lead to going up the price immediately, it might
just stop the price trend from falling down. Negative news does not necessarily
drive the trend from up to down. Instead, it might just make price curve appear
flat. Figure 1 illustrates several possible scenarios that could happen. This is
different from the traditional view, that is, “good news means up, bad news
means down”.

time

price

t0

actual move

commonly
expected move

good
news

time

price

t0

actual move

commonly
expected move

bad
news

Fig. 1. Possible scenarios of price movements based on news articles and short time
history price

In order to aggregate more-than-one information sources into one system,
Multi-Kernel Learning (MKL) is employed in our system. The MKL has two sub-
kernels: one uses news articles and the other accepts the short-time history prices.
After learning the weights for sub-kernels, the derived model gives prediction
that is supposed to be more accurate than traditional methods.
1 http://www.bloomberg.com/
2 http://thomsonreuters.com/

http://www.bloomberg.com/
http://thomsonreuters.com/

Improving Stock Market Prediction 281

The rest of this paper is organized as follows. Section 2 reviews major exist-
ing approaches related to stock market directional prediction. Section 3 gives an
overview of our proposed system and brief information about experimental de-
sign. Experimental results are reported in Section 4. The conclusion and future
work are given in Section 5.

2 Related Work

Some helpful observations and discussions about news and market prices are
presented in finance domain. Ederington and Lee [7] observed that there is al-
ways a big increment of standard deviation of five-minutes returns on the day
that a government announcement released at 8:30am. Engle and Ng [8] claim
that positive and negative news present asymmetry impact curves, based on the
empirical analysis of ARCH model family.

Analyzing news articles and market prices has also been reported in many
works in computer science domain. Seo, Giampapa and Sycara [9] built a
TextMiner system (a multi-agent system for intelligent portfolio management),
which could assess the risk associated with companies by analyzing news arti-
cles. Fung and Yu [4] classified news articles into categories and predict newly
released news articles’ directional impact based on the trained model. AZFin-
Text system, built by Schumaker and Chen [10], is also able to give directional
forecast of prices.

As illustrated in Figure 2, the common steps of those works in general could
be summarized as follows:

News
articles

History
prices

Textual
processing

Time series
processing

News
labeling

Model training

Classification

Evaluation

Accuracy

Fig. 2. Pipeline of traditional approach

1. Representation of news articles. News articles are basically textual
documents. The vector space model from information retrieval treats tex-
tual documents as “bag of words”, where each word is in a long vector
〈word1, word2, . . .〉 without any duplicate. Weights w are assigned to words
(or terms, features, etc.) by measuring their term frequencies and inverse
document frequencies i.e. w = tf · idf . Stop words, e.g. the, of and is, which
frequently occur but are less informative, are removed in order to reduce

282 X. Li et al.

the noises in corpora. However, remaining features still form a very sparse
space which requires a lot of memory and computation power. To reduce
the feature space, dimension reduction and feature selection methods are
applied [11,12,13,14].

2. Representation of price data. Price data is a series of trading statistics.
At each time ti, there is a corresponding trading record ri. History price
data is of different quality: 1) Inter-day data. Generally contains open, close,
high, low and volume for each trading day, and daily collected; and 2) Intra-
day data. a.k.a. tick-by-tick data, the trading statistics collected in a smaller
time unit, e.g. minute or second. Since price data is not smooth, time series
segmentation techniques, such as the parametric spectral model [15] and
fourier coefficient [16], are applied to smooth the price curve in order to
emphasize the trend of prices.

3. Alignment and news labeling. Fung et al. [4] formulate the alignment
of news articles and price data. They classify possible scenarios into three
categories: 1) Observable Time Lag - a time-lag between news and price
moves; 2) Efficient Market - No observable time-lag, price moves at almost
the same time with news; 3) Reporting - News released after price moves,
a summary or report of previous price moves. Alignment of news article
with price data mainly relies on the time stamps attached with the news
articles. News articles are sorted by their time stamps in ascending order
and then aligned with price data in the corresponding time slots. Before
training the classifier, news articles should be labeled with a tag indicating
the directions of their impact. Besides simply labeling news articles by the
trend of aligned price movement, linguistic methods and sentiment mining
are also implemented for this purpose [17,18,19,20].

4. Model learning. Machine learning models, such as support vector machine,
are used as classifier in this area because of their relatively short training
time and comparatively high classification accuracy. Take SVM for exam-
ple, SVM is fed with the labeled news articles. By selecting some points
as support vectors, SVM finds a hyperplane that maximizes marginal space
from hyperplane to the support vectors. After the training phase, prediction
model is built up to make predictions for new coming data.

5. Evaluation. Besides evaluating the model by some standard benchmarks,
such as precision, recall and accuracy, some researchers [3,21] conduct a pre-
liminary simulation, which makes trades (buy/hold/sell) in a virtual market
with real market data. Trading strategies are made on basis of the signals
generated by prediction model. Return rate is calculated to measure the per-
formance of different models. However, the performance in the simulation
actually depends not only on the prediction model, but also on the trading
strategies and risk management, which is beyond the discussion scope of this
paper.

Improving Stock Market Prediction 283

3 System and Experimental Design

Unlike the traditional way that considers only single information source, our
system is designed to enable to integrate multiple information sources. The ar-
chitecture of the system is shown in Figure 3.

Preprocessing
Information
source 1

Information
source 2

Information
source n

Preprocessing

Preprocessing

……

Machine learning model

Multi-kernel
learning

Metrics

……
Direction

Fig. 3. Architecture of system integrating multiple sources

Two information sources are used in our system: market news and the history
prices shortly before the news released, the later of which is referred to as ex
ante prices in the rest of this paper. The processing pipeline is illustrated in
Figure 4.

Preprocessing of news

News articles

Model training

Multi-kernel
classification

Evaluation

Accuracy

History prices

Segmentation

Remove stop words

Feature selection

Weighting: TF.IDF

Preprocessing of prices

Sorting

Interpolation

Align news and prices

News filtering

Extract ex ante price

Extract ex post price

Return ratio

Technical indicator

Normalization News Info

Price Info

Label

Fig. 4. Detail processing pipeline of our system

Section 3.1 describes brief information about the information sources fed into
the system. Section 3.2 and Section 3.3 will talk about the processing of news

284 X. Li et al.

articles and history prices respectively. Section 3.4 presents how to align news
and prices. Data normalization and model training are discussed in Section 3.5
and Section 3.6.

3.1 Information Sources

The system is designed in a way that enables to integrate two information
sources, which comes from news articles and the ex ante prices. The input data
should have following characteristics:

– Time stamped. Each news article is associated with a time stamp with
proper precision indicating when the news was released. With this time
stamp, the system could identify the order of news and find corresponding
price information.

– Tick based. Tick based data means trading data is often recorded in a short
interval.

– Parallel. Since system needs to tag news using price movement, news articles
and history prices should be about the stories of the same time period.

3.2 Preprocessing of News Articles

News articles are regarded as raw materials that need to be preprocessed. The
main steps are listed below:

1. Chinese segmentation. We segment the news articles by using an existing
Chinese segmentation software3. Although the segmentation software could
produce outputs with high quality, many words that are specific to finance
domain cannot be segmented correctly. A finance dictionary is thus employed
to refine the segmentation results.

2. Word filtering. This step actually does two things: 1) remove stop word;
and 2) filter out other unimportant words (only leave representative words,
such as nouns, verbs and adjectives).

3. Feature selection. Not all the words would be included into the final fea-
ture list. Feldman [22] (Chapter IV.3.1) selects about 10% of the words as
features. Similarly, top 1000 words (out of 7052 words after filtering) with
high χ2 score are selected as features in the system.

4. Weighting. With the selected 1000 features, we calculate the widely used
tf · idf value for each word as its weight.

3.3 Preprocessing of History Prices

With the development of high frequency trading, tick data is popularly used so
that results based on tick data are more convincing. With the following proper-
ties, tick data are distinguished from daily data:

3 http://ictclas.org/

http://ictclas.org/

Improving Stock Market Prediction 285

– Big amount. Tick data have much more records than daily data over the
same time period.

– Disorder. Tick data is not recorded by the order of their time stamps, but
by the time they arrive at the logging system.

– Variant interval. Time intervals between different records may not be the
same. As transactions may happen in any seconds, a time interval between
consecutive records is not always the same.

Raw tick price data is preprocessed through following steps:

1. Sorting. Since transactions do not arrive in the order of their time stamps,
we must first sort the whole list of records by their time stamps.

2. Interpolation. Since time intervals between consecutive transactions are
not the same. Over some time periods, there even does not exist any record,
which leads to one problem: what price value should be filled in that time
period. There are two ways to solve this problem: 1) linear time-weighted
interpolation proposed by Dacorogna et al. [23]; and 2) nearest closing price.
This method splits tick data in a minute basis and samples the closing price
in each minute. If there is no record in a given minute, the closing price of
last minute will be taken as the closing price of this minute. Although both
methods make sense, we adopt the second method, which is simple and easy
to implement.

3.4 Align News Articles and Market Prices

In order to train machine learning model with information from two sources, we
need to prepare the raw data and change them as what the algorithm needs.

3.4.1 News Filtering
(Not all the news articles are used because of two reasons: 1) trading hour lim-
itation. Take Hong Kong Exchanges and Cleaning Ltd (HKEx) for example,
according to regulation of HKEx, 10:00am-12:30pm and 14:30pm-16:00pm are
trading hours. Only news articles released during trading hours are considered
to have impact on HKEx stock prices. Besides the trading hour limitations,
Schumaker [21] suggests eliminate the opening 20 minutes in the morning and
opening 20 minutes in the afternoon in order to absorb the impact of news that
is released during the night and lunch break. 2) news impact overlapping. As
illustrated in Figure 5, if the prediction length is Δ and there are two news arti-
cles (d1 and d2) released within Δ. In this scenario, it is hard to tell whether the
change of price at time t+Δ is caused by either d1 or d2 or both. In our system,
d1 will be eliminated.

3.4.2 Extract and Process Ex Post Prices
Before feeding news article into machine learning model, each news should have
a category tag. In high frequency trading, people would like to know what is
the short-time impact of news on prices, which means people are much more
caring about the price change shortly after the news released (named as ex post

286 X. Li et al.

d1

t0 t+Δ

t0 t+Δ

d1 d2

t1

Fig. 5. Example of news filtering

prices). Gidofalvi [24] shows that news impact has the biggest power 20 minutes
after it’s released. Without the knowledge on how long the news impact lasts, we
label the news by the change of price in future 5, 10, 15, 20, 25 and 30 minutes
respectively, which can be regarded as an extension of work [21].

Corresponding to news time stamp t0, current price value p0 in the sorted
tick price series as well as the prices of future 5, 10, 15, 20, 25 and 30 minutes
intervals denoted as p+5, p+10, p+15, p+20, p+25 and p+30, respectively, can be
found. if t0 + Δ, for example, t0 + 20, exceeds the requirement of trading hour
limitation, the news article will be eliminated. We convert ex post prices into
the return rates by

R =
pi − p0

p0

We set a threshold of 0.3% (average transaction cost in the market), which means
if R is greater than 0.3%, news is tagged as positive. In contrast, news is tagged
as negative if R is less than −0.3%.

3.4.3 Extract and Process Ex Ante Prices
Prices from 30 minutes to 1 minute before news is released, and sampled at 1
minute interval are extracted as ex ante prices in our experiment. However, if
we naively take the 30 points as 30 features, the machine learning model will
assume that the 30 features are independent from each other, which means the
sequential dependency of the price serial p−30, p−29, . . ., p−1 is not preserved
and the machine learning model will not be able to use the sequence information.
Cao and Tay [25,26] convert the price series into RDP indicators. Following their
method, we use the same formulae of RDPs which are listed in Table 1.

In addition to RDPs, we employ some other market indicators from stock
technical analysis. The formulae of market indicators are listed in Table 2, where
pi is the price at minute i, and q refers to the order counted in minute.

After all, 30 ex ante price points are converted to 6 RDPs and 5 market
indicators, all of which will be simply referred to as indicators in the following
sections.

Improving Stock Market Prediction 287

Table 1. The formulae of RDPs

RDP Formula

RDP-5 100 ∗ (pi − pi−5)/pi−5

RDP-10 100 ∗ (pi − pi−10)/pi−10

RDP-15 100 ∗ (pi − pi−15)/pi−15

RDP-20 100 ∗ (pi − pi−20)/pi−20

RDP-25 100 ∗ (pi − pi−25)/pi−25

RDP-30 100 ∗ (pi − pi−30)/pi−30

Table 2. Indicator

Indicator Formula Description

RSI(q) 100 ∗ UpAvg/(UpAvg + DownAvg) Relative Strength Index
UpAvg =

∑
pi>(

∑
i pi)/q(pi − (

∑
i pi)/q)

DownAvg =
∑

pi<(
∑

i pi)/q(pi − (
∑

i pi)/q)

RSV(q) 100 ∗ (p0 − minq(pi))/(maxq(pi) − minq(pi)) Raw Stochastic Value
R(q) 100 ∗ (maxq(pi) − p0)/(maxq(pi) − minq(pi)) Williams Index
BIAS(q) 100 ∗ (p0 − (

∑
i pi)/q)/((

∑
i pi)/q) Bias

PSY(q) 100 ∗ (
∑

1{pi > pi−1})/q Psychological Line

3.5 Normalization

After performing the previous steps, we have obtained: 1) group of news instances
(denoted as N); 2) group of indicator instances (denoted as I); and 3) vector
L containing labels. Each instance of N corresponds to one piece of news and
each feature of instance corresponds to one selected word. Each instance in I
also corresponds to one piece of news and each feature in I corresponds to one of
the indicators. For features in N and features in I that only takes non-negative
value, denoted as fk, we use

norm(wki) =
wki −min(wk∗)

max(wk∗)−min(wk∗)

to normalize. The range of values after the normalization is [0, 1]. For features
in I that could take both positive and negative values, denoted as fm, we use

norm(wmi) =
wmi

max(wm∗)

to normalize. The range of values after the normalization is [-1, 1].

3.6 Model Training

We want to compare the ability of prediction between two information sources
based model and single information source based model. SVM is selected to be
the classifier. We implement four models that use information of news and ex
ante prices in different ways. The details about the setup of those four models
are described as follows:

288 X. Li et al.

1. News article only. This model takes labeled news instances as the input
of SVM. It tests the prediction ability when there are only news articles.
(Figure 6 (1))

2. Ex ante prices only. This model takes labeled price data as the input
of SVM. It tests the prediction ability when there are only history prices.
(Figure 6 (2))

3. Naive combination of news article and ex ante prices. This approach
uses the simple combination of news articles and prices. Naive combination
means combine the 1000 features from news and 11 features from indicators
to form a 1011 feature vector. As instances of news and instances of indicators
are one-one correspondence, the label for each instance is unchanged and the
total number of instances remains the same. (Figure 6 (3))

4. Multi-Kernel Learning (MKL). MKL is employed to aggregate the infor-
mation within news articles and ex ante prices of each news (SHOGUN [27],
an implementation of MKL, is used in our experiment.). Unlike naive com-
bination which trains SVM using

f(−→x) = sign(
m∑

i=1

αiliknaive(−→x i,−→x) + b)

where −→x i, i = 1, 2, . . . , m are labeled training samples of 1011 features, and
li ∈ {±1}, for the case of MKL, similarity is measured among the instances of
news and instances of indicators respectively, and the two derived similarity
matrices are taken as two sub-kernels of MKL (as shown in Figure 6 (4))
and weight βnews and βindicator are learnt for sub-kernels,

k(−→x i,−→x j) = βnewsknews(−→x (1)
i ,−→x (1)

j) + βindicatorkindiccator(−→x (2)
i ,−→x (2)

j)

with βnews, βindicator ≥ 0 and βnews + βindicator = 1, where −→x (1) are news
instances of 1000 features and −→x (2) are indicator instances of 11 features.

For training models 1, 2 and 3, we use grid search and 5-fold cross validation to
find the best combination of model parameters. As for MKL, parameter selection
is a little bit different. As the best parameter combination for sub-kernels of
news and indicators has been found during the training of model 1 and 2, we
just need to adopt the derived parameters and search the best parameters which
are specific to MKL.

4 Experimental Results and Discussion

4.1 Data Sets

Parallel news articles and market prices serve as the experiment data sets.

– News articles. The news articles of year 2001 used in our experiment are
bought from Caihua4. All the news articles are written in Traditional Chi-
nese. Each piece of news is attached with a time stamp indicating when the
news is released.

4 http://www.finet.hk/mainsite/index.htm

http://www.finet.hk/mainsite/index.htm

Improving Stock Market Prediction 289

L N

I

Sub-kernel 1

Sub-kernel 2

Multi-kernel learning

(1)

(2)

(3)

(4)

m instances

1000 features for news

m instances

11 features for indicators

L N

L

IL

L N I

m instances

L N I

L N

m instances

L N

I

m instances

L

IL

Fig. 6. Model setup: (1) News article only; (2) Ex ante prices only; (3) Naive combi-
nation; (4) MKL

– Market prices. The market prices contain all the stocks’ prices of HKEx in
year 2001.

Time stamps of news articles and prices are tick based.
HKEx has thousands of stocks and not all the stocks are playing actively in

the market. We mainly focus on the constituents of Hang Seng Index5 (HSI)
which, according to the change log, includes 33 stocks in year 2001. However,
the constituents of HSI changed twice in year 2001, which was on June 1st and
July 31th. Due to the tyranny of indexing [28], price movement of newly added
5 http://www.hsi.com.hk/HSI-Net/

http://www.hsi.com.hk/HSI-Net/

290 X. Li et al.

constituent is not rational and usually will be mispriced during the first few
months. We only select the constituents that had been constituents through the
whole year. Thus, the number of stocks left becomes 23. The first 10-month data
is used as the training/cross-validation set and the last 2-month data is used as
the testing set.

4.2 Parameter Selection

During model training period, parameters are determined by two methods: grid
search and 5-fold cross validation. Take model 1’s training for example, SVM
parameters to be tuned are γ and C. For γ, algorithm searches from 0 to 10
with step size 0.2; For C, the step size is 1 and C searches from 1 to 20. Thus,
there are totally 50 × 20 = 1000 combinations of parameters (in other words,
1000 loops). In each loop, 5-fold cross validation is executed to validate the
system’s performance, which equally splits the first 10-month data into 5 parts
and use 4 of them to train the model and the left 1 part to validate. Among the
1000 combinations, the one with the best performance is preserved and used to
configure the final model for testing.

For models 1, 2 and 3, the method of parameter selection is the same. For
model 4, instead of changing γ 50× 50 = 2500 times (50 for sub-kernel of news
and 50 for sub-kernel of indicator), we just adopt the γs which have already
been selected in models 1 and 2’s training. MKL’s parameter C is selected by
the same method as the other model.

4.3 Experimental Results

accuracy, which is adopted by many previous works [3,4,5,6], is used to evaluate
the predication performance. The formula of accuracy is

accuracy =
true positive + true negative

true positive + false positive + true negative + false negative

Cross validation results are listed in Table 3, and Table 4 lists the results of
independent testing (numbers in bold font indicate the best results at that time
point and the second best results are underlined). From the results, we can see
that:

Table 3. Prediction accuracy of 5-fold cross validation (%)

Cross validation 5m 10m 15m 20m 25m 30m

Indicator 60.24 58.42 57.59 58.48 57.99 57.2
News 59.12 62.65 62.84 63.06 60.93 59.12
Naive combination 60.05 61.78 62.84 62.84 60.85 58.04
MKL 60.20 62.94 63.68 64.23 61.14 60.44

Improving Stock Market Prediction 291

Table 4. Prediction accuracy of independent testing (%)

Independent testing 5m 10m 15m 20m 25m 30m

Indicator 53.48 50.23 47.84 48.92 45.38 50.80
News 52.94 51.13 44.40 52.38 53.41 48.80
Naive combination 56.15 61.54 49.14 52.38 45.78 49.60
MKL 56.68 57.84 53.20 53.87 50.34 52.29

1. MKL outperforms the other three models both in cross validation and in-
dependent testing, except for point 5m in cross validation and points 10m,
25m in testing. Although both Naive combination approach and MKL make
use of market news and prices, naive combination does not outperform sin-
gle information source based model as expected. The reason might be that
simply combining the features of news and the features of indicator could
lead to feature bias. As stated in Section 3.6, the number of news features
has nearly 100 times than that of indicator. Features are thus greatly bias
to the side of news. As can be observed in Figure 7 (I), the curve of Naive is
quite close to News. On the other hand, due to a different learning approach,
MKL balances the predictability of news and prices (Market news and stock
prices have their own characteristics and the information hidden in either of
them could be a complement to the other.). Comparing to cross validation,
although MKL’s performance in independent testing decreases, it still can
achieve 4 best-results and 2 second-best-results.

55.00

60.00

65.00

5m 10m 15m 20m 25m 30m
(I)

Indicator
News
Naïve
MKL

40.00

45.00

50.00

55.00

60.00

65.00

5m 10m 15m 20m 25m 30m(II)

Indicator
News
Naïve
MKL

Fig. 7. Experimental results: (I) cross validation results, (II) independent testing re-
sults

2. From Figure 7 (I) and (II), it can be clearly observed that the slope of
curve Indicator is almost negative, which means the predictability of prices
decrease as time goes by. This observation is natural and consistent to the
general knowledge that the impact of market information will be gradually
absorbed by the market and the predictability will decrease as time goes by.

3. From Figure 7 (I), accuracy score at point 20m for curves News, Naive
and MKL, all of which use the information of news articles, is better than

292 X. Li et al.

the other points, which means predictability of news articles reaches its
peak at point 20m. This observation is consistent with the observation of
Gidofalvi [24].

5 Conclusion and Future Work

In this paper, we build up a system which uses multi-kernel learning to integrate
market news and stock prices to improve prediction accuracy for stock market.
Experiment is conducted by using a whole year Hong Kong stock market tick
data. Results have shown that multi-kernel based model could make better use of
information in news articles and history prices than the model simply combines
features of news articles and prices. It is also observed that multi-kernel model
outperforms the models that just adopt one information source.

For future research on this topic, it is possible to further investigate this
problem from two ways.

– Some news articles are usually not just talking about one specific stock but
several stocks of the same industry. Instead of focusing on the constituents
of HSI, industry section, which is at a higher level than individual stocks,
could be a good research object.

– MKL in our system uses two information sources. More information sources
could be found and added to this system. What kind of information sources
could provide complementary information without redundancy is another
question that is worth consideration.

Acknowledgements. The work in this paper is partially supported by the Re-
search Grants Council of Hong Kong under Project No. RGC CityU 112909, the
Natural Science Foundation of Hubei Province of China (No. 2010CDB08504),
and Research Project of Shanghai Key Laboratory of Intelligent Information
Processing under Grant No. IIPL-2010-007. Xiaotie Deng would like to acknowl-
edge the support of a research grant from University of Liverpool.

References

1. Fama, E.F.: The behavior of stock market prices. Journal of business 38(1) (1964)

2. Barberis, N., Thaler, R.: A survey of behavioral finance. Handbook of the Eco-
nomics of Finance 1, 1053–1128 (2003)

3. Fung, G., Yu, J., Lam, W.: News sensitive stock trend prediction. Advances in
Knowledge Discovery and Data Mining, 481–493 (2002)

4. Fung, G.P.C., Yu, J.X., Lu, H.: The predicting power of textual information on
financial markets. IEEE Intelligent Informatics Bulletin 5(1), 1–10 (2005)

5. Wu, D., Fung, G., Yu, J., Liu, Z.: Integrating Multiple Data Sources for Stock
Prediction. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S.
(eds.) WISE 2008. LNCS, vol. 5175, pp. 77–89. Springer, Heidelberg (2008)

Improving Stock Market Prediction 293

6. Wu, D., Fung, G.P.C., Yu, J.X., Pan, Q.: Stock prediction: an event-driven ap-
proach based on bursty keywords. Frontiers of Computer Science in China 3(2),
145–157 (2009)

7. Ederington, L.H., Lee, J.H.: How markets process information: News releases and
volatility. Journal of Finance 48(4), 1161–1191 (1993)

8. Engle, R.F., Ng, V.K.: Measuring and testing the impact of news on volatility.
Journal of finance 48(5), 1749–1778 (1993)

9. Seo, Y.W., Giampapa, J., Sycara, K.: Financial news analysis for intelligent port-
folio management. Robotics Institute, Carnegie Mellon University (2004)

10. Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using
breaking financial news: The AZFin text system. ACM Transactions on Informa-
tion Systems (TOIS) 27(2), 12 (2009)

11. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics 43(1), 59–69 (1982)

12. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomput-
ing 21(1-3), 19–30 (1998)

13. Ultsch, A.: Data mining and knowledge discovery with emergent self-organizing
feature maps for multivariate time series. Kohonen Maps 46 (1999)

14. Fu, T., Chung, F.L., Ng, V., Luk, R.: Pattern discovery from stock time series using
self-organizing maps. In: Workshop Notes of KDD2001 Workshop on Temporal
Data Mining, pp. 26–29 (2001)

15. Smyth, P.J.: Hidden Markov models for fault detection in dynamic systems
(November 7, 1995)

16. Pavlidis, T., Horowitz, S.L.: Segmentation of plane curves. IEEE Transactions on
Computers 100(23), 860–870 (1974)

17. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL-2002 Conference on Em-
pirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002)

18. Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of
COLING, vol. 4, pp. 1367–1373 (2004)

19. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news
and blogs. In: ICWSM 2007 (2007)

20. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval 2(1-2), 1–135 (2008)

21. Schumaker, R.P., Chen, H.: A quantitative stock prediction system based on finan-
cial news. Information Processing & Management 45(5), 571–583 (2009)

22. Feldman, R., Sanger, J.: The text mining handbook (2007)
23. Dacorogna, M.M.: An introduction to high-frequency finance (2001)
24. Gidófalvi, G., Elkan, C.: Using news articles to predict stock price movements. In:

Department of Computer Science and Engineering. University of California, San
Diego (2001)

25. Tay, F.E.H., Cao, L.: Application of support vector machines in financial time
series forecasting. Omega 29(4), 309–317 (2001)

26. Cao, L.J., Tay, F.E.H.: Support vector machine with adaptive parameters in finan-
cial time series forecasting. IEEE Transactions on Neural Networks 14(6),
1506–1518 (2004)

27. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., Bona,
F., Binder, A., Gehl, C., Franc, V.: The SHOGUN machine learning toolbox. The
Journal of Machine Learning Research 99, 1799–1802 (2010)

28. Ritter, J.R.: Behavioral finance. Pacific-Basin Finance Journal 11(4), 429–437
(2003)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 294–302, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Querying Semantically Enriched Business Processes

Michele Missikoff1, Maurizio Proietti1, and Fabrizio Smith1,2

1 IASI-CNR, Viale Manzoni 30, 00185, Rome, Italy
2 DIEI, Università degli Studi de L’Aquila, Italy

{michele.missikoff,maurizio.proietti,
fabrizio.smith}@iasi.cnr.it

Abstract. In this paper we present a logic-based approach for querying business
process repositories. The proposed solution is based on a synergic use of an
ontological framework (OPAL) aimed at capturing the semantics of a business
scenario, and a business process modelling framework (BPAL) to represent the
workflow logic. Both frameworks are grounded in logic programming and
therefore it is possible to apply effective reasoning methods to query the
knowledge base stemming from the fusion of the two. A software platform has
been developed and the first tests are encouraging.

Keywords: Business Process, Semantic Annotation, Query Language.

1 Introduction

In recent years there has been an acceleration towards new forms of cooperation
among enterprises, such as networked enterprises, where the resources and Business
Processes (BPs) of the participating organizations are integrated to pursue shared
objectives in a tightly coordinated fashion, operating as a unique (virtual)
organization. In particular, building global BPs (i.e., cross-enterprise processes) by
assembling existing local BPs found in different enterprises is not an easy operation,
since the semantic interoperability problem arises both at a data level and at a process
level. The local BPs are often built by using different tools, according to different
business logics, and using different labels and terminology to denote activities and
resources. To overcome this incompatibilities, the various participating enterprises
need to agree on a common view of the business domain (e.g., represented by a
reference ontology), and provide descriptions of the local BPs according to such an
agreed common view.

Much work has been done1 towards the enhancement of BP management systems
[1] by means of well-established techniques from the area of the Semantic Web and,
in particular, computational ontologies [2]. An enterprise ontology supports
unambiguous definitions of the entities occurring in the domain, and eases the
interoperability between software applications and the reuse/exchange of knowledge
between human actors.

1 See, e.g., the SUPER (http://www.ip-super.org/), COIN (http://www.coin-
ip.eu/) and PLUG-IT (http://plug-it.org/) initiatives.

 Querying Semantically Enriched Business Processes 295

In this frame, we focus on the problem of querying repositories of semantically
annotated BPs. The proposed solution is based on a synergic use of an ontological
framework (OPAL [3]) aimed at capturing the semantics of a business scenario, and a
business process modelling framework (BPAL [4]) to represent the workflow logic.
Then, the semantic annotation of BPs w.r.t. ontologies allows us to query BPs in
terms of the ontology vocabulary, easing the retrieval of local BP (or process
fragments) to be reused in the composition of new BPs. Figure 1 depicts a birds-eye
view of the querying approach, with the local BP repositories (LBPRx), the common
set of ontologies and vocabularies (Reference Ontology) used for the semantic
annotation (Σ) of the BP repositories, and the query engine operating on the above
structures.

Fig. 1. Business Process Querying Approach

The proposed approach provides a uniform and formal representation framework,
suited for automatic reasoning and equipped with a powerful inference mechanism
supported by the solutions developed in the area of Logic Programming [5]. At the
same time it has been conceived to be used in conjunction with the existing BP
management tools as an ‘add-on’ to them, by supporting BPMN [6] and in particular
its XPDL [7] linear form as a modeling notation and OWL [8], for the definition of
the reference ontologies.

2 Knowledge Representation Framework

In this section we introduce the knowledge representation framework which is at the
basis of the querying approach that will be proposed in Section 3. In this framework
we are able to define an Enterprise Knowledge Base (EKB) as a collection of logical
theories where: i) the representation of the workflow graph associated with each BP,
together with its behavioral semantics, i.e., a formal description of its execution, is
provided by a BPAL specification; ii) the representation of the domain knowledge
regarding the business scenario is provided through an OPAL ontology.

2.1 Introducing BPAL

BPAL [4] is a logic-based language that provides a declarative modeling method
capable of fully capturing the procedural knowledge in a business process. Hence it
provides constructs to model activities, events, gateways and their sequencing. For
branching flows, BPAL provides predicates representing parallel (AND), exclusive

296 M. Missikoff, M. Proietti, and F. Smith

(XOR), and inclusive (OR) branching/merging of the control flow. A BPAL BP
Schema (BPS) describes a workflow graph through a set of facts (ground atoms)
constructed from the BPAL alphabet. In Figure 2 an exemplary BPS modeled in
BPMN is depicted, together with the corresponding BPAL translation.

In order to perform several reasoning tasks over BPAL BPSs, three core theories
have been defined, namely the meta-model theory M, the trace theory TR and the
dependency constraint theory D.

M formalizes a set of structural properties of a BPS, that at this level is regarded as
a labeled graph, to define how the constructs provided by the BPAL language can be
used to build a well-formed BPS. Two categories of properties should be verified by a
well-formed BPS: i) local properties related to the elementary components of the
workflow graph (for instance, every activity must have at most one ingoing and at
most one outgoing sequence flow), and ii) global properties related to the overall
structure of the process (for instance, in this paper we assume that processes are
structured, i.e., each branch point is matched with a merge point of the same type, and
such branch-merge pairs are also properly nested).

Fig. 2. BPMN eProcurement Process (left-side), partial BPAL translation (right-side)

TR provides a formalization of the trace semantics of a BP schema, where a trace
models an execution (or instance, or enactment) of a BPS as a sequence of
occurrences of activities called steps.

D is introduced for the purpose of efficiently verifying properties regarding the
possible executions of a BPS. D defines properties in the form of constraints stating
that the execution of an activity is dependent on the execution of another activity, e.g.,
two activities have to occur together (or in mutual exclusion) in the process (possibly,
in a given order). Examples of such constraints are i) precedence(a,b,p,s,e), i.e., in the
sub-process of p starting with s and ending with e, if b is executed then a has been
previously executed; ii) response(a,b,p,s,e), i.e., in the sub-process of p starting with s
and ending with e, if a is executed then b will be executed. In a structured BPS, like
the ones considered in this paper, such constraints could be verified by an exhaustive
exploration of the set of correct traces. However, this approach would be inefficient,
especially when used for answering complex queries of the kind described in Section
3. Thus, we follow a different approach for defining the constraint patterns discussed
in [9] by means of logic rules that infer the absence of a counterexample (e.g., in the

BPAL BPS
activity(SPO)
activity(PPO)
exc_branch_pt(G1)
par_branch_pt(G2)
exc_merge_pt(G4)
par_merge_pt(G3)
seq(PPO,G2)
seq(G2,INV)
seq(G2,SGDS)
seq(INV,G3)
…

 Querying Semantically Enriched Business Processes 297

response case, a correct trace that does not lead, from a step of activity a, to a step of
b). The set of these rules constitutes the theory D. This approach is indeed more
efficient because, in order to construct a counterexample, we can avoid to actually
construct all possible interleavings of the traces generated by the execution of parallel
sub-processes and, in fact, we only need to perform suitable traversals of the
workflow graph.

2.2 Semantic Annotation through a Business Reference Ontology

For the design of a Business Reference Ontology (BRO) to be used in the alignment
of the terminology and conceptualizations used in different BP schemas, we consider
as the reference framework the OPAL methodology [3]. OPAL organizes concepts
through a number of meta-concepts aimed at supporting the domain expert in the
conceptualization process, identifying active entities (actors), passive entities
(objects), and transformations (processes). OPAL concepts may be defined in terms
of concepts described in an ontology (or set of ontologies) describing a specific
domain (or set of domains). Then the BRO is composed by an OPAL model linked to
a set of domain ontologies, that can be already existing resources or artifacts
developed on purpose.

The Semantic Annotation defines a correspondence between elements of a BPS
and concepts of a BRO, in order to describe the meaning of the former through a
suitable conceptualization of the domain of interest provided by the latter in terms of
related actors, objects, and processes. is specified by the relation , which is
defined by a set of assertions of the form (El,C), where El is an element of a BPS
and C is an OPAL concept.

Technically, the language adopted for the definition of a BRO is a fragment of
OWL, falling within the OWL-RL profile. OWL-RL, is an OWL subset designed for
practical implementations using rule-based techniques. In the EKB, ontologies are
encoded using the triple notation by means of the predicate t(s,p,o), representing a
generalized RDF triple (with subject s, predicate p, and object o). For the semantics of
an OWL-RL ontology we refer to the axiomatization (OWL 2 RL/RDF rules)
described in [8].

Fig. 3. Semantic Enrichment of Process Schemas

Figure 3 reports an example of semantic annotation related to the eProcurement
process of Figure 2, where a basic definition in terms of inputs, outputs and related
actors is provided for IssuingPO (we assume the usual prefixes rdfs and owl for the
RDFS/OWL vocabulary, plus opal for the introduced vocabulary and bro for the
specific example).

298 M. Missikoff, M. Proietti, and F. Smith

3 Querying an Enterprise Knowledge Base

An EKB is formalized by a First Order Logic theory, defined by putting together the
theories introduced in the previous section:

EKB = BRO ∪ OWL_RL ∪ ∪ M ∪ B ∪ TR ∪ D

where: i) BRO ∪ OWL_RL ∪ represents the domain knowledge, i.e., BRO is an
OPAL Business Reference Ontology, encoded as a set of triples of the form t(s,p,o);
OWL_RL is the OWL 2 RL/RDF rule set, included into the EKB to support reasoning
over the BRO; and is a semantic annotation, including a set of assertions of the form

(El,C); ii) M ∪ B represents the structural knowledge about the business processes,
i.e., M is the meta-model theory and B is a repository consisting of a set of BP
schemas defined in BPAL; iii) TR ∪ D is a formalization of the behavioral semantics
of the BP schemas, i.e., TR is the trace theory and D is the theory defining the
dependency constraints.

A relevant property of the EKB is that it has a straightforward translation to a logic
program [5], which can be effectively used for reasoning within a Prolog
environment. This translation allows us to deal within a uniform framework with
several kinds of reasoning tasks and combinations thereof. Every component of the
EKB defines a set of predicates that can be used for querying the knowledge base. The
reference ontology BRO and the semantic annotation allow us to express queries in
terms of the ontology vocabulary. The predicates defined by the meta-model theory M
and by the BP schemas in B allow us to query the schema level of a BP, verifying
properties regarding the flow elements occurring in it (activities, events, gateways)
and their relationships (sequence flows). Finally TR and D, allow us to express
queries about the behavior of a BP schema at execution time, i.e., verify properties
regarding the execution semantics of a BP schema.

In order to provide the user with a simple and expressive query language that does
not require to understand the technicalities of the logic engine, we propose QuBPAL,
a query language based on the SELECT-FROM-WHERE paradigm (see [10] for more
details) that can be translated to logic programs (where nested and disjunctive queries
are translated to multiple rules) and evaluated by using the XSB engine
(http://xsb.sourceforge.net). More specifically, QuBPAL queries which do not
involve predicates defined in TR, i.e., queries that do not explicitly manipulate traces,
are translated to logic programs belonging to the fragment of Datalog with stratified
negation. For this class of programs the tabling mechanism of XSB guarantees an
efficient, sound and complete top-down evaluation.

As an example, below we report a QuBPAL query and its corresponding Datalog
translation. We prefix variables names by a question mark (e.g., ?x) and we use the
notation ?x::Conc to indicate the semantic typing of a variable, i.e., as a shortcut for

(x,y) ∧ t(y,rdfs:subClassOf,Conc), in order to easily navigate the ontology
taxonomy.

SELECT <?p,?s,?e>

WHERE activity(?s::bro:Requesting) AND belongs(?b::bro:FinancialTransaction,?p,?s,?e) AND
precedence(?a::bro:Invoicing,?b,?p,?s,?e)

 Querying Semantically Enriched Business Processes 299

q(P,S,E):- t(C_1,rdfs:subClassOf,bro:Requesting),t(C_2,rdfs:subClassOf,bro:FinancialTransaction),
t(C_3,rdfs:subClassOf,bro:Invoicing),σ(S,C_1),σ(B,C_2),σ(A,C_3),belongs(S,P),belongs(E,P),

belongs(A,P,S,E),belongs(B,P,S,E), wf_subproc(P,S,E),precedence(A,B,P,S,E).

This query returns every well-formed process fragment (i.e., structured block) that

starts with a requesting activity and that contains a financial transaction preceded (in
every possible run) by an invoicing. The SELECT statement defines the output of the
query evaluation, which in this case is a process fragment identified by the triple
<?p,?s,?e>, where ?p is a BP identifier, ?s is the starting element, and ?e is the
ending element. The query may include a FROM statement (absent in the above
example), indicating the process(es) from which data is to be retrieved (possibly the
whole repository). In the WHERE statement it can be specified an expression which
restricts the data returned by the query, built from the set of predicates defined in the
EKB, the = predicate and the connectives AND, OR, NOT with the standard logic
semantics. If we consider the process fragment of Section 2.1, the answer to the above
query contains the sub-process starting with SPO and ending with PAY.

This query shows the interplay of the different components of the EKB: the notions
of well-formed process fragment (wf_subproc) and containment (belongs) are
formalized in the BPAL meta-model theory, precedence is a dependency constraint
regarding the behavioral semantics of the BPS, σ and t are defined in terms of the
semantic description of the domain specified in the BRO.

4 Implementation

A prototype of the proposed framework has been implemented as a Java application,
interfaced with the XSB logic programming engine through the Interprolog library
(http://www.declarativa.com/interprolog). The BPAL reasoner is depicted in Figure
4. On the left part of this figure, enclosed in a dotted rectangle, we have grouped the
components involved in the setup phase, when the EKB is built.

The process repository B is populated by process schemas modeled by business
experts using a BPMS capable of exporting XPDL, that is translated into BPAL by
means of the module XPDL2BPAL. The business reference ontology BRO is imported
from an OWL-RL ontology by the module OWL2LP that translates the BRO into a set
of ground facts in the triple notation. The reasoning over the ontology is supported by
the rule-set OWLRL, obtained by a translation of the OWL 2 RL/RDF rules. The
semantic annotation is encoded as an OWL file too, and it is similarly imported into
the EKB. The parsing of OWL files is based on the Jena2 toolkit
(http://jena.sourceforge.net/). Finally the EKB is completed by the logic programs
encoding the meta-model theory M, the trace theory TR and the dependency
constraints D. Having populated the EKB, the reasoning tasks are performed by
querying the knowledge base through QuBPAL queries that are translated into
Datalog by the module QBPAL2LP and evaluated by the XSB engine. The computed
results can be exported through the XpdlWriter module as an XPDL file, for its

,

300 M. Missikoff, M. Proietti, and F. Smith

Fig. 4. Architecture of the BPAL Reasoner

visualization in a BPMS and its further reuse. These components are enclosed in a
dotted rectangle on the right part of Figure 4.

We conducted in [10] a preliminary evaluation of the system performance on a
desktop machine (Intel Core2 E4500 CPU (2x2.20 GH), 2GB of RAM), to show the
feasibility of the approach. In particular, the rule-based implementation of the OWL
reasoner and the effective goal-oriented evaluation mechanism of the Prolog engine
shown good response time and significant scalability. The results are summarized in
Table 1. Timings are expressed in seconds and represent the average value over 10
runs. We generated artificial XPDL files, describing three BP repositories, T1-T3 of
different size and structure. In the first part of Table 1 we report, for each repository,
the number of BPs, the total size, i.e. the total number of flow elements, the total
number of gateways and the size of the smallest and biggest BP. As Business
Reference Ontology we created an eProcurement ontology (about 400 named
concepts described by about 2500 triples), by including part of the OWL translation
of the SUMO ontology (http://www.ontologyportal.org/translations/ SUMO.owl). In
particular, we used the Process hierarchy introduced in SUMO as root for the activity
taxonomy (about 250 concepts) adopted for the random annotation of the generated
BPs. First, we tested the set up phase (middle part of Table 1), by importing into the
platform each repository from an XPDL file, the ontology and the semantic
annotation from OWL. Then, we performed three queries Q1-Q3 against each
repository. Q1 is analogous to the one shown in Section 3. Q2 retrieves every
opal:Object that is related to a concept used for the annotation of an activity lying on
a path from an activity annotated with A to an activity annotated with B. Q3 retrieves
every sub-process that is executed as an alternative to one where an activity
annotated with C is eventually executed. We report for each run (bottom part of Table
1) the number of results obtained and the total time spent for the evaluation, including
the QuBPAL query translation (QuBPAL2LP), the communication overhead between
Java and XSB and the export of the results as a new XPDL file (XpdlWriter).

 Querying Semantically Enriched Business Processes 301

Table 1. Evaluation Results

Test Data Sets
 Nr. of BPS Tot. Size Nr. of Gateways Min BPS Size Max BPS Size
T1 50 11757 4114 172 308
T2 100 18888 6442 157 237
T3 200 25229 8556 104 164

Set Up Phase Evaluation
 BP Repository Import BRO Import Import

 XPDL2BPAL XSB Compile OWL2LP XSB Compile OWL2LP XSB Compile
T1 3.6 7.4 1 0.7 1.8 1.2
T2 7.8 11.2 1 0.7 2.5 1.7
T3 15.3 18 1 0.7 3.3 2.5

Run Time Phase Evaluation
 Q1 Q2 Q3
 Nr. of Res. Time Nr. of Res. Time Nr. of Res. Time
T1 11 2.5 133 4.8 47 10.2
T2 15 5.3 125 11.3 66 14.7
T3 9 8 109 17.2 44 16.9

5 Related Work and Conclusions

In this paper we presented a framework conceived to complement existing BPMS by
providing advanced querying services. The proposed solution is based on a synergic
use of ontologies to capture the semantics of a business scenario, and a business
process modelling framework, to represent the underlying application logic. Both
frameworks are seamlessly connected thanks to their grounding in logic programming
and therefore it is possible to apply effective reasoning methods to query the
knowledge base encompassing the two.

A first body of related works proposes the extension to business process
management of techniques developed in the context of the semantic web. Relevant
work in this direction has been done within the SUPER project, where several
foundational ontologies to model functional, organizational, informational and
behavioral perspectives have been developed. In [11] a querying framework based on
such ontologies is presented. In [12] SPARQL queries, formulated through a visual
language, are evaluated against business processes represented trough a BPMN meta-
model ontology annotated with respect to domain ontologies. Other approaches based
on meta-model ontologies have been discussed, e.g., [13]. Unlike the aforementioned
works, where the behavioral aspects are hidden or abstracted away, dependency
constraints defined in terms of the execution semantics can be used in a QuBPAL
query. Hence, the EKB provides a homogeneous framework where one can evaluate
complex queries that combine properties related to the ontological description, the
workflow structure, and the behavioral semantics of the modeled processes.

Other approaches for BP querying are based on graph matching, through visual
languages [14,15] grounded in graph grammars. Such approaches allow the user to
query the graph representation of a process workflow in an intuitive way, but they
need to be combined with external tools to reason about properties of the behavioral
semantics (e.g., [14] implements translations to finite state models to be verified by
using model checking techniques). Such approaches strongly differs from ours on
scope and purpose, since their focus is on verifying structural features of process

302 M. Missikoff, M. Proietti, and F. Smith

schemas, and the semantics of the business domain is not considered. Our framework
not only provides a method based on Datalog for querying the structure of the
workflow graph, but due to the logic-based representation it also integrates additional
reasoning services. In particular, a very relevant advantage of QuBPAL is the
possibility of formulating queries involving the knowledge represented in domain
models formally encoded by means of ontologies. Indeed, QuBPAL queries can be
posed in terms of the ontology vocabulary, which offers a “global view” of the
processes annotated with it, hence i) decoupling queries from specific processes, ii)
overcoming semantic heterogeneities deriving, e.g., from different terminologies, iii)
posing queries at different generalization levels, taking advantage of the semantic
relations defined in the ontology, such as subsumption.

Future works are intended to increase the expressivity of the approach, by
supporting a larger number of workflow patterns [1], and to perform the optimization
of the query evaluation process, that can be strongly improved by exploiting query
rewriting techniques.

References

1. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern Business
Process Automation: YAWL and its Support Environment. Springer, Heidelberg (2010)

2. Hepp, M., et al.: Semantic business process management: A vision towards using semantic
web services for business process management. In: Proc. ICEBE (2005)

3. De Nicola, A., Missikoff, M., Navigli, R.: A software engineering approach to ontology
building. Information Systems 34(2), 258–275 (2009)

4. De Nicola, A., Missikoff, M., Proietti, M., Smith, F.: An Open Platform for Business
Process Modeling and Verification. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G.
(eds.) DEXA 2010. LNCS, vol. 6261, pp. 76–90. Springer, Heidelberg (2010)

5. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
6. OMG: Business Process Model and Notation,
 http://www.omg.org/spec/BPMN/2.0

7. XPDL 2.1 Complete Specification, http://www.wfmc.org/xpdl.html
8. OWL 2: Profiles, http://www.w3.org/TR/owl2-profiles
9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-

state verification. In: Proc. ICSE 1999, pp. 411–420 (1999)
10. Missikoff, M., Proietti, M., Smith, F.: Querying semantically annotated business processes.

In: IASI-CNR, R, pp. 10–22 (2010)
11. Markovic, I.: Advanced Querying and Reasoning on Business Process Models. In: Proc.

BIS 2008. LNBIP, pp. 189–200. Springer, Heidelberg (2008)
12. Di Francescomarino, C., Tonella, P.: Crosscutting concern documentation by visual query

of business processes. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process
Management Workshops. Lecture Notes in Business Information Processing, vol. 17,
pp. 18–31. Springer, Heidelberg (2009)

13. Haller, A., Gaaloul, W., Marmolowski, M.: Towards an XPDL Compliant Process
Ontology. In: SERVICES I 2008, pp. 83–86 (2008)

14. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and
temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

15. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL.
Information Systems 33(6), 477–507 (2008)

Introducing Affective Agents in

Recommendation Systems Based on Relational
Data Clustering

João C. Xavier-Junior1, Alberto Signoretti2 Anne M.P. Canuto3,
Andre M. Campos3, Luiz M.G. Gonçalves1, and Sergio V. Fialho1

1 Computing and Automation Engineering Department, UFRN, Natal, Brazil
jcxavier01@gmail.com , {lmarcos,fialho}@dca.ufrn.br

2 Computer Science Department, UERN, Natal, Brazil
albertosignoretti@uern.br

3 Informatics and Applied Mathematics Department, UFRN, Natal, Brazil
{anne,andre}@dimap.ufrn.br

Abstract. This paper proposes the use of a multi-agent system (MAS)
with affective agents in a recommendation system based on relational
data clustering. This MAS works as a mediator between the user and
the data stored in the system. In the proposed system, after logging in,
each user will have an affective agent, called Interface agent, for inter-
action purposes. This agent models the user’s data requests according
to the user’s profile and its affective status, sending it to the Recom-
mender agent, which recommends a set of map points to be visualized.
The system analyzes the user’s feedback in order to verify whether the
recommended information was satisfactory. This feedback is analyzed
through the monitoring of the interaction interface..

Keywords: Affective agents, Recommendation Systems, Data clustering.

1 Introduction

Recommendation systems are becoming popular in applications and as a research
field due to recent advances on Internet technologies [7]. Currently, a reasonable
number of recommendation systems use data mining techniques to make recom-
mendations after learning information from previous actions and attributes of
users. In this sense, these systems are often based on the development of user
profiles that can be persistent (history data), ephemeral (actions during the cur-
rent session), or both. Clustering is one of the data mining techniques used in
recommendation systems and they can be used to identify groups of users who
appear to have similar preferences. In this case, the recommendations can be
based on previous actions of users with similar preferences.

Emotions are an important part of the human decision making process. There-
fore, computers that can interpret these emotions or affective states of the user
may be more effective in providing assistance. This proposal uses the concept

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 303–310, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

304 J.C. Xavier-Junior et al.

of affective agents in both ways, either regarding human assistance, in our case
a guidance, as well as regarding the improvement of the efficacy of the agent’s
reasoning process by defining an attention focus.

The main motivation of introducing affective agents in recommendation sys-
tems based on relational data clustering was originated in the positive results
obtained from two existing projects developed in our research group. One of them
uses an attention focus conducted by the agent’s affective status to guide the
perception process of goal oriented agents [13]. The other one uses the relational
structure of the database and the searches log file carried out by the users in or-
der to create data clusters [5]. The aim of this work is to join the positive points
of these two previous works to improve the effectiveness of a recommendation
system.

In this proposed system, the user can enjoy the best possible experience in
obtaining the information he seeks. The environment is a multi-agent system that
uses a number of affective agents. They use three types of information to provide
an accurate guidance for data search: the information stored in data clusters,
the searcher’s log files and the attention focus based on the user’s preferences.

2 Related Works

Recommendation systems can use different techniques in their decision-making
process, such as: rule-based filtering, content-filtering or collaborative filtering.
Some recent works in collaborative filtering have used data mining techniques to
build recommendation models from large data sets. One of the data mining tech-
niques most used in Collaborative filtering is data clustering, as found in [1] [12].
In [12], for instance, the authors used the k-means clustering algorithm, which is
the most popular algorithm, where the user specifies the number of clusters (k).
In addition, in [1], a clustering approach based on a semi-supervised learning
process was proposed to construct a recommendation system for movies. In the
mentioned work, a constrained k-means was used to create a highly accurate
recommending system.

On the other hand, computational models representing emotion, personality
and humor have been widely used to simulate human behaviour. Several different
architectures have already been proposed with this aim, like ALMA (A Layred
Model of Afect) [2], BASIC (Believable Adaptable Socially Intelligent Character
for Social Presence) [11] among others. These agents can show surprise or fear
and a set of other emotions, including a mood driven behaviour initialized by
the agent’s personality.

The present work uses emotions and personality based models in the agent
architecture. In this respect, this work is similar to the aforementioned works.
Nonetheless, this work does not attempt to represent human behaviour as real-
istic as possible. Our goal is to use the human behaviour model as an inspiration
for providing an efficient focusing process for the agent decision-making process.

Introducing Affective Agents in Recommendation Systems 305

3 System Overview

The recommendation mechanism was implemented as part of Geographical In-
formation System named NatalGIS. This is a multi-agent system which provides
geographic information for a group of researchers, environmental managers and
tourists. This system is responsible for the environmental management of an
area of coral reefs located in the state of Rio Grande do Norte, Brazil [3].

The original system architecture is composed by three types of agents (Con-
troller, Interface and Recommender). In NatalGIS, each user will interact with
the system through an Interface agent (IA), which captures the user’s profile (ex-
plicitly through the user’s interaction or being implicitly inferred) and monitors
the user’s feelings and intentions through the interface events. After collecting
this information, a recommendation request is prepared and sent to the Rec-
ommender agent (RA), which accesses the clusters database (clusters DB view
repository) in order to mine the necessary information for building the data
recommendation requested by the Interface agent.

The process of requesting and receiving this recommendation is called a search
cycle. In addition, this recommendation is a list of geospatial map points, which
might be interesting for the user. Finally, the Controller agent (CA) is respon-
sible for activating the Interface agents for each user’s login request and for
maintaining an overall control of the system. The Interface agent (IA) is an
affective agent whose decision-making process will take into consideration the
affective state and attention focus of each user.

3.1 Interface Agent

The Interface agents are software facilitators (wizards) that run in the back-
ground, analyzing the users actions in order to assist them or perform actions in
their place. Each user logged in the system has a particular Interface agent.

As already mentioned, in the NatalGIS system, the Interface agent (IA) is an
affective agent which is responsible for tracking down the intentions and feelings
of the user in order to create a search process which is related to the needs
of the user. The tracking process is implemented through the analysis of the
events triggered by the user (event trigger analyser module) in conjunction with
previously gathered information about the user (the user profile database). This
database contains important information about the user, such as the user’s type
and preferences, as well as an initial focus of attention.

Initially, the user profile database contains only information provided by the
user. In addition, the clustering and recommendation processes are basically built
using the type of user. When the user gains access to the system, his/her profile is
updated and those processes will also use access information of the user. In other
words, the initial recommendation process is made using generic information
about the users (for example, the user type) and the more a user accesses the
systems, the more detailed and accurate the recommendation process becomes.

The evaluation of the triggered events can cause reactions that change the
state of the affective module. These changes are used to define the operation to

306 J.C. Xavier-Junior et al.

be performed on the attention focus and to adapt the agent’s behavior, aiming
to fulfil the needs of the user.

In order to guide the user, the IA uses its affective module and the interaction
with the user to establish the best attention focus. Then, a request of service
is sent to the Recommender agent (RA), which will be responsible for creat-
ing a ranking list of map points (recommendation object - RO) based on the
information sent by the IA (affective state and the user profile).

Finally, after receiving the map points list the IA presents the most important
points, according to the ranking list of size L. The value of the L parameter is a
function of the agent’s affective state [13]. These most important points are then
presented to the user and the form of presentation is based on the preferences
of the user. After this last step, a new search cycle begins and the IA initiates
the evaluation of the events that were triggered by the user.

The other two agents can be described as follows.

– Recommender agent (RA): It is a service provider for the Interface agents.
It is important to emphasize that each Interface agent will interact with one
Recommender agent. However, each Recommender agent will provide service
to, at most, N Interface agents simultaneously. In this sense, the size of the
pool is dynamic and controlled by the Controller agent (CA) which defines
this size based on the quantity of activated IAs. This agent is responsible
for applying a ranking function in order to generate an ordered list of map
points based on the users’ relevance criteria defined by the IA. The ranking
function uses the attention focus, user profile information, the access history
of the user and the history of access of other users with similar profiles as
arguments. After completing the service task, the RA sends the ordered map
points list to the requesting IA.

– Controller agent (CA): it is responsible for managing all the connections re-
quested by the users. For each requested connection, an Interface agent (IA)
is activated and a Recommender agent (RA) is associated to this IA. For
the RAs, the pool is initially defined with a proportion of at most five IAs
for each RA (N = 5). This proportion is dynamically adjusted depending
on the time response of the pool of RAs (the value of N can increase or
decrease). When the session is terminated, the CA is responsible for deac-
tivating the corresponding IA and the association recommender/interface is
finished. This agent is responsible for clustering the relational data related to
the users when accessing the NatalGIS system. In addition, the overall clus-
tering process is performed periodically (daily, weekly or monthly). Then,
the list of suggestions is constantly updated, based on the users actions.

4 Implementational Aspects

4.1 The Affective Module

The proposed affective component uses three kinds of components: Emotions as
a short term affective element which decays according to the personality profile.

Introducing Affective Agents in Recommendation Systems 307

Moods as a medium term affective element which lasts longer than emotions
and is not associated with a specific event. Finally, Personality as a long term
affective element that reflects individual characteristics and influences the en-
vironmental perception, behavior and action [6]. The selection of the models
for implementation was carried out considering recognized computational imple-
mentations. As a result, the following models were selected: the BigFive model
for personality [8], the PAD model for humor (mood) [9] and the OCC appraisal
model for emotions [10].

According to BigFive or OCEAN model, it is possible characterize define a per-
son according to five personality traits named as Openness, Conscientiousness,
Extroversion, Agreeableness, and Neuroticism. According to The PAD model,
mood can be expressed in terms of Pleasure, Arousal and Dominance and rep-
resented in a 3D space [9]. Finally, the OCC model [10] is used to implement
the emotions elicitation by a cognitive model based essentially on the concepts
of appraisal and intensity of environmental events.

4.2 Attention Focus

The attention Focus works as a virtual membrane in order to produce a filtered
subset of geographical information for the ranking map points process [13]. This
process of calculating the attention focus is based on the affective module of
the architecture. This link with the affective module is useful for reducing or
increasing the amount of geographical information according to the IA’s emo-
tional state, as well as for defining what is more or less important for the IA
in a particular state. The agent’s attention focus is structured using spatial and
temporal focus [13].

Spatial Focus. The spatial focus is responsible for establishing the level of
importance (LoI) of the geographical information available in the data base. It
is characterized according to a set of attributes called aspects (the secondary
tables of the relational database). The interest related to each aspect of the
database is represented by values defined by the IA in conjunction with the
user. These values are mapped in a range [0, 1] ∈ R. They are updated during
the use of the system following the feedback sent by the user in relation to the
recommended information. Based on the LoI, the RA creates a priority order
over the map points (ROs) available in the data base.

Temporal Focus. Once the map points are defined and prioritized by the RA,
it is important to reduce this set to a limited number of elements. Thus, the
temporal focus is responsible for setting the amount of map points that will
be available for the IA. This is done by cutting the ordered list according to a
specific L parameter.

As already mentioned, L is not a fixed value and it varies according to the
agent’s affective state and, as a result, assumes different values when, for instance,
the agent is relaxed or stressed. This approach is used by Janis and Mann [4]
when they describe the relationship between the effectiveness of individuals and
their state of stress through an inverted “U”curve. The assumptions used in this

308 J.C. Xavier-Junior et al.

work are: 1) the quantity of map points considered for the user presentation is
directly related to the effectiveness of the user interpretation and decision, and
2) the agent’s emotional state is directly related to the agent’s stress level. As a
result, the L function was empirically defined as a pseudo Gaussian distribution.
This derivation is implemented using an average value among the distance of the
point representing the current agent’s state of humor in PAD-3D space [9], and the
positions representing the extreme relaxed mood and the extreme anxious mood.

4.3 The Relational Clustering Module

This module uses a Data Mining technique (Clustering) to identify different
groups of users in NatalGIS according to their history data (access logs). The
clustering processing is made by the Controller agent and it uses the history of
the users’ accesses to group the users. In order to generate different clusters, we
used the Hierarchical Agglomerative algorithm (average link method) and also
modelled the relational database (access logs) in a hierarchical structure, aiming
to improve the effectiveness of the clustering algorithm [5].

The result of the clustering procedure is then stored in a database called
Clusters Database. Aiming to ease the access of the RAs to these data, we
generated a view which consists of the clusters created in the clustering process.
As mentioned in a previous section, the CA is responsible for periodically running
this process, according to the system’s monitoring aspects (number of new users’
accesses and value of clustering measures).

4.4 The Creation of the Map Points List

The creation of the map points list is based on a process of association user-
cluster(s). This process is made in two different ways, for first time users and
for users with previous access to the system. In the former case, only the user
type is taken into consideration in the association process. In this sense, the
systems will make its recommendation based on previous accesses of the users
of the same type of the first time user. For users with previous accesses, the
association process takes into consideration the previous accesses to define the
cluster(s) to which the user belongs.

Once the association user-cluster is defined, the list of map points is created.
As already mentioned, the L value is defined by the temporal attention focus.
The level of importance (LoI) is a parameter used to rank all the aspects in the
spatial attention focus. For the highest priority aspect, look at the associated
cluster(s) to find instances (map points) with the same aspect. The criterion used
to select the instances is the distance to the centroid of the cluster(s). Selected
instances are put in the map list and the amount of instances in the map list is
defined by the level of importance of the corresponding aspect.

5 The Proposed Prototype

Aiming to evaluate the NatalGIS multi-agent architecture and the clustering
module, a prototype has been developed. This prototype has been used by a
small number of researchers, managers and tourists.

Introducing Affective Agents in Recommendation Systems 309

Regarding affective agents, this prototype uses a fixed temporal and dynamic
spatial focus. The latter is based on elicited emotions from triggered events by
the user. In this sense, we evaluate the best set of interface events for correct IA’s
emotion elicitation. Moreover, the handling of the prototype by different users
helps to consolidate the set of implemented emotions. Although the OCC model
classifies 22 types of emotions, we implemented only 4 types in our prototype:
joy, distress, disappointment and satisfaction. For the next phase of develop-
ment, the affective architecture will include the PAD and OCEAN models. This
enhancement will allow the temporal focus to acquire a dynamic behavior.

Regarding the clustering module, the usage of the prototype will be helpful to
evaluate the accuracy and the relevance of the recommended information. This
evaluation can indicate whether the clustering parameters need adjustments.

The Interface agent (IA) was not implemented with a visual representation.
The main idea is to create a user’s empathy with the system instead of with the
visual representation of the agent.

6 Final Remarks

In this paper, we presented a manner of combining the use of affective agents
with data clustering as a way of providing more accurate mechanisms for rec-
ommending geographic information to the users of the NatalGIS system.

A prototype was developed and tested by a small group of alpha-users. Their
feedback has been used to guide the development of the whole system. More
accurate tests must be carried out in order to evaluate the relevance of specific
components of the proposal. For instance, the influence of the modelled elements
on the level of user satisfaction concerning the received recommendations. Never-
theless, it is worth to emphasize that we have been producing interesting results
in both areas of this paper (affective agents and data clustering).

Finally, the fact of using an affective attention focus in a recommendation sys-
tem based on data clustering is a new approach and seems to decisively contribute
for recommending accurate and relevant information. Moreover, this approach
allows a dynamic system customization during running time.

Acknowledgements. This work has the financial support of CAPES and CNPq
(Brazilian Research Councils), under processes numbers BEX 2481/09-0,
550810/2007-2 (140013/2008-3), 140239/2011-1 and 479629/2008-0.

References

1. Christakou, C., Lefakis, L., Vrettos, S., Stafylopatis, A.: A movie recommender
system based on semi-supervised clustering. In: Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Internet
Commerce (CIMCA-IAWTIC 2006), vol. 2, pp. 897–903. IEEE Computer Society,
Washington (2005), http://portal.acm.org/citation.cfm?id=1134824.1135435

http://portal.acm.org/citation.cfm?id=1134824.1135435

310 J.C. Xavier-Junior et al.

2. Gebhard, P.: Alma - a layered model of affect. In: Proceedings of The Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 29–36. ACM, Utrecht (2005)

3. Cabral, J., Goçalves, L., Xavier-Junior, J.: Web gis by ajax for analysis and control
of environmental dat. In: Proceedings of 17th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision, pp. 25–32.
Plzen, Czech Republic (2009)

4. Janis, I.L., Mann, L.: Decision making: a psychological analysis of conflict, choice,
and commitment. Free Press, New York (1977)

5. Xavier-Jr, J.C., Freitas, A.A., Canuto, A.: Web log data clustering for a multi-agent
recommendation system. In: IEEE Proceedings of the International Conference on
Machine Learning and Cybernetics (ICMLC 2010), Qingdao, China, pp. 471–476
(July 2010)

6. Kasap, Z., Moussa, M.B., Chaudhuri, P., Thalmann, N.M.: Making them remem-
ber: Emotional virtual characters with memory. IEEE Computer Graphics and
Applications 29(2), 20–29 (2009)

7. Schmidt-Thieme, L., Friedrich, A.F., Guest, G.: introduction: Recommender sys-
tem. IEEE Intelligent Systems 22(3), 18–21 (2007)

8. McRae, R.R., Costa, P.T.: The five-factor model of personality: Theoretical per-
spectives, chap. Toward a new generation of personality theories: Theoretical con-
texts for the five-factor model, pp. 51–87. The Guilford Press, New York (1996)

9. Mehrabian, A.: Pleasure-arousal-dominance: A general framework for describing
and measuring individual differences in temperament. Current Psychology 14(4),
261–292 (1996)

10. Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambrige
University Press, New York (1998)

11. Romano, D.M., Sheppard, G., Hall, J., Miller, A., Ma, Z.: Basic: A believable
adaptable socially intelligent character for social presence. In: Proceedings of The
8th Annual International Workshop on Presence (PRESENCE 2005). Springer,
London (2005)

12. Romero, C., Ventura, S., Delgado, J., De Bra, P.: Personalized links recommenda-
tion based on data mining in adaptive educational hypermedia systems. In: Duval,
E., Klamma, R., Wolpers, M. (eds.) EC-TEL 2007. LNCS, vol. 4753, pp. 292–306.
Springer, Heidelberg (2007)

13. Signoretti, A., Feitosa, A., Campos, A.M., Canuto, A.M., Fialho, S.V.: Increasing
the eficiency of npcs using a focus of attention based on emotions and personality.
In: SBC - Proceedings of SBGames 2010, Florianpolis - Brazil (November 2010)

Converting Conversation Protocols Using an

XML Based Differential Behavioral Model

Claas Busemann1 and Daniela Nicklas2

1 OFFIS - Institute for Information Technology
2 Carl von Ossietzky Universität Oldenburg

Oldenburg, Germany
{busemann,nicklas}@offis.de

Abstract. Conversation protocols are used to communicate between in-
formation systems, with services, with sensors, or with human beings. As
many of these protocols share similar application purposes, the proto-
cols also seem to share similar basic functionality. Using the Extensible
Markup Language (XML) as a unified syntax for data transmission might
be a step in the right direction. Beyond that, mapping techniques like the
Extensible Stylesheet Language Transformation (XSLT) or XQuery can
be used to achieve compatibility between different protocols by convert-
ing the messages of a protocol into a new representation. However, these
approaches come to an end as soon as the communication behavior of a
protocol changes. In this paper, we introduce a method that allows the
modeling of conversation protocol changes which also includes changes of
the communication behavior. The model is based on XQueries, which are
used for the data transformation, and adds a layer on top of it. Our case
study and evaluation shows that a high level of compatibility between
protocol versions and different protocols can be achieved when using the
described approach.

Keywords: XML, Protocols, Conversion, Model.

1 Introduction

Due to the increasing number of information systems which share similar ap-
plication purposes, the number of conversation protocols that are used by these
systems also increase. Conversation protocols can range from simple textual rep-
resentations, like SSI [9] or NMEA [18] to complex binary protocols which are
often used in industrial fieldbus applications (e.g., EtherCAT [6]). To achieve
interoperability between information systems and to integrate smart objects,
the developers usually program adapters or wrappers, which is a complex, time-
consuming, and expensive task [14]. The cost for smart object integration into
existing systems can reach 35 to 50 percent of all system development [5]. Web-
based conversation protocols often use XML to encode their messages. Because
of the easy handling and supporting standards, many XML based protocols have
been developed for different application domains over the last several years [22].
Hence, as there is a high number of XML protocols which often exist in different

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 311–318, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

312 C. Busemann and D. Nicklas

versions, these protocols often have to be converted from one representation to
another to achieve compatibility between different systems. For data conversion
between these protocols, more general approaches like XSLT [13] or XQuery [2]
exist. These techniques allow the developer to specify queries or mapping rules
that transform messages to another representation. However, when dealing with
conversation protocols, these techniques come to an end, as they do not consider
the communication behavior. If, for example, an additional message is added,
removed, has to be merged from other messages, or has to be split into several
other messages, there is no way to define this in the transformation script.

We solve this problem by adding an additional layer to the the standard data
conversion. This layer allows the modeling of communication behavior changes
from one protocol to another. Therefore we can achieve a high level of compatibil-
ity between extremely different XML protocols without implementing additional
code. This is also proven by our evaluation. Our main contribution is a model
that allows the simple description of communication behavior changes.

The rest of the paper is organized as follows: Section 2 shows the related work.
The models which have been defined to describe the behavior changes can be
found in Section 3 while Section 4 includes a case study. An evaluation of this
study can be found in Section 5. We conclude in Section 6.

2 Related Work

A number of authors have proposed models for specifying schematic correspon-
dences between schema based documents or databases like [19, 23]. Mapping
concepts which define how to map one schema to another have been proposed
by [16,1]. However, none of these papers focus on behavioral changes that are nec-
essary if the mapping is done between two communication protocols. XSLT [13]
and XQuery [2] are some of the most common methods to convert XML docu-
ments [21] from one representation to anotheror even to other data formats [4].
Several papers described how to optimize these techniques to improve the results
(e.g. [12,10]). Due to the high comfort of these techniques they are also used to
convert XML based protocols as mentioned in [8, 17]. However, these protocol
conversions only focus on the transformation of the transmitted data and usu-
ally do not convert the communication behavior. If the behavior is considered,
the conversion is done by implementing specific code for each use case instead
of using a model like described in this paper.

The basic conversion of protocols has been proposed in the mid-nineties by
authors like [15, 20]. These works mainly focus on the conversion from one net-
work structure to another including functions like address conversion and stream
handling. The work does not include the model based description and manip-
ulation of communication nor the generation of request and response messages
out of the collected data. Glombitza et al. provide an open framework for proto-
col conversion [11]. The framework is able to convert protocols such as HTTP,
SMTP, and LTP among each other. It is also able to convert the payload data of
uncompressed SOAP and compressed SOAP. However, the conversion is mainly

Converting Conversation Protocols 313

done using static rules and is not based on a model like described in this paper.
There is also no function to generate additional responses.

3 Models

The description of communication behavior changes is based on two separate
models. The “Message Model”, which is used to identify a message of a protocol,
and the “Differential Protocol Model”, which is used to describe the changes from
one protocol to another. Both models are defined using an XML schema and are
described in detail in the following subsections.

3.1 Message Model

The Message Model is needed to identify messages in the protocol. Identifiers are
then used in the Differential Protocol Model to define behavioral changes. We use
XML standard technology for this task. Therefore the model defines one or more
elements that have to be part of the message. The model also specifies a name for
each message. Technically this is realized by defining one or more XPath expres-
sions for each message. Every XPath expression also includes a minimum number
and maximum number of nodes that have to be returned by that expression. This
allows an easy identification of different messages, even if the basic structure is
similar, as XPath can also be used to check the content of a node.

3.2 Differential Protocol Model

The Differential Protocol Model is used to describe the changes between two
protocols. It is separated into two parts: The data transformations and the
communication behavior conversion. The data transformation is defined using
XQuery expressions. Therefore the model simply specifies an XQuery and the
messages on which the expressions should be executed. Note that this kind of
data transformation is state of the art and does not differ from methods used in
other projects. To specify the communication behavior conversion, we introduce
a set of basic commands. These commands have been identified by analyzing
the behavioral changes between several protocols and protocol versions. How-
ever, while these commands seem to work well for the protocols discussed in this
paper, other protocols might need additional ones. This will be evaluated in our
future work. The commands are specified as follows:

Message Deflected: The message exist in the target protocol but has to be
converted. It specifies the original and the target protocol message name.

Message Removed: This command reflects that a message does not exist
in the target protocol. Usually, the message would be dropped by a converter.
However, the command also defines “message fall back names” for this command.
A fall back name still reflects that the message does not exist in the target
protocol, but the message can be converted to a message that is known by the
target protocol.

314 C. Busemann and D. Nicklas

Message Merged Passive: The message can be converted to a message of
the target protocol, but additional data is needed to build the new message. The
command also means that no additional action has to be performed to gather
the needed data. As the command also specifies the messages that are needed
to build the new message, a converter can use this information to transform the
messages into the new message.

Message Merged Active: Similar to the passive merge command, this com-
mand means that additional messages are needed to build the target message.
However, in this case it is necessary to send one or more messages to a specified
service to gather the needed data. Therefore the command specifies one or more
XQueries which are used to generate request messages out of the collected mes-
sages, the destinations for each of the request messages, and The name of the
new message.

Message Separated: The received message has to be separated into at least
two new messages. Therefore the command specifies the names of the new mes-
sages. The separation of the messages is done by the XQueries which have been
defined for the data transformation.

Response Added: The sender or any other destination awaits a response
message which will not be sent by the target protocol stack. This could for ex-
ample be an acknowledgment, that has been removed in a new protocol version.
The command specifies all information that is needed to build the response mes-
sage. Therefore it includes an XQuery that is used to generate the response.
However, this only works if all information that needed to build the response is
either included in the original message or in the XQuery.

As all of these commands can be combined with each other, a high level of com-
patibility between different protocol versions and even protocols can be achieved.

4 Case Study

The case study is done by converting the SCAI protocol of the SCAMPI mid-
dleware [7] into the protocols of the SWE framework [3] and backwards. Both
protocols are conversation protocols for open sensor platforms and share a simi-
lar application purpose, which is administrating sensors and transmitting sensor
data. However, the communication behavior of most parts of these protocols
completely differs from each other. The messages of the protocols can be broken
down to four basic functions: request a measurement, receive a measurement,
create a new sensor, and request a new sensor. Each one of these commands is
usually followed by a response. There are some additional commands in both
protocols which cannot be converted as they do not have a representation in
the other protocol. These commands are ignored for the evaluation. In the fol-
lowing subsections the four convertible commands and the differences in their
communication behavior are explained in detail.

Request a Measurement: This command is used to request a measurement
from a sensor or a service. In both protocols a request is sent to the service which
is answered with a measurement. As the communication behavior is similar and

Converting Conversation Protocols 315

the data in both messages is the same, no communication behavior conversion
is needed.

Receive Sensor Data: This command is used to transmit sensor data to a
service and seem to be quite similar. However, there is one difference: the SCAI
protocol does not send an acknowledgment back when a measurement is received.
If the SCAI protocol is converted to the SWE protocol, the acknowledgment can
simply be removed (Message Removed). If the SWE protocol is converted to
the SCAI protocol the acknowledgment has to be generated by the converter as
the SWE protocols demands it (Response Added). Fig. 1A shows the converted
communication behavior in both directions.

Create a New Sensor: This command is used to register a new sensor at a
service. Therefore a description of the sensor is transmitted. The communication
behavior is extremely different. The SCAI protocol sends three different messages
to create a sensor. The SWE protocol sends the same data in one message. All

Fig. 1. Converted Communication Behavior of Protocols Functions

316 C. Busemann and D. Nicklas

messages are respond with an acknowledgment. The acknowledgments do not
contain the same data and can not be converted. To convert the SCAI protocol
to the SWE protocol the three request have to be collected . As soon as all
messages are collected they can be combined (Message Merged Passive) and
the SWE request can be produced. As the SWE acknowledgment can not be
converted, this message is simply removed (Message Removed). Therefore a new
SCAI acknowledgment message is created by the converter (Response Added).
To convert the SWE protocol to the SCAI protocol the request message has to
be separated (Message Separated). The responses can not be converted and are
removed (Message Removed). The converter however produces a response out of
the initial request as the SWE protocols demands an acknowledgment (Response
Added). Fig. 1B shows the converted communication behavior in both directions.

Request Information About a Sensor: This command is used to get
information about a sensor from a service. Therefore a request is sent to the
service which sends back a response that includes the sensor description. The
communication behavior seems to be quite similar. This is the case if the SCAI
protocol is converted to the SWE protocol. However, if the SWE protocol is
converted to the SCAI protocol this does not work, as the SCAI response does
not contain the information that is needed to build the SWE response. The
converter has to collect additional data form the SCAI service. Therefore it
generates a request message out of the message and sends it to the SCAI service.
The response of this request is again used to generate a new request which
causes a new response. After that all responses are used to generate the response
to the SWE request (Message Merged Active). Fig. 1C shows the converted
communication behavior in both directions.

5 Evaluation

In this section, the conversations from the previous section are evaluated by
measuring the average processing time for each message. Based on these mea-
surements, the average processing time for each command described in Section 3
has been identified. Fig. 2 shows the results of this evaluation. The measurements
include the identification of the protocol, the message, the behavior changes, the
transformation to the target protocol and a consistency check.

Most operations could be done with an average processing time between 2 and
5 ms. However, merging messages seems to take longer then the other commands.
This is mainly caused by the fact that messages have to be collected before
the output message can be generated. When a message is merged active the
processing time takes about 21 ms. However, this strictly depends on the number
of messages that have to be gathered and the communication delay of the services
that response these messages. In our case, two additional messages have been
collected which took about 15 ms. We also measured the average time that it
takes to convert a SCAI message to a SWE message and backwards. This test
assumes that every message of each protocol appears equally often. Converting
SCAI to SWE messages takes about 19 ms. The conversion from SCAI to SWE

Converting Conversation Protocols 317

Fig. 2. Average time for message conversion

takes 16 ms. Due to the fact that the converter has to store messages if they
have to be merged passive, we also analyzed the memory behavior. Using the
standard configuration of the java virtual machine the converter can store about
450 messages until it runs out of memory. However, this depends on the size of
the messages and the configuration of the virtual machine.

This evaluation shows that the conversion of protocols using the described
model is possible while still having acceptable processing times. Active merging a
message seems to be the most expensive command, however this strictly depends
on the service that is used to gather the missing data.

6 Conclusion and Future Work

In this paper we introduced a method that allows the extension of standard
XML data transformation techniques with functions that can be used to convert
the communication behavior of one XML protocol to the behavior of another.
This is realized by defining two models to describe protocol differences and by
implementing a converter which interprets the models and thereby can convert
the communication behavior of the protocols. The evaluation proves that a higher
level of compatibility can by achieved when using the differential behavior model
by converting the SCAI protocol the SWE protocols and backwards. In the
future, we are going to extend the model with new functions which will be based
on the analysis of other protocols. Also the generation of requests and responses
will be extended, so that it will be able to generate messages out of data that
may have been collected in other sessions.

References

1. An, Y., Hu, X., Song, I.-Y.: Round-trip engineering for maintaining conceptual-
relational mappings. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 296–311. Springer, Heidelberg (2008)

2. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simon, J.:
XQuery 1.0: An XML Query Language. Tech. rep., W3C (2007)

318 C. Busemann and D. Nicklas

3. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC R© sensor web enablement:
Overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(eds.) GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)

4. Breitling, F.: A standard transformation from xml to rdf via xslt. CoRR
abs/0906.2291 (2009)

5. Brodie, M.L.: Integration in A Service-Oriented World: The Big Picture. In: I-ESA
(2006)

6. Buettner, H., Janssen, D., Rostan, M.: EtherCAT - the Ethernet fieldbus, PC
Control Magazine 3: 1419. Tech. rep. (2003)

7. Busemann, C., Kuka, C., Westermann, U., Boll, S., Nicklas, D.: Scampi - sen-
sor configuration and aggregation middleware for multi platform interchange. GI
Jahrestagung, 2084–2097 (2009)

8. Chu, X., Buyya, R.: Service oriented sensor web. In: Mahalik, N.P. (ed.) Sensor
Networks and Configuration, pp. 51–74. Springer, Heidelberg (2007)

9. European Union Framework Programmes on Research: Simple Sensor Interface
Protocol v1.2. Tech. rep (2006)

10. Garćıa-Sánchez, P., Laredo, J.L.J., Sevilla, J.P., Castillo, P.A., Guervós, J.J.M.:
Improved evolutionary generation of xslt stylesheets. CoRR abs/0803.1926 (2008)

11. Glombitza, N., Mietz, R., Romer, K., Fischer, S., Pfisterer, D.: Self-description and
protocol conversion for a web of things. In: International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing, pp. 229–236 (2010)

12. Groppe, S., Groppe, J., Böttcher, S., Wycisk, T., Gruenwald, L.: Optimizing
the execution of xslt stylesheets for querying transformed xml data. Knowl. Inf.
Syst. 18(3), 331–391 (2009)

13. Kay, M.: XSL Transformations (XSLT) Version 2.0. Tech. rep., W3C (2007)
14. Lempert, S., Pflaum, A.: Towards a Reference Architecture for an Integration Plat-

form for Diverse Smart Object Technologies. In: MMS (2011)
15. Liu, M.T.: Network interconnection and protocol conversion. Advances in Com-

puters 42, 119–239 (1996)
16. Mao, L., Belhajjame, K., Paton, N.W., Fernandes, A.A.A.: Defining and using

schematic correspondences for automatically generating schema mappings. In: van
Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 79–93.
Springer, Heidelberg (2009)

17. McCann, D., Roantree, M.: A query service for raw sensor data. In: Barnaghi, P.,
Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp.
38–50. Springer, Heidelberg (2009)

18. National Marine Electronics Association: NMEA 0183 Standard. Tech. rep. (2010)
19. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB J. 10(4), 334–350 (2001)
20. Tao, Z.P., Bochman, G.v., Dssouli, R.: An efficient method for protocol conversion.

In: International Conference on Computer Communications and Networks, p. 0040
(1995)

21. Wang, X., Cao, C.: Mining association rules from complex and irregular xml doc-
uments using xslt and xquery.In: ALPIT, pp. 314–319 (2008)

22. XML Protocol Working Group: XML Protocol Comparisons. Tech. rep., W3C
(2000)

23. Yan, L.-L., Miller, R.J., Haas, L.M., Fagin, R.: Data-driven understanding and
refinement of schema mappings. In: SIGMOD Conference, pp. 485–496 (2001)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 319–333, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Facilitating Casual Users in Interacting with Linked Data
through Domain Expertise

Cormac Hampson and Owen Conlan

Knowledge & Data Engineering Group,
Trinity College Dublin, Ireland

{Cormac.Hampson,Owen.Conlan}@tcd.ie

Abstract. Linked Data use has expanded rapidly in recent years; however there
is still a lack of support for casual users to create complex queries over this
Web of Data. Until this occurs, the real benefits of having such rich metadata
available will not be realised by the general public. This paper introduces an
approach to supporting casual users discover relevant information across
multiple Linked Data repositories, by enabling them to leverage and tailor
semantic attributes. Semantic attributes are semantically meaningful terms that
encapsulate expert rules encoded in multiple formats, including SPARQL.
Semantic attributes are created in SABer (Semantic Attribute Builder), which is
usable by non-technical domain experts. This opens the approach to almost any
domain. A detailed evaluation of SABer is described within this paper, as is a
case study that shows how casual users can use semantic attributes to explore
multiple structured data sources in the music domain.

Keywords: Domain Experts, Casual Users, Semantic Attributes, Linked Data,
Data Exploration.

1 Introduction

In recent years, casual computer users have found themselves accessing diverse
structured and semi-structured data on an increasingly regular basis. A casual
computer user can be seen as one with Internet browsing ability, but without
programming skills and data modeling expertise [1]. With the advent of the Linking
Open Data community project1 and the proliferation of web services and mash-ups,
this trend of casual users interacting more with distributed data sources is likely to
continue. However, while one may intuitively expect the additional structure in the
data to have been exploited to provide sophisticated query capabilities, this has
largely not proven to be the case [2]. Many applications using structured data provide
access to their underlying data store via query languages; however these are suitable
primarily for developers with a knowledge of the language rather than regular end-
users wishing to ask very specific questions through a usable human interface [2].

Imagine a casual computer user trying to locate “all nostalgia music artists
currently touring the USA”. The information necessary to answer this quite subjective

1 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/
 LinkingOpenData

320 C. Hampson and O. Conlan

query is likely to be stored over multiple sources, thus techniques should support
casual users to find it. One such way to help casual users would be to give them
access to Subject Matter Expertise (SME) to support complex query formation. Such
human domain expertise2 is widely used in expert systems, which are developed to
help users find reliable information in narrow areas such as medicine or accounting
[3]. There are many examples of how casual users could benefit from being supported
by such experts to explore Linked Data collections. For instance the increasing
availability of government health, transport and education data can open up the
opportunity to discover things like bicycle accident black spots and correlations
between certain environmental factors and high levels of a disease [4]. Thus,
supporting casual users with SME can help them find useful information.

Though SME can be an excellent way of supporting casual users to locate useful
information, the encoding of this expertise into an Expert System’s knowledge base
and the creation of the corresponding rules in its inference engine is not trivial. Hence,
domain experts who do not have skills in these areas are likely to require the additional
support of a knowledge engineer. Furthermore, even when this expertise is encoded
successfully, it often resides in bespoke standalone systems, which leaves little scope
for the expertise to be reused in different applications. This is especially true when the
user interface, domain expertise, and the knowledge base are tightly coupled together.
Thus, a generic platform where non-technical experts could encode their experience
and knowledge of a domain in a reusable model would be a welcome solution. Such
an approach may not capture as much detail as a bespoke system supported by a
knowledge engineer, but the simplicity of its design and its generic applicability would
make widespread implementation much easier.

This paper addresses the compelling need for casual users to be supported in
exploring information domains encoded as Linked Data. It introduces an approach to
accomplish this that allows these users to leverage domain expertise to create
complex queries across a domain. By appealing to domain experts with limited
computer skills, it makes the adoption of this approach in different domains much
more likely. As the dependence on digital data escalates, and the increasing use of
such repositories by casual users occurs, the need for such user-friendly approaches
will be greatly increased. This paper addresses this need directly and is structured as
follows: section two discusses some related work; section three gives a brief overview
of SARA (Semantic Attribute Reconciliation Architecture) and section four
introduces SABer (Semantic Attribute Builder); section five discusses a case study in
the music domain; section six details an evaluation of SABer; and section seven
summarises the paper.

2 Related Work

A number of generic Linked Data browsers have been developed, such as Tabulator
[5] and Disco3, in order to support casual users browse RDF data on the web. These

2 In terms of this paper an “expert” is defined as anyone with an opinion on a specific domain

and the ability to express it; however developers should be free to limit their choice of experts
to a specific individual or select group.

3 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/

 Facilitating Casual Users in Interacting with Linked Data through Domain Expertise 321

systems display all the information that they can find about specific dereferenceable
URIs, and enable the user to browse from resource to resource. However, though
aimed at supporting casual users, Linked Data browsers have yet to gain wide usage
outside the Semantic Web community. Sparallax4 was developed in order to provide a
set-based faceted browsing interface for SPARQL endpoints. Facets and collections
are automatically generated as the user browses the data sets, however users of
Sparallax are limited to searching one data source at a time, and it is not possible to
reconcile information from different repositories. Unfortunately there is no end-user
evaluation of the system published, so it is unclear yet if casual users fully accept the
set based paradigm and can see its benefits.

Explorator [6] is a domain independent tool for exploring the Semantic Web,
which aims at enabling users with minimal knowledge of RDF models to explore an
RDF database, without a priori knowledge of the data domain. The developers of
Explorator feel that current tools which allow the user to manipulate raw RDF data do
not provide a user friendly way to ask questions, and that the user only has a limited
way to rearrange, group or filter the data, and process it further. Similar to Sparallax,
Explorator uses a set-based paradigm, where after an initial key word search (to
match resources in the RDF) the resulting set of data can be further manipulated to
either remove uninteresting elements or to add additional elements of interest. Initial
small scale experiments have been conducted [7] with users who knew some basic
concepts of the Semantic Web and RDF. However, even using these participants who
are more experienced than casual web users, the participants struggled to perform
tasks using Explorator. The developers plan additional larger-scale experiments to
compare different user interface alternatives and interaction paradigms, in order to
better support both novice and expert users in exploring the Semantic Web. This is
important as the developers admit that Explorator is currently better suited to
advanced users who have solid knowledge about RDF rather than casual users.

A common way of supporting data exploration by casual end users is by enabling
them to leverage Subject Matter Expertise (SME) encoded by domain experts. This
practice is widespread in domain specific applications, because generic search
technology starts to degrade when addressing the needs of users in particular fields
such as healthcare and finance [3]. Unfortunately the complexity of encoding SME
into such a system (be it rules for an inference engine or comprehensive development
of an ontology), is such that a non-technical domain expert is likely to require the
support of a knowledge engineer. This in turn increases the time and costs involved in
such an exercise and the SME encoded often resides in a standalone system with little
scope for expertise to be reused in different applications. There is a tradeoff between
the benefits of offering manually generated expertise to users and the efficiency of
providing automatically generated supports (e.g. dynamically created facets). Hence,
the development of domain independent tools which are quick and easy to use, but do
not overly compromise in terms of the features they deliver (e.g. expressiveness of
queries supported) should be greatly encouraged.

Konduit VQB [8] is a visual query builder that aims to assist users in building
queries and running them over RDF data. Specifically the tool is aimed for users with
little or no knowledge about SPARQL, as well as users more familiar with Semantic

4 http://sparallax.deri.ie

322 C. Hampson and O. Conlan

Web technologies. Though Konduit VQB is not strictly an SME encoding tool; it
could be used by non-technical experts to encode SME in SPARQL, with this SME
then leveraged by users wishing to explore an RDF repository. The developers feel
that the schema-based SELECT query builder in the tool is the most user-friendly
approach to building SPARQL queries, and recommend it for those users having the
least knowledge of semantic technologies. According to the developers, it is simple,
intuitive and satisfies the large number of occasions when the user wants to search for
something based on certain properties. This specific approach does not support the
full range of expressivity that SPARQL offers. However the developers feel that the
extra complexity involved in forming more complex queries (e.g. using
the CONSTRUCT query builder they offer) is likely to be inaccessible to users with
no knowledge of RDF and SPARQL.

SPARQLViz [9] contains a Graphical Query Composer that allows users to
generate syntactically correct SPARQL queries through a wizard interface. It is
particularly useful for novice users who have little or no experience with SPARQL, as
the user is able to compose a valid query simply by using familiar user interface
widgets in a wizard-like manner [9]. According to the developer the two best features
of the approach offered by SPARQLViz are that generated queries are always valid,
saving a lot of debugging time, and an in-depth knowledge of the SPARQL query
language is no longer needed to be able to generate them. Unfortunately there were no
experiments conducted regarding the second assertion, so it is not possible to
determine what level of SPARQL expertise (if any) SPARQLViz requires of its users
in order to generate queries.

In terms of using a visual query builder to encode SME, a form or wizard based
approach appears to offer the most potential for non-technical domain experts due to
their relative simplicity. Specifically, the more intuitive schema-based approach for
generating statements was mentioned as the most suited to non-technical users. An
example of a commercial application that uses such a rule building approach is
iTunes5, which has a smart playlist6 builder. The smart playlist builder is aimed at
casual end users and allows them to generate XQuerys in a schema-based approach.
These XQuerys generate specific music playlists that allows users to better manage
and sort their music collection. At smartplaylists.com7, users can share the rules they
have encoded in iTunes, so that others can benefit from their expertise. This supports
the notion that SME encoded in this way can be a valuable way of supporting other
users to explore and manage their day to day data. The smart playlist feature in
iTunes has even been used to organise pdfs about radiology [10] which further
supports the contention that a schema-based approach to rule generation, coupled with
a form/wizard interface is accessible to a non-technical user of computers. There are
other approaches to visually building queries such as the use of graphs which are
employed by NITELIGHT [11] and iSPARQL8. However, in order to use these tools
the user must have a full comprehension of the underlying RDF schema and the query
language syntax, which implies a high cognitive load for newcomers and less

5 http://www.itunes.com
6 http://support.apple.com/kb/HT1801
7 http://www.smartplaylists.com/
8 http://demo.openlinksw.com/isparql/

 Facilitating Casual Users in Interacting with Linked Data through Domain Expertise 323

experienced users [6]. Indeed the developers of NITELIGHT admit that the close
correspondence between the graphical notations and query language constructs makes
the tool largely unsuitable for users who have no previous experience with SPARQL.
Hence, the form/wizard interface appears to be more suited to non-technical domain
experts, and is the approach employed by SABer. Section 6 of this paper describes a
user experiment with non-technical domain experts, which validates this approach.

3 SARA (Semantic Attribute Reconciliation Architecture)

This paper describes an approach for exploring Linked Data by enabling users to form
queries from Subject Matter Expertise (SME). This approach is realised in a
middleware system called SARA (Semantic Attribute Reconciliation Architecture)
[12,13]. SARA is a domain independent framework that that supports casual users
(using an application connecting to its API) leverage SME in order to query different
information sources (including Linked Data) in a consolidated fashion.ïSARA
considers three groups of users: end-users (who access SARA through custom third-
party apps that talk to the API); domain experts (who are not necessarily technical and
can use SABer to create semantic attributes for use in SARA); knowledge engineers
(who register a data source for use in SARA/SABer by creating a Source Model).

In SARA, superclasses are key entities from the domain chosen by an expert (the
term is used here in a sense unrelated to OWL or RDFS superclasses). In essence,
any queries made by client applications to the SARA are looking to return instances
of one of these superclasses. For instance in the music domain you could select
superclasses such as Artist, Song, Album, Venue etc. There is no limit to the number
of superclasses you select, and there is no need to define any relationships or
properties for them which can be an arduous task when creating domain ontologies.
Furthermore, new superclasses can be added to SARA at any time so you are not
limited to your initial selection.

SARA currently supports data sources in XML, RDF or those accessible through
Web APIs. In order to add a Linked Data source to SARA a reusable Source Model
must be created in XML for each SPARQL endpoint or Linked Data Repository.
Figure 1 shows an example of a Source Model for an RDF data source. It contains
the name of the data source, the address of the RDF database or SPARQL endpoint,
any namespace prefixes that the predicates use, and any superclasses that this source
contains. The SPARQL code corresponding to each domain superclass is the code
that will return instances of this superclass within the data source. In its simplest
form this code is just a single SPARQL triple in the form of ?result ?predicate_name
?id, with ?predicate_name the only code changing from one superclass to another.
Thus in Figure 1 ?result foaf:name ?id (line 7) returns instances of the Music_Artist
superclass and ?result mysp:country ?id (line 11) returns instances of the Country
superclass.

As can be seen in Figure 1, the predicate mysp:country has the alias Country that
MySpace artist is from (line 22) so that it is clearer to domain experts what this
predicate actually represents. This predicate has the subject Music_Artist as this is the
domain superclass that has mysp:country as a property in this particular data source.
Likewise, the predicate mysp:country has a corresponding object of a Country

324 C. Hampson and O. Conlan

superclass (line 24), as these are the type of instances that this predicate returns from
this data source. This process of associating predicates with superclasses allows
multiple data sources with different schemas to co-exist in SARA, without having to
go through the time consuming and problematic process of being homogenised to a
canonical model. In the case of the mysp:totalfriends predicate, its subject is also
Music_Artist (line 16), with its object being a specific value (the number of friends an
artist has on the MySpace website) rather than another domain superclass. Thus
“Value” is inputted instead of a superclass name (line 17). The final part of the model
shown in Figure 1 describes the transform information necessary to convert instances
of one superclass to another. In this instance it depicts a single SPARQL triple that
transforms Music_Artist instances into Countries (line 30). In other cases a transform
may contain several triples.

1. <Name>MySpace SPARQL Endpoint</Name>
2. <Location>http://virtuoso.dbtune.org/sparql</Location>
3. <Graph><http://dbtune.org/myspace/></Graph>
4. <Prefix>foaf:<http://xmlns.com/foaf/0.1/></Prefix>
5. <Superclass>
6. <Name>Music_Artist</Name>
7. <Code>?result foaf:name ?id.</Code>
8. </Superclass>
9. <Superclass>
10. <Name>Country</Name>
11. <Code>?result mysp:country ?id.</Code>
12. </Superclass>
13. <Predicate>
14. <Name>mysp:totalFriends</Name>
15. <Alias>Total friends on MySpace is</Alias>
16. <Subject>Music_Artist<Subject>
17. <Object>Value</Object>
18. <Units>N/A</Units>
19. </Predicate>
20. <Predicate>
21. <Name>mysp:country</Name>
22. <Alias>Country that MySpace artist is from</Alias>
23. <Subject>Music_Artist<Subject>
24. <Object>Country</Object>
25. <Units>N/A</Units>
26. </Predicate>
27. <Transform>
28. <Subject>Music_Artist</Subject>
29. <Object>Country</Object>
30. <Join>?Music_Artist mysp:country ?id.</Join>
31. </Transform>

Fig. 1. Sample Source Model for an RDF source

Once a Source Model is created for a specific repository it can be reused in any
other SARA installation. This means that collections of different Linked Data
repositories can be assembled very quickly in SARA if their Source Models have

 Facilitating Casual Users in Interacting with Linked Data through Domain Expertise 325

already been generated. Any predicates registered in a Source Model (which capture
details about the technical access to a source) can be used to generate semantic
attributes (which capture domain knowledge and may be created by non-technical
domain experts). Semantic attributes are defined as discrete units of domain expertise
that can be combined together and tailored to support user exploration of an
information domain. Within SARA, semantic attributes encapsulate query fragments
that can be combined together to form complex queries. They typically act as
abstractions and simplifications from the raw data, which are intended to make it
more accessible for the ordinary, non-expert user. For instance, semantic attributes
can encompass subjective characteristics such as nearness, popularity and
expensiveness, as well there more objective values such as distance in miles, number of
records sold and price.

Tailoring a semantic attribute enables users to specify, if they wish to, what their
interpretation is of a high quality audio file or a popular song etc. This is achieved by
allowing variables in a semantic attribute’s query fragment to be populated by user
inputted parameters. Each semantic attribute can also include default values defined
by the domain expert that allow informed queries to be run quickly without tailoring.
A semantic attribute may contain just a single predicate or else combine multiple
predicates into a single semantic attribute, e.g. combining the predicates bitrate,
sample rate and file type into a single semantic attribute audio file quality.
Furthermore, all semantic attributes can also be sub-categorised into a number of
separate ranges or parameters e.g. the semantic attribute Price could be divided into
{Expensive - Average – Cheap}, and Weight into {Under Weight - Normal Weight -
Over Weight – Obese}. This categorisation allows non-experts to access information
without detailed knowledge of the domain. All semantic attributes within SARA are
represented in XML as Semantic Attribute Models.

SARA has already been successfully applied to a number of domains including
music, films, digital humanities and publications. This has been helped by the fact that
SARA supports the reusability of semantic attributes and source models in different
installations. However, in order to make SARA’s widespread deployment more likely,
it was necessary to support non-technical domain experts to encode SME as semantic
attributes. This led to the development of the SABer (Semantic Attribute Builder)
authoring tool, which can be used by non-technical experts without the support of a
knowledge engineer.

4 SABer (Semantic Attribute Builder)

The Semantic Attribute Builder (SABer) was developed in Adobe Flex to work in
tandem with SARA, and focuses on allowing non-technical users to encode their
expertise in SPARQL, XQuery or as native API calls, and encapsulating this SME as
semantic attributes. It achieves this by automating as many processes as possible,
ensuring that rules generated are syntactically correct, and by not requiring the
domain expert to understand the underlying query languages. This paper will limit
discussion to the creation of SPARQL based Semantic Attributes that are compatible
with Linked Data repositories. It must be stressed that the novelty of SABer is not
specifically in its GUI itself, but rather that in conjunction with SARA it enables non-
technical domain experts to quickly generate SME in a wide range of domains.

326 C. Hampson and O. Conlan

Creating a semantic attribute using SABer is a two step process with each step
having a dedicated page in the application. The first process in step one is to name the
semantic attribute being created. It is important to choose a descriptive name that
conveys its meaning clearly, as this is the name that end users will see in the client
application. The next task to complete on this page is to select the predicates you want
to create your semantic attribute rules from. Once a domain expert is satisfied with the
predicates they have chosen they must select from a drop down menu the type of
semantic attribute they want to create. They have a choice of three; expert, template
or hybrid. An expert semantic attribute only contains the expert’s default rule(s)
which can’t be tailored, a template semantic attribute contains no expert default
rule(s) and must be tailored by the end user, and a hybrid semantic attribute contains
expert default rules as well as corresponding template rules which can be tailored.
When the user is satisfied with his choices he can click to move onto the next stage.

Depending on whether the domain expert has selected an expert, template or
hybrid rule the next page displayed will vary slightly. However, regardless of the type
of semantic attribute being created, it is at this stage that the domain expert creates the
rule or rules for their semantic attribute. The first thing a domain expert must do to
generate their SPARQL query is to select the domain superclass that they want to
return. To choose a superclass, the domain expert must simply select it from a
dropdown menu. This generates the first part of each rule and is printed onscreen as
“Return any <Superclasses> where” as depicted in Figure 2, where the user has
selected the superclass MusicArtist.

Underneath this line the expert is presented with three dropdown menus, a text
field and a button all in a row. The first dropdown menu contains all the superclasses
that the RDF source has associated with. Depending on what superclass the expert
chooses, the predicates (or more precisely the alias of the predicates) in the adjacent
dropdown menu will change accordingly. This second dropdown menu contains all
the predicates that the domain expert has chosen in the first step, but restricted to
those predicates that are associated with the superclass chosen in the first dropdown
menu. Thus Figure 1 shows that when the domain expert chooses the superclass
MusicArtist from the first dropdown menu, they are presented in the second dropdown
menu with the elements Country from is, Total Friends on MySpace is, and Total
page views on MySpace. However if the domain expert had chosen Song as the
superclass in the first dropdown menu of that line, then the second dropdown menu
would have been populated with Track Duration, Composer, Genre etc. If there are
any units associated with the predicate chosen then they are displayed at the end of
the line to make clear what range of values is appropriate to input.

Fig. 2. Sample two Lines of Expert Rule for RDF Based Semantic Attribute

 Facilitating Casual Users in Interacting with Linked Data through Domain Expertise 327

The domain expert would then select the predicate they were interested in and then
move on to the third dropdown menu. This dropdown menu contains the available list
of operators that the end user can select from. Currently these include; Greater than,
Less than, Equals, Not Equals to, Greater than or Equals to, and Less than or Equals
to. The domain expert simply selects which operator they want from the drop down
menu. The operators other than Equals all result in a FILTER statement being added
to the SPARQL rule that is in the process of generation.

All the domain expert has to do to finish this line of the rule is to input a value into
the adjacent textbox. Thus in Figure 3, on the second line the expert chose the
metadata Total Friends on My Space, the operator <, and inputted the value 50,000.
This essentially equates to the WHERE part of a SELECT SPARQL statement with
the rest of the query automatically generated from the information defined in the
Source Model. If the domain expert wants to add more lines to this rule all they have
to do is click on the “+” button at the end of the line. This adds another identical line
underneath the first, except that it has an additional and/or dropdown menu at the start
of the line and an additional “-” button at the end.

The and/or dropdown menu allows the user to specify if the MusicArtist should
satisfy both of the rule lines or either of them. If the user selects or from this
dropdown menu, it results in an OPTIONAL statement being added to the SPARQL
rule that is being generated. In Figure 2 the expert has used and so only wants Music
Artists that satisfy both rule lines e.g. Music Artists whose Total Friends on MySpace
is less than 50,000 AND greater than 20,000. The additional “-” button at the end of
the line allows for a rule line to be deleted easily. Each parameter can contain as many
rule lines as the domain expert wants, with Figure 2 showing the completed four line
rule for Averagely Popular Irish Artists on MySpace. At any time in the process the
domain experts can select the “Get Results” button to see what instances are currently
in the data source that satisfy their rule.

Fig. 3. Sample four Lines of Expert Rule for RDF Based Semantic Attribute

The process for creating a template semantic attribute based on RDF data is almost
identical to the process just described for creating an expert semantic attribute. The
only difference is highlighted in Figure 4. Instead of having a blank text field in
which domain experts can input a specific value, they instead are presented with
another dropdown menu with two options “Some Text” and “Some Number”. This
allows domain experts to create rules such as Return all Artists where Country From
= “Some Text” or Return all Songs where chart position < “Some Number”. By
generating these kinds of rules it enables end users to tailor a rule more specifically to
what they want.

328 C. Hampson and O. Conlan

Fig. 4. Sample four Lines of Template Rule for RDF Based Semantic Attribute

The process for a domain expert creating hybrid semantic attributes for RDF sources
is identical to creating an expert semantic attribute. The only difference is that when a
hybrid semantic attribute is submitted, SABer automatically generates an associated
template rule for each of the expert rules to support tailoring. Once any semantic
attribute gets submitted, the values and rules inputted into SABer get concatenated with
a template to form an XML Semantic Attribute Model. This model then gets saved to
SARA and made available to client applications interested in that domain.

5 Case Study

This section describes a case study of a SARA installation that connected to five
separate music data sources in three different formats. The aim of this case study was
to show how SARA technically supported queries to reconcile information from these
separate sources. The data sources used in this case study were:

1. An XML iTunes library with over 30,000 songs stored in an eXist database
2. The US Singles charts from 1950-2008 stored as XML in an eXist database
3. The freebase.com music SPARQL endpoint9
4. The MySpace.com SPARQL endpoint10
5. Last.fm web services11

The eXist databases and remote SPARQL endpoints could be directly accessed by
queries encapsulated in the semantic attributes. However in the case of web services
with a native API, such as the Last.fm service used in this case study, a Java wrapper
was needed to proxy queries and results. .Each of these five sources had Source
Models registered to SARA which in turn got visualised in SABer. The domain
superclasses chosen were Artist, Song, Album and Country.

SABer was then used to create semantic attributes which were stored in SARA’s
Semantic Attribute Library. As will be shown in the section 6, SABer can support
non-technical domain experts to generate such semantic attributes. For this case study
twenty-five semantic attributes for the domain were created including:

• Artists currently touring specific countries
• Top MySpace artists from specific countries
• Popular Jazz artists in the US Charts in the 1980s
• Similar artists to a specified artist

9 http://lod.openlinksw.com/sparql
10 http://virtuoso.dbtune.org/sparql
11 http://www.last.fm/api

 Facilitating Casual Users in Interacting with Linked Data through Domain Expertise 329

Once the semantic attributes were made available in SARA it was possible for
queries to be sent to it from a client application via its API. For instance, queries
combining multiple semantic attributes that reference different sources could be sent
to SARA such as:

• Return all Artists from the iTunes collection (iTunes XML database), that
have Concerts Scheduled in the USA (Last.fm web service), despite their
most recent top 10 Album in the USA being more than ten years ago (US
charts database).

• Return all Countries (MySpace SPARQL endpoint) that had popular Artists
in the USA during the 1990s (US charts database)

• Return all Songs by The Beatles (freebase SPARQL endpoint) that are in top
10 popular Beatles songs on Last.fm (Last.fm web service) despite not
charting in the top 10 in Americas (US charts database).

Many of these queries allowed specifics to be tailored by the end user, so that they
could easily specify different bands other than The Beatles, tailor the definition of
popular, or change the range of time. Once the results from the individual data
sources were sent back to SARA they were reconciled into a final result set. This was
made possible as the different sources contained instance level identifiers to help
disambiguation (dereferenceable URIs used in Linked Data are an example of such
instance level identifiers). The final result set was then sent as XML for rendering in
the client application.

This case study has shown how SARA supports semantic attributes created in
SABer to be utilised by a client application, gives consolidated access to multiple
sources of different types, and enables instance level integration of results from
different data sources. Furthermore, extra superclasses, data sources and semantic
attributes could be appended to the system seamlessly if required, and the models
generated for this case study could be plugged into different installations that required
access to music information.

6 SABer Evaluation

For SARA to be applicable to many domains it had to be shown that non-technical
domain experts could successfully generate semantic attributes in SABer. As stated
previously, for the purposes of this paper ‘non-technical’ people refers to computer
literate participants with basic skills such as operating Internet browsers, but with no
computer programming experience. SABer has previously been used by domain
experts with computer programming experience to create useful semantic attributes
that were deployed within applications. Hence, this experiment was devised to
measure the usability of SABer and its effectiveness in supporting non-technical
domain experts to generate semantic attributes. Furthermore, it helped explore
whether SABer (and by extension the Semantic Attribute Model) can sufficiently
abstract the user away from the differences in the various semantic attributes and their
underlying data types.

Two groups were assembled of twelve participants each (one group technical the
other non-technical), with each person engaging in the experiment separately and in

330 C. Hampson and O. Conlan

isolation from other participants. An entire session including the demonstration,
performance of tasks and filling in of questionnaires typically took around forty
minutes to complete. The first step of the experiment was for each participant to have
the creation of three different semantic attributes in the music domain demonstrated to
them. This demonstration was done by the evaluator and consisted of him inputting
the semantic attribute details from a task sheet into SABer. Demonstrating these three
tasks involved an identical process to what the participants would be undertaking in
the experiment. SABer supports semantic attributes of three different types (expert,
template and hybrid) and of three data types (XML, RDF and data accessible through a
Web API). Each of the three tasks demonstrated to the participants involved a
combination of a different semantic attribute type with one of the different data types.

Once these three tasks were demonstrated, the participants were given nine
different semantic attributes of varying complexity to create in SABer. These tasks
were presented to the participants in a random order as users tend to get quicker with
later tasks when they are more familiar with the application interface. By presenting
the tasks in a random order it meant that the average time taken to create semantic
attributes would not be longer due to appearing near the start of the list, and likewise
not be shorter due to being near the end of the list. The semantic attributes users were
asked to create are listed as follows:

1. Quality Of Audio Files in my iTunes Collection
2. Top Singles in US in 1990s
3. Artists of a Genre who had US single that Reached a Specific Position
4. Countries Paul McCartney has Concerts Scheduled in
5. Artists Scheduled to Play Iceland
6. Popular Beatles Songs According to Last.fm
7. Songs On A Specific Album By Specific Artist
8. Countries with Very Popular Artists on MySpace
9. Irish Artists Popularity on MySpace

These semantic attributes spanned the same five sources outlined in the case study
section.

Because the participants were given the rules to encode into semantic attributes
(e.g. highly Irish popular artists on MySpace are those with Total friends on MySpace
> 50,000 and Country from is = Ireland) it was not necessary for them to be “expert”
in the domain per se. This was justified as the usefulness of the semantic attributes
being created was not being evaluated, but rather the ease in which coherent rules
could be constructed by non-technical users. During the course of the experiment the
length of time it took each semantic attribute to be created was recorded, the accuracy
of the semantic attribute noted (whether it exactly matched the semantic attribute
given to them on paper) and any questions or problems that they asked recorded.
Users were also given the opportunity to create semantic attributes of their own after
creating the nine semantic attributes set for them.

Once finished using SABer, each user completed a SUS (Standard Usability Scale)
test [14] to measure the systems usability and also filled in a short post questionnaire.
The SUS test provided an indicator as to the usability of SABer and the post
questionnaire gave space for participants to elaborate on any usability issues or
functionality they would like to see. The post questionnaire asked participants to

 Facilitating Casual Users in Interacting with Linked Data through Domain Expertise 331

specify if they found inputting rules for any of expert, hybrid or template semantic
attributes a considerably more difficult challenge, and likewise if they found inputting
rules for any specific query type significantly more challenging. This would allow it
to be accessed if part of the SABer application needed to be adjusted to make
inputting semantic attributes of certain types more intuitive. Moreover it would help
determine if the Semantic Attribute Model was sufficiently generic and abstract to
allow users to ignore the underlying idiosyncrasies of querying different data types.

Once the experiment was completed the results from the twelve technical users
were used to provide a baseline performance in terms of speed and accuracy in
creating the semantic attributes. Technical domain experts have already used SABer
to generate useful and deployable semantic attributes, thus by comparing the time it
takes for non-technical users to create accurate semantic attributes it would give a
good indicator as to the usability and utility of the tool. Hence, if the group of non-
technical users performed, on average, at a level of accuracy and efficiency near their
more technical counterparts, it could be reasonably concluded that SABer was
suitable for non-technical domain experts to use. Moreover, by comparing the average
SUS score for technical, non-technical and overall groups, a good indication of the
tool’s usability would be garnered.

With regards to the speed in creating semantic attributes, on average the non-
technical users were only 8.4% slower than their technical counterparts. In terms of
the accuracy of the semantic attributes created, the difference in performance was
even smaller between groups than in the speed comparison. Technical users on
average got 8.5 out of 9 accurate with a Standard Deviation (SD) of 0.67,, with non-
technical users getting 8.2 out of 9 accurate (SD of 0.84). It must also be noted that
all inaccuracies by participants in both groups can be classified as slips where wrong
figures or spellings were inputted by the users. Slips are defined by attentional
failures where the action was unintended [15]. These kinds of errors can be easily
corrected, and there were no cases of a user fundamentally not being able to create a
semantic attribute or giving up half way through. Furthermore, all users were able to
create their own semantic attributes after completing the nine semantic attributes that
were set for them. Many of these semantic attributes were of comparable complexity
to those set for them during the experiment. In terms of usability, on average the
technical users gave SABer a SUS score of 83.3% (SD of 9.4), and the non-technical
users 74.4% (SD of 10.7) The average SUS score for all 24 users was 78.85% (SD of
10.05). Systems that score above 72.5% on the SUS scale can be classified as having
good usability [16], so it can be concluded that SABer is considered a usable tool by
both non-technical and technical users.

The post questionnaire that participants filled in asked them to specify if they
found inputting rules for any of expert, hybrid or template semantic attributes a
considerably more difficult challenge. 22 of the 24 users found no significant extra
difficulty in creating semantic attributes of different types (hybrid, template or
expert). None of the participants felt that creating template semantic attributes was
more difficult than any of the others. This meant that all participants were
comfortable with selecting “some text” or “some number” while creating rules
instead of inputting specific values. This was important to validate as non-technical
users would typically not be as familiar with the concept of a variable as technical
users would, and this concept had to be presented to them in an intuitive fashion. The

332 C. Hampson and O. Conlan

post questionnaire also asked if participants found inputting rules in a specific query
language significantly more challenging. 22 out of the 24 users found no significant
difference in difficulty in creating semantic attributes using XQuery, SPARQL or API
calls. This was important as it showed that users were largely indifferent to the
underlying technologies they were working with, and meant that the semantic
attribute sufficiently abstracted them away from the underlying technical complexity
of each query language.

Usability is defined by the International Organization for Standardization (ISO) as
the effectiveness, efficiency and satisfaction with which a specified set of users can
achieve a specified set of tasks in a particular environment [17] . Participants in both
the technical and non-technical groups were shown to perform the tasks effectively
and efficiently. Moreover, there was no significant difference in speed, accuracy or
perceived usability of SABer between the two groups. Users also found no significant
difference in creating semantic attributes of different types or with different queries
thus showing that SABer sufficiently abstracted users away from the underlying data
sources. It can thus be concluded from this section that SABer is a tool with good
usability and that domain experts without a computer science background could use it
to create semantic attributes with a minimal amount of training. The significance of
this is that it should be possible for experts in metadata rich domains to capture SME
as semantic attributes if given a sufficient choice of elements. Hence, the tool is very
applicable to Linked Data sources.

7 Summary

This paper described an approach to support casual users discover relevant
information across multiple Linked Data repositories, by enabling them to leverage
and tailor semantic attributes. Currently the rich metadata exposed through Linked
Data is only minimally used by casual users, hence it is important to make this
information more accessible to these users. SARA and its authoring tool SABer are
designed to support interaction by casual users with Linked Data, and both systems
were detailed within this paper. It was also shown how Linked Data repositories can
be registered with SARA through a reusable Source Model, which means that once
created, the same model can be reused in any installation that wants to access that
specific data source.

The paper also detailed how SABer supports non-technical domain experts to
encode SME as queries in multiple languages (including SPARQL) that are then
encapsulated as semantic attributes. A successful evaluation of SABer was discussed
in detail. Any semantic attributes generated in SABer can be reused in any installation
of SARA that access those same sources, which makes it easy for different client
applications to quickly benefit from the SME encoded by domain experts. This
reusability of SME and its non-reliance on knowledge engineers make the approach
supported by SARA and SABer suitable for almost any domain with rich metadata. A
case study of SARA’s use in the music domain was also described, which showed
how users could form complex queries over multiple structured and semi-structured
data sources (including Linked Data accessed by SPARQL endpoints). This case
study showed SARA’s potential to be used to help casual users navigate the rapidly
expanding Web of Data.

 Facilitating Casual Users in Interacting with Linked Data through Domain Expertise 333

Acknowledgments. This research has been supported by The Irish Research Council
for Science, Engineering and Technology: funded by the National Development Plan.

References

1. Huynh, D., Miller, R., Karger, D.: Potluck: Data mash-up tool for casual users. Web
Semantics: Science, Services and Agents on the World Wide Web 6, 274–282 (2008)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on
Semantic Web and Information Systems 5, 1–22 (2009)

3. Vaughan-Nichols, S.: Researchers Make Web Searches More Intelligent. Computer 39,
16–18 (2006)

4. Hall, W.: What web science could mean for businesses. uterweekly.com (2010),
http://www.computerweekly.com/Articles/2010/04/12/240862/int
erview-wendy-hall-on-what-web-science-could-mean-for.htm%20

5. Berners-Lee, T., et al.: Tabulator: Exploring and analyzing linked data on the semantic
web. In: Proceedings of the 3rd International Semantic Web User Interaction Workshop
(2006)

6. De Araújo, S.F.C., Schwabe, D.: Explorator: a tool for exploring RDF data through direct
manipulation. In: LDOW 2009: Linked Data on the Web (2009)

7. De Araújo, S.F.C., Schwabe, D., Barbosa, S.D.J.: Experimenting with Explorator: a Direct
Manipulation Generic RDF Browser and Querying Tool. In: Visual Interfaces to the Social
and the Semantic Web, pp. 1–9 (2009)

8. Ambrus, O., Moeller, K., Handschuh, S.: Konduit VQB: a Visual Query Builder for
SPARQL on the Social Semantic Desktop. In: Workshop on Visual Interfaces to the Social
and Semantic Web (2010)

9. Borsje, J., Embregts, H.: Graphical Query Composition and Natural Language Processing
in an RDF Visualization Interface. B.Sc. Erasmus University, Rotterdam (2006)

10. Qian, L.J., Zhou, M., Xu, J.R.: An easy and effective approach to manage radiologic
portable document format (PDF) files using iTunes. AJR. American Journal of
Roentgenology 191, 290–291 (2008)

11. Russell, A., Smart, P., Braines, D., Shadbolt, N.R.: NITELIGHT: A Graphical Tool for
Semantic Query Construction. Semantic Web User, 1–10 (2008)

12. Hampson, C., Conlan, O.: Supporting Personalized Information Exploration through
Subjective Expert-created Semantic Attributes. In: IEEE International Conference on
Semantic Computing. ICSC 2009, Berkeley, pp. 384–389 (2009)

13. Hampson, C., Conlan, O.: Leveraging Domain Expertise to Support Complex,
Personalized and Semantically Meaningful Queries Across Separate Data Sources. In:
IEEE International Conference on Semantic Computing. ICSC 2010, Pittsburgh,
pp. 305–308 (2010)

14. Brooke, J.: SUS-A quick and dirty usability scale. Usability Evaluation in Industry,
189–194 (1996)

15. Reason, J.: Human error. Cambridge University Press, Cambridge (1990)
16. Bangor, A., Kortum, P., Miller, P.: Determining what individual SUS scores mean: Adding

an adjective rating scale. Journal of Usability Studies 4, 114–123 (2009)
17. Jokela, T., Iivari, N., Matero, J., Karukka, M.: The standard of user-centered design and

the standard definition of usability: analyzing ISO 13407 against ISO 9241-11. In:
Proceedings of the Latin American conference on Human-Computer Interaction, pp. 53–60
(2003)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 334–349, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Using Expert-Derived Aesthetic Attributes to Help Users
in Exploring Image Databases

Cormac Hampson, Meltem Gürel, and Owen Conlan

Knowledge & Data Engineering Group,
Trinity College Dublin, Ireland

{cormac.hampson,gurelm,owen.conlan}@tcd.ie

Abstract. Image repositories often contain a large amount of metadata about
their content. However many resources, such as photographs, have inherent
aesthetic qualities that can be difficult to describe in a semantically consistent
and usable manner, yet would be highly valuable for users in exploring large
image repositories, such as Flickr. Automatically augmenting existing metadata
with expert perspectives has the potential to give users a consistent aesthetic
vocabulary to search and explore such repositories. SARA (Semantic Attribute
Reconciliation Architecture) is a system that supports users to leverage domain
expertise while searching for items in a metadata-rich domain. X2Photo is a
tool built on SARA’s functionality to enable image searching based on a
picture’s aesthetic characteristics and user-generated tags. This paper describes
X2Photo in detail, the approach to augmenting visual media with expertise, and
the evaluation results which reveal how semantically described aesthetics can
support complementary search axes for image retrieval.

Keywords: Image Retrieval, Subjectivity, Expertise, Crowd Sourcing,
Semantic Attributes, User exploration.

1 Introduction

Visual media stored in image repositories typically contain a lot of descriptive and
technical metadata, be it user-generated tags, or data extracted from low level features
or from content analysis. However many resources, such as photographs, have
inherent aesthetic qualities that can be hard to describe in a semantically consistent
and usable manner. This can make it difficult for users to explore image repositories
for relevant photographs from an aesthetic perspective. In this paper we consider
aesthetic attributes as means of describing emotions associated with specific images
e.g. sadness, excitement, joy etc. Typically users are reduced to keyword searching
over an image’s associated tags, which tend to focus more on the content of the image
(what it is portraying) rather than its aesthetic. Moreover, due to its subjective nature,
any tags describing an images aesthetic are likely not to be semantically consistent
from one tagger to the next, adding to the difficulty of locating appropriate images.
For example people are quite good at identifying and tagging elements of a
photograph, i.e. it contains a dog on a beach, but not in capturing its aesthetic i.e. it is
tranquil and cool.

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 335

Advances in digital photography technology and related internet storage services
have given users unprecedented ability to capture photographs and make them
available to a large audience. Many popular image search engines, such as Flickr1,
utilise the metatags associated with a photograph. Unfortunately, they may be
inaccurate and misleading at times [1]. While these tags can be useful in defining the
“content” of a photograph, their single dimensional nature can limit more refined
searching. Thus, consistently exposing the aesthetics of an image as a criterion that
may be searched upon presents a significant challenge.

Introducing the use of expert knowledge into the exploration of photograph
collections can enable end-users to discover more accurate results, and can help guide
them through the process by allowing them to leverage domain specific identifiers.
This may not overcome the subjectivity of the terminology, but will at least provide a
consistent reference point for the domain. Furthermore, the knowledge of domain
experts can lead the end-users to find photographs through the expert’s vocabulary
which may not have been obvious to the end-user when initially defining the
photograph they were seeking. This is because domain experts have clear perspectives
when it comes to defining the key characteristics of a domain. For instance, there is an
expert domain dedicated to the subject of wine. When analyzing a particular type of
wine, different perceptions such as colour /clarity, bouquet and taste are used by
experts of this domain to express their sensations through descriptive words or
phrases. The wine-tasting terminology comprises of high-level subjective terms which
are derived from low-level characteristics of a wine. For example, the term “bitter”
typically refers to the tannin content of a wine, and the term “oily” is used for the
combination of high glycerine and slightly low acid content [2].

This expert terminology creates a semantic space for wine tasting. The words used
can differ among experts but are based on the same characteristics. Applying similar
techniques to the photography domain can help define a more automated clear-cut
aesthetic search environment. Even if you may not totally agree with the expert’s
terminology in such a subjective area as aesthetics, you will have a consistent view on
the domain and will know what type of images to expect in the results. Moreover if
users can personalise and tailor an experts domain view to their own, it can give a
user even more control and flexibility when searching for photographs.

This paper examines to what extent the combination of tags and subjective
expertise, can support end users in exploring visual media? Here we refer to tags as
annotations, such as those that Flickr users have assigned to their digital photographs.
The expert knowledge is automatically derived from non-textual low-level data
contained within a digital photograph; specifically the hue, saturation and lightness of
its dominant colours. It is proposed that when combined, these two features should
enable exploration from a content perspective (achieved via the selection of tags) and
from an aesthetic perspective (derived from the expert knowledge). To investigate
this, an application called X2Photo that works in tandem with the SARA [3]
(Semantic Attribute Reconciliation Architecture) middleware system has been built
and is described within this paper. The remainder of this paper is organised as
follows: Section two highlights some related work and problems in the field; Section
three discusses the design and implementation of X2Photo, as well as how SARA’s

1 http://www.flickr.com

336 C. Hampson, M. Gürel, and O. Conlan

authoring tool SABer (Semantic Attribute Builder) was used by an expert in the
photographic domain to describe aesthetics. Section four describes the evaluation of
X2Photo and section five summarises the research discussed in this paper.

2 Related Work

Most of the current research in image retrieval is concerned with bridging the
semantic gap. In essence, this is the gap between the low-level physical features of the
image and the high level perception of what the image portrays. As Hare states [4],
the representations one can compute from raw image data cannot be readily
transformed to high-level representations of the semantics that the images convey. It
is these semantics in which users typically prefer to articulate their queries.

Research activity in visual image retrieval increased following the adoption of
Content-Based Image Retrieval (CBIR). CBIR is the method of retrieving images on
the basis of automatically-derived features such as colour, texture and shape. These
systems try to retrieve images that are similar to a specification or pattern (e.g. shape
sketch, example image) a user defines. The automatic retrieval process within these
systems suggest an advantage compared to keyword based search systems as there is
no possibility of the necessary metadata not being present. However, the limitations
of current content-based retrieval approaches and their incompatibility with searchers'
queries are often pointed out [4, 5]. The major obstacle in CBIR approaches is the gap
between visual feature representations and semantic concepts of images. In general,
the problem with these algorithms is their dependency on visual similarity in judging
semantic similarity [6]. Especially for photographs, it is very difficult to devise
effective features that reflect their aesthetic characteristic. As semantic similarity is a
highly subjective measure, it is not reasonable to rely on such algorithms, especially
when the semantic space comprises of aesthetic values.

Image retrieval based on keyword features [7, 8] was mainly developed by the
database management and information retrieval community. The typical query
scenario in such image retrieval systems is Query By Keyword (QBK). In this process
the semantics of images are represented by keywords, with query results being
acceptable if the keyword annotations are accurate and complete. However, as the size
of the image database gets larger, manual annotation cannot be regarded as a viable
procedure to continue. Popular image search engines such as Google2, Yahoo!3 and
Bing4 try to overcome this issue by extracting the keyword features surrounding an
image on the Web. Although this method can find numerous results, the returned
images are not entirely accurate since there is no guarantee that surrounding textual
information relates directly to the image. Likewise, when trying to attach semantics to
visual content, you have the problem of dealing with homonymy, where a single tag
may have various meanings. Hence engines that retrieve images indexed through such
methods can only be accurate within a certain limit [9].

Flickr is an online community platform that enables its users to upload, store and
organise digital photos. Features that Flickr uses to strengthen its metadata are to

2 http://www.google.com/imghp
3 http://images.search.yahoo.com
4 http://www.bing.com/images

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 337

allow users to group their photos into sets, and their sets into collections. Moreover
users of Flickr can create and add photographs to special interest groups on any
possible topic, improving the relevance of a photo’s metadata. Within Flickr, users
and their contacts form the backbone of photograph propagation. Research indicates
that social browsing, i.e. finding photographs by browsing through the photograph
streams of contacts, is one of the primary methods by which users find new images on
Flickr [10]. This suggests that in such an environment users are likely to “follow”
other users and that photograph enthusiasts welcome the idea of expert guided
browsing.

Looking at the current approaches, it is apparent that bridging the semantic gap is
still an open issue. Indexing based on surrounding textual information is highly
unreliable, and textual annotations depend on the knowledge and expressiveness of
individuals, which causes ambiguity. Retrieving images through this textual data
often results in inaccurate and irrelevant clusters of images. Furthermore, current
technologies that are based on low-level visual information do not allow users to
search for images by higher-level semantics. The need to provide initial query images
or to find images based on unintuitive low-level characteristics explains why these
approaches haven't yet found a noticeable place in the commercial world. Regarding
photography appreciation, both of these approaches, though acceptable for defining
content, are inefficient in reflecting the aesthetic characteristics of images. Sinha and
Jain [19] point out that content only is not enough in inferring the semantics of
photographs and suggest fusing content and context to extract semantics; referred to
as a contextual analysis. Enser [20] also suggest that it is necessary to utilise both the
concept and the content of a photograph to improve the efficiency of image retrieval
techniques, stating that hybrid image retrieval systems should be welcomed.

Being able to retrieve images from image repositories using high level semantics
defined by experts may help these systems to realise their potential more. Likewise,
when introducing subjective qualities such as aesthetics as search criteria, it would be
useful to have systems that can support personalisation within the process. By
combining this with a user interface that supports end-users to manipulate photograph
collections in a personalisable and compelling way, the system would empower users
in exploring and accessing large image repositories.

3 X2Photo

The previous section highlighted how image retrieval techniques that combine textual
annotations or keyword search with low-level characteristics are being considered in
order to bridge the semantic gap. X2Photo is an application designed to help tackle
this problem and is described in detail in this section. SARA [3] (Semantic Attribute
Reconciliation Architecture), the middleware that X2Photo is built on, is described
briefly next.

3.1 SARA

SARA is a domain independent framework that allows for low level metadata to be
aggregated into semantically meaningful characteristics that ordinary users can

338 C. Hampson, M. Gürel, and O. Conlan

understand. These characteristics (called semantic attributes) are defined by experts,
and then leveraged by end users to help their exploration of a domain. The semantic
attributes can be objective or subjective in nature, and SARA can support the tailoring
of these characteristics to an end users perspective or context. By adding these
semantically meaningful concepts to a space that didn’t have them before, it supports
end-users (via an appropriate client application) to employ expert knowledge to create
high-level, semantically meaningful queries over multiple sources from a domain.
Essentially, these semantic attributes can be seen as generalised rules for the domain
and SARA acts as a semantic mediator between end-users and the raw data sources
they seek to explore. Importantly, these semantic attributes can be generated by non-
technical domain experts without the help of a knowledge engineer by using SARA’s
authoring tool SABer (Semantic Attribute Builder). This means that semantic
attributes can be generated by experts from almost any domain.

SARA has already been successfully applied to a number of domains including
music, films, digital humanities and publications. Hence, its support for subjective
semantic attributes, based on aggregated low level data, meant it was an ideal system
to help the exploration of image repositories from an aesthetic perspective. The main
aim of X2Photo is to use the functionality offered by SARA to help users browse
large image repositories with reference to the aesthetics of the photographs, as well as
their content. Specifically it supports the retrieval of Flickr photographs using domain
expertise in aesthetics, as well as user generated tags. In order for X2Photo to use
SARA it needed an expert vocabulary to describe the aesthetics of digital
photography. This vocabulary would then be leveraged by end-users to give them a
consistent approach to browsing for images. The next section describes why a
vocabulary based on colour psychology and colour theory was chosen for X2Photo.

3.2 Colour Theory and Colour Psychology as an Aesthetic Vocabulary

Within CBIR (Content Based Image Retrieval) approaches, colour has been seen as a
key feature to characterise the content of digital content collections [11-13]. Common
colour features include, colour-covariance matrices, colour histograms, colour
moments, and colour coherence vectors. Even though these colour features are
efficient in describing colours, they are not directly related to high-level semantics.
Hence, one way to derive human perception through colours is to investigate the
psychology of colour in art [14, 15]. Artists use colour to explore visual perception
and to represent or evoke emotions. The psychological effects of colour, hue,
saturation, and brightness have been studied to reveal having various effects on the
viewer [16, 17].

Complementary to colour psychology is colour theory, which is a language that
conceptually and perceptually describes the essentials of colour and their interactions
[18]. Unlike colour psychology, colour theory doesn't describe responses that are
unique to cultures or certain periods, but rather focuses on universal psychological
responses to colour. An example would be the warmth or coolness of a colour, i.e. the
temperature. Colours such as blue and green are cool colours and can be thought of as
having calming effects. However, this effect can transform as the colour's luminosity
changes, i.e. a bright open sky may be exciting. Likewise, cool colours on one end of
the scale can be seen as cold, impersonal, and gloomy but on the other comforting and

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 339

nurturing. In photography, colour theory is utilised to understand how certain colours
and their combinations create different moods in photographs. For instance, some
colour combinations such as complementary colours appear striking and vibrant when
in close proximity. Furthermore, as they get closer to the same saturation and
lightness, the vibrant look will strengthen. On the other hand, colours that are close in
the spectrum will usually appear more peaceful and calm.

X2Photo required an expert vocabulary based on raw low-level data of digital
photographs. By extending the language that colour theory provides with subjective
concepts from colour psychology, a consistent vocabulary was developed that helped
the exploration of photographs from an aesthetic perspective. The user could adapt to
the expert’s perspective or find it open to questioning. However the important factor
here was not the vocabulary, but rather providing a base that a subjective concept
could be built upon and if necessary personalised.

3.3 Design

Based on the information in the previous section it was decided that for representing
colour in digital images, the HSL (Hue, Saturations, Lightness) colour model would
be the most efficient regarding this research's aims. HSL colour space describes
perceptual colour relationships more accurately than RGB and is far more intuitive.
Fortunately, this kind of metadata is commonly found in digital images or can be
easily extracted from the photograph. HSL colour space is also more closely related to
human visual perception. Another point deducted from colour theory was that the
human eye is more sensitive to hue than saturation and lightness. Therefore hue
should be processed with a finer quantisation.

The expert vocabulary created for X2Photo consisted of nine semantic attributes,
each with three or four parameters that were encoded by the domain expert in SABer
(see Table. 1). Temperature was one such semantic attribute for the photography
domain created, and this was quantised into a number of different parameters ranging
from Warm to Cold. Thus Cool was a single parameter of the semantic attribute
Temperature. When Temperature was defined, the hue of the colour was taken into
consideration as follows. Colour theory defines colours such as blue and green as cool
colours with red and orange defined as warm. Hue is represented as an angle of the
colour circle. So if it is divided into twelve equal intervals, on each 30°angle, the
following colours result; red, red-yellow (orange), yellow, yellow-green, green,
green-cyan, cyan, cyan-blue, blue, blue-magenta, magenta, and magenta-red. Red,
yellow, green, cyan, blue, and magenta are regarded as the key colours with each
having intermediate colours in between. Thus, the classification for Temperature into
four parameters was constructed as follows, where H, S and L represent hue,
saturation and lightness respectively:

WARM = {(0 ≤ H < 75 and 15 ≤ L ≤ 90) or (H ≥ 300 and 65 ≤ L ≤ 90)} and (S ≥ 25)
SUBTLE = (75 ≤ H < 120) and (15 ≤ L ≤ 90) and (S ≥ 25)
COOL = (120 ≤ H < 210) and (15 ≤ L ≤ 90) and (S ≥ 25)
COLD = (210 ≤ H < 300) and (15 ≤ L ≤ 90) and (S ≥ 25)

If a photograph's colour space satisfies the third equation, it is considered as a Cool
photograph. Table 1 lists the nine semantic attributes created for X2Photo, each with

340 C. Hampson, M. Gürel, and O. Conlan

three or four different parameters. These subjective semantic attributes were created
in a similar way to the Temperature example described above, and were also joined
by one objective semantic attribute named has tag called that allowed users to specify
tags that the end images should have. All the semantic attributes created were listed in
the X2Photo interface so that they could be joined together into a complex query by
end users e.g. Return all images that are Calm, Cool and Misty that has a tag called
Boat or Fisherman.

Table 1. The nine semantic attributes and their parameters created for X2Photo

1. Power 2. Passion 3. Energy 4. Joy 5. Ease
Vigourous
Powerful
Robust
Strong

Passionate
Desirous
Romantic
Sensitive

Explosive
Exciting
Energetic
Lively

Frantic
Ecstatic
Jolly
Cheerful

Easeful
Content
Mellow

6. Light 7. Blue 8. Temperature 9. Purity
Luminous
Misty
Deep

Tranquil
Calm
Soothing

Warm
Subtle
Cool
Cold

Intricate
Bold
Innocent
Pure

3.4 Implementation

The scope of this research was to develop a prototype system using a local database of
images, but implement it using technologies that could be easily adapted for an online
environment. With this in mind, the Flickr photograph collection was chosen in order
to build a local cache of images. This section describes the implementation of
X2Photo.

3.4.1 Data Collection
This research’s experimental approach called for sets of arbitrary photographs to be
collected with no distinct styles. Therefore, photographs needed to be cached from a
large number of users. The ideal way to realise this requirement was to query Flickr
for a list of public photos. Using this approach, more than 12,000 random
photographs from Flickr were cached in small, medium, and large sizes. The Flickr
API was also used to retrieve the metadata related to the cached photographs. Once
the necessary data for each photograph was parsed and stored, a tags repository was
created based on unique tags within the collection. A list of tags related to the given
tag, based on clustered usage analysis within Flickr, was also stored. At this stage it
was realised that the metadata from Flickr alone was not extensive enough to capture
an image’s aesthetics. Only objective concepts such as when and where the
photograph was taken and whether it was an indoor or outdoor image could be
derived.

To create an aesthetic vocabulary that supported colour theory required more
metadata about the images to be obtained. This meant that each digital photograph's
pixel values were analysed in order to get its dominant tones and colours. Red, green
and blue values for each pixel were then extracted and within each block these values

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 341

were rounded to their contextual RGB values to avoid almost duplicate colours. A
photograph’s hue had to be processed with a finer quantisation as human perception is
more sensitive to hue than saturation and lightness. Once an image was processed all
its data was combined into a uniform model. This schema was then registered with
SARA so that semantic attributes could be formed from them, and so that this media
repository could be linked to other ones if so desired.

3.4.2 User Interface and Architecture
Figure 1 shows the front-end of the system in which the three main areas of the
interface can be seen. The main part of the screen is called the Discovery Space and
contains the result set of photographs from a user query. The wall of photographs can
be dragged by user and individual images selected to see what tags and semantic
attributes are associated with it.

Fig. 1. The X2Photo Interface

The bottom of the screen is dominated by the AttBar which represents each of the
nine semantic attributes as a vertical bar. Each bar contains the different parameters
relating to each semantic attribute, with Figure 1 showing the results from a query
containing the aesthetics Lively, Luminous and Cool from the AttBar. The user can
select a parameter from each bar to add a query. Using SARA’s facility for tailoring
of domain expertise, it would also possible for end-users not happy with the results
they were getting to alter the rules associated with each semantic attribute, so that a
different range of images were returned for that particular parameter.

The single dimensional nature of tags has already been discussed, highlighting that
they are limited in communicating the aesthetic values of photographs, but are instead
more useful in defining their content. Thus, in order to help the user find an image

342 C. Hampson, M. Gürel, and O. Conlan

with specific content, the system had to show any tags associated with the result
collection of photographs, as well as those from each individual photograph. By
integrating this with support for aesthetic exploration of images, it gives users a more
flexible way of finding relevant photographs. The number of tags typically exceeds a
number that could be clearly displayed with a simple tag clouds, hence a TagBall was
used instead to allow large numbers of tags to be displayed while not cluttering the
UI. In the bottom left hand corner of Figure 1 is the TagBall which displays all the
Flickr tags related to the entire result set or individual photograph. The user just has to
select any of these to refine their searches.

When users click on an image, the interface zooms into the photograph, and they
can click the flip button on the top left corner of the photograph to see its details. If a
user clicks the down arrow icon, the photograph is brought into focus, with the AttBar
displaying its associated semantic attributes, and the TagBall displaying the relevant
tags. A user can store the photograph to the Favourites area by clicking the star
button. Figure 2 shows the overall architecture of the application. A user forms
queries by selecting semantic attributes in the X2Photo GUI, with all queries sent to
SARA via its parameter based API. Because the metadata relating to the images are
stored as XML, XQuerys encapsulated within each semantic attribute are sent to the
database storing the metadata and the relevant image identifiers returned for each
semantic attribute. These separate result sets (if the query contains more than one
semantic attribute) are then reconciled into a consolidated set which is returned to
X2Photo in XML. The corresponding images from the photograph cache are then
rendered to the user in X2Photo’s GUI.

Fig. 2. X2Photo Architecture

4 Evaluation

X2Photo was evaluated to test the usability, functionality and the overall appeal of the
system. Furthermore, the potential benefits of injecting subjective expert knowledge

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 343

based on the manipulation of non-textual, low-level data, in comparison to
conventional methods (like image retrieval via tags only) was also examined. With
this aim in mind the following approach was pursued: Four photographs (see
Figure 3) not present in the 12,000 random photographs collection were selected.
These photographs were then prescribed different semantic attributes by the domain
expert, who was an experienced photographer. The nine users were first shown all
four photographs, and were then asked to freely describe them in their own words.
Then they were given an overview of the tool and were asked to do the following
tasks:

• For photograph 1, find similar photographs via X2Photo
• For each photograph found, add it to the Favourites.
• Repeat this task for all four photographs.
• Once complete, go to Flickr and for photograph 1; again try to find

similar images either with the words originally used to describe the
photographs or with different ones.

• Repeat this task for all four photographs.

After finishing these tasks they were given a survey to fill out, to complete the user-
test.

 (a) (c)

 (b) (d)

Fig. 3. The four initial photographs shown to users

344 C. Hampson, M. Gürel, and O. Conlan

4.1 Describing the Images

The majority of users evaluating X2Photo were technically proficient with computers,
and four considered themselves to be amateur photographers. How the different users
described the four photographs had some noteworthy aspects, such as those users who
were interested in photography tending to use more technical phrases. For instance,
some wrote terms such as “over-exposed” when describing the photograph a,
mentioned the angle at which the photograph b might have been shot at, and
questioned whether this photograph was altered in an image editing program to obtain
its deep contrast. These users tended not to describe the content of the photograph as
much as the users with little photography experience. Some users preferred to
describe the photographs with more personal expressions such as “lonely” and
“tempting” when referring to photograph c. Photograph d, as expected, was
interpreted differently by almost all the users. While some tried to figure out what the
man in the picture might be doing, some chose to describe him, resulting in many
different impressions such as “gritty”, “relaxed” or “run-down”.

Almost all the users first chose expressions like “warm”, “cold”, “airy”, “gloomy”
and “energetic”, some of which directly coincided with the actual attributes
determined by the domain expert. They then proceeded to describe the actual content.
Two of the nine participants were more objective in their descriptions and chose to
name the elements they saw in the photographs with words like “corridor”, “bench”,
“rocks”, “back alley”, etc. However, the vast majority of users combined their
perceptions with the content: “...a cool calm picture but alive…there's a woman sitting
on a bench... feels breezy but soft... waves look relaxing”.

4.2 Finding Images in X2Photo

Just like their preferences in describing the photographs, the users’ approach to
finding similar photographs in X2Photo were particularly different. Four users never
actually enabled the TagBall. Coincidentally their descriptions of the photographs
were heavily consisted of expressions like “moody”, “dark”, “calm”, etc. They
directly chose similar words present within the AttBar and then carried out their
searches. After receiving their initial results two of these users were surprised to see
how the tool interpreted their descriptions. They did not agree with the expert and
started experimenting with the AttBar rather than continuing with their searches.
After observing some consecutive result sets and bringing some photographs into
focus, they stated that they grasped the association the expert was making, and
modified their searches accordingly. The other two users who didn’t use the tag ball
performed 2-3 consecutive searches which were refined each time, to find a similar
photograph. Observing the similar photographs that users returned, it was interesting
to see what the users based their similarity criteria on. While some photographs have
a similar feel to them regarding the concept or the context, some are similar in content
as well. Figure 4 shows examples of similar pictures (of images b and c in Figure 3)
found by users using the TagBall and AttBar in X2Photo.

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 345

4.3 Finding Images in Flickr

When the users tried to find similar photographs in Flickr, their approaches were
again different. For example, one user used “fiery clinical harsh” to search for the
photograph a, which were the expressions he had used when describing the
photographs originally. In contrast, another abandoned their expressive vocabulary
used originally to describe photograph b (because he was very familiar with searching
on Flickr) and chose to use the search phrase “Scotland cliff coast”. Some users were
very articulate in their searches and submitted phrases such as “city lights low angle
journalistic lonely” to find similar photographs. With three user’s searches within
Flickr, a slight change in their vocabulary could be seen. For instance, a user who had
previously described the photograph c mainly based on content; “beach, person sitting
on the bench, greyish” found a similar image within X2Photo that the expert thought
to be “romantic", “soothing” and “innocent”. Within Flickr, the user thus carried out
his first search with the terms “romantic sea scenery”. Users familiar with Flickr also
used the advanced search available and refined their queries, but again tended to use
content-based terms to carry out their searches. In the end all the users were able to
find at least one similar image, which was not surprising considering the amount of
photographs Flickr has. However it was noteworthy how all the users had to resort to
content-based terms (identical in many cases). This showed how such systems can
limit the ways individuals search for photographs.

Image (b) Image (c)
Fig. 4. Examples of similar pictures found by users using the TagBall and AttBar in X2Photo

346 C. Hampson, M. Gürel, and O. Conlan

4.4 User Survey

A user survey was also conducted once the given tasks were completed. The
questionnaire intended to evaluate each feature's functionality as well as aesthetic
qualities, and also the overall system quality regarding various aspects. The general
response to the usability and appeal of the Discovery Space was very positive,
agreeing that the continuous flow enabled them to browse the photographs
thoroughly, and that the interaction with the space was appealing. Below is a
summary of the survey results:

• 8/9 users considered the overall UI to be very good
• 8/9 strongly agreed that the system was attractive
• 8/9 users found the zoom effect in the interface to be very good or good
• 9/9 users thought the AttBar was very good or good, that the concept was

comprehensible and the classification of the attributes were clear.
• 8/9 users found the ability to refine a search with a focus image to be very

useful or useful. By seeing what semantic attributes and tags were associated
with the focus image it allowed them to use these as a springboard for their
browsing.

4.5 Analysis

The user experiment and the survey that followed suggested that when describing
photographs, whether interested in photography or not, people like to communicate
“how” a photograph is as well as “what” it portrays. This finding indicates a need for
a wider vocabulary to be available to users in order to retrieve accurate and relevant
photographs from any collection. Traditional tag-based systems tend to be dominated
by content-based terms, thus ignoring the artistic quality which is a key factor that
evokes appreciative emotions. Hence these systems often reduce photographs to a list
of mainly content-based words. As most people have become accustomed to this
approach, in such an environment they tend to ignore other ways in which they would
approach a photograph, and are therefore relegated to search for the tagged
simplification of a photograph, rather than the actual photograph itself.

Based on the photographs found by the users when using the more natural
expressions via the X2Photo system, it indicated that this approach could grant users
the additional useful axes to when searching for photographs. Thus, injecting expert
knowledge, based on the manipulation of raw low-level data, into a conventional
system only supporting tag-based search, allows users to more freely express both the
photograph and the picture it is conveying. Even though a specific expert vocabulary
may not be suitable or correct for each individual, users can adapt to the expert's view
or better yet choose to subscribe altogether to a different expert expanding the
semantic space. SARA also provides the functionality for end users to tailor an
expert’s semantic attribute to better fit their own vocabulary.

X2Photo received overall positive feedback; the users clearly understood the idea
and the overall concept. They suggested that users should be able to subscribe to
different experts and that there should be a more comprehensive range of semantic
attributes. This all indicates that the users understood the aim of the tool and how it
could be extended further. All users agreed that they could see a real-life application

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 347

of the tool if some further improvements were made and they could see themselves
utilising such a tool in their everyday lives. In order to offer users an alternative way
of finding a photograph, a system has to have a rich vocabulary. Hence, by increasing
the range of low level features, it would enable experts to create more refined
semantic attributes, resulting in a more useful system for end users.

5 Summary

This paper investigated the possible benefits of augmenting the conventional tag-
based query techniques used in many image databases, with subjective expert
knowledge built on raw low-level data. Based on this notion, X2Photo was developed
which aimed to empower users in retrieving photographs from collections, using not
only objective tags from Flickr, but also subjective expertise based on a photograph’s
colour space. Semantic attributes were encoded into the system via SABer, which
provided end users with semantically meaningful access points into the domain,
which were not previously available.

The user test and the results of its accompanying survey, highlight how people like
to communicate the aesthetics of a photograph as well as what it portrays. However,
when utilising a conventional tag-based system, they tend to ignore the aesthetics and
emotions conveyed in the images, as the tag-based systems tend to be overloaded
towards content based tags. Hence this can lead to limited searching via tagged
simplifications of a photograph, ignoring the aesthetics of the photograph. The types
of photographs found by the users, using the more natural expressions offered by the
system, indicate that this approach can be used to grant users more versatility when
searching for photographs. Hence, injecting expert knowledge into a conventional
system that only offers tag-based searching, would allow users to freely express both
the aesthetic of the photograph they want, as well as the picture it conveys. This offers
users an alternative pathway to access large photograph collections.

All the users agreed that the system was a powerful tool for exploring photographs
and when asked if they could see a real-world application stemming from X2Photo,
all users concurred, as long as further improvements were made. Some engineering
decisions need to be reconsidered in order to offer a more robust system and an
alternative approach to manipulating the tags would be beneficial. The number of
semantic attributes could also be increased, and the extraction of the underlying
features improved with more sophisticated image analysis techniques. This would
enable experts to create more refined semantic attributes. Moreover as a specific
expert vocabulary may not be suitable or correct for each individual, users should be
able to subscribe to different experts to consider different perspectives.

Leading image search engine such as Google Images have recently provided a few
colours to be selected in order to have results with similar colour spaces. Considering
the huge volume of images they index, and this new functionality they offer, it can be
suggested that the methodology proposed in this paper could be integrated seamlessly
into online image searching. This new functionality would allow users to pose verbal
queries rather than selecting some basic colours to match. This approach could be also
applied to other media such as video and audio, with SARA supporting experts in
those fields to classify characteristics that end users could leverage in their searches.

348 C. Hampson, M. Gürel, and O. Conlan

Likewise, multiple experts from the same domain can be supported by SARA, with
the end user able to select characteristics created by different experts and tailoring
them to their own needs if necessary. Finally, because SARA provides a consolidated
interface to multiple sources from a domain, it can support applications that give users
powerful searching and browsing operations over many separate image repositories.

Acknowledgments. This research has been supported by The Irish Research Council
for Science, Engineering and Technology: funded by the National Development Plan.

References

1. Cui, J., Wen, F., Tang, X.: Real time google and live image search re-ranking. In:
Proceeding of the 16th ACM International Conference on Multimedia, pp. 729–732 (2008)

2. Jackson, R.S.: Wine tasting: a professional handbook. Elsevier, Amsterdam (2002)
3. Hampson, C., Conlan, O.: Leveraging Domain Expertise to Support Complex,

Personalized and Semantically Meaningful Queries Across Separate Data Sources. In:
Proceeding of the Fourth IEEE International Conference on Semantic Computing
(ICSC 2010), Pittsburgh, USA, pp. 305–308 (2010)

4. Hare, J.S., Lewis, P.H., Enser, P.G.B., Sandom, C.J.: Mind the gap: Another look at the
problem of the semantic gap in image retrieval. In: Multimedia Content Analysis,
Management, and Retrieval 2006, vol. 6073, pp. 75–86 (2006)

5. Enser, P.G.B., Sandom, C.J., Lewis, P.H.: Surveying the reality of semantic image
retrieval. In: Bres, S., Laurini, R. (eds.) VISUAL 2005. LNCS, vol. 3736, pp. 177–188.
Springer, Heidelberg (2006)

6. Datta, R., Li, J., Wang, J.Z.: Content-based image retrieval: approaches and trends of the
new age. In: Proceedings of the 7th ACM SIGMM International Workshop on Multimedia
Information Retrieval, pp. 253–262. ACM, New York (2005)

7. Tamura, H., Yokoya, N.: Image database systems: A survey. Pattern Recognition 17,
29–43 (1984)

8. Shen, H.T., Ooi, B.C., Tan, K.L.: Giving meanings to WWW images. In: Proceedings of
the 8th ACM International Conference on Multimedia, pp. 39–47. ACM, New York (2000)

9. Cai, D., He, X., Li, Z., Ma, W.Y., Wen, J.R.: Hierarchical clustering of WWW image
search results using visual, textual and link information. In: Proceedings of the 12th
Annual ACM International Conference on Multimedia, pp. 952–959. ACM, New York
(2004)

10. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Position paper, tagging, taxonomy, flickr,
article, to read. In: Collaborative Web Tagging Workshop, Edinburgh, Scotland (2006)

11. Gong, Y.: Advancing content-based image retrieval by exploiting image color and region
features. In: Multimedia Systems, vol. 7, pp. 449–457. ACM, New York (1999)

12. Yu, H., Li, M., Zhang, H.J., Feng, J.: Color texture moments for content-based image
retrieval. In: Proceedings of the International Conference on Image Processing,
pp. 929–932 (2002)

13. Shih, J.L., Chen, L.H.: Color image retrieval based on primitives of color moments. In:
Chang, S.-K., Chen, Z., Lee, S.-Y. (eds.) VISUAL 2002. LNCS, vol. 2314, pp. 88–94.
Springer, Heidelberg (2002)

14. Davis, S.: Color perception: Philosophical, Psychological, Artistic, and Computational
Perspectives. Oxford University Press, Oxford (2000)

Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases 349

15. Gage, J.: Color and Meaning: Art, Science, and Symbolism. University of California Press,
Berkeley (1999)

16. Fehrman, K., Fehrman, C.F.: Color: The Secret Influence. Prentice-Hall, Englewood Cliffs
(2000)

17. Valdez, P., Mehrabian, A.: Effects of color on emotions. Journal of Experimental
Psychology 123, 394–408 (1994)

18. Parramon, J.: Color Theory. Watson-Guptill Publications, New York (1989)
19. Sinha, P., Jain, R.: Semantics In Digital Photos A Contextual Analysis. In: Proceeding of

the Second IEEE International Conference on Semantic Computing, pp. 58–65 (2008)
20. Enser, P.: Visual image retrieval: seeking the alliance of concept-based and content-based

paradigms. Journal of Information Science 26, 199–210 (2000)

SkyMap: A Trie-Based Index Structure for
High-Performance Skyline Query Processing

Joachim Selke and Wolf-Tilo Balke

Institut für Informationssysteme
Technische Universität Braunschweig

Braunschweig, Germany
{selke,balke}@ifis.cs.tu-bs.de

Abstract. Skyline queries have become commonplace in many applications. The
main problem is to efficiently find the set of Pareto-optimal choices from a large
amount of database items. Several algorithms and indexing techniques have been
proposed recently, but until now no indexing technique was able to address all
problems for skyline queries in realistic applications: fast access, superior scala-
bility even for higher dimensions, and low costs for maintenance in face of data
updates. In this paper we design and evaluate a trie-based indexing technique
that solves the major efficiency bottlenecks of skyline queries. It scales grace-
fully even for high dimensional queries, is largely independent of the underlying
data distributions, and allows for efficient updates. Our experiments on real and
synthetic datasets show a performance increase of up to two orders of magnitude
compared to previous indexing techniques.

1 Introduction

Skyline queries, introduced in [2], quickly found its way into a widespread range of data
management applications. Soon after the first skyline algorithms have been presented,
emerging fields like e-shopping or location-based services used the economic intuitive-
ness of Pareto-optimal result sets, e.g., for deriving all reasonable product alternatives
[15,8]. The basic idea is to filter out all those items (database tuples) dominated in terms
of usefulness by other items, i.e., there is no utility function declaring a dominated item
as best choice. For example, when trying to find an inexpensive hotel close to the beach,
overpriced inland hotels can safely be excluded.

In a brief period of time, several important problem settings building on the origi-
nal skyline paradigm have been identified and individual solutions have already been
proposed, e.g., [3], [14], or [11]. However, all these algorithms rely on specialized tech-
niques, whereas the widespread applicability of skyline queries also raises the question
of how these queries can be answered efficiently in general-purpose database systems.
This especially sparked interest in the use of indexing techniques to boost skyline query
performance (e.g., [11], [6], [16], or [9]). Indexes are indeed the key for broad database
support for efficient skyline compution. In fact, [9] shows that a wide variety of special
skyline queries (k-dominant skylines, skybands, subspace skylines, etc.) can be sup-
ported using a single index structure. But although indexes can dramatically speed up

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 350–365, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

SkyMap: A Trie-Based Index Structure 351

retrieval, they of course also introduce maintenance costs and tend to quickly degen-
erate on higher dimensional data. The task thus is to design a robust index structure
that (1) enables high-performance skyline processing, (2) is easy to maintain, and (3)
gracefully scales with data dimensionality.

In this paper we propose SkyMap, an innovative trie-based index structure for sky-
line query support. In a nutshell, SkyMap adopts a recursive grid-like space partitioning
approach, which facilitates efficient navigation. In contrast to traditional data-driven
space partioning with the inherent danger of degeneration over time, SkyMap takes
the problem domain into account. Since skyline computation builds on ranks rather
than absolute scores, any data set can be transformed spreading data evenly over each
dimension. Thus, an efficient data independent space partitioning scheme without de-
generation problems can be used, and the trie generally stays balanced. In particular,
we will show that for each data set there exists only a single unique SkyMap making
the resulting trie structure independent of the order in which data is inserted or deleted.

Moreover, data is only contained in the trie’s leaf nodes, which fosters efficient main-
tenance operations. Especially, expensive rebalancing operations are avoided. Naviga-
tion within the SkyMap index is particularly efficient by relying on inexpensive bitwise
operations only. The index also closely controls each node’s fan-out by limiting the split
factors, to optimize the trie’s depth-to-width ratio. Thus, the index’s degradation into a
linear list is effectively prevented.

We extensively evaluated SkyMap on different data sets and compared its performace
to the current state-of-the-art indexing schemes: approaches based on quadtrees (OSP-
SPF [16] and BSkyTree [7]) and on UB-trees (ZB-tree [9]). Although these techniques
show their strength in different aspects (higher pruning power vs. improved mainte-
nance), SkyMap outperforms them on all counts. We show that our trie-based indexing
scheme gains an order of magnitude in query performance across the board, for skyline
maintenance even up to two orders of magnitude.

2 Related Work

The investigation of skyline processing started out with list-based approaches like the
well-known BNL algorithm [2] and at first focused on algorithmic aspects and sophis-
ticated heuristics like presorting [4] or limiting [1]. However, the necessity for efficient
indexing schemes was soon recognized. Indexes allow for efficient pruning, hence large
parts of the database can immediately be excluded from costly dominance tests. The
first approaches featured efficient bitmap indexes [5] and R-trees with nearest neighbor
search [6] or branch-and-bound pruning [11]. The major problem with these approaches
was that the underlying data structures did not lend themselves readily for adoption to
skylining problems. Since overlapping regions in multi-dimensional index structures
proved to pose severe performance penalties, recent approaches focus on strictly dis-
joint space partionings or efficient one-dimensional indexing using space-filling curves.

The ZB-tree [9] is based on the UB-tree, where each data point is mapped to its
Z-address, which in turn provides a one-dimensional key for B-tree indexing. The ben-
efits of this approach for skyline processing are twofold. On one hand, through the
Z-addresses the B-tree imposes a presorting on the data, which can be exploited for
dominance tests: No database item can dominate any item having a lower Z-address.

352 J. Selke and W.-T. Balke

On the other hand, the regions covered by each tree node can easily be estimated (up-
per bound) without keeping track of minimum bounding rectangles. A major drawback
of the ZB-tree approach is that regions may overlap, which hampers effective pruning.
Moreover, the maintenance of B-trees is rather expensive in case of frequent updates,
in particular due to rebalancing operations caused by node underflows. Still, the actual
degeneration of the index structure over time is not a problem.

OSPSPF [16] and the BSkyTree [7] focus on the problem of overlapping regions and
improve performance by disjoint space partitioning. Both approaches rely on quadtrees
and basically are alternative implementations of the same idea. Each tree node stores a
single data item, which is used to split the underyling space with respect to each dimen-
sion. The actual performance of this data-driven partitioning scheme is strongly depen-
dent on finding optimal splitting points. While a careful initial bulkloading will lead to a
perfectly balanced tree structure, frequent updates cause the index’ performance to de-
teriorate quickly. Moreover, since all nodes store actual data, deletions either ruin cache
efficiency when performing lazy deletions or force expensive reorganization operations.

In summary, we are forced to conclude that there is no single index structure offering
superior pruning power, easy maintenance, and graceful scaling.

3 Preliminaries

Henceforth, we consider a set of n database items, where each item’s utility can be
evaluated with respect to scorings over d criteria. Without loss of generality we assume
that each score lies within the interval [0,1) and that higher values are better. Then, the
database can be represented as a set A⊂ [0,1)d of size n.

Skylines captures the intuitive idea of Pareto optimality. Formally, given two points
x = (x1, . . . ,xd) and y = (y1, . . . ,yd), the point x is said to dominate y (denoted by x� y)
if and only if x = y and xi ≥ yi, for each dimension i. Furthermore, x and y are said to
be incomparable (denoted by x ‖ y) if and only if neither x = y, nor x � y, nor x ≺ y.
We write x�i y if xi > yi. The skyline of a data set consists of exactly those items that
cannot be ruled out by means of Pareto dominance. Formally, the skyline of a point set A
is the set S (A) =

{
x ∈ A

∣∣ there is no y ∈ A such that y� x
}

. Characteristic properties
of a data set A are its dimensionality d, its cardinality n, and its skyline size s := |S (A)|.

As a running example, consider the data set depicted in Fig. 1. Each point corre-
sponds to a database item, scored with respect to two different criteria. We see that
items A, B and C can safely be removed from further consideration since each is domi-
nated by some other item (A is dominated by F, E, and D; B is dominated by F, E, and
D; and C is dominated by D). The remaining items D, E, and F form the skyline.

4 The SkyMap Approach

The design goals for a skyline-centered indexing technique can be divided into two
categories: boosting performance and minimizing maintenance overhead. For boosting
performance, the index structure should be well-balanced, avoid overlaps between data
regions, and control the nodes’ fan-out degree to prevent degradation into a linear list.
For minimizing the maintenance overhead, all data should be collected in leaf nodes,

SkyMap: A Trie-Based Index Structure 353

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A

B

C

D

EF

Fig. 1. Our running example

whereas all internal nodes should be purely navigational. Expensive reorganizations of
the index structure must be avoided.

Although these goals sound contradictory, we show that it is indeed possible to
implement them within a single data structure. Looking at the overlap problem, it
quickly becomes clear that disjoint space-partitioning is needed. Combining this par-
titioning with our requirement of leaf-only data storage while minimizing reorgani-
zations definitely calls for a data-independent partitioning scheme. Of course, such a
data-independent partitioning would hurt the index structure’s balancedness whenever
the data distribution is skewed in any dimension. But can we guarantee evenly spread
data for skyline computations? Interestingly, we can.

This is because the notion of Pareto dominance, and thus the base of skyline com-
putation, does only rely on the actual score values in so far as they introduce a dom-
inance ranking between database items. That means: As long as the relative ranking
with respect to each dimension stays intact, we may arbitrarily modify all absolute
score values. In particular, we may apply a transformation to each individual dimen-
sion that spreads database items evenly. This class of mathematical transformations is
known as copulas [10]. Copulas are computationally inexpensive and are typically ap-
plied for correlation analysis. The following (intuitive and easy-to-prove) lemma shows
that computing the skyline of a copula-transformed data set will indeed yield the data
set’s original skyline.

Lemma 1. Let A be a d-dimensional data set, f1, . . . , fd : [0,1)→ [0,1) strictly mono-
tonic increasing functions, f (x) := (f1(x1), . . . , fd(xd)), and f (A) :=

{
f (x)
∣∣x ∈ A

}
.

Then, x ∈S (A) if and only if f (x) ∈S
(

f (A)
)
, for any x.

4.1 Tries

To satisfy our design goals, we chose to base the SkyMap index on tries. The term
trie refers to all tree data structures that perform a data-independent disjoint space-
partitioning and use (typically binary) strings for navigation [13].

To give an example, Fig. 2 illustrates the difference between a binary search tree
(BST) and a 3-digit binary trie (3BT), when it comes to storing a given set of numbers.
While there is a one-to-one mapping between nodes and data items in the BST, the 3BT
differentiates between internal nodes, which are solely used for navigational purposes,
and leaf nodes, which store the actual data. Moreover, the BST is constructed only
by performing ordinal comparisons between numbers, whereas the 3BT exploits the

354 J. Selke and W.-T. Balke

4

1

0 2

7

6 0

0

1

1

0

2

0

1

0

4

0

0

6

0

7

1

1

1

Fig. 2. A binary search tree and a 3-digit binary trie storing the set {0,1,2,4,6,7}

numbers’ binary representation. Finally, there are many different BSTs storing the data
set shown in Fig. 2, whereas the 3BT is unique.

Quadtrees are the multidimensional extension of BSTs, while our SkyMap is a mul-
tidimensional extension of binary tries, which additionally provides efficient algorithms
for dominance checks. The regular and predictable structure of tries provides high mem-
ory locality and enables efficient updates of the stored data set—two key ingredients of
SkyMap. It also heavily exploits the binary representation of data points. Henceforth,
we indicate score values written in binary by the prefix B, e.g., 0.75 = 1

2 + 1
4 = B0.11.

For easy presentation and without loss of generality, we assume in the following that
all of A’s points are distinct.

4.2 Z-Addresses, Z-Regions, and Z-Subregions

In Section 3 we assumed without loss of generality that all data points are located in
[0,1)d . Therefore, the i-th coordinate value of the point x = (x1, . . . ,xd) can be rep-
resented as xi = B0.αi,1αi,2 · · · , where αi,1,αi,2, . . . ∈ {0,1} are xi’s binary digits. By
interleaving the bits of all of x’s coordinate values, the Z-address of x, denoted by Z(x),
can be derived [12]:

Z(x) = B0.α1,1 · · ·αd,1α1,2 · · ·αd,2 · · · .

In general, the j-th bit of a Z-address is determined by the
(
((j− 1)divd)+ 1

)
-th bit

of the
(
((j− 1) mod d) + 1

)
-th coordinate value. For example, the Z-address of the

three-dimensional point (0.125,0.75,0.5)= B(0.001,0.11,0.1) is B0.0110101.
When reversing the above situation, also each Z-address uniquely defines a d-

dimensional point in the (upper open) unit hypercube. We will use this property to
assign a rectangular region in space to each finite binary sequence as follows: Given
a number y = B0.β1β2 · · · ∈ [0,1) and a non-negative integer r, we define the r-th Z-
region of y, denoted by ZRr(y), to be the set of all points whose Z-address (in binary)
begins with the sequence B0.β1β2 · · ·βr. That is,

ZRr(y) =
{

x ∈ [0,1)d
∣∣∣ Z(x) = B0.β1 · · ·βrγr+1γr+2 · · ·

}
.

In general, any Z-region is a lower closed and upper open hyperrectangle.
Every Z-region can naturally be partitioned into smaller Z-regions as follows: Given

a number y = B0.β1β2 · · · ∈ [0,1) as well as two non-negative integers r and b, then
for any γ1, . . . ,γb ∈ {0,1}, the (r + b)-th Z-region of the number B0.β1 · · ·βrγ1 · · ·γb is

SkyMap: A Trie-Based Index Structure 355

[0,1)× [0,1)

[0,0.5)× [0,1)

[0,0.5)× [0,0.5)

B

0

[0,0.5)× [0.5,1)

[0,0.25)× [0.5,1)

A

0

[0.25,0.5)× [0.5,1)

F

1

1

0

[0.5,1)× [0,1)

[0.5,1)× [0,0.5)

C

0

[0.5,1)× [0.5,1)

[0.5,0.75)× [0.5,1)

E

0

[0.75,1)× [0.5,1)

D

1

1

1

Fig. 3. A SkyMap (b = 1, c = 1) indexing our example data set

a subset of ZRr(y). In total, there are 2b such subsets, which are mutually disjoint. This
way, for any b, the Z-region ZRr(y) can be divided into 2b partitions. In the following,
we will refer to these partitions as ZRr(y)’s Z-subregions of degree b. For example,
in two-dimensional space, the degree-2 Z-subregions of the Z-region ZR0(0) = [0,1)2

are ZR2(0) = [0,0.5)× [0,0.5), ZR2(0.25) = [0,0.5)× [0.5,1), ZR2(0.5) = [0.5,1)×
[0,0.5), and ZR2(0.75) = [0.5,1)× [0.5,1).

4.3 SkyMap and Its Basic Operations

In this section, we build the skeleton of SkyMap. For this task, we turn the concepts just
presented into a recursive scheme for space decomposition.

A SkyMap index is a trie that consists of internal nodes and leaf nodes: Leaf nodes
store a list of at least one but at most c data points, where c is some integer we will
refer to as the capacity of a leaf node. We assume that all leaf nodes have the same
capacity. Internal nodes store an array of exactly 2b pointers to its child nodes, which
are indexed by the numbers 0 to 2b−1, where b again is an integer parameter shared by
all nodes. We will refer to b as the split degree of an internal node (measured in bits).
Null pointers are generally allowed, but empty nodes are not permitted.

The SkyMap index has been designed to resemble the recursive splitting process of
Z-regions into all its 2b Z-subregions of degree b. In particular, each node represents
some Z-region, where the root node corresponds to the Z-region ZR0(0) = [0,1)d .

Fig. 3 shows a normalized version of our example database and a corresponding
SkyMap indexing it. We set b = 1, which means that the data space is recursively split
along a single dimension each. The respective dimension changes from level to level.
The capacity c is set to 1, i.e., each leaf node stores a single point. To illustrate the effect
of these parameters, Fig. 4 shows an alternate SkyMap with b = 2 and c = 2.

In contrast to quadtree-based approaches, where nodes may have up to 2d children,
in a SkyMap index the number of children of each node can easily be controlled by
setting the parameter b accordingly. That way, degradation of the trie structure to a
linear list can be avoided in higher dimensional spaces. On the other hand, b can be
chosen large enough to enable a most effective space division and pruning. Moreover,

356 J. Selke and W.-T. Balke

[0,1)× [0,1)

[0,0.5)× [0,0.5)

B

00

[0,0.5)× [0.5,1)

A, F

01

[0.5,1)× [0,0.5)

C

10

[0.5,1)× [0.5,1)

D, E

11

Fig. 4. A SkyMap (b = 2, c = 2) indexing our example data set

by tuning the leaf capacity c, one can avoid excessive ramification of the trie but still
receive the benefits of indexing, thus exploiting the full potential of memory caches.

The most important operations required for building and maintaining an index are
bulkloading of entire data sets as well as inserting and deleting individual items. As we
will show next, these operations can be performed highly efficient in a SkyMap index.

In SkyMap, bulkloading of a given data set A is performed in top-down fashion. After
presorting the data set by Z-addresses, we recursively split the data set with respect to
Z-address prefixes of length b and create internal nodes (if the number of remaining
points is larger than c) or leaf nodes (otherwise). During this process, we completely
avoid expensive multi-dimensional point comparisons and only rely on cheap integer
comparisons and bit-shifting operations. The complete algorithm is shown in Fig. 5.

To insert a new point p into an existing SkyMap (cf. Fig. 5), we traverse the trie
structure according to p’s Z-address and add p to a matching leaf node. If the leaf node
already is filled to its maximum capacity c, we replace it by a new internal node. Then,
the insertion process continues at the new node. Again, we do not perform explicit point
comparisons but only need to perform integer comparisons and bit shifts. Moreover, our
insertion procedure does not require expensive rebalancing operations.

In a similar fashion, points can be removed from an existing SkyMap index: First,
find the corresponding leaf node leaf and delete the point. In case leaf gets empty
by this operation, also remove leaf from the index. If necessary, recursively repeat this
cleanup process with all parental internal nodes. Moreover, the deletion algorithm keeps
track of how many points are located below each internal nodes it visits during the
cleanup process. If an internal node is detected that covers only c points or less, then
this internal node is replaced by a corresponding leaf node, thus reducing the SkyMap’s
depth to the minimum possible value. Due to space limitations, we omit the pseudocode.

4.4 Analysis

Having introduced the basic structure of the SkyMap index, we now demonstrate that
it lives up to its promise. Recall the two main requirements: boosting performance and
minimizing maintenance overhead. By designing simple insert and delete operations,
which only affect a very small number of nodes and do not perform any expensive
rebalancing or restructuring, we have already fulfilled our second requirement of easy
maintenance. At the same time, due to the use of copulas for normalizing our data set
(i.e., distributing it equally across each dimension; see Lemma 1), we are able to achieve
a homogeneous distribution of data points across the whole SkyMap tree (given that
data dimensions do not exhibit correlation or anti-correlation at an extreme degree).

SkyMap: A Trie-Based Index Structure 357

function BULKLOAD(A)
Presort A by Z-addresses; let P and Z be the resulting lists of points and Z-addresses
root ← BULKLOAD(P , Z, 0, |A|−1)

function BULKLOAD(P , Z, from, to)
size← to− from+1
if size≤ c then return a new leaf node containing P[from, . . . , to]
else

node← a new empty internal node
Z’← a copy of Z, in which the first b bits have been removed from each entry
pos← from
zbFrom← the first b bits of Z[from]
while pos≤ to do

zbPos← the first b bits of Z[pos]
if zbPos = zbFrom then

node.children[zbFrom]← BULKLOAD(P , Z’, from, pos−1)
from← pos
zbFrom← zPos

node.children[zbFrom]← BULKLOAD(P , Z’, from, to)
return node

function INSERT(p)
if root = null then root← a new leaf node containing only p
else

z← p’s Z-address
INSERT(p ,z,root,0)

function INSERT(p , z, node, depth)
zb← the first b bits of z
if node is an internal node then

if node.children[zb] = null then node.children[zb]← a new leaf containing only p
else

z’← z without its the first b bits
INSERT(p , z’, node.children[zb], depth+b)

else if node is a leaf node containing less than c points then Add p to node
else

node’← a new empty internal node
for each point q contained in node do

qz← q’s Z-address without its first depth bits
INSERT(q , qz, node’, depth)

INSERT(p , z, node’, depth)
Replace node by node’ in the SkyMap index

Fig. 5. Creating a SkyMap by bulkloading and inserting a new point into an existing SkyMap

We now show that SkyMap also possesses two key ingredients of high-performance
index structures: immunity against degradation due to database updates and logarithmic
depth on average.

Lemma 2. Let the parameters b and c be fixed. Then, for any data set A, there is a
unique SkyMap indexing A, modulo sort order of points within leaves.

Proof. Assume that there are two different SkyMap indexes storing the data set A. Since
by design each point is always stored in a leaf node along its Z-address path, to be
different modulo sort order of points within leaf nodes, one of the SkyMap indexes
must contain a leaf node that is not present in the other one. Let N be this node. We
assume without loss of generality that N is located within the first index. Since any
point contained in N must also be present in some leaf node of the second index, there
must be a leaf node M in the second index at the location of one of N’s parental internal
nodes. As M can contain at most c points and points are placed in the index along their

358 J. Selke and W.-T. Balke

Z-addresses, also the subtrie rooted at the internal node corresponding to M in the first
trie can contain at most c points, a situation which is explicitly avoided in the deletion
procedure. Since unnecessary internal nodes can only be created by deletion tasks, this
directly corresponds to our initial assumption.

The preceding lemma makes clear that there cannot be any degradation in a SkyMap in-
dex, no matter what sequence of insertions and deletions is performed. Our next lemma
is about index behavior on deletions.

Lemma 3. Let S be a SkyMap indexing some data set A and B⊆ A. Then, any SkyMap
indexing B only has nodes at those positions where there is a node in S.

Proof. Due to the uniqueness property of SkyMap indexes, any index S′ storing only a
subset of another index S, can be derived from S by performing a series of individual
point deletions and reordering points in leaves. By design of the delete operation, no
new nodes are being constructed, but only underflowing nodes are removed. Therefore,
S′ cannot contain a node at some position where is no node in S.

Corollary 1. (From Lemma 3) Let A be data set and B⊆ A. Then, the maximum node
depth in any SkyMap indexing B is smaller than or equal to the maximum node depth
found in any SkyMap indexing A.

Consequently, the maximum depth of a SkyMap indexing only the skyline of A is at
most as large as the maximum depth of any SkyMap indexing the whole data set A.

Finally, let us consider the case of uniformly distributed data, which usually is a good
indicator of the general behavior of skyline data structures.

Lemma 4. Let A be a random set of size n, where each p∈ A is a random vector, which
has independently and uniformly been drawn from the unit hypercube [0,1)d. Then, the
maximum depth of any SkyMap indexing A is O(logn) in expectation.

Proof. (Sketch) Since each point p has been drawn uniformly from [0,1)d , the bits of
p’s Z-address are independent random variates with equal probabilities for each of the
outcomes 0 and 1. Therefore, all points spread uniformly over all possible Z-address
prefixes, thus implying logarithmic depth.

Corollary 2. (From Lemma 4 and Corollary 1) The SkyMap index storing the skyline of
a random uniformly distributed data set A of size n has maximum node depth O(logn)
in expectation.

We conclude that SkyMap indexes provide the balancedness needed for quick data ac-
cess combined with robustness against degeneration caused by frequent updates.

4.5 Skyline Algorithms

To enable the actual processing of skyline queries, we still need an effective way to per-
form dominance tests on the index. Given a data point p, our ISDOMINATED operation
checks whether p is dominated by some point stored in the SkyMap. The algorithm (cf.

SkyMap: A Trie-Based Index Structure 359

function ISDOMINATED(p)
if root = null then return false
else

z← p’s Z-address
return ISDOMINATED

(
p,z,root,0,{1, . . . ,d})

function ISDOMINATED(p , z, node, depth, EQ)
if node is an internal node then

(zb0, . . . ,zbb−1)← the first b bits of z
z’← z without its first b bits
for each i = 2b−1, . . . ,0 with node.children[i] = null do

(ib0, . . . , ibb−1)← i in b-bit representation
EQ’← EQ
for each j = depth, . . . ,depth +b−1 do

dim← (j mod d)+1
if dim ∈ EQ then

if zbj < ibj then EQ’← EQ’\{dim} 	 p≺dim node
else if zbj > ibj then next i 	 p�dim node, continue the outer for loop

if EQ’ = /0 then return true
if ISDOM.(p , z’, node.children[i], depth +b, EQ’) then return true

return false
else

for each point q contained in node do
if p≺ q then return true

return false

function SKYLINE(A)
Sort A by decreasing Z-addresses; let P be the resulting list of points
S← a new empty SkyMap index
for i = 0, . . . , |A|−1 do

p← P[i]
if no point in S dominates p then Insert p into S

return the set of points contained in S

Fig. 6. Checking whether a point is dominated and computing the skyline of a given data set

Fig. 6) rests on the following observation: When traversing a SkyMap index while look-
ing for points dominating p, one can skip any node (along with all its children) whose
corresponding Z-region is worse than p with respect to at least one dimension.

ISDOMINATED works as follows: The SkyMap index is traversed in depth-first search,
beginning with those nodes belonging to the largest Z-addresses to visit nodes and points
with high domination power first. At each internal node, we scan over all child nodes and
compare the length-b Z-address interval used to identify each child to the corresponding
interval in p’s Z-address. This way, we can easily determine whether p is better in some
dimension dim than the child node. If this is the case, the child can be immediately be
excluded from further traversal. While traversing the index, we continuously maintain
a set EQ of dimensions, in which the current node node and p have found to be equal
with respect to the Z-address prefix processed so far. A dimension is eliminated from
EQ if a child node is known to be better than p with respect to this dimension. During
the traversal only those dimensions still contained in EQ have to be checked. Whenever
we reach a leaf node, p is compared to each of the node’s points.

The leaf node capacity c typically will be adapted to the current hardware so that all
of the leaf node’s points can fit into the CPU cache, which supports extremely fast point
comparisons. Moreover, the set EQ can be implemented only by performing bitwise
operations on ordinary integers. The same is true for all Z-address comparisons. This
way, expensive point comparisons again can largely be avoided.

360 J. Selke and W.-T. Balke

function MINSERT(p)
if some point in the skyline index dominates p then

Insert p into the data index
else

P← the set of skyline points being dominated by p
for each q ∈ P do

Delete q from the skyline index
Insert q into the data index

Insert p into the skyline index

function MDELETE(p)
if p is not contained in the skyline index then

Delete p from the data index
else

P← the set of all data points being dominated by p
Delete p from the skyline index
for each q ∈ P do

if no point in the skyline index dominates q then
Delete q from the data index
Insert q into the skyline index

Fig. 7. Maintaining the skyline in case of changing data

Now, we are able to state our SKYLINE algorithm, which combines the insights of
traditional list-based skyline algorithm with the pruning power of SkyMap. It also ex-
ploits the following important monotonicity property of Z-addresses:

Lemma 5. Let p,q ∈ [0,1)d. If Z(p) > Z(q), then p ≺ q.1

Our SKYLINE algorithm works as follows: It first presorts the data set by decreasing
Z-addresses, which by the above lemma guarantees that no data point dominates any of
its predecessors. Then, an empty SkyMap index is created and the sorted list is scanned
linearly. For each point p, the function ISDOMINATED(p) is called. If it returns true,
then there already is a point in the index dominating p, thus eliminating p as a skyline
point. If the function returns false, p must be a skyline point. In this case, we insert p
into the SkyMap index, which always contains the skyline of the data points processed
so far. Fig. 6 shows the pseudocode.

For continuously maintaining the skyline of a large database, we propose to use two
SkyMap indexes, where the first indexes all current skyline points and the second all
remaining database items. To support bulkloading, insertion and deletion, we designed
three algorithms: MBULKLOAD, MINSERT, and MDELETE.

Given a data set A, MBULKLOAD creates a valid initial configuration of the two
indexes by first computing the skyline of A by means of our SKYLINE algorithm, then
removes all skyline points from A, and finally bulkloads A into the second SkyMap
index using the BULKLOAD method.

MINSERT and MDELETE require the helper function FINDDOMINATED, which re-
turns a list of all items in a SkyMap index that are dominated by a given point p. The
returned list is sorted by descreasing Z-addresses. FINDDOMINATED follows the same
approach as our ISDOMINATED function, with only two major differences: First, in-
stead of finishing the traversal at the first dominated point, each the search continues
until the whole tree has been traversed; second, all bitwise comparisons operations are
performed inverted. As FINDDOMINATED can easily be derived from ISDOMINATED’s
pseudocode, we abstain from providing an extensive description.

With the help of FINDDOMINATED, maintained insertions and deletions can be per-
formed as shown in Fig. 7. When inserting a new point p, no special action is required
if p is dominated, whereas in case p is a new skyline point all current skyline item being
dominated by p need to be found and moved to the data index. The opposite happens
when deleting an existing point p. Here, no special action is required if p is domi-
nated. Otherwise, all index points being dominated by p need to be found and moved

1 A proof of this lemma can be found in [9].

SkyMap: A Trie-Based Index Structure 361

to the skyline index if they now become new skyline points. As the result list returned
by FINDDOMINATED is ordered by decreasing Z-addresses, we can exploit the same
monotonicity property that already proved to be helpful in our SKYLINE method.

We designed our algorithms for in-memory computations. It has been demonstrated
in previous work that skylining inherently is CPU-bound and easily become intractable
if main memory is scarce (see e.g. [2] or [16]). Fortunately, even the largest data sets so
far used in skyline research easily fit into a modern desktop computer’s main memory.

5 Evaluation

Beside our own method, we implemented the following state-of-the-art algorithms for
skyline computation and maintenance: (1) OSPSPF [16] with the pivoting extension for
bulkloading introduced in [7], (2) the ZB-tree [9]. Our experimental setup follows the
standard methodology used in skyline research.

Regarding our test data sets, we decided to follow the common methodology in the
skylining literature and thus used the three data generators IND (independent data di-
mensions), CORR (correlated), and ANTI (anti-correlated) as proposed in [2]. Given
parameters d and n, these algorithms randomly create data sets having independent, cor-
related, or anti-correlated dimensions, respectively. In the experiments reported below,
we did not apply any data normalization by means of copulas, as as found SkyMap’s
performance on copula-normalized data to be very similar. This indicates that our ap-
proach is quite robust with respect to data skewness.

We also wanted to evaluate our method on real-world data sets, but soon realized that
all real-world data sets traditionally used in skyline research (e.g., NBA, Corel, House-
hold) are far too small and simplistic to pose a challenge to modern skyline algorithms
and thus allow meaningful comparisons among them, a problem that already became
apparent in [16], [7], and [9]. To remedy this issue we decided to use a 60-dimensional
data set consisting of texture features extracted from n = 275,465 aerial images, where
the skyline consists of 26,817 points. The data set can be downloaded from the web site
of the Vision Research Lab at UCSB.2

For each of the different choices of d and n we used in our experiments, we ran-
domly generated 10 data sets with each of the three data generators. All running times
reported below are averages over the corresponding 10 skyline computations with each
algorithm. We did not report any running times below 100 ms due to measurement un-
certainty; numbers below this threshold tend to reflect arbitrary delays in memory allo-
cation and data initialization rather than actual performance and scalability.

Our programming language is Java 6. We carefully profiled and optimized all our
code to eliminate weak spots. This also included checking all our implementations
against existing original code. For example, we compared our version of the partitioning
algorithm to the code used in [16], which the authors kindly made available to us.

All experiments have been conducted on a Linux server system equipped with two
Intel Core i7 920 2.67 GHz quad-core processors and 20 GB of main memory. However,
all our code is single-threaded and uses only a small fraction of the available memory.

2 http://vision.ece.ucsb.edu/download.html

http://vision.ece.ucsb.edu/download.html

362 J. Selke and W.-T. Balke

 0.1

 1

 10

 100

 3 4 5 6 7 8 9 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

]

Number of dimensions d

ZB-tree
OSPSPF/BSkyTree

SkyMap

(a) IND data, n = 100K

 0.1

 1

 10

 100

 3 4 5 6 7 8 9 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

]

Number of dimensions d

ZB-tree
OSPSPF/BSkyTree

SkyMap

(b) ANTI data, n = 100K

 0.1

 1

 10

 100

100K 200K 500K 1M 2M

R
un

ni
ng

 ti
m

e
[s

]

Number of points n

ZB-tree
OSPSPF/BSkyTree

SkyMap

(c) IND data, d = 12

 0.1

 1

 10

 100

100K 200K 500K 1M 2M

R
un

ni
ng

 ti
m

e
[s

]

Number of points n

ZB-tree
OSPSPF/BSkyTree

SkyMap

(d) ANTI data, d = 12

Fig. 8. Skyline queries on synthetic data

Since both the ZB-tree and SkyMap depend on configuration parameters, we tried a
variety of different settings and finally ended up with a minimum node size of 20 and a
maximum node size of 50 for the ZB-tree; we chose b = 2 and c = 10 for SkyMap.

5.1 Skyline Computation

We first evaluated our approach in the traditional setting of skyline queries, that is,
given a data set A, the task is to compute its skyline. To investigate the influence of data
dimensionality, we set n = 100K and varied d over a large range of values. We also
evaluated the scalability of our method with respect to n by fixing d = 12 and varying
n. Fig. 8 depicts our findings. Due to space limitations, we only report performance
numbers for IND and ANTI data; results for CORR data are very similar.

As we can see there is no clear winner in the comparison between the ZB-tree and
OSPSPF/BSkyTree. The ZB-tree provides better performance for larger d but is worse
than OSPSPF/BSkyTree for mid-range values of d. Scalability with respect to n is not
an issue for any of the three algorithms. However, in any case, the SkyMap approach
significantly outperforms its competitors. Even in the special case d = 12, where OSP-
SPF/BSkyTree’s performance comes closest, SkyMap can easily defend its advantage
even for different values of n. We also measured scalability in n with respect to many
other values of d, but in no case any of ZB-tree or OSPSPF/BSkyTree has been able to
perform better than SkyMap. The results on our real-world data set confirm our find-
ings: Computing the skyline takes 13.7 seconds for the ZB-tree, 10.9 seconds for OSP-
SOF/BSkyTree, and 8.6 seconds for SkyMap.

SkyMap: A Trie-Based Index Structure 363

 0.1

 1

 10

 100

 3 4 5 6 7 8 9 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

]

Number of dimensions d

ZB-tree
OSPSPF/BSkyTree

SkyMap

(a) IND data, n = 100K ± 20K

 0.1

 1

 10

 100

 3 4 5 6 7 8 9 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

]

Number of dimensions d

ZB-tree
OSPSPF/BSkyTree

SkyMap

(b) ANTI data, n = 100K ± 20K

Fig. 9. Skyline maintenance on synthetic data

5.2 Skyline Maintenance

To investigate the performance of our method in the setting of skyline maintenance
we used to following three-step task: Given d and n, first n data points are bulkloaded
into the database and the skyline is computed. Then, 20% of the data are randomly
deleted, where after each deletion the skyline has to be maintained. Finally, a new data
set of size 20% is created randomly (according to the original data distribution) and
inserted into the database, where again after each single insertion the skyline has to be
maintained. Our results for scalability with respect to d as depicted in Fig. 9. We can see
that SkyMap consistently performs better than OSPSPF/BSkyTree, sometimes even by
two orders of magnitude. Compared to the ZB-tree, the results are twofold. In case of
very small skylines, the ZB-tree performs slightly better than SkyMap; however, when it
comes to scalability in d and skyline size, SkyMap clearly outperforms the ZB-tree. We
also measured scalability in n but always received the same scaling behavior as already
depicted in Fig. 8. Therefore, we did not include any further graphics illustrating the
fact that no method has scalability issues with respect to n.

5.3 Influence of Parameters

Finally, we investigated the influence of different parameters b and c on the performance
of SkyMap indexes. To illustrate all relevant effects, we chose a skyline query example
on IND data with d = 20. Our results are depicted in Fig. 10. We can see that regard-
less of the choice of the leaf capacity c, the retrieval performance quickly degrades for

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

R
un

ni
ng

 ti
m

e
[s

]

Split degree b

Leaf capacity c = 1
Leaf capacity c = 2
Leaf capacity c = 5

Leaf capacity c = 10
Leaf capacity c = 20

Fig. 10. Influence of parameters b and c

364 J. Selke and W.-T. Balke

high split degrees b, which also explains the bad performance of OSPSPF/BSkyTree in
high-dimensional space we observed previously (recall that quadtrees always split the
surrounding space into 2d partitions). Moreover, our results show performance disad-
vantages for very small leaf capacities, in particular when b is large. Due to our flexible
design, we can always chose a combination of parameters that optimally exploits the
specifics of the current hardware. However, our SkyMap approach is robust enough to
work well over a wide range of parameters.

6 Conclusion

In this paper, we have shown that the current state of the art in skyling processing is
characterized by a tradeoff. One can either have high-performance indexing on static
data (OSPSPF/BSkyTree) or high-performance skyline maintenance (ZB-tree), but un-
fortunately not both. However, easy integration of skyline algorithms into existing data-
base systems calls for a single method that efficiently supports both scenarios. With our
SkyMap index we have proposed a solution that successfully resolves this issue, and
consistently outperforms previous algorithms on most data sets.

References

1. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Transac-
tions on Database Systems 33(4), 31 (2008)

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proceedings of the 17th
International Conference on Data Engineering (ICDE 2001), pp. 421–430 (2001)

3. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-dominant sky-
lines in high-dimensional space. In: Proceedings of the 32th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2006), pp. 503–514 (2006)

4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of the
19th International Conference on Data Engineering (ICDE 2003), pp. 717–719 (2003)

5. Eng, P.K., Ooi, B.C., Tan, K.L.: Indexing for progressive skyline computation. Data and
Knowledge Engineering 46(2), 169–201 (2003)

6. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for sky-
line queries. In: VLDB 2002, pp. 275–286 (2002)

7. Lee, J., Hwang, S.: BSkyTree: Scalable skyline computation using a balanced pivot selection.
In: Proceedings of the 13th International Conference on Extending Database Technology
(EDBT 2010), pp. 195–206 (2010)

8. Lee, J., Hwang, S., Nie, Z., Wen, J.R.: Navigation system for product search. In: Proceed-
ings of the 26th International Conference on Data Engineering (ICDE 2010), pp. 1113–1116
(2010)

9. Lee, K.C.K., Lee, W.C., Zheng, B., Li, H., Tian, Y.: Z-SKY: An efficient skyline query
processing framework based on Z-order. The VLDB Journal 19(3), 333–362 (2010)

10. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, Heidelberg (2006)
11. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-

tems. ACM Transactions on Database Systems 30(1), 41–82 (2005)
12. Sagan, H.: Space-Filling Curves. Springer, Heidelberg (1994)
13. Sahni, S.: Tries. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applica-

tions, pp. 28-1–28-20. Chapman and Hall, Boca Raton (2005)

SkyMap: A Trie-Based Index Structure 365

14. Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in subspaces. IEEE Transactions
on Knowledge and Data Engineering 19(8), 1072–1088 (2007)

15. Viappiani, P., Faltings, B., Pu, P.: Preference-based search using example-critiquing with
suggestions. Journal of Artificial Intelligence Research 27, 465–503 (2006)

16. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based
space partitioning. In: Proceedings of the 35th ACM SIGMOD International Conference on
Management of Data (SIGMOD 2009), pp. 483–494 (2009)

A Path-Oriented RDF Index for Keyword Search Query
Processing

Paolo Cappellari1, Roberto De Virgilio2, Antonio Maccioni2, and Mark Roantree1

1 School of Computing
Dublin City University, Dublin, Ireland

{pcappellari,Mark.Roantree}@computing.dcu.ie
2 Dipartimento di Informatica e Automazione

Universitá Roma Tre, Rome, Italy
{dvr,maccioni}@dia.uniroma3.it

Abstract. Most of the recent approaches to keyword search employ graph struc-
tured representation of data. Answers to queries are generally sub-structures of
the graph, containing one or more keywords. While finding the nodes matching
keywords is relatively easy, determining the connections between such nodes is a
complex problem requiring on-the-fly time consuming graph exploration. Current
techniques suffer from poorly performing worst case scenario or from indexing
schemes that provide little support to the discovery of connections between nodes.

In this paper, we present an indexing scheme for RDF that exposes the struc-
tural characteristics of the graph, its paths and the information on the reachabil-
ity of nodes. This knowledge is exploited to expedite the retrieval of the sub-
structures representing the query results. In addition, the index is organized to
facilitate maintenance operations as the dataset evolves. Experimental results
demonstrates the feasibility of our index that significantly improves the query
execution performance.

1 Introduction

In 2006, the Linked Open Data initiative (http://linkeddata.org/) inspired prac-
titioners, organizations and universities to either publish or build from scratch RDF
(Resource Description Framework, a graph-oriented logical data model) datasets from
data that had previously been stored using traditional models [1], contributing to the def-
inition of what is today called the Web of Data. The main objectives in searching this
web of data are: the location and retrieval of results that are most relevant to the user’s
search, and to give more relevance to valid results currently missed (or low ranked)
by modern search engines. The methodology for achieving these aims is to include as
much semantics as possible in datasets and in general, RDF has been used to provide
indexes with rich semantics to better interpret user queries.

In a scenario where the online data is constantly increasing, the difficulty for users
is locating and retrieving the data that accurately meet their requirements. Having to
know how data is organized and the query language to access data represent an obstacle
to information access to non expert users. For this reason, keywords search systems are
increasingly popular. Many approaches (e.g. [4,8,10,12,14,15]) implement information

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 366–380, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://linkeddata.org/

A Path-Oriented RDF Index for Keyword Search Query Processing 367

retrieval (IR) strategies on top of traditional database systems, with the goal of eliminat-
ing the need for users to understand query languages or be aware the data organization.
A general approach involves the construction of a graph-based representation where
query processing addresses the problems of an exhaustive search over the RDF graph.
Two main steps are involved in the approach. Firstly, the system retrieves those parts of
the graph that match users keywords with a subsequent identification of any connections
across graph segments returned by the query process. Secondly, the system ranks the
combined graph segments and top-k results are presented from the candidate result set.
Clearly, the graph search is a crucial step. Typically it is supported by indexing systems
(computed off-line) to guarantee the efficiency of the search. Existing systems [9,13,18]
focus mainly on indexing nodes information (e.g. labels, position into the graph, car-
dinality and so on) to achieve scalability and to optimize space consumption. While
locating nodes matching the keywords is relatively efficient using these indexes, deter-
mining the connections between graph segments is a complex and time-consuming task
that must be solved on-the-fly at query processing time. To provide results in a reason-
able time, current approaches do not perform an exhaustive search. As index schemes
do not adequately support the discovery of connections between nodes, heuristics must
be introduced to assist the search in locating a more complete result set. Thus, while the
introduction of RDF-based solutions offers simple user interfaces with genuine seman-
tic search features, the problem now lies with how to associate or connect intermediate
result sets and how to manage the cost of determining those associations.

Contribution.We present a novel indexing scheme for RDF datasets that captures as-
sociations across RDF paths before query processing and thus, provides both an exhaus-
tive semantic search and superior performance times. Unlike other approaches involving
implementation based solutions, we follow a process that starts with the definition of
the index at a conceptual level. It comprises paths and information on the reachability
of nodes within the RDF graph. The next step is a logical translation for a relational
database. Eventually, at the physical level, we choose optimization techniques based on
physical indexing and partitioning. Because of the storage model foundations, the sys-
tem can easily represent structural aspects of an RDF graph. Moreover we provide a set
of procedures to insert or delete nodes (resources) and edges (properties) into the index
and thus, support updates to the RDF graph. Such index is deployed in YAANII [5],
a novel keyword search framework that leverages a joint use of scoring functions and
solution building algorithms to get the best results for the initial result set. Experiments
demonstrate how the proposed indexing scheme allows to significantly improve the ef-
ficiency of the overall process. The paper is organized as follows: Section 2 discusses
related work; Section 3 introduces the basic concepts and illustrates how we model our
path-oriented index; based on this model, Section 4 describes how the index is built and
maintained in an efficient manner; finally Section 5 provides experimental evaluations
and in Section 6, conclusions and future work are presented.

2 Related Work

Several proposals [9,13,18] implement in-memory structures that focus on node index-
ing. Others [16,19] focus on indices for SPARQL query execution and join efficiency,
not offering concrete support to graph exploration for keyword search. In [9], authors

368 P. Cappellari et al.

provide a Bi-Level INdexing Keyword Search (BLINKS) method for the data graph. This
approach assumes keywords can only occur in nodes, not in edges, and is based on pre-
computed distances between nodes. The system implements two indices: one index
stores information on which nodes are reachable from a given node; the other index is a
hash table storing the shortest distance between pairs of nodes. In [13], authors propose
a linked-list indexing scheme for RDF. The index is composed of a dictionary table,
a statement table and a resource table. The dictionary table maintains the association
between each resource and its (generated) identifier. Primarily, this table acts as reverse
look-up identifier to resource label, to complete the answer to a query. The statement
table maintains the list of the 〈s, p, o〉 RDF statements, where each statement has three
references, each pointing to the next statement using the same s, p, o respectively. The
resource table contains information about all the resources (s and o), linking each one
to the first statement in which it occurs, and collecting statistics about statements pre-
senting such resources. In [18], authors propose an approach to keyword search in RDF
graph through query computation, implementing a system called SEARCHWEBDB. It
is supported by two index structures: a keyword-to-element index and a graph index.
The former implements an inverted index to associate each possible keyword to nodes or
edges in the graph. To capture semantically similar words such as synonyms, every term
is expanded with its similar term as described in WordNet [6]. The latter stores schema
information of the graph, that is classes and relations between classes. The authors refer
to this type of schema as a summary graph. Contrary to those approaches that index the
entire graph, SEARCHWEBDB derives the query structure by enriching the summary
graph with the input keywords. The search and retrieval process for the enriched sum-
mary graph, with all its possible distinct paths beginning from some keyword elements,
provides a set of queries that once calculated, provides the final sub-graph answers.
Other proposals focus on indexing graph substructures (e.g. paths, frequent subgraphs,
trees). Typically, these indexes are exploited in approaches dealing with graph matching
problems, often to filter out graphs that do not match an input query. Approaches in this
area can be classified in: graph indexing and subgraph indexing. In graph indexing ap-
proaches, e.g. gIndex [20], TreePi [21], FG-Index [3], the graph database consists of a
set of small graphs. The indexing aims at finding all database graphs that contain or are
contained by a given query graph. On the other hand, subgraph indexing approaches,
e.g. GraphGrep [7], TALE [17], GADDI [22], aims at indexing large database graph,
with the goal of finding all (or a subset of) the subgraphs that match a given query
efficiently. Our indexing scheme provides an agile solution with respect to graph sub-
structures indexing approaches and enriches traditional node/edges indexing proposals
with exhaustive information about connections between nodes.

3 Index Modeling

Our goal is to model a generic indexing scheme to support queries execution and key-
word based search engines. Generally, standard queries are composed of a set of, pos-
sibly, interrelated path expressions. The result to a standard query is the portion of the
graph that matches the path-expression(s) provided in the query specification. In the
keyword based search paradigm, users are assumed to be agnostic of the schema and

A Path-Oriented RDF Index for Keyword Search Query Processing 369

Fig. 1. An example of reference

the query is a list of keyword terms. In keyword search systems the focus is on discov-
ering connections between nodes matching keywords, on top of which query answers
are built (as subgraphs). We would support systems that perform standard queries, such
as path expressions, as well as keyword search, where the emphasis is on discovering
connections between those parts of the graph holding information relevant to the input
keywords. In particular, we focus on semantic dataset expressed in RDF format, that is
a model that describes a directed labeled graph, where nodes are resources (identified
by URIs) and edges have a label that expresses the type of connection between nodes.

Definition 1. A labeled directed graph G is a three element tuple G = {V, L, E} where
V is a set of nodes, L is a set of labels and E is a set of edges of the form e(v, u) where
v, u ∈ V and e ∈ L.

In G we call sources the nodes vsrc with no incoming edges (i.e. �e(u, vsrc) ∈ E),
and sinks the nodes vsink with no outgoing edges (i.e. �e(vsink, u) ∈ E). We call
intermediate node, a node that is neither a source nor a sink. Consider the example in
Fig. 1. It illustrates an ontology about Publications written by Researchers (i.e. authors)
accepted and published into a Conference. We have two sources, pub1 and pub2, and
four sinks, of which for instance we have Publication and Conference.

From the data graph point of view, in a RDF graph we have classes and data values
(i.e. sinks), URIs (i.e. intermediate nodes and sources) and edges. Since it can be as-
sumed the user will enter keywords corresponding to attribute values such as a name
rather than using a verbose URI (e.g. see [18]), keywords might refer principally to
edges and sinks of the graph. Therefore in our framework we are interested to index
each path starting from a source and ending into a sink. Moreover, any node can be
reached by at least one path originating from one of the sources. Paths originating from
sources and reaching sinks includes (sub-)paths that stop in intermediary nodes. In case
a source node is not present, a fictitious one can be added. To this aim, the so-called
Full-Path is a path originating in a source and ending in a sink.

Definition 2 (Full-Path). Given a graph G = {V, L, E}, a full-path is a sequence
pt =v1-e1-v2-e2- . . . − en−1-vf where vi ∈ V , ei ∈ L (i.e. ei(vi, vi+1) ∈ E), v1 is a
source and the final node vf is a sink. We refer to vi and ei as tokens in pt.

370 P. Cappellari et al.

Fig. 2. Conceptual modeling of the index

In Fig. 1 a full-path ptk is pub1-author-aut1-type-Researcher. The length of a
path corresponds to the number of its nodes; the position of a node corresponds to its
position in the presentation order of all nodes. In the example, ptk has length 3 and the
node aut1 is in position 2. In the rest of the paper we refer to paths as full-paths.

The sequence of edge labels (i.e. ei) describes the structure of a path. In some sense,
the sequence of ei is a schema for the information instantiated in the nodes. We can say
that paths sharing the same structure carry homogeneous information. More properly,
we say that the sequence of ei in a path represents its template. Given a path pt its
template tpt is the path itself where each node vi in pt is replaced with the wild card #.
In our example ptk has the following template: #-author-#-type-#. Several paths
can share the same structure: it allows us to cluster paths according to the template
they share. For instance the path ptj pub2-author-aut2-type-Researcher has
the same template of ptk, that is ptj and ptk are in the same cluster.

In our framework we follow a three levels modeling. Starting from conceptual level,
Fig. 2 shows an ER-diagram modeling the major constructs in our index. We start from
the entity NODES modeling a node in the graph. The label is characterized by the at-
tribute URI and each node is identified by NID. We then have the main entity PATHS

representing a full-path. In particular, each path is identified by PID, presents the length,
and the relation final node with NODES, representing the sink of the path. Each node
belongs to a path with a position (i.e. the relation pathnode). Finally we have the entity
TEMPLATES identified by TID, presenting the sequence of edge labels (i.e. the attribute
template) and the number of paths sharing the template (i.e. the attribute count). Be-
tween PATHS and TEMPLATES a one-to-many relation assigns a template to each path.

At logical level, we have a straightforward transformation to a relational model.
Fig. 3 shows the logical modeling of Fig. 2, populated with data from the example
in Fig. 1. Each entity is transformed into a relation with the corresponding primary key
and with foreign keys for the one-to-many relationship it contains. The many-to-many
relationship PATHNODES is also transformed to a relation, correlating paths with their
nodes, and vice versa, through the attribute position.

As RDF datasets are often very large, at physical level we exploit relational DBMS
features to tune our schema for better performance. In particular we employ Oracle as
relational DBMS. First of all we implement horizontal partitioning on the tables, based
on the value of a column (called range). In particular PATHS is partitioned with respect to
the template (i.e. TID). In this way each partition is a cluster of homogeneous full-paths.

A Path-Oriented RDF Index for Keyword Search Query Processing 371

Fig. 3. Logical Modeling of the index

Then we define physical indexes on the single partitions and on the other unpartitioned
tables. Specifically, we employ the Oracle Index-organized tables (IOTs), that are a
special style of table structure stored in a B-tree index frame. Along with primary key
values, in the IOTs we also store the non-key column values. IOTs provide faster access
to table rows by the primary key or any key that is a valid prefix of the primary key.
Because the non-key columns of a row are present in the B-tree leaf block itself, there
is no additional block access for index blocks. In our case PATHS and PATHNODES

are organized as IOTs. The matching is supported by standard IR engines (c.f. Lucene
Domain index (LDi)1) embedded into Oracle as a type of index. In particular we define
a LDi index on the attributes label and template of tables NODES and TEMPLATES

respectively. Further, semantically similar entries such as synonyms, hyponyms and
hypernyms are extracted from WordNet [6], supported by LDi.

With this broad goal in mind, our indexing system provides two major advantages:
(i) intersections between paths, needed to build the subgraph solutions, are efficiently
identifiable (as we will show in the next section), and (ii) the template based classifica-
tion splits the information from the graph into non-overlapping subsets, as each cluster
represents an instance of a different template (or schema).

4 Index Management

In this section, we describe the index creation, discuss the processes to maintain the the
index when the graph changes and, finally, illustrate how to query the index.

4.1 Constructing the Graph Index

Given a graph, the creation of the index requires three steps: (i) node hashing, (ii) source
identification, and (iii) computation of full-paths, from source to sink.

1 http://www.scribd.com/doc/38406372/Lucene-Domain-Index

http://www.scribd.com/doc/38406372/Lucene-Domain-Index

372 P. Cappellari et al.

Algorithm 1. BFS-based graph exploration algorithm
Input : Sets triples and Roots
Output: PATHS, PATHNODES and TEMPLATES populated

1 foreach r ∈ Roots do
2 Queue ← ∅ ;
3 ptr ← NewID();
4 PATHS ← PATHS ∪ 〈ptr , NewID(), 1, r 〉 ;
5 PATHNODES ← PATHNODES ∪ 〈ptr , r , 1〉;
6 Enqueue(Queue , ptr);
7 while Queue is not empty do
8 Dequeue (Queue,pt) ;
9 if ∃〈pt , τ , l , n 〉 ∈ PATHS then

10 foreach 〈n , p , o 〉 ∈ triples do
11 if � ∃〈pt′ , , , o 〉 ∈ PATHS then
12 pt′ ← NewID() ;
13 τ ′ ← NewTemplate(τ , p);
14 PATHS ← PATHS ∪ 〈pt′ , τ , l + 1, o 〉 ;
15 foreach 〈m , pt , pos 〉 ∈ PATHNODES do
16 PATHNODES ← PATHNODES ∪ 〈m , pt′ , pos 〉 ;

17 PATHNODES ← PATHNODES ∪ 〈o , pt′ , l + 1〉 ;
18 Enqueue(Queue, pt′) ;

The input dataset is assumed to be an RDF graph where the information is modeled as
a set of triples. Each triple has the form 〈s, p, o〉 , where: s is the origin resource (known
as subject), o is the target resource (object), p is a property linking the origin with the
target resource (known as property). In the first step, we populate columns URI and NID
ub table NODES with nodes URIs and IDs, respectively. In the second step, we identify
the source nodes, that is all subjects of triples that never occur as objects. Finally in
a third step, we explore the graph to build the full-paths: once identified, the path is
decompose to populate tables TEMPLATES, PATHS and PATHNODES. We explore the
graph using a concurrent version of the Breath-First Search (BFS) algorithm, shown
in Algorithm 1. Starting from each source (line 1), the algorithm creates a one node
length path ptr composed of the source node only, associates the path with an ID using
the function newID, and puts ptr in the Queue (lines 3-6). While there are elements
in the queue (line 7), the algorithm dequeue pt from Queue (line 8): pt represents the
path just indexed and ending into the node n. Starting from n the algorithm collects all
nodes o, object into triples 〈n, p, o〉 (line 10). If a path ending in o does not exist (line
11), then new paths pt′ extending pt with the edge 〈n, p, o〉 (lines 13-17) are created.
Finally, it enqueues pt′, that will possibly create new paths of length l + 2.

4.2 Index Maintenance

When the dataset changes, the index must be updated as a consequence. We developed a
number of basic maintenance operations: insertion/deletion of a node; insertion/deletion

A Path-Oriented RDF Index for Keyword Search Query Processing 373

of an edge; and update of the content of a node/edge label. More sophisticated opera-
tions, such as the insertion or removal of a triple or a set of triples, can be implemented
as a composition of these basic functions.

Before presenting the algorithms for these basic operations, it is useful to introduce
a new concept and a new routine that simplify the discussion of the maintenance op-
erations: the tailpath and the forward-concatenation . A tailpath is a sub-path of an
full-path. Specifically, it is the sub-path starting at an intermediate position and ending
with the final node of the full-path (i.e. a sink).

Definition 3 (TailPath). A tailpath is represented as a pair 〈nodes, sub-template〉
where nodes is a list of pairs 〈n, pos〉, n is a node belonging to the tailpath and pos its
position. As an extension, sub-template is the corresponding template of tailpath.

Tailpaths are not stored in the index, but computed dynamically if and when needed for
maintenance operations.

Definition 4 (Forward-Concatenation). The forward-concatenation function creates
new paths by merging a selected path with a tailpath.

The forward-concatenation function uses a new edge, connecting the last node of the
selected path, with the first node of the tailpath to form a new Full-Path.

Algorithm 2 illustrates how to compute a tailpath starting from a node at a specific
position in a given path pt. The tailpath is built by querying the information from tables

Algorithm 2. TailPath.
Input : A Path pt, an integer pos
Output: A Tail Path tailPath

1 set ← ∅ ;
2 foreach 〈pt , nr , pos ′〉 ∈ PATHNODES : pos ′ ≥ pos do
3 set ← set ∪ 〈nr , pos ′ − pos + 1〉 ;

4 τsub ← SubTemplate(pt, pos);
5 tailPath ← 〈set , τsub 〉;
6 return tailPath;

PATHNODES (lines 2-3) and TEMPLATES (line 4) from our index. To compute the sub-
template we rely on a simple function, sub-template that retrieves the template for a
path and returns its substring starting at the specified position (where the position is de-
termined by the # symbols in the template). As an example, refer to Fig. 1 and its index
in Fig. 3, with the tailpath for path with ID 23 (i.e. pub-acceptedBy-conf1-type-
Conference) starting at position 2 (i.e. node conf1) is conf1-type-Conference.

Algorithm 3 describes the forward-concatenation mechanism to append a set of tail-
paths tailPaths to an existing path pt, where an edge p connecting the last node of the
path with the first node of the tailpath is provided. In the algorithm, for each tailpath
(line 1) a new path ptnew is created (lines 2-4). The function JoinTemplates concate-
nates two templates, updates the table TEMPLATES with the newly created template,

374 P. Cappellari et al.

Algorithm 3. ForwardConcatenation.
Input : A set tailPaths of tailpaths, a path pt to extend, an edge p
Output: The tables PATHS, PATHNODES, and TEMPLATES updated.

1 foreach 〈pairs , τsub 〉 ∈ tailPaths do
2 ptnew ← NewID();
3 τnew ← JoinTemplates(τ , τsub);
4 〈nmax , posmax 〉 ← MaxPos(pairs) ;
5 PATHS ← PATHS ∪ 〈ptnew , τnew , nf + posmax , nmax 〉;
6 foreach 〈pt , n , pos 〉 ∈ PATHNODES do
7 PATHNODES ← PATHNODES ∪ 〈ptnew , n , pos 〉;
8 foreach 〈m , pos 〉 ∈ pairs do
9 PATHNODES ← PATHNODES ∪ 〈ptnew , m , pos + l 〉;

and returns the identifier of such template. When updating TEMPLATES, if the template
is already defined then no row is added to the table; the count value for the existing
template is incremented and its identifier returned. Otherwise, a new row for the new
template is inserted in the table. The function MaxPos is used to retrieve the pair
〈n, pos〉 with highest position value from the set of nodes belonging to the tailpath.
With this information defined, we can store the new path in PATHS (line 5).

Let us provide an example. Assume pt =pub1-acceptedBy-conf1, tailPaths as
{DEXA} and p as name. The new path is ptnew = pub1-acceptedBy-conf1-name-

DEXA, with template #-acceptedBy-#-name-#. To complete the definition, we must
associate the newly created path with its nodes. Nodes belonging to ptnew are: those
belonging to pt (lines 6-7), and those belonging to the tailpath (lines 8-9).

Edge deletion. The edge to be deleted is specified as a parameter to the Algorithm 4
in the form of an RDF triple 〈s, p, o〉 .

Algorithm 4. Delete an edge.
Input : A triple〈s , p , o 〉 representing the edge with label p between nodes s and o.
Output: The updated index.

1 foreach 〈pt , n o, pos 〉 ∈ PATHNODES do
2 foreach 〈pt , n s, pos − 1〉 ∈ PATHNODES do
3 if p = PropByPos(pt, pos-1) then
4 TailPaths ← TailPaths ∪ TailPath(pt, pos);
5 PATHS ← PATHS � 〈pt , , , 〉;
6 PATHNODES ← PATHNODES � 〈pt , , 〉;
7 DelTemplate(pt);

8 if � ∃〈pt , n o, 〉 ∈ pathnodes then
9 ForwardConcatenation(TailPaths, ∅, ∅);

A Path-Oriented RDF Index for Keyword Search Query Processing 375

This operation requires deleting all paths that contain edge p. In our index, edges
are not stored explicitly: they are encoded in the templates associated with the paths.
In order to identify the paths containing p, we select those pt in which ns, no (i.e. IDs
associated to nodes s and o respectively) are directly connected (lines 1-2). Then, for
each pt we verify if the edge between ns and no is p. To this aim, we use the function
PropByPos that takes as input pt and the position (pos−1) of ns (i.e. no is in position
pos) and returns the edge outgoing from s (i.e. by accessing the template corresponding
to pt).

Let us now give an example using the graph depicted in Fig. 1. Assume we want
to remove property acceptedBy between pub1 and conf1 (i.e. corresponding to the
triple 〈pub1, acceptedBy, conf1〉). The IDs of the paths having nodes pub1 immedi-
ately preceding conf1 are 22, 23 and 24 (see Fig. 3). Consider the path with ID 24;
conf1 occurring at position 2. Thus, PropByPos (i.e. PropByPos(24, 1)) will ac-
cess the template with ID 15 (i.e. #-acceptedBy-#-name-#) and return the sub-string
acceptedBy between nodes in positions 1 and 2. Similarly we process also paths with
IDs 22 and 23. Continuing the discussion of the algorithm, since no could become a
source, we need to build the tailpaths from no (line 4) before deleting all pt. Thus we
delete all pt and all corresponding nodes (lines 5-6). We must also update the corre-
sponding count in TEMPLATES by using the function DelT emplate. If no became a
source (line 8), we then invoke the forward-concatenation on the tailpaths (line 9) to
build all paths from no.

Edge insertion. The input to Algorithm 5 is a triple 〈s, p, o〉 where p is the label for
the new edge to add between (existing) resources s and o. We have to create the new

Algorithm 5. Insert a new edge
Input : A triple〈s , p , o 〉 representing the edge with label p between nodes s and o.
Output: The updated index.

1 TailPaths ← ∅ ;
2 foreach 〈pt1 , n o, pos 〉 ∈ PATHNODES do
3 TailPaths ← TailPaths ∪ TailPath(pt1, pos);

4 foreach 〈pt1 , τ , l , n s〉 ∈ PATHS do
5 if � ∃〈pt1 , n o, 〉 ∈ PATHNODES then
6 ForwardConcatenation(TailPaths, pt1, p);

7 foreach 〈pt1 , no, 1〉 ∈ PATHNODES do
8 PATHS ← PATHS � 〈pt1 , , , 〉;
9 PATHNODES ← PATHNODES � 〈pt1 , , 〉;

10 DelTemplate(pt1);

paths involving p. To this aim we have to concatenate paths ending in s (i.e. node ns)
and tailpaths built from o (i.e. node no) as shown in (lines 2-6).

For instance, suppose we want to re-introduce the property acceptedBy we have
removed in the previous example. The input triple is 〈pub1, acceptedBy, conf1〉. Only

376 P. Cappellari et al.

the path pt with ID 31 ends in pub1. The tailpaths from node conf1 are: (1) sub-
path conf1 with sub-template #, (2) sub-path conf1-type-Conference with sub-
template #-type-#, and (3) conf1-name-DEXA with sub-template #-name-#.
Connecting pt with such tailpaths through property acceptedBy, we obtain back paths
with IDs 22, 23, 24. If no becomes a source, we delete all paths rooted in no (lines 7-10).

Remaining maintenance operations. The rest of the maintenance operations are sim-
pler and intuitive, and are now discussed briefly. In Node insertion, we basically have to
insert a new entry into NODES. Since it is not yet linked to other nodes, the new node is
a source with an associated path (of length 1). Therefore, we must insert a path updating
PATHS, PATHNODES and possibly, TEMPLATES. Node deletion is the inverse operation
to node insertion. Assuming the node is not linked to any other, we have to delete one
entry from tables: NODES, PATHS, PATHNODES and possibly, from TEMPLATES if the
count in TEMPLATES reaches zero for the associated template. Edge update requires
as input, the triple to identify which edge to update and a new value for such edge.
Since edge information is encoded in templates, we must access and parse the template
strings. Therefore, we retrieve the paths containing the input triple and we generate a
new template for them with where the old value is replaced by the new one. In Node
update, once identified the node, we only have to update its URI in table NODES.

Computational Complexity. In this section we present a discussion about the com-
putational complexity of the creation and maintenance of our indexing scheme. Before
commencing the discussion, let us introduce the notation we will use in the remainder
of this section. Let R be the number of sources, E be the number of edges and V the
number of vertexes. We indicate with PT the number of paths in the index. With PTn

we denote the number of paths containing a specific node n, and with PTn1,n2,...,nk
the

number of paths containing the node sequence n1, n2, . . . , nk. Finally, TP indicates
the number of tailpaths in the forward concatenation and L the length of a path.

The Index Creation is O(R×(E+V)). Such algorithm is an implementation of BFS
(i.e. notoriously it has complexity O(E + V)) and it is invoked once for each source.
Let us remark that our approach, initially, does not compute all the possible paths be-
tween a source and a node (leaf or intermediate), but only that ones ending into a sink:
thus the complexity for the BFS is much lower than O(E + V). Index update opera-
tions on a single node (e.g. insertion, deletion or update of a node), are trivial and it is
straightforward to verify that they have complexity O(1). The function ForwardCon-
catenation defined in Algorithm 3 is O(TP × L). In fact, it depends on how many tail
paths (TP) we have to concatenate in the creation of the new path; and the creation of a
new path depends on its length (L). In practical cases (also attested by experiments) L
is rather smaller than TP . Therefore we can reformulate in O(TP). The Algorithm 4
to delete an existing edge p connecting nodes s, n is O(PTs,o × L). Deleting the path
having the edge of interest implies to delete the occurring nodes (i.e. L). Since the
paths containing the triple 〈s, p, o〉 are PTs,o, deleting this information for all such
paths spends O(PTs,o × L). In case the node o becomes a source, then we also have
the ForwardConcatenation on the tailpaths from o. Although this operation is merely
a copy, its complexity is still O(PTs,o × L). Summarizing, the overall complexity is
2×(PTs,o×L) ∈ O(PTs,o×L). Since L is rather small, we have O(PTs,o). The update

A Path-Oriented RDF Index for Keyword Search Query Processing 377

Q1 :
SELECT DISTINCT pn . PID
FROM PATHS AS pn
WHERE pn . F NID in (

SELECT NID
FROM NODES AS n
WHERE l c o n t a i n s (URI ,

<inputTerm >))

Q2 :
SELECT pn . PID ,

pn . p o s i t i o n
FROM PATHNODES AS pn
WHERE pn . NID =

<inputNodeID>

Q3 :
SELECT pn1 . PID
FROM PATHNODES AS pn1
WHERE pn1 . NID in (

SELECT pn2 . NID
FROM PATHNODES AS pn2
WHERE pn2 . PID =

<i n p u t P a t h I D>)

Fig. 4. Sample queries on the index

of an edge in a path has complexity O(PTs,o). We assume the function ReplaceEdge
to have complexity O(1). Because the edge could belongs to many paths, ReplaceEdge
must be performed more times. Since the number of paths with such edge is PTs,o, thus
the complexity is O(PTs,o). Algorithm 5 defines the insertion of a new edge p between
two existing nodes s, o. The algorithm first takes the PTo tailpaths from o: we have
O(PTo × L). Then it performs a forward-concatenation of the above tailpaths with all
the paths ending in s (i.e. in the worst case PTs paths). Thus the forward concatenation
(i.e. O(PTo×L)) must be performed for each path ending in s; we conclude the overall
complexity is O(PTs ×PTo×L). As we noticed before, in practical cases, L is rather
small, which leads us to say that the complexity of the operation is O(PTs × PTo). In
an extreme case we could have PTo + PTs = PT ; in this situation most of the paths
ends in o and/or s. Therefore O(PTo) or O(PTs) ∈ O(PT). In practical cases it is rare
that the two nodes s, o concentrate all the paths, then O(PTo) or O(PTs)� O(PT).

4.3 Index Querying

In this section, we provide a few examples, shown in Fig. 4, on how to query our in-
dex. Query Q1 retrieves all paths having at least one node matching the input keyword
inputTerm. This query uses the function lcontains, part of the Oracle SQL syntax, that
exploits the Lucene full-text search capability. Although we use Oracle, as described in
Section 5, this query can easily be adjusted to suit other SQL dialects. In fact, many
modern DBMS supports Lucene by implementing their own variation on the SQL syn-
tax. The query limits its attention to the final node (F NID) of the paths because key-
words only occurs in final nodes, as intermediary nodes only contain URI references.
In a variation, Q1 can be join with TEMPLATES to perform keyword search on paths’
template, i.e. searching for keywords on the edges. The second query, Q2, retrieves all
paths containing a generic node inputNodeID along with its position in each path. The
node can be any between a source, intermediary or sink. This information can be ex-
ploited when the position of a node is a critical information to perform further analysis,
like: reachability of such node from other nodes, the computation of the paths starting
from or ending in such node. Last query, Q3, retrieves all the paths intersecting with a
given path inputPathID. It first locates the nodes belonging to inputPathID, then
the paths sharing such nodes. In keyword search systems, this query is useful when
searching for connections (on the graph) between the nodes (or edges) matching some
keyword. A keyword search system builds a solution (i.e. a subgraph) assembling inter-
secting paths with nodes (or edges) matching some keyword.

378 P. Cappellari et al.

(a) (b)

Fig. 5. Maintenance Scalability with respect to #nodes (a) and #edges (b)

5 Implementation

We implemented our path-oriented index into YAANII [5], a Java system for keyword
search query over RDF datasets. All procedures for building and maintenance of our in-
dex have been serialized in PL/SQL operations and deployed in Oracle 11g v2. With the
experiments discussed in this section we have measured how much the index improves
query performance in YAANII. We used a widely-accepted benchmark of ten queries on
DBLP for keyword search evaluation. DBLP (Digital Bibliography & Library Project,
a computer science bibliography) is a dataset containing 27M triples about computer
science publications. Due to space limitations we omit the query list here (see [11]).
Experiments were conducted on a dual quad core 2.66GHz Intel Xeon, running Linux
RedHat, with 8 GB of memory, 6 MB cache, and a 2-disk 1Tbyte striped RAID array.
We evaluated the performance of: index building, index update and query execution.
On top of DBLP we indexed roughly 17M of entries into the table PATHS, 28M into
PATHNODES, 0,6M into TEMPLATES and 6M into NODES. The building task took a to-
tal 37 hours, and includes: the import of dataset from a single file encoding DBLP in
NTRIPLE, and the execution of the BSF algorithm to compute the fullpaths. The final
disk space required by the storage of the index was 718MB.

Fig. 5 collects the performance of maintenance operations (i.e. insertion, deletion and
update of nodes and edges). The figure reports the scalability of such operations with
respect to the increasing number of nodes (i.e. Fig. 5.(a)) and edges (i.e. Fig. 5.(b)). At
each group of nodes (e.g. 1, 2, . . . , 6 millions) or edges (e.g. 4, 8, . . . , 27 millions), we
inserted and updated 100 nodes (edges) and then we deleted them. Then we measured
the average response time (ms) for one node (or edge). Opposite to the building step,
the maintenance of the index follows good performance, satisfying practical scenarios
with frequent updates of the dataset.

For query execution evaluation, we integrated our index in YAANII and we compared
performance with the most related approaches: SEARCHWEBDB [18], bidirectional
search [11] (we refer to it as BIDIRECT) and the several techniques based on graph
indexing, i.e. 1000 BFS, 1000 METIS, 300 BFS, 300 METIS (see details in [11]). We
ran the queries in [11] ten times and measured the average response time. Precisely, the
total time of each query is the time for computing the top-10 answers. The query run-
times are shown in Figure 6. In general BIDIRECT performs poorly, SEARCHWEBDB

A Path-Oriented RDF Index for Keyword Search Query Processing 379

Fig. 6. Response Times

is comparable with BFS and better than METIS. YAANII with our index implemented is
the best (on average) among the cited approaches: it was consistently the best for most
of the queries; it outperforms all competitors by a large margin, improving times by
nearly a factor varying from 3 to 188 in the geometric mean. As demonstrated in [2], the
complexity of YAANII algorithm outperforms other approaches, but by employing our
index the entire process, requiring frequent queries similar to Q1, Q2 and Q3 discussed
in Section 4.3, speed-up significantly.

6 Conclusion and Future Work

The web of data is a powerful mechanism for both users and organisations but due to
its size (and the size of many individual information components) provides a signif-
icant challenge when searching for information needs. In this paper, we presented a
path-oriented indexing scheme for the large graph structures that contain the semantic
datasets comprising the web of data. The key feature of the index is that it exposes the
structural characteristics of the graph: its paths, the structure (schema) of these paths,
and the information on the reachability of nodes. By exploiting this information, we can
expedite query execution, especially for keyword based query systems, where query re-
sults are built on the basis of connections between nodes matching keywords. As graph
exploration is a complex and time consuming task, usually computed on-the-fly during
query processing, our index facilitates a far more efficient query process. We devel-
oped a prototype system by integrating our index into YAANII, a system for keyword
searching query RDF using path computations. Results show that the index significantly
increases the performance of YAANII, outperforming other approaches while still pro-
viding the desired, exhaustive search. Current research is focused on: an investigation
into mathematical properties to weight relevant paths and templates with respect to the
graph; a more compact index and compression technique to reduce space consumption;
and further optimizations for both index creation and maintenance.

380 P. Cappellari et al.

References

1. Bizer, C., Cyganiak, R.: D2R server: Publishing relational databases on the semantic web.
In: Proc. of ISWC (2006)

2. Cappellari, P., De Virgilio, R., Maccioni, A., Miscione, M.: Keyword based search over se-
mantic data in polynomial time. In: Proc. of ICDE Workshops, pp. 203–208 (2010)

3. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on
graph databases. In: Proc. of SIGMOD, pp. 857–872 (2007)

4. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: Xsearch: a semantic search engine for xml. In:
Proc. of VLDB, pp. 45–56 (2003)

5. De Virgilio, R., Cappellari, P., Miscione, M.: Cluster-based exploration for effective keyword
search over semantic datasets. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de
Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 205–218. Springer, Heidelberg (2009)

6. Fellbaum, C. (ed.): WordNet: an electronic lexical database. MIT Press, Cambridge (1998)
7. Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying graphs. In:

Proc. of ICPR, pp. 112–115 (2002)
8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: ranked keyword search over xml

documents. In: Proc. of SIGMOD, pp. 16–27 (2003)
9. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: Proc. of

SIGMOD, pp. 305–316 (2007)
10. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search over rela-

tional databases. In: Proc. of VLDB, pp. 850–861 (2003)
11. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desa, R., Karambelkar, H.: Bidirec-

tional expansion for keyword search on graph databases. In: Proc. of VLDB, pp. 505–516
(2005)

12. Kimelfeld, B., Sagiv, Y.: Finding and approximating top-k answers in keyword proximity
search. In: Proc. of PODS, pp. 173–182 (2006)

13. Kolas, D., Emmons, I., Dean, M.: Efficient linked-list rdf indexing in parliament. In: 5th Int.
Workshop on Scalable Semantic Web Knowledge Base Systems, SSWS (2009)

14. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational databases.
In: Proc. of SIGMOD, pp. 563–574 (2006)

15. Markowetz, A., Yang, Y., Papadias, D.: Reachability indexes for relational keyword search.
In: Proc. of ICDE, pp. 1163–1166 (2009)

16. Neumann, T., Weikum, G.: x-rdf-3x: Fast querying, high update rates, and consistency for
rdf databases. In: PVLDB, vol. 3(1), pp. 256–263 (2010)

17. Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In: Proc. of ICDE,
pp. 963–972 (2008)

18. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for
efficient keyword search on graph-shaped (rdf) data. In: Proc. of ICDE, pp. 405–416 (2009)

19. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data
management. In: PVLDB, vol. 1(1), pp. 1008–1019 (2008)

20. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based approach. In: Proc. of
SIGMOD, pp. 335–346 (2004)

21. Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: Proc. of ICDE,
pp. 966–975 (2007)

22. Zhang, S., Li, S., Yang, J.: Gaddi: distance index based subgraph matching in biological
networks. In: Proc. of EDBT, pp. 192–203 (2009)

Variable Length Compression for Bitmap Indices

Fabian Corrales1, David Chiu2, and Jason Sawin1

1 Department of Mathematics and Computer Science, University of Puget Sound
2 School of Engineering and Computer Science, Washington State University

Abstract. Modern large-scale applications are generating staggering amounts of
data. In an effort to summarize and index these data sets, databases often use
bitmap indices. These indices have become widely adopted due to their dual prop-
erties of (1) being able to leverage fast bit-wise operations for query processing
and (2) compressibility. Today, two pervasive bitmap compression schemes em-
ploy a variation of run-length encoding, aligned over bytes (BBC) and words
(WAH), respectively. While BBC typically offers high compression ratios, WAH
can achieve faster query processing, but often at the cost of space. Recent work
has further shown that reordering the rows of a bitmap can dramatically increase
compression. However, these sorted bitmaps often display patterns of changing
run-lengths that are not optimal for a byte nor a word alignment. We present a
general framework to facilitate a variable length compression scheme. Given a
bitmap, our algorithm is able to use different encoding lengths for compression
on a per-column basis. We further present an algorithm that efficiently processes
queries when encoding lengths share a common integer factor. Our empirical
study shows that in the best case our approach can out-compress BBC by 30%
and WAH by 70%, for real data sets. Furthermore, we report a query processing
speedup of 1.6× over BBC and 1.25× over WAH. We will also show that these
numbers drastically improve in our synthetic, uncorrelated data sets.

1 Introduction

Many research projects, vital for advancing our understanding of the world, have be-
come prohibitively data-intensive. For example, exploration within bioinformatics gen-
erates terabytes of data per day [22]. In the field of high energy physics, the Large
Hadron Collider at CERN is projected to generate 15 petabytes of data annually [7].
To facilitate data analysis, such projects may store their results in databases which em-
ploy advanced indexing techniques. Since the bulk of this scientific data is read-only,
infrequently updated, and relatively easy to categorize into groups, bitmaps [18,15] are
highly amenable and widely used to index such data sets.

A bitmap index is a two dimensional array B[m, n] where the columns denote a
series of n bins and the rows correspond to m tuples in a relation. To transform a table
into a bitmap, each attribute is first partitioned into a series of bins that might denote
a point or a range of values. An element bi,j ∈ B = 1 if the jth attribute in the ith
tuple falls into the specified range, and 0 otherwise. While their representation can be
large in terms of space, bitmaps can be queried using highly efficient low-level bitwise
operations. To exemplify, consider an age attribute that might be partitioned into the
following three bins: a1 = [0, 20], a2 = [21, 40], a3 = [41,∞].

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 381–395, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

382 F. Corrales, D. Chiu, and J. Sawin

Table 1 shows a simple bitmap index on two attributes: age and gender after bin-
ning.To find everyone under 21 or over 40, the processor can simply apply a bitwise
OR of a1 and a3, then retrieve the succeeding tuples t2 and t3 from disk.

Table 1. An Example Bitmap

Tuples Bins
Age Gender

a1 a2 a3 gf gm

t1 0 1 0 0 1
t2 1 0 0 1 0
t3 0 0 1 0 1

The tradeoff to supporting such fast querying,
is storage costs. Bitmap indices can become very
large. But fortunately, they are typically sparse and
highly suitable for compression via run-length encod-
ing (RLE), where bit sequences can be summarized
using a nominal most significant bit (MSB) followed
by the length of its run. A well-known problem of RLE
is the fact that it may sometimes yield larger bitmaps.
For instance, assuming a byte-based RLE, uniformly
distributed bit patterns, such as (1010), will be “com-

pressed” into (10000001 00000001 10000001 00000001). Clearly, the original bit se-
quence could be more efficiently stored as a literal. Today’s compression schemes uti-
lize a run-length hybrid, i.e., a sequence of encoded bits can denote either a literal or a
run/fill of n bits.

While the overhead of decoding initially appears to conflict with query performance,
current memory-aligned compression schemes have found ways to improve both com-
pression and query performance simultaneously [2,20]. The Byte-aligned Bitmap Com-
pression (BBC) [2] and the Word Aligned Hybrid Code (WAH) [20] are commonly used
to compress and query bitmaps in databases. While both BBC and WAH are memory-
aligned, they differ in granularity (byte versus word), which affects compression ra-
tio and query execution time. As such, BBC typically generates smaller bitmaps, and
WAH, due to its word-based representation, excels at compressing extremely long runs
and allows for faster queries by amortizing multiple reads to extract bytes from words.

Because both BBC and WAH are run-length dependent, and tuple ordering is arbi-
trary in a database, efforts in row reorganization can be leveraged to produce longer runs
and achieve better compression. One drawback to certain tuple reorganization schemes,
such as Gray code ordering, is that average run length degrades as dimensionality in-
creases [16]. In Gray code ordering the first several bit vectors of a bitmap may contain
very long runs, but they become progressively shorter in each additional bit vectors. In
fact, the highest dimensional bit vectors may still exhibit a uniform distribution of bits.
We posit that it may be sensible to apply coarser encodings (e.g., WAH) to the initial
bins for aggressive compression of longer runs. As dimensionality increases, and runs
gradually become shorter, progressively finer encoding schemes may be used to achieve
greater compression. In the highest dimensionality, where runs are even less infrequent,
it may again be favorable to coarsen the encodings, because word-aligned encodings
can store and process literals more efficiently.

This paper makes the following contributions:

– We have designed and implemented a novel generalized framework, Variable
Length Compression (VLC), for encoding variably granular bitmap indices. Given
a bitmap, our VLC is able to use different encoding lengths for compression on a
per-column basis.

– We have designed an algorithm to compress bit vectors, which inputs a tuning pa-
rameter that is used to tradeoff encoding space and querying time.

– We have conducted an extensive analysis of VLC on several real data sets and com-
pare results against state-of-the-art compression techniques. We show that VLC

Variable Length Compression for Bitmap Indices 383

can out-compress Gray code ordered BBC and WAH by 30% and 70% respectively
in the best case, on real data sets. We also report a speedup of 1.6× over BBC and
1.25× over WAH.

These contributions provide a method for faster querying on large databases as well
as greater compression ratios. Our proposed VLC scheme also allows users tune the
compression of their bitmap indices. For example, if certain columns are to be queried
at higher rates they can be compressed using the larger encoding lengths to achieve
faster queries. To maintain compression efficiency the less frequently queried columns
can be compressed with smaller encoding lengths.

The remainder of this paper is organized as follows. In Section 2, we present the
necessary background on bitmap compression, including BBC, WAH, and tuple re-
ordering. Section 3 describes our Variable Length Compression framework in depth,
detailing both compression and query processing algorithms. We present our experi-
mental results in Section 4. Section 5 discusses related efforts in bitmap compression,
and we conclude our findings in Section 6.

2 Background

Bitmap compression is a well-studied field, with its roots anchored in classic run-length
encoding (RLE) schemes. However, traditional run-length techniques cannot be directly
applied to bitmap indices because the bit vectors must first be decompressed to answer
queries. This overhead would quickly dominate query processing time. Therefore, it is
highly desirable to have run-length compression schemes that can answer queries by
directly examining the bit vectors in their compressed state. In this section we present
the background on current techniques used to compress bitmap indices that achieve this
fast querying.

2.1 Byte-Aligned Bitmap Code (BBC)

Run-length encoding schemes achieve compression when sequences of consecutive
identical bits, or “runs”, are present. BBC [2] is an 8-bit hybrid RLE representation
in the form of a literal or a fill. The MSB, known as the flag bit, marks the encoding
type. In turn, a byte 0xxxxxxx denotes that the least significant 7 bits is a literal repre-
sentation of the actual bit string. In contrast, 1xnnnnnn encodes a fill which compactly
represents runs of consecutive x’s. Here, x is the fill bit which encodes the value of the
bits in the run, and the remaining 6 bits are used for the length (in multiples of 7), e.g.,
11001010 represents the sequence of 70 1’s.

BBC is compelling in that the query execution time is directly proportional to the
rate of compression. For example, suppose a database contains 77 rows and two bit
vectors: v1 and v2. Assume that v1 contains the literal 0101010 followed by a run
of 70 consecutive 1’s. Let v2 contain a sequence of 70 0’s followed by the literal
0100000. In BBC format, v1 would be encoded as (00101010 11001010) and simi-
larly, v2 = (10001010 00100000). Now envision a query which invokes v1 ∧ v2. The
query processor would read the first byte from both v1 and v2. By decoding the most
significant bit, the query processor determines that it has read a 7-bit literal from v1 and
a run of (10 × 7) = 70 0’s from v2. Next, the literal from v1 is AND’ed with a fill of
seven 0000000 from v2. Progressing further, the query processor reads and decodes the
next byte from v1. It is important to note that only seven 0’s have been processed from

384 F. Corrales, D. Chiu, and J. Sawin

the fill in v2. Thus, all that is required is simply decrement of the fill count from 10 to 9.
This demonstrates why BBC fills must be a multiple of 7. The next byte of v1 is decoded
as a run of 70 consecutive 1’s. The next 9 AND operations can be carried out in one step
by making the AND comparison once and reporting its results in the same compressed
form. The run-length count for v1 is updated to 1, and v2 to 0. Thus 63 = (9 × 7) bits
have been compared without having to decode even once. After the 9th iteration, v2’s
fills are exhausted, prompting a read of the next byte from v2. Finally, the remaining
7 bits from both bins are AND’ed to complete the query. BBC’s efficiency comes from
the presence of fills, which effectively allows the processor to amortize the number of
necessary memory accesses.

2.2 Word-Aligned Hybrid Code (WAH)

WAH [20, 19], unlike BBC, uses a 31 bit representation (32 bits including the flag
bit). This representation offers several benefits over BBC—one being that for certain
bitmaps, WAH can achieve significant speedup in query processing time when com-
pared to BBC. This speedup is due to the fact that memory is typically fetched by the
CPU a word at a time. By using a word-aligned encoding, WAH avoids the overhead
of further extracting bytes within a word that is incurred by BCC. Thus, WAH not only
compresses literals more efficiently than BBC (using 4 less flag bits per 31 bits), but it
can also process bitwise operations much faster over literals by avoiding the overhead
of byte extraction and parsing/decoding to determine if the byte is indeed a literal.

In terms of compressing runs, however, WAH typically pales compared to BBC. This
is often due to the fact that WAH’s fills can encode 230 − 1 multiples of 31 consecutive
identical bits (i.e., a maximum fill length of 33,285,996,513). In practice, runs of this
size are unlikely, which implies that many of the fill bits are unused. On the other hand,
note that the maximum number of consecutive bits that a BBC fill can represent is
(26 − 1)× 7 = 441. In large-scale or highly sparse databases, it is likely that a run can
continue far beyond this threshold, which means there can still be cases where WAH
will yield more efficient encodings for runs.

2.3 Row Reordering of Bitmaps

As described above, WAH and BBC can achieve greater compression for bitmaps that
contain longer average run-lengths.

Recent work has shown that the average run-

Lexicographical

Lexicographical Gray Code

v1 v2 v3 v1 v2 v3

Fig. 1. Row Ordering Techniques

length of a bitmap can be greatly improved by
reordering the rows [12,16,10,3]. Finding an op-
timal order of rows, however, has been proven to
be NP-Complete, and lexicographical and Gray
code ordering are widely used heuristics. Pinar,
Tao, and Ferhatosmanoglu showed that compres-
sion ratio’s can be improved by a factor of 10 for
some bitmap indices if a Gray code (i.e., consec-
utive rows differ only by a single bit) ordering is
applied [16]. Figure 1 shows the effects of lexi-
cographical and Gray code ordering on bitmaps
containing 3 vectors v1, v2, v3. The white space
represents 0’s and the black represents 1’s. Notice that both reordering algorithms tend
to produce longer runs in the first few bit vectors, but deteriorate into shorter runs (and
worse, a random distribution) of bits for the higher vectors.

Variable Length Compression for Bitmap Indices 385

In situations like this, it would be desirable to employ a varying sized compression
scheme for each bit vector. In this work, we assume that row reordering is a preprocess-
ing step, and we implemented Gray code ordered bitmaps in our experimental results.

3 Variable Length Compression

In this section, we initially discuss how using variable bit-segment lengths presents
opportunities to improve compression ratios beyond current state-of-the-art techniques,
e.g., BBC and WAH. We then describe our compression technique, Variable Length
Compression (VLC), in detail.

Due to their use of fixed bit-segment lengths to encode bit vectors, neither WAH nor
BBC generate optimal compression. To exemplify, recall that row reordered bitmaps
produce long runs in the first several bit vectors, buts increasingly shorter runs in the
later vectors. WAH’s 31-bit segment length (32 bits including the 1 flag bit) is ideal for
the first several bit vectors that potentially contain extremely long runs But after these
first few vectors, the rest might tend to have an average run-length smaller than 62 (the
shortest run-length multiple that WAH can compress), there is a higher likelihood that
many shorter runs must be represented as WAH literals, which squanders compression
opportunities. Conversely, BBC’s maximum fill code, 1x1111111, can only represent a
run of 63 × 7 = 441 x’s. With its 7-bit fixed segment length, BBC cannot efficiently
represent the long runs of the first several vectors. Any run longer than 441 would thus
require another byte to be used.

We posit that we can attain a balanced tradeoff between these representations by
using variably-sized bit segment lengths. To this end, we propose a novel run-length
compression scheme Variable Length Compression (VLC) that can vary the segment
lengths used for compression on a per bit vector basis. The flexibility of VLC enables
us to compress the initial bit vectors of a row reordered bitmap using a longer segment
length, while using a shorter length on later bit vectors. While a more robust compres-
sion can be expected using VLC, a challenge is maintaining efficient query processing
speeds.

3.1 Variable Compression Scheme

For each bit vector in the bitmap VLC compression performs the following steps: (1)
Determining segment length for bit-vector compression, (2) Vector segmentation, and
(3) Word packing.

The goal of the Segment Length Determination (SLD) algorithm is to determine
an optimal segment length for a given bit-vector. In general, given a bit vector, v =
(b1, . . . , bn), SLD returns an integer value seg len | L < seg len < H . In this paper,
we assume H to be the word-size, H = 32, and L = 2, since 2-bit segments cannot
represent fills. In this work we consider two SLD approaches: All Possible is a
brute force algorithm which simulates the compression of v using all possible segment
lengths, seg len = 3, . . . , 31. For each segment length, All Possible computes
the number of words needed to store the compressed bit vector, and it returns the length
that would achieve the best compression. If multiple segment lengths generate the same
compression ratio, then the largest segment length is returned to reduce the amount of
parsing required when the bit vector is queried—this follows the same insight behind
WAH versus BBC.

Another SLD heuristic we consider is Common Factor, which is similar to All
Possible in that it simulates the compression of individual bit vectors. However,

386 F. Corrales, D. Chiu, and J. Sawin

Common Factor also takes as input an integer parameter, base, which is used to
determine the set of segment lengths that will be used in the simulation. Specifically, it
will only consider seg len where seg len ∈ {x|3 ≤ x ≤ 31 ∧ x ≡ 0 (mod base)}.
The basis for this heuristic is to ensure that gcd(v1, v2) ≥ base any two compressed bit
vectors v1 and v2. As it will become clear later, this property greatly improves query
processing speed.

After seg len is determined, the Bit Vector Segmentation process is applied. A com-
pressed bit segment vc is defined as a sequence of seg len bits,

vc =
{

0 • x1 • . . . • xseg len (literal)
1 • x • n1 . . . • nseg len−1 (fill)

where • denotes concatenation. In the former case, the initial bit 0 denotes an uncom-
pressed segment from v, and the succeeding sequence x1, . . . , xseg len denotes the lit-
eral. In the second case, vc can represent a run by specifying 1 as the flag bit. The next
bit x is the fill bit, and n1 . . . , nseg len−1 is a number (base 2) denoting the multiple of
a run of seg len consecutive x bits. For example, if seg len = 4, the segment 10011 is
the compressed representation of 000000000000, i.e., a run of 3× 4(= 12) 0’s.

Given this code representation, the algorithm proceeds as follows. Beginning with
the first bit in an uncompressed vector v, we let v′ denote the next seg len bits in v. We
initially encode v′ as a literal, that is, vc = 0 • v′. Next, v′ is assigned the subsequent
seg len bit sequence in v. If v′ is a sequence of identical bits x, then we verify if it can
be coalesced with vc. If v′ is not a run of seg len bits, the vc is first written to disk,
and then again assigned the literal 0 • v′. If vc indeed is a single literal containing a
(seg len)-bit run of x, then vc is converted to a fill segment, 1 • x • 0 . . . 010. A more
general case occurs if vc is already a fill-segment. When this occurs, we simply add 1 to
the run length portion. As v′ continues to be assigned subsequent segments, the above
steps are repeated.

Finally, Word Packing is used to reduce the parsing cost when executing a query
over VLC segments. Segments (both runs and literals) are fit into words. For example,
if seg len = 3, then VLC packs 8 segments (including their flag bits) in one 32 bit
word. If 32 � 0 (mod seg len + 1) then VLC appends 32 mod seg len + 1 0’s to the
end of each word. These superfluous bits are called pad bits and they are ignored by the
query algorithm. Our approach requires that each compressed bit vector be prefaced a
header byte, which stores the segment encoding length used.

In Figure 2, we show two 32-bit words, in vectors X and Y , sharing a common gcd
of 7. X is coded in seg len = 14, and Y in seg len = 7. Segment a is a fill, denoting
a run of seg len× 87(= 1218) 1’s. In other words, a is 87 consecutive 14-bit segments
of 1’s. Because each 14-bit segment is coded using 15 bits, two such segments can be
packed into a word, with the last remaining 2 bits b being padding. In the bottom word
Y , segment c is a 7-bit literal 1111110, and d is a run of seg len × 48(= 336) 0’s. e
simply denotes the remaining words in either vector.

3.2 Query Processing

Algorithms 1 and 2 are the query processing procedures over two bit vectors, X and Y
from Figure 2. As a running example, we consider performing query using a logical op
between X and Y .

Initially, we declare an empty vector Z to hold the results, and assign its base to
gcd(X, Y) = 7 (Alg1:lines 1-3). Next, we loop through all segments of X and Y

Variable Length Compression for Bitmap Indices 387

1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0. . .

. . .1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 . . .

a b

c d e

X

Y . . .

. . .

Fig. 2. Example of VLC with seg len = 14 and seg len = 7

(Alg1:line 4), and in our example, X .active is assigned to a and Y .active is assigned c
(Alg1:line 6). Next, both segments are decoded (see Algorithm 2), and this subproce-
dure invokes one of two cases. If the given segment seg is a fill, then its base reduced
down to the gcd, effectively producing (base/gcd)× its current segment run-length
(Alg2:lines 4-6). In the example, recall that a represents 87 consecutive 14-bit seg-
ments of 1’s, so a.runLen = 87. However, since the gcd is 7, we must reduce a’s base
down to 7, which effectively produces 87 × (14/7) = 174 7-bit segments in a. On the
other hand, if a were a literal, then it is split into (base/gcd) separate gcd-bit literals
(Alg2:lines 3-9).

Algorithm 1. ColumnQuery(X , Y , op)
1: Let Z be the result vector (compressed form)
2: g ← gcd(X.seg len, Y.seg len)
3: Z.seg len ← g
4: while X.hasNextSegment() orY .hasNextSegment() do
5: {*modify the segments to match the GCD*}
6: Let X.active and Y .active be the next segment read from X and Y
7: decode(X.active, X.seg len, g); decode(Y .active, Y .seg len, g);
8: if isFill(X.active) andisFill(Y .active) then
9: n ← min(X.active.runLen, Y .active.runLen);

10: Z.appendFill(n, (X.active.fillBit op Y .active.fillBit));
11: X.active.runLen ← X.active.runLen−n;
12: Y .active.runLen ← Y .active.runLen−n
13: else if isFill(X.active) andisLit(Y .active) then
14: Z.appendLit(Y .getNextLiteral() op X.active.fillValue);
15: Y .litCount ← Y .litCount −1; X.active.runLen ← X.active.runLen −1;
16: else if isLit(X.active) andisLit(Y .active) then
17: Z.appendLit((X.active.getLiteral() op Y .active.getLiteral()))
18: X.litCount ← X.litCount −1; Y .litCount ← Y .litCount −1;
19: end if
20: end while
21: return Z

Returning to Algorithm 1, the above decoding procedure prepares the two vectors to
share the same base, which allows for easy application of the bitwise op. Then there
are three cases: (1) both X and Y are fill words (Alg1:lines 8-11), (2) only X is a
fill and Y is a literal (Alg1:lines 12-14), and (3) both X and Y are literals (Alg1:lines

388 F. Corrales, D. Chiu, and J. Sawin

Algorithm 2. decode(seg, base, gcd)
1: if isFill(seg) then
2: seg.runLen ← seg.runLen ×(base/gcd)
3: else
4: temp ← seg.getLiteral(); {* Binary representation of literal *}
5: seg.litCount ← base/gcd;
6: for each partition p of gcd consecutive bits in temp do
7: seg.addLiteral(p);
8: end for
9: end if

15-18).� In our example from Figure 2, Case 2 is invoked on segments a and c. We
apply the bitwise op across X .fillValue and Y .nextLiteral(), which results in appending
(1111111) op (1111110) to Z . Because we have only processed one literal, X’s run-
length counter is decremented by 1 (Alg1:line 15). However, while Y is subsequently
assigned the next parsed segment d, X avoids this overhead, which can be significant if
d happened to exit in the next word, causing Y to read from memory.

If Case 1 is invoked, that is, when both X and Y are fills, we can simply apply op to
the single fill bit, and implicitly know that its result applies to all bits until the end of
either X’s or Y ’s current segment.s Thus, without corresponding memory accesses, we
can process min(X .active.runLen, Y .active.runLen) × gcd bits in O(1) operation of
updating the fill counts (Alg1:lines 8-12). Because of this property, the query processing
time for extremely long runs can be done in sublinear time.

4 Experimental Evaluation

In this section, we evaluate the compression ratios among BBC, WAH, and our VLC
variants over both real and synthetic data sets. We further analyze query processing per-
formance. All experiments in this section were executed on a Java 1.6 implementation
with -Xmx1024m set running on a 32-bit Windows 7 machine with 2.0 GB RAM and
an Intel Dual Core 2.4GHz processor. The bitmap data sets on which we experiment in
this study are described as follows.

– HEP (272MB) is from a real high-energy physics application containing 12 at-
tributes. Each attribute was split into ranges from 2 to 12 bins, which results in
a total of 122 columns comprised of 2,173,762 rows.

– Histo (21MB) is from an image database. The tuples represent images, and 192
columns have been extracted as color histograms of these images. The bitmap con-
tains 112,361 rows and 192 columns.

– Landsat (238MB) is derived from real satellite images, whose SVD transforma-
tion produces 275,465 rows and 522 columns.

– Stock (6.7MB) contains approximately 1080 days’ worth of stock data for 6,500
companies, resulting in a high-dimensional bitmap containing 6,500 rows and 1080
columns.

– Uni (10.3MB) is a synthetic dataset generated with random bit distribution over
100,000 rows and 100 columns.

� Note that a 4th case exists also, which is the reverse of case (2), but it is redundant here.

Variable Length Compression for Bitmap Indices 389

As an optimizing preprocessing step, all above data sets have initially been Gray code
ordered using the algorithm presented in [16].

4.1 Data Compression Analysis

We implemented WAH, BBC, and VLC and compressed all aforementioned data sets.
With VLC, we varied across all segment lengths 3 ≤ seg len ≤ 31. However, due to
space constraints, we only report four representative configurations:vlc-opt,vlc-4,
vlc-7, and vlc-9. The vlc-opt setting corresponds to using the All Possible
Segment Length Determination (SLD) algorithm to find the optimal segmentation length
for each bit vector. The compression generated byvlc-opt represents the best possible
compression our implementation of VLC can achieve. Thevlc-4, vlc-7, and vlc-9
results are produced by using the Common Factor SLD algorithm on a base of 4, 7,
and 9 respectively. For instance, bitmaps compressed in vlc-4 may contain bit vectors
encoded in segment lengths of 4, 8, 12, 16, 20, 24, and 28.

Table 2. Data Compression Size

Compression (MB)
Dataset Orig WAH BBC vlc-opt vlc-4 vlc-7 vlc-9

HEP 272.0 2.251 1.552 1.161 1.398 1.185 1.315
Histo 21.4 1.05 0.59 0.572 0.663 0.573 0.664
Landsat 238.0 28.001 18.699 16.779 16.99 18.683 22.098
Stock 6.7 0.62 0.637 0.605 0.659 0.639 0.675
Uni 10.2 0.033 0.03 0.013 0.017 0.02 0.013

Table 2 presents the size (in MB) of the compressed data sets. As expected, we ob-
serve that vlc-opt outperforms all configurations, but because the bit vectors are not
gcd-aware, the misalignment of the segments will adversely affect query performance.
Thus, we emphasize the “closeness” of the vlc-* versions to vlc-opt and that most
vlc-* configurations also out-compress both WAH and BBC. For further comparison,
we juxtapose the compression ratio of VLC over BBC and WAH in Figures 3(a) and
3(b) respectively. Expectedly, most vlc-* versions provide a modest improvement
when compared to BBC for most data sets. We can observe that for Histo, Landsat,
and Stock, BBC slightly out-compresses vlc-9. We believe this is due to BBC’s
aggressive compression of shorter runs, which appears frequently in these data sets.

Figure 3(b) depicts the comparison of VLC to WAH. Because of WAH’s longer fixed
segments, it is expected that all vlc versions should out-compress WAH, unless in the
presence of massive amounts of exponentially long runs, which are rare. In the best
case, we can observe improvement of 1.7× (for real data) and 2.54× (for synthetic
data) the compression rates of WAH using VLC. We can observe the best results for
the synthetic Uni dataset, where it becomes very clear that the optimal compression
segment length is in between the extremes of BBC and WAH. Out of 100 bit vectors,
the vlc-opt algorithm compressed 50 of these in base-9, 3 in base-13, and 47 in
base-14. In vlc-9, which is near optimal, is compressing 50 bit vectors in base-9, 48
columns in base-18, and 2 columns in base-27.

An anomalous data set is Stock, where compression gains appear difficult to
achieve. We believe there are two reasons contributing to this observation. Due to the

390 F. Corrales, D. Chiu, and J. Sawin

HEP Histo Landsat Stock Uni

1

1.5

2

2.5

3

C
om

pr
es

si
on

 R
at

io

vlc-opt
vlc-4
vlc-7
vlc-9
BBC

(a) Versus BBC

HEP Histo Landsat Stock Uni

1

1.5

2

2.5

3

C
om

pr
es

si
on

 R
at

io

vlc-opt
vlc-4
vlc-7
vlc-9
WAH

(b) Versus WAH

Fig. 3. Comparison of Compression Ratio

Stock data’s dimensionality (1080 columns), after the first several columns, Gray code
tuple ordering eventually deteriorates and begins generating columns with very short
runs, or worst case, uniformly distributed bits. Adding to this effect is that Stock’s
number of rows is small, which implies the opportunities for longer runs is made fur-
ther infrequent. This means most of the later columns are probably being represented
as literals in all compression schemes. This theory is supported by the fact that WAH
actually out-compresses most schemes (an outlier). Due to the fact that WAH only uses
one flag bit per 31-bit literal, it is by far the most efficient way to store long literals in
all schemes.

4.2 Evaluation of Query Processing Times

In this subsection, we present the query processing times. For each data set, a set of
10 queries, which vary in the amount of tuples retrieved, was generated. To execute
these queries, we split each bitmap vertically into 4 equal-sized sets of bit vectors
B1, B2, B3, B4. Each query inputs 2 bit vectors X and Y such that ∀i,j : select X ∈ Bi,
Y ∈ Bj randomly. In other words, X and Y are randomly selected from each set of bit
vectors, and we query against all combinations of bit vectors. We submitted the set of
10 queries repeatedly for all Bi, Bj combinations, and averaged the execution time to
process all 10 queries.

This experimental protocol was selected in an attempt to avoid any segmentation
length bias. By randomly selecting compressed bit vectors from different quadrants
of the bitmap, we increase the likelihood that, under vlc-*, the queried bit vectors
would be in segmentation lengths. This protocol also ensures that not all the queried
columns were selected from the first (or last) few bit vectors which would favor WAH,
or conversely, BCC in inner regions.

Figures 4(a) and 4(b) display the query time ratios between vlc-* versions and
BBC and WAH respectively. We did not include the results from vlc-opt in the
graphs as it was, on average, 10 times slower than the next slowest algorithm. This was
expected, since many of the column pairs used in the queries had gcd = 1, meaning
they had to be fully decompressed before logical operation could be applied.

Variable Length Compression for Bitmap Indices 391

HEP Histo Landsat Stock Uni

0.5

1

1.5

2

2.5

3

Q
ue

ry
in

g
Ti

m
e

R
at

io

vlc-4
vlc-7
vlc-9
BBC

(a) Versus BBC

HEP Histo Landsat Stock Uni

0.6

1

1.4

1.8

Q
ue

ry
in

g
Ti

m
e

R
at

io

vlc-4
vlc-7
vlc-9
WAH

(b) Versus WAH

Fig. 4. Comparison of Query Processing

As can be seen in both Figure 4(a) and 4(b), vlc-4 provides a less than optimal
querying efficiency. Recall that this configuration can produce segment lengths of 4,
8, 12, 16, 20, 24, and 28. While this flexibility sometimes allows for robust compres-
sion rates, in terms of query performance, if X and Y vectors vary in segment lengths
(which occurs frequently due to the large number of available base-4 options), they
must be decoded to base-4 gcd, which is costly. This observation is supported by the
performance gains from using the longer segment lengths of vlc-7 and vlc-9. Be-
cause seg len = 7 and seg len = 9 only generate {7, 14, 28} and {9, 18, 27} bases,
there will be higher probabilities where any two random bit vectors X and Y will match
base, and thus not requiring gcd-base decoding.

Furthermore, for vectors that still require base decoding, the inherently larger bases
of 7 and 9 allow bitwise operations to be amortized over a smaller base 4. These fea-
tures combined with the increase in compression allowed vlc-7 to match or improve
upon WAH’s querying times for 3 of the 5 data sets and vlc-9 out-performs WAH
on 4 of the data sets (Figure 4(b)). When compared to BBC, vlc-7 and vlc-9 had
comparable query times for Histo and Landsat, and they performed significantly
better on Hep and Uni (Figure 4(a)). For these latter data sets, vlc-7 and vlc-9
resulted in better compression than BBC and used larger segmentation lengths for most
columns. The result is that much less parsing was required during query processing.

It is interesting to note that BBC querying actually out-performed WAH for Histo
and Landsat. A closer investigation revealed that, for each of these data sets, a small
number of the 10 queries were skewing the results. In both cases, the bit vectors in these
outlier queries came from quadrants B3 and B4 of the bitmap. We surmise that these are
the columns in a Gray code ordered bitmap that led to inefficient WAH compression. In
these instances, it appears that WAH had to use a large number of literals to represent
bit vectors. Essentially, this meant that WAH had to perform a logical operation for
each bit. Conversely, due to BBC’s ability to compress short runs it was able to perform
fewer operations.

Summary and Discussion: In summary of our analysis, the results of our empiri-
cal study indicate that VLC can, on average, offer higher compression rates than ei-
ther BBC and WAH. Although not initially expected, we also presented cases where
VLC outperforms both BBC and WAH. Ignoring vlc-opt due to its prohibitive query

392 F. Corrales, D. Chiu, and J. Sawin

processing times, in the best case for real data sets, vlc-9 out-compresses BBC and
WAH by a factor of 1.3× and 1.71× respectively. These numbers jump to 2.3× and
2.54× respectively for BBC and WAH for synthetic uniform data. In all of our com-
pression experiments, the worst case was a 15% loss in compression, albeit this was
rare. In terms of query performance, we managed a speedup factor of 1.6× over BBC
and 1.25× over WAH in the best case for real data sets. These numbers grow to a 3×
speedup for BBC and 1.42× speedup for WAH for our synthetic data. In the worst case,
around a 0.6× slowdown for Stock can be seen compared to either BBC or WAH. This
suggests that VLC’s gcd decoding renders it inefficient for high dimensional data sets
with small numbers of rows, which are rare for large-scale data-intensive applications.

Our results also echo such efforts as [12], which sought a deeper understanding of
how row ordering (as well as potentially many other optimizations) truly affects bitmap
performance and compression. We view our findings as yet another example of how
careful consideration of the segmentation length used for compression is especially
important for Gray code ordered bitmaps.

5 Related Work

There is a large body of research related to bitmap indices and compression. In this
section we focus on the class of techniques most relevant to our work.

Bitmap indices [18, 15], which are closely related to inverted files [14] (frequently
occurring in information retrieval) have long been employed in traditional OLAP and IR
systems. Over the years, seminal efforts have made practical the integration of bitmaps
for general data management. For instance, works have addressed bitmap encoding is-
sues, which include considerations on bit-vector cardinality and representation to opti-
mize query processing [5, 17]. The focus in efforts are tangential to the work presented
in this paper. We offer a generalized word aligned compression scheme.

Run-length encoding (RLE) techniques [9] were popularized early through the ubiq-
uitous bit representations of data, and were particularly useful for compressing sparse
bitmaps. For example, a bit vector can be transformed to a vector containing only the
positions of 1’s, and thereby implicitly compressing the 0 bits. When the sequence is
further transformed to the differences of the positions, coding schemes, such as Elias’s
δ and γ codes and its variations [8, 13, 4], can be used to map the expectedly small
integers to correspondingly small bit representations.

These efforts, however, do not consider the impact of memory alignment, which
significantly slows the performance of bitwise logical operations, e.g., a vector which
spans two bytes would require two separate reads. Such decoding overheads would
not be very suitable for database query processing. Thus, effort towards generating
memory-aligned, CPU friendly compressed bitmaps ensued. The Byte-aligned Bitmap
Code (BBC) [2] exploits byte alignment and allows direct bit-wise comparisons of
vectors in their compressed state. Wu, et al. proposed Word-Aligned Hybrid Code
(WAH) [20, 19], which is even more amenable for processing.

Due to WAH’s success in accelerating query processing times, many variations of
WAH have also been proposed. One example is the Word-aligned Bitmap Code (WBC),
also seen in literature as Enhanced WAH (EWAH) [21]. This scheme uses a header
word to represent fill runs and literal runs. A 31-bit header word (plus the 1 MSB for
flagging) is split into two halves. The upper 16 bits following the flag bit is used to
denote the fill, and the run length, just as before. The lower 15 bits are used to de-
note the run length of literals following the fill run. This optimization can be significant

Variable Length Compression for Bitmap Indices 393

for query processing. For instance, long literal runs can be ignored (without accessing
them) when AND’d with 0’s. If a logical comparison is indeed required, the decod-
ing phase would know a priori that the next n words are literals without parsing the
flag bit.

Deliege and Pederson proposed a Position List extension to WAH (PLWAH), which
exploits highly similar words [6]. Their insight is that, often, only a single bit can com-
promise a much longer run, and typically, it is highly unlikely that all fill bits are used
in a word. Thus, their scheme first separates a bitmap into segments of wordsize − 1
bits. Words that are “nearly identical” to a fill word are identified and appended onto a
fill, rather than representing it as a literal. The five most significant bits following the
fill word’s fill and flag bits are further used to identify the position of the bits in the
nearly identical literal. We surmise that PLWAH can be used in conjunction to our VLC
scheme, which is currently being implemented.

There has also been significant amounts of work on the issue of bitmap row reorder-
ing. Because tuple order is arbitrary in a database relation, its corresponding bitmap
can thus be reordered to maximize runs. Pinar, Tao, and Ferhatosmanoglu explored the
tuple reordering problem in [16]. They proved that tuple reordering is NP-Complete,
and proposed the Gray code ordering heuristic. More recently, Lemire et al. presented
an extensive investigation into reordering efforts (including column reordering, which
is not being considered in our work) over large bitmaps [12]. Among various contri-
butions, they made several interesting observations. For one, the authors experimented
with 64-bit words and observed an interesting space-time tradeoff: while 64-bit word
compression expectedly generates indices that are twice as large, the queries are slightly
faster.

The above efforts are orthogonal to VLC — our technique allows bit vectors to be
compressed and queried using varying segment encoding lengths. We have shown that
VLC achieves greater compression in our experiments than both WAH and BBC in
most cases, when the correct segment length is chosen. Our scheme thus provides an
option to the user to encode a bitmap using specific encoding lengths to greater optimize
compression, or to use encoding lengths that would allow for faster querying on certain
columns that may be queried often. Thus, VLC is a tunable approach, which allows
users to trade-off size and performance.

6 Conclusion and Future Work

Bitmap indices have become a mainstay in many database systems, popularized due to
its fast query processing and compressibility. However, as high dimensional data con-
tinues to grow at today’s astounding pace, bitmap compression becomes increasingly
more important to minimize disk accesses when possible.

In this paper, we proposed a novel bitmap compression technique, Variable Length
Compression (VLC), which allows for robust run-length compression of ordered
bitmaps. We offer two simple heuristics on selecting encoding length per given bit
vector. Our query processing algorithm automatically decodes bit vectors to the same
coding base so that queries can be carried out efficiently. We ran an experimental study
on 4 sets of real data and 1 synthetic data set. We showed that VLC can out compress
both BBC and WAH, two of today’s state-of-the-art bitmap compression schemes, by
around 2.5× in the best case. We concede cases where VLC compression rates are less
than BBC, but only marginally. In terms of query performance, the expectation was that
VLC would lie somewhere between BBC and WAH, but remain competitive to WAH.

394 F. Corrales, D. Chiu, and J. Sawin

While this assumption was shown to be true, we also observed interesting results that
show clearly, there are cases where VLC outperforms and out compresses both BBC
and WAH. Again, we acquiesce that there are opportunities for improvement on certain
data sets.

During the evaluation process, some future work opportunities emerged. For exam-
ple, we can (and should) adapt the segment encoding lengths to query history. Because
longer segments tend to query much faster, we can dynamically relax compression rates
for frequently queried columns (and conversely, compress infrequently queried columns
more aggressively). To ensure word alignment, we currently pad in the last unused bits
of a word, a necessary storage cost. An alternative could be to fit as many represen-
tations fit into one word, then begin a representation in one word and finish it in the
following word, “stitching” the representation together. While we expect that the stitch-
ing may result in a slowdown in query times, but may also provide a substantial gain
in compression. Some obvious experimental extensions would include using larger data
sets, different row ordering algorithms combined with column re-ordering which has
been shown to increase run-lengths [1, 11], and range queries.

Acknowledgments. We would like to thank Hakan Ferhatosmanoglu (Ohio State Uni-
versity), Guadalupe Canahuate (The University of Iowa), and Michael Gibas (Teradata)
for their valuable insights and comments on this paper.

This work was generously supported in part by an Amazon Web Services (AWS in
Education) Research Award to D. Chiu at Washington State University and a Martin
Nelson Summer Award for Research to J. Sawin at the University of Puget Sound.

References

1. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-
oriented database systems. In: ACM SIGMOD International Conference on Management
of Data, pp. 671–682 (2006)

2. Antoshenkov, G.: Byte-aligned bitmap compression. In: DCC 1995: Proceedings of the Con-
ference on Data Compression, p. 476. IEEE Computer Society, USA (1995)

3. Apaydin, T., Tosun, A.Ş., Ferhatosmanoglu, H.: Analysis of basic data reordering tech-
niques. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 517–524.
Springer, Heidelberg (2008)

4. Brisaboa, N.R., Ladra, S., Navarro, G.: Directly addressable variable-length codes. In: Karl-
gren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 122–130. Springer,
Heidelberg (2009)

5. Chan, C.-Y., Ioannidis, Y.E.: An efficient bitmap encoding scheme for selection queries. In:
Proceedings of the 1999 ACM SIGMOD International Conference on Management of data
SIGMOD 1999, pp. 215–226. ACM, New York (1999)

6. Deliege, F., Pederson, T.: Position list word aligned hybrid: Optimizing space and perfor-
mance for compressed bitmaps. In: Proceedings of the 2010 International Conference on
Extending Database Technology (EDBT 2010), pp. 228–239 (2010)

7. Donno, F., Litmaath, M.: Data management in wlcg and egee. worldwide lhc computing grid.
Technical Report CERN-IT-Note-2008-002, CERN, Geneva (February 2008)

8. Elias, P.: Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, 21(2), 194–203 (1975)

9. Golomb, S.W.: Run-Length Encodings. IEEE Transactions on Information Theory 12(3),
399–401 (1966)

Variable Length Compression for Bitmap Indices 395

10. Kaser, O., Lemire, D., Aouiche, K.: Histogram-aware sorting for enhanced word-aligned
compression in bitmap indexes. In: ACM 11th International Workshop on Data Warehousing
and OLAP, pp. 1–8 (2008)

11. Lemire, D., Kaser, O.: Reordering columns for smaller indexes. Information Sciences 181
(2011)

12. Lemire, D., Kaser, O., Aouiche, K.: Sorting improves word-aligned bitmap indexes. Data
and Knowledge Engineering 69, 3–28 (2010)

13. Moffat, A., Zobel, J.: Parameterised compression for sparse bitmaps. In: SIGIR, pp. 274–285
(1992)

14. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Transactions
on Information Systems 14, 349–379 (1996)

15. O’Neil, P.E.: Model 204 architecture and performance. In: Gawlick, D., Reuter, A., Haynie,
M. (eds.) HPTS. LNCS, vol. 359, pp. 40–59. Springer, Heidelberg (1989)

16. Pinar, A., Tao, T., Ferhatosmanoglu, H.: Compressing bitmap indices by data reorganization.
In: Proceedings of the 2005 International Conference on Data Engineering (ICDE 2005),
pp. 310–321 (2005)

17. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans.
Database Syst 32 (August 2007)

18. Wong, H.K.T., Fen Liu, H., Olken, F., Rotem, D., Wong, L.: Bit transposed files. In: Proceed-
ings of VLDB 1985, pp. 448–457 (1985)

19. Wu, K., Otoo, E., Shoshani, A.: An efficient compression scheme for bitmap indices. ACM
Transactions on Database Systems (2004)

20. Wu, K., Otoo, E.J., Shoshani, A.: Compressing bitmap indexes for faster search operations.
In: Proceedings of the 2002 International Conference on Scientific and Statistical Database
Management Conference (SSDBM 2002), pp. 99–108 (2002)

21. Wu, K., Otoo, E.J., Shoshani, A., Nordberg, H.: Notes on design and implementation of
compressed bit vectors. Technical Report LBNL/PUB-3161, Lawrence Berkeley National
Laboratory (2001)

22. Zaki, M.J., Wang, J.T.L.: Special issue on bionformatics and biological data management.
Information Systems 28, 241–367 (2003)

Modeling View Selection as a Constraint
Satisfaction Problem

Imene Mami, Remi Coletta, and Zohra Bellahsene

LIRMM, University Montpellier 2
161 Rue Ada

F-34095 Montpellier, France
{imen.mami,coletta,bella}@lirmm.fr

Abstract. Using materialized views can highly speed up the query pro-
cessing time. This paper deals with the view selection issue, which con-
sists in finding a set of views to materialize that minimizes the expected
cost of evaluating the query workload, given a limited amount of re-
source such as total view maintenance cost and/or storage space. How-
ever, the solution space is huge since it entails a large number of possible
combinations of views. For this matter, we have designed a solution in-
volving constraint programming, which has proven to be a powerful ap-
proach for modeling and solving combinatorial problems. The efficiency
of our method is evaluated using workloads consisting of queries over the
schema of the TPC-H benchmark. We show experimentally that our ap-
proach provides an improvement in the solution quality (i.e., the quality
of the obtained set of materialized views) in term of cost saving com-
pared to genetic algorithm in limited time. Furthermore, our approach
scales well with the query workload size.

1 Introduction

The information stored at the warehouse is often organized in materialized views
which represent pre-computed portions of the most frequently asked queries [3].
Using materialized views can improve the performance and speed up the pro-
cessing of queries since the access to materialized views can be much faster than
recomputing the views. However, these materialized views have to be maintained
in response to changes to the underlying base relations. In most cases it is waste-
ful to maintain a view by re-computing it from scratch. Often, it is cheaper to
compute only the changes in the view to update its materialization which is
called the incremental view maintenance.

Materializing all the input queries can achieve the lowest query cost but the
highest view maintenance cost which can cause overhead to the system. Besides,
the query result can be too large to fit in the available storage space. Hence,
there is a need for selecting a set of views to materialize by taking into account
three important features: query cost, view maintenance cost and storage space.

The problem of choosing which views to materialize that minimize the total
query cost given a limited amount of resource such as total view maintenance

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 396–410, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Modeling View Selection as a Constraint Satisfaction Problem 397

cost and/or storage space is known as the view selection problem. This is one
of the most challenging problems in data warehousing [28]. The view selection
problem is a NP-complete problem since the search space for the optimal solution
grows exponentially as the problem size increases [11,12].

In this paper, we propose a new approach to the view selection problem which
minimizes the total query cost under the case where (i) the limited resource is
the total view maintenance cost, assuming unlimited amount of storage space if
we consider that storage space is cheap and not regarded as a critical resource
anymore and (ii) both space and maintenance cost constraints exist.

Although, several heuristic algorithms have been proposed in literature to
solve the view selection problem such as deterministic algorithms i.e., greedy al-
gorithms [11,29,12,25,20,21,26,2], randomized algorithms i.e., genetic algorithms
[31,18,13,30,16,5] and simulated annealing algorithms [14,7,8] or hybrid algo-
rithms [32] which combine the strategies of pure deterministic algorithms and
pure randomized algorithms.

These heuristic algorithms provide reasonably good solutions. However, there
is no guarantee of performance because the greedy nature or the random charac-
teristic of the algorithms may make them converging to poor local minima. An
exact resolution for the view selection problem is prohibited since an exhaustive
search cannot compute an optimal solution within a reasonable time due to the
complexity of the problem.

Yet, over the past ten years, effective paradigms for exact resolution of NP-
complete problems have been proposed, such as constraint programming (CP),
structured around annual competitions [17]. Furthermore, constraint program-
ming has proven to be a powerful technique for modeling and solving combi-
natorial problems [9]. We have designed a new approach for solving the view
selection problem involving constraint programming. Our approach consists in
modeling the view selection as a Constraint Satisfaction Problem (CSP). Our
main contributions are:

1. We propose a new approach to the view selection problem. We model this
problem as a constraint satisfaction problem (CSP). Then, a constraint pro-
gramming (CP) solver can be applied to set up the search space by identifying
a set of views that minimizes the total query cost.

2. We address the view selection under the case where (i) the limited resource
is the total view maintenance cost, assuming unlimited amount of storage
space if we consider that storage space is cheap and not regarded as a critical
resource anymore and (ii) both space and maintenance cost constraints exist.

3. We highlight the anytime behavior of our approach which is able to provide
a near optimal solution to the view selection problem during a given time
interval. The quality of this solution may be improved over time (if the CPU
time is available).

4. We have implemented our approach and compared it with a randomized
method (i.e., genetic algorithm). We experimentally show that our approach
provides better performance resulting from evaluating the quality of the
solutions in term of cost savings and scales well with the query workload.

398 I. Mami, R. Coletta, and Z. Bellahsene

The rest of this paper is organized as follows. Section 2 describes the problem
of view selection and the framework used for representing the queries of the
workload. Section 3 provides an overview of our approach and describes how to
model the view selection problem as a constraint satisfaction problem (CSP). In
section 4, are provided the experiments results. Section 5 contains a brief survey
of related work. Finally, in section 6 we conclude and plan for future work.

2 Problem Specification

The general problem of view selection is to select a set of views to be mate-
rialized that minimizes the cost of evaluating the query workload modeled by
the frequently asked queries, given a limited amount of resource, e.g., total view
maintenance cost and/or storage space. In this paper, we consider selection-
projection-join (SPJ) queries that may involve aggregation and group by clause
as well.

In order to detect overlapping between queries of workload and capture the
dependencies among the queries, the view selection is represented as an AND-
OR view graph [11]. The union of all possible execution plan of each query forms
an AND-OR view graph where the common sub-expression are represented once.
The AND-OR view graph is a Directed Acyclic Graph (DAG) composed of two
types of nodes: Operation nodes (Op-nodes) and Equivalence nodes (Eq-nodes).
Each Op-node represents an algebraic expression (Select-Project-Join) with pos-
sible aggregate function. An OR-node represents a set of logical expressions that
are equivalent (i.e., that yield the same result). The Op-nodes have only Eq-
nodes as children and Eq-nodes have only Op-nodes as children. The root nodes
are equivalence nodes representing the queries of workload and the leaf nodes
represent the base relations. Equivalence nodes in the AND-OR view graph cor-
respond to the views that are candidates for materialization.

A sample AND-OR view graph is shown in figure 1. Circles represent operation
nodes and boxes represent equivalence nodes. For example, in this figure, view
v1, corresponding to a single query, can be computed from v3 and r2 or v4 and r3.
If there is only one way to answer or update a given query, the graph becomes an
AND view graph. We explore the view selection problem in the context of AND-
OR view graph, which allows a single query to be answered and updated from
multiple paths, since a good selection of materialized views can only be found
by considering the optimization of both global processing plans and materialized
view selection [32].

To each equivalence node which represents a view, is associated the following
metadata:

– Query cost Qc which represents the cost of computing a view from its related
base relations and/or views.

– Maintenance cost Mc which is the cost required for updating a view when
the related base relation is changed.

Modeling View Selection as a Constraint Satisfaction Problem 399

Fig. 1. The AND-OR view graph of the two queries Q1 and Q2

– Read cost Rc that denotes the size of the view.
– Query frequency fq (if the equivalence node is a root node) which describes

the frequency of posing a given query.
– Update frequency fu which represents the frequency of updating a view in

response to change to the underlying data.

The general view selection problem for AND-OR view graphs can be formu-
lated as follows: Given an AND-OR view graph G, select the set of views to
materialize that minimizes the total query cost under the following cases:

– Where only the maintenance cost constraint is considered. Here, we address
the view selection problem by constraining the total maintenance cost needed
to update the materialized views while assuming unlimited amount of storage
space.

– Where both maintenance cost and space constraints exist. In this case, we
have a total maintenance cost limit but also a bound on the total storage
space required to materialize the selected views.

3 A New Approach to the View Selection Problem

3.1 Motivations

In this section, we present our approach for selecting a set of views to be ma-
terialized. The optimal solution is the one which selects the right materialized
views (equivalence nodes) of the AND-OR view graph that minimizes the to-
tal query cost subject to certain constraints such as space and maintenance cost

400 I. Mami, R. Coletta, and Z. Bellahsene

constraints. However, the search space for the optimal solution is very large since
it entails a great number of comparisons between all possible subsets of views.

Our motivation to use constraint programming in solving the view selection
problem is that it is known to be a powerful approach for modeling and solving
combinatorial problems such as Job Shop Scheduling [4]. The success of using
constraint programming for combinatorial optimization is due to its combination
of these three features [27]:

– High level modeling. Constraint programming provides a rich constraint
language to model the problem as a Constraint Satisfaction Problem. In the
following subsections, we give a formal definition of CSP and show how to
model the view selection problem as a CSP.

– Constraint propagation. This leads to a reduction of the search space, by
excluding solutions where the constraints become inconsistent. For example,
in the case of solving the view selection problem under the maintenance
cost constraint, all the view combinations which violate this constraint are
discarded.

– Search. Constraint programming offers facilities to control the search be-
havior deciding which alternative (i.e., views combination) to try first.

3.2 Preliminaries

In this subsection, we introduce the CSP model that we have used in our ap-
proach. A constraint satisfaction problem (CSP) is composed of:

– A set of variables V AR = {var1, var2, ..., varn}
– Each variable vari has a set of values which is called the domain of values

DOM = {d1, d2, ..., dn}
– A set of constraints CST = {c1, c2, ..., cn} describes the relationship between

subsets of variables. Formally, a constraint Cijk between the variables vari,
varj , vark is any subset of the possible combinations of values of vari, varj ,
vark, i.e., Cijk ⊂ di × dj × dk. The subset specifies the combinations of
values that the constraint allows.

A CSP consists in finding solutions by assigning values to its variables that
satisfy all its constraints. Our approach consists in modeling the view selection
problem as a CSP. Its resolution is supported automatically by constraint solver
embedded in the constraint programming language.

3.3 Modeling View Selection Problem as a CSP

Formulating the view selection problem as a constraint satisfaction problem
(CSP) consists in specifying the variables of the CSP, their domains, and the
constraints that are over them in the context of view selection. In the following,
we describe each part of the specification.

Modeling View Selection as a Constraint Satisfaction Problem 401

3.3.1 Variables and Domains
The variables of the CSP considered in modeling the view selection problem are:

– Matvi which denotes for each view vi (equivalence node in the AND-OR
view graph) , if it is materialized or not materialized. It is a binary variable,
dMatvi

=0,1 (0: vi is not materialized, 1: vi is materialized).
– Qc(vi) that represents the query cost corresponding to a view vi. The domain

is a finite subset of N∗ such as dQc(vi) ⊂ N∗.
– Mc(vi) which is the maintenance cost corresponding to a view vi, where

dQc(vi) ⊂ N∗.

3.3.2 Constraints
The constraints which describe the relationship between the variables defined
above are:

– The query and maintenance cost corresponding to a view is implemented by
using a depth-first traversal of the AND-OR view graph. We use the cost
formulae described in [24,21] to compute these two costs (defined in a recur-
sive way).

Query Cost:

Qc(vi) =
{

ComputingCost(vi) if Matvi = 0
min(ComputingCost(vi), ReadingCost(vi)) otherwise

ComputingCost(vi) = min
opj∈child(vi)

⎛⎝cost(opj) +
∑

vk∈child(opj)

Qc(vk)

⎞⎠
The query cost corresponding to view vi which is an equivalence node in the
AND-OR view graph, is the minimum cost paths from vi to its related views
or base relations, if vi is not materialized. Otherwise, if vi is materialized,
we use the minimum of the cost of reading vi and the minimum cost paths
as defined above.

Each minimum cost path is composed of all the cost of executing the
operation nodes on the path and the query cost corresponding to the re-
lated views or bases relations of vi. The costs of executing the operations:
selection, join, projection and aggregation are estimated according to the
formulas given in [6] for cost operation estimation. In this paper, these costs
are calculated in terms of number of tuples in the involved relations.

View maintenance cost:

Mc(vi) =
{

0 if Matvi = 0∑
drl∈diffRelations(vi)

Mcost(vi, drl) otherwise

402 I. Mami, R. Coletta, and Z. Bellahsene

Mcost(vi, drl)= min
opj∈child(vi)

⎛⎝cost(opj , drl) +
∑

vk∈child(opj)

UpdatingCost(vk, drl)

⎞⎠

UpdatingCost(vk, drl) =
{

Mcost(vk, drl) if Matvk
= 0

min(Mcost(vk, drl), δ(vk, drl)) otherwise

The maintenance cost of view vi, if it is materialized, is computed by sum-
ming the number of changes in the base relations from which vi is updated.
If vi is not materialized, then there is no maintenance cost. We assume in-
cremental maintenance to estimate the view maintenance cost. Therefore,
the maintenance cost is the differential results of materialized views given
the differential (updates) of the bases relations. Let δ(vi, drl) denotes the
differential result of view vi, with respect to update drl.

The view maintenance cost is computed similarly to the query cost, but
the cost of each minimum path is composed of all the cost of executing the
operation nodes with respect to update drl on the path and the maintenance
cost corresponding to the related views of vi. We have been inspired by the
formula given in [21] for estimating the cost of executing the operation nodes
in response to changes to the base relations.

– The total maintenance cost of the set of materialized views is less than U
which is the total view maintenance cost limit.∑

vi∈V (G)

(Matvi ∗ (fu(vi) ∗Mc(vi))) ≤ U

Note that V (G) represents all the views in the AND-OR view graph, Mc(vi)
is the cost of maintaining a materialized view vi and fu(vi) is the update
frequency of the view vi. Here, the view selection is decided under the main-
tenance cost constraint.

– The total space occupied by the materialized views M is less than S which
is the maximum storage space.∑

vi∈V (G)

(Matvi ∗Rc(vi)) ≤ S

Recall that Rc(vi) is the size of the view vi. If the space constraint is con-
sidered, views are selected to be stored only if the necessary space for their
materialization is at most S.

Modeling View Selection as a Constraint Satisfaction Problem 403

– Minimize the total query cost.

minimize

⎛⎝ ∑
vi∈Q(G)

(fq(vi) ∗Qc(vi))

⎞⎠
In this formula, Q(G) represents all the queries (root nodes in the AND-OR
view graph), Qc(vi) is the query cost of the view vi and fq(vi) is the query
frequency of the view vi. The total query cost is computed by summing over
the cost of processing all the queries of workload.

4 Experimental Evaluation

We have implemented our approach and compared it with a randomized method
because in previous studies [30,7,8], it was shown that randomized algorithms
provide a significant improvement in the performance compared to deterministic
algorithms. The most commonly used randomized algorithms in the context of
view selection are simulated annealing algorithms and genetic algorithms. The
motivation to compare our approach with genetic algorithm is based on the ob-
servation that genetic algorithm in contrast with simulated annealing algorithm
use a multi-directional search which allows to find a point near the global op-
timum [18]. A comparison with hybrid approaches has not been made because
of their excessive computation time [32]. The goal of the experiments is the
comparison of the solution quality resulting from evaluating the quality of the
obtained set of materialized views in term of cost savings between our method
and genetic algorithm.

4.1 Experiment Settings

The computer used for experimentation was an Intel Core 2 Duo P8600 CPU
@ 2.40 GHz machine running with 3GB of RAM and Windows XP Professional
SP3. The program was written in Java using JDK/JRE 1.6.0. We chose a work-
load of one hundred queries defined over the database schema of the TPC-H
benchmark [1]. We then randomly assigned values to the frequencies for access
and update based on uniform distribution.

In all experiments, the quality of the solutions found by the genetic algorithm
and our method was respectively measured as a ratio of the total query cost ob-
tained using the genetic algorithm and the constraint solver over the total query
cost when all the views are not materialized. Thus, we consider the "Without-
Mat" approach which does not materialize views and always recomputes queries
as a benchmark for our normalized results. The ratio was computed and averaged
over several runs for the genetic algorithm because of his probabilistic behavior.

We have implemented the genetic algorithm presented in [5] by incorporat-
ing space and maintenance cost constraints into the algorithm. The values for
population size and probabilities of the crossover and mutation operators are
assigned based on studies conducted by [10,19]. In order to let the genetic al-
gorithm converge quickly, we generated an initial population which represents

404 I. Mami, R. Coletta, and Z. Bellahsene

a favorable view configuration rather than a random sampling. Favorable view
configuration such as the views which satisfy the maintenance cost and space
constraints if they exist are most likely selected for materialization.

4.2 Experiment Results

The constraint solver for solving the view selection problem as a constraint
satisfaction problem (CSP) is aimed to provide the optimal solution (see figure
2(a)). However, this is not feasible at large scale because of the great number
of comparisons between all possible subsets of views which are candidate for
materialization. One way to avoid an explosion in the search space is to explore
a strictly limited number of possibilities. In this case, the constraint solver is
aimed at simply finding a feasible solution in which all constraints are satisfied.
Figure 2(b) shows the quality of the solutions returned by our approach involving
30 queries as a function of execution time. We can see, our approach provides
near optimal solutions quickly. Indeed, after only few minutes (i.e., 3 minutes
and 24 seconds), the solution found lies within 79,84% of the optimal solution.
The quality of this solution is improved over time. In the next experiments, the
constraint solver was left to run until the convergence of the genetic algorithm.

(a) Until optimal solution (b) Until 10 minutes

Fig. 2. The solution quality of our approach over time (nb of queries=30)

4.2.1 Experiments under the Maintenance Cost Constraint
In this section, we compare the performance resulting from evaluating the qual-
ity of the solutions found by our approach and genetic algorithm in the context
where the view selection is constrained by a total view maintenance cost limit
U . In these experiments, U is computed as a function of U(Q) which is the
total maintenance cost when all queries (i.e., root nodes in the AND-OR view
graph) are materialized [14]. We set U to be 4%, 8%, 16%,..., 32% of U(Q).

Modeling View Selection as a Constraint Satisfaction Problem 405

Fig. 3. Comparison of the view selection methods while varying the maintenance cost
constraint (nb of queries=70)

Fig. 4. Evaluating the performance while varying the number of queries (U=16% of
U(Q))

Figure 3 compares experiment results of our approach with that of genetic al-
gorithm while varying the values of U for a workload involving 70 queries. We
can see in figure 3 that our approach generates solutions with cost less than that
returned by the genetic algorithm when U < 32% of U(Q). For large values of U
(U >= 32% of U(Q)), solutions returned by the genetic algorithm have better
quality compared with our approach. This is because the genetic algorithm con-
verges faster when we relax the maintenance cost constraint and our approach
needs more time to achieve better quality. However, this would not be seen as
a drawback since the time bound for the update is usually very tight compared

406 I. Mami, R. Coletta, and Z. Bellahsene

with the time required for maintaining all the query workload. Figure 4 shows
the costs of the workload involving 10,20,30,40,50,60,70,80,90 and 100 queries
in order to test the scalability of the view selection methods according to the
number of queries. The maintenance cost constraint U was set to 16% of U(Q).
This graphics shows that our approach provides an improvement in the quality
of the obtained set of materialized views in term of cost savings compared with
the genetic algorithm. Furthermore, our method supports scalability when the
number of queries increases.

Fig. 5. The solution quality as a function of available storage space (number of
queries=70, U=50% of U(Q)).

4.2.2 Experiments under the Maintenance Cost and Space
Constraints

In order to compare the performance of the view selection methods in the con-
text where both maintenance cost and space constraints exist, we set U to 50%
and give restrictive values to the space constraint S. In these experiments, S is
computed as a function of S(Q) which is the size of the whole workload [14].
We varied S between 4% and 32% of S(Q). Figure 5 illustrates the quality of
the solutions produced by the two methods for various values of S for a work-
load involving 70 queries. The graphic shows that our approach generates better
solutions than the genetic algorithm in the case where the storage space is the
restrictive constraint. Experiment results depicted in figure 6 shows how well
the view selection methods scale with the problem size. The maintenance cost
constraint was set to 50% of U(Q) and the space constraint to 20% of S(Q). The
size of the problem varied from 10 to 100 queries. We observe that our approach
provides the lowest query cost while varying the number of queries. Therefore,
our approach outperforms the genetic algorithm for all query workload size. We
also show that our approach can be applied to large number of queries.

Modeling View Selection as a Constraint Satisfaction Problem 407

Fig. 6. The quality of results as a function of the number of queries (U=50% of U(Q),
S=20% of S(Q)).

5 Related Work

As mentioned in the introduction, the view selection problem is a NP-complete
problem. Several view selection methods have been proposed in the literature
to address the view selection problem. They can be classified into three major
groups:

5.1 Deterministic Algorithms Based Methods

Such methods usually provide a solution to the view selection problem either by
applying exhaustive search or by applying heuristics i.e., greedy algorithms to
reduce the search space. In [23], an exhaustive approach is presented for finding
the best set of views to materialize. [15] presents an optimal algorithm based
on A* algorithm [22] that vastly prune the search space compared to the al-
gorithm proposed in [23]. However, an exhaustive search cannot compute an
optimal solution within a reasonable time due to the complexity of the prob-
lem. Many approaches [11,29,12,25,20,21,26,2] using a kind of greedy strategy
to avoid having to traverse the solution space in an exhaustive search manner
have been designed. However, greedy algorithms are unsatisfactory in term of
the solution quality i.e., the quality of the obtained set of materialized views
because the greedy nature of the algorithm makes it susceptible to poor local
minima (initial solutions influence the solution greatly). In contrast with these
work, our approach provides a suitable trade-off between the computation time
and the solution quality. Indeed, we have shown that our approach provides a
good solution quality in a limited time. This is due to the use of constraint
propagation technique and facilities for controlling search behavior that are the
features of constraint programming.

408 I. Mami, R. Coletta, and Z. Bellahsene

5.2 Randomized Algorithms Based Methods

Randomize algorithms such as simulated annealing algorithms [7,8,14] and ge-
netic algorithms [5,13,18,30,16] have been used and explored for the selection
of materialized views in order to improve the quality of the solution. These
algorithms use a randomized search strategy for deciding which views to ma-
terialize. Randomized algorithms provide a better solution quality than greedy
algorithms. However, they may have a tendency to converge towards local op-
tima. Besides, their successes often depend on the set-up of the algorithm as
well as the extremely difficult fine-tuning of algorithm that must be performed
during many test runs. In our approach, we simply model view selection as a
constraint satisfaction problem (CSP) and its resolution is supported automat-
ically by constraint solver embedded in the constraint programming language.
Besides, our approach provides better results compared with genetic algorithm
in term of the solution quality.

5.3 Hybrid Algorithms Based Methods

Hybrid algorithms combine the advantages of pure deterministic algorithms and
pure randomized algorithms. A hybrid approach has been applied in [32] for
the view selection problem which combine heuristic algorithms i.e., greedy al-
gorithms and genetic algorithms. They prove that hybrid algorithms provide
better performance than either the genetic algorithms or heuristic algorithms
used alone in terms of solution quality. However, they often require longer com-
putation time and may be impractical due to their excessive computation time.

6 Conclusion

In this paper, we have presented a new approach to the view selection problem
which is based on constraint programming. More specifically, the view selection
problem has been modeled as a constraint satisfaction problem (CSP). Its res-
olution has been supported automatically by constraint solver embedded in the
constraint programming language. We have performed several experiments and
comparison with a randomized method i.e., genetic algorithm. The experiment
results have shown that our approach provides better performances compared
with the genetic algorithm in term of the solution quality (i.e., the quality of the
obtained set of materialized views) in a limited time. More precisely, we have
demonstrate experimentally that our approach provides better results compared
with genetic algorithm in term of cost savings when the view selection is decided
under the case where (i) only the maintenance cost constraint is considered, as-
suming unlimited amount of storage space and (ii) both maintenance cost and
space constraints exists. We have also shown that our approach supports scala-
bility when the number of queries increases. As a future work, we are planning
to apply our approach to a distributed database setting. Our current approach
simply takes into account the space and maintenance cost constraints. These

Modeling View Selection as a Constraint Satisfaction Problem 409

constraints will be per machine in a distributed context. Also, resource con-
straints such us CPU, IO, network bandwidth and the location of materialized
views will have to be taken into consideration. These new constraints will easily
be handled with our approach.

References

1. TPC-R Benchmark Standard Specication 2.01 (January 1999),
http://www.tpc.org

2. Baril, X., Bellahsene, Z.: Selection of materialized views: A cost-based approach.
In: CAiSE, pp. 665–680 (2003)

3. Bello, R.G., Dias, K., Downing, A., Feenan Jr., J.J., Finnerty, J.L., Norcott, W.D.,
Sun, H., Witkowski, A., Ziauddin, M.: Materialized views in oracle. In: VLDB,
pp. 659–664 (1998)

4. Caseau, Y., Laburthe, F.: Improved clp scheduling with task intervals. In: ICLP,
pp. 369–383 (1994)

5. Chaves, L.W.F., Buchmann, E., Hueske, F., Böhm, K.: Towards materialized view
selection for distributed databases. In: Proceedings of the 12th International Con-
ference on Extending Database Technology: Advances in Database Technology
EDBT 2009, pp. 1088–1099. ACM, New York (2009)

6. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection
problem. VLDB J. 11(3), 216–237 (2002)

7. Derakhshan, R., Dehne, F.K.H.A., Korn, O., Stantic, B.: Simulated annealing for
materialized view selection in data warehousing environment. In: Databases and
Applications, pp. 89–94 (2006)

8. Derakhshan, R., Stantic, B., Korn, O., Dehne, F.: Parallel simulated annealing
for materialized view selection in data warehousing environments. In: Bourgeois,
A.G., Zheng, S.Q. (eds.) ICA3PP 2008. LNCS, vol. 5022, pp. 121–132. Springer,
Heidelberg (2008)

9. Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving large combinatorial prob-
lems in logic programming. The Journal of Logic Programming 8(1-2), 75–93 (1990)

10. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

11. Gupta, H.: Selection of views to materialize in a data warehouse. In: ICDT, pp.
98–112 (1997)

12. Gupta, H., Mumick, I.S.: Selection of views to materialize under a maintenance
cost constraint. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540,
pp. 453–470. Springer, Heidelberg (1998)

13. Horng, J.-T., Chang, Y.-J., Liu, B.-J.: Applying evolutionary algorithms to mate-
rialized view selection in a data warehouse. Soft Comput. 7(8), 574–581 (2003)

14. Kalnis, P., Mamoulis, N., Papadias, D.: View selection using randomized search.
Data Knowl. Eng. 42(1), 89–111 (2002)

15. Labio, W., Quass, D., Adelberg, B.: Physical database design for data warehouses.
In: Proceedings of the Thirteenth International Conference on Data Engineering
ICDE 1997, pp. 277–288. IEEE Computer Society, USA (1997)

16. Lawrence, M.: Multiobjective genetic algorithms for materialized view selection in
olap data warehouses. In: GECCO, pp. 699–706 (2006)

17. Lecoutre, C., Roussel, O., van Dongen, M.R.C.: Promoting robust black-box solvers
through competitions. Constraints 15(3), 317–326 (2010)

http://www.tpc.org

410 I. Mami, R. Coletta, and Z. Bellahsene

18. Lee, M., Hammer, J.: Speeding up materialized view selection in data warehouses
using a randomized algorithm. Int. J. Cooperative Inf. Syst. 10(3), 327–353 (2001)

19. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd
edn. Springer, London (1996)

20. Mistry, H., Roy, P., Ramamritham, K., Sudarshan, S.: Materialized view selection
and maintenance using multi-query optimization. CoRR, cs.DB/0003006 (2000)

21. Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized view selection
and maintenance using multi-query optimization. In: SIGMOD Conference,
pp. 307–318 (2001)

22. Nilsson, N.J.: Problem-Solving Methods in Artificial Intelligence. McGraw-Hill
Pub. Co., New York (1971)

23. Ross, K.A., Srivastava, D., Sudarshan, S.: Materialized view maintenance and in-
tegrity constraint checking: Trading space for time. In: SIGMOD Conference, pp.
447–458 (1996)

24. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms
for multi query optimization. CoRR, cs.DB/9910021 (1999)

25. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms
for multi query optimization. In: SIGMOD Conference, pp. 249–260 (2000)

26. Valluri, S.R., Vadapalli, S., Karlapalem, K.: View relevance driven materialized
view selection in data warehousing environment. In: Australasian Database Con-
ference (2002)

27. Wallace, M.: Practical applications of constraint programming. Constraints 1, 139–
168 (1996); 10.1007/BF00143881

28. Widom, J.: Research problems in data warehousing. In: CIKM, pp. 25–30 (1995)
29. Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data

warehousing environment. In: VLDB, pp. 136–145 (1997)
30. Yu, J.X., Yao, X., Choi, C.-H., Gou, G.: Materialized view selection as constrained

evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part C 33(4), 458–467 (2003)

31. Zhang, C., Yang, J.: Genetic algorithm for materialized view selection in data
warehouse environments. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS,
vol. 1676, pp. 116–125. Springer, Heidelberg (1999)

32. Zhang, C., Yao, X., Yang, J.: An evolutionary approach to materialized views
selection in a data warehouse environment. IEEE Transactions on Systems, Man,
and Cybernetics, Part C 31(3), 282–294 (2001)

Enabling Knowledge Extraction from Low Level

Sensor Data�

Paolo Cappellari1, Jie Shi1, Mark Roantree1,
Crionna Tobin2, and Niall Moyna2

1 Interoperable Systems Group, Dublin City University
{pcappellari,jshi,mark.roantree}@computing.dcu.ie

2 School of Health and Human Performance, Dublin City University
{crionna.tobin9,niall.moyna}@dcu.ie

Abstract. While sensor networks play a significant role in the modern
information society, they output data in proprietary format and with
little or no associated semantics. As a consequence, sensed data must be
managed on a case by case basis, requiring significant human efforts. In
this paper, we present an approach that: seamlessly supports any kind
of network by exposing sensed data in a standard format; enables users
to specify at a high level how to enrich sensed data with the semantics
in which data is generate; facilitates end users in transforming data to
meet their analytical requirements.

1 Introduction

Recently, the area of personal health where monitors are attached to the human
body, has seen a significant increase in popularity. The challenge in performing
the necessary experiments is the very high volumes of data that will be gen-
erated. In our area of focus, coaches of high performance athletes use sensors
to detect levels of fatigue and stress in preparation for upcoming matches and
events. Often, exercise physiologists will spend days analysing spreadsheets sim-
ply to arrive at basic calculations such as average heart rates over specific periods
of time, or comparisons of heart rates for selected athletes over different training
sessions. In other words, there is a significant gap between high level user re-
quirements and the data generated by sensors, and when this data is generated
in high volumes, it provides a significant barrier to knowledge extraction.

Data Collection and User Requirements. This paper present a collabora-
tion between the exercise physiologists and researchers from the Interoperable
Systems Group (both groups at Dublin City University). The role of the physiol-
ogists was to collect the data using a set of sensors and ensure that participants
followed the template for the activity. The challenge for the computer scientists
was to close the semantic gap between end user requirements and raw datasets,
by providing a number of processors and algorithms to transform the data to

� Jointly funded by Enterprise Ireland Grants TD-2007-201 and CFTD-2008-231.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 411–419, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

412 P. Cappellari et al.

a format that could be queried using a high level query language. The goal of
the study was to compare the effect of two exercise regimes on the athletes. In
particular, the physiologists were interested in analysing the data produced by
the following queries:

– Calculate the average HR for the first 2 minutes during the run period
– Find any 30 second period where the athlete’s HR was at 90% of his maximal
– Find any 20 second period where the athlete’s HR was at 90% of his maximal
– Find any 30 second period where the athlete’s HR was at 80% of his maximal
– Find any 20 second period where the athlete’s HR was at 80% of his maximal
– Find the point at which the athlete’s HR did not drop during the rest period

Contribution. The contribution presented in this paper is two-fold. Firstly,
we provide a framework for the contextual enrichment of sensor data using a
generic approach that eliminates the need for new sensor “wrappers” for each
experiment. We also allow users to specify how to merge context and raw sensor
data. Secondly, we provide data mining primitives to extract levels of knowl-
edge required for the more complex user queries. In the evaluation, both user
requirements (queries) and datasets are provided by the exercise physiologists
and reflect the precise information needs to demonstrate the contrast between
the short high intensity sprinting and the longer endurance tests.

Paper Structure. The paper is organised as follows. In §2 we give an overview
of our approach; §3 presents the integration of raw sensor data with the con-
text information in which has been generated; in §4 we discuss how non-expert
users can extract knowledge from the sensed data; in §5 we provide experimen-
tal results and a discussion on the effectiveness of our proposal; §6 provides a
discussion of the related research; finally, in §7 we draw our conclusions. More
details on enrichment, evaluation and related research discussed in this paper
are available in a longer version [4].

2 High Level Overview

The motivation for our system is to allow users to specify at a high level, how
to structure, enrich, transform and query sensor data. The architecture of our
framework is depicted in Fig. 1 as consisting of 4 major modules.

Data generated from the sensors is passed to the Sensor Enablement, which
is responsible for structuring and mapping sensed data from their native, raw,
format to a standard format. Raw data is transformed into OGC [8] by a template
mechanism inspired from [9]. This mechanism intercepts and wraps raw data
tokens into XML syntax, which in our case is OGC compliant. adopting the OGC
standard, facilitates the interoperability and integration of the sensed data with
other OGC compliant data. Within the template a user can define functions to
perform time and data format transformation or timestamps generation.

Enabling Knowledge Extraction from Low Level Sensor Data 413

Fig. 1. Overview Architecture

The Context Enrichment merges the structured sensed data with the context
information in which the data has been generated. At this point data is made
available to both Data Transformation and Query Interface. Users can now
access enriched sensed data with simple queries through the query interface by
means of XQuery expressions. However, some queries are complex and require
to transform or further enrich the data before answering these queries.

Context Enrichment integrates structured sensor data with context informa-
tion. Sensor readings are devoid of context information: they are associated with
some device identification rather than with some more useful information such
as what is the athlete’s name generating the values, what training session is,
what group the athlete belongs to, etc. As a result, a trainer who wants to
know a simple information such as “what is the performance level of a (specific)
athlete,” must first verify which sensor the athlete is wearing, then specify the
query. More complex queries involving, for instance, information about teams or
specific parts of an activity, require a significant amount of work in order to re-
trieve the data of interest. This module allows domain expert to specify context
integration at a high level. Details are provided in §3.

Data Transformation allows to specify transformations on the dataset. It of-
fers low-level data mining primitives (to calculate for peak, troughs, distances
between peaks and troughs, search rolling averages and also calculate group av-
erages) that can be assembled into complex programs, which executed transform
the dataset. This operation is needed when queries are complex and cannot be
expressed on the sensed-enriched data directly, and a transformation to expose
specific features of the data is needed in order to answer such queries.

414 P. Cappellari et al.

3 Providing Context for Low Level Sensor Data

Because the deploying scenario varies often, we focus on the provision of a
method that enables non-expert users to specify how to enrich sensor data with
context information. We enable users to specify context enrichment in an Event-
Condition-Action (ECA) like paradigm. Once defined, ECA-like rules are trans-
formed into standard XQuery expressions, that can be applied to the input data
by any XML engine. Rules have a rather intuitive syntax. We use two pre-defined
variables to refer to the input sources: sensor refers to the raw sensor data, while
context refers to the context data. To navigate XML nested elements we adopt
the . (dot), borrowing the notation from the object modelling.

A rule template is shown below. Each rule has three main sections: on, when
and do. The on section specifies the event to which apply the rule. The event
is specified by its name, such as “3min Running Test,” or if the rule is generic
and applies all the events then the keyword any is used. The when section
specifies the condition under which the rule must be executed. Generally, this
is a condition on either the raw sensor data, the context data, or both. The do
section specifies which action to perform as a manipulation of the input data.

on : <Event>

when: <Condition>

do : <Action>

Simple Mapping. Simple mapping rules specify integration of basic infor-
mation, such as athlete’s name, training group, etc., with sensed data. Let us
consider a rule that adds personal information about the athletes. For the sake
of clarity in the presentation, let us assume that the rule only adds the athlete’s
name. We can specify additional rules to further enrich the sensed data. To in-
tegrate the name of the athletes in the sensed data, we specify the following
rule:

on : 3min Running Test

when: sensor.deviceID = context.deviceID

do : sensor.user = context.athelte.name

This rule applies to the “3min Running Test” data: when the device ID from
the sensed data matches one from the context data, the rule enriches the stream
with the athlete’s name corresponding to the such device ID. It is then converted
to the following XQuery expression that can be executed by any XML engine:

let $c := collection("3_min_running")
for $x in $c//athletes /athlete , $y in $c// sos:sensorData
where $x/deviceID = $y/ sos:deviceID
return do insert <sos:user >$x/name</sos:user > after $c// sos:eventTime

Complex Mapping. In our scenario, we have a “3 minutes test” organised in
6 consecutive sessions of 3 minutes each in which the athletes alternatively run
or rest. We have to associate heart rate values with the session (state) in which
they have been generated according to the static definition of the test. Values

Enabling Knowledge Extraction from Low Level Sensor Data 415

before the beginning of the test are marked as warmup; the first run session is
denominated round 1 and the first resting session break 1 ; the second running
session is round 2 and so on; values after the completion are associated with the
state warmdown. This association can be implemented as a sequence of ECA
rules, one for each state. We offer a straightforward implementation through the
case construct. The case allows to express multiple conditions, each associated
with a single action, plus a default action if none of the conditions is satisfied.
The following rule implements the described enrichment.

on : 3min Running Test

do case:

when : sensor.time < context.start time

do : sensor.state = "warmup"

when : sensor.time >= context.start time and
sensor.time < (context.start time + context.duration)

do : sensor.state = context.state.name

default: sensor.state = "warmdown"

endcase

The XQuery equivalent is shown below. Note that the state information is in-
serted as an attribute into the measurement element. Listing 1.1 shows an ex-
ample of enriched sensor data: it is explicit that this data has been generated
from “Bryan” during the “3min Running Test” activity.

let $c := collection("3_min_running")
for $x in $c/experiment , $y in $c// sos:sections/sos:section/

sos:measurement
return if ($y/@time < $x/ start_time)
then do insert attribute state {‘warmup ’}

as last into $c// sos:measurement[1]
else if ($y/@time >= $x/ start_time)

and ($y/@time < ($x/ start_time + $x/states/state/duration))
then do insert attribute state {$x/states/state/name}

as last into $c// sos:measurement[1]
else if ($y/@time > ($x/ start_time + $x/states /state/duration))
then do insert attribute state {‘warmdown ’}

as last into $c// sos:measurement[1]
else()

4 Enabling Knowledge Extraction

Contextual enrichment facilitates a range of basic queries but cannot handle
more complex analyses such as those presented in this study. Given the simple
nature of sensor data (often a single value generated at standard intervals) it is
possible to predefine a series of operations to generate new knowledge. A set of
data mining primitives are used to run a standard set of analyses to which end
users can add their own semantics. The primitives we currently provide are:

– Count(startTime,endTime) - Number the readings for a participant over the
activity between times;

– Min(state) - Minimal reading for a participant over the activity for a state;
– Max(state) - Maximum reading for a participant over the activity for a state;

416 P. Cappellari et al.

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>
<so s :Ge tRe su l t xmlns : sos=” ht tp : //www. openg i s . net/ sos /1 .0 ”

xm ln s : x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xs i : schemaLocat ion=” ht tp : //www. openg i s . net/ sos /1 .0 h t tp : // schemas .

openg i s . net/ sos /1 . 0 . 0/ so sA l l . xsd ” s e r v i c e=”SOS” version=” 1 . 0 . 0 ”>
<sos :Obse rvat ionTemplateId>urn:DCU:ObservationTemplate:HeartRate</

sos :Obse rvat ionTemplate Id>
<sos:eventTime>

<ogc:TM After>
<gml:TimeInstant>

<gml : t imePos i t ion>2010−08−04T16:00:00Z</ gml : t imePos i t ion>
</ gml:TimeInstant>

</ogc:TM After>
</ sos:eventTime>

<s o s : u s e r>Bryan</ s o s : u s e r>
<s o s : s e s s i o n>3min Running Test</ s o s : s e s s i o n>

<s o s : d ev i c e>HRM</ s o s : d e v i c e>
<so s : d ev i c e ID>S1 1</ so s : d ev i c e ID>
<so s : s t a r tT ime>1209826519000</ so s : s t a r tT ime>
<s o s : i n t e r v a l>5000</ s o s : i n t e r v a l>
<s o s : s e c t i o n s>

<s o s : s e c t i o n name=”Params”>
<sos :paramete r><so s : k ey>Version</ so s : k ey>

<s o s : v a l u e>106</ s o s : v a lu e>
</ sos :paramete r
. . . (other parameters)

</s o s : s e c t i o n>
<s o s : s e c t i o n name=”HRData”>

<sos:measurement o f f s e t=”0” s t a t e=”Run 1” time=”1209826519000 ”>
<s o s : r e ad i ng o rd ina l=””>

<so s : k ey>HeartRate</ so s : k ey>
<s o s : v a lu e>71</ s o s : v a lu e>

</ s o s : r e ad i ng>
</ sos:measurement>
. . . (measurement e lement r epea t s)

</ so s :Ge tRe su l t>

Listing 1.1. Sensor data enriched with context information

– As % of Max(startTime,endTime) - Readings as a percentage of the maximal
for a participant during the activity between times;

– Average(startTime,endTime) - The average reading of a participant over the
activity between times;

– RollingAvg(startTime,endTime) - The N minutes rolling average for each
sensor for each participant over the activity between times.

– Diff(a,b) - Difference between two evaluated measures or two readings.

In our experimental setting, exercise physiologists were interested in answer-
ing the queries provided in §1. These queries can be answered by selecting one
of the built-in functions or by composing a few of them in a sequence. For exam-
ple to answer the first query only the function Average(startTime,endTime)
is needed. On the other hand, answering the second one requires a combi-
nation of these functions. Specifically, we first need Max(state) to find the
maximum sensor readings for each athlete data stream. Then function As %
of Max(startTime,endTime) calculates the 90% of the maximum sensor read-
ings. Finally, function RollingAvg(startTime,endTime) is used to calculate a
30-second rolling average for each sensor reading. Results produced at each

Enabling Knowledge Extraction from Low Level Sensor Data 417

transformation step are inserted into the enriched sensor dataset and queries
through relatively simple XPath/XQuery expressions.

Data transformation primitives are stored in our atomic rule repository and
can be retrieved to compose more complex programs (macro transformation,
sequence of atomic rules). Thus, whenever the functions or the rules available in
the system are not enough, a user can extend (or customise) the rule portfolio
by providing new functions or rules. Note that in this process there is never the
need to alter the system itself: as rules are stored in their own repositories, they
are completely decoupled from the system implementation.

5 Evaluation

In this section we report on the experiments performed to validate our approach
and its impact on the exercise physiologists work. Queries listed in §1 are con-
verted into XQuery expressions. Table 1 shows, as an example, the expression
for first query only. The full table with the expressions for all the queries is
available in [4]. Let us emphasise the following two facts. Queries are executed
on the sensor data obtained after the above discussed transformations: without
such transformations these queries are either difficult or impossible to express on
the original dataset. Queries are implemented as standard XQuery expressions:
if needed, they can be modified and customised using a simple text editor thus
the system implementation does not need to be altered.

Table 1. Full Query Expressions.

Query as XQuery expression Results

1 let $c := collection(‘3 min running’) for $r in $c//sos:measurement AvgHR

where $r/@offset >= 0 and $r/@offset <= 1200000 =

return if ($r/@state=”Run”) then fn:avg(̊//sos:measurement/sos:reading 156.7

[sos:key[text()=‘HeartRate’]]/sos:value/text()) else())

Exercise physiologists demonstrated a favourable opinion on the prototype.
While avoiding manual error prone processes, they have been able to extract the
knowledge and perform the analysis of interest rather quickly. They also realised
the possibility of having access to a wider information and analysis capacity they
had before using this prototype. The queries posed during this study enabled
physiologists to determine how hard each subject trained and whether her level
of training was adequate to induce the training adaptations required.

6 Related Research

In [1] authors develop a wearable light device capable of measuring specific vital
signs of the elderly, detecting falls and location, and communicating automatically

418 P. Cappellari et al.

in real-time. Both [2] and [3] investigate how Sensor Web enablement services work
in healthcare sensor networks. They enrich multiple sources of sensor data into a
data model that represents different sensors and data as a series of observations.
These approaches focus on simple live sensor data from multiple sources, obtaining
query results on the basis of a series of simple rules applied to the streams. On the
other hand, we focus on analysing offline sensor data to facilitate far more complex
queries by non-IT domain experts.

TinyDB [7] and Cougar [11] require end users to understand the operators
running over the raw sensor data and interpret the meaning of the results. Works
[10,6,5] operate on raw, proprietary, format. In [10], raw data is enriched into
“semantic streams” and processed as they are generated. However, this work is
still theoretical. In [6], node locality is exploited to answer queries. In [5], which
addresses contextual synthesis of sensor networks in the sports domain. All these
approaches require to develop ad hoc programs to implement the queries. In our
approach, data is stored in XML, it is enriched and the transformations processes
allow domain experts to extract knowledge by far simpler queries in standard
languages (XQuery), which is decoupled from the system implementation.

7 Conclusions

Sensors often generate large volumes of data, making analysis very difficult.
There is no standard format for query output, no method of merging results from
different tests or integrating results across groups, and a full query interface to
datasets does not exist. In this paper, we presented a framework for capturing
low level sensor data and through a number of enrichment processes to transform
data to a position where high level query expressions were possible, simplifying
information extraction task as demonstrated with our evaluation.

References

1. Artur, R., Angelo, M., Jose, C., et al.: Innovations in Health Care Services: The
CAALYX System. International Journal of Health Geographics (2010)

2. Churcher, G., Foley, J., Bilchev, G., et al.: Experiences applying Sensor Web En-
ablement to a practical Telecare application. In: ISWPC (2008)

3. Churcher, G., Foley, J.: Applying and Extending Sensor Web Enablement to a
Telecare Sensor network Architecture. In: ICST (2009)

4. Cappellari, P., Shi, J., Roantree, M., Tobin, C., Moyna, N.: Enabling Knowledge
Extraction from Low Level Sensor Data, Technical Report No. ISG-11-01, pp. 1-15,
at: ı̃sg (2011), http://www.computing.dcu.ie

5. Devlic, A., Koziuk, M., Horsman, W.: Synthesizing Context for a Sports Domain on
a Mobile Device. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga,
P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 206–219. Springer, Heidelberg (2008)

6. Kotidis, Y.: Processing Proximity Queries in Sensor Networks. In: DMSN, pp. 1–6
(2006)

7. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.T.: A Tiny Aggregation
Service for Ad-Hoc Sensor Networks. In: OSDI, pp. 131–146 (2002)

http://www.computing.dcu.ie

Enabling Knowledge Extraction from Low Level Sensor Data 419

8. Mike, B., George, P., Carl, R., John, D.: Sensor Web Enablement: Overview and
High Level Architecture (2006)

9. McCann, D., Roantree, M.: A Query Service for Raw Sensor Data. In: Barnaghi,
P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741,
pp. 38–50. Springer, Heidelberg (2009)

10. Whitehouse, K., Zhao, F., Liu, J.: Semantic Streams: a Framework for Composable
Semantic Interpretation of Sensor Data. In: Römer, K., Karl, H., Mattern, F. (eds.)
EWSN 2006. LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)

11. Yao, Y., Gehrke, J.: Query processing for sensor networks. In: CIDR (January
2003)

Join Selectivity Re-estimation for Repetitive

Queries in Databases

Feng Yu1, Wen-Chi Hou1, Cheng Luo2, Qiang Zhu3, and Dunren Che1

1 Southern Illinois University, Carbondale, IL 62901, USA
{fyu,hou,dche}@cs.siu.edu

2 Coppin State University, Baltimore, MD 21216, USA
cluo@coppin.edu

3 University of Michigan, Dearborn, MI 48128, USA
qzhu@umich.edu

Abstract. Repetitive queries refer to those queries that are likely to be
executed repeatedly in the future. Examples of repetitive queries include
those that are used to generate periodic reports, perform routine mainte-
nance, summarize data for analysis, etc. They can constitute a large part
of daily activities of the database system and deserve more optimization
efforts. In this paper, we propose to collect information about joins of a
repetitive query, called the trace, during execution. We intend to use this
information to re-estimate selectivities of joins in all possible execution
orders. We discuss the information needed to be kept for the joins and
design an operator, called the extended full outer join, to gather such in-
formation. We show the sufficiency of the traces in computing the exact
selectivities of joins in all plans of the query. With the exact selectivities
of joins available, the query optimizer can utilize them to find truly the
best join order for the query in its search space, guaranteeing “optimal”
execution of the query in the future.

Keywords: Join Selectivity Estimation, Query Re-optimization.

1 Introduction

A primary problem in query optimization is to find the most efficient execution
plan for a query, which is mainly determined by the join orders. In order to find
the best join order, accurate cost estimations of alternative join orders must be
known. Query optimizers generally use statistics stored in the database catalogs,
such as histograms [3–5], etc., and assumptions about attribute values [1, 7] to
estimate the cost. Unfortunately, due to the complexity of queries, sufficiency of
statistics, and validity of assumptions, query optimizers often cannot find the
most efficient join orders for the queries in their search spaces. Studies [1, 2]
have shown that it could be orders of magnitude slower in speed when executing
queries with sub-optimal plans. Thus, some database systems, like Sybase and
Oracle, allows users to force the join orders; some, e.g., Sybase, even allows users

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 420–427, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Join Selectivity Re-estimation for Repetitive Queries in Databases 421

to explicitly edit the plans [6]. Unfortunately, such measures cannot guarantee
success and can also be quite cumbersome and slow for complex queries. Clearly,
there is a tremendous need for a mechanism that can automatically refine the
execution plans of queries.

Repetitive queries refer to those that are likely to be posted repeatedly in
the future. Many useful queries, such as those used for generating periodical
reports, performing routine maintenances, summarizing and grouping data for
analysis, etc., are repetitive queries. They are often stored in databases for con-
venient reuses for the long term. Any sub-optimality in the execution plans of
such queries could mean repetitive and continued waste of system resources and
time in the future. The efficiency of the executions of repetitive queries has a
paramount effect on the performance of the system and thus deserves more op-
timization efforts. In this research, we attempt to gather information about a
repetitive query while it is being executed. We show that the information gath-
ered is sufficient for optimizers to compute the selectivities of joins accurately in
all execution (or join) orders. It is worth mentioning that we do not intend to
modify the search strategy of the optimizer, but just to provide it with sufficient
and accurate information so that it can find truly the best join order for the
query in its solution space, conveniently called the optimal plan here.

In this paper, we introduce the notion of the trace of a query, which contains
information about how tuples from input relations are joined in the query. We
propose to collect the trace of a query during execution and use it to re-estimate
selectivities of joins in all alternative plans of the query derived by exchanging
the input relations. We have designed operators to collect sufficient information
in the traces so that the exact join selectivities in all execution orders can be
computed. With the exact join selectivities known, the query optimizer can find
the best execution plan for a repetitive query for future executions. Substantial
saving can be obtained from running such queries with optimal plans, not to
mention running them repeatedly. This work makes a major stride in the re-
search of query re-optimization and can make significant improvement on the
performance of the system.

The rest of the paper is organized as follows. Terminologies and definitions
used in the paper are introduced in Section 2.Section 3 discusses selectivity esti-
mation using traces for queries with acyclic join graphs. Due to space limitation,
interested readers are referred to [8] for queries with cyclic join graphs. The
analysis of overhead is included in section 4. Section 5 presents the conclusions
and future work.

2 Framework and Terminology

In this section, we describe the selectivity re-estimation framework and introduce
terminology used in the paper.

422 F. Yu et al.

2.1 Join Selectivity Re-estimation Framework

We attempt to gather information about how tuples are joined in a query while
the query is being processed. The information to gather here is called the query
(or join) trace.

We assume that there are mechanisms in the database that can differentiate
a repetitive query from an ordinary query. We also assume an optimizer knows
how to compute the selectivities of joins from the trace, which will be discussed
in the next two sections.

Figure 1(a) depicts the framework. A query is first optimized by the query
optimizer as usual. If it is a repetitive query, its trace will be gathered when
the query is executed. Once the execution completes, the trace collected will be
provided to the optimizer to compute selectivities of joins of alternative plans
and select the best plan. Physical execution plans are generated based on the best
logical plans by the optimizer and stored in the database for future invocations
of the query. Certainly, after the database has gone through substantial changes,
the process of trace gathering and re-optimization can be re-invoked.

In this paper, we discuss the information to be gathered, and how to gather
them. In addition, we show the sufficiency of the gathered information for com-
puting the exact selectivities of joins of alternative plans.

2.2 Join Graph

A query can be modeled by a graph, called the join graph, that describes the
join relationships among participating relations.

Definition 1 (Join Graph). The join graph G(V, E) of a query consists of a
set of vertices V = {R1, R2, ..., Rn} and a set of edges E. Each vertex denotes
an input relation of the query and each edge (Ri, Rj) ∈ E, Ri, Rj ∈ V , denotes
the existence of join conditions between Ri and Rj in the query.

Example 1 (Join Graph). Fig. 1(b) shows the join graph of a query where there
are join conditions placed between R1 and R2, R2 and R3, and R3 and R4.

If the join graph of a query is disconnected, we can consider each connected
component separately (and then merge them by Cartesian products). Therefore,
we shall assume hereafter all queries have connected join graphs or all join graphs
are connected. For simplicity, we further assume all joins are equi-join, though
our approach can be applied to other joins, such as non-equi joins, and Cartesian
products.

In this research, we assume every (execution) plan P is in the form of a left-
deep tree P = (...((R1 �� R2) �� R3)...) �� Rn [6] because most, if not all,
commercial database systems generate such plans for executions. We assume all
��’s are equi-joins and no Cartesian product appears in P. It is worth mentioning
that the method proposed is applicable to bushy trees and right-deep trees as
well.

Join Selectivity Re-estimation for Repetitive Queries in Databases 423

Let G(V, E) be the join graph of a query Q. In this research, we are interested
in estimating the selectivities of all possible subqueries that are joins of some
or all of the relations in V . Note that we assume all subgraphs G′(V ′, E′) are
connected, and no Cartesian product exists in any of the subqueries or plans.

Definition 2 (Joinable Relations). A pair of relations Ri and Rj are said to
be joinable in a query if there is an edge (Ri, Rj) in the join graph of the query.

Definition 3 (Joinable Tuples). A pair of tuples ti and tj, ti ∈ Ri, tj ∈ Rj,
are said to be joinable if ti and tj have the same value for the join attributes of
Ri and Rj . Joinable tuples are also referred to as match tuples.

Theorem 1. Given a connected join graph for a query and an execution plan
P = (...((R1 �� R2) �� R3)...) �� Rn, each relation Rk, 2 ≤ k ≤ n, has join
attributes with exactly one prior relation Ri, i < k, in P if and only if the join
graph of the query has no cycle.

Proof. See [8].

2.3 Query Trace

When a query is being processed, information about how tuples are joined is
gathered. We intend to use this information, called query (or join) trace, to
estimate selectivities of joins in all execution orders.

Example 2. Fig. 1(b) is the join graph of a query, and Fig. 1(c) shows the match-
ing of join attribute values between tuples. For simplicity, we have represented
a tuple only by its added IDs without reference to other attribute values, that
is, R1 = {1, 2, 3}, R2 = {a, b}, R3 = {A, B}, R4 = {I, II}. For example, tuple 1
of R1 matches tuple a of R2, and tuples 2 and 3 match tuple b of R2. Tuples a
and b of R2 match tuples A and B of R3, respectively. Finally, tuples A and B
of R3 match tuples I and II of R4, respectively.

Consider a left-deep tree execution plan P = ((R1 �� R2) �� R3) �� R4. To
generate the trace, an ID attribute is added to every relation and the attribute
is to be preserved in the outputs of all operators. Thus, the result of R1 �� R2, as
shown in Fig. 1(d), besides its normal set of attributes, denoted by Result-Attrs,
has additional attributes R1-ID and R2-ID, called the trace of R1 �� R2, denoted
by T (R1 �� R2).

Fig. 1(f) shows the trace of ((R1 �� R2) �� R3) �� R4, denoted by T (((R1 ��
R2) �� R3) �� R4). Once a query is completely processed, we can extract the
final trace, e.g., T (((R1 �� R2) �� R3) �� R4) in Example 2, from the “extended”
query result by a simple projection on all the added ID attributes.

424 F. Yu et al.

Query

Optimization

Query Processing

and

Information Gathering

Optimal

Plans

Selectivity Re-estimation

and

Query Re-optimization

Queries Results

Query

Traces

(a) Selectivity Re-estimation Frame-
work

R

R R

R

2

1

3

4

(b) A Join Graph

1

2

3

a

b

A

B

I

II

R R R R21 3 4

(c) Matching of Tuples

Result-Attrs R1-ID R2-ID

... 1 a

... 2 b

... 3 b

(d) Result and Trace of
R1 �� R2

R1-ID R2-ID R3-ID

1 a A

2 b B

3 b B

(e) Trace of (R1 ��
R2) �� R3

R1-ID R2-ID R3-ID R4-ID

1 a A I

2 b B II

3 b B II

(f) Trace of ((R1 �� R2) ��
R3) �� R4

Fig. 1. Query Traces

3 Selectivity Estimation for Acyclic Join Graphs

In this and next sections, we discuss information that needs to be incorporated
into the traces in order to estimate selectivities of joins accurately.

Let Q be a query with an acyclic join graph G(V, E) and P an execution plan
of the query. Let T (P) be the final trace of P . Let G′(V ′, E′) be a vertex-induced
connected subgraph of G(V, E), in which V ′ = {Ri1 , ..., Rim} ⊆ V and E′ ⊆ E,
representing a subquery Q′ of Q. The selectivity of Q′ can be estimated as

s̃el(Q′) =
|πRi1 -ID,...,Rim -IDT (P)|
|Ri1 | × ...× |Rim |

(1)

in which πRi1 -ID,...,Rim -IDT (P) is the projection of trace T (P) on attributes
Ri1 -ID, ..., Rim -ID, without duplicate.

3.1 No Dangling Tuples in the Joins

Here, we assume no dangling tuple exists in any of the joins in the query, i.e.
every tuple in one relation finds at least one matching tuple in another relation
with which there is a join edge in the join graph. The relations in Fig. 1(c) satisfy
this condition.

Theorem 2. Let P be an execution plan of a query Q with a connected acyclic
join graph G(V, E). Let Q′ be a subquery of Q that has a vertex-induced connected
join subgraph G′(V ′, E′), V ′ = {Ri1 , ..., Rim} ⊆ V . If there is no dangling tuple
in any join of P , Eq. (1) derives the exact selectivity of Q′ from T (P).

Proof. See [8] .

Join Selectivity Re-estimation for Repetitive Queries in Databases 425

1

2

a

b

A

B

I

II

R R R R21 3 4

(a) Matching of Join Attribute
Values

R1-ID R2-ID R3-ID R4-ID

1 a A I

(b) No Information about
Dangling Tuples

R1-ID R2-ID

1 a

2 b

(c) T (R1 ��
R2) Generated
by Outer Joins

R1-ID R2-ID R3-ID

1 a A

2 b

B

(d) T ((R1 �� R2) ��
R3) Generated by
Outer Joins

R1-ID R2-ID R3-ID R4-ID

1 a A I

2 b

B II

(e) T (((R1 �� R2) �� R3) ��
R4) Generated by Outer
Joins

Fig. 2. Dangling Tuples in Relations

overlap 90% 80% 70%

Rel. size time result size time result size time result size

10k 3.12% 21.03% 3.87% 47.60% 4.98% 81.51%

100k 2.46% 20.23% 5.46% 45.79% 6.30% 78.19%

Fig. 3. Overhead: outerjoin vs. join

3.2 Dangling Tuples in Joins

Dangling tuples are lost in the joins. To retain matching information about
dangling tuples, we replace the joins in the query by the full outer joins (

◦
��).

Fig. 2(c) to 2(d) show the traces generated at different stages of query execution,
where the joins are replaced by the full outer joins. The trace in Fig. 2(c) is the
same as it were generated by a join because there is no dangling tuple in the
join. The trace in Fig. 2(d) retains information about dangling tuples b in R2

and B in R3 by the outer join. Fig. 2(d) is the final trace that will be retained
and used in later selectivity estimation.

The estimated selectivities for R1 �� R2, R2 �� R3, and R3 �� R4 are now, by
Eq. (1), 1

2 (= 2
2×2), 1

4 (= 1
2×2), and 1

2 (= 2
2×2), respectively, which are exact. Note

that, as mentioned earlier, a trace tuple having a null for any of the projected
attributes is not accounted for in the respective |πRi1 -ID,...,Ri1 -IDT (P)| because
a null in a Rij -ID column of a trace tuple indicates that there is no match found
in Rij for the respective combination of tuples to generate an output in the
(sub)query. One can easily verify that the estimated selectivities for all other
subqueries are all exact.

Theorem 3. Let P be an execution plan of a query Q with a connected acyclic
join graph G(V, E). Let Q′ be a subquery of Q that has a vertex-induced connected

426 F. Yu et al.

join subgraph G′(V ′, E′), V ′ = {Ri1 , . . . , Rim} ⊆ V . Eq. (1) derives the exact
selectivity of Q’ from the trace obtained by replacing the joins in the query with
the full outer joins, denoted by T (P).

Proof. See [8]

4 Preliminary Experimental Results

4.1 Preliminary Experimental Results

We test two cases where the synthetic relations have 10K and 100K tuples. Each
input relation and the result relation has 5 attributes. By overlapping parts of
the domains of join attributes, we generate match tuples, partial match, and
no-match tuples.

Relations are read into memory for processing. The CPU cost accounts for
the cost of all processing and the writing of outputs to memory. We use result
size as a measure for potential I/O cost if the result cannot fit in memory . Table
3 shows the CPU and result size (in terms of the number of tuples) overheads
for the outer join operator. The overheads are computed as (OJ − J)/J , where
OJ and J represent the CPU time and the result sizes of outer join and join,
respectively.

The CPU overheads (i.e., 3.12%, 3.87%, 4.98%) are still quite small. This is
because the same amounts of computations, for hashing and comparisons, need
to be performed for both the join and outer join. Only copying dangling tuples
to the output relation (in memory) is extra, which does not take much time.
It is noted that the results could have been better or worse depending on the
amounts of dangling tuples generated in the relations.

From the experiments, we observe that CPU overhead is much more accept-
able than result size overhead. Therefore, if the memory is large enough to hold
the trace at each stage, the trace gathering can be performed with query eval-
uation with too much of delay. On the other hand, if the memory is too small
to hold the traces, the result size overhead could dramatically slow down the
query processing. If that is the case, we may have to gather the trace off-line by
running the query again in spare time.

5 Conclusions and Future Work

In this paper, we propose to collect information about joins, called traces, to
re-estimate the selectivities of joins of repetitive queries. We have shown that
the exact selectivities of joins in all execution orders of a query can be computed
from its trace. In the future, we shall empirically study the overheads incurred
in the the process of trace gathering more thoroughly.

Join Selectivity Re-estimation for Repetitive Queries in Databases 427

References

1. Christodoulakis, S.: Implications of certain assumptions in database performance
evauation. ACM Trans. Database Syst. 9, 163–186 (1984)

2. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., Cilimdzic, M.: Ro-
bust query processing through progressive optimization. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, SIGMOD 2004,
pp. 659–670. ACM, New York (2004)

3. Muralikrishna, M., DeWitt, D.J.: Equi-depth histograms for estimating selectivity
factors for multi-dimensional queries. In: SIGMOD Conference, pp. 28–36 (1988)

4. Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the number of tuples
satisfying a condition. In: Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD 1984, pp. 256–276. ACM, New York
(1984)

5. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value in-
dependence assumption. In: Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB 1997, pp. 486–495. Morgan Kaufmann Publishers
Inc., San Francisco (1997)

6. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, New York (2003)

7. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, SIGMOD
1979, pp. 23–34. ACM, New York (1979)

8. Yu, F., Hou, W.-C., Luo, C., Zhu, Q., Che, D.: Join selectivity re-estimation for
repetitive queries in databases, http://www2.cs.siu.edu/~fyu/main-trace.pdf

http://www2.cs.siu.edu/~fyu/main-trace.pdf

Matching Star Schemas

Dariush Riazati and James A. Thom

School of Computer Science and Information Technology
RMIT University,

Melbourne, Australia, 3001
dariush.riazati@student.rmit.edu.au, james.thom@rmit.edu.au

Abstract. Star schemas describe the structure and properties of mul-
tidimensional sources such as data marts and data warehouses. They
have a simple structure and a predictable topology. We propose Star-
Mod a representation of Star schema model described in UML and infer
its instances from relational schemas. StarMod includes a comprehen-
sive set of properties specific to multidimensional data with a view to
its application in matching Star schemas. This paper demonstrates that
in comparison to using the relational model, the quality of matching
between Star schemas is improved if they are described using a more
precise model such as StarMod, even if these Star properties are inferred
from the relational schema. We demonstrate that StarMod can be also
effective for matching arbitrary non-Star relational schemas.

1 Introduction

Star schema is a relational model for multidimensional sources such as data
marts and data warehouses [12]. Despite attempts to provide industrial strength
solutions to automate the matching of relational schemas [4], [9], most organiza-
tions prefer to employ experts to perform the matching and integration of their
relational databases. This is tolerated as organizational changes that necessitate
the integration do not occur frequently. However, in a business intelligence envi-
ronment, there is always a need for reports to be generated based on integration
of multiple sources given short notice.

A common application of a semi-automated Star schema matching is where
a data analyst wishes to combine data marts for related subject areas. Other
motivating scenarios are (i) where a business enterprise with disparate data
warehouses for different lines of business such as banking, insurance and wealth
needs to combine some of its data marts around customer and address details for
marketing campaigns; (ii) integration of local data marts with externally sourced
data marts such as those sourced from bureau of statistics.

Generic relational properties such as table and column fail to describe prop-
erties of Star schemas precisely. Star schemas designed correctly by conforming
to principles specified by Kimball and Ross [12] have a certain topology and
hence are more restricted than arbitrary relational schemas which makes them
to be more predictable. This allows us to anticipate their model and identify
their distinct properties.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 428–438, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Matching Star Schemas 429

We propose StarMod as a representation of Star schema model. We use UML
(Unified Modeling Language) to provide a visual description of StarMod but
implement it using RDFS (Resource Description Framework Specification) and
OWL (Web Ontology Language) with their constructs corresponding to the UML
representation. StarMod includes a predefined set of concepts, relationships and
constraints for describing multidimensional data and in particular Star schemas,
which can be used as a template to define Star schemas for any domain. We also
present a set of heuristics to infer instances of StarMod (used in the matching
process) from XML schemas corresponding to relational schemas.

The immediate application of StarMod is a more precise and consistent defi-
nition of Star based schemas, but more importantly we demonstrate that when
compared to the relational model, using StarMod to describe Star schemas im-
proves the accuracy of their match results. We also demonstrate that StarMod
can be also effective for matching arbitrary relational schemas.

In our evaluation, we use Similarity Flooding (SF) [16] to perform matching
between a number of Star and non-star schemas described using the relational
model and StarMod, and compare their results. All results are then compared
against those obtained from COMA++ [6] for the same schemas.

The remainder of this paper is as follows: Section 2 describes StarMod and its
implementation; Section 3 describes our evaluation of using StarMod in matching
Star and non-Star schemas; Section 4 offers a review of related works; Section 5
includes our concluding remarks.

2 StarMod

Star schema is a relational model specifically for relational implementation of
multidimensional data. The topology of tables in this model resembles a star at
the center of which is a (fact) table that contains additive measures. This table
includes foreign keys referring to one or more (dimension) tables containing
attributes used as categories of data to summarize measures. Figure 1 shows
our running example of a Star schema. The fact table is MONTHLY SALES and
dimension tables are MAKE,MODEL,DEALER,FISCAL CAL.

MAKE

MAKE_ID: CHAR(10)

MAKE_NAME: VARCHAR(40)

MODEL

MODEL_ID: CHAR(8)

MODEL_NAME: VARCHAR(40)

FISCAL_CAL

YEAR_MONTH: DECIMAL(6)

FISCAL_YEAR: SMALLINT

FISCAL_MONTH: SMALLINT

DEALER

DEALER_ID: INTEGER

DEALER_NAME: VARCHAR(40)

DELIVERY_FINAL_COST: INTEGER

MONTHLY_SALES

YEAR_MONTH: DECIMAL(6) (FK)

DEALER_ID: INTEGER (FK)

MAKE_ID: CHAR(10) (FK)

MODEL_ID: CHAR(8) (FK)

SALES_QTY: INTEGER

SALES_AMT: INTEGER

GST_STATUS_CODE: CHAR(2)

EXT_ACC_NO: INTEGER

MONTHLY_ADS_COST: INTEGER

Fig. 1. An example of a Star schema

430 D. Riazati and J.A. Thom

2.1 StarMod Properties and Their Application in Schema Matching

A Star represents a single Star schema and is defined as an aggregation of a
number of dimension and fact tables. Each DimensionTable is a subtype of a
Table and is an aggregate of one or more Attributes being subtypes of Column.
Dimension and fact tables are related through Keys. Making distinction between
dimension and fact tables improves the similarity between matching dimension
and fact tables as well as their respective columns.

There are three types of Attributes : (i) A SurrogatekeyAttribute is a
unique sequential number that is generated for every new row. It is important
to separate surrogate keys from other types of attributes as they do not partic-
ipate in any aggregation function, and their classification as such reduces their
similarity with natural keys and other attributes. For example customer key
may be a customer number in one dimension and a surrogate key in another.
(ii) A DegenerateFact is an additive attribute to which data functions such
as Sum or Average can be applied. For example no of claims as an attribute
of dimension table Claimant is classified as a DegenerateFact whereas claim no
as an attribute of dimension table Claim is not, even though they have identi-
cal data types and similar labels. Degenerate facts are matched with measures
and degenerate facts. (iii) DataAttributes are generally used as categories by
which measures are summarized. Their classification as such allows them to be
matched with data attributes and degenerate dimensions (described later in this
Section).

A FactTable is also a subtype of Table and is an aggregate of one or more
Elements being subtypes of Column. There are four types of Elements : (i) Sur-
rogateKeyReference is a foreign key that refers to a SurrogateKeyAttribute of
a dimension table. By classifying surrogate key references as such, they are better
distinguished from surrogate keys in dimension tables. (ii) The role of Surro-
gateKeyElement in a fact table is similar to that of SurrogateKeyAttribute
in a dimension table. (iii) A Measure is an additive (or quantitative) element
such as number of claims in fact tables [8]. (iv) A DegenerateDimension
is a dimension attribute for which no dimension exists [10]. Use of degenerate
dimensions is common in Star schemas. By classifying degenerate dimensions as
such, we are able to separate them from measures and increase their similarity
with data attributes. For example, a degenerate dimension called claim no is
distinguished from a measure called number of claims.

Hierarchy and Level: Each dimension hierarchy consists of a set of levels
between which there exists a partial order. For example, given levels l1 and l2
where l1 � l2, we say that l1 rollsUpTo l2. Each level has one or more DataAt-
tributes that uniquely identify it.

We represent hierarchies as part of StarMod for completeness of the repre-
sentation but we do not use them in the schema matching process for several
reasons. Matching attributes may belong to mismatching hierarchies. However,
rejecting these matches as early as the schema matching can be restrictive. In
many cases, it is possible to achieve coherence between hierarchies by applying
some constraints against the data [18]. Moreover, even if hierarchies are found

Matching Star Schemas 431

1

DimensionTable FactTable

Measure

Level

SurrogateKey
Attribute

Degenerate
Dimension

Surrogate
Key ElementDataAttribute

1..*

1..* 1

1

refersTo

hasFacthasDimension

SurrogateKey
Refrence

Key

refersTo

dimUniquelyIdentifiedBy factUniquelyIdentifiedBy

1..*

refersT
o

hasData
Attribute

rollsU
pT

o

0..1

0..1 1..*1..*0..*

0..*

Attribute Element
hasAttribute hasElementhasAttribute

hasElement

1..*

1

1..* 1..*1..*
1..*1..*1

1 1..*

1..* 1..*

Degenerate
Fact

label

label

1..*

refersT
o

0..1

Hierarchy

1..*
label

1..*

hasLevel

1..* 1..*

Star

Fig. 2. UML representation of StarMod

to be matching, the data after integration may not conform to the original hi-
erarchies [19]. Also, dimension hierarchies are not always readily available and
where inferred are only estimates and subsets of their intended hierarchies [18].

2.2 Inferring Properties of StarMod from Relational Schemas

In this section, we describe a set of heuristics that we use to infer Star properties
described in Section 2.1 to describe relational schemas using StarMod proper-
ties. These heuristics use a combination of data types, keys (which also include
indexes) and foreign keys. The input to this process is an XML schema obtained
from an existing relational database. A program written in XSLT language uses
these heuristics to transform the XML schemas (corresponding to the relational
schema) to instances of StarMod and described in OWL.

FactTable and DimensionTable: We say that if the primary key of a table
does not appear as foreign key in any table, then we classify the table as a
FactTable, otherwise it is classified as a DimensionTable.

SurrogateKeyAttribute: A column whose owning table is a DimensionTable
is classified as a SurrogateKeyAttribute if it is defined as a primary key and has
a constraint for having its value generated.

DegenerateFact: Identifying degenerate facts is a difficult task as it requires
domain information on the meaning and purpose of the column. In absence of
such information, we classify a column as a DegenerateFact only if its owning
table is classified as a DimensionTable and its data type is xsd:decimal with a
restriction defined as xsd:fractionDigits.

DataAttribute: A column whose owning table is a DimensionTable and is
not a SurrogateKeyAttribute or DegenerateFact is classified as DataAttribute.

SurrogateKeyElement: A column whose owning table is a FactTable is
classified as a SurrogateKeyElement if it is defined as part of a key and has a
constraint for having its value generated (similar to the SurrogateKeyAttribute).

432 D. Riazati and J.A. Thom

SurrogateKeyReference: A column whose owning table is a FactTable is
classified as a SurrogateKeyReference if it refers to a SurrogateKeyAttribute.

DegenerateDimension: Similar to DegenerateFacts, accurate classification
of degenerate dimensions requires additional semantic information. We classify a
column as a DegenerateDimension if its owning table is a FactTable, and one of
the following is true: i) its data type is xsd:string, ii) its data type is xsd:integer or
xsd:short or xsd:decimal, and is defined as part of a key or a foreign key. A miss-
classification is possible where for example a column such as POSTCODE defined
as a xsd:short is not part of a key or foreign key. This can result in a mismatch
if one column is included in the key or the foreign key but its matching column
is not. Although degenerate dimensions are used frequently, it is considered to
be a good practice to minimize their use and define them as string.

Measure: A column whose owning table is a FactTable is classified a Measure
if one of the following is true: i) it has a data type xsd:decimal with the restric-
tion xsd:fractionDigits, ii) it has one of the data types xsd:short, xsd:integer or
xsd:decimal and is not defined as part of a key or a foreign key. Miss-classification
of measures is possible but to a lesser extent, e.g. no of cylinders which does
not appear in a key or foreign key and has a data type xsd:short is not a mea-
sure. This highlights a design shortcoming where non-metric data items are more
accurately defined as string.

Key: Similar to [13], every attribute or element that appears in a key is also
made an attribute or element of a Key for the respective dimension or fact table.

Hierarchies: Dimension hierarchies are not always available and as described
in Section 4, they may need to be inferred. Where required, we add dimension
hierarchies to the XML schemas manually but for reasons described earlier in
Section 2.1 they are not used in the matching process.

Inference of snowflaked dimensions occurs where a column is classified
as DataAttribute or SurrogateKeyAttribute and refers to a DataAttribute or Sur-
rogateKeyAttribute. The relationship refersTo defines the hierarchy between the
owning dimension tables.

3 Evaluation of StarMod in Schema Matching

Our objective is to establish that when compared to using a relational model,
using a more precise representation of Star schemas can help improve their match
results. We use two of the well known schema matching approaches for which
there is readily available implementation.

Similarity Flooding (SF) is a well known versatile matching algorithm that
calculates similarity between elements of two graphs. Properties of relational
schemas can be represented as graphs in which each node represents a property
and edges represent the relationship between properties. For example, tables
have columns and columns have names, data types and lengths. The matching
is based on the intuition that similarity between for example column names,
data types and length increases the similarity between the owning columns and
by the same token the similarity between two columns increases the similarity

Matching Star Schemas 433

between the owning tables. Graphs can be modified to include different set of
properties and relationships and hence allows us to use the SF with a model
such as StarMod. SF uses RDF statements which can be easily obtained from
OWL instances of StarMod.

COMA++ is also a well known schema matching approach that takes ad-
vantage of a rich set of matchers [6]. Its latest version (2008c) which we used
in our evaluation includes a library of 17 matchers ranging from element-level
matchers to hybrid structural matchers. Its MatchComposeOperation combines
match results to calculate a single new match result. We used COMA++ with
its existing matchers and experimented with the same schemas we used in exper-
imenting with SF. This helped us answer these questions: (i) How SF using both
relational model and StarMod compares with COMA (i.e. COMA++)? and (ii)
is there a potential for improving COMA results by using specialised relational
properties such as those defined in StarMod?

3.1 Discussion of Match Results for Example Schemas

Using the two example schemas in Figures 1 and 3, we compare and discuss their
match results suggested by SF, SF* and COMA. For brevity we refer to SF* when
we use the StarMod, and SF when we use the relational model to describe the
schemas. We calculate the accuracy of match results as follows[16]: Accuracy =
Recall × (2 − 1/Precision). Table 1 shows the match results suggested by SF,
SF* and COMA.

CAR_MAKE

CAR_MAKE: CHAR(10)

CAR_MAKE_DESC: VARCHAR(40)

CAR_MODE

CAR_MODEL: CHAR(8)

CAR_MODEL_DESC: VARCHAR(40)

CAR_DEALER

DEALER_KEY: INTEGER

DEALER_NM: VARCHAR(40)

SALES_RNK: SMALLINT

FISCAL_CAL

FIN_YEAR_MONTH: INTEGER

FIN_YEAR: INTEGER

FIN_MONTH: INTEGER

CAR_SALES

FIN_YEAR_MONTH: INTEGER (FK)

CAR_MAKE: CHAR(10) (FK)

CAR_MODEL: CHAR(8) (FK)

DEALER_KEY: INTEGER (FK)

FIN_COST: INTEGER

SALES_AMOUNT: INTEGER

SOLD_QTY: SMALLINT

MTH_AD: INTEGER

Fig. 3. The Star schema matched against the schema in Figure 1

The first two columns show the elements from the source and target schemas.
Columns SF, SF* and COMA indicate if they considered the pair to be a match.
The column Experts shows the match results agreed by at least 2 of the 3
experts. Next, we compare the results of the three approaches.

SF versus SF*: SF benefits from relatively limited information such as data
type, column name and table name and hence it is not able to make sufficient
distinction between columns with strong similarity between their names. This
has led to significantly lower precision by SF and is particularly visible where
columns with identical names appear in dimension and fact tables. On the other
hand, stronger classification of tables, columns and relationships by SF* has
resulted in higher accuracy.

COMA versus SF and SF*: COMA benefiting from a combination of
matchers outperforms SF by a significant margin. When however comparing its

434 D. Riazati and J.A. Thom

Table 1. Comparison of match results for the example schemas

Match Results - Formula ’C’
Schema: pp1.xsd Schema:pp2.xsd SF* SF COMA Experts

DEALER.DEALER ID CAR DEALER.DEALER KEY ✓ ✓ ✓
DEALER.DEALER NAME CAR DEALER.DEALER NM ✓ ✓ ✓
FISCAL CAL.FISCAL MONTH FINANCIAL CAL.FIN MONTH ✓ ✓ ✓ ✓
FISCAL CAL.FISCAL YEAR FINANCIAL CAL.FIN YEAR ✓ ✓ ✓ ✓
FISCAL CAL.YEAR MONTH FINANCIAL CAL.FIN YEAR MONTH ✓ ✓ ✓ ✓
MAKE.MAKE NAME CAR MAKE.CAR MAKE DESC ✓ ✓
MAKE.MAKE NAME CAR MAKE.CAR MAKE ✓
MAKE.MAKE ID CAR MAKE.CAR MAKE ✓ ✓ ✓
MODEL.MODEL ID CAR MODEL.CAR MODEL ✓ ✓ ✓
MODEL.MODEL NAME CAR MODEL.CAR MODEL DESC ✓ ✓
MONTHLY SALES.DEALER ID CAR SALES.DEALER KEY ✓ ✓ ✓
MONTHLY SALES.MAKE ID CAR SALES.CAR MAKE ✓ ✓ ✓
MONTHLY SALES.MODEL ID CAR SALES.CAR MODEL ✓ ✓ ✓
MONTHLY SALES.MONTHLY ADS COST CAR SALES.FIN COST ✓
MONTHLY SALES.SALES AMT CAR SALES.SALES AMOUNT ✓ ✓ ✓ ✓
MONTHLY SALES.SALES QTY CAR SALES.SOLD QTY ✓ ✓ ✓
MONTHLY SALES.YEAR MONTH CAR SALES.FIN YEAR MONTH ✓ ✓ ✓
DEALER CAR DEALER ✓ ✓ ✓ ✓
FISCAL CAL FINANCIAL CAL ✓ ✓ ✓ ✓
MAKE CAR MAKE ✓ ✓ ✓ ✓
MODEL CAR MODEL ✓ ✓ ✓ ✓
MONTHLY SALES CAR SALES ✓ ✓ ✓ ✓
DEALER.DELIVERY FINAL COST CAR SALES.FIN COST ✓ ✓
MONTHLY SALES.SALES QTY CAR DEALER.SALES RNK ✓
MONTHLY SALES.MONTHLY ADS CST CAR SALES.MONTH AD ✓
Number of accurate matches 20 9 18

Total number of matches 21 11 20 21

Accuracy 0.90 0.33 0.76

results with SF*, we find that the improved SF* competes well with COMA. The
false positive match between MONTHLY SALES.MONTHLY ADS COST and CAR SALES.
FIN COST returned by SF* is explained by two factors. Their similarity is in-
creased by the fact that they are both classified as measures, this prevented
a false positive match between CAR SALES.FIN COST a measure, and DEALER.
DELIVERY FINAL COST a DataAttribute. Both CAR SALES.FIN COST and
CAR SALES.MTH AD competing to match against MONTHLY SALES.MONTHLY ADS
COST are measures but the first has a much stronger similarity of name with the
target.

We also observe that SF* has better recall and precision than COMA, however,
there are instances where COMA’s result could be improved by using specializa-
tion, e.g. the false negative case between MONTHLY SALES.MONTHLY ADS COST and
CAR SALES.FIN COST could be prevented if the former was classified as a Measure
and the latter as a DataAttribute. In the next section, we validate our findings by
using a larger collection of Star and non-Star schemas.

3.2 Evaluation of Using StarMod in Matching Schemas on a Larger
Scale

We used 18 pairs of schemas, 14 of which were based on those collected from text
books, industry and internet resources of which 8 pairs were Star schemas and
6 pairs were non-Star schemas. We also included our running example and the

Matching Star Schemas 435

3 less complex relational schemas used by Melnik et al. [16] in their evaluation.
Please see http://goanna.cs.rmit.edu.au/~kasheh/Star.

Table 2 includes two sub-tables showing the results of our experiments against
non-Star and Star schemas. In each sub-table, the first column shows the schema
pair. The next three columns show the accuracy measures returned from SF, SF*
and COMA. Negative accuracy scores are due to the precision being below 50%.

Table 2. Accuracy measures for schemas used in the evaluation

Non-Star schemas

Schema Pair SF SF* COMA

M7L, M7R 1 1 0.80

M8L, M9R 0.30 0.30 0.50

R05, R05A 0.37 0.13 0.62

M8L, M8R 0.53 0.71 0.50

R01, R02 0.24 0.52 0.52

R03, R06 0.23 0.46 0.23

R06, R07 0.28 0.21 0.07

R07, R03 0.67 0.72 0.88

R08A, R08B 0.35 0.23 0.52

Star schemas

Schema Pair SF SF* COMA

PP1, PP2 0.33 0.90 0.76

T01A, T01B 0.63 0.83 0.83

T07A, T09A 0 0.33 -0.17

A01, A02 0.35 0.68 0.61

T02A, T02B -0.3 0.08 0

T10, T11 0.33 0.43 0.43

T05A, T05B 0 0.10 0

T06B, T04 -0.56 -0.22 -0.44

T07B, T11 0.31 0.41 0.22

We now compare the three approaches for Star and non-Star based schemas.
SF versus SF*: In respect to the schema pairs involving Star schemas, the
match results show consistent improvement for SF* over the SF. The results
are also consistent with our observations in the running example. In respect
to the schema pairs involving non-Star schemas, the results are mixed with an
overall similar performance for using SF or SF*. A closer examination of the
schemas shows that SF performs better than SF* where the topology of tables
between the two schemas are very different. This difference (as expected) results
in a mismatch between how properties are classified. Conversely, SF* performs
better than SF where there are reference tables (resembling dimension tables)
and where the structure of tables across the two schemas are similar.

SF* versus COMA: In respect to the schema pairs involving Star schemas,
we find that SF* accuracy is higher (by a smaller margin) or the same as COMA.
The results are consistent with our findings from the running example showing
that COMA’s relatively higher number of false positive cases can be reduced
by using a more precise classification of relational properties. In respect to the
schema pairs involving non-Star schemas, as with SF versus SF*, the results are
again mixed with an overall similar performance for both.

SF verus COMA: For Star and non-Star schemas, COMA has an overall
better results than SF stemming from higher cases of true positives for COMA
which is even stronger against Star schemas. This indicates that COMA’s match-
ers appear to make good use of the similarity between table structures.

These results support our hypothesis that using a more precise description
of the Star schemas improves their match results and can be also effective for
arbitrary relational schemas.

http://goanna.cs.rmit.edu.au/~kasheh/Star

436 D. Riazati and J.A. Thom

4 Related Work

Representation of multidimensional data using ER diagrams has received con-
siderable attention in the past decade [5], [7], [11]. These works do not suggest
a meta model and leave out properties such as surrogate keys, degenerate facts,
and degenerate dimensions.

Abelló et al. [2] present a meta model (YAM2) for multidimensional data
by extending UML stereotypes. Their model captures facts, dimensions, lev-
els, measures and summarizations. The Star schema described using this model
is designed from the user requirements and omits representation of important
properties such as snowflaked dimensions, degenerate dimensions and facts.

Common Warehouse Metamodel (CWM) provides a metamodel for a wide
range of areas of data warehouses including multidimensional resources in several
languages including UML [1]. StarMod at its highest level of abstraction can be
compared with CWM’s metamodel for multidimensional data.

Luján-Mora et al. [15] propose a conceptual model using UML with a wider
coverage of properties of multidimensional data than YAM2. It covers a com-
prehensive set of properties including hierarchies, degenerate dimensions, and
degenerate facts. It is however designed to be aligned with the logical or concep-
tual model and as such it excludes physical properties such as keys, foreign key
relationships and snowflaked dimensions. StarMod covers these concepts but is
more aligned with the physical implementation of Star schemas and is designed
with a view to its application in schema matching.

Matching relational schemas is a well researched area, a summary of different
approaches is provided by Pavel and Euzenat [17]. Many of the concepts used
in matching relational schemas are also applicable to Star schemas, but we are
concerned with the research that exploits Star schema properties.

Li and Yang [14] discuss matching Star schemas specifically. Their approach
converts schemas to a binary schema tree with the fact table as the root of
the tree and dimensions form the child paths to the root node. The proposed
matching uses linguistic properties and fixed similarity values for different com-
binations of data types. It recognizes properties of multidimensional data but
only as far as dimensions, dimension hierarchies and facts.

The matching algorithm used by Marko et al. [3] recognises the value in match-
ing dimensions, facts, levels, measures and attributes. The authors do not de-
scribe the model they use and how the Star properties used in the matching
process were obtained. Moreover, the matching process excludes properties such
as keys, degenerate dimensions and degenerate facts. The distinction with their
approach is said to be the treatment of aggregation hierarchies.

5 Conclusion and Future Work

We introduced StarMod as a more precise representation of Star schemas. We
used UML to visualize StarMod and implemented it using OWL to assist in the
schema matching process. We described the inference of Star properties from

Matching Star Schemas 437

relational schemas and their applications in matching Star schemas. Two well
known schema matching algorithms were used to measure and compare improve-
ment in accuracy of schema matching by using StarMod. We demonstrated that
a more precise model such as StarMod can improve the accuracy of match results
for Star schemas and that it could be also effective against arbitrary non-Star
relational schemas. As part of our future work, we intend to use domain ontolo-
gies with OWL reasoning to improve the inference of Star properties such as
degenerate dimensions and facts which we were unable to infer. As further work,
it would be interesting to extend COMA to recognise Star properties to improve
its accuracy for Star schemas.

References

1. http://www.omg.org/spec/CWM/ (2003)
2. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model

extending UML. Information Systems 31, 541–567 (2005)
3. Banek, M., Vrdoljak, B., Tjoa, M.: Automating the schema matching process for

hetrogeneous data warehouses. Int. J. of Data Warehousing and Mining 4(4), 1–21
(2008)

4. Bernstein, P., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema
matching. SIGMOD Record 33(4), 38–43 (2004)

5. Chen, Y.T., Hsu, P.Y.: A grain preservation translation algorithm: From ER dia-
gram to multidimensional model. Inf. Sci. 177, 3679–3695 (2007)

6. Do, H.H., Rahm, E.: COMA: a system for flexible combination of schema matching
approaches. In: Proceedings of the 28th VLDB, pp. 610–621 (2002)

7. Franconi, E., Sattler, U.: A datawarehouse conceptual datamodel for multidimen-
sional aggregation: a preliminary report. In: Proceedings of the Workshop on De-
sign and Management of Datawarehouses (DMDW 1999), Heidelberg, Germany
(1999)

8. Giovinazzo, W.: Object Oriented Data Warehouse Design, Building a Star Schema.
Prentice Hall, Inc., New Jersey (2000)

9. Haas, L., Hernández, M., Ho, H., Popa, L., Roth, M.: Clio grows up: from research
prototype to industrial tool. In: Proceedings of ACM SIGMOD, pp. 805–810 (2005)

10. Imhoff, C., Galemmo, N., Geiger, J.: Mastering Data Warehouse Design. Wiley
Publishing, Inc., Indianapolis (2003)

11. Kamble, A.S.: A conceptual model for multidimensional data. In: Proceedings of
the Fifth Asia-Pacific conference on Conceptual Modelling, pp. 29–38 (2008)

12. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley Publishing, Inc., Indi-
anapolis (2000)

13. de Laborda, C.P., Conrad, S.: Relational.OWL: a data and schema representation
format based on OWL. In: Proceedings of the 2nd Asia-Pacific Conference on
Conceptual Modelling, pp. 89–96 (2005)

14. Li, L., Yang, L.: Automatic schema matching for data warehouses. In: 5th World
Congress on Intelligent Control and Automation, pp. 3939–3943 (2004)

15. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)

16. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
18th International Conference on Data Engineering, pp. 117–118 (2002)

http://www.omg.org/spec/CWM/

438 D. Riazati and J.A. Thom

17. Pavel, S., Euzenat, J.: A survey of schema-based matching approaches. Tech. rep.,
Informaticae Telecomunicazioni, University of Trento (2004)

18. Riazati, D., Thom, J.A., Zhang, X.: Inferring aggregation hierarchies for integration
of data marts. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA
2010. LNCS, vol. 6262, pp. 96–110. Springer, Heidelberg (2010)

19. Torlone, R.: Two approaches to the integration of heterogeneous data warehouses.
Distrib. Parallel Databases 23(1), 69–97 (2008)

Automated Construction of Domain Ontology

Taxonomies from Wikipedia

Damir Jurić, Marko Banek, and Zoran Skočir

University of Zagreb, Faculty of Electrical Engineering and Computing,
Unska 3, HR-10000 Zagreb, Croatia

{damir.juric,marko.banek,zoran.skocir}@fer.hr

Abstract. The key step for implementing the idea of the Semantic Web
into a feasible system is providing a variety of domain ontologies that
are constructed on demand, in an automated manner and in a very short
time. In this paper we introduce an unsupervised method for construct-
ing domain ontology taxonomies from Wikipedia. The benefit of using
Wikipedia as the source is twofold: first, the Wikipedia articles are con-
cise and have a particularly high “density”of domain knowledge; second,
the articles represent a consensus of a large community, thus avoiding
term disagreements and misinterpretations. The taxonomy construction
algorithm, aimed at finding the subsumption relation, is based on two
different techniques, which both apply linguistic parsing: analyzing the
first sentence of each Wikipedia article and processing the categories as-
sociated with the article. The method has been evaluated against human
judgment for two independent domains and the experimental results have
proven its robustness and high precision.

1 Introduction

The key step for implementing the idea of the Semantic Web into a feasible sys-
tem is the development of methods for automated, instantaneous construction of
domain ontologies. Most of the existing techniques for ontology construction ex-
ploit Web documents as their source [3,4,12], which often leads to disagreements
in understanding and interpreting the ontology content between the creators of
the documents and the ontology users. These disagreements can be reduced to
the lowest possible minimum only if the sources for the automated construction
express a general consensus of many people.

Wikipedia [14], a publicly available online encyclopedia, with its 3,500,000
articles in English as of February 2011, is a consensus of the largest world com-
munity engaged in collecting and classifying knowledge. Since it is an encyclo-
pedia, its articles are concise and have a high “density”of domain knowledge.
This makes a contrast to Web documents in general, where only a minority of
the automatically captured content (classes, instances, relations) is relevant for
the domain of interest.

The goal of our research is to develop a set of unsupervised techniques that
will take one term (concept) at the input and, using Wikipedia, WordNet [6]

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 439–446, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

440 D. Jurić, M. Banek, and Z. Skočir

and some additional publicly available linguistic tools, create the domain ontol-
ogy consisting of concepts and properly named relations surrounding the input
term. In our previous work [1] we have developed techniques for learning not
only binary but also n-ary relations from Wikipedia articles in order to popu-
late domain ontologies. In this paper we present an unsupervised method for
constructing the taxonomy structure of domain ontologies automatically. We
construct the taxonomy of a domain ontology by combining two different tech-
niques. Firstly, we exploit the organization of Wikipedia articles into categories.
Secondly, we analyze the text of the articles linguistically. To the best of our
knowledge, none of the existing techniques for taxonomy construction based on
Wikipedia has successfully merged these two approaches.

The paper is structured as follows. The related work is outlined in Section 2.
Section 3 illustrates the mechanism for defining the coverage of the target domain
ontology, given a single input definition term. Section 4 presents the algorithm
for taxonomy construction, which consists of two phases. Its first phase, the
anchor class computation algorithm, is explained and experimentally evaluated
in Section 5. Section 6 describes the second phase of the algorithm, the taxonomy
construction based on the anchor class. In Section 7 conclusions are drawn.

2 Related Work

Various machine learning methods have been developed to perform different
tasks related to ontology construction [5,9]. However, learning by induction is
not in accordance with the very notion of ontologies as sets of declarative logical
statements [2]. Newer techniques overcome the stated contradiction by perform-
ing linguistic analysis of the source text in order to find relations in general (each
sentence is a statement and natural language has a logic of expressing facts, al-
though complicated and subtle) [1,3]. On the other hand, particular relations
like the subsumption (is-a) relation can be found by pattern analysis [7,12].

Since the positioning of Wikipedia as the most important online encyclopedia
several approaches were developed to exploit it for taxonomy construction. Yago
[13] is a general ontology (hence not a domain ontology, which is our goal) where
the class taxonomy is based on WordNet (each WordNet synset becomes a class
of Yago), while the instances are collected titles of various Wikipedia articles.
The names of the categories to which these articles belong are analyzed using a
shallow linguistic parser and a stemmer in order to find a correspondent WordNet
term. A taxonomy based exclusively on the category hierarchy of Wikipedia has
been derived in [11,15] by exploiting six different techniques that include pattern
analysis, linguistic parsing and string matching.

3 Domain Definition Term and Domain Coverage

Our approach for automated domain ontology construction from Wikipedia
starts with taking a single term, the domain definition term domainName, as
input. We can produce an output domain ontology if one or more categories

Automated Construction of Domain Ontology Taxonomies from Wikipedia 441

containing domainName in their names (including a category named exactly
domainName) exist in Wikipedia. We initially create an empty list of arti-
cles. We add to the list all articles that are members of a category containing
domainName in its name. If the category has any subcategories, the procedure
is performed recursively for each of the subcategories.

Articles in the list are the core terms of the ontology and they become either
its instances or classes (the distinction between classes and instances is described
in [15]). For each of those articles we define a taxonomic structure. All taxonomic
structures share a common node and thus are part of the single unique taxonomic
tree of the domain ontology. The future domain ontology also contains additional
terms, which are attached to the ontology by forming a relation with a core term.
Additional terms may be Wikipedia titles or common words (WordNet synsets)
and are possible connections with other domain ontologies. We do not provide
taxonomic structures for the additional terms, respecting the decision of the
authors of Wikipedia not to put them in the domain category.

4 Taxonomy Construction Algorithm

Each article in Wikipedia can belong to multiple categories that describe the
domains related to the article. Categories themselves may have subcategories, or
reversely, supercategories. However, the categories only form a thematically or-
ganized thesaurus, which may imply relations other than subsumption: Alexan-
der the Great (Fig. 1) was one of Macedonian monarchs, Monarchs of
Persia and Pharaohs of the Argead dynasty, but not a Hellenistic
ruler cult (he was a divinity of such a cult). Ponzetto and Strube [11] devel-
oped a set of techniques which determine whether a subcategory-supercategory
relation is a subsumption or not.

Fig. 1. Categories referenced by the article Alexander the Great

Since we construct domain ontologies, we believe that their taxonomies should
be much less complicated than the taxonomy of WordNet or Yago. The taxonomy
construction algorithm, applied for each core term (i.e. each Wikipedia article)
consists of two basic steps:

1. finding a WordNet entry that subsumes the core term (the WordNet entry
becomes the class of the future domain ontology and is called the anchor
class of the core term),

2. associating the categories of the core term article with WordNet entries and
exploring which of them form a taxonomic relation with the anchor class.

The first step of the algorithm will be explained in Section 5, and the second
step in Section 6.

442 D. Jurić, M. Banek, and Z. Skočir

5 Anchor Class Computation

5.1 First Sentence Algorithm

A major novelty of our taxonomy construction algorithm is to perform a linguis-
tic analysis of the first sentence in each Wikipedia article. By the firm conven-
tions of Wikipedia, the first sentence contains the title term of the article or its
synonym in bold letters (Fig. 2) and tries to put the title term into a broader
context. In the largest majority of cases, the sentence contains the verb be and
hence expresses subsumption: Alexander the Great is a king (Fig. 2). Thus,
king is the anchor class for the core term (instance) Alexander the Great.

Fig. 2. First sentence of the article Alexander the Great

The first sentence of each article contains a subsumption relation if its subject
is the core term, if its main verb is be (in particular: is, are, was, were), and
if the main verb links the subject to a noun that corresponds to a WordNet
class (the verb be serving as the main verb of the sentence is called copula: the
Stanford parser [10] identifies a cop dependency between the respective form of
the verb be and the noun). The latter noun becomes the anchor class. If the
noun corresponds to more than one meaning in WordNet, sense disambiguation
must be performed (these issues will not be discussed due to page limitation).
We call the presented algorithm the First Sentence Algorithm (FSA).

The first experimental evaluation of FSA showed that it works with a satis-
factory precision. However, since in many cases either the proposed anchor class
did not exist in WordNet or the first sentence did not contain the verb be at all,
we had to develop a second algorithm, which, working jointly with FSA, would
produce highly satisfactory results.

5.2 Category Head Algorithm

The second algorithm is based on analyzing the lexical heads of the categories
related to the article and is called the Category Head Algorithm (CHA). The
lexical head of a noun phrase (the category names are noun phrases) is the
noun which all other words in the phrase describe (e.g. the head of the category
Ancient Macedonian generals is generals, while the head of the category
Pharaohs of the Argead dynasty is pharaohs). The algorithm follows the
notion that the category heads appearing only once for a particular article may
not necessarily represent the is-a relation (as in case of birth, death or cult in
the article Alexander the Great, see Fig. 1), but those appearing twice or
more almost always should. Monarch is the only category head appearing twice

Automated Construction of Domain Ontology Taxonomies from Wikipedia 443

for Alexander the Great and is thus suggested as the anchor class; it is a direct
WordNet hypernym of king, which is proposed by FSA.

In cases when more than a single head term appears twice or more frequently,
we sort all the category heads in accordance with their frequency. The most
frequent category head becomes the anchor class only if its frequency is at least
twice as large as the second largest frequency and if it appears as a noun en-
try in WordNet (if there is more than one meaning for the entry, word sense
disambiguation is performed).

In case when the category list of an input article consists of a single member
CHA outputs the head of that single category (experiments in Section 5.3 prove
that CHA works successfully even in that case).

5.3 Experimental Evaluation and Combined Algorithm as Solution

We tested in parallel the two algorithms for computing the anchor class on
two different domains: Alexander the Great (the entire domain, 461 articles) and
Zagreb (randomly selected 268 articles out of a total of 1461). The performance of
the algorithms was compared with the human judgment. Two human evaluators
first had to agree on the anchor class. The few cases when no agreement could
be reached between the evaluators were cast away. An automatically produced
anchor class was held as correct only when its corresponding WordNet synset
was identical to the synset produced by the evaluators.

Let T be the number of correctly computed anchor classes. Let F be the
number of falsely computed anchor classes. Let N be the number of cases when
the algorithm can produce no anchor class as output (either if the first sentence
of the article contains no copula, if none of the category heads appears twice
more frequently than the others, or if the extracted noun is not in WordNet e.g.
somatophylax or phrourarch, which denote a bodyguard of the King of Macedon
and a Greek military title, respectively).

Precision P is defined in the standard fashion, as the ratio between the num-
ber of correctly computed anchor classes and the total number of anchor classes
computed by the algorithm i.e. P = T/(T + F). Since our task is not a classi-
fication, we cannot calculate recall. Instead, we define two measures that take
into account both the precision of the algorithm and its inability to produce an
anchor class in certain cases. The first measure, A, ability to produce an out-
put, is the ratio of the number of the input articles for which the algorithm can
produce a result (either a correct or false one) and the total number of input
articles: A = (T + F)/(T + F + N). The second measure is called pseudo-F-
measure (PFM). While the real F-measure deals with the true positive, the
false positive and the false negative incomes of a classification task, our measure
replaces the false negatives with cases when the algorithm is unable to perform
the computation (N).

PFMβ =
(1 + β2) · T

(1 + β2) · T + β2 ·N + F
(1)

444 D. Jurić, M. Banek, and Z. Skočir

In case when β = 1, incorrectly computed anchor classes are considered of an
equal importance as the cases when no anchor class can be computed at all:
PFM1 = 2T/(2T + N + F). If precision is held more important (i.e. we prefer
smaller F at the expense of larger N), β is smaller than 1.

The experiments (Table 1, Table 2) show that CHA is more precise while FSA
produces an output for a larger portion of the input articles (see the first two
rows in Table 2). The highest values of A and PFM are achieved when both al-
gorithms are applied sequentially. Technically, we always apply both algorithms,
but in case when their output is different, the output of the algorithm declared
as the “first”becomes the anchor class. The question which sequence of the algo-
rithms works better can be decided by observing the values of PFM (the order
of algorithms does not influence A). For the Zagreb domain the value of PFM
is almost equal for both orders. However, the combination when CHA is applied
firstly and FSA secondly produces significantly better results for the domain
Alexander the Great. Hence, we propose a combined algorithm where CHA pre-
vails over FSA if both produce output terms that (1) are not identical, (2) are
not a pair of WordNet synonyms, and (3) one is not a hyponym of the other in
WordNet. If the output term of one algorithm is a hyponym of the other output
term, the hyponym becomes the anchor class, (we prefer an anchor class to be as
specific as possible). For instance, for the article Alexander the Great CHA
outputs monarch, while FSA outputs king. Since king is a hyponym of monarch,
it becomes the anchor class. We call the combined algorithm CHA-FSA.

Table 1. Parallel evaluation of FSA and CHA: measures T , F and N

Alexander CHA T CHA N CHA F Zagreb CHA T CHA N CHA F

FSA T 131 55 36 FSA T 119 5 6

FSA N 120 82 30 FSA N 101 7 18

FSA F 4 2 1 FSA F 8 2 2

Table 2. Parallel evaluation of FSA and CHA: measures P , A and PFM

Alexander the Great Zagreb
P A PFM1 PFM0.5 P A PFM1 PFM0.5

FSA only 0.7919 0,6985 0.7123 0.7580 0.8976 0.9478 0.9194 0.9062

CHA only 0.9694 0,4967 0.6501 0.8102 0.9155 0.5299 0.6533 0.7888

Both, FSA first 0.8179 0.8221 0.8042 0.8124 0.8927 0.9739 0.9301 0.9073

Both, CHA first 0.9024 0.8221 0.8518 0.8814 0.8851 0.9739 0.9259 0.9009

6 Finding Subsumption Relations between Core Term
Categories and Anchor Class

Once the CHA-FSA algorithm has computed the anchor class of an ontology core
term and associated it with a WordNet synset, we arrange the remaining category

Automated Construction of Domain Ontology Taxonomies from Wikipedia 445

heads into a taxonomy based on the anchor class. The taxonomy is a small subset
of WordNet: each of its subsumption relations exists in WordNet, either directly
of transitively. We do not copy the entire WordNet taxonomy with the anchor
class as the lowest node, since most of its vertices would be irrelevant for the
domain. For instance, given the anchor class general in the domain Alexander the
Great, its relevant hypernyms are officer and person (which appear as category
heads for at least some of the generals), but certainly not commissioned military
officer, skilled worker or organism.

We find the lexical heads of all categories referred by an article corresponding
to nouns in WordNet. We calculate Lin’s linguistic similarity in WordNet [8]
between each category head and the anchor class. If the similarity is greater than
or equal to an empirically determined threshold α, and if the category head is
also a WordNet hypernym of the anchor class, we insert it as a hypernym in our
domain ontology taxonomy.

With the threshold α set to 0.45 (resulting from our experiments), 5 of the 11
category heads of the article Alexander the Great make the similarity higher
than α (Table 3): general, individual, monarch, pharaoh, ruler. King is a WordNet
hyponym of monarch, monarch a hyponym of ruler and ruler a hyponym of
person/individual. On the other hand, the nearest common ancestor for king and
pharaoh is ruler while the one for king and general is person/individual. Hence,
a class taxonomy king → monarch → ruler → person/individual is created (Fig.
3, hypernymy is represented with solid lines), while classes pharaoh and general
are not taxonomy members of the core term Alexander the Great.

Table 3. Similarity between the anchor class king and the category heads for the
article Alexander the Great

birth cult death founder general individual Maced. monarch people pharaoh ruler

0.0 0.0 0.3593 0.2731 0.5178 0.4665 0.2274 0.9763 0.0 0.6888 0.9524

Fig. 3. Taxonomic structure for the article (individual) Alexander the Great

7 Conclusion

In this paper we have presented an unsupervised approach for constructing do-
main ontology taxonomies from Wikipedia. Each ontology instance (correspond-
ing to the title of a Wikipedia article) is associated with a class by applying two

446 D. Jurić, M. Banek, and Z. Skočir

different algorithms. The First Sentence Algorithm linguistically analyzes the
first sentence of the corresponding Wikipedia article, while the Category Head
Algorithm processes the lexical heads of Wikipedia categories associated with
the same article. The resulting anchor class is the combined output of both al-
gorithms. Once having computed the anchor class, we enrich the taxonomy with
WordNet synset classes corresponding to the lexical heads of the categories if the
latter are semantically similar to the anchor class. The experimental evaluation
against human judgment for two independent domains proves that the combi-
nation of the two algorithms is a robust, highly precise and applicable solution
for the largest majority of Wikipedia articles.

References

1. Banek, M., Jurić, D., Skočir, Z.: Learning semantic n-ary relations from Wikipedia.
In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS,
vol. 6261, pp. 470–477. Springer, Heidelberg (2010)

2. Buitelaar, P., Cimiano, P. (eds.): Ontology learning and population: bridging the
gap between text and knowledge selected contributions to ontology learning and
population from text. IOS Press, Amsterdam (2008)

3. Ciaramita, M., Gangemi, A., Ratsch, E., Šarić, J., Rojas, I.: Unsupervised learning
of semantic relations for molecular biology ontologies. In: [2]

4. Cimiano, P.: Ontology learning and population from text: algorithms, evaluation
and applications. Springer, Heidelberg (2006)

5. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. J. Art. Int. Research 24, 305–339 (2005)

6. Fellbaum, C. (ed.): WordNet. An electronic lexical database. MIT Press, Cam-
bridge (1998)

7. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Proc. COLING, pp. 539–545 (1992)

8. Lin, D.: An information-theoretic definition of similarity. In: Pr. ICML, pp. 296–304
(1998)

9. Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proc. ECAI,
pp. 321–325 (2000)

10. de Marneffe, C.-M., MacCartney, B., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proc. LREC, pp. 449–454 (2006)

11. Ponzetto, S.P., Strube, M.: Deriving a large-scale taxonomy from Wikipedia. In:
Proc. AAAI, pp. 1440–1445 (2007)

12. Sánchez, D., Moreno, A.: Learning non-taxonomic relationships from web docu-
ments for domain ontology construction. Data Knowl. Eng. 64 (3), 600–623 (2008)

13. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO - A large ontology from
Wikipedia and WordNet. J. Web Semantics 6(3), 203–217 (2008)

14. Wikipedia, http://en.wikipedia.org (retrieved February 12, 2011)
15. Zirn, C., Nastase, V., Strube, M.: Distinguishing between instances and classes

in the Wikipedia taxonomy. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 376–387. Springer,
Heidelberg (2008)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 447–455, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Storing Fuzzy Ontology in Fuzzy Relational Database

Fu Zhang1, Z.M. Ma1, Li Yan2, and Jingwei Cheng1

1 College of Information Science & Engineering, Northeastern University,
Shenyang, 110819, China

2 School of Software, Northeastern University, Shenyang, 110819, China
mazongmin@ise.neu.edu.cn

Abstract. Information imprecision and uncertainty exist in many real-world
applications and for this reason fuzzy ontologies have been extensively
investigated and increasingly created. Therefore, it is critical to develop
scalable and efficient fuzzy ontology storage mechanism. The fuzzy relational
database may be a good candidate for storing fuzzy ontologies because of the
widespread use and mature techniques. In this paper, we propose an approach
for storing fuzzy ontologies in fuzzy relational databases. The elements of fuzzy
ontologies are introduced first, where most of constructors of fuzzy ontologies
are considered. On this basis, we propose an approach for storing all of these
elements of fuzzy ontologies in fuzzy relational databases, and an example is
provided throughout the paper to well explain the approach.

Keywords: Fuzzy ontology, Fuzzy relational database, Storage.

1 Introduction

The Semantic Web aims at extending the current Web so that the content of web
pages is described with rich semantics and will not exclusively be meaningful for
humans, but also be machine processable [2], [3]. Ontologies, as meaning providers,
which enable a shared, explicit and formal description of the domain knowledge, have
been recognized to play an important role in the Semantic Web and many application
domains [3]. Currently, the Semantic Web is increasingly gaining popularity and
importance with an increasing number of people using ontologies to represent their
information. Lots of ontologies have been created and real ontologies tend to become
very large to huge (millions of items) [2]. Therefore, one problem is considered that
has arisen from practical needs: namely, possibilities for storing ontology
information. In particular, relational databases, which can provide maturity, reliability
and availability, may be the widest model used in the world for storing the
information of domains [20]. On this basis, some proposals have been developed to
store ontologies in relational databases [1], [2], [7], [8], [20].

However, the classical ontologies and the relevant ontology storage techniques
may not be sufficient to represent and store fuzzy information that is commonly found
in many application domains. Since the early 1980’s, the representation of fuzzy
information with fuzzy set theory has been addressed by Zadeh [21]. Over the years,
fuzzy information is apparent in many real life application domains, such as
databases, information systems, the Semantic Web and many more [9], [17].

448 F. Zhang et al.

Therefore, it is not surprising that the classical ontologies need to be extended for
handling fuzzy information in various Semantic Web applications. A possible solution
to tackle this problem is to incorporate fuzzy logic into ontologies. For this purpose,
lots of proposals have been developed to represent and handle fuzzy information in
ontologies and a great number of fuzzy ontologies for different domains were created
[4], [6], [10], [12], [14], [16], [18], [19], [22].

With the increasing use of fuzzy ontologies in the Semantic Web and other
application domains, fuzzy ontology based systems are growing in scope and volume.
Therefore, the efficient storage of fuzzy ontologies is of paramount importance. To
this end, being similar to the most common proposals that use relational databases to
store ontologies, the fuzzy relational database may be also a good candidate for
storing fuzzy ontologies because of the widespread use and mature techniques. If
fuzzy ontologies can be stored in the fuzzy relational database, the fuzzy relational
database may solve the scalability issue raised by real fuzzy ontologies and also may
facilitate for retrieving and manipulating the information of fuzzy ontologies within
the existing fuzzy relational database techniques.

In this paper, as an attempt to resolve the storage problem of fuzzy ontologies, we
propose an approach for storing fuzzy ontologies in fuzzy relational databases. In our
approach, the elements in fuzzy ontologies such as fuzzy classes, fuzzy properties,
characters and restrictions of properties (e.g., functional, allValuesFrom, and etc.),
data instances, and fuzzy axioms are considered. An example is provided throughout
the paper to well explain the approach.

The remainder of this paper is organized as follows. Section 2 introduces fuzzy
ontologies. Section 3 investigates how to store fuzzy ontologies in fuzzy relational
databases. Section 4 shows the conclusions and further work.

2 A Quick Look to Fuzzy Ontologies

The following briefly introduces some main elements of fuzzy ontologies. All of these
elements will be stored in fuzzy relational databases as will be presented in Section 3.

Ontology, which enables a shared, formal, explicit and common description of
domain knowledge, is represented by ontology definition languages such as RDFS,
OIL, DAML+OIL, or OWL [3]. The current Semantic Web standard ontology
language is OWL (Web Ontology Language), which consists of three sub-languages
of increasing expressive power: OWL Lite, OWL DL and OWL Full [3].

A fuzzy ontology, which is simply an ontology that uses fuzzy logic to provide a
natural representation of imprecise and uncertain knowledge, may be usually
represented by fuzzy OWL language (a fuzzy extension of OWL) [4], [6]. In general,
a fuzzy ontology FO consists of the fuzzy ontology structure FOS and the fuzzy
ontology instance FOI associated with the fuzzy ontology structure. FOS is a set of
fuzzy class descriptions and fuzzy class/property axioms, and FOI is a set of fuzzy
individual axioms. Both of the FOS and FOI are defined over the classes, object
properties, datatype properties, and individuals. Table 1 gives the elements of FOS
and FOI, including fuzzy class descriptions and fuzzy class/property/individual
axioms. A more detailed introduction about fuzzy ontologies can be found in [4], [18].

 Storing Fuzzy Ontology in Fuzzy Relational Database 449

Table 1. The elements of fuzzy ontologies and the Description Logic (DL) syntax

3 Fuzzy Ontology Storage in Fuzzy Relational Database

In this section, we propose an approach for storing fuzzy ontologies in fuzzy
relational databases, and an example is provided throughout the paper to well explain
the approach.

Fig. 1 shows a fuzzy ontology modeling parts of the reality at a university, which
includes the structure information and the instance information. Here, only parts of
classes, properties and individuals are shown, and for ease of understanding the fuzzy
ontology is represented as a graph instead of its formal representation in Section 2.

From Fig. 1, it is shown that the fuzzy ontology contains the following elements:

• six classes: {Department, Staff, AdminStaff, AcademicStaff, Student, Course};
• four object properties: {study_in, choosecourse, work_in, teach};
• four datatype properties: {staffname, title, email, age}, and the domains of these

properties are as follows: {xsd:string, xsd:string, fuzzy:possibilitydistribution,
fuzzy:label} (The fuzzy datatypes can be found in [5], [11], [15] in detail);

• three individuals: {staffid_110001, depid_0206, courid_309};
• some axioms: {subClassOf (AdminStaff, Staff), subClassOf (AcademicStaff,

Staff), ObjectProperty (work_in domain(Staff) range(Department), …}.

450 F. Zhang et al.

Fig. 1. A fuzzy ontology Onto_1 modeling parts of the reality at a university

The following several procedures will store the above fuzzy ontology structure
information in the target fuzzy relational database. For simplicity, some constraints
(e.g., primary key, foreign key, check, and unique) are not shown in tables of the
target fuzzy relational database.

(1) Storing the resources:
Table 2 shows Resource_Table in the target fuzzy relational database, which
stores all the resources in Fig. 1, where: OntologyName is the fuzzy ontology
name “Onto_1”; ID uniquely identifies a resource; namespace and localname
describe the URIref of a resource; and type describes the type of a resource.

Table 2. Resource_Table

 Storing Fuzzy Ontology in Fuzzy Relational Database 451

(2) Storing the relationships between classes:
Table 3 shows Class_Table, which stores the subclass/superclass (or unionOf,
intersectionOf, complementOf, and so on, please see Table 1) relationships
between two classes. Here, u denotes the membership degree of a class belonging
to the subclass of another class.
For example, subClassOf (AdminStaff, Staff) is stored as the first tuple in Table 3.

(3) Storing the domains and ranges of properties:
Table 4 shows Property_Field_Table, storing domains and ranges of properties.
For example, for the object property study_in (p_1), its domain is Student (c_5)
and range is Department (c_1).

Table 3. Class_Table Table 4. Property_Field_Table

(4) Storing the characters and restrictions of properties:
Tables 5 and 6 show Property_Character_Table and Property_Restriction_Table,
which store the characters and restrictions of properties.
For example, the functional object property study_in can be stored in a tuple in
Table 5; the cardinality constraints (2, 5) denotes that each student can choose at
least 2 and at most 5 courses, which can be stored in Table 6.

Table 5. Property_Character_Table Table 6. Property_Restriction_Table

Since the fuzzy ontology in Fig. 1 does not contain all of the constructors in Table
1 (e.g., some class operations and property characters), their corresponding tables in
the target fuzzy relational database are not shown here, and the other constructors in a
fuzzy ontology (see Table 1) can be stored following the similar procedures above.

The following several procedures will store the fuzzy ontology instance
information. From Fig. 1, there are three individuals in the fuzzy ontology as

452 F. Zhang et al.

mentioned in Resource_Table (Table 2): staffid_110001 (i_1), depid_0206 (i_2),
courid_309 (i_3).

(5) Storing the relationships of individuals/classes:
Table 7 shows Individual_Class_Relation_Table in the target fuzzy relational
database, which stores the relationships of individuals/classes in Fig. 1. Here, u
denotes the membership degree of an individual to the class.

For example, staffid_110001/0.9 in Fig. 1 denotes that the individual i_1 is an
instance of class AcademicStaff (c_4) with degree 0.9, which is stored in Table 7.

Table 7. Individual_Class_Relation_Table Table 8. Individual_Crisp_Property_Table

(6) Storing the values of crisp properties:
Table 8 shows Individual_Crisp_Property_Table, which stores the values of crisp
properties of the individual i_1.

(7) Storing the values of fuzzy properties:
From Fig. 1, there are fuzzy datatypes, such as the label (middle) and the
possibility distribution {js@ya...}, where the linguistic label middle can be
represented by a function T[30, 40, 50, 60] defined on a numerical domain [15].

The following subprocedures introduce how to store these fuzzy property values.

(7.1) Storing the fuzzy datatypes:
Table 9 shows Fuzzy_Types_Table, storing the above fuzzy datatypes.

Table 9. Fuzzy_Types_Table Table 10. Individual_Fuzzy_Property_Value_Table

(7.2) Storing individuals with fuzzy properties and these fuzzy properties:
Table 10 shows Individual_Fuzzy_Property_Value_Table, storing all those
individuals with fuzzy properties and these fuzzy properties, where
FuzzyPropertyValueID identifies the value of the fuzzy property ProID and it
references the primary key attribute in Fuzzy_Property_Value_Table (Table 11).

For example, the property age (p_8) of the individual i_1 is fuzzy and its value is
identified by fpv_1 which will be stored in the following Tables 11 and 12.

 Storing Fuzzy Ontology in Fuzzy Relational Database 453

(7.3) Storing the fuzzy values:
Table 11 shows Fuzzy_Property_Value_Table, storing fuzzy typed literals of the
fuzzy property values, where FuzzyPropertyValueID uniquely identifies a fuzzy
value, and fuzzytypeID denotes the datatype of a fuzzytypeLiteral.

Note that, since the current fuzzy database systems cannot support the fuzzy
datatype storage, the field fuzzytypeLiteral stores the corresponding fuzzy typed
literals of the fuzzy values in the form of string first, and then these fuzzy values will
further be stored in the fuzzy database based on the approach in Table 12.

Table 12 shows Lable_Table and PossibilityDistribution_Table, storing all of the
fuzzy property values in Fig. 1.

For example, the fuzzy typed literal middle is identified as fpv_1, and its datatype
is “Label” identified by f_1 and its value is stored in Lable_Table.

Table 11. Fuzzy_Property_Value_Table

Table 12. Fuzzy_Value_Table

Until now, a fuzzy ontology, including classes, properties, individuals, axioms,
datatypes, and characters and restrictions, can be stored in a fuzzy relational database.
Moreover, our storage approach can be seen as a transformation. As mentioned in
[13], when a transformation can preserve information capacities and it is considered
as a correct transformation. Therefore, the correctness of the storage approach can be
similarly proved based on the notion of information capacity [13].

4 Conclusions and Future Work

We have proposed an approach for storing fuzzy ontologies in fuzzy relational
databases. The elements in fuzzy ontologies such as fuzzy classes, fuzzy properties,
characters and restrictions of properties, data instances, and fuzzy axioms were
considered, and an example was further provided throughout the paper to well explain
the approach. There has not been much work in the fuzzy ontology storage and we

454 F. Zhang et al.

have tried to resolve the storage problem of fuzzy ontologies. All of these may solve
the scalability issue raised by real fuzzy ontologies.

The future direction to work in this area would be to further extend the approach
for storing fuzzy ontologies written in fuzzy OWL 2. Moreover, some more in-depth
studies of the approach and an automated storage tool are also important directions.

Acknowledgments. The work is supported by the National Natural Science
Foundation of China (60873010 and 61073139), the Fundamental Research Funds for
the Central Universities (N090504005), and in part by the Program for New Century
Excellent Talents in University (NCET-05-0288).

References

1. Astrova, I., Korda, N., Kalja, A.: Storing OWL Ontologies in SQL Relational Databases.
Proc. of World Academy of Science Engineering and Technology, 167–172 (2007)

2. Al-Jadir, L., Parent, C., Spaccapietra, S.: Reasoning with large ontologies stored in
relational databases: The OntoMinD approach. Data & Knowl. Eng. 69(11) (2010)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

4. Bobillo, F.: Managing Vagueness in Ontologies. PhD Dissertation. University of Granada,
Spain (2008)

5. Barranco, C.D., Campana, J.R., et al.: On Storing Ontologies including Fuzzy Datatypes in
Relational Databases. In: Proc. of IEEE Int. Conf. on Fuzzy Systems, pp. 1–6 (2007)

6. Calegari, S., Ciucci, D.: Fuzzy ontology, fuzzy description logics and fuzzy-OWL. In:
Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 118–126.
Springer, Heidelberg (2007)

7. Das, S., Inseok Chong, E., Eadon, G., Srinivasan, J.: Supporting ontology-based semantic
matching in RDBMS. In: Proc. of the 30th VLDB Conference, pp. 1054–1065 (2004)

8. Gali, A., Chen, C.X., Claypool, K.T., Uceda-Sosa, R.: From ontology to relational
databases. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi,
F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289,
pp. 278–289. Springer, Heidelberg (2004)

9. Galindo, J. (ed.): Handbook of Research on Fuzzy Information Processing in Databases,
pp. 55–95. Information Science Reference, Hershey (2008)

10. Inyaem, U., et al.: Construction of Fuzzy Ontology-Based Terrorism Event Extraction. In:
Proc. of Knowledge Discovery & Data Mining (WKDD), pp. 391–394 (2010)

11. Lv, Y.H., Ma, Z.M., et al.: Fuzzy Ontology Storage in Fuzzy Relational Database. In:
Proc. of Int. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 242–246
(2009)

12. Lee, C.S., Jian, Z.W., et al.: A fuzzy ontology and its application to news summarization.
IEEE Transactions on Systems, Man and Cybernetics Part B 35(5), 859–880 (2005)

13. Miller, R.J., Ioannidis, Y.E., et al.: The Use of Information Capacity in Schema Integration
and Translation. In: Proc. of the 19th VLDB Conference, pp. 120–133 (1993)

14. Ma, Z.M., Yanhu, L., Yan, L.: A Fuzzy Ontology Generation Framework from Fuzzy
Relational Databases. Int. J. Semantic Web Information Systems 4(3), 1–15 (2008)

 Storing Fuzzy Ontology in Fuzzy Relational Database 455

15. Oliboni, B., Pozzani, G.: Representing Fuzzy Information by Using XML Schema. In:
Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 683–687.
Springer, Heidelberg (2008)

16. Quan, T.T., Hui, S.C., et al.: Automatic fuzzy ontology generation for Semantic Web.
IEEE Transaction on Knowledge and Data Engineering 18(6), 842–856 (2006)

17. Sanchez, E. (ed.): Fuzzy Logic and the Semantic Web. Elsevier, Amsterdam (2006)
18. Stoilos, G., Stamou, G., et al.: Fuzzy extensions of OWL: Logical properties and reduction

to Fuzzy Description Logics. Int. J. of Approximate Reasoning 51, 656–679 (2010)
19. Straccia, U.: Towards a fuzzy description logic for the semantic web. In: Gómez-Pérez, A.,

Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 167–181. Springer, Heidelberg
(2005)

20. Vysniauskas, E., Nemuraite, L.: Transforming Ontology Representation from OWL to
Relational Database. Information Technology and Control 35(3), 333–343 (2006)

21. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
22. Zhang, F., Ma, Z.M. et al.: Automatic Fuzzy Semantic Web Ontology Learning from

Fuzzy Object-Oriented Database Model. In: Bringas, P.G., Hameurlain, A., Quirchmayr,
G. (eds.) DEXA 2010. LNCS, vol. 6261, pp. 16–30. Springer, Heidelberg (2010)

Using an Ontology to Automatically Generate

Questions for the Determination of Situations

Marten Teitsma, Jacobijn Sandberg, Marinus Maris, and Bob Wielinga

University of Amsterdam,
Amsterdam, Netherlands

{m.teitsma,j.a.c.sandberg,m.maris,b.j.wielinga}@uva.nl

http://www.uva.nl

Abstract. We investigate whether the automatic generation of ques-
tions from an ontology leads to a trustworthy determination of a sit-
uation. With our Situation Awareness Question Generator (SAQG) we
automatically generate questions from an ontology. The experiment shows
that people with no previous experience can characterize hectic situations
rather fast and trustworthy. When humans are participating as a sensor
to gather information it is important to use basic concepts of perception
and thought.

Keywords: Situation Awareness, Human-Centered Sensing, Ontology,
Automatic Question Generation.

1 Introduction

The wide distribution of mobile devices makes it possible to use humans as a
source of information. Especially in crisis situations, human observers may pro-
vide crucial information to evaluate the situation. Through the mobile device
carried by the human observers, communication may be directly aimed at chart-
ing a particular situation as humans can answer questions about a situation.
The combined answers of many observers help to refine the picture of the situa-
tion. It is in the new emerging field of Human-Centered Sensing (HCS) that the
application we will propose makes use of humans as participatory sensors [5].

The study reported here focuses both on generation of relevant questions using
Situation Theory [3] and on the validity of the answers provided by humans.
Concerning the latter, we hypothesize that the more knowledge-intensive the
task of the user, the more interpretation is needed, which will lead to variation
among descriptions of the same situation.

Generally, in the field of information technology for crisis management, atten-
tion is given to support the emergency services in their crisis management task.
Problems as how to synchronize information levels, facilitating decision making
and communication between the services or experts have been the main focus of
researchers [10]. These systems typically rely on traditional sensor systems which
have stationary sensors at predefined places. HCS has several advantages when
compared with such traditional sensor systems. As the sensing process makes

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 456–463, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.uva.nl

Using an Ontology to Automatically Generate Questions 457

use of human intelligence, reponses can become more versatile and adaptive
than responses from a plain sensor system. In fact, the sensing process becomes
an information gathering process in which the requester can lead the human
”sensor” to provide the kind of information which is required. Other advantages
include the power supply which is guaranteed because people use their mobile
device on a daily bases for all sort of services; coverage is better because of the
ubiquity and mobility of people and their devices and the adaptability is greater
because humans are more flexible than traditional sensors. A problem which re-
mains is that systems as envisioned in [5] use a central computer trying to make
sense of all the data gathered from the sensors. Such a centralisation creates the
problem of data or information overflow. This is a bottleneck for communication
and makes the system very vulnerable [7]. The application we propose does not
create this bottleneck because the information processing is distributed.

We envisage an application deployed on mobile devices which asks the user
questions about a situation he finds himself in. In its core this application consists
of our Situation Awareness Question Generator (SAQG) as described in section
2. The application uses an ontology to generate the questions. This ontology is
sent by a server which also receives the (combined) answers. Communication
between the server and application is thus spars and lightweight.

Just like the application proposed in [5](SafetyHeroes), our application relies
on the assumption that people are prepared to help other people. However,
how many people are taking the effort to help is an open question and calls for
research. Furthermore, the quality of the provided information by SafetyHeroes is
not known. The experiment we conducted is precisely an answer to that question.

The next section introduces Situation Theory and SAQG. This is followed
by a section introducing the experiment we conducted and a presentation of
the results. Finally these results are evaluated in the Discussion and Conclusion
section.

2 Situation Awareness Question Generator (SAQG)

To discuss information we use the terminology developed in Situation Theory
by Devlin in [3]. In Situation Theory, a piece of information is called an infon
which is formally described as a tuple of the form:

<< R, a1, ..., an, 0/1 >> (1)

where R is a n-place relation, and a1, ..., an are variables representing objects
appropriate for R. The last item is the polarity of the infon which is ’1’ when
the infon is true given a particular situation and ’0’ when different from the
description by the infon. A situation is defined by a minimal but sufficient set
of infons.

Situation Theory is being used by Kokar [6] to create Situation Theory Ontol-
ogy (STO) which is stated in Web Ontology Language (OWL). The central class
in STO is Situation. Instances of Situation refer to specific situations which can
become actual, i.e. correctly representing a real situation. Situation has therefore

458 M. Teitsma et al.

various subclasses which restrict the general and abstract class further. Classes
are related through OWL properties. Further specifications of situations are de-
scribed in another file. In such a file, subclasses of Situation are specified. This
division between a general ontology and a more specific, domain related, ontology
makes it easy to extend the ontology.

The ontology consists of concepts which are as simple as possible. We don’t
want people to make use of a great volume of background knowledge to answer
the questions because this knowledge differs among people. Furthermore, con-
sideration about the right interpretation does take time and we want people to
answer the questions as quickly as possible.

Visual information is categorized by Jaimes and Chang in [4] who make a
distinction between percepts which refer to what human senses perceive in a
physical causal relation and visual concepts which only exist due to knowledge
and experience. The use of concepts at the lowest level requires very little knowl-
edge and interpretation contrary to concepts at a higher level. The interpreta-
tion of these visual objects and their arrangement is solely based on everyday,
common-sense knowledge. Moreover, the infons to describe visual objects and
their constellation make use of basic concepts as defined in [9]. Concepts at the
basic level of abstraction carry the most information and are most differentiated
from one another. Such basic concepts can be found for objects and for events,
e.g. ’car accident’ which is more specific than an event with vehicles and more
general than ’auto accident’ which precludes trucks and other vehicles having an
accident [8]. Basic level concepts are easy to understand because they are very
common.

For the content of our ontology we used two sources. The first source is a traffic
accident ontology proposed in [11] which is based on domain expert knowledge.
Five core concepts are identified, i.e. ’time’, ’location’, ’weather’, ’persons in-
volved in the accident’ and ’type of vehicle involved in the accident’. The second
source for our ontology are two databases which gather all sorts of data about
car accidents. These are the FARS (Fatality Analysis Reporting System) [1] and
CARE (Community database on Accidents on the Roads in Europe) [2]. A lot of
terms used as keywords in these database are basic concepts as meant in [9]. A
category like ’Pavement’ is immediately grasped by people and the subcategories
’Asphalt’, ’Concrete’ and ’Unpaved’ are easily understood.

To determine the situation, SAQG is looking for subclasses of ’Situation’ and
their supporting infons. The infon which is most discriminative is being marked
as most informative and used to generate a question. Because each infon is an
informational entity, it is easy to formulate a question asking precisely for this
piece of information. Each infon then has a question as a label. This label can
be read when an infon is chosen as the most informative infon.

An answer to a question is a confirmation or refutation of an infon. When it is
a confirmation a follow-up question is generated from the set of infons of which
the confirmed infon is part. Is the infon refuted then a question is generated
from the set which is the complement of the set of infons of which the refuted
infon is part.

Using an Ontology to Automatically Generate Questions 459

The goal of SAQG is to determine a situation which is defined with infons.
When asked for the actuality of these infons a yes-no question results. In the car
accident ontology a situation like ’With injury and one vehicle’ is defined with
two infons. In natural language these infons are stating ’people are injured’ and
’one vehicle involved’. This definition generates in SAQG two questions: ’Are
people injured?’ and ’Is more than one vehicle involved?’. The answers to these
two questions are used to determine whether this or another situation is actual
according to the user of the application. When the situation is determined, ad-
ditional information to obtain details about the situation may be required. Such
detailed information is elicited through multiple choice questions with one or
more possible answers. Not all questions are asked during each time the appli-
cation is used. Because several rules are build in, some questions do not have
to be asked because by implication the answer is already known. An example of
such a rule is ’when the weathertype is rain then the street is wet’. When the
participant has answered ’rain’ to the question what kind of weather it is then
the question after the condition of the street is not asked. These rules minimize
the number of questions to be asked.

3 The Experiment

The participants of the experiment we conducted were undergraduate students
in the Information Science courses at the Hogeschool van Amsterdam, Univer-
sity of Applied Sciences. The 89 participants are characterized by being mostly
male (78.65%) and between 18 and 22 (76.41%). The participants were asked
to watch one of four videos which lasted between 27 and 37 seconds. First a
short introduction was given and the goal of the experiment was explained.
When the participant had watched the video, questions generated by SAQG were
presented.

The results were categorized in confusion matrices which were the basis for
the analysis. Four measures were computed: the Matthews Correlation Coeffi-
cient (MCC) for correlation and the F1-score for accuracy, recall and precision.
The Matthews Correlation Coefficient is a measure of correlation between what
is actual and what is predicted by a system or humans as in this case. It is
a robust coefficient because it does not deviate when classes of different size
are considered. MCC variates between -1 and +1 where -1 indicates a perfect
negative correlation and +1 a perfect positive correlation, 0 indicates a random
relation. The F1-score is a measure of accuracy and varies between 0 and 1 where
0 indicates no accuracy at all and 1 a perfect accuracy. The F1-score is the har-
monic mean of the recall and precision. The recall (also called sensitivity or true
positive rate) is a measure of how many of the actual situations are determined
as such. Precision gives a measure of how many of the predicted situations are
actually these situations.

In Table 1 the Matthews Correlation Coefficient, F1-score, recall and precision,
for the determination of situations and the yes-no questions used to determine
these, is shown. The correlation is rather high, just as the accuracy. These mea-
sures are the highest when the situation ’With injury and multiple vehicles’ was

460 M. Teitsma et al.

Table 1. Matthews Correlation Coefficient, F1-score, recall and precision for the situ-
ations

Confusion matrix MCC F1 Recall Precision

People are injured 0.76 0.88 0.93 0.84

Only one vehicle is involved 0.79 0.88 0.80 0.97

Mean of yes-no questions 0.78 0.88 0.87 0.91

With injury and multiple vehicles 0.85 0.89 0.83 0.95

With injury and one vehicle 0.64 0.73 0.86 0.63

Without injury and one vehicle 0.78 0.82 0.73 0.94

Without injury and multiple vehicles 0.64 0.73 0.73 0.73

Mean of situations 0.73 0.79 0.79 0.81

shown. This movie explicitly showed injured people and an accident with several
cars involved. The situation ’With injury and one vehicle’ was not so explicit,
i.e. no one was seen to be injured and the participant had to infer by the severity
of the accident that the driver and other people who might be in the car should
be injured. This inference mechanism was also working the other way around
when no one was injured and participants inferred the driver of the car having
an accident should be injured because they interpreted the accident as being a
severe accident. Another problem confronting the participants was how to inter-
pret the concept of ’being involved’ as in ’is there more than one car involved in
the accident’. On the one side participants interpreted ’being involved’ as ’being
in the neighbourhood’ or ’is part of what can be seen’. On the other side it was
being interpreted as ’is the cause of the accident’. This broad interpretation and
the inference from the severity of the accident to injury of the driver lead to a
great number of false positives in the confusion matrix of the situation ’With
injury and one vehicle’. Hence the relative low MCC value for the situations
’With injury and one vehicle’ and ’Without injury and multiple vehicles’.

In Table 1 can be seen that there is a difference between the mean of all the
measures for the questions and the mean of all the measures for the inferred sit-
uations. The inference of situations thus goes with a (small) loss of information.

The measures from the confusion matrices for the multiple choice questions
are shown in Table 2. We have detected a group of questions for which the
participants gave less trustworthy answers than the remaining group of answers.
The recall value of the first group (marked in the table by ∗) is 0.59 at the highest
and the lowest value of the second group is 0.72. The first group is characterized
as being information about numbers, clearly inferred or gathered during night
and obscured vision.

When people have to count, their observation becomes less trustworthy. Two
answers, one about the number of cars involved and another about the number
of lanes, scored significantly less than the answers which not relied on counting,
e.g. ’The road has three lanes’ and ’More than four vehicles are involved’ versus
’The road has one lane’ and ’One vehicle is involved’ (see Table 1). These answers
were given to multiple choice questions where other answers than ’one lane’ and
’three lanes’ were possible except for the last answer which was an answer to a

Using an Ontology to Automatically Generate Questions 461

Table 2. Summary of all the MCC’s, F1-scores, recall and precision

Confusion matrix MCC F1 Recall Precision

More than four vehicles are involved 0.62 0.73 0.59* 0.96

The weather is dry 0.73 0.90 0.83 0.98

The weather is dry (without video 1) 0.84 0.94 0.91 0.98

The weather is snowy 0.88 0.91 0.91 0.91

The road is a highway 0.82 0.95 0.90 1.00

The road is in town 0.91 0.93 0.86 1.00

The road is dry 0.67 0.84 0.72 1.00

The road is dry (without video 1) 0.94 0.97 0.95 1.00

The road is covered with snow 0.88 0.91 0.88 0.96

The road has three lanes 0.44 0.69 0.52* 1.00

The road has one lane 0.91 0.93 0.96 0.91

The accident is during daylight 0.82 0.91 0.89 0.93

The accident is during the night in artificial light 0.85 0.70 0.59* 0.87

It is dawn or dusk 0.48 0.58 0.50* 0.69

Sight is unlimited 0.22 0.65 0.73 0.59

Sight is limited 0.32 0.55 0.48* 0.64

The pavement is asphalt 0.59 0.91 1.00 0.84

The pavement cannot be known 0.59 0.58 0.41* 1.00

Passenger cars and vans are involved 0.52 0.62 0.55* 0.71

Passenger cars only 0.57 0.89 0.87 0.91

yes-no question. A lot of participants used these other possible answers as their
observation leading to a low recall (a lot of ’false negative’), high precision (a few
’false positive’) and an overall low correlation between the actual and predicted
values. The answers ’The road has one lane’ and ’One vehicle is involved’ both
showed high recall and precision. This lead to a high correlation for the ’one
lane’ answer indicating that such an observation was easy to make. Restrictions
on the observation about ’One vehicle is involved’ are given above.

When people had to infer information it became more difficult to give the
right answers. Asked about the sort of pavement in video 4: Without injury and
multiple vehicles people gave as answer ’asphalt’ while the question clearly could
not be answered because the road was covered with snow. The high recall for
’The pavement is asphalt’ contrary to the low recall and high precision for ’The
pavement cannot be known’ even suggests a bias to ’The pavement is asphalt’
as the answer when participants did not know what to answer.

An observation about the limits of sight was hard to make for the participants.
Night or dawn as in video 1: With injury and multiple vehicles and video 4:
Without injury and multiple vehicles gave participants problems to tell whether
the sight was limited or not. A fence, as in video 3: Without injury and one
vehicle, gave the same problems. Of all the MCC values the one for ’Sight is
unlimited’ is the lowest and for ’Sight is limited’ the second lowest.

Doing observations during the night has proven to be difficult. In the Table 2
is also shown the impact of removing video 1: With injury and multiple vehicles

462 M. Teitsma et al.

for the questions about the weathertype and whether the road was dry or not. In
both cases the recall improves and precision stays the same indicating the value
for ’false negative’ decreases. Participants doing an observations of a nightly
situation more often were wrong than participants doing an observation of a
situation during daytime about whether it was dry weather and whether the
road was dry.

During the experiment we also logged the time participants used to answer
the questions. When the mean is taken of the different categories of questions a
difference is seen for the yes-no questions for which the mean is 6.855 sec. and
the multiple choice questions with one answer for which the mean is 9.34 sec.
For the multiple choice questions with more possible answers the time is 17.55
sec.

4 Discussion and Conclusion

This experiment deviates from a real life situation in that the participants saw
a video and were not really involved a car accident. But just like a real life
situation only after the rapid course of events there was time for reflection and
answering questions. Different from a real life situation was that the observation
we asked about had to be remembered. When asked about the weather, in real
life one looks (again) at the sky and answers the question. In our experiment the
participants had to think back to what they had seen and try to remember. But
this restriction is general and applies to all questions and so makes no difference
for the relative trustworthiness.

The experiment showed the participants had more problems with questions
which require some interpretation than questions which are more easy to answer.
The counting of objects (vehicles or lanes) is difficult and leads to a drop in trust-
worthiness of answers. A question as ’How is the sight?’ with possible answers
’limited’ and ’unlimited’ had to be interpreted. What we hoped to determine
was whether mist or darkness limited sight but according to the participants
a fence also limited sight. Which is true of course but says nothing about the
overall sight which we were after. The concept of sight was thus not so basic and
clear as we thought. For Human-Centered Sensing it is paramount to use basic
concepts of perception and thought which are easy to understand, common in
use and do need as little interpretation as possible.

First we conclude that it is possible to generate questions about a situation
from an ontology. When used by our Situation Awareness Question Generator
such an ontology has to comply to the Situation Theory Ontology as described.
When it does, automatically generated questions about several situations become
available.

The second conclusion we draw from this experiment is that it is possible to
gather trustworthy information from people who saw a hectic situation like a
car accident. It should be noted though that there are certain restrictions like
when such an event is happening at night one should be more careful with this
information than in broad daylight. All of the questions have a certain margin
of truthfulness, i.e. the accuracy of the answers is not perfect.

Using an Ontology to Automatically Generate Questions 463

Furthermore, it takes the participants less time to answer yes-no questions
than multiple-choice questions. Multiple-choice questions where one has to choose
more answers are the most time consuming. The difference shows that yes-no
questions are preferable when a situation has to be determined very fast.

Further research shall be done with SAQG on a mobile platform. We do
not expect a fundamental difference with respect to the trustworthiness of the
answers. This future experiment will be in a real life situation, i.e. a participant
uses a mobile device to determine a situation of which he or she is part. Of
course this will not be a real crisis situation but a simulation because of ethical
considerations.

References

1. N. H. T. S. Administration. Fatal accident reporting system (2011)
2. E. U. Commission. Community database on accidents on the roads in europe (2011)
3. Devlin, K.: Logic and Information. Cambridge University Press, Cambridge (1991)
4. Jaimes, A., Chang, S.: A conceptual framework for indexing visual information at

multiple levels. IS&T/SPIE Internet Imaging 3964, 2–15 (2000)
5. Jiang, M., McGill, W.: Participatory Risk Management: Managing Community

Risk Through Games. In: 2010 IEEE Second International Conference on Social
Computing (Social Com), pp. 25–32. IEEE, Los Alamitos (2010)

6. Kokar, M., Matheus, C., Baclawski, K.: Ontology-based situation awareness.
Information Fusion (10), 83–98 (2009)

7. Ramachandran, U.: Situation awareness. NSF, High-Confidence Software Plat-
forms for Cyber-Physical Systems (2006)

8. Rifkin, A.: Evidence for a basic level in event taxonomies. Memory & Cogni-
tion 13(6), 538 (1985)

9. Rosch, E., Mervis, C., Gray, W., Johnson, D., Boyes-Braem, P.: Basic objects in
natural categories. Cognitive psychology 8(3), 382–439 (1976)

10. Turoff, M.: Past and future emergency response information systems. Commun.
ACM 45(4), 29–32 (2002)

11. Yue, D., Wang, S., Zhao, A.: Traffic accidents knowledge management based on
ontology. In: Proceedings of the 2009 Sixth International Conference on Fuzzy Sys-
tems and Knowledge Discovery FSKD 2009, vol. 07, pp. 447–449. IEEE Computer
Society, USA (2009)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 464–474, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Indexing Frequently Updated Trajectories of
Network-Constrained Moving Objects

Zhiming Ding

Institute of Software, Chinese Academy of Sciences
South-Fourth-Street 4, Zhong-Guan-Cun, Beijing 100190, P.R. China

zhiming@iscas.ac.cn

Abstract. Index is a key technique in improving the query processing
performance of moving objects databases. However, current index methods for
moving object trajectories take trajectory units as the basic index records and
frequent index updates are needed when location updates occur, which greatly
affects the overall performance of moving objects databases. To solve this
problem, we propose a new index method, network-constrained Moving Object
Sketched-Trajectory R-Tree (MOSTR-Tree) in this paper, which outperforms
previously proposed methods under frequent location updates.

Keywords: Moving Objects, Database, Index, Spatial-Temporal, Trajectory.

1 Introduction

Moving Objects Database (MOD) is a database which can track and manage the
dynamically changing locations of moving objects such as cars, ships, flights, and
pedestrians. An MOD system can manage huge numbers of moving objects so that
index is crucial to query them efficiently.

In recent years, the moving object index problem has been intensely studied with a
lot of methods proposed, which can be roughly divided into two categories: indexing
of current positions of moving objects and indexing of complete trajectories of
moving objects. In indexing current positions of moving objects, representative
methods include Time Parameterized R-Tree (TPR-Tree) [1] and its variants.
However, these indices can only deal with current positions of moving objects so that
the queries about the historical positions of moving objects can not be supported.

In indexing the trajectories of moving objects, earlier work is focused on
Euclidean-based methods [2], which take Euclidean trajectory units as the basic index
records with each unit corresponding to a straight line segments in the X×Y×T space.
Since a trajectory can correspond to a complicated curve, a large number of Euclidean
trajectory units are needed to represent a trajectory, which can lead to huge numbers
of records in the index structures.

More recently, increasing research interests are focused on network-based
trajectory index methods for moving objects. Network-based trajectory indices
usually adopt two-layered structures [3]. A network-based trajectory unit describes an
even-speed movement along a route so that it can actually describe a curve in the
X×Y×T space. Compared with Euclidean-based trajectory indices, network-based
trajectory indices can effectively reduce the number of index records. However,
current trajectory index methods still have a lot of limitations:

 Indexing Frequently Updated Trajectories of Network-Constrained Moving Objects 465

(1) Nearly all existing trajectory indices take trajectory units as the basic index
records, whose granularity is too fine. As a result, frequent index updates are needed
when location updates occur so that the efficiency can be greatly affected.

(2) Most current network-based trajectory indices adopt two-layer structures,
which are not easy to be implemented in general extensible DBMSs such as
PostgreSQL, even though they could be implemented in specially designed systems.

(3) Currently available network-based trajectory indices can only deal with the
situation when the positions of moving objects are completely matched to the
network. When moving objects run outside the network occasionally, their positions
can not be expressed and included in the indices.

To solve the above problems, we propose a new index method, network-
constrained Moving Object Sketched-Trajectory R-Tree (MOSTR-Tree), in this paper.
The basic idea is as follows. First the X×Y×T space is divided into equal-sized grid
cells so that each trajectory (called “original trajectory”) is mapped to a “sketched
trajectory” which is composed of the line segments connecting the centers of the grid
cells that the original trajectory travels through. The sketched trajectory units are then
organized into an R-Tree. Since the sketched trajectory has much coarser granularity
than the original trajectory, the index updating cost can be greatly reduced.

The rest part of this paper is organized as follows. Section 2 presents a general
model for moving object trajectories, Section 3 describes the structure and algorithms
of MOSTR-Tree, and Section 4 gives experimental results and conclusions.

2 General Data Model for Network-Constrained Moving Object
Trajectories

In this section, we propose a general data model for moving object trajectories, which
can accommodate both network-constrained movements and free movements.

Definition 1 (Traffic Network). A traffic network (or simply network) N is defined
as:

N = (R, J)
where R is a set of routes and J is a set of junctions.

Definition 2 (Route). A route of network N, denoted by r, is defined as follows:

r = (rid, geo, len, ((jidj, posj))
m
j 1=)

where rid is the identifier of r; geo is a polyline describing the geometry of r (the
beginning point and the end point of geo are called “0-end” and “1-end” of r
respectively); len is the length of r, (jidj, posj) (1≤ j ≤ m) describes the jth junction in
route r (see Definition 3) where jidj is the identifier of the junction and posj is the
relative position of the junction in the route (suppose the total length of each route is
1, then any position in the route can be presented by a real number pos∈[0, 1]).

Definition 3 (Junction). A junction of the traffic network N, denoted by j, can
correspond to an intersection, an exit/entrance, or a route’s beginning-point/endpoint
in the real traffic network, which is defined as follows:

j = (jid, loc, ((ridi, posi))
n
i 1= , m)

466 Z. Ding

where jid is the identifier of j, loc is the location of j which is a point value in the X ×
Y plane, (ridi, posi) (1≤ i ≤ n) describes the ith route connected by j, where ridi is the
route identifier, posi ∈[0, 1] is the relative position of j inside the route; and m is the
connectivity matrix [4] of j which describes the transferability of moving objects from
one route to another through the junction.

Definition 4 (Network Position). A position inside the network N, denoted by npos,
is defined as follows:

 npos =
⎩
⎨
⎧

);,(

;

posrid

jid

The position of npos can have two possibilities. It can either locate in a junction (in
this case the identifier of the junction, jid, is used to express the location), or in a
route (in this case its location is expressed as (rid, pos) where rid is the identifier of
the route, and pos∈ [0, 1] is the relative position inside the route).

Definition 5 (Motion Vector). A motion vector mv is a snapshot of moving object’s
movement at a certain time instant and is defined as follows:

mv = (t, (x, y), v, d, npos)

where t is a time instant, (x, y), v, d are the location, the speed, and the direction of the
moving object at time t respectively, and npos is the network position of the moving
object at time t. Among the parameters, (x, y), v, and d come from GPS, and npos
comes from network matching.

If npos ≠⊥ (⊥ means “undefined”), mv is called “network matched”. If npos = ⊥,
then mv is not network matched.

Definition 6 (Trajectory of Moving Objects). The trajectory of a moving object,
traj, is a sequence of motion vectors sent by the moving object through location
updates [5] during its journey and is defined as follows:

traj = (mvi) 1
n
i= = ((ti, (xi, yi), vi, di, nposi)) 1

n
i=

Two neighboring motion vectors of the trajectory, mvi and mvi+1 (1 ≤ i ≤ n-1), can
form a trajectory unit, denoted as µ(mvi, mvi+1). Depending on whether mvi and mvi+1
are network-matched, µ(mvi, mvi+1) can correspond to different shapes in the X×Y×T
space. If mvi and mvi+1 are both network matched, then µ(mvi, mvi+1) describes the
movement from mvi to mvi+1 along the shortest path between nposi to nposi+1 which
corresponds to a curve in the X×Y×T space. If one of or both mvi and mvi+1 are not
network matched, then µ(mvi, mvi+1) corresponds to a straight line segment.

Trajectories are generated through location updates [4-5] of moving objects.
During a location update operation, the original parameters sampled from GPS at the
moving object side include t, (x, y), v, d, while npos can be computed through the
network-matching procedure either at the moving object side or at the server side.
During its movement, the moving object repeatedly samples the motion vector and
compares it with the motion vector sent at the last location update. Whenever certain
location update condition is met, the moving object will send the new motion vector
to the server. The server will then append the new motion vector to the trajectory of

if npos is located in a junction;

if npos is located in a route

 Indexing Frequently Updated Trajectories of Network-Constrained Moving Objects 467

the moving object and therefore, the trajectory at the server side is growing over time.
At certain time interval (say once a month), the database server needs to transfer the
trajectories from the database to the historical repository and to refresh the database.

Suppose that we have a trajectory traj = (mvi) 1
n
i= = ((ti, (xi, yi), vi, di, nposi)) 1

n
i= .

Through traj we can derive the location of the moving object at any time tq∈ [t1, tn]
[4]. Besides, we can also compute the locations of the moving object between tn and
the current time tnow. Let’s consider tq ∈ (tn, tnow], the location of the moving object at
tq can be computed in two different ways:

(1) Return (xn, yn) as the position of the moving object at tq if tq ≤ tn + τ (τ is a time
threshold, for instance 3 minutes);

(2) Derive the “computed position” of the moving object at tq through the
parameters contained in mvn, and then return the computed position as the result [4].

Both methods have their advantages and disadvantages, depending on whether the
wireless network is reliable enough and whether the traffic network is up-to-date and
precise. In this paper we adopt the first method. Through some modifications, the
method proposed in this paper can be used when the second method is adopted.

3 The Structure and Related Algorithms of the MOSTR-Tree

3.1 Transforming Trajectories to Sketched Trajectories

Before trajectories can be transformed to sketched trajectories, we first need to
partition the X×Y×T space into equal-sized grid cells. Suppose that the spatial-
temporal range managed by the moving object database is Ix ×Iy ×It, where Ix = [x0, x1],
Iy = [y0, y1], and It = [t0, ⊥] (the endpoint of It is ⊥ (“undefined) since the current time
is always growing). Ix can be divided into n equal-sized sub-intervals of size ζx where

ζx =
n

xx 01 − . Similarly, Iy can be divided into m equal-sized sub-intervals of size ζy

where ζy =
m

yy 01 − . For It, since its endpoint is undefined, we can divide it into equal-

sized sub-intervals of size ζt = Δt where Δt is a predefined value.
Through the above partitioning, the Ix × Iy × It space is divided into multiple equal-

sized grid cells. Each grid cell can be identified by a triple (Nx, Ny, Nt), where Nx, Ny,
and Nt are the cell’s corresponding serial numbers along the X, Y, T axles. For
instance, the gray-colored grid cell in Figure 1 is identified as (4, 3, 2).

After the Ix × Iy × It space is divided into equal-sized grid cells, we can then
transform every trajectory into its corresponding sketched trajectory. To differentiate
two kinds of trajectories, we call the trajectories discussed in Definition 6 as “original
trajectory”.

Definition 7 (Sketched Trajectory of Moving Object). Suppose that the original

trajectory of a moving object is traj = ((ti, (xi, yi), vi, di, nposi)) 1
n
i= . traj’s sketched

trajectory, denoted as sketch(traj), is defined as follows:

sketch(traj) = (cj)
k
j 1= = ((tj, xj, yj))

k
j 1=

468 Z. Ding

where cj = (tj, xj, yj) (1 ≤ j ≤ k) is the center’s coordinate of the jth grid cell that traj
travels through. Two neighboring coordinates cj and cj+1 (1 ≤ j ≤ k-1) of sketch(traj)
form a Sketched-Trajectory Unit (STU), denoted as μ̂ (cj, cj+1), which corresponds to a

straight line segment connecting cj and cj+1 in the X×Y×T space. A sketched trajectory
can be seen as a sequence of sketched trajectory units so that it forms a polyline in the
X×Y×T space, as shown in Figure 1.

Fig. 1. Partition of Grid Cells and the Resulted Sketched Trajectory

Algorithm 1. Transforming Original Trajectory into Sketched Trajectory

Global Arguments:
Ix ×Iy ×It; //Spatial-temporal Range of the database;

x, y, t; // Parameters describing the size of grid cells;
INPUT: traj = (mvi) 1

n
i = ((ti, (xi, yi), vi, di, nposi)) 1

n
i ;

OUTPUT: sketchTraj = ((tj, xj, yj)) k
j 1 ;

1. sketchTraj=NULL;
2. startingCell = getCellLocated(mv1);
3. append(sketchTraj, getCenter(startingCell));
4. IF n = 1 THEN
5. Return(sketchTraj);
6. ELSE
7. currentCell = startingCell;
8. FOR i = 2 to n DO
9. cellsTravelled = getCellsTravelled((mvi-1, mvi));
10. IF(|cellsTravelled|=1)AND(extractCell(cellsTravelled,1)=currentCell) THEN
11. doNothing();
12. ELSE // (mvi-1, mvi) travels through multiple grid cells
13. FOR j = 2 to |cellsTravelled| DO
14. append(sketchTraj, getCenter(extractCell(cellsTravelled, j)));
15. ENDFOR;
16. currentCell = extactCell(cellsTravelled, |cellsTravelled|);
17. ENDIF;
18. ENDFOR;
19. Return(sketchTraj);
20. ENDIF.

Original Trajectory

Sketched Trajectory

Grid Cell (4, 3, 2)

X

Y

T

1 2 3 4

2

1 3

2
1

 Indexing Frequently Updated Trajectories of Network-Constrained Moving Objects 469

As depicted in Figure 1, the sketched trajectory approximates to the shape of the
original trajectory with much less trajectory units. For a given original trajectory traj,
the number of the sketched trajectory units in sketch(traj) is decided by the size of the
grid cells. The bigger is the grid cell size, the less is the number of the sketched
trajectory units contained in sketch(traj), and vice versa.

Algorithm 1 describes the procedure of transforming an original trajectory to its
corresponding sketched trajectory. In the algorithm, the function getCellLocated (mv)
returns the grid cell within which a motion vector mv is located; the function
getCellsTravelled(μ) returns the grid cell sequence which a trajectory unit μ travels
through; the function extractCell(cellseq, i) extracts the ith grid cell from a grid cell
sequence cellseq; the function getCenter(cell) returns the center’s coordinate of a grid
cell cell, the function |cellseq| returns the number of cells in a grid cell sequence
cellseq, and the function doNothing() simply returns without doing anything.

In Algorithm 1, the trajectory units of traj are processed one by one. In dealing
with a new trajectory unit μ(mvi-1, mvi), the algorithm first computes the grids cell(s)
that the unit travels through by calling the getCellsTravelled() function (the result of
the function can contain one or more grid cells), and then append the grid cell
center(s) to sketchTraj.

Fig. 2. Transforming Original Trajectory to Sketched Trajectory

Figure 2 depicts three typical cases in dealing with a new trajectory unit μ(mvi-1,
mvi), corresponding to lines 8~18 of Algorithm 1. The gray-colored grid cells in
Figure 2(b) are the cells in which mvi-1 is located (ie. currentCell). Among the three
cases, cases (1) and (2) happen more often than case (3). Since the granularity of grid
cells is much coarser than that of original trajectory units, case (3) seldom occurs.

As shown in Figure 2(b), in case (1), μ(mvi-1, mvi) is still inside currentCell and
nothing will be done in this case (see lines 10~11). In case (2) and case (3), μ(mvi-1,
mvi) travels through 2 or more grid cells and therefore, the center’s coordinates of the
cells (except currentCell) are appended to sketchtraj (see lines 13~15 of Algorithm 1).

Case (1): μ(mvi-1, mvi)
is within currentCell

Case (2): μ(mvi-1, mvi)
travels through 2 grid
cells

μ(mvi-1, mvi) cellsTravelled

μ(mvi-1, mvi)

Case (3): μ(mvi-1, mvi)
travels through 3 or
more grid cells

cellsTravelled

μ(mvi-1, mvi)

cellsTravelled

μ(mvi-1, mvi)
sketchTraj traj

 (b) Three cases in dealing with μ(mvi-1, mvi) (X×T plane)

(a) Original and Sketched trajectories
in X×Y×T space

X

T

Y

X

X

X

T

T

T

470 Z. Ding

3.2 Structure and Construction of the MOSTR-Tree

After the original trajectories are transformed to sketched trajectories, we can
organize the sketched trajectory units into an R-Tree so that the MOSTR-Tree can be
constructed. Figure 3 depicts the structure of the MOSTR-Tree.

The leaf nodes of the MOSTR-Tree contains records of the form 〈MBR, PTmo, stu〉,
where stu is a sketched trajectory unit, MBR is the MBR of stu, and PTmo is the
pointer or identifier leading to the complete database record of the corresponding
moving object. The internal nodes of the MOSTR-Tree contain records of the form
〈MBR, PTnode〉, where MBR is the MBR bounding all the MBRs of the records in its
child node, and PTnode is a pointer leading to the child node.

Fig. 3. Structure of the MOSTR-Tree

When constructing the MOSTR-Tree, the database server will transform every
trajectory to its corresponding sketched trajectory and insert the sketched trajectory
units into the MOSTR-Tree. The constructing procedure of the MOSTR-Tree is
described in Algorithm 2. For simplicity, in Algorithm 2 we assume that no location
update occurs, and more complicated cases will be discussed In Subsection 3.3.

Algorithm 2. Constructing the MOSTR-Tree (without ongoing location updates)

INPUT: trajSet; //the set of original trajectories to be indexed;
OUTPUT: mostrTree; //the MOSTR-Tree;
1. mostrTree = NULL;
2. FOR EACH traj trajSet DO
3. sketchTraj = sketch(traj); //Computing sketched trajectory by calling Algorithm 1;
4. FOR EACH sketchUnit IN getUnits(sketchTraj) DO
5. insert(mostrTree, sketchUnit);
6. ENDFOR;
7. ENDFOR;
8. Return(mostrTree).

In Algorithm 2, the function getUnits(sketchTraj) extracts all the trajectory units
from a sketched trajectory sketchTraj and returns them as a set. The function
insert(mostrTree, sketchUnit) insert a sketched trajectory unit sketchUnit into the tree.
The sketched trajectories and their units only appear when constructing and
maintaining the MOSTR-Tree, and are not stored in the database permanently.

MBR1 MBR2

stu1 stu3 stu5 stu9 … stun stu2 stu4 stu8

MBR3 MBR4 MBR5 MBR6

Sketched Trajectory Units

 Indexing Frequently Updated Trajectories of Network-Constrained Moving Objects 471

3.3 Maintaining and Constructing MOSTR-Tree with Ongoing Location
Updates

During location updates, new trajectory units are appended to the trajectories so that
the index also needs to be maintained. Let’s consider a certain moving object mo.

Suppose that its original trajectory is traj=(mvi) 1
n
i= = ((ti, (xi, yi), vi, di, nposi)) 1

n
i= and

sketch(traj) = ((tj, xj, yj))
k
j 1= . When mo launches a location update, it will send to the

database server a new motion vector mvu, which will be appended to traj by the
server. The server first needs to check whether μ(mvn, mvu) travels across the
boundary of the grid cell where mvn is located (i.e. getCellLocated(mvn)). If not, then
the appending of mvu to traj does not change sketch(traj) and the MOSTR-Tree does
not need to be updated either. Otherwise, the new sketched trajectory unit(s)
corresponding to μ(mvn, mvu) need to be inserted to MOSTR-Tree.

Since the granularity of the sketched trajectory is much coarser than that of the
original trajectory, the updating cost of the MOSTR-Tree can be greatly reduced.
Algorithm 3 describes how the MOSTR-Tree is maintained during a location update.

Algorithm 3. Maintaining the MOSTR-Tree when Receiving a Location Update Message

INPUT: LUMsg= (moid, t, x, y, v, d, npos); //the loc. update message;
 mostrTree; // the MOSTR-Tree;

1. mvu = (t, (x, y), v, d, npos);
2. mvn = final(getTrajectory(moid));
3. currentCell = getCellLocated(mvn);
4. cellsTravelled = getCellsTravelled((mvn, mvu));
5. IF (|cellsTravelled| =1) AND (extractCell(cellsTravelled, 1) = currentCell) THEN
6. doNothing();
7. ELSE // (mvn, mvu) travels through multiple grid cells
8. FOR j = 2 to |cellsTravelled| DO
9. sketchUnit= ˆ (getCenter(currentCell), getCenter(extractCell(cellsTravelled, j)));
10. insert(mostrTree, sketchUnit);
11. currentCell = extactCell(cellsTravelled, j);
12. ENDFOR;
13. ENDIF.

In Algorithm 3, the function getTrajectory(moid) retrieves the original trajectory
of the moving object whose identifier is moid, and the function final(traj) extracts the
last motion vector from the trajectory traj.

For a running MOD system, the MOSTR-Tree can be constructed and maintained
with ongoing location updates as described in Algorithm 4. In Algorithm 4, the
location update messages received during the construction of the MOSTR-Tree are
temporarily saved as a set in buffer. The function fetch_deleteMSG(buffer) fetches
and deletes a location update message from buffer. After the MOSTR-Tree is
constructed, all the buffered location update messages are then processed with
through Algorithm 3 until the buffer is empty, and then the server accepts new
location update messages directly and maintain the MOSTR-Tree accordingly.

472 Z. Ding

`

Algorithm 4. Constructing&Maintaining the MOSTR-Tree with Ongoing Location Updates

1. Call Algorithm 2 to construct the MOSTR-Tree, meanwhile save location update
massages received during the construction procedure into buffer;

2. WHILE buffer DO //new location update messages during this period are still saved to buffer
3. LUMsg = fetch_deleteMSG(buffer);
4. Call Algorithm 3 to maintain the MOSTR-Tree according to LUMsg;
5. ENDWHILE;
6. WHILE MOD is running DO
7. Accept new location update message LUMsg;
8. Call Algorithm 3 to maintain the MOSTR-Tree according to LUMsg;
9. ENDWHILE.

3.4 Query Processing Based on the MOSTR-Tree

In this subsection, we discuss the query processing mechanism based on the MOSTR-
Tree. Suppose that Q is an arbitrary query on moving object trajectories, whose query
range is range(Q) = Qx × Qy × Qt where Qx=[0

xq , 1
xq], Qy=[0

yq , 1
yq], and Qt=[0

tq , 1
tq].

Query range describes X, Y, T ranges the query concerns and corresponds to a cube in
the X×Y×T space.

In dealing with such a query, we first need to extend Qt by replacing it with Qt =
[0

tq −τ, 1
tq]. As stated in Section 2, the last reported location of the moving object

continues to take effect for τ time. We can imagine that the original trajectory has a
vertical line segment of length τ following the last trajectory unit. However, this
vertical line segment is missing (not expressed as a record) in the index so that we
should extend the query’s time range to make the query range cover the vertical line.
Otherwise, the corresponding moving object could be lost from the query result. After
the extension, the new query range is range(Q)= Qx × Qy × Qt, as shown in Figure 4.

 (a) Original Trajectory and Extension of Query Range (b) the Effect on the X × T Plane

Fig. 4. Extension of the Query Time Range

As depicted in Figure 4, the original trajectory traj= ((ti,(xi,yi),vi,di,nposi)) 1
n
i= does

not intersect with range(Q). Assume that Q = “query all moving objects which are
inside geographical area α (suppose that (xn, yn)∈ α) at time tn+ε (where ε ≤ τ)”. If
we do not extend the query time range, then the moving object will not be contained
in the query result, which is inconsistent with the statement in Section 2. By

range(Q)=Qx×Qy×Qt
range(Q)=Qx×Qy×Qt

Extended part
Extended part

T

X

Y
T

X

 Indexing Frequently Updated Trajectories of Network-Constrained Moving Objects 473

extending the query’s time range, the moving object’s trajectory intersects the new
query range and the moving object can be included in the query result.

After the query range is extended, the system needs to align the query range to grid
cell centers, as shown in Figure 5.

(a)The Original&Sketched Trajectories (b)Alignment of the Query Range (X×T Plane)

Fig. 5. Alignment of the Query Range to Grid Cell Centers

In Figure 5, the original trajectory of the moving object intersects range(Q)= Qx ×
Qy × Qt and should be included in the query result. However, the sketched trajectory
does not intersect with range(Q). If we search in the MOSTR-Tree with range(Q)
directly, the moving object will be lost from the query result. To solve this problem,
we should make necessary adjustment to the query range. From analysis we can see
that, if the query range is aligned to the corresponding grid cell centers, we can be
assured that for all moving objects whose original trajectories intersect the query
range, their sketched trajectories will intersect the aligned query range.

In the following, we discuss how to align the query range range(Q)= Qx × Qy × Qt
to the corresponding grid cell centers. Let’s first consider Qx = [0

xq , 1
xq]. We can make

the following transformation:

x
x

x
x

xq
xq ξ

ξ
*)5.0(

0

0

0
0 +⎥

⎦

⎥
⎢
⎣

⎢ −+=
,

x
x

x
x

xq
xq ξ

ξ
*)5.0(

0

0

1
1 +⎥

⎦

⎥
⎢
⎣

⎢ −+=

We can make similar transformations with Qy=[0
yq , 1

yq] and Qt=[0
tq -τ, 1

tq], so that

the query range is aligned to the corresponding grid cell centers.
After the alignment transformation is conducted, we can get a new query range.

We can then query the MOSTR-Tree with the new query range and get a set of
candidate moving objects, which will then be further evaluated according to the query
conditions. The final result will be output to the querying user.

4 Performance Evaluation and Conclusion

\To evaluate the performance of MOSTR-Tree, we conducted a series of experiments
and the results show that MOSTR-Tree provides better performance than TB-Tree, a
representative trajectory-unit-based index method, under frequent location updates.
For those MOD systems that only manage historical (static) trajectories without
ongoing location updates, we can certainly use TB-Tree and other trajectory-unit-
based index methods [1-3, 6-8] which have better selectivity than MOSTR-Tree.

X

Y

T

T

X

range(Q)=Qx × Qy × Qt
range(Q)=Qx × Qy × Qt

query range after alignment
T

T

X X

Y

474 Z. Ding

However, heavy location updates are inevitable for most running MOD systems since
MOD’s main purpose is to track the dynamically changing locations of moving
objects, and in this case MOSTR-Tree shows its superiority.

Acknowledgements. The work was partially supported by NSFC under grand number
60970030.

References

[1] Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Position of
Continuously Moving Objects. In: Proc. of ACM SIGMOD 2000, TX, USA (2000)

[2] Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approach to the Indexing of Moving
Object Trajectories. In: Proc. of the 26th VLDB, Cairo, Egypt (2000)

[3] Almeida, V.T., Güting, R.H.: Indexing the Trajectories of Moving Objects in Networks.
GeoInformatica 9, 1 (2005)

[4] Ding, Z., Güting, R.H.: Managing Moving Objects on Dynamic Transportation Networks.
In: Proc. of SSDBM 2004, Santorini, Greece (June 2004)

[5] Ding, Z., Zhou, X.: Location update strategies for network-constrained moving objects. In:
Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 644–652.
Springer, Heidelberg (2008)

[6] Cudré-Mauroux, P., Wu, E., Madden, S.: TrajStore: An adaptive storage system for very
large trajectory data sets. In: Proc. of ICDE, pp. 109–120 (2010)

[7] Rasetic, S., Sander, J., Elding, J., M.: Nascimento: A Trajectory Splitting Model for
Efficient Spatio-Temporal Indexing. In: VLDB 2005, pp. 934–945 (2005)

[8] Botea, V., Mallett, D., Nascimento, M., Sander, J.: PIST: An Efficient and Practical
Indexing Technique for Historical Spatio-Temporal Point Data. GeoInformatica 12(2),
143–168 (2008)

������ ����� 	���
���� �� ���	 ��

������������ ������
��

����� ����	
����� ��� ������ �������

��������� �	
������ �������� ����� ��������� �	 ����������
���������	
���������������

��������� �� ����� ����� ���� ��������� 	� ��������� ��������
�������� ������ ���� ���� ������� ��� �������	���� ���� �� �����
	� ������������� �	 ��������� �������� ���������� �������� ���
����� ������ �������� �� ���� ���� ���� � ������������ �����������
������� �� ������������ ���� ����� �������������� �� ���� ���
�������� ���������� ������ ��� ����� �� �������� �� ���� ��� ����
������������
����� �� ������ ��������� �!���� ��������������
�� � ���"��� ������ �� �������� �� �� ���� ������� ����� ����
������ ��!���� "������ ��� ���������� ���� ���� ��� "������ �	 ���
�������������� �������� �� ��� ������� ������ ������� ��� "������
�	 �������������� ����� �� ��� ���� �#��� ����� ��������� ����������
$������ ���� ��	������ ��� ��� ����� 	������� �	 ��� ������
�� � �� �������� 	� ��������� �������� ������ ��������

� �������	�
��

���������� ������� ���������� ����� ������� �� � ���� 	�����!�!��
�� ���"�� #�� ���� ���� ����� ��	��� ��� ��� ��	��� ��� 	��"��$% &� ��'
������� ����(� ��� �# �$"�����	� ��� ��������� � ��)!����% &�� 	�� �# ��'
"������ "��#������ ������� ������������ ��� �#��� �!	� ������ ���� ���
	�� �# ������� �#����� ��	����� *+,% ��	�����(�� �� � ���� ���� ��� � ����
������ �� ��!���� ���!	��� ���� 	��% -"�	����� �����������(�!������	 ����
#�� �� ��� 	��"��$ ������������� "������ ��� ��� ���"#!�% .�� �# !	� 	��'
"��$ "������ � "��#�����	� �!����% /� ��� ���� �� 	������ ��� �"�	� �#
"��"�� ����$ ���	���� �/��(���	� �#��� ����0	����� �1�	� ��� � ����� �������
�""��	����� "��#�����	�% &�� ��"�����	� �# "��"�� /� ��	���� ���� ��� �
� �#
� �������% 2 "��#�	� ���� #�� �!������	 /� ��!�� ��� ���� "�� ��� ���� ����$
��	�����������(�!� ��� �� ���� �� 	�����!�!�� ������� ��� ������� ����(
��� ���"� ��� ���	��� ����$ �� �""��"������� ����� �� ��� ������� ��!	�!��(
	������ �� �������� 	�����% &�� ��#'�!���� �	�� ��� ��!�� ��� "�� � ����0'
	��� ���� �� ��� ������� ���� �� 	��!�� ����� ���!�� �# ���!�	�(��	�!�
�������� ��� ���� "!�"�� �# !��� ��(�%�% ��	������ ��� � ����� "��#�����	�
�# ��� ����(��!�� �� ��#�����%

� ��� �� ��� ���� �������� �� ��� $������ �	 ������� ��� %���� &�������� ����
'� ' ' ()* +,(-+*�

�� ������	�
� �� �	� ������ ���� ����� ���� ��� ���� � ��� !!� "#$%" "� �����
&© �!�
�'��()��	�' *��	
� ��
��	+��' ����

.,* /� 0�1��2 ��� � ��� %� 3���4� �

&���� �� ���� � ��� �# �����	� ���� �!������	 "���	�� ������� �!���� ��'
	�����% ���� �# ���� ������(!		�#!��� ��"����� �� 	�����	��� �����(
�%�% *3, "�� ��� ��� ����)!����� �# ����$ ��	�����������% ���� ��(���� ��	'
�����������)!����� !!���� 	��� �� � "��	� �# ���� 	��"!�������� 	�� ���
���� ������ !���(� ���� ������ ��� ��� ���� !���� #�� ��#'�!���� �������
����% .� ��� ����� ����(��� ������ ��%�% *45(44,� "��"�� 	�����!�! ��'
���� �!���� ��������� ���� ���!	� ��� �!���� � ������ �� 	���#!��� 	����� �
���� !��� �# ����$� ���� ���� �� �� 	��	����� � 	�������� #�� ��������'
�
�����% ���� ��(���� ���� ��"��#���� �!�"���� ���!� ��� !��������� 	��
�����(�%�% ���� ���� ����0� �� ����� ����$�(� �# ���� ����0� ���� ����'
"������ �� ��� �$����	� �# ����� ����$�% ������ ���� �� ���� �""���	� ���
#��(�!� ��� �� � ��!�� #�� #��� ��� �"���!�%

.!� ��� �� �� �� ���" � ������ ���� ��!�� �� � ����'�"����� ��!�� ���
��!������!�� �� 	�"���� �# �!����� �� ����'���� ����% &�� ������ � ���� ��
�� � ��!������� �""���	�% - ��!������� ��������� ���� �� 0�� ���� ��!����
#�� #�� ����� ��� 	��"��$ 	������������ "������(��� 	�� ���"� ��� ��!����
�� ��� 	������� �$������ 	��������% &�� �""���	� �� ���� !		�#!��� !��
�� ��	��� ��� �6��� /�� *7,%

.�� �# ��� ��� 	���� �"������� ���� 0����� �"����� ����$ �� � � ��!�����
���)!����� �# ��� ����! 	�������� ����$ 	��0�!������% &�� �#��� ��)!��� � '
����)!��� "������ �� �	����� �� 0�� ��� �"����� "��� #�� ��� ��� ���� �����
!� ��� �# ��� 	�������� ����$�% 8������ ��� �"����� "��� #�� ��� �� �� ���
� ����# � ���� �"��������� "������% &�� �!���� �#)!��� "������ �� �	�����
	�� �� ���!	�� �� 	�	���� "��� �# ��� "��� ���� ��� ��� �1�	��� �� ��� �$�'
���	� ��� !��� �# ����$� *9,(���� �� ��� ��	���� ������ !��� #�� ������
���� �)!� �����)!��� "��� #�� ��	�)!���% /� *:, �� �� � "��"��� � ������
�� �$"���� ��� "�	� �# ����$ 	��0�!������ �����!� �� ����� ���)!��� "������
�� ���% &�� ��������� ����� ��� /� "������ �/��� � � �!���')!��� �"���������
"������(���� ��;�	�� � �� 0�� ��� �� �#)!��� "��� ���� ������� ��� !�'
���� �$�	!���� 	��(�!���� ��� �"������ � ������� �� ������!	� ����� ��
����$� �� ����% &���(��� �� �# �"����� ����$� � ������ �� � "�������� #���
���)!��� "���(�� ������ 	������ ��� "��� ����%

/� ��� #�������� �	���� �# ��� "�"�� �� ��	���� � ������ �# ��������� *:,(�'
"���� �# ����'���� ����$ ���	����% /� ��	���� < �� "����� ��!�� �# �$"�������
	��"����� �=	���	� ��� "��#�����	� �# �!� ������ �� ��� ������ "��')!���
����$ ���	���� *43, ��� ����$����� ���� /� *3,% 8������ �� ��	! ��� �����
��� ���� "���� �# ��� "��"��� ������ ��� ���	� "��� #�� #!�!�� �����	�%

� ���� ����	�
�� �����
���

&�� ������ 	���� �# ����� ���� 	��"�����> �4� ��� ��	�������� ��������
	��"����� ���!�� ��"������ #�� ���!	��� ��� �!���� �# ��"!�)!���� ���
��;!���� ����� ������ �		������ �� ��� #��)!��� ���� �""��� �� ��� ��������(
�3� ��� � ��!������� /� ���!�� ��"������ #�� 	�����!�!�� "�� ����� ��� ���
����$ 	��0�!������(��� �<� ��� ����$ ���������
����� �� �	� ��"������ #��

5����� ����� ��������� �� 367$� �� &���������� 8������ .,,

������ ��	����(���� �� "���	���� ���������� ��� �� ��� ����$�% &�� 	��'
"����� ���� ��!������!��(#������ � "�"�����%

�������� ��	
������

&�� ��� �# �������� 	��"����� � �� ���!	� ��� �!���� �# ��� ��"!� �� ���
/� ���!��(�� ����� �� ��	���� �=	���	� �# ��� /� ����% &�� ���!	���� �# ���
�������� �
� �!� ��� 	�!� ����0	��� ������������� �# /� ��!��% 2 ����
�� *<,(��� �������� 	��"����� "������ 	�� �� ������� � � "�	��� 	�� �# �
	�!������ "������(����� ��	� ���� "���� � � ��� �� ��� �������� ��� ���
�����	� ������� ��� "���� � � #!�	���� �# "����	��� /�� ��!��)!����� ��
�# ��"��	��� ��� ��� ���� ������� ���% &�� ��	����� ��� ��� 	�!�����(���
�#������� ��� ��� �� ��	� 	�!��� � ��������% &�� �������� ��� #��� ���
	��"���� ��������% &�� �!���� �# ��� �� ��� 	��"���� �������� �)!��
�� ��� �!���� �# ��� 	�!���(� ��� 	�!������ ��������� ��!�� 	����� � #��
	�!��� � "����� �� �	��� � ���� 	��"����� �����% .� ��� ����� ����(���
��� �� ��	� 	�!��� ��!�� �� ������ �� ��	� �����(�"�	����� �� ���� �# !���
��� ��� ����$� �� �� ��� ������)!��� �$�	!���� "���% &�� ���� ������ ���
��� ��� �� ��	� 	�!���(��� �� ����������� �# ��� /�� ��!�� � �$"�	���%

/� *?, �� "��"��� � �� �� ��������� #�� �������� 	��"�����% &�� ������
� ���� �� � ��"�� ��� #�� ��	�������� 	�!������% &�� ���	 ���� ������ �!�
������ � �� �������� � �� �# 	�!��� ��� #�� ��	� ��	����� ��� ���� ���
��� �� �""��"����� 	�!���(�� #��� � ��� 	�!��� #��� ��� ���% 2 ���� ����

� ��� 0�� ��� ����� �� ��� 	�!���% &�� 0�� ��	����� ��� ��	��� ��� ���
�# ��� 0�� 	�!���% 8�� ��	� !��)!��� ��	����� ���(��� ������ ��� ��� q∗

� #�!��% /# ��� �����	� ������� ���� ��� ��� �$	��� � !��'��0��� �����(
���� ��� ��	����� ��� #��� � ��� 	�!��� ��� ��	��� �� ���% .�������(���
��� � ����� �� ��� 	�!��� �� ��� ��� q∗ &�� 	��"���� �������� � #�����
#��� ��� 	�!��� ���% @��� � ��� ��� � ��� ���� ������(�� � ��� ���� ��
#��� ��� "�� ��!�� ������ 	�!���% -�	� 	�!��� ��� q∗ � ������ � ������
λ(q∗) �)!�� �� ��� �!���� �# ���)!���� �� ��� 	�!���% /� "��	��	�(������ ���
��;!��� ��	����������(����� �� � ��� � ����� �� �� ���� �� #��� � 	�!���%

����� ��������

8�� ��� /�(�� � ��!������� ���	� ������� ��	����� �� *:,(���"��� �� 	�����!'
�!(������ �"������� � !��% &�� /� ���!�� �������� � "�"!������ �# �	���
�#)!��� �$�	!���� "���% 2 ����� �	���(����� #!����� ����	��
��(���� �#
"��� 	������ #�� � ��� ��� ��� !""���� �� ��� �������� 	��"����� �����%
.�� "��� #�� ��	� �# ��� ��� ��� � ��"� �� �� ���� ��!��% &�� "�"!������ �
�
� ������� �� � ����(!�� ��0��� 	������ m% &�� ������� "�"!������ � #����� �
� ����� ���� ��!�� ��������
�� ����)!��� "��� �"����� #�� ��� 	!����� �������
����(��������� �� ���)!��� "������% �������� #��� ��� �	��� �# �"�����)!���
"��� �!�������(���� ��� ����$ ��	����������� �� �� �� ��� ����$ �� ���
���� �� �� �� ���� ���� ��� 	!����� ���������
�� ����$ ��% &���(��� ���� ��'
!�� �� ��� "�"!������ ��� ��"���!	�� !���� ��� "�"!������ ���	�� ��� ������

.,9 /� 0�1��2 ��� � ��� %� 3���4� �

�
� m% 8��� ��� "���� ��(��� �
� �# ��� "�"!������ ������ 	������ ��� ���
���� ��!�� ��"��	� ��� ��� ���% &� ���!	� ��� � ������ �# 	�"���� �����)!���
�$�	!���� "��� ��� ����$ �������� �� ��	� ���� ��!�� ��"���!	���� "���(���
"��� ��� ����$� ��� ��
��� 	�"���% &�� �	�!�� 	�"���� � ���� ���� #�� ����
"��� �# ��� �	��� ���� � �!�����% @���� �� � ��� ��� ��� q �""��� �� ���
�!�"!� �# ��� �������� 	��"����� ���!��(��� ��� ���� ��!�� �� ��� "�"!������
��� �$������ �� ��� �"����� "��� �# q(��������� �� ���)!��� "������ #�� ���
	!����� ���� �# ��� �������% ���������(�# � ��� ��� � ���� �� #��� ��� �!�"!�
�# ��� �������� 	��"����� ���!��(��� ���� ��!�� ��� ����0�� �""��"�������%
2#��� ��	� ��������� �� ���� ��!�� ���� ��� ������ 0��� � ���������� ���
��"� � ��� 	!����� ��!���� �# ��� ����$ ���	���� "������% &�� �� �# ��!��
����$� � ���� � � !� �# �� �# ����$� !�� �� ��	� �# ��� "��� �� ��� ���
"��� �	���%

&�� 0��� �# �� ���� ��!�� v � � ��!���� #��� ��� #���!��>

f(v) = − (C�,�(v) + βC���(D(v∗)))
(

1 + α
S(D(v∗))

s�+

)
�4�

�����>

� C�,�(v) � ��� 	�� �# �$�	!���� ��� ��� "��� �� ��� "��� �	��� v(
� C���(Dx) � ��� 	�� �# ���������
��� ��� ����$� Dx(
� C��-(Dx) � ��� 	�� �# ������ ��� ����$� Dx(
� D(v)) � ��� �� �# ����$� !�� �� ��� "��� �� v(
� s�+ � ��� ����� �
� �# ��� �������(
� S(Dx) � ��� �
� �# ��� ����$� Dx(
� α � � ���'������ � 	������ �� �� ��� !��(����������� ��� �!	� � ���

0��� �1�	��� �� ��� �
� �# ���	��� ����$�(
� β � � ���'������ � 	������ �� �� ��� !�� ����������� ��� A������ ���B

��� �"����
�� ���	� �� �������� 	�����%

&�� ���	���� ��� ��"��	����� �"������ ��� ��"������ #�� �""����� ���	�� �
"��!�� �� ��� ���� ��!�� �� ��� "�"!������(� ���� ��� ������ 0���� ��� �� �
������ 	���	� �� !� � �% &���� ��� ���� ��1����� ��� �# ��"��������� ����
�"������ *4,% ��	�!� �� ����� ���	���� ��� ��"��	����� 	���� � ��� !����
#�� � ��� "������(�� �� � ��"�������� ����� ��1����� 	����> ��!�������(
"��"�������� ��� 0���'!��#��� *C,% -$"������� ���� �� �� � ���� �� � ����
���� ��� ��!������� ���	���� ��� ��"��	����� �� � ��� #���� 	�� �����	�% /�
��!������� ���	����(� ���� �!���� �# ���� ��!�� ��� 	���� �������� !���
!��#��� ������!���� ��� ��� ��� ���� ��!�� ����� ���� � ���!����% &�� "��'
	��!�� �# ��� ��!������� ��"��	����� � ��� ���(�$	�"� ���� ������ �# ���
��� ���� ��!��(��� ���� ��� � 	���� �� �� ��"��	��% &���� �� ��!�������
���	����(��� ���'0���� ���� ��!�� �� � ���� 	���	� �� ��"���!	�% &���� ��
��!������� ��"��	�����(��� ���'0���� ���� ��!�� �� � ���� 	���	� �� !�'
 � �% &����#���(���� "��� �# ��� ��!���� "�	� ��� �$"����� ���� ������ ���(
����� ��� ���� ��!���� �� � ������� ���� #�!��%

&�� �!������ �"������ � ��"������ #�� 	������� ��� ���� ��!�� #��� ���
���	��� �� ��� ���	���� �"������ ���% &�� ���	 �!������ �# �� ���� ��!�� v

5����� ����� ��������� �� 367$� �� &���������� 8������ .,-

	���� �# �""����� ���� ����� �������������� �� � �������� 	���� !��� �#
"��� �� v% 2� �����	 ����#�������� � ��� ������ ���� ����� ����0	����� ����
����#��� �)!��� "��� ���� � ��1����� �)!� �����)!��� "���% /� �!� ��!����
�� !� ��� #�������� ����#�������� 	���> �4� ;��� ����������(�3� 	������
� ��1����� ;��� ���������(��� �<� 	������ � ��1����� ����� �		� ������(
��	�!���� ������!	���� �# � ��� ����$% 8�� ������ �# ���� ����#�������� �� *:,%

2
������ �� � �
��� ���� 	���� �# �� ���� ��� !		�#!� �����	 ����'
#��������% 2�� ��� ����#�������� 	��� �� � ������ � 	������ 	������ "���'
�������% ������������ �# ���������� ����#�������� �# ��1����� 	��� ��� ��
�� ����"��������% &�� �!���� �# !		�#!� ����� "��� ����#�������� k "��'
#����� "�� �!������ � � ������ �!����(��������� ���� !	� � "����������
������!����(���� �!���� ���� 4 ��� ��� ��� "�������% &�� ���� ��� �#
��� �!������ ���� ��� ������ ��� ��������� �� "��#��� ���� �������% /� �
������� ���� ������� ��� �!������ � �����(�� ����� �� � ��� "�����!�� 	��'
 �����	� �� � ��	���� �"����� ��!���� ��� �� ��!�� ��� ����� ���	� "�	� �
�$"�����%

����� ������������

&�� �!�"!� ����$ �� ��	����������� D∗ �� �� �� ��� ����$ ���	��� ���!��
� � ������� �� � ��� ������ #��� ��� ���� �# ��� �"����
����� "��	� ���
�� 	����� � �� ����% &���� ��� ��� 	�!� �# ��� 	����� �# D∗> �4� D∗ ��
��� 	�� ����� �� ��� ����� �"���!� ���(��� �3� ��� �� �������� 	����� ���
���� ��� "�� ��!�� �"����� D∗ �������% &�� ���� ��!� �!� �� ����� ����
	����������� �� ��� ����$ ���������
����� �������% @� "����	� ���� ���������
'
��� ��� ��	����������� D∗ ����� �� �� 	����� 	�� 	�!� !���	���� ����
"��� #�� 	������� ����$� ���� ��!�� �� �������� ��� ��	�������� �# ��� ��'
�������
����� �� "��"���� !���� ��� D∗ 	�� ����% ���� ��(��	�!� �# � ��
����� �!� 	������ �� �������� 	����� ��%�% �������� 	����	������	 	������(
��� �!�"!� ��	����������� D∗ ��� �� �� 	�� ���� �� ��� �"���!�% &�!(�
��"�� ������� �# ���������
��� D∗ ����� �� �� � ����� #�� ��� !��'��0���
"����� �# ���� ��!�� ��������� ��� ����% .!� "��"������ � ���!������ �� 2��% 4(
�$�	!��� �#��� � ��� ��������� �# ��� ���� ���" �# ��� � ��!����% @���� �� D∗

	�����(����$� ����� �� ��� ���� �� #��� �� ��� ��	����� �������� ���� ���
�!���� �# 	!����� ��������� i&�� �# ��� ���� ���" �# ��� � ��!����% 2� ����$ d 	��
�� ���������
�� �� ��� ������� ���� �# �� "����� �� ��� D∗ 	�����!�!�� #�� ��
���� μ ���������% D���)!�����(�� ����$ d 	�� �� ���� �� #��� ��� �������
���� �# �� �� ��� "����� �� ��� D∗ 	�����!�!�� #�� �� ���� μ ���������% &��
μ 	������ �!� �� ���������� �$"����������� ��� ��!�� �� ������ ���� ���
� ����� �!���� �# ��������� �# ��� ���� ���" ��)!���� #�� D∗ �� 	�� ���� #�� �
��������� /��%

� ����
������ �������

/� ��� �	���� �� ��	���� ��� �$"������� "��#����� �� ��� ��� ��� ��"��'
��������� �# ��� "��"��� ��������� "��#��� �� �� ��� ���� �������	 ���

.9: /� 0�1��2 ��� � ��� %� 3���4� �

�������	 �� /���$ ���������
����� �������

); 	

�
<; � D∗ ������� ����

+; ��� D∗
��� �� ��� ������� ����� �	 D∗

.;
� �		 d ∈ D∗ \ D∗
��� �

(; i���(d) ← i���
*; ���
�

,;
� �		 d ∈ D∗
��� \ D∗ �

9; i��(d) ← i���
-; ���
�

):; ��� �

));
� �		 d ∈ D��	 �

)<; � d /∈ D∗ ∧ i��� − i��(d) > μ ����

)+; ����� d 	�� ��� ��������
).; ��� �

)(; ���
�

)*;
� �		 d ∈ D∗ �

),; � d /∈ D��	 ∧ i��� − i���(d) > μ= ����
)9; ��������2� d �� ��� ��������
)-; ��� �

<:; ���
�

<); ��� 	

�

����'�����(��������� ��� ���'��������� /�� �����	� �# ����! �
�% @� 	��'
"��� �!� ��"����������� �-E.� �� ��� ���'�1��� ��"����������� �# ��� ���
����'�#'���'��� /� ���������> �4� ��� ������ ��� �F�� !�� �� ��� /�� ��G3
����� *43, ��� ��� ����$����� ���� ��� ���� !�� �� ��� ��	���#� �HI
��� �� ����� *3,% &�� ��"����������� �# ��� ��#����	� ��������� �� ����
	��!���� ���� ����� �������� �!���� �%�% ������ D% J���� #��� /�� &������ I��
��� K�	��� ��!�� #��� ��	���#� �����	�%

�� ��� -E. �� ��� "�� ���� ����$ ��	����������� �# !"�����)!�����
#�� �������	 ��� ���� �������� 	������� �# ����)!����% 8��% 4 ��� ���� ���
��� �� ��� "�� ��� ��	����������� �# ��� ��� 	�� �# ����� � ���!�� "�	�
#�� ����$� #�� ��� &�D'� ��������% 2 ������ ���� ��!� �� ���� �� #�� ���
����� ��������% @��� ��� "�	� ����� � ���!	��(��� �������� �$�	!���� 	��
��� ������(��	�!� �� ����$� 	�� �� ��	�!��� �� ��� ��!�� ��	�����������%
&�� F� ����$ �� ��� 	�� ���� �$	�!�� ����$� #��� ��� 0��� ��	�����������
��� 	����� ��"��	� ���� ���� ������ ���(� ��� 	�� ��	���� � �!	� #����
���� ��� 	�� ��	���� ���� �� #�� ��� -E. ��� �� �� ���% 8�� �$��"��(
���� ��� ������ "�	� 	�������� s��, � �� �� 3×108(��� �������� �$�	!����
	�� �# �������� � � �� 3 ���� ������ #�� ��� F� ��	����������� ���� #�� ���
-E. ��� �� ��	�����������% &�!(������� �# ������� ����$� 	�� "�� ���
����� 	�� ����0� #�� ��� ���� �# ��������%

/� � ��� !=	���� #�� �� ����$ �� ��� �� �� � ���� ����$ ��	�����������(�#
��� ���� ��)!���� #�� ������� ���� � !��		�"�����(�%�% ���� �$"���������� ����

5����� ����� ��������� �� 367$� �� &���������� 8������ .9)

��� �!���� �# ��"!�)!����% �!	� �� �� ��� ��!�� ��� �� "��	��	���� !�#!�%
���#�����	� �# -E. ����$ �� ��� � !"����� #�� ��� ����� ��������%

�!� �� ��� ��	� �# ��� ������� 	�������� ���	���� "���(0�� ��!�� ��� �� ��
�� � #�� �	��� ��� ��� ��� �!	� ���� ���� � ��)!���� �� ������ ��	�����'
������ �# �		�"�����)!�����% �� ����$ �� ��� � ��� ����� ���% /� ��� 	�� �#
��� ������ �������� ��.��F(45 ���!�� �� ��� ���!�� �� �� � ��� ����$
��	�����������% &�� ����$ �� ��� �""���	�� � ��!���� #��� ��� !""�� ���
�# ��� �
� �����(� ���� ����� ��� ��� �# ������� ����$ 	��������(�� ��)!��� �
��� �# ���� ���� ��� !"��L!�! ����$ 	�������� ��� ���� ��% &�� ������� "���
�# ��� 	�������� ����$ �� ���������� "��#����� �� �� ��� F� �� ��� ���
��� !" �� ��� ����� ����!" �����(�!� �� � ���� � #��	���� �# ���� ��)!���� #��
��� ����$����� "��#����� �� ��� �� �� ���% &�� ����� � ��� #�� ��� &�D'�
�������� �!� �� � ���������� #�� ��� ����� ��"��� ��������%

&� 	��	� ��� ������� �� ���"� �� �������� 	����� �� �!� ���������(�� 	��'
"����)!����� �# ����$ ��	����������� �� �� �� ��� � ��!������� ����$ �� ���
������� �� ��� ������ ���� �� ��� ����$ �� ��� �� ��� �6��� ����% ���� ��'
�����	 ��� ���� �������� ���� !��% &� 	��	� ���� ��� #�� ��� ������ ����$
�� ��� ���	� �� �������� 	����	������	 	�����(�� 	������ ��$�� ����G����
��� ����G����� �������� �� !��� ��� ��1����� ������ �������� ���������(��'
����� � �2K�'4 ��� �2K�'3% 2 ����'����� �������� �� !�� 0�� n)!����
#��� ��� ��.��F �������� #�� ��� ��!� �# n> n = 2000 ��� n = 10000%

&�� �������� ���� #�� �� ��� � ��!������� ����$ �� ���(������ ��� �6���%
&�� �� ��� ��� � ������ ����� �� �� 4555M �# ��� ������� �
� �# ��� �������%
&�� �������� 	��"����� ���!�� �� �!���� �� #�� ��	� ����$ �� ���% 8�� ��	�
�������� �� ���!���> �4� ����� �������� 	�� �# �$�	!���� �# ��� �������� ��
��� ������� �����!� ��� ����$�(�3� ����� �������� 	�� �# �$�	!���� �# ���
�������� �� ��� ������� ���� ����$� "�� ��!�� ��	�������� #�� ��� �����
�������� �� ��� �6��� ����$ �� ��� ��� �<� !� �# ����� �������� 	�� �#
�$�	!���� �# ��� �������� ��� �������� 	�� �# ���������
����� �# ����$� ����
�!����� ��� �������� �� ��� ������� ���� �� ����$ �� ��� �!����� �� ��� ������
���� ��������% ��!�� ��� ���!������ �� &���� 4%

2 4

·108
0

2

4

6

8
·104

smax [B]

co
st

GR
RB
EVO

100 101 102
0

2

4

6

8
·104

time [s]

GR
RB
EVO

���� ��
�������� �	 "������ ��� ��	������ �	 ����� �������������� ����� ��
������ ����� ������� 	� ��� �/
�% �� �����

.9< /� 0�1��2 ��� � ��� %� 3���4� �

&�� �������� 	�� �# �$�	!���� �# ��� �������	 �������� ���� ���!� ���	�
� ���� #�� ��� !��"����
�� ������� � #�� ��� ������� ���� ����$� "�� �'
�!�� ��	�������� �� ��� �6��� ����$ �� ���% &�� �������� �$�	!���� 	��
�������� #��� �!����� ��� ������ ����$ �� ���(���� ������ ���� ��� 	�� ��'
������ #�� ��� "���"����
�� �������(�!� ����=	����� ����� ���� ��� 	��
�������� #�� ��� !��"����
�� �������% &�� ������ ����$ �� ��� �� ���� ��='
	!�� ��� ���� ��� �6��� ���(��	�!� �� ��� ��� ���� ���)!���� �� �� ��	�%
���� �# ���)!���� ��� �$�	!��� ��#��� �""��"����� ����$� ��� � �������(��!
��	������ ��� � ����� �$�	!���� 	��% 2�� ��� 	�� �# 	������� ����$� ��� ���
����������(�����!�� ���� 	�� 	�� �� ���!	�� �� 	������� ��#����� ����$� *45,%
��#����� ����$� ���� ��� !�� �� �!� �$"�������% ���� �� ��� ���� ���� ��
�� � �!	� ������ ��"�� ����� �# ��� �������� �������� �$�	!���� 	�� #�� ���
����'����� �������� ���� #�� ��� �������	 ���% ���� ��(��� ����� 	�� �# �$'
�	!���� �# ��� �������� 	������� �# 3555)!���� � ���!� ����� ���� ������
���� ��� ����$� ���� ��	�������� �� ��� ������ ����$ �� ���(���� #�� ���
�6��� ���% &�� �� "������� 	�!�� �� ��� ���� 	�� �# �$�	!���� ���)!����
��#��� ����$� ���� ���������
��% 8�� ��� �������� 	������� �# 45555)!����(
��� �������� �$�	!���� 	�� �������� �� !��� ���� �� ��� ���� ����� �)!��%
/� ��� �# ��� �$"�������(�������� 	�� �# ��� ����$ ���������
����� ��� ���
�$	��� CM �# ��� 0��� �$�	!���� 	�� �# �$�	!���� ��� �������� ���� ��� ������
����$ �� ��� �	�� �(� �� 	��	�!�� ��� ��������� � �������� �� ���� ��� ���
��� � �����	� �� ���"����� �������� ��)!��� ������!����%

&�� �������� ��� �# � ��"�� �!� �# ��� ������ ����$ �� ��� � "������� ��
8��% 3% -�	� "���� �� ��� 0�!�� "����� �� � ����� 	�� �# �$�	!���� C5 	���	'
!�� �)!����% &�� �!� ���������� ��� ������� �# ��� ������ ����$ �� ��� ��
����������� 	����� ����$� #�� ���)!����(���� �� ��� ��������� �# ��� ����'
����(� ���� � ;!� �#��� ��� ������ ���� ��� �������� 	����	������	 	�����%
&�� �������� ��� ��#��� t = 2 × 103s ���� ��� "����� �� ��� #!����� "���
�# ��� ��������% N�!�� ����$� ��� ��� ���""�� ����������� �#��� 	�������
��� �������� 	����	������	(�� ����� �� � ��� ��	������� ���� �� 	�� ��� ����'
���� ���� ���� ��������� #�� �""��� ��	� ����� �� ��� ��������% 2#��� �!�����
��� �$"������� #�� � �!	� ������ ���� ���� ���� �� ��� 0�!��(�� ���� ��
�������	 ���""��� �# !�!�� ����$�% �� ������� �$"������� �� �!��� ����
��� ����$� ��� ��� ���""�� ���� ��� �������� 	����� #��� ����'����� ��
�����'����� � ���� ��� ����$ ���������	� 	�� ��	��� ������%

���	� �� &�������� ��������� �� ���� ��������� ����� 	� ������ �������� ���>���
������� 8������ 	��): ��� �� ������

38'6�) 38'6�) $$53/? $$53/?
���	�� ����� n = 2000 n = 10000

������ @)= 4.6 × 106 6.2 × 106 63 × 104 28 × 105

5#��� @<= 2.3 ± 0.1 × 106 2.9 ± 0.1 × 106 1.4 ± 0.1 × 104 2.0 ± 0.1 × 105

5����� @+= 3.0 ± 0.1 × 106 3.5 ± 0.1 × 106 4.5 ± 0.2 × 104 2.1 ± 0.1 × 105

5����� ����� ��������� �� 367$� �� &���������� 8������ .9+

0 0.5 1 1.5 2 2.5 3 3.5 4

·103
100

102

104

time [s]

co
st

unoptimized
online
offline

(a) performance

0 0.5 1 1.5 2 2.5 3 3.5 4

·103

0.5

1

·1010

time [s]

si
ze

[B
]

(b) size of indexes

���� �� ������ ��� �	 ��������� �������� ������ ������� ��������� � ����� ���A���
�� ���� �������� �	 ������ ������ ��� ��!���� 38'6�) ��>���

� �������

@� �� � ���� ���� ��� ��������� ���� �� � ��!�������)!��� "��� ����#��'
������ 	�� �� �=	���� �� �� ��� ��������� ��� ���'��������� /� "������%
N����� ���� ��������	�� �""���	��(��� "������� ��!���� � 	��"���� ��� �����
�� �� ��"�������� �� ��� ���������� ������� ����% .!� �����	� 	� ���� ���
��"������ �"�	� �# �!������ �� �!������	 ����$ �� ���(#��� ��� ���������
#�� 	������� ��� !"������ � ���� �������� ��"����������(����!�� ��� ���������
#�� 	��	!������ ���� ����$ 	��0�!������(!" �� ��� ��������� #�� ��	����� ���	�
����$� �� �!��� ��� ����% @� �� � ��� ��"�������� � ������� "������"� �#
��� ����$ �� ��� ��� ����� �� �� �������	 ��� ����'����� /� "������ �����	�%

.!� �����	� #�	!�� �� /�� ����% ���� ��("��"�� ����$ ���	���� � ���� �
"��� �# "���	�� ������� �!���� "��	�% 2������ ��"������ ���� �# �������(
��� 	� ���� �� ��� ���� ���> ���	���� �# ���������
�� ���(��	�����������
�# ����
����� ��� ����	�� ���� "�����������(�!������������� 	�!������% &���
�"�	� �# ������� �!���� ��!�� ��� �� ������� �"������� ��	�!� ����� �����'
	����	���� ������� ����! "���	�� ������� ��!	�!��(�%�% ������� ����$�
��� ���������
�� ��� �� � ���� ���� �� *4<,% @� ����� � ���� ��� �""���	�
���� �� ����	�)!��� "��� ����"!������ 	�� �� ��� !		�#!��� �""���� �� ����
���� ��� #!����� �����	� �� ��� ����	���� ��!�� �� 	�����!��%

.9. /� 0�1��2 ��� � ��� %� 3���4� �

�������	��

)� 7B� � ��; &���������� ��������� �� ����� ��� �������� 5�	�� ��������� /����
5�	�� @)--*=

<� 7���� '��
�������� ��; 8�������� �������� �������� ������; � ���������������
�������� ��; ��?$56 <::(; /��������� �	 ��� <::(8
$ ��?$56 ������������

��	����� �� $��������� �	 6���� ��� <<,C<+9� 8
$� '�� D� @<::(=

+�
�������� ��� ?����� 8�0�� '�������� E�;
��������� �FG �� ������ ��; ��?�
$56 <::<; /��������� �	 ��� <::< 8
$ ��?$56 ������������
��	����� ��
$��������� �	 6���� ��� .99C.--� 8
$� '�� D� @<::<=

.� ?��� � 8�?��
���� ��8�; ��� ������� �	 ��� ��������� ��������� ��� �7$
����� H� .<@)=� (C)9 @<::+=

(� %����� $�; I������ ���	�� ��������� �� ������ ������� ��������� ��; �&&& �����
��������
��	����� �� &�
������ ����������� ����)� ��� ,9+C,99 @<::<=

*� 0�1��2 ��� �� /�;
��������� ��� ���� �������� �� ����� 	� ���������� ������
����� ���������� ��; 7������ � ����� 0J��� H�� ������ 3� @����= 6&K8 <::9�
G'
�� ���� ()9)� ��� ,-)C,--� ������� %�������� @<::9=

,� 0�1��2 ��� �� /�� 3���4� �� %�; 8�������� ����� ��������� �� 367$� �� &�����
��� F��� &�������� /��� ������ �
�� ���� <<+� ��� +C<.� ������� %��������
@<::-=

9� 0������ H�� GL���M� ��� ��N�M� 6�; 8 ������� �������� 	� ��� ����� ��������� ������
@<::+=�
����������������������������������
���

-� /����������� ��� ��� 6���� 6�� 8����� �� 8�; &O����� ��� �	 ��� "��� ������2�
	� ��������� �������� ������� ��; EG67 <::,; /��������� �	 ��� ++� �������
������ ���	����� �� E�� G��� 6��� 7����� ���):-+C)):.� EG67 &��������
@<::,=

):� ������� 0���� ���������� &�� ?����� ��; 8��������� "��������� ����� ������� ��;
�6&8� <::.; /��������� �	 ��� ������������ 6������� &��������� ��� 8�����
������� ��������� @�6&8� <::.=� ��� .+-C..9� �&&&
������ �������� ��8
@<::.=

))� ���������� 0�� 8��������� ��� $���� ��� /���2����� '�;
���; ���������� ������� ����
���� ��; ��?$56 <::*; /��������� �	 ��� <::* 8
$ ��?$56 ������������

��	����� �� $��������� �	 6���� ��� ,-+C,-(� 8
$ /���� '�� D� @<::*=

)<� � ������ 8�; 67< ������; 8� ������2� ���� ������ �� �������� ��� ��� ���
������ ��; �
6& <:::; /��������� �	 ���)*�� ������������
��	����� �� 6���
&���������� ��):)� �&&&
������ ������� /���� ���������� 6
� ��8 @<:::=

)+� P����� 6�
�; /������� 6������� 6����� 6������� 8�������� ���
������� 3���
����2����� 	� /������ 6������� �������� /��6� ������ @)--9=

http://citeseer.ist.psu.edu/568873.html

Towards Balanced Allocations for DHTs

George Tsatsanifos1 and Vasilis Samoladas2

1 National Technical University of Athens
gtsat@dblab.ece.ntua.gr
2 Technical University of Crete
vsam@softnet.ece.tuc.gr

Abstract. We consider the problem of load-balancing structured peer-to-peer
networks. Load-balancing is of major significance for large-scale decentralized
networks in terms of enhanced scalability and performance. Our methods focus
mainly on task-skew. Specifically, we address the problem with general rigorous
algorithms on the basis of migration. In particular, the cornerstones of our meth-
ods are the notions of virtual nodes, replication and multiple realities. Finally,
our work is complemented with extensive experiments.

1 Introduction

We revisit the problem of load-balancing structured p2p networks [8]. Our intention is
to develop a realistic balancing paradigm, which can be used on top of any DHT over-
lay, mitigating load imbalance effects, in order to enhance performance and therewith
scalability. Our methods are focused mainly on task-skew. We address the problem with
general algorithms based on migration, reducing the problem to a balls-and-bins game
by facing hosts as bins and virtual nodes as balls. More specifically, we study rudimen-
tary balancing techniques, namely virtual nodes, replication, and multiple realities, over
specific performance evaluation metrics. By scrutinizing each method in isolation, we
draw valuable conclusions on how they can interoperate with each other, and augment
them by applying each a balls-in-bins model.

The remainder of this paper is organized as follows. Section 2 reviews relevant lit-
erature. Section 3 discusses augmented rudimentary balancing techniques. Section 4
evaluates our work, and Section 5 concludes.

2 Related Work

The common balancing paradigm for DHTs consists of randomized hashed functions
that are supposed to distribute data load among peers in a uniform fashion. However,
this approach is far inadequate, especially in cases where certain parts of key space re-
ceive disproportional portions of popularity. Specifically, if node and item identifiers are
randomly chosen, there is a Θ(log n) imbalance factor in the number of items stored
at a node. Mercury [2] supports explicit load balancing using random sampling. The
threshold algorithm [4] consists of a load-balancing protocol whereby each tuple-insert
or delete is followed by an execution of the load-balancing algorithm, which may in-
volve moving sequential data across peers. Their rationale that a node attempts to shed

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 485–492, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

486 G. Tsatsanifos and V. Samoladas

its load whenever it increases by a factor δ, and attempts to gain load when it drops
by the same factor. Nevertheless, the threshold algorithm cannot be applied to systems
indexing tuples along many dimensions. Karger and Rhul propose a family of caching
protocols to decrease the occurrence of hotspots. Address-space balancing [6] improves
consistent hashing in that every node is responsible for a fraction of the address space
with high probability. The protocol is dynamic, with an insertion or deletion causing
other nodes to change their positions. On the other hand, Item balancing [6] targets at
the distribution of items to nodes. Rao et al. in [7] introduce the notion of the virtual
server, a single node of the underlying DHT contrary to the physical host being respon-
sible for more than one virtual servers. Most importantly, the topology of the virtual
servers should be able to adapt to dynamic changes of the actual network accordingly.

3 Balanced Allocations

In this section, we augment existing rudimentary balancing techniques with algorithms
that enhance performance. More specifically, we reduce the problem to a balls-in-bins
game by facing peers as bins and virtual nodes as balls. We now delineate some termi-
nology conventions we have made for distinguishing certain notions we use. We define
as a node the entity responsible for some part of the key space of the overlay, which was
assigned according to the overlay protocols. As far as this work is concerned, nodes and
peers are two distinct notions. Henceforth, peers serve as node containers. A peer’s task
is to deliver incoming messages to the appropriate comprised nodes and forward all
their outgoing messages to their destination.

Most of the prior works in balancing use a straightforward approach for random
and arbitrary assignment of balls to bins, requiring no knowledge about balls, bins,
their structure and their loads. On the other hand, our methods are iterative allocation
schemes based exclusively on local knowledge that exploit balls-in-bins games with
minimum makespan scheduling approximate solutions [1]. To elaborate, assume that
there has already been made some sort of assignment of nodes to peers. Balancing
takes place among the nodes of a neighborhood, where a peer’s neighborhood corre-
sponds to the union peer-set of all peers containing nodes from the routing tables of the
peer’s comprised nodes. For each iteration a random peer from an unbalanced peer-set
is picked, and all nodes from linked peers are reassigned successively to the bins of that
specific peer-set, starting from the heaviest node and assigning it to the lightest peer of
the peer-set. In essence, our methods constitute infinite processes, as they are repeated
sequentially, and we stop when no significant changes take place in the structure and a
convergence criterion has been met.

The principle of the multiple realities technique is to maintain multiple, independent
coordinate spaces, with each node in the system being assigned a different zone in each
coordinate space. Data tuples are being replicated in every reality, enhancing this way,
data availability and fault-tolerance. We consider the case where n peers participate in
the network in all g realities. We also impose a limitation for a peer to participate in
each reality with one node only. In order to balance, we reassign the nodes from all
realities of a selected peer’s nodes’ vicinities, in such a way that all peers acquire nodes
with approximately the same summing loads. When a peer “broadcasts” its request to

Towards Balanced Allocations for DHTs 487

all realities simultaneously, the fastest answer is returned to the user, and thus latency
ameliorates. Thus, when a lookup query is enacted in all g realities simultaneously
requires g times more messages to be resolved.

For the parallel universes technique we aim at reducing latency by invoking queries
simultaneously in all realities and get the fastest answers. Since balancing is our main
concern, we force peers to enact their queries only in one of the realities, selected ran-
domly and independently. Nonetheless, data insertions and deletions apply to all reali-
ties; otherwise the system is inconsistent, in that identical requests in different realities
would yield different results. However, no other special consideration has been made,
other than creating and maintaining redundant overlays. Hence, this comes at a cost of
a fixed replication factor. In effect, along with overweight areas of space, the under-
weight ones are replicated as well. Our local allocation method assigns the nodes of the
currently heaviest peer and its associated peers to the lightest peer among that peer-set,
with respect to their summing load in all previous realities. The redundancy introduced
in both schemes is fixed and equal to the number of realities g, and we expect it is kept
in O(log n). However, message overhead is rendered obsolete.

Algorithm 1. Pseudo-Inflationary balancing algorithm

1: repeat
2: state = State()
3: h = heaviest()
4: for u in h.universes do
5: hosts = minHeap()
6: nodes = maxHeap()
7: for j in h.nodes do
8: nodes.push((lj , j))
9: end for

10: hosts.push((L<u
i , i))

11: cache(state, h)
12: while not nodes.empty() do
13: (Li, i) = hosts.pop()
14: (lj , j) = nodes.pop()
15: assign(i, j, u)
16: end while
17: end for
18: until allocationChange(state)

The purpose of the virtual nodes technique is the even allocation of keys to nodes,
by associating keys with virtual nodes, and mapping multiple virtual nodes (with unre-
lated identifiers) to each peer. This method results in assigning many nodes to a single
peer. Intuitively, this will provide a more uniform coverage of the identifier space. For
example, if we allocate log n randomly chosen virtual nodes to each peer, then each
of the n bins will contain O(log n) nodes, with high probability. This does not affect
the worst-case path length. On the other hand, the maintenance cost for a peer congre-
gating many nodes (eg., updating routing tables) increases readily. The virtual nodes
technique can be applied to any load function and type of skewness, enhancing this
way flexibility and functionality. Besides, what load consists of is problem specific. In

488 G. Tsatsanifos and V. Samoladas

principle, n hosts allocate the m = g × n nodes of the overlay, where g > 1. Hence,
the maximum load of the busiest peer equals to the sum of the loads of its comprised
nodes, and thus, can never be less than the load of the busiest node. This method is un-
suitable for very large networks, since the fact that max process throughput Λmax has a
concave behavior. As a result, it would diminish instead of improve after some specific
value of the overlay size. Therefore, given an overlay of specific size, there are certain
values of g that ameliorate the maximum throughput. Thus, this technique provides a
network of size n with the throughput of an overlay of size m, a property that can be
graphically interpreted as a transposition in the Λmax graph, as messages are routed
throughout the larger overlay. More importantly, the virtual nodes technique is devoid
of redundancy. A peer may contain many nodes but each node can be hosted in one peer
exclusively (many-to-one scheme). Our local allocation scheme uses a peer’s limited
knowledge. We select a peer i that invokes a balancing procedure among all peers in i’s
routing table. At first, all peers participating in the process deploy their nodes. Then,
we convey all nodes one-to-one and we assign the heaviest node to the lightest peer.
In particular, we maintain a priority queue with all peers and their loads, and for each
node u we successively pop the lightest peer p and we re-insert it with its new load-
value Load(p)+Load(u), due to the node assignment of u to p. Whether we select i at
random, or due to its heavy load, affects only the number of iterations that the process
will need in order to converge.

Algorithm 2. Inflationary balancing algorithm

1: repeat
2: state = State()
3: hosts = minHeap()
4: nodes = maxHeap()
5: h = heaviest()
6: for i in h.routingTable do
7: for j in i.nodes do
8: nodes.push((lj , j))
9: end for

10: hosts.push((0, i))
11: cache(state, i)
12: end for
13: for j in h.nodes do
14: nodes.push((lj , j))
15: hosts.push((0, h))
16: cache(state, h)
17: end for
18: while not nodes.empty() do
19: (Li, i) = hosts.pop()
20: (lj , j) = nodes.pop()
21: hosts.push((Li + lj , i))
22: assign(j, i)
23: end while
24: until allocationChange(state)

Towards Balanced Allocations for DHTs 489

The replication technique aims at alleviating bottlenecks, by imposing additional
redundancy, and distributing load of hotspots among more than one hosts, enhancing
high availability and fault tolerance. Obviously, this method aims exclusively at task-
skew. Our approach, instead of replicating single popular data tuples, focuses on how
we can replicate nodes, manage them efficiently, and preserve consistency among all
replicas of an overlay node. When replicating hotspots, only a portion of the original
node’s traffic reaches each copy, and as a result heavy nodes are alleviated. According
to our paradigm, we replicate nodes responsible for popular areas to as many hosts is
needed, so that there is no task-skew among hosts. Hence, replication factor varies from
node to node, with respect to their load. Our local allocation is based exclusively on
a peer’s limited knowledge about the network. At each iteration we select a random
peer and we redistribute all linked peers to the associated nodes. This is an extremely
flexible and effective solution as we assign hosts to nodes in such a way that overlay
load imbalances render obsolete (one-to-many).

Algorithm 3. Deflationary balancing algorithm

1: repeat
2: state = State()
3: hosts = Vector()
4: nodes = minHeap()
5: h = heaviest()
6: for j in h.routingTable do
7: hosts.expand(replicas(j))
8: nodes.push((0, j))
9: cache(state, j)

10: end for
11: hosts.expand(replicas(h))
12: nodes.push((0, h))
13: cache(state, h)
14:
15: while not hosts.empty() do
16: (Lj , j) = nodes.pop()
17: assign(j, hosts.pop())
18: nodes.push((

lj
len(j.hosts)

, j))
19: end while
20: until allocationChange(state)

4 Experimental Evaluation

In order to assess our methods and evaluate their performance, we performed extensive
experiments with workloads of varying dimensionality and skewness.

4.1 Setting

Our experimental evaluation consists of two major parts. A static part, whereby dif-
ferent allocations for rigorous balancing techniques are compared, while the latter part

490 G. Tsatsanifos and V. Samoladas

consists of dynamic simulations. In the former part, we are especially interested on how
our paradigm performs compared to other types of allocation. Most of the prior works
in balancing use a straightforward naive approach for random and arbitrary assignment
of balls to bins. Consequently, no special consideration is made on how peers allocate
nodes. Nevertheless, we are also interested to compare our methods with an ideal allo-
cation for each method. More specifically, we make use of a heuristic, greedy allocation
based on global knowledge, according to which each time the heaviest ball is assigned
to the globally lightest bin; whereas our methods rely exclusively on peer knowledge.
Albeit on-line, the aforementioned allocation type is not realistic as each peer has only
partial knowledge of the network, substantially small but functional.

In all experiments, we make use of the PGrid-Z [3] overlay, which incorporates a
Z-curve into P-Grid to support multidimensional range search, and we evaluate our
methods by various metrics. Latency is the maximum distance in terms of hops from
the initial peer to any peer reached during search. Albeit, maximum process throughput
Λmax [3] may be criticized as being too pessimistic, as it only depends on the single
most loaded peer, it can be argued that just one overloaded peer will indeed cause trou-
ble for the rest of the network in practice, as being a bottleneck will affect network
delay and drop requests in a struggling effort to cope with overwhelming traffic. We
are also interested in storage and task load fairness. In particular, we use Jain’s fair-
ness index [5], to measure data- and task-skew. Furthermore, we consider successful a
method that is capable of exploiting redundancy to enhance performance. Therefore, we
measure redundancy from the most replicated node. In addition, the maximum number
of comprised nodes in a single peer is also a significant metric, as a peer that contains
many nodes has to deal with high data load and maintenance cost. We also present the
communication cost in terms of exchanged data tuples.

We use of datasets describing roads and rivers of Greece. The final dataset consist
of 100K tuples. Each queryset consists of 10K range queries, as this type of search is
among the most resource consuming. In particular, we define three cluster-centers cor-
responding to the largest cities of Greece: Athens, Thessaloniki and Patras. All clusters
follow normal distributions and querysets consist of queries generated from a cluster
chosen with probability proportional to the population of each town. Last, we also cre-
ated synthetic datasets of variable dimensionality to study the impact of dimensionality.

4.2 Results

On the whole there is a significant benefit from using our methods instead of using the
straightforward naive approach. Figure 1 illustrates the efficiency of our methods, as
ideal allocations, based on global overlay knowledge, perform only slightly better com-
pared to our schemes that rely exclusively on a peer’s partial knowledge about the over-
lay. The multiple realities technique is unsuitable for complex operations where result
is returned in fragments over time. Specifically, as shown in Figure 1a, this is the only
method where max process throughput Λmax diminishes with g for all allocation types.
Evidently, enacting a request in all realities in order to improve latency impairs Λmax

dramatically. Most importantly, it fails to improve latency enough. Contrary to what
expected, latency was only slightly affected by the number of multiple realities because
this technique was designed for lookup queries. In Figure 1b, our parallel universes

Towards Balanced Allocations for DHTs 491

technique outperforms the former technique in terms of Λmax and shows an increasing
behavior with respect to the number of realities. Clearly, this method has a significant
impact on max process throughput. Moreover, we had to compare our paradigm with
different allocation methods. Regarding naive allocation, we assume for each reality,
nodes are mapped to arbitrary peers. For the ideal allocation we consider again a cen-
tralized method that is run for each reality. Specifically, we assign the heaviest node
to the lightest peer with respect to a peer’s summing load in all realities preceding the
one being examined. Then, each peer comprises exactly g nodes, each participating in
a different reality. In addition, task-load fairness index ameliorates with g (Fig. 1c).

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12

m
ax

 p
ro

ce
ss

 th
ro

ug
hp

ut

g

ideal
local

naive

(a) multiple realities

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 2 4 6 8 10 12

m
ax

 p
ro

ce
ss

 th
ro

ug
hp

ut

g

ideal
local

naive

(b) parallel universes

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12
ta

sk
-lo

ad
 fa

irn
es

s
g

ideal
local

naive

(c) parallel universes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2 4 6 8 10 12

m
ax

 p
ro

ce
ss

 th
ro

ug
hp

ut

g

ideal
local

naive

(d) replication

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 6 8 10 12

m
ax

 p
ro

ce
ss

 th
ro

ug
hp

ut

g

ideal
local

naive

(e) virtual nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

ta
sk

-lo
ad

 fa
irn

es
s

g

ideal
local

naive

(f) virtual nodes

Fig. 1. Max process throughput and task-load fairness

Regarding the virtual nodes technique, Λmax shows a concave behavior in Figure
1e, due to a combination of two phenomena. For low g values, where fragmentation is
insignificant, fairness beneficial effects are dominant, and thus, Λmax ameliorates. How-
ever, it diminishes as routes become longer for higher g values. However, congregating
numerous nodes increases maintenance costs. Apart from keeping multiple routing ta-
bles, peers are burdened with maintenance tasks, such as detecting failures. In addition,
latency and precision are affected due to the method’s direct interaction with the overlay
size. Latency increases with g as larger overlays result in longer message routes. On the
other hand, skewness helps precision because the query clusters were imported in dense
areas of the key-space. Hence, when peers join the network by selecting a key with equal
probability (data balanced), they populate densely those areas as well. In addition, preci-
sion increases with g, as the overlay nodes become responsible for smaller areas, while
our queries have fixed size, and thus, less irrelevant nodes become reached. In effect,

492 G. Tsatsanifos and V. Samoladas

this method infuses the overlay with Λmax, precision and latency from larger overlays
with respect to g. Concerning the naive assignment of nodes to peers, we adopt the ran-
domized strategy for each node to be assigned to any peer with equal probability. For, the
ideal centralized allocation scheme the heaviest node is assigned greedily to the globally
lightest peer at the time. Clearly, as Figure 1e depicts, our approach outperforms naive
assignements as it provides 3.5 times better Λmax. More importantly, ideal allocations
are less that 5% more efficient than our scheme for all configurations and g values.

For replication, the greater the redundancy, the less traffic bottlenecks intake.
Thereby, imbalances are blunted as overloaded peers are alleviated. Naturally, max-
imum redundancy increases linearly with g until fairness is achieved, and withal, it
reaches an upper bound beyond which there is no further benefit in load fairness in-
dex. Hence, we limit g to take values smaller than this value. In addition, the invariant
latency can be explained as routing takes place along the overlay and not the actual
network. Concerning competitor schemes, for the naive allocation, each host replicates
a randomly selected node with equal probability. The ideal allocation is a centralized
algorithm that probes in sequence all nodes and each time copies the heaviest node to an
available host. Figure 1d shows that there are immense benefits of using our method in-
stead of the corresponding naive allocation. It also reveals that this is the most efficient
technique in terms of Λmax, as it selectively replicates hotspots.

5 Conclusions

To recapitulate, the virtual nodes technique improves performance for certain configu-
rations due to its combined effects, without imposing additional redundancy. Nonethe-
less, this method accumulates data load from all comprised nodes. The multiple realities
technique is considered appropriate exclusively for lookup queries as complex queries
impair performance dramatically; whereas our parallel universes paradigm enhances
performance significantly. Replication is a flexible method that does not impose fixed
additional redundancy, and allows the network to adapt to any load distribution.

References

1. Avidor, A., Azar, Y., Sgall, J.: Ancient and new algorithms for load balancing in the p norm.
Algorithmica 29(3), 422–441 (2001)

2. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range
queries. In: SIGCOMM, pp. 353–366 (2004)

3. Blanas, S., Samoladas, V.: Contention-based performance evaluation of multidimensional
range search in p2p networks. In: InfoScale 2007, pp. 1–8 (2007)

4. Ganesan, P., Bawa, M., Garcia-molina, H.: Online balancing of range-partitioned data with
applications to peer-to-peer systems. In: VLDB, pp. 444–455 (2004)

5. Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination for re-
source allocation in shared computer systems. DEC TR-301 (1984)

6. Karger, D.R.: Simple efficient load balancing algorithms for peer-to-peer systems. In: ACM
SPAA, pp. 36–43 (2004)

7. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R.M., Stoica, I.: Load balancing in struc-
tured p2p systems. In: IPTPS, pp. 68–79 (2003)

8. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001, pp. 161–172 (2001)

Caching Stars in the Sky: A Semantic Caching
Approach to Accelerate Skyline Queries

Arnab Bhattacharya1, B. Palvali Teja2, and Sourav Dutta3

1 Computer Science and Engineering, Indian Institute of Technology, Kanpur, India
arnabb@iitk.ac.in

2 Amazon Development Limited, Hyderabad, India
palvali.teja@gmail.com

3 IBM Research Laboratory, New Delhi, India
sodutta3@in.ibm.com

Abstract. Although multi-criteria decision making has emerged with the advent
of skyline queries, processing such queries for high dimensional datasets remains
a time consuming task. Real-time applications are thus infeasible, especially for
non-indexed skyline techniques where the datasets arrive online. In this paper, we
propose a caching mechanism that uses the semantics of previous skyline queries
to improve the processing time of a new query. In addition to exact queries, such
special semantics allow accelerating related queries. We achieve this by generat-
ing partial results guaranteed to be in the skyline sets. We also propose an index
structure for efficient organization of the cached queries that improve the effi-
ciency. Experiments show the efficiency and scalability of our proposed methods.

1 Introduction

To address the problem of multi-criteria decision making and user preference queries
over attributes in relations having no clear preference function, Börzsönyi et al. [2]
introduced skyline queries. The classic example of a skyline query involves choosing
hotels that are good in terms of two attributes, price and distance to beach. The query
discards hotels that are both dearer and farther than a skyline hotel. Formally, for every
attribute, there is a preference function that states which values dominate.

Efficient INDICES are difficult to built on relations available only at run-time on-the-
fly [12]. Hence, skyline queries suffer from large processing time and I/O bottleneck.
Caching techniques improve the situation to some extent. However, the use of tradi-
tional caching techniques do not promise significant improvement for skyline queries
as user interests are unpredictable and an inexact query with even a slight modification
where preferences are over a different subset of attributes, results in a cache miss. For
example, consider the following skyline queries:

select * from Airlines skyline of Duration min, Cost min, Services max
select * from Airlines skyline of Duration min, Cost min

The second query can be answered completely from the cache if the results of the first
are stored and intelligent semantic caching techniques are applied.

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 493–501, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

494 A. Bhattacharya, B.P. Teja, and S. Dutta

The special semantics of skyline queries allow such similar or related queries to be
processed mostly from the cache using the results of the previous queries, without ac-
cessing the database. Although not all skyline queries can be handled so efficiently, the
use of intelligent semantic caching significantly accelerates them by producing partial
results.

Our contributions in this paper are as follows:

1. We introduce the concept of semantic caching for skyline queries (Section 3).
2. We categorize a new skyline query into four types according to the content in the
cache and design efficient algorithms to process each of them (Section 3).
3. We design an index structure to organize past skyline queries in the cache and show
how this helps in searching the cache for processing the new query (Section 4).

2 Background and Related Work

Consider a relation R with preferences specified for k attributes of R. A tuple ri =
(ri1, ri2, . . . , rik) dominates another tuple rj = (rj1, rj2, . . . , rjk) (denoted by ri �
rj) if for all k attributes, ric is preferred or equal to rjc, and for at least one attribute d,
rid is strictly preferred to rjd. The preference functions for each attribute are specified
as part of the skyline query. A tuple r is said to be in the skyline set of R if there does
not exist any tuple s ∈ R that dominates r.

Skyline queries have been imported to databases from the maximum vector problem
or Pareto curve [8] in the field of computational geometry. BNL [2] uses a nested loop
approach by repeatedly reading the set of tuples. SFS [3] improves it by sorting the data
based on a monotone function. LESS [6] combines the best features of these external
algorithms; however, its performance depends on the availability of pre-sorted data.
Using index structures, divide-and-conquer (NN [7]) and branch-and-bound (BBS [9])
approaches have been proposed.

The idea of caching query results to optimize subsequent query processing was first
studied in [5]. General purpose algorithms for semantic caching [4,10] and dynamic
caching policies [11] have also been proposed.

Several intelligent structures, e.g., SkyCube [14] and compressed skycubes [13],
have been proposed to efficiently compute related skyline queries. However, complete
construction of these structures are inefficient for real-time applications. Moreover, the
entire cube may not fit in the limited cache size. In this paper, we propose novel and
intelligent semantic caching algorithms using an indexing scheme.

3 Capturing Semantics of Skyline Queries

In this section, we characterize a skyline query in terms of previous skyline queries,
which help relate the new query to those in the cache.

3.1 Characterization of Queries

We assume that the skyline queries are for a single relation that maintains the distinct
value condition [14], which states that if no two data points have the same values for

Caching Stars in the Sky: A Semantic Caching Approach 495

Table 1. Characterization of queries

Cache S1 = {1, 2, 3}, S2 = {1, 2}, S3 = {3, 4}, S4 = {5, 6}
Query Exact Subset Partial Type

Q1 = {1, 2} S2 S1 S1, S2 Exact
Q2 = {2, 3} - S1 S1, S2, S3 Subset
Q3 = {4, 5} - - S3, S4 Partial
Q4 = {6, 7} - - S4 Partial
Q5 = {7, 8} - - - Novel

all the dimensions, then the skylines for dimension set A is a subset of skylines for
dimension set B when A ⊂ B. Each query is represented as the set of attributes of
skyline preferences, which we assume is not altered for a particular dimension. This
assumption holds since user preferences are generally the same.

Given a cache C modeled as a set of queries {S1, S2, . . . , Sn}, where each Sj is
again a set of attributes, a new query Q = {a1, a2, . . . , aq} can be characterized into at
least one of the following groups:

1. Exact Query: Q is an exact query if it matches exactly with a cached query, i.e.,
∃Sj , Q = Sj , indicating the re-occurrence of a previous query.
2. Subset Query: Q is a subset query if all its attributes are completely contained in a
cached query, i.e., ∃Sj , Q ⊂ Sj .
3. Partial Query: Q is a partial query if some of its attributes are subsets of a cached
query, i.e., ∃Q′ ⊂ Q, ∃Sj, Q

′ ⊆ Sj .
4. Novel Query: Q is a novel query if none of its attributes are cached, i.e., if ∀ai ∈
Q, ∀Sj, ai /∈ Sj .

Section 3.3 depicts the importance of hierarchy of categorization in query processing.
The most restrictive category determines the type of the query. For example, if a query is
both an exact and a subset query, it is treated as an exact query and a query is categorized
as a novel query if and only if it cannot be characterized as an exact, subset or partial
query. Table 1 describes an example in detail. When a new skyline is queried, the cached
queries are scanned to determine its type.

3.2 Semantic Segments

While each cached semantic query is a set of attributes, certain other descriptors for the
query are also encapsulated in a data structure called the semantic segment:

(i) Attributes and preferences: Attributes on which the skyline preferences are applied,
(ii) Result: A link to a table of records that constitute the answer to this query, and
(iii) Replacement value: It is used for cache replacement methods (see Section 4.5).

3.3 Query Processing Algorithms

Based on the type of the new query, different query processing strategies are followed
as described in this section.

496 A. Bhattacharya, B.P. Teja, and S. Dutta

Exact Queries: If the query is an exact query, the result set of the cached query is
directly returned as the result set of the new query.

Subset Queries: If the new query Q is a subset of a cached query Sj , then the following
lemma1 shows that the result set of Q is a subset of the result set of Sj .

Lemma 1. If a skyline query Q is a subset of another skyline query S, then the result
set of Q is completely contained in the result set of S.

The next lemma shows that to determine whether a tuple from the result set of Sj ⊃ Q
is in the result set of Q, only the tuples in Sj need to be checked for dominance.

Lemma 2. If a tuple v in the result set of S is not a skyline for Q ⊂ S, then there must
exist u ∈ result(S) such that u � v.

Hence, u will be in the result set of Q only if none of the tuples in the result set of Sj

dominate u.
If a new query Q is a subset of many cached queries Si, Sj , etc., any tuple in the

result set of Q must also be in the result set of all of Si, Sj , etc. Thus, only the tuples in
the intersection of the result sets of these subset queries need to be examined.

Thus, subset and exact queries can be processed from the cache itself. The advantage,
however, cannot be retained for the other two types of queries as explained next.

Partial Queries: Suppose the new query Q is partial to a cached query Sj . The attribute
set Q′ ⊂ Q is equal to S′

j ⊆ Sj . Using Lemma 1, the skyline set corresponding to the
attributes Q′ = S′

j is a subset of the skyline maintained for Sj . This serves as the base
set. When Q is a superset of Sj , the entire skyline set of Sj serves as the base set.

However, the computation of the base set does not complete the processing of Q.
The following lemma shows there may exist a tuple not in the base set (i.e., the skyline
set for Q′), but is part of the skyline set of Q.

Lemma 3. A tuple in the skyline set of Q need not be in the skyline set of its subset Q′.

Thus, the base set alone is not sufficient and it is necessary to query from the database.
However, the base set helps in two important ways.

First, since the tuples in the base set are guaranteed to be in the skyline set of Q, they
can be output immediately. For real-time applications, the implications of this concept
of incremental results are enormous. The other skyline tuples can be simultaneously
computed from the database.

The second important advantage is the fact that the base set fits in the cache and
can serve as the initial skyline window, thereby speeding up generic skyline algorithms,
such as BNL [2], SFS [3], and LESS [6]. For other non-indexed algorithms, the base
set may or may not help, but will never deteriorate the performance.

For two or more queries Si, Sj , etc. partial to Q, the set computed from the union of
their base sets serves as the combined base set. Since this set is larger, the advantages
are more pronounced.

1 The proofs of the lemmas are omitted due to space constraints; please refer to [1].

Caching Stars in the Sky: A Semantic Caching Approach 497

Novel Queries: Since these queries contain no attributes common to previous skyline
queries, the cache does not contain any information to expedite the processing, and are,
thus, completely processed from the database.

3.4 Need for an Index Structure

Processing a new query first involves searching the semantic segments in the cache to
determine its type. However, the number of semantic segments is exponential in number
of dimensions, and therefore, can be time-consuming for high-dimensional datasets.

An even bigger concern when the semantic segments are unorganized is the redun-
dancy of storage. Consider queries Si and Sj where Sj ⊂ Si. The skyline tuples of
Sj are already stored as skyline of Si and, hence, wastes precious memory. Efficient
organization of the semantic segments in the cache is thus required.

(a)
{1,2}

(b)
{1,2,3}

(c) {3,4} (d) {5,6} (e) {1,2} (f) {2,3} (g) {4,5}

Fig. 1. Querying and insertion of semantic segments in the index

4 Index Structure

The index structure we propose is a directed acyclic graph (DAG) linking the different
semantic segments. The semantic segment for a query S1 is made a child of query S2

if S1 ⊂ S2. Clearly, there cannot be any cycle, although a segment can have multiple
parents. Since the graph may be disconnected, a pseudo root node is added that acts as
the parent of all root nodes. Compared to SkyCube based structures, this does not store
the entire user query space and is based only on the queries previously encountered.

4.1 Modified Semantic Segments

The index structure, in addition to the fields described in Section 3.2, store two more
fields in each semantic segment for efficient management: (iv) Child pointers, and
(v) Bit vectors.

The child pointers link a semantic segment to its children. For efficient retrieval, each
attribute of the query maintains a bit vector of the size of the number of children. The
children are ordered according to their arrival. The ith bit in the jth bit vector is set to 1
if and only if the ith child contains the jth attribute.

498 A. Bhattacharya, B.P. Teja, and S. Dutta

4.2 Eliminating Redundancy of Result Sets

Our skyline query processing algorithm uses the index structure to eliminate the redun-
dancy of cached query result sets. If a query has a child (i.e., a subset), all the skyline
tuples are not stored in the result set; rather, they are distributed between itself and the
child. For example, suppose query S1 has a child S2, which is a leaf node. The sky-
line tuples for S2 are stored in its result set, i.e., r(S2) = s(S2). However, since these
records are a subset of the skyline tuples for S1, redundancy is removed by not stor-
ing them again in S1. Instead, only the difference of the skyline set for S1 with S2 are
stored, i.e., r(S1) = s(S1) − s(S2). The complete skyline records for S1 can thus be
retrieved by combining the result set of all its children.

4.3 Query Processing and Insertion Using Index

We illustrate the index search operation for query processing and subsequent insertion
using the series of query examples as shown in Fig. 1 (only attributes are shown).

Initially, the cache is empty and the index contains the pseudo root node. When the
first query {1, 2} arrives, it is classified as a novel query, and is inserted as semantic
segment S1 (Fig. 1a).

The next query is {1, 2, 3}. All the root nodes are searched to find that it is a partial
query (superset of S1), and the entire skyline set of S1 is used as the base set. The new
query now becomes the root and the old root its child (Fig. 1b).

Then, query {3, 4} arrives. Scanning the root nodes, it is found to be partial to S2

and the base set consisting of the skyline tuples of the common attributes, {3} is com-
puted. This semantic segment (S4), being a subset of both S2 and the new query S3, is
maintained as a child of both (Fig. 1c).

The next query {5, 6} is a novel query as it does not match with any of the root
nodes. Consequently, it is processed from the database and is inserted as a new root
node in the index (Fig. 1d).

The next query {1, 2} is first categorized as a subset query of S2. The children of
S2 are then searched to improve the categorization to exact. The skyline set of S1 is
reported and the index remains unmodified (Fig. 1e).

Query {2, 3} then arrives. Being a subset of S2, its children are searched, but no
exact match is found. The skyline set of {2, 3} is computed from that of {1, 2, 3} and
inserted as a child of S2. Since the skyline set of {3} is already maintained as a semantic
segment (S4), and is a subset of this new query as well, the child pointers and bit vectors
are modified in S2 and S6, making S4 a descendant of S2 (Fig. 1f).

Query {4, 5} is similarly handled (Fig. 1g).

Table 2. Experimental parameters and their default values (in bold)

Parameter Values

Cardinality (N) 1 × 104, 3 × 104, 1 × 105, 3 × 105, 1 × 106

Dimensionality (d) 3, 4, 5, 6, 7
Cache size (|C|) 0.1%, 1%, 3%, 5%, 7%, 10%
Number of queries (|Q|) 1, 5, 10, 25, 50, 100

Caching Stars in the Sky: A Semantic Caching Approach 499

4.4 Deletion from Index

When the cache is full and a new query arrives, an effective replacement policy must
be chosen to select the replacement candidate. Further, since the cache is very dynamic,
efficient update operations on the index need to be designed.

The skyline set of a parent in the index is shared among itself and its children. There-
fore, if a child is deleted from the cache, for correctness, its skyline set needs to be
merged back with that of its parent, and hence deleting a child does not produce much
space advantage. Thus, for our index structure, only root nodes are deleted and the
children having no parents become roots.

4.5 Cache Replacement

Due to limited cache size, not all semantic segments may be stored. This is the main
drawback of SkyCube-based techniques. Thus, for efficient use of cache, the most use-
ful semantic segments need to be preserved during replacement.

The first important parameter is the usage factor (α). When the semantic segment is
first inserted into the index, its replacement factor is set to 1. Every time its result set
is used, the value is incremented. The one with a lower replacement factor should be
replaced, as it is used less.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

3 4 5 6 7

C
P

U
 T

im
e

(in
 s

ec
s)

Dimensionality (d)

NC
NI

Index

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

0.1 1 3 5 7 10

C
P

U
 T

im
e

(in
 s

ec
s)

Cache Size (|C|) (in % of datacardinality)

NI
Index

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7

1 5 10 25 50 100

C
P

U
 T

im
e(

in
 s

ec
s)

Query Cardinality(|Q|)

NC
NI

Index

(a) (b) (c)

Fig. 2. Effect of (a) dimensionality, (b) cache size, and (c) query cardinality

The second important factor is the size (β) of the skyline set, i.e., the number of
tuples in it. A semantic segment that stores a large number of tuples as its skyline set
does not allow other semantic segments to be stored. Hence, it should be removed.

The third parameter is the dimensionality (d). When the number of dimensions is
more, there is more chance of a new query to become partial to or subset of it, and
hence, should not be replaced.

A replacement value (δ) for each semantic segment is computed by combining the
three, i.e., δ = f(α, β, d). The semantic segment with the lowest δ is the least useful
and should be chosen for replacement. The function f , therefore, should be monotonic
with α and d and anti-monotonic with β. While different functions fit the condition, we
use the following simple function: δ = (α × d)/β.

500 A. Bhattacharya, B.P. Teja, and S. Dutta

5 Experimental Results

In this section, we evaluate the performance of the caching techniques. The techniques
were implemented using Java on an Intel Core 2 Duo 2GHz machine with 2GB RAM
in Ubuntu Linux environment. For skyline computation, we used the non-indexed sort-
filter-skyline (SFS) [3] algorithm. We analyzed and compared the execution times of
three different skyline processing techniques: (i) without using cache (NC), (ii) using
cache without using the index (NI), and (iii) using cache with index (Index).

We used the standard data generator for skyline queries from http://www.pgfoundry.
org/projects/randdataset to generate synthetic datasets; the dimensions were chosen to
be independent. The scalability and performance of the techniques on synthetically
generated data were measured against four different parameters: (i) cardinality of the
dataset (N), (ii) dimensionality of the dataset (d), (iii) size of the cache (C), and
(iv) number of queries (Q). The values of these parameters were varied according to
Table 2. To study the effects, each parameter was varied keeping the others constant.

The first experiment is on varying dimensionality. The indexed method performs the
best. For large dimensional datasets, the caching method without indexing performs
worse than the no caching method as the number of semantic segments is too large
(Fig. 2a). The next experiment on cardinality of datasets shows that the caching method
without indexing suffers for small sized datasets due to the large overhead of search-
ing through unorganized semantic segments in the cache (figure omitted due to space
constraints; please see [1]).

When the cache size increases, more semantic segments are stored, thereby reducing
the query time. The non-indexing method initially suffers due to unorganized segments,
but improves as more queries get classified as exact or subset queries (Fig. 2b).

When there is enough space in the cache to store all possible skyline queries, any new
query should be answered very fast. The final set of experiments (Fig. 2c) measures the
average query time as more queries arrive. When no caching is used, there is little ef-
fect. When no indexing is used in the cache, performance suffers due to unorganized
semantic segments. The indexing method initially suffers from index construction over-
head, but progressively improves due to the superior arrangement of semantic segments
in the cache. The performance on real datasets showed similar trends (please see [1]).

6 Conclusions

In this paper, we introduced the concept of semantic caching to accelerate a skyline
query by classifying it as one of the four types—exact, subset, partial and novel. While
the exact and subset queries are processed directly from the cache, partial results for
partial queries can be output from the cache before resorting to the database for the
full skyline set. We also proposed an index structure to effectively organize the past
queries in the cache, thereby improving the efficiency. In future, we plan to handle
update-intensive databases.

http://www.pgfoundry.org/projects/randdataset
http://www.pgfoundry.org/projects/randdataset

Caching Stars in the Sky: A Semantic Caching Approach 501

References

1. Bhattacharya, A., Teja, B.P., Dutta, S.: Caching stars in the sky: A semantic caching approach
to accelerate skyline queries. In: arXiv:1106.1811 [cs.DB] (2011)

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430
(2001)

3. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, pp. 717–719
(2003)

4. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic data caching and
replacement. In: VLDB, pp. 330–341 (1996)

5. Finkelstein, S.: Common expression analysis in database applications. In: SIGMOD, pp.
235–245 (1982)

6. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB,
pp. 229–240 (2005)

7. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline
queries. In: VLDB, pp. 275–286 (2002)

8. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD, pp. 467–478 (2003)

10. Ren, Q., Kumar, V.: Semantic caching and query processing. IEEE Trans. on Knowledge and
Data Engineering 15, 192–210 (2003)

11. Sacharidis, D., Bouros, P., Sellis, T.K.: Caching dynamic skyline queries. In: Ludäscher, B.,
Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 455–472. Springer, Heidelberg
(2008)

12. Sun, D., Wu, S., Li, J., Tung, A.K.H.: Skyline-join in distributed databases. In: ICDE Work-
shops, pp. 176–181 (2008)

13. Xia, T., Zhang, D.: Refreshing the sky: The compressed skycube with efficient support for
frequent updates. In: SIGMOD, pp. 491–502 (2006)

14. Yuan, Y., Lin, X., Liu, Q., Wang, W., Xu Yu, J., Zhang, Q.: Efficient computation of the
skyline cube. In: VLDB, pp. 241–252 (2005)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 502–510, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Generating Synthetic Database Schemas for
Simulation Purposes

Carlos Eduardo Pires1, Priscilla Vieira1, Márcio Saraiva1,
and Denilson Barbosa2

1 Federal University of Campina Grande, Computer Science Depart.,
Campina Grande, PB, Brazil

{cesp,vieira,marcio}@dsc.ufcg.edu.br
2 University of Alberta, Depart. of Computing Science, Edmonton, Alberta, Canada

denilson@cs.ualberta.ca

Abstract. To simulate query answering in Peer Data Management System
(PDMSs), simulators need to associate a database schema to each peer in the
overlay network. Finding or creating a high number of database schemas can be
a time consuming and tendentious task. This work proposes an automatic
process to generate multiple synthetic database schemas with semantically
coherent variations of a given base schema. The schemas are obtained through
applying different types of modifications to subsets of the base schema. Our
experimental validation has shown that the proposed method is able to produce
random schemas that can be used in realistic simulations.

Keywords: Synthetic Database schema, Ontology, PDMS, Simulation, Random.

1 Introduction

Peer Data Management Systems (PDMSs) [1, 2, 3] are advanced P2P applications in
which each peer is an autonomous data source that makes available a local schema.
Peers manage their data locally, revealing part of their internal schemas to other peers.
Schema mappings are generated to allow information exchange between peers. PDMS
overlay networks tend to be large and allow complex interactions between the
physical machines, underlying network, application, and user [4]. The testing of a
PDMS overlay network or protocol in a realistic environment is often a complex and
costly undertaking. Hence, simulation is the most popular technique for investigating
overlay networks and PDMS applications [5].

Researchers interested in simulating a PDMS overlay network tend to avoid the
development of a complex simulator and focus on some specific issue, e.g. query
answering. Concerning that issue, PDMS simulators need to associate a local database
schema to each peer in the simulated network. To make sense, the local schemas
should belong to the same application domain. Depending on the domain that is
considered, it can be easy to find a small number of related schemas. For instance,
after a quick navigation in the Database Answers web site [6], we have found 13
database schemas related to the education domain.

However, to simulate a realistic and large-scale PDMS environment, one often
needs a large number of schemas. Moreover, these synthetic schemas must belong to

 Generating Synthetic Database Schemas for Simulation Purposes 503

a common domain and exhibit sufficiently large overlap (so as to allow the definition
of mappings between them). On the other hand, there must also be some kind of
heterogeneity among the synthetic schemas in order to better test the strengths and
weaknesses of the simulated approaches. One possible solution is to generate these
schemas manually, which is time consuming and error-prone, and thus does not scale.
Instead, this work proposes an automatic process to generate a large number of
database schemas to be used in PDMS simulations.

As shown in Figure 1, the proposed process consists in, given a base schema S,
automatically generating multiple synthetic database schemas S1, S2,…, Sj, where each
synthetic schema Sj corresponds to a modified subschema of S. We use two kinds of
operations to modify the new schemas: structural changes and element renaming.
Structural changes ensure that: (i) synthetic schemas will have a different number of
elements; (ii) elements will differ in the number of properties; and (iii) properties will
have different data types. Element renaming guarantees that elements in synthetic
schemas will have a different label which is semantically similar to the original one.
Each operation is performed by a different schema modifier algorithm. The process is
extensible in the sense that new schema modifiers can be added. Some schema
modifiers use a domain ontology as an external resource. Parameters are used to
influence the characteristics of the synthetic schemas to be produced. The following
sections offer a detailed description of how synthetic schemas are produced and
modified.

Fig. 1. Generating and modifying synthetic database schemas

2 Building Synthetic Schemas

To meet diverse application requirements, the schema generation process accepts
several types of parameters. Depending on the parameters values that are provided,
different synthetic schemas S1, S2,…, Sj can be produced for the same base schema
S. The input parameters include: (i) Base schema: reference schema used as a basis to
produce synthetic database schemas; (ii) Number of schemas: quantity of synthetic
schemas to be generated as output; (iii) Schema size: number of elements that each
schema should contain; (iv) Schema format: to simplify matters, the synthetic
schemas are represented in the relational format; and (v) Modifying operations:
different types of operations that can be used to modify the schemas.

Figure 2 depicts the proposed algorithm to generate multiple synthetic schemas. It
accepts the general parameters (line 1) described in the previous subsection and

504 C.E. Pires et al.

returns a collection of synthetic schemas (line 14). Each synthetic schema Sj is created
incrementally: elements are selected from the base schema and added to Sj one at a
time (lines 6-9). To guarantee the generation of ad-hoc schemas we use a random
function to pick up elements in the base schema. Each selected element must maintain
a relationship with at least one of the elements that were already included in the
current synthetic schema. Such requirement is explained because, during the
generation of a synthetic schema, if a new element is simply selected and added to the
synthetic schema (i.e. ignoring its relationships with the other elements in the base
schema), then manual intervention would be need to link the new element with the
elements that were already added to the synthetic schema. Once a synthetic schema is
built it is modified through the operations provided as input (line 10). These
operations are detailed in Section 3.

1 GenerateSyntheticDatabaseSchemas (input: Parameters; output: CollectionSyntheticSchemas) {
2 Counter 0;
3 While Counter ≤ Parameters.NumberSchemas Do
4 SyntheticSchema[Counter].Size 0;
5 SyntheticSchema[Counter].Elements GetElement(Parameters.BaseSchema.Elements, Random);
6 While SyntheticSchema[Counter].Size ≤ Parameters.SchemaSize Do
7 SyntheticSchema[Counter].Elements SyntheticSchema[Counter].Elements +
 GetElement(SyntheticSchema[Counter].Elements.ReferencedElements, Random) –
 SyntheticSchema[Counter].Elements;
8 SyntheticSchema[Counter].Size++;
9 End While;
10 ModifySyntheticSchema(SyntheticSchema[Counter], Parameters.ModifyingOperations);
11 SyntheticSchemaColletion SyntheticSchemaColletion + SyntheticSchema[Counter];
12 Counter++;
13 End While;
14 Return(SyntheticSchemaCollection); }

Fig. 2. Algorithm for generating and modifying synthetic database schemas

We use the Internet Movie Database (IMDb) [7] both to illustrate our ideas and for
experimental purposes. The IMDb schema is used as the base schema and corresponds to a
graph consisting of 60 relations. An excerpt from the IMDB schema is shown in Figure 3.

Fig. 3. An excerpt from the IMDB schema

 Generating Synthetic Database Schemas for Simulation Purposes 505

Fig. 4. A step-by-step example illustrating the generation of a 4-size synthetic schema

Figure 4 illustrates an example in which a 4-size synthetic schema has been requested.
The first element selected by the random function is certificate. The next element to be
added to the synthetic schema is necessarily one of the elements that maintain a relationship
with certificate in the base schema. According to the IMDB schema, the candidate elements
are movies and country. Suppose that country is selected by the random function. The other
element to be added to the synthetic schema must maintain a relationship with certificate
and/or country in the base schema. Besides movies, the candidate elements are location,
shotin, releasein, prodcompany2country, country2sfx, located, and distributor2country.
Certificate and country are also candidate elements since they maintain a relationship with
each other. However, since these elements are already included in the synthetic schema they
are discarded. Assuming that location is selected, the synthetic schema contains three
elements: certificate, country, and location. The current candidate elements are now movies,
shotin, releasein, prodcompany2country, country2sfx, located, and distributor2country.
Finally, consider that the fourth element selected by the random function is movies.

3 Modifying Synthetic Database Schemas

Assuming that a synthetic schema Sj has been generated, the possible operations to
modify Sj are described as follows:

Removal of Properties - consists in eliminating properties from elements of a synthetic
schema Sj. At each iteration an element is selected from Sj and one of its properties is removed.
In both cases a random function (Random) is invoked. To guarantee that each element will
keep a minimum percentage of its original properties a parameter (MinimumPct) is used. Each
element must keep at least one property. The parameter MaxModifications determines the
number of properties to be removed from the entire synthetic schema. The variable

506 C.E. Pires et al.

Modifications is incremented whether or not a property is removed. For instance, a property
cannot be removed if it is the only remaining property of an element. Figure 5 illustrates the
algorithm to remove properties from elements in a synthetic schema.

01 RemoveProperties (input: SyntheticSchema, MaxModifications, MinimumPct; output: SyntheticSchema) {
02 Modifications 0;
03 While Modifications <= MaxModifications Do
04 Element GetElement(SyntheticSchema.Elements, Random);
05 If Element.Properties.Count >= MinimumPct Then
06 Property GetProperty(Element.Properties, Random);
07 Element.Properties Element.Properties – Property;
08 SyntheticSchema.Elements(Element).Properties Element.Properties;
09 End If;
10 Modifications++;
11 End While;
12 Return(SyntheticSchema); }

Fig. 5. Algorithm to remove properties from elements of a synthetic schema

Insertion of Properties - consists in adding semantically related properties to the elements
of a synthetic schema Sj. To this end, a domain ontology O on the same topic of the base
schema must be available to provide the related properties. Figure 6 shows an excerpt from
the Movie Ontology [8]. At each iteration an element ei is randomly selected from the
synthetic schema Sj. Its label is used as input to identify a corresponding term ti in O as well
as terms that are semantically equivalent to ti, i.e. the synonyms of ti. All properties of ti and
the ones of its synonyms are considered candidate properties. Among them one is randomly
selected and added to ei. String is used as the default data type for the new property. If a
corresponding term ti is not found in O, a new property cannot be inserted.

Fig. 6. An excerpt from the Movie Ontology [8]

Figure 7 illustrates the algorithm that allows the addition of properties to the elements of a
synthetic schema. The parameter MaxModifications determines the number of properties to
be added to the elements of the synthetic schema Sj. To avoid all properties from being added
to the same element, the parameter MaximumPct is used. It controls the maximum number
of properties that can be added to each element. The variable Modifications is incremented
whether or not a property is added to an element. For instance, a property cannot be added to
an element ei when ei already contains a property with the same label.

Replacement of Element Label - consists in replacing the label of an element ei in the
synthetic schema Sj by a semantically related label. Again, a domain ontology O is used as
an external resource. At each iteration an element ei is randomly selected from Sj. Its label is

 Generating Synthetic Database Schemas for Simulation Purposes 507

01 AddProperties (input: SyntheticSchema, MaxModifications, MaximumPct, DomainOntology; output: SyntheticSchema) {
02 Modifications 0;
03 While Modifications <= MaxModifications Do
04 Element GetElement(SyntheticSchema.Elements, Random);
05 If Element.Properties.Count <= MaximumPct Then
06 NewProperty.Name GetNewProperty(Element.Label, DomainOntology, Random);
07 NewProperty.DataType STRING;
08 If NewProperty NOT IN Element.Properties And NewProperty IS NOT null Then
09 Element.Properties Element.Properties + NewProperty;
10 SyntheticSchema.Elements(Element).Properties Element.Properties;
11 End If;
12 End If;
13 Modifications++;
14 End While;
15 Return(SyntheticSchema); }

Fig. 7. Algorithm that adds properties to the elements of a synthetic schema

used as input to search for corresponding term ti in O. All terms having a semantic
relationship with ti are obtained (i.e. the synonyms, superclasses and subclasses of ti). These
terms are candidates to replace the element label. One of them is chosen by a random
function (Random). Figure 8 depicts the algorithm to replace the label of elements in a
synthetic schema. The parameter MaxModifications determines the number of labels to be
replaced in the schema. The variable Modifications is incremented whether or not a label is
replaced. For instance, a label cannot be replaced if a corresponding term ti is not found in O.

1 ReplaceElementLabel (input: SyntheticSchema, MaxModifications, DomainOntology; output: SyntheticSchema) {
2 Modifications 0;
3 While Modifications <= MaxModifications Do
4 Element GetElement(SyntheticSchema.Elements, Random);
5 OldLabel Element.Label;
6 NewLabel GetNewLabel(OldLabel, DomainOntology, {Synonyms, Hypernyms, Hyponyms},Random);
7 If NewLabel IS NOT null Then
8 SyntheticSchema.Elements(Element).Label NewLabel;
9 End If;
10 Modifications++;
11 End While;
12 Return(SyntheticSchema); }

Fig. 8. Algorithm to replace an element label

Replacement of Property Data Type - consists in replacing the data type of properties by
another one which belongs to the same family of the original data type. A data type classification
must be available. The classification must the one supported by the DBMS storing the base
schema. Figure 9 shows an excerpt from the data type classification of the Oracle DBMS.

Fig. 9. Data type classification of Oracle

508 C.E. Pires et al.

At each iteration an element ei is randomly selected from the synthetic schema Sj.
Afterwards, one of the properties pk of ei is randomly chosen. The data type dk of pk is used as
input to find a corresponding term ti in the data type classification. All terms in the same
level of ti (i.e. the terms with the same superclass of ti) are candidates to replace the original
data type. Among them one is randomly chosen. Figure 10 shows the algorithm to modify
the data type of the properties in a synthetic schema. The parameter MaxModifications
determines the number of data types to be replaced in the synthetic schema. The variable
Modifications is incremented whether or not a data type is replaced. For instance, a data type
cannot be replaced if a corresponding term ti is not found in the data type classification.

1 ReplaceDataType (input: SyntheticSchema, MaxModifications, DataTypeClassification; output: SyntheticSchema) {
2 Modifications 0;
3 While Modifications <= MaxModifications Do
4 Element GetElement(SyntheticSchema.Elements, Random);
5 Property GetProperty(Element.Properties, Random);
6 OldDataType Property.DataType;
7 NewDataType GetNewDataType(OldDataType, DataTypeClassification, Random);
8 SyntheticSchema.Elements(Element).Properties(Property).DataType NewDataType;
9 Modifications++;
10 End While;
11 Return(SyntheticSchema); }

Fig. 10. Algorithm to replace the data type of a property

To exemplify, consider the synthetic schema of Figure 4. Assume that the modifying
operations will be executed in the following order: (i) removal of properties; (ii) insertion of
properties; (iii) replacement of element label; and (iv) replacement of property data type. The
Movie Ontology (Figure 6) and the Oracle data type classification (Figure 9) are used as the
domain ontology and the data type classification, respectively. Table 1 illustrates the successive
steps to modify the synthetic schema. Firstly, the properties Castcoverage, Crewcoverage and
Runtimes are removed from Movies. The properties Continent and Stars are added to Location
and Movies, respectively. The element label Movies is replaced by Films. Finally, the data types
of the properties Type and Rank are replaced by Char and Decimal, respectively. The modified
synthetic schema is shown in Figure 11.

Table 1. The successive steps applied to modify the synthetic schema of Figure 4.

Algorithm Selected Relation
/ Relationship

Selected Property Selected Term(s) / Data Types Selected Property / Label / Datatype

REMOVE Movies Castcoverage - -
REMOVE Movies Crewcoverage - -
REMOVE Movies Runtimes - -
INSERTION Location - Location, Nation, Place, Country Continent
INSERTION Movies - Movies, Films Stars
LABEL Movies - Films -
DATATYPE Certificate Type Varchar2 Char
DATATYPE Films Rank Number, Integer Decimal

Fig. 11. The resulting synthetic schema after successive applications of modifying operations

 Generating Synthetic Database Schemas for Simulation Purposes 509

4 Experiments and Results

The Schema Generator tool (http://code.google.com/p/schemagenerator2/) has been developed
in Java. Elements, properties, and relationships are selected using the class Random available in
the package java.util. Jena [9] has been used to provide ontology manipulation and reasoning.
In this version, we have used the Movie Ontology [8] as the domain ontology. The goal of our
experiments was to verify the possibility of obtaining synthetic database schemas exhibiting not
only a sufficiently large overlap but also some kind of heterogeneity. This was achieved by
measuring the similarity between synthetic schemas and their corresponding modified version.
Such task was accomplished using SemMatcher [10], a schema matching tool that takes as
argument two database schemas represented as ontologies and produces a set of semantic
correspondences as well as a global similarity measure between them. The global similarity
between two schemas is a value in the interval [0,1], where 0 indicates no similarity and 1
indicates a perfect match. For the experiment, synthetic database schemas with different sizes
were generated: 4, 6, and 8 elements. For each size 10 schemas were produced. Figure 12
shows that the degree of similarity between synthetic schemas and their modified version
decreases as new schema modifiers are added to the process.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

#Schema Modifiers

G
lo

b
al

 S
ch

em
a

S
im

il
ar

it
y

4-size Schemas 6-size Schemas 8-size Schemas

4-size Schemas 0,85 0,83 0,83 0,78

6-size Schemas 0,89 0,86 0,85 0,81

8-size Schemas 0,88 0,88 0,86 0,83

1 2 3 4

Fig. 12. Similarity between synthetic schemas

5 Related Work

To the best of our knowledge, there is no similar work on generating synthetic database
schemas in the literature. We have found only tools that produce random data to populate
empty schemas for performance testing purposes on databases [11, 12, 13]. For instance, Data
Generator [11] is a free, open source script written in JavaScript, PHP and MySQL that allows
the generation of large volumes of custom data in a variety of formats for use in testing
software and populating databases. GS Data Generator [12] is an automated testing and data
generation tool, which enables the creation of test data for software quality assurance testing,
performance testing, usability testing, and database load testing. TurboData [13] is a relational
database utility for system development. It can populate relations with default values and make
sure that all foreign keys have a matching parent identifier. All these tools can be used to
populate the synthetic schemas created by Schema Generator.

510 C.E. Pires et al.

6 Conclusions and Further Work

In this work, we have proposed an automatic process to generate multiple synthetic database
schemas. The resulting schemas can be used by applications that need to execute experiments
involving a high number of data sources. The implementation has been used to produce
random schemas for an existing PDMS application that simulates peer clustering [14]. During
the experiments, a high number of synthetic schemas described in OWL were created. Each
peer in the overlay network was associated with a unique synthetic schema. Peers were
clustered according to their local schemas. There are a number of ongoing research issues
concerned with the proposed schema generation process which will be the goal of our future
activity. An issue to be studied in deep detail regards the specification of a process to produce
synthetic queries to be executed at the synthetic schemas. Another work regards the generation
of synthetic schemas considering that multiple base schemas related to the same domain are
available. Finally, other schema modifiers can be developed and added to the Schema
Generator tool. For instance, an algorithm that introduces noise in the synthetic schemas.

References

1. Kantere, V., Tsoumakos, D., Sellis, T., Roussopoulos, N.: GrouPeer: Dynamic clustering
of P2P databases. Information Systems Journal 34(1), 62–86 (2008)

2. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: Data Management Infrastructure
for Semantic Web Applications. In: Int. World Wide Web Conf., Budapest, Hungary,
pp. 556–567 (2003)

3. Tatarinov, I., Halevy, A.: Efficient query reformulation in Peer Data Management
Systems. In: ACM SIGMOD Int. Conf. on Management of Data, Paris, France,
pp. 539–550 (2004)

4. Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I., Chalmers, D.: The
State of Peer-to-Peer Simulators and Simulations. ACM SIGCOMM Computer
Communication Review 37(2), 95–98 (2007)

5. Ting, N.S., Deters, R.: 3LS - A Peer-to-Peer Network Simulator. In: 3rd Int. Conf. on Peer-
to-Peer Computing, p. 212 (2003)

6. Database Answers, http://www.databaseanswers.org/
7. The Internet Movie Database (IMDb), http://www.imdb.com/
8. The Movie Ontology (MO), http://www.movieontology.org/
9. Jena: a Semantic Web Framework for Java, http://jena.sourceforge.net/

10. Pires, C.E., Souza, D., Pachêco, T., Salgado, A.C.: A Semantic-based Ontology Matching
Process for PDMS. In: 2nd Int. Conf. on Data Management in Grid and P2P Systems, Linz,
Austria, pp. 124–135 (2009)

11. Data Generator, http://www.generatedata.com/#about
12. GS Data Generator, http://www.gsapps.com/products/datagenerator/
13. TurboData, http://www.turbodata.ca/
14. Pires, C.E.: Ontology-based Clustering in a Peer Data Management System. PhD Thesis.

Federal University of Pernambuco, Recife, Brazil (2009)

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 511–518, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A New Approach for Fuzzy Classification in
Relational Databases

Ricardo Hideyuki Tajiri, Eduardo Zanoni Marques,
Bruno Bogaz Zarpelão, and Leonardo de Souza Mendes

Department of Communication, School of Electrical and Computer Engineering,
University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil

r069671@dac.unicamp.br,
{emarques,bzarpe,lmendes}@decom.fee.unicamp.br

Abstract. This paper presents an easy-to-use and easy-to-implement framework
for fuzzy data classification and extraction in relational databases. The main
benefits of the framework are: (i) a fuzzy data classification model for relational
databases; (ii) flexible membership function configuration; (iii) automatic
membership degree computation; (iv) a fuzzy data retrieval mechanism fully
supported in SQL queries. In order to validate the proposed framework, a case
study is implemented in a social welfare system using RDBMS Oracle 11g and
PL/SQL programming language.

Keywords: Fuzzy classification, Relational database, SQL query.

1 Introduction

The relational model, proposed by Codd [1], is the most widespread and currently
used database model [2]. In relational databases, data are queried and manipulated
using SQL language. This language, developed by Chamberlin and Boyce [3], uses
well defined precise conditions to retrieve data from database. Because of its
dichotomous query process and the restrictions in relational databases to store only
atomic data, the SQL language was not properly designed to deal with human
subjectivity and imprecision, usual in natural language. Consequently, the necessity to
relax query conditions in relational databases has been widely recognized as a mean
to improve effectiveness in data retrieval, according to user needs [4].

In order to comply with this demand, different SQL extensions based on fuzzy sets
theory were proposed [5][6]. However, some of the existing approaches are limited to
a couple of membership functions, mainly trapezoid functions [2][7][8]. Other
approaches do not provide tools for automatic computation of membership degrees
[9][10][11]. Another characteristic of these approaches is the implementation of tools
for query interpretation. These tools, if not properly implemented, may not support
useful resources provided by the relational database system, like its native functions.

This paper proposes a framework for fuzzy classification in relational databases
using SQL. It is an approach for flexible membership functions definition and
automatic computation of membership degrees. Unlike other approaches, our work

512 R.H. Tajiri et al.

implements a partial query interpreter, which is used directly in a SQL query as a
fuzzy condition. Therefore, our approach is able to explore any resources from
RDBMS allowed in SQL queries, such as native standard and non-standard database
functions and user-defined functions while it retrieves information through imprecise
linguistic terms. In order to validate our proposal, a case study is implemented in a
social welfare system.

 The paper is organized as followed: section 2 presents the proposed framework.
Section 3 discusses the application of the framework in a case study. Finally, section
4 presents the conclusion and future work.

2 A Framework for Fuzzy Data Classification

As a solution for fuzzy classification in relational databases using SQL language, this
paper proposes:

• A fuzzy metadata catalog that defines linguistic variables, linguistic terms and
expressions for membership functions;

• A tool that computes the membership functions defined in the fuzzy metadata
catalog, encapsulating all fuzzy classification processes inside the database.
Therefore, enabling independency between the database and the application;

• An easy-to-use and easy-to-implement tool based on µA(x) function [12]. This tool,
defined as a fuzzy information interpreter, is implemented to write fuzzy
conditions in SQL queries, requiring no additional lexical, syntactical nor semantic
query analysis.

Fig. 1. Fuzzy architecture proposal

Fig. 1 shows the proposed framework architecture. Steps 1, 2, 3 and 4 illustrate the
fuzzy metadata catalog configuration and fuzzy classification. These steps are
presented in the following section.

2.1 Proposal for Fuzzy Data Classification

In order to store fuzzy sets context information, a fuzzy metadata catalog was modeled
based on the one presented by Meier [11]. The main difference between both catalogs is
the relation that defines the membership function for membership degree calculation. The

 A New Approach for Fuzzy Classification in Relational Databases 513

proposed catalog extends the ContinuousFunction relation of Meier’s catalog in four
different relations: FUNCTIONS, FUNCTION_CONSTANTS, CONSTANT_VALUES
and FUNCTION_INTERVALS, as it is presented in Fig. 2. This structure improves
Meier’s model, allowing the storage of expressions for the membership degree
computation. With the stored expressions, it is possible to implement a stored function in
the database system in order to calculate membership degrees. It decouples the database
system from the application, with the fuzzy classification complexity encapsulated inside
the database.

Fig. 2. Fuzzy metadata catalog

The first step of Fig. 1 represents the configuration of fuzzy metadata catalog,
illustrated in Fig. 2. Each relation of this catalog stores:

• LINGUISTIC_VARIABLES: the names of linguistic variables;
• TERMS: the names of linguistic terms, defining the domain of values of the

linguistic variables;
• FUNCTIONS: the expressions for membership degrees calculations. These

expressions must be written in a format recognized by the RDBMS (e.g. (a*x),
where x is the expression variable, also indicated in these relation, and a is a
constant);

• FUNCTION_CONSTANTS: the names of constants used in the expression stored
in the FUNCTIONS relation (e.g. a);

• FUNCTION_INTERVALS: a continuous subset of the universe of discourse U in
which the expression defined by FUNCTIONS relation must be applied to a
linguistic term defined by TERMS;

• CONSTANT_VALUES: the numeric values of the constants defined by
FUNCTION_CONSTANTS relation (e.g. a=0.1), so they can be used in a subset
defined by FUNCTION_INTERVALS.

This model allows the implementation of a generic deterministic stored function that
reads data stored in the fuzzy metadata catalog. Then, it can automatically calculate
the membership degrees of linguistic terms given a linguistic variable and a numeric
value from an application table data. To perform this task, we propose a function
defined as generic_function(vr_name,x), with vr_name as the linguistic variable
name, defined by LINGUISTIC_VARIABLES relation, and x as a numeric value to
be classified as linguistic terms from TERMS relation. This value will replace the

514 R.H. Tajiri et al.

expression variable defined by FUNCTIONS relation. Fig. 3 shows the
generic_function(vr_name,x)’s fluxogram, illustrating the steps to calculate the
membership degrees of linguistic terms.

Fig. 3. generic_function(vr_name,x)’s fluxogram

Giving an element x, the generic_function(vr_name,x) must return the linguistic terms
that defines the linguistic variable vr_name and its respective membership degrees, when
it is greater than zero (µterm(x)>0). Therefore, the generic_function(vr_name,x)’s return can
be defined as the fuzzy information of the element x for the linguistic variable vr_name.
Thus, a fuzzy information format was defined to allow correct interpretation of such
information. The proposed format simulates nested tables and is stated as follows:

term1:degree1|term2:degree2| term3:degree3|…| termn:degreen

The fuzzy information is stored as pairs {term:degree}, where “:” character
simulates a column separator between the term and its respective degree. Also, the “|”
character is used as a line breaker, separating two pairs {term:degree}. This approach
allows storing the fuzzy information of a linguistic variable in only one column in the
application data table, in the same tuple that contains the crispy value of the element
calculated. It results in unary cardinality in the storage structure between the tuple and
the fuzzy information returned by generic_function(vr_name,x), making easier to write
queries over these information.

With the fuzzy information stored in the database, it is necessary to create a mechanism
that can interpret this information. This interpreter consists in a stored function
implemented using the database system procedural language so it can be called directly in
a SQL query. Such function is defined as FDEGREE(columnt,term_name), where:

1. t is a tuple of a relation;
2. columnt is an attribute of t which contains the fuzzy information;
3. term_name is a linguistic term to be used as a search parameter value in the SQL

query as a fuzzy condition.

The FDEGREE(columnt,term_name) function reads the fuzzy information stored in
columnt and returns the membership degree of the linguistic term term_name that defines

 A New Approach for Fuzzy Classification in Relational Databases 515

the linguistic variable and attribute used to calculate such fuzzy information. Thus, this
function allows retrieving data from database through fuzzy classification using SQL
queries recognized by the database system. The FDEGREE(columnt,term_name) function,
combined with the generic_function(vr_name,x) function, is a µA(x) membership function
[12] implementation. In other words, FDEGREE(columnt,term_name)=µterm_name(t). Fig. 4
shows FDEGREE(columnt,term_name)’s fluxogram.

Fig. 4. FDEGREE(columnt,term_name)’s fluxogram

As the FDEGREE(columnt,term_name) is implemented using the database system
procedural language, it is possible to use it in different clauses of a SQL query (e.g.
SELECT, WHERE, GROUP BY, HAVING and ORDER BY) and as a aggregation
function parameter (e.g. MAX, MIN, COUNT, etc). This approach also allows data
retrieval through SQL queries by an α-cut, strong α-cut, support and kernel properties
of fuzzy sets theory [2].

3 A Practical Application

During the last years, Brazil has made great investments to decrease citizen social
vulnerability situation such as poverty and exclusion. One of the main factors that
contributed for the improvement of social welfare is the conditional cash transfer
programs offered to citizens by the government. In order to establish valid criteria for
measuring family social vulnerability, a Family Development Index (IDF) [13] was
created. This index assigns a real number value from the interval [0,1] to a family.
The closer to zero, the greater is the evidence that this family belongs to a socially
vulnerable group. Defining a sharp value to establish the families who should be
considered socially vulnerable is not a simple task. Hence, classify IDF values using
fuzzy sets theory becomes an attractive solution for dealing with these inaccuracies.

In this context, a case study was implemented using the fuzzy classification
presented in section 2 over the IDF data table from the Social Welfare module from
Integrated System for Municipal e-Gov (SIGM) [14]. This case study was
implemented using RDBMS Oracle 11g and PL/SQL programming language. The
adopted methodology for IDF table fuzzification was:

1. Implementation and configuration of fuzzy metadata catalog;
2. generic_function(vr_name,x) implementation in PL/SQL language;
3. Insertion of fuzzy information in the IDF data table;
4. FDEGREE(columnt,term_name) implementation in PL/SQL language;

516 R.H. Tajiri et al.

5. Data retrieval through fuzzy information using FDEGREE(columnt,term_name)
function in SQL queries.

Given the IDF values from the SIGM IDF data table, a linguistic variable named as
“Social Vulnerability” was defined. Two linguistic terms, defining the universe of
values for the linguistic variable, were chosen to classify the family’s situation
through its IDF value: “High” and “Low” social vulnerability, as shown in Fig. 5.

Fig. 5. Definition of linguistic variable and linguistic terms

Fig. 6, 7 and 8 shows the configuration of fuzzy expressions for the membership
degree calculus and IDF intervals used in each linguistic term and expression. The L
function was chosen to represent the membership function for the term “High” and
linear gamma function for “Low” social vulnerability [2].

Fig. 6. Definition of expressions for membership degree calculus and its constants

Fig. 7. Definition of boundary values of IDF table and the membership expressions to be used
for each linguistic term and interval

Fig. 8. Definition of constant values for each expression and interval

 A New Approach for Fuzzy Classification in Relational Databases 517

In order to calculate the membership degree of the family IDF over the linguistic
terms, the generic_function(vr_name,x) was implemented using the PL/SQL
language. The fuzzy information returned by the generic_function(vr_name,x), with
“Social Vulnerability” and IDF values as the function parameters, was stored in a
column named SOCIAL_VULNERABILITY. Table 4 and Table 5 shows IDF table
data samples before and after the addition of the column.

Table 1. IDF table sample before
the fuzzy information be added

IDF
FAMILY_ID IDF

1 1
2 0
3 0.5
4 0.28
5 0.56
6 0.74

Table 2. IDF table sample with the fuzzy information
column

IDF
FAMILY_ID IDF SOCIAL_VULNERABILITY

1 1 Low:1.000
2 0 High:1.000
3 0.5 High:.625|Low:.375
4 0.28 High:1.000
5 0.56 High:.475|Low:525
6 0.74 High:.025|Low:.975

With the fuzzy information stored in the data table, the
FDEGREE(columnt,term_name) function was implemented using PL/SQL language, so
that it can be used in a SQL query. The Fig. 9 illustrates a SQL query using the
FDEGREE(columnt,term_name) function.

Fig. 9. Data retrieval through fuzzy classified data

4 Conclusion

This paper presented a framework for fuzzy classification in relational databases
using SQL language. A membership function calculation mechanism and a fuzzy
information format were proposed. In order to simplify the implementation of data
retrieval through fuzzy classification, a fuzzy information interpreter was proposed.
The use of this interpreter in a SQL query provided a simple tool for data retrieval
using fuzzy classification. Finally, a case study was implemented classifying the IDF
data table from SIGM system validating the proposed approach.

The encapsulation of membership degree calculus inside the database and the
possibility to define expressions for the membership function (Fig. 6) are important

518 R.H. Tajiri et al.

contributions for fuzzy classification in relational databases approaches, allowing
independency between database system and system applications. In the case study, the
proposed framework has shown that an existing system, such as the SIGM, can easily
aggregate fuzzy functionalities, improving flexibility of data classification and
retrieval, with minimum database changes.

Future work may include support to membership degrees modifiers and quantifiers
and fuzzy classification of discrete and non-numeric values. Adaptations of the fuzzy
metadata catalog and generic_function(vr_name,x) function must be considered.

References

1. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13,
377–387 (1970)

2. Galindo, J.: Fuzzy Databases: Modeling. IGI Publishing (2006)
3. Chamberlin, D.D., Boyce, R.F.: SEQUEL: A structured English query language. In:

Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data
Description, Access and Control, pp. 249–264. ACM, Ann Arbor (1974)

4. Bordogna, G., Psaila, G.: Customizable Flexible Querying in Classical Relational
Databases. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in
Databases, pp. 191–217. Information Science Reference, Hershey (2008)

5. Rosado, A., Ribeiro, R., Zadrozny, S., Kacprzyk, J.: Flexible Query Languages for
Relational Databases: An Overview. In: Bordogna, G., Psaila, G. (eds.) Flexible Databases
Supporting Imprecision and Uncertainty, vol. 203, pp. 3–53. Springer, Heidelberg (2006)

6. Zadrozny, S., Tré, G.d., Caluwe, R.d., Kacprzyk, J.: An Overview of Fuzzy Approaches to
Flexible Database Querying. In: Galindo, J. (ed.) Handbook of Research on Fuzzy
Information Processing in Databases, vol. I, pp. 34–54. Information Science Reference,
Hershey (2008)

7. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A Server for Fuzzy SQL Queries. In:
Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI),
vol. 1495, pp. 164–174. Springer, Heidelberg (1998)

8. Zadrozny, S., Kacprzyk, J.: FQUERY for Access: towards human consistent querying user
interface. In: Proceedings of the 1996 ACM Symposium on Applied Computing,
pp. 532–536. ACM, Philadelphia (1996)

9. Veryha, Y.: Implementation of fuzzy classification in relational databases using
conventional SQL querying. Information and Software Technology 47, 357–364 (2005)

10. Veryha, Y., Blot, J.-Y., Coelho, J.: Fuzzy Classification in Shipwreck Scatter Analysis. In:
Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases,
vol. II, pp. 516–537. Information Science Reference, Hershey (2008)

11. Meier, A., Werro, N., Albrecht, M., Sarakinos, M.: Using a fuzzy classification query
language for customer relationship management. In: Proceedings of the 31st International
Conference on Very Large Data Bases, pp. 1089–1096. VLDB Endowment, Trondheim
(2005)

12. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
13. Barros, R.P.D., Carvalho, M.D., Franco, S.: O Índice de Desenvolvimento da Família

(IDF). In: Aplicada, I.D.P.E. (ed.) Instituto de Pesquisa Econômica Aplicada, Rio de
Janeiro (2003)

14. Tilli, M., Panhan, A.M., Lima, O., Mendes, L.S.: A Web-Based Architecture For E-Gov
Application Development. In: ICE-B - International Conference on e-Business, Porto –
Portugal (2008)

Anomaly Detection for the Prediction of

Ultimate Tensile Strength in Iron Casting
Production

Igor Santos, Javier Nieves, Xabier Ugarte-Pedrero, and Pablo G. Bringas

S3Lab, DeustoTech - Computing, Deusto Institute of Technology
University of Deusto,

Avenida de las Universidades 24, 48007
Bilbao, Spain

{isantos,jnieves,xabier.ugarte,pablo.garcia.bringas}@deusto.es

Abstract. Mechanical properties are the attributes that measure the
faculty of a metal to withstand several loads and tensions. In particu-
lar, ultimate tensile strength is the force a material can resist until it
breaks. This property is one of the variables to control in the foundry
process. The only way to examine this feature is to apply destructive
inspections that make the casting invalid with the subsequent cost in-
crement. Modelling the foundry process as an expert knowledge cloud
allows machine-learning algorithms to forecast the value of a certain vari-
able; in this case, the probability of a certain value of ultimate tensile
strength for a foundry casting. Nevertheless, this approach needs to label
every instance in the training dataset for generating the model that can
foresee the value of ultimate tensile strength. In this paper, we present
a new approach for detecting castings with an invalid ultimate tensile
strength value based on anomaly detection methods. This approach rep-
resents correct castings as feature vectors of information extracted from
the foundry process. A casting is then classified as correct or not correct
by measuring its deviation to the representation of normality (correct
castings). We show that this method is able to reduce the cost and the
time of the tests currently used in foundries.

Keywords: Fault prediction, anomaly detection, ultimate tensile strength,
industrial processes optimisation.

1 Introduction

Foundry can be considered as one of the axis of current economy because a huge
number of castings are manufactured to be part of more complex systems e.g.,
the brake component of a car, the propeller of a boat, components of the wings
of an aircraft and the trigger in a weapon. Therefore, if one of the pieces is faulty,
it can be detrimental to both individuals and businesses activities.

Unfortunately, although there are many standards and methods to check the
quality of the produced castings, these are performed once the manufacturing of

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 519–526, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

520 I. Santos et al.

the casting has been completed. Most of the used techniques for the assurance
of failure-free foundry processes are exhaustive production control and diverse
simulation techniques [1] but they are extremely expensive. In this paper, we
focus on the so-called Ultimate Tensile Strength (UTS). This mechanical prop-
erty is defined as the force a casting can resist until it breaks; i.e., the maximum
stress any material can withstand when subjected to tension. Manufactured iron
castings must assure certain value (or threshold) of UTS to pass the strict qual-
ity tests. Unfortunately, the only available approach to examine the UTS breaks
the piece, incurring in a cost increment within the process.

In our previous work [2–4], we have proven the ability of several machine-
learning classifiers for the prediction of mechanical properties. We used Bayesian
networks, support vector machines, decision trees, artificial neural networks and
support vector machines, to identify the best overall machine-learning classifier
capable of predicting the value of UTS and to reduce the noise in the manual
data-gathering process [5]. However, machine-learning classifiers (or supervised
learning methods) require a high number of labelled castings for each of the
classes (i.e., faulty and not-faulty castings) to train the different models. How-
ever, it is quite difficult to acquire this amount of labelled data for a real-world
problem such as production control. To generate these data, a time-consuming
process of analysis is mandatory that renders in a cost increment during the
process.

Given this background, we present here a method to classify castings to foresee
the value of UTS that it is based on anomaly detection methods. This approach
is able to determine whether a casting contains a valid UTS value or not by
comparing several features extracted from the production of the castings with
a dataset composed only of the features of valid castings. Therefore, if the cast-
ing under prediction presents a considerable deviation to what is considered as
normal (the previously stored correct castings), the casting is considered to be
faulty and, thus, there may be a high probability that the casting has an invalid
value of UTS. This method deals with the aforementioned problem, achieving a
reduction in the required number of castings to be labelled.

Summarising, our main contributions are: (i) we select a set of variables ex-
tracted from the foundry process to determine whether a casting has a valid
UTS value or not and provide a relevance measure for each variable based on
information gain, (ii) we propose an anomaly-detection-based architecture for
UTS prediction, by means of weighted comparison against a dataset composed
of only correct castings and (iii) we evaluate the method using three different
deviation measures and show that this method can reduce the need of labelling
castings.

2 Foundry Processes and Mechanical Properties

Several factors, for instance the extreme conditions in which it is performed,
make the foundry process very complex. Starting from the raw material to the
manufactured item, this procedure involves numerous stages, several of which

Anomaly Detection for the Prediction of Ultimate Tensile Strength 521

may be performed in parallel. When it comes to iron ductile castings, this process
presents the following phases:

– Pattern making: In this phase, the moulds (exteriors) and the kernels
(interiors) are produced in wood, metal or resin to be used in the generation
of the moulds where the final casting will be built.

– Mould and kernel generation: Although other methods exist, the sand
mould is most widespread method for the manufacturing of foundry cast-
ings. The sand is mixed with clay, water or other chemical binders. Next,
specialised machines generate the two halves of the mould and they unite
them in order to create the container where the melt metal will be intro-
duced.

– Melting and pouring: The raw metals are melt, mixed and poured onto
the sand moulds.

– Cooling: The solidification of the castings is controlled in the cooling lines
until this process is finished.

– Finishing: In order to finish the process, once the casting is cleaned, some
actions are usually performed like thermal treatment, ratification of defects
in welds and so on.

Once these phases finish, foundry materials are subject to forces (loads). Engi-
neers calculate these forces and how the material deforms or breaks as a function
of applied load, time or other conditions. It is important to know how mechanical
properties affect to iron castings [6], because they directly affect the final qual-
ity of the manufactured casting. The most important mechanical properties of
foundry materials are the following ones [7]: strength, hardness, resilience, elas-
ticity, plasticity, brittleness, ductility and malleability. In this work, we focus on
Ultimate Tensile Strength (UTS) that is a type of strength, which is the property
that enables a metal to resist deformation under load. The testing method of
UTS is conducted as follows. First, a scientist prepares a testing specimen from
the original casting. Second, the specimen is placed on the tensile testing ma-
chine. Finally, this machine pulls the sample from both ends and measures the
force required to break the specimen apart and how much the sample stretches
before breaking.

The complexity of UTS prediction of the resulting castings arises mainly from
the large number of variables involved in the production process and, therefore,
this variables influence the final design of castings. The total number of variables
we focus on has been reduced to 24, and more specifically, the control variables
can be divided into metal-related variables and variables related to the mould.

– Metal-related
• Composition: type of treatment, inoculation and quantities.
• Thermal: Nucleation potential and quality of the mixture, obtained by

thermal analysis [8].
• Pouring: Pouring duration and temperature.

522 I. Santos et al.

– Mould-related
• Sand: types of additives used for sand, the specific characteristics of the

sand.
• Mould: mould and machine parameters used.

Generally, the size and geometry of the casting play a very important and,
therefore, we also included several variables to monitor these features. Similarly,
the system takes into account the parameters related to the configuration of each
machine working in the manufacturing process. Also, we added other variables
such as cooling rate and heat treatment applied to the piece.

Although we have already obtained overall good results using a machine-
learning-based approach for predicting imperfections and mechanical properties
[2, 4, 5, 9–13], these approaches require a manual labour to label every instance
of the training dataset. This process can be specially time-consuming and, also,
means a cost increment.

We present here an anomaly-based approach that only requires labelling the
correct castings and that measures the deviations of the inspected pieces with
these previous stored castings. Such an approach will reduce the efforts of la-
belling castings, working with less information available. To this end, as we
mentioned before, we manage 24 variables extracted from the foundry process.
To provide a more accurate deviation measure, we apply relevance weights to
each feature based on Information Gain (IG) [14]. This is done because IG pro-
vides a ratio for each characteristic that measures its importance to consider
if a casting is valid or not. These weights were calculated from a real dataset
acquired from a foundry specialised in safety and precision components for the
automotive industry. The dataset is composed of 645 correct castings and 244
faulty castings.

3 Anomaly Detection

Through the features described in the previous section, our method represents
valid castings as points in the feature space. When a casting is being inspected
our method starts by computing the values of the point in the feature space.
This point is then compared with the previously calculated points of the valid
foundry castings.

To this end, distance measures are required. In this study, we have used the
following distance measures:

– Manhattan Distance: This distance between two points v and u is the
sum of the lengths of the projections of the line segment between the points
onto the coordinate axes: d(x, i) =

∑n
i=0 |xi − yi| where x is the first point;

y is the second point; and xi and yi are the ith component of first and second
point, respectively.

– Euclidean Distance: This distance is the length of the line segment con-
necting two points. It is calculated as: d(x, y) =

∑n
i=0

√
v2

i − u2
i where x is

the first point; y is the second point; and xi and yi are the ith component of
first and second point, respectively.

Anomaly Detection for the Prediction of Ultimate Tensile Strength 523

– Cosine Similarity: It is a measure of similarity between two vectors by
finding the cosine of the angle between them [15]. Since we are measuring
distance and not similarity we have used 1−Cosine Similarity as a distance
measure: d(x, y) = 1− cos (θ) = 1− (v ·u)/(||v|| · ||u||)where v is the vector
from the origin of the feature space to the first point x, u is the vector from
the origin of the feature space to the second point y, v ·u is the inner product
of v and u. ||v|| · ||u|| is the cross product of v and u. This distance ranges
from 0 to 1, where 1 means that the two evidences are completely different
and 0 means that the evidences are the same (i.e., the vectors are orthogonal
between them).

Using these measures, we are capable of computing the deviation of a casting
respect to a set of not faulty castings. Since we have to compute this measure
with all the points representing valid castings, a combination metric is required in
order to obtain a final value of distance which considers every measure performed.
To this end, our system employs 3 very simplistic rules: (i) select the mean
value, (ii) select the lowest distance value and (iii) select the highest value of
the computed distances. In this way, when our method inspects a casting a final
distance value is acquired, which will depend on both the distance measure and
the combination rule.

4 Empirical Validation

In order to evaluate our anomaly-based faulty casting detector, we collected a
dataset from a foundry, which is specialised in safety and precisions components
for the automotive industry, principally in disk-brake support with a production
over 45,000 tons a year.

The acceptance/rejection criterion of the studied models resembles the one
applied by the final requirements of the customer. Pieces flawed with an invalid
UTS must be rejected due to the very restrictive quality standards (which is an
imposed practice by the automotive industry). To this extent, we have defined
two risk levels: Valid (more than 370 MPa) and Invalid (less than 370 MPa).

We worked with two different references, in other words, type of pieces and, in
order to test the proposed method, with the results of the destructive inspections
of the 889 production stocks performed in beforehand. More accurately, the
dataset comprises 645 correct castings and 244 faulty castings.

Specifically, we conducted the next configuration for the empirical validation:

1. Cross validation. Despite the small dataset, we have to use as much of the
available information in order to obtain a proper representation of the data.
To this extent, we performed a 5-fold cross-validation [16] over the correct
castings to divide it into 5 different divisions of 552 castings for representing
normality and 138 for testing. In this way, each fold is composed of 516
not faulty castings that will be used as representation of normality and 373
testing castings, from which 129 are valid castings and 244 are faulty castings.

524 I. Santos et al.

2. Calculating distances and combination rules. We extracted the afore-
mentioned characteristics and employed the 3 different measures and the 3
different combination rules described in Section 3 to obtain a final measure
of deviation for each testing evidence. More accurately, we applied the fol-
lowing distances: (i) Manhattan Distance, (ii) Euclidean Distance and (iii)
Cosine Similarity. For the combination rules we have tested the followings:
(i) mean value, (ii) lowest distance and (iii) highest value.

3. Defining thresholds. For each measure and combination rule, we estab-
lished 10 different thresholds to determine whether a casting is valid or not.

4. Testing the method. We evaluated the accuracy of the proposed model
by measuring False Negative Rate (FNR) and False Positive Rate (FPR).
In particular, FNR is defined as: FNR(β) = FN/(FN + TP) where TP is
the number of faulty castings correctly classified (true positives) and FN is
the number of faulty castings misclassified as valid castings (false negatives).
On the other hand, FPR is defined as: FPR(α) = FP/(FP + TN) where
FP is the number of valid castings incorrectly detected as faulty castings
while TN is the number of valid castings correctly classified.

Table 1. Results for different combination rules and distance measures. The results in
bold are the best for each combination rule and distance measure. Our method is able
to detect more than 78 % of the faulty castings although with a FPR higher than 40
%.

1 − Cosine Similarity EuclideanDistance ManhattanDistance
Combination Threshold FNR FPR Threshold FNR FPR Threshold FNR FPR

Mean

0.2038 0.000 0.987 0.110 0.000 1.000 0.225 0.000 0.994
0.2413 0.119 0.688 0.1184 0.087 0.825 0.2513 0.093 0.831
0.2789 0.227 0.530 0.1265 0.129 0.664 0.2778 0.252 0.459
0.3164 0.566 0.189 0.1347 0.215 0.426 0.3043 0.520 0.190
0.3539 0.757 0.128 0.1428 0.551 0.192 0.3307 0.741 0.116
0.3914 0.846 0.079 0.1510 0.724 0.114 0.3572 0.846 0.069
0.4290 0.917 0.051 0.1591 0.831 0.062 0.3837 0.906 0.049
0.4665 0.951 0.029 0.1673 0.931 0.029 0.4102 0.950 0.027
0.5040 0.963 0.021 0.1754 0.972 0.006 0.4367 0.972 0.006
0.5415 0.984 0.000 0.1836 0.999 0.000 0.4632 1.000 0.000

Maximum

0.5220 0.000 0.986 0.1810 0.000 0.978 0.4734 0.000 0.964
0.5716 0.027 0.888 0.1887 0.081 0.899 0.4984 0.041 0.891
0.6212 0.063 0.818 0.1964 0.170 0.810 0.5234 0.267 0.782
0.6708 0.167 0.765 0.2042 0.238 0.686 0.5484 0.530 0.649
0.7204 0.287 0.672 0.2119 0.299 0.613 0.5734 0.722 0.488
0.7700 0.429 0.527 0.2196 0.521 0.471 0.5984 0.845 0.333
0.8197 0.677 0.424 0.2274 0.733 0.355 0.6233 0.897 0.193
0.8693 0.865 0.283 0.2351 0.841 0.201 0.6483 0.936 0.094
0.9189 0.957 0.075 0.2428 0.964 0.105 0.6733 0.973 0.023
0.9685 0.993 0.000 0.2505 0.989 0.000 0.6983 0.992 0.000

Minimum

0.0000 0.00000 0.94884 0.0000 0.000 0.978 0.0000 0.000 0.978
0.0212 0.804 0.060 0.0093 0.326 0.418 0.0169 0.320 0.415
0.0424 0.931 0.021 0.0186 0.559 0.248 0.0338 0.599 0.223
0.0636 0.977 0.012 0.0279 0.727 0.145 0.0507 0.755 0.116
0.0849 0.997 0.004 0.0371 0.809 0.046 0.0675 0.843 0.037
0.1061 1.000 0.001 0.0464 0.879 0.021 0.0844 0.909 0.013
0.1273 1.000 0.001 0.0557 0.985 0.004 0.1013 0.965 0.006
0.1485 1.000 0.001 0.0650 0.999 0.004 0.1182 0.998 0.001
0.1697 1.000 0.001 0.0743 0.999 0.003 0.99918 0.001 0.001
0.1910 1.000 0.000 0.0836 1.000 0.000 0.1520 1.000 0.000

Anomaly Detection for the Prediction of Ultimate Tensile Strength 525

Table 1 shows the obtained results. Euclidean and Manhattan distances, de-
spite of consuming less processing time, have achieved better results than cosine-
similarity based distance for the tested threshold. Our anomaly-based faulty
casting detector, for each distance measure, accomplished its best results select-
ing the mean value for computing the deviation of a casting respect to the not
faulty castings. In particular, our detector is able to detect more than 78 % of
faulty castings (using Euclidean distance), maintaining the rate of misclassified
correct castings in 42.6%. Nevertheless, all distances obtain similar results.

5 Conclusions

Foreseeing the value of UTS in ductile iron castings is one of the most hard chal-
lenges in foundry-related research. Our work in [2, 4] pioneered the application
of artificial intelligence methods to the prediction of the value of UTS.

This time, our main contribution is the anomaly-detection-based approach em-
ployed for UTS prediction. In contrast to our previous approaches, this method
only need previously labelled the correct castings and it measures the deviation
of castings respect to normality (castings with a valid value of UTS). Although
anomaly detection systems tend to produce high error rates, in our case, the cri-
teria establishes that a high false positive rate is tolerable whereas a high false
negative rate is not. Therefore, our method is suitable for its direct application
within real foundries.

Anyway, it presents some limitations that should be studied in further work.
Firstly, we cannot identify different levels of warnings as we did in our previous
works. In this case, we only can classify the castings as correct or faulty. Never-
theless, we could compute it using another anomaly detection techniques such
as clustering based or nearest neighbour based anomaly detection.

Secondly, this kind of techniques based on the measurement of distances can-
not achieve good results if the training data is disperse. In other words, if the
normality cannot be represented as a compact group of instances, the threshold
that allows to split the evidences between correct and faulty does not adjust to
have its best behaviour. Nevertheless, this fact is solved due to the nature of the
productions process, since all the castings are always produced in similar way.
Hence, generated vectors of castings are close between each other, representing
the normality in a good way in order to measure the distances between correct
and faulty castings.

Finally, it is important to consider efficiency and processing time. Our system
compares each casting against a relative big dataset (244 vectors for each fold).
Despite Euclidean and Manhattan distances are easy to compute, cosine distance
and more complex distance measures such as Mahalanobis distance may take too
much time to process every casting under analysis. For this reason, in further
work we will emphasise on improving the system efficiency by reducing the whole
dataset to a limited amount of samples which is sufficiently representative.

526 I. Santos et al.

References

1. Sertucha, J., Loizaga, A., Suárez, R.: Improvement opportunities for simulation
tools. In: Proceedings of the 16th European Conference and Exhibition on Digital
Simulation for Virtual Engineering (2006) (invited talk)

2. Nieves, J., Santos, I., Penya, Y.K., Rojas, S., Salazar, M., Bringas, P.G.: Mechanical
properties prediction in high-precision foundry production. In: Proceedings of the
7th IEEE International Conference on Industrial Informatics (INDIN 2009),
pp. 31–36 (2009)

3. Nieves, J., Santos, I., Penya, Y.K., Brezo, F., Bringas, P.G.: Enhanced foundry
production control. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.)
DEXA 2010. LNCS, vol. 6261, pp. 213–220. Springer, Heidelberg (2010)

4. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Machine-learning-based mechan-
ical properties prediction in foundry production. In: Proceedings of ICROS-SICE
International Joint Conference (ICCAS-SICE), pp. 4536–4541 (2009)

5. Nieves, J., Santos, I., Bringas, P.: Overcoming data gathering errors for the predic-
tion of mechanical properties on high precision foundries. In: World Automation
Congress (WAC), pp. 1–6. IEEE, Los Alamitos (2010)

6. Gonzaga-Cinco, R., Fernández-Carrasquilla, J.: Mecanical properties dependency
on chemical composition of spheroidal graphite cast iron. Revista de Metalurgia 42,
91–102 (2006)

7. Lung, C.W., March, N.H.: Mechanical Properties of Metals: Atomistic and Fractal
Continuum Approaches. World Scientific Pub. Co. Inc., Singapore (1992)

8. Larrañaga, P., Sertucha, J., Suárez, R.: Análisis del proceso de solidificación en
fundiciones graf́ıticas esferoidales. Revista de Metalurgia 42(4), 244–255 (2006)

9. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Optimising machine-learning-
based fault prediction in foundry production. In: Omatu, S., Rocha, M.P., Bravo,
J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009.
LNCS, vol. 5518, pp. 554–561. Springer, Heidelberg (2009)

10. Santos, I., Nieves, J., Bringas, P., Penya, Y.: Machine-learning-based defect predic-
tion in highprecision foundry production. In: Becker, L.M. (ed.) Structural Steel
and Castings: Shapes and Standards, Properties and Applications, pp. 259–276.
Nova Publishers (2010)

11. Nieves, J., Santos, I., Penya, Y.K., Brezo, F., Bringas, P.G.: Enhanced foundry
production control. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.)
DEXA 2010. LNCS, vol. 6261, pp. 213–220. Springer, Heidelberg (2010)

12. Santos, I., Nieves, J., Bringas, P.: Enhancing fault prediction on automatic foundry
processes. In: World Automation Congress (WAC), pp. 1–6. IEEE, Los Alamitos
(2010)

13. Santos, I., Nieves, J., Penya, Y.K., Bringas, P.G.: Towards noise and error re-
duction on foundry data gathering processes. In: Proceedings of the International
Symposium on Industrial Electronics (ISIE), pp. 1765–1770 (2010)

14. Kent, J.: Information gain and a general measure of correlation. Biometrika 70(1),
163–173 (1983)

15. Tata, S., Patel, J.: Estimating the Selectivity of tf-idf based Cosine Similarity
Predicates. SIGMOD Record 36(2), 75–80 (2007)

16. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: Proceedings of the International Joint Conference on Artificial
Intelligence, vol. 14, pp. 1137–1145 (1995)

LinkedPeers: A Distributed System for Interlinking
Multidimensional Data

Athanasia Asiki, Dimitrios Tsoumakos, and Nectarios Koziris

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

{aassiki,dtsouma,nkoziris}@cslab.ece.ntua.gr

Abstract. In this paper we present LinkedPeers, a distributed system designed
for efficient distribution and processing of multidimensional hierarchical data
over a Peer-to-Peer overlay. he system design aims at incorporating two impor-
tant features, namely large-scale support for partially-structured data and high-
performance, distributed query processing including multiple aggregates. To
achieve that, LinkedPeers utilizes a conceptual chain of DHT rings that stores
data in a hierarchy-preserving manner and is able to adjust both the granularity
of indexing and the amount of pre-computation according to the incoming work-
load. Extensive experiments prove that our system is very efficient achieving over
85% precision in answering queries while minimizing communication cost and
adapting its indexing to the incoming queries.

1 Introduction

Our era can be characterized by an astonishing explosion in the amount of produced
data, at a rate even bigger than Moore’s law [1]. Market globalization, business process
automation, new regulations, the increasing use of sensors, all mandate even more data
retention from companies and organizations as a brute force method to reduce risk and
increase profits. In most applications, data are described by multiple characteristics (or
dimensions) such as time, customer, location, etc. Dimensions can be further annotated
at different levels of granularity through the use of concept hierarchies (e.g., Year→
Quarter → Month→ Day). Concept hierarchies are important because they allow
the structuring of information into categories, thus enabling its search and reuse.

Besides the well-documented need for efficient analytics, web-scale data poses ex-
tra challenges: While size is the dominating factor, the lack of a centralized or strict
schema is another important aspect: Data without rigid structures as those found in
traditional database systems are provided by an increasing number of sources, for ex-
ample data produced among different sources in the Web [2]. The distribution of data
sources renders many centralized solutions useless in performing on-line processing.
Consequently, any modern analytics platform is required to be able to perform efficient
analytics tasks on distributed, multi-attribute structured data without strict schema.

In this paper, we present the LinkedPeers system that efficiently stores and processes
data described with multiple dimensions, while each dimension is organized by a con-
cept hierarchy. We choose a Distributed Hash Table (DHT) substrate to organize any
number of commodity nodes participating in LinkedPeers. Data producers can individ-
ually insert and update data to the system described by a predefined group of concept

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 527–543, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

528 A. Asiki, D. Tsoumakos, and N. Koziris

hierarchies, while the number of dimensions may vary for each data item. Queries are
processed in a fully distributed manner triggering adaptive, query-driven reindexing and
materialization mechanisms to minimize communication costs.

The motivation behind the design of LinkedPeers is to provide a large-scale dis-
tributed infrastructure to accommodate collections of partially-structured data. In con-
trast to approaches where both data and their relationships are pre-defined by rigid
schemas, we intend to support a higher degree of freedom: System objects are described
by d dimensions, each of which is further annotated through a corresponding concept
hierarchy. LinkedPeers does not require that each inserted fact be described by values
for all dimensions. On the contrary, it attempts to fully support it and not restrict the
ability to efficiently process it.

LinkedPeers manages to preserve all hierarchy-specific information for each dimen-
sion, using a tree-like data structure to store data and interlinking trees among different
dimensions. A natural ordering of the dimensions that stems from their importance,
query skew, etc, yields to a corresponding organization of the DHT layer: LinkedPeers
comprises of multiple ‘virtual’ overlays, one for each dimension. This strategy results
with each object being split into d parts and ending up in nodes of the primary and
secondary rings. Trees at secondary rings maintain information towards related trees of
the primary ring.

The purpose of this design is to couple the operational autonomy of the primary ring
with a powerful meta-indexing structure integrated at the secondary rings, allowing
our system to return fast aggregated results for the queried values by minimizing the
communication cost. By allowing adaptive result caching and precomputation of related
queries, this efficacy is further enhanced.

The proposed scheme enables the processing of complex aggregate queries for any
level of any dimension, such as: “Which Cities belong to Country ‘Greece’ ?” or
“What is the population of Country ‘Greece’ ?” or “Which Cities of Country
‘Greece’ have population above 1 million in Year ‘2000’?”, considering that the
Location and Time hierarchies describe a numerical fact for population. The en-
forced indexing allows to find the location of any value of any stored hierarchy without
requiring any knowledge, while aggregation functions can be calculated on the nodes
that a query ends up.

To summarize, this work presents the LinkedPeers system which offers the following
innovative features:

– A complete storage, indexing and query processing system for data described by an
arbitrary number of dimensions and annotated according to defined concept hierar-
chies. LinkedPeers is able to perform efficient and online incremental updates and
maintain data in a fault-tolerant and fully distributed manner.

– A query-based materialization engine that pro-actively precomputes relevant views
of a processed query for future reference.

– Query-based adaptation of the indexing granularity of its indexing according to in-
coming requests.

Finally , to support our analysis, we present a thorough performance evaluation in
order to identify the behavior of our scheme under a large range of data and query loads.

LinkedPeers: A Distributed System for Multidimensional Data 529

2 LinkedPeers System Description

2.1 Notation and Definitions

Data items are described by tuples containing values from a data space domain D. These
tuples are defined by a set of d dimensions {d0, ..,dd−1} and the actual fact(s). Each di-
mension di is associated with a concept hierarchy organized along Li levels of aggrega-
tion �i j, where j (j ∈ [0,Li−1]) represents the j-th level of the i-th dimension. We define
that �ik lies higher (lower) than �il and denote it as �ik < �il (�ik > �il) iff k < l (k > l),
i.e., if �ik corresponds to a less (more) detailed level than �il (e.g., Month < Day).Tuples
are shown in the form:

〈v0,0, . . . ,v0,L0−1, . . . ,vd−1,0, . . . ,vd−1,Ld−1−1, f0, ...〉

where vi, j represents the value of the j-th level of the i-th dimension. Note also that any
value-set (vi,0, . . . ,vi,Li−1) for the i-th dimension may be absent from a tuple and that
f act j may be of any type (e.g., numerical, text, vector, etc). Level �i0 is called the root
level for the i-th dimension and its hashed value vi0 is called root key. The values of the
�iLi−1 are also referred to as leaf values.

The values of the hierarchy levels in each dimension are organized in tree structures,
one per root key. Without loss of generality, we assume that each value of �i j has at
most one parent in �i(j−1). To insert tuples in the multiple overlays, one level from each
dimension hierarchy is chosen; its hashed value serves as its key in the underlying DHT
overlay. We refer to this level as pivot level and to its hashed value as pivot key. The
pivot key that corresponds to the primary dimension (or primary ring) is called the
primary key. The highest and lowest pivot levels of each hierarchy for a specific root
key are called MinPivotLevel and MaxPivotLevel respectively.

The value-set of a dimension along the aggregated fact are organized as nodes of a
tree structure, which contributes to the preservation of semantic relations and search.
Figure 1 describes our running example. The shown tuples adhere to a 3-dimensional
schema. The primary dimension is described by a 4-level hierarchy, while the other two
are described by a 3-level and a 2-level hierarchy respectively. Note that the last two
tuples do not contain values in d1 and d2 respectively. The selected pivot level for the
primary dimension is �02 and thus all the shown tuples have the same pivot key in the
primary dimension. All the value-sets in each dimension are organized in tree-structures
with common root keys.

The basic type of query supported in LinkedPeers is of the form:
q = (q0k, ...,qi j, ...,q(d−1)m)

over the fact(s) using an appropriate aggregate function. By qi j we denote the value for
the j-th hierarchy level of the i-th dimension which can also be the special ‘*’ (or ALL)
value.

2.2 Data Insertion

Our system handles both bulk insertions and incremental updates in a unified manner.
As our design implies one virtual overlay per dimension, one key (using the SHA1 hash
function for instance) for a selected pivot value of each dimension is generated.

530 A. Asiki, D. Tsoumakos, and N. Koziris

Tuples in a local database:
Primary Dim Dim1 Dim2 Fact
(a0,a1,a2,a3) (b0,b1,b2) (c0,c1) f1
(a0,a1,a2,a3) (b0,b1,b'2) (c0,c'1) f2
(a0,a1,a2,a'3) null (c0,c'1) f3
(a0,a1,a2,a''3) (b0,b'1,b''2) null f4

a0

a1

a2

a3 a'3 a''3

pivot
level

pivot
key

root
key

Fig. 1. A group of tuples with various value combinations among dimensions and the resulted
tree structure for the primary dimension

During data insertions, the information about the pivot value is vital (only for initial
insertions the pivot level can be selected according to the needs of the application).
The design of LinkedPeers assumes if a value vi j is selected as a pivot key during the
insertion of a tuple, every other tuple that contains vi j must also select it as its pivot key
for dimension i. To comply with this assumption, a node should be aware of the existing
pivot keys during the insertion of a new tuple. Thus, a fully decentralized catalogue
storing information about root keys and their respective pivot keys in the network is
implemented in LinkedPeers. Each root key is stored at the node with ID closest to its
value. Every time that a new pivot key corresponding to this root key is inserted in the
system, the root key node is informed about it and adds it in a list of known pivot keys.
The root key node is also aware of the MaxPivotLevel used during the insertion of its
values in the specific dimension.

The procedure for inserting the values of a tuple appropriately in all dimensions
constitutes of the following basic steps:

– Inform each root key of every dimension about the corresponding value-set
(vi,0, . . . ,vi,Li−1) of the tuple, so as to decide for the appropriate pivot level.

– Insert each value-set (vi,0, . . . ,vi,Li−1) to the corresponding ith-ring.
– Create or update links among the trees of secondary dimensions towards the pri-

mary dimension.

Primary dim

dim1

dim2

a0 a1 a2 a3

a''3

a2 b0 b1 b2
c0

Nod2

b0

Nod4 Nod1

Linked Table

a2 c1

Linked Table

No
NodNoNo

a0root key of
primary dim

root key of
dim1

Fig. 2. The created data structures after the insertion of the first tuple of Figure 1

LinkedPeers: A Distributed System for Multidimensional Data 531

Initially, the initiator contacts the root key of the primary dimension’s value-set. The
root key of the primary dimension is informed about the new tuple and indicates the
appropriate pivot level (if the same pivot key already exists, then its pivot level is used,
otherwise the MaxPivotLevel). Afterwards, the DHT operation for the insertion of the
tuple in the primary dimension starts and the tuple ends up to the node responsible for
the decided pivot key. The node responsible for the pivot key of the primary dimension
stores its value set in a tree structure and the whole tuple in a store defined as its local
database. Moreover, it stores the result(s) of the aggregate function(s) over all these
tuples (i.e., the results for a (pivot key, ∗, . . . ,*) query). Figure 2 demonstrates the inser-
tion of the value-set (a0,a1,a2,a3) in the primary ring of an overlay consisting of nodes
referred to as Nodi. The root key a0 does not exist in the overlay and �02 is selected
randomly as pivot level. The root index is created from a0 towards a2 and the tuple is
inserted to the node Nod1, which is responsible for the pivot key a2 according to the
DHT protocol. Nod1 inserts all the values of the tuple in its local database as well.

he next step is to store the value-sets for the remaining dimensions in the correspond-
ing ring. The node responsible for the primary key contacts each node responsible for
the root keys and is informed about the appropriate pivot level in di. Since the pivot
levels for the secondary dimensions are determined, the value-set of each dimension is
stored in the node responsible for its pivot key. Again, the respective aggregates are also
maintained in the nodes of the trees. The values of the secondary dimensions are associ-
ated to the primary dimension through the primary key. Each leaf value of a secondary
tree structure maintains a list of the primary keys that is linked to. The structure storing
the mappings among the leaf values and the primary keys is referred to as Linked Table.
In case of an update taking place, the existing indices for any value of the tuple are also
updated.

In Figure 2, the tree structures comprising of only one branch for the secondary
dimensions are shown as well. During the insertion of value-set (b0,b1,b2), the root
index b0 is created (the pivot level for c0 is the root level and no further indexing is
needed). Figure 3 shows the final placement of the values of the tuples of Figure 1
among the nodes of the overlay.

Primary dim

dim1

dim2

a0 a1 a2

a3

a''3

a'3

a2
b0 b1

b2

b'2b0 b'1 c0

Nod2

d
b0

a2

Nod3

Nod4 Nod1

Linked Table

a2 b''2

Linked Table

a2 c1

c'1 a2

Linked Table

NNoNodNo 3

NNoN odNodod

a0

Fig. 3. Final placement and indexing of the tuples of Figure 1 in LinkedPeers

532 A. Asiki, D. Tsoumakos, and N. Koziris

3 Query Processing

The queries posed to the system are expressed by conjunctions of multiple values. When
a query includes a pivot value, then the node responsible for this value can be found
with a simple DHT lookup. Otherwise, the native DHT mechanisms are not adequate
to query the rest of the stored values. The proposed techniques can be further utilized
to enable the search for any stored value.

The idea behind the approach followed for the insertion of tuples in the DHT overlay
is the maintenance of the linking among the multiple dimensions, which can be searched
either independently from each other or in conjunction with others. When the query
does not define a specific value for a dimension (a ‘*’-value), then any possible value is
acceptable for the query. A query is assumed to include up to d-1 ‘*’ for d dimensions.

LinkedPeers allows adaptive change of pivot levels according to the query skew.
Therefore, query initiators are not aware if any of the queried values correspond to a
pivot value, forcing them to issue consecutive lookups for any value contained in the
query according to the dimension priority, until they receive a result. Initially, a lookup
operation is initiated for the value of the dimension with the highest priority. If the node
holding the queried value cannot be located by the DHT lookup, then a lookup for the
next non-‘*’ value follows. If no results are returned for all the values in the query, then
the query is flooded among the nodes of the overlay.

3.1 Exact Match Queries

Queries concerning a pivot value of any ring are called exact match queries and can
be answered by the DHT lookup mechanism. The are two categories of an exact match
query:

Category 1: Query is q = (q0pivotlevel , . . .), where a pivot value of the primary dimen-
sion is defined in the query. Other values may be included as well. The DHT lookup
ends up at the node responsible for the pivot key of the primary dimension. If this is
the only value asked, the corresponding tree structure is searched for the aggregate fact.
Otherwise, the local database is scanned and the results are filtered according to the
remaining values locally.

Category 2: Query is q = (q0 j, . . . ,qipivotlevel , . . .), where j = pivotlevel. In this case,
a queried value in one of the secondary dimensions is a pivot value. The strategy fol-
lowed to resolve this query is that consecutive queries are issued until the node responsi-
ble for qipivotlevel is reached. If the query contains no other values, then the tree structure
of this node is adequate to answer it, otherwise the query is forwarded to all the nodes of
the primary dimension that store tuples containing qipivotlevel . These nodes query their
local databases to retrieve the relative tuples and send back the results to the initiator. If
more than one pivot values are present, then the query is resolved by the dimension with
the highest priority. In the example of Figure 3, a query for value b1 can be resolved by
the aggregated fact stored in Nod3. On the other hand, a query for the combination of
values (a3,b1,∗) reaches Nod2, which does not store adequate information to answer it
and (using its Linked Table) forwards it to Nod1, which queries its local database.

LinkedPeers: A Distributed System for Multidimensional Data 533

3.2 Flood Queries

Queries not containing any pivot value cannot be resolved by the native DHT lookup.
The only alternative is to circulate the query among all nodes and process it individually.
The hierarchical structure of data together with the imposed indexing scheme enable a
controlled flooding strategy that significantly reduces the communication cost.

Initially, a flood query is forwarded from a node to its closest neighbour in the DHT
substrate. Each visited node searches its tree structures for any of the values included in
the query. The visited nodes without any relative data are avoided for future forwarding
of the query during the rest of the procedure for the flood resolution.

Query forwarding continues until any of the queried values is found in the stored
trees. This node becomes the coordinator of the flood procedure. If more than one of
the queried values are found in the same node, then the query is resolved in the ‘virtual’
ring of the dimension with the highest priority.

The found value may belong to a level either below the pivot level or above the pivot
level. In the first case, there are no other trees with the specific value. The node either
sends the aggregated fact to the initiator of the query or forwards it to the nodes of the
primary dimension following the same strategy described for the second category of
the exact match queries. Otherwise, there may exist other trees with the same value. For
example, if a flood message for value a1 in Figure 3 reaches Nod1, other nodes with
the value a1 and different pivot keys may also exist. Yet, it is certain that this value is
not stored at a node corresponding to a different root key. Thus, the flood message is
forwarded to the node with the corresponding root key, which becomes the coordinator
of the procedure from now on. This node forwards the queries to the nodes whose pivot
keys it knows of, with each of them either returning the aggregated fact (when the value
belongs to the primary dimension or only a single dimension is queried) or a set of
candidate nodes that are linked in the primary dimension.

3.3 Materialized Views

In many high-dimensional storage systems, it is a common practice to pre-compute
different views (GROUP-BYs) to improve the response time. For a given data set R de-
scribed by d (dimensions) annotated by single-level hierarchies, a view is constructed
by an aggregation of R along a subset of the given attributes resulting in 2d different
possible views (i.e., exponential time and space complexity). The number of levels in
each dimension adds to the exponent of the previous formula. In LinkedPeers, we con-
sider a query-based approach to tackle the view selection problem: The selection of
which views to pre-compute is query-driven, as we take advantage of the evaluation
process to calculate parts of various views that we anticipate to need in the future.

Figure 4 depicts all the possible combinations of the query values (a1,b2,c1), rela-
tive to Figure 3. The attributes participating correspond to levels {�01, �12, �31} respec-
tively. Each combination (or view identifier) consists of a subset of attribute values in
{d0,d1,d2} ordered according to the priorities of dimensions in decreasing order. More-
over, each view identifier in the i-th level of the tree structure in Figure 4 is deduced by
its successor view identifier in (i-1)-th level by omitting the participation of one dimen-
sion each time. When a value of a dimension is omitted in a view identifier, then it is

534 A. Asiki, D. Tsoumakos, and N. Koziris

considered that its value is a ‘*’-value. The identifiers that have already registered on
the left-side of this tree are omitted.

Let Si ⊂ S be the subset of view identifiers that start with the attribute value defined
in dimension di. We call the subset of the specific view identifiers as Partitiondi and
the dimension that participates in all identifiers of the dimension as Rootdi . In Figure 4,
Partition0 comprises of all view identifiers that contain a1, which is the Root0, while a1

does not appear in any identifier of the remaining partitions.

(a1 ,b2 ,c1)

(a1, b2) (a1, c1)

(a1)

(b2 ,c1)

(b2) (c1)

Partition0

Partition1

Partition2

Root0 Root1 Root2

Query:(a1 ,b2 ,c1)
refference value

Fig. 4. All possible view identifiers for a query combining values in 3 dimensions

According to the strategy followed during flooding, all the nodes with trees contain-
ing the found value used for the resolution of the query (hence reference value) are
definitely contacted. Thus, we conclude with certainty that there exist no extra nodes
with tuples containing the reference value. This assumption is not valid for the rest of
the values included in the query. This observation is significant for determining which
views can be materialized and stored for future queries in a distributed manner:

Let S be the set of all the 2d identifiers. We deduce that only a subset Spartial ⊂
S of the view identifiers can be fully materialized, namely only the identifiers of the
combinations including the reference value. In the example of Figure 4, let us assume
that the flooded query for the combination (a1,b2,c1) reaches Nod2 and the reference
value is b2. The query will be forwarded to Nod1 and it will be resolved. Nevertheless,
it is not ensured that there are no other nodes storing tuples with a1 or c1. Thus, Spartial

comprises of the view identifiers in the non-grey boxes.
In more detail, the calculation of the views occurs among the nodes of LinkedPeers

as follows: each peer that returns a found aggregated fact in a flooded query, also cal-
culates the available view identifiers in Spartial stored in its local database. Due to the
flooding strategy, every peer with trees containing the reference value will be definitely
contacted. According to this procedure, the following conclusions are made:

– The Spartial may comprise only of identifiers belonging to Partitiond0,Partitiond1, ..,
Partitiondre f , where the Rootdre f of Partitiondre f is the reference value used for the
resolution of the flooded query.

– The upper bound of view identifiers that can be materialized is 2d−1 (‘ALL’ is not
materialized), if the query does not contain any ‘*’-value and without the restriction
of the flood strategy. In case of ‘*’-values, the number of view identifiers is 2d−n−1,

LinkedPeers: A Distributed System for Multidimensional Data 535

where n is the number of ‘*’-values. According to the type of the inserted dataset
(number of dimensions, number of tuples), the type of the query workload (average
number of ‘*’-values per query) and the specifications of the system, various policies
can be defined to limit the number of calculated aggregated results.

Upon the reception of all the results, the coordinator merges the returned aggregated
facts for each view identifier. Afterwards, it calculates the hash value of each Rootd j

and inserts each Partitiond j (j ∈ [0,dre f]) to the overlay. The node responsible for the
Rootdre f also creates indices towards the locations of its tree structures to forward any
query that cannot be resolved by the stored materialized views. The idea behind the
splitting of the partitions is that the stored combinations need to be located with the
minimum message cost, namely with the primitive DHT lookup. Since a query is dis-
sembled in its elements and the queries are issued according to the priority of the dimen-
sions, each identifier is stored to the dimension with the highest priority of its values.

Although any approach of existing relational schemas for storing views could be
utilized to store the aggregated facts, we maintain simple ‘linked-listed’ structures. As
shown in Figure 5, the view identifiers of Figure 4 are stored to the nodes responsible
for the values appearing in the ‘dark grey’ boxes. All the queries arriving at the node
responsible for Root0 (namely a1) should also include the Rootdre f , which is b2. The
combination of value(s) that a query should include so as to be resolved by the existing
view identifiers are marked with red boxes.

The created indices and views are soft-state and they expire after a predefined period
of time, which is renewed each time that an existing index is used. The indices are
bidirectional to ensure data consistency during re-indexing operations. Finally, we pose
a limit to the maximum number of indices held by each node. Overall, the system tends
to preserve the most “useful” indices towards the most frequently queried data items.

Primary dim

dim1

dim2

a0 a1 a2

a3

a''3

a'3

a2
b0 b1

b2

b'2b2 c1 c0

Nod2

d
b0

a2

Nod4 Nod1

Linked Table

a2 c1

c'1 a2

Linked Table

NNoN dNodod

a0

 a1 b2
Pri

 c1
Partition0

Partition1

Fig. 5. Distribution of materialized view identifiers among the nodes of LinkedPeers

3.4 Indexed Queries

When a query reaches a node holding an index, then the stored views (if any) are
searched for the combination of values included in the query. If the combination is
found, the aggregated value is returned to the initiator. In the case that the combination
does not exist, but the index is aware of the nodes with the pivot keys for the specific
value, the query is forwarded to the respective pivot keys. If the query is simple or the

536 A. Asiki, D. Tsoumakos, and N. Koziris

found value belongs to the primary dimension, then the aggregated facts for the query
are returned. Otherwise, the reached nodes return the locations of the primary ring that
are correlated with the indexed value. The query is forwarded to these nodes contacting
their local database. After an indexed query which has not been resolved with the use of
a stored view identifier, the procedure for materializing all the possible view identifiers
described in the Section above is followed.

4 Adaptive Query-Driven Re-indexing

A significant feature of our system is that it dynamically adapts its indexing level on
a per node basis to incoming queries. To achieve this, we introduce two re-indexing
operations regarding the selection of pivot level: Roll-up towards more general levels of
the hierarchy and drill-down to levels lower than the pivot level.

The idea behind individual re-indexing of stored tuples is based on the fact that each
node has a global view of the queries regarding each level �i j < pivotlevel, but only
a partial view of the queries for each level �i j > pivotlevel of a tree. Therefore, it has
sufficient information to decide if a drill-down will be favorable for the values of this
tree. On the other hand, a node has to cooperate with other peers that store a value of a
level �i j < pivotlevel in order to decide if this level is more appropriate. The decision
for a possible re-indexing operation is made according to statistics collected by the in-
coming queries in the trees responsible for the specific value used during the resolution
of a query. The goal is to increase the number of queries answered as exact matches
in each dimension. The decision process for a possible re-index is triggered only after
an indexed or flooded query only for the reference value, following the procedure de-
scribed in our previous work [3]. Nevertheless, major enhancements have been made
for the customization of the re-indexing operations in multiple dimensions due to the
requirements arisen from the interconnection among the rings.

Roll-up: In general, if a node detects that the demand on a value above the pivot level
relatively exceeds the demand for the other levels, it initiates the procedure to decide if a
roll-up towards this level would be beneficial (communicating with the other interested
nodes). A positive decision leads to the re-insertion of all trees containing the specific
value with the new hash value in the overlay and the trees with the old pivot value are
deleted. During a roll-up, one or more nodes re-insert their trees (or the whole tuples in
the case of the primary dimension), which end up in one node responsible for the new
pivot key. Each node also informs the root key about the new location and the new pivot
key and erases all the soft-state indices towards any value of the re-indexed trees. The
views containing any of these values in other rings are not affected, since the relocation
of the trees does not affect the stored aggregated facts. The final step is the update of the
links among the primary and the secondary rings: Each participating node signals the
nodes that is linked to so as to replace the old pivot levels of the secondary ring with the
new ones in their local databases (roll-up is performed in a secondary ring) or the links
in all trees of the secondary rings related to the rolled-up trees, since the links need to
be valid for the resolution of future queries.

Drill-down: The drill-down procedure is less complex, due to the fact that only one
node holds the unique tree with values for this level. Thus, the node can locally decide

LinkedPeers: A Distributed System for Multidimensional Data 537

if the drill-down is needed. In this case, it splits the tree to tuples grouped by the new
pivot key and re-inserts them in LinkedPeers. The root key is also informed about the
new situation and all existing indices towards these trees are erased. Finally, the node
that decided the drill-down updates the links among itself and the rest of the rings as
described for the roll-up procedure.

5 Experimental Results

5.1 Simulation Setup

We now present a comprehensive evaluation of LinkedPeers. Our performance results
are based on a heavily modified version of the FreePastry [4] using its simulator for the
network overlay, although any DHT implementation could be used as a substrate. The
network size is 256 nodes, all of which are randomly chosen to initiate queries.

Our synthetic data are trees (one per dimension) with each value having a single
parent and a constant number of mul children. The tuples of the fact table to be stored
are created from combinations of the leaf values of each dimension tree plus a randomly
generated numerical fact. By default, our data comprise of 1M tuples, organized in
a 4-dimensional, 3-level hierarchy. The number of distinct values of the top level is
base = 100 with mul=10. The level of insertion is, by default, �1 in all dimensions. For
the query workloads, a 3-step approach is followed: We first identify which part of the
initial database (i.e., tuple) the query will target (TupleDist). Next, the probability of
a dimension d not being included (i.e., a ‘*’ in the respective query) is Pd∗. Finally,
for included dimensions, we choose the level that the query will target according to the
levelDist distribution. In our experiments, we express a different bias using the uniform,
80/20 and 90/10 distributions for TupleDist and levelDist, while Pd∗ increases gradually
from 0.1 for the primary dimension to 0.8 for the last utilized dimension. Generated
queries arrive at an average rate of 1 query

time unit , in a 50k time units total simulation time.
In this section, we intend to demonstrate the performance of our system for differ-

ent types of inserted data and query workloads. The experimental results focus on the
achieved precision (i.e., the percentage of queries which are answered without being
flooded) and cost in terms of messages per query.

5.2 Performance under Different Number of Dimensions and Levels

In the first set of experiments, we identify the behavior of our system under a variety of
data workloads for different number of dimensions and different number of levels. The
queries target uniformly any tuple of the dataset and the levels of the hierarchies in each
dimension. In the first set of the experiments, we vary the number of dimensions, while
each dimension is described by a 3-level concept hierarchy. Figure 6 demonstrates the
percentage of the queries of the query workload that include at least one pivot value
(Pivot Level Queries), the percentage of the queries resolved as exact match
queries in LinkedPeers (Exact Match) and the achieved precision. The precision for
non-flooded queries remains above 85% for all types of datasets, despite the number
of dimensions. Queries that are not directed towards the pivot level are answered with

538 A. Asiki, D. Tsoumakos, and N. Koziris

the use of an index or a materialized view assuring that the precision remains high. The
difference among the exact matches and the pivot level queries is due to the utilized
strategy that it is preferred for a query to be resolved as an indexed query in a dimension
with higher priority than as an exact match to a dimension with a lower priority.

In Figure 7, the results for 4-dimensional workloads with varying number of level
in the hierarchies are demonstrated. The decrease in the precision (from 99% to about
70%) is due to the fact that the increase of levels results to the decrease in the probability
of querying a value that it is already indexed. Since the probability of utilizing an index
decreases, all the queries targeting the initial pivot level (�1) even in the secondary rings
are resolved as exact matches.

2 4 6 8
Number of Dimensions

0
10
20
30
40
50
60
70
80
90

100

pe
rc

en
ta

ge

Pivot Level Queries
Exact Match
Precision

Fig. 6. Percentage of queries for different
number of dimensions with 3-level hierarchies

2 3 4 5
Number of Levels

0
10
20
30
40
50
60
70
80
90

100

pe
rc

en
ta

ge

Pivot Level Queries
Exact Match
Precision

Fig. 7. Precision for different number of levels
in 4-dimensional datasets

5.3 Query Resolution for Different Types of Datasets

In this experiment, the achieved precision of LinkedPeers for various types of datasets
is demonstrated in Figure 8. The number of distinct values in the top level base and
the number of children mul are altered changing the density of the dataset. Base and
mul influence the connections among primary and secondary rings and the number
of distinct values in each level. As shown in Figure 8, there is a small decrease in
the precision of non-flooded queries, while the base and the mul increases (this de-
creases the dataset density). Nevertheless, LinkedPeers achieves to resolve the majority
of queries without flooding. The percentage of exact match queries in the primary di-
mension (Exact PR) remains stable for all datasets as shown in Figure 9, since it
depends on the query workload. Nevertheless, the exact matches in the secondary rings
(Exact SR) increase as the indexed queries decrease, since the indices of the primary
dimension are used less, and more queries are resolved by the secondary rings.

5.4 Precision for Skewed Workloads

The adaptive behavior of LinkedPeers is identified in this set of experiments by testing
the system under a variety of query loads. Specifically, we vary the TupleDist and the
number of queries directed to each level by increasing the bias of levelDist. In Figure
10, data are skewed towards the higher levels of the hierarchy. The percentage of queries
including at least one value in �0 or �1 are denoted as Queries L0 and Queries L1

LinkedPeers: A Distributed System for Multidimensional Data 539

2 5 10 20 50
mul

0

20

40

60

80

100

pr
ec

is
io

n(
%

)
base=10
base=50
base=100
base=200

Fig. 8. Impact of mul and base in the
achieved precision

2 5 10 20 50
mul

0

20

40

60

80

100

pe
rc

en
ta

ge

Exact_PR(base=10)
Exact_SR(base=10)
Indexed(base=10)
Exact_PR(base=100)
Exact_SR(base=100)
Indexed(base=100)

Fig. 9. Percentage of each query category for
different data workloads

respectively. By making more bieased the levelDist, we observe remarkably high pre-
cision rates (close to 100%). Despite the fact that the percentage of queries towards
�1 (Queries L1) decreases significantly as the levelDist becomes more biased, the
reindexing operations that take place ensure that the majority of queries are resolved as
exact match queries by adjusting appropriately the pivot levels in each dimension.

Figure 11 depicts the results, when the query workload favors the lower levels of
the hierarchies.The decrease to the precision for more biased levelDist is due to the
fact that lower levels of the hierarchy have a considerably larger number of values. By
increasing the number of queries towards these values, we increase the probability of
queries targeting non-indexed values until the re-indexing mechanisms adapt the pivot
levels of the popular trees appropriately.

(UNI,UNI) (UNI,80/20) (80/20,80/20) (UNI,90/10) (90/10,90/10)

(TupleDist,LevelDist)
0

20

40

60

80

100

pe
rc

en
ta

ge

Queries_L0
Queries_L1
Exact Match
Precision

Fig. 10. Precision and exact match queries for
skew towards higher levels and various (Tu-
pleDist,levelDist) combinations

(UNI,UNI) (UNI,80/20) (80/20,80/20) (UNI,90/10) (90/10,90/10)

(TupleDist,LevelDist)
0

20

40

60

80

100

pe
rc

en
ta

ge

Queries_L1
Queries_L2
Exact Match
Precision

Fig. 11. Precision and exact match queries for
skew towards lower levels and various (Tu-
pleDist,levelDist) combinations

5.5 Testing against the Use of Materialized Views

Apart from the re-indexing operations, the materialized views can be also utilized to
minimize the query cost. In the next experiment, we test our method against query
workloads targeting the dataset either uniformly or biased (90/10) (TupleDist) with
uniform and biased (90/10) skew (levelDist) towards the higher levels (denoted as UP)

540 A. Asiki, D. Tsoumakos, and N. Koziris

and towards the lower levels (DOWN). As shown in Figure 12, the queries resolved with
the utilization of materialized views (ViewQ) increase in the query workloads targeting
a part of the dataset at most, since the probability also increases for querying a materi-
alized combination. More existing views are utilized, when the queries target uniformly
all the levels of the hierarchies in all dimensions. In this case, the reindexing mecha-
nisms cannot adjust the pivot levels to all the incoming queries and nearly the majority
of indexed queries (Indexed) are resolved with the use of a materialized view.

5.6 Cost of the Various Types of Query Resolution

The cost of a query is considered as the messages that need to be issued for its resolu-
tion. A query resolved as exact match in the primary dimension utilizes only the DHT
lookup mechanism. Figure 15 depicts the average number of messages only for exact
queries resolved by secondary dimensions (Exact SR), which number is significantly
smaller (less than 20% of all queries in all cases) and indexed queries (Indexed). The
average number of messages for Exact SR depends on the type of dataset, namely
the number of links among secondary pivot keys and primary pivot keys. When the
query workload is skewed towards the higher levels (UP), then the messages decrease
due to the fact that popular trees roll-up towards �0. Thus, the secondary keys are con-
nected to a smaller number of primary keys. The opposite observation is valid for the
(DOWN) query workloads. It is important to notice, that the majority of the indexed
queries (Indexed) in the workloads with higher cost for the indexed queries are re-
solved with views (see Figure 12), thus avoiding this cost.

(UNI,UP) (UNI,UNI) (UNI,DOWN) (90/10,UP) (90/10,UNI) (90/10,DOWN)

(TupleDist,LevelDist)
0

20

40

60

80

100

pe
rc

en
ta

ge

Indexed (base=100)
ViewQ (base=100)
Indexed (base=10)
ViewQ (base=10)

Fig. 12. Utilization of materialized views com-
pared to queries resolved as indexed

(UNI,UP) (UNI,UNI) (UNI,DOWN) (90/10,UP) (90/10,UNI) (90/10,DOWN)

(TupleDist,LevelDist)
0

50

100

150

200

A
vg

. M
sg

s

Exact_SR (base=100)
Indexed (base=100)
Exact_SR (base=10)
Indexed (base=10)

Fig. 13. Average number of messages for ex-
act matches in secondary rings and indexed
queries

5.7 Performance for Dataset of the APB Benchmark

The adaptiveness of the system is also tested using some realistic data. For this reason,
we generated query sets by the APB-1 benchmark [5]. APB-1 creates a database struc-
ture with multiple dimensions and generates a set of business operations reflecting basic
functionality of OLAP applications. The generated data are described by 4-dimensions.
The customer dimension (C) is 100 times the number of members in the channel di-
mension and comprises of 2 levels. The channel dimension (Ch) has one level and 10

LinkedPeers: A Distributed System for Multidimensional Data 541

members. The product (P) dimension is a steep hierarchy with 6 levels and 10.000 mem-
bers. Finally, the time dimension (T) is described by a 3-level dimension and made up
of two years. The dataset is sparse (0.1 density) and comprises of 1.3M tuples.

Figure 14 shows the percentage of exact match queries resolved in primary and sec-
ondary rings compared to all exact match queries of a 25K query workload and for
different combinations of ordering of dimensions. For all orderings, the precision of
non-flooded queries is over 98%. The selection of the primary dimension influences the
number of exact match queries in the primary ring. Figure 15 presents the average num-
ber of messages for exact matches resolved by a secondary ring and indexed queries,
since only a DHT lookup is performed for exact match queries in the primary ring. The
average number of messages is small for both exact and indexed queries, apart from
the case that the customer dimension has been selected as a primary dimension. In the
rest of the cases, the resolution of the queries occurs with a very low cost in terms of
additional nodes to visit, even though the majority of the exact queries are resolved
by a secondary dimension, as shown in Figure 14. The increase of messages for the
CPChT dataset is due to the large number of distinct values used as pivot keys and thus
each node responsible for a pivot key stores smaller portion of the total dataset in its
local database. For all combinations of datasets, the overhead of the additional index-
ing structures needed by LinkedPeers such as tree structures, root indices, links and
indices and statistical information is up to 1%. Thus, LinkedPeers can be considered as
a lightweight solution for indexing multidimensional hierarchical data.

ChCPT PCChT TPCCh CPChT
0

20

40

60

80

100

pe
rc

en
ta

ge

Exact_PR
Exact_SR
Precision

Fig. 14. Precision for APB query workload in
LinkedPeers

ChCPT PCChT TPCCh CPChT
0

50

100

150

200

A
vg

. M
sg

s

Exact_SR
Indexed

Fig. 15. Average number of messages for exact
match and indexed queries

6 Related Work

P2P systems based on Distributed Hash Tables (DHTs), for example [6], appear greatly
effective for storing and locating key− value pairs. Nevertheless, complex queries can-
not be supported without the implementation of additional indexing mechanisms. An
approach to enable advanced search facilities in DHTs is the replacement of the hash
function and the respective modification of the structure and behavior of the overlay
to serve multi-attribute queries. Space Filling Curves [7], [8] are usually used as a re-
placement of the cryptographic hash function of the DHT protocols to produce a lo-
cality preserving mapping of multiple attribute values to a single key. In [8], an SFC

542 A. Asiki, D. Tsoumakos, and N. Koziris

hash function is utilized over hierarchical attributes. Nevertheless, it is assumed that
the full path from the root level towards the searched level is known and the values
for all attributes in a query are given. Afterwards, the queries are transformed to range
queries resolved by consecutive DHT lookups, usually resulting in flooding among all
nodes. Our implementation does not pose any requirement for querying all the dimen-
sions and allows the querying of any level of the hierarchy separately. There has been
also significant work in the area of databases over P2P networks. PIER [9] proposes a
distributed architecture for relational databases supporting operators such as join and
aggregation of stored tuples. The Chatty Web [10] considers P2P systems that share
(semi)-structured information but deals with the degradation, in terms of syntax and se-
mantics, of a query propagated along a network path. In GrouPeer [11], SPJ queries are
sent over an unstructured overlay in order to discover peers with similar schemas. Peers
are gradually clustered according to their schema similarity. PeerDB [12] also features
relational data sharing without schema knowledge. All these approaches offer signifi-
cant and efficient solutions to the problem of sharing structured and heterogeneous data
over P2P networks. Nevertheless, they do not deal with the special case of hierarchies
over multidimensional datasets.

7 Conclusions

In this work, we described LinkedPeers, a distributed infrastructure for storing and pro-
cessing multi-dimensional hierarchical data. Our scheme distributes large amount of
partially-structured data over a DHT overlay in a way that hierarchy semantics and
correlations among dimensions are preserved. Each data item can be described by an
arbitrary number of dimensions and aggregate queries are resolved in a fully distributed
manner. Re-indexing and pre-computation mechanisms are triggered dynamically dur-
ing the resolution of queries. Our experimental evaluation over multiple and challenging
workloads confirmed our premise: Our system manages to efficiently answer the large
majority of queries using very few messages. It adds small overhead in storing hierar-
chical data and provides a lightweight indexing scheme, resolves efficiently aggregated
queries and adapts to sudden shifts in skew by enabling re-indexing operations.

References

1. MacManus, R.: The coming data explosion (2010),
http://www.readwriteweb.com/archives/

2. Linked Data - Connect Distributed Data across the Web,
http://linkeddata.org/

3. Asiki, A., Tsoumakos, D., Koziris, N.: Distributing and searching concept hierarchies: an
adaptive dht-based system. Cluster Computing 13, 257–276 (2010)

4. FreePastry,
http://freepastry.rice.edu/FreePastry

5. OLAP Council APB-1 OLAP Benchmark,
http://www.olapcouncil.org/research/resrchly.htm

6. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
To-Peer Lookup Service for Internet Applications. In: Proc. of the ACM SIGCOMM (2001)

http://www.readwriteweb.com/archives/
http://linkeddata.org/
http://freepastry.rice.edu/FreePastry
http://www.olapcouncil.org/research/resrchly.htm

LinkedPeers: A Distributed System for Multidimensional Data 543

7. Schmidt, C., Parashar, M.: Squid: Enabling search in dht-based systems. Journal of Parallel
and Distributed Computing 68(7), 962–975 (2008)

8. Lee, J., Lee, H., Kang, S., Kim, S.M., Song, J.: CISS: An efficient object clustering frame-
work for DHT-based peer-to-peer applications. Computer Networks 51(4)

9. Huebsch, R., Hellerstein, J., Boon, N.L., Loo, T., Shenker, S., Stoica, I.: Querying the Internet
with PIER. In: VLDB (2003)

10. Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent Semantics
Through Gossiping. In: WWW Conference (2003)

11. Kantere, V., Tsoumakos, D., Sellis, T., Roussopoulos, N.: GrouPeer: Dynamic clustering of
P2P databases. Inf. Syst. 34(1), 62–86 (2009)

12. Ooi, B., Shu, Y., Tan, K., Zhou, A.: PeerDB: A P2P-based System for Distributed Data
Sharing. In: ICDE (2003)

A Vertical Partitioning Algorithm for

Distributed Multimedia Databases

Lisbeth Rodriguez and Xiaoou Li

Department of Computer Science, CINVESTAV-IPN, Mexico D.F., Mexico
lisbethr@computacion.cs.cinvestav.mx, lixo@cs.cinvestav.mx

Abstract. Efficient retrieval of multimedia objects is a key factor for
the success of distributed multimedia databases. One way to provide
faster access to multimedia objects in these databases is using vertical
partitioning. In this paper, we present a vertical partitioning algorithm
for distributed multimedia databases (MAVP) that takes into account
the size of the multimedia objects in order to generate an optimal verti-
cal partitioning scheme. The objective function of MAVP minimizes the
amount of access to irrelevant data and the transportation cost of the
queries in distributed multimedia databases to achieve efficient retrieval
of multimedia objects. A cost model for evaluating vertical partitioning
schemes in distributed multimedia databases is developed. Experimental
results clarify the validness of the proposed algorithm.

Keywords: Distributed multimedia databases, Vertical partitioning.

1 Introduction

In traditional (relational and object-oriented) database systems, the main per-
formance concern is efficiency (how long it takes to answer a query) [1–3]. In
multimedia database systems, efficiency is even more important due to the large
size of multimedia objects [4]. Multimedia databases (MMDBs) are usually ac-
cessed remotely over a network. Multimedia objects identified as relevant to
the query must be retrieved from the server and transmitted to the client for
presentation [5].

Vertical partitioning (VP) techniques can be applied to MMDBs to provide
faster access to relevant objects. This is because for these databases, attributes
tend to be of very large size objects and without any particular storage technique
queries are processed by sequential scanning of the complete database even when
the queries do not require all the attributes of the database, the attributes stored
in a database which are irrelevant (i.e., not required by a query) add considerably
to the retrieval and processing cost of the queries, this will lead to too many disk
accesses. Using VP techniques we can reduce the irrelevant attributes accessed
by the queries in order to provide efficient retrieval of multimedia objects [6].

In distributed MMDBs, queries must retrieve data from multiple sites. A
major cost in retrieving multimedia data from multiple sites is the cost incurred
in transferring multimedia objects from different sites to the site where the query

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 544–558, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Vertical Partitioning Algorithm for Distributed Multimedia Databases 545

is initiated [7]. In these databases, when the relevant attributes (i.e., required
by the queries) are in different fragments and allocated to different sites, there
is an additional cost due to remote access of data. Thus one of the desirable
characteristics of these databases that need to be achieved through VP is to
maximize local accessibility, i.e., each site must be able to process the queries
locally with minimal access to data located at remote sites. Ideally, we would
like any query to access only the attributes of a single fragment with no or
minimal access of irrelevant attributes in that fragment. But this is impossible
to achieve in the general case because queries access different and overlapping
subsets of attributes and the relevant attributes may reside in different sites. So,
we only have to look for a vertical partitioning scheme (VPS) which minimizes
the amount of irrelevant attributes and remote attributes accessed [8].

Most VP techniques do not consider the size of the attributes in the VP pro-
cess, this is suitable for traditional databases which only contain alphanumeric
attributes because the size of different alphanumeric attributes is similar. Nev-
ertheless, MMDBs contain both alphanumeric and multimedia attributes [9],
therefore the size of the attributes is very varied. We must take into account
the size of the attributes in order to reduce the access to irrelevant multime-
dia attributes and the transportation of multimedia attributes in distributed
MMDBs.

We are concerned with creating a VP algorithm for distributed MMDBs called
MAVP (Multimedia Adaptable Vertical Partitioning), which takes into account
the size of the attributes in the VP process. The objective function of MAVP
can efficiently increase local accessibility and reduce the amount of access to
irrelevant multimedia attributes, so that an optimal VPS could be obtained.

2 Background

2.1 Vertical Partitioning

VP of a table T produces fragments fr1, fr2, ... , frp each of which contains a
subset of the attributes of T ’s attributes as well as the primary key of T. The
objective of VP is to divide a table into a set of smaller tables so that many of the
queries will run on only one fragment. In this context, an ”optimal” partitioning
is one that produces a VPS which minimizes the execution time of queries that
run on these fragments [10].

Several VP techniques have been developed in traditional databases. The main
classification of VP is affinity-based and cost-driven approaches [11].

The former is based on affinity which measures if two attributes are accessed
together by the queries, the VP process in these approaches is as follows. First,
they use as input an Attribute Usage Matrix (AUM), which has information
about queries with regard to their attributes accessed and their frequency. Next,
an Attribute Affinity Matrix (AAM) is constructed according to this information.
If a query use two attributes together, then the value of affinity of these attributes
is increased in AAM with the value of the frequency of such query. Then, the
AAM is clustered in a way that attributes with most affinity between them are

546 L. Rodriguez and X. Li

grouped together. Finally, the AAM is partitioned to get the fragments. Research
work includes [12–16].

The main disadvantage of affinity-based approaches is that this measure does
not reflect the closeness or affinity when more than two attributes are involved.
Hence algorithms which use AAM are using a measure that has no bearing on the
affinity measured with respect to the entire cluster [8]. Cost-driven approaches
offer a solution to this problem. In cost-driven algorithms, a cost model is used
to get the vertical fragments. The VP process in these algorithms is as follows.
First, they use an AUM as input like the affinity-based approaches. Then, they
cluster the attributes and get the fragments according to their cost model, the
main objective is to reduce the cost of the queries. Research work includes [8],
[11], [17].

2.2 Multimedia Database Partitioning

Current VP techniques only consider alphanumeric data. Although some ap-
proaches to fragment MMDBs have been recently provided in the literature [18],
[19], [9], they only focus on horizontal partitioning. To the best of our knowl-
edge, VP of MMDBs only has been addressed in [20]. However, the fragments
are obtained using a cost model based on the savings in number of disk accesses
and it does not take into account the transportation cost which is a major cost
in distributed MMDBs [7].

Scenario. To illustrate and motivate our approach throughout the paper, we
consider the following scenario of a simple MMDB used to manage equipment
in a machinery sell company. The database consists of table EQUIPMENT(id,
name, image, graphic, audio, video), where each tuple describes information
about a specific equipment, including its image, graphic, audio, and video ob-
jects. Let us also consider the following queries:

q1:Find all images and graphics of chain saws
q2:Find name, audio and video with id ”MB01”
q3:Find all graphic, audio and video
q4:Find all image of water pumps

Motivation. Both affinity-based and cost-driven VP approaches only focus on
the attributes used by the queries and their frequency as input to the process of
VP. Traditional databases only contain alphanumeric attributes, the size of dif-
ferent alphanumeric attributes is very similar. For example, we take the AUM in
[14] to illustrate how the difference in size between the attributes is not relevant.
The 0/1 entries in the AUM show whether or not the attributes (A) are used by
the queries (Q). The frequency column (F) shows for each query the frequency
of access to attributes per unit time period (e.g., a day). The attribute size row
(S) gives the number of bytes of each attribute. As we can see in Table 1, the
smallest attribute is a7 with 3 bytes and the largest attribute is a5 with 15 bytes,
so the difference between them is 12 bytes.

A Vertical Partitioning Algorithm for Distributed Multimedia Databases 547

Table 1. Attribute Usage Matrix of a traditional database

Q/A a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 F

q1 1 0 0 0 1 0 1 0 0 0 25
q2 0 1 1 0 0 0 0 1 1 0 20
q3 0 0 0 1 0 1 0 0 0 1 25
q4 0 1 0 0 0 0 1 1 0 0 35
q5 1 1 1 0 1 0 1 1 1 0 25
q6 1 0 0 0 1 0 0 0 0 0 25
q7 0 0 1 0 0 0 0 0 1 0 25
q8 0 0 1 1 0 1 0 0 1 1 15

S 10 8 4 6 15 14 3 5 9 12

Nevertheless, in MMDBs the size of attributes is very important, because mul-
timedia attributes usually require a larger amount of memory and disk storage
(e.g., it is common that a video clip occupies more than 100 MB of disk storage)
than alphanumeric attributes. Since MMDBs have both alphanumeric and mul-
timedia attributes, the size of different attributes is very varied. For example,
in the AUM of the table EQUIPMENT of Table 2 we can see that the smallest
attribute is id with 8 bytes and the largest attribute is video with 39518 bytes,
so the difference between them is 39510 bytes.

Table 2. Attribute Usage Matrix of a multimedia database (table EQUIPMENT)

Q/A id name image graphic audio video F

q1 0 1 1 1 0 0 15
q2 1 1 0 0 1 1 10
q3 0 0 0 1 1 1 25
q4 0 1 1 0 0 0 20

S 8 20 900 500 4100 39518

Traditional database applications use data of fixed size but the size of multi-
media data in MMDBs like audio and video is not fixed and can vary dynam-
ically. Nevertheless, the database administrator (DBA) is in charge to specify
the maximum size of a multimedia attribute. For example, in Table 2 the size of
video is 39518 bytes, this means that all the videos in the database may have a
maximum size of 39518 bytes.

With current fragmentation approaches all the attributes are considered equal
because they do not consider the size of attributes. Nevertheless, in distributed
MMDBs it is not the same accessing an irrelevant attribute id than an irrelevant
attribute video and it is also different accessing remotely an attribute id than
an attribute video. We need to develop a VPS taking into account the size of
attributes, because we can avoid the access to irrelevant very large multimedia
objects and avoid the transference of very large multimedia objects in order to
get a better VPS.

548 L. Rodriguez and X. Li

3 Multimedia Adaptable Vertical Partitioning Algorithm
(MAVP)

MAVP requires as input AUM and the size of attributes. It is an extension of
the AVP algorithm in [17], so it supports n-way VP as well as best-fit VP of
MMDBs. The former is to generate the specific number of fragments required by
the user, the latter is to generate an overall optimal partitioning that minimizes
the processing cost of queries without restriction on the number of fragments
generated.

3.1 Partition Tree

AVP is based on a bottom–up approach. It first begins with single attribute
fragments. And then, it forms a new fragment by selecting and merging two
fragments of them. This process is repeated until a fragment composed of all
data attributes is made. This kind of bottom-up approach generates a binary
tree, which is called a partition tree (PT). Fig. 1 shows the PT of the table
EQUIPMENT obtained by MAVP.

Fig. 1. Partition tree of the table EQUIPMENT obtained by MAVP

When two fragments are merged the amount of remote relevant attributes
accessed is decreased while the amount of irrelevant attributes accessed by the
queries is increased. For example, in Table 2 we have that both queries q2 and
q3 access the multimedia attributes audio and video, at the beginning of the
process they are in different fragments, but if they are merged into a fragment,
q2 and q3 have only to access such fragment, resulting in decreased the access
to remote attributes.

A Vertical Partitioning Algorithm for Distributed Multimedia Databases 549

In addition, merging the attributes causes that the amount of irrelevant at-
tributes accessed by the queries is increased. For example, if the attributes name
and image are merged into a fragment, the query q2 only uses the alphanumeric
attribute name, but it also has to access the multimedia attribute image. There-
fore, the merged fragment will increase the amount of accesses to irrelevant
attributes.

In AVP in each step during constructing a PT, two nodes (fragments) are
selected which maximizes the merging profit defined below when they are merged
into a node (fragment).

MergingProfit(AV P) = c · d DF − n IA (1)

where
d DF : the decreased #DF (i.e. the total frequency of accessing different

fragments)
n IA: the newly created #IA (i.e the total frequency of interfered accesses

between data queries)
c: a proportional constant between #DF and #IA.

3.2 Merging Profit of MAVP

One disadvantage of the merging profit of AVP is that it uses a constant c, but
they do not give a guideline to set this parameter because using different values
we get different VPSs, it is necessary to find the adequate value of c in order to
get the optimal VPS, so this complicates the use of merging profit.

In our merging profit function we eliminate such complexity because we do
not need any constant; all the values are easily obtained with the AUM. Taking
into account the size of the attributes we define the merging profit function as

MergingProfit(MAV P) = #Q1 ·DRA−#Q2 · IIA (2)

where
#Q1: the number of queries that reduce the access to remote attributes
DRA: the decreased amount of remote attributes accessed
#Q2: the number of queries that increase the access to irrelevant attributes
IIA: the increased amount of irrelevant attributes accessed

In each step during constructing a PT, MAVP produces a VPS merging two
fragments which maximize the merging profit function defined in equation 2, so
when the PT is finished we have a set of VPSs VPS={vps1, vps2, ... , vpsn},
every vps i has a set of fragments FR={fr1, fr2, ... , frp}.

Two select two fragments of p fragments which can maximize the merging
profit

(
p
2

)
(= p(p−1)

2) pairs should be examined. For example, in Step 0 (VPS6)
p=n (where n is the number of attributes) because each attribute is located in
a different fragment, so there are six fragments in Step 0 of Fig. 1 and it is
necessary examine the merging profits of (= 6(6−1)

2)(= 15) pairs and merge one

550 L. Rodriguez and X. Li

pair with the maximum merging profit among them, which generates the VPS5

of Step 1 in Fig. 1
Table 3 shows MAVP Merging Profit Matrix (MPM) of the table EQUIP-

MENT in Step 0. In Algorithm 1, we show the process to get the MPM.

Table 3. Merging Profits of table EQUIPMENT in Step 0

id name image graphic audio video

id -280 -27840 -15960 40880 395060
name 55400 -38700 -390800 -3755510
image -44000 -700000 -5658520

graphic -18000 -195090
audio 3053260
video

MAVP is presented in algorithm 2, it uses as input the AUM of the table with
the attribute size row and generates the optimal vertical partitioning scheme.

Table 4 shows the VPSs of the table EQUIPMENT obtained using AVP and
MAVP.

Table 4. Resulting fragments of the table EQUIPMENT

VPS Algorithms
AVP MAVP

vps1 fr1(a1,a2,a3,a4,a5,a6) fr1(a1,a2,a3,a4,a5,a6)

vps2 fr1(a1,a2,a3) fr2(a4,a5,a6) fr1(a1,a5,a6) fr2(a2,a3,a4)

vps3 fr1(a1) fr2(a2,a3) fr3(a4,a5,a6) fr1(a1,a5,a6) fr2(a2,a3) fr3(a4)

vps4 fr1(a1) fr2(a2,a3) fr3(a4) fr4(a5,a6) fr1(a1,a5,a6) fr2(a2) fr3(a3) fr4(a4)

vps5 fr1(a1) fr2(a2,a3) fr3(a4) fr1(a1) fr2(a2) fr3(a3)
fr4(a5) fr5(a6) fr4(a4) fr5(a5,a6)

vps6 fr1(a1) fr2(a2) fr3(a3) fr1(a1) fr2(a2) fr3(a3)
fr4(a4) fr5(a5) fr6(a6) fr4(a4) fr5(a5) fr6(a6)

a1 = id, a2 = name, a3 = image, a4 = graphic, a5 = audio, a6 = video

4 Cost Model

MAVP computes the cost of each step to get the optimal VPS. We modify
the cost model of AVP to adapt it to distributed MMDBs, because it does
not take into account the size of attributes. MAVP will select the VPS which
minimizes the access to irrelevant attributes and maximizes the local accessibility
(minimizes the transportation cost) of the queries.

MAVP produces a VPS at each step in the construction of the PT, so when
the PT is finished we have a set of VPSs VPS={vps1, vps2, ... , vpsn}, every
vps i has a set of fragments FR={fr1, fr2, ... , frp}, and each fragment frk has nk

attributes, we suppose that the network has nodes N 1, ... , N p, the allocation of
the fragments to the nodes gives rise to a mapping λ: {1,...,p} → {1,...,p} called

A Vertical Partitioning Algorithm for Distributed Multimedia Databases 551

Algorithm 1. getMPM
input: AUM of the table (a set of alphanumeric and multimedia attributes

A={a1,a2,...,an}, a set of queries Q={q1,q2,...,qm}, the frequency

fk of each query qk F={f1,f2,...,fm}, the size si of each attribute ai

S={s1,s2,...,sn}).
output: MPM Merging Profit Matrix

begin

for each attribute ai ∈ A, 1 ≤ i ≤ n-1 do

for each attribute aj ∈ A, i+1 ≤ j ≤ n do

for each query qk ∈ Q, 1 ≤ k ≤ m do

if AUM(qk ,ai) = 1 & AUM(qk,aj) = 1 then

#Q1 =#Q1+1

DRA=DRA+fk ·(si+sj)
else

if AUM(qk,ai) = 1 & AUM(qk,aj) = 0 then

#Q2=#Q2+1

IIA=IIA+fk ·sj

else

if AUM(qk ,ai) = 0 & AUM(qk,aj) = 1 then

#Q2=#Q2+1

IIA=IIA+fk ·si

end if

end if

end if

end for

merging profit=#Q1·DRA-#Q2·IIA
MPM(i,j)=merging profit

end for

end for

end. {getMPM}

Algorithm 2. MAVP
input:AUM

output: Optimal Vertical Partitioning Scheme (VPS)

begin

for each step in PT do

getMPM(AUM, MPM)

select two nodes with maximum merging profit

merge the nodes

end for

compute the cost of each step

optimal VPS = step with minimum cost

end. {MAVP}

552 L. Rodriguez and X. Li

location assignment[11]. To determine the optimal vps i we need to evaluate how
VP affects the total query costs, we use the AUM to do this. The cost of a vps i is
composed of two parts: irrelevant attribute access cost and transportation cost.

cost(vpsi) = IAAC(vpsi) + TC(vpsi) (3)
The irrelevant attribute access cost measures the amount of data from irrele-

vant attributes to be accessed during a query. The transportation cost provides
a measure for transporting between the nodes of the network.

The irrelevant attribute access cost is given by

IAAC(vpsi) =
p∑

k=1

IAAC(frk) (4)

The AUM of a table has a set of alphanumeric and multimedia attributes
A={a1,a2,...,an}, the size si of each attribute ai S={s1,s2, ...,sn}, a set of queries
Q={q1,q2, ...,qm}, the frequency f j of each query qj F={f 1, f 2, ...,f m}, a set of
elements uji, where uji=1 if query qj uses attribute ai, or uji=0 otherwise. The
irrelevant attribute access cost of each fragment frk is given by

IAAC(frk) =

{ ∑
qj∈Pk

fj

∑
i|ai∈frk∧uji=0

si if nk > 1

0 otherwise
(5)

Where Pk is a set of queries which use at least one attribute and access at least
one irrelevant attribute of the fragment frk. This is

Pk = {qj|uji = 0 ∧ ujl = 1, 1 ≤ i, l ≤ nk} (6)

For example, IAAC(vps3) of AVP in Table 4 is computed as follows.
IAAC(vps3) = IAAC(fr1)+IAAC(fr2)+IAAC(fr3), IAAC(fr1)=0 because

n1=1, P1={∅} because there is only one attribute in the fragment fr1, P2={q2}
because q2 only uses the alphanumeric attribute name but it also has to access
the irrelevant multimedia attribute image due to both attributes are located in
the same fragment. P3={q1, q2} because q1 only uses the multimedia attribute
graphic but it also has to access the irrelevant multimedia attributes audio and
video due to they are located in the same fragment. On the other hand, q2

uses the attributes audio and video but it has to access the irrelevant mul-
timedia attribute graphic. Therefore, IAAC(fr2)=10*900=9000, because f 2=10
and simage=900 and IAAC(fr3)=15*(4100+39518)+10*(500)=659270, because
f 1=15 and f 2=10 and saudio=4100, svideo=39518 and sgraphic=500. So
IAAC (vps3)=0+9000+659270=668270.

Given a location assignment we can compute the transportation cost of a vps i .
The transportation cost of vpsi is the sum of the costs of each query multiplied
by its frequency squared, i.e.

TC(vpsi) =
m∑

j=1

TC(qj).f2
j (7)

A Vertical Partitioning Algorithm for Distributed Multimedia Databases 553

The transportation costs of query qj depend on the sizes of the relevant remote
attributes and on the assigned locations, which decide the transportation cost
factor between every pair of sites. It can be expressed by

TC(qj) =
∑

h

∑
h′

cλ(h)λ(h′).s(h′) (8)

Where h ranges over the nodes of the network for qj , s(h’) are the sizes of the
relevant remote attributes, λ(h) indicates the node in the network at which the
query is stored, and cij is a transportation cost factor for data transportation
from node N i to node N j (i, j ∈ {1, . . . , p}) [11].

For example, TC(vps3) of AVP in Table 4 is computed as follows. There are
three fragments, so we suppose that there are three nodes N 1, N 2, N 3 and
each fragment fr i is located in each node N i, we also assume that each query
is located in the node where the larger attributes that it uses are situated and
cij =1. In Fig. 2 is presented the location assignment of vps3.

Fig. 2. Location assignment of vps 3

TC(vps3)=(sgraphic*152)+((sid+sname)*102)=115300 because q1 accesses the
remote multimedia attribute graphic and q2 accesses the remote alphanumeric
attributes id and name. Therefore, cost(vps3)=668270+115300=783570.

5 Experiments

In this section, we show some experimental results to evaluate the efficiency
of the MAVP algorithm. In these experiments the cost model proposed in this
paper is used as a basis to compare our MAVP algorithm with AVP of Son et.
al [17]. For the first experiment, considering the information of AUM of table
EQUIPMENT from Table 2, we compute the cost of the VPSs obtained by AVP
and our MAVP of Table 4 and the results are given in Table 5.

554 L. Rodriguez and X. Li

Table 5. Cost comparison between AVP and MAVP of the first experiment

VPS AVP MAVP
IAAC TC Cost IAAC TC Cost

vps1 1574110 0 1574110 1574110 0 1574110
vps2 668550 115300 783850 47200 314500 361700
vps3 668270 115300 783570 9200 427000 436200
vps4 9000 427800 436800 200 439500 439700
vps5 9000 3400300 3409300 0 440300 440300
vps6 0 3412800 3412800 0 3412800 3412800

As we can see in Table 5, the VPSs obtained with MAVP have lower cost
than AVP in most cases, this is because AVP only considers information about
queries with respect to their attributes used and their frequency in the VP
process, while MAVP also takes into account the size of the attributes, using this
information MAVP can avoid accessing to irrelevant large multimedia attributes
and accessing to remote large multimedia attributes, reducing the cost of query
execution considerably.

The first and last schemes (vps1 and vps6) are equal for both algorithms.
In vps1 (table not fragmented) the transportation cost is zero and the cost of
accessing irrelevant attributes is maximum, this is because all the attributes are
located in the same fragment and queries do not access any remote attribute
but they scan all the table in order to get the relevant attributes accessing many
irrelevant attributes. On the other hand, when the fragments are equal to the
number of attributes of the relation (vps6), the transportation cost is maximum
and the cost to access irrelevant attributes is zero, because each attribute is lo-
cated in a different fragment, as a result, a query accesses many remote attributes
but any irrelevant attribute.

The cost of irrelevant attributes accessed by the queries (IAAC) is consid-
erably reduced in the other schemes obtained by MAVP (vps2 to vps5), this
is because AVP focuses on the minimization of access to different fragments
and this factor only implies a lower transportation cost, AVP also considers the
minimization of irrelevant attributes accessed by the queries, this factor is very
important in MMDBs because attributes tend to be of very large size objects
and queries usually access only subsets of the attributes in a table, so if we re-
duce the irrelevant multimedia attributes accessed by the queries we obtain a
significant reduction in the cost of the query execution.

AVP finds an optimal VPS when the number of fragments is equal to three,
this is vps3={fr1=(id), fr2=(name, image), fr3=(graphic, audio, video)}, but
with their cost model which takes into account only the transportation cost.
Nevertheless, with our cost model the optimal solution of the AVP schemes is
vps4={fr1 =(id) fr2 =(name, image) fr3 =(graphic) fr4 =(audio, video)} with
a cost of 436800. We find a better optimal solution with MAVP when the number

A Vertical Partitioning Algorithm for Distributed Multimedia Databases 555

of fragments is equal to two vps2={fr1=(id, audio, video), fr2=(name, image,
graphic)}, with a cost of 361700, this VPS has the lowest cost.

In the second experiment we use the AUM of a traditional database from
Table 1, which was used in Navathe et al. [14]. In this case most of the VPSs
obtained by MAVP are equal to AVP and both algorithms also obtained the same
optimal solution (i.e., vps3={fr1=(a1, a5, a7), fr2=(a2, a3, a8, a9), fr3=(a4, a6,
a10)}) because the size of the attributes is very similar. We modify the size of
the attributes and we obtained the VPSs of Table 6.

Table 6. Resulting fragments of the second experiment with different size

VPS Algorithms
AVP MAVP

vps1 fr1(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) fr1(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10)

vps2 fr1(a1,a2,a3,a5,a7,a8,a9) fr2(a4,a6,a10) fr1(a1,a2,a3,a5,a7,a8,a9) fr2(a4,a6,a10)

vps3 fr1(a1,a5,a7) fr2(a2,a3,a8,a9) fr1(a1,a5,a7) fr2(a2,a3,a8,a9)
fr3(a4,a6,a10) fr3(a4,a6,a10)

vps4 fr1(a1,a5) fr2(a2,a3,a8,a9) fr1(a1) fr2(a2,a3,a8,a9)
fr3(a4,a6,a10) fr4(a7) fr3(a4,a6,a10) fr4(a5,a7)

vps5 fr1(a1,a5) fr2(a2,a8) fr3(a3,a9) fr1(a1) fr2(a2,a3,a8,a9) fr3(a4,a6,a10)
fr4(a4,a6,a10) fr5(a7) fr4(a5) fr5(a7)

vps6 fr1(a1,a5) fr2(a2,a8) fr3(a3,a9) fr1(a1) fr2(a2) fr3(a3,a9,a8)
fr4(a4,a6) fr5(a7) fr6(a10) fr4(a4,a6,a10) fr5(a5) fr6(a7)

vps7 fr1(a1,a5) fr2(a2,a8) fr3(a3,a9) fr1(a1) fr2(a2) fr3(a3,a9)
fr4(a4) fr5(a6) fr6(a7) fr7(a10) fr4(a4,a6,a10) fr5(a5) fr6(a7) fr7(a8)

vps8 fr1(a1) fr2(a2,a8) fr3(a3,a9) fr4(a4) fr1(a1) fr2(a2) fr3(a3) fr4(a4,a6,a10)
fr5(a5) fr6(a6) fr7(a7) fr8(a10) fr5(a5) fr6(a7) fr7(a8) fr8(a9)

vps9 fr1(a1) fr2(a2) fr3(a3,a9) fr4(a4) fr5(a5) fr1(a1) fr2(a2) fr3(a3) fr4(a4) fr5(a5)
fr6(a6) fr7(a7) fr8(a8) fr9(a10) fr6(a6,a10) fr7(a7) fr8(a8) fr9(a9)

vps10 fr1(a1) fr2(a2) fr3(a3) fr4(a4) fr5(a5) fr1(a1) fr2(a2) fr3(a3) fr4(a4) fr5(a5)
fr6(a6) fr7(a7) fr8(a8) fr9(a9) fr10(a10) fr6(a6) fr7(a7) fr8(a8) fr9(a9) fr10(a10)

s1 = 8, s2 = 20, s3 = 20, s4 = 15, s5 = 10, s6 = 250
s7 = 900, s8 = 500, s9 = 4100, s10 = 39518

The cost comparison of the schemes obtained with AVP and MAVP is pre-
sented in Table 7. The VP schemes of AVP remain static when the size of the
attributes changes. Nevertheless, MAVP adapts the schemes according to the
changes in the size of the attributes. Therefore, the schemes and the best-fit
(optimal) solution obtained by AVP are the same even when the size of the
attributes have changed. MAVP finds different schemes, in this case only the
first three schemes are equal for both algorithms. Using the AVP cost model the
best-fit solution is still vps3, but with our cost model we get a better optimal
solution vps2={fr1=(a1,a2,a3,a5,a7,a8,a9), fr2=(a4,a6,a10)}. In this case MAVP
finds the same optimal solution, but again MAVP generates VPSs with lower
cost in more cases (vps5 to vps9).

556 L. Rodriguez and X. Li

Table 7. Cost comparison between AVP and MAVP

VPS AVP MAVP
IAAC TC Cost IAAC TC Cost

vps1 8001555 0 8001555 8001555 0 8001555
vps2 502750 927000 1429750 502750 927000 1429750
vps3 188130 2137750 2325880 188130 2137750 2325880
vps4 165000 2149000 2314000 187850 2147750 2335600
vps5 0 3774000 3774000 165000 2154000 2319000
vps6 0 3999250 3999250 164200 2216500 2380700
vps7 0 3999250 3999250 0 3779000 3779000
vps8 0 4004250 4004250 0 3854000 3854000
vps9 0 4004250 4004250 0 3866750 3866750
vps10 0 4079250 4079250 0 4079250 4079250

6 Discussion

We compare MAVP versus AVP and we obtained VPSs with lowest cost using
MAVP in more cases. Thus, the size of attributes is a very important factor to
consider in the VP process in order to get the optimal solution in distributed
MMDBs. The main advantages of MAVP over other approaches are:

1. Most VP algorithms [2], [20], [8], [12], [13, 15, 16], [17] do not consider the size
of the attributes as input in the vertical partitioning process. Therefore, they
are not suitable for MMDBs where size of attributes is very varied. MAVP
takes into account the size of the attributes to generate vertical partitioning
schemes which reduce the query processing cost considerably.

2. MAVP generates the optimal solution using a cost model based on the sav-
ings of the access to irrelevant attributes (reducing disk accesses) and the
access to remote attributes (reducing transportation cost), while the cost
model of other VP approaches [6], [20] only consider the savings in number
of disk accesses, disregarding the transportation cost which is a major cost
in distributed MMDBs.

7 Conclusion and Future Work

Vertical partitioning can provide efficient retrieval of multimedia objects in dis-
tributed MMDBs. The novel aspects of our research include the following re-
search contributions. First, a VP algorithm for distributed MMDBs has been
developed which takes into account the size of the attributes to generate an op-
timal vertical partitioning scheme. Second, a cost model for distributed MMDBs
has been proposed, this cost model considers that the overall query processing
cost in a distributed multimedia environment consists of irrelevant attribute ac-
cess cost and transportation cost. An experimental evaluation shows that our
algorithm outperforms AVP in most cases.

A Vertical Partitioning Algorithm for Distributed Multimedia Databases 557

We assumed in this research that the queries that run against the MMDB are
static. Distributed MMDBs are accessed by many users simultaneously, therefore
queries tend to change over time and a good VPS can be degraded resulting
in very long query response time. Present research can be extended to derive
the vertical partitioning dynamically in MMDBs, based on the changes in the
queries. Thus the VPS of the MMDB can be adaptively modified to achieve
efficient retrieval of multimedia objects all the time. In the future we also want
to develop an algorithm for hybrid partitioning in MMDBs and to extend MAVP
to Object-Oriented databases.

References

1. Guinepain, S., Gruenwald, L.: Automatic Database Clustering Using Data Mining.
In: DEXA 2006 (2006)

2. Bellatreche, L., Simonet, A., Simonet, M.: Vertical Fragmentation in Distributed
Object Database Systems with Complex Attributes and Methods. In: DEXA 1996
(1996)

3. Khan, S.I., Hoque, A.S.M.L.: A New Technique for Database Fragmentation in
Distributed Systems. International Journal of Computer Applications 5(9), 20–24
(2010)

4. Yu, C., Brandenburg, T.: Multimedia Database Applications: Issues and Concerns
for Classroom Teaching. The International Journal of Multimedia and its Appli-
cations (IJMA) 3(1) (2011)

5. Lu, G.: Multimedia Database Management Systems. Artech House computing
library (1999)

6. Fung, C., Karlapalem, K., Li, Q.: Cost-driven Vertical Class Partitioning for Meth-
ods in Object Oriented Databases. The VLDB Journal 12(3), 187–210 (2003)

7. Kwok, Y., Karlapalem, K., Ahmad, I., Pun, N.M.: Design and Evaluation of Data
Allocation Algorithms for Distributed Multimedia Database Systems. IEEE Jour-
nal on Selected Areas and Communications 14(7) (1996)

8. Chakravarthy, S., Muthuraj, J., Varadarajan, R., Navathe, S.: An Objective Func-
tion for Vertically Partitioning Relations in Distributed Databases and its Analysis.
Distributed and Parallel Databases 2(21), 183–207 (1994)

9. Chbeir, R., Laurent, D.: Towards a Novel Approach to Multimedia Data Mixed
Fragmentation. In: Proc. of the Int. Conf. on Manage. of Emergent Digital EcoSyst,
MEDES (2009)

10. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Springer, Heidelberg (2011)

11. Ma, H.: Distribution Design for Complex Value Databases. PhD Thesis, Massey
University (2007)

12. Hoffer, J.A., Severance, D.G.: The Use of Cluster Analysis in Physical Database
Design. In: Proc. of the 1st VLDB Conf., pp. 69–86 (1975)

13. Navathe, S., Ra, M.: Vertical Partitioning for Database Design: A Graphical
Algorithm. In: Proc. of ACM SIGMOD (1989)

14. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical Partitioning Algorithms
for Database Design. ACM TODS 4, 680–710 (1984)

15. Son, J.H., Kim, M.H.: α-Partitioning Algorithm: Vertical Partitioning Based on
the Fuzzy Graph. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.)
DEXA 2001. LNCS, vol. 2113, pp. 537–546. Springer, Heidelberg (2001)

558 L. Rodriguez and X. Li

16. Marir, F., Najjar, Y., Alfaress, M., Abdalla, H.I.: An Enhanced Grouping Algo-
rithm for Vertical Partitioning Problem in DDBS. In: 22nd Int. Symposium on
Computer and Information Sciences, pp. 39–44 (2007)

17. Son, J.H., Kim, M.H.: An Adaptable Vertical Partitioning Method in Distributed
Systems. J. of Syst. and Software 73, 551–561 (2004)

18. Saad, S., Tekli, J., Chbeir, R., Yétongnon, K.: Towards multimedia fragmentation.
In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS, vol. 4152,
pp. 415–429. Springer, Heidelberg (2006)

19. Getahun, F., Tekli, J., Atnafu, S., Chbeir, R.: The Use of Semantic-based Predi-
cates Implication to Improve Horizontal Multimedia Database Fragmentation. In:
Workshop on The many Faces of Multimedia Semantics (MS), pp. 29–38 (2007)

20. Fung, C., Leung, E.W., Li, Q.: Efficient Query Execution Techniques in a 4DIS
Video Database System for eLearning. Multimedia Tools and Applications 20,
25–49 (2003)

Diffusion in Dynamic Social Networks:

Application in Epidemiology

Erick Stattner, Martine Collard, and Nicolas Vidot

LAMIA Laboratory
University of the French West Indies and Guiana

France
estattne,mcollard,nvidot@univ-ag.fr

http://lamia.univ-ag.fr

Abstract. Structure and evolution of networks have been areas of grow-
ing interest in recent years, especially with the emergence of Social Net-
work Analysis (SNA) and its application in numerous fields. Researches
on diffusion are focusing on network modeling for studying spreading
phenomena. While the impact of network properties on spreading is now
widely studied, involvement of network dynamicity is very little known.
In this paper, we address the epidemiology context and study the con-
sequences of network evolutions on spread of diseases. Experiments are
conducted by comparing incidence curves obtained by evolution strate-
gies applied on two generated and two real networks. Results are then
analyzed by investigating network properties and discussed in order to
explain how network evolution influences the spread. We present the
MIDEN framework, an approach to measure impact of basic changes
in network structure, and DynSpread, a 2D simulation tool designed to
replay infections scenarios on evolving networks.

Keywords: Information Spreading, Dynamic network, Evolution, Frame-
work, Simulation.

1 Introduction

Network modeling involves a set of items, represented by nodes (also called ver-
texes), that are linked by connections. While seminal works were first conducted
in mathematics through the graph theory, this domain has known a significant
growth in recent years.

In last decades, network analysis has been the subject of an active research
domain, so-called “Science of Networks” [2,5], an emerging scientific discipline
that focuses on relationships maintained between entities, and not on entities
themselves. Social science, with the occurrence of WEB 2.0 and Social Network
Analysis (SNA), has provided the most popular works, with Milgram [19] on
small world phenomenon, or Bott [4] on families. Other domains are also related
to network analysis, such as biology [16], ethology [11] or computer science [3],

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 559–573, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://lamia.univ-ag.fr

560 E. Stattner, M. Collard, and N. Vidot

since this kind of representation is particularly fitted to understand informa-
tion spreading phenomena. For instance spreading of viruses, diseases, rumors,
knowledge or fashion behave very similarly [5,12].

This work is focused on diffusion phenomenon and addresses the particular
issue of spread of diseases. Indeed, in numerous cases of disease spreading, social
contacts seem to be main factors of transmission. Sexual Transmitted Diseases
(STDs) are a good example of diseases that depend solely on personal contacts
for dissemination. Thus, several studies have focused on social networks and have
demonstrated their relevance in disease spreading [18,9,7]. However, although the
effect of network properties on spreading is now widely studied, the impact of
network changes is an emerging field. One obvious pitfall is the lack of real data
and most works commonly handle snapshots of a network at a given time, that
do not fully reflect real world networks.

In this paper, we address the issue of dissemination in dynamic networks. Un-
like methods that study spreading on static networks, we propose a framework to
assess impact of evolving mechanisms, by selecting and comparing some typical
evolution strategies. Experiments are conducted by comparing incidence curves
obtained with several evolution strategies and are then analyzed by investigating
network properties. In this first stage, we have restricted the analysis to strategies
thats only create new links. Our results provide an original insight about how and
why network evolution impacts the spread. We show indeed that new links appear-
ing in the social network generally emphasis the epidemic spread and speed up the
process. Of course this assertion has to be modulated according to the evolution
strategy applied. In epidemiology, understanding such implications is essential to
help public health officials in the prevention and the development of appropriate
strategies taking into account changes occurring on real world networks.

This paper is organized in 7 sections as follows. In Section 2 we present main
previous works on networks, with particular emphasis on their application in
epidemiology. Section 3 presents our motivations and objectives, and details
the framework we propose to measure the involvement of network dynamics.
Experiments and results are presented in Section 4. In Section 5, we discuss
these results by investigating both effects of evolution strategies and changes on
network properties. Section 6 is devoted to DynSpread, the 2D simulation tool
that implements our framework. We conclude and present future directions in
Section 7.

2 Previous Works

Epidemiology is the science that focuses on infectious diseases. De and Das [12]
defined epidemic theory as being “the study of the dynamics of how contagious
diseases spread in a population, resulting in an epidemic”. More formally, epi-
demiology is the study of patterns of health and illness and associated factors
at population or individual level. It refers to all methods of modeling [24], anal-
ysis [22] or monitoring [7] of the spread in a given system, for identifying risk
factors and determining optimal intervention approaches to clinical practice and
preventative medicine.

Diffusion in Dynamic Social Networks 561

2.1 Compartment Models

Although the biological interest for this phenomenon is undeniable, other scien-
tific communities have contributed to its understanding: anthropology [4], math-
ematics [17] or computer science [10,3].

Mathematicians were the first to address modeling issues, through compart-
ment models [24]. This kind of models assume that (1) a population can be
divided into a set of compartments, according to the level of the disease devel-
opment, and (2) individuals have equal probability to change compartment. The
two main compartment models defined in epidemic literature are Susceptible−
Infected Model (SI Model), that assumes individuals may become infected with
probability β and SIR Model, which adds a Recover state reached by infected
individuals with a certain probability γ. On the same paradigm, many other
models [24] can be found in the literature: SIS, SIRS, etc.

S I S I R
(a) SI Model (b) SIR Model

Fig. 1. Two Examples of Compartments Models

However, such approaches remain very simple and do not reflect the real
complexity of human interactions. Indeed, in real world people are actually con-
nected to a small portion of individuals, and this portion is obviously not chosen
randomly. Introduced by pioneering works of Klovdahl [18] on AIDS, network
modeling have found various applications in epidemiology, since a significant fac-
tor of the outbreak and the behavior of diseases is the structure and the nature
of human interactions through which it spreads.

2.2 Networks and Epidemics

Traditionally, a network is described by a graph G, defined G = (V, E), where
V is the set of vertexes and E the set of edges in the graph E ⊆ V × V . The
neighbors N(i) of vertex i is defined as N(i) = {j | ij ∈ E}. Other individual
measures prove to be interesting for networks of very different types [20]. The
Degree is the number of neighbors of a vertex. More formally, the degree di

of node i is the cardinality of the set of its neighbors, i.e. di = |N(i)|. The
Clustering Coefficient Ci of a node i indicates how close the neighbors of node
i are to being a clique, Ci = 2ti

di(di−1) , where ti is the number of triangles for
which node i is a part.

Initially, networks were studied with the objective to understand various real
systems in disciplines ranging from communication networks to ecological webs.
Newman [20] classifies works according to three categories: Node-Based Measure,
Statistical Properties of Networks and Dynamics of Networks.

At node level, networks are characterized by some individual properties
of their nodes. Typical works try to classify or identify the role of nodes by

562 E. Stattner, M. Collard, and N. Vidot

understanding which individuals are more connected to others or have most
influence, or whether and how individuals are connected to one another through
the network, etc. In epidemiology, such measures have been used to identify
high-risk individuals. For example, Christley et al. [9] compare various node-
based measures to identify this kind of individuals. Chen et al. [6] show the
changes in the degree of nodes according to several kinds of interactions and
their role for the transmission.

At global level, scientists try to classify networks focusing on the distribu-
tion of given properties. A typical example is the network classification we can
found in the literature [1,20]. In epidemiology, works have been conducted to
understand the propagation phenomena [14] and propose intervention strategies
taking into account network topology [22,7].

According to the dynamic point of view, many recent studies try to
understand and reproduce the manner in which a network evolves [25]. Thus,
several models have been proposed to reflect growth processes inducing to par-
ticular structural features observed on real world networks [20,13]. However, it is
interesting to note that the issues of dynamics of networks and the dynamics on
networks are still independent fields. Indeed, the impact of network evolution
on spread of infectious diseases is a very new research axis. In this area, the
mathematical approach of Gross et al. [15] studies the impact of links deletion
on spreading. Read et al. [21] show how changes in the frequency of encounters
between individuals may impact the dissemination. More recently, Christensen
et al. [8] have measured the effect of changes in demographic attributes within
population on the disease transmission.

In this paper, we focus on this last issue of dynamicity in networks. The next
section is devoted to the method we propose to understand how different changes
in a network have consequences on the transmission of disease.

3 Objectives and Method

Networks are alive and animated objects, in which nodes can appear and disap-
pear, links can be created, removed, or can even evolve. Thus, focusing on the
dynamic issue in networks inevitably raises multiple questions, both on networks
and on information diffusion: How does a network evolve? What do the changes
operate on its properties? How is the network topology influenced by the way
the network evolves and how does it affect the spread behavior?

3.1 Motivations and Objectives

Among social networks, we can identify on one hand, static structures that do
not meet much evolution. For instance, co-author networks have few new links
created. But on the other hand, networks based on geographic contacts are likely
to meet much evolution with frequent deletion and creation of links, according
to individual mobility. We focus on this kind of networks.

In epidemiology, a concrete motivation to study this question is demonstrated
by intervention strategies that are currently proposed and are generally focused

Diffusion in Dynamic Social Networks 563

on node-based measures. For example, the intervention strategy that gives best
results is to vaccinating individuals with the highest degree. However, it is real-
istic to think that individuals with the highest degree at time t will probably not
be in the same state at time (t + 1), due to changes that occur in the network.
Therefore, dynamic appears to have a strong and real impact on the spread, and
may be an essential factor for the behavior of a disease.

Nevertheless, to the best our knowledge, no empirical or even comparative
studies to assess the effect of different network evolutions are available. Indeed,
we may assume that dynamic plays an important role in the diffusion of infor-
mation through the network, and therefore should be taken into account to un-
derstand diseases behavior in evolving networks and propose suitable strategies
to prevent and control epidemics. Thus, our objectives are define a framework
to assess impacts of network evolution measure and compare the impact of
network dynamic, by comparing the incidence curves induced by several evolu-
tion strategies, and understand causes and effects at global and individual
levels.

3.2 Evolution Strategies

In order to carry out such a work, we compare the effects of four well known
evolution models, accepted in the literature as reproducing changes observed in
real world networks. These strategies are highlighted by schemes on Figure 2.

Random (R) is a process that creates links randomly between nodes. This
evolution mechanism is particularly used to model evolution of networks for
which we have no knowledge on the development.

Triadic Closure (TD) is one of the first social networking concepts. It can be
expressed as “friends of my friends become my friends”. More formally, it is
the process through which a node is likely to create a link with the neighbors
of its neighbors.

Global Connection (GC) corresponds to an abstracted mechanism of social
link formation, through which a node creates links solely outside of its circle
of close friends i.e. beyond friends of its friends.

Preferential Attachment (PA) is a kind of evolution in which a node is more
likely to connect to one with high degree. Although it is fairly recent, it is now
widely studied, particularly in social science where it makes sense. Indeed
it is more likely for a person to connect to someone with a large number of
connections, as those people tend to be more social and popular.

3.3 Studied Networks

In this work, we focus on four networks: two generated networks GEN1, GEN2
and two real networks HS and PL. We have chosen these networks because
they are representative of different types of networks currently referenced in the
literature.

564 E. Stattner, M. Collard, and N. Vidot

(a) Random (b) Triadic Closure (d) Preferential Att.(c) Global Connect.

Reference Network

Fig. 2. Starting from a reference network, examples of links generated with (a)Random,
(b)Triadic Closure, (c)Global Connection, (d)Preferential Attachment

• GEN1 and GEN2 are respectively obtained by Erdos-Renyi [13] and
Barabasi-Albert [20] models. GEN1 is a classic random network that has
been the subject of intensives researches. GEN2 represents the kind of net-
work most commonly observed in real world networks, such as the Internet,
telephone calls network, sexual network or friendship network, known as
scale-free network.

• HS and PL are respectively obtained by real and synthetic situations.
HS correspond directly to the high school interactions graph proposed by
Salathe [23] and PL represents a synthetic population of the city of Port-
land extracted from EpiSims, an epidemiological simulation system prior to
EpiSimdemics [3].

Generated networks are used because the work we are conducting is not con-
fined to epidemiology, since mechanisms of transmission of information, or ru-
mors are very similar. Therefore, it is important to understand how the disease
behaves on evolving generic networks, to transpose it in other paradigms. Fig-
ure 3 details the main characteristics of the networks described above (#comp
is the number of connected components and cc is the clustering coefficient of the
network).

3.4 MIDEN Framework

For each network, we have no a priori knowledge about their evolutions. This
allows us to make several assumptions about its development by fitting the net-
work with evolution mechanisms. Thus, to assess the impact of network changes,
we apply each evolution strategy (R, TD, GC and PA) to these networks, and
compare their effect. In this preliminary work, we study the dynamics in an em-
pirical manner, by setting the number of nodes and by considering the dynamic
through the addition of new links only.

Let us give T = 〈t0, t1, ..., tm〉, as the time sequence over which the disease
transmission is studied with ∀j ∈ [0..m], tj < tj+1 and G = 〈Gt0 , Gt1 , ..., Gtm〉
as the sequence of networks, where each Gtj = (V, Etj) represents the state of

Diffusion in Dynamic Social Networks 565

Networks
GEN1 GEN2 HS PL

ge
ne

ra
l

Origine Generated Generated High School Portland
#nodes 4771 3233 788 4829
#links 7481 5154 26801 7455
Density 0.000657 0.000986 0.086873 0.0006395
#comp 17 1 1 1

de
gr

ee

avg 3.136 3.188 68.195 3.087
max 11 118 174 17

Distribution

cc avg 0.00056 0.00427 0.49877 0.60880

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8
0

0,1

0,2

0,3

0,4

1 2 3 4 5 6 7 8 9 10 11 12 13

0

0,01

0,02

0,03

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

0

0,1

0,2

0,3

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 3. Detailed Networks Features

the network at time tj , with tj ∈ T . V is the set of individuals and Etj is the
set of edges present in the network at time tj , with Et(j−1) ⊆ Etj ⊆ V × V .

Transmission of an infectious agent is simulated according to the Suceptible−
Infectious−Recover model.

Let us denote Ftj the function that returns the state of a node i at time tj ,
Ftj : V → {S, I, R}. Thus, at each time tj of T , we have the set of infected nodes
Itj = {v ∈ V |Ftj (v) = I}. Let us also define N i

tj
as the set of infected neighbors

of the node i, N i
tj

= {v ∈ V |iv ∈ Etj and Ftj (v) = I} at tj .
Let β be the probability of transmission per contact and γ the probability

of recover. We denote W the applied evolution strategy and Q the speed of
evolution, i.e. the number of links created at each iteration.

1. Outbreak: Before introduction of the infectious agent, at t0, the entire
population is assumed to be susceptible and we assume that no link is created yet
in the network Gt0 . We begin by selecting the patient zero, the first individual
that will be contaminated by the pathogen. This step simply consists in randomly
selecting an individual, z, among the population and change his state S to I,
i.e. ∃! z ∈ V, Ft0(z) = I and ∀v ∈ V − {z}, Ft0(v) = S.

2. Wave Transmission (S → I): Once the patient zero is infected, disease
can spread, with a certain probability, from an infected individual to a susceptible
individual if there exists an edge between them. More formally, if a susceptible
node ni has ki infected neighbors at time tj , it can become infected with the
probability 1 − (1 − β)ki with ki = |N i

tj
|. In this way, the probability of being

infected increases with the number of infected neighbors.
3. Network evolution : After the wave transmission, the proportion of

infected individuals is stored and the network evolves to the G(tj+1) state, where
(tj + 1) ∈ T . The evolution is carried out according to the strategy W chosen
and the evolution speed Q. In practical terms, Q nodes are randomly selected
from the network and link building is applied from these nodes.

566 E. Stattner, M. Collard, and N. Vidot

4. Recovery (I → R): Each infected individual has a probability γ to re-
cover. Once the node is in R state, it cannot transmit the infectious agent again.
Its immunity is supposed to be permanent and it cannot return in the S state.

Processes 2, 3 and 4 are repeated until susceptible individuals become fully
extinct, i.e. Itj = ∅. Once the epidemic is over, duration of infection is stored.
The algorithm below sums up the proposed approach.

Data: Probability of transmission β, and probability of recover γ
Input: Network G, Strategy W , and Evolution Speed Q
Result : List L, of infected individuals during T

Function MIDEN(G : Network, W : Strategy, Q : Speed) : List
L : List ← ∅
t : Time ← 0
Infect Patient Zero
While (It �= ∅) do

Infect S-nodes i with probability 1 − (1 − β)ki , with ki = |N i
t |

add |It|
|V | to L

Network evolves to G(t+1) according to W and Q
Recover I-nodes i with probability γ
t ← t + 1

done
return L

End

Algorithm 1: MIDEN(framework for Measure Impacts of Dynamic on Epidemic
Networks)

4 Experiments and Results

The framework described above was experimented to analyze effects of these
different evolution strategies. As a first step, this section shows and analyzes the
direct effects of the different strategies on the strength of the epidemic and its
appearance in time. Afterwards, in the next section, we deepen our analytical
work by investigating explanations on the side of changes in network properties.

4.1 Test Bed

Disease behavior depends on many parameters such as the number of initial
infected individuals, the probability of transmission or the probability of recover.
However, changes in these parameters often influence only the virulence of the
epidemic and are quite well known. In the issue we address, the most relevant
parameter seems to be the evolution speed of the network. Thus to study the
implication of this parameter on the behavior of a disease, we vary the network,
the evolution strategy, and the evolution speed.

Epidemics may have varying durations, so we set T = 120. Thus the data
collection was restricted over a period of 120 iterations. The probability of

Diffusion in Dynamic Social Networks 567

transmission was set at 0.1 and the probability of recover was set at 0.2, i.e.
β = 0.1 and γ = 0.2. Each test was performed upon 100 runs. Then, the average
of the result obtained was calculated. For each test, a single evolution strategy
was applied and the evolution speed of the network remained constant. All tests
were performed by DynSpread, our simulation tool presented in Section 6 and
were conducted with the following simulation environment: Intel Core 2 Duo
P8600 2.4Ghz, 3Go Ram, Microsoft Windows Vista 32Bits, Java JDK 1.6.

4.2 Results

Figure 4 plots resulting an incidence curve for each strategy, according to the
kind of network and the speed of evolution (x axis). For a given network and a
given speed, results obtained by the four strategies are presented on the same
scheme, through curves representing the percentage of infected nodes at each
iteration of the MIDEN algorithm, also called incidence curves. The incidence
curves obtained by epidemic without evolution strategy are always plotted as a
reference to compare to the others.

If we first underline common characteristics observed on GEN1, GEN2 and
PL, we obviously observe the direct impact of evolution speed. Creating new links
obviously emphasizes the epidemic spread. More precisely, two main observations
can be made on: (1) The virulence of the epidemic, since for these three networks,
peaks values increase with the speed. (2) The timing of epidemics, since we can
observe that when the evolution speed increases, epidemic peaks appear earlier.

We can observe specific behavior, depending on speed evolution for each kind
of network. GEN1 and PL behave rather similarly. For example, we can observe
that a speed of 10 links per iteration is not sufficient to generate an epidemic in
networks GEN1 and PL. However, when the speed is set at 50, PA is the only
strategy able to generate an epidemic on these two networks. We notice that
after a speed threshold approximately equals to 100, all strategies generate an
epidemic peak that is increasing according to the speed.

Although all strategies generate an epidemic on network GEN2, at speed 10,
the difference between strategies is insignificant and results remain very close to
those obtained without evolution. From speed 50, the same trends, as for GEN1
and PL, are observed: epidemic peak increases according to the speed.

The case of HS network is unusual. To understand why different strategies
have no effect, we must address the data collection process. Data were collected
by wireless sensors grafted on individuals, and interactions were recorded when
two sensors were close enough. Although only interactions above 1 min were
considered, the resulting network is very dense and thus allows a good spreading
of the disease (in our test bed). We can conclude that for this kind of network,
impact of dynamic is negligible. Moreover, it was impossible to generate the
results for strategy GC, since all nodes rapidly become directly connected.

Finally, when the dynamic is high enough, common trends can be observed:
PA strategy generally gives an epidemic curve with a peak that systematically
is higher than in the others three strategies. It induces the earliest occurrence
of the epidemic. R and GC strategies are always very close, since they have

568 E. Stattner, M. Collard, and N. Vidot

10
50

10
0

15
0

GEN1 GEN2 PL HS

0

0,
51

1,
52

2,
53

3,
54

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
51

1,
52

2,
53

3,
54

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
51

1,
52

2,
53

3,
54

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
51

1,
52

2,
53

3,
54

4,
5

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
51

1,
52

2,
53

3,
54

4,
5

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
51

1,
52

2,
53

3,
54

4,
5

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0102030405060708090

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0102030405060708090

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0102030405060708090

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0102030405060708090

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
2

0,
4

0,
6

0,
81

1,
2

1,
4

1,
6

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
2

0,
4

0,
6

0,
81

1,
2

1,
4

1,
6

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
2

0,
4

0,
6

0,
81

1,
2

1,
4

1,
6

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
2

0,
4

0,
6

0,
81

1,
2

1,
4

1,
6

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
51

1,
52

2,
53

3,
54

4,
5

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

0

0,
51

1,
52

2,
53

3,
54

0
20

40
60

80
10

0
12

0

W
ith

ou
t E

vo
lu

tio
n

Ra
nd

om

Tr
ia

di
c C

lo
su

re

Gl
ob

al
 C

on
ne

ct
io

n

Pr
ef

er
en

tia
l A

tta
ch

m
en

t

sp
ee

d

F
ig

.
4
.

In
ci

d
en

ce
cu

rv
es

a
cc

o
rd

in
g

to
th

e
N

et
w

o
rk

a
n

d
th

e
E

v
o
lu

ti
o
n

S
p

ee
d

Diffusion in Dynamic Social Networks 569

epidemic curves that follow the same variations in time. The peak obtained by
TD strategy is always the lowest.

5 Discussion

Since the impact of the dynamic appears quite obviously in the results pre-
sented above, we investigate now the question and tend to explain what hap-
pens at the network level. For this, we focus on changes that occur on network
features. As shown in Figure 4, there is a strong difference between strategies
beginning from speed 100. Thus we have compared changes occurred on net-
work features according to each strategy R, TC, GC and PA, after an epidemic
diffusion with speed 100 and at time t120 (since we consider 120 iterations on
MIDEN algorithm). Results are shown in Figure 5, and were obtained by av-
eraging 100 runs. Degree distribution, for each evolution strategy, is plotted for
GEN1 5(a), GEN2 5(b) and PL 5(c) and features are depicted on 5(d).

0

0,05

0,1

0,15

0,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Random
Triadic Closure
Global Connection
Preferential Attachment

0

0,05

0,1

0,15

0,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Random

Triadic Closure

Global Connection

Preferential Attachment

min degree avg degree max degree cc

(a)

R 1.0 5.112 14.81 0.0010
Tria. C. 1.0 5.107 18.03 0.2874
Glo. C. 1.0 5.043 14.66 0.0002
Pre. A. 1.0 5.198 42.36 0.0028

(b)

R 1.0 5.673 120.27 0.0045
Tria. C. 1.0 5.367 146.04 0.3036
Glo. C. 1.0 5.546 119.82 0.0020
Pre. A. 1.0 5.540 142.65 0.0142

(c)

R 1.0 4.54 18.88 0.3882
Tria. C. 1.0 3.95 23.40 0.6204
Glo. C. 1.0 4.58 18.77 0.3763
Pre. A. 1.0 4.25 33.31 0.4588

0

0,05

0,1

0,15

0,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Random

Triadic Closure

Global Connection

Preferential Attachment

(a) (b)

(c)

(d)

Fig. 5. Network properties for each evolution strategy. Degree distribution is plotted for
Network (a)GEN1, (b)GEN2 and (c)PL, after epidemics (at time t120) with speed 100.
x axis is the degree and y axis is the fraction of node with degree k. For each strategy,
main network features are shown in (d), where cc is the clustering coefficient

In order to explain the results, we discuss first the effect of strategies on the
network properties (1) and then consequences on spread (2).

(1) Direct effects on network properties. First of all, by comparing fea-
tures of original networks presented on Figure 3 and those obtained on Figure 5,
it is easy to observe direct effects of evolution strategies. While it is expected
that the average degree increases, as our approach only considers the addition
of new links, significant differences can be observed on degree distribution and
clustering coefficient resulting from each strategy.

“Random” seems to tend towards a normal degree distribution, as we can
particularly observe on Figure 5(b). For all networks, a high proportion of in-
dividuals moderately connected and a lower proportion of individuals weakly

570 E. Stattner, M. Collard, and N. Vidot

and strongly connected can be observed. Indeed Figures 5(a), (b), (c) present
an higher proportion of nodes with degree between 5 and 10 with this strategy.
The most significant results is obtained for GEN2, where a notable change from
the original distribution is highlighted.

“Triadic Closure” allows neighbors of a same node to become neighbor them-
selves. It strengthens links within groups of nodes that result in a significant
increase in the overall clustering coefficient: from 0.00056 to 0.2874 for GEN1
and from 0.00427 to 0.3036 for GEN2. Unlike TC other strategies may even
reduce cc. For example, it is the case of network PL: at t0 cc is 0.60880, with R,
GC and PA, it respectively takes values 0.3882, 0.3763 and 0.4588 at t120.

“Global Connection” allows a node to connect with any node outside its imme-
diate community (friends of friends). This explains that, except for cc, observed
properties with R and GC strategies are very close. Obviously, cc is low for this
kind of evolution, since as shown on cc values of Figure 5, it does not allow
creating “triangles” as the R strategy is likely to do. For example, at t120 in
GEN1, cc is 0.0002 for GC, and is 0.0010 for R.

“Preferential Attachment” reinforces links of most connected nodes, since
nodes prefer to make connections with most popular nodes, as observed on the
growth of max degree. For example, at t0, max degree of PL is 17 (Figure 3),
against 18.88 for R, 23.40 for TC, 18.77 for GC and 33.31 for PA at t120.

(2) Consequences on spread. As expected, strategies R and GC provide
very similar results on spreading, since their effects on network properties prove
to be very similar, as shown on Figure 5.

For networks GEN1 and PL, and speed 50, as seen in Section 4.2, PA is the
only strategy able to generate an epidemic (see Figure 4), because it enables
emergence of individuals sufficiently connected to allow the transmission of dis-
ease within the network. Indeed, strategies R, GC and TD maintain, at same
speed, low connected nodes that do not allow spreading in the network.

Beginning from speed 100, the trend is accentuated for PA that shows the
earliest occurrence of the epidemic peak (see Figure 4, column 100 and 150).
This peak is higher than with other strategies because the max degree is always
very high, as shown on Figure 5: 42.36 for GEN1, 142.65 for GEN2 and 33.31
for PL. While the strategy TC allows the emergence of highly connected nodes,
it also generates a network with a high clustering coefficient. So the epidemic is
less virulent, since the transmission occurs mainly within a same community.

Network GEN2 contains highly connected nodes at t0 (see Fig. 3), as a scale
free network. Its max degree is 118 against 11 for GEN1 and 17 for PL. For such
a network, even without evolution, epidemic spreads and strategies R, GC, TD,
and PA show different impacts although this is not noticeable before speed 50.

An issue not yet discussed remains the case of the occurrence of the epidemic
peak when the network evolves according to TC strategy. As shown on Figure 4,
the timings of epidemic peaks obtained with TC, for networks GEN2 and PL,
are close to PA peak. However in network GEN1, this trend is not confirmed,
as we can observe on Figure 4: TC epidemic peak appears approximately at the
same time than R and GC peaks. This phenomenon is due to the connected

Diffusion in Dynamic Social Networks 571

components contained in GEN1 (17 for GEN1 as shown on Figure 3). Indeed,
the TC strategy does not allow creating links between components. For such an
evolution, an epidemic can spread only through the component of patient zero.

Results presented on this section were confirmed even when we vary values of
the two parameters transmission or recover probability between 0.1 and 1.

6 DynSpread Tool

Common tools designed for simulating spread of diseases in networks do not
integrate the ability to manage the evolution of networks. For this reason, we
designed DynSpread1, a tool for studying the “Dynamic of Spreading”, with
the purpose of providing an experimental environment for simulating spread of
diseases in evolving networks.

Fig. 6. Screenshot of DynSpread interface showing an epidemic in High School Network

DynSpread is a graphical application that shows two panels: one is used to load
the network and calibrate the simulation, the other allows user to monitor the
simulation either through a 2D view or a verbose mode. Green nodes correspond
to susceptible individuals, red nodes to infected and white nodes to recovered.
The MIDEN framework described in Section 3 was integrated in DynSpread
and all tests presented in previous sections were performed with the tool. An
example of the DynSpread interface, used for simulate the introduction of a
disease in High School Network, is shown in Figure 6.

The tool is fully customizable and flexible. First, it is possible to load a net-
work. Afterwards, user can define the probability of transmission, the probability
of recover, the evolution strategy, the evolution speed and the simulation speed.

1 DynSpread: http://erickstattner.com/DynSpread/

http://erickstattner.com/DynSpread/

572 E. Stattner, M. Collard, and N. Vidot

7 Conclusion and Future Works

In this work, we have addressed the question of information spreading and we
have focused on the particular issue of disease spreading. Unlike works that
handle static networks, we have tackled the emerging and fundamental issue of
spreading in evolving networks. Our objectives were to understand how and why
the evolution of networks could affect the spread. Our results provide an original
contribution on three subjects:

About dynamic networks, we have provided original insight on evolution
impact on network properties, by showing and comparing changes at features
level, according to several network evolution strategies that have been restricted
to link creation. We have shown that nodes degree and clustering coefficient can
be differently modified from one strategy to another.

About epidemiology, this work gives an interesting view about the way a
disease spreads through an evolving network. We have highlighted information on
the impact of the network dynamics upon epidemics characteristics that should
be useful for prevention campaign into communities.

About information diffusion, the MIDEN framework we have defined to
measure impact of basic changes in network structure and the DynSpread tool
that implements MIDEN to simulate diffusion in dynamic networks are flexible
enough to fit similar spreading cases such as spreading of rumors, knowledge or
fashion. Let us indeed refer to Borner et al.[5] who explained “If we are interested
in the spreading of computer viruses, then epidemiological models can be readily
applied even though the virus host is now a computer instead of a living being”.

Moreover, DynSpread should help scientists and health professionals to have
a better understanding of spread mechanisms in real world networks. Our future
works in a very short term will be devoted to extending this study in order to
capture full evolution strategies with link and node creation/deletion, inspired
by real world networks.

References

1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 51 (2002)

2. Barabasi, A.L.: Linked: The New Science of Networks. Perseus Books, Cambridge
(2002)

3. Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: Episimdemics:
an efficient algorithm for simulating the spread of infectious disease over large
realistic social networks. In: ACM/IEEE Conference on Supercomputing (2008)

4. Bott, E.: Family and social network, New-York (1957)
5. Brner, K., Sanyal, S., Vespignani, A.: Network science. In: Cronin, B. (ed.) Annual

Review of Information Science & Technology, vol. 41, pp. 537–607 (2007)
6. Chen, Y.-D., Tseng, C., King, C.-C., Wu, T.-S.J., Chen, H.: Incorporating geo-

graphical contacts into social network analysis for contact tracing in epidemiology:
A study on taiwan SARS data. In: Zeng, D., Gotham, I.J., Komatsu, K., Lynch,
C., Thurmond, M., Madigan, D., Lober, B., Kvach, J., Chen, H. (eds.) Intelligence
and Security Informatics 2007. LNCS, vol. 4506, pp. 23–36. Springer, Heidelberg
(2007)

Diffusion in Dynamic Social Networks 573

7. Christakis, N.A., Fowler, J.H.: Social network sensors for early detection of conta-
gious outbreaks. PloS one 5(9)(9) (September 2010)

8. Christensen, C., Albert, I., Grenfell, B., Albert, R.: Disease dynamics in a dynamic
social network. Physica A: Statistical Mechanics and its Applications 389(13),
2663–2674 (2010)

9. Christley, R.M., Pinchbeck, G.L., Bowers, R.G., Clancy, D., French, N.P., Bennett,
R., Turner, J.: Infection in social networks: Using network analysis to identify high-
risk individuals. American Journal of Epidemiology 162(10), 1024–1031 (2005)

10. Corley, C.D., Mikler, A.R., Cook, D.J., Singh, K.: Dynamic intimate contact social
networks and epidemic interventions. International Journal of Functional Infor-
matics and Personalised Medicine 1(2), 171–188 (2008)

11. Croft, D.P., James, R., Krause, J.: Exploring Animals Social Networks. Princeton
University Press, Princeton (2008)

12. De, P., Das, S.K.: Epidemic Models, Algorithms, and Protocols in Wireless Sensor
and Ad Hoc Networks, pp. 51–75. John Wiley & Sons, Chichester (2008)

13. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. (2002)
14. Gallos, L.K., Liljeros, F., Argyrakis, P., Bunde, A., Havlin, S.: Improving immu-

nization strategies. Phys. Rev. E 75(4) (April 2007)
15. Gross, T., D’Lima, C.J., Blasius, B.: Epidemic dynamics on an adaptive network.

Physical Review Letters 96(20) (2006)
16. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabsi, A.-L.: The large-scale

organization of metabolic networks. Nature 407, 651–654 (2000)
17. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of

epidemics. Proceedings of the Royal Society of London 115, 700–721 (1927)
18. Klovdahl, A.S.: Social networks and the spread of infectious diseases: the aids

example. Soc. Sci. Med. 21(11), 1203–1216 (1985)
19. Milgram, S.: The small world problem. Psychology Today 1, 61–67 (1967)
20. Newman, M.E.J.: The structure and function of complex networks. Siam Re-

view 45, 167–256 (2003)
21. Read, J.M., Eames, K.T.D., Edmunds, W.J.: Dynamic social networks and the

implications for the spread of infectious disease. J. R. Soc. Interface 5(26) (2008)
22. Salathe, M., Jones, J.H.: Dynamics and control of diseases in networks with com-

munity structure. PLoS Comput. Biol. 6(4), 04 (2010)
23. Salathe, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.: A

high-resolution human contact network for infectious disease transmission (2010)
24. Stattner, E., Vidot, N., Collard, M.: Social network analysis in epidemiology: Cur-

rent trends and perspectives. In: 5th IEEE Internatinal RCIS (2011)
25. Toivonen, R., Kovanen, L., Kivela, M., Onnela, J.P., Saramaki, J., Kaski, K.: A

comparative study of social network models: network evolution models and nodal
attribute models. Social Networks 31(4), 240–254 (2009)

Probabilistic Quality Assessment Based on

Article’s Revision History�

Jingyu Han1, Chuandong Wang1, and Dawei Jiang2

1 School of Computer Science and Technology, Nanjing University of Posts and
Telecommunications

Nanjing, P.R. China 210003
hjysky@gmail.com, chdwang@njupt.edu.cn

2 School of Computing
National University of Singapore

Singapore 119077
jiangdw@comp.nus.edu.sg

Abstract. The collaborative efforts of users in social media services
such as Wikipedia have led to an explosion in user-generated content
and how to automatically tag the quality of the content is an eminent
concern now. Actually each article is usually undergoing a series of re-
vision phases and the articles of different quality classes exhibit specific
revision cycle patterns. We propose to Assess Quality based on Revi-
sion History (AQRH) for a specific domain as follows. First, we borrow
Hidden Markov Model (HMM) to turn each article’s revision history
into a revision state sequence. Then, for each quality class its revision
cycle patterns are extracted and are clustered into quality corpora. Fi-
nally, article’s quality is thereby gauged by comparing the article’s state
sequence with the patterns of pre-classified documents in probabilistic
sense. We conduct experiments on a set of Wikipedia articles and the
results demonstrate that our method can accurately and objectively cap-
ture web article’s quality.

1 Introduction

Nowadays user-generated content (UGC), such as Wikipedia, Facebook, etc. is
coming into existence. Each document is collaboratively created and maintained
by collaborative writing. This in turn results in how to control the quality lev-
els of data contributed by various users. Among them, automatic data quality
assessment is a key issue.

In this paper, we ground our work on Wikipedia as it is a typical collaborative
content repository and its quality varies dramatically. According to Wikipedia
quality scale1, all the articles are classified into seven quality classes, namely
Featured Article(FA), A-Class(A), Good Article(GA), B-Class(B), C-Class(C),
� The work is fully supported by National Natural Science Foundation of China under

grants 61003040, 60903181 and China 973 program of No. 20100471353.
1 http://en.Wikipedia.org/wiki/Wikipedia_database

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 574–588, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://en.Wikipedia.org/wiki/Wikipedia_database

Probabilistic Quality Assessment Based on Article’s Revision History 575

Start-Class(ST) and Stub-Class(SU). The fundamental policy identifying arti-
cle’s quality class falls on human judgement. For instance, Wikipedia community
constantly review the articles labelling their quality. The disadvantage of this
approach is evident. First, the manual assessment will eventually cease to be
feasible due to the rapidly growing size of content. Second, human judgement is
subject to bias. To overcome the drawbacks of human judgement, an alternative
solution is to design automatic or semi-automatic quality assessment policies
[1,2] and our work belongs to this category.

We observe that every collaboratively generated article is always going through
a series of revision phases, such as building structure, contributing text and so on,
gradually reaching a convergence state. Later we use state referring to the phase.
An article’s current state mainly depends on its previous state whenever a contrib-
utor edits the article. In other words, the evolution of the article exhibits Markov
property. This revision history can be directly extracted from the UGC site such
as Wikipedia’s view history pages. Furthermore, different kinds of quality classes
exhibit groups of dominant revision cycle patterns. For example, some Featured
Articles first go through cycles of building structure, then cycles of contributing
text and finally discussing text. In contrast, some Featured Articles go through a
series of cycles, each cycle containing a sequence of building structure, contribut-
ing text and discussing text.

Based on above observations, we propose a machine learning approach to
Assess Quality based on Revision History (AQRH) for a specific domain. The
AQRH approach consists of two phases , namely preprocessing and probabilistic
quality assessment. In preprocessing phase an article’s revision history is formally
turned into a sequence of revision states, which clearly describes an article’s
evolution. In probabilistic quality assessment phase, an article’s quality rating
is given with two steps. First, each quality class is refined into quality corpora
by clustering and each quality corpus is represented by a set of revision cycle
patterns which often co-occur. The intuition is to identify all the typical groups
of dominant revision cycle patterns. Second, each article’s rating is given by
comparing its own revision sequence with quality corpora. If an article highly
matches one corpus, the article belongs to the quality class containing the corpus
with a high probability.

Our contributions of the paper include: (1) Hidden Markov Model is employed
to formally describe article’s evolution. (2) Each quality class is represented by
a group of quality corpora, each of which specifies a group of frequently co-
occurring revision cycle patterns. (3) Through comparing an article with all
quality corpora, the article’s quality rating is probabilistically determined.

The remaining part is organized as follows. Section 2 discusses related work.
Section 3 formally describes problem setting and how to map an article’s revision
history into state sequence. The details of quality assessment by machine learning
are described in section 4. In section 5, we validate and discuss our method by
detailed experiment. Finally the conclusion is given.

576 J. Han, C. Wang, and D. Jiang

2 Related Work

Data quality is an important issue to all the content contributor and its evalu-
ation approaches can be divided into two categories. The first category focuses
on qualitatively analysing data quality dimensions [3,4,5,6]. The second category
deals with how to quantitatively assess quality of data. The most obvious quality
assurance approach is grammar check. The writer’s workbench was a program
to detect some quality metrics such as split infinitives, overly long sentences,
wordy phrases, etc [7]. Literature [8] points out that cohesion is an important
measurement of writing quality and proposes to use Latent Semantic Analysis
(LSA) algorithm to measure cohesion. The result shows that LSA could be used
to achieve human accuracy in holistic judgement of quality but its limitation is
that the domain must be well defined and a representative corpus of the target
domain must be available.

These years many works focus on Wikipedia article’s quality. Literature [2]
explores a significant number of quality indicators to assess Wikipedia article
quality. Literature [9] propose to use maximum entropy model to learn how
to identify Wikipedia article quality. Literature [10] discusses seven IQ metrics
which can be evaluated automatically on Wikipedia content. These methods
mainly focus on analysing different kinds of quality indicators’ effectiveness and
they do not touch on how to use revision history. Another work relevant to ours
is using revision history to assess the trustworthiness of articles [11,12]. But they
focus on article’s trustworthiness and do not touch on how to assess data quality.

3 Problem Setting and Data Preprocessing

Let P be a set of articles. Each P ∈ P is associated with a specific content
version vi at a particular time ti. Formally, we define revision history of P as a
sequence of versions <(t1,v1),(t2,v2),...,(ti,vi),...,(tl,vl)> where

1. l refers to the number of versions during the whole life of P and version vi

results from a revision applied to previous version vi−1 at time ti, i ∈ [1, l].
2. vi = vi+1 for each i ∈ [1, l].

Definition 1 (Quality Class). Quality class is defined by Wikipedia commu-
nity including Featured Article(FA), A-Class(A), Good Article(GA), B-Class(B),
C-Class(C), Start-Class(ST) and Stub-Class(SU).

The goal of this paper is identifying to which quality class an article belongs
based on its revision history. We observe that an article is always evolving from
state to state and thus we employ Hidden Markov Model (HMM) to describe
this probabilistic process.

Definition 2 (HMM). A HMM is a 5-ary tuple λ = (H,O, Γ, Λ, Π), where
H = {h1, h2, ...hn} (n > 1) is a set of hidden states, O = {o1, o2, ..., om}(m > 1)
is a set of observations, Γ is the state transition probability matrix, Λ is the
emission probability matrix and Π is the initial state distribution.

Probabilistic Quality Assessment Based on Article’s Revision History 577

At each time point t, the model is in a particular hidden state qt ∈ H and a
particular observation rt ∈ O is observed. Given a sequence of observations and
model λ, Viterbi algorithm is employed to find the state sequence that is mostly
likely to generate that output observation sequence [13].

We argue that within a specific application domain each quality class has
its own state transition and emission probability and these can be learned by
Baum-Welch algorithm [14]. We now detail how to model the revision history
using HMM.

3.1 States of Revision History

We observe that the article is evolving from time to time and at each time
the article evolves at one hidden state of H. Formally, H={building structure,
contributing text, discussing text, contributing structure and text, discussing
structure and text, content agreement}. They mean as follows.

building structure (B): The architecture elements of the article such as lead
section and section headings, are being constructed .

contributing text (C): The contributors mainly focus on giving new piece of
text to make the article more comprehensive, not giving much attention to
the organization and accuracy of text.

discussing text (D): The contributors mainly focus on discussing the content
of text. From time to time, the contributors add or modify some parts of the
text to make it more accurate.

contributing structure and text (F): The contributors not only focus on
giving new piece of text to make the article more comprehensive, but also
focus on constructing new architecture element to make the article well or-
ganized.

discussing structure and text (E): The contributors discuss both the archi-
tecture and content of the article. From time to time, the contributors add
or modify some parts of architecture elements or text to make the article
more complete and more orderly.

content agreement (A): The contributors have a rough agreement on the
facts described in the article. But occasionally contributors still give a slight
revision that does not affect the users’ understanding.

Different articles tend to evolve in different fashions. For example, some articles
first go through a series of states regarding building structures then the text is
filled step by step. These articles often demonstrate the state sequence such as
{building structure → building structure,...,→ contributing text,...,→ discussing
text}. While some articles tend to evolve part by part without a predefined global
organization and these articles frequently demonstrate the state sequence such
as {contributing structure and text → contributing text,..., discussing structure
and text → contributing text,..., discussing structure and text → contributing
text...}.

578 J. Han, C. Wang, and D. Jiang

3.2 Observations of Revision History

Given an article’s history, each revision, namely the increment between two
consecutive versions, is extracted by comparing the version with its previous
version. Every revision is a deletion, insertion or modification with reference
to structure, content, format, structure+content and content+format. Actually,
revision can be captured in different granularity. It is captured as a 2-ary tuple
(rangr, perc). Here rangr denotes the maximum extent the revision spans, which
includes heading level, word level, sentence level, paragraph level, section level
and link level. perc denotes the ratio of size of the revision to the size of the
rangr. To sum up, a revision is captured in terms of three aspects, namely update
type, content type and granularity type. Formally, it is a 3-ary tuple (U, C, G).
Here U stands for update type, including insertion, deletion and modification. C
stands for content type, including structure, content, format, structure+content
and content+format. G stands for revision granularity.

Now the article’s observation sequence is defined as

Definition 3 (Observation Sequence). Given a revision history sequence
< (t1, v1), (t2, v2), ..., (ti, vi), ..., (tl, vl) >, its observation sequence is < o1,
o2, ..., oi,..., ol >, where oi is the revision between vi−1 and vi (i ∈ [1, l]).

In fact users tend to save intermediate results during editing to avoid the loss
of work. Many consecutive revisions are of the same type and are related to the
same part. So they can be merged to get a more compact view by Algorithm 1.

4 Probabilistic Quality Assessment by Learning Patterns

After each article’s revision history is mapped into a sequence of revision states,
the articles of one quality class is regarded as a database of state sequences.
Each quality class exhibits specific revision cycle patterns, which is defined as
follows.

Definition 4 (Revision Cycle Pattern). Revision Cycle Pattern is a subse-
quence or a series of subsequence which occur often in articles’ state sequence
database.

Here the subsequence is formally defined as

Definition 5 (Subsequence and Landmark). Sequence S′ =< e′1e
′
2...e

′
m >

is a subsequence of another sequence S =< e1e2...en > (m ≤ n), denoted by
S′ � S , if there exists a sequence of integers(positions) 1 ≤ l1 < l2... < lm ≤ n
s.t. S′[i] = S[li] (i.e.,e′i = eli) and |li− li−1| = 1 for i = 2, ..., m. Such a sequence
of integers < l1, ..., lm > is called a landmark of S′ in S.

One quality class’ state sequence database usually exhibits groups of dominant
revision cycle patterns which often occur simultaneously. It is defined as quality
corpus.

Probabilistic Quality Assessment Based on Article’s Revision History 579

Algorithm 1. mergeRevision
Input: A sequence of observations R =< o1, o2, ..., oN >
Output: A reduced sequence of observations R′

// merge the observations of the same granularity

1 Initialization;
2 while not end of R do
3 olast ← oi, ocur ← oi+1;

// Only merge the observations made by the same contributor

4 if olast.author = ocur.author then
// merge the granularity of adjacent observations

5 if (olast.updatetype = ocur.updatetype) ∧
(olast.contenttype = ocur.contenttype) then

6 if same(olast.granu, ocur.granu) ∧ (both olast and ocur relate to the
same article part) then

7 oi ← mergeGranu(olast, ocur);; // merge into one

granularity

8 end

9 end
10 R′ ← R′ ∪ oi; i ← i+2;

11 end
12 else
13 R′ ← R′ ∪ oi; i + +;
14 end

15 end
// merge the consecutive observation pair into one modification

observation

16 Reinitialization;
17 while not end of R’ do
18 olast ← oi, ocur ← oi+1;

// Only merge the observations made by the same contributor

19 if olast.author = ocur.author then
20 if (olast.upddatetype = insert ∧ ocur.updatetype = delete) ∨

(ocur.upddatetype = insert ∧ olast.updatetype = delete) then
21 if olast, ocur relate to the same part then
22 o′l ← mergeInsertDelete(olast, ocur);
23 replace olast,ocur with o′l in R’;

24 end

25 end
26 i + +;

27 end
28 else
29 i + +;
30 end

31 end
32 return R′;

580 J. Han, C. Wang, and D. Jiang

Definition 6 (Quality Corpus). Quality Corpus is one sub-type of a quality
class , which exhibit a group of revision cycle patterns which often occur simul-
taneously.

In other words, a quality class is represented as a group of quality corpora.
Based on above understanding, we achieve the probabilistic assessment by

machine learning with three steps. First, for each quality class we extract the
revision cycle patterns borrowing frequent items mining [15]. Second, each qual-
ity class is refined into quality corpora by clustering to discover the dominant
revision cycle patterns. Finally, each article’s quality rating is determined by
comparing its frequent patterns with all of the learned quality corpora. This
three steps are detailed in subsection 4.1, 4.2 and 4.3 respectively.

4.1 Extracting Revision Cycle Patterns

Revision cycle patterns are divided into two groups, namely non-gapped revi-
sion cycle patterns and gapped revision cycle patterns. The former captures the
consecutive revision practice and is formally defined as follows.

Definition 7 (Non-gapped Revision Cycle Pattern). Given a sequence
database S = {S1, S2, .., SW }, a frequent subsequence S′ and a threshold α, if S′

has more than α instances in S, S′ is a non-gapped revision cycle pattern.

To capture the dependency of several non-gapped edit subsequence, gapped re-
vision cycle pattern is formally defined by the followings.

Definition 8 (Gapped Subsequence and Instance). Given a series
of r subsequences S′

r=<< e′11 , e′12 , ..., e′11len > ... < e′j1 , e′j2 , ..., e′j
jlen ><

e′j+1
1 , e′j+1

2 , ..., e′j+1
j+1len > ... < e′r1 , e′r2 , ..., e′rrlen >> and a sequence S=<

e1, e2, ..., en >, if there exists a series of integers (positions) lan=<<
l11, l

1
2, ..., l

1
1len > ... < lj1, l

j
2, ..., l

j
jlen >< lj+1

1 , lj+1
2 , ..., lj+1

j+1len > ... <

lr1, l
r
2, ..., l

r
rlen >> where < lj1, l

j
2, ..., l

j
jlen >(1 ≤ j ≤ r) is the landmark of subse-

quence < e′j1 , e′j2 , ..., e′j
jlen > and lj+1

1 − lj
jlen ≥ 2 holds for all j (1 ≤ j ≤ r). S is

a instance of gapped subsequence S′
r.

Definition 9 (Gapped Revision Cycle Pattern). Given a sequence
database S = {S1, S2, .., SW }, a gapped subsequences S′

r and a threshold β, if
S′

r has more than β instances in S, S′
r is a gapped revision cycle pattern.

For example, suppose that S={S1, S2, S3}, S1 = ’ABCDABFEABDEFCD’, S2

= ’ABCDABFEABAEFCD’, S3 = ’ABCDABFEABDAB’, α = 3 and β =
2. ’AB’ is a non-gapped revision cycle pattern because S1, S2 and S3 are all
instances of ’AB’. ’AB...EFCD’ is a gapped revision cycle pattern because it
has two instances S1 and S2 in S. Actually the first denotes how frequently
’AB’ occurs in the sequence database while the latter implies that the frequent
pattern ’AB’ is often followed by a frequent pattern ’EFCD’. These two types of
revision cycle patterns are mined by adapting approaches given in literature[15].

Probabilistic Quality Assessment Based on Article’s Revision History 581

Algorithm 2. ExtractQualityCorpus
Input: Revision cycle patterns {F1, F2, ..., FM} of quality class Σ, total number

of corpora k, scale factor A and B (A > B), converge threshold Δ
Output: A set of quality corpora (Ω1, Ω2, ..., Ωk)
// 1. Initialize the medoids

1 Minit ← random patterns from Σ of size A.k;
2 Mseed ← selectSeed(Minit, B.k);

// 2. Iterative Phase

3 BestGain ←0;
4 Mbest ← φ;
5 Mcur ←random set of medoids {m1, m2, ..., mk} ⊂ Mseed;
6 repeat
7 (Ω1, Ω2, ..., Ωk) ← AssignPatterns (Σ \ Mcur,Mcur);

8 gainFun ←
∑

k
i=1 ∪cov(Ωi)∑

i,j olap(Ωi,Ωj)
;

9 Sbad ← φ ;
10 if gainFun > BestGain then
11 BestGain ← gainFun;
12 Mbest ← Mcur;
13 Sbad ← choose the bad ones in Mbest;

14 end
15 compute Mcur by replacing Sbad with random points from Mseed;

16 until the variance of BestGain is within Δ in 4 runs;
17 return (Ω1, Ω2, ..., Ωk);

During mining, different combination of values of α, β produce different set
of revision cycle patterns. To find a set of good revision cycle patterns which not
only cover all the articles for the quality class but also differ as much as possible
from other quality classes. We heuristically select the revision cycle patterns
with the following steps.

Step 1: Generating Candidate Revision Cycle Patterns
First, sets of revision cycle patterns are generated by exploring different values
of α and β. Second, for each candidate revision cycle pattern group , we remove
the redundant patterns or the Non-gapped pattern which is a subsequence of
another gapped pattern. Third, suppose that {F1, F2, ..., Fj , ..., FK} is one can-
didate pattern group of quality class Σ and art(Σ) be the articles of this class.
Let cov(Fj) be the set of articles covered by Fj . We select the pattern group
satisfying

∑K
j=1 cov(Fj) = art(Σ).

Step 2: Selecting the Pattern Group According to Its Uniqueness
Given a revision cycle pattern Fj of class Σi, its uniqueness(denoted as uni(Fj))
is defined as cov(Fj)

m , where m is the total number of quality classes whose articles
exhibit the pattern Fj . Intuitively, the larger the uni(Fj) is, the more discrimi-
nating the pattern is. Given one quality class, We select the pattern group with
the largest average pattern uniqueness.

582 J. Han, C. Wang, and D. Jiang

Algorithm 3. selectSeed
Input: A group of candidate medoids Minit of size Ak;
Output: reduced set of candidate medoids M of size Bk

1 M ← a random sample F1 ∈ Minit;
2 foreach Fi ∈ Minit \ M do
3 gain(Fi) ← IOG(Fi, F1);
4 end
5 for i ← 2 to Bk do
6 let Fi ∈ Minit \ M s.t. gain(Fi) ← max{gain(x)|x ∈ Minit \ M};
7 M ← M ∪ Fi;
8 foreach x ∈ Minit \ M do
9 gain(x) ← min(gain(x), IOG(x,Fi));

10 end

11 end
12 return M ;

4.2 Refining Quality Class into Quality Corpora

Given one quality class Σ and its mined revision cycle patterns {F1, F2, ..., FM},
we employ algorithm 2 refining quality class into quality corpora. The advantage
is that it automatically generates the description of the clusters in terms of
revision cycle patterns.

Given one quality class articles art(Σ), the general principles for finding a group
of corpora {Ω1,...,Ωk} is (1)

∑k
i=1 cov(Ωi) = art(Σ) (this has been ensured dur-

ing pattern mining); and (2) the overlap between any two corpora of Ωi and Ωj

(fori = j), denoted as olap(Ωi, Ωj), should be minimized. This aim is achieved by
algorithm 2. The algorithm proceeds in two phases, namely initialization phase and
iterative phase. In the initialization phase we try to find a superset of B.k medoids
using greedy technique which is shown in algorithm 3. The principle is finding the
medoids that maximize the coverage and minimize the overlap. The incremental
overlap gain(IOG) of pattern Fi over another pattern Fj is defined as

IOG(Fi, Fj) =
(cov(Fi) ∪ cov(Fj))− cov(Fj)

1 + olap(Fi, Fj)
. (1)

In the second phase hill-climbing policy is employed to find a good set of medoids
by iteration.

4.3 Quality Class Representation and Quality Rating

Now each quality class (denoted as Σ) consists of a group of quality corpora.
That is to say,

Σ = {Ω1, Ω2, ..., ΩW } (2)

where Ωi(1 ≤ i ≤W) is a quality corpus. Every quality corpus consists of a group
dominant revision cycle patterns, namely Ωi = (F1, F2, ..., Fj , ..., Fn).

Probabilistic Quality Assessment Based on Article’s Revision History 583

To measure how close an article P is to an quality class Σi (1≤ i ≤7), which
needs measuring the article’s Quality Similarity with quality Corpus Ωj ∈ Σi.
This is measured as follows.

QSC(P, Ωj) =
|fre(P) ∩Ωj |
|fre(P) ∪Ωj |) (3)

where fre(P) is the frequent revision cycle patterns exhibited in P ’ state sequence.
Now quality similarity between an article P and one quality class Σi is

QS(P, Σi) = max{QSC(P, Ωj)|Ωj ∈ Σi}. (4)

Given a set of quality class Σ1, Σ2, ..., Σn, an article P belongs to quality class
Σi (1 ≤ i ≤ n) with the probability

fi =
1

QS(P,Σi)∑n
k=1

1
QS(P,Σk)

. (5)

5 Experiment Results

We collected a set of English articles from Wikipedia. As a large collaborative
encyclopedia, there are approximately 3,321,000 articles (in the English version
alone) and some articles were already manually evaluated in terms of their content
quality. The data repository is available for downloading with complete revision
history. We chose a set of English articles from computing category. We chose this
set of articles because the articles have been assigned quality class labels according
to Wikipedia editorial team’s quality grading scheme 2. Table 1 shows the statis-
tics of the dataset. Clearly, ST and SU classes occupy most of the dataset, nearly
81%, and FA, GA, B, C classes occupy the rest. Note that there are no A-Class
articles in this dataset.

Table 1. Statistics of Computing Dataset

Quality Class FA A GA B C ST SU

Total number of articles 16 0 55 768 755 3145 4000
Average number of revision pages 3512 0 3623 931 1012 119 62

5.1 Data Preprocessing

To extract the observations, data cleansing is done as follows. First, revision en-
tries are extracted from the history view pages and are ordered into sequence by
date. Second, reverting subsequence are removed. Third, algorithm 1 is applied
to get a more compact observation sequence.

For each quality class’ sequence database, initial state distribution Π is ini-
tialized s.t. pr(B)+pr(C)+pr(F) = 1. In other words, the state sequence always
starts with B, C or F state. Initially, for each start state i, transition probability

2 http://en.wikipedia.org/wiki/Wikipedia:Version_1.0_Editorial_Team/

Assessment

http://en.wikipedia.org/wiki/Wikipedia:Version_1.0_Editorial_Team/Assessment
http://en.wikipedia.org/wiki/Wikipedia:Version_1.0_Editorial_Team/Assessment

584 J. Han, C. Wang, and D. Jiang

is evenly distributed among all destination states. So is for emission probabil-
ity initialization. The learning proceeds until the likelihood difference of the
database occurrence is within threshold ∇ = 0.2 (in log form) in 4 consecutive
iteration. Due to space we only report the transition probability of FA class
in table 2. When the parameters were set, Viterbi algorithm was employed to
transform observation sequence into revision state sequence.

Table 2. State Transition Probability for FA Class

Init. State Destination State
B C F D E A

B 0.2041 0.034 0.0408 0.3673 0.1088 0.2449

C 0.0606 0.0960 0.0657 0.5303 0.1061 0.1414

F 0.0625 0.0938 0.0625 0.4063 0.2396 0.1354

D 0.0550 0.1079 0.0296 0.5915 0.0974 0.1185

E 0.0687 0.0773 0.1202 0.3906 0.1717 0.1717

A 0.0653 0.0674 0.0211 0.2105 0.0947 0.5411

5.2 Evaluation and Discussion

To measure how well our probabilistic assessment covers the correct rating, we
adapt p@n metric in information retrieval as such

p@n =
∑N

i=1 tagn
i

N
, (6)

where N is the total number of articles. Here tagn
i is 1 if the top n rating of

article i covers the correct quality class, otherwise it is zero.
Besides, to show the error of probabilistic quality rating we define a Distribu-

tion Difference Error(DDE) measure as follows

DDE =
1
N

N∑
i=1

|pei| (7)

where N is the total number of articles and |pei| is the absolute difference be-
tween the probability of the first rating and that of the correct rating.

To objectively report the performance of AQRH approach, we used 10-fold
cross validation method. Our reported result is the average of ten runs. We
report our results in terms of effectiveness, impact of clustering on performance
and comparisons with previous work in detail.

Effectiveness of Probabilistic Assessment Approach. Candidate revision
cycle patterns are generated by setting α from 4 to 100 and β from 4 to 20 for
each quality class. After pruning, the pattern group with the largest uniqueness
is chosen for each quality class. Table 3 summaries the pattern selection result
for each quality class on computing dataset.

To refine quality class into quality corpora, the number of clusters, namely
k, is tuned by trial and error test as follows. First, clustering is performed by

Probabilistic Quality Assessment Based on Article’s Revision History 585

Table 3. Summary of Pattern Group Selection

Quality class FA GA B C ST SU

Uniqueness of selected group 5.3 4.9 3.7 2.95 3 2.53
Number of patterns in selected group 893 1021 367 392 104 28

setting k from 2 through kmax =
√

N , where N is the total number of articles of
training set. Second, the validity index is computed for each clustering as follows
[16],

V =
intra

inter
(8)

where intra is defined as

intra =
1
N

k∑
i=1

∑
Fj∈Ωi

|1− sim(Fj , mi)| (9)

and inter is defined as

inter = min(|1− sim(mi, mj)|), i = 1, 2, ..., k − 1, j = i + 1, ..., k. (10)

Here mi is the medoid of corpus Ωi. The validity index represents overall average
compactness against separation of the partition. Finally, the k producing the
smallest V is chosen.

Table 4. k, p@n and DDE Result on Computing Dataset

Quality Class FA GA B C ST SU

k 4 6 25 23 48 65

p@1 0.98 0.95 0.96 0.93 0.91 0.85

p@2 1 1 0.99 0.98 0.96 0.89

p@3 1 1 1 1 0.98 0.94

p@4 1 1 1 1 1 0.97

p@{5-7} 1 1 1 1 1 1

DDE 0.014 0.019 0.025 0.04 0.03 0.037

Table 4 reports the k and p@n results for each quality class. From p@1 result
we note that our AQRH gives the better performance for FA, GA and B classes
than that for other classes. Through analysis, we found that FA, GA and B
quality class shows large number of dominant gapped revision cycle patterns
which can effectively distinguish them from others. In contrast, it performs worse
on ST and SU class, especially on SU class. This is mainly due to that the revision
history of SU class is usually very short and it is difficult to extract the most
effective patterns. Note that FA and GA’s patterns overlap each other, but our
approach performs better on FA than on GA. This is mainly due to that the
pattern overlap between GA and B is larger than that between FA and B.

586 J. Han, C. Wang, and D. Jiang

Based on all p@n measure, we can observe that our approach can get a very
accurate rating when n increase from 1 to 2. Although the p@n is not very
accurate when n = 1 due to the inherent ambiguities of revision cycle patterns,
the p@n measure can get a very good rating when n = 2. Specifically, our
approach can give all the correct rating for FA, GA classes and almost all correct
rating for other classes. When n increase from 3 through 7, the p@n measure
almost increase by zero except the ST and SU class. By reading DDE measure
of the last row in table 4, we found it very small for all quality classes. In other
words, even sometimes our approach may give a false rating, the probability
for false rating and that for correct rating is very close. This confirm that our
probabilistic assessment is preferable.

Fig. 1. Performance with k (FA class) Fig. 2. Performance with k (B class)

Impact of Clustering on Rating Performance We observed that quality
rating is sensitive to how many corpora are generated for each quality class. We
only report the result of FA, B and ST classes in figure 1, 2 and 3 due to space.
When the number of corpora, namely k, increases from 2 to N

4 for one quality
class, the kbest for other quality classes are fixed. The result shows that the p@n
measure first increases then decreases when k increase from 2 to N

4 . In other
words, the rating accuracy first increases then decreases with the increase of the
number of corpora per quality class.

Comparisons with Previous Works. In this part we compare our method
with the state-of-the-art work, namely SVR, which was proposed in literature
[2]. As the original implementation of the algorithms are not publicly available,
we implemented it ourselves.

The SVR approach makes use of groups of features to train the model for
quality rating. To be fair, we implement SVR approach using the group of fea-
tures that were reported to perform best, namely structure feature group and
style feature group. We use STRU-SVR and STYL-SVR to refer to them re-
spectively. Figure 4 shows the performance comparison result between AQRH

Probabilistic Quality Assessment Based on Article’s Revision History 587

and STRU-SVR, STYL-SVR. From the figure, we can observe that our method
largely outperformed STYL-SVR and fairly outperformed STRU-SVR.

Fig. 3. Performance with k (ST class) Fig. 4. Rating Performance Comparisons

6 Conclusion

In this paper we propose using revision history to probabilistically assess article
quality. Specifically, we use frequent items mining to extract the revision cycle
patterns. Then each quality class is characterized by a series of quality corpora,
each of which represents a group of the revision cycle patterns which often co-
occur. Finally, an article’s quality is determined by comparing its state sequence
with the quality corpora. Besides, a concrete probabilistic quality measure is
given and thus quality can be objectively described in probabilistic sense.

As our future work, we plan to improve rating accuracy for some quality
classes and to assess article quality in a more fine granularity.

References

1. Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V.: Mining database
structure; or, how to build a data quality browser. In: Proc. of SIGMOD 2002,
pp. 240–251 (2002)

2. Dalip, D.H., Cristo, M., Calado, P.: Automatic quality assessment of content cre-
ated collaboratively by web communities: A case study of wikipedia. In: Proc. of
JCDL 2009, pp. 295–304 (2009)

3. Aebi, D., Perrochon, L.: Towards improving data quality. In: Proc. of the Interna-
tional Conference on Information Systems and Management of Data, pp. 273–281
(1993)

4. Wang, R.Y., Kon, H.B., Madnick, S.E.: Data quality requirements analysis and
modeling. In: Proc. of the Ninth International Conference on Data Engineering,
pp. 670–677 (1993)

588 J. Han, C. Wang, and D. Jiang

5. Bouzeghoub, M., Peralta, V.: A framework for analysis of data freshness. In:
Proc. of 2004 International Information Quality Conference on Information System,
pp. 59–67 (2004)

6. Pernici, B., Scannapieco, M.: Data quality in web information systems. In: Spac-
capietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503,
pp. 397–413. Springer, Heidelberg (2002)

7. Macdonald, N., Frase, L., Gingrich, P., Keenan, S.: The writer’s workbench: com-
puter aids for text analysis. IEEE Transactions on Communications 30(1), 105–110
(1982)

8. Foltz, P.W.: Supporting content-based feedback in on-line writing evaluation with
lsa. Interactive Learning Environments 8(2), 111–127 (2000)

9. Rassbach, L., Pincock, T., Mingus, B.: Exploring the feasibility of automatically
rating online article quality (2008)

10. Stvilia, B., Twidle, B., Smith, M.C.: Assessing information quality of a community-
based encyclopedia. In: Proc. of the International Conference on Information Qual-
ity, pp. 442–454 (2005)

11. Zeng, H., Alhossaini, M.A., Ding, L.: Computing trust from revision history. In:
Proc. of the 2006 International Conference on Privacy, Security and Trust: Bridge
the Gap Between PST Technologies and Business Services (2006)

12. Zeng, H., Alhossaini, M.A., Fikes, R., McGuinness, D.L: mining revision history
to assess trustworthiness of article fragments. In: Proc. of International conference
on Collaborative Computing: Networking, Applications and Worksharing, pp. 1–10
(2009)

13. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proc. of IEEE, 257–286 (1989)

14. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains. Ann. Math.
Statist. 41(1), 164–171 (1970)

15. Ding, B., Lo, D., Han, J., Khoo, S.C.: Efficient mining of closed repetitive gapped
subsequences from a sequence database. In: Proc. of 2009 ICDE, pp. 1024–1035
(2009)

16. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence 13(8), 841–847 (1991)

Propagation of Multi-granularity Annotations

Ryo Aoto, Toshiyuki Shimizu, and Masatoshi Yoshikawa

Kyoto University, Kyoto, Japan 606-8501
{aoto@db.soc.,tshimizu@,yoshikawa@}i.kyoto-u.ac.jp

Abstract. Data origin or processing information and the metadata that
is useful in understanding data can be associated with data by
using annotation. Provenance knowledge preserved by annotation is man-
aged by continuously propagating the annotations through the work-
flow. Models for explicitly associating annotations are generally used
for annotation-based provenance management, and techniques for prop-
agating annotations have been proposed. There is also a model for im-
plicitly associating annotations – the annotations are associated with
data with arbitrary granularity by using queries. We call the implicit
model “multi-granularity annotation” model. Multi-granularity annota-
tion enables flexible association of information. However, no provenance
management methods using multi-granularity annotations have been re-
ported. We have developed a method for propagating multi-granularity
annotations. We define rules for annotation propagation for each rela-
tional algebra operation, and they are used to recalculate the scopes of
annotations associated with data. We also addressed the loss of infor-
mation needed to preserve annotation associations during data deriva-
tion and the lack of static data annotations by extending the operations
and the association method. Experiments showed that our method re-
quires less space usage and execution time than conventional annotation
management methods.

Keywords: multi-granularity annotation, annotation propagation,
provenance management.

1 Introduction

The importance of provenance management has been increasing [5,8]. Prove-
nance means origin, source or lineage and is typically used to represent infor-
mation about the creation of scientific artifacts. Data provenance includes the
processing history of data and gives information about the data used for a data
derivation or the processing steps themselves. This information is indispensable
for determining the quality of scientific results. Data provenance is generally re-
garded to be as important as the results themselves [13] because it ensures the
reproducibility of data derivations and guarantees the reliability of data. More-
over, the dependence of the results on the derivation processes can be extracted
by analysis of the provenance knowledge.

Many studies on provenance management have been conducted in the database
field. Static workflow analysis [6] or annotations are typically used for provenance

A. Hameurlain et al. (Eds.): DEXA 2011, Part II, LNCS 6861, pp. 589–603, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

590 R. Aoto, T. Shimizu, and M. Yoshikawa

management. Workflow analysis studies have generally addressed the derivation
of data origin. The source data for a result are traced by analyzing the dataset
and queries used for the data derivation [7,3,11]. In studies on annotation, vari-
ous types of information useful for managing and understanding the data can be
associated with data as metadata: origin, derivation, quality, deficit, and com-
ment. By propagating this information to the results through queries, we can
preserve the information needed for provenance management. In this paper, we
introduce a technique using such propagation for annotation-based provenance
management.

The word annotation generally represents the documents associated with a
subset of data. Annotations are used for associating metadata with records in
a database. There have been many studies on the management of annotations,
and various techniques for the association of annotations have been proposed.
In the typical methods, annotations are associated with data by a cell [4], a
subset of a record [10], or a block of records [12]. Annotations are explicitly
associated with a record in the methods proposed in literature [4,10]. In these
explicit methods, the propagations are easily calculated since the annotations
are directly associated with records. However, the records to witch an annota-
tion refers must be individually specified when the annotation is created, and
the annotation must be re-associated whenever new records to which they refer
are inserted. In the multi-granularity annotation method proposed by Srivas-
tava et al. [12], annotations are implicitly associated with records that satisfy a
specific property by using conditional expressions. The annotations can be flexi-
bly associated with data across multiple records, whereas conventional methods
associate annotations with a cell or a subset of a record.

As an example of multi-granularity annotations, consider the association with
the meteorological data shown in Figure. 1. The data table has four attributes
(observation point id, observation date, temperature, and humidity) and four
annotations are associated with it. Annotation AP is associated with the value
345001 in the POINTID column and it preserves information about the observa-
tion point (e.g., place name, longitude, or latitude). Annotation AC is a comment
associated with a value in the TEMP column. Annotation AD is a comment as-
sociated with a pair of values in the TEMP and HUMID column whose values
of temperature-humidity index are greater than 75. Annotation AE represents
the missing value due to an equipment error and is associated with the values
of the HUMID column at specific date. These annotations are associated with
specific records that satisfy the following conditions.

– AP : ID = 345001
– AC : (TEMP < 25) ∧ (YEARMODA like ′ -08- ′)
– AD : DC(TEMP, HUMID) > 75
– AE : (ID = 345001)∧ (YEARMODA = 2010-08-01)

As this example shows, a method that exploits conditional expressions to specify
the associations has two advantages. First, the annotations are stored at lower
storage cost than with the explicit methods in which contents of annotations
overlap when the annotations are associated with multiple records. The space

Propagation of Multi-granularity Annotations 591

Fig. 1. Example associations of anntations
with meteorological data

POINTID YEARMODA HUMID
345001 2010-08-01 10
345001 2010-08-03 74
: : :

OUT

AD: ‘Discomfort’
AP: Place Name,
Longitude, Latitude

AE: ‘Equipment error’

Fig. 2. Example output

usage for storing annotations is larger if the annotations are associated with mul-
tiple records such as annotation AP in this example. In contrast, annotations are
associated with a block of records by the using conditional expressions, and its
contents are stored only once in multiple-granularity annotations. This approach
reduces the required storage space. Second, annotations are automatically associ-
ated with the records that satisfy the specified condition. For example, if records
added to the dataset for another point satisfy the condition for AC , they will be
automatically associated with AC .

An important problem with using annotations is that they are lost during data
derivation, so the results generated lack the annotations. It is desirable that
the information preserved by annotations can be extracted from the results.
While the information associated with the input data could be extracted by
tracing the source of the results, tracing every data source would be impractical.
Several annotation propagation techniques that address this problem have been
proposed. The annotations associated with the source data are propagated to
the results during data derivation. The metadata associated with the source
data enable to be extracted at an arbitrary point of the workflow by annotation
propagation. While techniques for propagating annotations have been proposed
for explicit association [4,10], none have been reported for implicit association.
Only an association technique has been proposed [12].

We have developed a method for propagating multi-granularity annotations.
As an example of such propagation, consider the extraction of the humidity value
from a record in which the temperature value is greater than 30. The output of
a query usually contains only the selected data: the annotations are lost in the
extraction. With multi-granularity annotation, the information associated with
the input is propagated by recalculating the additional annotation conditions
and re-associating the annotations with the result of the query, as shown in
Figure. 2.

In our development of this method, we considered static association in which
annotations remain associated with the records to which they were initially as-
sociated in addition to dynamic association, because in some cases, annotations
are associated with unexpected records as the result of a union operation since
datasets with different contexts are combined. Moreover, we addressed the loss
of information needed to preserve annotation associations during data derivation

592 R. Aoto, T. Shimizu, and M. Yoshikawa

by extending the algebraic operations used and the association method. In the
developed method, the additional scope of the annotations to be propagated are
automatically recalculated.

The composition of this paper is as follows. In Section 2, we briefly discuss
related works. In Section 3, we describe our method for propagating multi-
granularity annotations. In Section 4, we evaluate our method in terms of storage
space and execution time. In Section 5, we summarize the key points and mention
future work.

2 Related Work

As mentioned above, annotations are lost during data derivation. If the location
of annotations were recalculated after derivation and associated with the output,
they would be carried forward to the query results. Buneman et al. [4] were the
first to propose technique for propagating annotations in a relational database.
In their propagation model, annotations are associated with the records for a
cell as shown in Figure. 3, and rules for propagating annotations are defined
for each relational algebraic operation. Propagation is calculated on the basis of
the location from which each value in the cell was copied (“where provenance”
[3]). Bhagwat et al. [2] developed an annotation management system DBNotes
based on the model of Buneman et al. [4]. They defined a query language pSQL ,
which is extension of SQL for the annotation propagation, and showed the algo-
rithm that absorbs the differences among all equivalent formulations of a given
query. Gerrts et al. [10] extended the location-based model so that annotations
can be associated with an arbitrary set of attributes in a record as shown in
Figure. 4. They defined color algebra for manipulating the annotations, which
are represented as color blocks, and determined the meanings of annotations
by categorizing them on the basis of whether they have a meaning as a set or
not. Srivastava et al. [12] generalized the conventional annotation models into
one in which annotations can be associated with arbitrary set of attributes and
records as shown in Figure. 5 A query is used for representing the association
of an annotation. The select-and-where cause of a query specifies the scope of
the data with which an annotation will be associated. Srivastava experimentally
showed that his method requires less storage space and has lower update cost
for associating annotations than conventional annotation management systems
[4,10].

As summarized in Table1, several method for propagating annotations explic-
itly associated with data have been reported but not for those associated using
arbitrary granularity. We consider that, by applying the propagation discussed
above to the multi-granularity annotation model, we can manage data prove-
nance information more easily and at lower cost. Eltabakh et al [9] developed
the method for storing annotations in relations efficiently and propagating them
through queries. On the other hand, we developed the query-based propagation
method by extending algebras for preserving the semantics of associations.

Propagation of Multi-granularity Annotations 593

Table 1. Relationship with related work

[4,2] [10] [12] Our method

Granularity
for a cell for a subset of for a subset of for a subset of

of a record of a record multiple records multiple records

Propagation considered YES YES NO YES

A B C
1 2 3
4 5 6

R

t1

t2

a

a b

a

ab

Fig. 3. Representation of
annotations descrived by
Buneman et al. [4,2]

A B C
1 2 3
4 5 6

R

t1

t2

a b

Fig. 4. Representation of
annotations descrived by
Geerts et al. [10]

A B C
1 2 3
4 5 6

R

t1

t2

a b

Fig. 5. Representation of
annotations descrived by
Srivastava et al. [12]

3 Propagation of Multi-granularity Annotations

In this section, we describe our representation of multi-granularity annotations
and our method for propagating them.

3.1 Annotation Model

An annotation associated with an arbitrary portion of data is represented by
both of the contents of annotation and an additional condition. The additional
condition specifies the portion of the data with which the annotation is associ-
ated. It is represented by a triple: table name, selection conditional expression,
and attributes list. The selection conditional expression is a logical formula spec-
ifying the scope of the records to which the annotations refers. The attributes
list is a set of attributes with which the annotation is associated. By determining
the table, expression and attributes, an annotation can be associated with data
with arbitrary granularity. Annotation A is given by

A = (a, l) = (a, (R, Tc,A))

where ”a” represents the contents of the annotation and ”l” represents the addi-
tional condition. As mentioned above, the l is represented by the triple- R, T, A
(table name, selection expressional expression, attributes list). This annotation
model is equal to the model formulated by Srivastava[12] at the concept level.

As an example, we reconsider the TempHumid345001 table and annotations
AC , AD associated to the table in Figure. 6. We use the abbreviations I, D, T, and
H for representing attributes POINTID, YEARMODA, TEMP, and HUMID.

594 R. Aoto, T. Shimizu, and M. Yoshikawa

Fig. 6. Example multi-granularity annotations

Annotations AC and AD are represented as

AC = (′Cool′, (TempHumid345001, (T < 20) ∧ (D like ′ -08- ′), T))
AD = (′Discomfort′, (TempHumid345001, DC(T, H) > 75, TH))

With this model, annotations can be flexibly associated with data on the basis
of defined conditions. Moreover, annotations can be associated dynamically. If a
record satisfying a condition is inserted, it is automatically associated with the
annotation. That is, no maintenance for associating existing annotations with
data in new records is needed. However, one may want to associate annotations
with particular records that have been in the dataset since the annotations were
created. For example, automatically associating an annotation that has meaning
only in the initial dataset with data in new records may be contrary to the intent
of the annotation creator. This problem is particularly likely in the union of
datasets. Therefore, we also considered the static association of annotations.

3.2 Propagation Model

Our proposed propagation model is based on the representation of multi-
granularity annotations described in the preceding section.

To propagate multi-granularity annotations, we need to know to which por-
tion of the data the propagated annotations should be re-associated. We thus
defined propagation rules for recalculating the scope of multi-granularity anno-
tations. These rules represent the transformation of the additional scope of an
annotation at each propagation step. Annotations are propagated by recalcu-
lating the additional scope of each annotation in accordance with the rules. We
define propagation rules for every basic operation of relational algebra: selection,
projection, join, union, difference, and rename. The rules for each operation are
represented such that the left side is an input annotation and the right side is a
propagated annotation.

– Projection: πB(R)

(a, (R, Tc,A))→ (a, (πB(R), Tc,A∩B))

This expression alters the attributes list of additional conditions in accor-
dance with the induced changes in the projection operation attributes. The

Propagation of Multi-granularity Annotations 595

Fig. 7. Propagation result following pro-
jection

Fig. 8. Propagation result following selec-
tion

modified attributes list is the product of attributes list A of the annotation
and parameter B of the projection. If an attribute included in the selec-
tion conditional expression is deleted by this modification, the information
for associating annotations is lost. The solution is to preserve the attributes
constituting the conditional expressions of the annotations in addition to the
attributes projected by the projection operator. The preserved attributes are
treated as a system-valid column, invisible to users.

As an example, consider the projection operation projecting POINTID,
YEARMODA, and TEMP from the TempHumid345001 table in Figure. 6.
In conventional projection, only the attributes assigned by the parameter
are projected. Here, the HUMID attribute is also projected to preserve the
values used for the association of the annotationsD The results are shown in
Figure. 7.

– Selection: σc(R)

(a, (R, Tc,A))→ (a, (σc(R), Tc,A))

The selection conditional expression Tc of the input is applied directly to the
output of the operation. Annotations are propagated without altering the
selection conditional expressions. That is because, any tuple that does not
satisfy the select-predicates does not appear in the select operation result
and any tuple is newly inserted.

As an example, consider a selection operation that selects the TEMP data
with a value greater than 30 from the table in Figure. 6. The tuples with a
YEARMODA value of 2010-08-02 or 2010-08-03 are the target tuples with
which annotations are associated. The results are shown in Figure. 8.

– Join: R1 �� R2

(a1, (R1, Tc1 ,A1))→ (a1, (R1 �� R2, Tc1 ,A1))
(a2, (R2, Tc2 ,A2))→ (a2, (R1 �� R2, Tc2 ,A2))

Annotations are propagated without any modification of the selection con-
ditional expressions. This is because any tuple that does not satisfy the
join-predicates does not appear in the join operation result.

596 R. Aoto, T. Shimizu, and M. Yoshikawa

Fig. 9. Input table for join Fig. 10. Propagation result following join

As an example, consider the join operation for the table in Figure. 6 and the
PRESS345001 table in Figure. 9, which has the same values for POINTID
and YEARMODA plus PRESS column. A data value in the PRESS345001
table is associated with an annotation for ”equipment error”. The selection
condition is passed to the output directly following the joining of these ta-
bles, leading to the propagation of annotations. The results are shown in
Figure. 10

– Union: R1 ∪R2

(a1, (R1, Tc1 ,A))→ (a1, (R1 ∪R2, Tc1,A))
(a2, (R2, Tc2 ,A))→ (a2, (R1 ∪R2, Tc2,A))

Annotations can be propagated without any modification of an additional
condition if they are dynamically associated with data. Annotations with
equivalent attribute lists and contents can be integrated as follows.

(a, (R1, Tc1 ,A))
(a, (R2, Tc2 ,A))→ (a, (R1 ∪R2, Tc1 ∨ Tc2 ,A))

If records that newly appear in the output following the union satisfy the
selection conditional expression of an annotation, they are automatically
associated with the annotation. This dynamic association is useful, because
the annotations are easily maintained by automatic association. However,
users should be able to determine whether new records should be associated
with existing annotations. We thus need to also consider the use of static
association in which annotations are associated with only the records that
existed when the annotations were created.

For static association to be used the records that were initially associated
with an annotation need to be distinguishable at later time. To enable this,
we modify the data table and annotation table when the annotations are cre-
ated. A system-valid attribute (E) that is invisible to users is added to the
data table, and the name of the data table is stored to it when generating an
annotation. In addition, a predicate is added to the selection conditional ex-
pression that defines the value of E. For example, if annotation (a, (R, Tc,A))

Propagation of Multi-granularity Annotations 597

Fig. 11. Input table for union Fig. 12. Propagation result following
union

is generated for data table R, the selection conditional expression for it is
rewritten as (a, (R, Tc∧ (E =′ R′),A)). The records initially associated with
an annotation can then be selected by modifying the annotation table and
the data table when generating the annotation and examining whether the
record satisfies the added condition when referring to the annotation. Note
that static association is needed when new records are inserted by union
operation. However, annotation tables and data tables need to be modified
beforehand by adding the predicates indicating when the annotations were
created.

As an example, consider the union operation for the table in Figure. 6 and
the table in Figure. 11, which contains values observed for an other point. If
the annotations are associated dynamically, the result is as shown in Figure.
12. The annotations are propagated to the output, and the new records that
satisfy the additional condition of the annotations are also associated with
them. The new records with TEMP values satisfying the additional condition
of the annotations AC associated with the value in the TempHumid345001
table are also associated with the annotation. However, if annotation AC is a
comment that has meaning only for a specific point, the dynamic association
may be contrary to the creator’s intent. To associate annotation AC with the
records in the TempHumid345001 table that were initially associated to it,
we preserve the name of the data table and add a predicate to the selection
conditional expression, as shown in Figure 13. The new predicate is examined
to determine whether the records were initially in the TempHumide345001
when the annotation is referred.

– Rename : δθ(R)

(a, (R, Tc,A))→ (a, (δθ(R), θ(Tc), θ(A)))

We alter the name of the attributes in the selection conditional expres-
sions and attribute lists in accordance with the parameters of the rename
operation.

598 R. Aoto, T. Shimizu, and M. Yoshikawa

Fig. 13. Static association of annotations Fig. 14. Propagation result following re-
name

Fig. 15. Input table for difference Fig. 16. Propagation result following dif-
ference

As an example, consider an operation that renames TEMP in Figure. 6 to
MEAN TEMP . Following this change to the column name, the correspond-
ing attribute name of the selection conditional expressions and the attribute
lists for the additional conditions are modified. As a result, the annotations
are propagated to the output as shown in Figure. 14

– Difference : R1 −R2

(a, (R1, Tc1 ,A))→ (a, (R1 −R2, Tc1 ,A))

Without any modification of the selection conditional expressions and by
directly applying it to the output, we can propagate annotations. This is
because the tuples deleted by the difference operation do not appear in the
query execution result.

As an example, consider the difference operation for the table in Figure. 6
and the table in Figure. 15. By applying the selection conditional expressions
of the input annotations to the tuple remaining after the difference operation,
we can propagate the annotations as shown in Figure 16.

The combination of modified algebra can also construct more complicated
queries represented by relational algebra (e.g., outer-join, anti-join, etc.).

Propagation of Multi-granularity Annotations 599

4 Experimental Evaluation

We evaluated our method for propagating multi-granularity annotations by com-
paring its performance with that of two conventional annotation management
systems [2,10]. We used space usage and query execution time with annotation
propagation as the metrics.

For our evaluation, we implemented a prototype of our annotation manage-
ment system on the MySQL relational DBMS, running on a windows-based PC
(Windows 7 OS, 64-bet IntelCPU, Core i7 architecture, 1.2-GHz clock, 4-GB
RAM). Our system uses two auxiliary tables to store the annotations in a rela-
tional database for each data table as shown in Figure. 17: annotation table and
attribute list table. The annotation table contains the additional conditions and
the annotation contents, and the attribute list table contains the correspondences
between the attribute names in the data table and the values of the attribute
ID columns of the annotation table. The additional condition for an annotation
is determined by the values in the attribute id and selection condition columns
in the annotation table. The attribute ID columns are Boolean attributes: the
value is true if the annotation is associated with the corresponding attribute
in the data table; otherwise it is false. The selection condition column contains
the attributes used to keep the values that specify the records associated with
the annotations. Their values are represented as logical expressions as shown in
Figure. 17. To deal with modifications to attribute names in rename and pro-
jection operations, we present the selection conditional expressions as attribute
IDs instead of the attribute names in the attribute list table. Modifications of
attribute names in a data table are applied to the values of the attribute ID
columns in the attribute list table. By creating these auxiliary tables, we can
associate the annotations with the data with arbitrary granularity. The propaga-
tions are calculated using the propagation rules defined in the previous section.
The annotations are propagated by executing a query against the data tables
and applying the rewritten query to the annotation tables and attribute list ta-
bles. For example, if a query contained a projection or rename operation, the
attribute list table would be modified. Similarly, attribute list tables are com-
bined for propagation following a union operation. As shown in Figure. 17, our
system represents static associations of annotations by using tables that stores
the names of the table with witch each annotations are initially associated. When
annotations are referred, the data tables and the tables storing table names are
joined. Some annotations may become invalid (i.e., they are no longer associated
with a record) following a selection, join, or difference operation. These invalid
annotations can be detected later by data validation and deleted.

The two annotation management systems used for comparison DBNotes [2]
and MONDRIAN [10], were recently proposed. We exclude the system proposed
in [12] from comparison because our system stores annotations in the same way
as [12] and it does not offer the mechanism to propagate annotations. DBNotes
stores annotations in an extra column added to each attribute column in the
data table, as shown in Figure. 18(a). If more than one annotation is associated
with a record, the record is replicated and the other annotations are stored in

600 R. Aoto, T. Shimizu, and M. Yoshikawa

Fig. 17. Data structure for annotations

(a) DBNotes

(b) MONDRIAN

Fig. 18. Data structure
for conventional systems

the replicant. Since multiple annotations can be associated with the same record,
there may be record duplication. In Figure. 18(a), annotations ’a’, ’b’, and ’c’
are associated with (A, B) = (1, 2), (3, 4). Annotation ’a’ is associated to (1, 2),
and ’b’ and ’c’ are associated with (3, 4). The tuple (3,4) is multiple recorded
because more than one annotation is associated with it, as shown in Figure.
18(a). In DBNotes, annotations are explicitly associated with records, so they
are automatically propagated along with the query result. In MONDRIAN, an-
notations are associated with every record and, as shown in Figure. 18(b), stored
in an annotation table dissociated from the data tables. The same annotations
in the table in Figure. 18(a) are associated with the table in Figure. 18(b). The
annotation tables have Boolean columns corresponding to the attributes in the
data tables, and the columns store the annotation contents. If an annotation is
associated with an attribute of a record in a data table, the value of the cor-
responding Boolean column is true, otherwise it is false The difference between
MONDRIAN and DBNotes is that MONDRIAN can associate an annotation
with an arbitrary set of record attributes. In the original MONDRIAN system,
annotations are associated with records by storing the clones of data tables in
annotation tables. However, for fair comparison, we preserved the correspon-
dence between annotations and records by using IDs in our implementation of
MONDRIAN, as shown in Figure 18(b). MONDRIAN executes queries joining
data tables and annotation tables. Since it explicitly associates annotations with
records, annotations are automatically propagated to query result.

As a dataset for our evaluation we used the 10-GB TPC-H database [1], and
we used the customer table and the supplier table of it. We created 5000 couple
of an additional condition and a sentence of 50 random characters as annotations
associated with the dataset. We associated a portion of these to 5% of the records
are associated with some annotations. Similarly, we associated the annotations
to 25, 50, 75, and 90% of the dataset. Since the queries generated by TPC-H
contain aggregations, and our system is unable to handle the aggregations, we
executed our own queries: Select query;SP suery; SPJ query.

Propagation of Multi-granularity Annotations 601

Fig. 19. Space for storing annotations as-
sociated with original dataset

Fig. 20. Space for storing annotations as-
sociated with results of Select query

Fig. 21. Space for storing annotations as-
sociated with results of SP query

Fig. 22. Space for storing annotations as-
sociated with results of SPJ query

4.1 Storage Space

For a fair comparison of our system with DBNotes in terms of storage space, we
measured the space used by DBNotes with the size of the data table in which
annotations are stored. For measuring MONDRIAN and our system, we used
the total size of data tables and annotation tables.

The space required for associating the annotations with the original data table
is shown in Figure. 19. That associated with the query results shown in Figure.
20, Figure. 21 and Figure. 22. The data table size in Figures. 19 to 22 is the total
size of the data tables: and the space required by MONDRIAN and our system
is the total size of the data tables and the annotation tables. As our method
associates annotations as modeled by Srivastava et al. [12], the superiority of
our method evident in Figure. 19 has been previously shown [12].

The results show that our method stored annotations in less space than the
two other methods in almost all cases. This was due to the differences in storage
mechanisms. In DBNotes, annotations are associated with every cell in the tar-
get records, so annotation content is duplicated for records and attributes. Sim-
ilarly, in MONDRIAN, annotation content is stored for associated records. This
means that the more records with which annotation is associated, the greater the

602 R. Aoto, T. Shimizu, and M. Yoshikawa

Fig. 23. Propagation time
of select query

Fig. 24. Propagation time
of SP query

Fig. 25. Propagation time
of SPJ query

amount of duplicate content storage, which means increased storage space. Since
our system stores annotation content only once in a separate table, it requires
the least storage space.

In the case the percentage of data associated with annotations is 5 or 25%,
the space required by our method is larger than that of the other two method, as
shown in Figure 21. This is attributed to the peculiarity of our propagation rule:
the attributes included in the selection conditional expressions are additionally
projected to the result, which is not the case with the other two methods. The
storage space needed for output derived by queries including projection tended to
be larger than with the other two systems. The original SP query propagated four
of the seven attributes while our system rewrote the query to preserve the values
of the attributes included in the selection conditional expressions, resulting in
the propagation of five attributes. As a result, the data tables derived by the
query increased in size. Therefore, the storage space required with our method
was sometimes larger than with the other two methods.

4.2 Query Execution Time

For our comparison of query execution times, we measured the query execution
time of DBNotes as the time for querying the data table with which the annota-
tions are a associated. For MONDRIAN and our system, we used the total time
for querying a data table and transforming the annotations.

As shown in Figures. 23, 24, and 25, the times with our system were the short-
est in all cases. The execution time for DBNotes and MONDRIAN varied with
the amount of annotations while those for our system were virtually constant.
This is attributed to the differences in the data structure and the annotation
propagation method. In the other two systems, the greater the number of anno-
tations associated with records, the greater the amount of stored contents due to
content duplication. On the other hand, in our method, the amount of content
stored for an annotation is independent of the number of records associated with
that annotation, so propagation basically consists of annotation table replica-
tion. Therefore, there was no significant increase in the execution time of our
system.

Propagation of Multi-granularity Annotations 603

5 Conclusions

The method we have developed for annotation management propagates anno-
tations associated with multi-granularity data to the query output. We defined
propagation rules for calculating the transformation of the additional scope of
an input annotation for every operation of relational algebra. Our experiments
showed that our method is better than two typical annotation management
systems in terms of storage space and propagation execution time. Two main
conclusions were obtained from this work.

– An annotation associated with data with arbitrary granularity can be prop-
agated through a query by using the defined propagation rules.

– The space required for storing annotations and the propagation execution
time can be reduced by using multi-granularity annotations.

We addressed propagation only for the basic operations of relational algebra.
We plan to address it for aggregation operations or updates as well. Further-
more, we plan to develop a propagation method considering the semantics of
annotations.

References

1. Tpc-h benchmark, http://www.tpc.org/tpch/
2. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An annotation manage-

ment system for relational databases. In: VLDB. pp. 900–911 (2004)
3. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data

provenance. In: ICDT. pp. 316–330 (2001)
4. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations

through views. In: PODS. pp. 150–158 (2002)
5. Buneman, P., Tan, W.C.: Provenance in databases. In: SIGMOD. pp. 1171–1173

(2007)
6. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and

where. Foundations and Trends in Databases 1(4), 379–474 (2009)
7. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing

environment. ACM TODS 25(2), 179–227 (2000)
8. Davidson, S.B., Boulakia, S.C., Eyal, A., Ludäscher, B., McPhillips, T.M., Bowers,

S., Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data
Eng. Bull. 30(4), 44–50 (2007)

9. Eltabakh, M.Y., Aref, W.G., Elmagarmid, A.K., Ouzzani, M., Silva, Y.N.: Sup-
porting annotations on relations. In: EDBT. pp. 379–390 (2009)

10. Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying
databases through colors and blocks. In: ICDE. p. 82 (2006)

11. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS. pp.
31–40 (2007)

12. Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata.
In: SIGMOD. pp. 401–412 (2007)

13. Tan, W.C.: Provenance in databases: Past, current, and future. IEEE Data Eng.
Bull. 30(4), 3–12 (2007)

Author Index

Akbarinia, Reza I-140
Amann, Bernd II-203
Aoto, Ryo II-589
Apers, Peter M.G. II-118
Aravogliadis, Pantelis II-1
Asano, Yasuhito I-341
Ashrafi, Mafruz Zaman I-187
Asiki, Athanasia II-527

Badr, Mehdi I-379
Balke, Wolf-Tilo II-350
Banek, Marko II-439
Barbosa, Denilson II-502
Barhamgi, Mahmoud I-202
Béchet, Nicolas II-154
Beierle, Christoph I-27
Bellahsene, Zohra II-396
Ben Saad, Myriam I-394
Bhattacharya, Arnab II-493
Bi, Yaxin II-219
Bisbal, Jesus II-59
Böhm, Christian I-349
Bouchou, Béatrice I-94
Bouillot, Flavien II-154
Bowers, Shawn I-526
Bressan, Stéphane I-448
Bringas, Pablo G. II-519
Bringay, Sandra II-154
Brut, Mihaela II-249
Buche, Patrice I-511
Busemann, Claas II-311

Campos, Andre M. II-303
Canuto, Anne M.P. II-303
Cao, Huiping I-526
Cao, Jinli I-425
Cappellari, Paolo II-366, II-411
Capra, Licia I-542
Caragea, Doina I-217
Ceci, Michelangelo II-97
Che, Dunren II-420
Chen, Baichen I-156
Chen, Chunan II-136
Chen, Qiming II-162

Cheng, Jingwei II-447
Chiu, David II-381
Chow, Randy I-78
Chundi, Parvathi I-110
Clemmer, Aaron I-288
Codreanu, Dana II-249
Coletta, Remi II-396
Collard, Martine II-559
Conlan, Owen II-319, II-334
Corrales, Fabian II-381
Creus Tomàs, Jordi II-203
Curé, Olivier I-481

Dabringer, Claus II-144
Dang, Tran Khanh I-280
Davies, Stephen I-288
Dédzoé, William Kokou I-140
Delgado, Jaime II-234
Deng, Ke I-270
Deng, Xiaotie II-279
de Souza Mendes, Leonardo II-511
De Virgilio, Roberto II-366
Dibie-Barthélemy, Juliette I-511
Ding, Zhiming I-270, II-464
Dong, Jiawei II-279
Dou, Dejing II-74
Dray, Gérard I-457
Duan, Qiyang II-128
Duc, Chan Le I-481
Dumitrescu, Stefan II-249
Duthil, Benjamin I-457
Dutta, Sourav II-493

Eder, Johann II-144
Engelbrecht, Gerhard II-59

Fang, Yuan I-187
Fayn, Jocelyne I-202
Fegaras, Leonidas II-17
Ferrarotti, Flavio I-125
Fialho, Sergio V. II-303
Finthammer, Marc I-27
Flouvat, Frédéric II-107
Frangi, Alejandro F. II-59
Frasincar, Flavius I-440

606 Author Index

Gançarski, Stéphane I-394
Ghedira, Chirine I-202
Gonçalves, Luiz M.G. II-303
Gruenwald, Le I-496
Guo, Xi I-47
Gürel, Meltem II-334

Halfeld Ferrari, Mirian I-94
Hampson, Cormac II-319, II-334
Han, Jingyu II-574
Härder, Theo II-33
Hartmann, Sven I-125
Hecht, Robin I-481
Heendaliya, Lasanthi I-247
Hilali-Jaghdam, Inès II-90
Hogenboom, Alexander I-440
Hogenboom, Frederik I-440
Hoppen, Martin I-262
Hou, Wen-Chi II-420
Hsu, Meichun II-162
Hsu, Wynne I-232
Huang, Maolin II-43
Huang, Sheng II-128
Huq, Mohammad Rezwanul II-118
Hurson, Ali I-247

Ishikawa, Yoshiharu I-47

Jen, Tao-Yuan II-90
Jiang, Dawei II-574
Jurić, Damir II-439

Karydis, Ioannis I-62
Kashyap, Shrikant I-232
Kawamoto, Junpei I-341
Kaymak, Uzay I-440
Kern-Isberner, Gabriele I-27
Khefifi, Rania I-511
Ko�laczkowski, Piotr II-475
Kouba, Zdeněk II-188
Koziris, Nectarios II-527
Křemen, Petr II-188
Küng, Josef I-280

Ladwig, Günter I-303, II-171
Lamarre, Philippe I-140
Lamolle, Myriam I-481
Laurent, Dominique II-90
Le, Van Bao Tran I-125
Leclère, Michel I-466

Lee, Mong Li I-232
Li, Jiang II-43
Li, Xiao I-78
Li, Xiaodong II-279
Li, Xiaoou II-544
Liang, Weifa I-156
Lima, Maria Adriana Vidigal I-94
Lin, Dan I-247
Link, Sebastian I-125
Liu, Haishan II-74
Liu, Siqi II-51
Liu, Weimo II-136
Loglisci, Corrado II-97
Luo, Cheng II-420

Ma, Z.M. II-447
Maccioni, Antonio II-366
Malerba, Donato II-97
Mami, Imene II-396
Manolopoulos, Yannis I-62
Manzat, Ana-Maria II-249
Mao, Dingding II-136
Maris, Marinus II-456
Marques, Eduardo Zanoni II-511
Medjahed, Brahim I-202
Min, Geyong I-156
Missikoff, Michele II-294
Mohamed, Khalil Ben I-466
Montmain, Jacky I-457
Motomura, Tetsutaro I-410
Moyna, Niall II-411
Mrissa, Michael I-202
Mugnier, Marie-Laure I-466

Natschläger, Christine II-264
Ng, See Kiong I-187
Nguyen, Khanh I-425
Nicklas, Daniela II-311
Nieves, Javier II-519
Nin, Jordi II-234
Nobari, Sadegh I-448

Oswald, Annahita I-349
Otagiri, Kenichi I-364
Ou, Xinming I-217

Patro, Sunanda I-172
Pires, Carlos Eduardo II-502
Plantié, Michel I-457
Poncelet, Pascal I-457, II-154

Author Index 607

Pratap Singh, Aditya I-320
Proietti, Maurizio II-294
Pudi, Vikram I-320

Qin, Han II-74

Riazati, Dariush II-428
Ribeiro, Leonardo Andrade II-33
Richter, Christian I-349
Roantree, Mark II-366, II-411
Roche, Mathieu I-457, II-154
Rodriguez, Lisbeth II-544
Roßmann, Jürgen I-262
Rybiński, Henryk II-475

Säıs, Fatiha I-511
Samoladas, Vasilis II-485
Sandberg, Jacobijn II-456
Santos, Igor II-519
Saraiva, Márcio II-502
Sawin, Jason II-381
Schildhauer, Mark P. I-526
Schluse, Michael I-262
Schouten, Kim I-440
Sedes, Florence II-249
Selke, Joachim II-350
Selmaoui-Folcher, Nazha II-107
Shestakov, Denis I-331
Shi, Jie II-411
Shimizu, Toshiyuki I-410, II-589
Shubhankar, Kumar I-320
Signoretti, Alberto II-303
Sioutas, Spyros I-62
Skočir, Zoran II-439
Smith, Fabrizio II-294
Stattner, Erick II-559
Subramaniam, Mahadevan I-110
Sun, Weiwei II-136

Tajiri, Ricardo Hideyuki II-511
Tang, Ruiming I-448
Tawaramoto, Kazuki I-341
Tbahriti, Salah-Eddine I-202
Teisseire, Maguelonne II-154
Teitsma, Marten II-456
Teja, B. Palvali II-493
Thalheim, Bernhard I-12
Theodoridis, Yannis I-62
Thimm, Matthias I-27

Thom, James A. II-428
Tobin, Crionna II-411
Toran, Pere II-234
Tous, Ruben II-234
Tran, Thanh I-303, II-171
Travers, Nicolas II-203
Trousset, François I-457
Truong, Anh Tuan I-280
Tsatsanifos, George II-485
Tsichlas, Kostas I-62
Tsoumakos, Dimitrios II-527

Ugarte-Pedrero, Xabier II-519

Valduriez, Patrick I-1, I-140
van der Meer, Otto I-440
Vassalos, Vasilis II-1
Vidot, Nicolas II-559
Vieira, Priscilla II-502
Villa-Uriol, Mari-Cruz II-59
Vodislav, Dan I-379, II-203

Wackersreuther, Bianca I-349
Wackersreuther, Peter I-349
Wagner, Andreas I-303, II-171
Wang, Chao II-279
Wang, Chuandong II-574
Wang, Feng II-279
Wang, Guoren II-51
Wang, Junhu II-43
Wang, Peng II-128
Wang, Wei I-172, II-128
Waspe, Ralf I-262
Watanabe, Yousuke I-364
Weerakoon, R.M. Aruna I-110
Wielinga, Bob II-456
Wombacher, Andreas II-118
Wu, Huayu I-448
Wu, MingXi II-128
Wu, Shengli II-219
Wu, Yi I-364

Xavier-Junior, João C. II-303
Xing, Zhaowen I-496

Yahia, Sadok Ben II-90
Yan, Li II-447
Yokota, Haruo I-364

608 Author Index

Yoshikawa, Masatoshi I-341, I-410,
II-589

Yu, Feng II-420

Zanardi, Valentina I-542
Zarpelão, Bruno Bogaz II-511
Zeng, Xiaoqin II-219

Zhang, Bin II-162

Zhang, Fu II-447

Zhang, Su I-217

Zheng, Baihua II-136

Zhu, Qiang II-420

Zhu, Shanfeng II-279

	Title
	Preface
	Table of Contents
	XML Querying and Views
	On Equivalence and Rewriting of XPath Queries Using Views under DTD Constraints
	Introduction
	XPath, DTD and XPath Containment
	XPath and Tree Pattern Queries
	Schema and DTDs
	XPath Query Containment

	XPath Query Rewriting
	Rewriting in the Absence of Schema

	Query Rewriting and Containment in the Presence of DTD
	The XPath Fragment XP(/,[],*) with Duplicate-Free DTD
	The XPath Fragment XP(/,[],*) with Acyclic and Choice-Free DTD

	Related Work
	Conclusions and Future Work
	References

	Incremental Maintenance of Materialized XML Views
	Introduction
	Related Work
	Our Framework
	Synthesizing the Right-Inverse
	Implementation and Evaluation
	Conclusion
	References

	Ingredients for Accurate, Fast, and Robust XML Similarity Joins
	Introduction
	Main Ingredients
	Similarity Functions
	XML Path Clustering

	Tree Similarity Join
	Experiments
	Accuracy Results
	Runtime Performance and Scalability Results

	Related Work
	Conclusion
	References

	Twig Pattern Matching: A Revisit
	Introduction
	Terminology and Notation
	Deficiencies in Previous Algorithms
	Approach for Avoiding Redundant Computation
	Re-test Checking
	Forward-to-End
	TwigFast* and TwigStack*

	Experiments
	Conclusion
	References

	Boosting Twig Joins in Probabilistic XML
	Introduction
	Preliminaries
	Data Model
	Twig Patterns and Answers

	Encoding Scheme: pDewey
	Streaming Scheme
	Probability Evaluation
	Tag+Probability Streaming Scheme
	Pruning Streams

	Algorithm pTJFastTP
	Notations and Operations
	pTJFastTP
	Pruning in Merge-Join

	Experimental Evaluation
	Related Work
	Conclusion
	References

	Data Mining
	Prediction of Cerebral Aneurysm Rupture Using Hemodynamic, Morphologic and Clinical Features: A Data Mining Approach
	Introduction
	Related Work
	Data Collection and Pre-processing
	Experimental Dataset
	Feature Extraction
	Feature Selection
	Feature Discretisation

	Prediction Model
	Experimental Results
	Classification Performance
	Association Rules and Risk Factors

	Conclusions
	Future Work
	References

	Semantic Translation for Rule-Based Knowledge in Data Mining
	Introduction
	Related Work
	Formal Representation of Rule-Based Knowledge
	Knowledge Translation
	Formal Definitions
	Asymmetry of Knowledge Translation
	Design and Implementation

	Case Studies
	Translation of NBA Classification Rules
	Translation of ZFIN and MGI Gene Association Rules

	Discussion and Future Work
	Conclusions
	References

	Mining Frequent Disjunctive Selection Queries
	Introduction
	Related Work
	Disjunctive Selection Queries
	Mining Frequent Minimal Selection Queries
	Experiments
	Conclusion and Further Work
	References

	A Temporal Data Mining Framework for Analyzing Longitudinal Data
	Introduction
	Problem Formulation
	Temporal Data Mining Framework
	Determination of Stages
	Collection of Pairwise Stages
	Detection of Complex Events
	Discovery of Temporal Patterns

	Application to Biomedical Data
	Conclusions
	References

	How to Use ”Classical” Tree Mining Algorithms to Find Complex Spatio-Temporal Patterns?
	Introduction
	Related Works
	Basic Concepts and Definitions
	Discovering Complex Spatio-temporal Trees from Raw Data
	Incremental Construction of a Spatio-temporal Tree Forest
	Mining Embedded/Induced Spatio-temporal Subtrees

	Improving Performances
	Experimental Results
	Conclusion and Perspectives
	References

	Queries and Search
	Inferring Fine-Grained Data Provenance in Stream Data Processing: Reduced Storage Cost, High Accuracy
	Introduction
	Motivating Scenario
	Related Work
	Proposed Solution
	Provenance Inference Algorithm
	Requirements
	Details on Identifying Provenance Phase

	Discussion
	Evaluation
	Evaluating Criteria and Datasets
	Storage Consumption
	Accuracy

	Conclusion and Future Work
	References

	Approximate Query on Historical Stream Data
	Introduction
	Background
	Fourier/DCT Based Approximate Query
	Haar Wavelet
	Piecewise Linear Approximation (PLA)
	Stream Cube and Tilted Time Model

	The Synopsis Cube
	Aggregating the Synopsis Cells
	Aggregating Fourier Synopsis
	Aggregating Wavelet
	Aggregating PLA

	Querying the Stream Cube
	Experiments
	Range Query Accuracy over Aggregated Synopses Cells
	Minimum Balanced Cost of Different Synopses

	Conclusion
	References

	An Incremental Approach to Closest Pair Queries in Spatial Networks Using Best-First Search
	Introduction
	Related Work
	Disk-Based Storage Schema of Spatial Network
	kNN Query and kCP Query in SNDB
	Buffer Replacement Policy

	A Best-First kCP Algorithm
	Problem Definition and Search Algorithm

	The MDU Buffer Replacement Policy
	Experimental Evaluation
	Performance Comparison of BFCP and CPNE
	Performance Comparison of MDU and LRU

	Conclusion
	References

	Fast Top-K Query Answering
	Introduction
	Related Work
	Top-K Query Answering
	How FTA Works

	Prototype and Experiments
	Experimental Setup
	Discussion of Results

	Conclusion
	References

	Towards an On-Line Analysis of Tweets Processing
	Introduction
	What Is the Most Appropriate Measure for Tweets?
	Preliminary Definitions
	The Data Model
	Towards an Appropriate Measure

	A Hierarchy of Words for Tweets
	The Data and the Model
	How to Identify the Context of a Tweet?

	Experiments
	Related Work
	Conclusion
	References

	The Fix-Point Method for Discrete Events Simulation Using SQL and UDF
	Introduction
	Discrete Event Simulation Using SQL
	Fix-Point Query Evaluation for Discrete Events Simulation
	Experiments and Conclusions
	References

	Semantic Web
	Approximate and Incremental Processing of Complex Queries against the Web of Data
	Introduction
	Overview
	Entity Search
	Approximate Structure Matching
	Structure-Based Result Refinement and Computation
	Evaluation
	Conclusion and Future Work
	References

	Conjunctive Query Optimization in OWL2-DL
	Introduction
	Preliminaries
	Conjunctive Queries for SROIQ
	Optimizations of Basic Reasoning Services

	Query Evaluation Methods
	Boolean Queries
	Queries without Undistinguished Variables
	Handling Undistinguished Variables

	Optimizing Rolling-Up Technique
	Cores
	Core Evaluation

	Experiments
	Performance of the Undistinguished Variables Optimizations

	Conclusion
	References

	RoSeS: A Continuous Content-Based Query Engine for RSS Feeds
	Introduction
	Related Work
	RoSeS Architecture
	RoSeS Data Model and Language
	The RoSeS Language
	Data Model and Algebra

	Query Processing
	Query Graphs
	Query Evaluation and Cost-Model
	Query Graph Optimization

	Conclusion and Future Work
	References

	Information Retrieval
	The Linear Combination Data Fusion Method in Information Retrieval
	Introduction
	Related Work
	The Linear Combination Method
	Experiments
	Experiment 1
	Experiment 2

	Conclusion
	References

	Approaches and Standards for Metadata Interoperability in Distributed Image Search and Retrieval
	Introduction
	Topology of Digital Image Description Metadata Models
	Approaches to Metadata Interoperability in Distributed Image Search&Retrieval
	Simple Format Metadata Aggregator/Metadata Conversion
	Multiple Format Metadata Aggregator/Inference
	Broker/Query Rewriting
	Approaches Comparison

	Standards for Metadata Interoperability in Distributed Image Search&Retrieval
	ISO/IEC 15938-12:2008 Standard (MPEG Query Format or MPQF)
	ISO/IEC 24800 Standard (JPSearch)
	JPSearch Registration Authority

	Example Real Distributed Image Search&Retrieval System
	Conclusions
	References

	A Distributed Architecture for Flexible Multimedia Management and Retrieval
	Introduction
	Related Work
	The LINDO Framework Architecture
	The Remote Server Components
	The Central Server Components
	Indexing and Querying Mechanisms

	LINDO System Evaluation
	The LINDO System Topology Used for Evaluation
	Multimedia Indexing
	Query Processing

	Conclusions
	References

	Business Applications
	Deontic BPMN
	Introduction
	Motivation
	Related Work
	Deontic BPMN
	Empty Task
	Permission and Alternative
	Requires
	Multiple Deontic Classifications

	Path Exploration
	Algebraic Graph Transformation
	Evaluation
	Conclusion
	References

	Improving Stock Market Prediction by Integrating Both Market News and Stock Prices
	Introduction
	Related Work
	System and Experimental Design
	Information Sources
	Preprocessing of News Articles
	Preprocessing of History Prices
	Align News Articles and Market Prices
	Normalization
	Model Training

	Experimental Results and Discussion
	Data Sets
	Parameter Selection
	Experimental Results

	Conclusion and Future Work
	References

	Querying Semantically Enriched Business Processes
	Introduction
	Knowledge Representation Framework
	Introducing BPAL
	Semantic Annotation through a Business Reference Ontology

	Querying an Enterprise Knowledge Base
	Implementation
	Related Work and Conclusions
	References

	Introducing Affective Agents in Recommendation Systems Based on Relational Data Clustering
	Introduction
	Related Works
	System Overview
	Interface Agent

	Implementational Aspects
	The Affective Module
	Attention Focus
	The Relational Clustering Module
	The Creation of the Map Points List

	The Proposed Prototype
	Final Remarks
	References

	Converting Conversation Protocols Using an XML Based Differential Behavioral Model
	Introduction
	Related Work
	Models
	Message Model
	Differential Protocol Model

	Case Study
	Evaluation
	Conclusion and Future Work
	References

	User Support
	Facilitating Casual Users in Interacting with Linked Data through Domain Expertise
	Introduction
	Related Work
	SARA (Semantic Attribute Reconciliation Architecture)
	SABer (Semantic Attribute Builder)
	Case Study
	SABer Evaluation
	Summary
	References

	Using Expert-Derived Aesthetic Attributes to Help Users in Exploring Image Databases
	Introduction
	Related Work
	X2Photo
	SARA
	Colour Theory and Colour Psychology as an Aesthetic Vocabulary
	Design
	Implementation

	Evaluation
	Describing the Images
	Finding Images in X2Photo
	Finding Images in Flickr
	User Survey
	Analysis

	Summary
	References

	Indexing
	SkyMap: A Trie-Based Index Structure for High-Performance Skyline Query Processing
	Introduction
	Related Work
	Preliminaries
	The SkyMap Approach
	Tries
	Z-Addresses, Z-Regions, and Z-Subregions
	SkyMap and Its Basic Operations
	Analysis
	Skyline Algorithms

	Evaluation
	Skyline Computation
	Skyline Maintenance
	Influence of Parameters

	Conclusion
	References

	A Path-Oriented RDF Index for Keyword Search Query Processing
	Introduction
	Related Work
	Index Modeling
	Index Management
	Constructing the Graph Index
	Index Maintenance
	Index Querying

	Implementation
	Conclusion and Future Work
	References

	Variable Length Compression for Bitmap Indices
	Introduction
	Background
	Byte-Aligned Bitmap Code (BBC)
	Word-Aligned Hybrid Code (WAH)
	Row Reordering of Bitmaps

	Variable Length Compression
	Variable Compression Scheme
	Query Processing

	Experimental Evaluation
	Data Compression Analysis
	Evaluation of Query Processing Times

	Related Work
	Conclusion and Future Work
	References

	Queries, Views and Data Warehouses
	Modeling View Selection as a Constraint Satisfaction Problem
	Introduction
	Problem Specification
	A New Approach to the View Selection Problem
	Motivations
	Preliminaries
	Modeling View Selection Problem as a CSP

	Experimental Evaluation
	Experiment Settings
	Experiment Results

	Related Work
	Deterministic Algorithms Based Methods
	Randomized Algorithms Based Methods
	Hybrid Algorithms Based Methods

	Conclusion
	References

	Enabling Knowledge Extraction from Low Level Sensor Data
	Introduction
	High Level Overview
	Providing Context for Low Level Sensor Data
	Enabling Knowledge Extraction
	Evaluation
	Related Research
	Conclusions
	References

	Join Selectivity Re-estimation for Repetitive Queries in Databases
	Introduction
	Framework and Terminology
	Join Selectivity Re-estimation Framework
	Join Graph
	Query Trace

	Selectivity Estimation for Acyclic Join Graphs
	No Dangling Tuples in the Joins
	Dangling Tuples in Joins

	Preliminary Experimental Results
	Preliminary Experimental Results

	Conclusions and Future Work
	References

	Matching Star Schemas
	Introduction
	StarMod
	StarMod Properties and Their Application in Schema Matching
	Inferring Properties of StarMod from Relational Schemas

	Evaluation of StarMod in Schema Matching
	Discussion of Match Results for Example Schemas
	Evaluation of Using StarMod in Matching Schemas on a Larger Scale

	Related Work
	Conclusion and Future Work
	References

	Ontologies
	Automated Construction of Domain Ontology Taxonomies from Wikipedia
	Introduction
	Related Work
	Domain Definition Term and Domain Coverage
	Taxonomy Construction Algorithm
	Anchor Class Computation
	First Sentence Algorithm
	Category Head Algorithm
	Experimental Evaluation and Combined Algorithm as Solution

	Finding Subsumption Relations between Core Term Categories and Anchor Class
	Conclusion
	References

	Storing Fuzzy Ontology in Fuzzy Relational Database
	Introduction
	A Quick Look to Fuzzy Ontologies
	Fuzzy Ontology Storage in Fuzzy Relational Database
	Conclusions and Future Work
	References

	Using an Ontology to Automatically Generate Questions for the Determination of Situations
	Introduction
	Situation Awareness Question Generator (SAQG)
	The Experiment
	Discussion and Conclusion
	References

	Physical Aspects of Databases
	Indexing Frequently Updated Trajectories of Network-Constrained Moving Objects
	Introduction
	General Data Model for Network-Constrained Moving Object Trajectories
	The Structure and Related Algorithms of the MOSTR-Tree
	Transforming Trajectories to Sketched Trajectories
	Structure and Construction of the MOSTR-Tree
	Maintaining and Constructing MOSTR-Tree with Ongoing Location Updates
	Query Processing Based on the MOSTR-Tree

	Performance Evaluation and Conclusion
	References

	Online Index Selection in RDBMS by Evolutionary Approach
	Introduction
	Index Selection Algorithm
	Experimental Results
	Summary
	References

	Towards Balanced Allocations for DHTs
	Introduction
	Related Work
	Balanced Allocations
	Experimental Evaluation
	Setting
	Results

	Conclusions
	References

	Caching Stars in the Sky: A Semantic Caching Approach to Accelerate Skyline Queries
	Introduction
	Background and Related Work
	Capturing Semantics of Skyline Queries
	Characterization of Queries
	Semantic Segments
	Query Processing Algorithms
	Need for an Index Structure

	Index Structure
	Modified Semantic Segments
	Eliminating Redundancy of Result Sets
	Query Processing and Insertion Using Index
	Deletion from Index
	Cache Replacement

	Experimental Results
	Conclusions
	References

	Design
	Generating Synthetic Database Schemas for Simulation Purposes
	Introduction
	Building Synthetic Schemas
	Modifying Synthetic Database Schemas
	Experiments and Results
	Related Work
	Conclusions and Further Work
	References

	A New Approach for Fuzzy Classification in Relational Databases
	Introduction
	A Framework for Fuzzy Data Classification
	Proposal for Fuzzy Data Classification

	A Practical Application
	Conclusion
	References

	Anomaly Detection for the Prediction of Ultimate Tensile Strength in Iron Casting Production
	Introduction
	Foundry Processes and Mechanical Properties
	Anomaly Detection
	Empirical Validation
	Conclusions
	References

	Distribution
	LinkedPeers: A Distributed System for Interlinking Multidimensional Data
	Introduction
	LinkedPeers System Description
	Notation and Definitions
	Data Insertion

	Query Processing
	Exact Match Queries
	Flood Queries
	Materialized Views
	Indexed Queries

	Adaptive Query-Driven Re-indexing
	Experimental Results
	Simulation Setup
	Performance under Different Number of Dimensions and Levels
	Query Resolution for Different Types of Datasets
	Precision for Skewed Workloads
	Testing against the Use of Materialized Views
	Cost of the Various Types of Query Resolution
	Performance for Dataset of the APB Benchmark

	Related Work
	Conclusions
	References

	A Vertical Partitioning Algorithm for Distributed Multimedia Databases
	Introduction
	Background
	Vertical Partitioning
	Multimedia Database Partitioning

	Multimedia Adaptable Vertical Partitioning Algorithm (MAVP)
	Partition Tree
	Merging Profit of MAVP

	Cost Model
	Experiments
	Discussion
	Conclusion and Future Work
	References

	Diffusion in Dynamic Social Networks: Application in Epidemiology
	Introduction
	Previous Works
	Compartment Models
	Networks and Epidemics

	Objectives and Method
	Motivations and Objectives
	Evolution Strategies
	Studied Networks
	MIDEN Framework

	Experiments and Results
	Test Bed
	Results

	Discussion
	DynSpread Tool
	Conclusion and Future Works
	References

	Miscellaneous Topics
	Probabilistic Quality Assessment Based on Article’s Revision History
	Introduction
	Related Work
	Problem Setting and Data Preprocessing
	States of Revision History
	Observations of Revision History

	Probabilistic Quality Assessment by Learning Patterns
	Extracting Revision Cycle Patterns
	Refining Quality Class into Quality Corpora
	Quality Class Representation and Quality Rating

	Experiment Results
	Data Preprocessing
	Evaluation and Discussion

	Conclusion
	References

	Propagation of Multi-granularity Annotations
	Introduction
	Related Work
	Propagation of Multi-granularity Annotations
	Annotation Model
	Propagation Model

	Experimental Evaluation
	Storage Space
	Query Execution Time

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

