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Preface

This volume includes invited papers, research papers, and short papers presented
at DEXA 2011, the 22nd International Conference on Database and Expert Sys-
tems Applications, held in Toulouse, France. DEXA 2011 continued the long and
successful DEXA tradition begun in 1990, bringing together a large collection of
bright researchers, scientists, and practitioners from around the world to share
new results in the areas of database, intelligent systems, and related advanced
applications.

The call for papers resulted in the submission of 207 papers, of which 52 were
accepted as regular research papers, and 40 were accepted as short papers. The
authors of these papers come from 47 different countries. These papers discuss
a range of topics including:

– Query processing and Skyline queries
– Search (Web, Semantic Web, database)
– Data integration, transactions, optimization, and design
– Physical aspects of databases, storage
– Database semantics
– Security and privacy
– Spatial and temporal data
– Semantic Web
– Web applications
– Data mining
– Ontologies
– Distribution
– Information retrieval
– XML querying and views
– Business applications
– User support

Three internationally recognized scholars submitted papers and delivered
keynote speeches:

Patrick Valduriez: Principles of Distributed Data Management 2020?

Bernhard Thalheim: The Science of Conceptual Modelling

Gabriele Kern-Isberner: Probabilistic Logics in Expert Systems: Approaches,
Implementations, and Applications

In addition to the main conference track, DEXA 2011 also included 12 work-
shops that explored the conference theme within the context of life sciences,
specific application areas, and theoretical underpinnings.



VI Preface

We are grateful to the hundreds of authors who submitted papers to DEXA
2011 and to our large Program Committee for the many hours they spent care-
fully reading and reviewing these papers. The Program Committee was also
assisted by a number of external referees, and we appreciate their contributions
and detailed comments.

We are thankful to the Institut de Recherche en Informatique de Toulouse at
the Université Paul Sabatier for organizing DEXA 2011, and for the excellent
working atmosphere provided. In particular, we recognize the efforts of the con-
ference Organizing Committee, including Makoto Takizawa (Seikei University,
Japan; Honorary Chairperson), Abdelkader Hameurlain (IRIT, Paul Sabatier
University, France; General Chair), Riad Mokadem (IRIT, Paul Sabatier Uni-
versity; Local Organization), Vladimir Marik (Czech Technical University, Czech
Republic; Publication Chair), Franck Morvan (IRIT, Paul Sabatier University,
Toulouse, France; Workshops Co-chair), A Min Tjoa (Technical University of
Vienna, Austria; Workshops Co-chair), and Roland R. Wagner (FAW, Univer-
sity of Linz, Austria; Workshops Co-chair). Without the diligent efforts of these
people, DEXA 2011 would not have been possible.

Finally, we are especially grateful to Gabriela Wagner, whose professional
attention to detail and skillful handling of all aspects of the Program Committee
management and proceedings preparation was most helpful.

August 2011 Stephen W. Liddle
Klaus-Dieter Schewe

Xiaofang Zhou
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Byron Choi Hong Kong Baptist University, Hong Kong
Henning Christiansen Roskilde University, Denmark
Soon Ae Chun City University of New York, USA
Eliseo Clementini University of L’Aquila, Italy
Gao Cong Microsoft Research Asia, China
Oscar Corcho Universidad Politécnica de Madrid, Spain
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Towards an Automatic Characterization of Criteria . . . . . . . . . . . . . . . . . . . 457
Benjamin Duthil, François Trousset, Mathieu Roche, Gérard Dray,
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Abstract. With the advents of high-speed networks, fast commodity hardware, 
and the web, distributed data sources have become ubiquitous. The third edition 
of the Özsu-Valduriez textbook Principles of Distributed Database Systems 
[10] reflects the evolution of distributed data management and distributed 
database systems.  In this new edition, the fundamental principles of distributed 
data management could be still presented based on the three dimensions of 
earlier editions: distribution, heterogeneity and autonomy of the data sources. In 
retrospect, the focus on fundamental principles and generic techniques has been 
useful not only to understand and teach the material, but also to enable an 
infinite number of variations. The primary application of these generic 
techniques has been obviously for distributed and parallel DBMS versions. 
Today, to support the requirements of important data-intensive applications 
(e.g. social networks, web data analytics, scientific applications, etc.), new 
distributed data management techniques and systems (e.g. MapReduce, 
Hadoop, SciDB, Peanut, Pig latin, etc.) are emerging and receiving much 
attention from the research community. Although they do well in terms of 
consistency/flexibility/performance trade-offs for specific applications, they 
seem to be ad-hoc and might hurt data interoperability. The key questions I 
discuss are: What are the fundamental principles behind the emerging 
solutions?  Is there any generic architectural model, to explain those principles? 
Do we need new foundations to look at data distribution? 

1   Introduction 

The 1980’s were very active periods for the development of distributed relational 
database technology and all commercial DBMSs today are distributed. The decade of 
1990’s saw the development and maturation of client-server technology and the 
introduction of object-orientation – both as stand-alone systems and as object-
relational DBMSs.  

The Özsu-Valduriez textbook Principles of Distributed Database Systems [10] was 
first published in 1991, covering the fundamental distribution principles and 
techniques. The second edition was published in 1999 and included coverage of 
client-server systems and distributed object systems. The third edition of the book was 
out in April 2011. During the writing of the third edition, we have been evaluating the 
past and contemplating the future. It has been almost twenty years since the first 
edition appeared, and ten years since the second edition. As one can imagine, in a fast 
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changing area such as this, there have been significant changes in the intervening 
period. As we wrote the third edition, we incorporated technologies that were 
developed in late 1990’s and in 2000’s – P2P systems, data integration, database 
clusters, web and XML data management, stream data management, and cloud data 
management. It is apparent that the last ten years have seen an accelerated 
investigation of distributed data management technologies spurred by advent of high-
speed networks, fast commodity hardware, very heavy parallelization of hardware, 
and, of course, the increasing pervasiveness of the web. 

Now, the question is what is likely to happen in the next decade; or to put it 
differently, if there were to be a fourth edition of our book in 2020, what would it be? 
what would be new? This is the motivation for this paper1. 

In observing the changes that have taken place over the past twenty years of our 
involvement with this field, what has struck as interesting is that the fundamental 
principles of distributed data management still hold, and distributed data management 
can be characterized on three dimensions: distribution, heterogeneity and autonomy of 
the data sources. What has changed much since and made the problems much harder, 
is the scale of the dimensions: very large scale distribution (cluster, P2P, web and 
cloud); very high heterogeneity (web); and high autonomy (web, P2P). Also 
interesting to note is that the fundamental principles of database fragmentation (or 
partitioning), data integration, transaction management, replication and relational 
query processing have stood the test of time. In particular, new techniques and 
algorithms could be presented as extensions of earlier material, using relational 
concepts. 

Today, to support the requirements of important data-intensive applications (e.g. 
social networks, web data analytics), new distributed data management techniques 
(e.g. MapReduce, Hadoop, Peanut, Pig latin, SciDB) are emerging and receiving 
much attention from the research community. Although they do well in terms of 
consistency-flexibility-performance trade-offs for specific applications, they seem to 
be ad-hoc and might hurt data interoperability. The key questions are: What are the 
fundamental principles behind the emerging solutions? Is there any generic 
architectural model, to explain those principles? Do we need new foundations to look 
at data distribution? 

In this paper, I discuss these questions. I first recall the fundamental principles of 
distributed data management (Section 2). Then, in Section 3, I illustrate the challenges 
introduced by new data-intensive applications in the context of scientific applications 
and cloud computing. In Section 4, I discuss emerging solutions and show that they 
can still be explained along the three main dimensions of distributed data 
management (distribution, autonomy, heterogeneity). Finally, in Section 5, I discuss 
what is likely to come next. 

2   Principles of Distributed Data Management 

The fundamental principle behind data management is data independence, which 
enables applications and users to share data at a high conceptual level while ignoring 
implementation details. This principle has been achieved by database systems which 
                                                           
1 This was also the basis for a panel at ICDE 2011 [11]. 
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provide advanced capabilities such as schema management, high-level query 
languages, access control, automatic query processing and optimization, transactions, 
data structures for supporting complex objects, etc.  

A distributed database is a collection of multiple, logically interrelated databases 
distributed over a computer network. A distributed database system is defined as the 
software system that permits the management of the distributed database and makes 
the distribution transparent to the users. Distribution transparency extends the 
principle of data independence so that distribution is not visible to users. 

These definitions assume that each site logically consists of a single, independent 
computer. Therefore, each site has the capability to execute applications on its own. 
The sites are interconnected by a computer network with loose connection between 
sites which operate independently. Applications can then issue queries and 
transactions to the distributed database system which transforms them into local 
queries and local transactions (see Figure 1) and integrates the results. The distributed 
database system can run at any site s, not necessarily distinct from the data (i.e. it can 
be site 1 or 2 in Figure 1). 

 

Fig. 1. A distributed database system with two data sites 

The database is physically distributed across the data sites by fragmenting and 
replicating the data. Given a relational database schema, for instance, fragmentation 
subdivides each relation into partitions based on some function applied to some 
tuples’ attributes. Based on the user access patterns, each of the fragments may also 
be replicated to improve locality of reference (and thus performance) and availability. 
The use of a set-oriented data model (like relational) has been crucial to define 
fragmentation, based on data subsets. 

The functions provided by a distributed database system could be those of a 
database system (schema management, access control, query processing, transaction 
support, etc). But since they must deal with distribution, they are more complex to 
implement. Therefore, many systems support only a subset of these functions. 

When the data and the databases already exist, one is faced with the problem of 
providing integrated access to heterogeneous data. This process is known as data 
integration: it consists in defining a global schema over the existing data and 
mappings between the global schema and the local database schemas. Data 
integration systems have received several names such as federated database systems, 
multidatabase systems and, more recently, mediator systems. Standard protocols such 

Distributed 
Database System 

Queries    Transactions 

DB2DBMS2 DB1DBMS1 

site 1 site 2 

site s 
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as Open Database Connectivity (ODBC) and Java Database Connectivity (JDBC) 
ease data integration using SQL. In the context of the Web, mediator systems [13] 
allow general access to autonomous data sources (such as files, databases, documents, 
etc.) in read only mode. Thus, they typically do not support all database functions 
such as transactions and replication. 

When the architectural assumption of each site being a (logically) single, 
independent computer is relaxed, one gets a parallel database system [14], i.e. a 
database system implemented on a tightly-coupled multiprocessor or a cluster. The 
main difference with a distributed database system is that there is a single operating 
system which eases implementation and the network is typically faster and more 
reliable. The objective of parallel database systems is high-performance and high-
availability. High-performance (i.e. improving transaction throughput or query 
response time) is obtained by exploiting data partitioning and query parallelism while 
high-availability is obtained by exploiting replication. Again this has been made 
possible by the use of a set-oriented data model, which eases parallelism, in 
particular, independent parallelism between data subsets. 

The distributed database approach has proved effective for applications that can 
benefit from static administration, centralized control and full-fledge database 
capabilities, e.g. information systems. For administrative reasons, the distributed 
database system typically runs on a separate server, which reduces scalability to tens 
of databases. Data integration systems achieve better scalability to hundreds or 
thousands of data sources by restricting functionality (i.e. read-only querying). 
Parallel database systems can also scale up to large configurations with thousands of 
processing nodes. However, both data integration systems and parallel database 
systems typically rely on a global schema that can be either centralized or replicated. 

We now consider the possible ways in which a distributed DBMS may be 
architected. We use a classification (Figure 1) that organizes the systems as 
characterized with respect to three dimensions: (1) the autonomy of local systems, (2) 
their distribution, and (3) their heterogeneity. Autonomy, in this context, refers to the 
distribution of control, not of data. It indicates the degree to which individual DBMSs 
can operate independently. Whereas autonomy refers to the distribution (or 
decentralization) of control, the distribution dimension of the taxonomy deals with the 
physical distribution of data over multiple sites (or nodes in a parallel system). There 
are a number of ways DBMSs have been distributed. We distinguish between 
client/server (C/S) distribution and peer-to-peer (P2P) distribution (or full 
distribution). With C/S DBMS, sites may be clients or servers, thus with different 
functionality, whereas with homogeneous P2P DBMS (DDBMS in Figure 1), all sites 
provide the same functionality. Note that DDBMS came before C/S DBMS in the late 
1970. P2P data management struck back in the 2000 with “modern” variations to deal 
with very large scale, autonomy and decentralized control. Heterogeneity refers to 
data models, query languages, and transaction management protocols. Multidatabase 
systems (MDBMS) deal with heterogeneity, in addition to autonomy and distribution. 
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Fig. 2. Distributed DBMS Architectures (modified after [10]) 

3   New Challenges for Distributed Data Management 

The pervasiveness of the web has spurred all kinds of data-intensive applications and 
introduced great challenges for distributed data management. New data-intensive 
applications such as social networks, web data analytics and scientific applications 
have requirements that are not met by the traditional distributed database systems in 
Figure 2. What has changed much and made the problems much harder, is the scale of 
the dimensions: very large scale distribution, very high heterogeneity, and high 
autonomy. Let us illustrate the challenges for distributed data management with two 
important domains: scientific data management and cloud data management. 

3.1   Scientific Data Management 

Scientific data management has become a major challenge for the database and data 
management research community [7]. Modern science such as agronomy, bio-
informatics, physics and environmental science must deal with overwhelming 
amounts of experimental data produced through empirical observation and simulation. 
Such data must be processed (cleaned, transformed, analyzed) in all kinds of ways  
in order to draw new conclusions, prove scientific theories and produce knowledge. 
However, constant progress in scientific observational instruments (e.g. satellites, 
sensors, large hadron collider) and simulation tools (that foster in silico 
experimentation, as opposed to traditional in situ or in vivo experimentation) creates a 
huge data overload. For example, climate modeling data are growing so fast that they 
will lead to collections of hundreds of exabytes expected by 2020. 

Scientific data is also very complex, in particular because of heterogeneous 
methods used for producing data, the uncertainty of captured data, the inherently 
multi-scale nature (spatial scale, temporal scale) of many sciences and the growing 
use of imaging (e.g. satellite images), resulting in data with hundreds of attributes, 
dimensions or descriptors. Processing and analyzing such massive sets of complex 
scientific data is therefore a major challenge since solutions must combine new data 
management techniques with large-scale parallelism in cluster, grid or cloud 
environments [12]. 
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Furthermore, modern science research is a highly collaborative process, involving 
scientists from different disciplines (e.g. biologists, soil scientists, and geologists 
working on an environmental project), in some cases from different organizations 
distributed in different countries. Since each discipline or organization tends to produce 
and manage its own data, in specific formats, with its own processes, integrating 
distributed data and processes gets difficult as the amounts of heterogeneous data 
grow. 

Despite their variety, we can identify common features of scientific data [1]: 
massive scale; manipulated through complex, distributed workflows; typically 
complex, e.g. multidimensional or graph-based; with uncertainty in the data values, 
e.g., to reflect data capture or observation; important metadata about experiments and 
their provenance; heavy floating-point computation; and mostly append-only (with 
rare updates). 

3.2   Cloud Data Management 

Cloud computing is the latest trend in distributed computing and has been the subject 
of much hype. The vision encompasses on demand, reliable services provided over 
the Internet (typically represented as a cloud) with easy access to virtually infinite 
computing, storage and networking resources. Through very simple Web interfaces 
and at small incremental cost, users can outsource complex tasks, such as data 
storage, system administration, or application deployment, to very large data centers 
operated by cloud providers. Thus, the complexity of managing the software/ 
hardware infrastructure gets shifted from the users' organization to the cloud provider. 
From a technical point of view, the grand challenge is to support in a cost-effective 
way the very large scale of the infrastructure which has to manage lots of users and 
resources with high quality of service. 

However, not all data-intensive applications are good candidates for being 
"cloudified" [1]. To simplify, we can classify between the two main classes of data-
intensive applications: On Line Transaction Processing (OLTP) and On Line 
Analytical Processing (OLAP).  Let us recall their main characteristics. OLTP deals 
with operational databases of average sizes (up to a few Terabytes), is write-intensive, 
and requires complete ACID transactional properties, strong data protection and 
response time guarantees. On the other hand, OLAP deals with historical databases of 
very large sizes (up to Petabytes), is read-intensive and thus can accept relaxed ACID 
properties. Furthermore, since OLAP data are typically extracted from operational 
OLTP databases, sensitive data can be simply hidden for analysis (e.g. using 
anonymization) so that data protection is not as crucial as in OLTP.  

OLAP is more suitable than OLTP for cloud primarily because of two cloud 
characteristics (see the detailed discussion in [1]): elasticity and security. To support 
elasticity in a cost-effective way, the best solution that most cloud providers adopt is a 
shared-nothing cluster. Shared-nothing provides high-scalability but requires careful 
data partitioning. Since OLAP databases are very large and mostly read-only, data 
partitioning and parallel query processing are effective. However, it is much harder to 
support OLTP on shared-nothing because of ACID guarantees which require complex 
concurrency control. For these reasons and because OLTP databases are not so large, 
shared-disk is the preferred architecture for OLTP. 
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The second reason that OLTP is not so suitable for cloud is that highly sensitive 
data get stored at an untrusted host (the provider site). Storing corporate data at an 
untrusted third-party, even with a carefully negociated Service Level Agreement 
(SLA) with a reliable provider, creates resistance from some customers because of 
security issues. However, this resistance is much reduced for historical data, with 
anonymized sensitive data. 

There is much more variety in cloud data than in scientific data since there are  
many different kinds of customers (individuals, SME, large corporations, etc.). 
However, we can identify common features. Cloud data can be very large, 
unstructured (e.g. text-based) or semi-structured, and typically append-only (with rare 
updates). And cloud users and application developers may be in high numbers, but not 
DBMS experts. 

4   Emerging Solutions 

Generic data management solutions (e.g. relational DBMS) that have proved effective 
in many application domains (e.g. business transactions) are not efficient at dealing 
with these emerging applications, thereby forcing developers to build ad-hoc solutions 
that are labor-intensive and cannot scale. In particular, relational DBMSs have been 
lately criticized for their “one size fits all” approach. Although they have been able to 
integrate support for all kinds of data (e.g., multimedia objects, XML documents and 
new functions), this has resulted in a loss of performance and flexibility for 
applications with specific requirements because they provide both “too much” and 
“too little”. Therefore, it has been argued that more specialized DBMS engines are 
needed. For instance, column-oriented DBMSs, which store column data together 
rather than rows in traditional row-oriented relational DBMSs, have been shown to 
perform more than an order of magnitude better on decision-support workloads. The 
“one size does not fit all” counter-argument generally applies to cloud data 
management as well.  

Therefore, current data management solutions have traded consistency for 
scalability, simplicity and flexibility. As alternative to relational DBMS (which use 
the standard SQL language), these solutions have been recently quoted as Not Only 
SQL (NOSQL) by the database research community. Many of these solutions have 
been developed for the cloud or the grid, which both exploit large scale parallelism, 
typically with shared-nothing clusters. 

Figure 3 positions the architectures of emerging solutions along the same three 
dimensions (distribution, heterogeneity and autonomy). Like cloud computing, grid 
computing enables access to very large compute and storage resources over the Web. 
Compared with cloud computing which deals with large-scale parallelism, the grid is 
characterized with high heterogeneity, large-scale distribution and large-scale 
parallelism. In addition to grid and cloud, we also position the recent P2P DBMS that 
target large-scale distribution and data integration systems (like MDBMS) that deal 
with large-scale distribution, heterogeneity and autonomy. 

Distributed data management for cloud applications emphasizes scalability, fault-
tolerance and availability, sometimes at the expense of consistency or ease of 
development. Let us illustrate this approach with two popular solutions: Google 
Bigtable and Yahoo! PNUTS. 
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Fig. 3. Architectures of Emerging Solutions 

Bigtable is a database storage system for a shared-nothing cluster [4].  It uses a 
distributed file system (Google File System - GFS) for storing structured data in 
distributed files, with fault-tolerance and availability. It also uses a form of dynamic 
data partitioning for scalability. There are also open source implementations of 
Bigtable, such as Hadoop Hbase, which runs on Hadoop Distributed File System 
(HDFS). Bigtable supports a simple data model that resembles the relational model, 
with multi-valued, timestamped attributes. It provides a basic API for defining and 
manipulating tables, within a programming language such as C++, and various 
operators to write and update values, and to iterate over subsets of data, produced by a 
scan operator. There are various ways to restrict the rows, columns and timestamps 
produced by a scan, as in a relational select operator. However, there is no complex 
operator such as join or union, which should be programmed using the scan operator. 
Transactional atomicity is supported for single row updates only. To store a table in 
GFS, Bigtable uses range partitioning on the row key. Each table is divided into 
partitions, called tablets, each corresponding to a row range. 

PNUTS is a parallel and distributed database system for cloud applications at 
Yahoo!  [5]. It is designed for serving Web applications, which typically do not need 
complex queries, but require good response time, scalability and high availability and 
can tolerate relaxed consistency guarantees for replicated data. PNUTS supports the 
relational data model, with arbitrary structures allowed within attributes of Blob type. 
Schemas are flexible as new attributes can be added at any time even though the table 
is being queried or updated, and records need not have values for all attributes. 
PNUTS provides a simple query language with selection and projection on a single 
relation. Updates and deletes must specify the primary key. PNUTS provides a replica 
consistency model that is between strong consistency and eventual consistency, with 
several API operations with different guarantees. Database tables are horizontally 
partitioned into tablets, through either range partitioning or hashing, which are 
distributed across many servers in a cluster (at a site). 

To summarize, both Bigtable and PNUTS provide some variations of the relational 
model, a simple API or language for manipulating data, and relaxed consistency 
guarantees. They also rely on fragmentation (partitioning) and replication for fault-
tolerance. Thus, they capitalize on the well-known principles of distributed data 
management. 
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Emerging solutions strive to be more generic than ad-hoc solutions which  
are labor-intensive and cannot scale. For instance, the SciDB organization 
(http://www.scidb.org) is building an open source database system for scientific data 
analytics. SciDB will be certainly effective for similar applications for which the data 
is well understood (with well-defined data structures). However, to avoid that the 
“one size fits all” argument applies to SciDB as well, the key question is: how generic 
should scientific data management be, without hampering application-specific 
optimizations? For instance, to perform scientific data analysis efficiently, scientists 
typically resort to dedicated indexes, compression techniques and specific algorithms. 
Thus, generic techniques, inspired from the DB research community should be able to 
cope with these specific techniques. 

Genericity in data management encompasses two dimensions: data model (which 
provides data structures (captured by the data model) and data processing (inferred by 
the query language). Relational DBMS have initially provided genericity through the 
relational data model (that subsumes earlier data models) and a high-level query 
language (SQL). However, successive object extensions to include new data 
structures such as lists and arrays and support user-defined functions in a 
programming language have resulted in a yet generic, but more complex data model 
and language for the developers. Therefore, emerging solutions tend to rely on a more 
specific data model (e.g. Bigtable which is some kind of nested relational model) with 
a simple set of operators easy to use from a programming language. For instance, to 
address the requirements of social network applications, new solutions rely on a graph 
data model and graph-based operators. To address the requirements of scientific 
applications, SciDB supports an array data model, which generalizes the relational 
model, with array operators. User-defined functions also allow for more specific data 
processing. MapReduce [6] is a good example of generic parallel data processing 
framework, on top of a distributed file system (GFS). It supports a simple data model 
(sets of (key, value) pairs), which allows user-defined functions (map and reduce). 
Although quite successful among developers, it is relatively low-level and rigid, 
leading to custom user code that is hard to maintain and reuse. Pig latin [8] is an 
alternative data management solution that raises the level of abstraction with an 
algebraic query language. In emerging solutions, it is interesting to witness the 
development of algebras, with specific operators, to raise the level of abstraction in a 
way that enables optimization. For instance, in [9], we propose an algebraic approach 
enables automatic optimization of scientific workflows that manipulate huge amounts 
of data through specific programs and files. 

5   Conclusion 

To support the requirements of important data-intensive applications (e.g. social 
networks, web data analytics, scientific applications, etc.), new distributed data 
management techniques and systems (e.g. MapReduce, Hadoop, SciDB, Peanut, Pig 
latin, etc.) have emerged and are receiving much attention from the research 
community. Now, the guiding question for this paper was what is likely to happen in 
the next decade; or what will be the principles of distributed data management in 
2020. I translated this into three questions: (1) What are the fundamental principles 
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behind the emerging solutions?  (2) Is there any generic architectural model, to 
explain those principles? (3) Do we need new foundations to look at data distribution? 

To address (1), I illustrated the challenges introduced by new data-intensive 
applications in the context of scientific applications and cloud computing. The 
emerging solutions typically provide some variations of the relational model, a simple 
API or language for manipulating data, and relaxed consistency guarantees. They also 
rely on fragmentation (partitioning) for large-scale parallelism and replication for 
fault-tolerance. Thus, they capitalize on the well-known principles of distributed data 
management. 

Wrt (2), I showed that emerging solutions can still be explained along the three 
main dimensions of distributed data management (distribution, autonomy, hetero-
geneity), yet pushing the scales of the dimensions high up. However, I raised the 
question of how generic should distributed data management be, without hampering 
application-specific optimizations. Emerging NOSQL solutions tend to rely on a 
specific data model (e.g. Bigtable, MapReduce) with a simple set of operators easy to 
use from or with a programming language. It is also interesting to witness the 
development of algebras, with specific operators, to raise the level of abstraction in a 
way that enables optimization [9]. What is missing to explain the principles of 
emerging solutions is one or more dimensions on generic/specific data model and data 
processing. 

The hardest question is (3): Do we need new foundations to look at data 
distribution? It all depends what we mean by “data” and whether we consider the 
continuum between data, information and knowledge, with increasing pervasiveness 
of data semantics. During the ICDE 2011 panel [11], one of us (S. Abiteboul) argued 
that accessing highly distributed, heterogeneous data in personal dataspaces on the 
web was beyond human expertise, and requires us moving from data to knowledge, 
with automated reasoning. This is the motivation for the comeback of Datalog as a 
uniform language to deal with data, metadata, rules, distribution, time, etc. [2]. 
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Abstract. Conceptual modelling is one of the central activities in Computer Sci-
ence. Conceptual models are mainly used as intermediate artifact for system con-
struction. They are schematic descriptions of a system, a theory, or a phenomenon
of an origin thus forming a model. A conceptual model is a model enhanced by
concepts. The process of conceptual modelling is ruled by the purpose of mod-
elling and the models. It is based on a number of modelling acts, on a number of
correctness conditions, on modelling principles and postulates, and on paradigms
of the background or substance theories. Purposes determine the (surplus) value
of a model. Conceptual modelling is performed by a modeller that directs the
process based on his/her experience, education, understanding, intention and at-
titude. Conceptual models are products that are used by other stakeholders such
as programmers, learners, business users, and evaluators. Conceptual models use
a language as a carrier for the modelling artifact and are restricted by the expres-
siveness of this carrier.

This paper aims at a discussion of a general theory of modelling as a culture
and an art. A general theory of modelling also considers modelling as an ap-
prenticeship and as a technology. It is thus an art. Modelling is on of the main
elements of Computer Science culture that consists of commonly accepted be-
haviour patterns, arts, consensus, institutions, and all other supporting means and
thoughts.

1 The Triptychon of Model as an Artifact, Modelling as an
Activity and Modelling as an Art and Science, Thus as a Culture

Conceptual modelling is a widely applied practice in Computer Science and has led to a
large body of knowledge on constructs that might be used for modelling and on methods
that might be useful for modelling. It is commonly accepted that database application
development is based on conceptual modelling. It is however surprising that only very
few publications have been published on a theory of conceptual modelling. We continue
the approach [18,19] and aim in a theory of modelling within this paper. An approach
to a theory of models has been developed in [19]. An approach to a theory of model
activities is discussed in [18].

1.1 Differences between ‘Model’, ‘To Model’ and ‘Modelling’

The conceptions of model, of the activity ‘to model’ and of modelling are often used
as synonyms. We must however distinguish these conceptions for a theory of models,

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 12–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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a theory of model activities and a theory of the modelling process. Similar to notions
in philosophy of science [11] we distinguish between the conception of a model, the
conception of a model activity, and the conception of modelling processes.

The model as an artifact: The model is something set or held for guidance or imitation
of an origin and is a product at the same time. Models are enduring, justified and
adequate artifacts from one side. From the other side, models represent the state of
comprehension or knowledge of a user.

To model as an activity: ‘To model’ is a scientific or engineering activity beside the-
oretical or experimental investigation. The activity is an additive process. Correc-
tions are possible during this activity. Modelled work may be used for construction
of systems, for exploration of a system, for definition and negotiation, for commu-
nication, for understanding and for problem solving.

Modelling as a systematically performed technological process: Modelling is a
technique of systematically using knowledge from computer science and engi-
neering to introduce technological innovations into the planning and development
stages of a system. At each stage the modeller is likely to ask both why and how,
rather than merely how. Modelling is thus based on paradigms and principles.

Additionally, the notion of model may be used in an adjective sense as serving as or ca-
pable of serving as a pattern or being a usually miniature representation of something.
This notion is often used for sample representations such as a ‘model chair’. Another
notion of the model that is not of interest within this paper is the miniature representa-
tion of something.

1.2 The Simultaneity of Art, Culture, Technology and Techniques in Modelling

Modelling can be understood as a technique1 or as a technology2. [11] distinguishes
between science and technology: Technology is the systematic study of techniques for
making and doing things; science is the systematic attempt to understand and interpret
the world. While technology is concerned with the fabrication and use of artifacts, sci-
ence is devoted to the more conceptual enterprise of understanding the environment,
and it depends upon the comparatively sophisticated skills of literacy and numeracy.

At the same time, modelling is an art3. Modelling is a highly creative process. It
requires skills in planning, making, or executing. It is often claimed that it is not to
be formalisable. It requires deep insight into the background as well as skills, careful

1 I.e., the fashion, manner, mode, modus, system, way, wise in which a system etc. is mastered.
Techniques consist of methods of accomplishing a desired aim.

2 Technology is an element of engineering. It consists of the practical application of knowl-
edge especially in a particular area. It provides a capability given by the practical application
of knowledge. Therefore, it is a manner of accomplishing a task especially using technical
processes, methods, or knowledge.

3 Art requires capability, competence, handiness, and proficiency. Art is based on finesse, i.e.
on refinement or delicacy of workmanship. Models and art share a Janus head evaluation: The
judgement of beauty evaluates the model within a community of business users. The judgement
of the sublime evaluates the model against its technical realisation. A model has thus both an
extrinsic and intrinsic value.
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simplification, experience and ingenuity. Due to the variety of viewpoints, modelling is
also based on judgement and clever selection with different alternatives.

Modelling in one of the main activities in Computer Science. It consists of com-
monly accepted and practised behavior patterns, arts, consensus, institutions, and all
other products of human work and thought. Turning to [11]4, culture is based on the
capacity for rational or abstract thought. The meaning of abstraction is not sufficiently
explicit or precise. The term symboling has been proposed as a more suitable name for
assigning to things and events certain meanings that cannot be grasped with the senses
alone.

This culture is learned and shared within communities which have their own be-
haviour pattern and approaches. It is not yet a science since it heuristically uses opera-
tional and/or scientific terms.

1.3 Orientation of This Paper

This paper explores modelling as an art and culture. We base the discussion on a theory
of models and of modelling activities. We abstract therefore in this paper from micro-,
meso-, macro-models or model suites used in many natural sciences or model suites
[17], e.g., model ensembles used in UML or OWL. We do not yet consider modelling
competency or MDA/D. We do not yet consider modelling competency. All notions
used in this paper are based on [16].

The main goal of this paper is to show that modelling requires apprenticeship and
technology. The orientation towards an expert mode can be reached if modelling is
based on systematic development and if modelling is considered to be a craft of mod-
elling activities. This approach shows that modelling incorporates design science in a
wider sense as it has been considered in the literature.

We base our ideas on our observations on model developments for very large database
schemata and very large database systems5. Such systems require a well organised
modelling process. They must be evolution-prone and revision-prone. The paper

4 The notion of culture combines at least eight facets: (1) cultivation, tillage; (2) the act of devel-
oping the intellectual and moral faculties especially by education; (3) expert care and training;
(4) enlightenment and excellence of taste acquired by intellectual and aesthetic training; (5)
acquaintance with and taste as distinguished from vocational and technical skills; (6) inte-
grated pattern of human knowledge, belief, and behavior that depends upon man’s capacity
for learning and transmitting knowledge to succeeding generations; (7) the customary beliefs,
social forms, and material traits of a group; and (8) the set of shared attitudes, values, goals,
and practices that characterizes a company or corporation.
Culture requires different practices: education, enlightenment, erudition, learning from one
side, gentility, manners, discrimination, taste from the other side, and sophistication, class,
and elegance from a third side.

5 Due to our involvement into the development and the service for the CASE workbenchs (DB)2

and ID2 we have collected a large number of real life applications, e.g., the SAP R/3 schema.
Some of them have been really large or very large, i.e., consisting of more than 1.000 attribute,
entity and relationship types. The largest schema in our database schema library contains of
more than 19.000 entity and relationship types and more than 60.000 attribute types that needs
to be considered as different.
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concentrates thus one of the main workflows: description of application worlds fol-
lowed by prescription for system worlds and specification of systems.

2 The World of Models

2.1 The World of Models

Models are artifacts selected by a stakeholder based on some stakeholder judgement
or perception and governed by the purpose. Models can thus be characterised by main
dimensions:

purpose (“wherefore”) of models and modelling with the intentions, goals, aims, and
tasks that are going to be solved by the model,

result of mapping (“whereof”) with a description of the solution provided by the
model, the characterisation of the problem, phenomena, construction or applica-
tion domain through the model,

language (“wherewith”) with a careful selection of the the carrier or cargo[7] that al-
lows to express the solution, the specification of the world or the construction, and

value (“worthiness”) of a model by explicit statement of the internal and external qual-
ities, and the quality of use, e.g. explicit statement of invariance properties relating
the model to its associated worlds or by preservation properties that are satisfied by
the model in dependence on the associated worlds.

These four dimensions are driven by two context dimensions: the application domain
dimension rules the scope and (explicit and implicit) disregard of the model; the user
or stakeholder dimension governs the viewpoint, orientation and background of users
involved. The mapping associates the origin and the artifact. As far as we are interested
in modelling of information systems, we may use a (semi-)formal language for the
artifact.

These main dimensions of models and modelling govern the model and the mod-
elling acts. They are extended by secondary dimensions that are used to shape and
to adapt the model: the artifact, the user, the context and the application domain di-
mensions. The mapping dimension is discussed in [18]. The value dimension can be
described based on [6]. The purpose dimension is ruling and governing both the devel-
opment of models and the application of models. This tight governance is caused by the
main aim of a model: to provide a solution to a problem.

2.2 The Model as a Physical or Virtual Artifact

The main product of modelling and model activities is the model, i.e. an artifact that is
considered to be worth for its purpose by the author. The model can, for instance, be
used for the description of the world of origins or for the prescription of constructions.
There are a number of explicit choices an author makes and that rule applications of
models. Modelling of information systems

depends on the abstraction layer, e.g. requirements, specification, realisation or imple-
mentation layer,
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depends on chosen granularity and precision of the work product itself,
depends on resources used for development of a model such as the language,
depends on level of separation of concern such as static/dynamic properties, local/

global scope, facets,
depends on quality properties of the input , e.g. requirements, completeness, concise-

ness, coherence, understandability,
depends on decomposition of the work products in ensembles of sub-products, and
satisfies quality characteristics such as quality in use, internal quality, and external qual-

ity.

The task of model development is never completed (ta panta rhei (τα παντα ρει), ‘the
rivers flow’; narrative: everything flows). Models are changing artifacts due to changes
imposed by

scope insight for conscious handling of restriction, capabilities, opportunities,
guiding rules for convenience, for completion, refinement, and extension,
development plans for partial delivery of models, partial usage and deployment,
theories supporting development of models,
quality characteristics for model completion, model evolution, model engineering, and
mapping styles for mapping models among abstraction layers.

2.3 The Purpose Dimension

The purpose dimension is ruling and governing the model, the development process
and the application process because of the main reason for using a model is to provide
a solution to a problem. Therefore the purpose is characterised by the solution to the
problem provided by the model. We may distinguish a number of concerns such as

the impact of the model (“whereto”) for a solution to a problem,
the insight into the origin’s properties (“how”) by giving details how the world is

structured or should be structured and how the functionality can be described,
restrictions on applicability and validity (“when”) of a model for some specific solu-

tions, for the validity interval, and the lifespan of a model,
providing reasons for model value (“why”) such as correctness, generality, usefulness,

comprehensibility, and novelty, and
the description of functioning of a model (“for which reason”) based on the model

capacity.

The task of model development is never completed (ta panta rhei (τα παντα ρει), ‘the
rivers flow’, narrative: everything flows). Models are evolving artifacts due to changes
imposed by

· scope insight for conscious handling of restriction, capabilities, opportunities,
· guiding rules for convenience, for completion, refinement, and extension,
· development plans for partial delivery of models, partial usage and deployment,
· theories supporting development of models,
· quality characteristics for model completion, evolution and engineering, and
· mappings styles for mapping models among abstraction layers.
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2.4 The Language Dimension

Models are represented by artifacts that satisfy the pragmatic purposes of users. In this
case, artifacts are linguistic expressions that describe the model. Linguistic expressions
are built within a language with some understanding. Therefore, artifacts use syntax,
semantics and pragmatics built within the chosen language.

Models are often expressed through expressions in a formal language LM̃ . A model
should support its objectives. Optimally, these objectives Ψ(M) can be expressed in
the same language LM̃ that is also used for the model M . A model has a number of
properties. Some of them are of interest and used for characterisation of the model, e.g.,
Φ(M). This characterisation depends on the model and its purpose.

Ψ(M)
objectives

�corresponds

LM̃

language

M
artifact

Φ(M)
properties

⊇
scope �

⊆

Fig. 1. Artifacts with a language, their properties and objectives within a given language for the
artifact

Constructive languages are a special case and support

• the prescription of the objectives or postulates that restrict the judgement that an
artifact can be accepted as a model,

• the scope of our attention to those artifacts that can be considered for a model or
for parts of a model, and

• the orientation of the user on certain properties that are of interest for the purpose
of modelling.

Natural languages have a high potential for deployment of deep semantics and cause a
threat to everybody who does not use the language within the same semantical culture.
Culture depends on participating stakeholders, their profile (educational, employment,
psychological) and includes language, styles of communication, practices, customs, and
views on roles and relationships. Deployment of natural language expressions may thus
result in misunderstandings. There are two ways to avoid such: the development of a
sophisticated ontology that includes all namespaces a user might use or the development
of an orthonormalised language [9] that is restricted in expressivity and does not allow
misinterpretations.

2.5 The Context Dimensions

The User Dimension. A number of users are involved into the development of models.
The user dimension thus reflects intentions, the understanding, the comprehension and
other characteristics of users in a variety of roles, e.g.,
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the role of an author (“by whom”) that results in reflections of the educational level,
application of templates, pattern or reference models,

the role of an addressee (“to whom”) that restricts the utilisation of the model or that
supports the extended application beyond the purpose originally intended, and

the role of broad public (“whichever”) that develops a common understanding of the
model depending on the group or the culture of the public.

The Application Domain Dimension and the World of Origins. The application
domain consists of people, organisational systems, and technical systems that interact
to work towards a goal. This dimension clarifies

the domain depending on models purpose (“for what”) such as an application domain,
properties reflected or neglected,

the scope to specific elements (“what”) that are considered to be typical and whose
properties should be reflected,

the attention within the domain depending on models purpose (“where”) that limits
the model to the ‘normal’ aspects,

the orientation of the domain (“wherefrom”) that restricts the attention and the issues
for the current activities supported by the model,

the sources for origins or the infrastructure (“whence”) considered for the model,
and

the restrictions of the world (“wherein”) associated with the model.

3 The World of Modelling Activities

3.1 Workflows Applied in the Model Development and Deployment Process

The purpose dimension governs the workflows applied in conceptual modelling. It also
governs the kind of model application. We may distinguish a number of workflows in
conceptual modelling such as the following ones:

Construction workflows are based on creation of models (as images, representations or
portraits of the origin) that are used for production of systems (using as models
as groundwork, background, pattern, standards, prototypes for the system). This
kind of model exploitation uses the dichotomy of models as image of an origin and
groundwork for a system.

Explanation workflows result in new insights into the world of the origins.
Optimisation-variation workflows result in an improvement and adaptation of the ori-

gins.
Verification-validation-testing workflows result in an improvement of the one of the

subject, in most cases in an improvement of models.
Reflection-optimisation workflows are typical for mathematical modelling of the world

of origins.
Explorative workflows are using models for learning about origins.
Hypothetical workflows are typical for discovery sciences, e.g., sciences used for cli-

mate research.
Documentation-visualisation workflows target on better understanding and comprehen-

sion of models.
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These workflows can be intertwined or shuffled with each other. They may be per-
formed one after another. In this paper we concentrate on the construction (or creation-
production) workflow which seems to be central for information systems.

3.2 Modelling Acts

It surprises that these model activities are not explicitly handled in most modelling
approaches. The same observation can be observed for a declaration of the main goals
of the modelling act. Main modelling acts which are the following ones:

construct a model, a part of the model, a concept or a judgement, etc. (describe, delin-
eate, fabricate, master),
communicate the judgements, the observations, the concepts, etc. (explain, express, ver-
balise or display),
understand the application domain, the system opportunities, etc. (cognise, identify,
recognise, percept),
discover the problems, the potential, the solutions, etc. (interact, identify),
indicate properties of importance, relevance, significance, etc. (visualise, measure, sug-
gest, inform),
variate and optimise a solution, a judgement, a concept, a representation depending on
some criteria,
verify or validate or test a model, a solution, a judgement, a representation or parts of
those,
control the scope of modelling, the styles or pattern, parts of a model, judgements, etc.
(rule, govern, proofread, confirm, restrain, administer, arrange, stratify, standardise),
alternate or compensate or replace or substitute or surrogate models or parts of them,
judgements, concepts, etc. (transfer, reassign, evolve, migrate, balance, correct, novate,
truncate, ersatz).

The first and last four goals lead to a datalogical model that is structured according to
technology. The other goals result in an infological model that is delivered to the needs
of the user. We thus use a different frame of reference. The application of the results
may thus be descriptive or prescriptive, constitutive or prognosticating, categorical or
exegetic or contemplative or formulaic.

3.3 Models Serving Both as a Description of an Application (Domain and
Problem) and as a Prescription for Construction (of Systems)

By taking a leaf out of D. Bjorner [1] book we divide information systems engineering
into five main phases: (1) application domain description with properties that are of in-
terest and that are of relevance, (2) requirements or objectives prescription for a model,
(3) model development with a statement of properties that are obeyed by the model, (4)
requirements of objectives prescription for the construction of an information system,
and (5) information systems construction and coding with properties that are obeyed by
the information system. Therefore, a model is used as a mediator between the applica-
tion world and the systems world. The (application, model, system)-triple is reflected
by the information system development triptych consisting of description of application
world, prescription for construction and specification of systems.
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Conceptualisation is an orthogonal phase that aims at a theoretical underpinning of
models. It is used for semantification of models and for improvement of comprehensi-
bility of models and explicit reasoning on elements used in models.

The application domain description is mapped to a model describing the application
domain, its entities, functions, events, and behaviour. It is based on a formal, semi-
formal or natural language which allows to formulate a set of theorems or postulates
or properties that are claimed to behold of the domain model. The information system
itself is an artifact too. The model mediates between this final artifact and the appli-
cation. Models describe the problem to be solved for the application and which are
used as starting point for implementation. They are also used for documentation of the
system, for migration and evolution processes, for optimisation of systems, for control
of parts of systems, and for simulation of systems. Models must reflect the structure
of a system, the functionality of a system, the support facilities of a system and the
collaboration environment of a system.

Therefore we concentrate on one of the workflows: the prescription of systems im-
posed by the description of an application domain and of the problems under solu-
tion. This workflow is often considered to be one of the main workflows. We may also
use other workflows. The construction workflow is however a typical example of an
engineering workflow6. Engineering is nowadays performed in a systematic and well-
understood form.

3.4 The Construction Workflow Based on Information Systems Models

Modelling is based on an evolutionary process and thus consists of at least three sub-
processes:

• selection including rigorous testing against the origin,
• communication for generation of a common understanding and a productive way

of thinking within a community, and
• accumulation of results and integration of these results into future developments.

The construction workflow is one of the most prominent workflows in information sys-
tems modelling. Methodologies developed for software engineering can be directly ap-
plied to this workflow. They are however mainly oriented towards system construction.
The systems description dimension is not as well explored. The combination of these
two sub-workflows is shown in Figure 2. We need to include into this combination also
the quality dimension. The body of knowledge of software engineering includes also
a large set of quality characteristics. [6] develops an approach to systematic quality
development. We integrate this systematic quality management.

6 The difference between scientific exploration and engineering is characterised by [12] as fol-
lows: “Scientists look at things that are and ask ‘why’; engineers dream of things that never
were and ask ‘why not’. Engineers use materials, whose properties they do not properly un-
derstand, to form them into shapes, whose geometries they cannot properly analyse, to resist
forces they cannot properly assess, in such a way that the public at large has no reason to sus-
pect the extent of their ignorance.” Modelling incorporates both engineering and science. It is
thus considered to be an engineering science.
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Fig. 2. The construction workflow that includes quality assurance

We can also develop other workflows such as agile modelling, spiral modelling and
incremental modelling workflows. We restrict our attention in the sequel to the work-
flow in Figure 2 due to the length of this paper. This workflow separates three different
worlds: the world of applications, e.g., the application domain in dependence on the
purpose; the world of models, e.g. conceptual models used for information systems de-
velopment; the world of systems, e.g., information systems combined with presentation
systems. Based on this separation we can distinguish three stages: the relevance, mod-
elling and realisation stages. This workflow reflects the separation into objectives, the
artifact and the properties within the language dimension.

4 Duties and the Task Spectrum in Conceptual Modelling

4.1 The Design Science Approach to Tasks in Conceptual Modelling

MIS design science aims at the development of a general theory for models7, model
activities and modelling. We shall use the approach for a deeper insight into modelling.
The management information system community characterises the modelling process
by seven guidelines [3]:

7 Models are called ‘design’ in [3].
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(1) model are purposeful IT artifacts created to address a problem;
(2) models are solutions to relevant and important problems;
(3) the utility, quality, and efficacy of models must be evaluated by quality assessment;
(4) modelling research must contribute to the state of the art;
(5) modelling research relies upon the application of rigorous methods;
(6) modelling is a search process and use termination conditions;
(7) models must be communicated both to technology-oriented as well as to manage-
ment audiences.

We observe that guidelines (1), (2), and (7) are characterising the model. Guidelines
(3), (6) characterise model activities. Guideline (3), (5) is related to modelling as a
technology. Guideline (4) is a general statement that relates modelling to a science.

Design science separates three cycles [20]: the relevance (or description) cycle, the
design (or modelling) cycle, and the rigor (or conceptualisation) cycle.

4.2 CMM and SPICE for Conceptual Modelling

A software process is considered to be the set of activities, methods, and practices used
in the production and evolution of software [4] and the associated products [10]. For
improving of a software process there are four main approaches: modelling, assess-
ment, measurement, and technology adoption [13]. The approaches supplement each
other, but one of them is usually in a dominating position. CMMI and SPICE (Soft-
ware Process Improvement and Capability dEtermination) [5] are the two most widely
used software assessment models in software process improvement work today. The ca-
pability dimension consists of six capability levels: incomplete, performed, managed,
established, predictable and optimizing.

Information system development is a specific software development process. There-
fore, the SPICE characterisations are applicable as well. We may therefore distinguish
different levels of the IS development capability:

1. Performed and executed: The goals of the application domain are satisfied. The
information system development process is set out.

2. Managed and defined: Additionally, the application domain and scope are imaged
by a model that allows to derive components of the system by means of model
elements.

3. Established and controlled: The model is well-documented and allows to under-
stand its design decisions. The model is used as a background and groundwork for
the system.

4. Understood, predictable and performed with sense: The elements of the model are
based on concepts that describe their semantics and meaning. The impact of lan-
guages as a model carrier, the assumptions made during design, the paradigms used
during and the scope of the model are given in an explicit form.

5. Optimised: The model is developed with a number of alternatives. There are quan-
titative methods that support reasoning on quality of the model. Model alternatives
can be given in a form that is the most adequate for the auditory. They can be used
for deriving the best realisation.
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4.3 The Duty Portfolio of Modelling

Following [2] we distinguish four main duties in conceptual modelling:

(1) Description: The application domain is described in a way that allows to compre-
hend the actual state, the necessities for system development and deployment, and
the specifics and phenomena of the application.

(2) Explanation: The understanding of reality, of the processes and data in the appli-
cation world and of the context of the application supports the creation of systems
that effectively and efficiently support users. This understanding can be based on
explication of concepts behind the application. It can also be based on behavioural
pattern, on general laws and regulations and on user profiles and stories [14,15].

(3) Creation: The system creation includes coding of the system, embedding the sys-
tem into a systems context, developing supporting means for users, and supporting a
new behaviour of users of a system. It uses the demands stated for the application,
the analysis of the current state, and the requests for change by the system. Cre-
ation includes elements of SWOT analysis (strengthes, weaknesses, opportunities,
threats) and evaluation of the quality of the system.

(4) Prognosis: The behaviour of the augmented system, the opportunities of changes
and evolution and the restrictions of the augmented reality are predicted. The user
expectations and the reality of system exploitation are compared on the basis of
main storyboards observed for the applications.

We may now combine these approaches into a process survey in Figure 3.
The relevance cycle is based on observation of the state of affairs, scoping of the

demands for system development, and describing a view of the application domain.
These cycles form the y-dimension. We also use the x-dimension for explicit display of
the changes imposed to the reality. Typically, information systems augment the reality.
Figure 3 combines the approaches of design science (research) [3,8] with those based
on main duties for system development [2] and those typically used for conceptual
modelling [16].

The design or modelling cycle uses the scoped application domain description for
the development of a model. The rigor cycle adds semantics, meaning and context to
the model. The description of the scoped application domain may directly be used for
system development. For instance, agile development is typically following this direct
approach. The model may also be directly used for system development. The advantage
of such approach is that all relevant elements are supported by a model and that the
model may be used for understanding the system. The system is therefore defined. We
may also use the model for development of a behaviour description, guidelines (e.g.,
for system deployment) and documentation. In this case modelling is established.

Furthermore, we might background the model by concepts. In this case, users of the
model may perform system construction with a sense of groundwork behind the model
and the description of the application domain. Models may also be a part of a knowledge
base. In this case we integrate, generalise and found the model through concepts in the
knowledge base.

The relevance, design and rigor cycles are based on comprehension of the application
domain, perception of the relevant elements and knowledge or understanding develop-
ment for those elements. During system development models are used as a mediating
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Fig. 3. The relevance/design/rigor and the state-of-affairs/augmentation dimensions

artifact. They describe and image the problems, phenomena and demand form one side
and serve as a prescription for systems development from the other side. Models may
also serve as a background and foundation of the system if they are integrated with
concepts.
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5 Conclusion

Models are artifacts that can be specified within a (W4+W17H)-frame based on the
classical rhetorical frame introduced by Hermagoras of Temnos8.

1. They are primarily characterised by W4: wherefore (purpose), whereof (origin),
wherewith (carrier, e.g., language), and worthiness ((surplus) value).

2. Secondary characterisation W17H is given by:
• user or stakeholder characteristics: by whom, to whom, whichever;
• characteristics imposed by the application domain: wherein, where, for what,

wherefrom, whence, what;
• purpose characteristics characterising the solution: how, why, whereto, when,

for which reason; and
• additional context characteristics: whereat, whereabout, whither, when.

Modelling combines at the same time and systematically different aspects: culture, art,
systematics and technology of model (re)development and model application. It uses
modelling activities and techniques.

Conceptual modelling is biased through a pragmatical culture. It uses languages as
a sophisticated medium of expression. It defines its specific arts and sciences. It re-
flects thoughts, i.e. perception, interpretation and understanding of people involved. It
is implicitly based on value systems transmitted through communities of practice based
on some commonsense and consensus. Conceptual modelling is also at the same time
a social activity, i.e. a shared pursuit within a community, demonstrated in a variety
of textbooks, publications and conferences. Conceptual models are used for social as-
pects, i.e. include the give-and-take of socialisation, negotiation, protocol, and conven-
tions within the community of their users. These aspects of models and of modelling
activities collectively redefine conceptual modelling as a culture.
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Teknologiakatsaus (October 1998)

14. Schewe, K.-D., Thalheim, B.: Reasoning about web information systems using story algebra.
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Abstract. The handling of uncertain information is of crucial impor-
tance for the success of expert systems. This paper gives an overview
on logic-based approaches to probabilistic reasoning and goes into more
details about recent developments for relational, respectively first-order,
probabilistic methods like Markov logic networks, and Bayesian logic
programs. In particular, we will feature the maximum entropy approach
as a powerful and elegant method that combines convenience with re-
spect to knowledge representation with excellent inference properties.
We briefly describe some systems for probabilistic reasoning, and go into
more details on the KReator system as a versatile toolbox for proba-
bilistic relational learning, modelling, and inference. Moreover, we will
illustrate applications of probabilistic logics in various scenarios.

1 Introduction

Real world applications of expert systems (and other computational systems,
too) usually have to struggle with the problem that both background knowledge
and information on the situation at hand are neither complete nor certain. For
instance, in a medical domain, the physician may know that most patients suf-
fering from appendicitis also complain about abdominal pain, but in some cases,
the patients show other atypical symptoms; however, these relationships can not
be further specified in a satisfactory way. In the special case of the patient she is
just facing, she is not even sure whether he feels abdominal pain as he is a boy
of three years of age.

Probabilistic logics offer a rich framework to represent and process uncertain
information, and are linked to statistics and machine learning in a natural way.
Knowledge can be extracted from data, expressed in a suitable probabilistic for-
malism like Bayesian networks [26], and used for uncertain reasoning by applying
inference mechanisms. Completeness of knowledge can be achieved by presup-
posing additional assumptions like conditional independence of variables, like in
most probabilistic networks [26], or by making use of the information-theoretical
principles of optimum entropy [16]. In both ways, a full probability distribution
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is generated from partial knowledge, on the base of which probabilities for arbi-
trary queries can be computed.

Most of the standard probabilistic approaches applied today make use of some
type of probabilistic networks and propositional logic. While network techniques
are of major importance to allow for local computations, the restriction to propo-
sitional logic makes probabilistic knowledge representation inadequate for do-
mains in which relationships between objects are in the focus of investigation.
So, especially in the last decade, a multitude of probabilistic approaches based
on first-order logic have been brought forth. Markov logic networks [5], Bayesian
logic programs [19], and similar relational probabilistic approaches [11] aim at
generalising established propositional probabilistic methods to first-order knowl-
edge representation. This turns out to be not an easy task, as the complexity of
knowledge representation raises substantially, so that new inference techniques
have to be devised. Moreover, the probabilistic semantics of open formulas is
not at all clear. For example, the following conditional probabilistic formulas
express commonsense knowledge about the relationships between elephants and
their keepers which are usually good (elephants like their keepers), but also take
exceptions into regard – elephants tend not to like keeper fred, except for the
good natured elephant clyde:

(likes(X,Y ) | elephant(X), keeper (Y )) [0.8]
(likes(X, fred) | elephant(X)) [0.3]
likes(clyde , fred)[0.9]

A schematic grounding of all rules of this knowledge base would cause conflicts
with respect to elephant clyde and keeper fred. Moreover, both statistical (or
population-based, respectively) information and subjective views are addressed,
as the first two formulas involve all elephants (and keepers), while the third one
only considers situations involving clyde and fred.

With many interesting new applications like social networks, hard compu-
tational problems, and challenging theoretical questions, the area of relational
probabilistic knowledge representation has witnessed very active research work
recently, providing a lot of new approaches and techniques. However, compar-
isons between approaches and evaluations with respect to computational and
representational issues are not easily done, since each approach uses its own log-
ical framework. Hence, there is an increasing demand for tools that support the
investigation of different approaches in example or real world scenarios.

This paper aims to give an overview on the area of probabilistic knowledge
representation, starting with standard propositional approaches and introducing
into relational probabilistic knowledge representation by sketching some major
approaches. As a special focus of the paper, we feature approaches that are based
on the principle of maximum entropy as an elegant and powerful methodology
that provides an excellent framework for commonsense and uncertain reasoning.
Suitable systems are described briefly, and their use for applications in medical
and biochemical domains is illustrated.
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This paper is organized as follows. Sec. 2 provides details on Markov
and Bayesian networks, and on the maximum entropy approach, both in
propositional and first-order frameworks. In Sec. 3, the systems SPIRIT,
MEcore, Alchemy, ProbCog, and KReator are presented, and applications
of these systems are illustrated in Sec. 4. Finally, Sec. 5 concludes this paper.

2 Approaches

According to these approaches, Popular propositional approaches to probabilis-
tic logic use probabilistic networks, heavily relying on the notion of conditional
independence. According to these approaches, Probabilistic conditional logic em-
ploys the principle of maximum entropy and is also based on propositional logic,
while Bayesian logic programs, Markov logic networks, and relational maximum
entropy approaches support a relational setting.

2.1 Propositional Approaches

Probabilistic Networks. Conditional probabilities are often used in knowl-
edge representation to describe causal or diagnostic dependencies [25]. A well-
known framework which relies heavily on the notions of conditional probability
and conditional independence are Bayesian networks. A Bayesian network BN
for a set of propositions A is a tuple BN = (A,E, P ) such that (A,E) is a
directed acyclic graph and P is a probability function that obeys

{a}⊥⊥Pnd(a) | pa(a) (for every a ∈ A), (1)

expressing that each vertex a is conditionally independent of its non-descendants
nd(a), given the values of its parents pa(a). Condition (1) is also called the
local Markov property. Due to this property, the probability function P can be
decomposed into conditional probability functions for each node a ∈ A.

Example 1. We adapt an example on medical diagnosis, cf. [25]. Consider the
propositions A = {a, b, c, d, e} with the informal interpretations

a cancer b increased serum calcium level
c brain tumor d coma
e headache

and a Bayesian network BNmed = (A,E, P ) with (A,E) given as depicted
in Fig. 1. It follows that P has to adhere to the conditional independence
{b}⊥⊥P{c} | {a} (among others). Moreover, the probability of a possible world
such as abcde can be written as

P (abcde) = P (e | c) · P (d | bc) · P (c | a) · P (b | a) · P (a).
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Therefore, P can be completely described by e. g. the following assignments1:

P (a) = 0.20
P (b | a) = 0.80 P (b | a) = 0.20
P (c | a) = 0.20 P (c | a) = 0.05
P (e | c) = 0.80 P (e | c) = 0.60

P (d | b ∧ c) = 0.80 P (d | b ∧ c) = 0.90

P (d | b ∧ c) = 0.70 P (d | b ∧ c) = 0.05

Note that the probabilities of negated variables derive from the above equations
via e. g. P (e | c) = 1−P (e | c). By only defining the above conditional probabilities
the function P can be compactly stored.

a

b c

d e

Fig. 1. The graph (A, E) from Ex. 1

Probabilistic Conditional Logic and Maximum Entropy. Conditional
logic [22] is a knowledge representation formalism that concentrates on the role
of conditionals or if-then-rules. A conditional of the form (ψ |φ) connects some
detached pieces of information φ, ψ and represents a rule “If φ then (usually,
probably) ψ”. A probabilistic conditional is an expression of the form (ψ |φ)[d]
with propositional formulas φ and ψ and d ∈ [0, 1].

Example 2. The well-known penguin example that illustrates the problem of
exceptions in subclasses can be represented as a knowledge base R with R =
{r1, r2, r3} with

r1 = (bird | peng)[1.0] r2 = (fly | bird)[0.9] r3 = (fly | peng)[0.01].

A probability function P satisfies a probabilistic conditional

P |= (ψ |φ)[d] if and only if P (ψ |φ) = d and P (φ) > 0. (2)

Reasoning in probabilistic conditional logic can be performed by maximizing
entropy. The entropy H(P ) of a probability function P is defined via H(P ) =
−∑ω P (ω) logP (ω) with 0 · log 0 = 0. By selecting P ∗ = arg maxP |=RH(P )

1 The numbers have been arbitrarily chosen and may not describe the real world.
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as the (unique) model of the knowledge base R with maximal entropy, one
obtains a probability function that both satisfies all conditionals in R and adds
as few additional information (in the information-theoretic sense) as possible.
For a consistent knowledge base R the maximum entropy model P ∗ is uniquely
determined, cf. [16]. Model-based probabilistic inference via P ∗ shows excellent
logical properties [16], and has been proved to be most adequate for commonsense
reasoning [24].

2.2 Relational Approaches

Bayesian Logic Programs. Bayesian logic programming combines logic pro-
gramming and Bayesian networks [19]. The basic structure for knowledge rep-
resentation in Bayesian logic programs are Bayesian clauses which model prob-
abilistic dependencies between Bayesian atoms as in the following BLP corre-
sponding to an example given in [4]:

c1 : (likes(X,Y ) | elephant (X), keeper (Y ))
c2 : (likes(X, fred) | elephant(X))

c3 : likes(clyde , fred)

For each Bayesian clause c, a function cpdc must be defined, expressing the condi-
tional probability distribution P (head(c) | body(c)) and thus partially describing
an underlying probability distribution P . For instance, cpdc1

(true, true, true) =
0.8 would express our subjective belief that likes(X,Y ) is true with probability
0.8 if elephant(X) and keeper (Y ) are true. In order to aggregate probabilities
that arise from applications of different Bayesian clauses with the same head,
BLPs make use of combining rules. Semantics are given to Bayesian logic pro-
grams via transformation into propositional forms, i. e. into Bayesian networks
[25] (see [19] for details).

Markov Logic Networks. Markov logic [5] establishes a framework which
combines Markov networks [25] with first-order logic to handle a broad area
of statistical relational learning tasks. The Markov logic syntax complies with
first-order logic where each formula is quantified by an additional weight value,
e.g.

(elephant(X) ∧ keeper (Y ) ⇒ likes(X,Y ), 2.2)
(elephant(X) ⇒ likes(X, fred), −0.8)

(likes(clyde, fred), ∞)

Semantics are given to sets of Markov logic formulas by a probability distribution
over propositional possible worlds that is calculated as a log-linear model over
weighted ground formulas. The fundamental idea in Markov logic is that first-
order formulas are not handled as hard constraints (which are indicated by weight
∞), but each formula is more or less softened depending on its weight. A Markov
logic network (MLN) L is a set of weighted first-order logic formulas (Fi, wi)
together with a set of constants C. The semantics of L is given by a ground
Markov network ML,C constructed from Fi and C [6]. The standard semantics
of Markov networks [25] is used for reasoning, e.g. to determine the consequences
of L (see [6] for details).



32 G. Kern-Isberner et al.

Relational Maximum Entropy. The syntax of relational probabilistic con-
ditional logic (RPCL) [33] has already been used in the representation of the
elephant-keeper-example from the introduction and employs conditionals of the
form (B |A)[x] with first-order formulas A,B and x ∈ [0, 1]. A conditional
(B |A)[x] represents a constraint on a probability distribution P : Ω → [0, 1]
on the set of possible worlds Ω and expresses that the conditional probability of
B given A is x. In order to interpret conditionals containing free variables several
relational semantics have been proposed, see [33,21]. The grounding semantics
[21] uses a grounding operator G, e. g. universal instantiation, that translates a
set R of conditionals with free variables into a set of ground conditionals. Then,
a probability distribution P G-satisfies R, denoted by P |=G R, iff P (B′ |A′) = x
for every ground (B′ |A′)[x] ∈ G(R). Both averaging and aggregating semantics
[18,33] do not require a grounding operator but interpret the intended probabil-
ity x of a conditional with free variables only as a guideline for the probabilities of
its instances, but the actual conditional probabilities of the instantiated formu-
las may differ from x. More precisely, for the averaging semantics, a probability
distribution P ∅-satisfies R, denoted by P |=∅ R, iff for every (B |A)[x] ∈ R
it holds that P (B1 |A1) + . . . + P (Bn |An) = nx where (B1 |A1), . . . , (Bn |An)
are the ground instances of (B |A). In the aggregating semantics, a probability
function P �-satisfies R, denoted by P |=� R, iff for every (B |A)[x] ∈ R it
holds that P (B1 ∧ A1) + . . . + P (Bn ∧ An) = x(P (A1) + . . . + P (An)) where
(B1 |A1), . . . , (Bn |An) are the ground instances of (B |A). Note that all these
three semantics are extensions of classical probabilistic semantics for proposi-
tional probabilistic conditional logic [15]. Based on any of these semantical no-
tions the principle of maximum entropy ([23,15], see also Sec. 2.1), can be used
for reasoning. By employing this principle one can determine the unique proba-
bility distribution that is the optimal model for a consistent knowledge base R
in an information-theoretic sense via

PME◦
R = arg max

P |=◦R
H(P ) (3)

with ◦ being one of G, ∅, or �. We abbreviate the approaches of reasoning
based on the principle of maximum entropy with grounding, averaging, and
aggregating semantics with MEG , ME∅, and ME�, respectively. We say that a
formula (B |A)[x] is ◦-inferred from R iff PME◦

R |=◦ (B |A)[x] with ◦ being one
of G, ∅, or �.

3 Systems

There are various implementations of probabilistic logic. In the following, we give
brief overviews on a selection of systems and toolboxes for probabilistic logics
based on a propositional or a relational setting.

3.1 SPIRIT and Probabilistic Reasoning under Maximum Entropy

Reasoning in probabilistic conditional logic by employing the principle of maxi-
mum entropy [23,15] requires solving the numerical optimization problem P ∗ =
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argmaxP |=RH(P ) (cf. Sec 2.1). SPIRIT [29] is an expert system shell2 imple-
menting maximum entropy reasoning and solving this optimization problem. In
order to tame the complexity of the optimization task which grows exponen-
tially in the number of variables, SPIRIT generates a junction-tree of variable
clusters, allowing to represent the global probability distribution by a product of
marginal distributions. SPIRIT has been used successfully in various application
domains, like medical diagnosis, project risk management, or credit scoring.

MEcore [8] is another system implementing reasoning for propositional prob-
abilistic conditional logic under maximum entropy. While it does not employ a
junction-tree modelling, but a straight-forward representation of the complete
probability distribution, its focus is on flexibly supporting different basic knowl-
edge and belief management functions like revising or updating probabilistic
beliefs, or hypothetical reasoning in what-if mode.

3.2 Alchemy

Markov logic is implemented in the Alchemy system3 [20]. Alchemy provides a
wide range of functionalities for statistical relational learning and probabilistic
logic inference. In particular, the consequences of a Markov logic network L
defined via the ground Markov network ML,C (cf. Sec. 2.2) can be determined.
With respect to learning, both weight learning as well as learning the structure
of an MLN is supported. Applications of MLN realized with Alchemy include
classifications tasks and social network modelling. In Sec. 4, we will report on
some experiments using MLNs and Alchemy in medical diagnosis.

3.3 ProbCog

The ProbCog (Probabilistic Cognition for Cognitive Technical Systems) sys-
tem4 [13] is a software suite for statistical relational learning. ProbCog currently
supports three knowledge representation approaches: Bayesian Logic Networks
(BLNs), Adaptive Markov Logic Networks (AMLNs), and Markov Logic Net-
works (MLNs). For each approach, ProbCog provides several learning and in-
ference algorithms, implemented either in Java or Python. ProbCog provides a
sophisticated framework for relational data, which features, amongst others, a
unified data model (which allows data conversion for all integrated approaches )
and the generation of synthetic data (for learning experiments). The main focus
of the ProbCog suite is on providing a comprehensive library of algorithms and
powerful data structures for statistical relational learning, but it also includes
some graphical interfaces for learning and querying, respectively.

3.4 KReator

KReator [32] is a toolbox for representing, learning, and automated reasoning
with various approaches combining relational first-order logic with probabilities5.
2 http://www.fernuni-hagen.de/BWLOR/spirit/index.php
3 http://alchemy.cs.washington.edu/
4 http://ias.cs.tum.edu/research-areas/knowledge-processing/probcog
5 http://kreator.cs.tu-dortmund.de/

http://www.fernuni-hagen.de/BWLOR/spirit/index.php
http://alchemy.cs.washington.edu/
http://ias.cs.tum.edu/research-areas/knowledge-processing/probcog
http://kreator.cs.tu-dortmund.de/
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The implementation of KReator is done in Java and mirrors its objective
to support different approaches to relational probabilistic knowledge represen-
tation and reasoning. It strictly separates the internal logic and the user in-
terface, employing an abstract command structure allowing easy modifications
on both sides. In order to support the implementation of other approaches,
KReator features a large library on first-order logic and basic probabilistic
methods. Among others this library contains classes for formulæ, rules, condi-
tionals, and various methods to operate on these. There is also a rudimentary
implementation of Prolog available that can be used for specifying background
knowledge as e. g. in BLPs. This integrated library is designed to support a fast
implementation of specific approaches to statistical relational learning. The task
of integrating a new approach into the KReator system is supported by a small
set of interfaces that have to be implemented in order to be able to access the
new approach from the user interface. There are interfaces for knowledge bases
(which demands e. g. support for querying), file writers and parsers (for read-
ing and writing the specific syntax of an approach), and learner. One thing to
note is that both file writers and parsers have to work on strings only, all the
cumbersome overhead of file operations and I/O is handled by KReator. With
the help of a plugin-like architecture the developer of a new approach only has
to be concerned with connecting her approach to KReator using these inter-
faces. Then all the benefits of an integrated development environment as pro-
vided by KReator are immediately accessible. Currently, KReator supports
knowledge representation using BLPs, MLNs, the relational maximum entropy
approach RME, as well as Relational Bayesian Networks [12], and Probabilistic
Prolog [27]; support for Logical Bayesian Networks [7], Probabilistic Relational
Language [10], and Relational Bayesian Networks [14] is in preparation.

Performing inference on MLNs is done using the Alchemy software package
[20], a console-based tool for processing Markov logic networks. For BLPs, a
reasoning component was implemented within KReator. To process ground
MEG knowledge bases, KReator uses a so-called ME-adapter to communicate
with a MaxEnt-reasoner. Currently, such adapters are supplied for the SPIRIT
reasoner [29] and for MEcore [8] which are tools for processing (propositional)
conditional probabilistic knowledge bases using maximum entropy methods.

ProbCog and KReator share some similarities with respect to their general
approach to gather different knowledge representation approaches within one
software framework, e. g. both systems feature some sort of unified data model
for evidence or sample data. But the primary application focus of both systems
differs significantly: ProbCog is developed for its intended practical application
and integration in cognitive technical systems. So its primary focus is on pro-
viding a versatile and efficient framework for that specific purpose, therefore
some sort of unified graphical user interface to the framework is not needed. In
contrast, KReator’s focus is on the typical workflow of a knowledge engineer,
researcher, or developer. Therefore, KReator collects different approaches in
an integrated graphical development environment (see Fig. 2 for a screenshot of
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Fig. 2. Graphical user interface of the KReator system

the KReator user interface) to provide easy access to typical tasks and provides
a plugin interface to support the study and development of further approaches.

4 Applications

In the following subsections, we will present three practical application scenarios
of some of the afore described systems. All three applications cover settings from
the medical domain. The first one illustrates ME-reasoning using a fictitious
example, whereas the other ones describe learning experiments involving Markov
logic networks and real-world data from medical studies.

4.1 Knowledge Processing with the MEcore System

In this section, we will illustrate how MEcore can process incomplete, uncertain
knowledge expressed by a probabilistic knowledge base using a fictitious example
from the medical domain. This example is taken from [8] and discusses the
general treatment of a patient who suffers from a perilous bacterial infection.
The infection will probably cause permanent neurological damage or even death
if it is not treated appropriately. There are two antibiotics available that might
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be capable of ending the infection, provided that the bacteria are not resistant
to the specific antibiotic. It must also be considered that each antibiotic might
cause a life-threatening allergic reaction that could be especially dangerous for an
already weakened patient. The resistance of the bacteria to a specific antibiotic
can be tested, but each test is very time-consuming.

Building Up the Knowledge Base. The construction of the knowledge base
starts with the definition of some binary variables that describe aspects concern-
ing antibiotic A:

med A: The patient is treated with antibiotic A.
effect A: Antibiotic A is effective against the bacteria.
allergic A: The patient is allergic to antibiotic A.
resistance A: The bacteria are resistant to antibiotic A.
posResT A: The test result suggests a resistance to antibiotic A.

Analogously, there are also five variables concerning antibiotic B. A three-valued
variable outcome describes the three possible outcomes of the treatment:

outcome=healthy: The infection is treated successfully and the patient is
healthy again.
outcome=impaired: The patient overcomes the infection but suffers a per-
manent damage to the nervous system.
outcome=dead: The infection is not treated effectively and the patient dies.

The available knowledge summarizing the previously made experiences about
the infection and the two antibiotics is modeled by the knowledge base medKB =
{R1, . . . , R22} consisting of the probabilistic rules given in Fig. 3.

The first four rules express very obvious correlations between the variables:
R1 and R2 say that if a certain antibiotic is not administered or the bacteria
are resistent to it, then this antibiotic has no effect. R3 and R4 assure that if
the bacteria are not resistant to a certain antibiotic, then this antibiotic is effec-
tive if—and only if—it is administered. The facts R5 to R9 integrate statistical
information available for antibiotic A and antibiotic B, i. e. some a priori prob-
abilities, into the knowledge base: antibiotic B is twice as likely as antibiotic
A to cause an allergic reaction (R5, R6); and the resistance to antibiotic B is
nine times higher compared to antibiotic A (R7, R8). It has occurred very rarely
that somebody administers both antibiotics to the patient (R9). R10 and R11

model the prognosis for the patient if no antibiotic is administered. The result
of a resistance-test, testing the resistance of the bacteria to an antibiotic, always
includes some error, but the test regarding antibiotic A is very reliable (R12,
R13); whereas the test concerning antibiotic B has a somewhat lower sensitivity
(R14) and a considerably lower specificity (R15).

The rules R16 to R19 express special knowledge about antibiotic A and an-
tibiotic B, respectively: The allergic reaction caused by antibiotic A is most
likely lethal (R16), whereas the chance of surviving an allergy to antibiotic B is
more likely than to die of it (R17). If antibiotic A is effective, then the patient
has a good chance to become healthy again (R18), whereas the effectiveness of
antibiotic B is somewhat lower (R19). The following knowledge is available for
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R1 : (¬effect A | ¬med A ∨ resistance A)[1.00]
R2 : (¬effect B | ¬med B ∨ resistance B)[1.00]
R3 : (effect A ⇔ med A | ¬resistance A)[1.00]
R4 : (effect B ⇔ med B | ¬resistance B)[1.00]
R5 : (allergic A)[0.10]
R6 : (allergic B)[0.20]
R7 : (resistance A)[0.01]
R8 : (resistance B)[0.09]
R9 : (med A ∧ med B)[0.00001]
R10: (outcome=dead | ¬med A ∧ ¬med B)[0.10]
R11: (outcome=healthy | ¬med A ∧ ¬med B)[0.10]
R12: (posResT A | resistance A)[0.97]
R13: (¬posResT A | ¬resistance A)[0.99]
R14: (posResT B | resistance B)[0.90]
R15: (¬posResT B | ¬resistance B)[0.80]
R16: (outcome=dead | med A ∧ allergic A)[0.99]
R17: (outcome=dead | med B ∧ allergic B)[0.40]
R18: (outcome=healthy | effect A)[0.8]
R19: (outcome=healthy | effect B)[0.7]
R20: (allergic A | med A)[0.10]
R21: (outcome=dead | effect B)[0.09]
R22: (outcome=healthy | med B ∧ allergic B)[0.001]

Fig. 3. Probabilistic rules in the knowledge base medKB

antibiotic A only: R20 makes clear that the a priori probability of an allergy
to antibiotic A (expressed by R5 with equal probability) is not affected by the
administration of antibiotic A. There is also some exclusive knowledge about
antibiotic B: If antibiotic B is effective, there still remains some risk to die of the
infection (R21). If the patient survives an allergic reaction caused by antibiotic
B, it is very unlikely that he will become healthy again (R22).

Computing an Initial Epistemic State. In MEcore, the computation of an
epistemic state incorporating the knowledge expressed by the knowledge base
medKB can be initiated by the command:

(1) currState := epstate.initialize(medKB);

The calculated epistemic state currState represents the incomplete knowledge
expressed by medKB inductively completed in an entropy-optimal way.

A closer look at medKB reveals that some additional rules can be logically de-
duced from the existing rules since they hold in all models satisfying medKB. For
instance, a literal of the three-valued variable outcome makes up the conclusion
of several rules. Hence, two rules with identical premise and an outcome literal
as conclusion directly imply a corresponding third rule, e. g. R10 and R11 imply
(outcome=impaired | ¬med A ∧ ¬med B)[0.8]. Appropriate queries to MEcore
in currState yield these expected probabilities since reasoning at optimum en-
tropy is compatible with classical probabilistic consequences.
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Query. Suppose we want to know the patient’s chances in each case of treat-
ment, i. e. for each of the four possible options of medical administration: no
antibiotic, antibiotic A only, antibiotic B only, both antibiotics. This can be
expressed by a set of twelve query formulas (i. e. conditionals of the form e. g.
(outcome=healthy | med A ∧ ¬med B)) which we will denote by medQueries.
While using classical probabilistic consequences does not yield informative an-
swers for medQueries, MEcore infers the following probabilities from currState:

healthy impaired dead
no antibiotic 0.10 0.80 0.10

only A 0.79 0.06 0.15
only B 0.65 0.23 0.12

A and B 0.94 0.02 0.04

These results clearly suggest that the combined administration of both antibi-
otics would be the best treatment. It offers a high chance of healing accompanied
by a minimal risk of permanent neurological damage or death. However, a closer
look at the knowledge base reveals that it implies that there is almost no possible
drug interaction. For instance, asking for the degree of belief for the conditional

Cint : (dead | med A ∧ med B ∧ ¬allergic A ∧ ¬allergic B)
in currState yields the inferred drug interaction probability 0.01.

Incorporation of New Knowledge. Suppose that later on, the doctors learn
to know from an outside source that there is a severe risk (0.25) of a deadly drug
interaction between both antibiotics. Executing

(2) currState.update(medKB, Cint[0.25]);
incorporates this new knowledge into the current epistemic state as if it had
been available already in medKB. In fact, this kind of belief change is a genuine
revision (cf. [17]) which in MEcore can also be more easily expressed by

(2’) currState.revise(Cint[0.25]);
Now, asking the medQueries again, the probabilities have changed considerably
(cf. Fig. 4(a)): With the knowledge about a deadly drug interaction, the prob-
abilities show that the administration of antibiotic A maximizes the patient’s
chance to become healthy again.

What-If-Analysis. It has to be noticed that the knowledge used for generating
the epistemic state currState says that no resistance tests have been performed,
i. e. for neither of the antibiotics any resistance test results are available. A
what-if-analysis can be used to analyze what changes would occur if a negative
resistance-test result concerning antibiotic B was known. That is, could this test
result make antibiotic B the better choice for treatment? In MEcore, such a
what-if-analysis is accomplished by

(3) currState.whatif((¬posResT B)[1.0], medQueries);
delivering the results shown in Fig. 4(b). The probabilities show that even a
negative resistance-B test would not change the general decision to administer
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(a) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.79 0.06 0.15
only B 0.65 0.23 0.12

A and B 0.70 0.02 0.28

(b) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.79 0.06 0.15
only B 0.69 0.21 0.10

A and B 0.76 0.02 0.22

(c) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.43 0.15 0.42
only B 0.65 0.23 0.12

A and B 0.32 0.05 0.63

(d) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.43 0.15 0.42
only B 0.54 0.26 0.20

A and B 0.20 0.04 0.76

Fig. 4. Probabilities for medQueries infered by MEcore

antibiotic A. This result is, amongst others, caused by the low resistance-B test
specificity.

Another what-if-analysis revealing the effects of a positive resistance-A-test
(4) currState.whatif((posResT A)[1.0], medQueries);

yields the probabilities given in Fig. 4(c). This shows that a test-result sug-
gesting the resistance to antibiotic A would change the situation: In this case,
a treatment with antibiotic B becomes the only that offers a realistic healing
chance. This is not surprising, because a resistance-test result concerning antibi-
otic A is very reliable. So it is clearly advisable to perform the time-consuming
resistance-A test.

In case of a positive resistance-A-test result, would it also be helpful to test the
resistance to antibiotic B? That is, could an additional positive resistance-B-test
change the decision to administer antibiotic B? Hypothetical reasoning

(5) currState.whatif(((posResT A)[1.0], (posResT B)[1.0]), medQueries);
yields the results shown in Fig. 4(d), indicating that even a positive resistance-
B-test would not change the decision to administer antibiotic B. So it is not
helpful to perform a resistance-B test in any situation, since its result would
never change the decision that had been made without knowing the test result.

4.2 Diagnosis of Lung Cancer

This section is based on [9], reporting on a case study of using probabilistic
relational modelling and learning as provided by MLNs and the MLN system
Alchemy [20] in the field of biomedical diagnosis. The idea behind this diag-
nostical setting is to support diagnosis of bronchial carcinoma on the basis of
the substances a person exhales [2,1]. In this setting, the focus is on the early
detection of bronchial carcinoma by ion mobility spectrometry, a non-invasive
diagnostic method which delivers results within a few minutes and can be applied
at low costs.

Ion Mobility Spectrometry. In order to determine chemical substances in
gaseous analytes, ion mobility spectrometry (IMS) can be used [2]. This method
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Fig. 5. Schematic overview of an ion mobility spectrometer (from [2])

relies on characterizing substances in gases by their ion mobility. Figure 5 illus-
trates the working principle of an ion mobility spectrometer. After ionisation, ion
swarms enter the drift region through an ion shutter. The time needed to pass
the drift region is called drift time, and the ion mobility is inversely proportional
to the drift time. An ion mobility spectrum is obtained by mapping the drift
time to the signal intensity measured at the Faraday plate (cf. Fig. 5). If the
gaseous analyte contains various substances, they may reach the Faraday plate
at the same time. In order to avoid this, a multi capillary column is used for
the pre-separation of different substances [2] so that they enter the spectrometer
at different time points, called retention times ; for more detailed descriptions of
ion mobility spectrometry and its working principle we refer to [1] or [2].

Thus, applying ion mobility spectrometry to gaseous analytes yields IMS spec-
tra where a peak in such a spectrum corresponds to a particular substance. The
determination of peaks in a measurement requires sophisticated processing of
the raw spectra, see [2,3] for details. Peak objects taken from two different mea-
surements that correspond to the same substance occur at corresponding areas
in their respective so-called heat maps, and in order to identify such correspond-
ing peaks, they can be mapped to peak clusters [2,9]. In our case study, we
investigated an IMS database consisting of 158 measurements obtained from
screening the breath of 158 patients out of which 82 had lung cancer (bronchial
carcinoma, bc), yielding a database Dbc with 33 peak clusters, in the following
referred to by the identifiers pc0 , . . . , pc32 . For each peak cluster pci, P (bc|pci)
denotes the conditional probability that a measurement having a peak belonging
to pci stems from a person having bronchial carcinoma. For applying methods of
probabilistic relational modelling and learning to Dbc, we use a logic represen-
tation of Dbc (for convenience, also referred to as Dbc) involving the predicates
bc(M) indicating that measurement M belongs to a person having lung cancer
and pcInM (PC ,M ) stating that peak cluster PC occurs in measurement M .
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In the following, we present different setups to learn MLNs from the data set
Dbc. Our goal is to calculate the probability that a certain measurement m is
from some person with a bronchial carcinoma, given the information for each of
the 33 peak clusters whether or not it is contained in measurement m. That is,
we want to calculate the conditional probability of bc(m), given the truth values
of the literals pcInM (pc0 ,m), . . . , pcInM (pc32 ,m). This conditional probabil-
ity helps to classify patients with respect to suffering from lung cancer. The
corresponding classification task can be realized with MLNs. We use the soft-
ware package Alchemy [20] which provides several sophisticated algorithms to
perform (structure and parameter) learning and inference of MLNs. A learned
MLN is validated in terms of classification accuracy, defined as the proportion
of the correctly predicted (positive and negative) results on the total number
of measurements in a testing set; these values are determined as the average
accuracy of all tests in a 10-fold cross-validation.

Learning Logic Rules with the ILP System Aleph. In a first learning
setup, we use the inductive logic programming (ILP) system Aleph [31] for learn-
ing first-order logic rules from the data set. Besides other parameters, Aleph al-
lows to make detailed specifications about which atoms may appear in the body
or head of a rule. As we want to predict whether or not the measurement M
belongs to a patient having bronchial carcinoma, we require that heads of the
rules learned by Aleph must contain the bc predicate, whereas their body must
consist of one or more atoms of the pcInM predicate, with a constant in the first
argument. This way, the rules predict the value of bc(M), given the values of
some of the pcInM (pci ,M ). The two rules

R1: pcInM (pc5 ,M ) ∧ pcInM (pc8 ,M ) ⇒ bc(M)
R2: pcInM (pc7 ,M ) ∧ pcInM (pc17 ,M ) ∧ pcInM (pc31 ,M ) ⇒ bc(M)

are examples of the 11 rules learned with Aleph [9]. The premises of all 11 rules
consist of conjunctions of at most three positive pcInM literals. From the 33
different peak clusters found in the data set, only 18 occur in the rule set, so the
other 15 peak clusters seem to carry no useful information with regard to lung
cancer according to the Aleph result.

Learning Weights of Aleph Formulas with Alchemy. In a subsequent step,
we take the Aleph implications as logical base structure of an MLN and learn
appropriate weights for them from the data set using Alchemy. For instance, the
resulting weights for the rules R1 and R2 above are 4.596 and 6.004, respectively.
Evaluating the MLN prediction performance results in an accuracy of 78%.

If we take the implications as if-then-rules, we can determine the conditional
probabilities of these rules under the distribution induced by the MLN, i. e.
we use Alchemy to calculate the conditional probability of a rule’s consequent
ground atom given its premise ground atoms as evidence. E. g., for rule R1,
Alchemy determines the probability P (bc(m)|pcInM (pc5 ,m)∧pcInM (pc8 ,m)) =
0.9800 in the MLN; for R2 we get 0.996. In fact, the conditional probabilities of
all rules are not exactly 1.0, as expected, but rather close to it (see [9]). This is



42 G. Kern-Isberner et al.

due to the fact that Alchemy performs approximate inference and thereby, as a
side-effect, prevents overfitting.

The learned MLN allows to draw some conclusions between peak clusters (i. e.
the occurrence of substances in a measurement) and bronchial carcinoma. E. g.,
formula R2 relates the combined occurrence of peak clusters pc7 , pc17 , and pc31
in a measurement M to the presence of bronchial carcinoma. Because of the pos-
itive (and relative high) weight of this formula, the combined occurrence of these
peak clusters can be interpreted as an indicator for bronchial carcinoma. Like-
wise, there are also formulas relating the combined occurrence of peak clusters
to the absence of bronchial carcinoma.

Simple Classification with MLNs. In a further learning setup, we prede-
fine the formula structure of a quite simple MLN: The MLN consists of the 33
implications pcInM (pc0 ,M) ⇒ bc(M), . . . , pcInM (pc32 ,M) ⇒ bc(M). Since
the Alchemy syntax allows to express such ”partially grounded” formulas in a
compact way, the whole predefined structural Alchemy input merely consists of
a single line. With this MLN structure, we follow a straightforwardly modelled
classification approach: To classify the bc state of a measurement, we consider
each peak cluster separately, leaving out any connections or dependencies among
them. To some extent, this approach resembles Naive Bayes classification, where
explicit independence assumptions among classifying attributes are made. The
evaluation of the learned MLN revealed quite a high accuracy of 88% [9], al-
though the enforced MLN structure lacks any connections between peak clusters,
suggesting that those connections are not of great importance for classifying the
measurements regarding bc.

MLN Structure Learning. In this learning setup, we make use of Alchemy’s
structure learning feature to learn an MLN from scratch. Alchemy does not allow
to make detailed specifications about the formulas to be learned, i. e. we cannot
impose the requirement that the pcInM ( , ) atoms have a constant in the first
argument. As a consequence, Alchemy’s structure learning algorithm produces
no useful results when applied to Dbc without any further information. So we
modify the relational modelling in some aspect by replacing the binary predicate
pcInM (PC ,M ) by 33 unary predicates pc0 (M ), . . . , pc32 (M ).

Using this setup, the structure (and weight) learning with Alchemy starts
from an empty MLN and results in an MLN with 89 formulas (including 34
atomic formulas for all 34 predicates) [9]. The evaluation of this MLN shows an
accuracy of 90%. Compared to the previous results, this MLN models much more
connections among the peak clusters and their combined influence regarding
bc(M). Only 13 of the 55 non-atomic formulas involve a bc literal, so the other
42 formulas express connections among the peak clusters regardless of the bc(M)
state, and the formulas contain both positive and negative peak cluster literals.
So compared to the previous results, this MLN exhibits more complex and subtle
connections among the occurrences of peak clusters and the bc(M) state. Here
are two examples for the learned formulas:
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R61: (¬pc10 (M ) ∧ pc14 (M ) ∧ ¬pc18 (M ) ∧ pc21 (M ) ⇒ bc(M), 7.15)
R44: (pc17 (M ) ∧ pc28 (M ) ⇒ pc21 (M ), 5.05)

R61 relates the combined occurrence of peak clusters pc14 and pc21 and the
explicit absence of peak clusters pc10 and pc18 in a measurement to bronchial
carcinoma. With a lower, but still relatively high weight, R44 implies that a
measurement containing peak clusters pc17 and pc28 also contains peak cluster
pc21 . In other words, the system has learned the relationship that the occurrence
of the two substances indicated by peak clusters pc17 and pc28 in a measure-
ment M leads to the presence of the substance identified by pc21 in the same
measurement. Such a relation can provide interesting insights into the general
composition of substances in typical measurements.

4.3 Predicting Allergic Diseases of Children

In this section, another application of MLNs for modelling and learning in the
medical domain is presented. In [30], MLNs were employed to analyze the cor-
relations between allergic diseases of children and certain environmental factors.
The data used in this analysis has been extracted from the KiGGS study of the
Robert Koch-Institut [28]. The KiGGS study is a long term study which covers
the health situation of 17.000 children (and adolescents) in Germany. It considers
a multitude of attributes for every child concerning medical or social aspects.
For the experiments described in [30], 13 of these attributes had been chosen
which represent well-known risk factors for allergies, e. g. ”the child has a pet at
home”, ”the child lives in an urban environment”, or ”a parent suffers from an
allergy”. Each such attribute was modelled by a corresponding MLN predicate,
e. g. hasPet(X), urban(X). Together with the information whether or not a child
is allergic (represented by an isAllergic(X) predicate) this allowed to model the
data from the study as MLN learning data, i. e. as data samples in terms of
ground atoms. The extracted and preprocessed learning data from the study
consisted of about 8.000 data samples, covering allergic respectively non-allergic
children in equal parts. In all experiments, subsets of these data samples were
used as actual training and testing data (performing a 5-fold cross-validation).

Several learning experiments were performed on this learning data using the
algorithms of the Alchemy software package [20] for learning and inference. The
goal of all experiments was to learn an MLN which can predict the risk of
a child to be allergic given the presence (or absence, respectively) of each of
the 13 risk factors. The learning experiments included parameter (i. e. weight)
learning using a predefined MLN formula structure which consisted of 13 im-
plications of the form e. g. hasPet(X) ⇒ isAllergic(X). In another experiment,
Alchemy’s structure learning algorithm was applied to learn an MLN (formulas
and weights) from scratch. The evaluation of the learned MLNs was carried out
by using several of Alchemy’s (approximate) inference algorithms. Additionally,
the software PyMLNs (which is part of the ProbCog suite [13]) was used to
perform exact inference on some MLNs in order to evaluate the deviation com-
pared to the approximate results. The experiments showed that the results of the
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various Alchemy algorithms were quite similar and that there were no significant
difference compared to the exact results.

Overall, the quality of the learned MLNs in terms of classification accuracy
turned out to be not as good a expected. For various experiment settings, the
MLNs resulting from structure as well as from parameter learning provide an
accuracy of about 61% in predicting a child to be allergic. This could be improved
by focusing on formulas the probabilities of which were significantly different
from 0.5. However, further investigations into the evaluation of the quality of
learned MLNs for prediction tasks in this domain will be necessary.

5 Summary and Conclusion

This paper gives a brief overview on the state of the art in probabilistic rea-
soning, and illustrates the relevance of probabilistic methods for expert systems
by describing their applications in various scenarios. The main advantage of
probabilistic formalisms is an accurate handling of uncertainty which pervades
all real world problems. Degrees of uncertainty can be conveniently obtained
from statistical data and processed via probabilistic networks. Moreover, we go
into more details on novel approaches combining probability theory and first-
order logic which provide more expressive frameworks for probabilistic reason-
ing. The problem of incompleteness of knowledge is addressed by describing the
information-theoretical principle of maximum entropy which might also be ap-
plied in first-order settings. Altogether, probabilistic frameworks provide suitable
and rich environments for learning, modelling, and reasoning in expert systems.
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Abstract. Multi-objective optimization problem finds out optimal ob-
jects w.r.t. several objectives rather than a single objective. We propose a
new problem called a multi-objective optimal combination problem (MOC
problem) which finds out object combinations w.r.t. multiple objectives.
A combination dominates another combination if it is not worse than
anther one in all attributes and better than another one in one attribute
at least. The combinations, which cannot be dominated by any other
combinations, are optimal. We propose an efficient algorithm to find out
optimal combinations by reducing the search space with a lower bound
reduction method and an upper bound reduction method based on the
R-tree index. We implemented the proposed algorithm and conducted
experiments on synthetic data sets.

Keywords: Multi-objective, combination, R-tree, domination.

1 Introduction

The multi-objective optimization problem [1,2] finds out objects which are opti-
mal w.r.t. several objectives rather than a single objective. In this paper, we pro-
pose a new variation which finds out optimal object combinations w.r.t. multiple
objectives. We name it a multi-objective optimal combination (MOC ) problem.
Let us consider an example first.

Example 1. A user wants to buy a breakfast consisting of three foods. Her bud-
get is 1300JPY and her calorie demand is 1600kcal. Assume that six different
foods are available in Fig. 1 (a)1. All 3-item food combinations are shown in
Fig. 1 (b) with (cost, calorie) and are also shown in Fig. 1 (c) as points. We
need to recommend better combinations for her.

The combinations {AED}, {ACB}, {AEB}, {ACE}, {CED}, {AEF} and
{CEB} are within the user’s requirements (13, 16) as Fig. 1 (c) shows. They are
possible answers for the user. The combination {CEB} = (13, 14) is better than
the combination {ACE} = (9, 12) because {CEB} is closer to the requirements
(13, 16). We say that {CEB} dominates {ACE}.

1 The cost unit is 100 JPY and the calorie unit is 100kcal.

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 47–61, 2011.
� Springer-Verlag Berlin Heidelberg 2011

http://www.db.itc.nagoya-u.ac.jp/en/
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Fig. 1. MOC Problem Example

Suppose there combinations, which cannot be dominated by any other combi-
nations, are optimal ones to be recommended. In this example, {CED}, {AEF}
and {CEB} (solid points) cannot be dominated. We return them to the user
as the results. The challenge of the problem is that there will be a huge number
of combinations consisting of elements from a given object set and we need to
identify the optimal combinations. This example is going to act as a running
example in the rest of this paper.

There is an object set G where each object has m attributes (g1, g2, · · · , gm).
An h-item combination p = {g1, g2, · · · , gh}(gi ∈ G) has attributes (p1, p2, · · · ,
pm) where pj = Σh

i=1g
j
i (j ∈ 1, 2, · · · ,m). Given an objective vector b = (b1, b2,

· · · , bm), the distance from a combination p to b is (d1, · · · , dm) where dj =
bj − Σh

i=1g
j
i . If dj ≥ 0 for all j, the combination p is eligible to be an optimal

combination.

Definition 1 (Domination). Given an objective vector b, one eligible combi-
nation p dominates another eligible combination p′ if dk < d

′k (k ∈ 1..m) and
dj ≤ d

′j (j ∈ 1..m and j �= k). �

Definition 2 (Multi-Objective Optimal Combination). If an h-item com-
bination cannot be dominated by any other combinations pi ∈ P − {p}, it is a
multi-objective optimal combination (MOC). �

Problem 1 (MOC Query). Given an object set G, an objective vector b
and a combination cardinality h, an MOC query finds out the MOC set S =
{s1, s2, · · · , sl} where si (i ∈ 1, 2, · · · , l) is an optimal combination consisting of
h objects. �

A näıve method to solve the MOC problem is to enumerate all possible h-item
combinations and decide whether they are dominated or not. The non-dominated
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ones are returned as optimal combinations. However, this method is very time-
consuming. In this paper, we propose an efficient algorithm to find out optimal
ones using a lower bound and an upper bound reduction methods. The two
reduction methods are based on the R-tree which indexes objects using hierar-
chical minimum bounding rectangles (MBRs) [11]. We construct combinations
by searching an R-tree in a depth-first way. Considering lower bounds and up-
per bounds of MBRs, we reduce the search space and obtain candidates quickly.
Finally, we find out the optimal ones from the candidates.

We first review some studies related to the proposed MOC problem in Sec-
tion 2. Next, we propose the algorithm to answer MOC queries in Section 3. In
Section 4, we report experimental results and conclude the paper in Section 5.

2 Related Work

In databases area, multi-objective optimization problems have received consid-
erable attentions since the first work [2] proposed a skyline query problem. The
skyline query problem aims at finding out optimal objects which cannot be dom-
inated by any other objects. One object dominates another object if it is not
worse than another one in all attributes and better than another one in one
attribute at least. Many subsequent algorithms are proposed to improve the
performances of skyline queries, like BBS [8], SFS [12] and LESS [13]. Our MOC
query problem, however, is different from the classical skyline query problem be-
cause it focuses on object combinations rather than objects themselves. Though
an object combination can be regarded as an object with aggregation attribute
values of its elements, it is time consuming to use an existing algorithm to solve
the MOC problem because there will be a huge number of object combinations
to be processed.

The research of skyline queries on object combinations is limited. To the
best of our knowledge, the first and only work on this topic is “top-k com-
binatorial skyline queries” [3]. This research was motivated by the investment
portfolio which finds out optimal stock combinations considering profit and risk
attributes. The authors studied how to find out top-k non-dominated combina-
tions which rank from 1 to k before other non-dominated ones according to a
given preference order in attributes. They constructed non-dominated combina-
tions incrementally considering the preference order and terminates as soon as
the top-k results have been found. However, our MOC query problem simply
focuses on finding out non-dominated combinations rather than a top-k query
with some preference orders.

One may think that our MOC query problem seems alike to the zero-one
knapsack problem [14] which is in the linear integer programming category [6].
Given each object has a value attribute and a weight attribute. A knapsack
problem finds out the best object combination with a maximum total value and
within a total weight limitation. The knapsack problem aims at optimizing the
value attribute within a weight constraint. However, our MOC problem is to find
out trade-offs between the value attribute and the weight attribute.
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In order to solve our MOC query problem, we organize objects using the R-
tree index [11] and retrieve object combinations using a lower bound reduction
method and an upper bound reduction method. Our lower bound reduction
method employs the basic idea of the forward checking (FC) algorithm [7] which
constructs combinations incrementally to answer structural queries in spatial
databases. A structural query asks for object combinations which have a spatial
structure similar to a required structure. Our upper bound reduction method
employs the basic idea of the BBS algorithm [8] which is an efficient solution for
classical skyline queries [2] on objects rather than on object combinations in our
MOC query problem.

3 Algorithms

Given objects indexed by an R-tree, we construct MBR combinations in a depth-
first way until reaching the leaf level where the MBRs are real objects. Each MBR
combination can be expanded using its child MBRs. Let us use Example 2 to
illustrate how to retrieve combinations using the R-tree index.

Fig. 2. Construct combinations using R-tree

Example 2. Fig. 2 (a) and Fig. 2 (b) show the R-tree index of objects in the
running example. Let us construct 3-item combinations using the R-tree. There
are two MBRs a and b at the root level. We can select one object from MBR a and
select two objects from MBR b to construct a 3-item combination. For simple,
we use MBR combination {abb} to denote this selection pattern. As Fig. 2 (c)
shows, we can expand pattern {abb} using objects involved in MBR a and objects
involved in MBR b. Nine combinations (i.e., {BAC} to {FCE}) are obtained
following pattern {abb}. In the same way, we can generate object combinations
following patterns {aab}, {aaa} and {bbb}.

Example 2 illustrates that we can construct h-item combinations easily by re-
trieving the R-tree in a depth-first way. The depth-first retrieval provides us
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an opportunity to reduce the search space by eliminating non-promising MBR
combinations (i.e., patterns). If we can eliminate non-promising MBR combi-
nations before they are expanded to real object combinations, we need fewer
comparisons for object combinations at the leaf level. A lower bound reduction
method and an upper bound reduction method are proposed to eliminate the
non-promising MBR combinations.

3.1 Lower Bound Reduction

An MBR combination has a lower bound which is an aggregation on the lower
bounds of its elements. For example, in Figure 2 the combination {abb} has a
lower bound {abb}⊥ = (9, 12) which is an aggregation on the lower bounds of its
elements one a and two b, namely, {abb}⊥ = a⊥ + b⊥ × 2 = (5, 6) + (2, 3) × 2 .
We define it formally as follows.

Definition 3 (Lower Bound for MBR Combination). An MBR combina-
tion p = {e1, e2, · · · , eh} has a lower bound p⊥ which is an aggregation on the
lower bounds of its elements e1 to eh, namely, p⊥ = Σh

i=1e
⊥
i where e⊥i is the

lower bound of ei. �
Theorem 1. Given an objective vector b = (b1, b2, · · · , bm), an MBR combina-
tion p cannot be expanded to optimal object combinations, if its lower bound p⊥

is beyond of the objective vector b, namely, pi⊥ > bi (i ∈ 1, 2, · · · ,m). �
Proof 1. We expand an MBR combination p = {e1, e2, · · · , eh} using child
MBRs of e1 to eh until we reach the leaf level. In other words, we select objects
enclosed in ei (i ∈ 1, 2, · · · , h) to construct object combinations. Every object
gi selected from ei has attribute values gj

i ≥ ej⊥
i (j ∈ 1, 2, · · · ,m). An object

combination consisting of these objects has attribute values Σh
i=1g

j
i ≥ pj⊥ where

pj⊥ = Σh
i=1e

j⊥
i . If pj⊥ > bj, the combination is not eligible to be an optimal one

because its attribute value Σh
i=1g

j
i > bj.

Example 3. Let us think about constructing 3-item combinations again. Fig. 3
(a) shows the lower bounds of MBR combinations. Given an objective vector
(13, 16), we prune the MBR combination {aaa} because it has a lower bound
[15, 18] which is beyond of (13, 16). Combination {aaa} will not be expanded.

Fig. 3. Lower Bound Reduction
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In order to generate MBR combinations with lower bounds within the objectives,
we incrementally obtain them using a method inspired by the forward checking
algorithm used in [7]. An h-item combination can be denoted as v1v2 · · · vh (v1 ∈
C1, v2 ∈ C2, · · · , vh ∈ Ch) where Ci is the domain of vi. We instantiate variable
vi by selecting an MBR or an object from domain Ci. Our instantiation order is
from v1 to vh. We obtain a combination c1c2 · · · ch after instantiating vh at last.

During the process, after instantiating an intermediate variable vl−1, we ob-
tain a partial combination c1c2 · · · cl−1vl · · · vh where ci ∈ Ci and i ∈ [1, l − 1].
The process is at the lth instantiation level where vl−1 has been instantiated
while vl needs to be instantiated. The domain Cl for vl is decided by the current
partial combination c1c2 · · · cl−1vl · · · vh. The MBRs in domain Cl should have
lower bounds within T = b −Σl−1

i=1c
⊥
i .

Example 4. Fig. 3 (b) shows the process of instantiating a combination v1v2v3.
Let us take the leftmost branch as an example. At the 1st level, we instantiate
v1. Given the objective vector (13, 16), domain C1 is {a, b}. After setting MBR
a to variable v1, we obtain a partial combination {av2v3}. Next, at the 2nd level,
we instantiate v2 and objects belongs to C2 should have lower bounds within
(8, 10) = (13, 16) − (5, 6) where a⊥ = (5, 6). Domain C2 is {a, b} and we set
MBR a to variable v2. Now the partial combination is {aav3}. Next, at the
3rd level, we instantiate v3 and objects belongs to C3 should have lower bounds
within (3, 4) = (8, 10) − (5, 6). Domain C3 is {b} and we set MBR b to variable
v3. Finally, we obtain a combination {aab}. In the same way, we can obtain
other combinations.

Notice that there are duplicate combinations generated during the lower bound
reduction process. Two combinations are duplicates if they have same elements
regardless of their element orders (e.g. {aab} and {baa}). It is easy to remove
such duplicates and we will not talk it too much for the space limitation.

Algorithm 1 shows the process of MOC queries using the lower bound reduction
method. We start a query process by calling a function MOC query(p, b, h, S)
where p = {root, root, root} and S = ∅. We use dji to denote the domain
Ci for variable vi at the jth instantiation level. We first initialize the threshold
T as b, initialize d1i (i ∈ 1, 2, · · · , h) as child MBRs of ei using a function
get children(ei), and initialize the current instantiation level identifier l as 1
(from line 3 to 6). Next, we expand the combination p (line 7 to line 30).

From line 9 to 18, we instantiate the variable vl. We select an MBR from
dll to instantiate vl using a function get MBR(dll) (line 10). At the same time,
the function get MBR(dll) removes the selected MBR from dll. If dll is empty,
we backtrack to the level (l − 1) (line 12 to 18). Note that we will not do the
backtrack operation if the current level is 1 (line 12 to 13).

From line 19 to 24, we prepare domains for the next instantiation level (l+1)
using the function forward check(). After updating the threshold T considering
the instantiated variables (line 21), we call a function forward check(T, l, i) (line
31 to 38). In the function, we initialize domains dl+1,j (j ∈ i+ 1, i+ 2, · · · , h) as
domains dl,j at the previous level l. We check each MBR in dl+1,j and remove
the ones which have lower bounds beyond T (line 35 to 37).
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Algorithm 1. MOC Query Using Lower Bound Reduction
1: procedure MOC query(p, b, h, S) {p = e1e2 · · · eh is a combination to be

expanded; S contains optimal object combinations.}
2: p′ := v1v2 · · · vh; {Expand p to p′ which have h variables to instantiate.}
3: T := b; {Initialize threshold T as b.}
4: for i := 1 to h do
5: d1i := get children(ei); {Initialize domains d1i.}
6: l := 1; {Start from the 1st instantiation level.}
7: while true do
8: begin
9: if dll �= ∅ then {MBRs in dll are not used up.}

10: vl := get MBR(dll); {Select an MBR from dll to instantiate vl.}
11: else {MBRs in dll are used up.}
12: if l = 1 then
13: return; {Terminate the expansion of p.}
14: else
15: begin
16: l := l − 1;
17: continue; {Backtrack to level (l − 1).}
18: end
19: if l < h then {At a level before the last level h.}
20: begin
21: T := T − v⊥

l ; {Update T .}
22: forward check(T, l, i); {Prepare domains for level (l + 1).}
23: l := l + 1; {Start the instantiation for level (l + 1)}
24: end
25: else {At the last level h.}
26: if at leaf level(p) then
27: update optimal set(p′, S); {Update S considering p′.}
28: else
29: MOC query(p′, b, h, S); {Expand p′.}
30: end
31: procedure forward check(T, l, i)
32: for j := i + 1 to h do
33: begin
34: dl+1,j = dl,j ; {Initialize domains at level l + 1.}
35: for k := 1 to n do {dl+1,j = {ck|k ∈ 1, 2, · · · , n}.}
36: if is beyond(c⊥k , T ) then {c⊥k is beyond T .}
37: dl+1,j := dl+1,j − {ck}; {Eliminate ck from dl+1,j .}
38: end

Let us go back to the function MOC query(). If we are not expanding a combi-
nation at the leaf level, we recursively call the function MOC query() to expand
a newly generated combination p′ (line 29). If not, we update the optimal ob-
ject combination set S (line 27). A function update optimal set(p′, S) decides
whether a new object combination p′ can be dominated by an existing combi-
nation in S. We add it into S, if it cannot be dominated by any combinations
in S. The combinations in S, which is dominated by p′, are removed.
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3.2 Upper Bound Reduction

We obtain optimal object combinations and inserting them into the set S while
retrieving the R-tree in a depth first way as Algorithm 1 shows. An MBR com-
bination is promising if it has an upper bound which cannot be dominated by
any combinations in S. This upper bound reduction method avoids expanding
MBR combinations which will generate combinations dominated by others.

Definition 4 (Upper Bound for MBR Combination). An MBR combina-
tion p = {e1, e2, · · · , eh} has an upper bound p� which is an aggregation on the
upper bounds of its elements e1 to eh, namely, p� = Σh

i=1e
�
i where e�i is the

upper bound of ei. �

Definition 5. Given an objective vector b, an MBR combination p is dominated
by an object combination s if its upper bound p� is dominated by s, namely,
dk

p� < dk
s (k ∈ 1, 2, · · · ,m) and dj

p� ≤ dj
s (j ∈ 1, 2, · · · ,m and j �= k). �

Theorem 2. An MBR combination p cannot be expanded to optimal object com-
binations if it is dominated by a combination s.

Proof 2. An MBR combination p with an upper bound p� can be expanded to
an object combination p′ which have upper bounds within p�, namely, p

′i ≤
pi� (i ∈ 1, 2, · · · ,m). If p is dominated by an object combination s, p′ is also dom-
inated by s because dk

p′ < dk
s (k ∈ 1, 2, · · · ,m) and dj

p′ ≤ dj
s (j ∈ 1, 2, · · · ,m and

j �= k).

Example 5. Let us consider the upper bound reduction process in Fig. 4 (a).
The upper bounds of {abb}, {aab}, {aaa} and {bbb} are shown the figure. At the
leaf level, we have obtained object combinations (i.e., {BAC}, . . . , {FCE}) by
expanding the MBR combination {abb}. Their attributes are shown in the figure.
Considering the Theorem 2, the MBR combination {bbb} is non-promising to
generate optimal combinations because its upper bound (12, 15) is dominated by
{DCE} = (12, 16) already found.

We use a min-heap to organize the MBR combinations which are waiting to
be expanded like the well-known BBS algorithm in [8]. Each time we pop and
expand the top one and then push its expansions into the min-heap. The top
one should have a minimum Manhattan distance to an objective vector b.

Definition 6 (Manhattan Distance of An MBR Combination). Given an
MBR combination p with lower bounds pi⊥ ≤ bi (i ∈ 1, 2, · · · ,m), the Manhattan
distance of the combination p is md(p) = Σr

j=1d
j� where dj� = bj −pj� (pj� ≤

bj and r ≤ m). �
For example, an MBR combination {bbb} has a lower bound (6, 9) and an upper
bound (12, 15). Its lower bound and upper bound are within the objective vector
b = (13, 16). Its Manhattan distance is md({bbb}) = (13 − 12) + (16 − 15) = 2.
Notice that MBR combinations like {aab} are special. The MBR combination
{aab} has a lower bound (12, 15) within (13, 16) but an upper bound (16, 23)
beyond of (13, 16). We set its Manhattan distance to md({aab}) = 0.
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Fig. 4. Upper Bound Reduction

Theorem 3. An object combination s, which is extended from an MBR combi-
nation p, cannot dominate another MBR combination p′, if p′ has a smaller or
equal Manhattan distance with p, namely, md(p′) ≤ md(p).

Proof 3. The object combination s has a Manhattan distance md(s) = Σm
i=1d

i
s

where di
s is its distance to b at the ith attribute. The MBR combination p, where

s comes from, has a Manhattan distance md(p) ≤ md(s). Assume that the object
combination s can dominate another MBR combination p′, say, dk

s < dk
p′� (k ∈

1, 2, · · · ,m) and dj
s ≤ dj

p′� (j ∈ 1, 2, · · · ,m and j �= k). Then p′ has a Manhat-
tan distance md(p′) > md(p) because md(p′) > md(s) and md(p) ≤ md(s). It
contradicts with the condition md(p′) ≤ md(p) in Theorem 3.

According to Theorem 3, we maintain a min-heap with respect to Manhattan
distances of combinations. The top one has a minimum Manhattan distance.
Other combinations in the heap cannot generate a combination which will domi-
nate the top one. Each time we pop and expend the top one to new combinations.
If a new combination is an object combination, we update the current optimal
combination set S. If a new combination is still an MBR combination, we decide
whether it is dominated by current optimal combinations in S. We only push
the non-dominated ones into the min-heap and throw away the dominated ones.
After rebuilding the min-heap, we pop a new top one and expand it by repeating
the process stated above until the min-heap is empty. Notice that if a top one is
dominated by any current optimal combination in S, we throw it away directly.

Example 6. Fig. 4 (b) shows the scene when an combination {BCE} is on
the top of the min-heap. The number shown behind of each combination is its
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Manhattan distance. The combination {BCE} is an object combination and we
compare it with two optimal combinations {DCE} and {FAE} which have been
found already. It cannot be dominated neither by {DCE} nor {FAE}. We pop
out combination {BCE} and inserted it into the MOC set S.

After popping out combination {BCE}, an MBR combination {bbb} is on the
top of the min-heap as Fig. 4 (c) shows. We pop out {bbb} but do not expand
{bbb} because it is dominated by {DCE} ∈ S.

Algorithm 2 shows an MOC query using the lower bound reduction as well as the
upper bound reduction. Algorithm 2 is similar to Algorithm 1 except for several
differences annotated by comments. In the beginning, we decide whether a com-
bination p is dominated by combinations in S using a function is domed(p, S)
(line 2). If it cannot be dominated, the process continues. We update S if p is an
object combination (line 4 to 5). We expand p if it is an MBR combination (line
7 to line 38). If a complete instantiated combination p′ cannot be dominated by
combinations in S, we calculate its Manhattan distance md(p′) using a function
calculate md(p′) and push it into the min-heap Q (line 32 to 36). Note that the
min-heap rebuild itself after push or pop operations. When the min-heap Q is
not empty, we pop and use a new top one to execute the function MOC query().

4 Experiments

We implemented Algorithm 2 in GNU C++ and conducted experiments on an
Intel Core2 Duo 2.40 GHz PC (2.0 GB RAM) with a Fedora 12 Linux 2.6.32.
The algorithm was implemented based on the R-tree provided by a spatial index
library SaIL ([9,10]). The R-tree has a block size 512 bytes and a fill factor 70%.

We evaluated performances of Algorithm 2 with four experimental sets. The
first set evaluated the algorithm with respect to different data distributions, say,
independent distribution, correlated distribution, and anti-correlated distribu-
tion. The second set evaluated the algorithm with different sizes of data sets.
The third set evaluated the algorithm with respect to different m’s where m is
the number of attributes. The fourth set evaluated the algorithm with respect to
different cardinalities h’s where h is the number of objects in a combination. We
will show the experimental results of the three sets in Section 4.1, Section 4.2,
Section 4.3, and Section 4.4 respectively.

4.1 Performances on Different Data Distributions

When we evaluate algorithm performances with different data distributions, we
use five synthetic data sets D−0.6, D−0.4, D0, D0.4 and D0.6 with different
correlation coefficients −0.6, −0.4, 0.0, 0.4 and 0.6. We generated these data sets
using the method in [2]. Objects in data sets D0.4 and D0.6 follow the correlated
distribution while object in data sets D−0.4 and D−0.6 follow the anti-correlated
distribution. Objects in the data set D0 follows the uniform distribution. Each
data set has 10K objects with two attributes ranging from 0 to 10000. We ran-
domly select 50 different objective vectors ranging in [1000, 9000]× [1000, 9000]
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Algorithm 2. MOC Query Using Lower Bound Reduction and Upper Bound
Reduction
1: procedure MOC query(p, b, h, S, Q) {Q is the min-heap}
2: if is domed(p, S) then {p is dominated by combinations in S.}
3: return;
4: if is leaf combination(p) then {p is an object combination.}
5: update optimal set(p, S);
6: else {Expand an MBR combination p.}
7: begin
8: p′ := v1v2 · · · vh;
9: T := b;

10: for i := 1 to h do
11: d1i := get children(ei);
12: l := 1;
13: while true do
14: begin
15: if dll �= ∅ then
16: vl := get MBR(dll);
17: else
18: if l = 1 then
19: break;
20: else
21: begin
22: l := l − 1;
23: continue;
24: end
25: if l < h then
26: begin
27: T := T − v⊥

l ;
28: forward check(T, l, i);
29: l := l + 1;
30: end
31: else
32: if ¬is domed(p′, S) then
33: begin
34: calculate md(p′); {Calculate Manhattan distance of p′.}
35: push(Q, p′); {Push the new combination p′ into Q.}
36: end
37: end
38: end
39: if Q �= ∅ then
40: begin
41: p = pop(Q); {Pop the top combination.}
42: MOC(p, b, h, S, Q); {Use p to do a new MOC query.}
43: end

to evaluate the algorithm. After executing queries to find out 3-MOCs on these
five data sets, we summarized average results of the random 50 different queries
as OC which is the number of optimal combinations; CMC which is the number
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of checked MBR combinations; CAD which is the number of candidate object
combinations for optimal ones; CPU which is the cost of running time with one
second as a unit.
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Different Distribution

OC CMC CAD CPU

Fig. 5. Performances on Different Data Distribution

Fig. 5 shows the experimental results of data sets with different object distri-
butions. Note that OC, CMC, CAD and CPU are all in their log scales. The
correlated data sets (i.e. D0.6 and D0.4) have more OCs than the anti-correlated
data sets (i.e. D−0.6 and D−0.4). The uniform distribution data set (i.e. D0) has
a middle size OCs. The number of candidate object combinations CAN is not
influenced by the distributions of data sets. The CPU cost depends on how many
MBR combinations (CMC) we have checked during the MOC queries. We have
to check more CMCs for the correlated data sets while check fewer CMCs for
the anti-correlated data sets.

4.2 Performances on Different Data Sizes

When we evaluate algorithm performances with different data sizes, we use five
synthetic data sets D1K , D2K , D5K , D10K and D15K containing 1K objects, 2K
objects, 5K objects, 10K objects and 15K objects respectively. Objects in each
data set have two attributes and follow a uniform distribution. We also randomly
select 50 different objective vectors to evaluate the algorithm. After executing
queries to find out 3-MOCs on these five different data sets, we summarized
average results of the random 50 different queries as OC, CMC, CAD and
CPU in Fig. 6. Note that OC, CMC, CAD and CPU are all in their log scales.

The data set (e.g. D15K) containing more objects has more OCs than the
data set (e.g. D1K) containing fewer objects. The number of candidates (CAN)
of optimal combinations is not influenced by the sizes of data sets. We have to
check more MBR combinations (CMC) for a large data set (e.g. D15K) than
for a small data set (e.g. D1K). The CPU cost depends on the CMC and it
increases with the growth of the data set size.

4.3 Performances on Different Numbers of Attributes

When we evaluate algorithm performances with different attribute number m,
we use three data sets D2, D3 and D4 where m = 2, m = 3 and m = 4
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Fig. 6. Performances on Different Data Sizes

respectively. The objects in the three data sets follow uniform distributions.
Each data set contains 100 objects with attribute values ranging from 0 to 1000.
We use 15 objective vectors bi (i ∈ 1, 2, · · · , 15) where b1i = b2i = · · · = bmi =
400 + 200 × i (m = 2, 3, 4). Given the objective vector bi, we execute MOC
queries on D2, D3 and D4 in order to find out optimal combinations consisting
of 3 objects.
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Fig. 7. Performances on Data Sets D2, D3 and D4

Fig. 7 (a) shows the number of optimal combinations on data sets D2, D3 and
D4. The vertical axis represents the number and the horizontal axis represents
objective vectors b1 to b15. The data set with a larger m (e.g. D4) has more
optimal combinations than the data set with a smaller m (e.g. D2) because it is
difficult for one combination dominates another combination if there are more
attributes to compare.

The Fig. 7 (b) shows the algorithm performances on data sets D2, D3 and
D4. The left vertical axis represents CPU cost with a second unit in a log scale
while the right vertical axis represents the number of CMCs also in a log scale.
The CPU cost depends on the number of CMCs. The data set with a larger m
(e.g. D4) checks more MBR combinations than the data set with a smaller m
(e.g. D2) because the R-tree has more MBRs in a high-dimensional space.
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4.4 Performances on Different Cardinality

When we evaluate algorithm performances on different cardinalities of a combi-
nation, say, different h’s, we use the uniform distribution data set D1K . Given
the objective vector b = (500, 500), we execute MOC queries to find out optimal
combinations with cardinalities h = 1, 2, · · · , 9.
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Fig. 8. Performances on Data Set D1k with h = 1, 2, · · · , 9

Fig. 8 (a) shows the number of optimal combinations with different h’s. The
horizontal axis represents the h from 1 to 9 and the vertical axis represents the
number in a log scale. The number increases while h increases because a same
object set can generate more object combinations with a larger cardinality (e.g.
h = 9).

Fig. 8 (b) shows the algorithm performances with different h’s. The left ver-
tical axis represents the CPU cost while the right vertical axis represents the
number of CMCs. The CPU cost depends on the number of CMCs as well as
the number of candidates. The number of CMC grows with h because a same R-
tree can generate more MBR combinations which have a larger cardinality (e.g.
h = 9). At the leaf level of the R-tree, we decide whether a popped candidate
object combination is an optimal one. It takes much more time to do dominance
tests for a larger number of candidates due to a larger cardinality h.

5 Conclusions

In this paper, we propose a new multi-objective optimization problem called
MOC problem. The MOC problem is to find out optimal combinations consisting
of h objects with respect to a given objective vector b. The optimal combinations
cannot be dominated by any possible combinations. We organize objects using
the R-tree index and do MOC queries efficiently with two reduction methods,
say, the lower bound reduction and the upper bound reduction. We evaluated the
proposed MOC query algorithm on different data sets with different objective
vectors and parameter settings.
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Abstract. We present NEFOS (NEsted FOrest of balanced treeS), a
new cache-aware indexing scheme that supports insertions and deletions
in O(1) worst-case block transfers for rebalancing operations (given and
update position) and searching in O(logB log n) expected block transfers,
(B= disk block size and n= number of stored elements). The expected
search bound holds with high probability for any (unknown) realistic
input distribution. Our expected search bound constitutes an improve-
ment over the O(logB log n) expected bound for search achieved by the
ISB-tree (Interpolation Search B-tree), since the latter holds with high
probability for the class of smooth only input distributions. We define
any unknown distribution as realistic if the smoothness doesn’t appear
in the whole data set, still it may appear locally in small spatial neigh-
borhoods. This holds for a variety of real-life non-smooth distributions
like skew, zipfian, powlaw, beta e.t.c.. The latter is also verified by an ac-
companying experimental study. Moreover, NEFOS is a B-parametrized
concrete structure, which works for both I/O and RAM model, without
any kind of transformation or adaptation. Also, it is the first time an
expected sub-logarithmic bound for search operation was achieved for a
broad family of non-smooth input distributions.

Keywords: Data Structures, Data Management Algorithms.

1 Introduction

More than three decades after its invention, B-tree [5] and its variants remain
the ubiquitous external memory data structure for indexing and organizing large
data sets with numerous applications, especially in database systems. Its popu-
larity is mainly due to the O(logB n) worst-case complexity (block transfers) for
search and update operations. The most heavily used application is the efficient
answering of one-dimensional range search queries using O(logB n + r) block
transfers, where R = rB is the number of elements reported, B is the block-size
and n the number of element. In this paper, we consider one of the most known
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and widely used such models, namely the two-level memory hierarchy model
introduced in [2,25]. In this model, the memory hierarchy consists of an internal
(main) memory and an arbitrarily large external memory (disk) partitioned into
blocks of size B. The data from the external to the main memory and vice versa
are transferred in blocks (one block at a time).

A large number of variants of the B-tree have been proposed since its appear-
ance in order to improve its performance in practice for various applications —
see the excellent survey by Vitter [24] for an extended accounting of these and
other variants and their applications — to make it parallel for use in multi-disk
environments [21], to tune it for concurrency and recovery purposes [14,22], to
extend it to cover other than the original field [9], etc. Regarding the update op-
eration, it should be noted that an update operation consists of three consecutive
phases: a search phase (to locate the place of the update), an element-updating
phase (to insert the new element, or delete the located element), and a rebal-
ancing phase (to restore the B-tree structure). Excluding the first phase (search
operation), the dominating phase of an update operation is the rebalancing one,
since the element-updating phase takes typically O(1) block transfers (and/or
time). In the case of B-tree and its variants, the rebalancing phase requires
Θ(logB n) block transfers in the worst-case. This implies that the update opera-
tion takes Θ(logB n) block transfers, even in the case where the update position
(block within which the update will take place) is given.

ISB-tree (Interpolation Search B-tree) presented in [12], supports search op-
erations in O(logB logn) expected block transfers with high probability (w.h.p.)
for a large class of input distributions (including both uniform and non-uniform
classes) described below, and update operations in O(1) block transfers, pro-
vided that the update position is given. The search bound implies that a one-
dimensional range search query can be supported in O(logB logn+ r) expected
block transfers with high probability. The worst-case block transfers for the
search operation are O(logB n).

The expected search bound was achieved by considering a rather general sce-
nario of μ-random insertions and random deletions, where μ is a so-called smooth
probability density [3,19]. An insertion is μ-random if the key to be inserted
is drawn randomly with density function μ; a deletion is random if every key
present in the data structure is equally likely to be deleted [13]. Informally, a dis-
tribution defined over an interval I is smooth if the probability density over any
subinterval of I does not exceed a specific bound, however small this subinterval
is (i.e., the distribution does not contain sharp peaks). Smooth distributions are
a superset of uniform, bounded, and several non-uniform distributions (e.g., the
class of regular distributions introduced by Willard [26]).

In this paper, we present NEFOS (NEsted FOrest of balanced treeS), a new
cache-aware indexing scheme that supports insertions and deletions in O(1)
worst-case block transfers for rebalancing operations (provided that the up-
date position is given) and searching in O(logB logn) expected block transfers,
where B represents the disk block size and n denotes the number of stored ele-
ments. The expected search bound holds with high probability for any (unknown)
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realistic input distribution. Our expected search bound constitutes an improve-
ment over the O(logB logn) expected bound for search achieved by the ISB-tree
(Interpolation Search B-tree), since the latter holds with high probability for the
class of smooth only input distributions. Note here that realistic distributions
are a superset of smooth distributions. Generally speaking, in (f1, f2)-smooth
distributions, f1 measures how fine is the partitioning of an arbitrary subinter-
val as well as f2 measures the sparseness of this subinterval. In this context,
any probability distribution is (f1, Θ(n))-smooth. For smooth class of densities,
f2 = Θ(nδ), where 0 < δ < 1. We define any unknown distribution as realistic if
there is at least one subinterval of Θ(n) sparseness and there are at least Θ(nδ)
consecutive subintervals of Θ(n1−δ) sparseness, where 0 < δ < 1. This holds for
a variety of real-life non-smooth distributions like skew, zipfian, powlaw, beta
e.t.c., where the smoothness property appears locally in small spatial neigh-
borhoods. The latter is also verified by an accompanying experimental study.
Moreover, NEFOS is a B-parametrized concrete structure, which works for both
I/O (arbitrary B) and RAM (B=2) model, without any transformation or adap-
tation. Also, it is the first time an expected sub-logarithmic bound for search
operation was achieved for a broad family of non-smooth input distributions.

External data structures related to our approach are those based on hashing
[18,24]. The main representatives of external memory hashing methods include:
extendible hashing [8], linear hashing [16], and external perfect hashing [10].
These hashing schemes and their variants need O(1) expected block transfers
for answering search queries, but they share various disadvantages when com-
pared to our structure: (i) they do not support range queries; (ii) their expected
case analysis usually assumes uniform input distributions (or input distributions
that produce uniform hash key values); and (iii) they exhibit poor worst case
performance.

The remainder of the paper is organized as follows. In Section 2, we dis-
cuss preliminary notions and results that are used throughout the paper, define
formally the class of smooth probability distributions as well as discuss the ISB-
Tree. The main result of this paper, the NEFOS-tree, with the complexity analy-
sis of its operations is discussed in Section 3. Section 4 provides an experimental
evaluation with synthetic and real data of our theoretical findings. We conclude
in Section 5.

2 Preliminaries

This Section briefly describes B-trees, input distributions in the context of in-
ternal memory data structures as well as the static interpolation search tree.

The B-tree. The B-tree is a Θ(B)-ary tree (with the root possibly having
smaller degree) built on top of Θ(n/B) leaves. The degree of internal nodes, as
well as the number of elements in a leaf, is typically kept in the range [B/2, B]
such that a node or leaf can be stored in one disk block. All leaves are on the same
level and the tree has height O(logB n). This guarantees that a search operation
can be accomplished within O(logB n) block transfers. An insertion is performed
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in O(logB n) block transfers by first searching down the tree for the relevant leaf
l. The insertion there may cause a split and the latter may propagate up the
tree. Similarly, a deletion can be performed in O(logB n) block transfers by first
searching down the tree for the relevant leaf l and then removing the deleted
element. The deletion there may cause a fusion and the latter may propagate up
the tree.

The Lazy B-tree. The Lazy B-tree of [12] is a simple but non-trivial external-
ization of the techniques introduced in [20]. The first level consists of an ordinary
B-tree, whereas the second one consists of buckets of size O(log2 n), where n is
approximately equal to the number of elements stored in the access method. The
following theorem provides the complexities of the Lazy B-tree:

Theorem 1. The Lazy B-Tree supports the search operation in O(logB n) worst-
case block transfers and update operations in O(1) worst-case block transfers,
provided that the update position is given.

Proof. see [12].

The ISB-tree. The ISB-tree is a two-level data structure. The upper level is
a non - straightforward externalization of the Static Interpolation Search Tree
(SIST) presented in [11]. In the definition of the (f1, f2)-smooth densities [26,19],
intuitively, function f1 partitions an arbitrary subinterval [c1, c3] ⊆ [a, b] into f1
equal parts, each of length c3−c1

f1
= O( 1

f1
); that is, f1 measures how fine is the

partitioning of an arbitrary subinterval. Function f2 guarantees that no part,
of the f1 possible, gets more probability mass than β·f2

n ; that is, f2 measures
the sparseness of any subinterval [c2 − c3−c1

f1
, c2] ⊆ [c1, c3]. The class of (f1, f2)-

smooth distributions (for appropriate choices of f1 and f2) is a superset of both
regular and uniform classes of distributions, as well as of several non-uniform
classes [3,11]. Actually, any probability distribution is (f1, Θ(n))-smooth, for a
suitable choice of β. The following theorem presented in [12] follows and holds
for the very broad class of (n/(log logn)1+ε, n1−δ)-smooth densities, where δ =
1− 1

B and includes the uniform, regular, bounded as well as several non-uniform
distributions.

Theorem 2. Suppose that the upper level of the ISB-tree is an external static
interpolation search tree with parameters R(s0) = sδ

0, I(s0) = s0/(log log s0)1+ε,
where ε > 0, δ = 1 − 1

B , s0 = n0, n0 is the number of elements in the latest
reconstruction, and that the lower level is implemented as a forest of Lazy B-
trees. Then, the ISB-tree supports search operations in O(logB logn) expected
block transfers with high probability, where n denotes the current number of
elements, and update operations in O(1) worst-case block transfers, if the update
position is given. The worst-case update bound is O(logB n) block transfers, and
the structure occupies O(n/B) blocks.

Proof. see [12].
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3 NEFOS

In the following we present the building phase of NEFOS as well as the com-
plexity analysis of its basic operations.

3.1 Building NEFOS

Let μ(·) random be the sequence of inserted keys and random be the sequence
of deleted keys. Let n be the total number of w-bit keys, which are orga-
nized in block fashion. Let n1 = O(n/B) the number of these blocks. Let
also n2 = O(n1/logBlogBn) super-blocks each of which contains O(logBlogBn)
blocks. Let also μ1(·) random be the sequence of keys of super-block represen-
tatives. According to combinatorial game of bins and balls presented in [11], we
store these keys in N = n2/lnn2 buckets, each of which contains O(lnn2) keys.

Lemma 1. If the sequence of inserted keys remains μ(·) random then the se-
quence of super-block representative keys remains μ1(·) random.

Proof. See [11].

Lemma 2. Given a μ1(·) random sequence of inserted super-block representative
keys and a random sequence of deleted super-block representative keys, the load
of each bucket never becomes zero and never exceeds Θ(polylog N) keys in
expected w.h.p. case.

Proof. See [11].
In (f1, f2)-smooth distributions, f1 measures how fine is the partitioning of an
arbitrary subinterval and f2 measures the sparseness of this subinterval. In this
context, any probability distribution is (f1, Θ(n))-smooth. In any realistic dis-
tribution there are sparse subintervals of Θ(n) sparseness and dense subintervals
of Θ(n1−δ) sparseness, where 0 < δ < 1. For example in Figure 1, we depict with
red color a sparse subinterval and with blue color a number of consecutive dense
subintervals.

In the same context and according to Lemmas 1 and 2 we construct sparse and
dense buckets of polylogaritmic load. For example see the red and blue buckets
of Figure 2.

Let bucketImax the bucket with the maximum range of keys (Imax) and
bucketImin the bucket with the minimum range of keys (Imin). For any real-
istic distributions Imax = Θ(n) and Imin = Θ(n1−δ), where 0 < δ < 1.

Red: A Sparse Subinterval
Blue:A number of consecutive

Dense Subintervals

Fig. 1. Sparse and dense subintervals of any arbitrary distribution
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Red: Sparse Bucket of
polylogarithmic load

Blue:Dense Bucket of
polylogarithmic load

Fig. 2. Red and Blue Buckets

1 2 3 N'4

Fig. 3. Red and Blue Labeled Cluster Nodes. Blue Cluster node contains at least one
dense subinterval.
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B2+B+2 2B2+B+1

Red Cluster_Node 1:
keys in range [ 0,....,Imax -1]

i

Lazy B-tree of O(polylogn)
number of buckets

Blue Cluster_Node i:
keys in range [ (i-1)Imax,....,iImax -1]

ISB-tree of \theta(n)
number of buckets

i

CI

CI

CI

LSI
B-tree
Index

i

Fig. 4. NEsted FOrest of load-balancing treeS in I/O model

Now, we build labeled cluster nodes. Each cluster node with label i′ (where
1 ≤ i′ ≤ N ′) stores ordered buckets with keys belonging in the range [(i′ −
1)Imax, . . . , i

′Imax − 1], where N ′ is the number of cluster nodes (see Figure 3).
NEFOS stores cluster nodes only, each of which is structured either as a Lazy

B-tree if its color is red or as an ISB-tree if its color is blue. In particular, NEFOS
is built by grouping cluster nodes having the same ancestor and organizing them
in a tree structure recursively. The innermost level of nesting (recursion) will be
characterized by having a tree in which no more than B cluster nodes share the
same direct ancestor, where B is the disk block. Thus, multiple independent
trees are imposed on the collection of nodes (see Figure 4).
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The degree of the nodes at level i > 0 is d(i) = t(i), where t(i) indicates the
number of nodes at level i. It is defined that d(0)=B and t(0)=1. It is apparent
that t(i) = t(i−1)d(i−1), and, thus, by putting together the various components,
we can solve the recurrence and obtain d(i) = t(i) = B2i−1

for i ≥ 1. We stope
at the level where each collection contains O(N ′1/B) cluster nodes. For example
in figure 4, the root is located at level 0, thus the funout of root is exactly B.
In particular the B cluster nodes located at level 1 have labels 2, 3, . . .B + 1
respectively. At level 1, the B labeled nodes B+ 2,. . . , 2B+ 1 rooted at labeled
node 2, the B labeled nodes 2B + 2,. . . , 3B + 1 rooted at labeled node 3, e.t.c.
and the B labeled nodes B2 +2,. . . , B2 +B+1 rooted at labeled node B+1. At
level 2, the funout is B2, so the B2 labeled nodes B2 +B + 2,. . . , 2B2 +B + 1
rooted at labeled node B + 2 and so on.

We also equip the root cluster node with a table named Left Spine Index (LSI),
which stores pointers to the cluster nodes of the left-most spine. We organize
LSI table as a B-tree. For example in figure 4, see the red pointers beginning
from cluster node 1 towards cluster nodes with labels 2, B + 2 and B2 +B + 2
respectively.

Furthermore, each cluster node of the left-most spine is equipped with a table
named Collection Index (CI), which stores pointers to the collections of clus-
ter nodes presented at the same level. Cluster nodes having the same father
belong to the same collection. We also organize CI tables in block fashion. For
example in figure 4, see the blue pointers beginning from the left-most collection
towards the other collections located at the same level.

Finally, each cluster node is organized in a Lazy B-tree manner and each
collection is organized in a NEFOS manner at the next level of nesting (see the
dash lines in figure 4).

Remark 1. If we parametrize B and choose such a small value (f.e. B=2) so
as the whole structure can fit in main memory as well as replace each lazy B-
tree and the B-tree of LSI structure with q*-heap machinery [27], then NEFOS
becomes a data structure in RAM model with the same expected complexities
w.h.p. for all operations, without any kind of transformation or adaptation.

3.2 Complexity Analysis

We will focus first on space and then on time complexity of NEFOS’ basic
operations.

Space Complexity Analysis. The double exponentially increasing fanout
guarantees the following lemma:

Lemma 3. The height (or the number of levels) of NEFOS is O(log logB n) in
the worst case.

Proof. It is obvious if we solve for i the equation B2i−1
= O(N ′1/B).

Now, since the innermost level of nesting (recursion) is characterized by having
a tree in which no more than B cluster nodes share the same direct ancestor,
the lemma 4 follows:
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Lemma 4. The maximum number of possible nestings in NEFOS structure is
O(logB logB n) in the worst case.

Proof. It is obvious that in NEFOS structure of jth nested level, the last col-
lections contain O(N ′1/Bj

) cluster nodes. Since the innermost level of nesting
(recursion) is characterized by having a tree in which no more than B clus-
ter nodes share the same direct ancestor, it holds that O(N ′1/Bj

) = B, meaning
that j = O(logB logB N

′) or j = O(logB logB n).
Finally, the sizes of CI and LSI tables are described by the following lemma:

Lemma 5. The maximum size of the CI and LSI tables is O(n1/B

B ) and
O( log logB n

B ) in worst-case respectively.

Proof. Since the maximum number (O(n1/B)) of cluster nodes appears at last
level of the basic (non-nested) NEFOS structure, the length of CI is O(n1/B).
Since, CI has been organized in a block fashion,theO(n1/B

B ) space complexity fol-
lows. The length of LSI table depends on the height of NEFOS. Thus according
to lemma3, this length becomes O(log logB n). Since, LSI has been organized in
a block fashion (according to B-tree),the O( log logB n

B ) space complexity follows.
Each cluster node appears in O(logB logB n) nesting levels in the worst case.

As a result each bucket appears in O(logB logB n) nesting levels in the worst
case and as a result each super-block appears in O(logB logB n) nesting levels in
the worst case. Since, each super-block contains O(logBlogBn) blocks, we have
O(n/B) blocks in total and the theorem foloows:

Theorem 3. The whole space of NEFOS remains linear.

Query Processing, Data Insertion, Data Deletion. Assume we are located
at root cluster node and seek a key k. First, we find the range where k belongs
in. Let say k ∈ [(j − 1) Imax, jImax − 1]. The latter means that we have to
search for cluster node j. The first step of our algorithm is to find the level
where the desired cluster node j is located. For this purpose, we organize the
cluster node labels pointed by the LSI table in a B-tree manner (see Figure 4).
Since, according to lemma 5, the maximum size of the LSI table is O( log logB n

B )
in worst-case, the theorem 4 follows.

Theorem 4. The level where the desired cluster node j is located can be found
out in O(logB( log logB n

B )) I/Os.
Let say that cluster node j is located at the i-th level. We follow the i-th

pointer of the LSI table located at root cluster node so as to reach the leftmost
cluster node x of level i. Then, we compute the collection in which the clus-
ter node j belongs. Since the number of collections at level i equals the number
of cluster nodes located at level (i− 1), we divide the distance between j and x
by the factor t(i − 1). Let m (in particular m =

⌈
j−x+1
t(i−1)

⌉
) be the result of this

division. The latter means that we additionally need O(1) I/Os to follow the
(m+1)-th pointer of the CI table so as to reach the desired collection. Since the



70 S. Sioutas et al.

collection indicated by the CI[m+1] pointer is organized in the same way at the
next nesting level, we continue this process recursively.

Generally speaking, we need O(logB( log logB n
B )) + O(1) I/Os for locating the

desired collection and we have to continue this process recursively for all nesting
levels. Since the maximum number of nesting levels is O(logB logB n) in the
worst case (according to lemma 4), the whole searching process requires T1(n)
I/Os to locate the target cluster node, where:

T1(n) =
logB logB n∑

i=1

logB(
log logB n

1
Bi−1

B
) (1)

from which we get:
T1(n) < O(logB logn)

Then, we have to locate the target bucket by searching the respective Lazy B-tree
or ISB-tree, requiring T2(n) I/Os.

If the located cluster node is red, then its load is polylogarithmic and the lazy
B-tree index is sufficient to give us the desired complexity. If it’s blue then its
load may be Θ(n), and the question is how we can compute the new maximum
range of keys there. Let say it Imax(1) (see the Figure 5).

1 3 N'

Imax Imax Imax Imax Imax

Imax(1)

ISB-tree
ISB-tree

2 4

Fig. 5. Blue cluster nodes are structured in NEFOS manner with new range Imax(1)

Since each blue cluster node contains at least one dense subinterval ofΘ(n1−δ)
sparseness, where 0 < δ < 1, for the new range Imax(1) the following holds:
Imax(1) = Imax − f(n) · Θ(n1−δ), where the number of dense subintervals

appearing inside a blue cluster node is a function of n.
By setting Imax(1) = Θ(n1−δ), we get the following:

Θ(n1−δ) = Θ(n)−f(n)·Θ(n1−δ). The latter means that: f(n) = Θ(n)−Θ(n1−δ)
Θ(n1−δ)

or f(n) = Θ(nδ). The property 1 follows:

Property 1. The number of consecutive dense subintervals is f(n) = Θ(nδ).

So, now it’s time to formally define what we mean with the term any realistic
distribution.

Definition 1. Let μ(·) be any random distribution in which there are sparse
subintervals of Θ(n) sparseness and dense consecutive subintervals of Θ(n1−δ)
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sparseness, where 0 < δ < 1. If the number of consecutive dense subintervals
satisfies the property 1, then the μ(·) random distribution is called realistic
distribution.

We have to denote here that, the most known non-smooth (bad) distributions
like skew, zipfian, powlaw, beta e.t.c. satisfy the property 1 for many real appli-
cations, thus would be called realistic for a huge variety of applications.

In other words, for any realistic distribution, each blue cluster node in NEFOS
structure satisfies the smooth property.

So, if the located cluster node is red, then its load is polylogarithmic and the
Lazy B-tree index requires a logarithmic number of I/Os:
T2(N) = O(logB(poly logn)) or T2(N) = O(logB logn) I/Os or block-transfers.

If the located cluster node is blue then its load may be Θ(n) in worst-case.
Moreover, it’s obvious that for any realistic distribution, each blue cluster node
satisfies the smoothness property. For this reason, we organize each blue clus-
ter node as an ISB-tree. In this case, T2(n) becomes as follows:

T2(n) = O(logB logΘ(n)) (2)

As a result, the total processing time requires T (n) = T1(n)+T2(n) I/Os and
the theorem follows:

Theorem 5. Exact-match queries in the NEFOS structure require O(logB logn)
I/Os for any realistic input distribution.

Having located the target cluster node for key k� and exploiting the order of keys
in each bucket, range queries of the form [k�, kr] require an O(logB log n+|A| /B)
I/Os, where |A| is the number of cluster nodes between the buckets responsible
for k�, kr respectively that are accessed in a block manner. The theorem follows.

Theorem 6. Range queries of the form [k�, kr] in the NEFOS structure require
O(logB logn+ |A| /B) I/Os for any realistic input distribution, where |A| is the
answer size.

Finally, provided that the position of update is given, meaning that we have
already located the target cluster node, it remains to insert/delete the key inside
the cluster node. Since, the latter is structured either as a Lazy-B tree or as an
ISB-tree, the theorem 7 follows:

Theorem 7. Update queries in NEFOS require O(1) I/Os for rebalancing op-
erations in worst-case, provided that the update position is given.

4 Experimental Evaluation

In this section, we investigate the practical merits of the NEFOS structure. Our
prime concern is to (merely) investigate the practical difference of the asymptotic
complexities (in block transfers) of search and rebalancing operations between
the NEFOS structure, the ISB-tree and a cache-aware B-tree. Although there
are several cache-aware B-tree variants, all of them exhibit the same asymptotic
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complexities in block transfers except for lazy B-tree which guarantees constant
number of block transfers for update operations. Since lazy B-tree has been
incorporated into ISB-tree in order to speedup the update operations, we com-
pare the performance of NEFOS with the ISB-tree and a simple variant of the
cache-aware B-tree. Moreover, we do not compare the performance of our re-
balancing operations (after an update) with hashing schemes and their variants,
since the expected-case analysis of such schemes usually assumes uniform input
distributions (or input distributions that produce uniform hash key values), and
hence they exhibit poor worst-case performance for update operations. In our
experimental study, we have considered both synthetic and real-world data.

4.1 Synthetic Data

For evaluation purposes we used the Java NEFOS-simulator (source code of
NEFOS index is available at http://www.ionio.gr/∼sioutas/New-Software.htm).
The NEFOS-simulator is extremely efficient delivering > 100, 000 cluster nodes
in a single computer system, using 32-bit JVM 1.6 and 1.5 GB RAM and full GUI
support. When 64-bit JVM 1.6 and 5 RAM is utilized the NEFOS-simulator de-
livers > 500, 000 cluster nodes and full GUI support in a single computer system.
We have conducted an experimental study making the customary assumption
that the page size is 4096 bytes, the length of each key is 8 bytes, and the length
of each pointer is 4 bytes. Consequently, each block contains B = 341 elements.
We considered data sets of size n0 ∈ [106, 1012] elements generated by a vari-
ety of smooth distributions, namely uniform, regular, normal and Gaussian and
non-smooth distributions, namely beta and pow-law. We compared the imple-
mentation of NEFOS, with the ISB-tree and that of a B-tree on the same data
sets. Our main concern was to measure the performance, in simulated block
transfers (I/Os), of the search and update operations.

The experimental results regarding the search operations are reported in Fig. 6
and 7. The sequence σ of search operations had length equal to its corresponding
data set and the reported values are averages over the whole sequence. Our
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Fig. 6. Search performance for regular distributions (left) and Gaussian distributions
(right)
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Fig. 7. Search performance for non-smooth beta (left) and powlaw distributions (right)
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Fig. 8. Block transfers of rebalancing operations after an update

experiments revealed that the expected number of block transfers in NEFOS
structure remains constant even for gigantic data sets (Terabytes - TB).

Regarding the number of block transfers required for rebalancing after an
update operation to the data structure, we again considered the above values
of n0 ∈ [106, 1012] for our initial data sets upon which we performed update
sequences of length n0/2 and 2n0. The data structure is reconstructed every n0

operations. Our experimental results are reported in Fig. 8. The values represent
worst-case block transfers over the update sequence. We observe that the number
of rebalancing operations in NEFOS structure is independent of the distribution.

4.2 Real-World Spatial Data

In this section, we deploy one-dimensional data taken from a real-world spatial
dataset “LA rivers and railways” [Tiger1] and “LA streets” [Tiger2], contain-
ing 128971 and 131461 M inimum Bounded Rectangles (MBRs), respectively;
see [23].

The one-dimensional data are taken by the x- and y-projections of MRBs and
the values in each axis are normalized in [0,10000]. For all experiments, the disk
page size is set to 512 bytes, the length of each key to 8 bytes, and the length
of each pointer to 4 bytes. Consequently, each block contains B = 42 elements.
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Fig. 9. Search performance for MBR’s x-projections of [Tiger1] (left) and [Tiger2]
(right)
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Fig. 10. Search performance for MBRs’ y-projections of [Tiger1] (left) and [Tiger2]
(right)

We use a relatively small page size so that the number of nodes in an index
simulates realistic situations, where the data set cardinality is higher. A similar
methodology was also used in [4].

Fig. 9 and Fig. 10 depict the efficiency of NEFOS structure on searching
for real spatial one-dimensional data. In particular, in Fig. 9 we measured the
number of I/Os required for search operations during the insertion of a total of
2 × 128971 = 257942 and of 2 × 131461 = 262922 x-projections from [Tiger1]
and [Tiger2], respectively. Similarly, in Fig. 10 we measured the number of I/Os
required for search operations during the insertion of a total of 2 × 128971 =
257942 and of 2 × 131461 = 262922 y-projections from [Tiger1] and [Tiger2],
respectively.

Fig. 11 and Fig. 12 depict the efficiency of NEFOS structure on updating
real spatial one-dimensional data. In Fig. 11 we measured the number of I/Os
required for the rebalancing operations during insertions of a total of 2×128971 =
257942 x-projections and of 2× 131461 = 262922 x-projections from [Tiger1] &
[Tiger2], respectively. In the same way, in Fig. 12 we measured the number of
I/Os required for rebalancing operations during insertions of 2×128971 = 257942
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Fig. 11. Performance of rebalancing operations after an update for MBRs’ x-
projections of [Tiger1] (left) and [Tiger2] (right)
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Fig. 12. Performance of rebalancing operations after an update for MBRs’ y-
projections of [Tiger1] (left) and [Tiger2] (right)

y-projections and of 2×131461 = 262922 y-projections from [Tiger1] & [Tiger2],
respectively.

The above experiments show that NEFOS has approximately the same be-
haviour with ISB-tree requiring no more than 2 I/Os on average for both search-
ing and rebalancing operations. This stems from the fact that the MBRs’ projec-
tions from the data sets [Tiger1] & [Tiger2] follow an almost uniform distribution,
due to the almost uniform decomposition of spatial maps. Better performance
in [Tiger 2] is due to the fact that this is a dense spatial map and hence the
derived one-dimensional data produce densely populated elements.

As a final remark, we note that there are applications with uniform key sizes
larger than 8 bytes, resulting in a smaller value of B. The main example of such
applications involve manipulation of strings. In this case, the size of the block
may be as small as 2. Consequently, in such cases the NEFOS structure exhibits
a much better performance.
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5 Conclusions

We presented NEFOS (NEsted FOrest of balanced treeS), the first cache-aware
indexing scheme, which supports expected w.h.p. sub-logarithmic range query
processing for any (unknown) realistic input distribution. Moreover, NEFOS is
the first concrete access method, which works for both I/O and RAM model,
avoiding any kind of transformation or adaptation. The innovation of our so-
lution was also verified by an accompanying experimental study. We leave for
journal version a more detailed theoretical analysis as well as an exhaustive
experimental evaluation of multi-dimensional exact-match and range queries.

References

1. Arge, L., de Berg, M., Haverkort, H.J., Yi, K.: The Priority R-Tree: A Practically
Efficient and Worst-Case Optimal R-Tree. In: SIGMOD Conf., pp. 347–358 (2004)

2. Aggarwal, A., Vitter, J.S.: The Input/Output Complexity of Sorting and Related
Problems. C. ACM 31(9), 1116–1127 (1988)

3. Andersson, A., Mattson, C.: Dynamic Interpolation Search in o(log log n) Time.
In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp.
15–27. Springer, Heidelberg (1993)

4. Beckmann, N., Krigel, H., Schneider, R., Seeger, B.: The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. In: SIGMOD (1990)

5. Bayer, R., McCreight, E.: Organization of large ordered indexes. Acta Informat-
ica 1, 173–189 (1972)

6. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
C. ACM 51, 107–113 (2008)

7. Dietz, P., Raman, R.: A constant update time finger search tree. Information Pro-
cessing Letters 52, 147–154 (1994)

8. Fagin, R., Nievergelt, J., Pippinger, N., Strong, H.R.: Extendible Hashing-A fast
access method for dynamic files. ACM Trans. Database Systems 4(3), 315–344
(1979)

9. Ferragina, P., Grossi, R.: The String B-tree: A New Data Structure for String
Search in External Memory and Its Applications. Journal of the ACM 46(2), 236–
280 (1999)

10. Fox, E., Chen, Q., Daoud, A.: Practical Minimal Perfect Hash Functions for Large
Databases. C. ACM 35(5), 105–121 (1992)

11. Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.:
Improved Bounds for Finger Search on a RAM. In: Di Battista, G., Zwick, U.
(eds.) ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)

12. Kaporis, A., Makris, C., Mavritsakis, G., Sioutas, S., Tsakalidis, A., Tsichlas, K.,
Zaroliagis, C.: ISB-Tree: A New Indexing Scheme with Efficient Expected Be-
haviour. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 318–327.
Springer, Heidelberg (2005)

13. Knuth, D.E.: Deletions that preserve randomness. IEEE Trans. Softw. Eng. 3,
351–359 (1977)

14. Lehman, P., Bing Yao, S.: Efficient Locking for Concurrent Operations on B-Trees.
ACM Trans. Database Systems 6(4), 650–670 (1981)

15. Levcopoulos, C., Overmars, M.H.: Balanced Search Tree with O(1) Worst-case
Update Time. Acta Informatica 26, 269–277 (1988)



NEFOS: Rapid Cache-Aware Range Query Processing 77

16. Litwin, W.: Linear Hashing: A new tool for files and tables addressing. In: Inter-
national Conference on Very Large Databases, vol. 6, pp. 212–223 (1980)

17. Litwin, W., Lomet, D.: A New Method for Fast Data Searches with Keys. IEEE
Software 4(2), 16–24 (1987)

18. Manolopoulos, Y., Theodoridis, Y., Tsotras, V.: Advanced Database Indexing.
Kluwer Academic Publishers, Dordrecht (2000)

19. Mehlhorn, K., Tsakalidis, A.: Dynamic Interpolation Search. Journal of the
ACM 40(3), 621–634 (1993)

20. Raman, R.: Eliminating Amortization: On Data Structures with Guaranteed Re-
sponse Time. PhD Thesis, Dept. of Computer Science, University of Rochester,
New York; Technical Report TR-439 (1992)

21. Seeger, B., Larson, P.A.: Multi-Disk B-trees. In: Proc. SIGMOD Conference, pp.
436–445 (1991)

22. Srinivasan, V., Carey, M.J.: Performance of B+ Tree Concurrency Algorithms.
VLDB Journal 2(4), 361–406 (1993)

23. Theodoridis, Y.: The R-tree Portal (2003), http://www.rtreeportal.org, [Tiger1]
and [Tiger2] data sets in http://www.rtreeportal.org

24. Vitter, J.S.: External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys 33(2), 209–271 (2001)

25. Vitter, J.S., Shriver, E.A.M.: Optimal Algorithms for Parallel Memory I: Two-Level
Memories. Algorithmica 12(2-3), 110–147 (1994)

26. Willard, D.E.: Searching Unindexed and Nonuniformly Generated Files in log log N
Time. SIAM Journal of Computing 14(4), 1013–1029 (1985)

27. Willard, D.E.: Examining Computational Geometry, van Emde Boas Trees, and
Hashing from the Perspective of the Fusion Tree. SIAM Journal of Comput-
ing 29(3), 1030–1049 (2000)

http://www.rtreeportal.org
http://www.rtreeportal.org


Reuse-Oriented Mapping Discovery
for Meta-querier Customization

Xiao Li and Randy Chow

Department of CISE at University of Florida
{xl1,chow}@cise.ufl.edu

Abstract. With the tremendous growth in (semi-)structured informa-
tion, in particular, the databases behind the deep Web, customized inte-
gration of data sources is highly desirable to accommodate various user
needs. To build and maintain a potentially large number of customized in-
tegration systems (called meta-queriers), the first important step is to dis-
cover the mappings among their query forms for enabling interoperability
between the meta-queriers and user-selected data sources. This paper pro-
poses a reuse-oriented solution to mapping discovery by exploiting existing
mappings. For facilitating mapping reuse, ontology-based and changed-
oriented models are introduced to abstract mappings respectively from
the mapping peers (the mappings in the same domain) and the mapping
evolution (the mappings from the previous versions). A human-friendly
validation strategy is proposed in the pursuit of wide and active partici-
pation of non-technical volunteers. Our experimental results on real-world
data sets confirm the feasibility and effectiveness of this solution.

Keywords: customization, deep web, schema matching, ontology, data
integration.

1 Introduction

Deep Web contains an increasing number of (semi-)structured data sources that
are mostly invisible to traditional search engines. Through integrating the query
forms (a.k.a, local forms) of the data sources, meta-queriers enable users to query
them simultaneously by entering search criteria in a uniform query form (a.k.a,
global form). To reformulate the user queries over the global form to the queries
in terms of the local forms, the meta-queriers rely on the mappings between the
global and local forms.

Due to the ever-increasing number of available data sources and sophistica-
tion of users, it is highly desirable (and in many cases necessary) to allow for
customization of meta-queriers based on users preferences (or necessity) [29],
even in the same application domain. In this paper, we allow users to customize
the construction of application-specific meta-queriers by selecting their preferred
data sources. In this context, a large number of customized meta-queriers need
to be constructed. When the scale of meta-queriers to be built becomes large
due to various user needs, it is impractical to apply the traditional approaches
(e.g., WISE-Integrator [14] and Meta-Queriers [5]), which aim at automating the
construction of a single meta-querier.

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 78–93, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In addition, both data sources and system users are self-governing agents
that are autonomous from meta-queriers. Autonomy of data sources means that
these sources normally update their systems without any notification. In case
of the changes in their local forms, their inclusive data are normally unavail-
able/invisible to the pre-configured meta-queriers. User needs and preferences
are also not static. For example, users might want to insert new data sources
into meta-queriers for retrieving more relevant data. Thus, meta-queriers need
to be maintained for adapting to changing user requirements.

In construction and maintenance of meta-queriers, the first important step
is to discover the mappings between global forms and local forms, which play
a critical role in query reformulation. To attack meta-querier customization,
the challenge is discovery of a potentially large number of mappings. However,
discovery of an individual mapping, especially with a complex many-to-many
expression, is well known as an AI-complete problem [12][19]. In our solution
approach, we turn the scalability challenge into the reuse potential of numerous
existing mappings. Instead of directly reusing the individual mappings as in the
previous studies [22][26][10][7], our strategy is to use the abstraction from the
mappings and their evolution for better performance. Overall, our reuse-oriented
solution makes the following contributions:

• Modeling of existing mappings. Efficient reuse of existing mappings is based
on abstraction of the mappings. We propose two models for understanding the
mappings and recording their evolution. Based on our ontology-based model,
M-Ontology enables unordered mappings in the same domain to form a well-
organized ontology. Following our change-oriented model, MO-Repository can
identify and record the evolution processes by using bipartite graphs. Both mod-
els enhance reuse potential from the existing mappings.

• Discovery of complex mappings. To discover new mappings, our reuse-oriented
discovery algorithm employs their evolution processes (the previous versions) and
peers (the other mappings in the same domain). This approach enables discovery
of many-to-many complex mappings by finding one-to-one correspondences (i.e.,
one-to-one mappings without the expressions). Most algorithms in the prior
studies [11][22] can be easily integrated into our solution, since discovery of
one-to-one correspondence is one of the major goals in schema matching.

• Validation of numerous mappings. It is difficult for a small group of domain
experts to verify and correct a potentially large number of mappings. A mass
collaboration strategy is proposed to distribute the workload among commu-
nity members, which could include both ordinary users and domain experts. For
participation of non-technical volunteers, our solution is intentionally straight-
forward to ordinary users. That is, it is easier for them to understand the process,
validate the results, and improve the performance.

The rest of this paper is organized as follows. In Section 2, we present two
mapping models with the corresponding repositories. Based on the models, Sec-
tion 3 introduces a reuse-oriented algorithm for mapping discovery. We discuss
the experimental results in Section 4 and related work in Section 5. Section 6
concludes the paper with potential directions for future work.
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2 Modeling of Mappings

The mappings among query forms can be divided into multiple independent
mappings among their inclusive query conditions [28][16] (also referred to as
schema elements). Since this paper only focuses on HTML query forms [1], each
schema element consists of a HTML control (e.g., a checkbox), its associated
descriptive attributes (e.g., id, name and values) and instances (i.e., possible
user inputs). In the context of meta-querier customization, the scale of such
mappings could be considerably large since a potentially large number of meta-
queriers need to be built to meet various user needs. However, the potential
for discovering new mappings through reusing the previous ones can also be
significant. Before discussing the details of our reuse-oriented mapping discovery
algorithm, this section first presents the definition of mappings in meta-queriers,
and then two models of mappings from the perspectives of their semantics and
evolution processes.

Definition 1. An element mapping mapS
T (also called a mapping instance) is an

instance of a specific relation from a query form QFS to QFT . It can be repre-
sented by a tuple 〈EListS, EListT , ExpS

T 〉, where EListS and EListT are schema
element lists respectively from QFS and QFT , ExpS

T is a high-level declarative
expression that specifies the transformation rules from EListS to EListT . An
element mapping without ExpS

T is called as a correspondence corrS
T .

2.1 Ontology-Based Mapping Modeling

From the viewpoint of mapping semantics, a mapping can be viewed as an in-
stance of a relation connecting two concepts. The concepts can be automatically
extracted from the schema elements associated with the mappings. The relations
are higher-level abstraction from mappings. Following this perspective, mappings
can be modeled by using a domain-specific task ontology (called M-Ontology)
for expressive power and content coverage.
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Fig. 1. A fragment of M-Ontology for air-ticket booking
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M-Ontology can be represented as a directed acyclic graph with three types
of nodes, as shown in Fig. 1: E-Nodes (squares), G-Nodes (circles) and A-Nodes
(triangles). Each node denotes a concept with a set of associated instances. The
edge corresponds to a relation in data transformation that is indicated in a spe-
cific mapping instance. (1) E-Nodes are the most fundamental concept units.
Each E-Node corresponds to a schema element. For example, E1 in Fig. 1 repre-
sents a schema element about “adult count”. (2) G-Nodes are the generalization
of E-Nodes that share the same semantics and instance formats but their syn-
tactic representations are different. For example, the concept of G4 is generalized
from three verified E-Nodes. Although these E-Nodes have equivalent semantics
and instances format, their descriptive attributes are different in numbers, types
and values. The generalization process is done through the incremental clustering
of schema elements via our proposed representative object-based clustering algo-
rithm. (3) An A-Node is generated by aggregating an (ordered/unordered) list
of G-Nodes. For example, two A-Nodes A2 and A3 represent the concept of “pas-
senger count” by aggregating multiple G-Nodes. A2 has a coarse-grained clas-
sification of the concept “passenger count”, using “child count (age 0-17)”(G5)
to represent “infant count (age 0-2)”(G1) and “child count (age 3-17)”(G2). The
composition of concepts can be obtained through insertion of many-to-many
mappings. (4) A T-Edge connecting two nodes represents a transformation rela-
tion. For example, a T-Edge TR1 is created for transforming instances from A3

to G0, where they respectively use different formats to represent the same con-
cept “passenger count”. These transformation relations can be directly obtained
from the mapping expression ExpS

T .
In the prior research, we develop a basic ontology-based mapping manage-

ment scheme (i.e., M-Ontology) [17] for meta-querier customization [18]. Map-
pings are managed under a win-win strategy: users are responsible for creating,
validating and correcting the results from mapping discovery made either by the
machines or the other users. Validated mappings are automatically recycled in
our mapping insertion algorithm for building the M-Ontology incrementally. In
turn, the validated M-Ontology contents (i.e., concepts and relations) can also
be employed for discovering new mappings in an automated manner.

2.2 Change-Oriented Mapping Modeling

Mappings are not static but dynamic in the context of meta-querier customiza-
tion, where both end users and data sources are autonomous agents that are
independent from meta-queriers. Scenarios of mapping evolution can be charac-
terized into two types:

1) External changes: The changes in the schema elements of either local or
global forms entail the updates to the related mappings, as shown in Fig. 2 (a)
and (b). Changes in local forms are made in an untraceable manner. The major
changes are observed in terms of the functionalities and representation of data
sources. For example, if a car-rental local form wants to support new car models
(e.g., 2011 Ford Fiesta), the corresponding entries need to be included in its
car-model control (e.g., a selection menu). Furthermore, changes in global forms
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Fig. 2. Mapping evolution scenarios and a mapping object example

occur due to the evolution of its underlying local forms and user-specified source
selection. These changes are traceable.

2) Internal changes: Modification of mappings comprises changes on the map-
ping composition and updates of their related context information, i.e., mapping
metadata. A mapping instance can be created from scratch, or from another
instance with some modification. There is no guarantee that these mapping in-
stances discovered by machines or humans are completely free from errors and
always function well. To correct the errors, the potential modification includes
changes on the expressions (i.e., ExpS

T ) and the element lists (i.e., EListS and
EListT ), as shown in Fig. 2 (a), (b) and (c),

Based on the above observations, we design a change-oriented mapping model
to preserve mapping evolution.

Mapping Lifecycle: Each mapping instance has its own lifecycle starting from
the initial creation to the physical deletion. The state transitions are determined
by its validation status. Fig. 2(d) illustrates a state diagram with the four states
that a mapping can be in: Validating, Usable, Detached, and L-Deleted. The
Validating state of a mapping indicates that its current correctness is undeter-
mined. It remains in this state until humans or machines validate it completely.
A newly created mapping begins its lifecycle in the Validating state. The state of
an existing mapping transitions into the Validating when its correctness status is
changed. While a mapping is at the Usable state (i.e., ready for being utilized),
it is able to perform correctly in the associated meta-queriers. When a previ-
ously correct mapping is identified to be incorrect, it enters the Detached state.
Such a mapping might be useful for discovering new mappings. For the map-
pings that are invaluable (e.g., never correct), they enter L-Deleted state (i.e.,
logically deleted). The lifecycle of a mapping is finished when it is physically
deleted (P-Deleted).

Mapping Objects: Between one query form QFS and another QFT , there exist
a set of mapping objects. A mapping object mapObjS

T denotes a specific rela-
tion between QFS and QFT (i.e., QFS→QFT and QFT→QFS). It can be repre-
sented by a bipartite graph whose edges Set〈RS

T , RT
S 〉 only connect the nodes from

two disjoint node sets Set〈NS〉 and Set〈NT 〉. Each node in Set〈NS〉 and Set〈NT 〉
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respectively corresponds to an element list from QFS and QFT . Each solid edge
represents a mapping instance of mapObjS

T . Based on the semantics, every pair
of the nodes respectively in Set〈NS〉 and Set〈NT 〉 is a correspondence corrS

T .We
assume that all the mapping instances in the same direction (e.g., QFS→QFT )
are independent of each other. This assumption is feasible since two instances
can be easily merged until there does not exist any constraint between them.

Each mapping object consists of a group of mapping instances that represent
the same relation between two query forms. These instances are regarded as dif-
ferent versions of this object. Thus, a mapping object can be represented using
a bipartite graph 〈Set〈NS〉, Set〈NT 〉, Set〈RS

T /RT
S 〉〉, as illustrated in Fig. 2(e). For

example, assuming the original mapping object is only a single mapping instance
1RS

T , another instance 2RS
T with the inverse direction is added into the object.

When the external changes occur in QFS, two original mapping instances, 1RS
T

and 2RS
T , are detached and a new mapping instance 3RS

T is automatically discov-
ered by the machine. Then, since 3RS

T is incorrect based on manual validation,
it is logically deleted and replaced by another mapping instance 4RS

T . After the
internal changes in QFS, all the existing usable mappings are detached. Finally,
5RS

T is the only usable mapping instance.
Complementary to M-Ontology, MO-Repository is a repository of mapping

evolution. It records the evolution of mappings that serve the meta-queriers
in a specific application domain. That is, it stores the corresponding mapping
objects Set〈MapObj〉, each of which mapObjS

T denotes a concrete relation between
two query forms QFS and QFT . mapObjS

T consists of the different versions of
such a relation. Each version corresponds to an individual mapping instance.
The following section explains how to use M-Ontology and MO-Repository for
discovering new mappings.

3 Reuse-Oriented Mapping Discovery

Mapping discovery is a critical operation for meta-querier construction and main-
tenance. However, existing techniques [11][22] are not adequate in discovering the
mapping automatically, especially those with non-equivalence expressions. Our
proposed solution aims at decreasing the complexity and workloads of mapping
discovery made by humans. Thus, between two query forms QFS and QFT , our
algorithm outputs not only the active mapping instances mapS

T but also their
previous versions (i.e., the mapping object mapObjS

T ). If the mapping expres-
sions cannot be found, the correspondences corrS

T are also offered for facilitating
manual mapping discovery.

With a domain-specific M-Ontology MO and MO-Repository MOR, the reuse-
oriented algorithm is to discover Set〈mapS

T , corrS
T , mapObjS

T 〉 from QFS to QFT , as
illustrated in Fig.3. We first extract query conditions from query forms QFS and
QFT to respectively generate source and target element sets Set〈eS〉 and Set〈eT 〉.
Since automatic extraction is not the focus of this paper (see [28][15][16] for more
information), the current implementation is based on manual extraction. The
overall algorithm can be split into three phases: 1) mapping discovery through
MOR; 2) mapping discovery through MO; 3) human validation and correction
of the discovered mappings. The details are discussed below.



84 X. Li and R. Chow

End
Start

matchEtoE
Set<eS>

reuse
MORepository

Human
Interaction1

3

[NO]

Found?

[YES]

reuse
MOntologymatchEtoE

Set<eT>

matchEtoC
Set<eS>

matchEtoC
Set<eT> 2

Fig. 3. Reuse-oriented algorithm for mapping discovery

3.1 Mapping Reuse through MO-Repository

In the first phase, discovery through MO-Repository MOR is a search process for
reusing the existing mapping instances between the same pair of query forms.
To match the query forms from QFS to QFT , we first seek two sets of one-to-
one element correspondences Set〈(eS, eMOR)〉 and Set〈(eT , eMOR)〉, where eMOR

is the elements from MOR. Through these correspondences, the eligible map-
ping instances mapS

T , correspondences corrS
T and mapping object mapObjS

T are
selected by reasoning on MOR. The elements in Set〈eS〉 and Set〈eT 〉 are sent
to the second procedure with the element correspondences Set〈(eS, eMOR)〉 and
Set〈(eT , eMOR)〉. The core is the implementation of two functions: matchEtoE and
reuseMORepository.

• matchEtoE selects and returns a set of element correspondences Set〈(eX , eMOR)〉
for each side (that is, X can be S or T ). The objective of correspondence selection
is to maximize the utility value as computed by,∑

eX∈X

∑
eMOR∈MOR

R(eX , eMOR) × a(eX , eMOR),

subject to the following constraints:∑
eX∈X

a(eX , eMOR) ≤ 1,
∑

eMOR∈MOR

a(eX , eMOR) ≤ 1, a(eX , eMOR) ∈ {0, 1}

and R(eX , eMOR) ∈ {0, 1} for eX ∈ X, eMOR ∈ MOR,

where, all the elements eX should be from the same query form X (i.e., QFS

or QFT ), and element eMOR is from MO-Repository MOR and with the same
query form. a(eX , eMOR) takes the value 1 if a correspondence between eX and
eMOR is selected, and 0 otherwise. The feasible result must guarantee that each
eMOR is assigned to at most one eX and each eX is assigned to at most one
eMOR. The similarity value R(eX , eMOR) is equal to 1 only when the similarity
value between eX and eMOR is larger than a pre-defined threshold δ; otherwise
it is assigned with a value 0. Their similarity values can be calculated by the
following formula:

w1 × simDA−DA(eX , eMOR) + w2 × simINS−INS(eX , eMOR)

where w1 and w2 are two weights in [0,1] such that
∑2

k=1 wk = 1. The similarity
values returned from simDA−DA and simINS−INS show the extent how similar
element eX and element eMOR are regarding to their Descriptive Attributes and
INStances, respectively. The element attributes and instances are first normal-
ized by standard NLP (natural language processing) techniques: tokenization,
stop-word removal and stemming. The resulting texts are then considered as
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bags of words, that is, unordered sets of words. To compare the similarities
of these word sets, a hybrid matcher is employed by combining several typical
linguistics-based matchers, such as WordNet-synonyms distances, 3-gram dis-
tances and Jaccard distances. Many algorithms for schema/ontology matching
have been proposed (see the surveys[22][11]). Most of them can be easily intro-
duced in this phase. As this is not the major target of this paper, the details are
not further elaborated here.

The decision of these element correspondences is a generalized assignment
problem, which is a NP-hard problem. However, a simple greedy solution can
quickly attain the results in this context. First, the similarity matrix size and
number is not big [4]. For example, normally, the query forms in flight-ticket
searching contain around 10 functional components. The query forms are com-
pared with only the query form with the same query form identifier. Second, the
similarity matrix is sparse. Very few similarity values are equal to non-zero.
• reuseMORepository is to determine mapping instances, correspondences and
mapping objects (i.e., Set〈mapS

T , corrS
T , mapObjS

T 〉) through the identified element
correspondences. 1) A mapping object is selected only if the corresponding bi-
partite graph contains at least one node in Set〈NS〉 or Set〈NT 〉 that is fully
hooked, i.e., all the elements of this node appear in element correspondences
Set〈(eS, eMOR)〉 or Set〈(eT , eMOR)〉. For example, in Fig. 2(e), if all the elements
in N1

S are fully hooked, the mapping object will be included in the return set. 2)
corrS

T is determined based on a property of MO-Repository. The elements in ev-
ery pair of nodes respectively from Set〈NS〉 and Set〈NT 〉 is a correspondence. For
example, in Fig. 2(e), the elements in N1

S and N2
T constitute a correspondence.

Thus, if both two node sets Set〈NS〉 and Set〈NT 〉 have at least one node that are
fully hooked, the elements eS/T that are linked to these node pairs constitute
new correspondences. 3) The mapping instance is discovered through examining
each identified correspondence: i) whether there exists an edge to connect the
nodes in the corresponding bipartite graph; ii) whether the mapping state of
this edge is Detached or Usable; iii) whether the edge direction is QFS→QFT . If
all the states are true, the correspondence with this edge can be regarded as a
mapping instance mapS

T . Finally, Set〈mapS
T , corrS

T , mapObjS
T 〉 are found via reuse

of the previous mappings in MOR.

3.2 Mapping Reuse through M-Ontology

The second phase is to discover the mappings through exploiting the conceptual
abstraction from the existing mappings in the same domain. To determine the
mappings from QFS to QFT , all the undetermined schema elements in Set〈eS〉
and Set〈eT 〉 are first classified into the appropriate G/A-Nodes in M-Ontology
MO. Based on classification results, we can discover new mappings by reusing the
mappings associated with the corresponding G/A-Nodes. The implementation
is through two major functions: matchEtoC and reuseMOntology.
• matchEtoC is to classify each undetermined element eS/T in Set〈eS〉 and Set〈eT 〉
to the appropriate G/A-Nodes from the M-Ontology MO. The resulting G/A-
Nodes constitute two concept sets ASetS and ASetT . A-Nodes are selected if
all the inclusive G-Nodes are already identified. Thus, the major focus is how



86 X. Li and R. Chow

to find an appropriate G-Node gn for a given element eS/T . We design a two-
step solution that combines both history-based and semantics-based selection
strategies. The first-step selection is based on mapping evolution. We obtain the
element correspondences Set〈(eS, eMOR)〉 or Set〈(eT , eMOR)〉 from matchEtoE in
the first phase (discussed in Section 3.1). If the correspondences are accurate, the
G-Nodes that contain eMOR should have the same semantics as eS/T . Thus, all the
eligible G-Nodes are chosen. The second step is based on the semantic similarity
between undetermined elements eS/T and the representative objects ro of the
G-Nodes. ro is represented by a tuple 〈DA, DL, INS, IT 〉, where DA is a bag
of descriptive words that can be generated through normalizing the descriptive
attributes of all human-verified E-Nodes in gn using the aforementioned NLP
techniques; DL is a set of descriptive labels that consist of the terms with the
top-k term frequency from DA; INS and IT respectively represent the instances
and their types obtained from the inclusive verified E-Nodes. When their types
are identical, the similarity values can be calculated by the following formula:

w1×simDA−DA(eS/T , ro)+w2×simDA−DL(eS/T , ro)+w3×simINS−INS(eS/T , ro),
where w1, w2 and w3 are three weights in [0,1] such that

∑3
k=1 wk = 1. Due to the

page limits, the algorithms are not explained in details since the idea is highly
similar to the the algorithms mentioned in matchEtoE.
• reuseMOntology discovers Set〈mapS

T , corrS
T 〉 (i.e., the mapping instances and

correspondences) from M-Ontology. First, we identify two G/A-Node sets RSetS

and CSetS whose nodes are reachable from the nodes in the concept set ASetS.
RSetS consists of the nodes that can be reached through a single T-Edge from
any node in ASetS. CSetS is the node union of maximal connected subgraphs
of the nodes in ASetS (T-Edge direction is ignored here). Second, the desired
concept-level mappings are the overlap ASetS ∩ ASetT and RSetS ∩ ASetT . The
first overlap denotes the semantics-equivalence mappings between two concepts.
The second one indicates the concept mappings whose expressions are in the con-
nected T-Edges. We also can deduce the target concept correspondences from
the overlap CSetS ∩ ASetT , although M-Ontology does not have a T-Edge to
link them together. Finally, we can easily discover Set〈mapS

T , corrS
T 〉 through the

element classification (from matchEtoC) with these concept mappings and cor-
respondences.

3.3 Validating and Correcting Mappings

The final phase is to verify and correct the machine-discovered mappings by
human beings. Supporting meta-querier customization is likely to result in a
large number of mappings to be discovered. It is impractical for a small set of
domain experts and system designers to validate and correct these mappings.
We propose the following strategies to decrease their workloads:

Mass collaboration. Although the to-be-discovered mappings might be numer-
ous, meta-querier customization will also attract more users. We believe these
users not only have enough motivation to be involved in the validation, but
also are willing to volunteer to assist others. In our design, these users along
with a small number of domain experts can practically form a collaborative
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domain-specific community for meta-querier construction. We divide the error-
prone procedure into three subsequent procedures with different difficulty levels.
The tasks in the easiest level include two verification jobs: verifying if the clas-
sified schema elements are assigned to the correct G-Nodes and checking if the
discovered T-Edges are appropriate to represent the relations among the schema
elements. Normally, these basic tasks can be assigned to novices. In the sec-
ond difficulty level, the tasks are determining unfound mappings and searching
M-Ontology to seek correct G-Nodes, if existing, for unclassified elements. The
experienced users are able to handle these jobs. At the most difficult level of
tasks, M-Ontology needs to be updated (e.g., creating a new G-Node) for sup-
porting new mapping instances. The maintenance of M-Ontology should be one
of the major jobs of the domain experts.

Human friendliness. For any community-based system to be successful, it is
absolutely necessary that the system must be easy to control. In our proposed dis-
covery algorithms, we can incorporate the following special considerations in the
design. First, in the function matchEtoE, correspondence selection is viewed as
a utility maximization problem on similarity matrix R(eX , eMOR). Thus, the re-
sults can be improved through manual or automatic changes on R(eX , eMOR). For
example, verification on mappings might trigger changes on the corresponding
values. Second, in the function matchEtoC, manual modification on the represen-
tative objects of concept nodes (such as D-Labels and Instances) can improve the
precision and recall. Third, graph-oriented interface is an essential requirement
for systems with a large community of novice users. Thus, both mapping objects
and mapping ontology can be represented by graphs. The related operations
can be implemented with more straightforward graph operations using emerging
HCI technologies (e.g., [6][20]). Last but not least, even if the current contents of
M-Ontology are correct and non-redundant, domain experts are also encouraged
to involve in the enrichment of M-Ontology for improving the performance. The
comments on nodes/edges are welcomed from the creators/modifiers. The infor-
mation stored in metadata (such as annotation) is critical for understanding by
others.

4 Experiments

We evaluate our reuse-oriented mapping discovery by conducting several sets
of experiments on real-world query forms. The goal of experiments is to ex-
amine the feasibility and effectiveness of our approach. Specifically, the exper-
iments are designed to answer the following three research questions in the
context meta-querier customization: 1) Is it practical to find the target map-
pings/correspondences from M-Ontology? 2) Is our algorithm effective in iden-
tifying the mappings from M-Ontology? 3) Is our algorithm able to improve the
effectiveness of mapping discovery with the incorporation of mapping evolution?

Data sets: We first collected 38 query-form URLs from the air-ticket booking
data set in the UIUC web integration repository[2] after removing the inac-
tive forms in May 2009. These query forms are manually extracted from their
HTML codes and represented in Ontology Language (OWL). These OWL files
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Fig. 4. Experiment results of mapping discovery through M-Ontology

form the first data set AIRO. After 22 months, we revisited the web pages con-
taining these query forms, 23 of which were syntactically changed, and their
corresponding OWL files are generated for them. The total 61 query forms con-
stitute the second data set AIR. From these forms, 730 schema elements are
manually classified based on their semantics. Each schema element is classified
to a single G-Node and a single G/A-Subgraph. These classification results are
used in the performance evaluation of the following four sets of experiments.

Experiment setup: In the following experiments, we assume thatmWeb query
forms are already contained in M-Ontology/MO-Repository. For M-Ontology,
the representative objects are automatically generated from the verified schema
elements, without manual correction on the D-Attributes, D-Labels and
Instances. We also assume that T-Edges have been created to connect the
semantics-equivalent concept nodes. In the following experiment results, each
value is obtained by an average of 100 samples. To ensure fairness and accuracy
in measurement, each sample is randomly generated from the data sets without
any duplicate. Four measures are used in each experiment: Hit-rate measures the
proportion of the expected concepts/mappings that exist in a mapping reposi-
tory (i.e., M-Ontology or MO-Repository). Precision measures the proportion of
the correctly identified concepts/mappings over the total identified ones. Recall
measures the proportion of the correctly identified concepts/mappings over the
total correct and identifiable ones. Fmeasure is the weighted harmonic mean of
precision and recall.

Experiment 1 evaluates the performance of mapping discovery by using only
M-Ontology. That means only the semantics-based selection is used without the
history-based selection. The experiment is to match two query forms (from the
data set AIR) that are not in M-Ontology. As illustrated by red dotted lines in
Fig. 4, our ontology-based approach to mapping discovery looks promising in
both feasibility and effectiveness. First, Fig. 4(a) shows that Hit-Rate reaches
almost the highest value 1.0 when m is above 10. That indicates that most of
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mappings can be found from M-Ontology when at least 10 query forms are fully
integrated in meta-queriers. That is, the reuse of mappings is practical. Second,
in Fig. 4(b), we observe Fmeasure is above 0.8 if m is larger than 5 and above 0.9
whenm is larger than 35. As expected, the effectiveness of our mapping discovery
algorithm improves with the M-Ontology enrichment. When there exists enough
information in M-Ontology, most of mappings can be effectively identified by
our algorithm. The following two experiments will present more observations
and analyses.

Experiment 2 evaluates the performance of semantics-based element classifica-
tion, which is a core operation in mapping discovery through M-Ontology. This
operation is to classify the elements in a specific query form (from the data set
AIR) to appropriate concept nodes based on their similarity with the representa-
tive objects of these concept nodes. The corresponding performance is shown by
blue solid lines in Fig. 4. As illustrated, the similar trends can be observed for
both element classification and mapping discovery. Discovery of correct map-
pings requires exact classification of the elements in both query forms. Thus,
ideally, element classification should perform apparently better than mapping
discovery with respect to Hit-Rate and Precision and worse with respect to Re-
call. However, the difference of Recall values is relatively minor, compared with
the corresponding precision values, especially when m is smaller than 10 and
larger than 35. Based on our analysis, the major reason is that some concept
nodes appear only in few (more than one) schemas. The schema elements that
are hooked to these concept nodes often do not correspond to any element in the
query form that is to be matched. The total number of target mappings is lower
than the average of schema elements in our data sets. Thus, the recall difference
is not large. The existence of such concept nodes can be identified at the Fig.
4(a). When m is above 10, almost all the mappings are able to be found, but still
more than 10% schema elements cannot be hooked to the concept nodes. In our
experiments, we do not consider the mismatches caused by T-Edges incomplete-
ness and errors. The performance of mapping discovery might be worse than
the number shown in Experiment 1, but we also expect the performance can be
improved through manual enrichment on M-Ontology. For example, humans can
manually correct the auto-generated information in the representative objects
(e.g., representative labels).

Experiment 3 examines the effects of query-form evolution on the discovery
through M-Ontology without history-based element classification. The data set
used in Experiments 1 and 2 is AIR, which consists of the original query forms and
the evolved ones. To identify the possible influence of inclusion of the evolved
forms, we conduct another set of experiments for element classification using
the data set AIRO (without the evolved forms). As illustrated in Fig. 5, the blue
solid lines and the green dashed lines represent the performance values of element
classification respectively using AIR and AIRO. All these four charts indicate that
these curve lines almost coincide. Although the similarities in terms of design,
naming and functionality can be observed between the original query forms and
the evolved ones, our semantics-based classification ignores these similarities and
does not gain benefits from them.
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Fig. 5. Experiment results of concept searching for schema elements
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Fig. 6. Experiment results of mapping discovery through M-Ontology and MO-
Repository

Experiment 4 is to evaluate the performance improvement with the usage of
MO-Repository. Due to limits of the real-world data sets (AIR), there does not
exist enough evolved mappings to obtain a complete evaluation. However, we still
can conduct a set of experiments to show the benefits gained from the function
matchEtoE, which returns a set of element correspondences from MO-Repository.
These correspondences are used in the history-based element classification. Thus,
the partial benefits still can be shown as illustrated in Fig. 6. The red dotted
lines and black solid lines represent the performance values of mapping discov-
ery respectively using only M-Ontology and both repositories. They share the
same experiment samples. We see a significant increase in Recall and almost no
change in Precision when less than 25 query forms are integrated into the map-
ping repositories. That means more correct mappings are found without loss of
precision. If the number of integrated query forms is larger than 25, the Recall
increase appears modest and even negligible. That is, most mappings can be dis-
covered using M-Ontology (without MO-Repository), when sufficient mappings
have been inserted.
From the above four sets of experiments, we observe several important proper-
ties of our reuse-oriented mapping discoverer. The data set AIR from real-world
query forms shows almost all the mappings can be found in the mapping reposi-
tories, when there exist sufficient T-Edges to connect G/A-Nodes. Our proposed
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reuse-based solution has a capability of effectively discovering most of mappings,
as demonstrated in the promising results of Precision, Recall and Fmeasure. We
expect better performance values can be obtained through manual correction on
mapping repositories.

5 Related Work

Although schema matching has been widely researched for thirty years, most
of the existing solutions (as surveyed in [11][22]) only consider one-to-one map-
pings. In fact, many-to-many mappings are pervasive in real-world applications.
Current solutions to complex mappings can be classified to three categories as
follows:

Learning-based approaches learn mapping templates from the existing map-
ping instances. iMAP[7], also called COMAP[9], is proposed to solve several
types of 1-to-n complex mappings by comparing the content or statistical prop-
erties of data instances from two schemas. However, the number of its hard-
coded rules limits the types of complex mappings that can be found. HSM[25]
and DCM[13] employ correlation-mining techniques to find the grouping rela-
tions (i.e., co-occurrence) among elements, but their solutions do not take into
account how these elements correspond to each other (i.e., mapping expressions).

Template-based approaches search the most appropriate mapping templates/
rules from a template/rule set. The main drawback is their limited capability
of finding complex mappings. The templates/rules are separate and static. In
addition, the template number is normally very limited. IceQ[26] integrates two
human-specified rules into their systems for partially finding Part-of and Is-A
type mappings (i.e., two common one-to-many mappings). QuickMig[10], as an
extension of COMA[3], summarizes ten common mapping templates, some of
which are complex mappings. Several possible combinations of templates are
also presented. It also designs an instance-level matcher for finding splitting or
concatenation relationships.

Ontology-based approaches employ external ontologies for mapping discovery.
Two schemas to be matched are first matched to a single ontology separately,
and then element-level mappings can be found by deducing from the intermedi-
ary ontology. However, its performance is largely affected by the coverage and
modeling of ontologies. For example, the ontology defined in SCROL[23] does not
consider the syntactic heterogeneity (defined in Chapter 4.3) caused by various
semantics-equivalent representations. In addition, the existing ontology-based
solutions [27][23] simply assume that the shared ontologies have already been
built, but building such well-organized ontologies is as hard as finding complex
mappings. Ontology construction is also a labor-intensive, time-consuming and
error-prone problem [8][21][24].

Our proposed mapping discovery algorithm is a hybrid solution. First, the
evolution process of a specific mapping can be viewed as a template/rule. In
a sense, the discovery through MO-Repository can be viewed as finding rules
to apply. Second, discovery through M-Ontology is a typical ontology-based
approach. We provide an integrated solution to three indispensable subprob-
lems: ontology design, ontology construction and mapping discovery. The design



92 X. Li and R. Chow

of M-Ontology addresses five kinds of heterogeneity: language heterogeneity,
syntactic heterogeneity, instance heterogeneity, structural heterogeneity and se-
mantic heterogeneity. Third, ontology construction is a learning-based approach,
i.e. incremental representative-based clustering. Different from the classical on-
tology construction [8][21], the proposed ontology is generated from schemas and
mappings, which are abundant in our proposed meta-querier customization. As
more schemas and mappings are inserted into the ontology, more mappings can
be correctly discovered from the ontology.

6 Conclusions and Future Work

Current research proves that mapping discovery cannot be fully automated in the
foreseen future, especially for those many-to-manymappings with expressions.We
believe that reuse of existing mappings is one of the best (or maybe the only) so-
lutions. In our proposed solution, reusing similar mappings in the same domain
can avoid the repetitive tasks when a large number of customized meta-queriers
need to be built and maintained. To enhance reuse potential from the existing
mappings, we introduce the ontology-based and change-oriented mapping mod-
els. Based on these two models, a user-friendly discovery algorithm is provided.
In our solution, discovery of many-to-many mappings is converted to finding of
one-to-one correspondences from their evolution processes and a domain-based
mapping ontology. The proposed algorithms for finding correspondences are
straightforward to non-technical users. Our experimental results on real-world
data sets confirm the feasibility and effectiveness of our reuse-oriented solution.

Our plans for future work include: 1) Extending our M-Ontology with a strong
emphasis to decrease the degree of informality in the collaboration platform,
which is absolutely necessary in collaborative data integration. 2) Supporting
version mechanisms and tackling the issue of error protection through coordi-
nated mass collaboration and ontology verification mechanisms. 3) Integrating
more one-to-one matching algorithms [11][22] into our collaborative framework
for mapping discovery.
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Abstract. The main contribution of this paper is a generic grammar-
ware for validating XML integrity constraints. Indeed, we use an at-
tribute grammar to describe XML documents and constraints. We thus
explain the main parts of this novel algorithm and we report on ex-
periments showing that our method allows for an effective and efficient
validation of XML functional dependencies (XFD).

1 Introduction

This paper deals with integrity constraint validation on XML documents. Our
validation method can be seen as a grammarware, since it is based on a gram-
mar describing an XML document to which we associate attributes and seman-
tic rules. Our grammar is augmented by semantic rules that define, for each
integrity constraint, the verification process. In this way we show that XML
integrity constraints can be compiled to an attribute grammar [1,15]. To instan-
tiate an integrity constraint we introduce a set of finite state automata (FSA).
Indeed, XML integrity constraints are defined by using path expressions which
can be seen as simplified regular expressions over XML labels. These finite state
automata help us to determine the role of each node in a constraint satisfaction.

To explain the main parts of our method, we focus on the validation of func-
tional dependencies (XFD). The approach presented here implements the general
proposal introduced in [7], where we present a homogeneous formalism to ex-
press different kinds of integrity constraints, including XFDs, and introduce the
basis of our general validation method.

Our method validates an XML tree in one tree traversal. In the document
reading order, we first go top-down until reaching some leaves and then, bottom-
up, as closing tags are reached. During the top-down visit, the validation process
uses attributes to specify the role of each node with respect to a given integrity
constraint. In the bottom-up visit the values concerned by the constraints are
pulled up via some other grammar attributes. Its running time is linear in the
size of the XML document, in the number of paths composing the constraint
and in the number of obtained tuples containing the constraint values.
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Related work: Although several approaches for XML functional dependencies
have been proposed in the literature (we refer to [3,11,18,19,21] as examples of
ongoing works on the subject over the decade), the implementation of constraint
validators has received less attention. Proposals in [4,5,8] just address specific
constraints such as primary or foreign keys. Our approach performance is com-
parable to implementations in [17,16], but contrary to them, it intends to be a
generic model for XML constraints validation, provided constraints are defined
by paths. The ideas guiding this work are the ones outlined in [7,10]. We describe
an incremental validation method for keys in [6]. In [9] the notion of incremen-
tal validation is considered via the static verification of functional dependencies
with respect to updates. However, in that work, XFDs are defined as tree queries
which augments considerably the complexity of an implementation.

Indeed, one important difference among all the XFD proposals concerns the
expressive power of the language used to specify the components of the de-
pendency. Even if path languages in [2,18,19,20] are slightly different, they all
express unary queries. In [2,18,20] only simple paths are allowed while in [19]
simple, composed, ascendant or descendent paths are permitted. Differently, the
approach in [11] uses an n-ary path language. Similarly to us, in all these ap-
proaches, once a path is defined, one needs to determine instantiations of this
path. The way it is done depends on the path language used and on the assump-
tion of an underlying schema (that allows to define tree tuples [2] and generalized
tree tuples [20]). Notice also that paths defining constraints induce a notion of
tree pattern that the document must conform to (called Paths(D) in [2], Schema
Graph in [12] or Legal paths in [18]), which can be seen as a schema (though less
restrictive than a DTD). Thus, following [15] and [13], an extended attribute
grammar can always be used to represent the selecting part of any of these
different notions of XML functional dependencies. Then, functions for checking
features of the selected components must be defined. In this way, attribute gram-
mars are generic enough to accommodate many kind of integrity constraints. For
instance we plan to consider the possibility of using it to compute XFD defined
by tree queries such as in [9].

Paper organisation: Section 2 introduces our XFD definitions. In Section 3
we explain how finite state automata can help us to develop our validation
algorithm. Section 4 presents the XFD verification process based on attribute
grammar. In Section 5 we consider complexity and experimental results.

2 Functional Dependencies in XML

Let Σ = Σele ∪ Σatt ∪ {data} be an alphabet where Σele is the set of element
names and Σatt is the set of attribute names. An XML document is represented
by a tuple T = (t, type, value). The tree t is the function t : dom(t) → Σ where
Σ is a set of tags and where dom(t) is the set of positions u.j, such that (∀j ≥
0) (u.j ∈ dom(t)) ⇒ (∀i 0 ≤ i < j) (u.i ∈ dom(t)); where i and j ∈ N and u ∈
U (U is a set of sequences of symbols in N, and the symbol ε which is the empty
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sequence). Given a tree position p, function type(t, p) returns a value in {data,

element, attribute}. Similarly, value(t, p) =
{

p if type(t, p) = element
val ∈ V otherwise

where V is an infinite recursively enumerable domain. We also recall that, in an
XML tree, attributes are unordered while elements are ordered. As many other
authors, we distinguish two kinds of equality in an XML tree, namely, value and
node equality. Two nodes are value equal when they are roots of isomorphic sub-
trees. Two nodes are node equal when they are the same position. To combine
both equality notions we use the symbol E, that can be represented by V for
value equality, or N for node equality.

Figure 1 illustrates an XML document that models the projects of a company.
Notice that each node has a position and a label. For instance, t(ε) = bd and
t(1.0) = pname. Nodes in positions 1.2.1.1 and 0.1.2.1 are value equal, but
nodes 0.1.2 and 1.2.1 are not value equal (element quantity in their subtrees is
associated to different data values).

A path for an XML tree t is defined by a sequence of tags or labels. The
path languages PLs (defined by ρ ::= l | ρ/ρ | _) and PL (defined by υ ::=
[ ] | ρ | υ//ρ) are used to define integrity constraints over XML trees.

In PL and PLs, [ ] represents the empty path, l is a tag in Σ, the symbol
"/" is the concatenation operation, "//" represents a finite sequence (possibly
empty) of tags, and "_" is any tag in Σ. The language PLs describes a path
in t, while PL is a generalization of PLs including "//". Then, one path in PL
describes a set of PLs paths. In this work we adopt the language PL that is
a common fragment of regular expressions and XPath. A path P is valid if
it conforms to the syntax of PLs or PL and for all tag l ∈ P , if l = data or
l ∈ Σatt, then l is the last symbol in P . We consider that a path P defines a
finite-state automaton AP having XML labels as its input alphabet.

Definition 1. Instance of a path P over t : Let P be a path in PL, AP the
finite-state automaton defined according to P , and L(AP ) the language accepted
by AP . Let I = v1/ . . . /vn be a sequence of positions such that each vi is a
direct descendant of vi−1 in t. Then I is an instance of P over t if and only if
the sequence t(v1)/ . . . /t(vn) ∈ L(AP ). �

As an example, consider the path bd/project/supplier. From Figure 1, we can
see that ε/0/0.1 or ε/1/1.1 are instances of this path. Integrity constraints in
XML are expressed by sets of paths. A set of paths can form a pattern M if all
paths have a common prefix and for all path P ∈ M , if P1 is a subpath of P ,
then P1 ∈M . Thus, a pattern is a tree pattern.

Definition 2. Pattern and Pattern Instance: A pattern is a finite set of
prefix-closed paths in a tree t. Let LongM be the set of paths in M that are not
prefix of other paths in M . Let Instances(P, t) be the set of all instances of a
path P in t. Let PInstanceSeti be the set of path instances that verifies:

1. For all paths P ∈ LongM there is one and only one instance inst ∈
Instances(P, t) in the set PInstanceSeti.

2. For all inst ∈ PInstanceSeti there is a path P ∈ LongM .
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3. For all instances inst et inst′ in PInstanceSeti, if inst ∈ Instances(P, t)
and inst′ ∈ Instances(P ′, t), then the longest common prefix of inst and
inst′ is an instance of path Q in t, where Q is the path with the longest
common prefix for P and P ′.

An instance of a pattern M is a tuple I = (ti, typei, valuei) where typei(ti, p) =
type(t, p), valuei(ti, p) = value(t, p) and ti is a function Δ→ Σ in which:
– Δ =

⋃
inst ∈ PInstanceSeti{p | p is a position in inst}

– ti(p) = t(p), ∀p ∈ Δ �

A functional dependency in XML (XFD) is denoted X → Y (where X and Y
are sets of paths) and it imposes that for each pair of tuples1 t1 and t2 if t1[X ] =
t2[X ] then t1[Y ] = t2[Y ]. We assume that an XFD has a single path on the right-
hand side and possibly more than one path on the left-hand side - generalizing
the proposals in [3,18,14,19]. The dependency can be imposed in a specific part
of the document, and, for this reason, we specify a context path.

Definition 3. XML Functional Dependency: Given an XML tree t, an
XML functional dependency (XFD) is an expression of the form

γ = (C, ({P1 [E1], . . . , Pk [Ek]} → Q [E]))
where C is a path that starts from the root of t (context path) ending at the
context node; {P1, . . . , Pk} is a non-empty set of paths in t and Q is a single
path in t, both Pi and Q start at the context node. The set {P1, . . . , Pk} is the
left-hand side (LHS) or determinant of an XFD, and Q is the right-hand side
(RHS) or the dependent path. The symbols E1, . . . , Ek, E represent the equality
type associated to each dependency path. When symbols E or E1, . . . , Ek are
omitted, value equality is the default choice. �

Definition 4. XFD Satisfaction: Let T be an XML document, γ = (C,
({P1 [E1], . . . , Pk [Ek]} → Q [E])) an XFD and let M be the pattern {C/P1,
. . . ,C/Pk, C/Q}. We say that T satisfies γ (noted by T |= γ) if and only if for
all I1

M , I2
M that are instances of M in T and coincide at least on their prefix

C, we have: τ1[C/P1, . . . , C/Pk] =Ei,i∈[1...k] τ
2[C/P1, . . . , C/Pk] ⇒ τ1[C/Q] =E

τ2[C/Q] where τ1 (resp. τ2) is the tuple obtained from I1
M (resp. I2

M ), cf. pre-
ceding footnote. �

Notice that our XFD definition allows the combination of two kinds of equality
(as in [19]). We consider some XFDs, verified by the document in Figure 1:

XFD1: (db, ( {/project/pname} → /project [N ] ))
Project names are unique and identify a project. The context is db, so in this
case the dependency must be verified in the whole document.
XFD2: (db, ( {/project/pname} → /project))
Subtrees of projects which have the same name are identical.
XFD3 : (db/project, ({/supplier/@sname, /supplier/component/@cname}

→ /supplier/component/quantity ))

1 Tuples formed by the values or nodes found at the end of the path instances of X
and Y in a document T .
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Fig. 1. Tree representing an XML document containing projects information

3 Finite State Automata for XFD

To model the paths of an XFD, we use finite-state automata (FSA) or trans-
ducers (FST). The use of finite state machines allows (i) to clearly distinguish
each path (e.g. the context path) and so to define the computation of needed at-
tributes, and (ii) to easily deal with the symbol // and thus to deal with different
instantiations for a unique path (e.g., instances a.b and a.x.b for path a//b).

The input alphabet of our finite machines is the set of XML tags. The output
alphabet of our transducers is composed by our equality symbols. As usual, we
denote a FSA by 5-tuple A = (Θ, V , Δ, e, F ) where Θ is a finite set of states;
V is the alphabet; e ∈ Θ is the initial state; F ⊆ Θ is the set of final states; and
Δ: Θ×V → Θ is the transition function. A FST is a 6-tuple A = (Θ, V , Γ , Δ,
e, F , λ) such that: (i) (Θ, V , Δ, e, F ) is a FSA; (ii) Γ is an output alphabet
and (iii) λ is a function from F to Γ indicating the output associated to each
final state.

From Definition 3 we know that in an XFD, path expressions C, Pi and Q
(i ∈ [1, k]) specify the constraint context, the determinant paths (LHS) and the
dependent path (RHS), respectively. These paths define path instances on an
XML tree t. To verify whether a path instance corresponds to one of these paths
we use the following automata and transducers:
– The context automaton M = (Θ,Σ,Δ, e, F ) expresses path C. The alphabet
Σ is composed of the XML document tags.

– The determinant transducer T ′ = (Θ′, Σ, Γ ′, Δ′, e′, F ′, λ′) expresses paths Pi

(i ∈ [1, k]). The set of output symbols is Γ ′ = {V,N}×N
∗ such that V (value

equality) and N (node equality) are the equality types to be associated to
each path. Each path is numbered because there may be more than one path
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in the LHS. Thus, the output function λ′ associates a pair (equality, rank)
to each final state q ∈ F ′;

– Path Q is expressed by the dependent transducer T ′′ = (Θ′′, Σ, Γ ′′, Δ′′, e′′,
F ′′, λ′′). The set of output symbols is Γ ′′ = {V,N} and the output function
λ′′ associates a symbol V or N to each final state q ∈ F ′′.

Figure 2 illustrates FSA and FST for constraints XFD1 and XFD2. We re-
mark that the context automaton and the determinant transducers are equal for
XFD1 and XFD2. For XFD1, the dependent transducer expresses the appli-
cation of node equality, while, for XFD2, the application of value equality (for
all values obtained from nodes rooted project). The automaton and the corre-
sponding transducers for XFD3 are illustrated in Figure 3. The determinant
transducer (T ′

3) gathers the attribute values of @sname and @cname that, to-
gether, determine the quantity of a component. This dependency employs value
equality for @sname, @cname and quantity with respect to context project,
defined by M3.

4 XFD Validation: Attribute Grammar Approach

The integrity constraint validation process for an XML document can be accom-
plished with the use of an attribute grammar. Attribute grammars are extensions
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of context-free grammars that allow to specify not only the syntax, but also the
semantics of a language. This is done by attaching a set of semantic rules to
each production of a context-free grammar. In a semantic rule, two types of at-
tributes can be found: synthesized and inherited. Synthesized attributes carry
information from the leaves of a tree to its root, while inherited ones transport
information inversely, from root to leaves.

Definition 5. Attribute Grammar [1]: An attribute grammar is a triple
GA = (G,A, F ) where: G = (VN , VT , P,B) is a context-free grammar; A is the
set of attributes and F is a set of semantic rules attached to the productions.
For X ∈ VN ∪VT , we have A(X) = S(X)+I(X), i.e., A(X) is the disjoint union
of S(X), the set of synthesized attributes of X and I(X), the set of inherited
attributes of X . If a is an attribute of A(X), we denote it X.a. For a production
p : X0 → X1 . . . Xn, the set of attributes of p is denoted by W (p) = {Xi.a | a ∈
A(Xi), i ∈ [0 . . . n]}. For each production p : X0 → X1 . . . Xn, the set Fp contains
the semantic rules that handle the set of attributes of p. �

According to Definition 5, a set A(X) of attributes is associated to each grammar
symbol X to describe its semantic features. This gives rise to the following
definition for the semantic rules:

Definition 6. Semantic rules attached to production rules: In an at-
tribute grammar, each production p : X0 → X1 . . . Xn where X0 ∈ VN and
Xi ∈ (VN ∪ VT )∗, i ∈ [1 . . . n] is associated to a set of semantic rules of the form
b := f(c1, c2, ..., ck), where f is a function and: (i) b is a synthesized attribute
of X0 and c1, c2, ..., ck are attributes of non-terminal symbols Xi, or (ii) b is an
inherited attribute of a symbol Xi and c1, c2, ..., ck are attributes of X0 and/or
non-terminal symbols Xj , j ∈ [1, . . . , i]. �

Definition 6 establishes that the semantic analysis of a sentence using an at-
tribute grammar is accomplished by a set of actions that is associated to each
production rule. In each action definition, the values of attribute occurrences are
defined in terms of other attribute values.

In the context of XFD validation, it would be possible to consider the XML
type (or schema) as the grammar to be enriched with semantic rules. However,
because in our approach integrity constraints are treated independently from
schemas, we use a general grammar capable of describing any XML tree. Thus,
we consider a context-free grammar G with the following three generic produc-
tion rules where α1 . . . αm denote children nodes (being either XML elements or
attributes) of an element A, or the ROOT element:

– Rule for the root element: ROOT → α1 . . . αm, m ∈ N.
– Rule for an internal element node: A→ α1 . . . αm, m ∈ N

∗.
– Rule for an element containing data and for an attribute: A→ data.

Grammar G is extended with semantic rules composed by attributes and actions
concerning integrity constraints. Reading an XML document means visiting the
XML tree top-down, opening tags, and then bottom-up, closing them. During a
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top-down visit (to reach the leaves), the validation process specifies (with the aid
of FSAs) the role of each node with respect to a given XFD. This role is stored
in an inherited attribute. Once the leaves are reached, we start a bottom-up
visit in order to pull up the values concerned by the integrity constraints. These
values are stored into different synthesized attributes. In the rest of this section,
Tables 1-4 introduce our attributes and semantic rules.

Inherited attribute. Firstly, we consider the inherited attribute conf which
represents for each node in t its role concerning the given XFD. Its value is a set
of FSA configurations. All nodes in t, except nodes of type data are bound to
a conf attribute, but for some nodes the value of conf is the empty set, which
means that this node is not on any path of the XFD.

Tables 1 and 2 show the semantic rules that specify the operations to be
executed on conf, considering root or internal nodes (except leaves). The first
instruction associated to production ROOT → α1 . . . αm in Table 1 sets the at-
tribute conf of the root node to be M.q1, provided that the root node label is the
first transition label in M . Then the value of ROOT.conf is transmitted, using
the descending direction, to αi.conf . If ROOT.conf contains a configuration
with a final state for M , then it is necessary to start considering the transducers
for calculating configurations for αi.conf .

Table 1. Semantic Rule for Root Production: Attribute conf

Production Attributes
ROOT → α1 . . . αm ROOT .conf := { M.q1 | δM (q0, ROOT ) = q1}

for each αi (1 ≤ i ≤ m) do
αi .conf := { M.q′ | δM (q1, αi) = q′ }
if (q1 ∈ FM ) then

αi .conf := αi .conf ∪ { T ′.q′1 | δT ′(q′0, αi) = q′1 }
∪ { T ′′.q′′1 | δT ′′(q′′0 , αi) = q′′1 }

Similarly, Table 2 specifies how values are assigned to attributes conf of in-
ternal node children (using rule A→ α1 . . . αm). For each αi, we consider each
configuration M.q in the parent’s conf (M standing for either M , T ′ or T ”): the
transition δM (q, αi) gives us a new configuration that is stored in αi’s conf . Fur-
thermore, we verify if we must change from context automaton to determinant
and dependent transducers, as illustrated in Example 1.

Example 1. - We considerXFD3 (Section 2) for a company and its projects: this
dependency is depicted by automaton M3 and transducers T ′

3 et T ′′
3 of Figure 3.

The inherited attribute conf is calculated from the root to the leaves as shown in
Figure 4. In the root node, attribute conf has configuration2 {M3.e1} obtained
for node labelled db. This configuration comes from the first transition in M3.
For the node in position 0.1 (with label supplier), attribute conf contains T ′

3.e4
and T ”3.e9, as its parent contains a configuration with M in a final state, which
denotes a context node. �

2 To simplify notations M3,T ′
3 and T ′′

3 do not contain indexes in Figure 4.
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Table 2. Semantic Rule for Internal Node Production: Attribute conf

Production Attributes
A → α1 . . . αm for each αi (1 ≤ i ≤ m) do

for each M.q ∈ A.conf do
αi .conf := { M.q′ | δM (q, αi) = q′ }
if (M = M) ∧ (q ∈ FM )

then αi .conf := αi .conf ∪ { T ′.q′1 | δT ′ (q′0, αi) = q′1 }
∪ { T ′′.q′1 | δT ′′ (q′0, αi) = q′1 }

Synthesized attributes. We use the ascending direction to compute synthe-
sized attributes: the values that are part of the dependency are collected, treated
and carried up to the context node. At the context nodes, these values are com-
pared in order to verify XFD satisfaction.

For each functional dependency, with possibly many paths, there are k + 3
synthesized attributes, where k is the number of paths in the determinant part of
the dependency (Definition 3). They are denoted by c, inters, dc and dsj (1 ≤
j ≤ k). Attribute c is used to carry the dependency validity (true or false)
from the context level to the root. Attribute inters gathers (bottom-up) the
values from the nodes that are in determinant and dependent path intersections.
Finally, dsj and dc are attributes for storing the values needed to verify the
dependency. These values can be of type data (leaves of t) or node positions,
according to the XFD definition of E and Ej .

Attribute inters builds the tuple <l1, l2> where l1 is a tuple containing the
values of the determinant part and l2 contains the value of the dependent part.

   2conf = {M.e  }

   7conf = {T’.e  }

   11conf = {T’’.e   }

conf = {T’.e  }   7

   1conf = {M.e  }

conf = {T’’.e   }   11

  5conf = {T’.e  }     10   6conf =  {T’.e   , T’’.e    } conf =  {T’.e   , T’’.e    }   6     10

       9   4conf = {T’.e    , T’’.e   }
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Fig. 4. Inherited attributes conf for XFD3
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Consider, for instance, the validation of XFD3 in Figure 5. The context node
at position 0 has just one supplier (position 0.1) that provides two distinct com-
ponents. In this context, there is a path instance for supplier/@sname and two
instances for the pattern formed by paths supplier/component/@cname and sup-
plier/component/quantity. Thus, tuple < l1, l2 > assigned to inters in position
0.1 is {<< MSI, 955XNeo >, 5 >,<< MSI,K8N >, 7 >>}. To compute the
value of this tuple we combine the values carried from the determinant part and
assemble this combination with the value of the dependent part. Then, attribute
inters carries the XFD values up to the context level.

Table 3. Semantic Rule for Leaf Production: Attributes dsj and dc

Production Attributes
A → data for each configuration M.q in A.conf do

if (M = T ′) ∧ (q ∈ FT ′)
y := λ′

T ′(q)
j := y.rank
if (y.equality = V )

then A.dsj := < value(t, data) >
else A.dsj := < value(t,A) >

if (M = T ′′) ∧ (q ∈ FT ′′ )
if (λ′′

T ′′(q) = V )
then A.dc := < value(t, data) >
else A.dc := < pos(t,A) >

The values of attributes c, inters, dsj and dc are defined according to the
role of the parent node w.r.t. the XFD. We recall that this role is given by the
value of attribute conf. Table 3 shows how to calculate dsj and dc for parents
of nodes data (the grammar rule for leaves). As seen in Section 3, transducer
T ′ has an output function λ′ and associates the couple (equality, rank) to each
final state q ∈ F ′ of T ′, where equality stores the equality type (V ou N) and
rank is the rank j of Pj . Transducer T ′′ follows the same idea, but in this case,
as the dependent part of an XFD has just one path, the output function λ′′

associates to each final state q ∈ F ′′ only one symbol representing the equality
type. In Table 3, the function value(t, A) returns the parent position. In Figure 5
we depict values of attributes ds1, ds2 and dc for XFD3.

Table 4 defines the synthesized attribute computation for internal nodes. In
the following, we explain their computation, respecting the numbering in Table 4.
We denote p the parent’s position whose synthesized attributes are computed.

1. When p is a node in the XFD dependent path (transducer T ′′) and is also
the last node, we have: if E = V , values for attribute dc are obtained from
the values of p descendants whose type is data; if E = N then dc stores p.

2. When p is the last node for an XFD determinant path Pj we have: if E = V
the value of an attribute dsj is obtained from p descendants whose type is
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Table 4. Semantic Rule for Internal Node Production: Attributes dsj , dc, inters, c

Production Attributes
A → α1 . . . αm intersF lag := true

for each configuration M.q in A.conf do
(1) if (M = T ′′) ∧ (q ∈ FT ′′ ) then

if (λ′′
T ′′(q) = N) then A.dc := < value(t,A) >

else A.dc := < α1.dc, . . . , αm.dc >

(2) if (M = T ′) ∧ (q ∈ FT ′) then
y = λ′

T ′(q) j = y.rank
if (y.equality = N) then A.dsj := < value(t,A) >

else A.dsj :=< α1.dsj , . . . , αm.dsj >

(3) if (M = T ′′) ∧ (q /∈ FT ′′ ) then
for each αi (1 ≤ i ≤ m) do

if (αi.inters =<>) then A.dc := αi.dc

if (M = T ′) ∧ (q /∈ FT ′) then
for each αi (1 ≤ i ≤ m) do

if (αi.inters =<>) then
for each j (1 ≤ j ≤ k) do A.dsj += αi.dsj

(4) if (M = M) ∧ (q ∈ FM )
then A.inters := A.inters + αw.inters

A.c := < ∀ w, z in A.inters, w �= z: w.l1 = z.l1
⇒ w.l2 = z.l2 >

intersF lag := false

(5) if (M = M) ∧ (q /∈ FM )

then A.c := < (∀ xw : αw.c =< xw >⇒
m∧

w=1

xw) >

intersF lag := false
end for
(6) if (intersF lag = true) then

for each j (1 ≤ j ≤ k)
if (A.dsj =<>) then A.dsj := ε // ε is the empty string

if (A.dc =<>) then A.dc := ε
temp := < A.ds1 × · · · × A.dsk >
A.inters := < temp × A.dc >

if ( ∀ M.q ∈ A.conf : q /∈ FT ′ ∧ q /∈ FT ′′) then
for each αi (1 ≤ i ≤ m) do

A.inters += αi.inters
A.inters := mapping(A.inters)

data; if E = N then dsj stores p. In this case, rank j and the equality type
of Pj come from λ′ (y = λ′T ′(q)).

3. When p is a node corresponding to the intersection of paths in XFD, then
p is seen as a point where obtained values should be combined in order to
build a tuple containing the values of the determinant and the dependent
parts. We denote this tuple by < l1, l2 >, where l1 is a tuple of determinant
values, and l2 is the dependent value. As a result, < l1, l2 > contains the
combined XFDs values to be carried up.
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4. When p is an XFD context node then attribute inters should keep all n-
tuples (the final dependency values) from attributes inters of descendant
nodes. At this point the XFD is validated for a specific context, and if it is
satisfied, attribute c is assigned true, otherwise false.

5. When p is a node in the context path, then c is assigned the conjunction of
values obtained from attribute c of its descendants (one attribute c for each
context node). If c is true then the XFD is respected up to node p. If p is
the root node then the XFD is respected in the whole document.

6. To combine values from the determinant and dependent parts we use a
boolean variable (intersF lag), a variable (temp) and a mapping function.
Variable intersF lag indicates when there are no more intersections to cal-
culate (which means that the node is in the context path). When there are
intersections to calculate, we proceed by steps. Firstly we build a n-tuple
for dsj and dc of a node A. This is done by assigning to temp the Carte-
sian product of each dsj . Afterwards, a second Cartesian product is done to
combine attribute values from temp and dc. The resulting tuple < l1, l2 >
is stored in A.inters. At this point, function mapping verifies, for each tu-
ple l1, if there are empty values that may be replaced by non-empty values
obtained from another tuple l1. It returns a completed tuple.

Example 2. In Figure 5, we show the computation of attributes c, inters, dsj and
dc for XFD3 of Example 1. Due to the determinant part of XFD3, attributes
dsj store the values obtained from @fname (supplier name) and @cname (com-
ponent name). On the other hand, dc stores a value for quantity. The at-
tributes dsj and dc carry the dependency values up to the first intersection

εinters = { <<   , K8N>, 7>}inters = {<<    , 955X Neo>, 5> }ε

dc = <7>
ds2 = <K8N>

dc = <5>
ds2 = <955X Neo>

dc = <7>

7182,90

0.1.2.1.0 0.1.2.2.0

data data

ds2 = <K8N>
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0.1.2.0
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0.1.2.1 0.1.2.2
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Fig. 5. Synthesized Attributes c, inters, dsj and dc for XFD3
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node (component). Notice that for position 0.1.1 we have ds1 = {ε} ds2 =
{955XNeo} and dc = {5}. To compute temp we perform ds1 × ds2 which
gives temp = {{ε, 955XNeo}}. The attribute inters is computed using Carte-
sian products between dsj and dc. Thus inters = temp × dc, which gives
inters = {{{ε, 955XNeo}, 5}}. The function mapping is not executed for nodes
component (positions 0.1.1 and 0.1.2) because there is only one tuple l1 in each
attribute inters. The next intersection, for node supplier in position 0.1, creates
the following tuple, obtained from ds1 of @sname: < <MSI,ε>, ε>. The at-
tribute inters of node supplier stores the new tuple and also puts together the tu-
ples of attributes inters from subnodes: < < <MSI ,ε>, ε>,< <ε, 955XNeo>,5>,<
<ε, K8N>,7> >. Next, function mapping verifies for each two binary tuples in inters
if their values can be joined. The result is: < < <MSI , 955XNeo>,5>, < <MSI ,
K8N>,7> >. In the context node, labelled project, the dependency is verified (ac-
cording to Definition 4) and the value true is assigned to the attribute c. This last
attribute is carried up to the tree root as well as attributes c from other context
nodes. �

To finish this section, we notice that the grammar presented here generates any
well-formed XML document (having elements or attributes in Σelem or Σatt). It
can be seen that the documents which respect a given set of XFD are exactly
the ones having a value true as the attribute c for their context nodes.

5 Algorithm Analysis and Experimental Results

As we have discussed in [7,10], our grammarware can be regarded as a generic
way of implementing constraint verification from scratch that requires only one
pass on a XML document. Indeed, our way of using attribute grammar for ver-
ifying integrity constraints consists in the following stages:

(1) define a generic grammar capable of generating any labelled tree;
(2) define inherited attributes to distinguish nodes which are involved in the
integrity constraints, specified by using FSA;
(3) define synthesized attributes whose values are computed by functions that
check the properties stated by a given constraint.

Thus, our generic aspect refers to the fact that, by adapting some parameters,
the same reasoning is used to validate different constraints: in particular, by
determining which nodes are important in a constraint definition and, as a con-
sequence, by establishing which FSA and attributes are needed.

The following table illustrates the parameter adaptation for XFD, keys
(XKeys) and foreign keys (XFK). The case XFD was discussed in this paper.
We refer to [6] for details concerning key and foreign key validation. Notice
that besides context and leaf nodes, key specification also needs an extra special
node denoted by target. Consequently, three finite state automata are used, one
associated to each special node in the key (or foreign key) specification.
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Constr. Path expression FSA Attributes
XDF (C, ({P1 [E1], . . . , Pk [Ek]}

→ Q [E])) M , T and T ′ Inherit.: : conf
Synth.: c, inters, dsj , dc

XKeys (C, (Tg,{P1, . . . , Pk})) AC , ATg et AP Inherit.: conf
Synth.: c, tg et f

XFK (C, (TgR, {P R
1 , . . . , P R

k })
⊆ (Tg, {P1, . . . , Pk})) AC , AR

Tg, AR
P Inherit: conf

Synth.: c, tg et f

As shown in Section 4, XFD validation can be divided in two parts: (i) gen-
eration of tuples and (ii) checking, at a context level, the distinctness or (value)
equivalence of the obtained tuples. Tables 3-4 have offered the details of these
operations: the rules describe how to compose tuples, how to verify when we
reach a context node and, in this case, how to perform appropriate checking.
The validation of other integrity constraints is done in a similar way, changing
the tests performed and the actions in concerned nodes.

The generation of tuples and their verification for a given XFD is done while
parsing the XML document T and its time complexity is O(n.np.nt) where n
is the number of nodes in T , np is the number of paths for the given XFD and
nt is the number of obtained tuples (instances of the XFD to be compared).
This complexity is not affected by the shape of the XML document, but it can
be affected by the number of XFD instances existing in the document. When
there is a large number of XFD instances, the comparisons performed are time
consuming at context level.

Each XFD is checked by running the finite state automaton that corresponds
to its path and we use two stack structures to store the inherited and synthesized
attributes. The synthesized attributes are collected to compose the XFD tuples
until a context level. At this point, we use a hash table to store the formed tuples.
The index/value pair for the hash table is defined by the tuple determinant and
dependent parts, respectively. Thus, a tuple insertion in the hash table is valid if
its determinant part is not already an index. Otherwise, the dependant value of
the tuple that exists in the hash table is compared with the dependant value of
the one to be inserted: if they are distinct then the XFD is not respected under
the particular context and this part of the validation returns false.

The implementation of our validation method was done in Java. XML docu-
ments have been created specifically for our tests using the template-based XML
generator ToXGene3. By using the Xerces SAX Parser documents are read and
the necessary information stored into our data structures. The experiments were
performed using a PC with Intel Pentium Dual CPU TE2180 at 2.00GHz, 2GB
RAM under Microsoft Windows XP. For the tests illustrated in Figure 6, we
used 4 XML documents containing projects information (as shown in Figure 1)
with varying sizes (8MB, 41MB, 83MB and 125MB) where we considered strings
of size 10 and integers of size 3 for random data generation in ToXGene tem-
plates. In Part (a) we show time validation when we have a fixed number of
3 http://www.cs.toronto.edu/tox/toxgene/
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Fig. 6. (a) Validation time with number of LHS paths fixed to 2. (b) Validation time
with number of tuples fixed to 1000K.

paths (2 determinant paths as XDF3 shown in Section 2) but a varying number
of concerned tuples. The validation time increases linearly w.r.t. the number of
tuples. In Part (b) we do the inverse: we have a varying number of determinant
paths for a fixed number of tuples (1000K).

6 Conclusions

An attribute grammar can be used as an integrity constraint validator. This
paper shows its application as an XFD validator while in [6] the same reason-
ing has been used for keys. As in [17,16], the validation is performed in linear
time w.r.t. the document size and the number of XFD paths and instances. The
added value of our proposal lies in its generic nature, since our generic attribute
grammar can stand for any XML constraint validator (provided that the con-
straint is expressed by paths), by adjusting attributes, tests and the needed FSA.
An incremental version of XFD validation is obtained by extending the propos-
als introduced in [6]. We consider the possibility of adapting our approach to
implement more powerful languages such as the tree patterns proposed in [9].
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Abstract. Identifying keyword associations from text and search sources
is often used to facilitate many tasks such as understanding relation-
ships among concepts, extracting relevant documents, matching adver-
tisements to web pages, expanding user queries, etc. However, these
keyword associations change as the underlying content changes with
time. Two keywords that are associated with each other during one time
period may not be associated in another time period or the context un-
der which these keywords are associated may be different. In this paper,
we define an equivalence relationship among a pair of keywords and
develop methods to construct a temporal view of the equivalence rela-
tionship. Given a document set D, a keyword a is associated with a con-
text consisting of frequently occurring keyword sets (fs) of D in which
a appears. Two keywords a and b are equivalent in D if their contexts
are the same. We say that a and b are temporally equivalent in a
time interval if a and b are equivalent in the documents published during
that time interval. Given a time-stamped document set D published over
a time period T , we define the temporal equivalence partitioning
problem to construct a partitioning of the time period T into a sequence
of maximal length time intervals such that in each time interval keywords
a and b are either temporally equivalent or the equivalence relationship
does not hold. A temporal equivalence partitioning of a document set
for a given pair of keywords highlights all of the different contexts in
which the given keywords are associated which can be used to generate
time-varying keyword suggestions to users. We show the effectiveness of
the approach by constructing the temporal equivalence partitionings of
several pairs of keywords from the Multi-Domain Sentiment data set and
the ICWSM 2009 Spinn3r data set.

1 Introduction

The information available on the Web is constantly evolving.Documents discussing
new topics are created and/or older documents are constantly updated. Almost all
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documents available on the Web today contain time stamps that denote the time
of creation/publication of a document as well its update. These time stamps are
extremely useful for temporal analysis of the changing information.

Keywords (key phrases) are central for representing the information on the
Web as well as for accessing relevant information. Keywords and associations
among keywords are often used to match user needs to relevant documents,
select advertisements that match web pages displayed to a user, to improve user
queries, etc. However, with constantly changing underlying document set, it is
extremely challenging for users to know the exact keywords to use to express
their information needs. As the information evolves, using the same keywords
to express a user need may not result in access to relevant information since the
evolved information may not contain the same keywords or may contain lesser
number of them which may result in lower ranking of relevant documents. And,
the keyword associations may also change in the evolved information – some
keywords may no longer be associated with each other.

In this paper, we describe a novel approach to extract evolving temporal
relationships among keywords from a time stamped document set. We focus on
one particular relation among keywords which we call equivalence. We first
define when a pair of keywords a and b are equivalent. We then capture the
temporal changes in the equivalence of keywords by constructing a partitioning
of the time period of the given document set into a sequence of maximum length
intervals such that, in each interval, the equivalence relationship is preserved.

Our approach analyzes a set of documents D published over a time period T
to extract equivalence among keyword pairs. We assume that T is represented
as a list of time points of some base granularity day, month, etc. Each document
in D is assigned to one of the time points in T based on its time stamp.

Each document is represented as set of keywords. Then, we use the frequent
item set computation to compute the sets of keywords that are frequent in a
document set [8]. The context of a keyword a in a document set is the set of all
maximal frequent keyword sets that contain a. Intuitively, two keywords a and b
are equivalent in a document set D if the contexts of a and b in D are the same
when a is substituted by b or vice versa. In that case, we refer to the contexts
of a and b as synonymous contexts.

Keywords a and b are temporally equivalent in a time point (or an interval)
if a and b are equivalent in the document set of that time point (or interval). To
identify temporal changes in the equivalence of a and b, we introduce the notion
of an equivalence preserving and non-equivalence preserving interval. In-
formally, given an interval Ti, Ti is equivalence preserving for a and b if a and b
are temporally equivalent everywhere in Ti with the same synonymous contexts.
An equivalence preserving interval Ti is maximal if there is no other interval Tj

that properly contains Ti and Tj is an equivalence preserving interval for a and
b. An interval Tk is non-equivalence preserving for a and b if the context of a
and b are unchanged throughout Ti and a and b are not equivalent anywhere in
Ti. Maximal non-equivalence preserving interval can be defined similar to that
as maximal equivalence preserving interval.
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Given a time stamped document set D and a pair of keywords a and b that
appear in D, we define the problem of optimal temporal equivalence parti-
tioning problem and describe an efficient algorithm to construct it. The time
period T of the given document set is partitioned into a sequence of maximal
equivalence or non-equivalence intervals to highlight all the changes in the equiv-
alence of keywords a and b. Suppose we consider consecutive intervals Ti and
Ti+1 in the partitioning. If both Ti and Ti+1 are equivalence preserving intervals
for a and b, then it must be that a and b are equivalent in these two intervals un-
der two different synonymous contexts. If Ti and Ti+1 are both non-equivalence
preserving intervals, then the context of a or b or both are different as we move
from Ti to Ti+1 and a and b are not temporally equivalent in either Ti or Ti+1.

We show the effectiveness of our approach by constructing the optimal tem-
poral equivalence partitionings of several hundred pairs of keywords from two
different document sets – the DVD review subset of the Multi-Domain Senti-
ment data set[3] and the U.S election document set from the Spinn3r data set
[7]. Our preliminary results are very encouraging. They show that, for all of the
keyword pairs tried, the equivalence relationship changes with time. There are
time intervals when the pair of keywords is temporally equivalent and others
when they are not equivalent. When the equivalence preserving intervals were
examined, for all the keyword pairs tried, the intervals spanned different lengths
of the time period. Moreover, the synonymous contexts of a pair of keywords
were different as the equivalence preserving intervals changed over time. The ex-
perimental results confirm our observation that equivalence of keywords changes
over time and that keywords are equivalent under different context at different
times.

The rest of the paper is organized as follows. In Section 2, we outline some
preliminary definitions. In Section 3, we discuss the temporal equivalence of
keywords and describe a novel and efficient algorithm for constructing an optimal
temporal equivalence partitioning for a pair of keywords. In Section 4, we discuss
some experimental results. Section 5 discusses the related work and Section 6
concludes the paper.

2 Preliminary Definitions

A time point is an instance of time with a given base granularity, such as a
second, minute, day, month, year, etc. A time point can be represented by a
single numerical value, specifying a given second, minute, day, etc. A time period
T is a sequence of n consecutive time points t1, ..., tn. An interval Ti of T is a
sequence of consecutive time points ti1, . . . , tip (1 ≤ i1 ≤ ip ≤ n), starting at
time point ti1 and ending at time point tip, in T . Let Ti and Tj be two intervals
of T . Ti is contained in Tj if the starting time point of Ti is later than that of
Tj and the ending point of Ti is earlier than that of Tj. We use the notation Ti,
Tj, so on to refer to arbitrary intervals and use notation Tip to refer to intervals
covering specific time points ti through tp.
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Given two intervals Tip and Tql, Tql immediately follows Tip if q = p + 1.
In this case, we say that interval Til is a concatenation of Tip and Tql and is
denoted as Til = Tip ∗ Tql. A partitioning, denoted by Π , of a time period T
consisting of time points t1, ..., tn, is a division of T into a sequence of non-
overlapping intervals T1, T2, ..., Tk where each interval Ti+1 immediately follows
Ti and T = T1 ∗ T2 ∗ . . . ∗ Tk. The size of Π , denoted by |Π | is the number of
intervals in it.

LetD be a time-stamped document set containing documents d1, . . ., dm. Each
document is associatedwith a time stamp indicating its time of creation/publication.
Let T be the time period over which the documents are published where T = t1,
. . ., tn. Each document in D is assigned to the time point in T during which it
was published. We use Docs(ti) (Docs(Ti)) to denote the set of documents in D
assigned to time point ti (time interval Ti). And, Docs(T ) is D.

We represent each document in D as a set of keywords. We will slightly abuse
the notation and use di to denote the set of keywords in document di as well. Let
α be a user-defined threshold value such that 0 < α ≤ 1. We define a frequent
keyword set fs over D as a set of keywords where fs is a subset of at least
α ratio of documents in D. We say that a frequent keyword set fs over D is
maximal if there no frequent keyword set fr (s �= r) over D such that fs ⊆ fr.
The context of a keyword a in a document set D, denoted by ca, is the set of
all frequent item sets containing a.

The context ca in D is the empty set if a does not appear at least in α ratio of
documents in D. These are the empty contexts. A singleton context ca = {{a}}.
Example 1. Let D be a document set with 5 documents where d1 = {a, b, c, d},
d2 = {a, b, c}, d3 = {a, d}, d4 = {b, c, d}, and d5 = {a, c, d}. Let α = 0.5.
The frequent item sets over D are – {a}, {c}, {b}, {d}, {a, c}, {a, d}, {b, c},
{c, d}. Contexts of keywords a, b, c, and d over D are ca = {{a}, {a, c}, {a, d}},
cb = {{b}{b, c}}, cc = {{c}, {a, c}, {b, c}, {c, d}}, and cd = {{d}, {a, d}, {c, d}}
respectively.

We use cx/(a← b) to denote the context obtained by replacing all the occurrences
of the keyword a appearing in a context cx with the keyword b. If a does not appear
in cx then cx/(a ← b) = cx. Keywords a and b are equivalent in D if ca and cb
are not empty or singleton contexts and ca/a ← b = cb/a← b. Then, we refer to
contexts ca and cb as synonymous contexts of a and b in D.

Thus, the equivalence of two keywords a and b captures the notion of substi-
tutability of a by b (and vice versa) with respect to the contexts in which they
appear.

Example 2. In the above example, keywords a and d are equivalent since ca/a
← d = {{d}, {c, d}} = cd/a ← d. No other pair of keywords are equivalent.

Keywords a and b are temporally equivalent in a time point ti in T if they
are equivalent in Docs(ti). Temporally equivalent keywords in a time interval Ti

are similarly defined using the document set Docs(Ti).
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3 Temporal Equivalence Partitioning

Suppose we are given a document set published over a time period T . Let a and
b are keywords that appear in D. A temporal equivalence partitioning of T can
be constructed to explicate all different synonymous contexts over T for a and b,
if they exist. We first introduce the definitions needed for defining the temporal
equivalence partitioning problem.

Let Ti be an interval of T where Ti consists of time points ti1, . . . , tip. Let ca
and cb be the contexts of a and b in each of the time points tih (1 ≤ h ≤ p)
and in Ti. We say that Ti is an equivalence preserving interval for a and b
if a and b are temporally equivalent in Ti as well as in each of the time points
ti1, . . . , tip. Ti is a non-equivalence preserving interval for a and b if a and
b are not temporally equivalent in every time point in Ti as well as at Ti.

Interval Ti is a maximal equivalence preserving (non-equivalence preserving)
interval for a and b if there exists no interval Tj such that Tj properly contains
Ti and Tj is an equivalence preserving (non-equivalence preserving) interval for
a and b.

A temporal equivalence partitioning of T for a and b, denoted by Πab is a
partitioning T1 ∗ T2 ∗ . . . ∗ Tk of T where each interval Ti is an equivalence
preserving interval or a non-equivalence preserving interval. We say that Πab is
optimal if its size is a minimum. It is easy to see that Πab is optimal if each
interval is either a maximal equivalence preserving or maximal non-equivalence
preserving interval.

An Algorithm for Constructing an Optimal Temporal Equivalence
Partitioning

Constructing a temporal equivalence partitioning requires determining if the
given keywords a and b have synonymous contexts in a time point or an interval.
We first discuss the relationship between a context of a keyword in a time interval
and that at the time points in that interval. Context of a keyword a in a document
set D consists of frequent keyword sets of D in which a appears. First consider
the following example.

Example 3. Suppose we have time period T with 4 time points. Docs(t1) consists
of three documents d11, d12, and d13 where d11 = {a, b, x}, d12 = {a, b, y}, and
d13 = {a, b, z}. Docs(t2) consists of three documents d21, d22, and d23 where
d21 = {a, b, t}, d22 = {a, b, t, q}, and d23 = {p, q, r}. Docs(t3) consists of three
documents d31, d32, and d33 where d31 = {a, b, t}, d32 = {a, q, t}, and d33 =
{a, b, p}. Docs(t4) consists of three documents d41, d42, and d43 where d41 =
{a, b, p}, d42 = {q, t, p}, and d43 = {a, b, t}.

Suppose α is 0.5. Then the frequent keyword sets are as follows – for Docs(t1),
we have {a}, {b}, {a, b}, for Docs(t2) we have {a}, {b}, {t}, {q}, {a, b}, for
Docs(t3) we have {a}, {b}, {t}, {b}, {a, b}, {a, t}, and for Docs(t4) we have {a},
{b}, {p}, {t}, {a, b}.

Since frequent keyword set {a, b} appears in both Docs(t3) and Docs(t4), it
is easy to see that it also appears in time interval Docs(T34) where T34 = t3 ∗ t4.
Frequent keyword set {a, t} appears only in time point t3. However, it is also
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frequent in Docs(T34) whereas keyword set {p} is frequent in Docs(t4) but is
not frequent in Docs(T34).

Context of a in time point t3 is {{a, b}, {a, t}}. In time point t4, context of a
is {{a, b}}. And it is {{a, b}, {a, t}} in T34.

The above example illustrates that frequent keyword sets of document set at a
time interval is some combination of frequent keyword sets at the time points
in that interval. Consequently, the context of a keyword in a time interval may
also be different than those at the time points in that interval. We say that an
interval Ti is a context preserving interval for a keyword a if the context of
a in Ti is the same as that of a in each of the time points in Ti. In the above
example interval T12, where T12 = t1 ∗ t2, is a context preserving interval for a
whereas T34 is not. An interval Ti is a maximal context preserving interval for a
keyword a if there exists no Tj containing Ti such that Tj is a context preserving
interval for a.

A context preserving partitioning of a time period T for a keyword a,
denoted by ΠC

a is a concatenation of intervals T1 ∗ . . . ∗ Th where each Ti is a
maximal context preserving interval for a.

Lemma 1. Let Ti be an interval consisting of time points ti1, . . ., tip. If a
keyword set s is frequent in the document set of each of the time points tiq
(1 ≤ q ≤ p), then s is a frequent keyword set in Docs(Ti). If a keyword set s is
not frequent in the document set of any of the time points tiq (1 ≤ q ≤ p), then
s is not frequent in Docs(Ti).

The above lemma can be used to construct maximal context preserving intervals
for a keyword in the following manner. Let FSU(a) denote the union of frequent
sets containing a from all time points in T . Suppose that FSU(a) is not empty.
Consider a frequent keyword set fs in FSU(a). We construct a partitioning of T
by merging all time points ti such that fs is a frequent keyword set in Docs(ti).
Time points tj where fs is not a frequent keyword set in Docs(tj) are similarly
merged. We denote this partitioning of T as Π(fs, a). Using the above lemma,
we observe that each interval Ti in Π(fs, a) is a maximal interval such that either
fs is a frequent keyword set in Docs(Ti) as well as all the document sets at the
time points in Ti or fs is not a frequent keyword set in Docs(Ti) as well as the
in the document sets at the time points in Ti. We construct a Π(fs, a) for each
frequent set in FSU(a). The context preserving partitioning of T for a, ΠC

a , is
a product1 of partitioning Π(fs, a) for each frequent keyword set in FSU(a).

Constructing a context preserving partitioning for keywords is the key to
constructing a temporal equivalence partitioning of the time period for a given
pair of keywords. The following lemma proves the relationship between a context
preserving and an equivalence preserving interval of a and b.

Lemma 2. Let Ti be an interval where contexts of keywords a and b are ca and
cb. Ti is an equivalence preserving or a non-equivalence preserving interval for
a and b if and only if Ti is a context preserving interval for both a and b.
1 The product of a set of partitions is the coarsest partition that is a refinement of

each of the partitions in the set[1].
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The product of ΠC
a and ΠC

b is a partitioning of T where each interval in the
partitioning is a context preserving interval for both a and b. This product
identifies the time intervals where the contexts of a and b are the same as those
at the time points in that interval. Hence if a and b are temporally equivalent (or
non-equivalent) in an interval in the product, then they are temporally equivalent
(not temporally equivalent) in each of the time points in that interval and vice
versa. Hence, the product is a temporal equivalence partitioning of T for a and
b. Now, it is easy to see that such a temporal equivalence partitioning is also
optimal since the product of ΠC

a and ΠC
b is the coarsest possible partitioning of

the refinement of ΠC
a and ΠC

b .
The following procedure outlines the steps in the construction of Πab. The

procedure takes as input a time stamped document set D, two keywords a and
b, an α value for computation of frequent keyword sets. The procedure first
computes the frequent keyword sets for the document sets at each of the time
points in T . It then extracts the contexts of a and b in the document set at each
time point. We then compute the context preserving partitioning of a and that of
b. We then compute the product of these two partitionings to obtain the temporal
equivalence partitioning of T for a and b . We then check the equivalence of a and
b in each interval Ti of the product. If a and b are temporally equivalent in Ti,
then Ti is deemed as an equivalence preserving interval for a and b. Otherwise,
Ti is a non-equivalence preserving interval.

Input: Time stamped document set D published over T where T = t1, . . . , tn,
keywords a and b, and α

Output: A list of time intervals in the temporal partitioning of a and b.
Begin

Construct the frequent keyword sets from each Docs(ti), 1 ≤ i ≤ n.
Let FSU(a) (FSU(b)) be the set of frequent keyword sets containing a (b)

collected from all time points.
Construct the context preserving partitioning of T for keyword a by first

constructing aΠ(fs, a) for each fs ∈ FSU(a) and constructing a product
of these Π(fs, a).

Construct the context preserving partitioning of T for b in a similar manner.
Construct a product of the partitionings constructed in the previous steps

and output the list of intervals as Πab.
End.

4 Experiments

We used two different data sets to study the effectiveness of the methods de-
scribed in the paper. The first data set, referred to as the Election data set in
the paper, is a small subset of the Spinn3r Data Set, provided by Spinn3r.com.
The data set contains around 44 million blog posts made between August 1st
and October 1st, 2008. This data set contains blog posts related to a number of
big events including the Olympics, US presidential conventions, etc. We used a
small set of keywords – democratic, republican, palin, mccain, obama, clinton to



Extracting Temporal Equivalence Relationships among Keywords 117

select a set of blog posts related to 2008 US presidential election from this data
set. Our Election data set contains around 9700 blog posts, published during
the months of August and September 2008. The time period associated with
the document set contains 61 time points, one for each day. Since many blog
posts contained spelling errors, we used WordNet to select clean keywords to
represent each document in the set. Unfortunately, this resulted in removal of
some popular keywords such as obama.

The second data set, referred to as the DVD Data, is a small subset of the
multi-domain sentiment data set (version 2.0) [3]. It contains product reviews
taken from Amazon.com from many product types. Some product types such as
books and dvds have hundreds of thousands of reviews. Others have only a few
hundred. We considered the product reviews submitted for DVDs. There were
about 124,000 total reviews posted during January 1999 and April 2007. Each
review is represented as a set of keywords that are not stop words. There are
100 time points in the time period of this data set, one for each month.

Obtaining the context of a keyword requires the computation of the frequent
keyword sets for the document set of each time point. To do so, we used the
Apriori [9] Package. The Apriori implementation represents each document as
a binary vector over keywords. To manage the computational costs as well as
to remove keywords that have a low chance of being frequent, we computed the
keyword set for each document set as follows. We first considered all keywords
with the document frequency of at least 0.25 in each time point. We then merged
all the these keywords and sorted them in the number of time points they occur
in. If a keyword has at least 0.25 document frequency in many time points, it is
ranked higher. Then, we considered the top n keywords to construct the docu-
ment vectors for each time point. By considering frequently occurring keywords
in each time point as well as across time points, we increase the chance of finding
keywords with the same context in multiple time points. However, considering
only top n keywords may exclude some documents that do not contain any of
the chosen keywords. Hence, the frequent keyword sets will be constructed over
possibly a small percentage of the document set in each time point. For exam-
ple, when we chose the top 50 most frequent keywords for the DVD data set, we
processed only about 6,000 documents over the entire time period of the data
set. However, for the Election Data set, we included as many as 9538 documents
when we chose the top 50 most frequent keywords. To control the cardinality of
the context of a keyword, we limited the maximum size of any frequent keyword
set to 5.

We conducted the experiments by considering the top 30 and top 50 keywords
for each data set. Let us denote the set of keywords chosen for the experiment
as Ek. We computed the frequent keyword sets for each time point by setting
the support value to 0.15. From the frequent keyword sets, we collected the
context of each keyword in Ek in the document set of each of the time points.
We then constructed the context preserving partitioning for each keyword in Ek.
Then, we constructed an optimal temporal equivalence partitioning of the time
period for each pair of keywords in Ek. In the optimal temporal equivalence
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Fig. 1. Top 30 keywords for the DVD and Election Data Sets

Fig. 2. Size of Πab Vs the Number of Πab with That Size for Top 30 Keywords

partitionings, we merged the consecutive non-equivalence preserving intervals
into a single non-equivalence preserving interval since many of them contained
empty contexts for the keywords.

In case where Ek contained the top 30 keywords, we constructed 435 temporal
equivalence partitionings. When |Ek| = 50, it was 1176. Note that the context
of a keyword may be empty in every time point for some keywords and therefore
are removed from |Ek|. Figure 1 shows the top 30 keywords for each data set.

Given a pair of keywords a and b, constructing an optimal equivalence pre-
serving partitioning requires checking that a and b are temporally equivalent
in each of the intervals in the partitioning, which in turn needs checking that
ca/a← b = cb/a← b. This condition was often stringent for the chosen data sets,
i.e.; many keywords were often deemed non-equivalent even if the difference was
simply a single singleton frequent keyword set. Therefore, the optimal tempo-
ral equivalence partitionings contained large time intervals where the keywords
were not equivalent, and few (or zero) time intervals where the keywords were
equivalent. Therefore, we relaxed the requirement of equivalence as follows. We
say that ca/a← b and cb/a← b are beta-equivalent if the fraction of keywords
that appear in some frequent keyword set in ca/a ← b, but not in any keyword
set in cb/a ← b, and vice versa, is at most β. Using β − equivalence allows us
to treat keyword contexts as simple sets of keywords and hence checking that
two contexts are beta-equivalent can also be done efficiently. Note that, if β is
set to 0, then the contexts of a and b contain the same set of keywords. Higher
the value of β, higher is the difference between ca and cb. We conducted our
experiments with four different values of β, 0, 0.25, 0.5, and 0.75.

In the rest of the section, we discuss the characteristics of the optimal tempo-
ral equivalence partitionings constructed by our method. An optimal temporal
equivalence partitioning of a time period T for a given pair of keywords a and
b, Πab, is a partitioning of T into time intervals where each interval in the
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Fig. 3. Size of Πab Vs the Number of Πab with That Size for Top 50 Keywords

partitioning is equivalence or non-equivalence preserving for a and b. We ana-
lyzed the size of each Πab to understand the temporal changes in the equivalence
relationship of a and b. If |Πab| is small, there is a small number of intervals in
Πab, which means that the equivalence (or non-equivalence) of a and b over time
does not change much and hence can be compactly represented. In Figures 2
and 3, we show the sizes of Πab constructed, for each of the β values tried. In
both figures, the X-axis plots the different ranges for sizes of Πab and the Y -axis
plots the number of partitionings. For each size range on the X-axis, a set of
four bars are displayed, depicting the number of partitionings that fall in that
range for each value of β tried. For example, there are fewer than 50 optimal
partitionings with a size in the range 20 − 29 when β = 0.25 for the DVD data
set when Ek consists of the top 30 keywords.

Upon examining these charts, we observed that the number of Πab in the
range 20 − 29 is very low when |Ek| = 30 for the DVD data. For that data set,
most Πab were of size in the range 40 − 49 and above for all values of β tried.
Upon examining the data, we conjecture that, for many keyword pairs a and
b, the temporal equivalence (or non-equivalence) was limited to small intervals,
with length 1 or 2 time points, and could not be represented more compactly.
When we expanded Ek to include top 50 keywords, the number of Πab with small
sizes were very high. The number of time points for this data set is 100. Hence,
Πab with size less than 50 represents the equivalence relation more compactly.
Further examination of these Πab, showed that, for many keyword pairs, there
were non-equivalence preserving intervals that spanned long time periods.

In case of the Election Data set, the number ofΠab in each range stayed pretty
much the same as we varies the cardinality of Ek. The number of time points for
this data set is 61. Therefore, with many Πab in range 20− 40, we can conclude
that the temporal equivalence (or non-equivalence) of a pair of keywords may
span multiple consecutive time points.

To understand the effect of β, we examined the height of the bars for range.
The heights of these bars change with β when Ek is 30 whereas the heights do not
change much at all when Ek is 50 for both the data sets. From Figure 2, it can be
observed that the size of Πab changes with β value. As β value increases, the size
of Πab seems to get longer for both data sets. This is because, for small values
of β, more consecutive time points were non-equivalence preserving and hence,
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Fig. 4. Max Length of Equivalence Preserving Interval Vs the Number of Πab for Top
30 Keywords

might be represented by one long time interval whereas, as β value increased,
some of the non-equivalence preserving intervals were turned into equivalence
preserving intervals with non-empty synonymous contexts. Therefore, these in-
tervals could not be combined with consecutive time points/intervals where the
keyword pair was not equivalent. The effect of β was negligent when Ek is 50
for both data sets, as seen from Figure 3. This shows that β may not play any
role as we increase the number of keywords used to represent each document.
We will perform additional experiments to understand the effect of β on the size
of Πab for large document sets.

The experiments with the size of Πab show that the equivalence of a pair of
keywords changes with time, and for some keywords, it may not change too often
and hence, can be compactly represented.

Next we studied the maximum length (the number of time points) of the
equivalence preserving interval in the Πab of each pair of keywords a and b. For
each Πab constructed, we extracted the maximum length equivalence preserving
interval in the optimal partitioning. Figures 4 and 5 display these results. In the
figures, the X-axis plots the different length values for the equivalence preserving
intervals and Y -axis plots the number of Πab. There are 4 bars for each length
value on the X-axis, one for each β value.

From Figure 4, when |Ek| is 30, the maximum length of an equivalence pre-
serving interval on average is larger for the DVD data set when compared to
that of the Election data set. For many Πab, it is at least 3 time points long. For
the Election data set, the maximum length of an equivalence preserving inter-
val either 1 or 2 for most Πab. When |Ek| is expanded to top 50 keywords, the
maximum length of an equivalence preserving interval falls to 1 or at most 2 for
many Πab in both the data sets, which can be observed from Figure 5. Although
we focus only on the maximum length of an equivalence preserving interval, in
general the length and where it occurs in the time period is interesting to note
for any equivalence or non-equivalence preserving interval. This is because, the
length gives us information about how long the context holds a keyword and the
changes in it. The dates during which the equivalence preserving interval occurs
on a time line is also a crucial price of information because the synonymous
context associated with the interval gives clues about the reason for equivalence.
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Fig. 5. Max Length of Equivalence Preserving Interval Vs the Number of Πab for Top
50 Keywords

Fig. 6. Synonymous Contexts Computed for Keyword Pairs

Increasing the value of β seems to have some impact on the maximum length of
equivalence preserving interval for the election data. As β increases, the number
of Πab with longer equivalence preserving intervals increases. On the other hand,
increasing the β value has little impact on the equivalence preserving intervals
for the DVD data.

In Figure 6, we display a few pairs of keywords and their synonymous con-
texts from one or two of the equivalence preserving intervals. The three keyword
pairs were chosen for each data set. Keyword set Ek is set to top 50 keywords
and β value is set to 0.5. The first column in the table shows the keyword pairs,
the second column shows the total number of equivalence preserving intervals in
the corresponding optimal equivalence preserving partitioning, Πab, of the key-
word pair, and the third column display a couple of synonymous contexts for the
keyword pair. The first row in the table shows the synonymous context for the
keyword pair movies, films. There are 6 equivalence preserving intervals in the
Πab of this pair, with the longest interval spanning Aug 2006 - Sep 2006. There
is only one keyword in the synonymous context of movies, films, and that was
(predictably) cinema. For the rest of the keyword pairs, the synonymous con-
texts in different equivalence preserving intervals contained overlapping keyword
sets. For example, keyword pair republican, sarah had the longest equivalence
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preserving interval from Sep 1st to Sep 6th with the synonymous context coun-
try, election whereas these two keywords are also temporally equivalent on Aug
29th with the synonymous context country, election, john.

This small sample of the equivalence preserving intervals of keywords show
that the proposed method finds meaningful relationships from keywords. We are
currently extending the experiments to include thousands of keywords from each
document set. To address scalability issues, we plan to extend the definition of
equivalence of keywords to consider only the maximal frequent item sets. The
notion of β-equivalence will be very useful in identifying equivalence preserving
partitionings as the number of keywords are increased.

5 Related Work

Identifying keyword relationships from text documents is a classic problem in
information retrieval. Keyword relationships are typically used for query expan-
sion and document clustering [15,16]. Content based methods such as associa-
tion clusters, collocation of words have been popular in identifying relationships
among keywords.

Identifying keywords that represent entity names and establishing relation-
ships among these keywords is an active area of research. We list a few references
here. In [12], authors describe an approach to identify firm names and relation-
ships between them using a search engine. Reference [5] outlines a method to
extract synonymous gene and protein names from MEDLINE abstracts based on
co-occurrence network. In [4], authors outline a method for identifying entities
and synonyms from Wikepedia. All these approaches are non-temporal.

To the best of our knowledge, there is not much research on identifying tem-
porally changing keyword relationships from document sets and it is an emerging
research topic. In earlier works in this topic, in [6], authors describe an approach
for extracting synonyms of named entities from the history of Wikipedia and clas-
sifying them into time-independent and time-dependent synonyms. The synonym
relationships are then used to improve retrieval effectiveness. In [10,11], authors
define several temporal relationships among keywords, such as co-occurring, or-
dered, and define an approach to determine these relationships. The temporal
relationships are then used to generate expanded queries.

Our approach is fundamentally different from these approaches because it
uses the frequent item set approach to define an equivalence relationship among
a pair of keywords, which not only allows us to identify associated words at
time intervals but also provide justification of associations in terms of contexts.
Further, the proposed approach constructs an optimal partitioning of time period
into equivalence and non-equivalence preserving time intervals highlighting all
of the temporal changes in associations of the given pair of keywords.

Using frequent item sets to establish keyword relationships has also been used
in [13] where word contexts based on frequent item sets were used to extract a
homonym relationship among keywords. Our notion of keyword context is similar
to the word contexts defined in this work. However, our application of contexts
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is significantly different than that of [13]. Frequent item sets have also been used
to achieve high-dimensional hierarchical document clustering (see [14] and the
references contained therein.).

The notion of an optimal temporal equivalence partitioning is inspired by
our earlier work on information preserving decompositions of document sets
[2]. However, the proposed approach is significantly different and perhaps the
first attempt at studying temporal segmentation to capture the changes in the
equivalence relationship of keywords.

6 Conclusions

As the information evolves on the internet, relevant keywords and their associa-
tions change over time. In this paper, we define the problem of constructing an
optimal temporal partitioning of a time period for a given pair of keywords a
and b which highlights the changes in the temporal equivalence relationship of
a and b. Given a document set D published over a time period T , we represent
each document in D as a set of keywords. We then extract the frequent keyword
sets from the document set to construct a context of a keyword in a document
set. Two keywords are said to be equivalent in a document set if their contexts
are the same. We then extend the notion of equivalence to time intervals. We
define the notion of equivalence preserving interval of a pair of keywords a and
b as follows. An interval Ti is an equivalence preserving interval for a and b if
a and b are equivalent in all of Ti under the same context. The notion of non-
equivalence preserving interval can be similarly defined. An optimal temporal
equivalence partitioning of T for a and b is a sequence of intervals where each
interval is either an equivalence preserving or non-equivalence preserving for a
and b and contains the minimum possible number of intervals. We describe an
efficient algorithm for constructing an optimal temporal equivalence preserving
partitioning of T for a keyword pair. We implemented the proposed approach
and studied its effectiveness by constructing the optimal temporal partition-
ings for several hundred keyword pairs obtained by analyzing the Multi-Domain
Sentiment data set and the Spinn3r data set. The experiments show that the
equivalence of keyword pair changes over time. And, keyword pairs are equiva-
lent under different contexts during different time intervals. Our future work is
to develop a framework to perform query expansion based on temporally chang-
ing equivalence relationship between keywords and measure the effectiveness of
expanded queries. We also plan to extend the notion of temporal equivalence of
a keyword pair to temporal equivalence of a set of keywords.
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Abstract. Codd tables are databases that can carry Codd’s null “value
unknown at present” in columns that are specified as NULL. Under Lev-
ene and Loizou’s possible world semantics we investigate the combined
class of uniqueness constraints and functional dependencies over Codd
tables. We characterize the implication problem of this class axiomati-
cally, logically and algorithmically. Since the interaction of members in
this class is intricate data engineers can benefit from concise sample ta-
bles. Therefore, we investigate structural and computational properties
of Armstrong tables. These are Codd tables that satisfy the consequences
of a given set of elements in our class and violate all those elements that
are not consequences. We characterize when a given Codd table is an
Armstrong table for any given set of our class. From this result we es-
tablish an algorithm that computes an Armstrong table in time that is
at most quadratic in the number of rows in a minimum-sized Armstrong
table. Data engineers can use our Armstrong tables to judge, justify,
convey and test their understanding of the application domain.

1 Introduction

A database system manages a collection of persistent information in a shared,
reliable, effective and efficient way. In the relational model of data [6] data en-
gineers use relations to capture the structure of the application domain, and
integrity constraints to restrict the relations to those considered meaningful for
the application domain. Over single relation schemata the class of functional
dependencies (FDs) is the most important class of integrity constraints. In par-
ticular, it subsumes the class of keys. Database management systems deviate
from the relational model of data to facilitate data processing. Tables are used
instead of relations. Tables may contain null values in columns declared NULL
to model partial information. Tables may also contain duplicate rows since du-
plicate elimination is considered to be expensive. These features imply that the
interaction of FDs over tables is more intricate than over relations.

Example 1. Consider a contact management system with column headers Ad-
dress, City and ZIP. The combination of Address and City entries must be
unique, and data entries in City are uniquely determined by data entries in ZIP.
In the relational model of data we can model this semantics as the FD set Σ1

consisting of Address, City → ZIP and ZIP → City. This can be represented
concisely by a so-called Armstrong relation [13], e.g. the relation on the left.

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 125–139, 2011.
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Address City ZIP
Le Louvre Paris 75001
Pont Neuf Paris 75001
Pont Neuf Toulouse 31000
Tour Eiffel Paris 75007

Address City ZIP
Pont Neuf Paris 75001
Le Louvre Paris 75001
Pont Neuf Toulouse 31000

unk Paris 75007
Pont Neuf unk 75001

Over SQL tables we capture the semantics by the set Σ2 with the uniqueness
constraint (UC) unique(Address,City) and the FD ZIP → City. Suppose, we
specify only the column ZIP as NOT NULL. Then the table above on the right is
an Armstrong table for Σ2 and the NOT NULL constraints. We can see that the
constraints interact very differently over tables than they do over relations. For
instance, Σ1 implies that Address and ZIP form a composite key over relations.
However, over tables Σ2 does not imply the UC unique(Address, ZIP). ��

For the efficient design and maintenance of real database systems it is therefore
crucial to understand the interaction of UCs and FDs over tables, as illustrated
by Example 1. We will model partial information by Codd’s null “value unknown
at present”, denoted by unk, as adopted by SQL [8]. Hence, we will speak of Codd
tables. Our class of FDs are those proposed by Levene and Loizou, and are based
on a possible world semantics to allow a high degree of uncertainty.

Contributions and Organization. We summarize previous work in Section 2.
The basic definitions are given in Section 3. We will characterize the interaction
of UCs and FDs axiomatically, algorithmically and logically in Section 4. More
precisely, we will establish a finite axiomatization that generalizes the well-known
Armstrong axioms; we will establish an algorithm that decides the implication
problem in time linear in the input, and we will show that it is equivalent to that
of goal and definite clauses in Cadoli and Schaerf’s well-known approximation
logic S-3. We then investigate structural and computational properties of Arm-
strong tables in Section 5. These are Codd tables that satisfy those UCs and
FDs implied by a given set of such constraints and violate all others. Therefore,
Armstrong tables are concise Codd table representations of UCs and FDs which
data engineers can use to judge, justify, convey and test their understanding of
the application domain. For Example 1 above an inspection of the Armstrong
table on the right may convince the data engineers to specify the additional UC
unique(Address,ZIP). We characterize for any given table definition T and any
given set Σ of UCs and FDs in the presence of any NOT NULL constraints over
T , when a Codd table over T is an Armstrong table. This characterization is
then used to establish an algorithm for computing an Armstrong table. While
the problem of finding such a table is precisely exponential in the number of
column headers, our algorithm computes an Armstrong table whose number of
rows is at most quadratic in the minimum number of rows required by any Arm-
strong table. Our results bridge the gap between the existing relational theory
and database practice. We conclude in Section 6 where we also comment briefly
on future work.
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2 Related Work

Data dependencies and Armstrong databases have been studied thoroughly in
the relational model of data, cf. [1,13]. Dependencies are essential to the design
of the target database, the maintenance of the database during its lifetime, and
all major data processing tasks [1,21]. Armstrong databases are a useful design
aid for data engineers that can help with the consolidation of data dependencies
[17] and schema mappings [2], the design of databases [19] and the creation of
concise test data [9].

In relational databases, a key K over R is satisfied by a relation, if no two
distinct tuples have the same values on all the attributes of K. Thus, a relation
satisfies the key K if and only if the relation satisfies the FD K → R. Hence,
it suffices to study the class of FDs. Armstrong [3] established the first axiom-
atization for FDs. In general, axiomatizations can be applied by designers and
administrators to validate the specification of explicit knowledge, to design and
fine-tune databases or to optimize queries. An axiomatization ensures that all
opportunities of utilizing implicit knowledge have been exploited. An analysis of
the completeness argument can provide invaluable hints for finding algorithms
that efficiently decide the implication problem. The implication problem of FDs
can be decided in time linear in the input [11]. Fagin established the correspon-
dence between the implication of functional dependencies and the implication
of Horn clauses in classical propositional logic [12]. For relations, the structural
and computational properties of Armstrong relations for the class of functional
dependencies are well-studied [5,19].

One of the most important extensions of Codd’s basic relational model [6] is
incomplete information [7,16]. This is mainly due to the high demand for the
correct handling of such information in real-world applications. Approaches to
deal with incomplete information comprise incomplete relations, or-relations or
fuzzy relations. In this paper we focus on incomplete relations. In the literature
many kinds of null values have been proposed; for example, “missing” or “value
unknown at present”, “non-existence”, “inapplicable”, “no information” and
“open”. Several works on functional dependencies in incomplete relations exist,
but none covers the case of Codd tables with arbitrary NOT NULL constraints.
Levene and Loizou studied the class of functional dependencies over Codd
relations where every attribute is assumed to be NULL [18]. Atzeni and Morfuni
established an axiomatization of FDs in the presence of NOT NULL constraints
under the “no information” interpretation [4]. In this context, Hartmann and
Link established an equivalence of the implication problem for this class of FDs
to that of propositional Horn clauses in Cadoli and Schaerf’s family of S-3
logics [15]. Both works only consider relations where FDs subsume UCs, but did
not consider tables with duplicate rows. In this paper we cover the combined
class of UCs and FDs in the presence of NOT NULL constraints under the
possible world semantics of Codd’s null “value unknown at present” in tables
that can contain duplicate rows. No previous research has studied Armstrong
relations in the presence of partial information and duplicate rows, never mind
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NOT NULL constraints. This generality, however, is required for a more profound
understanding of the semantics associated with SQL databases.

3 Codd Tables and Table Constraints

Codd’s original proposal [7] to handle partial information suggested the addi-
tion to the database domains of an unmarked null value unk, whose meaning is
“value unknown at present”. Following Codd’s proposal, partial information is
represented in SQL by using unk as a distinguished null value [8].

Let H = {H1, H2, . . .} be a countably infinite set of symbols, called column
headers or headers for short. A table schema is a finite non-empty subset T
of H. Each header H of a table schema T is associated with an infinite domain
dom(H) of the possible values that can occur in column H . To encompass partial
information every column may have an unmarked null value, denoted by unk ∈
dom(H). The intention of unk is to mean “value unknown at present”.

For header sets X and Y we may write XY for X ∪Y . If X = {H1, . . . , Hm},
then we may write H1 · · ·Hm for X . In particular, we may write simply H
to represent the singleton {H}. A row over T (T -row or simply row, if T is
understood) is a function r : T → ⋃

H∈T dom(H) with r(H) ∈ dom(H) for all
H ∈ T . The null value occurrence r(H) = unk associated with a header H in
a row r means that the value r(H) is unknown at present. For X ⊆ T let r[X ]
denote the restriction of the row r over T to X . A table t over T is a finite
multiset of rows over T . Let r1 and r2 be two rows over T . It is said that r1
subsumes r2 if for every header H ∈ T , r1(H) = r2(H) or r2(H) = unk holds.

For a row r over T and a set X ⊆ T , r is said to be X-total if for all H ∈ X ,
r(H) �= unk. Similar, a table t over T is said to be X-total, if every row r of t is
X-total. A table t over T is said to be a total table if it is T -total.

Extending ideas by Levene and Loizou [18] the set of all possible worlds relative
to a table t over T , denoted by Poss(t), is defined by

Poss(t) := {t′ | t′ is a table over T and there is a bijection b : t → t′ such that
∀r ∈ t, r is subsumed by b(r) and b(r) is T -total}.

This definition of possible worlds embodies the closed world assumption (CWA)
[16], since only T -total rows from the table t can be present in Poss(t).

A uniqueness constraint (UC) over a table schema T is a statement of the form
unique(X), where X ⊆ T . A table t over T is said to satisfy the UC unique(X)
over T , if there is some t′ ∈ Poss(t) such that for all r1, r2 ∈ t′, if r1 �= r2, then
r1[X ] �= r2[X ]. The satisfaction of a UC in a table reduces to the satisfaction of
a key when the table is T -total. In this case there is exactly one t′ ∈ Poss(t) and
∀t′ ∈ Poss(t) is equivalent to ∃t′ ∈ Poss(t).

A functional dependency (FD) over a table schema T is a statement of the
form X → Y , where XY ⊆ T . A table t over T is said to satisfy the FD X → Y
over T , if there is some t′ ∈ Poss(t) such that for all r1, r2 ∈ t′, if r1[X ] = r2[X ],
then r1[Y ] = r2[Y ]. We note that the definition of satisfaction of an FD in a table
reduces to the standard definition of the satisfaction of an FD when the table is
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T -total. Finally we remark that the weak approach to satisfaction of an FD by
a table allows a higher degree of uncertainty to be represented in the database
than the strong approach (where an FD must be satisfied in all possible worlds)
[18]. The disadvantage of the weak over the strong approach is that strongly
satisfied FDs are easier to maintain [18]. Hence, both approaches complement
one another. It is future work to combine strong and weak FDs.

Following Atzeni and Morfuni [4] a null-free subdefinition (NFS) over the table
schema T is a an expression Ts where Ts ⊆ T . The NFS Ts over T is satisfied
by a table t over T , denoted by |=t Ts, if and only if t is Ts-total. SQL allows
the specification of column headers as NOT NULL, cf. Example 1. NFSs occur
in everyday database practice: the set of headers declared NOT NULL forms the
single NFS over the underlying table schema.

We introduce an extension of the notion of agree sets of distinct rows to the
presence of null values [5,19]. For two rows r1, r2 over table schema T we define

ags(r1, r2) = {H ∈ T | r1(H) = r2(H) and r1(H) �= unk �= r2(H)},
agw(r1, r2) = {H ∈ T | r1(H) = unk or r2(H) = unk},
ag(r1, r2) = ags(t1, t2) ∪ agw(t1, t2) .

Intuitively, this definition makes perfect sense: i) two rows strongly agree on a
column if they agree in all possible worlds, and ii) two rows weakly agree on a
column if there is a possible world on which they agree on H . Next we establish
a syntactic characterization of the satisfaction of UCs and FDs.

Proposition 1. Let XY ⊆ T and t be a table over T . Then

1. t satisfies unique(X) if and only if for all r1, r2 ∈ t, if r1 �= r2, then X �⊆
ags(r1, r2).

2. t satisfies X → Y if and only if for all r1, r2 ∈ t, if X ⊆ ags(r1, r2), then
Y ⊆ ag(r1, r2). ��

Example 2. Consider the schema with column headers Address, City and ZIP.
For the left table t the middle and right tables are elements of Poss(t).

Address City ZIP
Pont Neuf Paris 75001
Pont Neuf unk 31000

Address City ZIP
Pont Neuf Paris 75001
Pont Neuf Paris 31000

Address City ZIP
Pont Neuf Paris 75001
Pont Neuf Toulouse 31000

Hence, t satisfies unique(ZIP), unique(Address,City), Address → City and
City → ZIP. However, t violates unique(Address) and Address → ZIP. ��
In schema design and maintenance data dependencies are normally specified as
semantic constraints on the tables intended to be instances of the schema. During
the design process or the lifetime of a database one usually needs to determine
further dependencies which are implied by the given ones. Let T be a table
schema, let Ts ⊆ T denote an NFS over T , and let Σ ∪ {ϕ} be a set of UCs and
FDs over T . We say that Σ implies ϕ in the presence of Ts, denoted by Σ |=Ts ϕ,
if every table t over T that satisfies Σ and Ts also satisfies ϕ. If Σ does not imply
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ϕ in the presence of Ts we may also write Σ �|=Ts ϕ. Let Σ∗
Ts

= {ϕ | Σ |=Ts ϕ} be
the semantic closure of Σ. One can attempt to determine the semantic closure
by a syntactic approach, e.g. by applying the inference rules from Table 1 below.
These inference rules have the form

premise
conclusion

condition,

and inference rules without any premises are called axioms. An inference rule is
called sound for the implication of UCs and FDs in the presence of an NFS, if
whenever the elements in the premise of the rule and the NFS are satisfied by
some T -table and the elements and NFS satisfy the conditions of the rule, then
the table also satisfies the element in the conclusion of the rule. For a finite set
Σ ∪ {ϕ} of UCs and FDs and a set R of inference rules let Σ �R ϕ denote the
inference of ϕ from Σ by R. That is, there is some sequence γ = [σ1, . . . , σn] of
UCs and FDs such that σn = ϕ and every σi is an element of Σ or results from
an application of an inference rule in R to some elements in {σ1, . . . , σi−1}. For
a finite set Σ of UCs and FDs, let Σ+

R = {ϕ | Σ �R ϕ} be its syntactic closure
under inferences by R. A set R of inference rules is said to be sound (complete)
for the implication of UCs and FDs in the presence of an NFS if for every table
schema T , for every NFS Ts over T and for every set Σ of UCs and FDs over
T we have Σ+

R ⊆ Σ∗
Ts

(Σ∗
Ts

⊆ Σ+
R). The (finite) set R is said to be a (finite)

axiomatization for the implication of UCs and FDs in the presence of an NFS if
R is both sound and complete.

4 The Implication of Constraints over Codd Tables

We establish a comprehensive analysis of the implication problem for UCs and
FDs in the presence of an NFS. First, we characterize the implication problem
by a finite ground axiomatization. Next, we develop an algorithm that decides
the implication problem in time linear in the input. Finally, we establish an
equivalence to the implication of goal and definite clauses in Cadoli and Schaerf’s
well-known family of S-3 logics.

4.1 Axiomatic Characterization

Let S denote the set of inference rules in Table 1.

Theorem 1. The set S is a finite axiomatization for the implication of UCs
and FDs in the presence of an NFS. ��

Example 3. Consider the schema Contact with headers Address, City and ZIP,
NFS Contacts = {ZIP}, and

Σ = {unqiue(Address,City),ZIP → City}.
Then unique(Address,City,ZIP) can be inferred from Σ by S by an application
of the null pullback rule to unique(Address,City) and the FD Address,City,ZIP →
Address,City. The latter can be inferred by a single application of the reflexivity
axiom. ��



Codd Table Representations under Weak Possible World Semantics 131

Table 1. Axiomatization of UCs and FDs in the presence of an NFS

unique(X)

X → Y XY → X

X → Y Z

X → Y
(demotion) (reflexivity) (decomposition)

X → Y unique(Y )

unique(X)
Y ⊆ XTs

X → Y Y → Z

X → Z
Y ⊆ XTs

X → Y X → Z

X → Y Z
(null pullback) (null transitivity) (union)

4.2 Algorithmic Characterization

Data engineers do not always require the full semantic closure Σ∗
Ts

of a set Σ.
Instead, they often need to decide if a given UC or FD ϕ is implied by Σ in the
presence of Ts. It is usually inefficient to enumerate the elements of Σ+

S until ϕ is
found, or all elements have been enumerated and ϕ is not among them. We will
now establish an algorithm that decides in linear time in the input if Σ |=Ts ϕ.

For a header set X of table schema T let X∗
Σ,Ts

:= {H | Σ |=Ts X → H}
denote the header set closure of X with respect to Σ and Ts. For a set Σ ∪ {ϕ}
of UCs and FDs over T it suffices to compute the header set closure with respect
to the set ΣFD := {X → T | unique(X) ∈ Σ} ∪ {X → Y | X → Y ∈ Σ} and Ts.

Lemma 1. Let Σ be a set of UCs and FDs over the table schema T with NFS
Ts. Then the following holds:

1. Σ |=Ts X → Y if and only if ΣFD |=Ts X → Y , and
2. Σ |=Ts unique(X) if and only if ΣFD |=Ts X → T and there is some

unique(Z) ∈ Σ such that Z ⊆ XTs. ��
However, the header set closure of a header set X can be computed as follows.

Algorithm 2 (NFSClosure(X,ΣFD,Ts,T ))

Input: header set X , FD set ΣFD, NFS Ts over table schema T
Output: header set closure X∗

ΣFD,Ts
of X with respect to ΣFD and Ts

Method:
(A0) CLOSURE := X ;
(A1) repeat

OLDCLOSURE := CLOSURE;
for all V → W ∈ ΣFD do
if V ⊆ CLOSURE ∩XTs then

CLOSURE := CLOSURE ∪W ;
endif;

enddo;
until OLDCLOSURE = CLOSURE;

(A2) return CLOSURE; ��
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The size |ϕ| of ϕ is the total number of headers occurring in ϕ, and the size ||Σ||
of Σ is the sum of |σ| over all elements σ ∈ Σ.

Theorem 3. The problem whether a UC or FD ϕ is implied by a set Σ of UCs
and FDs in the presence of an NFS Ts can be decided in O(||Σ∪{ϕ}||) time. ��
Example 4. Consider the SQL table definition Contact with headers Address,
City and ZIP, NFS Contacts = {Address,ZIP}, and

Σ = {unqiue(Address,City),ZIP → City}.
Then ΣFD = {{Address,City} → ZIP,ZIP → City} and the column
header closure of {Address,ZIP} with respect to ΣFD and Contacts is
{Address,City,ZIP}. Since there is no unique(Z) ∈ Σ such that Z ⊆
{Address,ZIP} we conclude by Lemma 1 that the UC unique(Address,ZIP) is
not implied by Σ in the presence of Contacts. ��

4.3 Logical Characterization

Schaerf and Cadoli [20] introduced S-3 logics as “a semantically well-founded
logical framework for sound approximate reasoning, which is justifiable from the
intuitive point of view, and to provide fast algorithms for dealing with it even
when using expressive languages”.

For a finite set L of propositional variables let L� denote the set of all literals
over L, i.e., L� = L ∪ {¬H ′ | H ′ ∈ L} ⊆ L∗ where L∗ denotes the propositional
language over L. Let S ⊆ L. An S-3 interpretation of L is a total function
ω̂ : L� → {F,T} that maps every variable H ′ ∈ S and its negation ¬H ′ into
opposite values (ω̂(H ′) = T if and only if ω̂(¬H ′) = F), and that does not
map both a variable H ′ ∈ L−S and its negation ¬H ′ into F (we must not have
ω̂(H ′) = F = ω̂(¬H ′) for anyH ′ ∈ L−S). An S-3 interpretation ω̂ : L� → {F,T}
of L can be lifted to a total function Ω̂ : L∗ → {F,T} by means of simple rules
[20]. Since we are only interested in Horn clauses here we require the following
two rules for assigning truth values to a Horn clause: (1) Ω̂(ϕ′) = ω̂(ϕ′), if
ϕ′ ∈ L�, and (2) Ω̂(ϕ′ ∨ ψ′) = T if and only if Ω̂(ϕ′) = T or Ω̂(ψ′) = T. An S-3
interpretation ω̂ is a model of a set Σ′ of L-formulae if and only if Ω̂(σ′) = T

holds for every σ′ ∈ Σ′. We say that Σ′ S-3 implies an L-formula ϕ′, denoted
by Σ′ |=3

S ϕ
′, if and only if every S-3 interpretation that is a model of Σ′ is also

a model of ϕ′.
In a first step, we define the fragment of L-formulae that corresponds to UCs

and FDs in the presence of an NFS Ts over a table definition T . Let φ : T → L
denote a bijection between T and the set L = {H ′ | H ∈ T } of propositional
variables that corresponds to T . For an NFS Ts over T let S = φ(Ts) be the set
of propositional variables in L that corresponds to Ts. Hence, the variables in S
are the images of those column headers of T declared NOT NULL.

We now extend φ to a mapping Φ from the set of UCs and FDs over T . For a
UC unique(H1, . . . , Hn) over T , let Φ(unique(H1, . . . , Hn)) denote the goal clause
¬H ′

1 ∨ · · · ∨ ¬H ′
n. For an FD H1, . . . , Hn → H over T , let Φ(H1, . . . , Hn → H)
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denote the definite clause ¬H ′
1 ∨ · · · ∨ ¬H ′

n ∨H ′. For the sake of presentation,
but without loss of generality, we assume that FDs have only a single column
header on their right-hand side. As usual, disjunctions over zero disjuncts are
interpreted as F. In what follows, we may simply denote Φ(ϕ) = ϕ′ and Φ(Σ) =
{σ′ | σ ∈ Σ} = Σ′.

Our aim is to show that for every SQL table definition T , for every set Σ∪{ϕ}
of UCs and FDs and for every NFS Ts over T , there is some Ts-total table t that
satisfies Σ and violates ϕ if and only if there is an S-3 model ω̂t of Σ′ that is
not an S-3 model of ϕ′. For arbitrary tables t it is not obvious how to define the
S-3 interpretation ω̂t.

However, for deciding the implication problem Σ |=Ts ϕ it suffices to examine
two-row tables (instead of arbitrary tables). For two-row tables {r1, r2} we define
the special-3-interpretation of L by

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = F, if unk �= r1(H) = r2(H) �= unk,

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = T, if r1(H) = unk or r2(H) = unk,

– ω̂′
{r1,r2}(H

′) = F and ω̂′
{r1,r2}(¬H ′) = T, if unk �= r1(H) �= r2(H) �= unk

for all H ′ ∈ L. In particular, if {r1, r2} is Ts-total, then ω̂{r1,r2} is an S-3
interpretation.

Theorem 4. Let Σ∪{ϕ} be a set of UCs and FDs over the SQL table definition
T , and let Ts denote an NFS over T . Let L denote the set of propositional
variables that corresponds to T , S the set of variables that corresponds to Ts,
and Σ′ ∪ {ϕ′} the set of goal and definite clauses over L that corresponds to
Σ ∪ {ϕ}. Then Σ |=Ts ϕ if and only if Σ′ |=3

S ϕ
′. ��

Example 5. Consider the table schema Contact with headers Address, City
and ZIP, NFS Contacts = {Address,ZIP}, and

Σ = {unqiue(Address,City),ZIP → City}.
Then the UC unique(Address,ZIP) is not implied by Σ in the presence of
Contacts, as the following SQL table t demonstrates:

Address City ZIP
Pont Neuf Toulouse 31000
Pont Neuf unk 31000

.

Indeed, the special S-3 interpretation ω̂t where for all L ∈ L�, ω̂t(L) = F iff
L ∈ {¬Address′,¬ZIP′} is an S-3 model of Σ′ but not a model of ϕ′

2. ��

5 Armstrong Tables

In this section we extend Demetrovics, Mannila, Räihä, Beeri, Dowd, Fagin and
Statman’s results on the structural and computational properties of Armstrong
relations for FDs from total relations [5,10,19] to the combined class of UCs and
FDs in the presence of an NFS over Codd tables.
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5.1 Characterization

First we would like to establish sufficient and necessary conditions when a given
table is an Armstrong table with respect to a given set Σ of UCs and FDs and
an NFS Ts. This would generalize a well-known result by Mannila, Räihä, Beeri,
Dowd, Fagin and Statman for FDs over total database relations [5,19]. Especially
useful in this regard is Mannila and Räihä’s notion of maximal sets [19] which
we generalize here from total relations to Codd tables.

Definition 1. Let Σ be a set of UCs and FDs and let Ts be an NFS over table
schema T . For a column header H ∈ T we define the maximal sets maxΣ,Ts(H)
of H with respect to Σ and Ts as follows:

maxΣ,Ts(H) := {X ⊆ T | Σ �|=Ts X → H ∧ ∀H ′ ∈ T −X(Σ |=Ts XH
′ → H)}.

The maximal sets of T with respect to Σ and Ts are defined as maxΣ,Ts(T ) =⋃
H∈T maxΣ,Ts(H). If Σ and Ts are clear from the context we may simply write

max(H) and max(T ), respectively. ��
Thus, the maximal sets of a column header H with respect to Σ and Ts are the
maximal header subsets of T that do not functionally determine H .

Example 6. Consider the table schema Contact with headers Address, City
and ZIP, NFS Ts = Contacts = {ZIP}, and

Σ = {unqiue(Address,City),ZIP → City}.
Then the maximal sets for the column headers are:

– maxΣ,Ts(Address) = {{City,ZIP}},
– maxΣ,Ts(City) = {{Address}},
– maxΣ,Ts(ZIP) = {{Address}, {City}}. ��

The idea is that it is a necessary condition for an Armstrong table that for each
maximal set there must be distinct rows in the table whose strong agree set is
the maximal set. This is to guarantee that all the FDs not implied by the set of
UCs and FDs in the presence of an NFS are violated. Over tables, however, it is
still possible that there are UCs unique(X) not implied by Σ in the presence of
Ts over T , even if the FD X → T is implied. For this reason we also require of
Armstrong tables that for all column header sets X that are maximal with this
property there must be distinct rows in the table whose strong agree set is X .
This motivates the following definition.

Definition 2. Let Σ be a set of UCs and FDs and let Ts be an NFS over table
schema T . We define the duplicate sets dupΣ,Ts

(T ) of T with respect to Σ and
Ts as follows:

dupΣ,Ts
(T ) := {X ⊆ T | Σ |=Ts X → T ∧Σ �|=Ts unique(X)∧

∀H ′ ∈ T −X(Σ |=Ts unique(XH ′))}.
If Σ and Ts are clear from the context we may simply write dup(T ). ��
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Example 7. Consider the table schema Contact with headers Address, City
and ZIP, NFS Ts = Contacts = {ZIP}, and

Σ = {unqiue(Address,City),ZIP → City}.

Then we have dupΣ,Ts
(Contact) = {{Address,ZIP}}. ��

For our anticipated characterization of Armstrong tables the notion of a (strong)
agree set plays an important role. While strong and weak agree sets coincide over
total relations, the distinction between the two is crucial for Codd tables. Indeed,
we require an additional notion that helps us to ensure that i) for each maximal
set of a column header there are rows that strongly agree on the maximal set but
disagree on the column header, and ii) each strong agree set includes all column
headers functionally determined by it.

Definition 3. Let T be a table schema, and t a table over T . For X ∈ ags(r)
let w(X) =

⋂{Y | ∃r, r′ ∈ t(X = ags(r, r′) ∧ Y = ag(r, r′))}. ��

Example 8. Let t denote the Codd table from Example 1, i.e. the table on the
right. Here we obtain

– ags(t) = {{City,ZIP}, {Address}, {City}, {Address,ZIP}},
– agw(t) = {{Address}, {City}}, and
– w(Address) = {Address}, w(City) = {City}, w(City,ZIP) = {City,ZIP},

and w(Address,ZIP) = {Address,City,ZIP}. ��

These notions allow us to obtain the following characterization of Armstrong
tables for a given Codd table.

Theorem 5. Let T be a table schema, Σ a set of UCs and FDs, and Ts an NFS
over T . For all tables t over T it holds that t is an Armstrong table for Σ and
Ts if and only if all of the following conditions are satisfied:

1. ∀H ∈ T∀X ∈ maxΣ,Ts(H)(X ∈ ags(t) ∧H /∈ w(X)),
2. ∀X ∈ ags(t)(X∗

Σ,Ts
⊆ w(X)),

3. ∀X ∈ dupΣ,Ts
(T )(X ∈ ags(t)),

4. ∀X ∈ ags(t)∀unique(Z) ∈ Σ(Z �⊆ X),
5. total(t) = Ts. ��

Example 9. Consider again the table schema Contact with headers Address,
City and ZIP, NFS Ts = Contacts = {ZIP}, and

Σ = {unqiue(Address,City),ZIP → City}.

Examples 6, 7 and 8 allow us to verify all the conditions of Theorem 5 for the
Codd table t on the right of Example 1. Hence, t is indeed an Armstrong table
for Σ and Ts. ��
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5.2 Computation

In this section we establish an algorithm that computes for any given table
schema T , any given set Σ of UCs and FDs, and any given NFS Ts over T
an Armstrong table for Σ and Ts. Following Lemma 1 and Theorem 5 we
aim to compute the maximal set families maxΣFD,Ts(T ) and the duplicate sets
dupΣ,Ts

(T ).

Lemma 2. Let T be a table schema, Ts an NFS over T , and ΣFD = Σ′∪{X →
A} a set of FDs over T . For WC ⊆ T , it takes O(|T |×||Σ||) time to test whether
W ∈ maxΣFD,Ts(C). ��
The maximal sets for T with respect to ΣFD and Ts can be computed by testing
all subsets of T . This, however, will hardly be efficient. The following result
establishes an iterative approach for computing the maximal sets for T with
respect to ΣFD and Ts. The algorithm starts with the maximal sets for T with
respect to an empty FD set in the presence of Ts, and then adds the FDs of ΣFD

one by one while monitoring the resulting changes to the family of maximal sets.

Theorem 6. Let T be a table schema, Ts an NFS over T , and ΣFD = Σ′
FD ∪

{X → A} a set of FDs over T . For H ∈ T let V ∈ maxΣFD,Ts(H). Then
V ∈ maxΣ′

FD,Ts
(H) or (H = A or A ∈ Ts) holds and there is some H ′ ∈ X − V

such that

i) V H ′ ∈ maxΣ′
FD,Ts

(H), if X �⊆ Ts, or
ii) V = W ∩Z for some W ∈ maxΣ′

FD,Ts
(H) and some Z ∈ maxΣ′

FD,Ts
(H ′). ��

By Theorem 6, the family maxΣFD,Ts(H) can be computed from the fam-
ily maxΣ′

FD,Ts
(H) as follows. For each V ∈ maxΣ′

FD,Ts
(H) such that V /∈

maxΣFD,Ts(H), if X = ∅, then maxΣFD,Ts(H) = ∅, otherwise, for each H ′ ∈ X ,
if H ′ /∈ Ts, then V −H ′ ∈ maxΣFD,Ts(H), and for each Z ∈ maxΣ′

FD,Ts
(H ′) test

if V ∩ Z ∈ maxΣFD,Ts(H).
To compute dupΣ,Ts

(T ) we generate the hyper-graph H = (V,E) with vertex
set V = T and the set E = {X − Ts | unique(X) ∈ ΣUC} as hyper-edges. From
this we obtain dupΣ,Ts

(T ) as

dupΣ,Ts
(T ) = {T −X | X ∈ Tr(H) ∧ ∀M ∈ maxΣFD,Ts(T )(T −X �⊆ M)}

where Tr(H) denotes the minimal transversals of the hyper-graph H [14].
The following algorithm computes an Armstrong table for an arbitrary set Σ

of UCs and FDs and an arbitary NFS Ts. In step (A0) the algorithm utilizes
Theorem 6 to compute the family of maximal sets with respect to ΣFD. In steps
(A4)-(A8) the strong agree sets required for a Codd table to be Armstrong
according to Theorem 5 are generated with respect to the row r0. Due to some
non-standard UCs and FDs some columns might have a constant non-null entry.
Finally, an additional row may be required to introduce the null value unk to
columns that are specified NULL, see step (A9).
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Algorithm 7 (Armstrong table computation)

Input: table schema T , a set Σ of UCs and FDs and an NFS Ts over T
Output: Armstrong table t for Σ and Ts

Method: let cH,0, cH,1, . . . ∈ dom(H) be distinct
(A0) for all H ∈ T compute maxΣFD,Ts(H);
(A1) t := {r0} where for all H ∈ T , r0(H) := cH,0;
(A2) Const := ∅∗Σ,Ts

;
(A3) i := 1;
(A4) for all X ∈ maxΣFD,Ts(T ) ∪ dupΣ,Ts

(T ) do
(A5) if X ∈ maxΣFD,Ts(T ), then Z := {H ∈ T | X ∈ maxΣFD,Ts(H)};

else Z := ∅;
endif;

(A6) t := t ∪ {ri} where for all H ∈ T ,

ri(H) :=

⎧⎨⎩
cH,0 , if H ∈ X ∪ (Const ∩ Ts)
cH,i , if H ∈ Z ∪ (Ts − (X ∪ Const))
unk , else

;

(A7) i := i+ 1;
(A8) enddo;
(A9) total(t) := {H ∈ T | ∀r ∈ t(r[H ] �= unk)};

if total(t) − Ts �= ∅,
then return t := t ∪ {ri} where for all H ∈ T ,

ri(H) :=

⎧⎨⎩unk , if H ∈ (total(t) ∪ Const) − Ts

cH,0 , if H ∈ Const ∩ Ts

cH,i , else
;

else return r;
endif; ��

The correctness of Algorithm 7 follows essentially from Theorems 5 and 6.

Theorem 8. Algorithm 7 computes an Armstrong table for Σ and Ts. ��
Example 10. Consider again the table schema Contact with headers Address,
City and ZIP, NFS Ts = Contacts = {ZIP}, and

Σ = {unqiue(Address,City),ZIP → City}.

Examples 6 and 7 show the families of maximal and duplicate sets for Σ and
Ts. Algorithm 2 would compute the following Armstrong table for Σ and Ts.

Address City ZIP
cA,0 cC,0 cZ,0

cA,1 cC,0 cZ,0

cA,0 cC,2 cZ,2

unk cC,0 cZ,3

cA,0 unk cZ,0

Address City ZIP
Pont Neuf Paris 75001
Le Louvre Paris 75001
Pont Neuf Toulouse 31000

unk Paris 75007
Pont Neuf unk 75001

A suitable substitution results in the Armstrong table from Example 1. ��
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We present some results regarding the time and space complexity required for
the representation of constraints using Codd tables.

The Time-Complexity to Find Armstrong Tables. We recall what we
mean by precisely exponential [5]. Firstly, it means that there is an algorithm
for computing an Armstrong table, given a set Σ of UCs and FDs and an NFS
Ts, where the running time of the algorithm is exponential in the number of
attributes. Secondly, it means that there is a set Σ of UCs and FDs and an NFS
Ts in which the number of rows in each minimum-sized Armstrong table for Σ
and Ts is exponential — thus, an exponential amount of time is required in this
case simply to write down the relation.

Proposition 2. The complexity of finding an Armstrong table, given a set of
UCs and FDs and an NFS, is precisely exponential. ��
The Size of our Computed Armstrong Tables. It is a practical question to
ask how many rows a minimum-sized Armstrong table requires. An Armstrong
table t for Σ and Ts is said to be minimum-sized if there is no Armstrong table
t′ for Σ and Ts such that |t′| < |t|.
Theorem 9. On input (T,Σ, Ts), Algorithm 7 computes an Armstrong table
for Σ and Ts whose size is at most quadratic in the size of a minimum-sized
Armstrong table for Σ and Ts. ��
The Size of Representations. None of the representations strictly dominates
the other. Therefore, both representations should be used together.

Theorem 10. There is some table schema T , some set Σ of UCs and FDs and
some NFS Ts over T such that Σ has size O(n), and the size of a minimum-sized
Armstrong table for Σ and Ts is O(2n/2). There is some table schema T , some
set Σ of UCs and FDs and some NFS Ts over T such that there is an Armstrong
table for Σ and Ts where the number of rows is in O(n), and the optimal cover
of Σ with respect to Ts has size O(2n). ��
Constraint sets can help to identify constraints incorrectly perceived as meaning-
ful, and Armstrong tables can help to identify constraints incorrectly perceived
as meaningless [17].

6 Conclusion

We investigated the combined class of UCs and FDs over Codd tables under a
weak possible world semantics. We characterized the implication problem ax-
iomatically, algorithmically and logically. Our results on the representation of
constraint sets as Codd tables subsume classical findings. Our results show that
there is no penalty in generalizing the theory for total relations to Codd tables
that occur in real database systems. For the future we plan to implement our
results in a design aid, and to consider the combination of both weak and strong
possible world semantics [18].

Acknowledgement. This research is supported by the Marsden fund council
from Government funding, administered by the Royal Society of New Zealand.



Codd Table Representations under Weak Possible World Semantics 139

The second author is supported by a research grant of the Alfried Krupp
von Bohlen and Halbach foundation, administered by the German Scholars
organization.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Alexe, B., Kolaitis, P., Tan, W.-C.: Characterizing schema mappings via data ex-
amples. In: Proceedings to the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pp. 261–271 (2010)

3. Armstrong, W.W.: Dependency structures of database relationships. Information
Processing 74, 580–583 (1974)

4. Atzeni, P., Morfuni, N.: Functional dependencies and constraints on null values in
database relations. Information and Control 70(1), 1–31 (1986)

5. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong rela-
tions for functional dependencies. J. ACM 31(1), 30–46 (1984)

6. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

7. Codd, E.F.: Extending the database relational model to capture more meaning.
ACM Trans. Database Syst. 4(4), 397–434 (1979)

8. Date, C., Darwen, H.: A guide to the SQL standard. Addison-Wesley Professional,
Reading (1997)

9. De Marchi, F., Petit, J.-M.: Semantic sampling of existing databases through in-
formative Armstrong databases. Inf. Syst. 32(3), 446–457 (2007)

10. Demetrovics, J.: On the equivalence of candidate keys with Sperner systems. Acta
Cybern. 4, 247–252 (1980)

11. Diederich, J., Milton, J.: New methods and fast algorithms for database normal-
ization. ACM Trans. Database Syst. 13(3), 339–365 (1988)

12. Fagin, R.: Functional dependencies in a relational data base and propositional logic.
IBM Journal of Research and Development 21(6), 543–544 (1977)

13. Fagin, R.: Armstrong databases. Technical Report RJ3440(40926), IBM Research
Laboratory, San Jose, California, USA (1982)

14. Gottlob, G., Pichler, R., Wei, F.: Tractable database design through bounded
treewidth. Inf. Syst. 35(3), 278–298 (2010)

15. Hartmann, S., Link, S.: When data dependencies over SQL tables meet the Logics
of Paradox and S-3. In: PODS Conference (2010)

16. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

17. Langeveldt, W.-D., Link, S.: Empirical evidence for the usefulness of Armstrong
relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

18. Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete
relations. Theor. Comput. Sci. 206(1-2), 283–300 (1998)

19. Mannila, H., Räihä, K.-J.: Design by example: An application of Armstrong rela-
tions. J. Comput. Syst. Sci. 33(2), 126–141 (1986)

20. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artif. Intell. 74,
249–310 (1995)

21. Thalheim, B.: Entity-Relationship modeling. Springer, Heidelberg (2000)



Efficient Early Top-k Query Processing

in Overloaded P2P Systems

William Kokou Dédzoé1, Philippe Lamarre1,
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Abstract. Top-k query processing in P2P systems has focused on effi-
ciently computing the top-k results while reducing network traffic and
query response time. However, in overloaded P2P systems (with very
high query loads), some peers may take a long time to answer, thus
making the user wait a long time to obtain the final top-k result. In
this paper, we address this problem, which we reformulate as early top-k
query processing in P2P systems. First, to complement response time,
we introduce two new metrics, stabilization time and cumulative quality
gap, with which we formally define the problem. Then, we propose an ef-
ficient algorithm that dynamically adapts to query loads of peers in order
to return to the user top-k results as soon as possible, without waiting
for the final result. We validated our solution through simulations over
a real dataset. The results show that our algorithm significantly outper-
forms baseline algorithms by returning high quality top-k results to users
in much better times.

1 Introduction

Top-k query processing in Peer-to-Peer (P2P) systems has received a lot of at-
tention [6,18,19,1,2]. The main reason for such interest is that they reduce the
network traffic and avoid overwhelming the user with large numbers of unin-
teresting answers. With a top-k query, the user specifies a number k of the
most relevant answers to be returned by the system. The quality (i.e. score of
relevance) of the answers to the query is determined by user-specified scoring
functions [9].

Despite the fact that these top-k query processing solutions reduce network
traffic, they may significantly delay the answers to users. This is because top-k
results are usually returned to the user only when all queried peers have finished
processing the query. Thus, query response time is dominated by the slowest
queried peer, which makes users suffer from long waiting times. Indeed, this
becomes even more problematic when peers are overloaded, i.e. in overloaded
P2P systems. Therefore, current top-k processing solutions (e.g. [1] and [6]) are
not suitable for many popular P2P applications, such as P2P web search engines

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 140–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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and P2P data sharing for online communities, because they are often exposed
to a large number of incoming queries and thus may easily become overloaded.

In this paper, we address the problem of reducing users waiting time when
performing top-k query processing in the context of overloaded P2P systems. We
reformulate this problem as early top-k query processing in P2P systems. We
revisit top-k query processing by considering two new metrics to complement
response time: stabilization time and cumulative quality gap. Then, to cope with
this problem, we propose an algorithm that dynamically adapts to query loads of
peers so as to return to users top-k results as soon as possible, without waiting
for the final results. To the best of our knowledge, this is the first work that
deals with this problem.

In summary, we make the following contributions in this paper:

• We formally define the problem of early top-k query processing in P2P sys-
tems using both stabilization time and cumulative quality gap.

• We propose QUAT1, an efficient algorithm for early top-k query process-
ing. In QUAT, each peer maintains a description of its local data and the
descriptions of its neighborhood (i.e. the descriptions of data owned locally
by its direct neighbors and data owned locally by these neighbors direct
neighbors). These descriptions allow peers to prioritize the queries that can
provide high quality results, and to forward them in priority to the neighbors
that can provide high quality answers.

• We validate our solution through a thorough experimental evaluation using
a real-world dataset. The results show that QUAT significantly outperforms
baseline algorithms by returning faster the final top-k results to users. They
also demonstrate that in the presence of peer failures, QUAT provides top-k
results with good accuracy compared to baseline algorithms.

The rest of this paper is organized as follows. In section 2, we make precise
the P2P system model that we consider, with basic definitions regarding top-k
queries. Section 3 defines the early top-k query processing problem. In Section 4,
we present the QUAT algorithm. Section 5 presents how peers build and maintain
routing indices based on their local and neighbors descriptions for top-k query
processing. In Section 6, we give our performance evaluation of QUAT. Section 7
discusses related work. In Section 8, we conclude.

2 P2P System Model

In this section, we first describe the general model of unstructured P2P which
we consider for describing our solution2. Then, we provide a model and base
definitions for top-k queries.
1 Quality-based Early Top-k Query Processing refers to Khat, an African plant whose
leaves are chewed as a stimulant.

2 It is worth noting that our solution can be easily adapted to structured P2P systems
as well.
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2.1 System Model

We model an unstructured P2P network of n peers as an undirected graph
G = (P,E), where P = {p0, p1, · · · , pn−1} is the set of peers and E the set of
connections between the peers. We denote by N(pi), the set of peers to which pi

is directly connected, so N(pi) = {pj|(pi, pj) ∈ E}. The value ‖N(pi)‖ is called
the degree of pi. The average degree of peers in G is called the average degree of
G and is denoted by ϕ. In our model, we assume horizontal data distribution to
the n peers. Each peer p ∈ P holds and maintains a set D(p) of data items such
as relational data (i.e. tuples).

Let ci be the number of queries which a peer pi can process per time unit. We
call ci the capacity of pi. If a peer receives queries from its neighbors at a rate
higher than its capacity ci, then the queries are queued until the receiving peer
processes these queries. Note that the maximal number of connections (commu-
nication channels) which a peer can open simultaneously with its neighbors is
proportional to the capacity of the peer. However, peers may set this number
lower than the maximal value if they wish to.

2.2 Top-k Queries

We model each top-k query q by a tuple < qid, q̄, ttl, k, f, p0 > such that qid is
the query identifier, q̄ is the query itself (e.g. SQL query), ttl ∈ N (Time-To-Live)
is the maximum hop distance set by the user, k ∈ N

∗ is the number of results
requested by the user, f is a scoring function that denotes the score of relevance
(i.e. the quality) of a given data item to a given query and p0 ∈ P the originator
of query q. We assume that the data items scores are in [0, 1]. A top-k result set
of a given query q is the k top results among data items owned by all peers that
receive q. The data item in top-k result set having the lowest score is called the
mink of that top-k result set.

In our system, a query is forwarded from the query originator to its neighbors
until the Time-To-Live value of the query decreases to 0 or the current peer has
no peer to forward the query. So the query processing flow can be represented
as a tree, which is called the query forwarding tree.

2.3 Peer Description

In our system, each peer is described by a synthetic description based on the
data items owned by the peer. The approach of building this synthetic synthetic
description is out of the scope of this paper. We assume that it is obtained
through a description aggregation function which takes as input a set of data
items and generates a single description of these data items e.g. [8] and [16]. We
make the following assumptions regarding the description aggregation function:

– It is incremental, i.e. a peer that adds or removes a data item does not cause
a total reconstruction of its description.

– It is composable, i.e. is possible to create a single description using two or
more descriptions.
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Fig. 1. Quality of top-k results at the query originator wrt. execution time

– It is optimistic, i.e. the estimation of a top-k query’s result quality with
respect to description should not be lower than the exact scores of data (i.e.
data which are used to build this semantic description).

Notice that, there exist descriptions that satisfy these assumptions in the liter-
ature, e.g. semantic descriptions [16].

3 Problem Definition

Let us first give our assumptions regarding schema management and the un-
structured P2P architecture. We assume that peers are able to express queries
over their own schema without relying on a centralized global schema. Several
solutions have been proposed to support decentralized schema mapping and we
simply assume it is provided using one of the existing techniques, e.g. [12]. In
the following, we first give some definitions and formally state the problem.

3.1 Preliminaries

To process a top-k query in a P2P system, our approach provides intermediate
results to users as soon as peers process the query locally. This allows users to
progressively see the evolution of their query execution by receiving intermediate
results. Notice that at some point of query execution, the top-k intermediate
results received by the user may not change any more, because the user has
already received all top-k results. We denote this point as the stabilization
time (see Figure 1). The stabilization time may be much lower than the response
time (when there is no more top-k result).

Recall that our goal is to return high-quality results to the user as soon as
possible. To capture this, we introduce the quality evolution concept as follows.
Given a top-k query q, we define the quality evolution Y (t) of q at time t as
the sum of scores of q’s intermediate top-k results at t and q’s originator. To
be independent of the scoring values (which can be different from one query to
another), we normalize the quality evolution of a query. With this in mind, we
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divide the quality evolution of a given query by the sum of scores of the final
top-k results of that query. Thus, the quality evolution values are in the interval
[0, 1] and the quality of the top-k final results is equal to 1.

The quality of intermediate top-k results at the query originator evolves during
query execution. Let us now introduce the cumulative quality gap, which is
the sum of the quality difference between intermediate top-k result sets received
until the stabilization time and the final top-k result set (see Figure 1). Notice
that the smaller is the cumulative gap the higher is the quality of intermediate
results returned to the user. We formally define the cumulative gap as follows.

Definition 1 Cumulative quality gap. Let q be a top-k query, Y (t) the qual-
ity evolution of q at time t at the query originator and s be the stabilization time
of q. The cumulative quality gap of the query q, denoted by cqg is:

cqg =

s∫
0

(1 − Y (t)) dt = s−
s∫

0

Y (t) dt (1)

In this paper, we address top-k query processing in overloaded P2P systems
wherein peers might receive many queries in a short period of time. For this
we define stabilization time and cumulative quality gap for time periods, and
our objective is to develop algorithms that are efficient in terms of them. The
stabilization time and cumulative quality for time periods T are respectively the
average of the stabilization and the average of the cumulative quality gap for
the queries issued in T .

Notice that, one can consider the precision of intermediate top-k results as a
metric to characterize early top-k algorithms. However, the precision does not
reflect if users receive high quality results early.

3.2 Problem Statement

Given a time period T , let ST and CqgT be the stabilization time and cumula-
tive quality gap over T respectively. Our goal is to reduce ST and CqgT while
providing the correct top-k result sets.

4 Quat Top-k Query Processing

In QUAT, each peer maintains a description of its local data and the descriptions
of its neighborhood (i.e. the descriptions of data owned locally by its direct
neighbors and data owned locally by these neighbors direct neighbors). These
descriptions are used to create routing indices for top-k query processing. We
give more details on the construction and maintenance of these routing indices
in Section 5. Top-k query processing in QUAT proceeds in following phases: 1)
query initialisation; 2) query forwarding; 3) local execution of the query by peers;
4) bubbling up of the peers results for the query along the query forwarding tree.
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4.1 Query Initialisation

Query processing starts at the query originator, i.e. the peer at which a user
issues a top-k query q. Note that the scoring function f and the number of
results k wished by the user are specified in q. The query originator performs
some initializations. First, it sets ttl which is either user-specified or default.
Second, it creates a unique identifier qid for q which is useful to distinguish
between new queries and those received before. qid is made of a unique peer
identifier and a query counter managed by the query originator. Then, q is
included in a message that is broadcast by the query originator to its reachable
neighbors.

4.2 Query Forwarding

In classical query forwarding approaches [1,6], a peer forwards any incoming
query to all its neighbors in parallel. However, in overloaded P2P systems, this
approach may quickly collapse the system as it usually demands a lot of com-
puting resources. Thus, we consider that a peer forwards a query to at most
m neighbors in parallel, where m depends on the current query load of the
peer. When m is smaller than the total number of neighbors of a peer, the peer
must decide in which order to forward the query to its neighbors. To do so, the
peer sorts its neighbors based on its neighborhood’s data descriptions, i.e. by
estimating the results quality which each neighbor can provide for the query.
Indeed, when all m connections are allocated, the peer sends the query to an-
other neighbor as a connection gets released. Notice that, each peer includes its
current top-k intermediate results into their query messages in order to avoid
a peer sending less interesting results than those computed so far. Note that
the top-k intermediate result set at given peer is the k best results of both the
results the peer received so far from its neighbors and its local results (if any).
Furthermore, these top-k intermediate results are also used by peers to avoid
sending the query to those neighbors that cannot return results better than the
mink of these top-k intermediate results, i.e. by using the neighborhood’s data
descriptions. Notice that, we use the query load of each peer to set its value of
m. However, it is possible to take also into account loads of neighbors of peers
and the overall load of the system if they can be obtained.

4.3 Local Query Execution

In current approaches [1,6], a peer executes incoming queries as they arrive, i.e.
using a First-In-First-Out policy. However, in overloaded P2P systems, wherein
query queues at peers are often very long, this approach can significantly increase
users waiting times. This is because queries for which peers can provide results of
high scores may be penalized for those they can only provide results of low scores.
To cope with this problem, the order in which incoming queries are executed
locally by peers depends on the estimation of their results quality with respect to
their local data descriptions. Due to the fact that peers forward in priority queries
having best results quality estimation, peers may receive from their neighbors,
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results for queries which they have not yet executed locally. In this case, the
optimistic property of peers’ data descriptions allows peers to avoid executing
queries which they cannot provide results whose scores will be better than that
of the mink of their current top-k intermediate results.

4.4 Bubbling Up Results

A naive solution to reduce the user waiting time is to return the top-k results
from the peers directly to the query originator as soon as they have done exe-
cuting the query. However, returning high numbers of results increases network
traffic and can quickly cause a bottleneck at the query originator. For this in
QUAT, when a peer submits a top-k query q, the local results of the peers that
have received q are bubbled up to the query originator using query q’s forward-
ing tree. The technique of bubble up results of peers using query forwarding tree
is very interesting because peers can use intermediate results received from its
children to avoid executing locally some queries.

In QUAT, a peer’s decision to send intermediate results is based on the im-
provement impact brought by its current top-k intermediate result set over the
top-k intermediate result set it has already sent to its parent. This improvement
impact can be computed by using the score of top-k results in the result set.
Therefore, we introduce the notion of score-based improvement impact. Intu-
itively, the score-based improvement impact at a given peer for a given top-k
query is the gain of score of peer’s current top-k intermediate set compared to
the top-k intermediate set it sent so far.

Definition 2 Score-based improvement impact. Given a top-k query q, and
peer p ∈ P̄ (where P̄ is the set of peers which received q), let Tcur be the current
top-k intermediate set of q at p and Told be the top-k intermediate set of q sent
so far by p. The score-based improvement impact of q at peer p, denoted by
IScore(Tcur, Told) is computed as

IScore(Tcur, Told) =

∑
d∈Tcur

q.f(d, q.q̄)−
∑

d′∈Told

q.f(d′, q.q̄)

k
(2)

Note that in Formula 2, we divide by k instead of ‖Tcur − Told‖ because we do
not want that IScore(Tcur, Told) be an average which would not be very sensitive
to the values of scores. The score-based improvement impact values are in the
interval [0, 1].

In QUAT, the minimum value that must reach the improvement impact before
a peer sends newly received intermediate results to its parent is initially set by
the application and it is the same for all peers in the system. This threshold
decreases as the query execution progresses. Using a dynamic threshold avoids
the blocking problem of a static threshold when results having higher scores are
bubbled up before those of lower score. Thus, we guarantee that low score results
even tough they are in the final top-k results will not be returned at the end of
the query execution.
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To use a dynamic threshold approach, we need to compute the threshold value
dynamically. We have identified two possible solutions for the dynamic thresh-
old. The first one is to use an estimation of the query execution time. However,
estimating the query execution time in large P2P system is very difficult because
it depends on network dynamics, such as connectivity, density, medium access
contention, etc., and the slowest queried peer. The second, more practical, solu-
tion is to use for each peer its local result set coverage to decrease the threshold.
The local result set coverage of a peer for a given query is the proportion of
peers in its sub-tree including itself which have already processed this query. We
formalize this in Definition 3.

Definition 3 Peer’s local result set coverage. Given a top-k query, and
p ∈ P̄ (where P̄ is the set of peers which received q), let A be the set of peers in
the sub-tree whose root is p in the query q’s forwarding tree. Let E be the set of
peers in A which have already processed q locally. The local result set coverage
of peer p for q, denoted by Cov(E ,A), is computed using the following equation:

Cov(E ,A) =
‖E‖
‖A‖

Peer’s local result set coverage values are in the interval [0, 1].
Computing the exact value of a peers local result set coverage incurs additional

messages to the network, i.e. because each peer must send a message to its parent
each time its local coverage result set value changes. To deal with this problem,
we compute an estimation of this value instead of the exact value.

In our approach, the estimation is computed at the beginning by each peer
based on the ttl received with the query and the average degree of peers in the
system. This value is updated progressively as the peers in its sub-tree bubble
up their results. Indeed, each peer includes in each response message sent to its
parent the number of peers in its sub-tree (including itself) which have already
processed the query locally and the total number of peers in its sub-tree including
itself. This couple of values is used in turn by its parent to estimate its local
result set coverage. To decrease the improvement impact threshold used by a
peer as the local result set coverage increases, we use a linear function that
allows peers to set their improvement impact threshold for a given local result
set coverage. Now let us define formally the threshold function.

Definition 4 Threshold Function. Given a top-k query q and p ∈ P̄ (where
P̄ is the set of peers which received q), the improvement impact threshold used
by p during q’s execution, is a monotonically decreasing function H such that:

H :

∣∣∣∣∣ [0, 1] → [0, 1]

x �→ −α ∗ x+ α
(3)

with α ∈ [0, 1[. Notice that x is a peer’s result set coverage at given time and α
the initial improvement impact threshold (i.e. H(0) = α).
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5 Distributed Routing Indices

In this section, we first describe how to construct distributed routing indices and
then how to maintain them.

5.1 Routing Indices Construction

A description routing index (or routing index for short) allows a peer to deter-
mine the priority of neighbors for sending a query when there is high query load
in the system. It also help peers to avoid forwarding a query to some neighbors
if their results for this query are not likely to bring anything to current top-k
result set. Routing index is a data structure that, given a query, returns a list
of neighbors, ranked according to their potential to answer the query. Let us
now explain how these indices are created by peers. When a new peer pi joins
the system, it exchanges its own description with those of its direct neighbors
and these neighbors’ direct neighbors (i.e peers which are 2 hops from pi). Using
these descriptions, the peer pi builds a description table of its neighborhood.
This table contains the identifier of each neighbor pj of pi and the aggregation
of local descriptions of pj and pj’s direct neighbors. Descriptions tables are used
as routing indices for top-k query processing.

5.2 Maintaining Routing Indices

Updates of data owned by a peer may cause the modification of its description.
Therefore it is necessary that this modification be propagated to the neighbors
to ensure accuracy of results returned to the user. A naive solution to maintain
descriptions up-to-date is to broadcast an update message containing the new
description of the peer and having ttl = 1 to all its direct neighbors. Each
neighbor which receives this update message, decreases the ttl of this message
and sends it in turn to its neighbors (except to a peer from which it receives this
message) until the ttl value reaches 0. The maintenance of a routing index after
a modification in the peer’s description is done in O(ϕ+ ϕ2) messages where ϕ
is the average degree of peers in the system.

For efficiency reasons, we may choose not to send updates when the difference
between the old and the new description of a peer is not significant. By not
sending minor updates, we can trade update cost for accuracy of the index.

Finally, a special update occurs in the case of churn of peers. When a peer pi
detects the disconnection of one of its neighbor pj , pi updates its routing index
by removing the row for pj . Then, it informs its direct neighbors by sending
them an update message with ttl = 1. Each neighbor which receives this update
message, decreases ttl by one and sends it in turn to its neighbors (until ttl
reaches 0).

6 Performance Evaluation

In this section, we evaluate the performance of QUAT through simulation using
PeerSim [10], an open source, Java based, P2P simulation framework. First, we



Efficient Early Top-k Query Processing in Overloaded P2P Systems 149

Table 1. Simulation parameters

Parameters Values

Latency Normally distributed random number, Mean=200 ms, Variance=100
Number of peers 10000 peers
Average degree 4
ttl 9
k 20
Query arrival rate 50 queries per seconds

describe our simulation setup, the metrics used for performance evaluation, the
baseline top-k query processing approaches and the datasets used for experi-
ments. Then, we study the effect of the query arrival rate on the performance
of QUAT, and show how it scales up. Next, we investigate the effect of peers
failures on the correctness of QUAT.

6.1 Setup

We implemented our simulation using the PeerSim simulator. We conducted our
experiments on a machine with a 2.4 GHz Intel Pentium 4 processor and 2GB
memory. The simulation parameters are shown in Table 1. We use parameters
values which are typical of P2P systems [14]. The latency between any two peers
is a normally distributed random number with a mean of 200 ms. Since users
are usually interested in a small number of top results, we set k = 20 as default
value. In our experiments we vary the network size from 1000 to 10000 peers . In
order to simulate high heterogeneity, we set peers’ capacities in our experiments,
in accordance to [14] which measures peer capacities in the P2P system. Based
on the results of [14], we generate around 10% of low-capable, 60% of medium-
capable, and 30% of high-capable peers. The highly-capable peers are 3 times
more capable than medium-capable peers and still 7 times more capable than
low-capable ones. Each experiment is run for 2 hours, which are mapped to
simulation time units. In all our experiments, we use H(x) = −0.2x + 0.2 as
threshold function.

6.2 Dataset

We conduct our experiments using HTTP server logs dataset. The Internet
Traffic Archive3 provides a huge HTTP server log with about 1.3 billion HTTP
requests from the 1998 FIFA soccer world championship. We aggregated the in-
formation from this log into a relational table with the schema Log(interval,
userid, bytes), aggregating the traffic (in bytes) for each user within one-day in-
tervals. This dataset is horizontally partitioned evenly among peers of the P2P
system. Queries ask for the top-k active users, i.e. the k users with the highest
traffic at given interval (like ”June 1”).
3 http://ita.ee.lbl.gov
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(c) Response time vs. Query rate
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Fig. 2. Impact of query loads on QUAT performance

6.3 Metrics

In our experiments, to evaluate the performance of QUAT and that of baseline
approaches, we use the following metrics:
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(i) Cumulative quality gap over a period: see Section 3 for the definition.
(ii) Stabilization time over a period: see Section 3 for the definition.
(iii) Response time over a period: We report on the average response time of

all queries submitted in the system over a given period. The response time
is the time the query initiator has to wait until the top-k query execution
is finished.

(iv) Proportion of queries received per peer: We report on the number of
queries received in average by a peer over the number of queries submitted
in the system over a given period.

(v) Proportion of queries processed per peer: We report on the number
of queries executed locally in average by a peer over the number of queries
received by a peer over a period.

(vi) Communication cost: We measure the communication cost in terms of
number of answer messages and volume of data which must be transferred
over the network in order to execute a top-k query.

(vii) Accuracy of results: We define the accuracy of results as follows. Given
a top-k query q, let V be the set of the k top results owned by the peers
that received q, V ′ be the set of top-k results which are returned to the
user as the response of the query q. We denote the accuracy of results by
acq and define it as:

acq =
‖V ∩ V ′‖

‖V ‖

6.4 Baseline Approaches

In unstructured P2P systems, Fully Distributed (FD) [1] and As Soon As Pos-
sible (ASAP) [6] are baseline approaches for top-k processing over horizontally
partitioned data stored on peers. In FD, each peer that receives the query exe-
cutes it locally (i.e. selects the k top scores), and waits for its children’s results.
After receiving all its children score-lists, the peer merges its k local top data
items with those received from its children and selects the k top scores and sends
the result to its parent. Unlike FD, in ASAP, a peer does not wait for all its
children results before bubbling up results to its parent. Each peer (except the
query originator) returns to its parent its intermediate results that have better
qualities and thus may be in the final top-k.

6.5 Performance Results

In this section we present the results of our experimentation. Due to space lim-
itations, we only present the main results.

Effect of arrival query rate. We study the effect of the query arrival rate
on the performance of QUAT. For this, we ran experiments using the HTTP
logs dataset to study cumulative quality gap, stabilization time, response time,
proportion of queries received, proportion of queries processed and volume of
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transferred data while increasing the query arrival rate in the system from 50 to
300. Note that the other simulation parameters are set as in Table 1.

Figures 2(a) and 2(b) show respectively how cumulative quality gap and sta-
bilization time over a period of 2 hours increase with the query arrival rate. The
results show that the cumulative quality gap of QUAT is always much smaller
than that of ASAP and FD, which means that QUAT returns much faster high
quality results than ASAP and FD. The results also show that the stabilization
time of QUAT is always much smaller than that of ASAP and FD. The reason
is that in QUAT, peers prioritize the execution of queries that can produce high
quality results. Figure 2(c) show that the response time of QUAT over a period
of 2 hours is always much better than that of ASAP and FD. The main reason
is that in QUAT, peers do not execute incoming queries for which they do not
have interesting data, which helps peers to save their resources.

Figures 2(d) and 2(e) show that the proportion of queries received and the
proportion of queries processed by peers over 2 hours decrease while increasing
the query arrival rate. The reason is that in QUAT, as the query rate increases,
peers reduce the maximum number of connections that they can open simulta-
neously for a query. In addition, they use their knowledge of the descriptions
of their neighbors to avoid sending queries to some neighbors. Moreover they
exploit their local description to avoid executing locally some queries.

Figure 2(f) shows the volume of the increase of transferred data vs. query
arrival rate. The results show that the volume of transferred data of QUAT
is always higher than that of ASAP. The results also show that the difference
between QUAT and FD’s volume of transferred is not significant.
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Fig. 3. Accuracy of results vs. fail rate

Effect of peers failures. In this section, we investigate the effect of peers
failures on the accuracy of top-k results. In our tests, we vary the value of fail
rate and investigate its effect on the accuracy of top-k results. Figure 3 shows
the accuracy for QUAT, ASAP and FD while increasing the fail rate, with the
other parameters set as in Table 1. Peers’ failures have less impact on QUAT
than ASAP and FD. The reason is that QUAT returns high-score results to the
user very quickly. However, when increasing the fail rate in ASAP and FD, the
accuracy of top-k results decreases significantly because some score-lists are lost.
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Indeed, in FD, each peer waits for results of its children so in the case of a peer
failure, all the score-lists received so far by that peer are lost.

7 Related Work

Efficient processing of top-k queries is both an important and hard problem
that is still receiving much attention [17,13]. Several works have dealt with top-
k query processing in centralized database management systems [15,9]. In dis-
tributed systems [4], previous work on top-k processing has focused on vertically
distributed data over multiple sources, where each source provides a ranking
over some attributes. The majority of the proposed approaches try to improve
some limitations of the Threshold Algorithm (TA) [7]. Following the same con-
cept, there exist some previous work for top-k queries in P2P over vertically
distributed data. In [3], the authors propose algorithm called ”Three-Phase Uni-
form Threshold” (TPUT) which aims at reducing communication cost by prun-
ing away intelligible data items and restricting the number of round-trip mes-
sages between the query originator and other nodes. Later, TPUT was improved
by KLEE [11]. KLEE uses the concept of bloom filters to reduce the data com-
municated over the network upon processing top-k queries. It brings significant
performance benefits with small penalties in result precision. However, theses
approaches assume that data is vertically distributed over the nodes whereas we
deal with horizontal data distribution.

For horizontally distributed data, there has been little work on P2P top-k
processing. In [1], the authors present FD, a fully distributed approach for top-k
query processing in unstructured P2P systems. Recently, FD was improved by
ASAP [6]. We have briefly introduced FD and ASAP in section 6.4.

In [2], the authors present an index routing based a top-k processing technique
for super-peer networks organized in an HyperCuP topology which tries to mini-
mize the number of transfer data. The authors use queries statistics to maintain
the indices built on super-peers. However, the performance of this technique
depends on the query distribution.

Zhao et al. [19] use a result caching technique to prune network paths and
answer queries without contacting all peers. The performance of this technique
depends on the query distribution. They assume acyclic networks, which is re-
strictive for unstructured P2P systems.

There have been many works to deal with the problem of query load balancing
by trying to distribute the load fairly over the peers of the system, e.g. [5].
However, in the current paper, our objective is not to balance the load, but to
take it into account for reducing the user waiting time.

8 Conclusion

In this paper, we addressed the problem of top-k query processing in overloaded
P2P systems. The objective is to reduce the user waiting time by returning high
quality intermediate results as soon as possible, while avoiding high network
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traffic. For this, we revisited the problem of top-k query processing by considering
two new metrics to complement response time: stabilization time and cumulative
quality gap. Then, we proposed QUAT, an efficient algorithm that dynamically
adapts to peer query loads in order to return to the user top-k results as soon
as possible. QUAT allows users to progressively see the evolution of their query
execution by receiving high quality intermediate results. We validated QUAT
through extensive experimentation. The results show that QUAT significantly
outperforms baseline algorithms by providing quickly high quality to users and
by returning final top-k result to users in much better times. Finally, the results
demonstrate that in the presence of peers’ failures unlike baseline algorithms,
QUAT provides top-k results with good accuracy.
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Abstract. In many applications of sensor networks including environ-
mental monitoring and surveillance, a large volume of sensed data gen-
erated by sensors needs to be either collected at the base station or ag-
gregated within the network to respond to user queries. However, due to
the unreliable wireless communication, robust query processing in such
networks becomes a great challenge in the design of query evaluation
algorithms for some mission-critical tasks. In this paper we propose an
adaptive, localized algorithm for robust top-k query processing in sen-
sor networks, which trades off between the energy consumption and the
accuracy of query results. In the proposed algorithm, whether a sensor
is to forward the collected data to the base station is determined in ac-
cordance with the calculation of a proposed local function, which is the
estimation of the probability of transmitting the data successfully. We
also conduct extensive experiments by simulations on real datasets to
evaluate the performance of the proposed algorithm. The experimental
results demonstrate that the proposed algorithm is energy-efficient while
achieving the specified accuracy of the query results.

1 Introduction

In recent years, technological advances have made it become possible to deploy
large-scale sensor networks, consisting of hundreds or thousands of inexpensive
sensors in an ad-hoc fashion, for environmental monitoring and security surveil-
lance purposes [1,16]. In these applications, a large volume of sensing data gen-
erated by sensors needs to be either collected at the base station or aggregated
within the network to respond to user queries. The sensor network thus can
be treated as a virtual database by the database community [14]. The process-
ing of queries in wireless sensor network includes the skyline query [4], top-k
query [22,23,5,6,11], join query [9,20,21], and so on. Top-k query is a fundamen-
tal operator in databases that searches for very important objects according to
the object rankings obtained by a variety of ranking techniques. Efficient pro-
cessing of top-k query is crucial in many information systems that comprise a
large amount of data [8]. Top-k query in a sensor network is to return the k
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points with largest values to the base station, where a point is referred to as
the sensed value and the ID of its generator (sensor). Wireless sensor networks
that support top-k queries can be used to not only monitor the data generated
by sensors in no time but also perform further data analysis for decision mak-
ing. One such an application scenario is that the ornithologists who study the
behaviors of various bird species in a given region forest are interested to know
where the birds are most likely to gather [22]. To do so, they place the bird
feeders at different locations in the monitored region and install one sensor at
each feeder to count the number of birds at that feeder periodically. The result
of the top-k query can assist the ornithologists to determine where the birds
are likely to be attracted. For example, a top-k query can inquire which feeders
attract the maximum number of birds. Thus, the ornithologists can observe the
bird behaviors at a few places where the most attractive feeders are located.

A paramount concern in processing queries in energy-constrained wireless sen-
sor networks is the energy conservation in order to prolong the network lifetime,
because it usually is impractical to recharge the batteries that power the sen-
sors. In addition, a query result with a certain degree of accuracy is acceptable,
while the query results are typically computed by in-network processing. The
existing in-network processing algorithms are mainly based on the tree rout-
ing structure, which include the ones in [13,15,24,25] for aggregate query, and
the ones in [23,6,10] for top-k query, etc. However, the failure rates of wireless
communication in wireless sensor networks are relatively high (up to 30% loss
rate in common [27]), and each lost message at a sensor causes the loss of all
the collected data from the subtree rooted at the sensor. As a result, it is not
uncommon that 85% of sensed values are lost in a multi-hop sensor networks,
causing significantly answer inaccuracy and compromising the monitoring qual-
ity [18]. To overcome the shortcoming of the tree structure in the accuracy of
query results, several algorithms including algorithm FATE-CSQ in [12] have been
proposed, which make use of the feedback-retransmission mechanism, i.e., if a
transmission is failure, the parent sends the feedback messages to the children
and the children retransmit their messages again. However, such algorithms re-
sult in high message complexity and long delay in message delivery. Gobriel et
al [7] proposed an algorithm RideSharing, in which each sensor maintains two
types of parents: the primary and several backup parents. If the primary parent
does not receive the message from a child, it would send a vector to the other
backup parents, asking for them to forward the message. To ensure that all the
parents of a sensor can overhear the vector, it is required that all the parents and
this sensor form a clique, i.e., each of them is located within the transmission
range of each other. Although algorithm RideSharing avoids multiple retrans-
missions of the messages, it suffers high message complexity and long delay too,
and furthermore, the clique may not exist in real networks.

Besides the mentioned tree-based algorithms, several researchers have pro-
posed multi path-based and hybrid-based algorithms to deal with the aggre-
gation queries in wireless sensor networks with high failure rates [3,2,18,17,26].
Considine et al [3,2] and Nath et al [18] proposed the multi path-based
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methods, based on the multi-ring routing structure for aggregation queries, in
which the sensors are partitioned into different levels according to the number
of hops between them and the base station. Therefore, the data transmission is
performed level by level towards the base station. In the transmission by using
the multi-ring structure, each sensor sends its messages to all of its neighbors
at the level closer to the base station, rather than the single parent in the tree
routing structure. In this paper, this approach is referred to as algorithm SD
(Synopsis Diffusion) from [18]. The multi-ring structure is efficient in terms
of energy consumption for some aggregation queries such as MAX, MIN and
SUM, because each sensor aggregates the received data and broadcasts the ag-
gregate result of the same size as each received data to its neighbors. Therefore,
the transmission energy consumption on the multi-ring structure is almost the
same as that on the tree structure. However, in dealing with complicated queries
like top-k query and skyline query, a number of points rather than a partial re-
sult need to be sent to the base station as part of the query result, which means
that the duplication of points will significantly increase the transmission and
reception energy consumptions. This leads to that the sensors run out of their
energy quickly, thereby reducing the lifetime of the sensor network. We here use
an example to illustrate this. Fig. 1(a)-(d) show the number of sent and received
points by the sensors when the tree based approach and algorithm SD are ap-
plied to answering a MAX query and a top-5 query, respectively. Each sensor
has a labeled tuple, in which the first component is the number of points sent
by the sensor, and the second one is the number of points received at the sensor.
Initially, each sensor contains one point. To answer the MAX query, each sensor
broadcasts a point with largest value among the received and its own points to
its neighbors, while each sensor broadcasts 5 points with largest values among
the received and its own points to its neighbors to answer the top-5 query. It
can be seen that for the MAX query, algorithm SD has the same number of sent
points and a few more received points, while for top-5 query, the number of sent
and received points of algorithm SD is much more than those on tree topology.

To utilize the advantage brought by the tree and ring routing structures,
Manjhi et al [17] proposed an algorithm TD (Tributary-Delta) for aggregation
query processing, which is a hybrid approach, i.e., it adopts the routing structure
for data aggregation to achieve the optimal performance. Algorithm TD tries to
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overcome the problems of tree and ring topologies by combining the best features
of both topologies and tradeoffing the energy consumption and robustness of
query processing. The core idea of algorithm TD is to divide the sensors into
two categories. The sensors far away from the base station are called T sensors,
which send their data to a single parent, while the sensors near to the base
station are called M sensors, which send their data to multiple neighbors closer
to the base station. The network thus is organized in regions to implement one
of the two structures respectively. The region consists of the T sensors is called
Tributary region, while the region consists of M sensors and the base station is
called Delta region. The base station maintains the percentage of the sensors that
contribute their data to the final result and decides whether to shrink or expand
the Delta region for the future queries. If the percentage is below the user given
threshold, the Delta region is expanded to improve the robustness; otherwise, the
Delta region is shrunk to save energy. The adaptation of the routing structure
is executed by changing the label of a sensor (T or M). However, algorithm TD
seems not to be applicable to top-k query due to the following concerns. Firstly,
the points are only sent to a parent at the T sensors, therefore the accuracy of
query results will become low if the link failure rate is high. Secondly, the re-
classification of sensors is purely derived from the statistics of the failure links
in the transmission of current query evaluation. If the data distribution and
the unpredictable status of the wireless links in the next period are different
from the previous ones, such a re-classification may not improve the accuracy of
the results at all. Thirdly, the sensors near to the base station usually consume
more energy than the sensors far away from the base station. In algorithm TD,
the M sensors send and receive as many points as the sensors in algorithm SD,
which makes the M sensors run out of their energy quickly and disconnection
between the base station and other sensors. Thus the sensor network is no more
functioning. Lastly, the maintenance of the network structure may be expensive
in energy consumption by broadcasting the messages for adapting the structure.

In this paper we deal with top-k query evaluation in wireless sensor networks
efficiently and effectively. Our main contributions are as follows. We first ana-
lyze the drawbacks of applying existing algorithms for answering top-k queries,
followed by giving a new definition of the accuracy of top-k query results. We
then propose a localized, energy-efficient query evaluation algorithm tradeoffing
between the energy consumption and the accuracy of query results. We finally
conduct extensive experiments by simulations on real sensing datasets to evalu-
ate the performance of the proposed algorithm. The experimental results show
that the proposed algorithm outperforms existing ones in terms of energy con-
sumption under the given constraint of the accuracy of results.

2 Preliminaries

2.1 System Model

We consider a sensor network consisting of n stationary sensors, randomly de-
ployed in a region of interest, each measuring a numerical value. For each
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sensor v, v.id is the ID of sensor v. Each point p is represented by a tuple
< p.sid, p.val >, where p.sid is the ID of sensor generating point p, and p.val
is the sensing (reading) value. Assume that p.sid as well as p.val is represented
by 4 bytes. Thus, a point p is represented by 8 bytes in total. There is a base
station with unlimited energy supply, which serves as the gateway between the
sensor network and users. Each sensor can communicate with the other sensors
within its transmission range, where the transmission range of all sensors in the
network is identical. Denote by f the probability of a link failures during the
wireless radio communication, i.e., the transmission through a link is failed with
probability f , 0 ≤ f ≤ 1. To transmit a message containing l bytes from one sen-
sor to its neighbors, the amount of transmission energy consumed at the sender
is ρt + l ∗ R, while the amount of reception energy consumed at the receiver is
ρr + l ∗ r, where ρt and ρr are the sum of energy overhead on handshaking and
sending and receiving the header of the message, and R and r are the amounts
of transmission and reception energy per byte. We assume that the computation
energy consumption on sensors can be ignored, because in practice it is several
orders of magnitude less than the communication energy consumption, e.g., the
authors in [14,19] claimed that the transmission of a bit of data consumes as
much energy as executing 1,000 CPU instructions.

2.2 Query Structure

Denote by N(v) the set of neighbors of sensor v. Each sensor can transmit points
to the base station through one or multi-hop relays. We define the distance of v
to the base station as the minimum number of hop relays from sensor v to the
base station. The sensors in the network can be divided into several levels, and
the sensors at the same level are also indexed. According to their distances to the
base station, vi,j is referred to as the sensor with jth smallest ID at the ith level
and Vi is the set of sensors at the ith level of the network. The base station is in
V1 (the base station is v1,1), and the number of hops from a sensor vi,j to the base
station is i−1. Let Up(vi,j) be the set of upstream sensors of vi,j , which is the set
of neighbors of v in Vi−1, i.e., Up(vi,j) = {v | v ∈ Vi−1, v ∈ N(vi,j)}. Similarly,
denote by Down(vi,j) = {v | v ∈ Vi+1, v ∈ N(vi,j)} the set of downstream
sensors of vi,j . A sensor v is defined as a partner of sensor vi,j from sensor u,
such that v and vi,j have the same downstream sensor u, i.e., the set of partner
of sensor vi,j from sensor u is Par(vi,j)u = {v | u ∈ Down(vi,j), u ∈ Down(v)}.
In other words, a sensor in Up(u) is a partner of any sensor in Up(u) from sensor
u. vi,j is also a partner of itself. Thus Par(vi,j) =

⋃
u∈Down(vi,j)

Par(vi,j)u is
the set of partners of sensor vi,j from all its downstream sensors. A sensor v is
defined as the ancestors of sensor vi,j if the points generated at sensor vi,j can
be sent to sensor v through one or multi-hop relays, while a sensor v is defined
as the descendants of vi,j if the points from v can be sent to vi,j through one or
multi-hop relays. The sets of ancestors and descendants of sensor vi,j are referred
to as Anc(vi,j) and Des(vi,j), respectively. In addition, denote by Down(vi,j)u

the subset of downstream sensors of sensor vi,j , in which the sensors are the
ancestors of sensor u, i.e., Down(vi,j)u = {v | v ∈ Down(vi,j), v ∈ Anc(u)}. In
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the previous algorithms using the multi-ring structure, the points are transmitted
from a sensor to all its upstream sensors and are regarded as the duplications of
the points. The points thus are transmitted to the base station through multi-
paths, which significantly increases the accuracy of the query results.

2.3 Accuracy of Top-k Query Results

The accuracy of the query results in previous studies is measured by the ratio of
the obtained results to the real results. However, such a measurement may not be
suitable for top-k queries. The reason is as follows. Assume that the base station
issues a top-100 query to a sensor network of 1,000 sensors and receives the top-
100 result from its 700 sensors, and the points from the rest of the 300 sensors
are lost within the transmission due to link failures. However, due to the skew
data distribution, the obtained top-100 result from the 700 sensors is the actual
top-100 result from the 1000 sensors. If the data distribution is changed, e.g.,
the actual top-100 points all come from the 300 sensors, the obtained result and
the actual result are completely different. In this case, the comparison between
the obtained results and the actual results does not reflect the actual number
of the points lost during the data transmission. To this end, we thus propose
another metric to measure the accuracy of top-k query results that will not be
affected by the data distribution as follows.

Denote by P the set of points in the sensor network. If there are x points
in P which are actually used to determine the results, x

|P | is defined as the
accuracy of the top-k results, where the x points consist of two types of points:
the points transmitted to the base station successfully, and the points failed
to be transmitted to the base station because they are discarded by the sensors
receiving at least k points with higher values than theirs. For each query, assume
that an expected threshold ratio θ is given in advance, and at least θ ∗ |P | points
can be used for determining the results. The single point threshold θp is the
probability of a point that is one of the x points. Denote by Evx the event that
x points are used to determine the query result. Therefore, the accuracy of top-k
result is

θ = Pr(Ev|P |) + Pr(Ev|P |−1) + . . .+ Pr(Ev�|P |θ�)

= θ|P |
p + θ|P |−1

p (1 − θp)|P | + . . .+
( |P |
�|P |θ�

)
(θ|P |−�|P |θ�

p )(1 − θp)�|P |θ�

=
|P |−�|P |θ�+1∑

i=0

(|P |
i

)
θ|P |−i

p (1 − θp)i. (1)

The value of θp in Eq. (1) can be estimated provided that θ is given, and
if each point used for the query result has a probability no less than θp, then
the accuracy of the query result will be no less than θ. Note that due to the
uncertainlity of the link failures, it cannot guarantee whether the accuracy of
each top-k query result meets the specified threshold.

We now give the problem statement. Given a wireless sensor network G(V,E),
V is the set of sensors and the base station, and E is the set of links. Assume
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that each sensor contains a point initially. Let P be the set of points generated
by all sensors. Assume that the average link failure rate is f , which means that
a sensor v in the WSN transmits data to its neighbors, the neighbors cannot
receive the correct data with probability f(v) on average, and the query result
accuracy threshold θ is given, too. The robust top-k query evaluation is to return
the k points with the largest values with the query result accuracy being no
smaller than θ. If the link failure rate is too high to meet the accuracy threshold
θ, the top-k query evaluation will return the results as accurate as possible.

3 Robust Top-k Query Evaluation Algorithm

In this section we propose a novel localized evaluation algorithm for robust top-k
query to tradeoff the energy consumption and the query result accuracy. The pro-
posed algorithm is as follows. Built upon the query structure, a sensor vi,j first
collects the local information (i.e., its neighboring sensors). To respond to a top-k
query, each sensor vi,j performs different operations according to whether it has
downstream sensors. If there is no downstream sensors, vi,j just broadcasts its
points to its upstream sensors; otherwise, it receives the points from all its down-
stream sensors and puts the points with the same values and the generated sen-
sors into the same group. Sensor vi,j examines the groups one by one to determine
whether to broadcast the points of groups to its upstream sensors. Having exam-
ined all the groups, vi,j broadcasts some of the received points to its upstream sen-
sors. To determine whether to broadcast a received point, vi,j calculates a value of
a local function. If the value of the function for the received point is less than the
threshold θp, the point is forwarded to its upstream sensors; otherwise, the point
is discarded. The calculation of the local function is based on the local informa-
tion of sensor vi,j and its information so far. In the following, we first describe how
each sensor collects the local information and then propose the algorithm Robust
Top-k Query Evaluation (RTE in short). Note that the proposed algorithm is a
localized algorithm, which is preferable by distributive sensor networks.

3.1 Local Information Collection

We show how a sensor vi,j collects the local information of its neighboring sen-
sors. Firstly, each sensor vi,j broadcasts its ID vi,j .id and the number of its
upstream sensors |Up(vi,j)| to its downstream sensors, and at the same time it
also received the same information from its upstream sensors. In other words,
each sensor vi,j broadcasts {vi,j .id, |Up(vi,j)|} to its downstream sensors and
receives

⋃
v∈Up(vi,j){v.id, |Up(v)|} from its upstream sensors. Secondly, sensor

vi,j broadcasts
⋃

v∈Up(vi,j){v.id, |Up(v)|} to its upstream sensors. It also receives
the information broadcast from all its downstream sensors. Having received the
information from one of downstream sensor u , i.e.,

⋃
v∈Up(u){v.id, |Up(v)|},

vi,j obtained the information of partners in Par(vi,j)u. Therefore, sensor vi,j

obtains the IDs and the number of upstream sensors of all its partners, i.e.,⋃
v∈Par(vi,j)

{v.id, |Up(v)|}. Finally, vi,j makes use of the information to calcu-
late the local function and determines whether to forward the received points.
Note that the local information collection is only executed once.
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3.2 Query Evaluation Algorithm

We propose the evaluation algorithm RTE for robust top-k query evaluation as
follows. For each sensor vi,j , the set of its upstream sensors is partitioned into two
disjoint subsets: The first �|Up(vi,j)| ∗ f� sensors with smaller IDs are appointed
to forward the points from vi,j , while the other sensors will determine whether
to forward the points by calculating a local function. Note that each sensor can
easily know whether it is appointed by one of its downstream sensors because it
stores the IDs of all its partners. The detailed procedure is as follows.

If sensor vi,j does not have any downstream sensors, it broadcasts the points
to all its upstream sensors; otherwise, it checks the received points one by one.
There are different groups of points at vi,j , containing the same points from
different downstream sensors. The points in the group Gp(p)vi,j are the points
whose values are p.val and their generated sensors are p.sid. vi,j contains k
different groups of points Gp(p1)vi,j , . . . , (pk)vi,j , in which p1, . . . , pk are the k
points with highest values among the points at sensor vi,j , where for every two
groups Gp(px)vi,j and Gp(py)vi,j , px.sid �= py.sid or px.val �= py.val. If sensor
vi,j is appointed by any downstream sensors sending px to vi,j and px is in one
of the top-k group, point px is marked as the point to be forwarded by vi,j ;
otherwise, sensor vi,j calculates the function to determine whether to forward
point px. The calculation of the local function will be introduced in the next
section. If the value of the local function is not smaller than θp, point px is
discarded by sensor vi,j ; otherwise, point px is marked to be forwarded. Having
checked all the groups, sensor vi,j broadcasts the set of all marked points to its
upstream sensors. The pseudo-code of algorithm RTE at each sensor is as follows.

Algorithm 1. Algorithm RTE(v)

begin
collect the local information; receive θ and calculates θp;
if vi,j has no downstream sensors then

broadcast the points to all the upstream sensors;
else

receive the points from the downstream sensors;
group the points and obtains top-k points groups,
G(p1)vi,j , . . . , G(pk)vi,j ;
foreach point px of group G(px)vi,j do

if vi,j is appointed by any downstream sensors sending px then
px is marked to be forwarded;

else
calculate the local function;
if the value of local function is smaller than θp then

px is marked to be forwarded;

end
broadcast the points that are marked to be forwarded;

end
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3.3 Determination of Non-appointed Sensors

We then describe how a sensor vi,j determines whether forwarding a received
point p if it is not appointed by any sender of p. The intuition of determination is
that sensor vi,j calculates the probability of transmitting point p by its partners
appointed to forward point p. If the probability is no less than the threshold,
there is no need for it to forward point p; otherwise, sensor vi,j forwards point p.
However, it is a bit difficult for sensor vi,j to calculate the probability of sending
point p by the appointed partners, since vi,j only has the local rather than the
global information. Therefore, an approximate value that is always smaller than
that probability is designed for sensor vi,j as follows.

Denote by pr(v)p or pr(Vi−1)p the probability of point p sent to sensor v or
any sensor at the i−1th level, while lpr(v)p and lpr(Vi−1)p are the local functions
of sensor vi,j estimating the probability of that point p is sent to sensor v or any
sensor at the i−1th level, respectively. Assume that point p is generated at sensor
vi′,j′ and vi,j is the ancestor of vi′,j′ . Recall that Down(vi,j)vi′,j′ is the set of
downstream sensors of vi,j and the ancestors of vi′,j′ . In other words, point p can
be transmitted from vi′,j′ to vi,j through sensor u ∈ Down(vi,j)vi′,j′ . Suppose
that sensor vi,j receives point p successfully from m sensors {u1, u2, . . . , um} ⊆
Down(vi,j)vi′,j′ . Sensor v is a partner of sensor vi,j that is also ancestor of
sensor vi′,j′ . Denote by d(v) the number of downstream sensors of sensor v in
{u1, u2, . . . , um}. For a sensor v in

⋃m
t=1 Par(vi,j)ut , sensor vi,j estimates the

probability that sensor v receives point p is

lpr(v)p = 1 − (1 − (1 − f)i′−i−1(1 − f))d(v). (2)

where f is the average of link failure rate and the value of d(v) can be calculated
by sensor vi,j as follows. Initially d(v) = 0. Having received point p from sensors
u1, . . . , um, sensor vi,j increments d(v) by 1 if v is in Up(ut), 1 ≤ t ≤ m,
and i′ can be obtained from p.sid. Thus the value of lpr(v)p can be calculated
locally. Assume that there are m′ partners of vi,j , v1, . . . , vm′ in

⋃m
t=1 Par(vi,j)ut

appointed to forward point p. Sensor vi,j calculates the value of lpr(Vi−1)p by
calculating the probability that all sensors v1, v2, . . . , vm′ send point p to their
upstream sensors. From Eq. (2), we have

lpr(Vi−1)p = 1 −
m′∏
t=1

(1 − lpr(vt)p(1 − f |Up(vt)|))

= 1 −
m′∏
t=1

(1 − (1 − (1 − (1 − f)i′−i)d(vt))(1 − f |Up(vt)|)), (3)

The value of |Up(vt)| can be obtained by sensor vi,j through local information
collection and all the variables in Eq. (3) can be obtained by sensor vi,j , thus the
value of lpr(Vi−1)p can be calculated locally. For each received point p, if sensor
vi,j is not appointed, it calculates the value of lpr(Vi−1)p. If lpr(Vi−1)p > θp,
sensor vi,j discards point p; otherwise, sensor vi,j sends point p to all its up-
stream sensors even if it is not appointed to forward point p. When lpr(Vi−1)p is
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small, all the sensors need to forward the points to their upstream sensors to im-
prove the probability no matter whether they are appointed. Consequently, the
proposed algorithm is the same as algorithm SD. If the estimated probability is
high, the non-appointed sensors discard the points directly. lpr(Vi−1)p in Eq. (3)
is determined by f , |Up(vt)|, d(vt), and i− i′, while the values of f and |Up(vt)|
reflect the physical condition of the sensor networks, e.g., the average link failure
rate and the deployment of the sensors (the number of upstream sensors of a
sensor). If f is large and |Up(vt)| is small, this means the chance to transmit
point p successfully is unlikely, the value of lpr(Vi−1)p will become small and
consequently more sensors help is needed in order to forward point p to their
upstream sensors. d(vt) is determined by the number of copies of point p received
by sensor vi,j and the number of downstream sensors of sensor vt. A smaller d(vt)
implies that the number of copies of point p is small and loss of these copies will
lead to the failure of the transmission of point p. When d(vt) is small, lpr(Vi−1)p

will be small as well and more sensors forward point p to increase the number
of copies of p. i − i′ shows the number of hops from the generated sensor of
point p (vi′,j′) to sensor vi,j . The larger the i − i′ is, the more possible point
p is in the top-k result because it has larger values than more points from the
subtree rooted at sensor vi,j . If i − i′ is large, lpr(Vi−1)p will be small and the
non-appointed sensors will forward point p to help increase the probability of
transmitting point p successfully. In conclusion the proposed estimation of prob-
ability is a self-adapting function in the accordance with the status of the links
and the routing structure of the different sensor networks, which tradeoffs the
energy consumption and the accuracy of the query results well. In the following,
we prove that the value of function lpr(Vi−1)p is smaller than the probability
that point p is sent to any sensor at the i − 1th level by giving the following
theorem.

Theorem 1. Assume that point p is generated at sensor vi′,j′ and received by
sensor vi,j. Then, Pr(Vi−1)p ≥ lpr(Vi−1)p.

Proof. Recall that Par(vi,j)u is the set of partners of sensor vi,j from u, in which
the sensors and vi,j have the same downstream sensor u. If sensor vi,j receives
point p from some of its downstream sensors in Down(vi,j)vi′,j′ , it is obvious
that the sensors in

⋃
u∈Down(vi,j)v

i′,j′
Par(vi,j)u are the ancestors of sensor vi′,j′

and likely to receive point p. For a partner v ∈ ⋃u∈Down(vi,j)v
i′,j′

Par(vi,j)u, the

probability of that it received p is

pr(v)p = 1 −
∏

u∈Down(v)v
i′,j′

(1 − pr(u)p)(1 − f)), (4)

where v is at the ith level and each u in Down(v)vi′,j′ is the downstream sensor
sending point p to v. There may be a sensor u ∈ Down(v)vi′,j′ that is not
a downstream sensor of sensor vi,j . Thus, set Down(v)vi′ ,j′ and the value of
pr(u)p in Eq. (4) is not known by sensor vi,j , because every sensor only has the
local information and consequently the value of pr(Vi−1)p is not known either.
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The probability that point p is sent to the upstream sensors of v is pr(v)p ∗
(1 − f |Up(v)|). Thus, the probability of sending point p to any sensor in Vi−1 is

pr(Vi−1)p = 1 −
∏

vi,k∈Anc(vi′,j′ )

(1 − pr(vi,k)p(1 − f |Up(vi,k)|)), (5)

where vi,k at the ith level is an ancestor of sensor vi′,j′ .
Within Eq. (4), pr(u)p is the probability that p is sent from sensor vi′,j′ to a

downstream sensor u of v at the (i+ 1)th level. The value of pr(u)p is minimum
when point p is sent to sensor u through single path with i′ − i − 1 hops, that
is, pr(u)p ≥ (1 − f)i′−i−1. And d(v) is the number of sensors in Down(v)vi′,j′ ∩
{u1, u2, . . . , um}, where {u1, . . . , um} are the downstream sensors sending point
p to vi,j successfully. Obviously d(v) ≤ Down(v)vi′,j′ . Because (1 − f)i′−i−1 ≤
pr(u)p and d(v) ≤ |Down(v)vi′ ,j′ |, from Eqs. (4) and (2), lpr(v)p ≤ pr(v)p.
lpr(v)p ≤ pr(v)p and {v1, . . . , vm′} ⊆ Anc(vi′,j′ ), we have

lpr(Vi−1)p = 1 −
m′∏
t=1

(1 − lpr(vt)p(1 − f |Up(vt)|))

≤ 1 −
∏

vi,k∈Anc(vi′,j′ )

(1 − pr(vi,k)p(1 − f |Up(vi,k)|))

= pr(Vi−1)p. (6)

Thus, if lpr(Vi−1)p ≥ θp, then pr(Vi−1)p ≥ θp.

Therefore, if a point p generated at vi′,j′ is forwarded to sensors at the ith level
and there is a non-appointed sensor vi,j discarding point p because lpr(Vi−1)p >
θp, the probability that point p is sent to any sensor in Vi−1 is also larger than
θp. If a sensor vi−1,k receives point p and other k points with larger values than
p.val, p is impossible to be part of top-k result and it is transmitted successfully;
otherwise, if there is a sensor vi−1,k receiving point p but discarding it because
lpr(Vi−1)p ≥ θp, the probability of sending point p to the sensors in Vi−2 is not
smaller than θp. Eventually point p is sent to the base station with probability
not smaller than θp if there is at least a sensor at the second level discarding
point p because the locally estimated probability is not smaller than θp.

3.4 The Extension of the Algorithm

It is well known that link failure rates in wireless sensor networks are not iden-
tical. Denote by fu,v the failure rate of a link from sensor u to sensor v. Our
proposed algorithm can be extended for this generalized scenario as well. First,
in local information collection phase, each sensor broadcasts the link failure rates
of the links between itself and its upstream and downstream sensors in addition
to the number links between them. Second, each sensor calculates the proba-
bilities of receiving a point and forwarding the point along with the link failure
probability. Finally, the local function is modified to suit for WSNs with different
link failure rates. Denote by pr(p)v the probability of sensor v receiving point
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p. If v is the generator of p, pr(p)v = 1 and v broadcasts point p with pr(p)v ;
otherwise, pr(p)v is calculated as follows. Assume that sensor v received point p
with probabilities pr(p)u1 , . . . , pr(p)um from sensors u1, . . . , um. The probability
that v receives p is pr(p)v = 1 −∏m

i=1(1 − pr(p)ui ∗ fui,v). Therefore, sensor v
estimates the probability that sensor v′ in

⋃m
t=1 Par(vi,j)ut if it receives point p

from sensor u1, u2, . . . , um, which is

lpr(v′)p = 1 −
∏

v′∈Up(ut)

(1 − pr(p)ut(1 − fut,v′)), (7)

where 1 ≤ t ≤ m. pr(p)ut is received by sensor v and fut,v′ can be obtained
through local information collection. Therefore the local function is modified as

lpr(Vi−1)p = 1 −∏m′

t=1(1 − lpr(vt)p(1 −∏|Up(vt)|
x=1 fvt,nx)), (8)

where n1, n2, . . . , nx are the upstream sensors of vt. All the variables in the mod-
ified function can be obtained by sensor v, and this indicates that the modified
function can also be calculated by sensor v locally.

4 Performance Study

In this section we evaluate the performance of the proposed algorithm in terms of
the total energy consumption, the maximum energy consumption among sensors,
and the accuracy of the top-k query results. We assume that the sensor network is
used to monitor a 100m×100m region of interest. Within the region, 1000 sensors
are randomly deployed by the NS-2 simulator [30] and the base station is located
at the square center. There is a communication channel between two sensors if
they are within the transmission range (5 meters in this paper) of each other.
Each point is represented by 8 bytes. It is supposed that the energy overhead on
transmitting and receiving a header and the handshaking are ρt = 0.4608 mJ
and ρr = 0.1152 mJ . The energy consumption of transmitting and receiving
one byte are R = 0.0144 mJ and re = 0.00576 mJ , respectively, following the
parameters given in a commercial sensor MICA2 [28]. In our experiments, we use
the real sensing dataset [29]. The performance of algorithm SD in [18], algorithm
TD in [17], algorithm FATE based on the re-transmission mechanism in [12] and
a well-known algorithm Naive-k in [22] on the tree structure is used as the
benchmark for comparison purpose.

4.1 Performance Comparison with Equal Link Failure Rates

We first study the performance of various algorithms with different thresholds θ
and equal link failure rates f , where θ is 0.7 or 0.8, while f is ranged from 0.05
to 0.5. Assume that a top-30 query is broadcast to all sensors. The results of the
experiments are the average of running the top-30 query by different algorithms
1,000 times, and in each time the status of each link in the network is randomly
determined, according to the given link failure rate.
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when θ=0.7
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(g) Accuracy of Top-k Results

when θ=0.8, f = 0.2
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Fig. 2. The performance by various algorithms with identical link failure rates

From Fig. 2, we can observe that the query results delivered by algorithms
FATE and SD has a higher accuracy than that of the other algorithms, but algo-
rithm FATE has the largest maximum energy consumption and SD has the largest
total energy consumption. The accuracy of query result by algorithm Naive-k
drops sharply when the failure rate increases, which implies that it is not robust
under the unstable communication environment. Compared to another adaptive
algorithm TD, the results delivered by algorithm RTE is more accurate but with
less energy consumption in overall. Figs. 2(g), 2(h), and 2(i) indicate the per-
formance of various algorithms with different ks when θ = 0.8 and f = 0.2.
It can be seen that the accuracy of query results by algorithm RTE is above
the threshold and the total and the maximum energy consumptions by it is
smaller than these by the other mentioned algorithms. This implies algorithm
RTE makes a better trade off between the accuracy of the query result and the
energy consumption.
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4.2 Performance Comparison with Different Failure Rates

We then evaluate the performance of various algorithms with different link failure
rates. We assume that the link failure rate of each link is randomly generated
and with within the range from 0 to 0.5. The modified version of algorithm RTE
for this general case is referred to as RTEM.

Fig. 3 illustrates the performance curves of different algorithms, in which
we can see that with various values of θ, the query results delivered by algo-
rithm FATE are the most accurate, while the accuracy of the results by algorithm
Naive-k is the worst. As shown in Figs. 3(a) and 3(b), the accuracy of algorithm
RTEM is above the broken line representing θ and they are closer to the curves
of the accuracy of algorithm SD with the increase of k. Although there is no
guarantees that the accuracy of query results by algorithms RTE and TD meets
the given threshold, the query result accuracy by both algorithms is close to the
threshold, due to the adaptive mechanisms embedding in both the algorithms.
From Figs. 3(c) and 3(d), with the decrease of the threshold, the energy con-
sumption by algorithm RTEM is close or smaller than that by algorithm SD, since
the dynamic decision plays a crucial role in making the trade-off between the
energy consumption and the accuracy of query results. And it is observed from
Figs. 3(e) and 3(f) that algorithm RTE has the better performance in maximum
energy consumption than any other algorithms except algorithm Naive-k.
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Fig. 3. The performance by various algorithms with random link failure rates when θ
ranges from 0.7 to 0.9
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5 Conclusion

In this paper we have tackled the problem of robust top-k query processing in
wireless sensor networks. The objective is to minimize the energy consumption
with the accuracy of query results constraint. We proposed a localized algorithm
to strive the finest tradeoff between the energy consumption and the accuracy
of the results. We conducted extensive experiments by simulations to evaluate
the performance of the proposed algorithm. The experimental results show that
there is a non-trivial tradeoff between the energy consumption and the accuracy
of query results. The proposed algorithm is more energy-efficient than that of the
existing algorithms while meeting the specified accuracy requirement on query
results.
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Abstract. Record linkage identifies multiple records referring to the
same entity even if they are not bit-wise identical. It is thus an essen-
tial technology for data integration and data cleansing. Existing record
linkage approaches are mainly relying on similarity functions based on
the surface forms of the records, and hence are not able to identify com-
plex coreference records. This seriously limits the effectiveness of existing
approaches.

In this work, we propose an automatic method to extract top-k high
quality transformation rules given a set of possibly coreferent record
pairs. We propose an effective algorithm that performs careful local anal-
yses for each record pair and generates candidate rules; the algorithm fi-
nally chooses top-k rules based on a scoring function. We have conducted
extensive experiments on real datasets, and our proposed algorithm has
substantial advantage over the previous algorithm in both effectiveness
and efficiency.

1 Introduction

Real data are inevitably noisy, inconsistent, or contain errors. For example, there
are dozens of correct ways to cite a publication, depending on the bibliography
style one uses; however, there can be hundreds of citations to the same publi-
cation that contain errors, as caused by typographical errors, Optical Character
Recognition (OCR) errors, or errors introduced when the citation was extracted
by a program from Web pages.

Record linkage is the process of bringing together two or more separate records
pertaining to the same entity, even if their surface forms are different. It is
a cornerstone to ensure high quality of mission-critical data either in a single
database or during data integration from multiple data sources. Therefore, it
has been used in many applications including data cleansing, data integration
from multiple sources or the Web, etc.

Most existing methods for record linkage rely on similarity functions to gen-
erate candidate pair of records that may be coreferent. This is insufficient
when coreferent records has little surface similarity. For example, 23rd and
twenty-third, VLDB and Very Large Databases. Therefore, existing systems

� This work was partially supported by ARC Discovery Projects DP0987273 and
DP0881779.

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 172–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Learning Top-k Transformation Rules 173

incorporate transformation rules to recognize these domain-specific equivalence
relationships.

Traditionally, transformation rules were manually created by experts. This
process is not only tedious, expensive, and often erroneous, the generated
rules are seldom comprehensive enough. This is the main motivation for semi-
automatic methods to automatically learn a set of high quality candidate
rules [1]; domain experts can then manually validate or refine the candidate rules.
Hence, it is important that a majority of the candidate rules generated by these
algorithms should be correct. The rule learning algorithm should also be able to
cope with large input datasets and learn top-k rules efficiently. As we demon-
strate in the experiments, existing methods [1] fail to meet both requirements.

In this paper, we propose a novel method to automatically learn top-k trans-
formation rules from a set of input record pairs known to be coreferent. We
perform meticulous local alignment for each pair of records by considering a
set of commonly used edit operations. We then generate a number of candidate
rules based on the optimal local alignment. Statistics of the candidate rules are
maintained and aggregated to select the final top-k rules. We have conducted ex-
tensive experiments with the existing state-of-the-art algorithm. We found that
our rule learning algorithm outperforms the existing method in both effectiveness
and efficiency.

Our contributions can be summarized as:
– We proposed a local alignment-based rule learning algorithm. Compared with

the global greedy algorithm in [1], our algorithm generates fewer candidate
rules, and our candidate rules are more likely to be correct rules.

– We have performed extensive experiments using several publicly available real-
world datasets; our experimental results shows a 3.3x increase in the percent-
age of correct rules as compared with previous approach, and up to 300x
speed-up in efficiency.
The rest of the paper is organized as follows: Section 2 introduces related

work. We present our algorithm in Section 3. Experimental results are given in
Section 4, and Section 5 concludes the paper.

2 Related

Record linkage is known under many different names, including entity resolution,
and near duplicate detection. It is a well studied problem and has accumulated a
large body of work. We refer readers to surveys [2,3], and focus on related work
that is most closely related to our proposal.

Most existing record linkage approaches exploit similarities between values of
intrinsic attributes. Many similarity or distance functions have been proposed
to model different types of errors. For example, edit distance is used to account
for typographical errors and misspellings [4]. Jaro-Winkler distance is designed
for comparing English names [5]. Soundex is used to account for misspellings
due to similar pronunciations. Jaccard similarities or cosine similarities mea-
sure the similarity of multi-token strings [6]. Similarity functions can also be
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weighted. A common heuristic is to use the well-known tf-idf scheme. To al-
low misspellings, a soft version of tf-idf is proposed in [7], and later extended
in [8]. Alternatively, weights can be learned automatically using machine learn-
ing techniques [9,10,11]. Multiple similarity functions can be used on the same
or different attributes of the records. The similarity values can either be simply
aggregated or be treated as a relational input to a classifier [10].

Dealing with Complex Coreferent Records. It is well-known that a single
similarity function is not sufficient to identify complex coreferent records. Past
efforts can be categorized into several categories below.

The first category is to learn a good similarity function using machine learning
techniques [12,13,11]. For example, [14] employs a two-phase approach. In the
first phase, attribute value matchers are tuned, and in the second phase, a SVM
classifier is learned from a combination of the tuned matchers generated from
the previous step. The experimental results show that trainable similarity mea-
sures are capable of learning the specific notion of similarity that is appropriate
for a specific domain. While this approach focuses on homogenous string-based
transformation, [15] uses heterogeneous set of models to relate complex domain
specific relationships between two values. One technical issue for these learning-
based approach is the selection of training datasets, especially the negative in-
stances. [10] employs active learning techniques to minimize the interaction with
users, and is recently improved by [16].

Another category of approaches is to model complex or domain-specific trans-
formation rules [17,1]. We compare with them in more detail in the next subsec-
tion. The learned rules can be used to identify more coreferent pairs [18,19].

Note that although only few works in record linkage focus on transformation
rules, they have been widely employed in many other areas, and automatic rule
learning algorithms have been developed accordingly. In Natural Language Pro-
cessing (NLP), [20] finds sets of synonyms by considering word co-occurrences.
Later, [21] utilizes the similar idea to identify paraphrases and grammatical sen-
tences by looking at co-occurrence of set of words.

Recently, researchers have used transformation rules to deduplicate URLs
without even fetching the content [22,23], e.g., http://en.wikipedia.org/?
title=* and http://en.wikipedia.org/wiki/* always refer to the same web
page. However, the rules and their discovery algorithms are heavily tailored for
URLs.

Another closely related area is the substitution rules used in query rewrit-
ing [24,25]. For example, when a user submits a query apple music player to
a search engine, it may change the query to apple ipod. The substitution rules
are mainly mined from query logs, and the key challenges are how to find similar
queries and how to rank them.

Existing Transformation Rule Learner. [1] is a recent work to learn top-k
transformation rules given a set of coreferent record pairs. it has shown much bet-
ter accuracy and scalability to larger datasets than the previous approach [17].
The idea of [1] is to identify candidate rules from the unmapped tokens of each

http://en.wikipedia.org/?title=*
http://en.wikipedia.org/?title=*
http://en.wikipedia.org/wiki/*
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record pair, and then compute the aggregated score of the candidate rules to find
the top-k high quality rules. While our proposal follows the similar framework,
there are a few major differences:

– We perform more refined local alignment for each record pair. We use a set of
common edit operations (including typographical errors and abbreviations) to
identify more mappings tokens, and hence produce fewer number of candidate
rules from unmapped tokens. E.g., in Figure 1, all yellow and green tokens will
be unmapped in [1]’s approach, and candidate rules which are essentially all
possible mapping among them will be generated and counted. [1]’s strategy
of pairing of all possible subsets of unmapped tokens not only decreases the
quality of the final top-k rules, but also slows down its rule learning speed
substantially.

– We can optionally support partitioning the records into fields (i.e., partitions),
which further reduces the number of candidate rules, and speeds up the com-
putation.

– We use a better scoring function than [1], which is less impacted by the length
of the rules and counts the frequency of the rules by the clusters they appeared.

As demonstrated in our experiments (Section 4), these differences result in sub-
stantial improvements of our proposed algorithm over [1] in both the effectiveness
and efficiency.

3 The Local-Alignment-Based Algorithm

Similar to [1], the input to transformation rule learning algorithms is a set of
coreferent record pairs. The overall idea of our new algorithm is to perform care-
ful local alignment for each record pair first, generate candidate rules from the
optimal local alignment, and aggregate the “strength” of the rules over all input
pairs to winnow high-quality rules from all the candidate rules.

3.1 Preprocessing the Input Data

We perform the standard preprocessing for input record pairs: we remove all
non-alphanumeric characters except spaces, and then converting characters to
lower cases. We do not use the case information as it is not reliable for noisy
input data. We then tokenize the strings into a sequence of tokens using white
space as the separator. We also remove stopwords.

3.2 Segmentation

The goal of segmentation is to decompose a record into a set of semantic con-
stituents known as fields, i.e., a substring of tokens in a tokenized record. For ex-
ample, bibliography records can usually be segmented into the authors, title,
and venue fields. Our framework does not rely on a specific type of segmenta-
tion method. One can use either supervised methods (e.g., CRF [26]) or simple
rule-based segmentation methods (e.g., based on punctuations in the raw input
records).
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Although this step is optional, appropriate segmentation is beneficial to gen-
erating better rules and faster execution of the algorithm. This is mainly because
(i) We do not consider mappings for two tokens in different fields in two records.
Hence fewer candidate rules are generated, and this speeds up the algorithm.
(ii) Most of the rules generated across fields are actually erroneous. (iii) It is
possible that we can use different parameter settings to learn rules for a par-
ticular field. For example, transformation rules for author names (e.g., omitting
the middle name) probably do not apply on paper titles. We do not explore this
option in this work and leave it for future work.

3.3 Local Alignment

We perform field alignment and then find the optimal local alignment between
the values of the corresponding fields.

Computing the Optimal Local Alignment

We need to find a series of edit operations with the least cost to transform one
string to another. We analyzed common transformations and decided that we
support the following set of common edit operations:

– Copy: copy the token exactly.
– Abbreviation: allows one token to be a subsequence of another token, e.g.,

department ⇔ dept.
– Initial: allows one single-letter token to be equivalent to the first letter of

another token, e.g., peter ⇔ p.
– Edit: allows the usual edit operations (i.e., Insertion, Deletion, and Substitu-

tion), e.g., schütze ⇔ schuetze
– Unmapped: tokens that are not involved in any transformation are denoted

as unmapped tokens.

In addition to assigning cost to each of the above edit operations, we also prior-
itize them as copy > initial > abbreviation > edit > unmapped . In other words,
if a high priority operation can convert one token to another, we do not consider
operations of lower priorities. For example, between two tokens department and
dept, since an abbreviation operation can change one into another, we do not
consider edit operations. The cost of copy is always 0, and the cost of unmapped
is always higher than other costs; the cost of other operations are subject to
tuning. Algorithm 1 performs such local alignment and returns the minimum
cost between two strings.

Example 1. We show two strings S and T (i.e., there is no segmentation), and
the optimal local alignment in Figure 1.

Aligning Fields

If the input records have been partitioned into fields, we also need to align the
fields. In the easy case where each field has a class label (as those output by the
supervised segmentation methods), the alignment of fields is trivial — we just
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Algorithm 1. AlignStrings(S ,T )
c ← 0;1

for each token w ∈ S do2

mincost ← min{cost(w, w′) | w′ ∈ T};3

/* follows the priorities of edit operations */

if w is not unmapped then4

c ← c +mincost ;5

for each unmapped token w ∈ S ∪ T do6

c ← c + unmapped cost(w);7

return c8

S Juha Kärkkäinen: Sparse Suffix Trees. COCOON 1996, Hong Kong. 219-230

T J. Karkkainen. Sparse Sufix Trees. Second Annual International

Conference on Computing and Combinatorics, pp. 219-230, 1996

J

Juha

Karkkainen

Kärkkäinen

Sparse

Sparse

Sufix

Suffix

Tree

Tree

Conference on Computing 
and Combinatorics

COCOON
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International

219-230

219-230

pp 1996

1996

R1R2 R3

Hong Kong

Fig. 1. Optimal Local Alignment (White cells are copied, green cells are unmapped,
and yellow cells involve other types of edit operations)

align fields with the same class label (e.g., authors to authors). If fields do not
have class labels, we use Algorithm 2 to find the optimal alignment — an align-
ment such that the total cost is minimum. This is done by reducing the problem
into a maximum weighted bipartite graph matching problem, which can be effi-
ciently solved by the Hungarian algorithm [27] in O(V 2 logV +V E) = O(B3

max ),
where Bmax is the maximum number of fields in the records.

Algorithm 2. AlignBlocks(X ,Y )
Construct a weighted bipartite graph G = (A∪B, E, λ), such that there is a 1-to-1

1 mapping between nodes in A and the fields in X, and there is a 1-to-1 mapping
between nodes in B and fields in Y , E = {eij} connects Ai and Bj , and the
weight of an edge is the negative of its cost, i.e., λ(eij) = −AlignStrings(Ai, Bj);
M = FindMaxMatching(G) ; /* use the Hungarian alg */2

return M3

Multi-token Abbreviation

Some of the tokens are unmapped because they involve in multi-token abbrevia-
tion. We generalize the abbreviation operation to include multiple-token to one
token abbreviation. For example, in Figure 1, one such instance is Conference
on Computing and Combinatorics to cocoon.
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We classify multi-token abbreviations into the following categories:

– Acronym: A set of tokens [u1, u2, . . . , uk] maps to a token v via an acronym
mapping, if there exists a sequence of prefix length li for each ui, such that
u1[1, l1] ◦ u2[1, l2] ◦ . . . uk[1, lk] = v, where ◦ concatenates two strings. E.g.,
association computing machinery ⇔ acm.

– Partial Acronym: A set of tokens [u1, u2, . . . , uk] maps to a token v via
a partial acronym mapping, if there exists a prefix or suffix, vs, of v longer
than a minimum length threshold, and a subsequence ss(ui) of for each ui,
such that ss(u1) ◦ ss(u2) ◦ . . . ss(uk) = vs. In other words, vs is equal to a
subsequence of the concatenated string u1 ◦ . . . ◦ uk. E.g., conference on
knowledge discovery and data mining ⇔ sigkdd.

Algorithm 3. MultiToken-Abbreviation(X , Y )
Input : X and Y are the input record pairs
for each remaining unmapped token v ∈ X do1

for each remaining contiguous set of unmapped tokens u in Y do2

str ← u1 ◦ . . . ◦ uk;3

if exists a prefix or suffix, vs, of v such that vs is a subsequence of str then4

partialAcronym ← true;5

if each of the match in ui starts from its first character then6

fullAcronym ← true;7

if partialAcronym = true or fullAcronym = true then8

remove matched tokens from X and Y ;9

The algorithm to discover both types of acronyms is depicted in Algorithm 3.
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Fig. 2. Optimal Local Alignment After Recognizing Multi-token Abbreviation (R4)

Example 2. As illustrated in Figure 2, the partial acronym mapping, denoted by
R4, is recognized.

3.4 Obtaining Top-k Rules

We first generate candidate rules, compute and aggregate their scores across all
input pairs of records, and finally select the top-k rules.
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Definition 1 (Rule). A rule is in the form of lhs ⇔ rhs, where both lhs and
rhs are a sequence of tokens. The rule means that lhs is equivalent to rhs.

Definition 2 (Atomic Rule). An atomic rule is a rule where either the lhs

or the rhs is a single token or empty (denoted as ⊥).

Note that an omission rule is a special rule where one side of the rule is empty.
E.g., since pp is still unmapped in Figure 2, we have an omission rule pp ⇔ ⊥.

Depending on the number of tokens on each side of the rule, we can have 1-1
rule (e.g., peter ⇔ p), 1-n rule (e.g., vldb ⇔ very large databases), n-m rule
(e.g., information systems ⇔ inf sys). In practice, we observe that almost
all n-m rules can be decomposed into several 1-1 or 1-n rules. E.g., the n-m rule
above can be decomposed into two 1-n rules: information ⇔ inf and systems
⇔ sys. Therefore, we focus on finding atomic rules and assemble them to find
more n-m rules.

Generating Candidate Rules

At this stage, we can generate rules from mapped tokens and unmapped tokens
in different manners:
– For mappings (identified either by local alignment (Algorithm 1) or by multi-

token abbreviation (Algorithm 3)), we can easily generate the rules. Note that
we do not generate trivial copying rules (i.e., A ⇔ A). We also combine adja-
cent rules into n-m rules. E.g., once we identify two mappings: information
⇔ inf and systems ⇔ sys, and if information and systems are adjacent
and inf and sys are adjacent too, then we also generate the rule information
systems ⇔ inf sys.

– For each of the remaining unmapped tokens in one string, we postulate that it
might be deleted (i.e., transformed to ⊥), or it is mapped to every contiguous
subset of the unmapped tokens in the other string. We do this for both strings.
It is expected that although many of these candidate rules are invalid rules,
some valid rules (usually corresponds to complex, domain-specific transforma-
tions sharing little surface similarities1) will appear frequently if we aggregate
over large amount of input pairs.

Example 3. Based on the mappings in Figure 2, we generate the following rules
from mapped tokens:
– Juha ⇔ J,
– Käkkäinen ⇔ Kakkainen,
– Juha Käkkäinen ⇔ Kakkainen J,
– Suffix ⇔ Sufix,
– COCCON ⇔ Conference on Computing and Combinatorics.
Candidate rules generated from unmapped tokens pp are:
– pp ⇔ ⊥
– pp ⇔ Hong

1 One example is maaliskuu ⇔ march found in our experiments, where maaliskuu in
Finnish means march in English.



180 S. Patro and W. Wang

– pp ⇔ Kong
– pp ⇔ Hong Kong

Score of a Rule

Definition 3. We define the score of a rule R as:

score(R) = log(1 + freq(R)) · log(1 + len(R)) · wt(R), (1)

where freq(R) is the number of occurrences of the rule R, len(R) is the total num-
ber of tokens in R, and wt(R) is the weight assigned based on the type of the rule.

The above heuristic definition takes into consideration of the popularity of a rule
its length, and its type. The length component is important because whenever ir
⇔ information retrieval holds, ir ⇔ information also holds; thus score(ir
⇔ information retrieval) ≤ score(ir ⇔ information), and the partial cor-
rect rule will be incorrectly ranked higher than the complete rule. The rule type
component is used to capture the intuition that, e.g., a rule generated by mapped
tokens is more plausible than that generated by (randomly) pairing unmapped
tokens.

Select the top-k Rules

The complete algorithm is given in Algorithm 4 which learns top-k rules with
the maximum scores from a set of input pairs of records.

In Algorithm 4, Lines 1–11 generate all the candidate rules from the map-
pings obtained for each record pair by considering the best local alignment and
possible multi-token abbreviation. Lines 12–13 calculate the scores for each can-
didate rule. Then we iteratively select the TopRule which has the maximum score
(Lines 16–20), and withdraw support from other conflicting candidate rules by
the procedure UpdateRules. We repeat this process until k high-quality rules are
found.

The procedure UpdateRules is illustrated in Algorithm 5. We say a rule R1

conflicts with another rule R2 if and only if one side of R1 is identical to one
side of R2. Two kinds of typical conflicting rules are:

– A ⇔ B and A ⇔ C
– A ⇔ BCD and A ⇔ B

Analysis of the Algorithm. Let the number of input record pairs be N , the
average number of candidate rules generated by each record pair be f . Then,
|R| = f · N . The time complexity of Algorithm 4 is O(k · (|R| + N · f)) =
O(k|R|) = O(k ·N · f). In practice, we observed that only a constant number of
rules will be in conflict with the TopRule in each of the k iteration. Hence the
time complexity is expected to be O(k ·N).
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Algorithm 4. TopkRule(D, k)
Input : D = {(X1, Y1), . . . , (XN , YN )} are N input record pairs.
R ← ∅;1

for each input record pair pi = (X, Y ) do2

bX ← segment X into partitions;3

bY ← segment Y into partitions;4

M ← AlignBlocks(bX , bY );5

for each candidate rule R generated from the mapping M do6

if R �∈ R then7

R.support = {pi};8

R ← R∪ {R};9

else10

Update the R ∈ R so that R.support now includes pi;11

for each candidate rule R ∈ R do12

R.score ← calcScore(R.support) ; /* based on Equation (1) */13

output ← ∅;14

i ← 1;15

while i ≤ k do16

TopRule ← argmaxR∈R{R.score};17

UpdateRules(R, TopRule);18

output ← output ∪ TopRule;19

i ← i+ 1;20

return output21

Algorithm 5. UpdateRules(R, TopRule)
{p1, p2, . . . , pl} ← the support of rule TopRule;1

for each pi do2

CR ← all the rules that conflict with TopRule from the record pair pi;3

for each rule R ∈ CR do4

R.support ← R.support \ {pi};5

4 Experiment

In this section, we perform experimental evaluations and analyses.

4.1 Experiment Setup

We use the following algorithms in the experiments:

Greedy. This is the state-of-the-art algorithm for learning top-k transformation
rules by Microsoft researchers [1].

LA. This is our proposed local-alignment-based algorithm.
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Note that for our LA algorithm, the weights set for various types of rules in
Equation (1) are: rules from mapped tokens: 4, exact acronym: 3, partial
acronym: 2, and others: 1. We use a partitioning method to segment each record
into three fields based on an algorithm that takes into consideration the local
alignment costs. In the interest of space, we will leave it to the full version of
the paper.

All experiments were performed on a PC with AMD Opteron Processor 8378
CPU and 96GB memory, running Linux 2.6.32. All programs are implemented
in Java.

We use the following three real-world datasets.

CCSB. This dataset comes from the Collection of Computer Science
Bibiliographies.2 We queried the site with 38 keyword queries (e.g., data
integration), and collected the top-200 results. Each query result is referred
to a cluster, as it may contain multiple citations to the same paper. We only
kept those clusters whose size is larger than one. We used five different bib-
liography styles.3 We applied the i-th bibliography style to the i-th citations
(if any) in each cluster, and got the corresponding transformed string from
the LATEX output. As a result, 3030 clusters were generated. We then form
all possible pairs of the strings produced by LATEX within the same cluster,
and use them as the input record pairs for the transformation rule learning
algorithms. This results in 12,456 pairs.

Cora. This is the hand-labeled Cora dataset from the RIDDLE project.4 It
contains 1,295 citations of 112 Computer Science papers. We clustered the
citations according to the actual paper they refer to, and then generated all
possible pairs within each cluster. As a result, we had 112 clusters with a total
of 17,184 input record pairs.

Restaurant. This is the Restaurant dataset from the RIDDLE project. It con-
tains 533 and 331 restaurants assembled from Fodor’s and Zagat’s restaurant
guides, and 112 pairs of coreferent restaurants were identified. We applied
similar record pair generation method as above, and generated 112 clusters
and a total of 112 record pairs.

Note that we generate all pairs of citations in the same cluster (i.e., referring to
the same publication) to exploit the ground truth data maximally. This, however,
introduces a bias into the frequency of the rules (i.e., freq(R) in Equation (1)).
For example, for a cluster of size 2t, a rule A ⇔ B can have a frequency of up to
t2 from this cluster alone. To remedy this problem, we define the frequency as
the number of clusters (rather than record pairs) such that the rule is generated.
This is applied to both algorithms.

2 http://liinwww.ira.uka.de/bibliography/Misc/CiteSeer/
3 They are these, acm, finplain, abbrv, and naturemag, mainly from http://amath.

colorado.edu/documentation/LaTeX/reference/faq/bibstyles.pdf.
4 http://www.cs.utexas.edu/users/ml/riddle/data.html

http://liinwww.ira.uka.de/bibliography/Misc/CiteSeer/
http://amath.colorado.edu/documentation/LaTeX/reference/faq/bibstyles.pdf
http://amath.colorado.edu/documentation/LaTeX/reference/faq/bibstyles.pdf
http://www.cs.utexas.edu/users/ml/riddle/data.html
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4.2 Quality of the Rules

For both the Greedy and LA algorithms, we generate top-k rules for each dataset
with varying number of k. We then validate all the output rules which were clas-
sified by domain experts into one of the three categories:

Correct when the rule is absolutely correct. E.g., proceedings ⇔ proc.
Partially Correct when the rule is partially correct. E.g., ipl information
processing letters ⇔ inf process lett vol.

Incorrect when the rule is absolutely incorrect. E.g., computer science ⇔
volume.

Some of the correct rules discovered by LA are shown in Table 1.

Table 1. Example Rules Found

ID Rule

1 focs ⇔ annual ieee symposium on foundations of computer science

2 computer science ⇔ comput sci

3 pages ⇔ pp

4 5th ⇔ fifth

5 maaliskuu ⇔ march

To evaluate the quality of rules generated by the algorithms, we count the
number of correct and incorrect rules. We also calculate precision as the frac-
tion of correct rules in the top-k output rules.5 Note that we essentially ignore
partially correct rules.

Figures 3(a), 3(b), and 3(c) show the numbers of correct rules for two algo-
rithms by varying k on three datasets. Figures 3(d), 3(e), and 3(f) show the
number of incorrect rules by varying k. We can see that

– LA outperforms Greedy substantially on all datasets by generating more cor-
rect rules than incorrect rules.

– Since the Cora dataset is dirtier than the CCSB dataset, the precision of both
algorithms is lower. It can also been seen that the Greedy algorithm is affected
more by the noise in the dataset than the LA algorithm.

– Since the Restaurant dataset is small, only fewer rules are generated. For the
top-50 rules, LA generate 68% correct rules whereas Greedy has a precision
of 34%.

We also plot the precision vs. k on the CCSB dataset in Figure 3(g). Since both
algorithms strive to find high-quality rules first, the precision is highest when k
is small, and decreases with increasing k. Precisions for both algorithms become
stable for k ≥ 500. In all settings, LA’s precision is much higher than Greedy’s.
As we can see from the figure, the precisions of LA and Greedy is 84% and 42%
when k = 100, and 51.3% and 15.4% when k = 1000.
5 Note that this definition is different from that in [1], where precision was defined as
the number of incorrect rules.
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Fig. 3. Experimental Results

Figure 3(h) shows how many incorrect rules are generated for a given target
of correct rules on the CCSB dataset, as [1] did. It can be seen that much more
incorrect rules are generated by the Greedy algorithm than the LA algorithm
for any fixed amount of correct rules.

A good transformation rule learner should perform consistently when we vary
the number of input record pairs. Such results are shown in Figure 3(i), where
the input number of record pairs vary from 2,000 to 12,000, and k = 200. It can
be observed that the precision of our LA algorithm remains stable (between 62%
to 69%).
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4.3 Execution Time

We investigate the efficiency of the algorithms versus the number of input record
pairs (n). We measure the running time of the algorithms. The result is shown
in Figure 3(j). We can see that the time grows more quickly for the Greedy algo-
rithm than the LA algorithm. This is mainly because with the increasing input
pairs, there are many more candidate rules generated by the Greedy algorithm
as they do not perform careful local alignment. The running time of Greedy is
up to 300 times more than LA also because of the vast amount of candidate
rules generated.

We plot the running time versus the output size k in Figure 3(k). Both al-
gorithms require more time when k increases, but Greedy’s time grows quickly
with k. This is mainly because Greedy needs to update the support of the vast
amount of candidate rules in each iteration and hence takes much more time.

5 Conclusions

In this paper, we propose an effective and efficient top-k transformation rule
learning algorithm. The algorithm is based on performing careful local alignment
of input coreferent record pairs, and generating candidate rules based on the op-
timal local alignment. Our experiments demonstrate that our method generates
more correct rules than the global greedy approach [1] in less amount of time.
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Abstract. Publishing individual specific microdata has serious privacy implica-
tions. The k-anonymity model has been proposed to prevent identity disclosure
from microdata, and the work on �-diversity and t-closeness attempt to address
attribute disclosure. However, most current work only deal with publishing mi-
crodata with a single sensitive attribute (SA), whereas real life scenarios often
involve microdata with multiple SAs that may be multi-valued. This paper ex-
plores the issue of attribute disclosure in such scenarios. We propose a method
called CODIP (Complete Disjoint Projections) that outlines a general solution to
deal with the shortcomings in a naı̈ve approach. We also introduce two measures,
Association Loss Ratio and Information Exposure Ratio, to quantify data qual-
ity and privacy, respectively. We further propose a heuristic CODIP* for CODIP,
which obtains a good trade-off in data quality and privacy. Finally, initial experi-
ments show that CODIP* is practically useful on varying numbers of SAs.

1 Introduction

Individual specific microdata is essential for advancing empirical research, yet pub-
lishing such data can pose serious risks to individual privacy. To minimize the pri-
vacy risks, prior methods in k-anonymity [17,16] and its variants [21,6,11], �-diversity
[18,13,14,23] and t-closeness [9,10] emphasized on reducing identity disclosure and
attribute disclosure [7]. While these efforts help protect individual privacy to a certain
degree, attribute disclosure can still occur if the microdata consist of multiple sensitive
attributes (SA). We highlight two shortcomings of the prior methods leading to attribute
disclosure in the presence of multiple SAs.

First, prior privacy protection methods is often insufficient when there are multiple
SAs, as it is difficult to ensure good diversity or strong closeness for every SA.

Example 1. Consider the raw microdata in Table 1(a). Suppose race and sex are quasi-
identifiers (QID) [17] and the rest are SAs. We consider all possible 2-anonymized
tables as shown in Table 1(b), (c) and (d). If we only want to publish a single SA, say
diagnosis, then we can publish either Table 1(c) or (d), as either table each has two
distinct diagnoses in every equivalence class (which is a set of tuples that have identical
values in QIDs [9]), E1 and E2. In addition, both tables satisfy 0.25-closeness [9].
However, if we want to publish all three SAs, each of the 2-anonymized tables has only
one distinct value for one of the SAs in some equivalence class (italicized in Table 1(b),
(c) and (d)). Consequently, each table only achieves 0.5-closeness for that attribute. �

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 187–201, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Table 1. Raw (a) and 2-anonymized tables (b)-(d). Ei are the equivalence classes after 2-
anonymization. Abbreviations used: HT (hypertension), DB (diabetes), AS (asthma).

(a) Raw microdata

race sex diagnosis family history job
t1 white f HT HT teacher
t2 white m HT DB lawyer
t3 white m DB HT farmer
t4 black m AS AS teacher

(b) Anonymized. E1 = {t1, t2}, E2 = {t3, t4}
race sex diagnosis family history job
white * HT HT teacher
white * HT DB lawyer

* m DB HT farmer
* m AS AS teacher

(c) Anonymized. E1 = {t1, t3}, E2 = {t2, t4}
race sex diagnosis family history job
white * HT HT teacher
white * DB HT farmer

* m HT DB lawyer
* m AS AS teacher

(d) Anonymized. E1 = {t1, t4}, E2 = {t2, t3}
race sex diagnosis family history job

* * HT HT teacher
* * AS AS teacher

white m HT DB lawyer
white m DB HT farmer

Second, when there are multiple SAs, a new type of attack named background-
join attack emerges. In this new attack, we assume the adversary has some external
background knowledge about some individual in the table. By joining the background
knowledge and the table, s/he can deduce sensitive information.

Example 2. Suppose Table 1(b) is published. Eve links Bob to equivalence class E2

based on his QIDs. In E2 each SA takes two distinct values. Thus, if Eve only focuses
on the SA of her interest, say diagnosis, she cannot infer whether Bob has asthma with
a probability more than 0.5. However, if Eve has background knowledge that Bob is a
teacher, she can deduce that Bob has asthma based on the natural join of “teacher” and
the last row of the table. �
Beyond the toy example in Table 1, in real life, microdata that involve multiple SAs
are also common. For instance, the dataset “Income Census (KDD)” [1] is extracted
from population surveys, which involves many SAs, such as employment status and
wage per hour. Publishing such microdata enables useful data mining applications such
as classification and association study among different SAs. However, as we have pre-
sented, prior methods have two shortcomings in dealing with multiple SAs.

Additionally, an SA can also be multi-valued as opposed to mono-valued. Given a
set of values S, a mono-valued attribute can take only a value v such that v ∈ S.

However, a multi-valued attribute can take any set of values S′ such that S′ ⊆ S.
Each value in S is atomic, i.e., there is no nested multi-values within a value. For in-
stance, diagnosis is multi-valued and can take a set of values, say {DB, HT, AS}. In the
dataset “Income Census (KDD)” [1], the attribute household status can be regarded as
multi-valued (see Sect. 7). In relational databases, multi-valued attributes are also com-
mon, although they are normalized and stored in a separate table. Since normalization
is a lossless process, normalized tables are thus no different from the original table with
multi-valued attributes from an adversary’s perspective.

In this paper, we explore privacy methods for publishing microdata with multiple
SAs, some of which may be multi-valued. In summary, this paper makes the following
contributions:

1. We identified two drawbacks of prior methods on microdata with multiple SAs;
2. We derived a general framework CODIP to address these drawbacks, which can

also be applied on multi-valued SAs;
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3. We introduced two new measures Association Loss Ratio and Information Exposure
Ratio that quantify data quality and privacy in the new scenario;

4. We proposed a heuristic CODIP* for CODIP, which obtains a good trade-off in
data quality and privacy.

2 Related Work

Microdata are usually modelled as a table, where each row corresponds to a tuple for an
individual, and each column corresponds to an attribute. It is often assumed that each
tuple maps to one individual and no two tuples correspond to the same individual [20].

To prevent identity disclosure, Sweeney proposed k-anonymity [17,16], which intro-
duced the notion of quasi-identifiers (QIDs). The set of tuples that have identical values
in QIDs are defined as an equivalence class [9]. The requirement is each equivalence
class must contain at least k tuples. A few variants of k-anonymity also exist, e.g.,
Anatomy [21] which bucketizes sensitive values instead of QIDs, Micro-aggregation
[6,15] and Slicing [11]. While k-anonymity can prevent identity disclosure, it does not
prevent attribute disclosure.

Recent extensions of k-anonymity also address attribute disclosure. Their philosophy
is to make SA values in each equivalence class more diverse. Ref. [18] proposed p-
sensitivity, requiring an SA to take at least p distinct values in every equivalence class.
Furthermore, [14] pointed out that the distinct values must be “well represented”, and
proposed �-diversity based on information entropy and attribute value frequency. In a
similar spirit as �-diversity, (k, e)-anonymity [23] can be adopted on continuous values
such that each equivalence class must contain sensitive values of a range at least e.

However, according to [9,10], �-diversity is unnecessary and difficult to achieve in
some cases, and is prone to skewness and similarity attacks. To address these limita-
tions, Li et al. [9] proposed t-closeness. The model requires that the distribution Dj

of the SA in each equivalence class Ej is close enough to the overall distribution D
in the entire table. Specifically, a table satisfies t-closeness if ∀Ej : dist(Dj , D) ≤ t,
where dist(X,X ′) is the Earth Mover’s Distance (EMD) between X and X ′. A strong
closeness (i.e., a small value of closeness) indicates that the distributions of the SA in
each equivalence class are similar to the overall distribution in the entire table, there-
fore implying less risk for attribute disclosure. Li et al. also introduced (n, t)-closeness
[10], an extension of the basic t-closeness, which allows more flexibility while retaining
closeness.

The above works only deal with a single mono-valued SA. They cannot cope with
multiple SAs, with the two drawbacks identified in Sect. 1. This paper extends exist-
ing models such as k-anonymity and t-closeness to the new scenario. Currently only
a limited number of works deal with multiple mono-valued SAs [12,22,4]. However,
they did not deal with the background-join attack (see Sect. 1), a major problem in
the presence of multiple SAs– simply because all these works publish the SAs in one
table, preserving associations among SAs. Hence an adversary can join the table with
his/her background knowledge to reveal other SAs. In addition, they did not address the
problem of multi-valued attributes, which we will explore in this paper.
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Notation Representation
A = {A1, . . . , As} the set of sensitive attributes (SA), s = |A|
Q = {Q1, . . . , Qq} the set of QIDs, q = |Q|
E = {E1, . . . , Ec} the set of equivalence classes, c = |E|
Di the distribution of Ai in the entire table
Dij the distribution of Ai in Ej

dist(X, X′) EMD between distributions X and X′

Fig. 1. Notations

3 CODIP: A General Solution

In this section, we first introduce a naı̈ve t-closeness approach, which is a straightfor-
ward adaptation of t-closeness in the presence of multiple mono- or multi-valued SAs.
Next, we identify the shortcomings in the naı̈ve approach, and propose a general so-
lution CODIP to tackle the shortcomings. Note that although our discussion is based
on t-closeness, our approaches also apply to other privacy models such as �-diversity
and (n, t)-closeness in a similar fashion. For ease of discussion, we present a list of
notations in Fig. 1.

3.1 Naı̈ve t-Closeness Approach

Multiple mono-valued SAs. First consider only multiple mono-valued SAs. Given
a k-anonymized table T , suppose all SAs A1, . . . , As are mono-valued. If two SAs
have strong dependency, their joint distribution would be similar to that of a single SA.
In this case, we can simply consider the closeness of their distributions individually.
If the SAs have weak dependency, their joint values will be very diverse, especially
when the number of such SAs are large (the curse of dimensionality). In this case, it
is meaningless to require an equivalence class to be “well represented” in terms of the
joint values of the SAs.

As such, we define t-closeness of T based on individual SAs instead of their joint
distributions. Essentially, in the naı̈ve approach, in order for T to satisfy t-closeness,
every SA must satisfy t-closeness for a given k-anonymization.

Definition 1. A k-anonymized table T , whose SAs are all mono-valued, is said to sat-
isfy t-closeness iff ∀Ai∈A∀Ej∈E : dist(Dij , Di) ≤ t. �

Multi-valued SAs. Given a raw table with n tuples t1, . . . , tn, suppose there is a multi-
valued SA B. B can take a subset of values in S, i.e., ∀tu : tu.B ⊆ S, where S =
{v1, . . . , vm}. Without loss of generality, we assume the values in S are categorical,
since continuous values can be discretized. It is easy to transformB into multiple mono-
valued attributes.

Definition 2. ∀vi ∈ S, define a bit vector (bi1, bi2, . . . , bin), where each biu = 1 if vi ∈
tu.B, and biu = 0 otherwise. Attribute B is replaced with m mono-valued attributes
B1, . . . , Bm, such that ∀tu,Bi : tu.Bi = biu. We term this process bitmap transforma-
tion, and each Bi the derived attribute of B. �
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Informally,B is transformed into an m× n bitmap. Note that bitmap transformation is
lossless and thus does not compromise data quality. In addition, each derived attribute
is mono-valued. This allow us to adapt the naı̈ve t-closeness approach on a bitmap
transformed table as we have just discussed. We then treat the derived attributes no
different from the original mono-valued attributes.

Shortcomings. The naı̈ve approach is a direct adaptation of t-closeness, which suffers
the two shortcomings in Sect. 1. We claim that the two shortcomings generally become
more severe when there are more SAs.

In the context of t-closeness, the first shortcoming is that we generally have weaker
closeness (i.e., a larger value of closeness) when there are more SAs, owing to the effect
of diminishing closeness. This effect is formalized in Theorem. 1. Its proof is omitted
due to space constraint.

Theorem 1. Given a bitmap transformed table T , let T ′ be the projection of T on
A′ ∪ Q, where A′ ⊆ A. Let tbest and t′best denote the best closeness that at least one
k-anonymized T and T ′ can satisfy, respectively. The effect of diminishing closeness
states that tbest ≥ t′best.

The second shortcoming is that the threat of background-join attacks (abbreviated as
“join-threat” hereafter) becomes greater as the number of SAs increases. When there
are more SAs, an adversary can deduce new information on more SAs in a background-
join attack, which increases the join-threat.

Since we are enforcing t-closeness (or other models) on each SA, the threat of tra-
ditional background attack on an individual SA is similar to that in the scenario with a
single SA. We do not discuss this kind of attack as it has been addressed in previous
works involving a single SA. Instead, we focus on the new threat that arises due to the
existence of multiple SAs, the so-called “join-threat”.

3.2 CODIP: Overcoming the Shortcomings

If we can reduce the number of SAs in a published table, we can alleviate the effect of
diminishing closeness and the join-threat. Based on this, we propose a general solution
called Complete Disjoint Projections or CODIP. In essence, CODIP projects the raw
table on subsets of the SAs, and publishes the projected tables instead. Each projected
table has a smaller number of SAs than the raw table has. Additionally, all of the SAs
must be in exactly one of the projection. Formally, we call how CODIP projects the raw
table a projection plan, or simply a plan.

Definition 3. A projection plan projects a bitmap transformed table on its subsets of
attributes A1 ∪ Q, . . ., Ar ∪ Q, such that (i) ∪r

u=1Au = A; (ii) ∀u : Au �= ∅; (iii)
∀uw,u�=w : Au ∩ Aw = ∅. We denote this plan Φ(A1, . . . ,Ar). The projections are
called the projected tables of the plan. A plan satisfies t-closeness iff every projected
table satisfies t-closeness as in Def. 1. �

To put in words, a projection plan isolates disjoint subsets of SAs in separate tables.
Each projected table is then subjected to various anonymity algorithms, and the order
of the tuples in each table is randomized. In this paper, we apply k-anonymity [17]
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and t-closeness [9]; however, we stress that CODIP is a flexible framework that may
adopt any previous privacy models on each projected table. The philosophy is to de-
vise a good projection plan (see Sect. 3.3) so that any algorithm intended for a single
SA (e.g., [21,6,13,10]) would also work well on each projected table without suffering
significantly from diminishing closeness and the join-threat, while at the same time pre-
serving most of the utility. The SAs of each individual within any projected table is thus
protected by such previous algorithms, which offers certain level of protection even in
the worst case. Linking SA values across tables is also limited, as will be shown in
Sect. 6.1. We will further discuss possible attacks in Sect. 6, which would not succeed
on CODIP.

Clearly, the naı̈ve t-closeness approach is a special plan (i.e., φ1 = Φ(A)). On the
other hand, φ2 = Φ({A1}, . . . , {As}) is also a special plan that publishes each SA in a
separate table. In this plan, the two shortcomings are completely eliminated, since each
table only contains a single SA. Note that all plans except φ1 suffer some information
loss. In particular, some of the associations among SA values are lost, as the correspon-
dence of tuples from different projected tables is disturbed. Such loss of associations
mitigates the shortcomings of the naı̈ve approach at the cost of data quality. Consider
φ2, in which the shortcomings of φ1 are completely eliminated. However, as each pro-
jected table only contains a single SA, all associations between any two SAs are lost,
making data much less useful. The goal is to overcome the shortcomings as well as to
minimize association loss, as we shall discuss next.

3.3 Choosing Better Plans

An optimal plan minimizes the effect of diminishing closeness, association loss, and
join-threat. We have made two observations towards such an optimal plan.

Observation 1. If two SAs have strong dependency, a background-join attack on them
reveals less new information beyond the adversary’s background knowledge on one
of the attribute. In addition, one of them can be closely represented by the other, effec-
tively resulting in fewer than two (independent) attributes. Thus the effect of diminishing
closeness on them is less pronounced. �
Observation 2. If two SAs are independent or with weak dependency, their joint dis-
tribution is insignificant, as no strong associations can be inferred from it. Thus associ-
ation loss is small if their joint distribution is lost. �
We use an example to illustrate the intuitions of the two observations.

Example 3. (Observation 1) Suppose diagnosis and family history are two SAs with
strong dependency. If they are published in the same table, Eve (who knows Bob has
hypertension), learns that Bob has a family history of hypertension by a background-
join attack. However, this privacy breach is less serious, as it is quite expected given
that Bob has hypertension. Moreover, since the distributions of both attributes would be
similar due to their dependency, the effect of diminishing closeness is less pronounced.
(Observation 2) Suppose job and alcohol are two independent SAs. Their joint distri-
bution appears random– people have different drinking habits regardless of their jobs.
The associations between the two provide little information beyond random guessing.
Thus, we can afford to lose such associations by publishing them in different tables. �
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Algorithm CODIP (T, k, t, α, β)
Input: T , a raw table containing microdata.

k, anonymity requirement.
t, closeness requirement.
α, threshold on association loss.
β, threshold on join-threat.

Output: φ, a projection plan.
P , the set of projected tables for φ.

1) Apply bitmap transformation on T ;
2) Partition A into r disjoint subsets A1, . . . ,Ar ;
3) φ ← Φ(A1, . . . ,Ar);
4) P ← CheckPlan();
5) if P = null then
6) return failure;

else
7) return (φ, P );

Subroutine CheckPlan ()
Input: all variables accessible in CODIP.
Output: the set of projected tables for φ.
8) if association loss in φ > α then return null;
9) if join-threat in φ > β then return null;
10) for i ← 1 to r do
11) Ti ← projection of T on Ai ∪ Q;
12) if no k-anonymized Ti satisfies t-closeness then
13) return null;

else
14) Ti ← a k-anonymized Ti satisfying t-closeness;

endfor
15) return {T1, T2, . . . , Tr};

Fig. 2. General framework for CODIP

To leverage the two observations, we propose a general framework for CODIP as shown
in Fig. 2– a high level abstraction assuming an ideal partitioning of SAs (a concrete
algorithm is proposed in Sect. 5). It requires the following user inputs: (i) T , the raw
microdata table to be published; (ii) k, the anonymity requirement; (iii) t, the closeness
requirement; (iv) α, the association loss threshold; (v) β, the join-threat threshold.

For inputs (iv) and (v), we delay the discussion of measuring association loss and
join-threat to Sect. 4. For now, assume that they can be quantified. Also, assume that
users can specify appropriate values for α and β, following the discussion on their
relationships in the experiments (Sect. 7.1), although a more extensive study on this
issue is beyond the scope of this paper.

The key operation lies in Step 2, which partitions A into disjoint subsets. Ideally, the
partitioning should be consistent with Observation 1 and 2. In reality it only needs to be
consistent to such a degree that a “sufficiently good” plan is obtained, which satisfies
user specified thresholds t, α and β. Step 4 invokes the subroutine CheckPlan(),
which examines if the plan satisfies the thresholds. If so, it returns a set of k-anonymized
projected tables; otherwise, it fails. Note that users can optionally impose a quality
threshold on QIDs in k-anonymization (Step 12 and 14), e.g., discernibility metric [2].

In this general framework, we do not enforce any specific algorithm to achieve a
“sufficiently good” partitioning. A brute force method that enumerates all possible ways
of partitioning and then selects one is infeasible since the number of possible ways to
partition a set is intractable. We will propose an efficient heuristic CODIP* in Sect. 5
without requiring the costly enumeration.

4 Evaluating Projection Plans

In addition to k-anonymity that measures anonymity and t-closeness that measures
closeness, we propose two more measures on a projection plan for CODIP: (1) As-
sociation Loss Ratio (Γα), the degree of association loss due to the lost joint distribu-
tions of the SAs; and (2) Information Exposure Ratio (Γβ), the level of join-threat due
to background-join attacks. The measures are based on mutual information (MI) [5],
which can quantify nonlinear dependency between attributes, as opposed to correlation
which only measures linear relationships. It means MI can detect dependency caused
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by not only positive or negative correlations, but also “mixed” correlations. Hence, it is
well-suited for formally capturing the notion of dependency in Observations 1 and 2.

4.1 Association Loss Ratio

We propose a measure to quantify association when SAs are projected onto different
tables. Given a bitmap transformed table, for a pair of SAs Ai and Aj , their MI is

I(Ai, Aj) =
∑

v∈Ai,v′∈Aj
p(v, v′) log

(
p(v,v′)

p(v)p(v′)

)
[5], where p(x) is the pmf of at-

tribute X , and p(x, y) is the joint pmf of X and Y .1 MI quantifies how much informa-
tion two attributes share, which also implies the degree of independence between them.
In particular I(Ai, Aj) = 0 if Ai and Aj are independent. We can use it to quantify
how significant the association between the values of Ai and Aj are (Observation 2).
Lower MI suggests a higher degree of independence, and thus the association between
their values is less significant. This further implies that association loss is smaller if the
joint distribution of the two attributes becomes unknown.

By computing the fraction of MI of all pairwise SAs whose joint distributions are
unknown, we obtain a [0,1]-normalized measure of association loss– Association Loss
Ratio (Γα). Given a projection plan φ = Φ(A1, . . . ,Ar) such that ∪r

u=1Au = A =
{A1, . . . , As}, the sum of all pairwise MI is IΣ(φ) = 1

2

∑
i,j �=i I(Ai, Aj), and the sum

of unknown pairwise MI is Iα(φ) = 1
2

∑
i,j �=i Wα(Ai, Aj)I(Ai, Aj), where

Wα(Ai, Aj) assigns a boolean weight— 1 if Ai, Aj are in different projected tables,
0 otherwise (i.e., I(Ai, Aj) is summed in Iα(φ) only if Ai, Aj are not projected onto
the same table). Association Loss Ratio is then defined as a fraction in terms of IΣ(φ)
and Iα(φ):

Γα(φ) =

{
Iα(φ)/IΣ(φ) if IΣ(φ) �= 0;

0 otherwise.
(1)

Note the special cases that Γα(Φ(A)) = 0, and Γα(Φ({A1}, . . . , {As})) = 1. In
general, Γα(φ) is smaller if the plan φ is generated in compliance with Observation 2.

4.2 Information Exposure Ratio

Next, we propose a measure of information exposure resulted from background-join
attacks to indicate the level of join-threat. Clearly, when more new information is ex-
posed, the threat level is higher. Thus, any background knowledge that is already known
to the adversary must be excluded.

Consider any pair of SAs Ai and Aj . Suppose their joint distribution is known to
an adversary, i.e., they are published in the same projected table. Assuming that the
adversary identifies a tuple and has background knowledge in one of them (say Ai),
s/he can then learn the value of the other SA (Aj). Potential new information of the
other SA (Aj) could be exposed to the adversary. The other two cases are trivial: (i) if
the adversary knows neither Ai nor Aj , no background-join attack can be launched on
them; (ii) if the adversary knows both, no new information will be exposed.

The amount of information expressed by an attributeAi can be represented by its in-
formation theoretic entropy [5], which is defined asH(Ai) = −∑v∈Ai

p(v) log(p(v)).

1 We avoid the notations pX(x) and pX,Y (x, y) for convenience if no ambiguity arises.
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The relationship of the entropies of Ai and Aj is illustrated by the Venn diagram in
Fig. 3. For any pair of SAs, if the adversary deduces the value of Ai (or Aj) based
on his or her background knowledge of Aj (or Ai), the amount of new information
exposed is h1 (or h2). Therefore, total amount of new information that can be exposed
from this pair is h1+h2. Since a larger h3 = I(Ai, Aj) results in a smaller h1+h2, less
information can be exposed to an adversary when Ai and Aj have more dependency.

H(Ai) H(Aj)h1 h3 h2

h1 = H(Ai) − h3

h2 = H(Aj) − h3

h3 = I(Ai, Aj)

Fig. 3. Relationship of Ai and Aj’s entropies

Also, some values in a SA could be non-sensitive depending on the user (e.g., nil
value). Hence users should be allowed to define what constitute sensitive values in a
SA. Let Sens(x) denotes the predicate that asserts x is a sensitive value. By default,
Sens(x) is true for all values in a SA; however, users have the flexibility to customize
it.

Subsequently we derive E(Ai, Aj), the total amount of new sensitive information
that is exposable in a pair of SAs Ai and Aj . Taking the sensitivity of values into
account, it is computed by summing up exposable information for each joint value,
weighted by the joint probability:

E(Ai, Aj) =
∑

v∈Ai,v′∈Aj

p(v, v′) ×
{

0 ¬ Sens(v) ∧ ¬ Sens(v′);
H(Ai) − I(Ai, Aj) Sens(v) ∧ ¬ Sens(v′);
H(Aj) − I(Ai, Aj) ¬ Sens(v) ∧ Sens(v′);
H(Aj) + H(Aj) − 2I(Ai, Aj) Sens(v) ∧ Sens(v′).

Since a background-join attack is confined within the projected tables that contain
the attributes on which the adversary has background knowledge, we compute the
fraction of exposable information for each projected table. Given a projection plan
φ = Φ(A1, . . . ,Ar) such that ∪r

u=1Au = A = {A1, . . . , As}, the sum of expos-
able information in all pairwise SAs (i.e., assuming there is only one projected ta-
ble) is EΣ(φ) = 1

2

∑
i,j �=i E(Ai, Aj), and the sum of actual exposed information in

all pairwise SAs in the projected table on Au ∪ Q can be computed as Eβ(Au) =
1
2

∑
i,j �=i Wβ(Ai, Aj ,Au)E(Ai, Aj), where Wβ(Ai, Aj ,Au) assigns a boolean

weight—1 if Ai ∈ Au and Aj ∈ Au, and 0 otherwise (i.e., only actual exposed in-
formation in the projected table on Au ∪ Q is summed). Information Exposure Ratio
(Γβ) is then defined as the sum of fractions in terms of Eβ(Au) and EΣ(φ) for each
projected table, normalized by the number of SAs in that table:

Γβ(φ) =

{∑r
u=1

(
Eβ(Au)

EΣ(φ)
· |Au|

|A|

)
if EΣ(φ) �= 0;

0 otherwise.
(2)

Note the special cases that Γβ(Φ({A1}, . . . , {As})) = 0, and Γβ(Φ(A)) = 1. In gen-
eral, Γβ(φ) is smaller if the plan φ is generated in compliance with Observation 1.
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Algorithm CODIP* (T, k, t, α, β)
Input/Output: same as CODIP.
1) Apply bitmap transformation on T ;
2) for i = 1 to s do Ai ← {Ai};
3) φ ← Φ(A1, . . . ,As);
4) P ← CheckPlan*();
5) if P = null then return failure;
6) repeat
7) (Au,Aw) ← argmaxu,w:u�=w AvgI(Au ∪ Aw);
8) φ′ ← φ; /* temp. placeholder */

(Continued)
9) P ′ ← P ; /* temp. placeholder */
10) Remove Au,Aw from φ;
11) Add Au ∪ Aw to φ;
12) P ← CheckPlan*();
13) until P = null;
14) if Γα(φ′) ≤ α then
15) return (φ′, P ′);

else
16) return failure;

Fig. 4. Outline of CODIP*

4.3 Evaluation of Plans

We use Association Loss Ratio and Information Exposure Ratio to evaluate the quality
of a projection plan for CODIP. Based on their definitions, smaller ratios indicate a
better plan. We propose to evaluate our plans against a baseline, the naı̈ve t-closeness
approach in Sect. 3.1, i.e., the plan Φ(A). By Theorem 1, Φ(A) has the weakest close-
ness among all plans. Furthermore, Γα(Φ(A)) = 0 and Γβ(Φ(A)) = 1. Given a plan
φ, suppose Γα(φ) = α, Γβ(φ) = β, φ satisfies t′-closeness and Φ(A) satisfies t-
closeness. We say φ has a (1− t′/t)×100% improvement in closeness, (1−β)×100%
reduced join-threat, while suffers α× 100% association loss, as compared to the naı̈ve
t-closeness approach.

5 CODIP*: A Heuristic for CODIP

In the CODIP framework proposed in Sect. 3.2, we have not described a suitable al-
gorithm for generating good plans. A brute force approach to enumerate all possible
plans is infeasible on high dimensional data. Thereby we propose a bottom-up greedy
heuristic CODIP*, outlined in Fig. 4.

We start bottom-up from the initial plan φ = Φ({A1}, . . . , {As}) (Steps 2–3). The
basic idea is to ignore Γα(φ) first, and merge the disjoint subsets of SAs in φ as much
as possible. In this way, we attempt to reduce Γα(φ) below its threshold while avoid
exceeding closeness and Γβ(φ) thresholds. The key operations lie in Steps 6–13, which
correspond to the partitioning operation in CODIP (Step 2 in Fig. 2). We greedily pick
two subsets of SAs Au and Aw from the plan φ, such that the average pairwise MI
in Au ∪ Aw (AvgI in Step 7) is maximized. We then merge the two subsets Au and
Aw in φ (Steps 10 and 11). Based on Observations 1 and 2, this merging would greatly
reduce Γα(φ), and result in a small increase in closeness and Γβ(φ) at least locally.
The merging process is repeated until the plan φ exceeds the thresholds on closeness or
Γβ(φ) (Step 6-13). The subroutine CheckPlan*() checks if φ satisfies the thresholds
on closeness and Γβ . It is identical to CheckPlan() in CODIP, except that it does not
check for Γα (i.e., eliminate Step 8 in Fig. 2), as it will be checked later. Subsequently,
the plan before the last merger is returned if it satisfies the threshold on Γα (Step 14–16).

CODIP* is efficient by avoiding the combinatorial enumeration of attributes. For a
dataset with s number of SAs, in the worst case, only s− 1 mergers are necessary (i.e.,
the number of repetitions of Step 6–13 is bounded by O(s)).
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6 Discussion of Possible Attacks on CODIP

6.1 Intersection Attack

Intersection attack occurs when multiple tables are intersected on common attributes
[19], potentially re-establishing the links among sensitive values and QIDs across ta-
bles. [19] proposed the notion of (X,Y )-linkability– the extent of “linking” between
X (QIDs) and Y (SAs). (X,Y )-linkability is satisfied if the confidence of inferring any
value on Y from any value on X (can be joint value on X or Y ) does not exceed a
threshold ε ∈ (0, 1]. We show that releasing multiple tables using CODIP introduces
no more linking risk than releasing a single table using k-anonymity and distinct-�-
diversity, i.e., each equivalence class must contain at least � distinct values, � ≥ 2.

Theorem 2. The tables released by CODIP (each table protected by k-anonymity and
distinct-�-diversity) satisfies (X,Y )-linkability with a threshold the same as the case of
a single table released using k-anonymity and distinct-�-diversity.

Proof. As the subset of SAs (Y ) in each projected table is disjoint, only QIDs (X)
can be intersected. Consider a join of m tables by intersecting on some QIDs. By k-
anonymity there are at least k tuples in each table with the same QIDs, producing a
join with at least km tuples for any (joint) value on QIDs. Among the km or more joint
tuples, we examine how many have the same value on some SAs. By �-diversity there
is at most k − � + 1 instances for any (joint) value on any SAs from one table. This
follows that there are at most km−p(k − �+ 1)p instances for any (joint) value on SAs
from p tables (1 ≤ p ≤ m). Thus the confidence of infering SAs from QIDs is at

most km−p(k−�+1)p

km = (k−�+1
k )p ≤ k−�+1

k . The upperbound is the threshold, which
is independent of m. That means the same threshold is obtained when m = 1, i.e., a
single table using k-anonymity and distinct-�-diversity is released. �

Another type of intersection attack is targeted at incremental releases [3], where new
tuples for the same schema are included and re-released with old tuples. Sensitive values
can be intersected among old and new releases to derive hidden information. This type
of attack is inapplicable to CODIP for two reasons: (i) in each projected table, the tuples
all refer to the same set of individuals (i.e., no old and new tuples); (ii) given that there
are no common SAs across tables, intersection on sensitive values is not possible.

6.2 Minimality Attack

Minimality attack [20], is possible if the adversary knows the privacy algorithm. The
attack utilizes the concept of “minimality”, as most privacy algorithms attempt to min-
imize information loss in order to preserve utility.

For CODIP, minimality attack is possible on two levels. First, minimality attack
can target at each projected table, where k-anonymity is enforced. In this case, the m-
confidentiality model [20] can be applied on each projected table to counter minimality
attacks. Second, minimality attack can potentially target to restore the correspondence
of tuples in different tables. Fortunately, CODIP is not vulnerable to this. While CODIP
attempts to minimize the Information Loss Ratio Γα, its notion of minimization is rela-
tive to the MI of all pairwise attributes, and not to all possible correspondence of tuples
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from different tables. Even if an adversary has obtained a correspondence of tuples
with smallest possible Γα, this smallest Γα does not indicate a correct correspondence
of tuples.

7 Experiments

We performed some initial experiments to study the trade-off between data quality and
privacy. We choose the naı̈ve t-closeness approach in Sect. 3.1 as our baseline. Note
that the approaches in [12,22,4] publish all SAs in one table, thus they are vulnerable
to background-join attacks in the exact same way as the baseline. Therefore it is fair
to compare CODIP* with the baseline only, which suffers the same problem as these
previous work. Moreover, to achieve k-anonymity, we adopted a full-domain general-
ization scheme as outlined in Incognito [8].

The “Census-Income (KDD)” training dataset [1] is used. We chose four QIDs–
age, race, sex, citizenship, as well as SAs – seven categorical (worker class, education,
industry, employment status, business status, salary class, occupation), four numeric
discretized to {0, 1} (wage per hour, dividend, capital gain, capital loss), and one multi-
valued (household status, giving four derived attributes married, 18−, descendent, sub-
family). There are effectively a total of 15 SAs. Additionally, tuples with missing or
unknown values are discarded, giving a total of 98839 tuples that remain.

All algorithms were implemented in Java. The experiments were conducted on a
3.0GHz PC with 3GB memory.

7.1 Relationship of Γα and Γβ

Intuitively, given a plan φ, a larger Γα(φ) implies a smaller Γβ(φ). This experiment
studies the relationship between Association Loss Ratio and Information Exposure Ra-
tio. Since the two ratios only depend on the way the raw table is projected, k-anonymity
and t-closeness requirements does not affect them.

We run CODIP* with varying thresholds. Starting from β = 1, which is the threshold
on Γβ(φ), we gradually decrease it. For each β value, we record the smallest Γα(φ) that
has incurred. A plot of Γβ(φ) against Γα(φ) is presented in Fig. 5, where φ is the plan
generated by CODIP* given a threshold β.

In Fig. 5, when no association loss incurs, i.e., Γα(φ) = 0, the join-threat is max-
imum at Γβ(φ) = 1. However, if we slightly relax Γα(φ), we can trade for a signifi-
cant reduction in Γβ(φ). This is evident from a sharp decrease in Γβ(φ) from 1 to 0.15,
when Γα(φ) slowly increases from 0 to 0.19. However, to further reduce the join-threat,
a small decrease in Γβ(φ) would result in a drastic increase in Γα(φ), which is a less
desirable trade-off. Generally, we can get a good trade-off plan if we allow some asso-
ciation loss and join-threat, without attempting to eliminate either factor or impose an
extremely small threshold.

Next, we study the effects of the number of projected tables (N ) on the plans. We
evaluate the plans generated by CODIP* against our baseline, the naı̈ve t-closeness
approach (i.e., N = 1). Fig. 6 shows the results of our experiment.

As expected, when there are fewer projected tables in a plan, privacy is less protected
as shown by the lesser reduction in join-threat in Fig. 6. On the other hand, data quality
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improves as reflected in the decreasing association loss. This observation is consistent
with CODIP*. In CODIP*, every merging action results in one fewer table causing less
association loss while risking more join-threat. Note that as the number of projected
tables increases, reduction in join-threat increases in a decreasing rate, whereas associ-
ation loss increases in an increasing rate. Therefore, a good trade-off plan usually has a
smaller number of projected tables (e.g., less than 7 in this experiment), and there are
some association loss and join-threat that must be allowed (as we have just discussed
based on Fig. 5).

Lastly, to show the scalability of CODIP*, we vary the number of SAs (s). The
number of projected tables (N ) outputted by CODIP* is shown in Fig. 7. As s increases,
N also increases. However, the growth of N is minimal when s is large (s ≥ 9 in this
experiment). This result indicates that CODIP* is effective in protecting privacy while
producing a small number of projected tables, even if there are a large number of SAs.

The experiments verified the possibility of greatly enhancing privacy while slightly
sacrificing data quality, i.e., a good trade-off can be obtained in practice.

7.2 Closeness and Anonymity

Next, we study the closeness and anonymity requirements t and k, respectively. First,
consider k = 2. To ensure the quality of QIDs, we also impose a discernibility metric
[2] (dm, in unit of 109) threshold on QIDs, such that k-anonymized tables with dis-
cernibility metric larger than dm are not considered. Smaller dm implies higher quality
in QIDs, causing fewer number of valid anonymizations.

Following the analysis in Sect. 7.1, we set thresholds α = 0.2, β = 0.5. Starting
from β = 0.5, we gradually decrease it, and obtain 6 plans by CODIP*, each with
a varying number of projected tables (N ∈ [2, 7]). Fig. 8 shows the best closeness
achieved by the plans under different thresholds dm for N ∈ {2, 4, 6}, in addition
to the baseline (N = 1), and the special plan with each SA published in a separate
table (N = 15). Specifically, Fig. 8(a) depicts the absolute closeness each plan can
achieve at best, whereas Fig. 8(b) compares the plans with the baseline and presents the
improvement of each plan.

We observe that smaller N results in weaker closeness. In CODIP*, N becomes
smaller when more mergers take place, resulting in a non-decreasing number of SAs in
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each projected table. This result demonstrates the effect of diminishing closeness. Also
note that when dm is smaller, there are fewer valid anonymizations, resulting in weaker
closeness. Hence, the improvement in closeness w.r.t. to the naı̈ve t-closeness approach
is potentially more significant.

Finally, we study the effects of k on closeness. We count the number of plans that
can satisfy the various thresholds in Fig. 9. Fig. 9(a) presents our findings. Note that the
baseline can only satisfy 0.42-closeness when k ∈ {2, 5, 10, 20}, and 0.52-closeness
otherwise. When k ≤ 20, we have quite a number of plans that can satisfy the require-
ments on closeness. As expected, a stronger closeness (i.e., a smaller t) results in fewer
valid plans. However, when k becomes large (k ≥ 50), there is apparently no plan
that can satisfy the thresholds. The reason is that the number of valid k-anonymizations
drops as k increases. Fig. 9(b) shows the number of valid k-anonymizations, assuming
no requirement on closeness (i.e., t = 1). When k increases from 2 initially, the num-
ber of valid plans remains unaffected, as the k-anonymizations that are eliminated due
to increased k are expected to have weaker closeness– the eliminated anonymizations
contain at least an equivalence class whose cardinality is smaller than k, and smaller
equivalence classes are generally less “well represented.” When k continues to increase
beyond 20, the number of valid k-anonymizations becomes too few. It is likely that none
of these few satisfies the given closeness, which is indeed the case in this experiment.
Results showed that if k is not too large (e.g., k < 50), CODIP* generates plans that
satisfy stronger closeness, as compared to the baseline.

8 Conclusion

We studied the privacy issue of attribute disclosure in publishing microdata that have
multiple SAs, of some may be multi-valued. We introduced Association Loss Ratio
and Information Exposure Ratio to quantify data quality and privacy, respectively. We
showed that a direct adaptation of t-closeness is inadequate, and proposed a framework
CODIP and a heuristic CODIP*. Experiments showed that CODIP* generates good
trade-off plans on a real dataset.
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Abstract. Data as a Service (DaaS) builds on service-oriented technolo-
gies to enable fast access to data resources on the Web. However, this
paradigm raises several new privacy concerns that traditional privacy
models do not handle since they only focus on the service interface with-
out taking into account privacy constraints related to the data exchanged
with a DaaS during its invocation. In addition, DaaSs compositions may
reveal also privacy-sensitive information. In this paper we propose a pri-
vacy formal model in order to extend DaaS descriptions with privacy
capabilities. The privacy model allows a service to define a privacy policy
and a set of privacy requirements. We propose also a privacy-preserving
DaaS composition approach allowing to verify the compatibility between
privacy requirements and policies in DaaS composition. We validate the
applicability of our proposal with some experiments.

Keywords: Privacy, DaaS services, Composition, Dependency.

1 Introduction

Recent years have witnessed a growing interest in using Web services as a reliable
medium for data publishing and sharing. This new type of services is known
as Data-as-a-Service services [4] [17], corresponds generally to calls over data
sources. While individual DaaS services may provide interesting information
alone, in real scenarios like epidemiological studies, users’ queries require the
invocation of several services. The DaaS composition is a powerful solution for
building value-added services on top of existing ones [15] [20]. In the context of
our project PAIRSE1 we proposed in [2] a mediator-based approach to compose
DaaSs. In that approach the proposed mediator answers users complex queries
by combining available DaaSs and carries out all the interactions between the
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composed services. Depending on available DaaSs, the mediator may return a set
of DaaS compositions all answering the same query. However, DaaS compositions
in that approach may reveal privacy-sensitive information. Privacy preservation
is indeed still one of the most challenging problems in DaaS composition. In this
paper we address the privacy issue in DaaS composition. We propose a privacy
formal model in order to extend DaaS descriptions with privacy capabilities.
The privacy model, goes beyond traditional data-oriented models, by allowing
a service to define a privacy policy (specifying how it treats its collected data)
and a set of privacy requirements (specifying how it expects consumer services
to treat its provided data) by defining a set of privacy rules. We propose also
an annotation mechanism to link DaaSs to their defined privacy polices and
requirements.

Component DaaSs in a composition may have different privacy concerns, thus
leading to an incompatibility problem between the privacy policies and require-
ments of interconnected services. The second contribution is a privacy-aware
DaaS Composition. We devise a compatibility matching algorithm to check the
privacy compatibility among privacy requirements and policies within a compo-
sition. The compatibility matching is based on the notion of privacy subsumption
and a cost model. A matching threshold is set up by a given service to cater for
partial and total privacy compatibility.

Our paper is structured as follows. First, we overview related work in Sec-
tion 2. We then describe our privacy model in Section 3. Then, we introduce the
notion of compatibility between privacy policies and requirements in Section 4,
and illustrate its importance in the context of DaaS composition and will show
how our DaaS composition approach is extended within privacy-preserving in
Section 5. We present our experiments in Section 6 and discuss future work in
Section 7.

2 Related Work

Our work is inspired and informed by a number of areas. We briefly review the
closely related areas below and discuss how our work leverages and advances the
current state-of-the-art techniques.

2.1 Privacy Aware-Data Modeling

A typical example of modeling privacy is P3P [19] standard. It encodes pri-
vacy policies in XML for Web sites and specifies the mechanisms to locate and
transport privacy policies. However, the major focus of P3P is to enable only
Web sites to convey their privacy policies. The work in [18] aims at specifying
DAML-S ontology to answer two questions: how sensitive the information is;
and under what conditions the information has that sensitive degree. Regarding
that, data providers specify how to use the service (mandatory and optional
data for querying the service), while individuals specify the type of access for
each part of their personal data contained in the service. However, privacy pref-
erences do not include the point of view of individuals over the data usage. An
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approach on the feasibility of achieving a balance between consumers privacy and
provider search has been proposed in [21]. It allows client to collect, summarize,
and organize their personal information into a hierarchical profile. Through this
profile, the client controls which portion of its private information is exposed
to the provider by adjusting a threshold. The work in [16] aims at protecting
the content of client queries and the retrieved documents. It proposes a schema
for a provider to perform similarity-based text retrieval while protecting clients
search activities. In our work, privacy resource is specified and may be related
to client, Data and Service providers levels, and not only to the provided data.

2.2 Privacy Aware-Composition

The works in services composition are closely inspired from workflow and Data
mashups composition. In [7] a framework for enforcing data privacy in work-
flows is described. In [8], the use of private data is reasoned for workflows.
Privacy-preserving mechanism for data mashup is represented in [13]. It aims
at integrating private data from different data providers in secure manner. The
authors in [12] discuss the integration and verification of privacy policies in
SOA-based workflows. The previous approaches, related to data mashup and
workflows, focus on using algorithms (such as k-anonymity) for preserving pri-
vacy of data in a given table, while in our work we go further and propose a
model that also takes into account usage restrictions and client requirements.
The works [9] [10] [6] propose using third parties as database service providers
without the need for expensive cryptographic operations. However the proposed
schemes do not allow queries to execute over the data of multiple providers and
do not take into account the privacy issue regarding service provider and data
consumer, which is the main focus of our work. In the filed of data integra-
tion, several efforts have been made to either preserve the privacy of individuals
using sanitized techniques [1] [3] or to preserve the privacy of the datasource
while running data integration algorithms over multiple databases using crypto-
graphic techniques [5]such as secure multi-party computation and encryption. In
contrast to the existing approaches, in this paper we introduce a service-oriented
privacy model for DaaS that goes beyond “traditional” data-oriented privacy ap-
proaches. Input/output data as well as operation invocation may reveal sensitive
information about services and hence, should be subject to privacy constraints.

3 Privacy Description Model

In this section, we propose a formal model to specify the privacy capabilities
attached to DaaS service (simply service) description. With this model, a service
S will define a privacy policy (noted as PPS) specifying the set of privacy practices
applicable on any collected data and privacy requirements (noted as PRS/T)
specifying the S’s set of privacy conditions that a third-party service T must meet
to consume its data. Indeed, privacy is a very subjective notion, for instance, a
given service may consider an input parameter provided to a third-party service
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Fig. 1. Graph-based representation of a privacy rule

as private; another may view the information stating that the service invoked a
specific operation of a given third-party service as private. Our model relies on
the definition of privacy resource and privacy rule. Different types of information
may be subject to privacy. We refer to such information as privacy resources
(simply resources). To take into account the type of resources, we introduce the
notion of privacy level (simply level). A graph-based representation of our model
is presented in Figure 1.

3.1 Privacy Level

We define two privacy levels: data and operation. The data level deals with the
data privacy. The resources (i.e., Resource item in Figure 1.) refer to input and
output parameters of a service (e.g., defined in WSDL). For instance, service
Sa has an operation opa called Patent-research that takes as input a user query
and returns as output PatentResults. The user query and PatentResults (i.e.,
input and output, resp.) may be both viewed as private; they are hence defined
as data resources. The operation level copes with the privacy about operation’s
invocation. Information about operation invocation may be perceived as pri-
vate independently on whether their input/output parameters are confidential
or not [11]. For instance, let us consider a scientist that has found an invention
about the causes of some infectious diseases, he invokes opa to search if such an
invention is new before he files for a patent. When conducting the query, the
scientist may want to keep the invocation of opa, query and result of query (i.e.,
the opa input, opa output resp.) private, perhaps to avoid part of his idea being
stolen by a competing company. We give below the definition of the privacy level.

Definition 1. Let rs be a privacy resource of a service S. The privacy level
L of rs is defined as follows: (i)L=“data” if rs is an input/output of S operation;
(ii)L=“operation” if rs is information about S’s operation. ♦
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3.2 Privacy Rule

The sensitivity of a resource may be defined according to several dimensions
called privacy rules. We call the set of privacy rules Rules Set(RS). We define
a privacy rule by a topic, level, domain, and scope. The topic gives the privacy
facet represented by the rule. For instance, given the representation of privacy
rule in Figure 1, the topic may include: the data right, the recipient and the
purpose. The “purpose” topic states the intent for which a resource collected
by a service will be used; the “recipient” topic specifies to whom the collected
resource can be revealed. The level represents the privacy level on which the rule
is applicable. The domain of a rule depends on its level. Indeed, each rule has one
single level: “data” or “operation”. We use the terms data and operation rule to
refer to a rule with a “data” and “operation” level, respectively. The domain is
a finite set that enumerates the possible values that can be taken by resources
according to the rule’s topic. For instance, a subset of domain for a rule dealing
with the right topic is {“no-retention”, “limited-use”}. The scope of a rule de-
fines the granularity of the resource that is subject to privacy constraints. We
consider two cases: operation and data rules. In the former case, several parts of
a service log entry may be viewed as private. Services assign one of the values
“total” or “partial” to the scope of their operation resources. If an operation
resource is assigned a “total” scope for a given rule, then the whole entry of
that operation in the service log is private. Otherwise (i.e., the assigned scope
is “partial”), only the ID of the service that invoked the operation is private.
In the case of data rules, we consider data resources as atomic. Hence, the only
scope value allowed in this situation is {“total”}. “Partial” scope may also be
considered for complex data resources (e.g., array structure). In this case, only
part of an input/output parameter is private. However, this issue is out of the
scope of this paper. Two rules at most are created for each topic: one for data
and another for operations.

Definition 2. A privacy rule Ri is defined by a tuple (Ti, Li, Di, Si) where:

. Ti is the topic of Ri,

. Li ∈ {“data”, “operation”} is the level of the rule,

. Di is the domain set of Ri; it enumerates the possible values that can be taken
by Ti with respect to rs,

. Si is the scope of Ri where Si= {“total”,“partial”} if Li=“operation” and
Si={“total”} if Li=“data”. ♦

For instance, we give two examples of rules R1 and R2, where R1 = (T1, L1,
D1, S1) with T1=“recipient”, L1=“data”,D1= {public, government , federal
tax, research } and S1 ={“total”} R2 = (T2, L2, D2, S2) with T2=“recipient”,
L2=“operation”, D1= {public} and S2 ={“total”, “partial”}. Our objective is
to propose formal privacy model with a fine granularity that allows to add, mod-
ify (e.g., add new topic) and delete rules at anytime but also to check formally
the compatibility between rules among service. It is therefore important to ex-
amine how privacy rules can be instantiated which is the focus of the subsequent
section.
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3.3 Privacy Assertion

The services will use privacy rules to define the privacy features of their resources.
The application of a rule Ri=(Ti, Li, Di, Si) on a resource rs is a privacy as-
sertion A(Ri, rs) where rs has Li as a level. A(Ri, rs) states the granularity of
rs that is subject to privacy. The granularity g belongs to the scope Si of the
rule. For instance, g is equal to partial if only the ID of the operation invoker is
private. A(Ri, rs) also indicates Di’s values that are attributed to rs. For exam-
ple, let us consider the rule R1. A privacy assertion on rs according to R1 may
state that rs will be shared with government agencies and research institutions.
We use the propositional formula (pf )“government” ∧ “research” to specify
such statement.

Definition 3. A privacy assertion A(Ri, rs) on a resource rs is defined by the
couple (pf, g); pf = vip ∧ ...∧ viq according to Ri=(Ti, Li, Di, Si), where vip,...,
viq ∈ Di; g ∈ Si is the granularity of rs. ♦

3.4 Privacy Policy

A service S will define a privacy policy, PPS, that specifies the set of practices
applicable to the collected resources. Each service has its own perception of what
should be considered as private. Defining the privacy policy PPS of S is performed
in two steps. First, the service S identifies the set (noted Pp) of all privacy
resources. Second, S specifies assertions for each resource rs in Pp. Deciding
about the content of Pp and the rules (from RS) to apply to each resource
in Pp varies from a service to another. PPS specifies the way S (i) treats the
collected resources (i.e., received through the mediator), (ii) expects any third-
party services to treat resources provided as output when S operation will be
invoked. We consider three cases: (a) rs is an input data, (b) rs is an output
data, and (c) rs is an operation. If rs is an input data or operation (cases (a)
and (c)), then A(Ri, rs) states what will a service S do with rs according to Ri.
If rs is an output data (case (b)), then S defines two assertions for rs according
to Ri; the first, noted A(Ri, rs

E), gives S’s expectation; the second, A(Ri, rs
P ),

denotes S’s practice:
. Expectation: A(Ri, rs

E) states what service S expects a third-party service to
do with rs (provided as the output of S operation) according to Ri.

. Practice: A(Ri, rs
P ) states what service S will do with rs according to Ri.

For instance, let us consider a scientist that would like to conduct some exper-
iments. Through mediator, the operation opb of the service Sb will be invoked.
opb takes as input a patient-disease and returns as output the SSN (social
security number) of the patient. The service Sb (which owns operation opb) ex-
pects that third-party services will use the given output of opb according to its
expectations since SSN is a data with higher privacy sensitivity. We give below
a definition of privacy policy and rsk refers rsE

k or rsP
k if rsk is an output data.

Definition 4. The privacy policy of a service S is defined as PPS= {Aj(Ri, rsk),
j � |PPS|, i � |RS|, k � |Pp|, rsk ∈ RS}
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3.5 Privacy Requirements

A service S will define a Privacy Requirements PRS/T stating S’s assertions
describing how S expects and requires a third-party service T should use its
resources. Before creating PRS/T, S first identifies the set (noted Pc) of all its
privacy-sensitive resources. PRS/T assertions describe the following requirements:

. The way S expects T to treat the privacy of input data, output data (e.g.,
experiment results returned by a service), and information about operation
invocation; and

. The way S treats the privacy of any output data returned by T, through the
mediator.

The aforementioned requirements are expressed via privacy assertions. Similarly
to privacy policies, requirements on outputs express service’s expectations (noted
A(Ri, rs

E)) and practices (noted A(Ri, rs
P )). For instance, the output of oper-

ation invoked (owned by a third-party service) by S concerns primary S and S
may be sensitive about how third-party service owned the invoked operation,
will treat the output of the invoked operation regarding retention time. S may
unequally value the assertions specified in PRS/T. For instance, S owns SSN and
zip−code data, S’s requirements about SSN may be stronger than its require-
ments for zip−code. Besides, S may consider an assertion more essential than
another, even if both assertions are about the same resource. For example, S
may view the rule constraining the recipients of SSN as more valuable than the
rule stating the duration for which the service can retain SSN. For that purpose,
S assigns a weight wj to each assertion A(Ri, rs) in PRS/T. wj is an estimate of
the significance of A(Ri, rs). The higher is the weight, the more important is the
corresponding assertion. Each weight is decimal number between 0 and 1. The
total of weights assigned to all assertions equals 1:

. ∀ j � |PRS/T| : 0 < wj � 1,

. ∑k
j=1 wj = 1, where k = |PRS/T|

In the real cases, the service S may be willing to update some of their privacy
requirements. For instance, it may agree to relax constraints about the disclosure
of their zip−code if the mediator requests that in exchange to offer it incentives
such as discounts. However, S will probably be more reluctant to loosen condi-
tions about the disclosure of their names. To capture this aspect, S stipulates
whether an assertion A(Ri, rs) is mandatory or optional via a boolean attribute
Mj attached to assertionA.

Definition 5. The privacy requirements of a service S on third service T is
defined as PRS/T= { (Aj(Ri, rsk), wj ,Mj), j � |PRS/T|, i � |RS|, k � |Pc|, rsk

∈ Pc, Ri ∈ RS , wj is the weight of Aj , Mj=True iff Aj is mandatory }. ♦

Other specific conditions, related to the context application, may be specified
with SPARQL conditions (as showed in Figure 1). Furthermore, services may use
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privacy protection mechanism (like k-anonymity) to sanitize its data(Figure 1).
Due to the space limitation, details of these two characteristics will be discussed
in another future work.

4 Privacy Compatibility

In this section we introduce the notion of compatibility between privacy policies
and requirements according the notion of privacy subsumption.

4.1 Privacy Subsumption

Let us consider a ruleRi=(Ti, Li,Di, Si). Defining an assertionA(Ri, rs)=(pf, g)
for rs involving assigning value(s) from Di to the propositional formula pf of
A. The values in Di are related to each other. For instance, let us consider the
domain {public, government, federal tax, research} for a rule dealing with
topic Ti=“recipient”. The value public is more general than the other values
in Di. Indeed, if the recipient of rs is declared public (i.e., shared with any
entity), then the recipient is also government and research. Likewise, the value
government is more general than research since the research is-a government
agency. To capture the semantic relationship among domain values, we intro-
duce the notion of privacy subsumption (noted �). For instance, the following
subsumptions can be stated: government � public; research � government.
Note that privacy subsumption is transitive since it models the “is-a” relation-
ship. We use ∗ to refer to the transitive closure of �.

Definition 6. Let Di = {vi1, ..., vim} be the domain of a privacy rule Ri. We
say that vip is subsumed by viq or viq subsumes vip, (1� p � m and 1� q � m)
noted vip � viq, iff viq is more general than vip. ♦
We generalize the notion of privacy subsumption to assertions. Let us consider
an assertion A(Ri, rs)=(pf, g) representing an expectation of S (resp., T) and
another assertion A′(R

′
i, rs

′)=(pf ′, g′) modeling a practice of T (resp., S). In
order for A and A′ to be compatible, they must be specified on the same rule
(Ri=R

′
i), the same resource (rs=rs’), and at the same granularity (g=g′). Be-

sides, the expectation of S (resp., T) as stated by pf should be more general
(i.e., subsumes) than the practice of S (resp., T) as given by pf ′. In other words,
if pf is true, then pf ′ should be true as well. For instance, if pf=“government
∧ research” and pf ′=‘government”, then pf ⇒ pf ′ (where ⇒ is the symbol
for implication in propositional calculus). Hence, A is more general than A′ or
A subsumes A′ (noted A′ � A).

Although some literals used in pf are syntactically different from the ones
used in pf ′, they may be semantically related via subsumption relationships.
For instance, let us assume that pf=“public ∧ research” and pf ′=“federal
tax”. Since federal tax � public, we can state that public ⇒ federal tax.
In this case, we can prove that pf ⇒ pf ′ and hence, A′ � A. To deal with the
issue of having different literals in propositional formulas, we use the following
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property: if vip ∗ viq (i.e., viq directly or indirectly subsumes vip) then viq ⇒ vip.

Definition 7. Let us consider assertions A(Ri, rs)=(pf, g) and A′(R
′
i, rs

′)=
(pf ′, g′). A′ is subsumed by A or A subsumes A′, noted A′ � A, if Ri=R

′
i,

rs=rs’, g=g′, and pf ⇒ pf ′. ♦

4.2 Privacy Compatibility Matching Algorithm

The aim of Privacy Compatibility Matching algorithm PCM is to check that
assertions in PRS/T and PPT are related via subsumption relationships (cf. Defi-
nition 7). As mentioned in 3.2 and 3.3, both PRS/T and PPT contain expectations
and practices. PCM matches expectations in PRS/T to practices in PPT and ex-
pectations in PPT to practices in PRS/T. PCM deals with the following three
cases:

Case (a) PCM matches a PRS/T assertion A(Ri, rs) where rs is an input or
operation usage, to an assertion A′(R

′
i, rs

′) in PPT. In this case, A(Ri, rs) is
a S’s expectation and A′(R

′
i, rs

′) is a PPT practice. If A′ � A then A′ and A
are matched.

Case (b) PCM matches a PRS/T assertion A(Ri, rs
E) where rsE is an out-

put, to an assertion A′(R
′
i, rs

′P ) in PPT. In this case, A(Ri, rs
E) is a S’s

expectation and A′(R
′
i, rs

′P ) is a PPT practice. If A′ � A then A′ and A are
matched.

Case (c) PCM matches a PRS/T assertion A(Ri, rs
P ) where rsP is an output,

to an assertion A′(R
′
i, rs

′E) in PPT. In this case, A(Ri, rs
P ) is a S’s expec-

tation and A′(R
′
i, rs

′E) is a PPT practice. If A′ � A then A′ and A are
matched.

Two options are possible while matching PRS/T and PPT. The first option is to
require full matching. This is not flexible since some DaaS consumers may be
willing to use a DaaS producer even if certain of their privacy constraints are
not satisfied. For that purpose, we present a cost model -based solution to enable
partial matching. The cost model combines the notions of privacy matching de-
gree and threshold. Due to the large number and heterogeneity of DaaS services,
it is not always possible to find policy PPT that fully matches a S’s require-
ment PRS/T. The privacy matching degree gives an estimate about the ratio of
PRS/T assertions that are matched to PPT assertions. We refer to m ⊂ PRS/T

as the set of all such PRS/T assertions. The degree is obtained by adding the
weights of all assertions in m : Degree(PRS/T, PPT) =

∑
wj for all assertions

(Aj(Ri, rsk), wj ,Mj) ∈ m. The privacy matching threshold τ gives the mini-
mum value allowed for a matching degree. The value of τ is given by the client
and gives an estimate of how much privacy the consumer is willing to sacrifice.
As mentioned in 3.5, we give consumer the possibility to control their “core”
privacy requirements by associating a mandatory attribute Mj to each assertion
(Aj(Ri, rsk), wj ,Mj) in PRS/T.
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5 Privacy-Aware DaaS Composition

We aims at extending the composition approach described in [2] to deal with
privacy preserving according three step. First, a functional selection of DaaS
is performed. taking as input a user query. Second, the privacy requirements
and policy attached to service are fetched, thanks to the annotation approach
developed in [14]. Third, the compatibility of privacy requirements and policies
of the services with respect to the composition is checked. In this section we give
details about these steps.

5.1 Fetching DaaS Annotations

The model developed above provides a formal background to specify privacy
requirements PRS/T and policy PPS of service S. To make these privacy capabil-
ities concretely available on service, we link them to services via an annotation
of the service. Our previous work in [14] provided a complete description about
the privacy annotation extensibility. We remind how we annotate the major de-
scription formats for DaaS (WSDL and REST annotations) according to the
aforementioned privacy model. Indeed, the specifications of WSDL allows for
the addition of new XML elements and attributes in certain locations inside a
WSDL file. We exploit these extensibility elements to associate the services op-
erations, interface inputs and outputs with their corresponding capability files.
Specifically, for each interface, operation, input and output elements, we define
a new child element called “privacy-capability” to hook assertions of PRS/T

and assertions of PRS with to S descriptions. For retro-compatibility sake, we also
provide the following rules to adapt our WSDL 2.0 annotation to WSDL 1.1. The
“attrExtensions” element defined in SAWSDL are utilized to annotate elements
that do not support attribute extensibility, such as operation and porttype.
The porttype element must be annotated as the ancestor of the interface
WSDL 2.0 element, and message part elements must be annotated in replace-
ment of input and output WSDL 2.0 elements. During the composition, the
privacy requirement description file of component service is compared to this
describing the privacy policy of service within composition as explaining in the
above subsection.

5.2 Checking Privacy within Composition

We aims at extending the previous composition approach to deal with privacy
preserving. Let us consider services in Table 1 and the following epidemiolo-
gist’s query Q “What are Ages, Genders, address, DNA, salaries of patients
infected with H1N1 ; and what are the global weather conditions of the area
where these patients reside?”. The mediator is considered as a trusted entity.
It manage the composition and handles all the interactions among services. It
answer Q by composing the relevant services as follows: Firstly, the invocation
of S1.1 with H1N1, then for each obtained patient, S4.1 is invoked to obtain
their DNA, S2.2 and S3.1 to obtain date−of−birth, zip−code and salary of ob-
tained patients. Finally, S5.1 with patients’zip−code to get information about
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S1.1($x, ?s)Input

S3.1($s, ?z, ?r )

S2.2($s, ?d, ?g)

S5.1($z, ?p)

S4.1($s, ?n)

step 1

step 2

step 3

Fig. 2. Dependency Graph of query Q

the weather−conditions. Selected services need to be executed in a particular
order in the composition plan depending on their inputs and outputs. To con-
struct the composition plan the algorithm establishes a dependency graph DG
(Figure 2) in which the nodes correspond to services and the edges correspond
to dependency constraints between component services. If a service Sj need an
input x that can be provided from an output y of Si then Sj must be preceded
by Si in the composition plan; we say that there is a dependency between Si and
Sj (or Sj depends on Si). Consequently, the mediator recognizes that services
S2.2, S3.1, S4.1 depend on S1.1 since they have a same input y (i.e. SSN) which
is provided as an output of S1.1 and S5.1 depends on S3.1.

In order to take privacy into account, if Sj depends on Si, then Sj is showed
as a consumer to some data provided by Si and this latter is showed then as
a producer from the mediator point of view. In other words, the mediator con-
siders the privacy requirements PRSi/T for service Si (since PRSi/T specifies Si’
conditions on the usage of its concerning data) and privacy policy PPSj for ser-
vice Sj (since PPSj specifies Sj ’ usage on the collected data) and checks the
compatibility of PRSi/T and PPSj by using the privacy compatibility matching
algorithm PCM (Section 4.2) within services order in DG.

For instance, let us consider DG in Figure 2. The mediator identifies firstly,
from DG, services type (i.e., consumer services, and producer services) and re-
sources related to each dependency. The parameter s is an input parameter for
the services S2.2, S3.1 and S4.1 while it is an output parameter for S1.1 and there-
fore S2.2, S3.1 and S4.1 depend on S1.1. Note that input parameters begins with
“$” and output parameters by “?”. Similarly, the parameter z is an input param-
eter for S5.1 and an output parameter for S3.1, therefore S5.1 depends on S3.1.
Consequently, mediator considers S2.2, and S4.1 as consumers services, while S1.1

is considered once as a consumer (since it input is provided by the input) once
as a producer (since it provides output for others services). The same reasoning
is observed for S3.1. In step 1 the producer is the input (i.e., the user query),
consumer is S1.1 and the private resource rs =“Patient Disease”. The medi-
ator checks the compatibility of PRinput/T and PPS1.1 . In step 2 the producer
is S1.1 and consumers are S2.2, S3.1, S4.1 and the private resource rs =“SSN”.
The mediator checks the compatibility of PRS1.1/T and PPS2.2 , PRS1.1/T and
PPS3.1 , PRS1.1/T and PPS4.1 , In step 3 S3.1 is now the producer for S5.1 and rs
=“zip−code” and the compatibility of PRS3.1/T and PPS5.1 is checked.
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Table 1. A subset of PAIRSE’s DaaSs

DaaS services Semantics services Description

S1.1($x, ?s) Returns patients SNN s, infected with a disease x
S1.2($x, ?s)

S2.1($s, ?d, ?g) Returns date−of−birth, d, and gender, g, of a patient identified by s
S2.2($s, ?d, ?g)

S3.1($s, ?z, ?r) Returns zip−code, z, and salary, r, of a patient identified by s

S4.1($s, ?n) Returns DNA, n, of a patient identified by s
S4.2($s, ?n)

S5.1($z, ?w) Returns Weather−condition, w, of a address z

6 Evaluations

To demonstrate the feasibility of our approach to privacy-preserving DaaS com-
position, we applied it to a real scenario drawn from the healthcare domain.
In the context of the PAIRSE project 2 we were provided with access to /411/
medical Web services defined on top of /23/ different medical databases (oracle
databases) storing medical information (e.g., diseases, medical tests, allergies,
etc) about more than /30,000/ patients. Among these services Table1 shows the
services that pertain to the query Q in our running example. All services were de-
ployed on top of a GlassFish web server. The resources are related to a particular
type of medical data (e.g., ongoing treatments, Allergies). For each service, we
have randomly generated privacy requirements and privacy policy with regard
to /10/ values Di set for Ri topic = “medical recipients” (e.g., researcher, physi-
cian, nurse, etc) and different values for Ri topic = “purpose” (e.g., scientific
research, academic laboratory, government, etc.). These privacy requirements
and policies are used to annotate the service description files in accordance with
the mechanisms presented in section 5. Our algorithms are implemented in Java
and run on a Intel Core Duo 2.53 GHz and 4GB RAM running Windows 7.

Table 2. Possible compositions that answer Q without and with privacy preservation

Compositions without privacy
preservation

Compositions with privacy
preservation

C1 = {S1.1,S2.1,S3.1,S4.1,S5.1} C3 = {S1.1,S2.2,S3.1,S4.1,S5.1}
C2 = {S1.1,S2.1,S3.1,S4.2,S5.1} C4 = {S1.1,S2.2,S3.1,S4.2,S5.1}
C3 = {S1.1,S2.2,S3.1,S4.1,S5.1}
C4 = {S1.1,S2.2,S3.1,S4.2,S5.1}
C5 = {S1.2,S2.1,S3.1,S4.1,S5.1}
C6 = {S1.2,S2.1,S3.1,S4.2,S5.1}
C7 = {S1.2,S2.2,S3.1,S4.1,S5.1}
C8 = {S1.2,S2.2,S3.1,S4.2,S5.1}

2 https://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/Web/
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Fig. 3. The Experimental Results

Table 2 shows in the first column the different DaaSs compositions the composi-
tion would give without applying our privacy compatibility matching algorithm
PCM. Much of these composition may violate the privacy requirements of in-
volved services. The second column shows the possible compositions when PCM
within composition approach (of section 5.1) is applied. These compositions do
preserve the privacy requirements of involved services. We conducted a set of ex-
periments to measure the cost incurred in privacy preservation while composing
DaaS. We considered two sets of queries. The first one included queries about a
given patient, each with a different size: Q1 requests the “Personal information”
of a given patient pi, Q2 requests the “Personal information”, “Allergies” and
“Ongoing Treatments” of pi, and Q3 requests the “Personal information”, “Al-
lergies”, “Ongoing Treatments”, “Cardiac Conditions” and “Biological Tests” of
pi. The second set uses the same queries Q1, Q2 and Q3 but for all of patients
living in Lyon. All queries were posed by the same actor (researcher) and for the
same purpose (medical research). Figure 3 depicts the results obtained for the
queries in sets 1 and 2,(the time shown includes both the DaaS composition con-
struction time and the DaaS composition execution time). Set-2 (as opposed to
Set-1) amplifies the cost incurred by Set-1 at the composition “execution phase”
by a factor equals to the number of returned patients. The results for Set-1 show
that privacy handling adds only a slight increase in the query rewriting time
(note that the composition execution time is neglected for one patient). This is
due to the fact that the number of services used to retrieve privacy requirements
is limited compared to the number of services used to retrieve data (10 versus
411 in our experiments). The results for Set-2 show that the extra time needed to
handle privacy in the the composition process is still relatively low if compared
to the time required for answering queries without addressing privacy concerns.

7 Conclusion

In this paper, we proposed a dynamic and formal privacy model for DaaS ser-
vices. The model deals with privacy at two different levels: the data (inputs and
outputs) and operation levels. Services specify their privacy concerns/practices
via privacy requirements and policies, respectively. Both privacy requirements
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and policies refer to rules that may be added, deleted, and modified at any time.
The granularity of our privacy model allows defining the widest range of policies
and requirement with rich expression capabilities and flexibly manner. We in-
troduced a cost model-based protocol for checking the compatibility of privacy
requirements and policies. We have presented a preserving-privacy DaaS compo-
sition approach to resolve privacy concerns at the composition time. As future
work, we plan to extend our privacy-preserving DaaS composition approach to
tackle the incompatibilities between requirements and policies using a dynamic
reconciliation mechanism. The reconciliation of requirements and policies will be
carried out based on some negotiation protocols. We intend also to study and
improve the scalability of our proposed privacy-aware composition approach.
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Abstract. Software vulnerabilities represent a major cause of cyber-
security problems. The National Vulnerability Database (NVD) is a pub-
lic data source that maintains standardized information about reported
software vulnerabilities. Since its inception in 1997, NVD has published
information about more than 43,000 software vulnerabilities affecting
more than 17,000 software applications. This information is potentially
valuable in understanding trends and patterns in software vulnerabil-
ities, so that one can better manage the security of computer systems
that are pestered by the ubiquitous software security flaws. In particular,
one would like to be able to predict the likelihood that a piece of software
contains a yet-to-be-discovered vulnerability, which must be taken into
account in security management due to the increasing trend in zero-day
attacks. We conducted an empirical study on applying data-mining tech-
niques on NVD data with the objective of predicting the time to next
vulnerability for a given software application. We experimented with var-
ious features constructed using the information available in NVD, and
applied various machine learning algorithms to examine the predictive
power of the data. Our results show that the data in NVD generally have
poor prediction capability, with the exception of a few vendors and soft-
ware applications. By doing a large number of experiments and observing
the data, we suggest several reasons for why the NVD data have not pro-
duced a reasonable prediction model for time to next vulnerability with
our current approach.

Keywords: data mining, cyber-security, vulnerability prediction.

1 Introduction

Each year a large number of new software vulnerabilities are discovered in var-
ious applications (see Figure 1). Evaluation of network security has focused on
known vulnerabilities and their effects on the hosts and networks. However, the
potential for unknown vulnerabilities (a.k.a. zero-day vulnerabilities) cannot be
ignored because more and more cyber attacks utilize these unknown security
holes. A zero-day vulnerability could last a long period of time (e.g. in 2010
Microsoft confirmed a vulnerability in Internet Explorer, which affected some
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versions that were released in 2001). Therefore, in order to have more accurate
results on network security evaluation, one must consider the effect from zero-
day vulnerabilities. The National Vulnerability Database (NVD) is a well-known
data source for vulnerability information, which could be useful to estimate the
likelihood that a specific application contains zero-day vulnerabilities based on
historical information. We have adopted a data-mining approach in an attempt to
build a prediction model for the attribute “time to next vulnerability” (TTNV),
i.e. the time that it will take before the next vulnerability about a particular
application will be found. The predicted TTNV metrics could be translated into
the likelihood that a zero-day vulnerability exists in the software.

Past research has addressed the problem of predicting software vulnerabilities
from different angles. Kyle et al. [10] pointed out the importance of estimating
the risk-level of zero-day vulnerabilities. Mcqueen et al. [15] did experiments on
estimating the number of zero-day vulnerabilities on each given day. Alhazmi
and Malaiya [3] introdced the definition of TTNV. Ozment [19] did a number of
studies on analyzing NVD, and pointed out several limitations of this database.

Fig. 1. The trend of vulnerability numbers

In this paper, we present our empirical experience of applying data-mining
techniques on NVD data in order to build a prediction model for TTNV. We
conduct a rigorous data analysis and experiment with a number of feature con-
struction schemes and learning algorithms. Our results show that the data in
NVD generally have poor prediction capability, with the exception of a few
vendors and software applications. In the rest of the paper we will explain the
features we have constructed and the various approaches we have taken in our
attempts to build the prediction model. While it is generally a difficult task to
show that data has no utility, our experience does indicate a number of reasons
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why it is unlikely to construct a reliable prediction model for TTNV given the
information available in NVD.

2 Data Source – National Vulnerability Database

Each data entry in NVD consists of a large number of fields. We represent them
as <D, CPE, CVSS>. D is a set of data including published time, summary
of the vulnerability and external links about each vulnerability. CPE [6] and
CVSS [21] will be described below.

2.1 CPE (Common Platform Enumeration)

CPE is an open framework for communicating the characteristics and impacts
of IT vulnerabilities. It provides us with information on a piece of software,
including version, edition, language, etc. An example is shown below:

cpe:/a:acme:product:1.0:update2:pro:en-us
Professional edition of the "Acme Product 1.0 Update 2 English".

2.2 CVSS (Common Vulnerability Scoring System )

CVSS is a vulnerability scoring system designed to provide an open and stan-
dardized method for rating IT vulnerabilities. CVSS helps organizations priori-
tize and coordinate a joint response to security vulnerabilities by communicating
the base, temporal and environmental properties of a vulnerability. Currently
NVD only provides the Base group in its metric vector. Some components of the
vector are explained below.

– Access Complexity indicates the difficulty level of the attack required to
exploit the vulnerability once an attacker has gained access to it. It includes
three levels: High, Medium, and Low.

– Authentication indicates whether an attacker must authenticate in order to
exploit a vulnerability. It includes two levels: Authentication Required (R),
and Authentication Not Required (NR).

– Confidentiality, Integrity and Availability are three loss types of attacks.
Confidentiality loss means information will be leaked to people who are not
supposed to know it. Integrity loss means the data can be modified illegally.
Availability loss means the compromised system cannot perform its intended
task or will crash. Each of the three loss types have the three levels: None
(N), Partial (P), and Complete (C).

The CVSS Score is calculated based on the metric vector, with the objective
of indicating the severity of a vulnerability.

3 Our Approach

We choose TTNV (time to next vulnerability) as the predicted feature. The
predictive attributes are time, versiondiff (the distance between two different
versions by certain measurement), software name and CVSS. All are derived or
extracted directly from NVD.
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3.1 Data Preparation and Preprocessing

Division of training/test data: As the prediction model is intended to be
used to forecast future vulnerabilities, we divide the NVD data into training and
test data sets based on the time the vulnerabilities were published. The ratio of
the amount of training to test data is 2. We chose to use the data starting from
2005, as the data prior to this year looks unstable (see Figure 1).

Removing obvious errors: Some NVD entries are obviously erroneous (e.g.
in one entry for Linux the kernel version was given as 390). To prevent these
entries from polluting the learning process, we removed them from the database.

3.2 Feature Construction and Transformation

Identifying and constructing predictive features is of vital importance to data-
mining. For the NVD data, intuitively Time and Version are two useful features.
As we want to predict time to next vulnerability, the published time for each
past vulnerability will be a useful information source. Likewise, the version infor-
mation in each reported vulnerability could indicate the trend of vulnerability
discovery, as new versions are released. Although both Time and Version are
useful information sources, they need to be transformed to provide the expected
prediction behavior. For example, both features in their raw form increase mono-
tonically. Directly using the raw features will provide little prediction capabil-
ity for future vulnerabilities. Thus, we introduce several feature construction
schemes for the two fields and studied them experimentally.

Time: We investigated two schemes for constructing time features. One is epoch
time, the other is using month and day separately without year. Like explained
before, the epoch time is unlikely to provide useful prediction capability, as it
increases monotonically. Intuitively, the second scheme shall be better, as the
month and day on which a vulnerability is published may show some repeating
pattern, even in future years.

Version: We calculate the difference between the versions of two adjacent in-
stances and use the versiondiff as a predictive feature. An instance here refers to
an entry where a specific version of an application contains a specific vulnera-
bility. The rationale for using versiondiff as a predictive feature is that we want
to use the trend of the versions with time to estimate future situations. Two
versiondiff schemas are introduced in our approach. The first one is calculating
the versiondiff based on version counters (rank), while the second is calculating
the versiondiff by radix.

Counter versiondiff: For this versiondiff schema, differences between minor ver-
sions and differences between major versions are treated similarly. For example,
if one software has three versions: 1.1, 1.2, 2.0, then the versions will be assigned
counters 1, 2, 3 based on the rank of their values. Therefore, the versiondiff
between 1.1 and 1.2 is the same as the one between 1.2 and 2.0.
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Radix-based versiondiff: Intuitively, the difference between major versions is
more significant than the difference between minor versions. Thus, when calcu-
lating versiondiff, we need to assign a higher weight to relatively major version
changes and lower weight to relatively minor version changes. For example, for
the three versions 1.0, 1.1, 2.0, if we assign a weight of 10 to the major version
and a weight of 1 to each minor version, the versiondiff between 1.1 and 1.0 will
be 1, while the versiondiff between 2.0 and 1.1 will be 9.

When analyzing the data, we found out that versiondiff did not work very
well for our problem because, in most cases, the new vulnerabilities affect all
previous versions as well. Therefore, most values of versiondiff are zero, as the
new vulnerability instance must affect an older version that also exists in the
previous instance, thus, resulting in a versiondiff of zero. In order to mitigate
this limitation, we created another predictive feature for our later experiments.
The additional feature that we constructed is the number of occurrences of a
certain version of each software. More details will be provided in Section 4.

3.3 Machine Learning Functions

We used either classification or regression functions for our prediction, depend-
ing on how we define the predicted feature. The TTNV could be a number
representing how many days we need to wait until the occurrence of the next
vulnerability. Or it could be binned and each bin stands for values within a
range. For the former case, we used regression functions. For the latter case, we
used classification functions. We used WEKA [5] implementations of machine
learning algorithms to build predictive models for our data. For both regression
and classification cases, we explored all of the functions compatible to our data
type, with default parameters. In the case of the regression problem, the compat-
ible functions are: linear regression, least median square, multi-layer perceptron,
RBF network, SMO regression, and Gaussian processes. In the case of classifi-
cation, the compatible functions are: logistic, least median square, multi-layer
perceptron, RBF network, SMO, and simple logistic.

4 Experimental Results

We conducted the experiments on our department’s computer cluster - Beocat.
We used a single node and 4G RAM for each experiment. As mentioned above,
WEKA [5], a data-mining suite, was used in all experiments.

4.1 Evaluation Metrics

A number of metrics are used to evaluate the performance of the predictive
models learned.

Correlation Coefficient: The correlation coefficient is a measure of how well
trends in the predicted values follow trends in actual values. It is a measure of
how well the predicted values from a forecast model “fit” the real-life data. The
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correlation coefficient is a number between -1 and 1. If there is no relationship
between the predicted values and the actual values, the correlation coefficient
is close to 0 (i.e., the predicted values are no better than random numbers). As
the strength of the relationship between the predicted values and actual values
increases, so does the correlation coefficient. A perfect fit gives a coefficient
of 1.0. Opposite but correlated trends result in a correlation coefficient value
close to -1. Thus, the higher the absolute value of the correlation coefficient, the
better; however, when learning a predictive model, negative correlation values
are not usually expected. We generate correlation coefficient values as part of
the evaluation of the regression algorithms used in our study.

Root Mean Squared Error: The mean squared error (MSE) of a predictive
regression model is another way to quantify the difference between a set of
predicted values, xp, and the set of actual (target) values, xt, of the attributed
being predicted. The root mean squared error (RMSE) can be defined as:

RMSE(xp, xt)=
√
MSE(xp, xt) =

√
E[(xp − xt)2] =

√√√√ n∑
i=1

(xp,i − xt,i)2

n

Root Relative Squared Error: According to [1], the root relative squared
error (RRSE) is relative to what the error would have been if a simple predictor
had been used. The simple predictor is considered to be the mean/majority of
the actual values. Thus, the relative squared error takes the total squared error
and normalizes it by dividing by the total squared error of the simple predictor.
By taking the root of the relative squared error one reduces the error to the
same dimensions as the quantity being predicted.

RRSE(xp, xt) =

√√√√√√√
n∑

i=1

(xp,i − xt,i)
2

n∑
i=1

(xt,i − x̄)2

Correctly Classified Rate: To evaluate the classification algorithms investi-
gated in this work, we use a metric called correctly classified rate. This metric
is obtained by dividing correctly classified instances by all instances. Obviously,
a higher value suggests a more accurate classification model.

4.2 Experiments

We performed a large number of experiments, by using different versiondiff
schemes, different time schemes, and by including CVSS metrics or not. For dif-
ferent software, different feature combinations produce the best results. Hence,
we believe it is not effective to build a single model for all the software. Instead,
we build separate models for different software. This way, we also avoid potential
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scalability issues due to the large number of nominal type values from vendor
names and software names.

Given the large number of vendors in the data, we did not run experiments for
all of them. We focused especially on several major vendors (Linux, Microsoft,
Mozilla and Google) and built vendor-specific models. For three vendors (Linux,
Microsoft and Mozilla), we also built software-specific models. For other vendors
(Apple, Sun and Cisco), we bundled all their software in one experiment.

4.3 Results

Linux: We used two versiondiff schemes, specifically counter-based and radix-
based, to find out which one is more effective for our model construction. We
also compared two different time schemes (epoch time, and using month and
day separately). In a first set of experiments, we predicted TTNV based on
regression models. In a second set of experiments, we grouped the predictive
feature (TTNV) values into bins, as we observed that the TTNV distribution
shows several distinct clusters, and solved a classification problem.

Table 1 shows the results obtained using the epoch time scheme versus the
results obtained using the month and day scheme, in terms of correlation coeffi-
cient, for regression models. As can be seen, the results of our experiments did
not show a significant difference between the two time schemes that we used,
although we expected the month and day feature to provide better results than
the absolute epoch time, as explained in Section 3.2. Thus, neither scheme has
acceptable correlation capability on the test data. We adapted the month and
day time schema for all of the following experiments.

Table 2 shows a comparison of the results of the two different versiondiff
schemes. As can be seen, both perform poorly as well. Given the unsatisfac-
tory results, we believed that the large number of Linux sub-versions could be
potentially a problem. Thus, we also investigated constructing the versiondiff
feature by binning versions of the Linux kernel (to obtained a smaller set of sub-
versions). We round each sub-version to its third significant major version (e.g.
Bin(2.6.3.1) = 2.6.3). We bin based on the first three most significant versions
because more than half of the instances (31834 out of 56925) have version longer
than 3, and Only 1% (665 out of 56925) versions are longer than 4. Also, the

Table 1. Correlation Coefficient for Linux Vulnerability Regression Models Using Two
Time Schemes

Regression Functions
Epoch time Month and day

training test training test

Linear regression 0.3104 0.1741 0.6167 -0.0242

Least mean square 0.1002 0.1154 0.1718 0.1768

Multi-layer perceptron 0.2943 0.1995 0.584 -0.015

RBF network 0.2428 0 0.1347 0.181

SMO regression 0.2991 0.2186 0.2838 0.0347

Gaussian processes 0.3768 -0.0201 0.8168 0.0791
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Table 2. Correlation Coefficient for Linux Vulnerability Regression Models Using Two
Versiondiff Schemes

Regression Functions
Version counter Radix based
training test training test

Linear regression 0.6167 -0.0242 0.6113 0.0414

Least mean square 0.1718 0.1768 0.4977 -0.0223

Multi-layer perceptron 0.584 -0.015 0.6162 0.1922

RBF network 0.1347 0.181 0.23 0.0394

SMO regression 0.2838 0.0347 0.2861 0.034

Gaussian processes 0.8168 0.0791 0.6341 0.1435

Table 3. Correlation Coefficient for Linux Vulnerability Regression Models Using
Binned Versions versus Non-Binned Versions

Regression Functions
Non-binned versions Binned versions
training test training test

Linear regression 0.6113 0.0414 0.6111 0.0471

Least mean square 0.4977 -0.0223 0.5149 0.0103

Multi-layer perceptron 0.6162 0.1922 0.615 0.0334

RBF network 0.23 0.0394 0.0077 -0.0063

SMO regression 0.2861 0.034 0.285 0.0301

Gaussian processes 0.6341 0.1435 0.6204 0.1369

difference on the third subversion will be regarded as a huge dissimilarity for
Linux kernels. We should note that the sub-version problem may not exist for
other vendors, such as Microsoft, where the versions of the software are natu-
rally discrete (all Microsoft products have versions less than 20). Table 3 shows
the comparisons between regression models that use binned versions versus re-
gression models that do not use binned versions. The results are still not good
enough as many of the versiondiff values are zero, as explained in Section 3.2
(new vulnerabilities affect affect previous versions as well).

TTNV Binning: Since we found that the feature (TTNV) of Linux shows distinct
clusters, we divided the feature values into two categories, more than 10 days
and no more than 10 days, thus transforming the original regression problem
into an easier binary classification problem. The resulting models are evaluated
in terms of corrected classified rates, shown in Table 4. While the models are
better in this case, the false positive rates are still high (typically above 0.4). In
this case, as before, we used default parameters for all classification functions.
However, for the SMO function, we also used the Gaussian (RBF) kernel. The
results of the SMO (RBF kernel) classifier are better than the results of most
other classifiers, in terms of correctly classified rate. However, even this model
has a false positive rate of 0.436, which is far from acceptable.

CVSS Metrics: In all cases, we also perform experiments by adding CVSS met-
rics as predictive features. However, we did not see much differences.
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Table 4. Correctly Classified Rates for Linux Vulnerability Classification Models Using
Binned TTNV

Classification Functions
Correctly classified

FPR TPR
training test

Simple logistic 97.6101% 69.6121% 0.372 0.709

Logistic regression 97.9856% 57.9542% 0.777 0.647

Multi-layer perceptron 98.13% 64.88% 0.689 0.712

RBF network 95.083% 55.18% 0.76 0.61

SMO 97.9061% 61.8259% 0.595 0.658

SMO (RBF kernel) 96.8303% 62.8392% 0.436 0.641

Microsoft: As we have already observed the limitation of versiondiff scheme
in the analysis of Linux vulnerabilities, for Microsoft instances, we use only the
number of occurrences of a certain version of a software or occurrences of a
certain software, instead of using versiondiff, as described below. We analyzed
the set of instances and found out that more than half of the instances do not
have version information. Most of these case are Windows instances. Most of the
non-Windows instances (more than 70%) have version information. Therefore, we
used two different occurrence features for these two different types of instances.
For Windows instances, we used the occurrence of each software as a predictive
feature. For non-Windows instances, we used the occurrence of each version of
the software as a predictive feature.

Also based on our observations for Linux, we used only the month and day
scheme, and did not use the epoch time scheme in the set of experiments we
performed for Windows. We analyzed instances to identify potential clusters of
TTNV values. However, we did not find any obvious clusters for either windows
or non-windows instances. Therefore, we only used regression functions. The
results obtained using the aforementioned features for both Windows and non-
Windows instances are presented in Table 5. As can be seen, the correlation
coefficients are still less than 0.4.

We further investigated the effect of building models for individual non-
Windows applications. For example, we extracted Internet Explorer (IE) in-
stances and build several models for this set. When CVSS metrics are included,

Table 5. Correlation Coefficient for Windows and Non-Windows Vulnerability Regres-
sion Models, Using Occurrence Version/Software Features and Day and Month Time
Scheme

Regression Functions
Win Instances Non-win Instances
training test training test

Linear regression 0.4609 0.1535 0.5561 0.0323

Least mean square 0.227 0.3041 0.2396 0.1706

Multi-layer perceptron 0.7473 0.0535 0.5866 0.0965

RBF network 0.1644 0.1794 0.1302 -0.2028

SMO regression 0.378 0.0998 0.4013 -0.0467

Gaussian processes 0.7032 -0.0344 0.7313 -0.0567
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the correlation coefficient is approximately 0.7. This is better than when CVSS
metrics are not included, in which case, the correlation coefficient is approxi-
mately 0.3. The results showing the comparison between IE models with and
without CVSS metrics is shown in Table 6. We tried to performed a similar
experiment for Office. However, there are only 300 instances for Office. Other
office-related instances are about individual software such as Word, PowerPoint,
Excel and Access, etc, and each has less than 300 instances. Given the small
number of instances, we could not build models for Office.

Table 6. Correlation Coefficient for IE Vulnerability Regression Models, with and
without CVSS Metrics

Regression Functions
With CVSS Without CVSS
training test training test

Linear regression 0.8023 0.6717 0.7018 0.3892

Least mean square 0.6054 0.6968 0.4044 0.0473

Multi-layer perceptron 0.9929 0.6366 0.9518 0.0933

RBF network 0.1381 0.0118 0.151 -0.1116

SMO regression 0.7332 0.5876 0.5673 0.4813

Gaussian processes 0.9803 0.6048 0.9352 0.0851

Mozilla: At last, we built classification models for Firefox, with and without the
CVSS metrics. The results are shown in Table 7. As can be seen, the correctly
classified rates are relatively good (approximately 0.7) in both cases. However,
the number of instances in this dataset is rather small (less than 5000), therefore
it is unclear how stable the prediction model is.

Table 7. Correctly Classified Rate for Firefox Vulnerability Models with and without
CVSS Metrics

Classification Functions
With CVSS Without CVSS
training test training test

Simple logistic 97.5% 71.4% 97.5% 71.4%

Logistic regression 97.5% 70% 97.8% 70.5%

Multi-layer perceptron 99.5% 68.4% 99.4% 68.3%

RBF network 94.3% 71.9% 93.9% 67.1%

SMO 97.9% 55.3% 97.4% 55.3%

4.4 Parameter Tuning

As mentioned above, we used default parameters for all regression and classifi-
cation models that we built. To investigate if different parameter settings could
produce better results, we chose to tune parameters for the support vector ma-
chines algorithm (SVM), whose WEKA implementations for classifications and
regression are called SMO and SMO regression, respectively. There are two main
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parameters that can be tuned for SVM, denoted by C and σ. The C parameter
is a cost parameter which controls the trade-off between model complexity and
training error, while σ controls the width of the Gaussian kernel [2].

To find the best combination of values for C and σ, we generated a grid
consisting of the following values for C: 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10, 15, 20
and the following values for σ: 0, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 5.0, and run
the SVM algorithm for all possible combinations. We used a separate validation
set to select the combination of values that gives the best values for correlation
coefficient, and root squared mean error and root relative squared error together.
The validation and test datasets have approximately equal sizes; the test set
consists of chronologically newer data, as compared to the validation data, while
the validation data is newer than the training data.

Table 8 shows the best parameter values when tuning was performed based
on the correlation coefficient, together with results corresponding to these pa-
rameter values, in terms of correlation coefficient, RRSE and RMSE (for both
validation and test datasets). Table 9 shows similar results when parameters are
tuned on RRSE and RMSE together.

Table 8. Parameter Tuning Based on Correlation Coefficient

Group Targeted
Parameters Validation Test
C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 3.0 2.0 75.2347 329.2137% 0.7399 82.2344 187.6% 0.4161

IE CVSS 1.0 1.0 8.4737 74.8534% 0.4516 11.6035 92.2% -0.3396

Non-Windows 1.0 0.05 92.3105 101.0356% 0.1897 123.4387 100.7% 0.223

Linux CVSS 15.0 0.1 12.6302 130.8731% 0.1933 45.0535 378.3% 0.2992

Adobe 0.5 0.05 43.007 188.1909% 0.5274 78.2092 178.5% 0.1664

IE 7.0 0.05 13.8438 122.2905% 0.2824 14.5263 115.5% -0.0898

Apple Separate 3.0 0.05 73.9528 104.0767% 0.2009 91.1742 116.4% -0.4736

Apple Single 0.5 0.0 493.6879 694.7868% 0 521.228 1401.6% 0

Linux Separate 2.0 0.05 16.2225 188.6665% 0.3105 49.8645 418.7% -0.111

Linux Single 1.0 0.05 11.3774 83.2248% 0.5465 9.4743 79.6% 0.3084

Linux Binned 2.0 0.05 16.2225 188.6665% 0 49.8645 418.7% -0.111

Windows 5 0.05 21.0706 97.4323% 0.1974 72.1904 103.1% 0.1135

4.5 Summary

The experiments above indicate that it is hard to build good prediction models
based on the limited data available in NVD. For example, there is no version
information for most Microsoft instances (especially, Windows instances). Some
results look promising (e.g. the models we built for Firefox), but they are far
from usable in practice. Below, we discuss what we believe to be the main reasons
for the difficulty of building good prediction models for TTNV from NVD.
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Table 9. Parameter Tuning Based on RMSE and RRSE

Group Targeted
Parameters Validation Test
C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 0.5 0.2 19.4018 84.8989% 0.2083 61.2009 139.6667% 0.5236

IE CVSS 2.0 1.0 8.4729 74.8645% 0.4466 11.4604 91.1018% -0.3329

Non-Windows 0.5 0.1 91.1683 99.7855% 0.188 123.5291 100.7% 0.2117

Linux CVSS 2.0 0.5 7.83 81.1399% 0.1087 19.1453 160.8% 0.3002

Adobe 1.0 0.5 19.5024 85.3392% -0.4387 106.2898 242.5% 0.547

IE 0.5 0.3 12.4578 110.0474% 0.2169 13.5771 107.9% -0.1126

Apple Separate 7.0 1.0 70.7617 99.5857% 0.1325 80.2045 102.4% -0.0406

Apple Single 0.5 0.05 75.9574 106.8979% -0.3533 82.649 105.5% -0.4429

Linux Separate 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236

Linux Single 5.0 0.5 10.7041 78.2999% 0.4752 12.3339 103.6% 0.3259

Linux Binned 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236

Windows 5.0 0.05 21.0706 97.4323% 0.1974 72.1904 103% 0.1135

4.6 Discussion

We believe the main factor affecting the predictive power of our models is the
low quality of the data from the National Vulnerability Database. Following are
several limitations of the data:

– Missing information: most instances of Microsoft do not have the version
information, without which we could not observe how the number of vulner-
abilities evolves over versions.

– “Zero” versiondiffs: most of versiondiff values are zero because earlier-version
applications are also affected by the later-found vulnerabilities (this is as-
sumed by a number of large companies, e.g. Microsoft and Adobe) and sig-
nificantly reduces the utility of this feature.

– Vulnerability release time: The release date of vulnerability could largely be
affected by vendors’ practices. For example, Microsoft usually releases their
vulnerability and patch information on the second Tuesday of each month,
which may not accurately reflect the discovery date of the vulnerabilities.

– Data error: We found a number of obvious errors in NVD, such as the afore-
mentioned Linux kernel version error.

5 Related Works

Alhazmi and Malaiya [3] have addressed the problem of building models for
predicting the number of vulnerabilities that will appear in the future. They
targeted operating systems instead of applications. The Alhazmi-Malaiya Logis-
tic model works well for fitting existing data, when evaluated in terms of average
error (AE) and average bias (AB) of number of vulnerabilities over time. How-
ever, fitting existing data is a prerequisite of testing models: predictive power is
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the most important criteria [18] . They did test the predictive accuracy of their
models and got satisfactory results [18].

Ozment [19] examined the vulnerability discovery models (proposed by Al-
hazmi Malaiya [3]) and pointed some limitations that make these models inappli-
cable. One of them is that there is not enough information included in a govern-
ment supported vulnerability database (e.g. National Vulnerability Database).
This is confirmed by our empirical study.

McQueen et al. [15] designed algorithms for estimating the number of zero-day
vulnerabilities on each given day. This number can indicate the overall risk level
from zero-day vulnerabilities. However, for different applications the risks could
be different. Our work aimed to construct software-specific prediction models.

Massacci et al. [14,16] compared several existing vulnerability databases based
on the type of vulnerability features available in each of them. They mentioned
that many important features are not included in most databases. e.g. discovery
date is hard to find. Even though certain databases (such as OSVDB that as we
also studied) claim they include the features, most of the entries are blank. For
their Firefox vulnerability database, they employed textual retrieval techniques
and took keywords from CVS developer’s commit log to get several other features
by cross-referencing through CVE ids. They showed that by using two different
data sources for doing the same experiment, the results could be quite different
due to the high degree of inconsistency in the data available for the research
community at the current time. They further tried to confirm the correctness of
their database by comparing data from different sources. They used data-mining
techniques (based on the database they built) to prioritize the security level of
software components for Firefox.

Ingols et al. [10] tried to model network attacks and countermeasures using
attack graphs. They pointed out the dangers from zero-day attacks and also
mentioned the importance of modeling them. There has been a long line of
attack-graph works [4,7,8,9,11,12,13,17,20,22] which can potentially benefit from
the estimation of the likelihood of zero-day vulnerabilities in specific applications.

6 Conclusions

In this paper we present our effort in building prediction models for zero-day
vulnerabilities based on the information contained in the National Vulnerability
Database. Our research found that due to a number of limitations of this data
source, it is unlikely that one can build a practically usable prediction model at
this time. We presented our rigorous evaluation of various feature construction
schemes and parameter tuning for learning algorithms, and notice that none
of the results obtained shows acceptable performance. We discussed possible
reasons as of why the data source may not be well suited to predict the desired
features for zero-day vulnerabilities.
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Abstract. Finding matching subsequences in time series data is an important
problem. The classical approach to search for matching subsequences has been
on the principle of exhaustive search, where all possible candidates are generated
and evaluated or all the terms of the time series in a data base are examined. As a
result most of the subsequence search algorithms are cubic in nature with few al-
gorithms of quadratic nature. Some approximate algorithms have been proposed,
as a result, to speed up the search for matching subsequences. In this work, we
propose a fast and efficient exact subsequence search algorithm which is sub-
quadratic in nature. We introduce the notion of eHaar (envelope Haar) to prune
parts of the time series data which will not contain subsequences that can match
the query subsequence. This pruning phase dramatically reduces the search space,
thus allowing dynamic time warping based subsequence search techniques to be
applied on gigabyte-size time series databases. Experiment results demonstrate
that the proposed approach outperforms existing state-of-the art techniques.

1 Introduction

Advancement of technology has led to the huge repositories of time series data, whose
sizes range from gigabytes to terabytes and beyond. Various application domains gener-
ate time series data such as financial data, RFID data, sensor data, music data, etc. One
fundamental task in time series database is the search for similar subsequences. Given
a query sequence and a database of time series, the aim is to search for subsequences
which are most similar to the query sequence. Efficient subsequence search is crucial
for datasets where the time series data tend to be extremely long compared to the query
sequence and the number of time series in the database is large.

Many DTW (Dynamic Time Warping) based algorithms have been proposed for sub-
sequence matching. The advantage of DTW based algorithms over Euclidean measures
is that they are robust to misalignments and time warps. However, these algorithms are
computationally intensive and have a complexity proportional toO(l ∗ l ∗N) where l is
the length of a query sequence and N is the length of the time series. The current state-
of-the art is the SPRING method proposed in [15] where the time complexity is reduced
to O(l ∗ N). In spite of this improvement, subsequence matching remains expensive,
especially on gigabyte size databases.

In this work, we propose a fast subsequence matching approach that utilizes the
notion of an envelope Haar (eHaar) to prune off portions of time series that cannot

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 232–246, 2011.
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contain matching subsequences. Envelope Haar is based on the Haar wavelet’s theory
of energy conservation. Together with the hierarchy of Haar wavelet coefficients, we
can create envelopes around parts of a time series. These envelopes establish the upper
and lower bounds for various parts of the time series.

Figure 1(a) shows a time series and its upper and lower bounds computed based on
the Haar wavelet coefficients at level 0. The bounds for the query sequence is indicated
by the grey band. Figures 1(b)-(d) shows the tightening of bounds for each successive
level of Haar wavelet coefficients. We observe that at level 2 (Figure 1(c)), the bounds
of the time series from time points 17 to 24 clearly do not intersect with the bounds of
the query sequence. Hence, we can safely prune off this portion of the time series. At
level 3 (see Figure 1(d)), more parts of the time series (time points 25 to 32) are pruned.
The remaining portions of the time series are the candidates for subsequence matching.
Experiment results on a 5 GB time series dataset show that 64% of a time series remains
after pruning. With this reduced set of time series, it is now feasible to apply any existing
DTW-based algorithms to obtain the final set of matching subsequences.
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Fig. 1. Example to illustrate the use of bounds to prune of parts of time series

The contributions of this work are as follows:

1. We propose a method that provides a fast pruning of the search space and limits the
computationally expensive DTW calculations to a selected set of candidates.

2. Using the properties of Haar wavelets to create envelopes, the accuracy of subse-
quence search is not sacrificed compared to approximate methods.

3. The method adapts well to time series databases of large size, with experiments
being reported on gigabyte-size databases.

In section 2 we recall the concept of Haar wavelets and the unique properties it
has as a multi-resolution representation technique. Using these techniques, we develop
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the concept of envelope Haar (eHaar) in section 4. Further in section 6 we describe
our main algorithm and the pruning efficiency that eHaar brings along with it. Section
7 explains the experimental results and comparisons with the classical methods. We
include a review of related works in the area of subsequence matching in section 8 and
we conclude with the section 9.

2 Preliminaries

In this section we describe the Haar wavelet transform which forms the basis of our
envelope Haar concept. Haar wavelet is the simplest form of wavelet. It works by cal-
culating the sums and differences of adjacent elements.

Given a set of discrete signals [9 7 5 3 0 2 -4 -6], the Haar wavelet transform results in
[(8 1) (4 1) (1 -1) (-5 -1)] at level 1. The process is repeated on the average values [8 4 1
-5] to obtain the level 2 decomposition [(6 2) (-2 3)], and so on. The full decomposition
is shown in Table 1. Note that no information is gained or lost by this process.

Table 1. Wavelet coefficients for the time series 9 7 5 3 0 2 -4 -6

Resolution Averages(Ai) Detail Coefficients(Hi)
8 [9 7 5 3 0 2 -4 -6]
4 [8 4 1 -5] [1 1 -1 -1]
2 [6 -2] [2 3]
1 [2] [4]

2.1 Conservation of Energy

An important property of the Haar transform is that it conserves the energy of the sig-
nals. Given a signal S withN values, the energy of the signal S is the sum of the squares
of its values. That is, the energy of the signal S, ES is defined by

ES = S2
1 + S2

2 + . . .+ S2
N (1)

Consider the example in Table 1. We have

E = 23 ∗ (22 + 42) + 22 ∗ (22 + 32) + 2 ∗ (12 + 12 + (−1)2 + (−1)2)) = 220.

3 Storage Scheme

Before we describe the nature of eHaar, we would like to describe the storage scheme
used for the coefficients. This will help to understand the concept of eHaar and access
to the coefficients in a vertical fashion (levelwise).

eHaar representation warrants storing of the N coefficients along with the total en-
ergy E of the time series for each time series. Therefore, N + 1 terms are stored for
each time series. Note that the original time series can be regained fromN coefficients,
hence the original time series data can be discarded.
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eHaar representation requires that the data must be accessed in a vertical fashion.
In the new storage system, coefficients belonging to one level are stored together, with
different levels being stored in different files. Classically data belonging to one time
series is stored together.

Thus the coefficients are stored level-by-level: level 0 for all time series, level 1 for
all time series and so on. Also the energy terms are stored together. As we need to store
data efficiently in the disk, the ”higher” level coefficients of eHaar of more than one
time series can be stored per disk page. However for ”lower” level coefficients which
have a high number of coefficients per time series need to be stored in more than one
disk page.

In more detail, level � of the Haar tree (Figure 2) includes 2� coefficients (level 0 has
2 terms). Assuming a page size of B bytes and b bytes per term, a page stores B

b terms.
Thus, level log B

b of a single record fits exactly in one disk page. Thereafter, level �

of each record occupies 2�−log B
b disk pages. For � < log B

b , we store the 2� level-�

coefficients of 2log B
b −� time series on the same disk page. For example, if B = 1KB

and b = 4bytes, then the 128 level-7 coefficients of 2 records are stored on the same
page.

Fig. 2. eHaar coefficients and bounds for the first two levels

4 Envelope Haar

The property of energy conservation in the Haar wavelet transform enables us to de-
velop bounds on the time series data. Given a time series data S = S1, S2, S3, ..., Sn−1,
Sn, we can define the set of Discrete Haar Wavelet Transform (DHWT) coefficients as
C = C1, C2, ...., Cn. The coefficient C1 is actually the overall average value of the
time series S, that is, C1 = A1. Further, we have the coefficients C2 = H1, C3 =
H2, . . . Cn = Hn−1. Note that now the time series S can be denoted using the coef-
ficients only S = C as S can be fully recovered using the coefficient of C. Hence,
S = C1, C2, ...., Cn.

For our running example in Table 1, the coefficients are C1 = 2, C2 = 4, C3 =
2, C4 = 3, C5 = 1, C6 = 1, C7 = −1, C8 = −1. Apart from the coefficients we also
store ES , the total energy of the time series. Note that
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ES = 2log2N (C2
1 + C2

2 ) + 2log2N−1(C2
3 + C2

4 ) + . . .+ 21(. . .+ C2
N−1 + C2

N )

The tightest possible upper and lower bounds for a time series would be

avgS ±max(Si − avgS)

where avgS is the average value of the signal S. Note that avgS is equal toC1. We have

max(Si − avgS)2 ≤
∑

i

(Si − avgS)2 (2)

∑
i

(Si − avgS)2 =
∑

i

S2
i +
∑

i

avg2
S −

∑
i

2 ∗ Si ∗ avgS

= ES +N ∗ avg2
S − 2 ∗ avg2

S ∗N
= ES −N ∗ avg2

S

= ES −N ∗ C2
1

Hence the upper bound UB and lower bound LB for the time series S is given by

UB = C1 +
√
ES −N ∗ C2

1 (3)

and

LB = C1 −
√
ES −N ∗ C2

1 (4)

Since Haar is a multi-resolution transform, the wavelet coefficients up to a particular
level can be read and along with suitable energy term, bounds can be defined for that
particular level. When the second level of coefficients is read, the bounds for one of the
two halves of the time series would be

UB1 = C1 + C2 +
√
ES −N ∗ C2

1 −N ∗ C2
2 (5)

LB1 = C1 + C2 −
√
ES −N ∗ C2

1 −N ∗ C2
2 (6)

A general formula for the bounds can be derived hence. In the equations L refers to
the level of operation and i is the sequence number for that particular level.

UBLi = avgS +R,LBLi = avgS −R

where avgS = C1 − ∑L
j=1(−1)�i/2j−1� ∗ C�(2L+i)/2j� and R =√

ES −N ∗ C2
1 −∑2L−1

j=L−1

∑j
k=1 2log2N−k ∗ C2

1+k. The initial value of R will be√
(ES −N ∗C2

1 ) when only the first level of coefficients has been read. Reading of the
next level of coefficients, the value ofRwould be updated to

√
ES −N ∗ C2

1 −N ∗ C2
2 .

Figure 2 shows the coefficients and the corresponding bounds for the first two levels
of the example time series. Note that as we read additional levels of coefficients, tighter
bounds get generated. When all the coefficients are read, both the upper and lower
bounds converge to the time series.
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5 Reading the Coefficients

As we have already discussed that coefficients at one level are stored together. In the
light of the fact that eHaar accesses the coefficients levelwise, it is important to note that
the order of coefficients is preserved while storing them so that coefficients are used
in an order. For example, if at an instance when we have the time series divided into 2
parts, we have to read 2 coefficients at the next level to further divide the time series. The
coefficients will have to be read in-order and used for the 2 parts in an orderly fashion
(1 for each part) to generate the subsequent 4 parts of the time series. Thereafter, when
the next level of coefficients is accessed, it has 4 coefficients in all. These 4 coefficients
will be accessed again in-order and assigned to the 4 parts generated in-order to further
derive the 8 parts of the time series.

Referring to the figure 2 for the time series 9, 7, 5, 3, 0, 2,−4,−6, when the first level
coefficient 2 is read, we have one set of bounds for the whole time series. After reading
the coefficient 4 at the next level (2nd), we have two sets of bounds for the two parts of
the time series S1(9, 7, 3, 5) and S2(0, 2,−4,−6). Now for the first part S1,we need
to read only the first coefficient 2 at the 3rd level while for the second part S2, we need
to read only the second coefficient 3 at the 3rd level. This order is maintained while
storing coefficients. After reading the coefficients at the 3rd level, the time series can be
divided into 4 parts, S1(9, 7), S2(5, 3), S3(0, 2), S4(−4,−6). Note that for each part
we need to read only 1 coefficient from the 4th level for each part.

Concluding the section, the main aim of the discussion is to show that at any stage of
recursion we need to read one specific coefficient for a specific part of the time series
and this is possible if we store and retrieve coefficients in order. At the same time we
should not forget that these parts of time series are being obtained from the coefficients
in a hierarchical manner and the original terms have already been discarded during the
coefficient generation phase.

6 Subsequence Matching Using eHaar

In this section we describe the proposed subsequence search using eHaar. The first step
utilizes the bounds to prune parts of the time series that do not contain matches to the
query subsequence. The next step employs any existing subsequence search methods
to retrieve the results in the remaining time series. In this work, we use the SPRING
method [15] as this is currently the most efficient method for DTW based matching of
sequences.

6.1 Pruning

Pruning of time series data for subsequence search is one area which has not been
explored well. EBSM does prune data at an alarming rate, but the problem with the
method is that it tends to be an approximate method. To the best of our knowledge, no
other subsequence search method prunes data effectively to reduce the size of candidate
list.
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In this step, we take advantage of the bounds created by eHaar around the time series
and the query subsequence to prune data effectively. The basic premise is that if the
bounds of the subsequence intersect the bounds of the time series or intersect the parts
of the time series, that time series or a part of time series is likely to have a subsequence
matching the query subsequence. However, if the bounds of the time series and the
subsequences do not intersect, the chance of discovering a matching subsequence is
zero.

The advantage that eHaar brings with it is that it can not only give a lower bound, it
can also create an upper bound for a time series and the query subsequence. Also the
multi-resolution nature of eHaar assures that bounds are tightened as we read more and
more coefficients, guaranteeing pruning of candidates as early as possible. It should be
noted that as we read more and more coefficients, we develop bounds for not just the
time series, but of the parts of the time series as well. This developing of bounds for the
parts helps us when the bounds of the time series intersect the bounds of the query sub-
sequence. We can prune the parts of the time series whose bounds do not intersect the
bounds of the query subsequence, with the result being that we need to examine only
parts of time series for subsequence matching. (Note that in case there are two consec-
utive parts of the time series whose bounds intersect those of the query subsequence,
we merge them in the final step for the DTW based subsequence search). Algorithm
1 describes the pruning part of the method proposed while algorithm 2 describes the
overall method.

The most important thing to note in the pruning stage is that at any level coefficients
are read in order and relevant sections of time series under consideration are passed
on the values (as described in section 5). Since the parts of the time series at one level
are simultaneously under consideration, a level of coefficients is read as in Step 7 to
modify the value of R for that particular level. However, only the coefficient relevant
for a particular part is used to adjust the average value avgS in Step 9.

There is a distance calculation with the reading of coefficients at each level. This
may cause the time required to prune the data to increase. So as a tradeoff between time
required to prune the data and the amount of data read to do the pruning, a few levels
of coefficients can be read initially and bounds can be generated for the segments of the
time series. For example, reading the first 4 levels of coefficients (or 8 coefficients) can
result in calculation of bounds for 8 consecutive segments of the time series. In the next
section we prove how this segmentation is not going to result in the loss of matching
candidates.

Once the time series has undergone pruning, there will be situations where there
will be adjacent parts of time series which have not been pruned. For example, if a time
series S was divided into 4 equal length partsS1, S2, S3, S4 and only S3 was eliminated,
there is a chance of finding a similar subsequence which lies partly in S1 and partly in
S2. In such a case, S1 and S2 need to be merged. So adjacent parts of time series are
merged. Note that those parts that have been eliminated do not have the possibility of
having even one point as a part of the subsequence similar to query subsequence. (For
proof refer to section) 6.2. This is what we mean by Step 3 in the main algorithm 2.
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Algorithm 1. eHaar Pruning Algorithm: Prune(S,N,R, avgS, ε)
INPUT: S, N , R, avgS , ε. Global variables UBQ, LBQ

OUTPUT: Global variable CandidateS

1: UBS = avgS +R,LBS = avgS −R
2: if UBS < LBQ − ε ‖ LBS > UBQ + ε then
3: S does not have a similar subsequence
4: break;
5: else
6: if length(S) > 2 ∗ length(Q) then
7: Read all the coefficients at the next level of S, and assign the specific coeffi-

cient for S to Cj

8: R =
√

(R2 −∑k 2log2N−k ∗ C2
1+k).

9: avgS1 = avgS − Cj , avgS2 = avgS + Cj

10: S1 = S(1 : length(S)/2) and S2 = S(length(S)/2 + 1 : length(S)).
11: Prune(S1, length(S)/2, R, avgS1, ε)
12: Prune(S2, length(S)/2, R, avgS2, ε)
13: else
14: add S to CandidateS

15: end if
16: end if

Algorithm 2. eHaar Main Algorithm
INPUT: Set of S,Q, εOUTPUT: Set of subsequences closest to queryQ,mH , Global
variable

1: for each S do
2: Prune(S,N,ES , C1, ε)
3: Merge adjacent candidates in CandidateS

4: for each candidate Sp in CandidateS do
5: DTWdistance(Sp, Q)
6: add nearest subsequence Spn in Sp to maxheap mH
7: end for
8: end for
9: Find most similar subsequence for Q from maxheap mH

6.2 Proof for Correctness of Pruning

Note that pruning takes place if UBS < (LBQ − ε) or LBS > (UBQ + ε) conditions
are satisfied. The thing we have to prove is that no part of successful candidates lies in
the segments eliminated.

Let’s assume that one of the points Sip of a successful candidate subsequence lies in
the segment (S) under consideration. Let’s say that it matches one of the points Qjp of
the query subsequenceQ. Now,
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distance(S,Q) = DTW (S,Q)

=
∑
i,j

(Si −Qj)2

> (Sip −Qjp)2

> ε2 (7)

From the above equation we can see that if even point should belong to the segment S,
the distance between S and Q would become larger than ε. Hence, proving by contra-
diction that no point in S can belong to the candidate subsequence and so the segment
can be safely eliminated.

6.3 DTW Based Matching

Once the list of candidates is generated, then we need to perform the exhaustive DTW
based search of candidates. One of the checks that we perform is that if the candidate
has another candidate at next to it at the same level from the same time series. If this is
true, then we merge the two candidates. This merging goes on till we reach the end of
the time series, or when we do not have any more candidates at the same level from the
same time series.

In this step we take advantage of the SPRING method proposed by Sakurai et.al. to
get the best matching subsequence. Please note that the method proposed above is the
best method to search for matching subsequence as it is linear to the product of query
length and the candidate length. Also note that because of having parts of time series
being searched for matching subsequences, this algorithm tends to be sub-quadratic in
terms of query length and length of the time series.

6.4 Sorting of Matching Subsequences

There is a possibility that every time series has some subsequences in it which are close
to the given query subsequence. Using the SPRING method we know the best possible
matches in each time series. To maintain a list of the best matches when the search for
the subsequences is going on, we use the data structure maxheap. In this data structure
we insert the best matching subsequences discovered so far. As soon a subsequence
is discovered which is closer to the query subsequence than any subsequence in the
maxheap, we delete the corresponding element from the maxheap and insert the latest
matching subsequence discovered. The size of the maxheap can be predetermined as
well as the range or tolerance level for which candidates are searched.

7 Experimental Results

In this section we experimentally evaluate the performance of eHaar compared to pre-
vious subsequence search techniques. We use the SPRING method proposed by Saku-
rai et.al. in [15] and the LB Keogh based method proposed in [12], [5] and [17] for
comparisons. We do not make comparisons to [14] as it fails to identify matching sub-
sequences which are of lengths different from the length of the query. Also we avoid
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comparisons with [16] as it is an approximate method with no guarantees of returning
right results for all queries.

Algorithms were implemented in MS Visual C# 2008. Experiments ran on an Intel
i5 2.4Ghz machine with 4GB of main memory and 100GB of hard disk space running
Windows 7.

7.1 Datasets

We perform experiments on a wide variety of datasets characterized by diverse features.
Stock contains 500 time series of length 256; it consists of opening prices of 500 stocks
in NYSE during a financial year. Our next data sets originate from the UCR archive1,
and are created by sampling a collection of constant-length subsequences from very
large time series. Arcene derives from a set of training and test data with 800 sequences
of length 4096.

The largest dataset is the RandomWalk dataset created using the Random Walk time
series generator. The seed of the generator was set at 1416. We produced data sets of
256-length time series, ranging from 10, 000 to 1M . Please note that the size of the
RandomWalk dataset is approximately 5 GB which is almost 100 times greater than the
largest possible dataset reported in the literature ([16])so far. The query subsequences
of different lengths, ranging from length 8 to length 64, were extracted randomly from
the respective databases. We chose to ran 10 queries per database with queries varying
in length. Results reported are averaged over these queries.

7.2 Performance Measures

The efficiency of the methods can be calculated using the following measures:

1. DTW cell cost: For each query Q, the DTW cell cost is the number of cells [i][j]
visited by the method to derive the result. This basically reflects the cost of running
the algorithm. For the entire set of queries, the average value of DTW cell cost is
reported. For the SPRING method this number is the product of query length and
database length.

2. Total terms accessed: This basically measures the amount of information from the
time series datasets that needs to be accessed by the algorithm. It is basically an
I/O cost which is used to show the tremendous amount of information that needs
to be read for subsequence search. When the dataset size is large, data cannot be
stored in the main memory and so it needs to be accessed from storage devices.
This deteriorates the performance of the algorithm. Since the size of datasets is
increasing, this measure is quite important for comparisons of methods.

3. Retrieval runtime cost: For each query Q, given a method, the retrieval runtime
cost is the total retrieval time for the matching subsequences using that method. For
eHaar we include the time taken to prune the unwanted parts of time series data.
Although runtime can depend on a variety of factors like cache size etc., we try to
provide a level playing field for all the three methods.

1 See http://www.cs.ucr.edu./˜eamonn/time series data
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7.3 Results

We compare the performance of eHaar with LB Keogh based method and SPRING.
The first set of experiments were conducted on stock dataset with the three measures
being reported. The experiments were run for sets of different length of query subse-
quences. 10 queries each of length 8,16,32 and 64 were run on the dataset and the results
have been included in the figure 3. We observe a clear advantage for eHaar over other
methods as it does not read the full data and prunes data effectively.

The advantage of SPRING over all methods for subsequence search is that it always
accesses fixed number of terms and its DTW cell cost is constant. This is an asset
in situations were subsequences are very close to the entire subsequence and hence
searching the whole time series is essential. We perform our experiments with different
sets of queries where in one set the size of the queries is constant. The sets of queries
were of length 8, 16, 32 and 64. In a small dataset like Stock both SPRING and eHaar
appear competitive in terms of the 3 parameters (refer to Figure 3).

Moving on to a slightly larger dataset arcene, there is a competition between the
methods in the area of total terms accessed. However because the amount of DTW
calculations are less for eHaar, it scores over SPRING and the improvement is clearly
shown in terms of speedup (Figure 4 (a)). This is so because the terms are accessed in
eHaar only for pruning and not for distance calculations in the case of SPRING.

In a Z-normalized dataset RandomWalk, where the time series data has been normal-
ized and also the queries, a marked improvement of over 30% is observed in the case
of eHaar. The advantage of accessing less terms leads to an improvement over DTW
cell cost and so the final result is that eHaar needs less time to search the subsequences.
In case of RandomWalk we had a set of queries with their lengths varying from 8 to
128. Repeated experiments were performed on different sizes of RandomWalk dataset,
ranging from a size of 10,000 to 1 million time series.
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Fig. 3. Stock Dataset

For experiments on larger datasets we forego experiments on LB Keogh as the
time taken and the terms used is too large for comparisons with SPRING and eHaar.
Arcene dataset has time series with large lengths and the queries effectively show the
superiority of eHaar over SPRING in long time series datasets (Figure 4).

We further carried out experiments on a very large dataset Random Walk which has
1 million time series data. This is a disk based data and cannot be stored in memory.
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Fig. 4. Arcene Dataset

1 2 3 4 5 6 7 8 9 10

x 10
5

0

500

1000

1500

2000

2500

size of database

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Spring
eHaarSubseq

(a)

10
3

10
4

10
5

10
6

10
5

10
6

10
7

10
8

10
9

Spring
eHaarSubseq

(b)

10
3

10
4

10
5

10
6

10
6

10
7

10
8

10
9

10
10

10
11

Spring
eHaarSubseq

(c)

Fig. 5. Random Walk Dataset

We perform experiments on all the three performance measures. Figure 5 shows the re-
sults. The results show the advantage over SPRING because it requires less processing,
accesses less data and hence needs less time for search.

8 Related Work

One of the first works on subsequence matching has been proposed by Faloutsos et.al.
in [4]. This work basically opts for an exhaustive search of subsequences, generating
first the exhaustive list of candidates, indexing them and then carrying out the search
for query subsequence. It extracts subsequences of a fixed length from a time series se-
quence using sliding windows. The subsequences extracted are transformed into a low-
dimensional point and are indexed as a point in a R∗-tree. For a given query sequence,
subsequences of same length are extracted, however with the subsequences being dis-
joint as opposed to sliding window extraction. Subsequently the subsequences extracted
are transformed into low-dimensional points and the search for matching points is car-
ried out in the R∗-tree, given the range and tolerance. A list of candidates is extracted
from theR∗-tree and the false positives are eliminated to obtain the final set of matching
subsequences.

Some works try to improve the performance of subsequence matching by using dif-
ferent window construction methods from [4]. DualMatch [8] divides a time series se-
quence into a set of disjoint windows. Instead of extracting disjoint subsequences from
the query sequence, sliding windows are used to extract subsequences. Another ap-
proach proposed by the same authors tries to generalize the concept of sliding windows
and disjoint windows. GeneralMatch [9] proposes the use of J-sliding windows and



244 S. Kashyap, M.L. Lee, and W. Hsu

J-disjoint windows and a subsequence matching method based on these windows. Both
the methods, however, use the sameR∗-tree based indexing and search of subsequences.

[10] proposes to reduce the DTW based computations by reducing the length of
the time series sequences and the query sequence. From the points of the time series
monotonically increasing or decreasing segments are formed and then DTW distances
are calculated using these reduced representations. However, the method is applicable
to only one-dimensional time series. [11] proposes to use constant length segments to
approximate a time series sequence, instead of monotonic sequences. Basically a fixed
number of points in the time series are replaced by their average value.

An LB Keogh [12] based subsequence search method has been proposed by Wong
et.al. in [5] The approach is based on the sliding window and the sliding window con-
straints. The lower bound function is used in the sliding windows. The problem with this
method is that the bounds are loose and only the prefixes of the possible subsequences
are indexed. [13] proposes an index structure based on suffix trees for subsequence
matching. The problem with this method is that the complexity of the search process is
still quadratic.

Han et.al. propose an exact ranked based subsequence matching method in [14]. It
also uses the lower bound LB Keogh proposed in [12] after breaking the query se-
quence and the time series sequence into segments. However, this method suffers from
the following drawbacks. First, it only considers those subsequences which are equal in
length with the query sequence.Also the method is only applicable to constrained DTW.
This means that the warping path has to stay close to the diagonal.

One of the breakthrough works in the area of subsequence matching has been the
SPRING method proposed by Sakurai et.al. in [15]. Although the complexity of this
DTW based algorithm is still quadratic, it does away with the generation of all possible
subsequences typically carried out before the matching process. This is possible as it
incrementally calculates the DTW distance. Although the method is mainly proposed
mainly for streaming data, it is useful for search in time series databases.

[16] describes EBSM (Embedding-Based Subsequence Matching) method for ap-
proximate subsequence matching. It converts subsequence matching to vector matching
using an embedding. This embedding maps each database time series into a sequence of
vectors. The embedding is computed by applying full dynamic time warping between
reference objects and each database time series. At runtime, given a query object, an
embedding of that object is computed in the same manner, by running dynamic time
warping between the reference objects and the query. Comparing the embedding of the
query with the database vectors is used to efficiently identify relatively few areas of
interest in the database sequences. Those areas of interest are then fully explored using
the exact DTW-based subsequence matching algorithm. The drawback of this method
is that it does not guarantee correct results for queries.

8.1 Discussion

Most of the above works require the generation of subsequences from all the time series.
In some cases the number of subsequences is N(L − w + 1) while in some cases it
is NL/w where w is the length of the subsequence, N is the number of time series
sequences and L is the length of the time series sequence. In this work, we propose that
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if proper bounds around sequences can be developed, a lot of time series, which do not
have candidates matching with the query, can be directly eliminated without analyzing
the subsequences in it. This premise based on eHaar is the key to exact pruning of the
candidates without analyzing them, even without analyzing the details of the parts of
the time series just on the basis of energy information.

9 Conclusion

This paper proposes a change of approach to subsequence search in time series data.
eHaar uses minimum mount to information to prune parts or whole of time series se-
quences which do not have the possibility of having subsequences within a given range
of the query subsequence. It only avoids generating an exhaustive list of possible can-
didates like SPIRNG, it also goes one step ahead by pruning time series sequences
without reading them completely using the upper and lower bounds developed for a
time series and its parts. This effectively speeds up the process manifolds and at the
same time maintains the accuracy of the results.

The experiments prove the efficiency of the method with respect to the state of the
art. In the future work we aim to improve the efficiency of the method by tightening
the bounds and also develop effective methods of DTW distance calculations for eHaar
based on wavelet coefficients.
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Abstract. Advanced wireless communication and positioning technol-
ogy has enabled a new series of applications, such as the intelligent traffic
management system. It can be envisioned that the traffic management
systems will have a great impact on our daily life in the near future. This
paper aims to tackle one class of queries to be supported by such sys-
tems, predictive line queries. The predictive line query estimates amount
of vehicles entering a querying road segment at a specified future times-
tamp and helps query issuers adjust their travel plans in a timely manner.
Only a handful of existing work can efficiently and effectively handle such
queries since most methods are designed for objects moving freely in the
Euclidean space instead of under road-network constraints. Taking the
road network topology and object moving patterns into account, we pro-
pose a hybrid index structure, the RD-tree, which employs an R*-tree for
network indexing and direction-based hash tables for managing vehicles.
We also develop a ring-query-based algorithm to answer the predictive
line query. We have conducted an extensive experimental study which
demonstrates that our approach significantly outperforms existing works
in terms of both accuracy and time efficiency.

1 Introduction

Advances in wireless devices and positioning systems have enabled the tracking
of moving objects such as vehicles equipped with GPS, and fostered a series of
new applications. An important application which may have a great impact on
our daily life is the intelligent traffic management system. The intelligent traffic
management system is expected to improve travel efficiency by means of traffic
monitoring and prediction, route redirection in case of congestion, etc. With the
aid of such system, users should be able to conduct a query like “How will the
traffic condition be on Highway 44 near St. Louis in half an hour?”. An example
query is shown in Figure 1, where a user is interested in the traffic condition of
the highlighted road segment in the near future. The query result will help user
to make adjustment on his/her travel plan. We term such queries as predictive
line queries. In this work, we aim to develop efficient solutions for this type of
queries.

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 247–261, 2011.
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Fig. 1. An Example of Predictive Line Query

Despite extensive research in moving object databases, handling predictive
line queries is still a substantial challenge. This is because most moving ob-
ject management techniques [12, 20, 23, 24] model objects moving freely in Eu-
clidean space but do not consider road-network constraints. Euclidean space
based approaches fall into two categories: i) Those that rely on solutions that
store a snapshot of object’s position at each timestamp [12, 20]. This approach
is not able to support any predictive queries based on traffic prediction. ii)
Those that rely on solutions that represent object’s position using a linear func-
tion [4, 9, 15, 18, 23, 24, 28]. To be more specific about the later category, ob-
ject’s future positions are predicted by assuming that the object moves along a
straight line at the latest updated velocity. This is however not realistic under
the road-network constraints; roads are more often curvy than being straight
lines. Therefore in general, queries generated based aforementioned approaches
lack accuracy in terms of predictive line queries.

However, some of the recently proposed indexing structures, handling moving
objects on road networks rather than Euclidean space, only support queries
on historical or current positions of objects, but cannot provide traffic forecast
[2, 7, 28]. Current indexes that may support the predictive line query, such as
the R-TPR± tree [6], issues a range query defined using a circle or a rectangle
covering the querying road segment. The size of the range is determined by
the maximum possible traveling speed in order to cover all objects that may
enter the query road segment at the query time. However, this approach is very
inefficient since it visits many unnecessary objects such as objects in the query
range moving away from the query road segment. Figure 2 depicts a scenario
explaining this situation. Figure 2(a) shows a snapshot of objects’ positions at
timestamp t0 when a query is issued, and Figure 2(b) shows positions at the
query time t0+Δt. The arrow besides the object indicates its moving direction.
As can be seen from the figure, objects O5 and O6 which are closer to the query
road segment eq (highlighted by the bold line) at t0, already pass eq at query
time t0+Δt. Only objects which are not too far away or too close to the query
road segment, as those (denoted by black points) located in the ring area, may
be on the query road segment at the query time.
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(a) At time t0 (b) At time t0 +Δt

Fig. 2. Unnecessary Moving Objects Considered in the Range Query

In this paper, our goal is to develop efficient and effective indexing and query-
ing techniques to support predictive queries like the predictive line queries, on
moving objects under the road-network constraints. In particular, we propose
a new index structure, called RD-tree, where D stands for direction. The RD-
tree employs the R*-tree to index road segments, and arrange objects on each
road segment based on their traveling directions. To answer the predictive line
queries, we estimate object’s future traveling routes following the road networks,
and leverage the concept of ring queries to constraint our search within the set
of objects which have high probabilities to enter the query road segment at the
query time. In this way, we largely reduce the amount of false positives and hence
significantly improve the performance. We conducted an extensive experimental
study and the results demonstrate that our approach outperforms the R-TPR±

tree in terms of both efficiency and accuracy.
The rest of this paper is organized as follows. Section 2 reviews related works

on moving object management. Section 3 presents our proposed index structure
and query algorithms. Section 4 reports the experimental results. Finally, Section
5 concludes the paper.

2 Related Work

Moving object management techniques can be classified into two main categories:
real-time moving object database systems, and historical moving object database
systems [16, 22]. In what follows, we review mainly works in the first category
since our work falls into this category.

The main challenge in real-time moving object databases is due to the fre-
quent updates of object positions. Thus, the emphasis of moving object indexing
is on efficient handling of large amounts of updates in a timely fashion in order to
provide up-to-date query results. Works in this category can be further divided
into two subcategories: (i) handling objects moving in Euclidean space; and (ii)
handling objects moving on road networks. As mentioned earlier in the intro-
duction, indexes [4, 9, 15, 23, 24] that model objects moving freely in Euclidean
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space are not capable to provide accurate query results under road-network con-
straints. For this reason, this discussion is focused on the second subcategory -
handling objects moving on road networks.

The following work considered objects on road networks. Shahabi et al. pro-
posed a road network transformation method [19] to make it easier to apply the
traditional nearest neighbor query algorithm adopted in Euclidean space. Kim
et al. [11] proposed an indexing structure called IMORS which stores road infor-
mation using the R*-tree. The leaf nodes of the R*-Tree contains objects on the
road segments. In [26], Wang et al. proposed a dual-index which employs a disk-
based structure, the R-tree, to store static road network, and an in-memory grid
structure to store object positions. In-memory data structure is fast for position
updates yet lack the scalability to deal with a large number of objects. Aiming
at improving update performance, Bok et al. [2] proposed an IONR-tree which
captures the connectivity of road networks. The basic idea is to store multiple
edges connected by the same intersection node in the same index node so that
some object updates can be done in the same index node when the objects travel
from current edge to the neighboring edge. The literature also discusses of the
work with focus on query processing rather than indexing structures. Mouratidis
et al. [14] proposed a method to continuously monitoring k nearest neighbors in
road networks. They assume that both road network and objects are stored in
memory. As a variant of k nearest neighbor (k-NN) queries, Qin et al. [17] pro-
posed the continuous aggregate k-NN queries. Sun et al. [21] and Li et al. [8] deal
with continuous range queries and reverse nearest neighbor queries in road net-
works, respectively. Lai et. al [13] studied the continuous density queries in road
networks, where density computation is determined by the length of the road
segment and the number of objects on it. In addition, some distributed indexing
scheme [10, 27] have been proposed, which rely on peer-to-peer communication
to gather real-time traffic information. In contrast to the aforemention efforts,
which support only current or/and continuous queries, our work also supports
predictive queries.

Our proposed index may look similar to IMORS. However, unlike IMORS,
which groups objects based on their current locations, our proposed index stores
moving objects based on their traveling destinations. Also, we support predictive
queries but IMORS only deal with queries on current positions. The closest
related work to our approach is the R-TPR±-tree [6], which supports predictive
queries in road networks. Thus, we describe it in more details as follows. The
R-TPR±-tree consists of an R*-tree and multiple TPR-trees [24]. The R*-tree
indexes road-networks. Each road segment, stored in the R*-tree, maintains a
modified TPR-tree, namely TPR±-tree, to index moving objects. Objects are
divided into two groups based on their moving directions along the road segment.
The root of the TPR±-tree has two children TPR-trees, one for each direction.
This method reduces the expansion of the minimum bounding rectangles and
hence reduces the update cost compared to the original TPR-tree proposed in
[24]. An algorithm has been developed to estimate objects that may enter the
query road segment at a future timestamp. The algorithm performs a range
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query to retrieve potential road segments that may contain objects in the query
results. Then for each road segment, it checks if the earliest entered object will
be traveling on the same road segment at the query time. If so, all objects on
this road segment are considered not to be able to enter the query road segment.
Similarly, if the lastly entered vehicle has passed its original road segment at
the query time, all objects on that road segment will be added to the query
results. Such estimation is not very accurate since it does not consider individual
object’s future position. In addition, we believe that the experimental results, as
reported in [6], are based on unpractical assumptions. For example, predicting
object positions up to 30 seconds from current timestamp is not a practical
assumption, since objects either stay on the same road segments or neighboring
segment. Such short predictive time window may not be useful in real world
applications since users will not have sufficient time to plan for a new route after
they know the traffic conditions.

The literature has addressed a few works for predictive queries [5,25]. However,
these solutions are based on in-memory data structures, which may not scale up
well with datasets.

3 The RD-Tree

In this section, we first present the data structure of our proposed RD-tree and
then describe the algorithms for the predictive line query and index maintenance.

3.1 The Index Structure

The RD-tree indexes two types of data: road-network information and object
location information. The road network is represented as a graphG(E, V ), where
E is the set of edges, and V is the set of vertices. Each edge e ∈ E represents
a road segment1 in the network and e = {v1, v2}, where v1, v2 ∈ V ; v1 and v2
are starting and end nodes of the road segment respectively. Furthermore each
edge is associated with two parameters: l and s, where l is the length of the edge
and s is the maximum possible speed on that edge. A moving object, vehicle,
O is represented by the tuple {vId, x1, y1, ec, ed, speed, gd, t}, where vId is the
unique ID of the vehicle, x1 and y1 are the coordinates of the vehicle at the
latest update timestamp t, ec is the current road segment that the vehicle is on,
ed is the next road segment that the vehicle is heading to, and gd is the vehicle’s
traveling destination. Here, we assume that most moving objects are willing to
disclose their tentative traveling destinations to the server in order to obtain
high-quality services, however the destination may change during the trip.

The RD-tree is composed of an R*-tree [1] and a set of hash tables. Leaf nodes
in R*-tree pointing to hash tables representing vehicles of each road segment.
Figure 3 illustrates the overall structure of the RD-tree. The road-network in-
formation is indexed by the R*-tree. Each entry in the non-leaf node is in the
form of (node MBR, child ptr), where node MBR is the minimum bounding

1 Road segments and edges may be used interchangeably throughout this paper.
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Fig. 3. Index structure for the road network

rectangle (MBR) covering the MBRs of all entries in its children pointed by
child ptr. Each entry in the leaf node is in the form of (edge MBR, obj ptr),
where edge MBR is the MBR of a road segment and obj ptr links to a hash
table storing objects moving on this edge.

Each hash table has Nd slots, where Nd is the number of traveling directions.
In the example showing in Figure 3, Nd is equal to 8. Moving objects with
similar traveling directions are hashed to the same slot and stored as a link list.
For easy update, each object also has a pointer directly linked to the edge that
it is currently located.

The critical issue to construct the hash table is to determine an effective
hash function which groups objects with similar traveling directions. The object
traveling direction is determined by the angel between the horizontal line and
the line connecting the object current position to its destination. For example, in
Figure 4(a), object O’s traveling direction is indicated by θ, and its destination
is indicated by the star. By equally partitioning the 360 degree into 8 directions,
object O’s traveling direction falls into the direction 0 which can be treated as
a hash value. This strategy will result in following issue: As shown in Figure
4(b), two objects O1 and O2 moving on the same road segment with the exactly
same destination obtain two different directions 0 and 1 respectively, simply
because the minor difference between their current positions. From the querying
perspective, these two objects are expected to be stored together since they
are very likely to have similar or the same travel path. Therefore, we make the
following adjustment to ensure that such objects will obtain same hash values.
Instead of using objects’ current positions, we use the middle point of the road
segment to compute the angle. The formal definition of an object’s hash value
is given below.
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(a) Object traveling direction with re-
spect to current road segment

(b) Objects with the same destination
but different traveling directions

Fig. 4. Object Traveling Direction

Definition 1. Let O be a moving object which is currently on road segment e
with traveling destination gd. Let θ denotes the angle between the horizontal line
of the coordinate system and the line connecting gd and the midpoint of e. O’s
hash value is defined by Equation 1, where Nd is the number of buckets in a hash
table.

H(O) = θ mod
360
Nd

(1)

As an example, when θ is 30 degrees, and Nd equals to 8, H(O) will be
30 mod (360/8) = 0. That means object O will be stored in the first slot
of the hash table.

3.2 Algorithms for Predictive Line Queries

Our RD-tree can support traditional types of queries, such as range queries and k
nearest neighbor queries. Concerning the road network constraint, we refine the
range query to the line query. Instead of locating objects in a certain rectangular
or circle range, the line query estimates the moving objects which may enter the
query road segment (i.e., a line) at the query time. The motivation of such line
query is that people are usually more interested in the traffic condition of a
particular road that they need to pass by, rather than the traffic condition of
a wide range which may contain roads irrelevant to the query issuers’ traveling
routes. The formal definition of the predictive line query is as follows.

Definition 2. [Predictive Line Query] A predictive line query PLQ = (eq, tq, tc)
retrieves all moving objects which will be on the query road segment eq at the
query time tq, where tq > tc and tc is query issuing time.

Our algorithm for the predictive line query consists of two phases. The first
phase is a filtering phase which retrieves candidate objects using a ring query
(defined in the later text). The second phase refines the results by estimating
the candidate objects’ traveling routes.
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Fig. 5. The initial filtering with a Ring query

Given a predictive line query, we first compute its corresponding ring query.
The ring query aims to define a more constraint search range than the general
rectangular or circular range queries so that fewer intermediate results are gen-
erated. The basic idea is to find the current positions of the furthest vehicle and
closest vehicle which may enter the query road segment at the query time, and
then use their current distance to the query road segment to define concentric
circles as the query ring. More specifically, the furthest candidate vehicle is cur-
rently moving at distance vmax · (tq − tc) from eq, while the closest candidate
vehicle is currently moving at vmin · (tq − tc), where vmax and vmin are the maxi-
mum and minimum speed limits respectively. The area covered by the ring query
is π(v2

max − v2
min) · (tq − tc)2, while that of the range query is πv2

max · (tq − tc)2.
The smaller range given by the ring query reduces the number of moving objects
to be accessed in the index. Graphical explanation of the ring query is illustrated
in Figure 5. Its formal definition is given in Definition 3.

Definition 3. [Ring Query] A ring query RQ = (eq, r1, r2) retrieves moving
objects whose current locations are in the ring defined by the concentric circles
with the mid point of the query road segment eq as center and r1 and r2 as
radius, where r1 = vmin · (tq − tc) and r2 = vmax · (tq − tc).

Once the query ring is determined, we start the search in the RD-tree to find
road segments that intersect with the query ring. For each road segment in the
query ring, we further check its hash table to find objects currently moving on
it. In fact, we do not need to access the entire hash table. We only access the
hash buckets which contain objects with traveling directions toward the query
road segment. In particular, we first compute the angle θq between the horizontal
line and the line connecting the mid points of the current road segment and the
query road segment. Then we plug in θq to Equation 1 to obtain a hash value Hq.
Figure 6 illustrates the idea, where the hash value is 0. From Figure 6, we also
observe that the query θq is located at the border of the hash bucket 0. Thus, to
obtain more accurate query results, we consider one more bucket adjacent to Hq

when θq is close to the border with less than θx degree (we set it to 15 degree
as default). In the example, both buckets 0 and 1 are considered in the query.
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Fig. 6. An example for marginal query angle selection

After obtaining a set of candidate objects from the ring query, the second
phase of the query processing eliminates objects which are not possible to enter
the query road segment by examining object tentative traveling routes. When an
object is initially registered in the system or issues an update of its destination,
we compute the shortest route to its destination. During the query, we check if
the shortest route of the candidate object contains the query road segment at
the query time. If so, the candidate object will be included in the final result.
It is worth noting that being a prediction, the query results may not be 100%
accurate. The query algorithm is summarized in Algorithm 1.

In Algorithm 1, when a user (moving object) sends a query request, he/she
does not need to always specify the query time. We estimate the time taken
for the query issuer to enter the query road segment as the query time tq when

Algorithm 1. Algorithm for Predictive Line Query
Inputs: locq – current location of the query issuer, eq – query road segment,
tq – query time, tc – Query issuing time
Output: Result – a set of objects that may be on eq at tq
1: if tq =NULL then
2: tq = timeToEnter(v, e, tc)
3: end if
4: Result = ∅
5: Edges = RingQuery(eq, tq , vmin · (tq − tc), vmax · (tq − tc))
6: if (Edges <> null) then
7: for each ei ∈ Edges do
8: Direction = getDirection(ei, eq)
9: Result = Result

⋃
getV ehicles(ei, Direction)

10: end for
11: end if
12: for each object oi in Result do
13: if not getV ehiclesContainPaths(eq, oi, tq) then
14: Result = Result − {oi}
15: end if
16: end for
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it is not provided. Line 5-11 are the first phase. The function ’getDirection()’
returns two consecutive hash values with the hash value of the direction to the
query road segment in the middle. The function ’getVehicles()’ checks the hash
table of the particular edge and only retrieves moving objects with the hash
values given by ‘getDirection()’. Candidate objects are stored in a set Result.
Line 12-16 are the second phase. The estimated traveling route of each candidate
object in Result is checked. If the traveling route does not contain the query
road segment at the query time, the object will be removed from Result.

3.3 Insertion and Deletion in the RD-Tree

An object position update can be seen as a deletion followed by an insertion. An
update request contains the object ID, previous road segment and destination,
current road segment, current position and velocities, and new destination if
there is any change. First. we search the RD-tree to find the leaf node containing
the previous road segment that the object was on. Once the leaf node is located,
we compute the hash value according to Definition 1 using the object’s previous
road segment and destination. Then, we locate the corresponding hash bucket
to find the object. If the object’s previous and current road segment are the
same as well as the traveling destinations, we just need to update the object
position and velocity information in the hash bucket. Otherwise, we delete the
object’s old information and perform the following insertion steps. We check if
the object is still on the same road segment but with a new destination. In this
case, the update is conducted under the same leaf node. If not, we need to search
the RD-tree to locate the leaf node containing the current road segment. After
that, a hash value is computed based on the new road segment and destination,
and the object current information is inserted to the corresponding hash bucket
linked to the leaf node.

4 Performance Study

We used the Brinkhoff’s generator [3] to generate moving objects on real road
maps of states in the U.S. The number of moving objects in each dataset ranges
from 10K to 100K. The object speeds range from 30mph to 60mph. The Cal-
ifornia state map was used as default, which contains 17,702 road segments.
We generated predictive queries by randomly selecting query road segment and
predictive time length.

We compared the performance of ourRD-tree with the R-TPR±-tree [6] which
supports predictive queries on moving objects under road network constraints. In
the experiments, we evaluated three factors: the number of moving objects, the
predictive time length, and the road topology. The performance was measured in
terms of I/O cost (the number of disk-page accesses) and accuracy. The accuracy
was examined by comparing the number of objects in the predictive query results
with the actual number of objects on the query road segment at the query
time. Each test case was run for 250 queries and the average cost is reported.
Parameters and their values are summarized in the Table 1, where default values
are highlighted in bold.
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Table 1. Parameters and Their Values

Parameters Values

number of moving objects 10K, 20K, ..., 50K, 60K, ..., 100K

predictive time length (in minutes) 10, 20, 30, 40, 50, 60

road maps CO, AR, NM, CA (California)

4.1 Effect of the Number of Moving Objects

Both the R-TPR±-tree and the RD-tree were tested for different sizes of moving
object datasets generated using the default road map–the CA map. Figure 7(a)
and 7(b) show the performance comparison of the two trees when the predictive
time length is 30 minutes. From Figure 7(a), we can see that the proposed RD-
tree requires about half less page accesses than the R-TPR±-tree. The reasons
are mainly two-fold. First, the RD-tree uses the ring query to retrieve candi-
date objects which are usually less than objects retrieved using the range query.
Second, the RD-tree arrange objects according to their traveling directions. The
query only need to check objects that probably will be on the query road seg-
ment, i.e. those objects heading the query road segment.

With respect to the accuracy, the RD-tree also significantly outperforms the
R-TPR±-tree as shown in Figure 7(b). In particular, the number of query results
returned by the RD-tree is very close to the actual number of objects on the query
road segment. This indicates the effectiveness of our approach. The query results
obtained using the R-TPR±-tree contains too many irrelevant objects since the
query algorithm of the R-TPR±-tree is mainly suitable for very short predictive
time length.

4.2 Effect of the Predictive Time Length

Next, we studied the effect of the predictive time length by varying it from 10
minutes to 60 minutes. As shown in Figure 8(a), both trees access more disk
pages when the time length increases. This is because the longer time to look

(a) Page accesses (b) Query Accuracy

Fig. 7. Query Performance when Varying the Number of Moving Objects



258 L. Heendaliya, D. Lin, and A. Hurson

into the future, the bigger query range needs to be checked, which results in
more page accesses. We also observed that the query cost using the RD-tree
only slightly increases, whereas the query cost using the R-TPR±-tree increases
drastically. The advantage of the use of ring query by the RD-tree is more promi-
nent when the query time length is longer. The area of a query ring increases less
significantly than the area of a query circle. Therefore, the number of objects
that need to be retrieved in the RD-tree also increases very slowly.

(a) Page accesses (b) Accuracy

Fig. 8. Effect of the Predictive Time Length

Figure 8(b) illustrates the accuracy. The results obtained by the RD-tree query
algorithm are very close to the actual values, and the accuracy is relatively stable
for different query time lengths. The minor inaccuracy may be caused by the
difference of the estimated traveling routes and the actual routes taken by some
objects. The accuracy in the R-TPR±-tree is much lower compared to the RD-
tree. Especially when the query length is longer, e.g., 60 minutes, the R-TPR±-
tree query algorithm returns more than 10 times objects than the actual number
of objects on the query road segment. The R-TPR±-tree query algorithm works
well when the predictive time length is extremely short so that the query range
mainly covers road segments next to the query road segment, and objects in the
query range can at most move to the next road segment at the query time. When
the predictive time length is long, such estimation introduces lots of errors.

4.3 Effect of the Road Topology

We also evaluated the effect of the road topology by testing different road maps:
Colorado (CO), Arkansas (AR), New Mexico (NM), and California (CA). The
average road segment length in these maps are different, which are 0.152 miles in
CO, 0.101 miles in AR, 0.92 miles in NM, and 0.81 miles in CA. Figure 9 shows
the results for the RD-tree and the R-TPR±-tree. Observe that the RD-tree
significantly outperforms the R-TPR±-tree in all cases in terms of both query



Optimizing Predictive Queries on Moving Objects 259

efficiency and query accuracy. Moreover, the performance of the RD-tree is rela-
tively independent of the road topology, while the R-TPR±-tree performs worse
when the road segment becomes shorter. In the RD-tree, longer road segments
result in more objects per hash bucket, and hence slightly affects the perfor-
mance. In contrast, the R-TPR±-tree performs better for maps with lengthier
road segments. The possible reason is that each TPR-tree in the R-TPR±-tree
groups objects better when the road segment is longer.

(a) Page access (b) Accuracy

Fig. 9. Effect of Road Topology

Fig. 10. Update Cost

4.4 Update Cost

Finally, we examined the update cost in the RD-tree and the R-TPR±-tree.
Figure 4.3 shows the average cost after all objects have been updated once.
In the experiment, 50 pages of buffer was used. We can see that the two trees
perform similarly. This is possibly due to the similarity of the update algorithms.
In both trees, the update cost includes two portions. One is for the search in
the R*-tree to locate the road segment, and the other is for the search in either
the hash table in the RD-tree or the TPR-tree in the R-TPR±-tree to find the
actual object.
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5 Conclusion and Future Work

We presented a hybrid indexing structure, the RD-tree, to support predictive
queries on objects moving under the road network constraints. The RD-tree em-
ploys an R*-tree to store road segments, and organizes objects based on their
traveling directions. We developed an efficient query algorithm to estimate ob-
jects that may enter the query road segment at a future timestamp. Our query
algorithm uses a new pruning technique, the ring query, to reduce the amount of
intermediate results so as to improve the query performance. Compared to ex-
isting approaches, proposed approach achieves significant performance improve-
ments in terms of both query efficiency and accuracy.

The experiments will be repeated and further extended with real datasets and
other traffic effecting parameters - weather and accidents - are to be considered.
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Abstract. State of the art 3D simulation applications like virtual test-
beds for space robotics, industrial automation or even forest inventory
require a highly flexible but still real-time capable data management
system. For this, we combine a high-performance internal simulation da-
tabase with external object-oriented databases into a new real-time ca-
pable data management architecture for database-driven 3D simulation
systems.
To achieve this, we apply well-known database techniques to a 3D

simulation system’s internal object-oriented data management. Such a
simulation database can dynamically adopt completely new data schem-
ata, even at runtime. New simulation applications can then be designed
by putting a domain specific schema and the corresponding data into an
otherwise ”empty” simulation database. To seamlessly combine the two
databases we use a flexible interface that synchronizes schema and data.

Keywords: 3D Simulation System, Simulation Database, Event-Driven
Graph Database, Object-Oriented Database, Database Synchronization.

1 Introduction

In this paper we introduce new methods to apply techniques common to da-
tabases to a 3D simulation system to simplify the realization of specialized
database-driven simulation applications like virtual testbeds for space robotics,
industrial automation or even forest inventory. Therefore, we developed a high-
performance runtime simulation database, that can dynamically adopt new data
schemata just like common databases can, but still meets the strong real-time
requirements of simulation applications. Furthermore, we propose a flexible new
way to link this real-time database with external object-oriented databases to
combine their advantages in a new real-time capable data management architec-
ture for database-driven 3D simulation systems.

The simulation database can be seen as an abstraction layer of the external
database, hiding away the specific DBMS from the simulation system and its
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user. It furthermore works as a real-time capable ”intelligent” cache for the vir-
tually unlimited storage provided by an external database. Vice versa, based on
the interface’s read-write access the external database serves as a persistence
layer for the simulation system, that additionally provides modern database fea-
tures like access rights management and versioning. Attaching more than one
simulation client, an active external database can even be used as a central data
storage and communication hub for collaborative data access and distributed
simulation applications, where changes by one client are actively pushed to all
other participating clients.

2 Related Work

Though many attempts have been made to incorporate databases into 3D simu-
lation systems and the like, no one to our knowledge has used them to their full
extent. In the simplest scenarios, databases have been used to store additional
information (meta information, documents, films . . . ) on scene objects ([7], [8])
or – as a next step – to store object positions etc. ([6]). Versioning is only sup-
ported in CVS-like systems ([12], [13]) taking place only on file level. The more
sophisticated systems use the database to store the scene data itself, where some
do support collaboration ([3], [4], [5], [6], [9]) while others do not ([1], [2], [11]).
The support for different data schemata is not widespread among these systems.
The simplest realizations allow schema alteration by adding attributes to generic
base objects (e.g. [2]). The more advanced systems support different static ([10])
or dynamic ([11]) schemata.

3 Simulation Database

For our developments we are using the 3D simulation system VEROSIM R©. An
important aspect of this system is its modeling concept. With its object-oriented
data model, objects are provided ”with a meaning” according to the real world.
The system is based on an event driven and object-oriented graph database called
VSD (VEROSIM Active Simulation Database), which describes the components
as well as their behavior and provides methods for parallel and distributed com-
puting and visualization. Nodes not only provide data encapsulation but also
mechanisms for interaction with the simulation environment implementing their
behavior – this is what distinguishes this database from standard scene graphs.

All active components of the database are derived from an ”Instance” class.
Simulation data as well as the topology of the database is stored in so called
properties. In this case ”active” means that whenever a property is changed a
signal is sent to all registered listeners. Furthermore, the container of the da-
tabase itself is derived from the instance class and keeps track of all elements
in the database in a set of indexed lists sorted by class type. Adding or remov-
ing instances from the database and thus from the index lists triggers a signal
as well. Reflection is provided by so called meta-instances describing classes of
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instances (name, inheritance, etc.) and meta-properties describing their proper-
ties (name, type, multiplicity, etc.). This enables the simulation system to query
meta-instances and meta-properties by name. Dynamic schema generation al-
lows for the creation of new meta-instances and meta-properties at run-time.
This is used to enable the synchronization process described in the next chap-
ters. The (simplified) databases of two exemplary simulation applications are
shown in Fig. 1.

Fig. 1. Simplified graph database for a small robotic work cell (left) and a city model
(right)

4 External Database

We now attach this internal database to an external data management system.
For this, we are currently using the GML database management system SGJ
[15]. This object-oriented geo DBMS offers instantiation of schemata using XML
Schema Definition (XSD). This allows for the definition of arbitrary classes,
inheritance hierarchies, relations and attributes. SGJ can be controlled using its
proprietary Java API with a kernel based architecture. Alternatively it can be
accessed using a transactional Web Feature Service (WFS-T).

Although until now our interface has only been tested using SGJ, the basic
design is independent of the actual chosen DBMS. Given the flexibility of our
data management architecture any object-oriented DBMS providing an adequate
interface (e.g. with reflection) could be used.

5 Synchronization Mechanism

To seamlessly integrate the internal and external databases, we designed an in-
terface between them providing a dynamic two-level synchronization. By repli-
cating objects from the external database to the simulation database and keeping
them ”in sync” not only object data is synchronized. The data schema of the
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external database is also replicated and thereby instantiated in the internal da-
tabase making both ”speak the same language” and providing a common data
schema for the whole system. This way the system shows great flexibility towards
changes in the data and even schema itself.

By using (replicated) objects instead of directly using database objects, details
of the actually used database are hidden from all internal components of the
simulation system (particles, physics, rendering, etc.) allowing for transparent
real-time data access. The internal simulation database works as a cache to speed
up repeating access patterns, which would otherwise lead to repetitive queries
to the external database. Additionally, using an external database provides the
simulation system with persistence as changes made to replicated objects can be
resynchronized back into the database.

5.1 Schema Synchronization

The result of the schema synchronization – which is done only once during run-
time initialization – is a schema mapping: classes are mapped to meta-instances
and attributes (or relations) to meta-properties. This can be realized in two
(combinable) ways.

In schema matching, a previously defined schema for the internal database
is matched against the same schema in the external database (e.g. class Build-
ing matches meta-instance Building, attribute storeys matches meta-property
storeys . . . ). Technically the internal schema is hard-coded and defined at
compile-time. The matching process itself is name- and type-based using VSD’s
reflection API mentioned above. Schema matching is mainly used for real-time
critical and built-in functionality like geometry representation for rendering.

In contrast, schema transfer is entirely performed at run-time using
dynamic schema generation as described above. The database’s schema is evalu-
ated and meta-instances are defined without previously being hard-coded. Based
on the class’s attributes and relations, the appropriate meta-properties are
created, defining data and structure of the schema within the simulation system.

5.2 Data Synchronization

After synchronizing the schemas data is synchronized on the object-level. No
component of the simulation system has direct access to the external database.
Instead, these components access data by means of local copies in the inter-
nal database, i.e. replicated versions of database objects. This built-in trans-
parency provides for the flexibility, because any external database can easily be
replaced by a different one. Furthermore, the replicated objects built up the cache
functionality.

Object loading implies that an object from the database is replicated in the
simulation database. This is realized by querying the object and instantiating an
instance of the corresponding meta-instance (known from the schema mapping).
Then all attributes and relations are copied to the corresponding properties and
a mapping between the database’s object and the replicated instance is inserted
into the object mapping (Fig. 2).
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Fig. 2. Result of data synchronization: object mapping for city data

At any time, changes to the simulation database are automatically tracked.
This includes changes to properties of instances, as well as the creation and dele-
tion of instances. For this, the database interface registers itself to receive change
notifications from the simulation database. Recognized changes are queued as
internal transactions and can be written back to the database to resynchronize
the internal and external state of the data. Depending on the application, this
resynchronization is carried out immediately or by user request. Resynchroniza-
tion implements a persistence layer for the simulation system as changes to the
virtual environment can be made permanent. Thus simulation results can be
saved and virtual environments can be manipulated permanently, right within
the simulation system giving it more flexibility in the choice of possible applica-
tions (see section 7). Besides loading, instances can also be unloaded, provided
that no transactions have been stored for them. Unloading is simply realized by
deleting the instance from the internal database and removing the object map-
ping. Usually, unloading is used for dynamically streaming parts of large data
sets, e.g. forest environments or city models.

6 Current Work

Currently, we are investigating the integration of change notifications from the
external database as an aspect of data synchronization, a precondition for multi
client synchronization. Therefore an active database is needed. We describe this
scenario as a two-tiered architecture with multiple simulation systems connected
to a central active database. This not only enables multi client operation on
a consistent data set but also allows for the use of the database as a central
communication hub and central data storage [16] that defines a common data
schema by synchronizing it to all connected simulation systems.

In such a distributed simulation system, changes of an object are written back
(i.e. are resynchronized) to the central database. All other connected simulation
systems are informed about these changes and apply them to their local copies of
the same object accordingly. Fig. 3 shows an example of such a communication
sequence. A door is opened in the virtual environment on client 1, changing
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the object’s property open to true. This change is resynchronized to the central
database where the object’s property is set to true. This change is notified to all
connected clients, including client 2 which sets the door’s property accordingly,
thus resynchronizing the system as a whole.

Fig. 3. Example for a communication sequence via the central database

To avoid notification loops, changes adopted from the central database are
not interpreted in the same way as changes from within the local simulation
system. Thus, after simulation system 2 sets the door’s open property to true it
will not resynchronize this change to the central database.

7 Applications

Several database-driven simulation applications using the data management ar-
chitecture introduced in this paper have been realized so far. While they belong
to very different fields of application they all benefit from the flexibility pro-
vided by our approach. One major application is the Virtual Forest1, a science
project [17] whose goal is to provide new means for forest inventory, serving as
the basis for the development of decision support systems and the application
of industrial automation techniques to the forest industry. Here, the proposed
architecture has not only been used for simulations but also for an integrated
tool for forest inventory (Fig. 4 right).

Another field of application are 3D city simulations. Here, SGJ databases with
CityGML [14] models of cities like Stuttgart, Düsseldorf or Barkenberg (Kreis
Recklinghausen) (Fig. 4 left) have been connected to VEROSIM. Simulations
include driving a virtual car (with physically correct behavior) or flying a virtual
helicopter through a city. The same was done using a dataset in the SEDRIS
data format [18].

1 The Virtual Forest project is co-financed by the European Union and the federal
state of North Rhine-Westphalia, European Regional Development Fund (ERDF).
Europe - Investing in our future.
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Fig. 4. A city model (left) and the inventory tool of the Virtual Forest (right)

The major goal of the research project FastMap2 is the automatic generation
of navigation maps as a basis for self-localization and navigation of mobile robots
during the exploration of planetary surfaces. The introduced database interface
is used to connect a Virtual Testbed and other data generators to a central
database, thus using it as a common data store and communication framework.

8 Conclusion

Our concept of a real-time capable data management architecture for a 3D simu-
lation system has already proven its great flexibility for different fields of applica-
tion as seen in the previous section 7. It combines the advantages of well known
database management techniques and state of the art 3D simulation technology
to realize new applications within the new field of database-driven simulation. In
the near future, it will build the basis for even more applications, for example in
the context of product design and manufacturing. Using AutomationML [19], a
standards-based approach to automation technology can be realized. The mod-
eling concept of the language can be used in the different engineering processes
(simulation, design . . . ) within our system.
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Abstract. To track network-matched trajectories of moving objects is important 
in a lot of applications such as trajectory-based traffic-flow analysis and 
trajectory data mining. However, current network-based location tracking 
methods for moving objects need digital maps installed at the moving object 
side, which is not realistic in a lot of circumstances. In this paper, we propose a 
new moving objects database framework, Euclidean-batch-sampling and 
Network-matched-trajectory based Moving Objects Database (EuNetMOD) 
model, to support network-matched trajectory tracking without digital maps 
installed at the moving object side. 

Keywords: Database, Spatial temporal, Moving Object, Trajectory, Tracking. 

1   Introduction 

In recent years, the management of moving objects has been intensely investigated. 
Earlier work on MOD is mainly focused on Euclidean based solutions [1-2]. 
Euclidean-based trajectories are imprecise in describing the network paths the moving 
objects have taken, because multiple paths over the network can coexist between two 
consecutive sampling points.  

More recently, increasing research interests are focused on network-constrained 
moving objects, with many effective models and algorithms proposed [3-8]. However, 
trajectories of network-constrained moving objects are not necessarily network-
matched (see Figure 1). By “network-matched” we mean that the trajectory can be 
explained to only one path over the traffic network without ambiguity. In other words, 
the path between any two consecutive motion vectors of the trajectory is explicitly 
expressed by the two motion vectors (or by other ways) without having to call 
shortest path calculations. To ensure trajectories to be network-matched is very 
important in a lot of applications such as high-accuracy location tracking, trajectory-
based traffic-flow statistical analysis, and trajectory-based data mining. 

There exist several location tracking mechanisms for network-constrained moving 
objects [4-5, 8], which can track network-matched trajectories. However, they need 
moving objects to equip with digital maps (or “mobile maps”) and to trigger location 
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updates promptly when the moving objects transfer from one route to another. The 
installation of digital maps at the moving object side can greatly increase the cost of 
the whole system, and can also cause extra costs when the maps need to be refreshed. 

In this paper, we propose a new moving objects database framework, Euclidean-
batch-sampling and Network-matched-trajectory based Moving Objects Database 
(EuNetMOD) model, which is a “mobile-map-free” tracking method. The main 
motivation of EuNetMOD is to support the tracking and expressing of network-
matched trajectories at the server side without digital maps installed at the moving 
object side. This feature is quite useful − For example, most GPS-equipped taxis in 
China are with light-weighted GPS platforms (typically based on MCU, with no 
digital map, with very limited CPU, RAM, and storage). It would be greatly desirable 
if we can make use of these existing platforms in tracking network-matched 
trajectories without major changes.  

2   Overview of the EuNetMOD Mechanism 

In EuNetMOD, moving objects can read motion vectors at any time and send them to 
the database server repeatedly. We call the operations of “reading motion vectors” 
and “sending them to server” as “sampling” and “location update” respectively. 

For a certain moving object mo, its locations can be tracked by using a “Fixed-
Time Sampling plus Fixed-Time Location Update (FTS + FTLU)” method. That is, in 
every τs time (say in every 15 seconds), mo samples a Euclidean-based motion vector 
of the form (t, (x, y), v, d), where t is a time stamp, and (x, y), v, d are the location, 
the speed, and the direction of mo at time t respectively. Besides, every time when 
mo’s direction change or speed change exceeds certain predefined thresholds, mo will 
trigger an extra sampling. The sampled motion vectors are temporarily kept in the 
local storage of the moving object and in every τu time (say in every 3 minutes), mo 
sends the sampled motion vectors to the database server in batch.  

Except the above mentioned “FTS + FTLU” location tracking strategy, we can also 
adopt other location update policies such as “FDS + FTLU” (Fixed-Distance 
Sampling plus Fixed-Time Location Update) or “FDS + FDLU” (Fixed Distance 
Sampling plus Fixed-Distance Location Update). The general rule is that mo should 
sample its Euclidean based motion vectors relatively densely and sends the sampled 
data in batch to the server in relatively sparse time intervals. 

When the database server receives a location update message which contains 
multiple Euclidean-based motion vectors, it will match the Euclidean-based motion 
vectors to the network so that we can get network-matched motion vectors of the form 
(t, (x, y), v, d, npos), where t, (x, y), v, and d are from the original Euclidean-based 
motion vector and npos is the corresponding network position. After that, it will find a 
network path between any two neighbouring network-matched motion vectors so that 
the network path for the whole trajectory becomes available. Then it will discard 
unimportant motion vectors which are implicitly inferable from its predecessor and 
successor. The resulted trajectory is “network-matched” since the path information is 
explicitly expressed in the trajectory, as shown in Figure 1(a). Figure 1(b) shows a 
non network-matched trajectory which can have ambiguity in deciding the path 
between two neighbouring sampling points. 
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Fig. 1. Network-matched vs. non network-matched trajectories 

As stated above, since the path information (expressed as an edge sequence) is 
contained in the trajectory, unimportant motion vectors can be discarded if it is 
inferable from its neighboring motion vectors. In extreme cases, a network-matched 
trajectory can have only two network-matched motion vectors nmv1, nmv2 and the 
path between them (if the moving object runs in roughly steady speed), as illustrated 
in Figure 1. Therefore, the storage of the network-matched trajectory can be 
optimized while the precision can still be reserved. 

Each network-matched trajectory can describe a continuous movement of the 
moving object. To describe the dynamic locations of a moving object over a long 
period of time (say 3 months), multiple trajectories are needed. For simplicity, we still 
call the multiple trajectories of the same moving object as “trajectory” in this paper. 

In real-world applications, there exist situations when moving objects run outside 
the traffic network occasionally. In this case, EuNetMOD will keep it in the trajectory 
as its original Euclidean form. Besides, EuNetMOD allows network-matching to have 
multiple candidate network-points coexisting so that the model can deal with more 
flexible situations as described in Section 4. 

3   Modeling Network-Matched Trajectories of Moving Objects 

In this section, we describe how transportation networks and network-matched 
trajectories are represented in EuNetMOD. For simplicity, we assume that the 
transportation network is spatially embedded in the X × Y plane. 

In EuNetMOD, we use an edge-based model to represent the transportation 
network. A network Net is modeled as the form Net = (E, N), where E is a set of 
directed edges and N is a set of nodes. 

A direct edge (or simply edge) e ∈ E is defined as the form e = (eid, geo, len, nids, 
nide), where eid ∈ string is the identifier of e; geo = (p1, p2, …, pn) ∈ polyline is the 
geometry of e where pi (1≤ i ≤ n) ∈ point is the ith vertex of the polyline; len ∈ real is 
the length of e, and nids, nide ∈ string are the identifiers of the starting and ending 
nodes which are connected by edge e.  

A node n ∈ N is defined as the form n = (nid, loc, (eidi)
m
i 1= , mat), where nid∈ 

string is the identifier of n; loc ∈ point is the location of n; eidi (1≤ i ≤ m) ∈ string is 
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the identifier of the ith edge connected by n; and mat is the connectivity matrix of n, 
which describes the traffic transferability between different edges through the node. 
Figure 2 shows a road structure, the corresponding network abstraction, and 
connectivity matrix respectively. 
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Fig. 2. A node and its connectivity matrix 

As illustrated in Figure 2, the connectivity matrix mat contains possible matches of 
traffic flows in the edges connected by the node, and the element value associated 
with each match can assume either 0 or 1, which indicates whether moving objects 
can transfer between the corresponding edges through the node. For instance, moving 
objects can transfer from e5 to e3 through the node, and therefore the corresponding 
element value is 1. 

A network point netpoint ∈ D(Net) is a point residing in network Net, where 
D(Net) =E × [0, 1] ∪ N is the domain of network positions in Net. In general, 
netpoint’s position can have two possibilities. It can either reside in an edge, or reside 
in a node. In the former case, a real number p ∈ [0, 1] has to be specified to further 
describe the position of netpoint inside the edge (for any edge, we suppose that its 
total length is 1, so that any location in the edge can be presented by p∈[0, 1]). 

For a moving object mo, its Euclidean-based motion vector emv can be defined as 
the form emv = (t, (x, y), v, d) where t ∈ real is the time instant when the motion 
vector is sampled, (x, y) ∈ point, v ∈ real, and d ∈ real are the location, the speed, 
and the direction of the moving object at time t respectively.  

For an Euclidean-based motion vector emv, its corresponding network-based 
motion vector nmv can be defined as: nmv = (t, (x, y), v, d, nps), where t, (x, y), v and 
d are from emv, and nps ⊆ D(Net) is the corresponding network points computed from 
emv. Normally, nps only contains one network point (that is, |nps| = 1). However, it 
can also contain multiple network points (|nps| > 1) to accommodate the situation 
when multiple candidate network matches of (x, y) coexist which can not be 
eliminated through the currently available information (we call nmv “multi-matched” 
in this case, see Subsection 4.2.1). On the other hand, if emv can not be matched to 
the network, then nps is set to ∅ (|nps| = 0), to accommodate the situation when the 
moving object runs outside the network. 

The network-matched trajectory of mo, denoted as nmtr, is defined as the form nmtr 
= (nmv1, path1, nmv2, path2, …nmvn), where nmvi (1 ≤ i ≤ n) is the ith network-based 
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motion vector, and pathi = (e1, e2, …em) (1 ≤ i ≤ m) is a sequence of edges describing 
the network path the moving object takes between nmvi and nmvi+1. pathi can take the 
undefined value (⊥) if one of mvi and mvi+1 or both of them are not network-matched or 
multi-matched.  

4   Sampling and Generating Network-Matched Trajectories 

In this section, we describe the location tracking mechanism used in EuNetMOD for 
sampling and generating network-matched trajectories of moving objects, which is 
called the Front-end Euclidean Batch Sampling and Backend Network Matching 
method. The main aim is to avoid using digital maps at the moving object side when 
tracking the network-matched trajectories at the server side. The basic idea is:  

(1) the moving object samples Euclidean-based motion vectors densely (say in 
every 15 seconds or in every 200 meters, plus extra samplings according to speed and 
direction changes), keeps them at the local buffer temporarily, and sends the buffered 
motion vectors to the server as a location update message relatively sparsely (say in 
every 3 minutes or in every 2000 meters). A location update message lumsg is defined 
as the form: lumsg = ((ti,(xi, yi),vi, di)) n

i 1= , where (ti,(xi, yi), vi, di) is the ith motion 

vector the moving object has sampled. The first motion vector of lumsg can assume 
the undefined value (⊥) when the moving object is starting a new journey, and the last 
motion vector of lumsg can be undefined when it is finishing an old journey (see 
Algorithm 1). The undefined motion vectors help the server to break up the sequence 
of samplings into multiple trajectories with each trajectory describing a continuous 
movement of the moving object. 

(2) after receiving a location update message lumsg which contains a sequence of 
Euclidean-based motion vectors, the database server will first match every motion 
vector to the network and get a network-matched location update message nlumsg = 
((ti,(xi, yi), vi, di, npsi)) n

i 1=  (we call this procedure “network-matching”), then find a 
path over the network which can link the sequence of motion vectors (this procedure 
is called “path-finding”), and finally, discard unimportant motion vectors of the 
trajectory so that only key motion vectors for describing the shape of the trajectory is 
kept to save the storage (this procedure is called “trajectory-optimizing”). The 
resulted trajectory is saved in the database (we call the trajectory kept in the database 
“database trajectory”). For simplicity, we suppose that the wireless communication 
channel is reliable so that no location update message will get lost. 

4.1   Sampling Euclidean-Based Motion Vectors from the Moving Object Side 

In general, we can have multiple alternatives under the general rules of FEBS-BNM, 
for instance FTS+FTLU, FDS+FDLU, and FDS+FTLU, as stated in Section 2. Except 
the time or distance intervals, in FEBS-BNM we should also consider direction and 
speed changes during the sampling of motion vectors. The reason is that if the moving 
object changes its direction sharply, it is very probably transferring to another edge so 
that the sampling will not miss key points in the network. If the moving object 
changes speed dramatically, the moving pattern is changed and the changing point 
should also be recorded. In this way, more key motion vectors can be included in the 
trajectory to describe the movement of the moving object.  
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Algorithm 1 shows the FTS+FTLU location update algorithm running at the 
moving object side. Other location update policies can be implemented similarly. 

Algorithm 1. FTS + FTLU Location Update Algorithm (running at moving object side) 

General Arguments: 
τs, τu ; //time intervals for motion vector sampling and for location updates 
δ , ξ ; //direction / speed change thresholds for triggering extra samplings 

1.  lumsg=NULL; 
2.  Append (lumsg, ⊥); 
3.  currentTime = getCurrentTime(); 
4.  readGPS(x, y, v, d); 
5.  emv = (currentTime, (x, y), v, d); 
6.  Append (lumsg, emv); 
7.  lastSamplingTime = lastUpdateTime = currentTime; 
8.  WHILE (mo is running) DO 
9.     currentTime = getCurrentTime(); 
10.     ReadGPS(x, y, v, d); 
11.     IF ((currentTime – lastSamplingTime ≥ τs) ∨ (d – emv.d) ≥ δ ) ∨ (v – emv.v) ≥ ξ )) THEN 
12.        emv = (currentTime, (x, y), v, d); 
13.        Append (lumsg, emv); 
14.        lastSamplingTime = currentTime; 
15.     ENDIF; 
16.     IF (currentTime – lastUpdateTime ≥ τu) THEN  
17.        SendToSVR(lumsg); 
18.        lumsg=NULL; 
19.        lastUpdateTime = currentTime; 
20.     ENDIF; 
21.  ENDWHILE; 
22.  Append (lumsg, ⊥); 
23.  SendToSVR(lumsg). 

In Algorithm 1, the function Append (lumsg, mv) appends a motion vector mv to a 
sequence lumsg. The function getCurrentTime() reads the current machine time. The 
function readGPS(x, y, v, d) reads GPS values and save them to the specified 
parameters. The function SendToSVR(lumsg) sends the location update message 
lumsg to the server. 

4.2   Generating Network-Matched Trajectories at the Server Side 

In subsections 4.2.1 through 4.2.3, we first assume that the database trajectory of the 
moving object is null so that the discussion can be simplified, and then in subsections 
4.2.4 we present the general trajectory generating algorithm with non-null database 
trajectories considered. 

To match the sampling points to the network, if we were not using two directed 
edges to express a route with dual directions (or “dual route”), we could certainly use 
the map-matching method proposed in [9] which depends on distance to compute the 
path. However, in EunetMOD, both the edges of the traffic network and the sampling 
points have directions and we should take directions into account to find the right 
network path. For instance, because a dual route can have two directions, it is 
expressed with two edges of opposite directions but of nearly the same geometry. As 
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a result, a sampling point can be matched to a wrong edge by the method of [9], 
which can further lead to a wrong path-matching. To overcome this problem, in 
EuNetMOD we take directions into account in map-matching as shown in Figure 3. 

4.2.1   Matching Euclidean-Based Motion Vectors to the Traffic Network 
Whenever the database server receives a location update message lumsg of the form 
lumsg = ((ti,(xi, yi), vi, di)) n

i 1=  from a certain moving object whose identifier is moid, it 

will first conduct network-matching procedure to match the Euclidean-based motion 
vectors in lumsg to the traffic network and get a network-based location update 
message nlumsg = ((ti,(xi, yi), vi, di, npsi) n

i 1= . To speed up the network-matching 

process, we need to use the memory-based R-tree index on the traffic network. We 
suppose the threshold for GPS measuring errors is εgps. 

Suppose emvi = (ti, (xi, yi), vi, di) (1 ≤ i ≤ n) is an arbitrary motion vector in lumsg. 
According to εgps, (xi, yi) can be matched to multiple candidate network points with 
each of them within the εgps distance to (xi, yi) and corresponding to an edge or a 
junction. In this case, the system will further check emvi’s direction and the edges’ 
directions, sometimes also emvi’s predecessors and successors to eliminate 
inappropriate candidates. In most cases, we can have one and only candidate left as 
the result of the network-matching procedure, as shown in Figure 3. 

pre(emvi) 

emvi 

post(emvi) 

Can be eliminated through
directions and post(emvi) 

Can be eliminated through
directions and pre(emvi) 

The only candidate left 

gps  

 

Fig. 3. Network-matching of Euclidean-based motion vectors 

However, sometimes we can still have abnormities. For instance, even though all 
the currently available information is checked, we still have multiple candidates 
remained for emvi, especially when emvi is close to the end of lumsg. In this case, the 
multiple candidate network points will be kept in npsi and when next location update 
message is received, further elimination will be conducted based on the newly 
received motion vectors, as described in Algorithm 2. Besides, there are cases when 
emvi can not be matched to the network if the moving object is running outside the 
road network or if the map is not in detail enough. In this case, npsi is simply set to ∅. 

4.2.2   Path-Finding Based on Network-Matched Motion Vectors 
Suppose that nlumsg = ((ti, (xi, yi), vi, di, npsi) n

i 1=  is the network-based location update 

message resulted from the network-matching procedure. The server will then conduct 
the path-finding procedure so that for any two adjacent motion vectors in nlumsg, a 
network path can be found between them.  



Collecting and Managing Network-Matched Trajectories of Moving Objects in Databases 277 

 

Let’s consider two neighboring motion vectors nmvs = (ts, (xs, ys),vs, ds, npss) and 
nmve = (te, (xe, ye), ve, de, npse). Suppose that pathse is the network path between them. 
If |npss| = 0 or |npse| = 0, then at least one of them are not network-matched and in this 
case pathse is set to null. If |npss| > 1 or |npse| > 1, then at least one of them is multi-
matched and needs to be further processed so that pathse is set to the undefined value 
(⊥) in this case. 

If |npss| = 1 and |npse| = 1, then pathse can be computed and there are several 
possibilities in this case, as shown in Figure 4 (suppose that nps and npe are the 
corresponding network points contained in npss and npse respectively, and path(nps, 
nps) is the complete path from npss to npse). 

(1) If nps and npe are in the same edge or in the same node (see cases 1, 2), or if nps 
and npe are in adjacent edges or nodes (see cases 3, 4), then pathse is set to null since 
the path information is already contained in the network-points and can be omitted; 

(2) If nps and npe are not adjacent in the network (see case 5), then pathse is set to 
the shortest path between them (the first and the last edges of the path can be omitted 
if they are contained in nps and npe already). 

 
 
 
 
 
 
 
 
 
 

case 1: nps = (e1, pos1) 
npe = (e1, pos2) 
path(nps, nps) = (e1) 
pathse = null 

case 2: nps =j1 
npe =j1 
path(nps,nps)=null 
pathse = null 

case 3: nps =j1 
npe = (e3, pos3) 
path(nps, nps) = (e3) 
pathse = null 

case 4: nps = (e4, pos4) 
npe = (e5, pos5) 
path(nps, nps) = (e4, e5) 
pathse= null 

case 5: nps = (e5, pos5) 
npe = (e7, pos6) 
path(nps,nps)=(e5, e6, e7) 
pathse= (e6) 
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Fig. 4. Path-finding between adjacent motion vectors 

From the above description we can see that the shortest path computation is still 
needed occasionally (see case 5 of Figure 4), which can cause errors since shortest 
path is not always the actual path. However, the shortest path computation is very 
rarely called if the sampling interval is short enough. The goal of EuNetMOD is to 
limit the shortest path computation to the minimum by adjusting the sampling time 
interval τs. Besides, in EuNetMOD, nps and npe are not far away because of dense 
samplings. In most cases the shortest path is the actual path the moving object takes. 

4.2.3   Discarding Unimportant Motion Vectors and Appending the Resulted 
Network-Matched Trajectory to the Database Trajectory 

After the path-finding is conducted, we can get a network-matched trajectory nmtr* = 
(nmv1, path1, nmv2, path2,…, nmvn), which contains all the sampling points received 
from the moving object plus the extra path information. Since the samplings are 
conducted densely, nmtr* may contain too many motion vectors so that it is very 
storage consuming. To reduce the size of the trajectory, the server needs to conduct 
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trajectory optimizing procedure to discard unimportant moving vectors as many as 
possible while reserving the shape of the trajectory. 

During trajectory-optimizing, the system checks the motion vectors in nmtr* one by 
one (except the first and the last motion vectors). Suppose that nmvi = (ti, (xi, yi), vi, di, 
npsi) (1 < i < n) is an arbitrary motion vector in nmtr*. nmvi can be discarded if:  

distance(pos(nmvi), poscmp(nmvi-1, nmvi+1, ti)) ≤ ε 

where poscmp(nmvi-1, nmvi+1, ti) is the computed position of the moving object at time ti 
through interpolation based on nmvi-1 and nmvi+1. In other words, if the spatio-
temporal information of nmvi can be inferred from its predecessor and successor (for 
instance, when the moving object runs with roughly steady speed between nmvi-1 and 
nmvi+1), then nmvi can be deleted without changing the shape of the trajectory curve. 
When deleting nmv, the related paths need to be merged so that the over all path 
information will not be lost. 

After discarding of unimportant motion vectors, the resulted network-matched 
trajectory is saved to the server as the database trajectory of the moving object.  

4.2.4   General Generating Algorithm for Network-Matched Trajectories 
In Subsections 4.2.1 through 4.2.3 we assume that the database trajectory of the 
moving object is null. However, in most cases, the database trajectory is not null so 
that the processing becomes a little bit more complicated.  

Suppose that the database trajectory of the moving object (whose identifier is 
moid) is nmtrDB = (nmv1, path1, nmv2, path2,…, nmvm) and the newly received 
location update message is lumsg = ((ti,(xi, yi), vi, di)) n

i 1= . The server will first conduct 

network-matching on lumsg, and get a network-based location update message 
nlumsg = ((ti, (xi, yi), vi, di, npsi) n

i 1= . After that, the server needs to concatenate nmtrDB 

and nlumsg into an overall trajectory traj*, and then conduct path-finding and 
trajectory-optimizing based on traj*. As stated earlier, there may exist some motion 
vectors remaining multi-matched in nmtrDB (usually close to the end of nmtrDB, with 
the associated paths undefined “⊥”). Therefore, the path-finding and trajectory-
optimizing procedures should include these motion vectors as well as the newly 
received motion vectors. The general algorithm for generating network-matched 
trajectories at the server side is described in Algorithm 2.  

Algorithm 2. Network-matched trajectory generation (running at the server side) 
INPUT: moid;                                            //identifier of the moving object 

lumsg = (emvi)
n
i 1= ;                       //location update message 

1. nmtrDB = retriveTraj(moid);              //database trajectory 
2. nlumsg = networkMatch(lumsg); 
3. traj* = concat(nmtrDB, nlumsg); 
4. nmtr* = pathFind (traj*); 
5. nmtr* = trajOptimize(nmtr*) 
6. writeDB (moid, nmtr*). 

In Algorithm 2, the function retriveTraj(moid) retrieves the trajectory from the 
database according to the moving object identifier moid. The function 
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networkMatch(lumsg) matches Euclidean-based motion vectors to network. The 
function concat (nmtrDB, nlumsg) concatenates nmtrDB and nlumsg into a new 
trajectory traj*. The functions pathFind(traj*) and trajOptimize(nmtr*) conduct path-
finding and trajectory optimizing respectively. The function writeDB (moid, nmtr*) 
writes nmtr* into the database. 

5   Performance Evaluation and Conclusion 

To evaluate the performance of the EuNetMOD model, we have conducted a series of 
experiments based on the prototype system we have implemented. The experimental 
results show that by choosing appropriate sampling and location update time 
intervals, EuNetMOD can provide high network-matching precision with satisfactory 
query and storage performances. 

Tracking and managing network-matched trajectories of moving objects is 
important in representing the precise dynamic locations of moving objects over the 
network. In this paper, we propose the EuNetMOD model, which can track and 
manage network-matched trajectories of moving objects. EuNetMOD does not need a 
digital map installed at the moving object side while the server side can still track 
precise network-matched trajectories so that it is flexible in real-world application.  
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Abstract. The development of location-based services and mobile devices has 
lead to an increase in the location data. Through the data mining process, some 
valuable information can be discovered from location data. However, the 
attackers may also extract some private (sensitive) information of the user and 
this can make threats against the user location privacy. Therefore, location 
privacy protection becomes a key factor to the success in privacy preserving in 
location-based services. In this paper, we propose a new approach as well as an 
algorithm to guarantee k-anonymity in a location database. The algorithm will 
maintain the association rules which have significance for the data mining 
process. Moreover, the algorithm also considers excluding new significant 
association rules created during the run of the algorithm.  

Keywords: k-anonymity, location databases, data mining, privacy protection. 

1   Introduction 

Today, advances in location technologies and wireless communication technologies 
enable the widespread development of location-based services (LBSs). When using 
services, the user may face with risks because the location information of the user can 
disclose some private information. Therefore, we need to protect the location 
information of the user from attacking of malefactors. In this paper, we will focus on 
protecting the user’s location at time when the location data is stored in the database 
for data mining purposes. This paper will improve the approach which was proposed 
in [2, 9] and will use this improved approach to anonymize the location database to 
achieve an effective k-anonymous version. This approach does not use two popular 
techniques (generalization and suppression) because data after anonymizing by these 
techniques may not be significant to the data mining processes. The approach will use 
a technique which is called Migrate Member technique to anonymize the database [2]. 
The approach also considers the result of data mining process by maintaining 
association rules that are significant to the data mining process. 
                                                           
* Part of this research had been done as the author was at FAW institute, JKU, Linz, Austria as 

a visiting researcher. 
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2   k-Anonymity Techniques, M3AR Algorithm and Problems 

In [2], the authors proposed the Migrate Member technique (and a variant in [9]) to 
anonymize the database to achieve a k-anonymous version. The technique first groups 
tuples of original data into separate groups by the similarity in quasi-identifier values. 
Then, the groups, which have less than k tuples, will be transformed into the satisfied 
ones by performing some Migrate Member operations. A satisfied group will have at 
least k tuples in it. The database achieves a k-anonymity version if all groups must be 
satisfied after the processing. The authors also proposed an algorithm called M3AR 
(Migrate Member Maintenance Association Rules) to concretize the approach. 

With M3AR, they guarantee k-anonymity for the database while still maintaining 
the significant association rules. However, it remains many unsatisfied groups, which 
the algorithm can not transform them into the satisfied ones, after processing. 
Therefore, the algorithm may need more time and pay the “cost” to anonymize these 
unsatisfied groups. The cause of this is that M3AR selects a random unsatisfied group 
for each process step and thus this group may not be good for this step. As a result, 
this group can receive more tuples than its need, thus we may have no tuples to 
anonymize other groups. Moreover, M3AR did not also consider reducing new 
significant association rules that are generated during the process. Because these new 
significant association rules can interfere in the input data of the data mining process, 
it can make the result of the data mining process less valuable. 

In next sections, we will propose some solutions to solve the problems of the 
algorithm M3AR. We also propose a new algorithm to anonymize the location 
database to achieve an effective k-anonymous version. Moreover, the algorithm also 
reduces new significant association rules generated during the run of the algorithm. 

3   Definitions and Values Calculation for Proposed Algorithm 

As in [3], Quasi-Identifiers (QI) is the set of attributes whose values may be used, 
possibly together with external information, to re-identify the user’s data. For the 
location database, we will consider the QI (refer [3] for details) will include a location 
attribute and a time attribute. For simplification, we will only consider the location 
attribute in this paper. The time attribute will leave as future works. 

3.1   Definitions 

This section will give some definitions which will be used in the algorithm: 

Definition: A group is a set of tuples. Moreover, all tuples in a group must have the 
same QI values. A group satisfies k-anonymity if it has at least k tuples or has no 
tuples in it. Otherwise, we call this group as an unsatisfied group. 

Normally, the data mining process will consider association rules which occur 
frequently in the database. Therefore, the algorithm should try to retain these rules. 
We call these rules as significant rules. In the algorithm, two thresholds (t_s and t_c) 
will be provided to specify whether an association rule is significant or not. An 
association rule is significant if its support value is greater than t_s and its confidence 
value is also greater than t_c. Conversely, the association rule is insignificant. 
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Definition: A change between two groups a→b, where a and b are groups, will 
change all QI values of some tuples in a to the correlative values in b. For example, 
group a has two tuples with QI is (x1, y1, t1) and group b has three tuples with QI is 
(x2, y2, t2), the change a→b will form group b which has five tuples. The additional 
tuples are from group a and their QI attributes are changed to (x2, y2, t2). 

3.2   Values Calculation 

With our algorithm, we will try to transform unsatisfied groups into satisfied ones. To 
do this, the algorithm will find the changes which will be performed to transform 
these unsatisfied groups to satisfied groups. Moreover, the algorithm also maintains 
significant association rules of the database. Thus, the algorithm should find the 
suitable changes in order that when performing these changes, these significant 
association rules will not be lost. From [2], we will calculate the maximal number of 
tuples which we can alter so that the association rule is still significant: We have a 
significant association rule A→B, s is the support value and c is the confident value of 
this rule, total is the number of tuples in the database. We have two cases: 

- A is changed, we have:  
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We also have the case: both A and B will be changed. However, we notice that this 
case is similar to the case 1: A is changed (see [2] for details). As discussed above, the 
algorithm also guarantees that no new significant rule will be generated because the 
new significant rules may affect the result of the data mining process. Therefore, we 
also calculate the maximum number of tuples which we can add to a rule without 
generating new significant association rules. We will consider following cases: A will 
be added; B will be added and both A and B will be added. Only the last case may be 
make an insignificant rule become a significant one. Therefore, we have: 
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Where n is the maximal number of tuples, which can be added. total is the number 
of tuples in the database. The algorithm will use these maximal numbers to calculate 
cost for each change. The cost of a change will be mentioned in next sections. 

 4   Proposed Algorithm 

Clearly, the objectives of the proposed algorithm are to perform the changes to 
transform unsatisfied groups into satisfied ones, and to maintain the significant 
association rules. Moreover, the algorithm should also reduce the number of new 
significant association rules that are created while running the algorithm. We call the 
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maintaining significant association rules and reducing the number of new significant 
association rules as proposed algorithm’s goals. 

The algorithm should guarantee that the goals will not be violated when the 
changes are performed. For each unsatisfied group, the algorithm will choose a/some 
group(s), which is the other unsatisfied group or the satisfied group, to form the 
changes. However, the algorithm does not choose these groups randomly; it will 
choose the best “compatible” groups so that when performing the changes between 
the unsatisfied group and these “compatible” groups, they have the least effect on the 
algorithm’s goals. To do this, the algorithm will calculate “cost” for each change. 
Then it will choose the changes which have the least cost. While seeking these best 
“compatible” groups, the algorithm should concern the following issues: (i) Consider 
two-way for the changes between two groups; (ii) Choose the changes which have the 
least effect on the goal; (iii) A group can receive or distribute tuples more than one 
time; (iv) A group can receive tuples from different groups; (v) Prioritize the 
combination of two unsatisfied groups when we have some combinations that have 
same cost; (vi) For unsatisfied groups, prioritize the receipt of tuples from satisfied 
groups and the distribution of tuples to another unsatisfied groups. 

Moreover, as discussed above, the algorithm should assign a priority degree for 
each unsatisfied group in order to determine which groups will be processed first. In 
the previous papers [2], their algorithm chose the current transformed unsatisfied 
group randomly. Therefore, this group may receive all of tuples that are available for 
distribution and we will not have enough tuples for other unsatisfied groups. As a 
result, we may get more unsatisfied groups after finishing the algorithm. In the 
algorithm, we will try to transform many more unsatisfied groups into the satisfied 
ones by assigning a priority degree for each unsatisfied group. To assign the priority 
degree for unsatisfied groups, the algorithm will base on criteria: 

• Prioritize unsatisfied groups in which the number of tuples is closer to k: 
Clearly, unsatisfied groups, which the number of its tuples is closer to k, will 
be transformmed to the satisfied ones more easily. 

• Prioritize unsatisfied groups which can not distribute tuples. 

The algorithm will try to finish the anonymization of current unsatisfied group before 
working with next unsatisfied groups. An unsatisfied group can be transformed into a 
satisfied one if one of two following cases can be performed without affecting the 
goals: (i) all its tuples are distributed to other groups; (ii) it adds some tuples from 
other groups so that the number of its tuples is greater than k. In the second case, if a 
great number of tuples can be added to current unsatisfied group without affecting the 
goals, the group should only add enough tuples. It means that the number of group’s 
tuples after processing should be equal to k. The remaining tuples will be left for 
other unsatisfied groups which are processed later. 

In this paper, we also apply the grid based solution [1] to the location attribute of 
the location database to reduce the number of maintained association rules. As a 
result, the algorithm will run more quickly. The idea of this solution is that the exact 
location values will be anonymized into grid cells. With this solution, the algorithm 
will create a grid which covers the space containing the locations of the users in the 
database. After that, the locations of the users will be anonymized into this grid’s cell. 
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The algorithm can be described as following pseudo code: 

Name: k_anoymization() 
Input: Set R includes the significant association rules which need to maintain, k, 

original table T, QI, the grid cell size. 
Output: anonymous version table T’ 
1. Create a grid and anonymize all location values into this grid. 
2. Construct a set S(satisfied groups), a set US(unsatisfied groups 
3. Sort the set US by above criteria. 
4. Calculate the values as in section 3.2 for each rule in R 
5. a set cannotProcess= , it contains groups that can not be 

transformed into a satisfied one. 
While (US is not empty){ 

6. Select proUS from US by the priority degree 
7. US = US \ proUS 

While (proUS is still an unsatisfied group) { 
8. Run find_best_can_group() function to find a best change to 

transform proUS. A candidate group can and a set of tuples 
W containing tuples, which can be anonymized without 
affecting the goals, will be returned by this function. 

9. Exclude can from US or S 
10. if (can == null){cannotProcess = cannotProcess U proUS 
11. Give back all tuples, which are anonymized during the 

transformation of the current unsatisfied group, to 
their original groups. 

12. Unmark all examined groups in S and US 
13. break; 

} Else { 
14. Perform the change. 
15. Update support and confidence values of each rule in R 
16. Mark can as be examined 
17. if(can is satisfied group) S = S U can 
18. Else US = US U can 
19.  S = S U proUS 
20.  Unmark all examined groups in S and US}}} 

if (cannotProcess is not empty){ 
21. final_process()} 

During the transformation of an unsatisfied group proUS, the algorithm will try to 
find changes which will apply to this unsatisfied group to transform this group into a 
satisfied one. Each change will have its cost which reflects the effect of this change 
on the goals. The cost for each change will be calculated in the find_best_can_group() 
function. From the costs of these changes, this function will also find the best changes 
for current unsatisfied group. A candidate group can and a set of tuples W containing 
tuples, which can be anonymized without affecting the goals, will be returned by this 
function. The set W will contain tuples from can if we have the change can->proUS. 
Otherwise, W will contain tuples from proUS. After receiving results from the 
find_best_can_group() function, the algorithm will perform the change, which is in 
accord with the results, for current unsatisfied group. After performing each change, if 
the unsatisfied group is not still satisfied, the algorithm will try to find additional 
changes to transform this unsatisfied group into the satisfied one. If the algorithm can 
not find any additional changes to transform the group without affecting the goals, 
this group will be moved to the set cannotProcess. The algorithm will try to solve this 
set at the final step. Clearly, the most important function is find_best_can_group(), 
which will try to find the best changes to transform current unsatisfied group into the 
satisfied one. As discussed above, the algorithm will try to maintain the significant 
association rules. Moreover, the algorithm will not generate additional significant 
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association rules, which their support values are greater than t_s and their confident 
value are also greater than t_c, during the running of it. 

Name: find_best_can_group() 
Input: unsatisfied group proUS, threshold t_s, threshold t_c 
Output: a group can and a set W contains tuples that can be moved, the direction 

of the change (proUS->can or can->proUS). 
1. A group can = null 
 For each temp from US U S (exclude proUS and examined groups) { 
2. Calculate the cost for changes: proUS-> temp and temp-> proUS 
3. Generate set W} 

If (exist the changes that do not violate the goals) {  
4. Choose a best change so that: (i) when performing it, the 

goals are not violated and (ii) it has the lowest cost. The 
change will include a group temp, a set W and a direction 
which determines proUS->temp or temp->proUS 

5. Assign can = temp. } 
Return can and W 

This function will calculate cost for each change at the first step. Intuitively, we 
will choose the change that has the lowest cost. The cost calculated will be based on 
the following criteria: (i) The number of significant association rules which will be 
insignificant after performing the change; (ii) The number of significant association 
which will be generated after performing this change; (iii) The danger degree of 
significant rules after performing the change: for example, a significant rule has 
support=0.7 and confidence=0.6. Assume that after performing the change number 1, 
this rule will have support=0.64 and confidence=0.53 and after performing the 
change number 2, the corresponding values will be 0.67 and 0.59. The change number 
2 will be better because it make the rule less dangerous; (iv) The number of tuples in 
the set W: the algorithm prefers set W which has greater number of its tuples because 
the more the number of tuples in the set W, the more satisfied an unsatisfied group. 

After anonymization, there are some unsatisfied groups which the algorithm can 
not find the changes to transform these unsatisfied groups into satisfied ones. These 
groups will be added to the set cannotProcess. We also notice that before an 
unsatisfied group will be added to the set cannotProcess, all tuples, which are 
anonymized during the processing of this unsatisfied group, will be back to their 
original groups. It means that all groups will return the statuses which they had before 
transforming current unsatisfied group. In the case the set cannotProcess is not 
empty, the algorithm will run some additional steps to transform groups in this set 
into satisfied ones, these addition steps are in the final_process() function: At the first 
step, the algorithm will try to transform unsatisfied groups, which are in the set 
cannotProcess, into the better groups that are more satisfied than the original group. It 
also means that the number of tuples in each better group will be closer to k or 0. To 
do this step, the algorithm will choose the best changes, which will not affect the 
goals when performming them, to transform the unsatisfied group into a better one. 
The function find_best_can_group() can be used to find these best changes in this 
step. At the second step, the algorithm will try to transform these better unsatisfied 
groups into the satisfied ones. The algorithm will find changes that have the least 
effect on the goals. After that, it will perform these changes to transform the better 
unsatisfied groups into the satisfied ones. Different from the previous steps, the goals 
will be violated if these changes are performed. It means that some significant 
association rules may be no longer significant and/or new significant association rules 
may be generated after these changes are performed. This is “cost” which we must 
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pay to guarantee k-anonymity for the database because with these unsatisfied groups, 
the algorithm can not find any changes to transform them without effect on the goals. 

5   Evaluations 

In this section, we show the evaluation we conducted in order to evaluate the 
effectiveness of our algorithms. We will verify the proposed algorithm with three 
other algorithms: M3AR [2], KACA [7], OKA [6] in both criteria: the percentage of 
lost significant association rules and the percentage of new significant association 
rules that are generated during the run of algorithms. Intuitively, the smaller two 
values, the more effective the algorithm. We call them as p_s and p_n:  
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Where l_r is the number of significant association rules that are lost during the run 
of the algorithm, n_r is the number of significant association rules that are generated 
during the run of the algorithm and t_r is the total of significant association rules. 

The real database, which is used for the evaluation, will be extracted from GeoLife 
project [4], which is collected in (Microsoft Research Asia) GeoLife project by 165 
users in a period of over two years (from April 2007 to August 2009) and Adult 
database from the UC Irvine Machine Learning Repository [5]. This database will 
include 34827 records. The QI will include status, age, sex and location attribute. The 
grid cell size, which is used to anonymize the location attributes, is 500m*500m. For 
each value of k, we will execute each algorithm in five times; the achieved result is 
the average of five tests. The following figures show the result of the evaluation. 

  

Fig. 1. The evaluation results 

These results show that with our proposed algorithm, the percentage of significant 
association rules, which are lost during the run of the algorithm, is minimal. Similarly, 
the percentage of new significant association rules, which is generated during the 
processing, is also minimal. It also means that our algorithm will generate an effective 
k-anonymous version of the database. The reason of these results is that our algorithm 
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tries to transform the unsatisfied groups with the changes that will cause least effect 
on the goals. Therefore, the result of data mining process may be more effective. 

6   Conclusion and Future Works 

In this paper, we proposed an algorithm that anonymizes the location database to an 
effective k-anonymous version. The algorithm solves some problems in the M3AR 
algorithm that was proposed before to guarantee k-anonymity for general databases. 
With the algorithm, the number of significant association rules, that are lost during the 
anonymization, is reduced. Moreover, the number of significant association rules, 
which are generated during the anonymization, is also reduced. Thus, the results 
generated by the data mining process, which input data is the k-anonymous version of 
the database, are more effective and more valuable. We also applied the grid based 
solution to reduce the number of significant association rules and also reduce the 
number of unsatisfied groups. Thus, the algorithm is more effective.  

In the future, we will focus on investigating additional solutions to improve the 
performance of the algorithm. On the other side, we should improve the criteria which 
are applied to assign a priority degree for each unsatisfied group so that the algorithm 
can return a more effective k-anonymous version of the database. Moreover, the 
location of the user is usually accompanied with a time value. Therefore, the 
algorithm should also consider the time value when anonymizing the database. 
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Abstract. Most Semantic Web query interfaces let the user give an ab-
stract specification of the desired results (perhaps using facets, or a nat-
ural language query.) We introduce the Smeagol visual query interface
which, by contrast, guides the user from a specific example to a general
result set. Users begin the query process with navigation and exploration
activities, building a concrete subgraph of interest from the larger data
set. They then generalize this subgraph to find other subgraphs similar in
some way to the one identified. Among other advantages, this approach
also lends itself quite naturally to querying on instance-based data; i.e.,
triples in which the predicate is not part of a defined ontology. We provide
an analysis of this specific-to-general approach, contrasting it with exist-
ing systems. We also present the results of a usability experiment compar-
ing novices’ use of Smeagol with that of a standard Linked Data browser.

Keywords: Semantic Web, linked data, user interface, query building,
pivot operation, graph visualization.

1 Introduction

In the last few years, Semantic Web researchers have begun to produce interfaces
that enable novices to pose queries without the use of a formal query language.
Some of these applications accept natural language queries; others let the user
directly manipulate a graphical representation.

One thing these diverse systems share is an interface paradigm that progresses
from the general to the specific. Users give an abstract specification of the desired
results, whether by using facets, natural language description, or some other
means. Although the mechanism used to express the query varies widely, the
user’s task is ultimately still to express some variation of the general formula
“find resources that satisfy these criteria.”

A subtle problem is that this approach often does not mimic the user’s thought
process. Sometimes the user may begin with an abstract question in mind, but
often he does not. Instead of knowing at the outset that he wants to ask “Who
are all the famous athletes who dated celebrities?” a user may be browsing a
David Beckham page, discover that Beckham dated Victoria Adams, and think,
“Interesting! I wonder what other athletes were similar?” Only after asking that
question, in those circumstances, will he discover that Derek Jeter dated Mariah
Carey. In other words, a user often does not even realize that he has a question
until an intriguing concrete example is found.
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We believe there may be an advantage to an interface that explicitly enables
this process. With such a tool, users could roam and explore a Semantic Web
data set without regard to any possible future query. As they browse, they mark
out features of interest along the way, building a subgraph which illuminates
a small subset of resources and relationships. Then, they generalize from this
example in whatever way(s) they choose in order to see analogous resources.

Even when users do begin with a question, they may benefit from being able
to express that question by means of an example. Rather than having to begin
abstractly with a list of types and predicates, users can find a concrete example
of what they are looking for, and construct the query “in place.” This seems less
error-prone, since the user is directly working with the very predicates and graph
structure for which they want results, rather than having to describe the desired
instances in general terms. This approach also naturally supports querying on
any predicate, not merely those defined by an ontology. It is possible, of course
(see, e.g., VisiNav[6]) to design a faceted interface that exposes non-ontology-
based predicates, but it seems that the context in which one first discovered
the existence of a predicate is a quite natural place from which to select that
predicate and find other examples.

We define the term “general-to-specific” to refer to a query interface (like
Humboldt[12] or gFacet[7]) that allows the user to specify abstract criteria for
a result set. By contrast, we define “specific-to-general” to refer to an interface
that explicitly supports starting with an example and generalizing it to find other
similar examples. Put another way, a “general-to-specific” interface is based on
reduction: adding criteria to the query progressively narrows down the results
from the set of all resources to the desired set of answers. A“specific-to-general”
interface, on the other hand, is based on expansion: aspects of a concrete example
are progressively generalized to find other results that match a pattern.

To continue the above example, a general-to-specific interface would allow
a user to find the class of Footballers (or Professional Athletes) in a data set,
then choose from predicates like “dated,” “marriedTo,” or “inARelationship-
With.” The user could form a query based on such predicates, and add addi-
tional constraints, such as that the object of the triple must be of a certain
type (Celebrity.) This would allow the user to find both the Beckham-Adams
and Jeter-Carey query results, but only by beginning with (and knowing about)
the abstract types and predicates, and anticipating that there would be some
result(s) that satisfied them. By contrast, a specific-to-general interface would
allow the user to browse the data set, and upon reaching a subgraph reflect-
ing the Beckham-Adams relationship, immediately request to generalize that
relationship to others that followed the same pattern. No top-down selection
of classes, predicates, or desired subgraph patterns is required, since these are
directly under the user’s nose at the time the query is generated. There is also
no need for the user to guess what the “correct” predicates or classes are, since
the example immediately in front of the user already contains them.

This paper introduces Smeagol, a query interface that directly supports the
specific-to-general paradigm. In J.R.R. Tolkien’s mythology, Smeagol was a
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creature who found something of great value without deliberately setting out
to search for it. Similarly, our application allows the user to begin the query
process with navigation and exploration activities, building a concrete subgraph
of interest from the larger data set. They then generalize this subgraph to find
other subgraphs similar in some aspect(s) to the one identified. Our theory is
that ordinarily, a novice user’s “queries” arise in exactly this way: not as a quest
for general results satisfying some abstract criteria, but as a search for other
items analogous to a concrete particular.

Note that our work is about identifying, designing, and empirically evaluating a
new user interface paradigm. There are many other open questions about querying
the Web of Linked Data which we do not address. These include: performance
and scalability of complex queries; evaluating queries that span multiple data sets
and hence require data integration to satisfy; and discovering relevant data sets.
These are all important open problems, and we are aware that others are working
on them. They are, however, outside the scope of our research. Our focus is on
enabling novice users to effectively pose complex queries against a Semantic Web
data set, a challenging task given the complex nature of graph-based data and the
difficulty many humans have visualizing and articulating patterns in it.

2 Related Work

There are a variety of user interfaces that enable novices to query the Semantic
Web. These differ from search interfaces such as Sindice[16], Swoogle[5], and
Falcons[2], whose purpose is to find resources matching a keyword or property,
in that they enable the user to answer complex questions expressed as a graph
pattern, such as “Who are all of the authors of books published in Germany in
the year 1974?”

Within the domain of query interfaces, Natural Language Interface (NLI)
systems such as FREyA[4], PowerAqua[13], PANTO[17], and SerFR[1] focus on
helping the user find an answer to an a priori question, as opposed to supporting
an iterative process of domain discovery and query building.

Visual query builder (VQB) systems, such as iSPARQL[15], Semantic
Crystal[11], NIGHTLIGHT[14], and SPARQLinG[8], manifest the query as a
graph (as Smeagol does), but the top-down emphasis on constructing formal
graph patterns from an ontology expects significant knowledge of both the
problem domain and SPARQL. Neither NLIs nor top-down VQBs are oriented
towards scenarios where a formal ontology does not exist.

Faceted interfaces, such as Humboldt[12], Parallax[9], gFacet[7], and VisiNav[6],
are more oriented towards novices than VQB systems. Like Smeagol, they en-
able novice users to both explore the problem domain and also iteratively build
a query, particularly when they do not begin with a clear a priori question.
However, faceted interfaces are intrinsically general-to-specific, because the user
starts with a generalized set of resources (perhaps all resources of a given type)
that is reduced by selecting facets which filter the set. That is, facets are abstract
criteria that narrow the result set.
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In addition to letting a user filter results on simple properties, Humboldt and
Parallax allow the user to “pivot” to properties of related objects (of different
types.) For example, a user querying for automobile manufacturers can pivot to
the set of automobiles manufactured by Toyota. This implementation of the pivot
concept is powerful, but has three important limitations. (1) Only a portion of
the query specification is visible to the user at any given time, due to the selected
facets only being displayed on the respective pages they were selected from. This
was noted by [7], and we believe that grouping the constraints of the entire query
together would place less cognitive burden on the user, since they could then
see a unified presentation of the query. (VisiNav[6] is an example of a faceted
interface which addresses this limitation.) (2) Not all types of queries (which we
term “query topologies”; see Section 5) are supported by these interfaces because
they utilize a linear history model (i.e. the past sequence of user pivots.) This
limitation was noted by [12] for Humboldt but applies to Parallax as well. An
example of a non-linear query that cannot be posed by these interfaces is “What
musicians contributed to a 2010 album, and also wrote a book of poetry?” which
requires a branching sequence of pivots to specify all relations and facets. (3)
When the user wants to view results across multiple pivots, he must visit each
relevant page in the history to assemble the results. That is, the user can only
view one column of the query results at a time. Smeagol addresses all three of
the above concerns by (1) manifesting the entire query in a single display, (2)
supporting arbitrary branching topologies, and (3) presenting all query results
as a set of tuples in a unified display.

gFacet[7] is a facet graph interface, and so uses the general-to-specific paradigm
as all faceted interfaces do. It is similar to Smeagol in that the user’s query is
represented visually as a graph, but there are several key differences. First, in
gFacet the facets are derived solely from ontology1, so it is not possible to express
queries involving arbitrary predicates. Second, it does not provide a facility for
viewing all statements made about a given resource, limiting the ability of the
user to explore the domain to discover what kinds of queries can be posed. Third,
like Humboldt and Parallax, the user cannot see a unified, assembled result set
across multiple pivots.2

The MashQL interface[10] is essentially a dynamic, hierarchical, form-based
query builder. It implements pivots and supports both ontology and arbitrary

1 For DBpedia, the facets are skos:subject objects of type skos:Concept, paired
with the predicates relating them back to the subject of the triple whose resources
have skos:subject as the current facet.

2 For example, suppose the user has a query graph with three facets: song titles
in the category Songs written by John Lennon, producers of those songs who are
LivingPeople, and record labels of those songs that are RockRecordLabels. If the
user wanted to know all songs produced by Yoko Ono and their respective record
labels, he would first have to select Ono from the list of LivingPeople. He would
then see the songs produced by Ono and the record labels of those songs, but the
two lists would not be correlated with each other. In order to correlate the two, the
user would need to click on each record label resource in turn to determine which
songs correspond to it.
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properties, all composed in a tree-based view. The user progressively specifies
graph patterns using dynamically constructed dropdowns whose contents reflect
the current context (e.g. if a subject dropdown is set to a particular resource, the
predicate dropdown will contain all properties used by that subject). Pivots are
expressed through the hierarchical representation of the graph patterns, and the
user can then specify which elements will be returned in the results. MashQL
largely utilizes the general-to-specific paradigm, as the user specifies a general
pattern using subject classes as well as predicates, which may return many re-
sults. He may then reduce the results to a specific answer by either adding
further relations, or by specifying that a property’s subject or object has a par-
ticular value. Note that the interface also does support the specific-to-general
paradigm to a degree, as concrete concepts can be chosen from dropdowns rather
than from an ontology. However, the interface’s form-based query building en-
courages users to think from a top-down perspective, and it does not provide
a straightforward way to view all statements made about a particular resource,
limiting the exploration required to locate conrete resources.

In summary, these query interfaces comprise numerous powerful features that
enable users to pose queries in intuitive ways. However, none of them support
the specific-to-general paradigm in the way that Smeagol does.

3 The Smeagol User Interface Paradigm

Smeagol supports a threefold procedure for building queries. Each step is in-
tended to lead naturally to the next.
1. Exploration. Users begin by exploring the data graph, traversing from re-
source to resource and seeing the statements made about each one. This is similar
to most Linked Data browsers, but different from most query interfaces. It en-
ables the user to begin with a familiar navigation task, traversing from concrete
resource to concrete resource. The user can inspect the triples involving each
resource of interest. During this process of inspection and traversal, the user
does not face a burdensome cost in terms of backtracking or reorientation when
pursuing casual exploration or encountering deadends.
2. Subgraph building. As the user begins to identify an area of interest, he
can select particular triples and add them to an “example subgraph.” This is
a connected subset of the overall Web of Data that reflects a user’s current
focus. It consists of a handful of specific resources and the relationships between
them. Building this subgraph serves two purposes: (1) it lets the user select
and highlight only the relevant subset of information out of the overwhelming
amount of data in the overall graph, and (2) it forms the basis for a future query.

We believe this step is particularly important as users transition from today’s
free-text-based Web to the Semantic Web. In the free-text Web, the content
of a single page contains so much context that visualizing its neighbors is not
as crucial. But when browsing Linked Data, where each node represents a suc-
cinct nugget of information, a user can quickly become disoriented if he cannot
visualize the contextually pertinent relationships around it.
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3. Subgraph generalizing. Finally, the interface assists the user in generaliz-
ing his specific example into a query, so that he may view the answer(s) to a
question he wants to pose. From the specific example, the user can express that
certain concrete subjects and objects are actually the resources that he wants to
generalize from; that is, they are the variables of the query. The properties and
remaining resources are considered to be the constraints.

Though presented here as a sequence, Smeagol users can naturally move back
and forth between these activities as they explore the data graph. Adding more
triples to the subgraph moves from activity 3 back to activity 2, and navigating
to a resource moves back to activity 1. In this way, queries can be modified,
expanded, and refined in an interactive process.

3.1 User Interface

In order to begin exploring a graph of Semantic Web data, the user must specify
a URI to use as his starting point. Smeagol provides a simple search interface
that utilizes DBpedia’s URI Lookup web service3. The user types one or more
keywords into a search box, which when submitted gives a list of suggested URIs
for consideration. The user must select the URI from which he wishes to begin
exploring; this URI becomes the first resource in his subgraph. Once the user
chooses, he is taken to the main Smeagol interface.

The Smeagol interface (Fig. 1) is divided into three sections. The inspector
pane (left) displays all triples involving the user’s current resource of interest
in an “infinite-scrolling” list. When the user decides to add a particular triple
to his subgraph of interest, he can identify it as such by selecting it in the list.
Conversely, if the user changes his mind, he can remove it from his subgraph by
unselecting it. Smeagol currently has no mechanism for intelligently limiting the
number of triples in the inspector; this is a difficult problem, and is a topic for
future work.

The query visualizer pane (top-right) displays the user’s current subgraph.
Selections and unselections made in the inspector pane immediately result in an
animated update of the visualization. The subgraph is depicted using a radial
layout algorithm. The advantage is one of locality: the resource in the center
of the visualization is the one currently most relevant to the user; it is also the
resource shown in the inspector pane. The distance from the center resource
to another resource reflects the degree of separation between them; a distant
resource is usually less important to the user than a direct relation. The user
may choose to shift his focus and inspect a more distant resource by clicking
on its name in the query visualizer; this moves that resource to the center. The
radial layout may be panned by clicking and dragging, which provides access to
resources too distant to be in immediate view. A resource in the query visualizer
pane can be removed from the subgraph, or “wildcarded” (generalized) via a pop-
up menu. Choosing to remove the resource from the query will remove it from
the user’s subgraph, and also prune the subgraph at that point. This behavior

3 http://lookup.dbpedia.org/

http://lookup.dbpedia.org/
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Fig. 1. The Smeagol User Interface

simplifies the process of trimming unnecessary paths of exploration from the
subgraph.

Fundamental to the subgraph building procedure, the user can generalize his
subgraph at any time by choosing to wildcard a resource; any number of resources
may be wildcarded. (When a wildcarded resource is displayed in the inspector,
its last associated concrete resource is shown.) The act of wildcarding a resource
results in a query being executed.

The results pane (bottom-right) displays a table of tuples corresponding to
the query results, which refreshes whenever the wildcarded state of a resource
in the query visualizer changes. This state change causes the subgraph to be
translated into a SPARQL query, where each variable in the query corresponds
to both a wildcarded resource in the query visualizer and a column in the results
pane.

There are two operations the user can perform from the results pane. Clicking
on a cell in the table replaces the corresponding wildcarded resource in the
subgraph with the cell’s value. This results in a new query being run and the
results pane being refreshed. Clicking on a row’s “Update All” button replaces
all wildcarded resources in the subgraph with the respective concrete resources in
that row of the results. This effectively replaces the entire query with a chosen
concrete example. The benefit of these operations is to aid in the explorative
process: if the user discovers an interesting resource in the results, he not only
can update the query to restrict on that resource, but can also inspect it and
modify the subgraph based on what is seen.
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3.2 Example

To provide an example of the process of exploration, subgraph building, and
subgraph generalization with Smeagol, consider the following: Suppose the user
searches for the 1982 film E.T.: The Extra-Terrestrial, and after selecting it, he
is taken to the main Smeagol interface. At this point, the center resource in the
query visualizer pane would be E.T. (Fig. 2, A), and the inspector pane would
show all statements about the film. Browsing through the inspector, the user
notices that the film was directed by Steven Spielberg, the music was by John
Williams, and it starred Drew Barrymore. Each of these statements interests the
user, so he clicks on them in turn in the inspector pane to add them to the query
visualizer pane (Fig. 2, B).

Fig. 2. The query building process

Deciding to explore Drew Barrymore, the user clicks on that resource in the
query visualizer pane, which causes the graph to move the resource to the cen-
ter and the inspector pane to load information about the actress. Browsing
through the inspector, the user sees that she is of type AmericanChildActors.
Recalling that Barrymore was quite young in E.T., a question occurs to the
user: did Stephen Spielberg direct any other films which starred an American
who at one time was a child actor? Moreover, did Spielberg and Williams col-
laborate on any such films? To answer this query, the user begins by adding
the AmericanChildActors resource to the query visualizer (Fig. 2, C). He then
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chooses to wildcard both the E.T. and Drew Barrymore resources (Fig. 2, D), as
he wishes to see more films and actors meeting the above criteria. After doing
so, he is presented with the results as seen in Fig. 1.

4 Architecture

Smeagol is a Rich Internet Application (RIA) that communicates via REST web
services to a Java server application. The server application provides proxying
to SPARQL endpoints, query result caching, and persistence of users’ query
graphs.

Smeagol has been tested against DBpedia’s SPARQL endpoint, but is not
architecturally limited to it. The SPARQL query used by the inspector makes no
assumptions about ontology or the presence of any DBpedia-specific resources:

SELECT DISTINCT ?subject ?predicate ?object WHERE {
{<resource> ?predicate ?object}
UNION
{?subject ?predicate <resource>}
FILTER (lang(?object) = "en" || lang(?object) = "")

} ORDER BY ?predicate ?subject

The SPARQL queries generated by the query builder from the user’s example
subgraph are similarly independent of DBpedia. Note that Smeagol could be
adapted to data sources other than SPARQL endpoints if those sources could
be accessed in a programmatic way, since the user does not deal explicitly with
SPARQL.

The query builder currently supports a subset of SPARQL syntax: the user
may specify triple patterns and bind variables. More advanced syntax was not
necessary for the initial validation of the specific-to-general query paradigm.

Performance of the application is determined by the responsiveness of the
SPARQL endpoint and the complexity of the queries the user chooses to con-
struct within the query visualizer. The inspector queries are simple, an advantage
afforded by the specific-to-general approach is a reduction in ontology-related
queries needed to drive user exploration and query formulation, compared to
general-to-specific interfaces. Finally, paging is used to manage large result sets
returned by inspector and user queries.

5 Query Topologies

In order to identify which kinds of queries Smeagol confers an advantage for,
we define the notion of a query topology. A query topology describes the general
structure of a subgraph in terms of the nodes and the relationships between
them, including which of the nodes are wildcarded. It essentially characterizes a
certain class of triple patterns.
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We depict query topologies visually as a graph of nodes, where “R” indicates
a particular concrete resource, and “*” indicates a wildcard. (See Fig. 3.) This
is similar to a SPARQL triple pattern – with R’s as URIs and *’s as variables –
except that we are generalizing from any particular pattern to a category of all
structurally similar patterns. Here is one query that conforms to this topology:

SELECT * WHERE {

:Kenneth_Branagh :starringIn ?film

?film :writer :J._K._Rowling

}

This query conforms to the topology since it contains one variable present in
two triples, each of which also contains one concrete resource. Note that a query
topology diagram is an undirected graph, since from a complexity standpoint
it turns out to be immaterial whether a given node in a triple is a subject or
an object. (True, the Semantic Web is a directed graph, since each triple has a
subject and object, but the queries “Spielberg directed ?x” and “?x directedBy
Spielberg” are equally difficult to pose and to evaluate, which is all we are
concerned with.)

Fig. 3. A query topology

We characterize a query topology by a three-numbered designation (n-w-l),
where n is the total number of nodes in the graph, w is the total number of
wildcards, and l is the length of the longest path of consecutively wildcarded
nodes, excluding branches. We choose these three measures, omitting other fea-
tures of the topology (for example, whether two R nodes are attached to the
same * node, or to different ones) because they represent likely elements of user
difficulty. The number of nodes, the number of generalized nodes, and the “den-
sity” with which the generalized nodes are glued together all represent different
aspects of a query’s complexity. We hypothesize that the third of these three
quantities will be particularly significant, since it essentially captures the num-
ber of pivots necessary to execute the query. The topology in Fig. 3 is of class
(3-1-1).

Further examples of query topologies, along with their topological designa-
tions, sample SPARQL queries, and sample English questions, are in Fig. 4.
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Fig. 4. Some query topologies, with designations, sample SPARQL queries, and sample
English questions

6 Usability Experiment

From a user’s perspective, Smeagol supports the same kind of open-ended ex-
ploration that a Semantic Web browser does, but adds the ability to naturally
transition to a query task. Hence, to test whether this added ability yields any
benefits, we conducted a usability experiment to compare novices’ performance
in using Smeagol with that of a Linked Data browser. Our goals were to de-
termine whether the Smeagol subgraph-building and wildcarding paradigm was
operable by novice users, and to identify which query topologies it gave an ad-
vantage for.

Our subject pool consisted of 43 undergraduate college students, ranging from
18 to 22 years of age and containing roughly an even split between genders. All
students were enrolled at the University of Mary Washington during the Fall
2010 semester and were of many diverse majors.

Participants took the one-hour experiment using the Firefox Internet browser
on a Windows workstation. They first received a ten-minute explanation of Se-
mantic Web concepts, and a demonstration of the particular navigation tool they
were to use (depending on the group; see below.) They then received a packet
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of materials containing twelve timed query tasks, and were directed to a URL
to begin. Both navigation tools used the DBpedia SPARQL endpoint as the sole
data source.

Our control group used the Pubby Linked Data frontend[3], which provides
a simple HTML interface to the DBpedia SPARQL endpoint. Pubby’s interface
is similar to many Linked Data browsers in that it manifests each resource as a
page, and shows all triples that have that resource as either a subject or object.
This is nearly identical to Smeagol’s inspector pane, except that full URIs are
shown for each resource rather than just its label. Our experimental group used
the Smeagol application as described in Section 3.1.

Each item in the packet contained an English language question which the
participant was instructed to find the answer to. To begin, the participant was
directed to a certain resource that was one of many “answers” to the question.
For the control group, this was simply the Pubby page for the starting resource.
For the experimental group, the participants began by loading a stored Smeagol
subgraph with that node present. For example, item D asked “What famous
authors went to Harvard Law School?” and users began the item from the Barack
Obama Pubby page (control) or from a subgraph containing the Barack Obama
node (experimental). In this way, we hoped to simulate the process described
at the beginning of this paper: a user beginning with a concrete example and
wanting to generalize it to other examples.

The items were grouped into two sections. The first section contained “scripted”
items which explicitly provided the user with the required subgraph. In item D,
for example, the control group was told which predicates and resources were
relevant (:almaMater, :Harvard Law School, :occupation, and :Author) and
explicitly directed how to find them and what to click on. The experimental
group’s starting subgraph contained all of these nodes. The participant’s task,
then, was not to determine how to build the subgraph, but simply to general-
ize the subgraph: either by navigating and filtering (control) or by wildcarding
nodes and noting the results (experimental.)

The second section of the packet contained non-scripted items. For example,
item J asked “What U.S. Democrats who participated in World War II battles
went to a college in the Ivy League athletic conference?” and simply started
each participant on the John F. Kennedy page (control) or with a subgraph
containing only the John F. Kennedy node (experimental.)

Both sections featured items of various topological classes. Item D (above),
for instance, was of class (3-1-1), and item J was (5-2-2). Through this variety
we aimed to isolate the different cases and quantify how well Smeagol improved
user performance in various scenarios.

7 Results

The results for each item in our hour-long experiment are presented in Table 1.
The “control” column indicates how many users in the Pubby group got each
item correct in the time frame allotted (generally 4-6 minutes, depending on
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Table 1. Results for each experimental item, including tallies and percentages for each
group (control and experimental) who correctly completed the item. Bold p-values
indicate statistically significant results (to α = .05 by two-tailed Fisher’s exact test.)

Item Topology class Scripted? control % exp % p-value

A (2-1-1) yes 17/23 73.9% 19/20 95.0% .100

B (2-1-1) yes 19/23 82.6% 20/20 100.0% .111

C (2-1-1) yes 19/23 82.6% 18/20 90.0% .669

D (3-1-1) yes 0/23 0.0% 17/20 85.0% <.0001

E (4-2-2) yes 0/23 0.0% 7/20 35.0% .002

F (2-1-1) no 17/23 73.9% 18/20 90.0% .250

G (2-1-1) no 20/23 87.0% 20/20 100.0% .236

H (3-1-1) no 0/23 0.0% 15/20 75.0% <.0001

I (3-1-1) no 4/23 17.4% 12/20 60.0% .005

J (5-2-2) no 0/23 0.0% 13/20 65.0% <.0001

item complexity) and the “exp” column shows the same for the Smeagol users.
An answer was deemed to be “correct” if its list of resources satisfactorily an-
swered the question for some reasonable choice of predicates. In some cases, more
than one reasonable choice existed (such as :sports and :affiliation for “Ivy
League” schools in question J), and so correct answers sometimes varied from
one another.

The first and most obvious finding is that the Smeagol group outperformed
the Pubby group on every item. However, this was statistically significant (using
Fisher’s exact test rather than χ2 due to small sample sizes) only for items in
which the number of nodes is greater than two. A simple thought experiment
reveals the likely reason for this. In a (2-1-1) topology – for instance, “Which
films did Tom Hanks produce?” (item C) – a Pubby user can navigate to a single
page (Tom Hanks) and examine the predicates to find a list of results. On the
other hand, in a (3-1-1) topology – for instance, “What famous authors went to
Harvard Law School” – a Pubby user faces a nearly hopeless navigation task.
Starting from either the “Author” page or the “Harvard Law School” page, they
can only identify a list of possible results. They must then manually navigate
to each author (or Harvard alumnus) to determine whether the other criterion
is satisfied. Smeagol, of course, makes such navigational legwork unnecessary
through the use of wildcards.

We suspect, but did not verify in this experiment, that the problem for Pubby
users would be exacerbated for queries involving a longer chain of wildcards
(i.e., those with a larger value of l in the (n-w-l) designation.) This effectively
multiplies the number of traversals exponentially. For instance, item E – “What
Chicago Bears football players went to college in the Big East?” – requires a
Pubby user to find players from the Chicago Bears page, but thereafter to face
a combinatorial explosion. Each player cannot simply be checked for a property;
rather, all schools that player was affiliated with must each be checked for a
property, requiring a second set of multiple traversals. The total size of the
problem varies with the average number of triples per predicate, of course, but
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it quickly becomes unmanageable (to say nothing of time-consuming) even for a
disciplined user. We plan to investigate this in future research.

8 Conclusions and Future Work

The specific-to-general query paradigm seems to be understandable by novices
and beneficial to them. Equipping users with the ability to identify a subgraph
and generalize it allows them to answer a much wider variety of questions than
they could with only a standard navigational browser. This appears to be par-
ticularly true for queries that reach a certain threshold of complexity, where
“complexity” involves both the number of nodes in a subgraph and the number
and arrangement of wildcard nodes. Also, there is a benefit to users explicitly
building and visualizing a concrete subgraph, so that they can better compre-
hend the immediate context of their inquiry.

Smeagol itself could be improved by enabling quantitative comparisons in
queries, and by expanding the set of logical primitives to include unions and
“ors.” Additionally, we believe there may be benefit to organizing the predicates
available for users to choose from by leveraging available ontology – this would
complement the strengths Smeagol has in supporting queries built from arbitrary
triples.

Having established a baseline against the standard Linked Data browser
model, we plan in future work to compare novices’ performance with Smeagol
versus general-to-specific query interfaces like gFacet[7]. This should help us un-
derstand which use cases have the greatest benefit from a specific-to-general
model; it is very possible that different sorts of user scenarios are better served
by different approaches.

Smeagol is completely open source under the GPL license and source code
is available at http://bitbucket.org/aclemmer/smeagol. A live demo of the
application can be accessed at http://rosemary.umw.edu/smeagol.
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Abstract. Faceted search enables users to browse and discover relevant
items from a large collection such as the Web of data. Existing faceted
search solutions assume a precise information need, and thus optimise
relevance, interestingness, and costs of fulfilling an information need. In
this paper, we propose a complementary solution. Instead of assuming a
search scenario (i.e., a user has a precise information need), our solution
targets a browsing scenario (i.e., a user has a fuzzy need). We aim to sup-
port users in exploring an unknown collection of items, thereby allowing
them to discover new or unfamiliar items of interest. Our approach com-
prises mechanisms for grouping facets and facet values and facet ranking.
Via a task-based evaluation, we demonstrate that the proposed solution
enables more effective browsing compared to the state-of-the-art, given
fuzzy information needs.

1 Introduction

Recently, large amounts of structured data have been made publicly available
on the Web (e.g., RDFa1 or Linked Data2), allowing complex information needs
to be addressed. For instance, consider the following example: Susan is a novice
computer science student. She is eager to learn more about this vast research
field and wishes to find “information about work of prestigious computer scien-
tists”. With traditional Web search, Susan searches via keywords and browses via
hyperlinks to fulfil her information need. Observe the two paradigms in Susan’s
example: (1) search as a mean for goal-oriented retrieval of information (e.g., via
keyword-based lookups) and (2) browsing as a mean for iterative exploration of
a collection of items (e.g., via hyperlinks) [18,17].

Searching Web data using structured query languages (e.g., SPARQL3) helps
to address complex information needs (e.g., Susan’s need). However, in order
for such a goal-oriented search to be effective, users have to be familiar with
the query language. Further, users have to know the item of interest and the
underlying domain. Thus, the search paradigm allows for precise information
needs only. However, real-world information needs are often fuzzy. There are

� Supported by the German Federal Ministry of Education and Research in the
CollabCloud (grant 01IS0937A-E) and iGreen (grant 01IA08005K) project.
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two dimensions of fuzziness: (1) Users have vague knowledge about the domain.
For instance, Susan cannot precisely describe the term “prestigious”, whereas a
domain expert (having precise knowledge) may look for researchers that won a
Turing Award. (2) Users only vaguely know the item of interest. For instance,
“work” in our example may refer to publications or projects.

The browsing paradigm is more suitable for dealing with fuzzy needs. It does
not assume users to have full knowledge regarding domain or item of interest.
Instead, browsing allows users to explore a collection of items iteratively [18,17].
For instance, Susan may start with a simple lookup search (e.g., a keyword
query “computer scientist”) to obtain some starting points and then browses
the remaining collection to find “prestigious” scientists.

Faceted search implements the browsing paradigm, representing a promising
approach towards exploring and addressing (possibly fuzzy) information needs
[13,5,11]. Here, users explore a collection of items by browsing conceptual dimen-
sions of the items (i.e., facets) and their values (i.e., facet values) [10,21]. During
an iterative process of selecting facets and refining the current result collection,
users may construct complex, structured queries.

Related to faceted search is work on visual query builders [7,22]. However,
while the latter focuses solely on intuitive means for query construction, faceted
search aims at exploration and understanding (during a process of iterative query
reformulation).

State-of-the-art. Faceted search was proposed for querying documents [10,9,4],
databases [8,3,2] and semantic data [19,23,14] (referred to as semantic faceted
search). One research direction is concerned with efficiency aspects. Existing
work includes indexes and algorithms for fast computation of facets and facet-
related data [4,9]. In this paper, we are concerned with the effectiveness of faceted
search – efficiency aspects are orthogonal and unfortunately out of scope.

Given a large amount of facets associated with a collection of items, one major
challenge we address is facet ranking. Widely used is frequency-based ranking
[8,20,16]. It considers the number of items that are associated with a facet (its
count). A facet is considered important, when its count is high. Based on the
same idea, set-cover ranking has been proposed [8], which aims to maximise
the number of distinct items that are accessible from the top-k facets. In [16],
the authors assume a relevance-based ordering of items and propose ranking
facets according to their likelihood of being associated with a relevant item.
Further, the notion of interestingness has been incorporated into ranking [9],
suggesting that facet relevance may be measured based on how surprising a
facet is (given a certain expectation). The interestingness of a facet is defined
as the aggregation of the interestingness of its facet values, which is based on
rationales for what should be an expected facet value. In [8], the objective is
to minimise user costs for finding a specific item of interest. Cost is defined as
the time needed for reaching an item of interest. This time is computed as an
aggregation of the times for reading facet headings, for browsing facet hierarchies
and for correcting browsing mistakes. The authors of [3] propose to use the facet
hierarchy (which the user traverses), as an approximation for the interaction
time and cost, respectively. A ranking scheme is introduced to prefer facets with
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a hierarchy of low height. Thus, facets are ranked high, when they quickly lead
to an item of interest [3].

For effective faceted search, besides facet ranking, facet grouping approaches
have been proposed. A facet tree (i.e., a tree-shaped facet grouping) was em-
ployed in [8,13,5,11]. Thus, users are able to browse multiple facets (forming a
facet path), in order to explore a collection of items.

Contributions. We observe that (except for the generic, frequency-based rank-
ing), existing ranking approaches assume a precise information need. That is,
relevance, interestingness, and user costs (for fulfilling an information need) have
been employed for measuring facet importance. Thus, we refer to such approaches
as search-oriented. However, we propose a complementary approach, targeting
a browsing scenario. Our solution supports users in addressing fuzzy needs, by
enabling them to slowly explore an unknown collection of items. In particular,
we provide mechanisms for grouping facets and facet values (i.e., an extended
facet tree), as well as for ranking facets – both targeting an enhanced browsing
experience. The contributions can be summarised as follows:

– For browsing facets with a large number of facet values, we propose an
extended facet tree, which compactly captures both facets and facet values.

– We propose a ranking scheme, which supports users, given a fuzzy informa-
tion need, in browsing a collection of items.

– We have implemented our approach and made the code4 freely available. Fur-
ther, we have conducted a task-based evaluation, showing that our approach
outperforms the state-of-the-art on fuzzy information needs.

Outline. In Section 2, we introduce the data, query and facet model. Section 3
discusses (large) facet value sets and an extended facet model for browsing such
sets. Facet ranking is discussed in Section 4. In Section 5, we present a task-based
evaluation. We conclude with Section 6.

2 Data, Query and Facet Model

Data and Query Model. As different types of structured Web data may be
represented as graphs (including RDF), we employ a general graph-structured
data model [24].

Definition 1 (Data Graph). Let LV and LE be finite sets of vertex and edge
labels respectively. A data graph is a tuple G = (VG, EG), where VG is a finite set
of vertices, lV : VG �→ LV is a vertex labelling function and EG ⊆ LE × lV (VG)×
lV (VG) is a set of labelled edges. The set of vertices is conceived as the disjoint
union VG = VG

E � VG
D , where VG

E stands for entities and VG
D are data values.

We distinguish the set of relation edges EG
R = {e(vi, vj) ∈ EG|vi, vj ∈ VG

E }
from the set of attribute edges EG

A = {e(vi, vj) ∈ EG|vi ∈ VG
E , vj ∈ VG

D} and
EG = EG

R � EG
A .

4 http://code.google.com/p/semanticfacetedsearch/

http://code.google.com/p/semanticfacetedsearch/
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Information needs in our setting correspond to conjunctive queries of the form
(x1, . . . , xk).∃xk+1, . . . , xm.e1∧. . .∧er, where ei are atomic formulae and x1, . . . ,
xk and xk+1, . . . , xm are called distinguished and undistinguished variables, re-
spectively [24]. We focus on conjunctive queries with atomic formulae of the form
e(vi, vj), where vi and vj are either variables or constants. Since variables of a
conjunctive query may interact in an arbitrary way, these formulae form a graph
(so called basic graph patterns, representing a core feature of SPARQL). Further,
a conjunctive query is denoted as Q = (VQ, EQ). Vertices of Q are VQ = VQ

V �VQ
C

comprising a set of variables VQ
V and constants VQ

C ⊆ VG. Edges of Q (called
query predicates) are formulae e(vi, vj), with vi ∈ VQ

V , vj ∈ VQ. A conjunctive
query Q is processed as a graph pattern. Specifically, a result to Q on a graph
G is a mapping from vertices of Q to vertices of G, such that the substitution
of variables (called variable bindings, denoted by VR

x with x ∈ VQ
V ) in Q would

yield a subgraph of G. Thus, every result represents a subgraph of G. In fact,
the entire set of results is a subgraph of G, denoted by R(VR, ER) (called result
set) [24].

Facet Model. Our conjunctive query model indicates the information needs
we aim to support. However, via faceted search, users do not directly operate
on this query model, but employ facets to construct queries [10]. With semantic
faceted search [12,1,19,11], conjunctive queries may be constructed. To formalise
the ideas of semantic faceted search, we employ a facet model comprising three
components: (1) facets, (2) facet values and (3) facet operations.

Definition 2 (Facets). Let Q(VQ, EQ) be the query, R(VR, ER) be the result
set for Q and VR

x ⊆ VR be the particular set of bindings obtained for the variable
x ∈ VQ

V . Facets F (x) (for the variable x) are labels of edges, which capture direct
connections between elements in VR

x and other elements of the data graph, i.e.,
F (x) = {f |f(vi, vj) ∈ EG, vi ∈ VR

x }. Facets can be associated with every variable
x ∈ VQ

V . The set of facets for Q is F (Q) = {F (x)|x ∈ VQ
V }.

Facets can seen conceived as conceptual dimensions of some particular variable
bindings. In particular, every facet f ∈ F (x) corresponds either to a relation or
an attribute edge label. Thus, values of f might be entities or data values:

Definition 3 (Facet Values). Let R(VR, ER) be the result set and VR
x ⊆ VR

be the bindings for a query variable x, then the values of a facet f ∈ F (x) are
entities or data values that are directly connected to elements in VR

x via f , i.e.,
FV (f) = {vj|f(vi, vj) ∈ EG, vi ∈ VR

x }.

There are three operations on facets that can be used to construct queries, i.e.,
to modify the bindings of variables VR

var and thus, to modify the overall result set
R. These operations are: (1) focus selection, (2) refinement and (3) expansion.

With focus selection, users can change the focus to the variable (and thereby
the set of bindings) they wish to modify. For instance, changing focus from y to
x means to focus on facets contained in F (x) (i.e., to focus on the entity set VR

x )
instead of F (y) (the entity set VR

y ). In technical terms, it means that in faceted
search, we have only one distinguished variable, which during the process, can
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be changed by the user to obtain different sets of results for refinement and
modification.

Users can modify the set of bindings for the variable in focus by adding further
query predicates. In particular, a refinement operation performed on a variable x
(on the entity set VR

x , respectively) means adding a new query predicate f(x, y),
with f ∈ F (x) and y as new variable. Instead of adding further query predicates,
a refinement can also be performed by modifying an existing query predicate. Let
f ∈ F (x) be a facet corresponding to the query predicate f(x, y) and let FV (f)
be its facet value set. Users can refine VR

x by choosing a facet value v ∈ FV (f),
in order to obtain a subset of VR

x containing only entities connected to v via
f . This refinement operation (denoted by (f : v)) replaces y in f(x, y) with a
constant v. Analogously, users may expand a result set by removing a facet (i.e.,
removing a query predicate) or removing a facet value (i.e., replacing a constant
with a variable).

3 Browsing-Oriented Facet and Facet Value Spaces

In this section, we propose an extension of our facet model – the notion of a
facet tree. For a result set, the basic facet tree (FT ) compactly represents the
space of all facets [12,1,19,11], while our extended facet tree (FTe) additionally
also captures the space of all facet values.

Facet Tree (FT ). First, let us define the basic facet tree. For that, we introduce
a browsing operation, which allows users to explore the facet (and later also the
facet value) space via navigation along facets. Analogous to the expansion and
refinement operation, browsing consists of (multiple) facet selections. However,
facets selected during browsing are not evaluated, i.e., the underlying query
does not change and thus the result set is not modified. A sequence of browsing
operations allows users to navigate from the result set to associated facet values,
and via their facets, to facet values that are further away. Every such browsing
sequence establishes a facet path. All possible facet paths, which may result from
browsing, establish a tree of facets:
Definition 4 (Facet Tree). Let G(VG, EG) be the data graph and VR

x ⊆ VR be
the binding set (for a query Q) for x ∈ VQ

V , then the facet tree FT (x) for x can
be conceived as a set of possibly overlapping paths P . Each p ∈ P is of the form
〈VR

x , . . . ,VL
l 〉, connecting the root node VR

x with a leaf node VL
l . While leaves VL

are sets of data values, every other set Vi ∈ p comprises entities. There is a path
p ∈ P if and only if we find VR

x , . . . ,VL
l ⊆ VG and (∃v1 ∈ VR

x , . . . ,∃vl ∈ VL
l ).

∃e1 ∈ EG, . . . ,∃el ∈ EG. e1(v1, v2) ∧ . . . ∧ el(vl−1, vl).

A facet tree FT is derived from vertices and edges in the data graph. In partic-
ular, FT captures all entities and data values reachable from the result set via
navigation along paths in the data graph. It can be constructed via breadth-first
search from the result set (the root) to data values (the leaves). Note, in order
to include an entity v with no outgoing edges, we add a new edge e(v, lV (v))
(i.e., an edge pointing to its label).
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In Fig. 1 we illustrate an exemplary tree for a result set containing four pro-
fessors. From the professor entities, it is possible to navigate to their associated
names, their universities and the university’s age.

Note, our notion of a facet tree is slightly different from existing facet trees
and graphs. In Parallax [13] and Tabulator [5], it is possible to traverse tree-like
structures, while with gFacet [11] even graph structures can be explored. With
such systems, users can navigate from one entity set to another by changing the
focus, and refine (expand) it by adding (removing) facets. In effect, users navigate
though the data. As opposed to that, we explicitly employ a browsing operation,
allowing users to explore the data without modifying the underlying query or
changing the focus. The user does not browse through the data, but though a
compact description, the facet tree. Users only see facets (e.g., works at, age and
name) and (in the extended facet tree) labels of facet value sets (e.g., University
or [ann− paul]). Thus, browsing is based on a compact intensional description,
thereby allowing users to easily grasp the overall structure of the facet (facet
value) space. In order modify the result set via facet paths, we introduce an
extension of the refinement operation. Instead of adding one query predicate,
users can now add a conjunction of query predicates that corresponds to a facet
path 〈e1, . . . , el〉 in FT , selected by the user (e.g., 〈works at, age〉 : [70 − 300]).
Analogously, we allow an extended expansion that removes a conjunction of
query predicates.

Extended Facet Tree (FTe). Through browsing along the paths of a facet tree,
users eventually will reach a set of data values. Given a large set of data values,
users might be overwhelmed. Thus, current systems choose to present only few
top-ranked facet values and cut off the rest [19,23,14]. However, selecting one
single value requires users to have precise needs and knowledge regarding that
facet, which is contrary to the browsing paradigm. We aim to enable users to
explore and understand the entire facet value space.
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Fig. 1. Susan’s (extended) facet tree

Therefore, we apply a di-
visive hierarchical clustering
technique [15]. Using our
clustering technique, a set
of facet values (i.e., data
values) FV (f) is recursively
split, resulting in a hierar-
chy of data value clusters.
Since clusters at the same
level do not overlap, the clus-
tering process amounts to a
partitioning of FV (f). In or-
der to decide where to split a
cluster, a measure of dissim-
ilarity between sets of data
values is required. We use a
distance measure for captur-
ing the dissimilarity between
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two data values and employ a linkage criterion, which captures the dissimilarity
of sets as a function of the pairwise dissimilarity of data values (contained in
those sets). More precisely, we use the Euclidean distance for numerical data
values and the Levenshtein distance for textual data values. For computing the
dissimilarity between sets of data values, we use the single-linkage criterion,
where the distance between two sets of data values is defined as the minimum
distance of all pairs of data values from both sets [15].

Now, we employ the clusters to extend the facet tree. Leaf nodes VL
i ∈ FT (x)

containing more data values than a given threshold are clustered, resulting in a
set of data value trees (DT ). The combination of facet tree and data value trees
form an extended facet tree (FTe). Note, clustering is performed only on demand
(i.e., upon users browsing behaviour). More precisely, whenever a user reaches
a facet tree leaf, associated facet values are clustered, and a data value tree is
attached to extend FT .

Fig. 1 illustrates an exemplary extended facet tree. For instance, the set of
names {ann,mary, paul} is clustered, resulting in a tree of data values with
[ann− paul] as root. At the second level of the data tree, the set [ann− paul] is
split into two sets: {ann} and [mary − paul].

Compared to the state-of-the-art, the extended facet tree allows users to
browse and explore the data based on a compact and hierarchical representation,
using both facets (contained in FT ) and facet value sets (contained in DT ).

4 Browsing-Oriented Facet Ranking

Fig. 2. Binding segments as-
sociated with facet name and
works-at

Current work on facet ranking assumes users
to have precise needs (i.e., know the domain
and item of interest) and thus, relevance, in-
terestingness, or user costs have been employed
as measures [8,3,9]. In this section, we present
a facet ranking scheme targeting a different
scenario. We assume users to have incomplete
knowledge w.r.t. domain or item of interest (i.e.,
fuzzy need). Thus, such users need support in
exploring and understanding the result set. In
particular, we prefer facets that allow users to
modify the result set via small and uniform facet
operations.

4.1 Intuitions and Metrics for
Browsing-Oriented Facet Ranking

For ranking a facet f ∈ F (x), we consider the
facet and facet value space that can be reached
via f and result set modifications, which can be
performed via facet paths originating from f .

More precisely, we consider f ’s extended facet tree: For facet f (representing
the query predicate f(x, y)) we use FTe(y) to capture the facet and facet value
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space reachable via f . That is, FTe(y) captures all facet paths that can be used
to modify VR

x (VR). We will now discuss the intuitions behind browsing-oriented
facet ranking and concrete metrics used to measure them.

Small Steps. Users modify the result set until reaching an item of interest.
Given that the facet paths (leading to an item of interest) are unknown and
have yet to be explored, major result modifications that quickly change the
result set are likely to lead to mistakes (i.e., lead to irrelevant results). Via small
result modifications, users get to know the result set bit by bit. These small
changes can be comprehended more easily by users (thus, they are less likely to
choose paths that lead to irrelevant results). We use two metrics to implement
this intuition:

– Maximum Height (h). The maximum height of FTe (i.e., the maximum
edge distance between the root node and a leaf node), directly reflects the
maximum number of possible facet operations. Given the number of current
results are fixed, the higher the number of possible result modifications,
the smaller are the average changes resulting from each result modification.
Thus, the greater the height of FTe of f , the higher we rank f . In our
example, the tree associated with name has height h = 2, while works at
has a tree with h = 3. Thus, we prefer works at w.r.t. height.

– Minimum Branching Factor (b). The branching factor measures the
number of nodes, which FTe has at a particular level. Trees with small
branching factor lead to smaller result modifications, as such trees tend to
be higher. Further, a small branching factor reflects a small number of pos-
sible choices at every level in FTe. Compared to a situation with a larger
number of (necessarily more fine-grained) choices, this situation is easier for
the user to cope with (as it does not require specific knowledge for making
a decision). Therefore, we prefer facets having facet trees associated with a
smaller branching factor. For instance, name and works at have the same
rank in this regard because they have the same branching factor. At every
level of both trees, Susan faces only two choices.

Uniform Steps. We consider query modifications to be non-uniform, when they
have varying impacts on the result set size. More precisely, one query modifi-
cation might strongly favour one particular segment of the result set and dis-
criminate other segments. However, given the lack of precise knowledge about
the item of interest, all results are a priori of equal importance. Thus, it is not
possible to prefer a query modification that leads to a smaller set of results over
another resulting in a larger set of results. Likewise, longer facet paths cannot
be preferred over shorter paths. When browsing, it is hard for users to choose
between these non-uniform query modifications. Such query modifications are
rather confusing and likely lead to irrelevant results. Consequently, trees con-
taining uniform query modification steps shall be preferred. We use metrics as
follows:

– Height Balance (hb). FTe is perfectly height balanced, when all leaves are
of equal edge distance to the root. We define height balance as hb(FTe) =
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c
(distmax(FTe)+ε)−distmin(FTe) , with c being a constant and distmax (distmin)
as maximal (minimal) edge distance from the root to a leaf. A facet with FT ′

e

associated is ranked higher than one with FT ′′
e , iff hb(FT ′

e) > hb(FT ′′
e ). For

instance, the facet tree associated with name is less height-balanced than
the tree associated with works at.

– Facet Value Set (sbfv) and Binding Segment (sbb) Size Balance.
We measure the size balance w.r.t. facet value sets and binding set seg-
ments, which may be reached via FTe. Note that facet value sets are
captured by leaf nodes VL of FTe. Let the leaf VL

max (VL
min) contain the

largest (smallest) number of facet values. The facet value set balance is
sbfv(FTe) = c

(|VL
max|+ε)−|VL

min| , with c being a constant. Further, every re-
finement operation (corresponding to a node Vi ∈ FTe(x)) actually leads
to a binding segment VR

xi
⊆ VR

x . Thus, corresponding to the facet tree, we
have a tree of binding segments. Fig. 2 illustrates the trees of binding seg-
ments corresponding to the facet trees associated with name and works
at. We consider the size of the binding segments at leaf level. For instance,
works at has four binding segments at leaf level ({P1}, . . . , {P4}); name
has {P2, P3} and {P1, P4}. Our variable binding segment size balance is
sbb(FTe) = c

(|VA
xmax

|+ε)−|VA
xmin

| , where c is a constant and VA
xmax

(VA
xmin

)

is the largest (smallest) variable binding segment (at leaf level). While the
binding segment size is perfectly balanced for works at, this is not the case
for name (one segment contains one professor, while the others contain two).

Comprehensible Result Segments. For users who are unfamiliar with a re-
sult set, it is important that a facet operation leads to obvious and comprehensi-
ble result modifications. Each operation should lead to a true result modification,
i.e., an observable result refinement (expansion). Further, different operations
should lead to different result modifications. Our metrics are:
– Binding Distinguishability (d). To assess whether facets lead to an ob-

servable result modification, we use the notion of distinguishability adopted
from [3]. A facet has a high distinguishability, when it leads to facet val-
ues that precisely identify variable bindings. Ideally, leaves VL are associ-
ated with binding segments consisting of exactly one element. Accordingly,
our distinguishability metric is d(FTe) = |VR

x |∑
Vi∈VL |VR

xi
| . For instance, facet

name leads to mary, which is associated with {P1, P4}. Paul is the name
of {P2, P3}. Both pairs of professors share the same name, so it is diffi-
cult for Susan to distinguish them. Using the facet works at, she is able
to distinguish between all four professors, as they work for different uni-
versities. Overall, works at has maximum distinguishability of 1, while the
distinguishability for name is 0.8.

– Minimal Binding Segment Overlap (o). Binding segments with minimal
overlaps are preferred to ensure that facet operations along a tree FTe lead to
different result modifications. Binding set overlap can be computed by con-
sidering the binding segment overlap at leaf level: o(FTe) = |VA

x |
|⋂Vi∈VL VA

xi
|+ε .

In our example, the refinements (name : ann), (name : mary) and (name :
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paul) split the binding set into segments that overlap on {P1} (as P1’s name
includes ann and mary). Refinements via (〈works at, age〉 : 70) etc. split the
binding set into segments with no overlaps. Thus, Susan can observe two sets
of professors, i.e., one set {P2, P4} working at older universities, while the
other set {P1,P3} is associated with younger universities.

4.2 A Browsing-Oriented Ranking Function

We now provide a scoring function S, which incorporates the proposed metrics.
We aim to rank a facet f ∈ F (x), where f represents f(x, y), based on its facet
tree FTe(y). We distinguish facets that correspond to attributes from facets
corresponding to relations.

Definition 5 (Attribute-based Scoring Function). Given an attribute
facet f , its facet tree FTe, the score of f is defined as S(f) =
ag(h(FTe), b(FTe), hb(FTe), sbfv(FTe), sbb(FTe), d(FTe), o(FTe)), with ag as a
monotonic aggregation function.

The set of attribute (relation) facets at level k that can be reached via the facet
tree FT is denoted by FA

f (k) (FR
f (k)). The score of a relation facet f at level k

is computed based on the scores of facets FR
f (k + 1) and FA

f (k + 1).

Definition 6 (Relation-based Scoring Function). Let f be a relation facet
at depth k = 0 and let FA

f (FR
f ) be the set of directly connected attribute (re-

lation) facets (i.e., FA
f (1) and FR

f (1)), kdo is the total edge distance to be con-
sidered, kdid is the edge distance considered so far, and δ(k) is a monotonic
decreasing weight function discounting the score of facets more distant from f ,
then the score of f is recursively computed using the formula (starting at kdid = 1
and kdo ≥ 1):

S(f) =

{
δ(kdid)agfa∈F A

f
S(fa) if kdo = 1

agfr∈F R
f
S(fr)kdo−1,kdid+1 + δ(kdid)agfa∈F A

f
S(fa) otherwise

In the current implementation, ag is a summation. We use kdo = 1, i.e., the score
of a relation facet is simply an aggregation of the scores of reachable attribute
facets.

5 Evaluation

We decided to conduct a task-based evaluation, which has gained acceptance in
the IR community, especially for assessing approaches that go beyond IR-style
document retrieval5. The goal is to find out whether browsing (as supported by
our approach) helps to accomplish a set of predefined tasks (effectiveness) and
how much time is needed (efficiency).

Participants. 24 participants took part in our evaluation: 6 were non-technical
users, while the remaining 18 participants had a computer science background.
5 http://trec.nist.gov/

http://trec.nist.gov/
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All were familiar with faceted search (as used in Web search engines). The par-
ticipants were given an introduction to the system, similar to an available screen-
cast.6

Tasks. 24 tasks were chosen by domain experts and comprised both precise and
fuzzy information needs. Tasks were followed by a series of questions to assess
the user’s understanding and exploration of the result set. A complete listing of
tasks can be found in an extended technical report.7

Data. For the evaluation, we used the (complete) DBpedia dataset, which covers
a large amount of broad-ranging knowledge [6]. DBpedia allowed us to design
evaluation tasks that are not targeted at a particular domain.

System. We made use of the Information Workbench6, a system for interacting
with the Web of data. The proposed faceted search approach was implemented
using Oracle Berkeley DB Java Edition and Apache Lucene, based on the design
and indexes reported in [4,9]. We employed caching strategies to speed up clus-
ter and rank computation and thereby guaranteed a fluent system interaction
during the evaluation. Users were provided with a keyword search interface to
obtain a starting point by typing in keywords. From the initial set of results,
users continued via faceted search, i.e., via browsing, refinement and expansion
operations. Results were visualised as introduced in [24], facets and facet values
were presented as in [10], (extended) facet trees were represented as trees. Due
to space reasons, we had to omit screenshots; however, they are included in our
technical report7. The backend, including the keyword and faceted search mod-
ules, was implemented in Java 6 and the frontend is based on Ajax technologies
running on a Jetty server. Experiments were carried out in a supervised man-
ner on a PC with a T7300 Intel CPU and 4 GB memory, running on Microsoft
Vista. We recorded the search process for each user and task using a screencast
software.

5.1 Extended Facet Tree

Tasks. We prepared four tasks (C1-C4) for investigating the effects of our data
value trees (i.e., data value clustering) on browsing. Task C3 is a precise need
that involves a specific item of interest: ’Related to Berlin, find the Berlin Phil-
harmonic orchestra’. In contrast, the remaining 3 tasks involved fuzzy needs. In
particular, tasks were fuzzy in the sense that the item of interest was specified
imprecisely. Thus, participants had to browse and explore in order to fulfil these
tasks. For instance, consider C2: ’Related to London, find all artists born some
time in November 1972’. Here, participants did not know what kind of artist
or what concrete birthday to look for. The second class comprises eight com-
plex browsing tasks (B1-B8). They have been designed to assess the quality of
browsing based on the facet tree, compared to the baseline featuring a flat facet
list. For accomplishing these tasks, users had to browse several facets to find a

6 http://iwb.fluidops.net/
7 http://www.aifb.kit.edu/web/Misc3004

http://iwb.fluidops.net/
http://www.aifb.kit.edu/web/Misc3004
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Fig. 3. Results of task-based evaluation

suitable facet path (length ≥ 2) for refinement (e.g., B1 ’Related to Paris, find
all works having an actor, who is also a writer’).

Baseline. In order to evaluate faceted search based on our extended facet tree,
we used as baseline an implementation that represents the work in [23,1,19].
That is, browsing was solely based on a flat list of facets that are directly asso-
ciated with the current result set. More precisely, we used two systems: (1) one
system supported browsing on a flat list of facets without data value clustering
and (2) our system that supported browsing based on the extended facet tree.
Further, both systems employed a standard frequency-based ranking [8,20,16].
However, note, we designed clustering (C) and browsing (B) tasks in a way, that
we were able to compare the effects of data value clustering en- or disabled and
facets grouped in lists or trees. More precisely, in order to fulfil C tasks, users
used made only use of a single facet and its associated data value tree or flat
value list. Browsing tasks were designed analogously. Thus, we could observe the
effects originating from facet trees versus lists and data value clustering versus
no clustering.

Effectiveness. We observed that, if users were provided with a precise infor-
mation need, the data value tree had no effect. Fig. 3a illustrates this result
for task C3 – all participants could accomplish their assignment no matter the
system. However, the fuzzier the information need, the more users depend on
browsing the data value tree to solve their tasks (C1, C2, C4). More precisely,
given a fuzzy need such as in C4 (’Related to Hamburg, find all places having
a name starting with [K-U] ’), we observed that without data value clustering,
some users were not able or not willing to fulfil their assignment, because of the
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substantial effort needed. With clustering enabled, participants achieved a high
success rate, as shown in Fig. 3a. This result suggests that extending the facet
tree with data value trees is helpful for browsing, enabling users to handle fuzzy
needs via exploring both facets and facet values using a hierarchical structure.

Further, we observed that no participant managed to complete their browsing
tasks using the baseline (featuring a flat facet list) (Fig. 3b). A number of users
did realise that these complex tasks can solved by executing several searches and
browsing several facet lists. However, they also noticed the substantial time re-
quired and were not willing to complete their tasks (e.g., B3: ’Related to London,
find all works, having as subsequent work a television show’). Using our system
(providing the facet tree for browsing), participants achieved a high overall suc-
cess rate of above 67% (Fig. 3b). This result is promising as all tasks involve
complex information needs that can only be satisfied using complex structured
queries. Participants solved them by exploring facet paths (often path length ≥
3) and combining them in an iterative fashion.

Efficiency. Without data value trees and given fuzzy needs, we observed that,
if participants completed their tasks, they had to use a brute-force strategy
to search through a large set of facet values. The brute-force approach led to
more system interactions and notably higher costs, when compared to our sys-
tem (with data value trees). Fig. 3c shows this effect for C1 (’Related to Paris,
find all places, having names starting with [I-K]’) and C2. Regarding tasks that
involve precise information needs, many participants used search (based on key-
word queries) as a strategy to complete their tasks (e.g., C3). This resulted in a
performance comparable to the use of a data value tree. In fact, we observed our
approach to be slightly more expensive in case of C3 (Fig. 3d), as the browsing
operations performed on the data value tree took more time than search.

Concerning the complex browsing tasks (B1-B8), we already pointed out that
no participant succeeded, when using the baseline (Fig. 3b).

In conclusion, the experimental results suggest that the use of a hierarchical
facet model (like our extended facet tree) improves the efficiency and effective-
ness of the task completion, concerning complex, fuzzy tasks. Search is more
efficient and equally effective, with regard to precise and simple needs only.

5.2 Browsing-Oriented Ranking

Tasks. We prepared 12 tasks, which are divided into two classes: find (F) and
explore (E) tasks. Class F consists of 8 tasks (F1-F8), which involve precise
and fuzzy information needs (e.g., F8: ’Related to Seattle, find some interna-
tional Airport’). Class E (E1-E4) comprises 4 tasks, where users had to explore
a result set (fuzzy need), i.e., find outliers, interesting or strange results (e.g.,
E4: ’Explore interesting entities related to Seattle’). For E tasks, after a time
threshold (5 minutes), users were asked a set of questions, in order to assess the
users’ understanding of the result set. Via these questions, users judged their
understanding of the result set and rated the exploration experience and the
knowledge that they could acquire on a scale from 1 (worst) to 5 (best).



316 A. Wagner, G. Ladwig and T. Tran

Further, we divided the participants into two groups: For F tasks, the first
group performed the tasks via search-oriented ranking, while the second group
used browsing-oriented ranking. Thus, users solved each task only once. This is
crucial, as the knowledge acquired from solving tasks using one system would
impact on experiments with the other system. For E tasks, participants used
both strategies, so that they could compare the exploration.

Baseline. Current ranking approaches are either generic w.r.t. information
needs or assume precise needs. Our work is contrary to the latter approach
and thus we compared our browsing-oriented ranking to such search-oriented ap-
proaches. More precisely, we used the metrics h and d (Section 4) and aggregated
them to capture the intuition behind search-oriented ranking (S). Correspond-
ing to the main idea (i.e., users having complete knowledge and therefore wish
to minimise their search effort), S(ĥ, d̂) aims at reducing the costs for fulfilling
an information need, measured based on the number of refinement and expan-
sion operations [8,3,9]. Thus, minimal tree height h is preferred to minimise the
number of required facet operations. Further, facets should be discriminative,
allowing users to quickly refine a result set. Thus, facets with high distinguisha-
bility score d are preferred. Overall, top-ranked facets aim at enabling users to
perform rapid refinements and thereby reach an item of interest via few facet
operations.

Effectiveness. For comparing the effectiveness of the two ranking strategies,
we compared the average success rate for F tasks and the average browsing
experience rating for E tasks. The results are depicted in Fig. 3d and Fig. 3e.

Concerning the success rate, given fuzzy needs, we observed that via search-
oriented ranking, participants succeeded in tasks, where relatively small result
sets (result size in the order of tens) had to be explored. Here, participants
chose facets for browsing and refinement in a brute-force manner (e.g., F1 ’Re-
lated to Karlsruhe, find some city not located in Germany’, or F3, F4 and F8).
Concerning tasks with larger results (result size in the order of hundreds) and
fuzzy needs, participants were not able to accomplish their assignments (e.g., F5
’Related to Barcelona, find a strange educational institution’, or F6 and F7).

Given precise needs, i.e., participants had precise background knowledge, users
could solve their tasks equally effective with both rankings (e.g., for F2 ’Related
to Karlsruhe, find a close-by airport’ some users knew that particular airport).

Browsing-oriented ranking outperforms the baseline on all tasks, especially
those with large result sets and fuzzy needs. It seemed that for solving these
tasks, users prefer general facets ranked high by the browsing-oriented strategy
(e.g., type or genre), over fine-grained facets ranked high by the search-oriented
strategy (e.g., birthday or name). As participants often had no precise knowl-
edge regarding suitable values for such fine-grained facets (e.g., a specific birth-
day), they were not able to use them for exploration. Further, in many cases we
observed participants using type for their initial exploration. Type helped them
to get familiar with the current result set.
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Concerning E tasks, the proposed ranking also performed well (Fig. 3e). Over-
all, exploration via browsing-oriented ranking was rated between 4 and 4.5,
whereas exploration using search-oriented ranking was rated between 2 and 2.7.

Efficiency. For measuring user effort, we recorded the necessary time for all
relevant system interactions, i.e., browsing, refinement and expansion operations.
The time span for a browsing operation is defined as the time interval from the
completion of the last facet operation, until the user browses to the next node
in the facet tree (or decides to abort browsing). The time span for a refinement
(expansion) operation is defined as the time from the last facet operation, until
the user performs the next refinement (expansion).

On average, users needed 8 seconds for a refinement, 18 seconds for an expan-
sion and 4.4 seconds for a browsing operation. The average time for each F task
is illustrated in Fig. 3f. Note, F tasks that users did not complete for one of the
systems are not shown (F5-F7).

Similar to the effectiveness study, we observed that the amount of results
affects the performance of both strategies. When having a small result set (result
size in the order of tens) and thus few facets, users solved their tasks on average
with equal or less effort via search-oriented ranking (F1-F4). In particular for
F2, users could exploit precise background knowledge (precise need), in order to
refine the results set in an efficient, goal-directed manner. For the tasks F1, F3
and F4, users had few facets and thus were successful in guessing the appropriate
facets that lead to their item of interest. Via browsing-oriented facets, on the
other hand, more refinement and browsing operations were necessary, as high-
ranked browsing-oriented facets restrict the result set in much smaller steps than
search-oriented facets.

However, given fuzzy needs, when facing larger result sets (in the order of
hundreds) and thus more facets, users were not able to guess suitable facets (F5-
F8). More time had to be invested, as facet exploration was mere brute-force.

Thus, we can conclude that while browsing-oriented ranking might not provide
the most efficient way to an item of interest, it is suitable for scenarios with no
precise need and large result sets (thus, large facet and facet value spaces) to be
explored.

6 Conclusion

Current faceted search approaches imply a precise information need and thus,
focus on the search paradigm. We target the browsing paradigm, where users
only vaguely know the domain or item of interest. To this end, we proposed the
extended facet tree, which supports browsing based on a compact and hierarchi-
cal representation of the facet and facet value space. Based on the extended facet
tree, we designed several metrics and incorporated them into a ranking scheme,
which allows users to browse in small and uniform steps leading to observable
and comprehensible result set modifications. We evaluated the proposed rank-
ing and extended facet tree based on experiments with 24 tasks and 24 users.
Our solution clearly outperformed the state-of-the-art on tasks, which involve
fuzzy information needs and require dealing with large number of results. As
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future work, we plan to integrate search- with browsing-oriented solutions, al-
lowing varying types of information needs. In particular, we will study how to
switch between search- and browsing-oriented ranking. Further, we will address
efficiency aspects of the proposed ranking and facet tree computation.
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Abstract. In this paper we introduce a novel and efficient approach to detect 
and rank topics in a large corpus of research papers. With rapidly growing size 
of academic literature, the problem of topic detection and topic ranking has 
become a challenging task. We present a unique approach that uses closed 
frequent keyword-set to form topics. We devise a modified time independent 
PageRank algorithm that assigns an authoritative score to each topic by 
considering the sub-graph in which the topic appears, producing a ranked list of 
topics. The use of citation network and the introduction of time invariance in 
the topic ranking algorithm reveal very interesting results. Our approach also 
provides a clustering technique for the research papers using topics as similarity 
measure. We extend our algorithms to study various aspects of topic evolution 
which gives interesting insight into trends in research areas over time. Our 
algorithms also detect hot topics and landmark topics over the years. We test 
our algorithms on the DBLP dataset and show that our algorithms are fast, 
effective and scalable. 

Keywords: Closed Frequent Keyword-set, Topic Ranking, Citation Network, 
Authoritative Score, Evolution. 

1   Introduction 

The ever growing size of academic literature and fast changing fields of research pose 
a challenging task for a researcher to identify significant topics of research over the 
timeline. Topic discovery has recently attracted considerable research interest [13], 
[14], [15]. In this paper, we propose a novel and efficient method to detect and rank 
research topics. Based on the intuition that a document is well summarized by its title 
and the title gives a good high-level description of its content, we use the keywords 
present in the title of a paper to detect the topics. We form closed frequent keyword-
sets as topics from the phrases present in the titles of papers on a user-defined 
minimum support.  

We propose a time independent, modified iterative PageRank [3] algorithm to 
assign an authoritative score to the papers. For a topic T, we consider all the research 
papers containing that topic and the citation edges of these papers. We then assign an 
authoritative score to each topic using the scores of the papers containing that topic. 
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Our topic ranking algorithm is able to rank the topics based on their significance in 
research community rather than popularity of the topics, which only considers 
frequency of topics. All the papers sharing a topic form a natural cluster. It is to be 
noted that a paper could belong to a number of clusters forming hierarchical, 
overlapping clusters. 

Considering the topics on year-wise granularity, we modeled the evolution of 
topics on timeline. We apply the evolution of the topics for First Topic Detection, 
finding Landmark Topics and Fading Topics. Our algorithms have many applications 
like topic recommendation systems for authors, trend analysis, topic search systems 
etc. We tested our algorithms on the DBLP dataset. Our experiments produced a 
ranked set of topics that on examination by field experts and based on our study 
match the prominent topics in the dataset over the timeline. 

2   Related Work 

Topic extraction from documents has been studied by many researchers. Most work 
on topic modeling is statistics-based like the work by Christain Wartena et al. [6], 
which use most frequent nouns, verbs and proper names as keywords. Our work is 
based on dissociation of phrases into frequent keyword-sets, which as discussed in 
section 2 is very fast and scalable. Topic summarization and analysis on academic 
documents has been studied by Xueyu Geng et al. [10]. They have used LDA model 
to extract topics which needs a pre-specified number of latent topics and manual topic 
labeling. In our study, no prior knowledge of topics is required. The work in [11] uses 
the correlation between the distribution of terms representing a topic and the links in 
the citation graph among the documents containing these terms. We have used 
frequent keyword-sets to form the topics and utilized the citation links to detect 
important topics among the topics derived. 

Clustering documents based on frequent item-sets [1] has been studied in the 
algorithms FTC and HFTC [7] and the Apriori-based algorithm [8]. Both of these 
works consider the documents as bags of words and then find frequent item-sets. 
Thus, the semantic information present in the document is lost. We extract phrases 
from the titles of the research papers and derive its substrings as keyword-sets, 
maintaining the underlying semantics. We have used closed [2] frequent keyword-set 
rather than maximal frequent keyword-set as used by L. Zhuang et al. [9] in their 
work on document clustering. We cannot use maximal frequent keyword-sets as 
topics because then most of the information is lost as it considers only the longest 
possible keyword-set.  

3   Topic Detection and Clustering 

The method proposed by us is based on the formation of keyword-sets from titles of 
the research papers and finding closed frequent keyword-sets to form the topics. 

Definition 1. Phrase: A phrase P is defined as a run of words between two stop-
words. 

Definition 2. Keyword-set: A keyword-set K is defined as an n-gram substring of a 
phrase, n being a positive integer. 
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Definition 3. Closed Frequent Keyword-set: A keyword-set K is said to be frequent if 
its count in the corpus is greater than or equal to a user-defined minimum support 
[12].We define a closed frequent keyword-set as a frequent keyword-set none of 
whose supersets has the same cluster of research papers as it has. 

3.1   Phrase Extraction and Keyword-Set Formation 

Given the title of a research paper Ri, we extract all its phrases Pij, where Pij represents 
its jth phrase. Each research paper Ri is mapped to the corresponding phrases Pij 
present in its title. We reverse map the problem domain, mapping each phrase Pi to 
the research papers Rij it belongs to, in one scan of the dataset. In this domain, each 
phrase will be dissociated into keyword-set only once, giving the frequency of 
keyword-set in the second scan. 

In our approach, we have considered only the substrings of the phrases as keyword-
sets and hence the relative ordering of keywords is maintained, preserving the 
underlying semantics. Each keyword-set thus formed is a semantic unit that can 
function as a basic building block of knowledge discovery and hence is a potential 
topic. As an example of keyword-set extraction, consider the phrase xml data base, 
the potential frequent keyword-sets are the set of all the ordered substrings giving the 
following keyword-sets: (xml, data, base; xml data, data base; xml data base). It is to 
be noted that finding all the substrings requires a simple implementation of queue in 
top-down fashion, taking O(1) time at each level and O(n) time overall. Deriving the 
substrings of a phrase rather than the power set of the keywords in the phrase which 
requires O(n) time instead of O(2n).   

3.2   Closed Frequent Keyword-Sets as Topics 

Frequent keyword-sets are formed on a user-defined minimum support. The supports 
of the keyword-sets are calculated during the generation of the keyword-sets from the 
phrases in the second scan. The length of the list of research papers corresponding to 
a phrase is its support. It is to be noted that in the first scan, we cannot eliminate the 
phrases whose support is less than the minimum support as two or more phrases can 
share the same keyword-set whose combined support might be greater than the 
minimum support. The elimination of non-frequent keyword-sets is done only after all 
the keyword-sets, along with their supports, have been generated in the second scan. 
The algorithm to increment the support and add research papers to a given keyword-
set is shown below: 
 

Procedure 1: Frequent Keyword-set Generation 
Require: phraseKeys PK, minimum support min_sup 
 
1: for each phrase in PK 
2:       keywordSetListKSL= findAllSubstringOf(P) 
3:for each keywordSet K in KSL 
4:       keywordSetCount[K] + = 1; 
5:       add paper R to keywordSetPaperList[K] 
6: for each keywordSet K in keywordSetCount 
7:       if keywordSetCount[K] < min_sup 
8:             delete(keywordSetCount[K]) 

 9:             delete(keywordPaperList[K]) 
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In the procedure 1, all the frequent keyword-sets are derived along with their supports. 
From step 1 to step 5, all the keyword-sets of each phrase are extracted and their 
supports in keywordSetCount and the corresponding paper list in 
keywordSetPaperList are updated. From step 7 to step 9, we remove infrequent 
keyword-sets.  

Traditional association rule mining algorithms like Apriori that require one scan of 
the dataset to calculate the supports of the item-sets at each level take too much time 
and space. In our algorithm, we require only 2 scans of the dataset to calculate the 
supports of all the candidate keyword-sets. Since our algorithm runs in linear time 
compared to exponential Apriori like algorithms, our algorithms are fast and highly 
scalable. Also, in Apriori like algorithms which build higher length item-sets from 
smaller ones, the relative ordering between the item-sets is lost. In our method, 
relative ordering of keywords is maintained preserving the underlying semantic of the 
phrases. 

At this point, we have the frequent keyword-sets.. In our algorithm, we may derive 
non-closed frequent keyword-sets as well. Our topic should consist of the maximal 
number of common keywords present in all the papers in the cluster, so we remove 
the non-closed frequent keyword-sets. Thus, we have closed frequent keyword-sets as 
topics. 

3.3   Clustering Research Papers Based on Topics 

Till now, we have closed frequent keyword-sets as topics which act as the similarity 
measure to cluster the research papers. These topic clusters are complete in the sense 
that we have the maximal length keyword-set shared by all the papers represented by 
that topic. In the mapping keywordSetPaperList, corresponding to each topic, we have 
a list of papers, forming several hierarchical, overlapping clusters. The cluster 
representing a broader topic is essentially a combination of several clusters 
representing its sub-topics. For example, databas is a broad topic and imag databas, 
distribut databas, etc. are its sub-topics. Each level of the hierarchy represents a 
different level of data description, facilitating the knowledge discovery at various 
levels of abstraction.  

4   Ranking of Topics 

Our next step is to order the topics. At this stage, we have a comprehensive list of 
topics from various fields of research and on varied levels of abstraction. For a 
researcher looking for new topics for research, it becomes a very cumbersome task to 
go through the entire list of topics and decide upon which topics are important. 

To determine the importance of a topic, we introduce an approach which is based 
on the intuition that the topic’s importance should be determined by not only its 
frequency in the corpus but also the quality of papers in which the topic lies and 
quality of citations those papers have. To this end, our approach assigns authoritative 
scores [4] to the topics producing a ranked list of topics. For each topic we have a 
cluster of papers in which the topic lies. To find out which papers are of good quality, 
we have developed a time independent, modified PageRank algorithm using the 
citation network of the papers.  
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Definition 4. Citation Graph: We define the citation graph G = (V, E) comprising a 
set V of nodes, which each node Ni representing a research paper Ri and a set E of 
directed edges, with each edge Eij directed from the citing node Ni to the cited node 
Nj.  

Definition 5. Citation Sub-graph: For a topic T, its citation sub-graph GT = (VT, ET) 
comprises the set VT of nodes, where the topic T lies in each node and the edges citing 
these nodes(GT can be collection of many sub-graphs not necessarily a connected-
graph). 

Definition 6. Outlinks: From a given node N, link all the nodes Ni that the node N 
cites. 

Definition 7. Inlinks: To a given node N, link all the nodes Nj that cite the node N. 
The iterative formulae for calculating the PageRank score is: 

      PR(P) =(1-θ)+ θ∗ ∑PR(Pi)/OC(Pi) .                    (1) 
 

Here PR(P) is the PageRank score of the paper P. The PageRank algorithm is 
based on the fact that the quality of a node is equivalent to the summation of the 
qualities of the nodes that point to it. The inlink scores PR(Pi) are divided by OC(Pi) 
which is the number of outlinks of the inlink Pi. This takes care of the fact that if a 
paper cites more than one paper, it depicts that it has drawn inspiration from various 
sources and hence its effect on the score of the paper it cites should diminish by a 
factor equal to the number of paper it cites. The damping factor θ   in the algorithm 
prevents the scores of research papers that do not have any inlinks from falling to 
zero. For the experiments we set the damping factor to 0.85 [3] which gave 
satisfactory results. 

Time Invariant Factor: The basic PageRank algorithm does not take into 
consideration the time factor. It is observed that the newer papers do not get sufficient 
time to be cited compared to the older papers and thus fall behind in the ranking even 
if they are important. To counter this, we introduce a time-dependent metric which 
reduces the bias against the older papers to make the ranking time-independent. This 
metric Average Year Citations Count, AYCC is a time dependent metric and directly 
reflects the varying distribution of citations over the years. We observe that this 
metric captures the time bias against the newer papers well and has high values for 
older papers and low values for newer ones. It is calculated as: 

AYCC(Y) = ∑(PI(PY))/N(PY). (2)

AYCC(Y) is the metric score for year Y. PI(PY) is the inlink count for papers 
published in year Y and N(PY) is the total number of papers published in the year Y. 
Considering the year of publication of all the research papers, we pre-compute the 
total number of citations for each year and the number of research papers published in 
each year. Using them, the average number of citations per paper for each year is 
determined. Its inclusion normalizes the biased distribution of citations on the 
timeline. We use this metric in calculation of the modified PageRank score by the 
following formulae: 
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MPR(P) = (1-θ) + θ ∗ (∑MPR(Pi)/OC(Pi))/AYCC(YP). (3)

The modified PageRank score of paper P, MPR(P) incorporates the metric AYCC 
for its year of publication YP. Till now, we have topic clusters T each consisting of a 
number of research papers RT dealing with research in the field represented by that 
topic. For ranking the topics, we use an authoritative score that takes into account the 
authoritative scores of the individual papers in the cluster. The formulae for topic 
score is as follows: 

TST = (∑MPR(PT))/NT. (4)

The topic score TST of a topic T is the mean of the authoritative scores of all the 
research papers PT present in the topic cluster, where NT is the count of papers in the 
topic cluster T. Our algorithm is able to rank the topics based on their significance, 
considering the citation information as well as eliminating the time bias against the 
newer papers. Thus it is able to detect topics which may not be popular yet but may 
become popular afterwards. This information is not captured if we consider only the 
frequency of topics. For ex, if we analyze year-wise topics in the section 5.3 we find 
mine associ rul as top topic in 1993, which shows that even if it had just emerged and 
had low frequency, it still was a significant topic due to important citations it received 
over the time. 

5   Evolution of Topics 

Every topic has its time-span. Topics evolve over time. It is important for a researcher 
to know how the topics are evolving, which topics are on the surge, which are on the 
decline and so on. Also, since we have the cluster of research papers corresponding to 
each topic and we have the scores of these papers, the papers with high scores can be 
labeled as the important papers of the corresponding topic. Topic evolution has 
following two notions: 

• Topic Year-wise: We assign authoritative scores of all the papers in each topic to 
their year of publication and then calculated the average score of a topic for each 
year. This gives a clear idea how a topic has evolved over the years.  

• Year-wise Topics: We assign each topic’s scores for all the years as calculated 
above and for each year, sort the scores, taking only the top few topics. The 
results give a clear picture of how the top ranked topics vary over the years. 

6   Experiments and Results 

6.1   Dataset Description 

To show the results of our algorithms, we used the DBLP XML Records [5] dataset. 
The DBLP dataset contains information about 1,632,442 research papers from various 
fields published over the years. It is to be noted that the dataset contained papers with 
citation information till the year 2010 only. As part of data pre-processing, the 
keywords present in the titles of the research papers were stemmed using the Porter's 
Stemming algorithm. 
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6.2   Results of Topic Ranking 

An objective and quantitative evaluation of the results obtained is difficult due to the 
lack of standard formal measures for topic detection tasks. But, the ranked list of 
topics produced by our experiments on examination by field experts and based on our 
observations match the prevailing topics in the dataset. We tested our algorithms on 
various values of minimum support. Upon implementing the topic detection 
algorithms with minimum support 100, we obtained 12,057 topics constituting 5,476 
1-length topics, 5,766 2-length topics, 748 3-length topics, 62 4-length topics and 5 5-
length topics. 

In the results, we show only those topics for which the number of papers in their 
cluster is more than a threshold η. This threshold is used so that the clusters suffice a 
minimum number of papers for authoritative score calculation. It should be noted that 
the threshold η considers only those papers in a cluster that have at-least one citation. 
The following table shows the top ten topics, where η = 10. 

Table 1. Top 10 Topics with their Respective Authoritative Scores and Cluster Supports 

Topic Score Support 
congest avoid 0.0791 112 

blind deconvolut 0.0758 152 
learn tool 0.0728 104 

sequenti process 0.0719 112 
trecvid 0.0716 111 

mine associ rule 0.0710 197 
locat system 0.0665 103 

hyperlink 0.0662 200 
automat text 0.0635 121 

large databas 0.0623 346 

We see that the quality of a topic is dependent on both the quality of individual 
papers as well as the number of papers in the cluster. A topic with few but good 
quality papers can have a high ranking. Also, the topics that appear at the bottom of 
the ranking are the ones which have not been/could not be researched much. Some of 
such bottom-ranked topics are radio access, ant coloni optim algorithm, x rai imag, 
ipv6 network, etc. These topics can be of special interest to the new researchers 
looking for new dimensions of research. 

6.3   Evolution of Topics 

Topic Year-wise: The evolution of a topic is informative in itself. We can infer the 
birth of the topic, its period of significant impact and its end. Here, we present two 
graphs for the evolution of some selected topics showing their average and 
cumulative topic scores. 



 An Efficient Algo

 

Fig. 1a. Graph showing ave
topics on year-wise granularity

 
From the above two grap

• If the average score o
but its cumulative sco
good quality papers 
example, from 2005 
better average score 
cumulative score is le
social network was a 
and associ rul were a
was being done on the
need to be considered 

• The significance of th
clear as shown in Fig 
similar to the score o
can be seen that the c
than that of associ ru
similar to associ rul, b

Another aspect of topic evo
topic. These sub-topics sha
we show the evolution of 
distribut databas, web data
sub-topics, at all points, som
it. The topic score gets cont
cluster. Sub-topics like dist
the topics give way to othe
databas and real tim databa

 

orithm for Topic Ranking and Modeling Topic Evolution 

 

erage scores of the 
y 

Fig. 1b. Graph showing cumulative sco
of the topics on year-wise granularity 

 
phs, the following observations were obtained: 

of a topic is higher than that of another topic 
ore is less, it means that the former topic has 
in the cluster though few in number. For 
to 2007, the topic onlin social network has 
than the topics index and associ rul but its 

ess than both of them. This is because onlin 
new-born but significant topic, while index 

already known fields and considerable work 
em. Thus, both average and cumulative scores 
to get a clear picture. 

he topic associ rul between 1993 and 1996 is 
1a by its high average score which becomes 

of index from 1997 onwards. From Fig 1b, it 
cumulative score of index was always higher 
ul. Thus after 1997, the quality of index is 
but it was relatively more popular. 

olution could be studying the evolution of sub-topics o
re a common keyword-subset. In the above graph in Fig
the topic databas along with some of its sub-topics 

abas and real tim databas. As a topic consists of vari
me sub-topics lie above the topic graph while others bel
tribution from all its sub-topics in addition to its own to
trbut databas span a major part of timeline while some

er topics or evolve into other topics as is the case with w
as. 

327 

ores 

of a 
g 2, 
viz. 
ious 
low 
opic 
e of 
web 



328 K. Shubhankar, A. Pr

Fig. 2. Graph showi

Year-wise Top Topics: In
following table shows the to

Table 2. Top

Year Topic 1

1993 mine associ

1994 associ rule 

1995 exchang blind de

1996 data clust

1997 adapt distr

1998 web search e

1999 learn too

2000 instant mes

2001 condit random

2002 stream sys

2003 transact me

2004 imag featu

2005 multi tou

2006 onlin social n

2007 evalu method

2008 distribut sto

2009 fir filter

 
Landmark Topics: We defi
popularity within a short s
associated with a landmark
to be noted that these topic

ratap Singh, and V. Pudi 

 

ing the evolution of databas and some of its sub-topics 

n this case, we compare all the topics for a given year. T
op three topics on year-wise granularity. 

p Three Topics for each Year from 1993 to 2009 

1 Topic 2 Topic 3 

i rule machin learn larg databas 

mine collabor filter wordnet 

econvolut data wareh environ sequenti pattern 

ter access control model data hide 

ribut semi-structur data collabor filter 

engine wireless ad hoc network anatomi 

ol wireless sensor network hyperlink 

ssag xml databas evalu methodolog 

m field dirichlet peer to peer system 

stem cancer classif k anonym 

emori spatial correl automat imag 

ure network program delaitoler network 

ch object orient approach onlin social network 

network internet access cyberspac 

dology multimod interact boltzmann machin 

orage trecvid buffer manag 

r vision system web portal 

ine landmark topics as those topics which gained extre
pan of their emergence in the research domain. The y
k topic is the year in which the topic first emerged. I
cs may not span sufficient number of papers but still 

The 

eme 
year 
It is  
our 



 An Efficient Algorithm for Topic Ranking and Modeling Topic Evolution 329 

time-independent modified PageRank algorithm is able to derive these topics. The 
following table shows the landmark topics that have emerged in the last fourteen 
years: 

Table 3. Landmark Topics that Emerged Between 1996 And 2009 

Year Landmark Topics 
1996 java data cube visual cryptographi 
1997 xml firewall robocup 
1998 web search engin mobil ad hoc network cellular neural network 
1999 xml base sensor network dynam web 
2000 mine frequent pattern e busi open sourc softwar 
2001 multipath rout intuitionist fuzzi set multi hop wireless network 
2002 pagerank agil method mobil learn 
2003 gpu microarray gene express spam filter 
2004 blog bpel multiplay onlin 
2005 bit torr cross layer design 3d face recognit 
2006 cell broadband engin folksonomi web 2 0 
2007 social media ieee 802 16e time delai system 
2008 cuda cloud comput Svc 
2009 microscopi imag schrodinger equat reson tunnel 

7   Conclusion and Future Works 

In this paper, we proposed a method to derive topics, cluster papers into these topics 
and rank the topics using the authoritative scores of the constituent papers calculated 
by our time independent modified iterative PageRank algorithm. The topics were 
identified by forming closed frequent keyword-sets as proposed by our algorithms, 
which works better than traditional approaches like Apriori. We also studied the 
evolution of topics over time. We also analyzed the results of topic ranking and 
evolution of topics in detail.  

As mentioned above, our algorithms have a variety of applications. In future, we 
would like to build topic recommendation systems. We would also like to examine 
statistical approaches for topic correlation and explore other domains like web site 
clustering, document clustering, etc. in which our algorithms can be applied.   
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Abstract. A huge portion of today’s Web consists of web pages filled
with information from myriads of online databases. This part of the Web,
known as the deep Web, is to date relatively unexplored and even major
characteristics such as number of searchable databases on the Web or
databases’ subject distribution are somewhat disputable. In this paper,
we revisit a problem of deep Web characterization: how to estimate the
total number of online databases on the Web? We propose the Host-IP
clustering sampling method to address the drawbacks of existing ap-
proaches for deep Web characterization and report our findings based on
the survey of Russian Web. Obtained estimates together with a proposed
sampling technique could be useful for further studies to handle data in
the deep Web.

Keywords: deep Web, web databases, web characterization, DNS load
balancing, virtual hosting, Host-IP clustering, random sampling, national
web domain.

1 Introduction

The deep Web, the huge part of the Web consisting of web pages accessible
via web search forms (or search interfaces), is poorly crawled and thus invisi-
ble to current-day web search engines [13]. Though the problems with crawling
dynamic web content hidden behind form-based search interfaces were evident
as early as 2000 [6], the deep Web is still not adequately characterized and its
key parameters (e.g., the total number of deep web sites and web databases,
the overall size of the deep Web, the coverage of the deep Web by conventional
search engines, etc.) can only be guessed.

Until now only a few efforts on the deep Web characterization have been
done [6,9,16] and, more than that, one of these works is a white paper, with all
findings obtained by using proprietary methods. Two other surveys, while being
methodologically sound and reproducible, have inherent limitations due to the
random sampling of IP addresses (rsIP for short) approach used in them. The
most serious drawback of the rsIP method is the neglect of virtual hosting, i.e.,
a common practice of sharing one web server by multiple web sites. One of the
largest European web hosting companies, OVH, with its 65,000 servers hosting
over 7,500,000 sites1 can be an example of actual ratios of web sites to servers
1 See http://www.ovh.co.uk/aboutus/ovh_figures.xml (retrieved in May 2010).

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 331–340, 2011.
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on the Web. The rsIP, however, usually detects from only one to three web sites
per a server and ignores the rest, regardless of the actual number of sites on the
server. In the context of deep Web characterization, ignoring the virtual hosting
factor means that a portion of web sites (hosted on servers with sampled IP
addresses) is overlooked, making the estimates obtained in the abovementioned
surveys seriously biased.

Our contributions. We propose a novel method for sampling the deep Web,
the Host-IP cluster sampling technique. Our approach is based on the idea of
clustering hosts sharing the same IP addresses and analyzing “neighbors by IP”
hosts together. Usage of host-IP mapping data allows us to address drawbacks of
the rsIP used in previous deep Web surveys, specifically to take into account the
virtual hosting factor. While we designed the proposed method for the survey of
deep web resources on a national segment of the Web, it could also be applied
to more general characterization studies of the entire Web.

Experimental results. To validate our technique, we applied the proposed ap-
proach to study the Russian segment of the deep Web. We used over 670,000
hostnames to generate around 80,000 groups of hosts which were then sampled,
crawled and examined for the presence of search forms. Based on the results of
sample analysis, we obtained statistically significant estimates for the total num-
ber of deep web sites and web databases in the Russian Web. We also compared
our technique with the rsIP method and observed that the rsIP applied to the
same data would result in substantial underestimations, e.g., would detect less
than a third of deep web resources. Additionally, we demonstrated the magni-
tude of virtual hosting by reviewing previous web surveys (Section 2) and by
resolving over 670,000 hostnames to their IP addresses (Section 5).

The next section gives a background on methods to characterize the deep
Web. In Sections 3 and 4 we present our approach, the Host-IP cluster sampling
technique. In Section 5 we report the results of the survey and compare the
proposed method with the rsIP method. We then outline prior works and briefly
discuss some of our findings in Section 6. Finally, Section 7 concludes the paper.

2 Background: Deep Web Characterization

Existing attempts to characterize the deep Web [6,9,16] are based on two meth-
ods originally applied to general Web surveys: namely, overlap analysis [7] and
random sampling of IP addresses [12]. The first technique involves pairwise com-
parisons of listings of deep web sites, where the overlap between each two sources
is used to estimate the size of the deep Web (specifically, total number of deep
web sites) [6]. The critical requirement to listings be independent from one an-
other is unfeasible in practice; making the estimates produced by overlap analysis
seriously biased. Additionally, the method is generally non-reproducible.

Unlike the overlap analysis the second technique, the random sampling of
IP addresses technique (rsIP), is easily reproducible and requires no pre-built
listings. The rsIP estimates the total number of deep web sites by analyzing a
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sample of unique IP (Internet Protocol) addresses randomly generated from the
entire space of valid IPs and extrapolating the findings to the Web at large.
Since the entire IP space is of finite size and every web site is hosted on one
or several web servers, each with an IP address2, analyzing an IP sample of
adequate size can provide reliable estimates for the characteristics of the Web in
question. In [9], one million unique randomly-selected IP addresses were scanned
for active web servers by making an HTTP connection to each IP. Detected web
servers were exhaustively crawled and those hosting deep web sites (defined as
web sites with search interfaces, or search forms, that allow a user to search in
underlying databases) were identified and counted.

Unfortunately the rsIP approach has several limitations. The most serious
drawback is ignoring virtual hosting, i.e., the fact that multiple web sites can
share the same IP address. This leads to ignoring a certain number of sites,
some of which are apparently deep web sites. The reverse IP procedure (applied
to obtain a hostname based on an IP address) typically identifies one or two
web sites hosted on a given IP, while hosting a lot of sites on the same IP is a
common practice. As an example, according to [1], 4.4 millions of IP addresses
hosted almost 50 millions of hosts in April 2004 or, on the level of national
domains, 640 thousands of second-level domain names in .RU and .SU zones
resolved to 68 thousands of IPs in March 2007 (see the survey at http://www.
rukv.ru/runet-2007.html).

Another factor overlooked by the rsIP method is DNS load balancing, i.e., the
assignment of multiple IP addresses to a single web site. For instance, Russian
news site newsru.com mapped to three3 IPs is three times more likely to appear
in a sample of random IPs than a site with one assigned IP. Since the DNS load
balancing is the most beneficial for popular and highly trafficked web sites we
expect that the bias caused by the load balancing is less than the bias due to
the virtual hosting. Indeed, according to the SecuritySpace’s survey as of April
2004, only 4.7% of hosts had their names resolved to multiple IP addresses [2],
while more than 90% of hosts shared the same IP with others [1].

To summarize, the virtual hosting cannot be ignored in any IP-based sampling
survey. Next we propose a new sampling strategy to address these challenges.

3 Our Approach

Real-world web sites are hosted on several web servers, share their web servers
with other sites, and are often accessible via multiple hostnames. Neglecting these
issues makes estimates produced by IP-based or host-based sampling seriously
biased.

The clue to a better sampling strategy lies in the fact that hostname aliases for
a given web site are frequently mapped to the same IP address. In this way, given

2 An IP address is not a unique identifier for a web server as a single server may use
multiple IPs and, conversely, several servers can answer for the same IP.

3 Here and hereafter if not otherwise indicated, resolved in May 2010.

http://www.rukv.ru/runet-2007.html
http://www.rukv.ru/runet-2007.html
newsru.com
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a hostname resolved to some IP address, we can identify other hostnames poten-
tially pointing to the same web content by checking other hostnames mapped to
this IP. It is interesting to see here a strong resemblance to the virtual hosting
problem, where all hosts sharing a given IP address have to be found. Assuming
a large listing of hosts is available, we can acquire the knowledge about which
hosts mapped to which IPs by resolving all hostnames in the listing to their cor-
responding IP addresses. Technically, such massive resolving of available hosts
to their IPs is essentially a process of clustering hosts into groups, each including
hosts sharing the same IP address. Grouping hosts with the same IPs together
is quite natural because it is exactly what happens on the Web, where a web
server serves requests only to those hosts that are mapped to a server’s IP. Once
the overall list of hosts is clustered by IPs we can apply a cluster sampling strat-
egy, where an IP address is a primary sampling unit consisting of a cluster of
secondary sampling units, hosts.

Our Host-IP approach addressing all the drawbacks described in the previous
section consists of the following major steps:

– Resolving, clustering and sampling: resolve a large number of hosts relating
to a studied web segment to their IP addresses, group hosts based on their
IPs, and generate a sample of random IP addresses from a list of all resolved
IPs.

– Crawling: for each sampled IP crawl hosts sharing a sampled IP to a pre-
defined depth. While crawling new hosts (which are not in the initial main
list) may be found: those mapped to a sampled IP are to be analyzed, others
are analyzed if certain conditions met (see Section 4.2).

– Deep web site identification: Analyze all pages retrieved during the crawling
step and detect those with search interfaces to databases.

One can notice the principal difference between a sample unit of the rsIP method
and a sample unit of the Host-IP approach. While all sampling units (IPs) in
the rsIP are fully identical among each other, a sample of units in the Host-IP
is heterogeneous. Indeed, in the Host-IP method there is an associated clus-
ter of hosts for every sampled IP, and these clusters vary in size. Therefore,
it could be useful to stratify, i.e., divide the resolved list of IP addresses into
several non-overlapping parts (strata) and then deal with each part indepen-
dently. The reasoning behind such separation is a reasonable assumption that
deep web sites are more likely to be found within groups of hosts of certain sizes.
If so, it might be beneficial to study groups with a few hosts separately from
groups including hundreds of hosts. Another support for stratification is in the
fact that IP addresses referred to a large number of hosts are good indicators of
server hosting spam web sites [10] and, hence, deep web sites are less likely to
be found among such IPs. Yet another reason is to actually verify whether deep
web sites are running on servers hosting only a few sites. Anyhow, we note that
the stratification itself is only a supplemental step and can easily be omitted.
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4 Host-IP Cluster Sampling

In this section we give the schematic description of the Host-IP cluster sampling
technique. The detailed description can be found in [15].

4.1 Dataset Preparation and Sampling

The steps for dataset preparation, clustering and sampling are as follows:

1. Obtain a set of unique host-IP pairs by resolving an available set of hosts to
their IP addresses.
2. Remove host-IP pairs with invalid IP addresses.
3. Divide a set of host-IP pairs into two subsets S and S∗: S, which is used for
clustering at step 4, has exactly one host-IP pair for each host and S∗ includes
all remaining pairs. Such separation allows us to avoid dealing with the DNS
load balancing factor at the next clustering and sampling steps.
4. Group host-IP pairs in S by IPs and (optionally) stratify groups obtained by
their sizes. Host-IP pairs with the same IP form a group. As a result, we obtain
N groups, where N is the number of unique IP addresses among the pairs in S.
Denote a set of all unique IPs in S as I and a set of all hosts in S as H . The
number of pairs in a group (or in other words the number of hosts sharing a
given IP) defines the group size and can be used as the stratification parameter.
5. Randomly select n IPs from I or, if stratified, for each stratum randomly
select nk IPs from Ik.

Now obtained sample (or, if stratified, samples) of IPs can be processed according
to the crawling strategy presented next.

4.2 Crawling Strategy

Each IP in a given sample is processed independently from other IPs in this
sample. The steps of the algorithm to crawl hosts (secondary sampling units)
associated with a sampled IP are:

1. For each sampled IP ip, ip ∈ I(Ik) extract from S(Sk) a set of hosts Hip

sharing ip.
2. Each host in Hip is crawled to a predefined depth. Crawling (i.e., following
links) is done selectively: a link leading to a host that belongs to H \ Hip is
not followed to not violate the sampling procedure. All other links are followed.
Since it is expected that H has no full coverage of the studied web segment, we
pay special attention to hosts out of H . So, while crawling hosts in Hip, we add
all unknown hosts to a set of hosts Hu

ip, i.e., Hu
ip ∩H = ∅.

3. After completion of crawling Hip we proceed to crawl all hosts in Hu
ip to a

predefined depth. Similar to the previous step following links is selective. A link
to a host h′ is followed only if h′ /∈ H \ Hip and (h′ is in Hu

ip ∪ Hip or h′ is a
subdomain of one of the hosts in Hu

ip ∪Hip or h′ is resolved to ip). Unlike step
2 unknown hosts are not collected anymore.

After last IP in the sample is crawled, all pages retrieved are inspected according
to the identification process revealed in the next section.
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4.3 Deep Web Site Identification

All pages retrieved during the crawling step are analyzed for the presence of
search forms (interfaces to web databases). In order to consider just unique
search forms, pages with duplicated forms are removed. At the start, we exclude
pages without web forms and then, based on the methodology described in [14],
pages with non-searchable forms (i.e., forms that are not interfaces to databases
such as forms for site search, navigation, login, registration, subscription, polling,
posting, etc.). Identified pages with search interfaces are then grouped by their
web sites. Web sites with two or more search forms are additionally studied to
determine how many web databases are actually accessible via a particular site.

4.4 Estimates for Total Number of Deep Web Sites and Databases

Let Nk and nk represent the total and sampled numbers of IP addresses of
the k-th stratum correspondingly and hki the number of hosts on the i-th IP
(1 ≤ i ≤ Nk) of the k-th stratum. The total number of hosts in stratum k is
Hk =

∑Nk

i=1 hki, and the number of analyzed (sampled) hosts in stratum k is hk =∑nk

i=1 hki. Let ski (dki) denote the number of deep web sites (databases) detected
among the hosts on the i-th IP of stratum k. ski(dki) = 0 if no deep web sites
(databases) are detected, ski(dki) > 0 otherwise. Then, according to Chapter
12, p.116 of [17], the estimate for the total number of deep web sites (databases)
in the k-th stratum Ŝk (D̂k) is: Ŝk = Hk

hk

∑nk

i=1 ski

(
D̂k = Hk

hk

∑nk

i=1 dki

)
.

The estimator of the variance of Ŝk is given by

v̂ar(Ŝk) =
nk(Nk − nk)H2

k

Nk(nk − 1)h2
k

nk∑
i=1

(ski − hki

∑nk
i=1 ski

hk
)2 (1)

The estimator of the variance of D̂k is identical to (1) except that all ski in the
formula should be replaced with dki. The approximate 95% confidence interval
for the total number of deep web sites (databases) in the k-th stratum is provided

by Ŝk ± t

√
v̂ar(Ŝk)

(
D̂k ± t

√
v̂ar(D̂k)

)
, where t is the upper 0.025 point of

Student’s t distribution with nk −1 degrees of freedom. Finally, the approximate
95% confidence interval for the total number of deep web sites (databases) in all
strata is

L∑
k=1

Ŝk ± t

√√√√ L∑
k=1

v̂ar(Ŝk)

⎛⎝ L∑
k=1

D̂k ± t

√√√√ L∑
k=1

v̂ar(D̂k)

⎞⎠ , (2)

where L is the number of strata.

5 Experiments

For our experiments conducted in September 2006 we used two lists of hostnames
from datasets “Hostgraph” and “RU-hosts”. We merged them into one list of
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Table 1. Number of IP addresses and hosts (total and sampled) in each stratum

Strata Num of IPs: Num of
sampled IPs:

Num of hosts: Num of
sampled hosts:

Stratum 1 (S1) 71486 964 112755 1490

Stratum 2 (S2) 5390 100 86829 1584

Stratum 3 (S3) 1860 11 472474 3163

unique hostnames. Next, following the methodology described in Section 4.1, we
built the dataset for our survey. We resulted in 717,240 host-IP pairs formed by
672,058 unique hosts and 79,679 unique IP addresses. These numbers specifically
show us that DNS load balancing has a modest influence – only 5.4% (36,349)
of hosts are mapped to multiple IPs, while most hosts, 94.6% (635,709), are
resolved to a single IP address. At the same time, the compiled dataset gives
yet another support for the magnitude of virtual hosting: there are, on average,
nine hosts per one IP address4. 77.2% (553,707) of all hosts in the dataset share
their IPs with at least 20 other hosts.

After exclusion of ’redundant’ host-IP pairs from the overall set (step 3 of
Section 4.1), we left with 672,058 host-IP pairs (672,058 unique hosts on 78,736
unique IP addresses) in the main set S and with 45,182 host-IP pairs in the
’redundant’ set S∗.

We then clustered 672,058 host-IP pairs by their IPs and, in a such manner,
got 78,736 groups of pairs, each having from one to thousands of hosts. We
formed three strata using the following stratification criteria: Stratum 1 (S1)
included those host-IP pairs which IP addresses are each associated with seven
or less hostnames, groups of size from 8 to 40 inclusive formed Stratum 2 (S2),
and Stratum 3 (S3) combined groups with no less than 41 hosts in each. 8 and
41 were chosen to make S1 contain 90% of all IP addresses and to put 70% of all
hosts into S3. Table 1 presents the numbers of IP addresses and hosts in each
stratum. One can particularly observe that S3 comprises 70% (472,474) of all
hosts and only 2% (1,860) of all IP addresses.

We randomly selected 964, 100 and 11 primary sampling units (IP addresses)
from S1, S2 and S3 correspondingly. It resulted in 6,237 secondary units (hosts)
in total to crawl (see also Table 1 for numbers across strata). Hosts of every
sampled IP were crawled to depth three5 as described in Section 4.2.

We calculated the estimates for the total numbers of deep web sites and
databases and their corresponding confidence intervals according to the formulas
given in Section 4.4. The final results are presented in Table 2. The ’Num of all ’
column shows (in italic) the numbers of deep web sites and web databases that
were actually detected in strata. However, not all of them were appeared to be
Russian deep web sites. In particular, several sampled hosts in .RU were in fact
redirects to non-Russian deep web resources. Another noticeable example in this
category was xxx.itep.ru, which is one of the aliases for the Russian-mirror of

4 A host resolved to multiple IPs is counted for each corresponding IP.
5 Discussion on crawling depth value is given in [3].

xxx.itep.ru
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Table 2. Approximate 95% confidence intervals for the total numbers of deep web
sites (dws) and web databases (dbs) in each stratum and in the entire survey

Strata Num of all: Num of Russian: Num of Russian,
corrected:

dws dbs dws dbs dws dbs

Stratum 1:
- Detected in sample 80 131 72 106 61.2 86.7
- Conf. interval, [103] 6.0±1.4 9.9±3.6 5.4±1.3 8.0±2.8 4.6±1.2 6.6±2.1

Stratum 2:
- Detected in sample 38 46 38 46 36.1 44.1
- Conf. interval, [103] 2.1± 0.7 2.5± 1.1 2.1± 0.7 2.5± 1.1 2.0± 0.7 2.4± 1.1

Stratum 3:
- Detected in sample 64 87 55 68 51.2 62.6
- Conf. interval, [103] 9.6±3.4 13.0±5.5 8.2±3.5 10.2±3.5 7.6±3.6 9.3±3.9

Survey total, [103] 17.7±3.7 25.4±6.5 15.7±3.7 20.7±4.4 14.2±3.8 18.3±4.4

arXiv (http://arxiv.org/), an essentially international open e-print archive.
We excluded all such non-Russian resources and put the updated numbers in
the ’Num of Russian’ column. We also examined each deep web site on its
accessibility via host(-s) on IP(-s) different from a sampled IP (a corresponding
weight should be assigned to a deep web resource accessible via hosts on two or
more IPs [15]) and aggregated the numbers in the ’Num of Russian, corrected ’
column of Table 2.

The survey results, the overall numbers of deep web sites and web
databases in the Russian segment of the Web as of September 2006
estimated by the Host-IP clustering method are 14,200±3,800 and 18,300±
4,400 correspondingly.

5.1 Comparison: Host-IP Clustering Method vs. rsIP Method

To compare the Host-IP method with the rsIP we used the list of Russian deep
web sites detected by the Host-IP technique, namely, 72, 38 and 55 deep web
sites found in samples of S1, S2 and S3 correspondingly (see the ’Num of Rus-
sian dws ’ column in Table 2). We compiled the list of IP addresses on which
these sites are running (multiple IPs were added for those mapped to multiple
IPs) and then applied the rsIP method to the list. The results are summarized
in Figure 1, where the left chart shows how many deep web sites within each
specified group of sampled hosts were detected by the Host-IP and rsIP meth-
ods, and the right chart depicts the overall estimates produced by both methods
for the numbers of deep web sites in each stratum and in total. For instance,
the rsIP and Host-IP applied to hosts (of sample S1) sharing their IP with one
or two other hosts detected 10 and 15 deep web sites correspondingly. The out-
come is quite expectable while deep web sites of S3 were mostly undetectable
by the rsIP method, around two thirds of deep web resources in S1 and one
third of resources in S2 were successfully recognized by the rsIP. The interesting

http://arxiv.org/


Sampling the National Deep Web 339

0 10 20 30 40
Num of deep web sites

S1: not sharing
S1: with 1-2 other hosts

S1: with 3-6 hosts
S2: with 7-9 hosts

S2: with 10-18 hosts
S2: with 19-39 hosts

S3: with 40-214 hosts
S3: with 215-558 hosts

S3: with 559 and more hosts

S1 S2 S3 Total
0

2000

4000

6000

8000

10000

12000

14000

N
um

 o
f 

de
ep

 w
eb

 s
it

es

rsIP
Host-IP

Fig. 1. Comparison of rsIP and Host-IP methods: (left) numbers of deep web sites
detected in samples of strata (S1,S2,S3) among different types of hosts by rsIP and
Host-IP; (right) numbers of deep web sites for each stratum and in total estimated by
rsIP and Host-IP.

observation is that the rsIP is not efficient even for the hosts not sharing their
IPs - 13 out of 43 deep web sites were overlooked by the rsIP6 (see Figure 1(left)).

The factual estimates (approximate 95% confidence intervals) for the overall
number of Russian deep web sites derived by the Host-IP and rsIP methods on
the same IP list are 15,700±3,700 and 4,500±1,200 correspondingly. The rsIP
approach therefore missed approximately seven out of ten deep web resources. In
this way, the rsIP (used in previous deep Web characterization efforts) applied
to our dataset would be resulted in the estimates that are 3.5 times
smaller than the actual figures. The main impact to this difference is due to
S3 with more than a half of all Russian deep web sites (8,200 out of 15,700), which
are almost completely undetectable by the rsIP approach (see Figure 1(right)).

6 Related Work and Discussion

In Section 2, we mentioned existing deep Web surveys and discussed their limi-
tations, where the most serious one is ignoring the virtual hosting factor. Several
studies on the characterization of the indexable Web space of various national
domains have been published (e.g., [5,11,18]). The review work [4] surveys several
reports on national Web domains, discusses survey methodologies and presents a
side-by-side comparison of their results. The idea of grouping hosts based on their
IP addresses was used by Bharat et al. [8] to identify host aliases (or mirrored
hosts according to Bharat’s terminology). At the same time, we are unaware of
any web survey study based on the Host-IP clustering approach.

One of the most surprising results in our survey is the fact that around a half
of all deep web sites are hosted on IP addresses shared by more than 40 hosts
(see ’S3’ row of Table 2). It is somewhat unexpected since a deep web site serves
dynamic content and thus normally requires more resources than an ordinary
web site. Common sense suggests that a dedicated server (i.e., a server hosting
from one or two to perhaps dozens of hosts, most of which are aliases) would be
a better alternative for hosting a web site with database access. Nevertheless, it
gives us just another strong justification for taking into consideration the virtual
hosting factor.
6 Empty results of reverse IP resolving were the reasons of overlooks.
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7 Conclusions

We described a new sampling strategy, the Host-IP cluster sampling, that ad-
dresses drawbacks of previous deep Web surveys and accurately characterizes a
large national web domain. We demonstrated the magnitude of virtual hosting
and showed the consequences of ignoring it on a real dataset. We also compared
our approach with the rsIP technique used in previous deep Web characteriza-
tion studies and showed that the rsIP estimates for total number of deep web
sites and databases are highly underestimated. Finally, we conducted the survey
of Russian deep Web and estimated, as of September 2006, the overall number
of deep web sites in the Russian segment of the Web as 14,200±3,800 and the
overall number of web databases as 18,300±4,400.
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Abstract. A number of methods have been proposed for detecting spam
reviews in order to obtain credible summaries. These methods, however,
could not be uniformly applied to various forms of reviews and are not
suitable for a product or service which has been evaluated by few review-
ers. In this paper, we propose a bipartite graph model of review sites and
a mutually reinforcing method of summarizing evaluations and detecting
anomalous reviewers. Our model and method can be applied to reviews
of various forms, and is suitable for a subject with few reviewers. We
ascertain the effectiveness of our method using reviews of three forms on
Yahoo! Movie web site.

Keywords: graph model, mutually reinforcing, anomally detection.

1 Introduction

There are a number of Web sites publish user reviews about various kinds of
target objects including products or services. Reviews can be various forms such
as binary evaluation (i.e. good or bad), a single score, a vector representing scores
of multiple aspects, and sentences. For example, in Amazon.com1, a reviewer can
submit a single score and a few sentences to evaluate a product. Such review sites
have been considered as an important tool to help both consumers and vendors to
make decisions. A consumer can find a better product reading product reviews on
Amazon.com and vendors can obtain feedback about their products and services
from review sites in order to utilize that for marketing. A summary of reviews
about a target object could be useful for making decisions particularly because
the summary enables us to understand semantic orientations without reading
all the reviews. In fact, most of review sites provide a summary of reviews. A
typical summary is the average of scores assigned by reviewers.

In summarizing reviews about a target object treating all reviews equivalently
is inappropriate approach for these methods, because some malicious reviewers
would bring a biased view deliberately for their benefit and some reviewers would
� Research Fellow of the Japan Society for the Promotion of Science.
1 http://www.amazon.com/
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provide too specialized opinions to be referred by common people. Such reviewers
are called anomalous ones, while malicious reviewers are called spam reviewers.
An example of anomalous but not spam reviewers is experts about a product.
Their opinions are often significantly useful for another expert, although they
can be inappropriate for common people. For example, if a common person
desires to buy a digital camera for daily use, then reviews of common people are
more suitable than those of experts; a digital camera recommended by experts is
often too expensive for common people. Therefore, detecting anomalous reviews
or reviewers is useful for summarizing reviews. A number of methods have been
proposed for detecting anomalous reviews or reviewers.[4,1,5] However, most of
these methods have the following three problems.

Problem 1: These methods have been developed independently of methods
for summarizing reviews; consequently, they could not fully utilize the rela-
tionship between anomalous reviewers and the summary of reviews.
Problem 2: Ideas used for detecting anomalous reviewers depend on each
of forms of reviews; it is desired that an idea applicable to all the forms
uniformly.
Problem 3: These methods requires a large amount of training data for de-
tecting anomalous reviewers if a target object has few reviews.

Problem 3 is important for a new product or movie because the people expe-
rienced them might be very few and old training data might be useless due to
completely new topics in them.

In this paper, we propose a novel model and method in order to dissolve the
three problems. First, our model is a bipartite graph model of reviewers, prod-
ucts or services, and evaluations. Evaluations are allowed to be quantified in any
forms and tied to edges in our model. In addition, a bipartite graph model can
treat all evaluations of a reviewer or all evaluations to a target object with its ad-
jacency. Thus, this model is suitable to treat both detecting anomalous reviewers
and summarizing reviews uniformly. Second, our method is a mutually reinforc-
ing method of summarizing reviews and detecting reviewers. In the proposed
method, we use a mutually reinforcing relation which is the relation that two
properties reinforce each other by the supports: what has property a is supported
by what has property b and what has property b supports what has property
a. We name the analysis using this relation as a mutually reinforcing analysis.
Using a mutually reinforcing relation, we can treat both detecting anomalous
reviewers and summarizing reviews uniformly. HITS [3], the method of discov-
ering authoritative web pages (authorities) and the pages containing many links
to them (hubs), is regarded as a mutually reinforcing analysis because links rep-
resent supports and there is a mutually reinforcing relation between authorities
and hubs: a good authority is linked by many good hubs and a good hub links
to many good authorities. Existing mutually reinforcing analyses express each
property in real numbers. However, evaluations can be also quantified in more
intricate forms, such as vectors and distributions. Thus, we propose a mutually
reinforcing method which has applicability to any forms of quantified evalua-
tions. Additionally, our method is unsupervised and need no training data. Even
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if a target object has few reviews, our method can detect anomalous reviewers
using both reviews in a target object and those in other objects.

We ascertain the effectiveness of our method using reviews of three form and
the situations in which there are some objects reviewed by few reviewers. In
the result, our method can detect anomalous reviewers and create more credible
summary than the average of reviews even if the target object has few reviewers.

2 Related Work

Our detection of anomalous reviewers is included in anomaly detection. While
we described in Section 3, we use contextual anomalies to detect anomalous
reviewers. The context we use is a reviewed object and we detect anomalous
reviewers among those giving a review of the object. Some existing studies have
examined contextual anomaly detection on a graph modeling target data. In a
bipartite graph, Sun et. al [7] define the similarity of nodes and detect anomalous
nodes among those which are adjacent to a given node. Wang et. al [8] detects a
context and anomalies in that context in data set. While they use the similarity
of nodes for detection, we use quantified evaluations tied to edges. In addition,
each method use only real numbers in detection, but our method can use other
forms of feature amounts, such as a vector and a distribution.

Some existing studies define spam reviews or spam reviewers and detect those
reviews or reviewers. Lim et. al [4] propose four models based on their behavior of
rating evaluations and reviews and detect spam reviewers using them. Jindal et.
al [1] classify spam reviews into three types, and detect each type of spam using
various models. Liu et. al [5] define the quality of product reviews and detect
those of low quality. They also apply the proposed detection method as a filtering
method to refine a summary of product reviews. Anomalous reviewers we detect
include spam reviewers. In addition, we detect reviewers who evaluate differently
from common people such as experts of reviewed objects. We consider it suitable
that such reviews have a less power in a summary of reviews for common people.

3 Proposed Method

3.1 Bipartite Graph Model for Review Analysis

Our graph model for review analysis has two kinds of instances; subject and ob-
ject. A subject belongs to a group in which instance gives evaluations. In typical
review sites, reviewers are included in this group. On the other hands, an object
belongs to a group in which instance is evaluated. For example, products and
services are included in this group. For summarizing evaluations and detecting
anomalous subjects, we assume that each evaluation is given to one object by
one subject. On this assumption, we can model review data as a bipartite graph
G(VS , VO, E) which can express those subset of evaluations with its adjacency.
The notation of VS , VO, E are defined as shown below:
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VS = {p} : set of the nodes which represent subjects,
VO = {q} : set of the nodes which represent objects,
E = {(p, q)} : set of the edges which represent evaluations.

In those expressions, (p, q) is generated and tied to quantified evaluation Dpq if
p evaluates q. Dpq is allowed to be any forms, such as a real number, a vector,
and a distribution expect that Dpq is the same form in ∀p and ∀q.

3.2 Mutually Reinforcing Analysis

On the graph model explained in Section 3.1 we summarize evaluations and
detect anomalous subjects uniformaly. When we analyze a graph model, we
give each node of VS and VO a feature amount based on a mutually reinforcing
relation among subjects and objects, as described below.

– an anomalous subject gives an extremely different evaluation from a sum-
mary of evaluations to each of many objects,

– a summary of evaluations is similar to evaluations of many normal subjects.

Based on that mutually reinforcing relation, we give a subject p a feature amount
xp of real number representing the degree of anomalous subjects and give an
object q a feature amount Yq of the same form of quantified evaluations Dpq

representing a summary of evaluations. For example, when a evaluation expresses
a positive or negative polarity and is quantified as a real number Dpq, Yq is a
real number, too.

We assume that the degree of anomalous subjects of p is determined by dis-
similarities between Dpq and Yq in ∀q which is adjacent to p in a graph model.
So, we define xp as

xp =
∑

q:(p,q)∈E

xpq

Np
, xpq = distance(Dpq, Yq),

where Np is the number of nodes which are adjacent to p. xpq is the dissimilarity
between Dpq and Yq given by a specified distance function distance. Selecting a
distance depending on the form of Dpq and Yq, we can apply formula 3.2 to any
forms of Dpq and Yq. xpq means the degree of anomaly of the evaluations of p to
q. xp is calculated by integrating xpq in ∀q which is adjacent to p. In this time,
we integrate all xpq to average them.

We also assume two things: (1)a summary of evaluations to q is determined
by both xp and Dpq in ∀p which is adjacent to q in a graph model; (2)the more
anomalous subjects effect the less for a summary of evaluations. So, we define
Yq as follows,

Yq =
∑

p:(p,q)∈E

wpqDpq, wpq =
1
xp∑

p:(p,q)∈E
1

xp

,

where wpq is used in the weighted average for a summary of evaluations of q.
wpq is calculated based on xp and

∑
p:(p,q)∈E wpq = 1. Yq is the weighted average

using wpq and Dpq.
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3.3 Computing Feature Amounts

To compute feature amounts xp and Yq, we use an iterative algorithm. First,
we initialize ∀xp with x<0>

p where x<0>
p is the same value in ∀p. Then, we up-

date both the feature amounts using above definitions in iterative fashion until
they converge. After they converged, we obtain feature amounts from converged
amounts of xp and Yq. However that algorithm is one which presumes the con-
vergence of feature amounts, the convergence is not guaranteed qualitatively.
Proving the convergence condition is our future work. Therefore, we continue to
update both the feature amounts until the difference of each xp is sufficiently
small. Then, we finish it.

4 Experiment

4.1 Dataset

To ascertain the effectiveness of our proposed method, we used user reviews
posted on Yahoo! Movie web site2. We think movies which have just run in
theaters or which are minor can be evaluated by fewer reviewers and anomalous
evaluations can have a power on a summary of evaluations in such situations.
Thus, to create such a small dataset, we selected 17 reviewers from original data
and created three anomalous reviewers who provided random evaluations for
randomly selected movie titles. In this experiment, we used both the dataset
including only original 17 reviewers and the dataset including three anomalous
reviewers and original 17 reviewers.

We propose a method which has applicability to any forms of quantified eval-
uations, so we use three forms of quantified evaluations, as described below.

Evaluation score (E). We used the rating score: saiten (grade) in user re-
views. It is a real number of 1-5.

Feature-based evaluation vector (FE). We also used other rating scores:
monogatari (story), haiyaku (casting), ensyutsu (direction), eizo (visuals),
ongaku (music) in user reviews, and created five-dimensional vectors. Each
element of those vectors is a real number of 1-5.

Sentiment model-based evaluation vector (S). We extracted and quanti-
fied sentiments from texts in user reviews using a sentiment dictionary [2]. In
[2], they use the sentiment model proposed by Plutchik [6]. This model has 8
primary emotions: acceptance, joy, anticipation, anger, disgust, sadness,
surprise, and fear and represents all emotions using the combination of
some primary emotions. In this model, each primary emotion has its oppo-
site primary emotion and a pair of one and its opposite can make an axis:
(acceptance, disgust), (joy, sadness), (anticipation, surprise), and (anger,
fear). They prepared the words which are given sentiment categories based

2 http://movies.yahoo.co.jp/
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Fig. 2. The result of x in (17+3) reviewers

on this model before, and construct a sentiment dictionary studying the co-
occurrence of their prepared words and wards in a huge collection. In this
paper, we create a huge collection using user reviews other than reviews in
the dataset, and construct a sentiment dictionary. Some words in a review
are quantified, and then a review is quantified by integrating those quanti-
fied words. [2] created four axes using pairs of a sentiment category and its
opposite, but we created 8-dimensional vectors using each sentient category.
We normalize them in the way that the sum of the score of a sentiment
category and that of its opposite sentiment category equals 1.

4.2 Result

In this experiment, we use Euclidean distance as distance in the three forms of
evaluations. To compute feature amounts, we iterated updating just 20 times
because the difference of each xp became sufficiently small.

Detecting anomalous subjects. Fig. 1 shows all reviewers’ xp of using dataset
which only includes 17 reviewers of original data and Fig. 2 shows those of
using dataset which include 17 reviewers of original data and three reviewers
we created. Here, we normalize the scores in the way that the max of scores
equals to 1. Subjects from r1 to r17 means the reviewers in original data and
those from a1 to a3 means the reviewers we created. Fig. 2 shows that all
of reviewers we created have higher scores than reviewers in original data
in any forms of quantified evaluations. Thus, our method can detect such
anomalous reviewers using any forms of quantified evaluations. In addition,
Fig. 1 and Fig. 2 show that r2 is detected as an anomalous reviewer in both
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Fig. 3. The result of Mamma Mia! of Y in (17+3) reviewers

Table 1. Each evaluation of Mamma Mia!

reviewer E FE S

r4 4 3, 4, 3, 4, 4 0.569, 0.411, 0.540, 0.535, 0.430, 0.588, 0.459, 0.464
r5 4 3, 5, 4, 4, 5 0.543, 0.417, 0.514, 0.516, 0.456, 0.582, 0.485, 0.483
a1 3 3, 5, 3, 5, 1 0.897, 0.214, 0.323, 0.148, 0.102, 0.785, 0.676, 0.851
a2 2 4, 1, 2, 3, 5 0.255, 0.108, 0.545, 0.671, 0.744, 0.891, 0.454, 0.328
a3 2 1, 2, 5, 2, 3 0.797, 0.108, 0.557, 0.067, 0.202, 0.891, 0.442, 0.932

method using E and FE. That is because r2 gives many movies harsh rating
evaluations which is more negative than others. r2 describes similar movies
and the previous movie in each movie and tends to evaluate each movie
negatively. so r2 is not a malicious reviewer but an anomalous one.

Comparing Yq with other summaries. We show Yq and other summaries of
an example title Mamma Mia! in Fig. 3. The left, center, and right figure
show the output using E, FE, and S, respectively. We also show Dpq and
xp of each reviewers in this movie in Table. 1 and Table.2, respectively.
In Table. 1, E, FE, and S represents (grade), (story, casting, direction,
visuals, music), and (anger, disgust, sadness, surprise, fear, acceptance,
joy, anticipation), respectively. In Table. 2, the value represents xp of each
reviewers evaluating the movie. Here, we use the average of the review site.
In E and FE, the average of the review site equals to the average of each
rating score provided in the review site. In S, we use all data including not
only the dataset but also other data we crawled and create the average of
evaluations among such all data. In this movie, we use 1041 reviews and
create the average of the evaluations for S. In this case, anomalous reviewers
are implicit and cannot be detected analyzing reviews just in this movie.
For example, the evaluation of a1 seems no anomalous in the case of E, and
it is also vague which reviewer is an anomalous reviewer in any forms of
evaluations. However, our method use not only reviews in a target object
but also reviews in other objects, so we can detect anomalous reviewers and
can be Yq close to the average of the evaluations.
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Table 2. x of each reviewer evaluating Mamma Mia!

reviewer E FE S

r4 0.678 1.650 0.044
r5 0.600 1.282 0.048
a1 1.290 3.456 0.740
a2 1.131 3.514 0.807
a3 1.031 3.513 0.808

5 Conclusion

In this paper, we propose a novel model and method for summarizing reviews
and detecting anomalous reviewers. Our model and method can treat both de-
tecting anomalous reviewers and summarizing reviews of any forms uniformly.
In addition, our method is unsupervised and applicable to the situation in which
there are some objects evaluated by few reviewers. In the experiment, we ascer-
tain that our method can detect not only anomalous reviewers we created but
also the anomalous reviewers in a review site. In future work, we will discuss
the convergence condition of our iterative algorithm and apply our model and
method to another domain.
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Abstract. Hierarchical clustering algorithms have been studied extensively in
the last years. However, existing approaches for hierarchical clustering suffer
from several drawbacks. The representation of the results is often hard to in-
terpret even for large datasets. Many approaches are not robust to noise ob-
jects or overcome these limitation only by difficult parameter settings. As many
approaches heavily depend on their initialization, the resulting hierarchical clus-
tering get stuck in a local optimum. In this paper, we propose the novel genetic-
based hierarchical clustering algorithm GACH (Genetic Algorithm for finding
Cluster Hierarchies) that solves those problems by a beneficial combination of
genetic algorithms, information theory and model-based clustering. GACH is ca-
pable to find the correct number of model parameters using the Minimum De-
scription Length (MDL) principle and does not depend on the initialization by
the use of a population-based stochastic search which ensures a thorough explo-
ration of the search space. Moreover, outliers are handled as they are assigned to
appropriate inner nodes of the hierarchy or even to the root. An extensive evalu-
ation of GACH on synthetic as well as on real data demonstrates the superiority
of our algorithm over several existing approaches.

1 Introduction

A genetic algorithm (GA) is a stochastic optimization technique based on the mecha-
nism of natural selection and genetics, originally proposed by [15]. The general idea
behind a GA is that the candidate solutions to an optimization problem (called individ-
uals) are often encoded as binary strings (called chromosomes). A collection of these
chromosomes forms a population. The evolution initially starts from a random popu-
lation that represents different individuals in the search space. In each generation, the
fitness of every individual is evaluated, and multiple individuals are then selected from
the current population based on Darwin’s principle “Surviving of the fittest”. These
individuals build the mating pool for the next generation. The new population is then
formed by the application of recombination operations like crossover and mutation. A
GA commonly terminates when either a maximum number of generations has been pro-
duced, or a satisfactory fitness level has been reached for the population. An excellent
survey of GAs along with the programming structure used can be found in [10].

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 349–363, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



350 C. Böhm et al.

Global 
outlier

Intuitive description for each cluster

GACH
Search space

Fig. 1. The search space of the solutions for the hierarchical clustering problem is extremely
large. Genetic algorithms help to determine the global optimum. GACH is a genetic algorithm for
finding the most meaningful cluster hierarchy. Outliers are assigned to appropriate inner nodes.
Each cluster content is described by an intuitive description in form of a PDF.

GAs have been successfully applied to a variety of challenging optimization prob-
lems, like image processing, neural networks and machine learning, etc. [21,26,2].
Solving the NP-hard clustering problem makes GA therefore a natural choice such
as in [17,24,6,18,23]. The clustering research community focuses on clustering meth-
ods where the grouped objects are described by an intuitive model of the data [7] or
clustering methods that are particularly insensitive to outliers [9]. Moreover, several
approaches have also addressed the question, how to avoid difficult parameter settings
such as the number of clusters, e.g. [22,14,3,4]. Most of them meet this question by
relating the clustering problem with the idea of data compression.

Here we present a novel genetic algorithm for finding cluster hierarchies, called
GACH. We use an information-theoretic fitness function to effectively cluster data into
meaningful hierarchical structures without requiring the number of clusters as an input
parameter. Our major contributions are:

– Fitness: The fitness of different chromosomes is optimized using an optimization
technique that is based on the Minimum Description Length (MDL) principle.

– No difficult parameter-setting: Besides the parameters that are specific for a GA,
GACH requires no expertise about the data (e.g. the number of clusters).

– Flexibility: By the use of a GA-based stochastic search GACH thoroughly explores
the search space and is therefore flexible enough to find the correct hierarchical
cluster structure and is insensitive to the initialization.

– Outlier-robust: Outliers are assigned to the root of the cluster hierarchy or to an
appropriate inner node, depending on the degree of outlierness.

– Model description: The content of each cluster is described by a PDF.

The rest of the paper is structured as follows: Section 2 reviews some well-known ap-
proaches in the field of hierarchical and information-theoretic clustering including sev-
eral genetic algorithms. In Section 3 we face the general idea behind genetic algorithms
and present our proposed method GACH which searches for optimal hierarchical clus-
tering results regarding accuracy. An extensive evaluation of GACH including method
comparison and benchmarking of synthetic as well as real data is provided in Section 4
followed by the conclusion of the paper in Section 5.
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2 Related Work

Although a huge amount of clustering approaches are available today, almost all of them
suffer from at least one of the following drawbacks: they are restricted to partitioning
clustering, and/or they are sensitive to outliers, and/or they need user-defined parame-
ters (e.g. the number of clusters). In this section, we survey the work on hierarchical
and model-based clustering and summarize important beneficial results from informa-
tion theory in the field of clustering. Finally, we focus on GAs that were designed for
solving the optimization problem of finding a meaningful clustering.

Hierarchical Clustering. A widespread approach to hierarchical clustering is Single
Link [16]. It produces a graphical output, the so-called dendrogram. Cuts through the
dendrogram at various levels obtain partitioning clusterings. However, for complex
datasets it is hard to define appropriate splitting levels, which correspond to meaningful
clusterings. Furthermore, outliers may cause the well-known Single Link effect. Also,
for large datasets, the fine scale visualization is not appropriate. OPTICS [1] avoids the
Single Link effect by requiring a minimum object density for clustering, i.e. MinPts
number of objects are within a hyper-sphere with radius ε. Additionally, it provides a
more suitable visualization, the so-called reachability plot. However, the right choice
of the parameters is not intuitive and has significant impact on the performance of the
algorithm and the accuracy of the results. Furthermore, the problem that only certain
cuts represent useful clusterings still remains unsolved.

Model-based Clustering. Model-based clustering assumes that the data is generated by
a finite mixture of underlying probability distributions such as multivariate normal dis-
tributions. A commonly used algorithm for model-based clustering is the Expectation-
Maximization (EM) algorithm [7]. After a suitable initialization, EM iteratively
optimizes a mixture model of k Gaussians until no further significant improvement
of the log-likelihood of the data can be achieved. Two common problems of EM are (1)
the algorithm may get stuck in a local optimum and (2) the quality of the result strongly
depends on an appropriate choice of k. Besides the classical EM, multiple hierarchical
extension can be found in the literature [25,5,11]. However, each of these approaches
needs a suitable parameter setting for the number of hierarchy levels.

Information-theoretic Clustering. Difficult parameter settings are often avoided by
information-theoretic clustering. X-Means [22], G-Means [14] and RIC [3] try to find
the optimal k in partitioning clustering by balancing data likelihood and model com-
plexity. This sensitive trade-off is rated by model selection criteria, e.g. Minimum De-
scription Length (MDL) [12]. The RIC algorithm uses MDL to allow for defining
a coding scheme for outliers and to identify non-Gaussian clusters. However, these
methods are not hierarchical but only partitioning methods. An EM-like algorithm for
information-theoretic hierarchical clustering, called ITCH, is presented in [4]. After
intitalization ITCH rearranges the hierarchy in a Greedy-like search which often con-
verges only to a local optimum.

Genetic Clustering Algorithms. A genetic k-means algorithm was introduced by Kr-
ishna and Murty [17]. Scheunders [24] published a genetic variant of the c-means clus-
tering algorithm. Some kind of semi-supervised genetic clustering was presented by [6],
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which is also a k-means based approach. In [18] the authors try to improve a fitness
function concerning the space restrictions on the one hand and the building blocks on
the other hand. One recent approach is the one by Pernkopf and Bouchaffra [23], which
combines the benefits of a GA with model-based clustering to find a nearly optimal
solution for a given number of clusters. With the help of a MDL criterion the correct
number of clusters is determined fully automatically. All these methods are only appli-
cable to partitioning clustering or suffer from the problem that human interaction is still
necessary to enter a suitable k for the number of clusters resulting from a fixed length
of chromosomes. The detection of noise and outliers is not supported at all.

3 GACH – Genetic Algorithm for Finding Cluster Hierarchies

In this section, we describe the basic components of a GA and introduce necessary
modifications to use a GA on cluster hierarchies. Finally, we present GACH as an algo-
rithmic combination of all this components.

3.1 Chromosomal Representation of Cluster Hierarchies

Each chromosome specifies one solution to a defined problem. For GACH, a chromo-
some is the encoding of a hierarchical cluster structure (HCS), that has to address the
three following features:

– Storage of k clusters, where k is an arbitrary number of clusters.
– Representation of the hierarchical relationship between clusters forming a tree T

of clusters.
– Encoding of the cluster representatives, i.e. the parameters of the underlying PDF.

For GACH, we represent each cluster by a Gaussian PDF. Note that our model can
be extended to a variety of other PDFs, e.g. uniform or Laplacian.

With these requirements a chromosomal representation of a HCS is defined as follows:

Definition 1 (Chromosomal HCS)
(1) A chromosomal HCS HCSChrom is a dynamic list storing k cluster objects.
(2) Each cluster C holds references to its parent cluster and to its subclusters. Besides
that, the level lC for a cluster C denotes the height of the descendant subtree. This
implies that the root has the highest level and the leaves have level 0.
(3) The parameters of the underlying Gaussian PDF of cluster C, the mean value μC

and σC , are modeled as additional parameters of the cluster object C.
(4) Each cluster C is associated with a weight WC , where

∑k−1
i=0 WCi = 1.

The underlying PDF of a cluster C is a multivariate Gaussian in a d-dimensional data
space which is defined by the parameters μC and σC (where μC and σC are vectors
from a d-dimensional space) by the following formula:

N(μC , σC , x) =
∏

1≤i≤d

1√
2πσ2

C,i

· e
− (xi−μC,i)

2

2σ2
C,i
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GACH assigns each point x in a dataset D directly to that cluster C ∈ HCSChrom the
probability density of which is maximal at the position of x:

C(x) = arg max
C∈HCSChrom

{WC ·N(μC , σC , x)} .

3.2 Initialization of GACH

Basically the initial set of a population consists of a randomly generated set of individ-
uals. This strategy is also processed by GACH, where in a first step a random number
k̃ of clusters is selected for each structure HCSChrom. Then a simple k-means algo-
rithm divides the dataset into k̃ clusters that act as the leafs of the initial hierarchy.
Finally, these clusters are combined by one additional root cluster. Hence, the initial-
ization process results in a 2-level hierarchy that consists of k̃ + 1 nodes. Each cluster
C is described by random parameters and is associated to a weight WC = 1

k .

3.3 Reproduction

In order to generate the next population of cluster hierarchies GACH uses several ge-
netic operators: mutations (delete, add, demote and promote) and crossover.
We define these operators particularly for the hierarchical clustering problem here.

The delete operator deletes a specific cluster C (except the root) with a deletion
rate pdel from the HCS. This results in structure HCS′ that does not contain the cluster
C any more. This proceeding is illustrated in Figure 2(a). Here, the cluster C is marked
by dark blue color. The level of each direct and undirect subcluster ofC (marked in red)
is decreased by 1. The former parent node of C, the root node in our example, becomes
the parent node of all direct subclusters of C.

The operator add adds direct subclusters to an arbitrary cluster C of the hierarchy
with an add rate padd (normally pdel = padd). The number of added subclusters is
bounded by an upper limit value maxnew . Figure 2(b) illustrates an example for the
application of the add operator to a HCS. One subcluster (marked in dark blue color) is
added to the red cluster. Since the cluster content of a added subcluster Cadd is covered
by the cluster content of C, we calculate random parameters based on μC and σC . In
particular, we add a random factor r to both parameters, where r is a vector from a
d-dimensional space: μCadd

= μC + r σCadd
= σC + r.

The third mutation operator is the demote operator, that can be motivated as fol-
lows: Assume a dataset consisting of three clusters C1, C2 and C3, where C1 holds a
large number of objects, clusters C2 and C3 are smaller ones but they are locally close
to each other. Then one could create a HCS with one root node and C1, C2 and C3

as direct subclusters (cf. Figure 2(c)) which provides only a very coarse view of the
dataset. But, if we combine the two smaller clusters (marked in dark blue) and demote
them with a demote rate pdem to a lower level with a common parent cluster (marked
in dark red), we are able to get a more detailed look on our data. The parameters of the
inserted cluster are obtained by the average of the parameters of the combined clusters.
Note that demoting only one cluster is equal with the add operator. Hence, we apply
demote on at least two clusters.
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delete(   ) Level 2

Level 1

Level 0

(a) delete one node of the hierarchy.

add(  )

Level 2

Level 1

Level 0

(b) add one node to the hierarchy.

demote(   )

Level 2

Level 1

Level 0

(c) demote two nodes to a lower level.

Level 3

Level 2

Level 1

Level 0
promote(   )

(d) promote one node to a higher level.

Fig. 2. Summarization of the mutation operators used for GACH

The promote operator lifts a cluster C from a lower level to the level right above
with a promotion rate ppro, if and only if C is at least two levels underneath the root
cluster. Consequently all subclusters of C are lifted accordingly. In Figure 2(d) the dark
blue cluster is promoted from level 1 to level 2. Hence also the red subcluster is lifted
one level above. The parent of the parent node of the dark blue cluster (here the root
node) becomes the parent node of C in the resulting hierarchy HCS′, together with the
correct rearrangement of all subclusters.

The operator crossover exchanges information among two different structures. In
general the information of two different chromosomes is combined in order to obtain a
new individual with superior quality. GACH performs a crossover between two selected
hierarchies HCS1 and HCS2 with a crossover rate pco as follows:

1. Remove a selected subtree T1 entirely from HCS1.
2. Remove a selected subtree T2 entirely from HCS2.
3. Select a random node in HCS1 and insert T2.
4. Select a random node in HCS2 and insert T1.
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Figure 3(a) illustrates this procedure exemplarily for two selected hierarchies. The sub-
trees T1 and T2 are removed from the red and the blue HCS respectively. T1 is then
inserted into the blue HCS as subtree of the dark blue node. Analogously T2 is inserted
as subtree of the dark red cluster in the red HCS. Figure 3(b) describes the same pro-
cedure w.r.t. a chromosomal representation of both hierarchies. For simplicity, only the
pointers to the parent cluster are considered.
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Fig. 3. The crossover operator for two selected hierarchies. The subtree T1 of the red hierar-
chy is exchanged with the subtree T2 of the blue hierarchy, visualized by a hierarchical (3(a)) and
a chromosomal representation (3(b)).

3.4 Fitness Function

Following the Darwin‘s principle “Survival of the fittest” naturally only individuals with
highest fitness can survive and those that are weaker become extinct. A GA adopts this
aspect of evolution by the use of a fitness function. GACH uses the hMDL criterion
formalized in [4] which evaluates the fitness of a chromosomal HCS by relating the
clustering problem to that of data compression by Huffman Coding. The authors define
the coding scheme for a cluster hierarchy as follows:

hMDLHCS =
∑

C∈HCS

(
cost(C) − nWC log2(WC) − log2(

∑
xparent of C

Wx)
)

The coding cost for each cluster C ∈ HCS is determined separately and summed up
to the overall coding cost of the completeHCS. Points that are directly assigned to the
cluster C together with the parameters μC and σC of the underlying Gausssian PDF are
coded by cost(C). The point to cluster assignment is coded by the so-called ID cost of
each data point x ∈ C and are given by −nWC log2(WC) where WC is the weight of
clusterC and n the number of points. The binary logarithm is used to represent the code
length in bits. Clusters with higher weight are coded by a short code pattern whereas
longer code patterns are assigned for smaller clusters with lower weight. The ID cost
for the parameters are formalized by − log2(

∑
xparent of C Wx) whereas constant

ID cost are defined for the parameters of the root node.
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The better the statistical model (the HCS) fits to the data the higher the compression
rate, and thus the lower the coding cost are. Using this coding scheme as fitness function
ensures the selection of that chromosomeHCSChrom that fits best to the data.

3.5 Selection

The selection function chooses the individuals to form the offspring population out
of a set of given individuals, according to their fitness. For GACH, we use the well-
known weighted roulette wheel strategy [19]. Imagine that eachHCSChrom represents
a number on a roulette wheel, where the amount of numbers refers to the size of the
population. In addition, we assign a weight to each number on the roulette wheel, de-
pending on the fitness of the underlying chromosome. That means that the better the
fitness of a chromosome, the higher its weight on the roulette wheel, i.e. the higher the
chance to get selected for the offspring population. Note that there is the chance that
one chromosome is selected multiple times. GACH forms a new population that has as
much individuals as the former population.

3.6 Algorithmic Description

Now we are putting the pieces together to define the algorithmic procedure of GACH,
summarized in Algorithm 1. An initial population is built as described in Section 3.2.
This population is evaluated according to the fitness function introduced in Section 3.4
which means that GACH determines the coding cost for each cluster hierarchy of the
population. In order to optimize the point to cluster assignment of each HCS and to
provide an additional model of the data, we apply an hierarchical EM algorithm on
each cluster structure, as suggested in [4].

Algorithm 1. GACH
1: countpop ← 0
2: initialize population(countpop)
3: evaluate population(countpop)
4: while (countpop ≤ popmax) do
5: countpop ← countpop + 1
6: select population(countpop) from population(countpop − 1)
7: reproduce population(countpop)
8: evaluate population(countpop)
9: end while

The population resulting from the initialization undergoes several mutation and
crossover operations within popmax number of generations in an iterative way. In each
iteration the next population is selected according to the weighted roulette wheel strat-
egy (cf. Section 3.5) and undergoes several reproduction procedures (cf. Section 3.3).
Each operation is processed with a certain probability which is extensively evaluated
in Section 4. After optimizing the point to cluster assignment, GACH determines the
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fitness of each HCSChrom. The algorithm terminates if a specified maximum num-
ber of new populations popmax is reached. The experiments show that the HCS can be
optimized even with small generation sizes.

4 Experimental Evaluation

Now we demonstrate that the genetic parameters (mutation rate, crossover rate and pop-
ulation size) do not affect the effectiveness of GACH in a major way. Nevertheless, we
provide a suitable parametrization that enables the user to receive good results inde-
pendent of the used dataset. Based on this, we compared the performance of GACH
to several representatives of various clustering paradigms on synthetic and real world
data. We selected the most widespread approach to hierarchical clustering Single Link
(SL) [16], the more outlier-robust hierarchical clustering algorithm OPTICS [1] (requir-
ing MinPts and ε), with optimal parameters w.r.t. accuracy. Furthermore, we chose
RIC [3], an outlier-robust and information-theoretic clusterer, and finally ITCH [4]
which is a recent EM-based hierarchical information-theoretic clustering approach, that
suffers from the problem that the result often only represents a local optimum. As ITCH
strongly depends on its initialization, we used the best out of ten runs in this case. For
the SL experiments, we used the Matlab implementation. OPTICS was provided by
WEKA [13]. For RIC and ITCH we used the original Java implementations by the
authors.

4.1 Evaluation of Genetic Parameters

We applied GACH on two different datasets to evaluate the mutation and crossover
rates and the impact of the population size on the quality of the results w.r.t. the fitness
function, introduced in Section 3.4. One dataset consists of 1,360 (2d)-data points that
form a true hierarchy of six clusters. The second dataset covers 850 (2d)-data points
that are grouped in two flat clusters. For each experiment, we present the mean hMDL
value and the corresponding standard deviation over ten runs. GACH turned out to be
very robust and determines very good clustering results (Prec > 90%, Rec > 90%)
indepent of the parametrizations.

Different Mutation Rates. We evaluated different mutation rates ranging from 0.01 to
0.05 on two different population sizes and a fixed crossover rate of 0.15. As a mutation
is performed by one of the four operations delete, add, demote or promote the
mutation rate is the sum of pdel, padd, pdem and ppro (cf. Section 3.3). As demote and
promote turned out to be essential for the quality of the clustering results pdem and
ppro are typically parametrized by a multiple of pdel or padd. This is due to the fact
that the optimal number of clusters which is influenced by pdel and padd is determined
very fast by the fitness function, but pdem or ppro have an impact on the hierarchical
structure of the clusters that has to be adjusted during the run of GACH. Figures 4(a)
and 4(b) demonstrate that the mutation rate has no outstanding effect on the cluster-
ing result, neither on a hierarchical nor on a flat dataset. Higher mutation rates result in
higher runtimes (3,388 ms for mutation rate = 0.05 vs. 1,641 ms for mutation rate = 0.01
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Fig. 4. Mean fitness of resulting clusterings on (H)ierarchical and (F)lat datasets w.r.t. the genetic
parameters mutation rate, crossover rate and population size

on hierarchical dataset, population size = 5). However, a higher mutation rate provides
more flexibility. Hence, we achieved slightly better results with a mutation rate of 0.05
(hMDL = 10, 520) compared to a mutation rate of 0.01 (hMDL = 10, 542).

Different Crossover Rates. We compared different crossover rates pco ranging from
0.05 to 0.25 in combination with a mutation rate of 0.05 on two different population
sizes. Figures 4(c) and 4(d) show that the performance of GACH is almost stable w.r.t.
the different parameterizations of pco. Especially on a flat dataset, a higher pco has
no impact on the clustering result. GACH achieved a nearly optimal hMDL value
in almost every run, even for relatively small population sizes. Higher pco values en-
able GACH to examine the search space more effectively as the crossover between two
strong individuals produces an even fitter individual. Therefore, we need less genera-
tions to find good clustering results, e.g. the result of GACH on the hierarchical dataset
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using five structures was determined after 75 generations (1,993 ms per generation)
with pco = 0.05, and after 61 generations (2,553 ms per generation) with pco = 0.25.

Different Population Sizes. We tested the impact of the population size on the quality
of the clustering result. We used populations that cover 5, 10, 15, 20 and 25 hierarchical
cluster structures in combination with a mutation rate of 0.05 and a crossover rate of
0.15. Figures 4(e) and 4(f) show again the mean hMDL value over ten runs for each
population size on two different datasets. Especially the plot of the hierarchical dataset
demonstrates that a higher population size tends to produce better results, which can
be explained by the fact that a higher population size provides more variation oppor-
tunities whereby a global optimum can be reached easier. However, a large number of
chromosomes cause a considerable amount of runtime. One generation covering five
chromosomes took 2,462 ms on average, the computation of a generation consisting
of 25 chromosomes took 9,229 ms. Hence, we use a population size consisting of ten
cluster structures in combination with a mutation rate of 0.05 and a crossover rate of
0.15 in the following experiments.

4.2 Competitive Performance of GACH

For these experiments we use two different synthetic datasets DS1 and DS2. DS1 is
composed of 987 (2d)-data points that form a hierarchy of six clusters surrounded by
local and global noise (cf. Figure 5(a)). DS2 consists of 1,950 (2d)-data points that are
grouped in three flat strongly overlapping clusters (cf. Figure 5(b)). For each dataset,
the clustering results were assessed against a ground-truth classification. To compare the
clustering results produced by different approaches, we chose measures that comprise
fix bounds. More precisely, we selected the following recently proposed information-
theoretic methods [20]: the Normalized Mutual Information (NMI), the Adjusted Mu-
tual Information (AMI), which corrects the NMI for randomness. Both measures have
value 1 if the resulting clustering corresponds exactly to the ground-truth classification,
and 0 when both clusterings are totally independent. Furthermore, we chose the well-
known Precision (Prec) and Recall (Rec) from information retrieval. Finally, we use the
DOM [8] value that corresponds to the number of bits required to encode the class la-
bels when the cluster labels are known, i.e. low DOM values represent good clustering
results.

Evaluation w.r.t. Dataset DS1. These experiments demonstrate that GACH performs
at least as good as the parameter dependent approach OPTICS (MinPts = 6, ε = 0.9)
and the recently proposed method ITCH, while being much more accurate than RIC and
SL. The reachability plot of OPTICS is provided in Figure 5(c), the SL dendrogram is
shown in Figure 5(e). Although DS1 seems to be an easy to cluster dataset, SL and
RIC fail in assigning the local and global outliers to the correct clusters. Both, GACH
and ITCH were able to determine the right cluster structure (shown in Figure 5(g)).
However, GACH outperformed ITCH w.r.t. accuracy, as GACH results in a different
points to clusters assignment. Therefore, GACH shows the best performance on DS1

concerning the information-theoretic measures NMI and AMI. Moreover, the values for
Precision and Recall indicate that 94% of all data points are assigned to the true cluster
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and 95% of the cluster contents were detected correctly by GACH. Finally, this result
can be coded most efficiently as stated by the low DOM value of 0.4193. The evaluation
on DS1 is summarized in Table 1.

Table 1. Performance of GACH on DS1

GACH ITCH RIC OPTICS SL

NMI 0.9346 0.9265 0.8673 0.9045 0.9110
AMI 0.9159 0.8999 0.7678 0.8662 0.8997
PREC 0.9404 0.9222 0.6438 0.8626 0.9555
REC 0.9514 0.9422 0.7720 0.9200 0.9169
DOM 0.4193 0.4454 0.6638 0.4960 0.4765

Evaluation w.r.t. Dataset DS2. Neither OPTICS nor SL were able to detect the true
cluster structure of DS2. Both fail because of a massive Single Link effect and there-
fore the reachability plot provided by OPTICS (cf. Figure 5(d)) and the dendrogram
produced by SL (cf. Figure 5(f)) do not uncover any cluster structure which leads to a
clustering where all objects belong to the same cluster. Also RIC determines only one
single cluster. ITCH separates the dataset into only two clusters. In contrast, GACH
identifies all clusters in the dataset correctly. Hence, GACH turned out to be the only
algorithm that handles datasets with strongly overlapping clusters successfully. It shows
the best values w.r.t. information-theoretic criterions, while being very accurate. Its re-
sult causes only a coding cost of 0.3325 compared to more than 0.9 for almost all other
approaches. The evaluation on DS2 is summarized in Table 2.

Table 2. Performance of GACH on DS2

GACH ITCH RIC OPTICS SL

NMI 0.6698 0.6316 0.0000 0.0000 0.0000
AMI 0.5877 0.4030 0.0000 0.0000 0.0000
PREC 0.9184 0.8227 0.2130 0.5016 0.6750
REC 0.9226 0.8913 0.4615 0.4615 0.4615
DOM 0.3325 0.4226 0.9184 0.9184 0.9184

4.3 Application of GACH on Real World Data

We tested the practical application of GACH on several real world datasets. Due to
space restrictions, we selected the high dimensional Wine dataset1 for presentation. It
contains 178 (13-d)-data objects resulting from a chemical analysis of wines grown in
the same region in Italy, but derived from three different cultivars. Hence, a ground-truth
classification structures the data into one root node covering the whole dataset and three
subclusters defining the three cultivars. This structure was only determined by GACH
resulting in high validity values (cf. Table 3). Most of the competitors did not even find

1 http://archive.ics.uci.edu/ml/datasets/Wine

http://archive.ics.uci.edu/ml/datasets/Wine
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Fig. 5. Competitive evaluation of GACH on two different synthetic datasets. DS1 forms a hierar-
chy including local and global noise, DS2 is a flat dataset of three overlapping clusters.
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Fig. 6. Competitive evaluation of GACH on real-world data

the right number of clusters. For example, OPTICS uncovers two different clusters (cf.
Figure 6(a)) and RIC even merges all data points in only one single cluster. SL detects
four different clusters concerning a cutoff value of 40. Besides the Wine dataset, GACH
turned out to be applicable in many application domains.

Table 3. Performance of GACH on Wine

GACH ITCH RIC OPTICS SL

NMI 0.7886 0.7615 0.0000 0.5079 0.3852
AMI 0.7813 0.6912 0.0000 0.4817 0.3485
PREC 0.9401 0.9737 0.1591 0.7466 0.5309
REC 0.9326 0.8596 0.3989 0.6966 0.5337
DOM 0.3631 0.3285 1.1405 0.6853 1.0740

5 Conclusion

We proposed GACH – a genetic algorithm for finding cluster hierarchies, that com-
bines the benefits of genetic algorithms, information theory and model-based cluster-
ing being an efficient and accurate hierarchical clustering technique. As GACH uses a
MDL-based fitness function, it can be easily applied to real world applications with-
out requiring any expertise about the data, like e.g. the real number of clusters. By the
integration of an EM-like strategy, the content of all clusters is described by an intu-
itive model. GACH handles outliers by assigning them to appropriate inner nodes of
the hierarchy, depending on their degree of outlierness. Our experimental evaluation
demonstrates that GACH outperforms a multitude of other clustering approaches.
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Abstract. The tremendous growth in the number of files stored in
filesystems makes it increasingly difficult to find desired files. Traditional
keyword-based search engines are incapable of retrieving files that do not
include keywords. To tackle this problem, we use file-access logs to de-
rive intertask relationships for file search. Our observations are that 1)
files related to the same task are frequently used together, and 2) a set
of Rename, Move, and Copy (RMC) operations tends to initiate a new
task. We have implemented a system named SUGOI, which detects two
types of task, FI tasks and RMC tasks, from file-access logs. An FI task
corresponds to a group of files frequently accessed together. An RMC
task is generated by RMC operations and then constructs a graph of
intertask relationships based on the influence of RMC operations and
the similarity between tasks. In utilizing detected tasks and intertask
relationships, our system expands the search results of a keyword-based
search engine. Experiments using actual file-access logs indicate that the
proposed approach significantly improves search results.

Keywords: file-access logs, desktop search, full-text search, task mining.

1 Introduction

The explosion in the volume of information that people handle has been accom-
panied by daily increases in the number of files stored in filesystems. Many of
these are unstructured files, such as images, diagrams, and numerical-data files,
which do not contain any appropriate text that can be used for search. As these
files do not include the target keywords, traditional text-based desktop keyword
search engines are not useful for finding them.

A number of systems have been developed for desktop keyword search, such
as Google Desktop Search[3], Microsoft’s Windows Desktop Search[5], and Spot-
light on Mac OS X[1]. These systems all develop indexes for high-speed search,
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and some use a thesaurus and meta-information such as the file name, creation
time, and file type, to improve search performance. However, it is still difficult
to search for files that do not include text.

Recently, some desktop search systems, such as FRIDAL[9,10] and
Connections[8], have been proposed to tackle the problem of the association be-
tween files based on the co-occurrence information derived from file-access logs.
These systems try to capture the relationships between files based on users’ ac-
cess patterns. These approaches are effective in searching for files that do not
contain text. However, sometimes the searches return irrelevant files or fail to
return relevant files because infrequent but important operations for files could
not be found and temporary simultaneous access of files influences the results
from these approaches.

In this paper, to improve the accuracy of search results based on file-access
logs, we focus on a task where a user accesses multiple files to accomplish his/her
goal. In other words, most files accumulated in a filesystem must be related to
individual tasks. We refer to a group of files that are used to accomplish a
particular goal as a “task.” Thus, in this paper, the term “task” represents a
logical unit of files to be processed in a computer system, such as collating some
experimental data, writing a report or article, or preparing presentation slides.

Based on the concept of task, we propose a file search system named SUGOI—
Search by Utilizing Groups Of Interrelated files in a task—which consists of two
parts: a task mining component and a file search component. The task mining
component extracts tasks and discovers the interrelation between tasks from
file-access logs. The file search component incorporates the task mining results
within the search results of a traditional desktop search engine to achieve an
accurate keyword-based file search.

We observed that 1) files related to the same task are frequently used together,
and 2) a set of Rename, Move and Copy (RMC) operations tends to initiate a
new task. Therefore, the task mining component of SUGOI extracts two types
of task: FI (Frequent Itemset) tasks and RMC tasks. We then propose formulas
to combine FI and RMC tasks.

We also consider the graph of intertask relationships for retrieving related files.
Assuming that the greater the number of identical files accessed during different
tasks, the stronger is the interrelation between these tasks, we build similarity
links between these tasks. In addition, we generate RMC links between tasks,
assuming that users tend to RMC files for reuse in related tasks. For example,
as researchers tend to use the same graph of experimental results in both their
articles and their presentation slides, they may copy the file of the graph from the
article folder to the presentation folder. In this case, the copy operation indicates
a strong relationship between the tasks of writing the article and of preparing the
presentation. To represent such intertask relationships, the weight of an RMC
link is computed considering the type of the operation and its direction. We
propose a formula to handle both types of links.

After the tasks and intertask relationships have been extracted, the file search
component of SUGOI expands the search results of a traditional keyword-based
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search engine using the mined tasks and intertask relationships, and ranks the
search results. We evaluate the proposed system using actual file-access logs. The
experimental results indicate that the proposed approach significantly improves
recall and F-measure.

The remainder of this paper is organized as follows. Section 2 presents related
research on desktop search. Section 3 gives a detailed explanation of SUGOI
and Section 4 describes the experimental results and investigation. Section 5
concludes this paper and indicates future work.

2 Related Work

With the great increase in the capacity of storage devices, the volume of all
types of data is steadily increasing, with most being file-based and unstructured.
Users require more effective and simpler mechanisms for managing vast numbers
of files, such as locating desired files easily from files scattered across different
directories. Traditional content-based search tools cannot deal with files that do
not include the query keywords, and supported file formats are restricted. For
the purpose of enhancing full-text search, much research has been done using
file-access logs. This section describes three previous studies that used file-access
logs for file search.

As mentioned in Section 1, Connections [8] is a file search system that uses
contextual information with the aim of enhancing full-text search results. Con-
nections generates a relational graph of files based on traces of filesystem calls.
To discover relationships, it splits access logs into multiple relation windows
and identifies the input and output files in each window by considering which
operation is performed on the files. Connections then creates links with weight
1 from input files to output files or increases the weight of existing links. It
uses a Basic-BFS (Breadth First Search) algorithm to propagate the weights
of keyword-containing files to keyword-lacking files to expand and reorder the
results generated by a full-text search engine. By contrast, we utilize file-access
logs to group files into tasks and identify the interrelations between tasks rather
than the relationships between files.

FRIDAL[9,10] is another system for searching keyword-lacking files by using
the interfile relationship. FRIDAL exploits open/close logs in order to derive the
duration for which the file is used. Assuming that files used at the same time
have some relevance to each other, FRIDAL calculates the interfile relationship
by using the co-occurrence data between files in access logs. It finds keyword-
lacking files by using a Basic-BFS-like method. By contrast, SUGOI emphasizes
tasks and only uses access patterns that occur frequently. Furthermore, we take
RMC operations into account in calculating the weight of semantic links between
tasks.

The iMecho[2] system performs task mining similar to SUGOI, building three
types of associations: Content-based Associations (CA), Explicit Activity-based
Associations (EAA), and Implicit Activity-based Associations (IAA). It reranks
the results of a full-text search engine, using a random walk algorithm based on
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Fig. 1. Overview of SUGOI

PageRank[7]. The purpose of the task mining in iMecho is to generate IAA links
between files; it does not consider the relationship between tasks. In addition,
the ranking score used in iMecho is defined as the product of a full-text search
result and a link analysis result, so iMecho does not extend the result of a full-
text search to include non-text files. By contrast, SUGOI can extend the result
of a full-text search by task mining and detecting the relevance between tasks.

3 Proposed Approach

We propose an approach for searching files by introducing the concept of “tasks.”
Before the search process, we cluster related files as a task and discover the cor-
relation between tasks by exploiting file-access logs. We then expand the results
from a traditional keyword-search engine using the tasks and intertask relation-
ships. We have implemented a prototype system using the proposed approach
and named it “Search by Utilizing Groups Of Interrelated files in a task” or
“SUGOI” for short. An overview of SUGOI is illustrated in Fig. 1. To trace user
access as file-access logs, SUGOI places an access monitor on the filesystem. The
file-access logs should include access time, information to identify the client, the
path of the target file, and the operation on it. After cleaning the log, the sys-
tem extracts the semantic file groups as tasks, and builds weighted links between
tasks. Following a user’s search request, SUGOI searches for files by combining
the context of tasks with the traditional full-text search results to calculate the
task scores. The details of the proposed methods (apart from log cleaning) are
described in the following subsections. Log cleaning is described in Section 4.1,
because the process corresponds to the monitoring tool used in the experiments.

3.1 Task Mining

The purpose of task mining is to group those files that are related to the same
task. We extract two types of task: FI tasks and RMC tasks. After the task
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Fig. 2. Extraction of Transactions (TransactionTime = 3600 [s])

Fig. 3. Extraction of an RMC Task (RMCTaskTime = 1800 [s])

mining processes, a number of files accessed by a user belong to at least one
task.

FI Task Mining. The FI task, or Frequent Itemset task, is constructed from
files accessed concurrently. The point is that files related to the same task tend
to be accessed frequently within short time periods of each other. For example,
when a user writes an article, he/she edits a TeX file as well as EPS files con-
taining charts and produces a PDF file. With this characteristic, we propose a
method to semantically group files as FI tasks by mining the access patterns
that occur frequently and simultaneously.

We first convert the file-access logs into a set of transactions (Fig. 2) by splitting
the logs into several transactions with a certain duration (TransactionT ime). To
discover the frequent patterns, we apply an existing algorithm, Eclat[11], to the
set of transactions. Eclat is one of the best-known algorithms for mining frequent
itemsets. It finds combinations of items whose occurrence frequency is greater
than some minimum support value. In this study, we determine the minimum sup-
port count (MinSuppCnt) to extract frequent itemsets because file-access logs
last for a long period but common tasks last for a fixed period of time and the
number of occurrences of each individual file should be small. Finally, we extract
the maximally frequent itemsets as FI tasks.
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RMC Task Mining. Assuming that the files RMCed together within a short
time period are related to a task done in the past, we extract such file groups
as an RMC task. To mine RMC tasks, we split access logs into multiple time
windows with the same length of time and only extract the files that are the
target of RMC operations (Fig. 3).

3.2 Intertask Relationship

This subsection presents our proposed formulas for weighting the similarity links
and RMC links of tasks and calculating the relevance between tasks by consid-
ering the overlap and RMC operations between tasks. In addition, we consider
reducing the weight of RMC links because the content of files created by RMC
operations can differ from the original by modification.

Similarity Links Analysis. Assuming that tasks that are strongly interrelated
use a number of common files, we weight the similarity links between tasks based
on the number of duplicated files in each task. The weight of a similarity link
from task i to task j, which is expressed as sim(ti → tj), is given by Equation
(1).

sim(ti → tj) =
|ti ∩ tj |

|ti| (1)

Here, ti and tj represent the file sets of task i and task j, respectively.

RMC Links Analysis. Supposing that a user RMCes files contained in related
task to reuse in other tasks, RMC operations can express a strong relationship
between tasks. We build RMC links of tasks by detecting an RMC operation
between different tasks. To calculate the weight of RMC links, we introduce the
element rmcf (fm → fn), which presents the weight from file m to file n caused
by an RMC operation.

rmcf (fm → fn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 if fm was renamed as fn,
α2 if fm was renamed from fn,
β1 if fm was moved to fn,
β2 if fm was moved from fn,
γ1 if fm was copied to fn,
γ2 if fm was copied from fn,
0 otherwise.

(2)

According to Equation (2), we assign rmcf a constant value specified by the
parameters (α1, α2, β1, β2, γ1, γ2). However, the degree of relevance of each
file will be attenuated because the content of files coming from RMC operations
probably differs from that of the original files by repeated edits.

In addition to rmcf , we propose formulas to take into consideration the factors
that cause reduced relevance. Thus, we define the reduction formulas using the
elapsed time (Equation (3)), the sum of frequency of write operation handled to
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file fm and file fn (Equation (4)), and the sum of the sizes of the changes to file
fm and file fn after RMC operations performed (Equation (5)).

T (fm, fn) = Δtime(fm, fn)−τ (3)

E(fm, fn) = Δedit(fm, fn)−ε (4)

S(fm, fn) = Δsize(fm, fn)−σ (5)

Here, τ , ε, σ are parameters. Considering the circumstances mentioned above, we
calculate the weight of an RMC link by using rmcf and the reduction functions
(Equation (6)).

rmc(ti → tj) =
∑

(fm,fn)∈(ti,tj)

rmcf (fm → fn) ∗T (fm, fn) ∗E(fm, fn) ∗S(fm, fn)

(6)

Intertask Relevance. To calculate the degree of association between tasks,
we adopt the weight of similarity links and RMC links and use the parameter
θ(0 ≤ θ ≤ 1) to control which element to emphasize. The proposed formula is
given by Equation (7).

R(ti → tj) = θ ∗ simt(ti → tj) + (1 − θ) ∗ rmct(ti → tj) (7)

3.3 Keyword-Based File Search

In addition to files that include keywords, SUGOI can find files contained in tasks
related to the keywords by combining the context and interrelation of tasks. This
subsection describes the procedure for keyword-based search.

STEP 1: Identify tasks containing the keyword-containing files. The initial rel-
evance score of a task to the given keywords is assigned using the file score
given by the existing full-text search engine (Equation (8)).

score0(q, ti) =
∑

fm∈ti

scoref (q, fm) (8)

Here, score0(q, ti) denotes the initial score of task ti to query q, and
scoref (q, fm) denotes the relevance score of file fm to the query. According to
Equation (8), we use the summation of the file score to define the task score
so that the score of the tasks that do not contain the keyword-containing
files should be zero.

STEP 2: In this paper, we adopt a reflexive method based on Basic-BSF, which
is used in Connections[8] and FRIDAL[9,10], to find tasks that contain re-
lated files. To find the files that do not contain keywords, we iterate the
calculation of the relevance score for all tasks K times for translating the
relevance (score0(q, ti)) to other tasks for emphaisizing tasks that linked with



A File Search Method Based on Intertask Relationships 371

many related tasks and giving score to tasks that do not contain keyword-
containing files. At the k-th (1 ≤ k ≤ K) calculation, the relevance score of
task ti is given by Equation (9).

scorek(q, ti) = scorek−1(q, ti)+
∑

tj∈InLink(ti)

scorek−1(q, tj)∗R(tj → ti) (9)

Here, InLink(ti) expresses the set of tasks whose links point to task ti.
STEP 3: Normalize the relevance score for all ti and output files contained in

tasks that satisfy scoreK(q, ti) > THscore as results, where THscore is a
threshold parameter.

4 Experiments

4.1 Experimental Environment

To verify the efficiency of SUGOI, we conduct evaluation experiments by using
actual file-access logs gathered from a shared filesystem (Windows Server 2003
SP2, NTFS) used by our research group. To monitor the file access to the server,
we use a tool named FAccLog[6]. FAcclog records the logs by monitoring access
to the OS and the LAN adapter. Logging can be done almost in real time and
includes read, write, create, delete, and rename operations. The full path of the
target file is also included, but in the case of a rename, the path is recorded as
“path before rename ! path after rename”. Since the raw logs have noise and
some necessary information is lacking, we apply the log-cleaning process before
the main mining process.

The logs created by machine access mostly generate an incorrect task mining
result, deriving groups of files with little reference to each other. Such kinds of
access often come from background processes such as virus scanning, extracting
indexes by a desktop search engine or making backups. In addition, in many
cases, a lot of file access will occur in a short period. Therefore, we use two
thresholds (THmin and THsec) to eliminate the background machine access from
logs. If the number of accesses occurring in a one minute/second range is larger
than THmin/THsec, all of the log entries are ignored. We also prepare a filter
for detecting machine access by file extension.

The raw logs only distinguish rename operations; they do not move and copy.
To find move operations, we treat entries whose directory part of the path
changed after the rename as move operations. To detect copy operations, we
look for a pattern of a create log entry occurring after a read log entry with the
same filename, and treat it as a copy operation.

The implementation of SUGOI uses an existing full-text search engine named
HyperEstraier[4]. In addition to plain text and HTML files, we can optionally
search PDF, DOC, DOCX, XLS, XLSX, PPT, and PPTX.

4.2 Experimental Setup

The purpose of the experiments was to verify the effect of utilizing file-access
logs for file search. We used datasets with keywords and lists of relevant files
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Table 1. Experimental Datasets

Dataset # log entries # files # files available for full-text search # relevant files

A 3591 201 137 70
B 2808 416 113 25
C 3424 318 276 32
D 5911 764 311 84
E 8203 642 335 244
F 5123 3422 1152 227
G 13102 3258 338 73

Table 2. Average F-measure (FI Task Mining)

TransactionTime [s] 900 1800 3600 5400 7200

MinSuppCnt=2 0.543 0.513 0.507 0.470 0.506
MinSuppCnt=3 0.452 0.432 0.450 0.411 0.453

provided by seven testers. The system was evaluated by comparing the relevant
files except the files that were deleted from the filesystem. A summary of the
experimental datasets is given in Table 1. These datasets were gathered from
April to July 2010. There are more than 2 GB of raw data and the summary is
of the logs after log cleaning.

The parameters below were fixed during the experiments. In log cleaning,
THmin = 30, THsec = 5. To calculate the weight of RMC links, (τ, ε, σ) =
(0, 0, 0). In keyword-based search, THscore = 0, K = 3.

4.3 Evaluation of Task Mining

To expand the full-text search results, we detect two types of tasks and de-
rive the intertask relationships from file-access logs. As files contained in the
same task are identified with each other, the results of task mining should be
important. We first set up these experiments to acquire appropriate values of
parameters used for task mining. The other parameters were fixed as follows:
(α1, α2, β1, β2, γ1, γ2) = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0), θ = 0.5.

Parameter Tuning for FI Task Mining. To determine the value of
TransactionT ime and MinSuppCnt, we only used FI tasks, and experiments
were performed in the combinations of TransactionT ime = {900, 1800, 3600,
5400, 7200} [s] and MinSuppCnt = {2, 3}.

The averages of the F-measure are depicted in Fig. 4. The MinSuppCnt =
2 case performed better than the MinSuppCnt = 3 case, with the value of
TransactionT ime held constant. Increasing MinSuppCnt caused the number
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Fig. 4. Experimental Results for FI Task Mining

Table 3. Average F-measure (RMC Task Mining)

RMCTaskTime [s] 60 180 300 600 1800

Precision 0.776 0.758 0.762 0.762 0.756
Recall 0.669 0.674 0.673 0.675 0.684
F-measure 0.684 0.681 0.679 0.684 0.684

of files belonging to tasks to decrease; this indicates that related files that do
not include keywords cannot be found by either tasks or intertask relation-
ships. In addition, we notice a trend of the F-measure decreasing when the
TransactionT ime increases. This is because, as TransactionT ime increases,
more related files are put into the same transaction, and the number of files in a
set of transactions will be less thanMinSuppCnt because the number of accesses
is only counted once during the TransactionT ime-long interval. We omit the
details of the experimental results for each dataset because of space limitations.
Analysis of the results indicates that TransactionT ime = 3600 accomplished
the highest F-measure on datasets A, B and E, while TransactionT ime = 900
showed the best performance on datasets C, D, F and G. Differences in work
patterns can be inferred from these results. Based on the results, we used a
different TransactionT ime in subsequent experiments.

Parameter Tuning for RMC Task Mining. RMCTaskT ime is the pa-
rameter used in extracting RMC tasks. To determine the value, in addition to
FI tasks, we use the RMC tasks extracted in each case of RMCTaskT ime =
{60, 180, 300, 600, 1800} [s] to perform file search.

As shown in Table 3, the average recall increased as RMCTaskT ime
increased. However, the average precision decreased slightly, because a long
RMCTaskT ime potentially brings unrelated files into the same RMC tasks.
As the RMC operations were not handled very frequently, the impact was
small and caused little change in the F-measure. In subsequent experiments,
RMCTaskT ime was set to 60 s.
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Table 4. Setups for Comparison of RMC Operations

Rename Move Copy
Setup α1 α2 β1 β2 γ1 γ2

non-RMC 0 0 0 0 0 0
Rename 1 1 0 0 0 0
Move 0 0 1 1 0 0
Copy 0 0 0 0 1 1
RMC 1 1 1 1 1 1

4.4 Evaluation of Intertask Relationships

Relationships between tasks are derived from similarity links and RMC links.
In this section, we conduct experiments to determine the appropriate values of
parameters used in the formulas defined for calculating the weights of links and
the degree of intertask relevance.

Experiments for RMC Links. RMC links, an aspect used for determining
intertask relevance, are weighted using Equation (6), which considers the type
and direction between files, by introducing rmcf . rmcf is defined by Equation
(2) and the six parameters (α1, α2, β1, β2, γ1, γ2). To compare RMC operations,
we set these parameters according to the configuration given in Table 4. As the
results depicted in Fig. 5 show, using the rename and move operations had little
effect on expanding the results of traditional file search. One reason is that re-
named and moved files were ignored because files that do not exist in the filesys-
tem were outside the evaluation targets. Another reason is that only 2% of log
entries are created from rename and move operations. In contrast with rename
and move, the copy operation enhanced the value of recall and the F-measure
of full-text search results. Hence the result which utilized RMC performed the
best F-measure, we set (α1, α2, β1, β2, γ1, γ2) = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0) in sub-
sequent experiments.

Fig. 5. Comparison of Experimental Results on RMC Links
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Fig. 6. Experimental Results for θ

Table 5. 11-point Average Precision

θ 0.0 0.2 0.4 0.6 0.8 1.0

Average of 11-point Average Precision 0.430 0.482 0.482 0.476 0.476 0.475

Experiment with θ. In Equation (7), we use θ to adjust the relative empha-
sis on similarity links and RMC links when calculating the degree of intertask
relevance. To investigate the proper value of θ, we average the 11-point average
precision with θ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

As shown in Fig. 6, better-ranking results were obtained when θ > 0.0 than
when θ = 0.0, although the precise value of θ was not so important. Because
tasks that have more links to other tasks tend to obtain a higher score under the
proposed method, even if the degree of intertask relevance changes, tasks of this
nature would be prioritized. θ = 0.0 led to a poor performance because using
RMC links only was not sufficient to expand the full-text results to other tasks.
We also note that θ = {0.2, 0.4} got the highest 11-point average precisions
(Table 5).

4.5 Evaluation of SUGOI

To improve the results of an existing keyword-based search engine, we group files
related to the same tasks and derive intertask relationships from access frequency
and RMC operations on files. We propose methods for mining FI tasks and RMC
tasks. To expand the full-text search results, we use similarity links and RMC
links to determine the relevance between tasks. To investigate the effect of task
mining and the association links, we use the setup shown in Table 6 to compare
SUGOI with an existing full-text search engine[4].

The experimental results are given in Table 7 and Fig.7. All configurations
of the proposed system SUGOI are better according to the F-measure than
the existing full-text search engine. FI tasks and similarity links increased the
average of recall from 0.273 to 0.5, while precision increased from 0.795 to 0.820
(SUGOI 1). In general, there is a trade-off between precision and recall. However,
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Table 6. Setup of SUGOI

Setup Task Type Intertask Relational Links

SUGOI 1 FI Task Only Similarity Links Only
SUGOI 2 FI Task Only Similarity Links + RMC Links
SUGOI 3 FI Task + RMC Task Similarity Links Only
SUGOI 4 FI Task + RMC Task Similarity Links + RMC Links

Fig. 7. Experimental Results of SUGOI

FI tasks consist of groups of files that are frequently accessed together and the
average size of FI tasks is small, so few nonrelevant files are mingled in FI tasks.

In comparing SUGOI 1 with SUGOI 2 and SUGOI 3 with SUGOI 4, without
RMC tasks, the effect of RMC links was small. An analysis of the mining results
showed that only about 9% of log entries were RMC entries and most RMCed
files were not contained in FI tasks because of low access frequency. Therefore,
it was difficult to find new FI tasks using RMC links.

In addition to FI tasks and similarity, using RMC tasks and RMC links re-
sulted in a certain improvement in recall and F-measure (SUGOI 3, 4). The
reason is that files that do not include the keywords were found because they
are related to tasks with files that do include the keywords. Thus, the precision
average decreased slightly because RMC tasks are extracted from files RMCed
together and, in contrast with FI tasks, extraneous files are easily mingled in
RMC tasks.

From Table. 7, it is clear that SUGOI 4 achieved the highest recall and F-
measure. The result confirmed that our proposed methods for task mining and
deriving the intertask relationships are significantly effective for file search.

4.6 Summary of Experiments

In this section, we inspected the characteristics of the parameters and confirmed
the validity of SUGOI by using actual file-access logs. The following conclusions
were obtained.
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Table 7. Experimental Results of SUGOI

Setup Precision Recall F-measure

Traditional Full-text Search 0.795 0.273 0.392
SUGOI 1 0.820 0.500 0.606
SUGOI 2 0.820 0.500 0.606
SUGOI 3 0.784 0.638 0.668
SUGOI 4 0.776 0.669 0.684

1. A lower minimal support count (MinSuppCnt = 2) generated results with
a higher F-measure. This means that if a combination of file accesses occurs
more than twice in a set of transactions, these files are likely to have relevance
to each other.

2. In the experiment on RMC task mining, we observed the trend that in-
creasing RMCTaskT ime decreases the precision and increases the recall.
However, the effect is small because users do not perform RMC operations
frequently.

3. Copy operations, which can be done without making changes to the original
file, were the most effective in RMC.

4. By investigating θ, a parameter used in Equation (7), we found that empha-
sizing the RMC links is effective, but the similarity links were also essential.
SUGOI generated the best-ranking results when θ = {0.2, 0.4}.

5. SUGOI conspicuously improves the average recall and F-measure over tra-
ditional full-text search results. The recall rise represented an increase of
0.396, while the increase in the F-measure was 0.292.

5 Conclusion and Future Work

As the volume of data stored in filesystems is increasing rapidly, and a large
proportion of this is file-based unstructured data such as multimedia files, many
files cannot be found using traditional full-text search engines. In this paper, we
proposed a method for searching for such files by introducing the concept of tasks
and intertask relationships derived from file-access logs. The main contributions
of this paper are summarized as follows.

1. Task mining methods for two types of task: FI tasks, consisting of files fre-
quently accessed together, and RMC tasks, consisting of files that were re-
named/moved/copied (RMCed) simultaneously.

2. Methods for deriving association links from file-access logs by considering
the similarity and RMC operations between tasks to generate a graph of
intertask relationships.

3. A search method incorporating the task mining results into a full-text search
to accomplish an accurate keyword-based file search.

4. Experimental results using actual file-access logs, which demonstrated that
the proposed approach significantly improves search results.
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As future work, we plan to conduct evaluation experiments using larger file-
access logs. Contriving measures to choose the parameters automatically is also
important for practical use. We also want to refine the proposed methods of task
mining and the formulas for indicating intertask relevance.
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Abstract. Several algorithms for top-k query processing over web data
sources have been proposed, where sources return relevance scores for
some query predicate, aggregated through a composition function. They
assume specific conditions for the type of source access (sorted and/or
random) and for the access cost, and propose various heuristics for choos-
ing the next source to probe, while generally trying to refine the score of
the most promising candidate. We present BreadthRefine (BR), a generic
top-k algorithm, working for any combination of source access types and
any cost settings. It proposes a new heuristic strategy, based on refining
all the current top-k candidates, not only the best one. We present a rich
panel of experiments comparing BR with state-of-the art algorithms and
show that BR adapts to the specific settings of these algorithms, with
lower cost.

Keywords: top-k queries, web data, multi-criteria information retrieval,
ranking.

1 Introduction

Data retrieval applications accorded an increasing importance these last years
to ranked queries, compared to traditional boolean queries. This is, to a large
extent, the consequence of the great development of web applications integrating
huge volumes of heterogeneous and multimedia data: text, images, video, maps,
etc. On one hand, this introduced the need for fuzzy, approximate answers,
ranked by relevance, when querying such large and heterogeneous amount of
data, on the other hand the new web data types came with intrinsic ranked
predicates: text and image similarity, location proximity, user preferences, etc.

In this context, we address the problem of processing top-k queries over a set
of web sources. A query is expressed through a set of ranked predicates over
a common set of data objects. Each predicate is independently evaluated by
some web source and returns a relevance score for any input object. A monotone
aggregation function combines partial scores from each predicate into the final
object score relative to the query. The query returns objects having the k best
global scores.

Consider the example of a tourist in Paris, looking for buildings constructed
around 1750, near to his current location and similar to the one he just pho-
tographed. Objects are here the buildings in Paris and the query consists of three

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 379–393, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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select ∗ from Building b
order by proximity(b.year, 1750) +

closeness(b.address, here()) +
similarity(b.image, myImage)

limit 5 ;

S1 (S-source) S2 (SR-source) S3 (R-source)

(o2, 0.4) (o3, 0.9) (o1, 0.9)
(o1, 0.3) (o1, 0.2) (o2, 0.7)
(o4, 0.25) (o4, 0.15) (o3, 0.8)
(o3, 0.2) (o2, 0.1) (o4, 0.6)

Fig. 1. Example query and sources

ranked predicates: p1: proximity of the construction date, p2: spatial proximity
to the current location, and p3: similarity with a given picture.

In SQL-like syntax, e.g. the one proposed by RankSQL [10], this query could
be expressed such as in Figure 1, if we consider k = 5 and a simple aggregation
function based on the sum of the individual scores.

The sources that evaluate the predicates could be, for instance:

– S1: a database server storing historical information about buildings (for p1);
– S2: a geographic/map service (for p2);
– S3: an image database indexing fronts of buildings in Paris (for p3).

Note that the ranking predicates are dependent on the query, for instance, even
if S2 always evaluates spatial proximity between an object and a reference point,
this point depends on the query.

To execute such a query, one must access the web sources to get partial scores
for objects. The access to the web sources during query processing has the fol-
lowing main properties:

– Access is limited to operations allowed by the web source interface and there
is no control on the inside mechanisms. Generally, a web source may allow
two kinds of access: sorted, where each access returns the next score/object
in decreasing order, and/or random, where each access returns the score of
a given object. We call S-sources sources with sorted access only, R-sources
those with random access only, and SR-sources those with both accesses.

– Accessing web sources is expensive, the cost of accessing sources dominates
the cost of the other algorithm operations.

The naive approach would be to get all the partial scores for all the objects,
then to compute their global scores, to order them by descending score and get
the first k results. In practice, this method is very expensive and many efficient
algorithms have been proposed for various cases of access types and cost settings.

Some algorithms, such as NRA [4] and StreamCombine [6] consider only S-
sources, while algorithms such as TA [4], CA [4] and QuickCombine [5] consider
only SR-sources. A third category considers specific heterogeneous access config-
urations, e.g. one S-source and several R-sources for Upper [2] and MPro [3], or
several SR-sources and several R-sources for some extensions of TA and Upper.
The NC framework [14] is the only approach that addresses any combination of
access types. All these algorithms are further detailed in the related work section.

Cost settings considered by these algorithms fall generally into two cate-
gories: (i) no difference between the cost of sorted and random accesses (NRA,
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StreamCombine, TA, QuickCombine), and (ii) random more expensive than
sorted access (CA, Upper, MPro). However, other cost settings are possible,
e.g. sorted more expensive than random access. Consider for instance the case of
a source evaluating image similarity by using an index on disk for sorted access,
but keeps image descriptors in memory; random access requires here no disk
access and is faster than sorted access. Again, NC is the only attempt to adapt
to any cost settings.

The general idea behind all these top-k algorithms is to maintain a list of
candidate objects and the interval [L,U ] of possible global scores for each of
them. At the beginning, the interval is obtained by aggregating the minimum /
maximum source scores. Monotonicity of the aggregation function ensures that
further source accesses will refine these intervals, by decreasing the upper bound
U and increasing the lower bound L. The algorithm stops when the score of the
best k candidates cannot be exceeded by the other objects.

We illustrate the behavior of such an algorithm through the example in
Figure 1. Suppose S1 is a S-source, S2 a SR-source, S3 a R-source; scores are
presented in descending order for S/SR sources and by object id for R-sources.
Individual predicate scores belong to the [0, 1] interval, so the initial global score
interval is [0, 3] for all objects. Note that we consider algorithms without wild
guesses, i.e. objects are not known in advance, they are ’discovered’ by sorted
accesses. We note candidates the set of candidates and Uunseen the maximum
score of objects not yet discovered. Initially, candidates = ∅ and Uunseen = 3.
– A sorted access to S1 retrieves (o2, 0.4), so with one partial score known for o2

its global score interval becomes [0.4, 2.4], i.e. candidates={(o2, [0.4, 2.4])}.
Also Uunseen becomes 2.4 because further scores in S1 cannot exceed 0.4.

– A sorted access to S2 retrieves (o3, 0.9). This adds a new candidate (o3),
lowers Uunseen to 2.3 (because further S2 scores cannot exceed 0.9), but also
lowers the maximum global score of o2 to 2.3, because the maximum score
of S2 is now 0.9. candidates={(o2, [0.4, 2.3]), (o3, [0.9, 2.3])}.

– A random access to S2 for o2 retrieves (o2, 0.1). This changes only the global
score interval of o2. candidates={(o2, [0.5, 1.5]), (o3, [0.9, 2.3])}.

– A random access to S3 for o3 retrieves (o3, 0.8) and changes the global score
interval of o3. candidates={(o2, [0.5, 1.5]), (o3, [1.7, 2.1])}.

– A sorted access to S2 retrieves (o1, 0.2). This adds a new candidate (o1), low-
ers Uunseen to 1.6, but does not lower the maximal global score of the other
candidates because o2 and o3 already know their S2 scores. candidates={(o2,
[0.5, 1.5]), (o3, [1.7, 2.1]), (o1, [0.2, 1.6])}.

– The minimum global score of o3 exceeds both Uunseen (maximum global score
of unseen objects) and the maximum global score of all the other candidates,
we can conclude that o3 is the best (top-1) object.

Execution may continue depending on the value of k, but notice that top-k
objects could be returned without knowing their exact scores and order. Most of
the existing algorithms return exact scores for top-k and are iterative, i.e. return
first top-1, then top-2, etc. However, in many applications the exact global score
is not needed (e.g. image retrieval), but only the top-k objects with approximate
ordering.
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The difference between the top-k algorithms mentioned above consists in the
heuristics proposed for the choice of the next source to probe and of the candidate
to refine through random accesses. Note that all the algorithms that must select
a candidate to further refine focus on the current ”best” candidate.

Our goal is to propose a new generic top-k algorithm that works for any
combination of source access types and cost settings, and returns the set of top-
k objects, possibly without complete scoring information. This algorithm uses
a new heuristic approach, that refines on all the top-k candidates, instead of
favoring only the best current candidate.

The contributions of this paper may be resumed as follows:
– We present BreadthRefine (BR), a new, generic top-k algorithm, able to

adapt to any combination of source access types and to any cost settings. To
the best of our knowledge, excepting NC [14], this is the first generic top-k
algorithm for web sources. Unlike NC, that mixes heuristics and sampling
optimization, our algorithm is only based on a simple heuristics.

– We propose a new heuristic approach, that do not focus only on the best
current candidate, but considers all the top-k candidates. Our experiments
show that this heuristics produces better results than the usual approach.

– We report a rich experimental evaluation comparing BR to existing algo-
rithms for various source types and cost settings, and show that BR is less
expensive.

The rest of the paper is organized as follows: the next section presents related
work, then Section 3 describes the BR algorithm, Section 4 reports the experi-
ments comparing BR to existing algorithms, then we end with conclusions and
future work.

2 Related Work

Top-k query processing techniques have been largely studied in the last decade
at different levels: query model, access types, implementation structures, inte-
gration in database engines [10][7][9], etc. The survey [8] presents a rich overview
of these various approaches. In this context, we address the problem of selection
queries (no joins), for web sources with any configuration of access types and any
cost settings. We do not compare with algorithms having additional information
about objects in sources, e.g. the rank in BPA [1]. Join queries are addressed
e.g. by the J* [13] or the Rank-Join [7] algorithms.

Algorithms for top-k selection queries proposed so far focus on specific ac-
cess types and cost settings for the sources. They fit with the general method
illustrated in the example of Section 1, i.e. maintaining a list of candidates with
global score interval and accessing sources following their own heuristics.

Among the algorithms that consider only S-sources, the best known is NRA
(No Random Access) [4]. NRA consults sources following a simple round-robin
strategy, with no specific order. Such as for BR, final results may have incomplete
scoring information. Efficient NRA implementations such as LARA [11] that re-
duce the overhead of candidate updates are not relevant in our context, since
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we ignore this overhead compared to the access time to web sources. Stream-
Combine [6] is a variant of NRA that selects at each step the next source to
probe following the benefit that the source may provide. Benefit considers three
factors: (i) the importance of the source in the global score (e.g. the coefficient
in the aggregation function, for a weighted sum), (ii) the decrease of the source
score (bigger decreases favor faster algorithm termination), and (iii) the number
of candidates in the current top-k not yet seen in the source and that will con-
sequently lower their upper bound. We adopt in BR a similar notion of benefit
for sorted sources.

Algorithms that consider only SR-sources adopt a different approach: the
global score of a candidate discovered through a sorted access is completely
evaluated through random probes of the other sources. The consequence is that
candidates have exact scores, not intervals, so there is no need to maintain a
list of candidates. The termination test simply compares the score of the k-th
candidate with the threshold Uunseen.

TA (Threshold Algorithm) [4], the best known SR-source algorithm, consults
sources in a way similar to NRA, following a round-robin strategy. QuickCom-
bine [5] is a variant of TA that uses the same idea as StreamCombine to select
the next sorted source to probe. The benefit considers only the two first factors
presented above for StreamCombine, the last one being not relevant. CA (Com-
bined Algorithm) [4] is a variant of TA that considers random accesses being h
times more expensive than sorted ones. It combines NRA with TA to reduce the
number of random accesses by performing h sorted accesses in each source before
a complete evaluation of the best candidate by random probes. We adopt in BR
a similar idea for taking into account the possible difference between random
and sorted costs. Many other extensions of TA have been proposed, such as TAz
[2], which considers an additional set of R-sources. TAz acts as TA for the sorted
accesses, but includes the R-sources in the random probe phase.

Algorithms with sorted access and controlled random probes, such as Upper [2]
and MPro [3], typically consider one S-source and several R-sources. The random
cost exceeds the sorted cost, but is different from one R-source to another. Both
Upper and MPro consider complete scoring of the final top-k result.

Upper maintains candidates following an estimated score. At each step, it
considers candidate o with the highest upper score U : if U < Uunseen a sorted
access is performed in order to reduce Uunseen, otherwise a random probe for o
is done. A benefit is computed for each R-source and the best source is selected
for the random probe. Two cases are considered. If o belongs to the current top-
k, the benefit is the ratio between the expected decrease δ of U and the access
cost. Otherwise, o has more chances to be out of the top-k and one computes the
decreaseΔ of U necessary to prove that o is not a top-k object. The source benefit
in this case is the ratio between min(δ,Δ) and the access cost. An extension of
Upper for several SR-sources and several R-sources is presented in [12] - in
this case sorted access is performed in NRA manner over the SR-sources, while
random access considers all the SR/R-sources not yet probed.
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Like Upper, MPro considers at each step the candidate with the highest upper
score and performs a random probe for it or a sorted access if Uunseen is higher.
But unlike Upper, MPro fixes for all the candidates the same order (schedule)
for probing the R-sources. The best schedule may be determined by various
methods, such as sampling optimization, proposed by the authors.

The only algorithm that aims at genericity is NC (Necessary Choices) [14],
an extension of MPro. Like BR, NC is generic and adapts to any source access
type and cost settings. NC identifies necessary choices (i.e. accesses that are
necessary at a given execution state to obtain the final result) as belonging to
accesses for the current top-k upper bound candidates. NC proposes an algorithm
framework that performs only necessary accesses and defines an algorithm called
SR/G in this framework that computes for each S/SR-source a limit score. SR/G
gives priority to sorted accesses in sources that did not reach the limit score.
More precisely, the algorithm considers at each step the candidate with the
highest upper score and chooses a sorted access for it, if possible (i.e. in a sorted
source that did not return the object, nor reach its limit). If not possible, a
random probe is selected following a fixed schedule, like for MPro. Limit scores
are determined by sampling optimization and simulation.

Compared to NC, BR addresses a slightly different problem, by computing
top-k objects possibly without complete scoring. Therefore necessary choices in
the NC context are not relevant for BR. We do not compare in this paper BR
with NC because, source sampling being not always possible, we only focus on
fully heuristic-based top-k algorithms. Even if NC authors claim that sampling
may replaced by estimation of the source limits, our tests indicate that NC is
very sensible to the quality of this estimation. One should first define good limit
estimation heuristics for NC, which is out of the scope of this paper.

3 The BreadthRefine Algorithm

Unlike top-k algorithms presented in Section 2, the BreadthRefine (BR) algo-
rithm covers any configuration of source access types and cost settings and
proposes a new heuristic approach: refining the scores of all the top-k candi-
dates, instead of focusing on the best one. We first present the BR data and
query model, then the general BR algorithmic framework and several algorithm
variants in this framework.

Data and query model. We consider a set of data objects O = {o1, ..., on},
a top-k multi-criteria query q over these objects, and a set of web sources S =
{S1, ..., Sm} able to evaluate the query criteria.

Definition 1. Query: A top-k multi-criteria query q is defined by (i) a number
of objects k to return, (ii) a set of ranked predicates (criteria) Pq = {p1, ..., pm},
depending on the query, and (iii) a monotone score aggregation function F .

Predicates pj : O → [minj ,maxj ] return for any object a score in a given
interval, while function F : R

m → R aggregates predicate scores into a global
object score. Each predicate pj is independently evaluated by source Sj.
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Definition 2. Source: A source Sj is characterized by (i) its access type (S,
R or SR), and (ii) a cost per access, noted Cs(Sj) for sorted and Cr(Sj) for
random access. The minimum and maximum scores in Sj are noted minj and
maxj, as mentioned in Definition 1.

The set of sources S can be partitioned following the access type in three
disjoint subsets, possibly empty: S = SS ∪ SR ∪ SSR.

A sorted source (of type S or SR) provides an access function
getNext : SS ∪ SSR → O × R∪ {nil}

returning the next couple (o, s), where o is the object with the next score in
decreasing order and s its score (if exists), or the special value nil otherwise.

A random source (of type R or SR) provides an access function
getScore:(SR ∪ SSR) × O → R

returning the score of the given object in the source.
We note score(o, Sj) the score retrieved for object o in source Sj.
We note crtmaxj the largest score that source Sj could further return. For

pure random sources Sj ∈ SR, crtmaxj = maxj (constant). For sorted sources
Sj ∈ SS ∪ SSR, crtmaxj is the score returned by the last sorted access to Sj

1

(initially crtmaxj = maxj).

Definition 3. Candidates: A candidate in the algorithm is an object that has
been already returned by a sorted access. For each candidate c, the algorithm
maintains L(c) (U(c)), i.e. the lower (upper) bound of the global score for c.
L(c) (U(c)) is computed by aggregating the scores of c in the sources where it
has been already consulted, and the minimum (maximum) score in the other
sources.
L(c) = F(l1, ..., lm), lj =score(c, Sj) if c consulted in Sj, else lj = minj

U(c) = F(u1, ..., um), uj =score(c, Sj) if c consulted in Sj, else uj = crtmaxj .
We note Lk (Uk) the k-th value in decreasing order for L(c) (U(c)) among

the candidates - for less than k candidates, the value is nil.
A candidate is called viable if it still has chances to belong to the final top-

k result. The viability condition for c is U(c) ≥ Lk. It is simple to prove using
monotonicity that once a candidate becomes non-viable, it will remain non-viable
and could be removed.

We note Uunseen the upper bound of the global score for any object that is not
yet a candidate. Initially, Uunseen = F(max1, ...,maxm)

The BR algorithm framework. The basic idea of the BR algorithm is to
maintain the top-k candidates as a whole instead of looking only at the best
candidate. Also, BR is able to handle any kind of source access; the choice of
the access type is the central issue at each step.

Figure 2 presents the general BR framework, from which various algorithm
variants may be instantiated. BR maintains a set of candidates, initially empty,
and the maximum score of unseen objects, Uunseen.

1 We consider that an object retrieved through a sorted access in a SR-source is not
further accessed by a random access in the same source.
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Framework BR(q, S)
candidates ← ∅
Uunseen ← F(max1, ..., maxm)
repeat

//choice between sorted or random access
if |candidates| < k or Uk < Uunseen or CostCondition() then

Sj ← BestSortedSource(S) //choice of a sorted source
(o, s) ← getNext(Sj ) //sorted access to the selected source
Update candidates and Uunseen

else //random access
c ← ChooseCandidate(candidates, k) //choice of a top-k candidate
Sj ← BestRandomSource(S, c) //choice of a random source
s ← getScore(Sj , c) //random access to the selected source
Update candidates

endif
until |candidates| = k and Lk ≥ Uunseen

return candidates

Fig. 2. The BR algorithm framework

At each step, BR first chooses the type of access to be performed. Sorted
access is preferred in the following cases:

– A group of top-k candidates does not exist yet, i.e. if |candidates | < k.
– An unseen object could belong to the current upper bound top-k group, i.e.
Uk < Uunseen. A sorted access will decrease Uunseen and eliminate unseen
objects from the top-k group.

– If the cost-related condition CostCondition is true. This condition enables
BR to adapt to various cost settings, e.g. to force sorted accesses when
random probes are expensive.

If a sorted access is decided, the BestSortedSource function chooses the best
sorted source, then performs the sorted access2. Consequently, the candidate set
and Uunseen are updated; the update of the candidate set consists in several
actions:

– Add the object to the candidate set, if it is seen for the first time.
– Update the upper and lower bounds for all the candidates. In fact, besides

the retrieved object, the update only affects the upper bound of candidates
that have not been retrieved yet in the source.

– Remove non-viable candidates.

In the case of a random access, the ChooseCandidate function chooses a can-
didate in the current top-k group. Then a random source is selected with Be-
stRandomSource, among those not yet probed for the candidate. The source is
probed and the candidate set is updated.

The algorithm ends when the candidate set is reduced to k objects (after
removing non-viable candidates) and when the unseen objects cannot change
2 We consider that BestSortedSource does not return a source with no more objects.
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anymore the final result (Lk ≥ Uunseen). The result is the set of k candidates,
with possibly incomplete scores.

BR algorithm variants. By instantiating CostCondition, BestSortedSource,
ChooseCandidate and BestRandomSource functions, one may obtain various BR
algorithms. We present three variants: BR-Cost, BR-Basic and BR-First.

BR-Cost is the reference BR algorithm that we propose. It refines the set of
top-k candidates in a breadth-first manner and adapts to various cost settings.
BR-Cost uses weighted sum aggregation function and employs source selection
methods similar to existing algorithms.

– ChooseCandidate selects the least refined candidate (with the least random
probes) from the current upper bound top-k group.

– CostCondition aims at reducing the number of random accesses (if more
expensive than sorted ones), in a way similar to the CA algorithm. More
precisely, if r is the average ratio between the cost of random and sorted
accesses, then once a random probe is processed, the next one is possible
only after at least r sorted accesses.

– BestSortedSource selects the sorted source Sj with respect to a benefit similar
to the one proposed by StreamCombine [6], i.e. Bj = coef jNjδj/Cs(Sj),
where coef j is the weight of Sj in the aggregation function, Nj the number
of top-k candidates not yet seen in Sj, δj the expected decrease of the score
in Sj and Cs(Sj) the access cost. Here Nj measures the number of top-k
objects that will be concerned by the decrease of the upper bound, and
coefj and δj the amount of this decrease.

– BestRandomSource selects the random source with respect to a benefit Bj =
coef j × (crtmaxj −minj)/Cr(Sj). Here coef j and crtmaxj −minj measure
the variation of the candidate’s upper/lower bound when the real score will
replace the upper/lower source score.

BR-Basic is a variant of BR-Cost which does adapt to various cost settings, i.e.
CostCondition systematically returns false. Comparing BR-Basic with BR-Cost
will reveal the importance of cost adaptation.

BR-First is a variant of BR-Basic that uses the classical approach for choos-
ing a candidate to refine, i.e. always select the best one - the highest upper bound
in this case. Note that this is still a particular case of the general BR heuristics,
the best candidate belonging to the top-k. Comparing BR-First with BR-Basic
will measure the benefit of the new heuristics.

4 Experiments

In this section we report the experimental evaluation of the BR algorithms over
synthetic data. We evaluate genericity and adaptivity by comparing BR with
state of the art algorithms in their specific access type and cost configurations.
We also measure the importance of the BR heuristics and of cost adaptivity by
comparing the BR algorithms variants.
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Data sets. We generate synthetic score lists for each source, each list repre-
senting the predicate scores for a given query, as values in the [0,1] interval.
Sources are independent and have similar data distribution. The sorted access
cost Cs is the same for any source, idem for the random cost Cr. We consider
three variants of data distribution:

– Uniform: values are uniformly distributed.
– Gaussian: values are generated from three overlapping Gaussian bells.
– Zipfian: values are generated from a Zipf function with 1000 distinct values

and Zipfian parameter z = 1.

Parameters and default settings. All the experiments measure the execution
cost, which is the cost of all the source accesses performed during execution. More
precisely, if Nsj (Nrj) is the number of sorted (random) accesses to source Sj ,
then the cost of the algorithm is:

cost =
∑

Sj∈SS∪SSR

NsjCs(Sj) +
∑

Sj∈SR∪SSR

NrjCr(Sj) (1)

Each result is the average of 8 measures over different randomly generated
data sources. We consider various parameters in the experiments:

– The number of objects: 10000 (default), 20000, 40000, 60000, 80000, 100000.
– The number k of returned objects: 20, 40, 50 (default), 60, 80, 100.
– The number of S-sources Ns, of R-sources Nr and of SR-sources Nsr (default

value for each one: 3).
– The cost setting: Cr(= 5) > Cs(= 1) (default), Cr = Cs(= 1), Cr(= 1) <
Cs(= 5)

– Data distribution for all the sources: uniform (default), gaussian, zipfian.

Algorithms tested. Experiments are grouped by source access type in three
categories, in each case the set of algorithms adapted to this setting is considered:

– No R-sources: NRA and MPro.
– No S-sources: Upper, TAz and MPro.
– All the source types exist: MPro.

We adapted the MPro algorithm to cover all the cases as follows: sorted sources
are combined with NRA to behave as a single S-source. SR-sources may be
considered by MPro either as sorted or random, depending on the context: sorted
when there are no S-sources, random when there are no R-sources. In the case
of all the source types, we considered both settings (SR as sorted and SR as
random) and reported the average cost. Also for random probes we considered a
fully heuristic variant for MPro, in which scheduling uses the same order based
on benefit as BR.
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(a) Varying k for Cr > Cs (b) Varying k for Cr = Cs

(c) Varying the number of objects (d) Varying the distribution

Fig. 3. SR + S-sources: varying k, the number of objects and the distribution

SR-sources + S-sources. We compare BR-Cost, BR-Basic and BR-First with
NRA and MPro. We first vary k in two cases: Cr > Cs (default setting) and
Cr = Cs. The case Cr < Cs is not favorable to NRA and is considered later for
MPro.

Figure 3(a) presents results for Cr > Cs. Cost increases with k for all the
algorithms, but BR-Cost is significantly less expensive than MPro and even
than NRA, which does no random access. The importance of considering cost
settings in BR is obvious when comparing BR-Cost with BR-Basic. Also the
benefit of the BR heuristic is confirmed by BR-First which behaves worse than
BR-Basic. Figure 3(b) considers the case Cr = Cs, where BR-Cost is the same
as BR-Basic. BR-Basic/Cost is still the best, but the difference with BR-First
and MPro decreases.

Next, we vary the number of objects for the default cost settings. Figure 3(c)
shows that the cost increases almost proportionally for all the algorithms, so the
above conclusions are unchanged.

Figure 3(d) illustrates the variation of data distribution. For uniform and
gaussian distributions, BR-Cost is the best algorithm and BR-Basic outperforms
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(a) Cr > Cs (b) Cr = Cs

Fig. 4. SR + S-sources: varying |SR|/|S|

(a) Varying k (b) Varying the number of objects

(c) Varying distribution (d) Varying |SR|/|R|

Fig. 5. SR + R-sources

BR-First. Zipfian distribution, with many identical values, is a special case, but
BR-Cost still have good results. BR-Cost and NRA have almost the same cost,
while differences between MPro and BR variants become insignificant.
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(a) Varying k: Cr > Cs (b) Varying k: Cr = Cs

(c) Varying k: Cr < Cs (d) Varying distribution

Fig. 6. SR + S + R-sources: varying k and the distribution

Finally, we study the impact of varying the ratio between the number of SR-
sources and of S-sources. Figure 4 reports the results for the default setting (a)
and for Cr = Cs (b). Interestingly, in both cases algorithms have best results
when |SR| = |S|. In the default setting, in all cases, BR-Cost has better cost,
but it substantially outperforms the other algorithms when |SR| > |S|. Also BR-
Basic is always significantly better than BR-First, the difference increases when
|SR| < |S|. When Cr = Cs, BR-Basic/Cost, BR-First and MPro keep the same
relative performances, while NRA behave worse when |SR| > |S|.

SR-Sources + R-Sources. We compare BR with Upper, TAz and MPro. For
space reasons, we only illustrate BR-Cost and BR-Basic, knowing that measures
indicate that BR-First remains worse than BR-Basic. Results are presented in
Figure 5. TAz is systematically outperformed by all the other algorithms and
BR-Basic by BR-First. BR-Cost has globally the best results, even if Upper and
MPro are close. Upper is slightly worse than MPro in the default setting, but
scales better than MPro when the number of objects grows. Also Upper degrades
when |SR| > |R|.
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(a) Cr > Cs (b) Cr < Cs

Fig. 7. SR + S + R-sources: varying the number of objects

SR-Sources + S-Sources + R-Sources. We compare BR-Cost, BR-Basic
and BR-First with MPro, by first varying k for all the cost settings. Figure 6(a)
reports the default case Cr > Cs. BR-Cost outperforms MPro, while BR-Basic
remains better than BR-First and similar to MPro. When Cr = Cs (subfigure
b), BR-Basic/Cost is better than both MPro and BR-First and the difference
augments when Cr < Cs (subfigure c). This seems to indicate that MPro makes
more sorted accesses than BR-Basic (the difference increases when Cs grows)
and probably less random accesses.

Figure 6 (d) illustrates the impact of data distribution: BR-Cost remains glob-
ally the best, while BR-First is the worse BR variant. There is little
difference between BR variants for gaussian distribution, while zipfian favors
MPro compared to BR-Basic and BR-First.

Figure 7 reports the impact of the number of objects for Cr > Cs (a) and
Cr < Cs (b). In both cases, the cost augments almost proportionally for the BR
variants and BR-Cost is always better than the other algorithms. We remark that
MPro scales better than BR-Basic and BR-First when Cr > Cs and significantly
worse when Cr < Cs, indicating that MPro makes slightly less random accesses,
but much more sorted accesses than BR-Basic.

5 Conclusion

In this paper we proposed BreadthRefine (BR), a generic top-k algorithm, able
to adapt to any combination of source access types and to any cost settings. It
adopts a new heuristic approach, by refining the scores of all the top-k candi-
dates instead of focusing on the best one. Experiments on synthetic data clearly
indicate that BR successfully adapts to various settings, with globally better exe-
cution cost than algorithms designed for that specific case. Comparison with the
classical approach of favoring the best candidate shows that BR’s breadth-first
heuristics produces better results.
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Future work will focus on the advantages of breadth-first heuristics in approx-
imating the top-k final results.
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Abstract. Due to the growing importance of the Web, several archiving
institutes (national libraries, Internet Archive, etc.) are harvesting sites
to preserve (a part of) the Web for future generations. A major issue
encountered by archivists is to preserve the quality of web archives. One
way of assessing the quality of an archive is to quantify its completeness
and the coherence of its page versions. Due to the large number of pages
to be captured and the limitations of resources (storage space, band-
width, etc.), it is impossible to have a complete archive (containing all
the versions of all the pages). Also it is impossible to assure the coher-
ence of all captured versions because pages are changing very frequently
during the crawl of a site. Nonetheless, it is possible to maximize the
quality of archives by adjusting web crawlers strategy. Our idea for that
is (i) to improve the completeness of the archive by downloading the most
important versions and (ii) to keep the most important versions as coher-
ent as possible. Moreover, we introduce a pattern model which describes
the behavior of the importance of pages changes over time. Based on
patterns, we propose a crawl strategy to improve both the completeness
and the coherence of web archives. Experiments based on real patterns
show the usefulness and the effectiveness of our approach.

Keywords: Web Archiving, Data Quality, Change Importance,
Pattern.

1 Motivation

The main goal of web archiving institutes (national libraries, Internet Archive,
etc.) is to preserve the history of web sites for future generations. Most often,
web archiving is automatically performed using web crawlers. Web crawlers visit
web pages to be archived and build a snapshot and/or index of web pages. In
order to maintain the archive up-to-date and to preserve its quality, crawlers
must revisit periodically the pages and update the archive with fresh images.
We define the quality of an archive by its completeness and by the coherence of
its page versions. Completeness measures the ability of the archive to contain
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the largest amount of useful versions. Coherence measures how much the archive
reflects the snapshot of web sites at different points in time. An ideal approach
to preserve the quality of archives is to crawl all pages of a site at the same
time at every modification or to prevent pages content from changing during the
crawl. Of course, this is practically infeasible because web sites are autonomous
and thus out of control. In fact, it is impossible to maintain a complete archive of
the whole web site (i.e. containing all the versions of all the pages) because web
sites are evolving over time and allocated resources are usually limited (such as
bandwidth, storage space, site politeness rules). Also, crawling a large web site
may span hours and even days. This increases the risk of page changes during
the crawl that leads to incoherence between archived pages. Page versions (of a
same site) are considered incoherent, if they have never existed together at any
point in time in the real web history.

Though it is impossible to preserve a perfect quality of web archives, this
quality can be improved if web sites are crawled “at the right moment”. Our
work aims to adjust the crawling strategy so that the built archive will be as
complete and as coherent as possible. Our ideas, for that, is (i) to improve the
completeness of the archive by downloading the most important versions and
(ii) to assure that coherent versions we obtain, are the most important ones.
An important version is a version that has important change with respect to
the last one archived of the same page. Hence, unimportant changes in the page
(e.g. advertisements, decoration, etc.) can be ignored and useful information is
captured by a single crawl, maximizing the use of resources. Up to now, most
crawling strategies [5,13,10,16] do not consider the importance of changes that
have occurred between versions. They consider the crawl useful even if the cap-
tured version is almost equal to the previous one. Moreover, they estimate the
frequency of page changes based on the homogeneous Poisson model [8,6] with a
constant change rate λ. This model is valid when the time granularity of changes
is longer than one month as shown in [15] which is far from being the common
case. For instance, our work is applied on a repository for the French National
Audiovisual Institute (INA) which creates a legal deposit to preserve French
radios and televisions web pages and related pages. Those web pages, such as
on-line newspapers change very frequently (more than once a day). As the time
granularity, for those pages, is much shorter than one month, the homogeneous
Poisson model is not valid as demonstrated in [15].

We have the idea to use page change patterns. A pattern models the behavior
of the importance of the changes over time, during for example a day. Based on
patterns, the evolution of changes can be accurately predicted over periods of
time and exploited to optimize crawlers. In previous work [3], we have monitored
French TV channels pages (France Télévision) over a period of one month. Each
page was hourly crawled every day. Then, we have discovered patterns by using
a statistical summarization technique. Based on these patterns, we show, in
this paper, how the strategy of crawlers can be adjusted to improve quality of
archives. As far as we know, the concepts of changes importance and patterns had
never been exploited to optimize the quality of archives. Related crawl policies
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that have considered the importance/relevance of pages are mostly based on the
PageRank (also similarity to keywords of queries) but the importance of changes
between versions have been ignored so far. Moreover, this work is the first to
address both completeness and coherence, at same time, in the context of web
archiving. The main contributions of this paper can be summarized as follows:

– A description of our archiving model based on two concepts: changes impor-
tance and page changes pattern.

– A definition of two quality measures (completeness and coherence) to as-
sess the quality of the archive. These measures consider the importance of
archived versions.

– A novel crawl strategy based on patterns that uses the importance of changes
to improve both the completeness and the coherence of web archives.

– An implementation of our strategy and experimental results that demon-
strate its effectiveness.

This paper is structured as follows. In Section 2, related works are presented and
discussed. Section 3 introduces the different concepts used in the paper. Section 4
describes our web archiving model. Section 5 defines two measures, completeness
and coherence that assess the quality of archives. Section 6 describes our pattern-
based strategy using the importance of changes. Section 7 discusses experimental
results. Section 8 concludes.

2 Related Works

In recent years, several projects have addressed issues involved by web archiv-
ing. An overview of these main issues is given by Masanès [12]. Many studies are
closely related to our work, in the sense that they aim at optimizing crawlers.
Brewington and Cybenko [4] estimate how often web sites must be re-indexed
based on the analysis of page changes for more fresher indexes. Pandey and Ol-
ston [13] propose a recrawl scheduling strategy based on information longevity
to improve the freshness of web pages. In [8], Cho et al. estimate the frequency of
page changes based on the Poisson process. In other studies [6,7], they propose
efficient policies to improve the freshness of web pages. In [9], they propose a
crawl strategy to download the most important pages first based on different
metrics (e.g similarity between pages and queries, rank of a page, etc.). The
research of Castillo et al. [5] goes in same direction. They propose a crawl strat-
egy that retrieves the best ranked pages. Most designed strategies that have
considered the importance of pages are based on the PageRank (also similarity
to keywords of queries) but do not take into account the importance of changes
between versions. Moreover, existing crawl strategies are mostly based on change
rate estimated by the Poisson Process. As already mentioned in [15], researchers
demonstrate that the Poisson process is not valid for pages changing several
times per day as it is the case in our context. Similarly to our work, Adar et
al. [1] propose models and analysis to characterize the amount of change on the
web at finer grain (frequent updates per day). However, they do not propose a
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method to estimate the importance of (structural and content) changes detected
between pages versions. According to them, their change analysis can be used
to refine crawler policies but, no effective strategy has been proposed.

Recent studies address the issue of improving the quality of archives. Spaniol
et al. [16] propose a crawling strategy in order to optimize the coherence of web
sites captures. In [17], they present visualization strategies to help the archivist at
understanding the nature of coherence defects. In another study [10], they define
two quality measures (blur and sharp) to assess the quality of the archive and
propose a framework, coined SHARC, to optimize site-capturing policies. The
two approaches proposed in [10,16] to improve the coherence and the sharpness of
the archive are based on multiple revisits of web pages. However, in our work, we
assume that web crawlers have limited resources which prevent from revisiting a
page too often. Also, the importance of changes between page versions has been
ignored.

Our work is also related to pattern mining area. Patterns are widely intro-
duced and implemented for different applications such as trajectories of objects,
weather, DNA sequences, stock market analysis, etc. They were exploited to de-
tect anomalies, to predict data behavior (or trend), or more generally, to simplify
data processing, etc. It is impossible to give here a complete coverage on this
topic but interested readers can refer to [11] for example. A large coverage of
pattern mining approaches is given. To the best of our knowledge, patterns have
never been used to improve web archiving. In [3], we presented, through a case
study, steps and methods to discover patterns from French TV channels pages.
Here, we investigate how these patterns can be used to improve completeness
and coherence of web archives based on the importance of changes.

3 Concepts

In order to better understand the next sections, we introduce here the different
concepts that we use in this paper.

• Quality of an archive. We evaluate the quality of the archive through the
two following measures.
- Completeness. It measures the ability of the archive to contain the largest
amount of useful page versions. This quality measure is relevant because it is
very frequent, while navigating through the archive, that users cannot reach
some web pages. Those missed pages had not been downloaded (at right
moment) before they disappear from the web.
- Coherence. It measures the ability of the archive to reflect the states
(or snapshots) of a web site at different points in time. Indeed, when users
navigate through the archive, they may want to browse (part of) sites instead
of individual pages. Coherence ensures that if users reach a page version of a
site, they can also reach other pages versions of the same site corresponding
to the same point in time.

In the rest of the paper, we use the term quality to express both com-
pleteness and coherence of the archive.
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• Importance of a version
An important version is a version of an important page that has significant
changes compared with the last version archived of the same page. Therefore,
the importance of a version depends on:
1. the importance of the corresponding page (e.g. PageRank, similarity to

keywords of a query, etc.)
2. the importance of the changes that have occurred on the page since the

last version archived.
Changes between two page versions are detected by the Vi-DIFF algorithm
[14]. First, Vi-DIFF extends a visual segmentation algorithm to partition the
web page into multiple blocks. Blocks simulate how a user understands the
page layout structure based on his visual perception. Then, Vi-DIFF detects
structural changes (i.e. an insert, a move, etc. at level of blocks composing
the page) and content changes (i.e. a delete, an update, etc. at level of texts,
hyperlinks and images inside blocks). The importance of changes between
two versions is estimated by the following function E.

E =
∑NBk

i=1 ImpBki ∗ 1
NOp

∑NOp

j=1 ImpOpj ∗ PerChi,j

where
- ImpBk is the importance of each block composing the page. The importance
of a block in the page depends on its location, area size, content, etc.
- ImpOp is the importance of changes operations (insertion, deletion, etc.)
detected between the two versions. For instance, delete operation can be
considered less important than an insert or an update.
- PerCh is the percentage of changes (insert, delete, etc.) occurred on each
block with respect to the total number of block’s elements.
-NOp,NBk are respectively the number of change operations and the number
of blocks in the page.
-
∑NBk

i=1 ImpBki = 1
The estimator E returns a normalized value between 0 and 1. This value
assesses the importance of changes between two page versions. The larger
the number of significant changes occurred inside important blocks is, the
higher the estimated importance of changes. For more details about the
algorithm Vi-DIFF used to detect changes between two versions of pages,
please refer to [14]. The estimator of the importance of changes is detailed
in [2].

Fig. 1. Pattern Example
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• Page changes pattern
A pattern models the behavior of page’s changes over periods of time, during
for example a day. It is periodic and may depend on the day of the week
and of the hour within a day. An example of pattern is shown in Figure 1. It
defines the importance of changes over different periods of the day. Separate
patterns can be defined for weekends.

4 Web Archive Model

In our web archive model, all the web pages are repeatedly captured individually.
The crawler typically works at the granularity of a page and not at the gran-
ularity of a web site. It selects the most important pages to be refreshed from
a large collection of URLs under a resource constraint, e.g. one page crawled
per second. Pages that change very frequently with a significant modification,
are visited more often. Our web archive AS is defined as a set of archived sites
ASi . ASi is a set of versions of pages downloaded from a site Si. An interval of
observation [os,oe] is defined for the archive where os is the starting time and
oe is the ending time as shown in the Figure 2. The archive ASi is accessed by
a user query Q(tq, ASi) that browses the closest available page versions of a site
Si at a given time query tq. Our work aims at improving the quality of versions
returned to user for any time tq.

Fig. 2. Web Archive Model

4.1 Assumptions

In the following, we assume that the pages to be crawled change over time in-
dependently from each other. Patterns are considered known for any page and
have already been discovered by using the approach proposed in [3]. We assume
that the web crawler has limited resources for capturing new versions of pages.
We model the resource constraint by assuming that the crawler can download a
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total of M pages in each period T. We assume that all snapshots (or states) of
web sites to be crawled are coherent at each instant. This means that each site,
at any time point, do not present conflicting information such as broken links,
error of posting pictures, etc. This type of incoherence is out of control and is
ignored in this work.

4.2 Notation and Definitions

We assume that S={S1,S2,...,Sκ} is the list of sites to be crawled. Each site Si

consists of Ni pages {P1
i ,P

2
i ,...,P

Ni

i }. Each page Pj
i has a pattern Patt(Pj

i ). In
addition, we assume that the importance of the page Pj

i is ω(P j
i ). The importance

of a change occurred on the page P j
i at instant t is denoted by ωj

i [t].

Definition 4.21. Pattern
A pattern of a page Pj

i with an interval length l is a nonempty sequence
Patt(Pj

i ) = {(ω1,T1); ...; (ωk,Tk);...; (ωNT ,TNT )}, where NT is the total number
of periods in the pattern and ωk is the average of the importance of changes
estimated in the period Tk. The sum of the time periods,

∑NT

k=1 Tk, is equal to l.

We note P j
i [t] the version of the page P j

i captured at time t in the archive ASi .

We note P̃ j
i [t] the version of the page P j

i created (by a change) on the real web
site Si at time t. As shown in the Figure 3, the page P j

i has one capture at time

t1 that corresponds to the archived version P j
i [t1]. The two versions P̃ j

i [τ1] and

P̃ j
i [τ2] created on the web site Si correspond to the two changes occurred on the

page P j
i at time τ1, τ2.

Fig. 3. Example of page versions

Definition 4.22. Archive
Let κ be the total number of sites, the archive AS is the set of archived sites

ASi , Si ∈ S.

AS =
κ⋃

i=1

ASi

The archive ASi of a site Si is defined by the set of page versions P j
i [t] captured

from the site Si during the interval [os, oe].

ASi = {P j
i [t], 1 ≤ j ≤ Ni|P j

i ∈ Si ∧ t ∈ [os, oe]}
Definition 4.23. User Query

The user query Q(tq, ASi) asks for the closest snapshot of the site Si to the
query time tq.
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Definition 4.24. Query Result
The result R(Q(tq, ASi)) of the user query Q(tq, ASi) is the set of the Ni

versions P j
i [t] (one for each page of Si) which are the closest to the time tq as

shown in Figure 2.

R(Q(tq, ASi)) = {P j
i [t] ∈ ASi |¬∃P j

i [t′] ∈ ASi : |t′ − tq| < |t− tq|}; j = {1, .., Ni}

Definition 4.25. Version Importance
Let P j

i [t] be the version of the page P j
i that has been captured at time t after

the change occurred at time t’. The importance ω(P j
i [t]) of the version P j

i [t] is
the multiplication of the importance of its corresponding change ωj

i [t
′] by the

importance of the page ω(P j
i ).

ω(P j
i [t]) = ωj

i [t
′] ∗ ω(P j

i )

where t’ is the time of the last change of P j
i [t] preceding t.

5 Quality Measures

We define, here, two quality measures completeness and coherence that take into
account the importance of versions.

5.1 Completeness

The completeness of archives measures the proportion of the importance of
changes that have been captured with respect to the total amount of the impor-
tance of changes that occurred on web sites.

Definition 5.11. Complete Archive
An archive is complete, if it contains all the versions of pages P̃ j

i [t] that ap-
peared on all sites composing the archive.

∀P̃ j
i [t], ∃P j

i [t′] ∈ ASi , t
′ ≥ t : P j

i [t′] = P̃ j
i [t]

Definition 5.12. Archived Page Completeness
The completeness of an archived page P j

i is the sum of the weights of ver-
sions that have been captured, divided by the total weight of versions (created
by changes) that appear on the real web site . Let m be respectively the number

of versions P j
i [tk] captured at time tk and p be the number of versions P̃ j

i [τk]
created on the site at time τk, the completeness of archived page P j

i is

Completeness(P j
i ) =

∑m
k=1 ω(P j

i [tk])∑p
k=1 ω(P̃ j

i [τk])



402 M. Ben Saad and S. Gançarski

where
- The weight of the version ω(P j

i [tk]) is equal to the last change importance ωj
i [t

′]

- The weight of the version ω(P̃ j
i [τk]) is equal to the last change importance ωj

i [τ
′]

- ωj
i [t

′] and ωj
i [τ

′] denote the importance of the changes that occurred respectively

at t’ and τ ′ just before the capture of the versions P j
i [tk] and P̃ j

i [τk].

Definition 5.13. Archived Site Completeness
The completeness of archived site ASi is the sum of the completeness of

the Ni pages of Si (weighted by their importance) divided by the overall pages
importance.

Completeness(ASi) =

∑Ni

j=1 Completeness(P
j
i ) ∗ ω(P j

i )∑Ni

j=1 ω(P j
i )

Definition 5.14. Archive Completeness
The overall completeness of the archive AS is the average completeness of all

archived sites.

Completeness(AS) =
∑κ

i=1 Completeness(ASi)
κ

Fig. 4. Site Completeness Example

Example 5.11. Archived Site Completeness.
We consider a site Si consisting of two pages P 1

i and P 2
i as shown in Figure 4.

We assume that P 1
i [t1] and P 1

i [t2] are the two versions of the page P 1
i captured

respectively at time t1 and t2. We assume that the importance of the four changes
that have occurred on the page P 1

i at time τ1, τ2, τ3 and τ4 are respectively 0.1,
0.6, 0.5, 0.2. For the page P 2

i , there is one capture P 2
i [t

′
1] at t

′
1. The importance

of the two changes occurred on the page P 2
i at τ

′
1 and τ

′
2 are respectively 0.12

and 0.45.
Note that in this example (and also in example 5.21), we assume that the im-
portance of each page is equal to 1 (ω(P j

i ) = 1, ∀i, j).
The completeness of P 1

i and P 2
i is

Completeness(P 1
i ) = ω(P 1

i
[t1]

)+ω(P 1
i

[t2]
)∑4

k=1 ω(P 1
i

[τk ])
= 0.6+0.5

0.1+0.6+0.5+0.2 = 0.78

Completeness(P 2
i ) = ω(P 2

i
[t
′
1]

)

ω(P 2
i

[τ
′
1])+ω(P 2

i
[τ

′
2])

= 0.12
0.12+0.45 = 0.21

The overall completeness of archived site ASi is
Completeness(ASi) = Completeness(P 1

i )∗ω(P 1
i )+Completeness(P 2

i )∗ω(P 2
i )

ω(P 1
i )+ω(P 2

i )

Completeness(ASi) = 0.78∗1+0.21∗1
2 = 0.49
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5.2 Coherence

A collection of archived pages versions is considered coherent, if it reflects the
state (or the snapshot) of the web site at, at least, one point in time. Our
definition of coherence is inspired by the approach of Spaniol and al. In [16],
they introduce two measures to quantify the coherence of a site crawl. Their
measures count the expected number of occurring incoherences during a complete
crawl of a site. They are based on either (i) the last modified stamp or (ii) on
a virtual time stamp obtained by revisiting each page. We do not use these
measures because the last modified stamp is not always trustful in real life crawls.
The virtual time stamp assumes that, during an on-line crawl, each page must
be revisited twice in a short time. As we assume that the crawler has limited
resources, we do not use virtual time stamps. We propose a new measure, inspired
by Spaniol’s definition [16], that considers the importance of changes to quantify
the coherence of the query result.

Definition 5.21. Coherent Versions
The Ni versions of R(Q(tq, ASi)) are coherent, if there is a time point (or an

interval) so that it exists a non-empty intersection among the invariance interval
[μj , μj∗ ] of all versions.

∀P j
i [t] ∈ R(Q(tq, ASi)), ∃tcoherence : tcoherence ∈

Ni⋂
j=1

[μj , μj∗ ] �= ∅ (1)

where μj and μ∗
j are respectively the previous and the next changes following the

capture of the version P j
i [t].

As shown in Figure 5 at the left, the three versions P 1
i [t1], P 2

i [t2] and P 3
i [t3] of

R(Q(tq, ASi)) are coherent because there is an interval tcoherence that satisfies
the coherence constraint (1). However the three page versions at the right are
not coherent because there is no point in time satisfying the coherence constraint
(1).

Fig. 5. Coherence Example [16]

Definition 5.22. Query Result Coherence
The coherence of the query result R(Q(tq, ASi)) is the weight of the largest

number of coherent versions divided by the total weight of the Ni versions of
R(Q(tq, ASi)). We assume that {P 1

i [t1],..., P
ρ
i [tρ]} ∈ R(Q(tq, ASi)) are the ρ

coherent versions, i.e satisfying the constraint (1). We assume that ρ is the
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largest number of coherent versions composing R(Q(tq, ASi)).
The coherence of R(Q(tq, ASi)) is

Coherence(R(Q(tq, ASi)) =
∑ρ

k=1 ω(P k
i [tk])∑Ni

k=1 ω(P k
i [tk])

where ω(P k
i [tk]) is the importance of the version P k

i [tk].

Definition 5.23. Site Archive Coherence
The overall coherence of archived site ASi can be estimated through the average

coherence of R(Q(tq, ASi)) obtained for different time query tq.

Coherence(ASi) =
∑nQ

1 Coherence(R(Q(tq, ASi)))
nQ

where nQ is the number of queries that have accessed the archive ASi in the
observation interval [os, oe].

Definition 5.24. Archive Coherence
The overall coherence of the archive AS is the average coherence of the κ

archived sites.

Coherence(AS) =
∑κ

i=1 Coherence(ASi)
κ

Example 5.21. Query Result Coherence

Fig. 6. R(Q(tq, AS)) Example

We assume that P 1
i [t1], P 2

i [t2], P 3
i [t3], P 4

i [t4], P 5
i [t5] are the five versions

of R(Q(tq, ASi)) which are the closest to the time query tq. We assume that
ω1

i [τ1] = 0.2, ω2
i [τ2] = 0.54, ω3

i [τ3] = 0.34, ω4
i [τ4] = 0.22 and ω5

i [τ5] = 0.6 are the
importance of changes μ1, ..., μ5 occurred respectively on the pages P 1

i , ...,P 5
i at

instants τ1, ..., τ5.
The value ρ of the largest number of coherent versions is equal to 3 because

there are three coherent versions P 1
i [t1], P 2

i [t2] and P 3
i [t3] satisfying the con-

straints (1) : it exists a time tc ∈ [μ1, μ
∗
1]
⋂

[μ2, μ
∗
2]
⋂

[μ3, μ
∗
3].

Then, the coherence of R(Q(tq, ASi)) is
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Coherence(R(Q(tq, ASi))) =
ω(P 1

i [t1]) + ω(P 2
i [t2]) + ω(P 3

i [t3])∑5
k=1 ω(P k

i [tk])

=
0.2 ∗ 1 + 0.54 ∗ 1 + 0.34 ∗ 1

0, 2 ∗ 1 + 0.54 ∗ 1 + 0.34 ∗ 1 + 0.22 ∗ 1 + 0.6 ∗ 1
= 0.56

6 Pattern-Based Web Crawling

To improve the quality of archives, we propose a crawling strategy directly driven
by the patterns defined in Section 4.2. Our goal is to schedule page crawls in such
a way that it improves completeness and coherence of the archive. The crawler
can download a total of M pages at each period Tk. To simplify notations, we
assume, in the remainder of the paper, that P1, P2, ..., Pn is the list of all pages
to be crawled. By using patterns, pages are scheduled based on their urgency (or
priority). Each page is assigned an urgency value U(Pi,t) proportional to both
the expected changes importance ωk (defined by pattern at period Tk) and to
the importance of the page ω(Pi). Also, the urgency of pages changes with the
time. It depends on the time of the last refresh and on the current time. The
urgency U(Pi,t) of the page Pi at time t is
U(Pi, t) = ω(Pi) ∗ ωk ∗ (t− tlastRefresh)
where

- Patt(Pi) = {(ω1,T1); ...; (ωk,Tk);...; (ωNT ,TNT )},
- t is the current time (t ∈ Tk),

Algorithm 1. Pattern-based Crawler
Input:
P1, P2,..., Pn - list of pages
Patt(P1), Patt(P2),..., Patt(Pn) - patterns of pages
Begin
1. for each period Tk do
2. crawlListPages←−newList()
3. for each page Pi, i=1...,n do
4. compute U(Pi, t) = ω(Pi) ∗ ωk ∗ (ti − tilastRefresh)
5. crawlListPages.add(Pi ,U(Pi, t)) /* in descending order of urgency */
6. end for
7. for i=1...,M do
8. Pi←−crawlListPages.selectPage(i)
9. currentVersion←−downloadPage(Pi)
10. lastVersion←−getLastVersion(Pi)
11. delta←−detectChanges(currentVersion,lastVersion)
12. ω←−EstimateChangesImportance(delta)
13. Update(Patt(page),ω,Tk)
14. tilastRefresh ←− ti

15. end for
16. end for
End
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- ωk is the average of change importance defined by Patt(Pi) in period Tk,
- ω(Pi) is the importance of the page,
- tlastRefresh is the last time of refreshing the page Pi.

At each period Tk, only the M -top pages with the highest current priority are
captured. The M selected pages are downloaded in descending order of their
urgency U(Pi, t). Afterwards, each captured page version is compared with its
predecessor to detect changes based on the Vi-DIFF algorithm (cf. Section 3).
Then, the importance of changes can be estimated by the function E (cf. Section
3) and exploited to update patterns. Patterns need to be updated periodically
to always reflect the current changes of web pages. Thus, the average change im-
portance ωk defined by patterns in period Tk is periodically updated during an
on-line crawl. Also, the importance of page (e.g. PageRank) is regularly reeval-
uated over time to reflect the real web. The pseudo code of the pattern-based
strategy is depicted by Algorithm 1.

7 Experimental Evaluation

In this section, we evaluate the effectiveness of our crawling approach by compar-
ing it with existing strategies. In particular, we compare the total completeness
and coherence (cf. Section 5) obtained by each policy. As it is impossible to ob-
tain exactly all the versions that appear on real web sites, we have simulated the
change importance of web pages based on real patterns discovered from “France
Télévisions” channels pages [3]. Experiments written in Java were conducted on
PC running Linux over a 3.20 GHz Intel Pentium 4 processor with 1.0 GB of
RAM. At the begin of each experiment, each page is described by a real pattern.
The updates rate and the changes importance of each page is generated accord-
ing to defined patterns. In addition, the following parameters are set: the number
of pages per site (one thousand pages), the duration of simulation, the number
of periods in patterns (24 periods), the number of allocated resources (i.e. the
maximum number of pages that can be captured per each time period). Equal
resources are assigned to different crawler strategies to evaluate them under the
same constraints.

We start by describing related strategies considered in this work: Relevance
[9] downloads the most important pages (i.e based on PageRank) first, in a fixed
order. Frequency [7] selects pages to be archived according to their frequency
of changes estimated by the Poisson model [8]. Hot pages that change too often
are penalized to maximize the freshness of pages. Coherence [16] works at the
granularity of a site and downloads firstly the less ”risky” pages (i.e. with lowest
probability to cause incoherences). Then, it continues by capturing the remain-
ing pages that had been skipped. SHARC [10] repeatedly downloads the entire
sites and ensures that the most changing page are downloaded as close as possi-
ble to the middle of the capture interval. Importance is our first strategy which
selects pages based on their urgency (cf. Section 6). The parameter of changes
importance ωk is a fixed weight (average) and does not depend on time periods
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Tk. This strategy consider the importance of changes without using patterns.
Pattern is our second strategy which depends only on patterns without consid-
ering the importance of changes. It downloads pages according to their urgency
based on changes rate instead on changes importance. Importance-Pattern
is our third strategy which downloads pages based on their urgency (cf. Algo-
rithm 1). It combines the two concepts importance of changes and patterns.

Fig. 7. Weighted Completeness Fig. 8. Weighted Coherence

We evaluated the completeness (cf. Section 5.1) obtained by the different crawl
strategies as shown in the Figure 7. The horizontal axis shows the percentage of
allocated resources M =[20%-100%]. The vertical axis shows the weighted com-
pleteness that have been captured by each policy. As we can see, the completeness
increases with the number of allocated resources. Obviously, when more pages
are captured at each period, better completeness is achieved. We notice also
that it is impossible to achieve 100% of completeness even if 100% of resources
are allocated. There are always some missed versions. From the figure, it is clear
that our strategy Importance-Patterns performs better than its competitors Rel-
evance, SHARC, Coherence and Frequency. It improves the completeness of the
archive by around 20% in case of limited resources. Also, it performs 5% better
than Importance strategy which does not use patterns. This gain is rather low
in average, but we note that it can reach more than 10 % in case the patterns
of web pages are significantly different one from the others.

We evaluated also the coherence of the archive based on the measure defined
in Section 5.2. Figure 8 shows the percentage of coherence weight achieved by
different crawl strategies with respect to the number of allocated resources. As
we can see, our Importance-Patterns strategy achieves the highest coherence
weight. It performs around 10% better than its competitors SHARC, Coherence
and Relevance. Frequency strategy achieves the lowest coherence weight. To sum
up, these experiments demonstrate that Importance-Patterns improves both the
completeness and the coherence of archives by respectively 20 % and 10 %.
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8 Conclusion and Future Work

Preserving the quality of web archives is a crucial issue addressed by archivists
nowadays. Here, we point out the issue of efficiently crawling web pages in order
to improve the quality of archives. We defined two metrics to measure the quality
of the archive. Completeness measures the ability of the archive to contain the
largest amount of useful information. Coherence measures how much the archive
reflect the snapshot of web sites at different points in time. As far as we know,
this work is the first to formalize and to address both issues (coherence and
completeness) at the same time. Our challenge is to adjust the crawl strategy to
make the archive as complete and as coherent as possible. We propose a pattern-
based strategy which use the importance of changes to improve the quality of the
archive. To the best of our knowledge, the concepts of the importance of changes
and patterns have never been used to improve the quality of archives. Most
related strategies download with priority the most frequently changing pages
(and/or the most important ones based on PageRank) but do not consider the
importance of changes occurred between page versions. Conducted experiments
based on real patterns confirm that our pattern-based strategy outperforms its
competitors. Results show that it is able to improve the completeness of the
archive by around 20% and the coherence by around 10 % in case of limited
resources. This improvement of the archive quality can be furthermore better, if
patterns of web pages are significantly different one from the others.

We are currently pursing our study to run our pattern-based strategy over
a large number of web pages collected by the National Audiovisual Institute
(INA). We are also studying how patterns can be exploited to decide when page
versions should be indexed or stored. Hence, archive systems will avoid wasting
time and space for indexing/storing unimportant pages versions. Further study
must be done to learn how we can create a collection of common patterns for
pages with similar behavior of changes. An other on-going work is to find an
efficient method to maintain patterns up-to-date during an on-line crawl.
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Abstract. Much work has been done in XML keyword search since
users can obtain various information from XML databases without spe-
cific knowledge of the database schema and/or the knowledge about the
query languages. Moreover, certain researches have suggested methods
of returning some information that would help users understand search
results. In this paper, we define alternative queries, which can be consid-
ered as different aspects of XML keyword search results. In XML keyword
search, a keyword may match an unexpected text value or element name,
then incorrect results that do not correspond to the users’ search inten-
tions may be retrieved. When we generate alternative queries, it does
not seem useful to generate alternative queries for all the results since
they include several results retrieved by several interpretations. Thus, we
propose a method of generating alternative queries from results classified
by interpretations. We also propose a stack-based algorithm for generat-
ing alternative queries. Finally, the experimental results reveal that our
proposal generates alternative queries efficiently.

1 Introduction

XML has recently become a widely accepted standard for semi-structured docu-
ments and is used as a data description framework. It is advantageous to support
users when they retrieve useful information from large amounts of XML data.
Users can post queries and obtain various information from XML databases if
user-friendly ways such as keyword search in Web search are supported.

While numerous studies on XML keyword search [1–3] have been done to
efficiently retrieve results from large amounts of XML data, supporting methods
to enhance the result quality were not explored so far. It is generally difficult for
uses to obtain search results by matching their search intentions in a single trial.
When this occurs, they have to refine their queries and conduct searches many
times unless they obtain the results that they intended to search for. Thus, it
is advantageous to not only support efficient search methods but also support
methods that pose some useful information that can refine users’ queries and/or
help them to understand the results more fully in XML keyword search.

The understanding of XML search results has been studied as the extraction
of a summary of an XML subtree [4] and a set of differentiation features of
an XML subtree [5]. Several different approaches have been proposed in the

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 410–424, 2011.
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Fig. 1. Literature database represented as XML tree

area of relational database, i.e., database structure mining [6, 7], intentional
query answering [8], and the discovery of frequent co-occurring terms [9]. Tran
et al. [10] suggested a data-driven approach called Query by Output (QBO) where
their goal was to obtain a query Q

′
such that Q(D) and Q

′
(D) are instance-

equivalent when given the output of original query Q on database D.
Instance-Equivalent Queries (IEQs) can be regarded as different aspects of

search results. Thus, providing IEQs to users is considered useful to help them
understand more fully. For example, the results queried by input keywords
“Smith editor Morgan” and the results queried by keywords “XML John Smith”
over the literature database represented as a XML tree in Figure 1 are equal when
the Exclusive Lowest Common Ancestor (ELCA) [1] approach is adopted, where
both results are subtrees rooted at 0.2 and 0.3. Here, ELCA computes nodes
that contain all query keywords but has no nodes that contain all the keywords
on the path between the ELCA nodes and the nodes that input keywords ap-
pears. When this occurs, a user infers that there is a close relationship between
John and Morgan and XML and Smith since two books whose editor is Morgan
authored by John have different aspects indicating the books include a specific
keyword “XML” and an author name “Smith”. Since ELCA semantics is con-
sidered to be able to provide more reasonable results, we adopted it as a typical
concept in search results.

There is also a known problem in XML keyword search referred to by Bao
et al. [11] where some input keywords match nodes users do not expect them
to match, and this causes results to be retrieved that do not match the users’
search intentions. Two factors are involved in matching unexpected nodes: (1)
ambiguity where a keyword can appear both as an XML element name and
as the text values of some other nodes, and (2) ambiguity where a keyword
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can appear as the text values of different element nodes and carry different
meanings. For example, ambiguity (1) in Figure 1 corresponds to where the
keyword “book” appears as both an element name of XML and text values,
and ambiguity (2) corresponds to where the keyword “Morgan” appears as the
text value of the author, editor, and publisher node. While existing approaches
calculate XML subtrees without giving consideration to these two problems with
ambiguity, this is not beneficial in XML keyword search. Since there are generally
several different interpretations when a search engine interprets an input keyword
set, there are many multiple results obtained by many interpretations. It is not
worthwhile generating alternative queries for whole XML keyword search results
as these contain those obtained different interpretations. Thus, we believe that
we should classify the raw search results into clusters by interpretations. More
concretely, we make four main contributions that can be summarized as follows:

1. We defined the problem of generating alternative queries for XML keyword
search taking into consideration ambiguities in keywords.

2. Moreover, we defined approximate alternative queries and two indicators to
evaluate approximate alternative queries.

3. We implemented both naive and optimized methods to obtain approximate
alternative queries. Our experiments revealed that the optimized method
was more effective than the naive method.

The rest of this paper is organized as follows. We present related work in Sec-
tion 2, and preliminary work on the data model, search concepts, and methods
of obtaining nodes that satisfy these concepts in Section 3. Section 4 describes
methods of generating alternative queries and approximate alternative queries.
Experimental evaluations are discussed in Section 5 and we conclude the paper
in Section 6.

2 Related Work

Extensive research has been done in the area of XML keyword search to find the
smallest sub-structures in XML data. The Lowest Common Ancestor (LCA) [12]
and the LCA family such as Smallest LCA (SLCA) [2], Exclusive LCA (ELCA)
[1], and Meaningful LCA (MLCA) [3] have been studied. The works proposed
in [13, 14] infer meaningful fragments returned from input keywords. The works
mentioned above do not consider the two ambiguities where a keyword can ap-
pear both as an element name and as a text value of another node and a keyword
can appear as the text value of different element nodes. The XReal system [11]
addresses these ambiguities with an IR-style approach that infers the users’
search intentions. However, it is difficult to determine what users’ search inten-
tions are unless they are uniquely identified. Thus, we consider it would be better
to classify the results into interpretations and provide them to users.

Huang et al. [4] proposed XML snippets as summaries of XML subtrees to
enable XML search results to be understood. Liu et al. [5] suggested Differ-
entiation Feature Sets (DFSs), which are sets that reflect the most important
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features in search results to help users to compare them. Database structure
mining [6, 7] has been proposed in the area of understanding database search
results where the goal has been to find the structural relationships in database
tables. Intentional query answering [8] has been proposed to augment query re-
sults with additional information to help users understand the results. Tao et
al. [9] proposed the discovery of frequent co-occurring terms to refine an input
query with these terms. Query by Output (QBO) [10] is a data-driven approach
to obtain instance-equivalent queries (IEQs) from results in the relational model.
QBO only takes into account whether a keyword appears in an entity or not.
However, it is difficult to apply QBO to discovery tasks of IEQs in XML key-
word search since results are obtained with both information from keywords and
structures. Thus, a new method that takes into account text values and the
structure of XML data is needed when we discover IEQs in XML search.

Approximate alternative queries can be considered as obtaining approximate
query tasks. Query expansion methods [15, 16] in the area of information retrieval
have been proposed to obtain more relative information by relaxing given input
keywords. However, these methods cannot be applied to generating approximate
alternative queries for XML keyword search since they do not consider structure
information. Relaxation approaches [17, 18] in the area of XML search using path
queries have been proposed to obtain exact and approximate results by relaxing
structural conditions. Our goal was to generate approximate queries by mining
from XML subtrees with consideration given to the structure of information in
the XML tree.

As query optimization is one of the most important areas in the classic re-
lational model, extensive research has been done [19, 20] on it. However, it is
important to pose diverse alternative queries in generating alternatives. Thus,
our goal in this work was not to obtain optimized queries that performed better
than the original queries but to generate diverse alternative queries.

3 Preliminaries

We model XML trees as ordered and labeled trees 1. Each node v of an XML tree
other than leaf nodes corresponds to an XML element node and is labeled with
tag λ(v). For the sake of simplicity, let us consider attribute nodes as element
nodes. Each node v has a unique ID. Existing studies [1, 2] have used the Dewey
order as the node ID. The Dewey order of a node includes the Dewey order of
the parent node as a prefix. Since prior work [1] has shown that the Dewey order
works well in a stack algorithm, we assign each node other than leaf nodes to
a Dewey order. We represent the Dewey order of node v as dewey(v). We also
represent the subtree rooted at v as st(v) or st(dewey(v)).

We utilize inverted lists where we can generate alternative queries. The in-
verted list of word k is generally a list of nodes directly containing k. Dewey
Inverted Lists (DILs) [1] are inverted lists of XML trees labeled with a Dewey
1 For simplicity, we assumed that a node in XML trees would have a different element

name from others that appeared as ancestor or descendant nodes of the node.
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order. We believe keywords can appear in several different element nodes. More-
over, we also consider where keywords can appear as element names. Thus, we
create extended DILs such that each entry consists of: (1) the Dewey order and
the element name of the node whose text value includes k, or (2) only the Dewey
order of a node whose element name is k. We denote a pair of a keyword and
its parent element name as a tagged keyword. As each entry s in inverted lists
corresponds to a node, we call the entry node s.

Given k nodes v1, v2, ..., vk in XML tree T , the Lowest Common Ancestor
(LCA) of the nodes v1, v2, ..., vk is a node that has v1, v2, ..., vk as descendant
nodes and its position is lowest in T . Let lca(v1, v2..., vk) be the function that
obtains the LCA of v1, v2, ...Cvk. Given node set V = {v1, v2, ..., vn}, keyword
set K = {k1, k2, ..., kn}. Exclusive Lowest Common Ancestor (ELCA) v of V is
the node where there are no LCA nodes on the path between v and vi other than
sign node vi for any vi. Let ILi be the inverted list corresponding to keyword
ki. The ELCAs of K in T are given as

elca(k1, k2, ..., kn) = elca(IL1, IL2, ..., ILn)
= {v|∃s1 ∈ IL1, s2 ∈ IL2, ..., sn ∈ ILn s.t. (v = lca(s1, s2, ..., sn)

∧∀i ∈ [1, n] � ∃x(x ∈ lca(IL1, IL2..., ILn) ∧ v ≺ x ∧ x # si))}

Here, when given two nodes u and v, v ≺ u indicates that v is an ancestor of
u and v # u indicates that v is an ancestor of u or v = u. Moreover, each si is
called a sign node of ki in node v. There can be multiple sign nodes of ki in an
ELCA node. Therefore, let Sgni be a set of sign nodes of ki in v; we represent
all sign nodes in v as v.sign = (Sgn1, Sgn2..., Sgnn).

The ELCAs of keywords “book john” in the XML tree in Figure 1 are {n(0.2),
n(0.3), n(0.3.1.0)}. Here, n(0.2).sign = ({n(0.2)}, {n(0.2.1)}), n(0.3).sign =
({n(0.3)}, {n(0.3.1.1)}), n(0.3.1.0).sign = ({n(0.3.1.0)}, {n(0.3.1.0)}), and two
sign nodes of node n(0.3.1.0) do not appear as sign nodes of node n(0.3). As seen
above, there are no sign nodes that appear as sign nodes of different ELCAs.

(Witness). Let T be the XML tree andK = {k1, k2, ..., kn} be the input keyword
set. Also, let r be an ELCA of K and si be a sign node of ki of r. We define
witness(r, (s1, s2, ..., sn)), called the witness of K in T , as the pair of node r and
the list of sign node si. The witness is visualy represented as a tree where node
set V = {r, s1, s2, ..., sn} and edge set E = {(r, s1), (r, s2), ..., (r, sn)}. Here, when
node si has text node ti, ti is added to V and edge (si, ti) is added to E. We
call the tree given by this procedure a witness tree. We also denote the witness
as witness(dewey(r), (dewey(s1), dewey(s2), ..., dewey(sn))) since each node is
identified by an ID.

(Witness pattern). Let T be the XML tree and K = {k1, k2, ..., kn} be the
input keyword set. Let w = witness(r, (s1, s2, ..., sn)) be the witness of K in
T ; we define (λ(r), (λ(s1), λ(s2), ..., λ(sn))) to be the witness pattern of w and
denote it as λ(w). The witness pattern tree that visually represents λ(w) as the
tree is the witness tree removed from the Dewey order. Moreover, let w1, w2 be
the witness of K in T ; w1 and w2 are similar if and only if λ(w1) = λ(w2).
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Fig. 2. Witness trees

Assume witness w = witness(0.2, (0.2.1, 0.2.2)), w
′

be witness(0.2,
(0.2.1, 0.2.4)) of the keyword set “Smith Morgan” in Figure 1. Witness pat-
tern λ(w) is the (book, (author, editor)) represented as the tree in Figure 2(c-1).
Witness pattern λ(w

′
) is (book, (author, publisher)) represented as the tree in

Figure 2(c-2).

3.1 Classification of Search Results with Witness Patterns

We consider it would be better to classify the results into interpretations when
we discover alternative queries. We omit some details on algorithms of classi-
fying the results to make the paper short and we will alternatively introduce
classification methods in this example. Consider the keyword set “Smith Mor-
gan” applied to the data in Figure 1. The XML subtree st(0.1.1) and its witness
w1 = witness(0.1.1, (0.1.1.1, 0.1.1.2)) are obtained at the beginning where the
witness pattern of w1 corresponds to the tree in Figure 3(a). Since a set of clus-
ters is empty, a new cluster C1 = C((authors, (author, author))) is created and
st(0.1.1) is added to C1. Next, the subtree st(0.2) is obtained. Here, there are two
witnesses w2 = witness(0.2, (0.2.1, 0.2.2)) and w3 = witness(0.2, (0.2.1, 0.2.4)).
The witness pattern of w2 and that of w3 correspond to the trees in Figures 3(b)
and (c) respectively. Since neither witness pattern is equal to C1, new clusters
C2 = C((book, (author, editor))) and C3 = C((book, (author, publisher))) are
created, and then st(0.2) is added to C2 and C3. Finally, the subtree st(0.3) and
its witness w4 = witness(0.3, (0.3.1.1, 0.3.2)) are obtained where the witness
pattern of w4 corresponds to the tree in Figure 3(b). Since the witness pattern
of w4 is the same as of C2, st(0.3) is added to C2. We have presented the classi-
fied results in Figure 3. Here, C1, C2, and C3 are the clusters in Figures 3(a), (b),
and (c) and the elements of each cluster are indicated as subtrees surrounded
by a frame on the right-hand side.

4 Generation of Alternative Queries

Unlike IEQs in the relational model, alternative queries in XML keyword search
have to consider interpretations of queries. We define a keyword set as an alter-
native query such as that where one of the clusters queried by the keyword set
is equal to one of those queried by the input keyword set. The definition of an
alternative query is as follows.
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(a) C(authors, (author, author))

(b) C(book, (author, editor))

(c) C(book, (author, publisher))

author author

Smith Morgan

authors

book

author editor

Smith Morgan

book

author publisher

Smith Morgan

author 
(0.1.1.0)

author 
(0.1.1.1)

author 
(0.1.1.2)

Jim Wise

Ben Smith

Morgan Wise

authors 
(0.1.1)

book (0.3)

title 
(0.3.0)

author 
(0.3.1.0)

author 
(0.3.1.1)

editor 
(0.3.2)

year 
(0.3.3)

publisher 
(0.3.4)

XML query 
processing 

John Book John Smith
Morgan Wise

2004 MIT 
Press

authors 
(0.3.1)

book (0.2)

title 
(0.2.0)

author 
(0.2.1)

editor 
(0.2.2)

year 
(0.2.3)

publisher 
(0.2.4)

XML 
indexing

John Smith

Morgan Wise

2005

Morgan

book (0.2)

title 
(0.2.0)

author 
(0.2.1)

editor 
(0.2.2)

year 
(0.2.3)

publisher 
(0.2.4)

XML 
indexing

John Smith

Morgan Wise

2005

Morgan

Fig. 3. Clusters, where each set of XML subtrees surrounded by a frame is element of
cluster on left-hand side

(Alternative Query). Given input keyword set K and XML tree T , let
WP (T,K) = {wp1, wp2, ..., wpn} be the witness pattern set of K in T , and
the search results R(K,T ) = C(wp1) ∪ C(wp2) ∪ ... ∪ C(wpn) are obtained.
When cluster Ci = C(wpi) is selected, we define keyword set Q that obtains
wp

′
j ∈ WP (T,Q) such that C(wpi) = C(wp

′
j) as an alternative query of K for

Ci. Alternative query Q1 is smaller than alternative query Q2, if and only if
Q1 ⊂ Q2 holds.

Example 1. Consider keywords “Smith Morgan” applied to the XML tree in
Figure 1. Then, search results C1 = {st(0.1.1)}, C2 = {st(0.2), st(0.3)}, C3 =
{st(0.2)} are obtained. When cluster C2 is selected, one of the alternative queries
for Ci is Q = {wise, smith, xml}. In fact, two clusters C4 = {st(0.1)} and
C5 = {st(0.2), st(0.3)} are obtained by applying keywords Q to the XML tree.
Keyword set Q is the alternative query of keywords “Smith Morgan” for C2 as
C2 and C5 are equivalent.

Now, we describe the cluster which we want to generate alternative queries as a
positive subtree set and describe each XML subtree in the positive subtree set as
a positive subtree. We describe XML subtrees other than positive subtrees and
rooted at the same element name with positive subtrees as negative subtrees, and
describe a set of these as negative subtree set.

There may be no alternative queries in some situations. It is disadvantageous
if users can not obtain any alternative queries from the viewpoint of support-
ing them understand search results. Thus, we suggest approximate alternative
queries that obtain answers where the proportion of answers to positive subtrees
is over given threshold value. An approximate alternative query is considered to
have two meanings of approximation as follows: (1) how many positive subtrees
does the approximate alternative query obtain in the positive subtree set, and
(2) how many positive subtrees does the approximate alternative query obtain
in the results queried by the approximate alternative query. The ratio indicating
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(1) in the area of information retrieval can be considered to be precision and the
ratio indicating (2) can be considered to be recall when we consider a positive
subtree set as a set of answers. There are generally more queries when we gener-
ate approximate alternative queries than when we generate alternative queries,
and the quality of the queries deteriorates. Thus, we have to pose users with
ranked approximate alternative queries. First, we define precision and recall for
approximate alternative queries.

(Precision and Recall). Given input keyword set K, and XML database T , let
us consider R(K,T ) = {C1, C2, ..., Cn} to be the search results of K in T . When
given approximate alternative query A for positive subtree set Ci, precision and
recall of A are given as

precision =
|Ci ∩ C ′

j |
|C ′

j |
, recall =

|Ci ∩ C ′
j |

|Ci|
Here, C

′
j ∈ R(A, T ) where the witness pattern of C

′
j is equivalent to that of Ci.

Alternative queries can be considered as approximate alternative queries such
that both the pricision and recall are 1.0. Thus, we discuss only the method of
generating approximate alternative query in the rest of this paper.

4.1 Naive Generation of Approximate Alternative Queries

Let us consider generating approximate alternative queries from a set of XML
subtrees in a cluster of classified XML search results.

Example 2. The results queried by keywords “Smith Morgan” in Figure 1 are
classified into the three clusters in Figure 3. Let a positive subtree set be cluster
C2 = C(book, {author, editor}) in Figure 3(b); the positive subtree has the wit-
ness pattern represented as the tree in Figure 2(c-1). Here, a negative subtree set
consists of two subtrees st(0.0) and st(0.1) where the XML subtrees are rooted
at “book” nodes other than positive subtrees.

The simplest method of generating approximate alternative queries is to ex-
tract all terms that appear at least once in any positive subtrees, then filter
any subset of the extracted terms that the precision and recall of the subset
that exceed given threshold value. Here, it is a fact that recall r of approximate
alternative query {w1, w2} holds r ≤ min(pw1 , pw2) where pw1 and pw2 are oc-
currence frequencies in the positive subtree set when given two keywords w1 and
w2. Therefore, the method of generating approximate alternative queries only
extracts tagged keywords that exceed the threshold, then tallies any approxi-
mate alternative queries and calculate the precision and recall. The algorithm
for generating approximate alternative queries is Algorithm 1.

4.2 Optimized Generation of Approximate Alternative Queries

The more the common keywords which appear in a positive subtree set in the
naive method, the more exponential the numbers of alternative query candidates
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Algorithm 1. Naive method of generating approximate alternative queries
Input: a positive subtree set PSS
Input: a witness pattern wp that all positive subtrees have
Input: threshold values θr and θp

1: c = getAllCommonWords(PSS,θr)
2: get all Dewey inverted lists in c
3: for all subset s of c do
4: E = getELCA(s)
5: select cluster Ei from E such that the element name of the root node of the

witness pattern of Ei corresponds to that of wp
6: calculate precision and recall of s
7: end for
8: return all keywords whose precision and recall exceed θp and θr respectively

that have to be verified. The algorithm generally verifies candidates by scanning
all the inverted lists corresponding to each keyword in alternative query candi-
dates including keyword w. Therefore, it is inefficient for the naive method to
scan inverted lists corresponding to w whenever the algorithm verifies a candi-
date that contains w.

We propose an optimized method of scanning all inverted lists only once to
hold all approximate alternative query candidates. Here, the method has to take
structure information into account in processing. This is because there can be
ELCAs obtained with the original query in ELCA semantics that are different
from the ELCAs obtained by alternative query candidates. As a result, a set of
keywords not satisfying the definition of an alternative query can be obtained.

The algorithm for generating approximate alternative queries is Algorithm 2.
The algorithm executes two scans to generate alternative queries in parallel,
called the Cut off scan (C-scan) and Verification scan (V-scan). The C-scan
scans all positive subtrees to extract all tagged keywords that can be considered
to be candidates of alternative queries. The V-scan tallies each tagged keyword
set and the times each occurred in positive subtrees and negative subtrees for all
possible alternative query candidates through the inverted lists and it reports
tagged keyword sets that the precision and recall exceed given threshold.

The algorithm 2 extracts all tagged keywords such that occurrence frequencies
exceed the threshold value from the positive subtree set. It stores the keyword set
and its number of appearances in count table PCT when a keyword set appears
in a positive subtree, and set these in count table NCT when it appears in a
negative subtree. The algorithm calculates the precision, recall, and F-measure
of each keyword set stored in PCT as a key when it finishes scanning the inverted
lists, then adds the keyword set into list L if the precision and recall exceed the
threshold values. Finally, it outputs all elements in L ordered by the F-measures
in descending order.

Consider the query “smith morgan” applied to the XML tree in Figure 1.
The method of classification returns three clusters in Figure 3: {C1, C2, C3}
= {C(authors, {author, author}), C(book, {author, editor}), C(book, {author,
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Fig. 4. States of stack, where X, J, S, M, W in stack entries stands for (xml,title),
(john,author), (smith,author), (morgan,editor), (wise,editor) respectively

publisher})} = {{st(0.1.1)}, {st(0.2), st(0.3)}, {st(0.2)}}. When PSS = C2 is
selected and the element name of the root node of a positive subtree is “book”,
the algorithm obtains the inverted list corresponding to the “book” node and
then roots = [n(0.0), n(0.1), n(0.2), n(0.3)] are obtained (line 1). The algorithm
scans the positive and negative subtrees rooted at a node in roots to extract
the set of tagged keywords that obtains the root as an LCA. As a result, it
reports any tagged keyword set as alternative queries where each LCA in the
keyword set appears in the root node of a positive subtree and does not appear
in the root node of any negative subtrees. When the algorithm extracts the
tagged keywords from all positive subtrees, Common = {(xml, title), (john,
author), (smith, author), (morgan, editor), (wise, editor)} are obtained (line 2).
Here, we denote (xml, title) as X, (john, author) as J, (smith, author) as S,
(morgan, editor) as M, and (wise, editor) as W. The top entry in the stack in
Figure 4(a) shows X has appeared in the subtree rooted at n(0.2.0). Smallest
node v is n(0.1.0) (line 4). When the smallest node is obtained, largest node r
in the nodes that are smaller than v is n(0.1) (line 6). If r is an ancestor of v,
the algorithm obtains all nodes n that are descendants of r from inverted lists
and pushes these into the stack (lines 8-10). All states of the stack when the
algorithm processes n(0.2.0), n(0.2.1), and n(0.2.2) in this order are shown in
Figure 4(a), (b), and (d), respectively.

When a node is added to the stack, we utilize Algorithm 3. Consider that
an empty stack and node n(0.2.0) have been given. Three entries are initially
pushed into the stack and Figure 4(a) indicates the initial state of the stack
where W contains X in the top entry. Next, let us consider where the stack and
“John” node n(0.2.1) are given. Since the longest common prefix of 0.2.0 and
0.2.1 is 0.2, the top entry is popped out. When the top entry is popped out,
information about W is passed to the top entry of the middle entry in the stack.
After this, a new entry from the components of node n(0.2.1) that are not among
the longest common prefix is pushed into the stack. Figure 4(b) indicates the
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Algorithm 2. Stack algorithm for generating approximate alternative queries
Input: a cluster Cl = C(R, (e1, e2, ..., en)), threshold values θp, θr

1: get roots as a keyword inverted list corresponding to R
2: Common = getCommonWordsWithParentName(Cl,θr)
3: stack = ∅, count table PCT = ∅, count table NCT = ∅, List L = ∅
4: v = getSmallestNode(Common)
5: while ( v != null ) {
6: find the largest node r in the inverted list of root, which is smaller than v
7: if ( r � v )
8: for all ( r � n in all inverted lists )
9: join(stack, n)

10: for all ( e in stack.getELCACandidates(r) )
11: if ( st(r) is in Cl )
12: num = PCT.get(e)
13: PCT.set(e, num + 1)
14: else
15: num = NCT.get(e)
16: NCT.set(e, num + 1)
17: }
18: for all ( k in PCT.key )
19: calculate precision, recall, F-measure
20: if ( precision ≥ θp && recall ≥ θr )
21: L.add(k)
22: output all elements in L order by F-measure

state of the stack after the algorithm has processed node n(0.2.1). Each figure
in Figure 4 other than Figure 4(f) indicates the state of the stack after the node
in the caption has been processed. Figure 4(f) indicates the state of the stack
when the top entry is popped out from the state of the stack in Figure 4(e).
When we obtain all sets of keywords whose ELCA is n(0.2) from the stack, all
entries are popped out until n(0.2) is popped out. When the top entry of the
stack whose state is in Figure 4(f) is popped out, ELCA in the popped entry
contains {X, J}, {X,M} and so on. Thus, {X, J}, {X,M}, and any combination
of ELCA in the popped entry are sets of keywords to obtain ELCA.

5 Experiments

This section explains our evaluation of the performance of the proposed and naive
methods. We carried out the evaluation by comparing the calculation times using
the naive and optimized methods to generate approximate alternative queries.

We implemented ELCA, the classification method we propose, and both naive
and optimized methods to generate approximate alternative queries in Java. The
experiments were done on a 2.67 GHz Intel Core i7 machine with 6 GB RAM
running 64 bit Windows 7. We tested the 670 MB DBLP 2 as a real dataset and

2 http://www.informatik.uni-trier.de/˜ ley/db/
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Algorithm 3. join(stack, n) method for ELCA
1: p = lca(stack, n)
2: while ( stack.size > p ) {
3: entry = stack.pop()
4: if ( !stack.isEmpty() )
5: parentEntry = stack.pop()
6: D1 = entry.W \ parentEntry.W
7: D2 = parentEntry.W \ entry.W
8: for all ( d in D1 )
9: for all ( w in entry.W \ D1 )

10: parentEntry.legal.add(w(d))
11: for all ( d in D2 )
12: for all ( w in entry.W \ D2 )
13: parentEntry.legal.add(w(d))
14: for all ( w1(d1) in entry.legal )
15: for all ( w2(d2) in parentEntry.ligal )
16: if ( w1 == d2 && w2 == d1 )
17: remove w1(d1) from entry.legal
18: remove w2(d2) from parentEntry.legal
19: parentEntry.legal.add(entry.legal)
20: add direct product of entry.W and parentEntry.W to parentEntry.ELCA
21: parentEntry.W.add(entry.W )
22: stack.push(parentEntry)
23: }
24: for ( p < j ≤ n.length )
25: stack.push(n[j][][])
26: stack.top.W.add(n)

selected the 20 queries in Table 1 where Q1 to Q4 are pairs of two author names,
Q5 to Q8 are pairs of an author and a specific keyword, Q9 to Q12 are pairs of an
author and an entity name, Q13 to Q16 are keywords that can be considered to
be queried in Web search, and Q17 to Q20 are keywords that can be considered
to be queried in Web search adding an entity name. We set threshold values of
θp = 0.6 and θr = 0.6. # in Table 1 represents the number of common words
that appear in positive subtree sets over θr. We regard the largest cluster in
other clusters as a positive subtree set for each query. We utilized MySQL to
store the extended Dewey inverted lists in the dataset.
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Fig. 5. Response time of approximate alternative query generation
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Table 1. Query sets for experiments

input keywords #

Q1 Shimizu, Yoshikawa 7
Q2 Sakurai, Yoshikawa 6
Q3 Zhifeng, Bao, Jiaheng Lu 11
Q4 Toba, Milo, Dan, Suciu 12
Q5 Toshiyuki, Shimizu, XML 7
Q6 Katsumi, Tanaka, credibility 12
Q7 Taro, Saito, XML 5
Q8 Mizuho, Iwaihara, XML 5
Q9 Jim, Gray, article 2
Q10 Qiang, Ma, inproceedings 2

input keywords #

Q11 Tok, Wang, Ling, inproceedings 3
Q12 Toshiyuki, Shimizu, inproceedings 2
Q13 VLDB, 2009, XML 12
Q14 XML, data, mining 3
Q15 query, optimization, database 3
Q16 query, expansion, SIGIR 3
Q17 XML, data, mining, inproceedings 3
Q18 query, optimization, inproceedings 3
Q19 XML, classification, inproceedings 2
Q20 query, expansion, inproceedings 2

5.1 Performance

First, we evaluate all queries in Table 1 and present the summarized results in
Figure 5. Figure 6 compares the performance of the naive and optimized methods
in reading inverted lists. Figure 7 compares the performance of the naive and
optimized methods with V-scan. From Figure 5, we can see the optimized method
is faster than the naive one for Q1CQ3, Q4, Q5CQ6CQ13, Q14CQ15CQ16CQ17,
and Q18 but the naive method is faster than the optimized one for the others.
Now, let Qfast be the set of queries where the optimized method is faster than
the naive one and Qslow be the rest. The naive method takes a great deal time to
compute with V-scan for each query in Qfast from Figure 7. Otherwise, it does
not take a long time for each query in Qslow. The optimized method, on the other
hand, takes a long time to read inverted lists for Qslow queries from Figure 6.
Most queries are fast with the naive method from Figure 6 in the details on
the reading time of inverted lists. This is because the optimized method reads
the inverted list of the root node of the witness pattern in addition to inverted
lists the naive method reads. We have compared the performance with V-scan in
Figure 7, where the optimized method is faster than the naive one for all queries.
This is because the optimized method scans each inverted list only once; however,
the naive method repeatedly scans each inverted list.

Finally, we present a point diagram where the X-axis represents the number
of common words appearing in a positive subtree set and the Y-axis represents
the performance in Figure 8. It seems that the more words there are, the longer
it takes the naive methods to calculate the generation of approximate alternative
queries. However, performance of the optimized method is nearly constant. This
is because it scans all the inverted lists only once; however, the calculations
times with the naive method exponentially increase as the number of common
words increases since the naive method computes the number of all possible
combinations of tagged keywords to calculate precision and recall. The optimized
method is often slow when the number of common words appearing in a positive
subtree set is small. In these cases, the naive method is fast because of the
number of approximate alternative queries that it has to compute. However, let
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us consider queries such as Q9, Q10, Q12, Q19, and Q20 where there are two
common words, in which the naive method performs better. The common words
for all queries mentioned above are the subset of input queries, which means
the approximate alternative queries generated by these keywords is not useful
because they give us only known information. More common words are needed
to generate useful approximate alternative queries, and the optimized method
outperforms the naive methods for such cases.

6 Conclusion

This paper addressed the problem with the diversity of interpretations in XML
keyword search to classify results using witnesses and witness patterns. Wit-
nesses and witness patterns are considered to correspond to the interpretation
of XML keyword search since these concepts can capture the features of XML
subtrees. We defined the notion of alternative queries and approximate alter-
native queries. We proposed a method of generating approximate alternative



424 T. Motomura, T. Shimizu, and M. Yoshikawa

queries and an optimized algorithm to generate alternative queries in parallel.
Finally, we demonstrated the superiority of the optimized method in our exper-
iments. The optimized method is faster than the naive method especially for
the cases that there are many words which could be utilized as a component of
approximate alternative queries.
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Abstract. Most of existing approaches on XML keyword search focus
on querying over a single data source. However, searching over hundreds
or even thousands of (distributed) data sources by sequentially querying
every single data source is extremely costly, thus it can be impractical.
In this paper, we propose an approach for selecting top-k data sources
to a given query in order to avoid the high cost of searching numerous,
potentially irrelevant data sources. The proposed approach can efficiently
select top-k mostly relevant data sources without querying over the data
sources. We propose a ranking function for measuring the strength of
correlation between keywords in a data source and summarize the data
sources as keywords correlation graphs (K-Graphs). The top-k relevant
data sources will be selected by estimating the relevance of corresponding
K-Graphs to the query. Experimental results show that the approach
achieves good performance with a variety of experimental parameters.

1 Introduction

The Extensible Markup Language (XML) has become a de facto standard for
representing and exchanging data, resulting in the proliferation of XML docu-
ments distributed over the internet. Traditionally, XML data are retrieved using
structured query languages such as XPath and XQuery, in which users have to
learn both data schema and query languages in order to effectively issue queries.
Since the data schema and the query languages may be complex, retrieving
XML data using XPath/XQuery languages is usually limited to advanced users.
In that context, keyword-based search over XML data has been proposed as a
mean to liberate users from the learning curve of the structured query languages,
thus attracted significant attention of researchers from both fields of information
retrieval and databases.

Querying XML data using keyword-based search has been widely studied in
literature [1–7], however most of existing approaches focus on query processing
over a single data source. Searching through hundreds or even thousands of
data sources by sequentially querying each data source is extremely costly and
may not be practical, while efficient query processing even in single data source
is a challenging problem [8–12]. Efficient query processing over a system which
integrates numerous data sources is definitely much more challenging. Thus, how
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Fig. 1. An example of bibliographic data sources

to address the problem of query processing over multiple XML data sources is a
challenging issue in practice.

In the context of information retrieval (IR), selecting most useful data sources
from a large number of sources has been studied [23–25]. The common approach
is to summarize each data source as term statistics (e.g., term frequency and
inverse document frequency). Given a query, the system can select the most
appropriate data sources by measuring the relevant degree between the summa-
rized statistics and the query. In this case, the statistics act as data sources’
summaries for fast filtering non-promising sources which in turn accelerates the
overall query processing.

However, applying IR techniques to the context of XML data may be inade-
quate for the following reasons. First, although using term statistics is effective
in IR field, the term statistics solely are not effective to measure the relevance of
an XML source to a given query. This is because the structures of XML data (or
schema) convey rich semantics, hence they should be considered when measur-
ing the relevance of a data source, besides the term statistics. Second, the term
occurrences solely in an XML data source do not guarantee the appearance of
relevant results in that data source. In other words, the relevance of an XML
data source also depends on how closer the relationship of query keywords in
that data source. For demonstration, let us consider two data sources T1 and T2
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in Figure 1 and assume that a user desires to search for articles of “Liu” about
“XML keyword” by issuing query Q = {Liu,XML, keyword}. We can observe
that T1 has one “relevant” result to query Q. On contrast, T2 does not contain
any “relevant” result to Q.

Table 1. KF-Summary for T1 and T2

keyword
frequency

T1 T2

Liu 1 1

XML 1 3

keyword 1 1

. . . . . . . . .

However, based on the keyword frequency summaries (denoted as KF-summary
in this paper) shown in Table 1 , T2 will be selected over T1. This is because the
frequency of the query keywords in T2 is higher than the frequency of these key-
words in T1. For further illustration, we will deeply study the low precision of KF-
summary for data sources selection in the experimental section. For the above
reasons, we can conclude that the relevance of an XML data source is not only de-
cided by keyword frequency, but more importantly it depends on how closer the
relationship between the query keywords in each data source.

In this paper, we propose an approach for processing a keyword query over
multiple data sources. The proposed approach selects top k relevant data sources
in which the query will be forwarded, where k is an users’ selected parameter.
The contributions in this paper are summarized as follows:

– We propose an approach to select top-k XML data sources for keyword
queries without querying the data sources. To obtain this aim, we first
propose a method for evaluating the relationships between keywords and
summarize the data sources as K-Graphs which maintain those keyword
relationships.

– We define criteria for ranking the relevance of the data sources to a given
keyword query by estimating the correlation of query keywords in the corre-
sponding K-Graphs of the data sources in order to fast select top-k ranked
data sources.

– We conducted experiments using real-life data set for evaluating the perfor-
mance of the proposed approach. The experimental analysis shows that our
approach has good performance in a variety of experimental parameters.

The rest of this paper is organized as follows. Section 2 is an overview of our
approach. Section 3 presents our techniques for summarizing data sources. In sec-
tion 4, we propose our ranking functions for estimating the relevance of a data
source to a given query and top-k data source selection. We study the experi-
mental results in section 5. Section 6 discusses related work. Finally, conclusions
are given in section 7.
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2 Overview of Approach

2.1 Data Models and Queries

We consider a data source as an XML document and we model each data source
as a tree. An XML data tree is defined as T = (VT , ET ) where VT is a finite set
of nodes, representing elements and attributes of the data tree T ; ET is set of
directed edges where each edge e(v1, v2) represents the parent-child relationship
between the two nodes v1, v2 ∈ VT . We assume that all values appear in the
leaf nodes. Figure 1, for instance, represents two XML data trees T1 and T2

containing bibliographic information.
A keyword query is a set of different terms, denoted by Q = {k1, k2, . . . , kq}.

We consider the AND-semantics for the query. A query result must contain at
least one occurrence of each term ki ∈ Q.

2.2 Overview of Approach

We consider a set of XML data sources T = {T1, . . . , TN}. Given a keyword
query Q = {k1, . . . , kq}, we would like to rank the data sources in T based
on their usefulness to the query Q. Basically, the usefulness of a data source
can be computed as the total score of all its results to query Q. However, this
approach can overestimate data sources containing numerous results over other
data sources consisting of high quality results. To be balanced, the relevance of
a data source Ti to query Q is frequently evaluated as the total score of its top
k results, where k is a selected parameter from users.

score(Ti, Q) =
k∑

i=1

score(Ri, Q), (1)

where Ri is the i-th top result of Q in Ti and score(Ri, Q) is the relevant score
of Ri to Q.

Ideally, the data sources should be ranked in descending order of their scores
calculated according to Equation 1. However, to calculate the ideal scores of the
data sources, the system needs to execute the query over all the data sources.
Because the number of data sources being searched can be very high and the
data sources can be very large, searching through all those data sources can be
very time consuming, thus it may be impractical.

The aim of our work is to propose an approach which can efficiently and effec-
tively select top-k data sources amongst potentially numerous data sources with-
out querying over the data sources. To obtain this aim, we construct summaries
for the data sources off-line and select the useful data sources by calculating the
relevant scores of the summaries to the query online. Each summary (namely
K-Graph in this paper) of a data source stores relationships between keywords
appearing in the data source, where the keyword relationships are evaluated by
our ranking function, considering both content relevance and structure relevant
factors. Finally, we present two methods for estimating the relevance of data
sources to a given query based on the constructed summaries.
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3 Keyword Correlation Graph (K-Graph)

We summarize a data source as a keyword correlation graph (or K-Graph for
short). The K-Graph measures correlations between keywords in the data source.
Nodes of the graph are labeled by keywords appearing in the data source. The
edge between two nodes ki and kj is marked by distinct integer numbers which
indicate lengths of the paths connecting ki and kj in the data source. As two key-
words can be connected through paths with different distances, we will present,
in the following subsection, our method for evaluating the correlation between
keyword ki and kj at specific distance d as well as the correlation between ki

and kj in the K-Graph. Given two nodes ni and nj which contain two keywords
ki and kj , we define the score of ki and kj with respect to ni and nj as

score(ki, kj , ni, nj) =
weight(ni, ki) + weight(nj , kj)

dist(ni, nj) + 1
(2)

where dist(ni, nj) is the distance of the path connecting two nodes ni and nj

which measures how strong the relationship between the two nodes, in the sense
that the closer distance between the two nodes indicates their stronger relation-
ship. weight(ni, ki) measures the content relevance of node ni with respect to
keyword ki.

 

Liu 

XML keyword 

2 2 

0 
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XML keyword 

2,4 4 

4,6 

(b)

Fig. 2. K-Graphs of keywords {Liu, XML, keyword} in T1 (a) and T2 (b)

In order to calculate weight(ni, ki), we employ the standard tf ∗ idf from
the information retrieval field. The tf ∗ idf measures the content relevance of a
document to a keyword query using both term frequency (i.e., how many times a
term appears in a document) and inverse document frequency (i.e. inverse of how
many documents contain the term). In order to apply it to XML data scenarios,
we make some following adaptations: firstly, term frequency (tf) of a term ki in
node ni is the number of occurrences of ki in node ni and as [13] we assume that
term frequency (tf) is always equal to 1; secondly, we adaptively define inverse
element frequency (ief) of a term t as the total number N of element in the XML
data tree over the number Nt of elements that contain the term t, i.e. ieft = N

Nt
.

Based on the above adaptations, the weight of keyword ki in node ni is cal-
culated as

weight(ni, ki) = log2(1 + tfki) log2 iefki = log2 iefki (3)
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Considering data tree T1, for instance, we have:

weight(7, “XML”) = weight(7, “keyword”) = log2(
15
1

) = 3.91

Similarly, from data tree T2 we have:

weight(7, “XML”) = weight(11, “XML”) = weight(14, “XML”)

= log2(
15
3

) = 2.32

weight(4, “keyword”) = log2(
15
1

) = 3.91

Thus, from the data tree T1 we have:

score(“XML”, “keyword”, 7, 7) =
weight(7, “XML”) + weight(7, “keyword”)

0 + 1
= 3.91 + 3.91 = 7.82

Similarly, from the data tree T2 we have:

score(“XML”, “keyword”, 7, 4) =
weight(7, “XML”) + weight(4, “XML”)

4 + 1

=
3.91 + 2.32

5
= 1.25

score(“XML”, “keyword”, 11, 4) =
weight(11, “XML”) + weight(4, “XML”)

6 + 1

=
2.32 + 3.91

7
= 0.89

score(“XML”, “keyword”, 14, 4) =
weight(14, “XML”) + weight(4, “keyword”)

6 + 1

=
3.91 + 2.32

7
= 0.89

3.1 Keyword Correlation at Specific Distance d

Let two nodes Si and Sj are the sets of nodes containing keywords ki and kj

respectively. We define the correlation between the two keywords ki and kj at
specific distance d in a data tree T as

corr(ki �d kj) =
∑

ni∈Si,nj∈Sj:dist(ni,nj)=d

score(ki, kj , ni, nj)
fd(ki, kj)

(4)

where score(ki, kj , ni, nj) is calculated as Equation 2 and fd(ki, kj) is the number
of d-distance paths connecting the two keyword ki and kj .
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In this way, we measure the correlation between the two keywords ki and kj

at distance d as the average score of all paths connecting ki and kj at distance d.
For illustration, the correlation between two keywords “XML” and “keyword”
in the data tree T1 at distance 0 can be computed as:

corr(“XML” �0 “keyword”) = score(“XML”, “keyword”, 7, 7) = 7.82

Similarly, from the data tree T2 we have

corr(“XML” �4 “keyword”) = score(“XML”, “keyword”, 7, 4) = 1.25

corr(“XML” �6 “keyword”)

=
score(“XML”, “keyword”, 11, 4) + score(“XML”, “keyword”, 14, 4)

2

=
0.89 + 0.89

2
= 0.89

Given any two keywords ki and kj in the XML data tree T , we can see that
the maximum distance, dmax between ki and kj can be as twice as the hight of
the data tree T , i.e., dmax ≤ 2 ∗h(T ) where h(T ) is the hight of the data tree T .
For instance, both data trees T1 and T2 have the height of 4, thus the maximum
distance between any two keywords in those data trees is always less than or
equal to 8.

3.2 Keyword Correlation

From the K-Graphs in Figures 2 we can see that two keywords in a data source
can be connected at various distances with different correlation strengths, as
measured by Formula 4. Now we define the total correlation between two key-
words ki and kj in a K-Graph as follows.

Definition 1 (Keyword Correlation). Let ω is the maximum length of the
path between any two keywords ki and kj and k be the maximum number of results
expected from an XML tree T . For each distance d, fd(ki, kj) is the frequency of
d-distance paths connecting the two keywords. The keyword correlation between
ki and kj represents strength of the relationship between the two keywords in the
data tree T with respect to k. If

∑ω
d=0 fd(ki, kj) ≤ k,

corr(ki � kj) =
ω∑

d=0

score(ki �d kj) ∗ fd(ki, kj) (5)

Otherwise, if
∑ω

d=0 fd(ki, kj) ≥ k, we have ∃ω′ ≤ ω,
∑ω′

d=0 fd(ki, kj) ≥ k and∑ω′−1
d=0 fd(ki, kj) ≤ k,

corr(ki � kj) =
ω′−1∑
d=0

score(ki �d kj) ∗ fd(ki, kj)

+score(ki �ω′
kj) ∗ (k −

ω′−1∑
d=0

fd(ki, kj)) (6)
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In other words, the keyword correlation measures the total scores of up to
top-k correlations for each pair of keywords in an XML data source. A data
source with a higher relationship score for a given pair of keywords will generate
better results. The reason we set the upper-bound of the number of results k, is
to enable a user to control the quality of one data source.

Let k = 2 be the maximum number of expected results, we can calculate the
correlation between keyword pair (“XML”, “keywords”), for instance, in the
data tree T1 as

corr(“XML” � “keyword”) = corr(“XML” �0 “keyword”) = 7.81

Similarly, the correlation of that pair of keywords in the data tree T2 is

corr(“XML” � “keyword”) = corr(“XML” �4 “keyword”) +
corr(“XML” �6 “keyword”)

= 1.25 + 0.89 = 2.14

From that we can see that the correlation between keywords “XML” and “key-
word” in the data tree T1 is much stronger than that correlation in the data tree
T2, although the frequencies of those keywords in the data tree T2 are higher
than those frequencies in the data tree T1.

3.3 Reducing Size of K-Graphs

We aware that indexing all pairs of keywords at all possible distances can result
in extremely large K-Graphs. In addition, some work [1] in literature has pointed
out that not all pair of keywords in an XML tree are meaningful related, espe-
cially those keywords which appear far way from each other. Thus, to reduce the
size of the K-Graphs, we allow users (i.e., system administrators) limit the max-
imum allowed distance of between keywords in the K-Graphs, or they can define
the meaningful relationship between keywords to be indexed, i.e., two keywords
are meaningful related if the path connecting them does not contain two nodes
with the same label [1]. We plan the study of this issue as future work.

4 Top-k Data Source Selection

In this section, we present our strategy for measuring and selecting appropriate
data sources for a given query.

4.1 Estimating Relevant Scores of Data Sources

We estimate the relevance of a data source to a given keyword query, considering
AND semantics which was popularly used in existing work [1–7]. This semantics
requires each result must contain all query keywords.
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Given a keywords query Q = {k1, k2, . . . , kq}, and a set of XML data sources
T = {T1, T2, . . . , Tn}, we estimate the relevance of each data source T in T based
on one of the following equations:

CORR-S(T,Q) =
∑

{ki,kj}⊆Q,i<j

corr(ki � kj) (7)

Equation 7 measures the relevance of a data source to a keyword query as
sum of the strength of the relationships of every query keyword pair in T .

CORR-P(T,Q) =
∏

{ki,kj}⊆Q,i<j

corr(ki � kj) (8)

Equation 8 measures the relevance of a data source to a keyword query as
product of the strength of the relationships of every query keyword pair in T .

4.2 Selecting Top-k Data Sources

Based on data source score calculated by Formula 5 and 6, we can effectively rank
a set of XML trees T = {T1, T2, . . . , Tn} for a given keyword query Q. Specifi-
cally, the ranking is a mapping from T to {1, 2, . . . , n}, such that rank(Ti, Q) <
rank(Tj, Q), iff score(Ti;Q) ≥ score(Tj ;Q), where score(Ti;Q) denotes the degree
of relevance of Ti to a given keyword query Q and are estimated using Formula 7
or 8. With a user provided number k, we can select the top k data sources with
highest ranks.

5 Experimental Evaluation

In order to evaluate the performance of our proposed approach, we use real life
DBLP [14] data set to generate 87 XML data sources by decomposing the whole
data set according to different bibliographic types such as inproceedings, articles,
books. Since some of the decomposed data sources (e.g., inproceedings, articles)
are rather large, we decompose them further to derive a total of 87 data sources.
There is no overlap between different generated data sources. The numbers of
elements of the data sources are approximately similar. We implemented the
algorithms using Java programming. We used Oracle Berkeley DB [15] as a tool
for creating indexes.

5.1 Evaluation Metrics

To evaluate the effectiveness, we compare our approach with the brute force
selection, which sends the given query to all the data sources for calculating top-
k results, where the results of tested queries are identified by the query semantics
proposed in [9]. The “real” score of each data source is calculated as Formula 1.
We score a result by using a ranking function that is widely adopted in the XML
keyword search scenario, as work [16]. We assign the local score of a keyword
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ki in node ni as Equation 3 and select SUM as the aggregation function. Note
that the execution time of such a brute force selection is orders of magnitude
longer than that of our approach. To evaluate the performance of our approach,
we employ two IR metrics recall, precision that were used for evaluating text
collection selection algorithms by [17]. The Recall(R) is defined as,

R(K) =

∑
T∈TopK(S) score(T,Q)∑
T∈TopK(R) score(T,Q)

,

where TopK(S) and TopK(R) represent the K data sources with highest ranks
using summary-based rankings and real rankings of data sources respectively.

Note that score(T,Q) is the real score generated according to Formula 1. The
recall definition compares the accumulated score of the top K data sources se-
lected based on the summaries of the data sources against the total available
score when we select top K data sources according to the real ranking. Preci-
sion(P) is defined as,

P (K) =
|{T ∈ TopK(S)|score(T,Q) > 0}|

|TopK(R)| ,

This gives the fraction of the top K data sources in the estimated ranking that
have non-zero score.

We compare the effectiveness of our approach against the keyword frequency
summary, which is typically used as the summary of textual document collection
for text collections selection [18], denoted as KF-summary. The KF-summary of
each XML data source is a list of keywords which appear in the data source
associated with their frequencies, i.e., the number of elements that contain the
keyword. Based on the KF-summary, we estimate the score of a data source T for
a given query Q = {k1, . . . , kq} in two ways. One is by summing the frequencies
of all query keywords in T , i.e.,

KF-SUM(T,Q) =
q∑

i=1

freq(ki) (9)

The other is to take the product of the frequencies, i.e.,

KF-PROD(T,Q) =
q∏

i=1

freq(ki) (10)

The experiments involve two parameters: the number of query keywords and the
number K of selected data sources.

5.2 Results and Analysis

To compare our approach with KF-summary approach, we tested 50 queries
consisting of two to five keywords. The keyword queries are composed of ran-
domly selected keywords from the data sources. The score of each data source
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Fig. 3. Recall and precision of queries versus number of selected data sources

is calculated based on the sum of its top-10 highest score results. The recall and
precision of each query types are calculated as the average of the experimental
results of 50 tested queries.

Figure 3a shows that our method CORR-S outperforms KF-summary method
KF-SUM, while CORR-P outperforms KF-PROD in the recall metric. Regard-
ing our approach, the KF-PROD performs slightly better than CORR-S. The
observed reason is that CORR-S sometimes ranked data sources partially con-
taining query keywords higher. This is also the reason of low performance of
KF-SUM in comparison with KF-PROD. In term of precision, Figure 3b in-
dicates that our both methods achieve higher performance than KF-summary
methods. Especially, our method CORR-P performs better than all other ones
at approximately from 15% to 20%.

Effects of the number of query keywords. We also studied the effects of the
number of query keywords to the recall and precision of our approach. Overall,
figures 4a and 5a show that the achieved recall decreases when the number of
keywords increases from 2 keywords to 4 keywords. In addition, the recall of
CORR-S falls deeper when increasing number of keywords in that range. How-
ever, we surprisedly found that the recall of 5-keyword queries is higher than the
recall of 3-keyword and 4-keyword queries, while it is natural to expect that the
recall should gradually fall when the number of keywords increases. After observ-
ing the results of tested 5-keyword queries, we found that the 5-keyword queries
with AND semantics are quite selective, resulting in many of data sources with
zero-score. Thus, the recall of those queries significantly increases. In contrast,
figures 4b and 5b indicate the precision of both CORR-P and CORR-S gradu-
ally reduces when the number of query keywords increases from 2 keywords to 5
keywords. However, the precision of CORR-P is less affected by the increasing of
query keywords, comparing with CORR-S. This is because CORR-S sometimes
overestimates data sources which partly contains some keywords from a long
keyword query.
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Fig. 4. Recall and precision of CORR-S w.r.t queries with various number of keywords
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Fig. 5. Recall and precision of CORR-P w.r.t queries with various number of keywords

Effects of the number K of selected data sources. When the number of selected
data sources increases from 1 to 20, the recall of all approaches increases at
similar trend. This is because when the number of selected data sources increases,
the chance of selecting relevant data sources also increases. Obviously, the recall
of all approaches will get maximum value (equal to 1.0) when K is equal to
the total number of data sources. However, when we select more data sources,
the incidence of getting zero-score data sources can increase, which results in the
decrease in the precision of all approaches.

6 Related Work

This section overviews some related work on keyword queries over single data
source, query result ranking and some approaches on collection selection from
the field of information retrieval.
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6.1 XML Keyword Search over Single Data Source

Querying XML data using keyword-based search has been well studied in liter-
ature [3, 2, 1, 19, 6–12]. The baseline approach uses Lowest Common Ancestor
(LCA) semantics from graph theory [20] to identify the result of a given key-
word query. This approach returns a search result consisting of all candidates
(i.e., subtrees) which each contains at least one instance of query keywords.

Recently, some variants of LCA semantics have been proposed [3, 9, 2, 19]
to boost precision of the baseline approach. Amongst those approaches, the
approach [9] was claimed to outperform the others, thus we use its semantics for
retrieving “ideal” top-k data sources during our experiments.

Some other approaches studied the relationship between nodes containing
query keywords to further filtering “meaningless” candidates. For instance, [2]
defines that two match nodes u and v are meaningfully related if the shortest
path between u and v does not have two distinct nodes with same label, except u
and v. A candidate subtree is meaningful if it does not contain any pair of nodes
which are not meaningful related to others. [19] proposes an approach to filter ir-
relevant candidates based on the dominance relationship between keyword nodes.
Recently, [21] proposed an approach which prunes irrelevant subtrees based on
the structural relationship between nodes containing the query keywords. Those
proposed semantics can be used to define the meaningful relationship between
keyword pairs for further reducing the size of our K-Graphs.

6.2 Query Result Ranking

Ranking XML keyword queries is an interesting problem that has been studied
in the literature [3, 22]. The basic idea of ranking a keyword query result (e.g. a
subtree) is that individual nodes directly containing the keywords can be viewed
as “documents”. Local ranking scores are given based on the “documents”. An
aggregation function aggregates them into a global score which is the final rank-
ing score of the result subtree. Given a node v and a keyword w, l(v, w) is a
function that assigns to v a local ranking score. The function l can take multiple
factors into account (e.g. IR score that evaluates the content relevance and link-
based that evaluates the global importance of the node), and combine them in an
arbitrary way. Note that any of those ranking approaches can be adaptably used
for measuring the relationship between keywords in our K-Graph summaries.

In [3], the local score of a node vi directly containing keyword w is cal-
culated by adapting the PageRank, which is widely used to evaluate the im-
portance of HTML documents. Each element in XML document is mapped
to a document meanwhile edges (IDREF, XLink ad containment edges) are
mapped to hyperlink edges. [22] proposed a novel ranking formulae to identify
the search for nodes and search via nodes of a query, and present a novel XML
TF∗IDF ranking strategy to rank the individual matches of all possible search
intentions.
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6.3 Collection Selection for Un-structured Data

Text collection selection has been widely studied in the field of Information
Retrieval [23–25]. The main idea in existing systems is to try to create a repre-
sentative for each collection based on term and document frequency information,
and then use that information at query-time to determine which collections are
most promising for the incoming query. However, as we pointed out in Section
1, applying those approaches in the context of XML data source selection is
inefficient because it can ignore the structure of data.

7 Conclusions

In this paper, we have proposed an approach for selecting the top-k data sources
to a given query in order to avoid high cost of search in numerous, potentially
irrelevant data sources. The approach can efficiently select top-k mostly relevant
data sources without querying over the data sources. A ranking function has been
proposed for measuring the strength of keyword relationships in a data source
and summarize the data sources as keywords correlation graphs (K-Graphs) to
maintain the keyword relationships. The top-k relevant data sources are selected
using our two ranking functions which can estimate the relevance of correspond-
ing K-Graphs to the query. We conducted experiments using real data set and
the results show that our approach achieves good performance in all evaluation
metrics recall, precision in a variety of experimental parameters. We currently
work on the issue of how to reduce the size of the summarized K-Graphs by
(i) allow users to limit the allowed maximum distance between two keywords
and (ii) extend the proposed semantics in literature to define the meaningful
relationship between keywords.
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Abstract. In today’s information-driven global economy, breaking news
on economic events such as acquisitions and stock splits has a substantial
impact on the financial markets. Therefore, it is important to be able to
automatically identify events in news items accurately and in a timely
manner. For this purpose, one has to be able to mine a wide variety of
heterogeneous sources of unstructured data to extract knowledge that is
useful for guiding decision making processes. We propose a Semantics-
based Pipeline for Economic Event Detection (SPEED), which aims at
extracting financial events from news articles and annotating these events
with meta-data, while retaining a speed that is high enough to make real-
time use possible. In our pipeline implementation, we have reused some
of the components of an existing framework and developed new ones,
such as an Ontology Gazetteer and a Word Sense Disambiguator.

1 Introduction

In today’s information-driven society, machines that can perform Natural Lan-
guage Processing (NLP) tasks can be of great importance. Decision makers are
expected to process a continuous, overwhelming flow of (news) messages by
extracting information and understanding their meaning. Knowledge can sub-
sequently be acquired by applying reasoning to the gathered information. In
today’s global economy, it is of paramount importance for decision makers to
have a sensible intuition on the state of their market, which is often extremely
sensitive to breaking news on economic events like acquisitions, stock splits, divi-
dend announcements, etc. In this context, identification of events can guide deci-
sion making processes, as these events provide means of structuring information
using concepts, with which knowledge can be generated by applying inference.
Automating information extraction and knowledge acquisition processes can fa-
cilitate or support decision makers in fulfilling their cumbersome tasks, as one
can make better informed decisions due to faster processing of more data.
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Therefore, we aim to have a fully automated framework for processing finan-
cial news messages gathered from Really Simple Syndication (RSS) feeds. These
events are represented in a machine-understandable way. Extracted events can
be made accessible for other applications through the use of Semantic Web tech-
nologies. Furthermore, we aim for the framework to be able to handle news
messages at a speed useful for real-time use, as new events can occur any time
and require decision makers to respond in a timely and adequate manner.

We propose a pipeline that identifies the concepts related to economic events,
which are defined in a domain ontology and are associated to synsets from a
semantic lexicon such as WordNet [3]. For concept identification, we employ
lexico-semantic patterns based on ontology concepts in order to match lexical
representations of concepts retrieved from the text with event-related concepts
that are available in the semantic lexicon, and thus aim to maximize recall. The
identified lexical representations of relevant concepts are subject to a Word Sense
Disambiguation (WSD) procedure for determining the corresponding sense, in
order to maximize precision. To enable real-time use, we also aim to minimize
the latency, i.e., the time it takes for the pipeline to process a news message.

The remainder of this paper is structured as follows. First, Sect. 2 discusses
related work. Subsequently, Sect. 3 elaborates on the proposed framework. Then,
the framework is evaluated in Sect. 4, after which Sect. 5 concludes the paper.

2 Related Work

Several tools have already been proposed for our desired Information Extrac-
tion (IE) purposes, most of which have their own IE framework. However, the
General Architecture for Text Engineering (GATE) [2], a freely available gen-
eral purpose framework for IE purposes, has become increasingly popular. The
tool is highly flexible in that the user can construct processing pipelines from
components that perform specific tasks. One can distinguish between linguistic
analysis applications such as tokenization (e.g., distinguishing words), syntactic
analysis jobs like Part-Of-Speech (POS) tagging, and semantic analysis tasks
such as understanding. By default, GATE loads the A Nearly-New Information
Extraction (ANNIE) system, which consists of several key components, i.e., the
English Tokenizer, Sentence Splitter, Part-Of-Speech (POS) Tagger, Gazetteer,
Named Entity (NE) Transducer, and OrthoMatcher.

Although the ANNIE pipeline has proven to be useful in various information
extraction jobs, its functionality does not suffice when applied to discovering
economic events in news messages. For instance, ANNIE lacks important features
such as a WSD component, although some disambiguation can be done using
JAPE rules in the NE Transducer. This is however a cumbersome and ineffective
approach where rules have to be created manually for each term, which is prone
to errors. Furthermore, ANNIE lacks the ability to individually look up concepts
from a large ontology within a limited amount of time. Nevertheless, GATE is
highly flexible and customizable, and therefore ANNIE’s components are either
usable, extendible, or replaceable in order to suit our needs.
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An example of a tool utilizing ANNIE components is Hermes [4], which ex-
tracts a set of news items related to specific concepts of interest. ANNIE compo-
nents are used that make use of concepts and relations stored in ontologies. An-
other example of an adapted ANNIE pipeline is the Conceptual Annotations for
Facts, Events, Terms, Individual Entities, and RElations (CAFETIERE) relation
extraction pipeline [1], which contains an ontology look-up process and a rule
engine. CAFETIERE employs extraction rules defined at lexico-semantic level
which are more easy to express, yet less flexible than JAPE rules. CAFETIERE
stores knowledge in a type of ontology which has no formal semantics and lacks
reasoning support, rendering this an unattractive approach for identifying, e.g.,
financial events. Furthermore, gazetteering is a slow process when going through
large ontologies. Finally, the pipeline also misses a WSD component.

The Knowledge and Information Management (KIM) platform [8] provides
an infrastructure for IE purposes, by combining the GATE architecture with
semantic annotation techniques. KIM focuses on automatic annotation of news
articles, where entities, inter-entity relations, and attributes are discovered. For
this, a pre-populated Web Ontology Language (OWL) upper ontology is em-
ployed, i.e., a minimal but sufficient ontology that is suitable for open domain
and general purpose annotation tasks. The semantic annotations in articles allow
for applications such as semantic querying and exploring the semantic repository.
The differences between KIM and our approach are in that we aim for a financial
event-focused information extraction pipeline, which is in contrast to KIM’s gen-
eral purpose framework. Hence, we employ a domain-specific ontology instead
of an upper ontology. Also, rather than just annotating corpora with event con-
cepts, we extract additional information by utilizing lexico-semantic patterns for
linking identified concepts, thus realizing a rich knowledge base. Furthermore,
no mention has been made regarding WSD within the KIM platform, whereas
we consider WSD to be an essential component in an IE pipeline.

3 Economic Event Detection Based on Semantics

Where current approaches to automated IE from news messages are more fo-
cused on annotation of documents, we strive to actually extract information –
i.e., specific economic events – from documents, with which for instance a knowl-
edge base can be updated. The analysis of texts needs to be driven by semantics,
as the domain-specific information captured in these semantics facilitates detec-
tion of relevant concepts. Therefore, we propose a Semantics-Based Pipeline for
Economic Event Detection (SPEED), consisting of several components which
sequentially process documents. This approach is driven by an ontology contain-
ing information on the NASDAQ-100 companies, extracted from Yahoo! Finance.
This domain ontology has been developed by domain experts through an incre-
mental middle-out approach, validated using the OntoClean methodology [5].
The ontology captures concepts and events from the financial domain, e.g., com-
panies, competitors, products, etc. Many concepts in this ontology stem from a
semantic lexicon (e.g., WordNet) or represent named entities.
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Fig. 1. SPEED design

Our proposed pipeline, depicted in Fig. 1, is designed to identify relevant
concepts and their relations in a document. To this end, individual components of
the text are first identified as such by means of the English Tokenizer, which splits
text into tokens (e.g., words or numbers) while taking into account rules specific
to the English language. These tokens are then linked to ontology concepts by
an Ontology Gazetteer. Matching tokens in the text are thus annotated with a
reference to their associated concepts defined in the ontology.

Then, the Sentence Splitter groups the tokens in the text into sentences,
based on tokens indicating a separation between sentences, e.g., (a combina-
tion of) punctuation symbols or new line characters. These sentences are used
for discovering the grammatical structure in text by determining the part-of-
speech of each word token by means of the Part-Of-Speech Tagger. As words
can have many forms that have a similar meaning, the Morphological Analyzer
subsequently reduces the tagged words to their lemma and an affix.

Words and meanings, denoted often as synsets (set of synonyms) have a many-
to-many relationship. Hence, the next step in interpreting a text is disambigua-
tion of its words’ meaning, given their POS tags, lemmas, etc. To this end, a
Word Group Look-Up component first combines words into word groups con-
taining as many words per group as possible for representing some concept in
the semantic lexicon. The Word Sense Disambiguator then determines the word
sense of each word group by exploring the mutual relations between senses (as
defined in the semantic lexicon and the ontology) of word groups; the stronger
the relation with surrounding senses, the more likely a sense matches the context.

To this end, we propose an adaptation of the Structural Semantic Interconnec-
tions (SSI) [7] algorithm. The SSI approach uses graphs to describe word groups
and their context (word senses), as derived from a semantic lexicon. The senses
are determined based on the number and type of detected semantic interconnec-
tions in a labeled directed graph representation of all senses of the considered
word groups. We differ from SSI in that our algorithm, shown in Algorithm 1,
considers the two most likely senses for each word group and iteratively disam-
biguates the word group with the highest confidence (i.e., weighted difference of
the similarity of both senses to already disambiguated senses), rather than the
word group with the greatest similarity for its best sense. Furthermore, in case
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a = ∅; // Lists ambiguous word groups yet to be disambiguated
d = ∅; // Lists disambiguated word groups
s = ∅; // Lists senses of disambiguated word groups
c = ∅; // Lists context (i.e., possible senses of all considered word groups)
l = ∅; // Lists similarity of context to disambiguated senses
// Initialize disambiguation
w = getWordGroups();
foreach g in w do

senses = getSenses(g);
// Add word group g with one sense to d and its sense to s
if |senses| == 1 then

add(d,g);
add(s,senses);

// Add ambiguous word group g to a and its senses to c
else

add(a,g);
foreach sense in senses do if sense �∈ c then add(c,sense);

end

end
// Determine similarity of all senses in c to all disambiguated senses in s
foreach sense in c do

simToS = 0;
foreach knownSense in s do simToS += 1/shortestPathLength(sense,knownSense);
add(l,simToS);

end
// Disambiguate word groups in a
lastAddedSense = ∅;
while a �= ∅ do

bestPick,bestPickSense = ∅;
bestPickConf = −∞;
foreach g in a do

bestSense1,bestSense2 = ∅;
bestSim1,bestSim2 = −∞;
senses = getSenses(g);
foreach sense in senses do

// Update similarity of sense to s with similarity to lastAddedSense
indexSense = indexOf(c,sense);
simToS = get(l,indexSense);
simToS += 1/shortestPathLength(sense,lastAddedSense);
set(l,indexSense,simToS);
// Update best senses
if simToS > bestSim2 then

if simToS > bestSim1 then
bestSense2 = bestSense1; bestSense1 = sense;
bestSim2 = bestSim1; bestSim1 = simToS;

else
bestSense2 = sense;
bestSim2 = simToS;

end

end

end
// Update best pick
confidence = ((bestSim1-bestSim2)*bestSim1);
if confidence > bestPickConf then

bestPick = g;
bestPickSense = bestSense1;
bestPickConf = confidence;

end

end
// Disambiguate best pick, move it from a to d, and add its sense to s
rem(a,indexOf(a,bestPick));
add(d,bestPick);
add(s,bestPickSense);
lastAddedSense = bestPickSense;

end

Algorithm 1. Word Sense Disambiguation for an arbitrary news item
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an arbitrary word cannot be disambiguated, we default to the statistically most
likely sense in our semantic lexicon, whereas the original SSI algorithm fails to
provide a word sense. In our algorithm, we compute the similarity of a sense
to already disambiguated senses as the sum of the inverse of the shortest path
length between this sense and the disambiguated senses in the semantic graph.

When the meaning of word groups has been disambiguated, the text can be
interpreted by introducing semantics linking word groups to an ontology, thus
capturing their essence in a meaningful and machine-understandable way. As
we are interested in specific economic events, the Event Phrase Gazetteer scans
the text for those events. It uses a list of phrases or concepts that are likely to
represent some part of a relevant event. Events thus identified are then supplied
with available additional information (e.g., time stamps) by the Event Pattern
Recognition component, which matches identified events with predefined domain-
specific lexico-semantic patterns. Finally, the knowledge base can be updated by
inserting the identified events and their extracted associated information into the
ontology using the Ontology Instantiator, as detailed in our previous work [9].

4 Evaluation

The modularity of an architecture like GATE can facilitate the implementation
and subsequent evaluation of our proposed semantics-based pipeline for economic
event detection. Therefore, we have made a Java-based implementation of the
proposed framework, partially using default GATE components which suit our
needs, i.e., the English Tokenizer, Sentence Splitter, Part-Of-Speech Tagger, and
the Morphological Analyzer. Additionally, we have extended the functionality of
other GATE components (e.g., for ontology gazetteering), and also implemented
new components to tackle the WSD and economic event detection processes.

The implementations of both our Ontology Gazetteer and Word Group Look-
Up components match concepts (i.e., ontology concepts and WordNet word
groups, respectively) with lexical representations stored in a look-up tree, where
nodes represent individual tokens and a path from the root node to an arbitrary
leaf node represents a concept’s lexical representation. For each token, the look-
up tree is consulted, starting from the root node. If the token is not in the root,
the next token in the text is again looked up in the root. Else, the next token
in the text is looked up in the root node of the subtree belonging to the former
token. This process is iterated until either a leaf node is reached, or the current
node does not have a reference to the next token in the text. The word group
associated with the followed path is then annotated with the associated concept.
Our trees for ontology concepts and word groups have been implemented using
hash maps, in order to reduce the time needed to traverse the trees.

In order to evaluate SPEED’s performance, we assess statistics that describe
the cumulative error, i.e., precision and recall, and latency. We define precision
as the part of the identified concepts (e.g., word senses or events) that have been
identified correctly, and recall represents the number of identified concepts as
a fraction of the number of concepts that should have been identified. When
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we compare the performance of different approaches, we assess the statistical
relevance of differences in performance by means of a paired t-test.

We evaluate our Word Sense Disambiguator on a large, publicly available
WSD corpus – SemCor [6]. On this corpus, the original SSI algorithm exhibits
an average precision of 53% with a standard deviation of 5 percentage points and
a recall of 31% with a standard deviation of 9 percentage points. Conversely, our
proposed adaptation of SSI exhibits an average precision and recall of 59% with
a standard deviation of 5 percentage points. This implies an overall improvement
in precision and recall with 12% and 90%, respectively, compared to the original
SSI algorithm, at a significance level of 0.001.

In the evaluation of our framework as a whole, we focus on a data set consist-
ing of 200 news messages extracted from the Yahoo! Business and Technology
newsfeeds. Three domain experts have manually annotated these for our consid-
ered economic events and relations, while ensuring an inter-annotator agreement
of at least 66% (i.e., at least two out of three annotators agree). We distinguish
between ten different financial events, i.e., announcements regarding CEOs (60),
presidents (22), products (136), competitors (50), partners (23), subsidiaries
(46), share values (45), revenues (22), profits (33), and losses (27).

We observe a precision for the concept identification in news items of 86%
and a recall of 81%. It should however be noted that precision and recall of
fully decorated events result in lower values of approximately 62% and 53%
respectively, as they rely on multiple concepts that have to be identified correctly.
Errors in concept identification result from missing lexical representations of the
knowledge base concepts, and missing concepts in general. Despite using only
WordNet as a semantic lexicon, we obtain high precision as many of our concepts’
lexical representations are named entities, which often are monosemous. High
recall can be explained by SPEED’s focus on detecting ontology concepts in the
text, rather than on identifying all concepts in the text.

On our data set, our pipeline exhibits a latency of on average 632 milliseconds
per document, with a standard deviation of 398 milliseconds. Of this execution
time, roughly 30% is allocated to the first part of the pipeline, performing lin-
guistic and syntactic analysis tasks. The subsequent WSD task on average takes
up about 60% of the execution time, whereas the remaining tasks are typically
performed in about 10% of the execution time.

5 Conclusions and Future Work

We have proposed a semantics-based framework for economic event detection
(SPEED), which aims to extract financial events from news articles (announced
through RSS feeds) and to annotate these with meta-data, while maintaining
a speed that is high enough to enable real-time use. For implementing the
SPEED pipeline, we have reused existing components and developed new ones
such as gazetteers and word sense disambiguator. Our framework is semanti-
cally enabled, i.e., it makes use of semantic lexicons and ontologies. Furthermore,
pipeline outputs also make use of semantics, which introduces a potential feed-
back loop, making event identification a more adaptive process. The merit of our
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pipeline is in the use of semantics, enabling broader application interoperability.
Although we focus on the financial domain, SPEED is generalizable to other do-
mains, as we separate the domain-specific aspects from the domain-independent
ones. The established fast processing time and high precision and recall provide
a good basis for future work.

For future work, we aim to investigate further possibilities for implementation
in algorithmic trading environments. We aim to find a way of utilizing discovered
events in this field. To this end, we also envision another addition, i.e., a way of
associating sentiment with discovered events. As sentiment of actors with respect
to events may be the driving force behind their reactions to these events, this
information could be exploited in an algorithmic trading setup.
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Abstract. Probabilistic XML is a hierarchical data model capturing
uncertainty of both value and structure. The ability to compute the sim-
ilarity between an XML document and a probabilistic XML document
is a building block of many applications involving querying, comparison,
alignment and classification, for instance. The new challenge in efficiently
computing such similarity is the multiplicity of the possible worlds rep-
resented by a probabilistic XML document. We devise and discuss an al-
gorithm for the efficient computation of the similarity between an XML
document and a probabilistic XML document. We empirically and com-
paratively evaluate the performance of the algorithm and its variants.

1 Introduction

1.1 Motivation

Modern applications (see [13] and [16], for instance) wanting to exploit the now
available numerous data sources face the challenge posed by uncertainty of infor-
mation. Unfortunately there is little room for uncertainty in traditional database
models and management systems. New models, new tools and techniques are
needed (see [4]).

Probabilistic XML is a hierarchical data model capturing uncertainty of both
value and structure. The computation of similarity is an essential building block
for the tasks at hand, namely comparison, alignment, clustering and classification
of data. Several algorithms exist for measuring the structural similarity between
XML documents among themselves or XML documents and XML document
type definitions and schemas. The new challenge in efficiently computing the
similarity between an XML document and a probabilistic XML document is the
multiplicity of the possible worlds that a probabilistic XML document represents.

In this paper, we devise and discuss an algorithm and its variants for comput-
ing the similarity between an XML document and a probabilistic XML docu-
ment. The algorithms implement the expected value of the edit distance between
an XML document and the documents in the set defined by the probabilistic
XML document. We empirically and comparatively evaluate their performance.
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In the absence of established corpora and benchmarks for probabilistic XML,
we also propose and use several random probabilistic XML models together with
the associated random generation algorithms.

1.2 Probabilistic XML

Fig. 1 shows a probabilistic XML document in the model of [13]. A probabilistic
XML document is an XML document with special nodes. In the figure the special
nodes are labeled “mux” and “ind”. These nodes are called distributional nodes.

ports

port

name container_throughput

Hong Kong

2007 2008 2009

23.998 million 
TEUs

24.494 million 
TEUs

ind

mux

0.7 0.8 0.9

0.8 0.2
21.040 million 

TEUs
20.9 million 
TEUs

(a) one probabilistic XML document

ports

port

name container_throughput

Hong Kong
2008 2009

24.494 million 
TEUs

21.040 million 
TEUs

(b) one possible world

Fig. 1. A Probabilistic XML Document and one of its Possible World

A distributional node labeled “mux” denotes a mutually exclusive choice
among its children (or none of the children if the sum of probabilities is less
than one) with a probability associated to each child. A distributional node la-
beled “ind” denotes an independent choice among its children with a probability
associated to each child. There are also models with two additional distributional
nodes, i.e., “exp” and “cie”, as reviewed in Section 2. In our work, we only con-
sider probabilistic XML documents with mutually exclusive and independent
distributional nodes.

In general, a probabilistic XML document U is a random model of XML
documents. It is a probability space that defines an assignment of probabilities to
all ordinary XML documents or, in other words, a probability distribution over
XML documents. Each XML document with a non zero probability, Pr(d) >
0, is called a possible world of the probabilistic document U . We say that a
possible world d, has a probability Pr(d) to belong to pwd(U), representing the
set of possible worlds defined by the probabilistic XML document U . Clearly∑

d∈pwd(U) Pr(d) = 1.

1.3 Organization

In the following, related work is synthesized in Section 2. We define similarity
and present the algorithms for its computation in Section 3. Section 4 presents
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and discusses the results of the evaluation of our algorithms. It also discusses the
generation of synthetic probabilistic XML data. Finally, we conclude in Section 5.

2 Related Work

2.1 Probabilistic XML Models

[1] surveys the different probabilistic XML data models that have been pro-
posed in the literature. These models differ in the distributional nodes that they
consider: mutually exclusive choices, independent choices, explicit choices and
conjunction of independent events. Following [1], we refer to these models ac-
cording to the distributional nodes that they consider. The mostly used models
are PrXMLmux, PrXMLmux,ind, PrXMLexp and PrXMLcie, respectively.

The authors of [13] introduce the PrXMLmux and PrXMLmux,ind models, the
latter being more expressive than the former. They propose query processing
techniques for these models. The authors of [2] introduce the notion of indepen-
dent events and the PrXMLcie model. They show the added expressiveness of
PrXMLcie over PrXMLmux,ind. They define query evaluation and update tech-
niques for both PrXMLmux,ind and PrXMLcie. The authors of [7] introduce the
PrXMLexp model together with semantics, algebra and efficient algorithms for
query processing. The model proposed in [16] is similar to PrXMLmux,ind. It is
used to integrate disparate data. The authors of [9] study the evaluation of twig
queries for probabilistic XML in the PrXMLmux,ind model. They broaden their
study to PrXMLmux, PrXMLmux,ind, PrXMLexp, and PrXMLcie in [8].

There seems to be a natural tradeoff between the expressiveness of a model
and the efficient of query evaluation. PrXMLmux is the least expressive model
while the most expressive are PrXMLcie and PrXMLexp. Their combination
PrXMLcie,exp subsumes all the other models. We believe that PrXMLmux,ind

strikes a good balance between the expressiveness and efficiency. This model is
also the most commonly adapted.

2.2 Similarity

Similarity metrics and distances attempt to quantify the resemblance of different
objects. The edit distance, introduced for strings in [11] and [17], quantifies this
resemblance as the minimum cost of transforming one object into another. The
lower the cost is, the more similar the objects.

The idea of a tree edit distance is introduced by Tai in [14] in 1979. Zhang
and Shasha [18] propose definition and algorithm for edit distance of trees. In
this paper we consider the tree edit distance proposed in [5] that allows update
of any vertex in the tree but restricts deletions and insertions to leaves. Different
similarity definitions and the algorithms to effectively and efficiently compute
them have been used for data clustering [12], change detection [6], schema inte-
gration [10], etc.
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3 Proposal

3.1 Edit Distance

The edit distance between two trees is the minimum cost of the operations needed
to transform one tree into another. In this paper we consider the definition of [5]
in which three unit cost operations are considered: deletion of a leaf, insertion of
a leaf and update of a node anywhere in the tree. We refer to this edit distance
between two XML document as δd. δd can be relatively efficiently computed
using dynamic programming.

A probabilistic XML document is a probability space. The edit distance be-
tween an XML document d and a probabilistic XML document U can be defined
as the minimum, maximum or average distance between the XML document and
the possible worlds. In this paper we choose to define it as the expected value of
the edit distance between the XML document and the possible worlds. We refer
to this edit distance as δp. It is the sum of the tree edit distances between the
XML document and the possible worlds weighted with probabilities, as given in
Equation 1.

δp(d, U) =
∑

w∈pwd(U)

Pr(w) × δd(d, w) (1)

In this paper we use and adapt the tree edit distance and the algorithm of [5].
The technique and the data structure, called the “edit graph” in [5], is itself
an extension to trees to the original dynamic programming approach and the
matrix data structure used in [17] for string edit distance.

Next we present the stack algorithm to compute the edit distance between
an XML document and a probabilistic XML document1. In order to illustrate
it, we first present the naive enumeration algorithm and the multidimensional
algorithm.

3.2 Enumeration Algorithm

The enumeration algorithm, E, generates the possible worlds for the probabilis-
tic XML document U with their respective probabilities. Then, it computes the
edit distance between the XML document and each of the possible world. Fi-
nally it sums the products of the distances with the respective probabilities. In
this algorithm, all the pairwise distances between the XML document and the
possible worlds are needed.

3.3 Multidimensional Algorithm

The main idea for an efficient edit distance algorithm for probabilistic XML is to
share common computations. Indeed, while distributional nodes correspond to
branching to possible worlds, all other nodes in a probabilistic XML are normal
1 Due to the space limitation, the pseudo-codes of the algorithms are omitted in this

paper. They are available from our technical report [15].
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XML nodes and can be processed as such. The algorithm, that we call the “mul-
tidimensional algorithm” or MA for short, copies the dynamic programming sub
matrices when it encounters distributional nodes. It branches the computation
to the possible worlds or dimensions. This allows the sharing of computation un-
til the next distributional node. The algorithm is further improved by noticing
that the dynamic programming approach does not require to memorizing the
entire matrix but rather one column at a time.

3.4 Stack Algorithm

Fig. 2 illustrates the successive data structures needed in the computation of the
edit distance between an XML document and a probabilistic XML document.

The figure immediately suggests reconsidering the strategy of the MA algo-
rithm. Instead of memorizing the possible worlds and copying the columns of
the dynamic programming matrix we can compute the distance by a depth first
strategy that only requires remembering the data structures at the branching
points in the tree. This is classically done with a stack. Based on this idea, we
improve the MA algorithm to be the MAS algorithm.

Possible 
world

Possible 
world

Possible 
world

P11 P12

P12*P21 P12*P22

Fig. 2. MA and MAS Data Structure

4 Performance Evaluation

4.1 Experimental Setup

The three algorithms are implemented in Java. All experiments are run on a
Centos 5.5 2 x Quad-Core Xeon E5520 2.2GHz with 24.0GB RAM.

The experiments are conducted with synthetic data. In order to control the
generation of synthetic data we propose three random models for probabilis-
tic XML: PX(doc, n), PX(doc, p) and PX(doc, p, f). These random probabilistic
XML models are probability spaces of XML documents.
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A probabilistic XML document in the PX(doc, n) model is derived from the
original XML document doc by inserting independently n internal distributional
nodes. A probabilistic XML document in the PX(doc, p) model is derived from
the original XML document doc by inserting independently distributional nodes
below each internal node with probability p. Finally, in order to control the depth
at which distributional nodes appear, we propose the PX(doc, p, f) model in
which a probabilistic XML document is derived from the original XML document
doc by inserting independently distributional nodes below each internal node
with probability p× f(q), where q is the level of the node in the XML tree. For
each of these models we devise an algorithm that generates uniformly at random
a probabilistic XML document in the model.

We use these three models and the corresponding algorithms for our exper-
iments. In the experiments doc is a synthetic XML document generated using
ToXGene [3]. It has 43 nodes, 19 internal nodes, a maximum depth of 4, an
average depth of 2.558, a maximum number of children for the internal nodes of
4, and an average number of children of 2.211.

4.2 Experiments

Possible Worlds. In this first experiment we measure the number of pos-
sible worlds as a function of the distributional nodes. We consider the three
PrXMLmux, PrXMLind and PrXMLmux,ind models.

We generate 1000 probabilistic XML documents (there may not be so many
different possible probabilistic XML documents, however by generating so many
we get a better uniformity of the sample) in the PX(doc, n) model for n varying
from 1 to 19. We plot the average value and its standard deviation.
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Fig. 3. Number of possible worlds as a function of the distributional nodes

Fig. 3.a shows that, in the case of PrXMLmux, the number of possible worlds
increases until it reaches a maximum (n = 13) and decreases again. This is
because as the number of distributional nodes increases beyond 13 these modes
are more likely to be nested and generate less possible worlds. Fig. 3.b shows
that, in the case of PrXMLind, the number of possible worlds increases. There is
no peak. This is because even if distributional nodes of type “ind” are nested the
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Fig. 4. Number of distributional nodes as a function of the probability

number of possible worlds that they generate is still combinatorial. Fig. 3.c shows
that, in the case of PrXMLind,mux, the number of possible worlds increases.
There is no peak. This is because the effect of distributional nodes of type “ind”
dominates the effect of distributional nodes of type “mux”.

Number of Distributional Nodes. In this second experiment we measure
the number of distributional nodes as a function of the probability of the nodes
to be inserted at certain levels. We generate 1000 probabilistic XML documents
in the PX(doc, p, f) model for p varying from 0.1 to 0.9. We plot the average
value for the six functions f0, f1, f2, f3, f4 and f5 of Fig. 4.a. Notice that in the
cases of f being a constant function (f0(q) = 1 and f3(q) = 0.5) PX(doc, p, f) is
PX(doc, p× f) and, therefore is in the PX(doc, p) model. Fig. 4.b shows that for
the same compound probability (sum of the probabilities for each level: f1 to f5
) the larger the slope the more distributional nodes. The case of f0 also shows
that the larger the probabilities the more distributional nodes.

Running Time. In this third experiment we measure the running time as a
function of the number of distributional nodes. We consider the three PrXMLmux,
PrXMLind and PrXMLmux,ind models. We generate 1000 probabilistic XML
documents in the PX(doc, n) for n varying from 5 to 9. We plot the average value
and its standard deviation for the three algorithms: enumeration algorithm, E,
multidimensional algorithm, MA, and the stack algorithm, MAS.

The average running time is increasing with the number of distributional
nodes. On Fig. 5.a,b,c we see that the MA and MAS are significantly faster than
E. On Fig. 5.d,e,f, zooming in the performance of MA and MAS, we see that the
stack algorithm is faster. Although MA and MAS are just a breadth-first and
depth-first traversal of the same tree, respectively, there is overhead in copying
and memorizing the data structures in MA as opposed to pushing and popping
the strictly necessary ones to and from the stack in MAS. MAS is the most
efficient algorithm for computing the edit distance between an XML document
and a probabilistic XML document.
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Fig. 5. Running time as a function of the number of distributional nodes

5 Conclusion

We have defined the similarity between an XML and a probabilistic XML doc-
ument as the expected value of the edit distance between the XML document
and the set of XML documents denoted by the probabilistic XML document. We
have devised an original dynamic programming algorithm, MAS, and empirically
shown that it outperforms the baseline approaches. In the absence of established
corpora and benchmarks for probabilistic XML, we have also proposed several
random probabilistic XML models and their corresponding random generation
algorithms for the generation of synthetic probabilistic XML data.
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Abstract. The number of documents is growing exponentially with the
rapid expansion of the Web. The new challenge for Internet users is now
to rapidly find appropriate data to their requests. Thus information re-
trieval, automatic classification and detection of opinions appear as ma-
jor issues in our information society. Many efficient tools have already
been proposed to Internet users to ease their search over the web and
support them in their choices. Nowadays, users would like genuine deci-
sion tools that would efficiently support them when focusing on relevant
information according to specific criteria in their area of interest. In this
paper, we propose a new approach for automatic characterization of such
criteria. We bring out that this approach is able to automatically build a
relevant lexicon for each criterion. We then show how this lexicon can be
useful for documents classification or segmentation tasks. Experiments
have been carried out with real datasets and show the efficiency of our
proposal.

Keywords: Criteria characterization, Mutual Information, Classifica-
tion, Segmentation.

1 Introduction

With the development of web technologies, always increasing amounts of doc-
uments are available. Efficient tools are designed to help extracting relevant
information. Information and Communication Technologies are thus a kernel
factor in developing our modes of organisation, if not our societies. Everybody
has already visited recommendation sites to consult opinions of other people
before choosing a movie or a e-business website. Our goal in this paper is to
automatically identify all parts in a document that are related to a same center
of interest, i.e. a specific criterion in the area of interest of an Internet user. In
this paper, we present a new automatic approach named Synopsis which tags
items of texts according to predefined criteria. First, Synopsis builds a lexicon
containing words that are characteristic of a criterion and words that are not
characteristic of this criterion from a set of documents merely downloaded using
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a web search engine (google for example). The way this lexicon is built is of great
influence in documents classification and segmentation activities.

The paper is organized as follows. Section 2 first describes the main principles
of Synopsis approach. Then, a detailed description of Synopsis is provided step
by step. Section 3 presents the different experiments we have carried out. A state
of the art is presented in section 4 to facilitate the understanding of results and
section 5 finally presents some concluding remarks and future work.

2 The Synopsis Approach

In this section, an overview of Synopsis process is first presented. The detail of
each step (document retrieving, words extraction, ...) required by the approach
is then provided.

2.1 General Presentation

All along this paper, ”movie” is our application domain and we focus on two
criteria: actor and scenario. The general architecture of the approach is described
in figure 1.

Fig. 1. General architecture

• Step 1 consists in defining the domain and the criteria. For each criterion,
the user just needs to give a set of words called germs to specify what this
criterion intends to be. For example, the germs for our two criteria may be :

scenario → adaptation, narrative, original screenplay,
scriptwriter, story, synopsis

actor → acting , actor, casting, character, interpretation, role, star
A corpus of documents is built for each germ of a specific criterion (relatively

to a domain) by querying a search engine for documents containing at least one
occurrence of this germ. The final goal is to identify words which are correlated
to one germ. At the end of this step, the corpus of documents named class of the
criterion is the union of all the corpora related to criterion’s germs. Similarly, a
second corpus is built for this criterion: this time, the search engine gathers doc-
uments containing none of the criterion’s germs. Intuitively, this corpus named
anti-class intends to give a better characterization of the criterion.

• Step 2 intends to identify the word representative (resp. non- representa-
tive) of the criterion from the lemmatized texts from Step 1. This is achieved
by studying the frequency of words strongly correlated with germs of the crite-
rion. The method especially focuses on words which are close to the seeds. The
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following assumption is thus made: the more frequently a word appears near a
germ, the more likely it is to characterize the criterion. These words are iden-
tified by using a text window centered on germs (c.f. Section 2.2). The size of
the window is set to an a priori given number of common nouns (grammatically
speaking). Processing documents in both corpora (class and anti-class) provides
a set of words close to germs with their frequency in the class or words with
their frequency in the anti-class. Four kinds of words can then be defined:

1. Very frequent words in class and poorly frequent in anti-class;
2. Very frequent words in anti-class and poorly frequent in class;
3. Very frequent words in both corpora ;
4. Poorly frequent words in both corpora.

In the first two cases, information from frequencies is sufficient to take a
decision upon the word’s membership of the criterion. A score that characterizes
the degree of membership of the criterion is computed from the word’s frequency.
Case 3 illustrates words which are not discriminating because they belong to
both classes and are therefore to be eliminated. In the last case, the corpora
of documents related to the word cannot be used to decide whether the word
belongs or not to the criterion. In that latter case, another additional stage shall
be performed to get new documents related to poorly frequent words. However,
because of the large number of words generally obtained at this stage, a first
filtering phase is performed. This one is made by applying a web measure named
Acrodef [8]. The remaining words, named candidate word, are then processed one
by one (c.f. Section 2.3).

• Step 3 consists in using the lexicon provided in Step 2 for classification,
indexation or segmentation relatively to the criterion.

2.2 Characterization Criteria

Acquisition. As explained in section 2.1, the first step consists in acquiring and
pre-processing Web documents. Acquisition is done by using a search engine. For
each germ g of a criterion C the system retrieves about 300 different documents
containing words: germ g and domainD (e.g. actor and movie). The resulting set
of documents for all germs of criterion C defines the criterion’s class. Similarly,
the system seeks about 300 documents containing none of the germs of the
criteria C . This set of documents defines the anti-class of criterion C. It is
designed to limit the expansion of the class. Thus, the class of a criterion C is
composed of about n ∗ 300 documents (where n is the number of germs) and its
anti-class is of about 300 documents. All the documents in the class and anti-
class are then processed using a morpho-syntactic analyzer for lemmatization
purposes.

Learning step. Our learning process is based on the following assumption:
Words that characterize a criterion are often associated with this criterion. Thus,
we are looking for words that are strongly correlated with germs, i.e. words that
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frequently appear very close to germs. To identify those words we define windows
centered on germs in each document t. A window is formally defined as follows:

F (g, sz, t) = {m ∈ t/dt
NC(g,m) ≤ sz} (1)

where g is the germ, sz represents the given size of the window, and dt
NC(g,m)

is the distance between m and g: It counts the number of grammatical common
nouns words between m and g. We focus on the common nouns as they are
known to be meaningful words in texts [5].

Fig. 2. An example for a window of size 3

Example 1. Figure 2 shows a sample window of size 3 centered on the germ
actor: there are 3 common names on its left (actress, director, dream) and 3
common names on its right (film, image, model).

When a word m appears in a window F (g, sz, t), we have then to take into ac-
count its relative position (explanation below) with regard to germ g at the center
of the window. This is done by introducing the notion of influence: I(m, g, sz, t)
(for a window size sz in text t) :

I(m, g, sz, t) =
[
0 if m /∈ F (g, sz, t)
h(dt

∗(m, g)) if m ∈ F (g, sz, t) (2)

where dt
∗(m, g) is the distance between words m and g regardless of the gram-

matical nature of words. The h function is used to balance the weight associated
to a word according to the distance that separates it from the germ. We also
consider a notion of semi-Gaussian to smooth the effect of words nearby the
edges of the window. This is done by normalizing the size of the window for
distance dt

∗(m, g) in order to get an interval centered on g with radius 1. Let
us note l and r respectively the words that are the left and right edges of the
window. Thus, h is defined by:

h =

⎧⎨⎩ gauss
(

dt
∗(g,M)
dt∗(g,l) , μ, σ

)
for a word to the left of g.

gauss
(

dt
∗(g,M)
dt∗(g,r) , μ, σ

)
for a word to the right of g.

gauss(x, μ, σ) = exp− (x− μ)2

2σ2
(3)

Representativeness. For each word M previously established, we will now
compute its representativeness which is a couple of values (X,X). WhereX is the
representativeness component regarding to the class and X is representativeness
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component relatively to the anti-class. Let O(M,T ) be the set of occurrences
of the word M in a text T . Let S be the set of germs for the studied criterion.
Then the components of the representativeness are computed as follows:

X(M, sz) =
∑
g∈S

∑
t∈T (g)

∑
γ∈O(g,t)

∑
m∈O(M,t)

I(m, g, sz, t) (4)

X(M, sz) is thus the cumulative impact of all germs g of the criterion on word
M in all the texts of the class.

X(M, sz) =
∑

t∈anti−class

∑
m∈O(M,t)

I(m,D, sz, t) (5)

X(M, sz) is thus the cumulative impact of germ of the domain D on the word M
in all documents of the anti-class. As the size of the anti-class is quite different
from the one of the class, the values X and X are normalized according to
the number of germs in the criterion and to the number of documents in both
corpora. Both components of representativeness of a word are isomorphic to a
frequency respectively in the class for X and in the anti-class for X. They are
used as such in the following.

Validation of candidate words. To determine whether a candidate word
helps or not in criteria discrimination, we apply a web mesure like AcroDefIM3

[8] whose objective is to evaluate the correlation between two words in a given
context. All words retained by the AcroDefIM3 filtering step are then processed
to get a new value of X and X for each of them. To do that, for each candidate
word, a set of documents is downloaded from the Web (c.f. Section 2.3). Each of
them must contain both the candidate word and one of the germs of the criteria.

Discrimination. By using the value of representativeness X and X computed
as previously explained, we can now define a score for each word as follows:

Sc(M, sz) =
(X(M, sz) −X(M, sz))3

(X(M, sz) +X(M, sz))2
(6)

Table 1. Example of common lexicon for criterion actor

Term film actress theater Sam Wothington

Score 1040 450 -460 2640

The scored obtained for each words M are stored in the lexicon associated to
the criterion. This is illustrated in Figure 1 for criterion actor in domain movie
after processing the candidate words (c.f. Section 2.2). We can see that the score
of Sam Wothington is now very high while theater is low. Thus Sam Wothington
is representative of the criterion actor in the domain movie whereas theater is
no more considered since stands for a general term. These results correspond to
the expected behavior of our assessment system. The lexicon may now be used
in Step 3 for classification, segmentation, or indexation.
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2.3 Resolve Candidate Words

As candidate words are both infrequent in the domain and in the criterion it is
much harder to obtain representative samples of texts including this word. Then,
X and X for a candidate word are irrelevant. We have developed a method
to collect texts containing the candidate word and we have introduced a web
measure to finally getX andX values for the candidate word that are normalized
relatively to values of the other words in the lexicon.

3 Experiments

In order to analyze Synopsis performances, several experiments have been car-
ried out with Google as search engine and TreeTagger [9] as lemma and morpho-
syntaxic parser. The field of experiment is the one described all along this paper:
Movie is the domain, actor and scenario are the criteria. Classification and Seg-
mentation tests were performed using a test corpus containing about 700 sen-
tences that have been labeled by experts for each criterion. This corpus mainly
contains film criticisms originated from different sources: blogs, journalism re-
views...

3.1 System Performance

The following experiments are performed in a classification context. They high-
light interest of enriching the lexicon with candidate words. The test corpus is
the one described above. Validation tests are based upon conventional indicators:
recall, precision, and F-measure. They are defined as follows:

Table 2. System performance (CW∗ : Candidate Word Resolution)

Synopsis Performance

actor criteria scenario criteria

Without CW ∗ With CW ∗ Without CW ∗ With CW ∗

F-measure 0.39 0.89 0.49 0.77
precision 0.25 0.87 0.59 0.67
recall 0.94 0.90 0.41 0.88

Table 2 highlights interest of enriching the lexicon with candidate words. Note
that if Learning is only based on frequent word (”Without candidate word”
column) lots of details are lost. Thus the F-measure gets very low value (i.e.
0.39 for actor and 0.49 for scenario). As soon as candidate words are taken into
account (”With candidate word” column) the F-measure rapidly increases (0.89
for actor and 0.77 for scenario).
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3.2 Comparison with Two Standard Tools in the Context of
Segmentation: C99 and TextTiling

This section is devoted to the comparison of our approach Synopsis with other
ones usually used for segmentation tasks: C99 and TextTiling. As these ap-
proaches do not associate labels with the segment they identify, we are compelled
to associate labels to the segments to make our comparison. The affectation of
labels (actor or non actor in this experiment) to each segment is carried out in
such a way that C99 and TextTiling obtain the maximal score for any of the
three assessment rates: precision, recall or F-measure. These maximal values are
then compared to Synopsis results in Table 3.

Table 3. Comparison of the three segmenters for criteria actor

for actor for scenario

Maximize C99 TextTiling Synopsis C99 TextTiling Synopsis

F-measure 0.39 0.43 0.89 0.36 0.38 0.77
Precision 0.25 0.29 0.87 0.25 0.28 0.67
Recall 0.80 0.81 0.90 0.65 0.65 0.88

Synopsis clearly provides much better performances. F-measure and accuracy
are always higher than those that could ever be obtained with C99 or TextTiling.
However this result is to be moderated since both usual segmenters do not use
any initial Learning corpus.

4 Related Work

The approach described in this paper is able to identify fragments of texts in
relation with a given topic of interest or domain. Thus, our work may appear
rather close to segmentation of texts and thematic extraction approaches. Seg-
mentation is the task that identifies topic changes in a text. A segment or extract
is then supposed to have a strong internal semantic while being without seman-
tic links with its adjacent extracts. Synopsis not only detects topic changes in
the text but also builds the subset of extracts that are related to a same topic,
i.e the text is not only segmented but also indexed by the criteria defined over
the domain. It results in the identification of the thematic structure of the text
[6]. As many studies, our approach relies on statistical methods. For example,
TextTiling studies the distribution of terms according to criteria [4]. Analyzing
the distribution of words is a widely spread technique in segmentation process
[7]. Other methods, such as C99 approach, are based on the computation of sim-
ilarities between sentences in order to detect thematic ruptures [1]. Note that
segmentation approaches have, in our point of view, a major weakness: They
cannot identify the topic an extract deal with. As a consequence, segmentation
approaches cannot identify topic repetition in a document. Techniques issued
from text summarization may in turn identify parts of a document that are re-
lated with the dominant topic of the document [2]. Identifying segments of text
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related to a set of criteria in a given domain, i.e. identifying the thematic struc-
ture of a document with Synopsis is yet another challenge. Most of automatic
summarization techniques are based upon supervised training methods and thus
require a high degree of human intervention to create a training corpus. Our
unsupervised framework is a major asset of Synopsis. The only required inter-
vention of human beings consists in providing a small set of germ words for each
criterion of interest in the domain.

5 Conclusion

In this paper, we have proposed a new approach Synopsis to identify the thematic
structure of a text. It consists in identifying segments of texts related to criteria
defined upon a domain. Synopsis is to be considered as a unsupervised approach
since the only human intervention consists in providing a subset of germ words for
each criterion. We have discussed the interest of the anti-class concept. We have
demonstrated that partitioning words into words related to a criterion and words
absent from this criterion provide safer classification results. In order to eliminate
as quickly as possible noisy words, we have shown that mutual influence measures
like Acrodef could help in order to minimize the number of words that require
a more detailed analysis. Finally, experiments have highlighted that Synopsis
performances are relevant both in classification and segmentation. Prospects
related to this work are numerous. First, we want to extend the approach in
order that Synopsis could incrementally learn new words. This step is a major
challenge when studying a given domain. Indeed, let us consider the case of
proper nouns. As earlier discussed, classification is significantly improved when
proper nouns are included into the lexicon. Secondly, we wish to extend our
approach by extracting opinions expressed in excerpts of specific criteria (that is
the reason why subtopic of a domain are named criteria in Synopsis). In previous
work [3], we have demonstrated that the way opinions are expressed depend on
the domain: opinions detection thus appears as an obvious further development
of Synopsis.
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Abstract. We tackle the containment problem for conjunctive queries with nega-
tion, which takes two queries q1 and q2 as input and asks if q1 is contained in q2. A
general approach for solving this problem consists of considering all completions
of q1 (intuitively these completions represent all canonical databases that satisfy
q1) and checking if each completion yields the same answer on q2. Since the total
number of completions of q1 is exponential in the size of q1, several proposals
have aimed at reducing the number (and the size) of the completions checked. In
this paper, we propose a unifying framework for comparing algorithms following
this general approach and define two kinds of heuristics for exploring the space
of completions. Combining these heuristics with both classical kinds of traver-
sals, i.e., depth-first and breadth-first, we obtain four algorithms that we compare
experimentally with respect to running time on difficult instances of the contain-
ment problem.

1 Introduction

This paper is devoted to the containment problem for conjunctive queries with negation
(denoted CQC¬ hereafter). Stated generally, the query containment problem takes two
queries q1 and q2 as input, and asks if q1 is contained in q2 (noted q1 � q2), i.e., if the set
of answers to q1 is included in the set of answers to q2 for all databases (e.g. [AHV95]).
It has long been recognized as a fundamental database problem, which underlies many
tasks such as query evaluation and optimization [CM77][ASU79], rewriting queries us-
ing views [Hal01] or detecting independence of queries from database updates [LS93].
Positive conjunctive queries are considered as the basic database queries [CM77]. Con-
junctive queries with negation extend this class with negation on subgoals.

When only positive conjunctive queries are considered, query containment checking
is NP-complete [AHV95]. It can be solved by checking if there is a homomorphism
from q2 to q1. When atomic negation is considered, the problem becomes much more
complex: it is πP

2 -complete1 [FNTU07][CM09]. A general approach for solving it, first
presented in [LS93] for conjunctive queries with inequalities and adapted in [Ull97] for
conjunctive queries with negation, consists in considering all ways of completing q1
with positive information. Intuitively, this amounts to generating representatives of all

1 πP
2 = co-(NP NP ).

A. Hameurlain et al. (Eds.): DEXA 2011, Part I, LNCS 6860, pp. 466–480, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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database instances that satisfy q1. In [LM07], as in the present paper, negative informa-
tion is also explicitly added. Such queries obtained from q1 by adding missing informa-
tion, either positively or negatively, are called completions of q1 (and total completions
if no more information can be added) hereafter. Then q1 � q2 if and only if there is a
homomorphism from q2 to each total completion of q1. However, the number of (total)
completions of q1 is exponential in the size of q1. Several proposals have aimed at re-
ducing the number and the size of completions ([WL03],[LM07],[BLM10a]). These
proposals had not been compared yet, neither in depth from a theoretical side nor
experimentally.

In this paper, we first define a unifying abstract framework, which allows us to ex-
press existing algorithms, hence to explain the principles underlying these algorithms,
and to propose new algorithms. This framework relies on a space of completions of q1
and the CQC¬ problem is reformulated as a search problem in this space. The family of
algorithms we consider here perform a traversal of this space, thus build a search tree.
But they essentially differ in the definition of the tree (i.e., how the children of a node
are defined) and the strategy for generating the tree (i.e., in a depth-first or breadth-
first way). Our second contribution consists in the experimental comparison of these
algorithms. More precisely, our analysis yields four algorithm schemes, with both be-
ing close to existing proposals ([WL03],[LM07]); we implemented them, by making
all algorithms benefiting from further specific heuristics experimentally evaluated in
one of our former papers [BLM10a]. The experiments were made on random problem
instances (i.e., pairs of conjunctive queries with negation) known to be difficult.

Paper layout. Section 2 is devoted to basic notions. Section 3 defines the abstract frame-
work and containment checking methods within this framework. Section 4 presents al-
gorithms and compare them experimentally. In section 5 the relationships of existing
proposals with the evaluated algorithms are specified. Section 6 concludes this work
and outlines perspectives.

2 Preliminaries

A conjunctive query with negation (CQ¬) is of the form: q = ans(x1, . . . , xq) ←
p1, . . . , pn, n1, . . . , nm, where each pi (resp. ni ) is a positive (resp. negative) subgoal,
1 ≤ n + m, and ans is a special relation (which defines the answer part of the query).
The left part of the query is called its head and the right part is its body. Each subgoal
is of form r(t1, . . . , tk) (positive subgoal) or ¬r(t1, . . . , tk) (negative subgoal) where r
is a relation and t1, . . . , tk is a tuple of terms (i.e., variables or constants). All variables
x1, . . . , xq occur at least once in the body of the query. Without loss of generality, we
assume that the same subgoal does not appear twice in the body of the query. A CQ¬ is
positive if it has no negative subgoal (m = 0). A CQ¬ is Boolean if it has no variable
in its head (we note ans()). In the following, we will focus on Boolean queries because
having a non-empty ans part can only make the query containment problem easier.

As in [LM07], we will seeCQ¬ as labeled graphs. More precisely, aCQ¬ q is repre-
sented as a bipartite, undirected and labeled graphQ, called polarized graph (PG), with
two kinds of nodes: term nodes and relation nodes. Each term of the query becomes a
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term node, that is unlabeled if it is a variable, otherwise it is labeled by the constant it-
self. A positive (resp. negative) subgoal with relation r becomes a relation node labeled
+r (resp. −r) and it is linked to the nodes assigned to its terms. The labels on edges
correspond to the position of each term in the subgoal (see Figure 1 for an example). For
simplicity, the subgraph corresponding to a subgoal, i.e., induced by a relation node and
its neighbors, is also called a subgoal. We note it +r(t1, . . . , tk) (resp. −r(t1, . . . , tk))
if the relation node has label +r (resp. −r) and list of neighbors t1, . . . , tk. We note
∼r(t1, . . . , tk) a subgoal that can be positive or negative, i.e., ∼ ∈ {+,−}. Subgoals
+r(t1, . . . , tk) and −r(u1, . . . , un) with the same relation but different signs are said
to be opposite. Given a relation node label (resp. subgoal) l, l denotes the complemen-
tary relation node label (resp. subgoal) of l, i.e., it is obtained from l by reversing its
sign. Queries are denoted by small letters (q1 and q2) and the associated graphs by the
corresponding capital letters (Q1 and Q2). We note Q1 � Q2 iff q1 � q2. A PG is
consistent if it does not contain two complementary subgoals.
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1

1 2
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q1 = ans() ← p(t), s(t, u), s(u, v), s(v,w),¬p(w), s(w, s),¬p(s)
q2 = ans() ← p(x), s(x, y),¬p(y), s(y, z),¬p(z)

Fig. 1. Polarized graphs associated with q1 and q2

A homomorphism h from a PG Q2 to a PG Q1 is a mapping from term nodes of Q2

to term nodes of Q1 that satisfies: (1) if a term node is labeled by a constant, then its
image has the same label (otherwise there is no constraint on the label of its image); (2)
if ∼r(t1, . . . , tk) is a subgoal in Q2 then ∼r(h(t1), . . . , h(tk)) is a subgoal in Q1. This
notion can be seen as an extension to negative subgoals of the well-known query homo-
morphism (classically defined on positive queries). When there is a homomorphism h
from Q2 to Q1, we say that Q2 maps to Q1 by h.

If Q2 and Q1 have only positive subgoals, Q1 � Q2 iff Q2 maps to Q1. When they
contain negative subgoals, only one side of this property remains true: if Q2 maps to
Q1 then Q1 � Q2; the converse is false, as shown in Example 1.

Example 1. See Figure 1: Q2 does not map to Q1 but Q1 � Q2. Indeed, if we “com-
plete” q1 with all possible cases w.r.t. the relation p, we obtain the union of four queries
q1,1 = ans() ← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s), p(u), p(v),
q1,2 = ans() ← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s),¬p(u), p(v),
q1,3 = ans() ← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s), p(u),¬p(v) and
q1,4 = ans() ← p(t), s(t, u), s(u, v), s(v, w),¬p(w), s(w, s),¬p(s),¬p(u),¬p(v).
Each of the queries corresponds to a possible way of completing q1 w.r.t. p. Q2 maps to
each of the graphs associated with them. Thus q1 is contained in q2.
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One way to solve CQC¬ is therefore to generate all “complete” PGs obtained from
Q1 using relations appearing in Q1, and then to test if Q2 maps to each of these graphs.

Definition 1 (Complete graph and completion). Let Q be a consistent PG. It is com-
plete, denoted Qc, w.r.t. a set of relations P , if for each p ∈ P with arity k, for each k-
tuple of term nodes (not necessarily distinct) t1, . . . , tk in Q, it contains +p(t1, . . . , tk)
or −p(t1, . . . , tk). A completionQ′ ofQ is a PG obtained fromQ by repeatedly adding
new relation nodes (on term nodes present in Q), without yielding inconsistency. Each
addition is a completion step. A completion of Q is called total if it is a complete graph
w.r.t. the set of relations considered, otherwise it is called partial.

Theorem 1. [LM07] Let Q1 and Q2 be two PGs (Q1 consistent), Q1 � Q2 iff Q2

maps to all total completions of Q1 w.r.t. the set of relations appearing in Q1.

3 Methods for Testing Containment

The complexity of a brute-force algorithm that would generate and test all completions
of q1 is prohibitive: O(2(nQ1 )k×|P| ×hom(Q2, Q

c
1)), where nQ1 is the number of term

nodes in Q1, k is the maximum arity of a relation, P is the considered set of relations
and hom(Q2, Q

c
1) is the complexity of checking the existence of a homomorphism2

from Q2 to Qc
1.

Different tracks have been explored to reduce the number of homomorphisms per-
formed. A first one is to reduce the number of considered total completions. [LM07]
introduced the notion of completion vocabulary (denoted V in the following) which re-
stricts the set of relations to consider for total completions: only relations appearing in
opposite subgoals both in Q2 and inQ1 are to be considered. E.g. in Example 1 (Figure
1), V = {p}.

A second studied track is to exploit partial completions. This idea, introduced in
[WL03] and further developed in [LM07], aims at concluding about the containment
before generating all total completions, by using some sufficient conditions on partial
completions for success or failure of the containment.

3.1 The Completion Space

The completion space of a PG Q1 (w.r.t. a given completion vocabulary) is the set of
partial and total completions of Q1 partially ordered by the relation “subgraph of”. If
Qj is a descendant of Qi, i.e., Qi is a subgraph of Qj , we say that Qi covers Qj . The
successors of a completion are its immediate descendants (note that they only differ
from it by one added subgoal).

Figure 2 shows the completion space of Q1 from Example 1. Q1 has four succes-
sors, namely the partial completions Q1,1, Q1,2, Q1,3 and Q1,4, obtained by adding
respectively +p(u), +p(v), −p(u) and −p(v). From Q1,1 we obtain two total comple-
tions Q1,5 and Q1,6 by adding respectively +p(v) and −p(v) (note that we cannot add
−p(u) because +p(u) is present in Q1,1), and similarly with the others Q1,i. Finally,
there are four total completions of Q1.

2 A brute-force algorithm for homomorphism check it in O(n
nQ2
Q1

), where nQ2 is the number
of term nodes in Q2.
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Fig. 2. The completion space of Example 1

The following notion of a covering set is fundamental in this paper:

Definition 2 (Covering set). Let Q1 be a (consistent) query. A covering set of Q1,
noted CS(Q1) = {Q1,1, . . . , Q1,n}, is a set of (partial or total) completions of Q1

such that every total completionQc
1 of Q1 is covered by a Q1,i.

Trivial examples of CS(Q1) are {Q1} and the set of all total completions of Q1.
The question “does Q1 � Q2 hold ?” can now be recast as “is there CS(Q1) =
{Q1,1, . . . , Q1,n} such that Q2 maps to each Q1,i for i = 1 . . . n ?”

The methods considered in this paper can be seen as exploring the completion space
of Q1, with the aim of finding a covering set of Q1 such that Q2 maps to each element
of this set, or deciding that there is none. More precisely, they exploit the following
property:

Property 1. LetQ1 andQ2 be two PGs, withQ1 consistent. For all covering setCS(Q1),
it holds that: Q1 � Q2 if and only if, for each Q1,i ∈ CS(Q1), Q1,i � Q2.

Proof. IfQ1 � Q2 then for each partial or total completionQ′
1 ofQ1,Q′

1 � Q2; this is
in particular true for elements of anyCS(Q1). Conversely: let Q′

1 be a total completion
of Q1. By definition of a covering set, Q′

1 is covered by at least one Q1,i ∈ CS(Q1),
thus is a total completion of Q1,i. Since Q1,i � Q2, there is a homomorphism from Q2

to any total completion of Q1,i, in particular to Q′
1. ��

This simple framework yields immediate proofs for the correctness of the algorithms
studied in this paper.

3.2 Sufficient Conditions for Concluding

When exploring a current completion Q′
1, two kinds of sufficient conditions for con-

cluding about containment or non-containment can be exploited, which are both based
on homomorphism checks. Note that these conditions are not symmetrical.
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Sufficient condition for concluding that Q′
1 � Q2. A simple sufficient condition

for the containment of Q′
1 in Q2 is the existence of a homomorphism from Q2 to Q′

1

(cf. [LM07]). When this test is successful, it allows to “prune” the descendants of Q′
1:

then there is necessarily a homomorphism from Q2 to all graphs covered by Q′
1. Note

however that it does not allow to conclude that Q1 is contained in Q2.

Sufficient conditions for concluding that Q1 �� Q2. Failure tests try to discover
that there is at least one total completion Qc

1 covered by Q′
1 that does not admit any

homomorphism from Q2. These tests lead to a global negative answer, i.e., a negative
answer about the initial containment problem. These failure tests exploit the property
of some special subgraphs of Q2, that must map by homomorphism to any completion
of Q1 (including Q1), otherwise there exists a total completion Qc

1 to which Q2 does
not map. In the following, we call them “necessary subgraphs”.

A first example of necessary graphs is given in [WL03]: the subgraph of Q2 com-
posed of all positive subgoals of Q2. In [LM07], a more general characterization of
such graphs is given: subgraphs without “exchangeable subgoals”; checking whether
a graph is without exchangeable subgoals is NP-complete [MST09], but polynomially
recognizable kinds of such graphs can be used, such as pure subgraphs (or independent
subgraphs, which moreover exploit constraints induced by constants).

Definition 3 (pure subgraph). A PG is said to be pure if it does not contain opposite
subgoals (i.e., each relation appears only in one form, positive or negative). A pure sub-
graph of Q2 is a subgraph ofQ2 that contains all term nodes in Q2 (but not necessarily
all relation nodes)3 and is pure.

See Figure 1: there are two pure subgraphs maximal for the inclusion: Q+
2 contains

+p(x), +s(x, y) and +s(y, z); Q−
2 contains −p(y), −p(z), +s(x, y) and +s(y, z).

Moreover, the notion of necessary subgraphs goes with a more constrained homo-
morphism test, called compatible homomorphism. Intuitively, a homomorphism from a
necessary subgraph of Q2 to Q1 is “compatible” if it can be extended to a homomor-
phism from Q2 to a total completion of Q1.

Definition 4 (Compatible homomorphism). Let Q2 and Q1 be two PGs and Q′
2 be

a necessary subgraph of Q2. A homomorphism h from Q′
2 to Q1 is said to be com-

patible w.r.t. Q2 if, for each subgoal ∼r(t1, . . . , tk) in Q2 \ Q′
2, the opposite subgoal

∼r(h(t1), . . . , h(tk)) is not inQ1, and for each pair of opposite subgoals inQ2\Q′
2, re-

spectively on (c1, . . . , ck) and (d1, . . . , dk), (h(c1), . . . , h(ck)) �= (h(d1), . . . , h(dk)).

Property 2. [LM07] LetQ1 andQ2 be two PGs andQ′
2 be a necessary subgraph ofQ2.

If there is no compatible homomorphism from Q′
2 to Q1, then Q1 �� Q2.

3.3 Exploration Heuristics of the Completion Space

The exploration of the completion space can be seen as an iterative procedure maintain-
ing a covering set CS(Q1) and trying to find a “good” covering set, i.e., such that Q2

3 Note that this subgraph does not necessarily correspond to a set of subgoals because some term
nodes may be isolated.
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maps to each of its elements, or to show that there is none. Initially, CS = {Q1}. At
each step, the procedure performs the following:

1. pick a current completion Q′
1 in CS;

2. check if Q′
1 leads to conclude with a global failure;

3. otherwise: if Q2 does not map to Q′
1, add to CS some successors of Q′

1, while
keeping the property that CS is a covering set of Q1.

When CS has been emptied, the global containment test succeeds. The set of built
completions to which Q2 maps can be seen as a proof that Q1 � Q2.

Two ways of looking for a “good covering” set can be defined, which correspond to
two exploration heuristics, called dichotomic and “contradictAll” hereafter. Note that,
although not explicitly expressed as such, the proposals in [LM07] and in [WL03] can
be seen as examples of these heuristics.

Before specifying them, let us consider the following notions:

Definition 5 (Missing subgoal, h-extension, h-contradiction). LetQ1 andQ2 be two
PGs (Q1 consistent), Q′

2 a necessary subgraph of Q2, and h a compatible homomor-
phism from Q′

2 to Q1. Given ∼r(t1, . . . , tk) from Q2 \Q′
2, the subgoal

∼r(h(t1), . . . , h(tk)) is said to be missing to Q1 w.r.t. h if it is not in Q1. A completion
Q′

1 of Q1 is called an h-contradiction if it contains the complementary of a missing
subgoal w.r.t. h; otherwise it is called an h-extension.

The dichotomic heuristic. At each step, this heuristic partitions the completion space
into two (disjoint) subspaces, by generating two completions from Q′

1 (the currently
considered completion of Q1): these completions are respectively obtained by adding
a subgoal and its complementary. Since completions are consistent, it follows that the
sets of completions covered by these newly generated completions are disjoint.

This method can be further specified by the choice of a necessary subgraph of Q2, a
compatible homomorphism h from this subgraph to Q′

1, and a missing subgoal to Q1

w.r.t. h, so that the newly generated completions are respectively an h-extension and an
h-contradiction of Q1.

The correctness of this method is based on the following theorem:

Theorem 2. Let Q1 and Q2 be two PGs. Then Q1 � Q2 iff (1) there is a compatible
homomorphism from a necessary subgraph of Q2 [e.g. a pure subgraph] to Q1 and
(2) Let h be any such homomorphism. If there is a missing subgoal to Q1 w.r.t. h, let
∼r(t1, . . . , tk) be such a subgoal; then Q′

1 � Q2 and Q′′
1 � Q2, where Q′

1 (resp. Q′′
1 )

is the h-contradiction (resp. h-extension) obtained from Q1 by adding ∼r(t1, . . . , tk)
(resp. ∼r(t1, . . . , tk)).

Proof. Follows from Properties 1 and 2, and the fact that {Q′
1, Q

′′
1} is a covering set

of Q1. ��
Note that, if h is directly a homomorphism from Q2 to Q1, then there is no missing
subgoal, and condition (2) is fulfilled.

The completion space is thus explored as a binary tree with Q1 as root.
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Figure 3 illustrates this method on Example 1, with Q−
2 as the necessary subgraph.

Let h1 = {x �→ v, y �→ w, z �→ s} from Q−
2 to Q1; Q1,1 and Q1,2 are built from

Q1, respectively by adding +p(v) and −p(v).Q2 maps toQ1,1, thus there is no need to
completeQ1,1.Q2 does not map toQ1,2: let h2 = {x �→ u, y �→ v, z �→ w} fromQ−

2 to
Q1,2;Q1,3 andQ1,4 are built fromQ1,2, respectively by adding +p(u) and−p(u) toQ1,2.
Q2 maps toQ1,3 and toQ1,4, respectively. Finally, the set proving thatQ1 is included in
Q2 is {Q1,1, Q1,3, Q1,4} (and there are four total completions ofQ1 w.r.t. p).

Q1,2

Q1,3 Q1,4

1,1Q

Q1

+p(v) −p(v)

+p(u) −p(u)AND

AND

Fig. 3. A dichotomic search tree of Example 1. Each black dot represents a total completion and
each square a partial one.

The “contradictAll” heuristic. This heuristic is directly related to the notion of a com-
patible homomorphism from a necessary subgraph ofQ2 to Q′

1: at each step, it consists
of choosing such a compatible homomorphism h to produce n h-contradictions, with
each of them being obtained by adding toQ′

1 the complementary of one of the nmissing
subgoals to Q′

1 w.r.t. h.
The correctness of this method is based on the following theorem:

Theorem 3. Let Q1 and Q2 be two PGs. Then Q1 � Q2 iff (1) there is a compatible
homomorphism from a necessary subgraph of Q2 [e.g. a pure subgraph] to Q1 and (2)
Let h be any such homomorphism; then, for each missing subgoal ∼r(t1, . . . , tk) to
Q1 w.r.t. h, Qi

1 � Q2, where Qi
1 is the h-contradiction obtained from Q1 by adding

∼r(t1, . . . , tk).

Proof. The covering of all total completions is ensured on the one hand by the con-
struction of the n h-contradictions, and on the other hand by the h-extensionQextension

1

(obtained fromQ1 by adding all the missing subgoals toQ1 w.r.t. h) to whichQ2 maps.
We conclude with Properties 1 and 2. ��

Figure 4 illustrates this method on Example 1, with Q+
2 as the necessary subgraph.

Let h1 = {x �→ t, y �→ u, z �→ v} from Q+
2 to Q1; Q1,1 and Q1,2 are built from Q1,

respectively by adding +p(v) and +p(u). Note thatQ2 necessarily maps toQextension
1 ,

obtained from Q1 by adding −p(v) and −p(u). Q2 maps to Q1,1, thus there is no need
to complete Q1,1. Q2 does not map to Q1,2: let h2 = {x �→ u, y �→ v, z �→ w}
from Q+

2 to Q1,2; Q1,3 is built from Q1,2 by adding +p(u). As previously, Q2 maps
to Qextension

12
. Q2 maps to Q1,3. Finally, the set proving that Q1 � Q2 is {Q1,1, Q1,3,

Qextension
1 , Qextension

1,2 }.
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Q1,3 Q1
extension

Q
extension

1,2

Q1,21,1Q

Q1

AND

−p(u), −p(v)
−p(v)+p(v)

AND
+p(u)

+p(v)

Fig. 4. A contradictAll search tree of Example 1

Nevertheless, this space exploration, which does not partition the space, raises an im-
portant problem: it might be the case that the same completion is explored several times.
In the worst case, this heuristic may lead to consider more completions than the brutal
method that explores all total completions. To prevent these multiple explorations, two
solutions can be imagined:

1. To forbid the construction of two identical completions. Then the algorithm be-
comes exponential in space because explored completions have to be memorized.

2. To “merge” identical completions at the end of each completion step (this works
only with a breadth-first search algorithm, see Section 4.1). But the algorithm will
be locally (i.e., at each completion step) exponential in space and this merging is
expensive since it requires to pairwise compare the new completions.

In our experiments, we have compared the three alternatives: no prevention of mul-
tiple explorations, Solution 1 and Solution 2.

4 Comparison of Methods and Algorithms

In this section, we present several algorithms implementing the two heuristics presented
in the previous section. Both heuristics perform traversals of the completion space,
which differ in the way they select the successors of a node. Moreover, there are two
classical ways of performing a traversal, namely in depth-first or in breadth-first way.
We will first present two generic algorithms, corresponding to these two exploration
schemes. Then, by concretizing the function that selects the successors of a node, we
obtain the dichotomic or contradictAll heuristics. Thus, we finally obtain four algo-
rithms, that we compare experimentally.

4.1 Breadth-First and Depth-First Traversals

Algorithms 1 and 2 are generic algorithms that respectively perform a breadth-first and a
depth-first search of the completion space. Algorithm 1 is iterative, it updates a covering
set denoted by CS. We chose to present Algorithm 2 in a recursive way.
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A negative answer to the test if there is no homomorphism from Q2 allows to con-
clude that Q1 � Q2 (cf. the sufficient condition in Section 3.2). It is an algorithmic
optimization avoiding useless exploration of completions.

Subalgorithm dynamicFiltering(Q). This function corresponds to the sufficient con-
dition for concluding that Q1 �� Q2 (cf. Section 3.2): if there is no compatible homo-
morphism from one (or several) necessary subgraph of Q2 to Q then we can conclude
that Q1 �� Q2.

Subalgorithm selectSuccessors(Q). This function returns a covering set of Q, which
is a subset of the successors of Q. This subset depends on several variables:

1. a necessary subgraph, say Q′
2, that has to be mapped to Q;

2. a compatible homomorphism from Q′
2 to Q;

3. the chosen heuristic, i.e., dichotomic or contradictAll:
(a) if we consider the dichotomic heuristic, we have also to choose a missing

subgoal ∼ r(t1, . . . , tk) to Q w.r.t. h. The function will then return the set
{Q ∪ {∼r(t1, . . . , tk)}, Q ∪ {∼r(t1, . . . , tk)}}; note that the order in which
these two nodes are then explored is important, as shown in [BLM10a]: explor-
ing first the h-contradiction (i.e., {Q ∪ ∼r(t1, . . . , tk)) is more efficient.

(b) if we consider the contradictAll heuristic, the function will return the set
{Q ∪ {∼r(t1, . . . , tk)}, . . . , Q ∪ {∼s(u1, . . . , uj)}} where
∼r(t1, . . . , tk), . . . ,∼s(u1, . . . , uj) are all the missing subgoals to Q w.r.t. h.

Algorithm 1. breadthCheck(Q1, Q2)
Input: two consistent PGs Q1 and Q2

Result: true if Q1 � Q2, false otherwise
begin

CS ← {Q1};
while CS �= ∅ do

CS′ ← ∅;
foreach Q′

1 ∈ CS do
if there is no homomorphism from Q2 to Q′

1 then
if dynamicFiltering(Q′

1) = failure then return false;
else CS′ ← CS′∪ selectSuccessors(Q′

1);

CS ← CS′;
return true;

end

Finally, by combining dichotomic and contradictAll heuristics with breadth-first
and depth-first searches, we obtain four algorithms: two breadth-first search ones,
dichotomicBreadthCheck andContradictAllBreadthCheck; two depth-
first search ones, dichotomicDepthCheck and ContradictAllDepthCheck.
In the next section we compare them experimentally.
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Algorithm 2. Depthcheck(Q1, Q2)
Input: two consistent PGs Q1 and Q2

Result: true if Q1 � Q2, false otherwise
begin

if there is no homomorphism from Q2 to Q1 then
if dynamicFiltering(Q1) = failure then return false;
else

foreach Q′
1 ∈ selectSuccessors(Q1) do

if depthCheck(Q′
1,Q2) = false then return false;

return true;
end

4.2 Experimental Comparison

We refer the reader to [BLM10a, BLM10b] for details about the experimental method-
ology. We built a random generator of polarized graphs and studied the influence of
several parameters on the “difficulty” of problem instances (number of terms in the
PG/query, percentage of constants, number of distinct relations, arity of these relations,
density per relation, percentage of negation per relation). In the following experiments,
we chose the parameter values shown to yield difficult instances. For each value of
the varying parameter (density of Q1 in the next experiments), we considered 500 in-
stances and computed the mean search cost of the results on these instances. We also
set a timeout at one minute4.

We have made all four algorithms benefit from the improvements studied in
[BLM10a]. Function dynamicFiltering(Q) performs filtering with all pure subgraphs
of Q2 maximal for the inclusion. Function selectSuccessors(Q) relies on a pure sub-
graph that is maximal for inclusion, say Qmax

2 ; the compatible homomorphism h from
Qmax

2 to Q is simply the first one found (as we have no criterion to choose among sev-
eral such homomorphisms); in the case of dichotomic heuristic, the missing subgoal is
randomly chosen among the set of missing subgoals to Q w.r.t. h. About avoiding mul-
tiple explorations, we compared experimentally the solutions proposed above and kept
the best one for each algorithm: ContradictAllBreadthCheck uses a merging
function and ContradictAllDepthCheckmemorizes all explored completions.

Figure 5 shows the results obtained by the four algorithms on the same random
CQC¬ instances. We can see that depth-first search algorithms
(dichotomicDepthCheck and ContradictAllDepthCheck) are always bet-
ter than breadth-first search ones. As expected, we can also see that dichotomic explo-
ration is always better than contradictAll one (regardless of search strategy): this is due
to the fact that dichotomic heuristic inherently avoids exploring twice the same com-
pletion, whereas contradictAll heuristic cannot ensure this property without a merging
or memorizing function.

4 With a timeout set at five minutes, breadth-first search algorithms lead to memory overflow.
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Percentage of timeouts at a difficulty peak (with density of Q1 = 0.5):
CA-Breadth=25%; D-Breadth=15%; CA-Depth=12%; D-Depth=4%.

Fig. 5. Comparison of the four algorithms

5 Relationships with Existing Algorithms

In [LM07], Leclre and Mugnier proposed a depth-first search algorithm based on the
dichotomic heuristic. We optimized this algorithm in [BLM10a], that led to a refined
algorithm named recCheckPlus. This latter algorithm is exactly
dichotomicDepthCheck.

In [WL03], Wei and Lausen proposed a breadth-first search algorithm (denoted by
WL-algorithm hereafter) based on the following theorem, which we reformulate in our
framework:

Theorem 4. [WL03]. Let Q1 and Q2 be two PGs. Then, Q1 � Q2 iff (1) there is a
(compatible) homomorphism from Q+

2 to Q1 and (2) for each such homomorphism h
and for each missing subgoal ∼r(t1, . . . , tk) to Q1 w.r.t. h, Q′

1 � Q2, where Q′
1 is the

h-contradiction obtained from Q1 by adding ∼r(t1, . . . , tk).

Theorem 3 can be seen as a generalization of Theorem 4: at point (1), it considers a com-
patible homomorphism from any necessary subgraph of Q2 to Q1 (instead of Q+

2 ), and
at point (2), it avoids to test all (compatible) homomorphisms at each completion step
(whereas Theorem 4 proof and WL-algorithm explicitly use this test). More precisely,
Wei and Lausen proposed a space exploration where at each step, all homomorphisms
from Q+

2 to the current completion are to be considered. The search space is then ex-
plored as a particular AND/OR tree5, as shown on Figure 6. To prove that Q1 � Q2,

5 Strictly speaking, it is not exactly an AND/OR tree because one of the halting conditions is
global (which is based on Property 2), i.e., it allows to completely stop the process.
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Fig. 6. “Wei and Lausen” exploration

one has to prove that ((Q1,1 � Q2) ∧ . . . ∧ (Q1,m � Q2)) ∨ . . . ∨ ((Q1,m+1 �
Q2) ∧ . . . ∧ (Q1,v � Q2)).

Let us comment on another aspect of WL-algorithm. This algorithm considers only
“new” homomorphisms fromQ+

2 toQ′
1 (the current completion), with the aim of avoid-

ing multiple computation of the same homomorphisms. There are several ways of in-
terpreting the notion of a “new” homomorphism:

1. it is new w.r.t. the path from Q1 to Q′
1, i.e., it has not been computed during the

generation of this path;
2. it is new w.r.t. the subtree composed of the ancestors of Q′

1 and their brothers;
3. it is new w.r.t. the entire tree.

The first possibility is necessarily fulfilled, because all explored completions are h-
contradictions. Indeed, added subgoals contradict homomorphisms used throughout the
path from Q1 to Q′

1. A new homomorphism according to the second definition is such
that at least one subgoal in Q+

2 is mapped to the subgoal added at the previous comple-
tion step. More precisely, let Q′

1 be a completion obtained by adding +r(e1, . . . , ek).
A homomorphism h from Q+

2 to Q′
1 is said new if there is +r(t1, . . . , tk) in Q+

2 such
that +r(h(t1), . . . , h(tk)) ∈ Q′

1 and h(t1), . . . , h(tk) = e1, . . . , ek. However, this def-
inition of a new homomorphism is unsatisfactory for two main reasons:

1. It does not avoid multiple explorations of the same completion. In Figure 6 for
example, completions Q1,m and Q1,m+1 could be obtained by adding the same
subgoal.

2. It makes WL-algorithm incomplete, i.e., this algorithm can miss solutions. Queries
of Figure 7 illustrate this problem: Q1 � Q2 whereas WL-algorithm concludes
that Q1 �� Q2, because at the second completion step it does not find any new
homomorphism (but it would continue if it considered all homomorphisms).

The last possibility makes WL-algorithm incomplete as well: the completion process
stops whereas it should continue by “reusing” some homomorphisms of other paths
(the previous counterexample works here too: at the second completion step, there are
no “new” homomorphisms w.r.t. the entire tree).
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Fig. 7. A counterexample to the “new homomorphism” property

In light of this analysis, it appears that homomorphism novelty is not a good notion
for the needs of the algorithm. It has to consider the novelty of a completion.

In summary, both contradictAllDepthCheck and
contradictAllBreadthCheck are implementations of (a generalization of) the
theorem of [WL03]. Algorithm contradictAllBreadthCheck can be seen as a
clean implementation of the algorithm proposed in the Appendix of [WL03]. Moreover,
it is expressed in a very simple way, which allows to easily check its correctness. Nev-
ertheless, algorithm ContradictAllDepthCheck, which is as simple to express,
is better (cf. Figure 5).

Let us end this section by briefly mentioning another algorithm proposed in
[BLM10a]. Its way of exploring the space is totally different: it builds a candidate
covering set at once, and then check if this set is actually a covering set by transforming
it into a propositional logical formula and checking its unsatisfiability. Then, Q1 � Q2

if and only if this formula is unsatisfiable. Nevertheless, this algorithm has been experi-
mentally shown less efficient than dichotomicDepthCheck on difficult instances.

6 Conclusion

In this paper, we propose a unifying framework for comparing algorithms solving
CQC¬, and define two kinds of heuristics: dichotomic and contradictAll. Combining
these heuristics with both classical kinds of traversals, i.e., depth-first and breadth-first,
we obtain four algorithms. We compare them experimentally and show that the depth-
first search algorithm with dichotomic heuristic (dichotomicDepthCheck) is more
efficient than the three others.

Real-world queries expressed by a user generally contain constants. In our exper-
iments, we considered queries without any constants because we focused on difficult
instances. Moreover, we checked that CQC¬ difficulty decreases very quickly with the
increasing of the percentage of constants. As for further work, we will study how con-
stants can be exploited in algorithms, with the aim of drastically increasing the size of
queries that can be processed within reasonable time.

Another perspective would be to compare dichotomicDepthCheckwith logical
provers solving problems of the same complexity class (Πp

2 -complete), such as the
problem 2-QBF (e.g. [GW99]).
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Abstract. Due to the large amount of data generated by user interac-
tions on the Web, some companies are currently innovating in the domain
of data management by designing their own systems. Many of them are
referred to as NoSQL databases, standing for ’Not only SQL’. With their
wide adoption will emerge new needs and data integration will certainly
be one of them. In this paper, we adapt a framework encountered for the
integration of relational data to a broader context where both NoSQL
and relational databases can be integrated. One important extension
consists in the efficient answering of queries expressed over these data
sources. The highly denormalized aspect of NoSQL databases results in
varying performance costs for several possible query translations. Thus a
data integration targeting NoSQL databases needs to generate an opti-
mized translation for a given query. Our contributions are to propose (i)
an access path based mapping solution that takes benefit of the design
choices of each data source, (ii) integrate preferences to handle conflicts
between sources and (iii) a query language that bridges the gap between
the SQL query expressed by the user and the query language of the data
sources. We also present a prototype implementation, where the target
schema is represented as a set of relations and which enables the in-
tegration of two of the most popular NoSQL database models, namely
document and a column family stores.

1 Introduction

In [8], several database experts argued that Relational Data Base Management
Systems (RDBMS) can no longer handle all the data management issues en-
countered by many current applications. This is mostly due to (i) the high, and
ever increasing, volume of data needed to be stored by many (web) companies,
(ii) the extreme query workload required to access and analyze these data and
(iii) the need for schema flexibility.

Several systems have already emerged to propose an alternative to RDBMS
and many of them are categorized under the term NoSQL, standing for ’Not only
SQL’. Many of these databases are based on the Distributed Hash Table (DHT)
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model which provides a hash table access semantics. That is, in order to access
or modify an object data, a client is required to provide the key of that object
and then the database will lookup the object using an equality match to the
required attribute key. The first implementations where developed by companies
like Google and Amazon with respectively Bigtable [1] and Dynamo [3]. These
systems influenced the implementation of several open source systems such as
Cassandra1, HBase2, etc. Nowadays, the NoSQL ecosystem is relatively rich with
several categories of databases: column family (e.g. Bigtable, HBase, Cassandra),
key/value ( e.g. Dynamo, Riak3), document (e.g. MongoDB4, CouchDB5) and
graph oriented (e.g. InfiniteGrap6, Neo4J7). Most of these systems share common
characteristics by aiming to support scalability, availability, flexibility and to
ensure fast access times for storage, data retrieval and analysis.

In order to meet some of these requirements, NoSQL database instances are
designed to reply efficiently to the precise needs of a given application. Note
that a similar approach, named denormalization [4], is frequently encountered
for application using relational databases. Nevertheless, it may be required to
combine the data stored in several NoSQL database instances into a single ap-
plication and at the same time to leave them evolve with their own applications.
This combination of data coming from different sources corresponds to the no-
tion of a data integration system presented in [5]. Yet, several issues emerge
due to the following NoSQL characteristics: (i) NoSQL categories are based on
different data models and each implementation within a category may have its
own specificities. (ii) There does not exist a common query language for all
NoSQL databases. Moreover, most systems only support a procedural definition
of queries. (iii) The NoSQL ecosystem is characterized by a set of heteroge-
neous data management systems, e.g. not all databases support indexing. (iv)
The denormalized aspect of NoSQL databases makes query performance highly
dependent on access paths.

In this paper, we present a data integration system which is based on the
assumptions of Figure 1. The target schema corresponds to a standard relational
model. This is motivated by the familiarity of most end-users with this data
model and its possibility to be queried with the SQL language. The sources can
either correspond to a set of column family, document and key/value stores as
well as to standard RDBMS.

To enable the querying of NoSQL databases within a data integration frame-
work we propose the following contributions. (1) We define a mapping language
between the target and the sources which takes into account the denormaliza-
tion aspect of NoSQL databases. This is materialized by storing preferred access

1 http://cassandra.apache.org/
2 http://hbase.apache.org/
3 http://www.basho.com/
4 http://www.mongodb.org/
5 http://couchdb.apache.org/
6 http://www.infinitegraph.com/
7 http://neo4j.org/
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Fig. 1. Data integration overview

paths for a given mapping assertion. Moreover, this mapping language incor-
porates features dealing with conflicting data. (2) We propose a Bridge Query
Language (BQL) that enables a transformation from an SQL query defined over
the target to the query executed over a given source. (3) We present a proto-
type implementation which generates query programs for a popular document
oriented database, namely MongoDB, and Cassandra, a column family store.

This paper is organized as follows. In Section 2, we present related works in
the domain of querying NoSQL databases. In Section 3, we provide background
knowledge on two feature rich and popular NoSQL databases: document and
column family stores. Section 4 presents our data integration framework with a
presentation of the syntax and semantics of the mapping language. In Section 5,
query processing in our data integration system is presented and BQL is detailed.
Section 6 concerns aspects of the prototype implementation. Finally, Section 7
concludes this paper.

2 Related Work

In this section, we present some related works in the domain of querying non
relational databases in the context of the cloud and Map/Reduce.

Decoupling query semantics from the underlying data store is a widely spread
technique to support multiple data sources in one framework. Therefore, various
systems offer a common abstraction layer on top of their data storage layer.

Hadoop8 is a framework that supports data-intensive applications. On top of
a distributed, scalable, and portable filesystem (HDFS, [1]), Hadoop provides a
column-oriented database called HBase for real-time read and write access to
very large datasets.

In order to support queries against these large datasets, a programming model
called MapReduce [2] is provided by the system. MapReduce divides workloads
into suitable units, which can be distributed over many nodes and therefore can
be processed in parallel. However, the advantage of the fast processing of large
datasets has also its catch, because writing MapReduce programs is a very time
consuming business. There is a lot of overhead even for simple tasks. Working
8 http://hadoop.apache.org/
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out how to fit data processing into the MapReduce pattern can be a challenge.
Therefore, Hadoop offers three different abstraction layers for its MapReduce
implementation, called Hive, Pig and Cascading.

Hive9 is a data warehouse infrastructure, which aims to bridge the gap between
SQL and MapReduce queries. Therefore, it provides its own SQL like query
language called HiveQL [9]. It has traditional SQL constructs like joins, group
by, where, select and from clauses. These commands are translated into
MapReduce functions afterwards. Hive insists that all data has to be stored in
tables, with a schema under its management. Hive allows traditional MapReduce
programs to be able to plug in their own mappers and reducers to do more
sophisticated analysis.

Like Hive, Pig10 tries to raise the level of abstraction for processing large data
sets with Hadoop’s MapReduce implementation. The Pig platform consists of a
high level language called Pig Latin [6] for constructing data pipelines, where
operations on an input relation are executed one after the other. These Pig Latin
data pipelines are translated into a sequence of MapReduce jobs by a compiler,
which is also included in the Pig framework.

Cascading11 is an API for data processing on Hadoop clusters. It is not a
new text based query syntax like Pig or another complex system that must be
installed and maintained like Hive. Cascading offers a collection of operations
like functions, filters and aggregators, which can be wired together into complex,
scale-free and fault tolerant data processing workflows as opposed to directly
implementing MapReduce algorithms.

In contrast to missing standards in a query language for NoSQL databases,
standards for persisting java objects already exist. With the Java Persistence API
(JPA12) and Java Domain Objects (JDO13) it is possible to map java objects
into different databases. The Datanucleus implementation of these two standards
provides a mapping layer on top of HBase, BigTable [1], Amazon S314, MongoDB
and Cassandra. Googles App Engine15 uses this framework for persistence.

A powerful data query and administration tool which is used extensively
within the Oracle community is Quest Softwares Toad16. Since 2010, a pro-
totype which also offers its support for column family stores is available. During
the time of writing this paper, the beta version 1.2 can be connected to Azure
Table Services17, Cassandra, SimpleDB18, HBase and every ODBC compliant
relational database.

9 http://hive.apache.org/
10 http://pig.apache.org
11 http://www.cascading.org/
12 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
13 http://www.oracle.com/technetwork/java/index-jsp-135919.html
14 http://aws.amazon.com/de/s3/
15 http://code.google.com/intl/de-DE/appengine/
16 http://toadforcloud.com
17 http://msdn.microsoft.com/en-us/library/dd179423.aspx
18 http://aws.amazon.com/de/simpledb/
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Toad for Cloud consists of two components. The first is the Toad client, which
can be installed on a Microsoft Windows computer. It can be used to access dif-
ferent databases, the Amazon EC2 console, and to write and execute SQL state-
ments. The second component is the Data Hub. It translates SQL statements
submitted through the Toad client into a language understood by all supported
databases and returns results in the familiar tabular row and column format.

In order to use SQL on column family stores like Cassandra and HBase,
the column families, rows and columns have to be mapped into virtual tables.
Afterwards, the user does have full MySQL support on these data, containing
also inserts, updates and deletes. Furthermore, it is possible to do virtual data
integration with different data sources.

One reason why only column family stores are supported by Toad is their
easy mapping to relational databases. To do the same with a document store
containing objects with a deep nested structure or squeezing a graph into a
relational schema is a much more complicated task. Even if a suitable solution
was found, powerful and easy to use query languages, tools and interfaces like
Traverser API for Neo4J would be missing in the SQL layer of Toad, which
queries the mapped tables.

Due to their different data models and their relatively young history, NoSQL
databases still lack a common query language. However, Quest Software and
Hadoop demonstrate that it is possible to use SQL (Toad) or a SQL like query
language (Hive) on top of column family stores. A mapping to document stores
and graph databases is still missing.

3 Background

We have seen that each category of NoSQL databases has its own data model. In
this section, we present details concerning document oriented and column family
categories.

3.1 Document Oriented Databases

Document oriented databases correspond to an extension of the well-known key-
value concept where in this case the value consists of a structured document.
A document contains hierarchically organized data similar to XML and JSON.
This permits to represent one-to-one as well as one-to-many relationships in
a single document. Therefore a complex document can be retrieved or stored
without using joins. Since document oriented databases are aware of stored data,
it enables to define document field indexes as well as to propose advanced query
features. The most popular document oriented databases are MongoDB (10gen)
and CouchDB (Apache).

Example 1. In the following a document oriented database stores drug informa-
tion aimed at an application targeting the general public. According to features
proposed by the application, two so-called collections are defined: drugD and
therapD. drugD includes documents describing drug related information whereas
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therapD contains documents with information about therapeutic classes and
drugs used for it. Each drugD document is identified by a drug identifier. In
this example, its attributes are limited to the name of the product, its price,
pharmaceutical lab and a list of therapeutic classes. The key for therapD doc-
uments is a string corresponding to the therapeutic class name. It contains a
single attribute corresponding to the list of drug identifiers treating this thera-
peutic class. Figure 2 presents an extract of this database. Finally, in order to
ensure an efficient search to patients an index on the attribute name of the drugD
document is defined.

Fig. 2. Extract of drug document oriented database

Fig. 3. Extract of drug column family database

3.2 Column-Family Databases

Column family stores correspond to persistent, sparse, distributed multilevel
hash maps. In column family stores, arbitrary keys (rows) are applied to arbitrary
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key value pairs (columns). These columns can be extended with further arbitrary
key value pairs. Afterwards, these key value pair lists can be organized into
column families and keyspaces. Finally, column-family stores can appear in a very
similar shape to relational databases on the surface. The most popular systems
are HBase and Cassandra. All of them are influenced by Googles Bigtable.

Example 2. Figure 3 presents some column families defined in a medical ap-
plication. Since Cassandra works best when its data model is denormalized,
the data is divided on three column families: drugC, drugNameC and therapC.
The columns drugName, contra, composition, lab are integrated into drugC
and identified by row key drugId. drugNameC contains row key drugName and
a drugId column in order to provide an efficient search for patients. Since end-
users of this database need to search products by therapeutical classes, therapC
contains therapName as row key and a column for each drugId with a timestamp
as value.

4 Data Integration Framework

This section presents the syntax and semantics of our data integration frame-
work. Moreover, it focuses on the mapping language which supports the def-
inition of correspondences between sources and target entities. Our mapping
language integrates some original aspects by considering (i) query processing
performances of the sources via access paths and (ii) dealing with contradicting
information found between sources using preferences. In the rest of this paper,
we consider the following example.

Example 3. A medical application needs to integrate drug data coming from two
different NoSQL stores. The first database, corresponding to a document store,
denoted docDB, and is used in a patient oriented application while the other
database, a column family store, denoted colDB, contains information aimed
at health care professionals. In this paper, we concentrate on some extracts of
docDB and colDB which correspond to respectively Figures 2 and 3. The data
stored in both databases present some overlapping as well as some discrepancies
both at the tuple and schema level. For instance, at the schema level, both
databases contain french drug identifiers, names, pharmaceutical companies and
prices but only colDB proposes access to the composition of a drug product.
Considering the tuple level, some drugs may be present in one database but
not in the other. Moreover information concerning the same drug product (i.e.
identified by the same identifier value) may contradict themselves in different
sources. Given these source databases, the target schema is defined as follows.
We consider that relation and attribute names are self-explanatory.

drug(drugId, drugName, lab, composition, price)
therapDrug (drugId, therapeuticName)
Obviously, our next step it to define correspondances between the sources and

the target. This is supporteed by mapping assertions which are currently being
defined manually by domain experts. In the near future, we aim to discover some
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of them automatically by analyzing extensions and intensions of both sources
and the target. Nevertheless, we do not believe that all mapping assertions can
be discovered automatically due to the lack of semantics contained in both the
target and the sources. Next, we present the mapping language enabling the
definitions of mapping assertions.

4.1 Mapping Language

Our data integration system takes the form of a triple 〈T ,S,M〉 where T is the
target schema, S is the source schema and M is the mapping between T and
S. In Section 1, we motivated the fact that the set S could correspond to both
RDBMS and NoSQL stores and that T takes the form of a relational schema. We
consider that the target schema is given, possibly defined by a team of domain
experts or using schema matching techniques [7].

This mapping language adopts a GAV (Global As View) approach with sound
sources [5]. The mapping assertions are thus of the following form: φS � φT
where φS is a query over S and φT is a relation of T .

Our system must deal with the heterogeneity of the sources and the highly
denormalized aspect of NoSQL database instances. In order to cope with this
last aspect, our mapping language handles the different access paths proposed
by a given source. This is due to the important performance differences one can
observe between the processing of the same query through different access paths.
For instance, in the context of colDB, retrieving the drug information from a
drug name will be more effective using the drugCName column family rather than
the drugC column family (which would require complete scan of all its tuples).

We believe that a mapping assertion corresponds to the ideal place to store
the preferred access paths possible for a target relation. Hence each mapping
assertion is associated with a list of attributes contained in its target relation.
The mapping language enables the use of the ’*’ symbol which, like in SQL,
denotes the complete list of attributes of a given relation. For a given mapping
assertion, an access path with attribute ’a’ is defined when the source entity offers
an efficient access, either using a key or an index, to a collection, set of columns
or tuple. Note that for a source corresponding to an RDBMS, the definition of
access paths is not necessary since computing the most effective query execution
plan will be performed by the system. Hence, definitions of access paths are
mandatory only for mapping assertions whose right hand side corresponds to a
NoSQL database.

Definition 1. General syntax of a mapping assertion with an access path speci-
fication on attribute ’a’: RelationT(a,b,c) ←−a EntityS(< key; value >) where
RelationT and EntityS respectively denote a relation of the target and a con-
junction of collections, column families or relations of a source. In this mapping
assertion, the attributes of RelationT follow the definition order of this relation.
Due to the schema flexibility of NoSQL databases, we can not rely upon any at-
tribute ordering in a collection or column family. Hence, we must use attribute
names to identify distinct portions of a tuple. In order to map RelationT and
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EntityS attributes, we introduce a ’AS’ keyword to define a correspondence be-
tween attribute symbols of the mapping assertion. Finally, an entry in EntityS
is defined as a key/value structure using a ’<key ; value>’ syntax, where
key is either (i) ’PKEY AS k’ or (ii) a variable name (previously defined in a
EntityS couple of the same mapping) and value is either of the form (i) nameS
AS nameT (where nameS and nameT are resp. attribute names from the source
and the target) or (ii) of the form FOREACH item AS name IN list (where item
corresponds to an element of the set denoted by list and name is an attribute
identifier of the source). Finally, a keyword is introduced to denote the primary
key of the structure (i.e. ’PKEY AS’) and to manipulate it, e.g. IN KEY.�

Note the possibility that some target relation attributes are never associated
to a mapping assertion. This means that there is not an efficient way to filter a
query by this attribute due to the denormalization of the source databases. For
instance, a query searching for a given drug composition will be highly inefficient
in the colDB database due to the absence of a predefined structure proposing
a key-based access from this attribute. Finally, for a given source and target
relation, there must be a single mapping assertion with a given attribute.

A second feature of our mapping language consists in handling the data struc-
tures of NoSQL databases that can be multivalued, nested and also contain some
valuable information in the key of a key/value structure; e.g. in the DrugNameC
column family of Figure 3, drug identifiers of a drug product are stored in the
key position (i.e. left hand side of the record). A multivalued example is present
in both docDB and colDB extracts for the therap attribute. This forces our map-
ping language to handle access to the information associated to these construc-
tors, e.g. to enable iteration over lists. Nested attributes are handled by using
the standard ’.’ notation found in object oriented programming. On the second
hand, iterations over lists require the introduction of a ’FOREACH’ construct.

We now present the mapping assertions of our running example (a.p. denotes
an access path):

1. drug(i, l, n, c, p) ←−∗ drugD(<PKEY AS i ; name AS n,
lab AS l, price AS p>)

2. drug(i, n, l, c, p)
←−
i drugC(<PKEY AS i ; name AS n

lab AS l, compo AS c, price AS p>)
3. drug(i, n, l, c, p) ←−n drugNameC(<PKEY AS n ;

FOREACH id AS i IN KEY>,
drugC(<id ; lab AS l, compo AS c, price AS p>)

4. therapDrug(i, t)
←−
i drugD(<PKEY AS i ; FOREACH the AS t IN Therap>)

5. therapDrug(i, t)
←−
t therapD(<PKEY AS t ; FOREACH id AS i IN Drugs>)

6. therapDrug(i, t)
←−
i DrugC(<PKEY AS i ; FOREACH the AS t IN Therap>)

7. therapDrug(i, t)
←−
t therapC(<PKEY AS t ; FOREACH id AS i IN KEY>

This set of mapping assertions examplifies an important part of our mapping
language features:

– assertion #1 has a ’*’ access path since we consider that all attributes of the
drugC collection are indexed. Also note that on this mapping assertion, the
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c attribute is not mapped to any source attribute since that information is
not available in the docDB database.

– Mapping assertion #3 introduces the fact that several source entities can be
used in a single mapping (i.e. drugNameC and drugC column families). Intu-
itively, this query accesses a given drugNameC column family entry identified
by a drug name and iterates over its drug identifiers, which are keys (using the
’IN KEY’ expression) then it uses these identifiers to access entries in to drugC
column family (using i iterator variable in the key position of the drugC).

4.2 Dealing with Conflicting Data Using Attribute Preferences

In general, data integration and data exchange solutions adopt the certain an-
swers semantics for query answering, i.e. results of a query expressed over the
target contain the intersection of data retrieved from the sources. We believe
that this pessismistic approach is too restrictive and as a consequence, many
valid results may be missing from final results.

At the other extreme of the query answering semantics spectrum, we find
the possible answer semantics which provides as results over a target query the
union of sources results. With this optimistic approach conflicting results may
be proposed as a final result, leaving the end-users unsatisfied.

In this work, we propose a trade-off between these two semantics which is
based on a preference-based approach. Intuitively, preferences provided over tar-
get attributes define a partial order over mapped sources. Hence, for a given
data object, conflicting information on the same attribute among different data
sources can be handled efficiently and the final result will contain the preferred
values.

Example 4. Consider the queries over docDB and colDB asking for lab and
price information for the drug identified by value 3295935. Given the informa-
tion stored in both sources, respectively the column store (Figure 2) and column
family store (Figure 3), conflicts arise on the prices, resp. 1.88 and 2.05 euros,
and pharmaceuticals, resp. Pfizer and Wyeth.

When creating the mapping assertions, domain experts can express that drug
prices are more accurate in the document store (docDB) and that information
about pharmaceutical laboratory is more trustable in the column family (colDB).
Hence the result of this query will contain a single tuple consisting of: {Advil,
Wyeth, 1.88}, i.e. mixing values retrieved the different sources.

We now define the notion of preferences over mapping assertions.

Definition 2. Consider a set of source databases {DB1, DB2, ..DBn}, a prefer-
ence relation, denoted &, is a relation &⊆ DBi ×DBj , with i �= j, that is defined
on each non primary key attribute of target relations. A preference & is total on
an attribute A if for every pair {DBi, DBj} of sources that propose attribute A,
either DBi &∗ DBj or DBj &∗ DBi with &∗ the transitive closure of &. ��
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Example 5. Consider the drug relation in our running example target schema.
Its definition according to the preferences proposed in Example 3 are the follow-
ing: drug(drugId, drugNamedocDB�colDB, labcolDB�docDB, composition,
pricedocDB�colDB)

That is, for a given drug, in case of conflict, its docDB drugName attribute is
preferred to the one proposed by colDB and the preferred value for the lab
attribute is colDB over docDB. Note that since the composition attribute can
only be retrieved from the colDB source, it is not necessary to define a preference
order over this attribute.

5 Query Processing

Once a target relation schema and a set of mapping assertions have been defined,
end-users can expressed queries in SQL over the target database. Since that
database is virtual, i.e. it does not contain any data, data needs to be retrieved
from the sources and processed to provide a final result. The presence of NoSQL
databases in the set of sources imposes to transform the former SQL query into a
query specifically tailored to each NoSQL source. This transformation is based on
the peculiarities of the source database, e.g. whether a declarative query language
exists or only procedural approach enables to query that database, and the
mapping assertions. Since most NoSQL stores support only a procedural query
approach, we have decided to implement a query language to bridge the gap
between SQL and some code in a programming language. This section presents
the Bridge Query Language (henceforth BQL) which is used internally by our
data integration system and the query processing semantics.

5.1 Architecture

The overall architecture of query processing within our data integration sys-
tem is presented in Figure 4. First, an end-user writes an SQL query over the
target schema. The expressivity of accepted SQL queries corresponds to Select
Project Join (SPJ) conjunctive queries, e.g. GROUP BY clauses are not accepted
but we are planning to introduce them in future extensions. Note that this limi-
tation is due to a common abstraction of the NoSQL databases we are studying
in this paper (column family and document).

An end-user SQL query is then translated into the BQL internal query lan-
guage of our data integration system. This transformation corresponds to a
rewritting of the SQL into a BQL query using the mapping assertions. Note
that this translation step is not needed for a RDBMS.

Then for each BQL, a second transformation is performed, this time to gen-
erate a query tailoring the NoSQL database system. Thus, for each supported
NoSQL implementation, a set of rules is defined for the translation of a BQL
query. Most of the time, the BQL translation takes the form of a program and
uses a specific API. In Section 6, we provide details on the translation from BQL
to Java programs into MongoDB and Cassandra.
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The results obtained from each query is later processed within the data inte-
gration system. Intuitively, each result set takes the form of a list containing the
awaited target columns. In order to detect data conflicts, we need to efficiently
identify similar objects. This step is performed by incorporating into the result
set values corresponding to primary keys of target relations of the SQL query. So,
even if primary keys are not supposed to be displayed in the final query result,
they are temporarily stored in the result set. Hence objects returned from the
union of the result sets are easily and unambiguously identified. Similar objects
can then be analyzed using the preference orders defined over target attributes.
The query result contains values retrieved from the preferred source attributes.

Fig. 4. Query processing

5.2 Bridge Query Language

BQL is the internal query language that bridges the gap between the SQL lan-
guage of the target model and the different and the heterogenous query languages
of the sources. The syntax of the query language follows the EBNF proposed in
the companion web site. This language contains a set of reserved words whose
semantics is obvious for a programmer. For instance, the get instruction enables
to define a set of filter operations and to define the distinguished variables of
the query, i.e. the values needed in the result. The foreach in : instruction
is frequently encountered in many programming languages and their semantics
align. Intuitively, it supports an iteration over elements of a result set and the
associated processing is performed after the ’:’ symbol. We have implemented
an SQL to BQL translator which parses an SQL query and generates a set of
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BQL queries, one for each NoSQL database mapped to the relation of the target
query. This translator takes into account the mapping assertions defined over
the data integration system.

Example 6. We now introduce a set of queries expressed over our running
example. They correspond to different real case scenario and emphasize the
different functionalities of our query language. For each target query (SQL), we
present the BQL generated for both colDB and docDB.

– Query 1 accesses a single table via its primary key.
SQL: SELECT drugName, price FROM drug WHERE drugId=3295935;

docDB’s BQL: ans(drugName, price) = docDB.drugD.get({PKEY=
3295935},{name, price}) provides answer (Advil, 1.88)
colDB’s BQL: ans(drugName, price) = colDB.drugC.get({PKEY=
3295935},{name, price}) provides answer (Advil, 2.05)
Answer: Since the query identifies tuples with the primary key, the real world
object of the answers is supposed to be the same and we apply the preferences
over the union of the results. The processed result is (Advil, 1.88)

– Query 2 access single table over a non primary key but indexed attribute of the
target.
SQL:SELECT drugId, price FROM drug WHERE drugName LIKE’Advil’;

docDB’s BQL: ans(drugId, price) = docDB.drugD.get({name=’Advil’},
{PKEY, price}) with answer {(3295935, 1.88)}
colDB’s BQL: temp(drugId) = colDB.drugNameC.get({name=’Advil’},
{KEY})
ans(drugId, price)=foreach id in temp(drugId):colDB.drugC.get(

{KEY=id},{KEY,price}) colDB.drugC with {(3295935, 2.05),(3575994, 2.98)} An-
swer: The final result set is {(3295935, 1.88),(3575994, 2.98)} thus mixing the
results and taking advantage of the preference setting.

– Query 3 retrieves data from a single relation with a filter over a non-primary and
non-indexed attribute of the target.
SQL: SELECT drugName FROM drug WHERE lab=’Bayer’;

docDB’s BQL: ans(drugName)=docDB.drugD.get({lab=’Bayer’},{name})
colDB’s BQL: No solution
Answer: Since no queries are generated for the colDB store, the results are retrieved
solely from docDB.

– Query 4 involves 2 relations and an access from a single primary key attribute of
the target.
SQL:SELECT drugName FROM drug d, therapDrug td WHERE

d.drugId=td.drugId AND therapId LIKE ’NSAID’;

docDB’s BQL: temp(drugs) = docDB.therapD.get({PKEY=’NSAID’},{drugs})
ans(drugName) = foreach id in temp(drugs) : docDB.drugC.get(

{PKEY=id},{name})
colDB’s BQL: temp(drugs) = colDB.therapC.get({PKEY=’NSAID’},{KEY})
ans(drugName)=foreach id in temp(drugs) :

coldDB.drugC.get({PKEY=id},{name})
Answer: provides the same result as in Query 2.
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6 Implementation

In this section, we sketch our prototype implementation which tackles a docu-
ment store (MongoDB) and a column store (Cassandra). Together they represent
some of the most popular open source projects in the NoSQL ecosystem. The
platform we have adopted corresponds to Java since both MongoDB and Cas-
sandra propose APIs and enable the execution of this programming language.
Moreover, Java is adapted to numerous other NoSQL stores. Nevertheless, in the
near future, we are planning to tackle other systems, e.g. CouchDB or HBase,
and consider other access methods, e.g. javascript or python.

An important task of our prototype is to handle the transformation modules
found in Figure 4. That is to process the translation (i) from SQL to BQL and
(ii) from BQL to the query language supported by each NoSQL stores. Due to
the declarative nature of both query languages of the former translation, this
task is easy to implement and is implemented in linear time on the length of
the input SQL query. The latter translation task is more involved since BQL
corresponds to a declarative language and the target query of our NoSQL stores
corresponds Java methods. The high denormalization aspect of NoSQL stores
imposes that only a limited set of queries can be efficiently processed. In fact,
this results in having similarities between queries expressed over a given NoSQL
database instance. We have extract these similarities into patterns which are
implemented using Java methods. The main idea is to consider a set of finite
BQL templates and to associate a Java method to each of these templates.

One can ask the following question: is this approach still valid and efficient
when more complicated SQL queries, e.g. involving aggregate functions (min,
max, etc.), group by and having or like constructors? A reply to this question
necessarily needs to consider the particular features of each NoSQL database
supported by the system since, up to now, a common framework for NoSQL
stores does not exist. In the case of MongoDB, the support of regular expressions
enables the execution of complex statements with minimal additional effort. On
the other hand, Cassandra only supports a range query approach on primary
keys. This results in having an inefficient support for aggregate operations and
queries involving regular expressions.

7 Conclusions

This paper is a first approach to integrate data coming from NoSQL stores and
relational databases into a single virtualized database. Due to the increasing
popularity of this novel trend of databases, we consider that such data integration
systems will be quite useful in the near future. Our system adopts a relational
approach for the target schema which enables end-users to express queries in
the declarative SQL language. Several transformation steps are then required
to obtain results from the data stored at each of the sources. Hence a bridge
query language has been presented as the cornerstone of these transformations.
Another important component of our system is the mapping language which
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(i) handles uncertainty and contradicting information at the sources by defining
preferences over mapping assertions and (ii) supports the setting of access path
information in order to generate an efficiently processable query plan.

On preliminary results, the overhead of these transformation steps does not
impact the performance of query answering. Our list of future works is important
and among others, it contains the support of NoSQL stores corresponding to a
graph model and the (semi) automatic discovery of mapping assertions based on
the analysis of value stored in each source.
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Abstract. MANET does not require any fixed infrastructure, thus it fits well in 
disaster rescue and military operations. However, when a node has no or 
insufficient energy to function, communication may fail, disconnections may 
happen, and transactions may be aborted if they are time-critical and miss their 
deadlines. Energy-efficient transaction management becomes an important 
issue in MANET database applications. In this paper, we propose an energy-
efficient concurrency control (CC) algorithm for MANET databases in a 
clustered network architecture where nodes are divided into clusters, each of 
which has a node, called cluster head, responsible for the processing of all 
nodes in the cluster. In our algorithm, in order to conserve energy and balance 
the energy consumption among servers, we elect cluster heads to work as 
coordinating servers, and propose an optimistic CC algorithm to offer high 
concurrency and avoid wasting limited system resources. The simulation results 
confirm that our technique performs better than existing techniques. 

Keywords: Mobile ad-hoc network, clustering, transaction management, 
concurrency control. 

1   Introduction 

A Mobile Ad-hoc Network (MANET) is a collection of mobile, wireless and battery-
powered nodes, and every node can roam freely. A mobile database system built on a 
MANET is called a MANET database system. In this system, both clients and servers 
are mobile, wireless and battery-powered, and the databases are stored at servers and 
accessed by clients. As no fixed infrastructure is required, MANET databases can be 
deployed in a short time and mobile users can access and manipulate data anytime 
and anywhere, and they become an attractive solution for handling mission-critical 
database applications, such as disaster response and recovery systems [1, 2, 3] and 
military operations like battlefields [1]. In these applications, transactions must be 
executed not only correctly but also within their deadlines. To guarantee this, a 
concurrency control (CC) technique must be a part of the system. 

CC is the activity of preventing transactions from destroying the consistency of the 
database while allowing them to run concurrently, so that the throughput and resource 
utilization of the database system are improved and the waiting time of concurrent 
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transactions is reduced [4]. However, because of their mobility and portability, mobile 
nodes have severe resource constraints in terms of battery capacity, memory size and 
CPU speed. As the battery capacity is limited, it compromises the ability of each 
mobile node to support services and applications [5]. Also battery technology is not 
developed as rapidly as mobile devices and wireless technologies, so that the limited 
battery lifetime is always a bottleneck for the development of improved mobile 
devices [6]. Therefore, a suitable CC algorithm for MANET databases should be 
energy-efficient.  

Although there are CC algorithms proposed for cellular mobile network databases 
[7, 8, 9], to the best of our knowledge, only one CC algorithm has been proposed for 
MANET databases [10]; however, this algorithm not only relaxes transaction 
atomicity and global serializability, but also does not take energy efficiency into 
account.  To fill this gap, in this paper we propose an optimistic CC algorithm, called 
Sequential Order with Dynamic Adjustment (SODA), which takes mobility, real-time 
constraints and energy efficiency into consideration, to handle mission-critical 
databases in a clustered MANET architecture. Our objective is to minimize energy 
consumption of each mobile node, and balance energy consumption among servers, 
so that mobile nodes with low energy do not run out of energy quickly, and thus, the 
number of disconnections and transaction aborts due to low energy or energy 
exhaustion can be reduced. The rest of the paper is organized as follows. Section 2 
reviews some of recent CC algorithms for mobile databases. Section 3 describes the 
proposed MANET architecture.  Section 4 presents our CC algorithm, SODA. Section 
5 provides the simulation results. Finally Section 6 concludes the paper with future 
research. 

2   Related Work 

As cellular mobile networks and MANET have many similar characteristics, in this 
section, we review the CC techniques recently proposed for databases in both 
networks. 

Look-Ahead Protocol (LAP) was proposed in [8] to maintain data consistency of 
broadcast data in mobile environments. In LAP, update transactions are classified into 
either hopeful or hopeless transactions. Hopeless transactions can not commit before 
their deadlines and are aborted as early as possible to save system resources and 
reduce data locks, while hopeful transactions can continue to execute their read and 
write operations using the two-phase locking (2PL) algorithm. 

Multi-Version Optimistic Concurrency Control for Nested Transactions (MVOCC-
NT) [9] was proposed to process mobile real-time nested transactions using multi-
versions of data in mobile broadcast environments. MVOCC-NT adopts the 
timestamp interval with dynamic adjustment to avoid unnecessary aborts. At mobile 
clients, all active transactions perform backward pre-validation against transactions 
committed in the last broadcast cycle at the fixed server. Read-only transactions can 
commit locally if they pass the pre-validation, but surviving update transactions have 
to be transferred to the fixed server for the final validation. Choi et al. [7] proposed 2-
Phase Optimistic Concurrency Control (2POCC) to process mobile transactions in 
wireless broadcast environments. Transaction validation is done in two phases: partial 
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backward validation at mobile clients and final validation at the fixed server.  In both 
phases, if a transaction Ti is serialized before transaction Tj then the writes of Ti 
should not overwrite the writes of Tj and affect the reads of Tj. 

All the CC techniques reviewed above were designed for cellular mobile databases, 
which heavily rely on broadcast techniques to save mobile nodes’ energy and on static 
servers that have no energy limitation; thus, they are not suitable for MANET 
databases. 

Semantic Serializability Applied to Mobility (SESAMO) [10] was proposed for 
MANET databases.  SESAMO is based on semantic serializability, which requires 
that not only databases on mobile nodes be disjoint but also updates on a database 
depend only on the values of the data in the same database; therefore, transaction 
atomicity and global serializability can be relaxed.  However, in SESAMO, global 
transactions still need be serialized at each site using strict two-phase locking (S2PL), 
while at the same time each site must maintain the consistency of its own local 
database. SESAMO does not take energy efficiency into account. In addition, in 
MANET databases for mission-critical applications, the assumption for semantic 
serializability does not hold because each database depends on each other due to the 
organizational structure of the applications. For example, in a disaster rescue scenario, 
before sending firefighters out to pursue some actions, the status of their equipment 
has to be checked, where the firefighter database may be stored on one mobile server, 
and the equipment database may be stored on another mobile server. 

3   Proposed Architecture 

In this section, we introduce our clustered MANET architecture which is built by 
applying our robust weighted clustering algorithm, called MEW (Mobility, Energy, 
and Workload) [11]. MEW takes mobile nodes’ mobility, energy and workload into 
consideration when grouping mobile nodes into clusters a MANET.  In this 
architecture, mobile nodes are divided into clusters, each of which has one cluster 
head working as the coordinating server responsible for the transaction processing of 
the mobile nodes, called cluster members, within the cluster. Cluster heads can 
communicate with each other through some mobile nodes that work as gateways.  
Similarly, mobile nodes from different clusters can also communicate with each other, 
but they have to go through their cluster heads to get the destination addresses first.  
Also, nodes are put into the same cluster based on their application semantics. 

We choose this architecture for three reasons. First, in many MANET applications, 
such as disaster response and recovery systems [2, 3] and military operations [12], 
users are logically grouped. Second, because every node is mobile in a MANET, the 
network topology may change rapidly and unpredictably over time. According to 
[13], clustered architectures are proper to keep the network topology stable as long as 
possible, so that the performance of routing and resource relocation protocols is not 
compromised. Third, in order to accommodate our optimistic CC algorithm SODA to 
guarantee global serializability, the information of committed global transactions is 
maintained by the cluster head with the highest remaining energy. 
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Fig. 1 shows an example of a 
clustered MANET database architecture 
with three clusters, each of which is 
represented by a large solid circle 
with mobile clients and servers shown 
as PDA/iphone and laptop icons, 
respectively. The arrows between the 
devices show the communication 
between them.  In the rest of this section, 
we describe the functionality of mobile 
nodes (Section 3.1), the MEW algorithm 
(Section 3.2), the cluster formation 
(Section 3.3), and the cluster 
maintenance (Section 3.4). 

Fig. 1. Architecture of a clustered MANET 
database 

3.1   Mobile Node Functionality   

Depending on the communication strength, computing power and storage size, mobile 
nodes are classified into clients and servers. On clients, only the query processing 
modules that allow them to submit transactions and receive results are installed, while 
on servers, the complete database management systems are installed to provide 
transaction processing services. Servers are further classified into coordinating servers 
and participating servers. Coordinating servers are the ones which receive global 
transactions from clients, divide them into sub-transactions, forward these sub-
transactions to appropriate participating servers, and maintain the ACID (Atomicity, 
Consistency, Isolation, and Durability) [4] properties of global transactions.  
Participating servers are the ones that process sub-transactions transmitted from 
coordinating servers, and preserve their ACID properties. 

The entire database is partitioned into local databases and distributed to different 
servers, and there is no caching or replication technique involved for simplicity. 
Transactions are based on the simple flat model, which contains a set of read, write, 
insert, and delete operations. Any subset of operations of a global transaction that 
access the same server is submitted and executed as a single sub-transaction. 

With respect to the clustered MANET architecture shown in Fig. 1, a mobile node 
is either a cluster head when it is a coordinating server or is a cluster member when it 
is either a participating server or a client. In order to guarantee global serializability 
and reduce communication overhead, among cluster heads the one with highest 
remaining energy is further elected as the primary cluster head, which maintains the 
information of committed global transactions and validates transactions globally.  

3.2   The Basis of Our Clustering Algorithm - MEW  

Being inspired by the mobility based clustering algorithm, MOBIC [14], and the 
weighted clustering algorithm, WCA [13], and considering a new system parameter 
“Energy Decreasing Rate” (EDR), we propose a weighted clustering algorithm, called 
MEW (Mobility, Energy, and Workload), to build a stable backbone in MANETs. 
The objective of MEW is to form and maintain stable clusters in MANETs by 
electing nodes with the highest weights as cluster heads, where the weight of a node is 
calculated as a combination of its mobility, energy and workload. 
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To capture the mobility of nodes, we do not consider their absolute roaming speed.  
This is because it is easy to calculate the speed’s quantity, but it is hard to predict the 
direction of movement.  Without the direction, the speed’s quantity alone is not 
appropriate to justify whether a node is a good candidate for cluster head or not.  For 
instance, two nodes that have small speeds move in the opposite directions.  As time 
goes, they will be out of each other’s transmission range and get disconnected from 
each other.  Also the utilization of GPS is opted out because GPS consumes the 
limited battery energy of mobile nodes. 

Instead, two mobility metrics, Relative Mobility between two nodes i and j (RMij) 
[14] and Mobility Prediction for node j (MPj), are introduced to monitor the mobility 
of nodes and applied to determine whether a node is suitable to be a cluster head.  
RMij measures whether node i and node j move relatively together; MPj measures 
whether all 1-hop neighbors of node j move relatively together along with node j.  
Below we explain how each of the two metrics is calculated. 

For each node j (1 ≤ j ≤ N for N nodes in the network), after receiving two 
successive HELLO messages from every 1- hop neighbor i (1 ≤ i ≤ n if there are n 
neighbors), the RMij is calculated by Equation (1).  RSSij1 and RSSij2 are the received 
signal strengths (RSS) that are read from the RSS indicator when the first and second 
HELLO messages from the same neighbor i are received by node j, respectively.  
Based on the value of RMij, we can say that if RMij is equal to 1, then the node j and 
its neighbor i either do not move at all or move with the same speed in the same 
direction; if RMij is less than 1, then they move close to each other; otherwise, they 
move away from each other.  
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For each node j, in order to take into account the mobility of all n 1-hop neighbors 
and have an integral value to represent them, MPj is calculated as the standard 
deviation of RM1j, RM2j, …, RMnj shown in Equation (2).  However, for the stability of 
elected clusters, we prefer RMij to be equal to or less than 1 because we want cluster 
heads not to move away from their members.  Thus, in the MPj calculation, the mean 
of RMij (1 ≤ i ≤ n) is 1 instead of the actual mean.  A node j with a lower MPj means 
that it stays closer to its neighbors, thus, it is a better candidate for the cluster head 
among its neighbors.  
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When dealing with the limited battery energy, we consider not only the Remaining 
Energy (RE) of each node but also its Energy Decrease Rate (EDR) as the workload 
because nodes with a heavier workload consume more energy, so that we can balance 
the energy usage and prevent cluster heads from running out of energy quickly.  In 
other words, for each node j, EDRj is considered because REj represents only the 
current state of the energy level and the node’s energy will run out soon if it normally 
has a heavy workload.  The EDRj at time interval [t1, t2] is calculated by using 
Equation (3), where REj1 and REj2 are the remaining energy of node j at time t1 and t2, 
respectively.  
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A node with a lower EDR indicates that it was not busy at least during the interval 
[t1, t2].  However, when a node has a busy work history, it most likely will be busy in 
the future as well.  Since the larger the time interval is, the more accurate the EDR is 
in indicating a node’s workload history, during the initial election, each node saves a 
copy of its initial remaining energy and initial time as REj1 and t1, so that a more 
accurate EDR can be calculated in the future cluster head reelection.  

Based on the above analysis about mobility, energy and workload, it is obvious 
that a node j is the best candidate for a cluster head among all its neighbors if its REj 
is the highest, its MPj is the lowest and its EDRj is the lowest.  In other words, a node 
with the highest weight is the best candidate for a cluster head when we combine 
these three metrics together as the weight, which is calculated in Equation (4).  Since 
these metrics have different units, we apply the inversed exponential function to 
normalize MPj and EDRj and bound their values between 0 and 1.  REj is left out 
because the value of the remaining energy is at most 100%. 

jj EDR

j

MP

j efREfefW −− ++= *** 321  (4)

In Equation (4), REj = REj2, the weighting factors f1, f2 and f3 are set according to 
different application scenarios, and f1 + f2 + f3 = 1.  When we let f2 = f3 = 0, that is, we 
take away the effect of energy and workload, our algorithm turns into a mobility-
only-based approach just like MOBIC [14]. 

3.3   Cluster Formation  

To form clusters, each node first broadcasts HELLO messages, collects 1-hop 
neighbors’ information, and computes its weight based on mobility, energy and 
workload using Equations (1), (2), (3) and (4) defined above.  After broadcasting their 
own weights and receiving all 1-hop neighbors’ weights, nodes with the highest 
weights declare themselves as cluster heads, and 1-hop neighbors of cluster heads join 
them as cluster members.  The details of the cluster formation and different types of 
messages used in cluster formation are presented in [11].  Note that because clients 
have less communication strength, less computing power and smaller storage size 
than servers, clients cannot be elected as cluster heads and cannot work as 
coordinating servers.  

3.4   Cluster Maintenance  

Because every node can roam and has limited battery power in a MANET, cluster 
heads can resign due to low remaining energy, the links between cluster members and 
cluster heads can be broken, and the links between two cluster heads can be generated 
[15]. Consequently, clusters need be re-clustered. In other words, leaving clusters, 
joining clusters, merging clusters, and re-electing cluster heads are normal re-
clustering operations in a clustered MANET. However, these operations should be 
performed only on demand to reduce the overhead of computation and 
communication, and to provide consistent quality of service.  
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In order to maintain connections with neighbors, detect the link breaks and new 
link establishments, each node needs periodically broadcast HELLO messages.  Being 
a cluster head, it has to periodically monitor (after a global transaction commits) its 
remaining energy level so that it will resign from the cluster head status when the 
remaining energy drops below a predefined Low Energy Threshold (LET).  Relying 
on these two periodic operations, cluster maintenance can be done by recovery from a 
link break between a member and its cluster head, recovery from a link establishment 
when two cluster heads become 1-hop neighbors, or recovery from a link break when 
a cluster head resigns because its current remaining energy of a cluster head is less 
than LET. The details of these recovery tasks are discussed in [11]. 

4   Proposed Concurrency Control Algorithm: SODA 

In this section, we describe our proposed CC algorithm, called Sequential Order with 
Dynamic Adjustment (SODA). We first show how SODA works in a centralized 
database as originally presented in [17]. We then discuss how SODA works in a 
clustered MANET database.  

In [17], SODA is proposed for mobile P2P databases, in which each peer carries 
its own local database, is fully autonomous and shares information in on-the-fly 
fashion. Therefore, although global transactions (or called remote queries) do exist, it 
is unnecessary to maintain the global serializability among peers, which is required in 
traditional distributed databases and MANET databases that we focus on in this paper. 
However, in mobile P2P databases every peer still needs to guarantee the correctness 
of transactions that it processes locally because it may collect or update its own data, 
reply to requests and update replica simultaneously. 

4.1   How SODA Works in a Centralized Database 

Inspired by the dynamic adjustment technique proposed in [18], and based on the 
combination of Timestamp Ordering (TO), Optimistic Concurrency Control (OCC), 
and backward validation, we propose an optimistic CC algorithm called SODA.  In 
SODA, a list of committed transactions is maintained to validate committing 
transactions.  During the validation, the list can be dynamically adjusted to avoid 
unnecessary aborts.  After the committing transaction commits, the list is updated and 
trimmed. 

Assume that Ti’s (i = 1, …, n) are committed transactions, and T is a 
validating/committing transaction.  If we simply let the validation/commit order be 
the serialization order like in traditional OCC, and if there is a read-write conflict 
between T and Ti, i.e., T reads a common data item d before Ti updates d, then T is 
aborted because two orders are different.  Such aborts should be avoided.  

To avoid such aborts, in SODA, a dynamic order instead of validation order among 
committed transactions is used.  In SODA, a Sequential Order (SO) of committed 
transactions is maintained as {T1, T2, …, Ti, ..., Tn} (also called a history list, which is 
ordered from left to right) and can be dynamically adjusted.  The dynamic adjustment 
consists of simple and complex cases. In the simple case, the validating transaction T 
can commit if it can be directly inserted into the maintained sequential order without 



 An Energy-Efficient Concurrency Control Algorithm 503 

 

adjustment, and the final sequential order will be {T1, T2, …, low, … T, up, ..., Tn}, 
such that T must-be-serialized-after the transaction low but before the transaction up.  
On the other hand, in the complex case, the sequential order must be adjusted before 
the insertion of T.  After T passes the validation and commits, the maintained SO is 
updated with T’s information.  In addition, old committed transactions are removed 
from the maintained SO to reduce the overhead and save the limited storage. 

To prove the correctness (or completeness) of SODA, we must show that any 
schedule produced by SODA is serializable.  To fulfill this goal, we proved that the 
new serialization graph is still acyclic after the addition of any newly committed 
transaction that has passed our validation test.  Further details can be found in [17]. 

4.2   How SODA Works in a Clustered MANET Database 

In order to make SODA work effectively in a clustered MANET database, the 
coordinating server functionality is combined with the cluster head’s functionality 
because a cluster head is elected by our MEW algorithm as described in Section 3 and 
is the nearest server with the highest energy in clients’ neighborhood.  This would 
enable clients to save time, limited battery energy and bandwidth that they must spend 
on identifying suitable servers to which they send their transactions.  Therefore, only 
three major functionalities are required: the primary cluster head functionality, cluster 
head functionality, and participating server functionality as shown in Fig. 2.  Note that 
one server can have all the three functionalities at the same time. 

 

Fig. 2. Transaction flow in a clustered MANET database 

4.2.1   Transaction Execution Model 
As shown in Fig. 2, a transaction T issued by a client is distributed to its cluster head; 
the cluster head divides T into sub-transactions and transmits them to the appropriate 
participating servers according to the global database schema.  Each participating 
server processes the sub-transactions locally and sends the results back to the cluster 
head.  The cluster head runs the 2-Phase Commit (2PC), and gathers all results from 
the participating servers. Note that we adopt 2PC here due to its simplicity as our 
research goal is to develop a concurrency control algorithm, not a commit algorithm; 
however, we do plan to include a more suitable commit protocol for MANET 
databases in our future work.  If running 2PC successfully, the cluster head sends T to 
the primary cluster head to validate T globally based on the SO of committed global 
transactions; otherwise, the cluster head sends an abort message directly to the client. 
After receiving the global validation result, the cluster head sends the final results to 
the client. 
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4.2.2   The Primary Cluster Head Functionality 
The primary cluster head has the following functionalities: 

• It maintains the sequential order (SO) of committed global transactions. 
• It receives global transaction validation requests from non-primary cluster 

heads. 
• It validates global transactions using SODA.  After validation, it sends the 

validation results to the non-primary cluster head. 
• It updates the SO after a global transaction commits and adds this global 

transaction’s read set, write set and the timestamp of both sets to the data 
structure of the maintained SO. 

• It removes the old committed transactions that are not serialized after any 
active/committed global transaction from the maintained SO after a global 
transaction commits.  

• It periodically checks (after a global transaction commits) its remaining 
energy level.  If its level is below a predefined threshold LET and another 
cluster head’s remaining level is above the threshold, it resigns its cluster head 
status and elects a new primary cluster head that has the highest remaining 
energy from all cluster heads.  It then transfers the information of all the 
transactions it stores to the new primary cluster head.  Note that since the 
primary cluster head is also a non-primary one, if the primary one resigns, the 
non-primary one also resigns if there is a candidate in the neighborhood. 

4.2.3   The Non-primary Cluster Head Functionality 
A non-primary cluster head has the following functionalities: 

• It receives a global transaction from a client, divides them into sub-
transactions, and sends the sub-transactions to appropriate participating 
servers. 

• It runs 2PC to request the status of the sub-transactions and requests the 
timestamps of the global transaction’s read set. 

• It propagates the global transaction to the primary cluster head after it receives 
all successful messages of the sub-transactions. After receiving the validation 
result, it sends the final results to the client.  

• It periodically checks (after a global transaction commits) its remaining 
energy level.  If the level is below a predefined threshold and there is a 
candidate for cluster head in the neighborhood, it resigns its cluster head 
status and elects a new cluster head in the neighborhood.  It then transfers the 
information of all the transactions it stores to the new cluster head.  Note that 
if the old cluster head is also the primary cluster head, then the new cluster 
head can be the new primary cluster head as well if this new one has the 
highest remaining energy among all cluster heads. 

4.2.4   The Participating Server Functionality 
A participating server has the following functionalities: 

• It receives and processes sub-transactions, and maintains the SO of committed 
sub-transactions. 

• It runs SODA locally based on the local SO of committed sub-transactions 
when it receives the request about the status of the sub-transactions. 
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• It sends the final status of the sub-transactions to the requesting cluster head. 
It also sends the timestamps of the read sets of the sub-transactions to the 
cluster head if the sub-transactions pass the validation. 

• It updates the local SO of committed sub-transactions if a sub-transaction 
commits and adds this sub-transaction’s read set, write set and timestamps of 
both sets to the data structure of the maintained SO.  It removes the old 
committed sub-transactions that are not serialized after any active/committed 
sub-transaction from the maintained SO after a sub-transaction commits. 

5   Performance Evaluation 

The simulation experiments are conducted to compare the performance of our 
proposed SODA with that of SESAMO [10] as unlike other existing CC for cellular 
mobile databases, SESAMO was specifically designed for MANET databases. 

Our simulation models consist of a transaction generator, a real-time scheduler that 
schedules transactions using early deadline first, participating servers, coordinating 
servers or cluster heads for SODA only, and a deadlock manager for SESAMO.  The 
simulation model of SODA is the same as the transaction execution model discussed 
in Section 4.2.1. The simulation model for SESAMO is similar to the one of SODA 
except for a couple of points.  First, SODA is applied locally and globally to validate 
transactions, while in SESAMO, strict 2PL is applied locally [19] and globally [10].  
Second, SESAMO does not elect cluster heads and does not apply 2PC; so it may 
randomly choose a server as the coordinating server. 

5.1   Simulation Parameters and Performance Metrics 

Our simulation models are implemented using the AweSim simulation language [20].  
Global transactions are defined as entities, and mobile modes are defined as resources 
with different initial energy levels and randomly distributed locations.   

The static simulation parameters and their values are shown in Table 1.  We 
conducted experiments to study the impacts of inter-arrival time on the system 
performance, which is the mean of an exponentially distributed time between the 
arrivals of two consecutive transactions.  The inter-arrival time is varied over the 
range from 1 to 10 seconds in order to vary the system load [21] and create a scenario 
with high data contention.  

Table 1. Simulation Parameters 

Static Parameters  Value Reference 

Simulation area (m2) 1000x1000 [21] 

Transmission range (m) 250 [22] 

Node moving speed (m/s) 2 [22] 

Total transactions 1000 [21] 

Low Energy Threshold (LET) 50%  

Server energy consumption rate in active mode (watts) 30.3 [23] 

Server energy consumption rate in doze mode (watts) 12.5 [23] 
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Five performance metrics are used and they are defined in Equations (5), (6), (7), 
(8), and (9), respectively: total time when servers are in active mode, abort rate, total 
number of cluster head reelections, total energy consumed by all servers, and average 
difference in remaining energy between two servers.  Since transactions in mission-
critical applications should be executed not only correctly but also within their 
deadlines, we use firm real-time transactions to evaluate the performance.  In our 
simulation, a transaction will be aborted if either it misses its deadline or the system 
could not complete it successfully (e.g. when it is aborted by the CC technique). 

A server is in active mode only if it is processing transactions; otherwise, it is in 
doze mode to save energy.  The total time when servers are in active mode evaluates 
whether servers are busy to process transactions most of time, where m is the total 
number of servers and Ta,i is the total time when server Si is in active mode. 
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The second performance metric is the abort rate to measure the percentage of 
aborted transactions, and can be computed as below:  

%*
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(6)

The third performance metric is the total number of cluster head (primary and non-
primary) reelections to evaluate whether an algorithm takes balancing energy among 
servers into consideration, where Nprimay (Nnon-primay) is the number of primary (non-
primary) cluster head reelections. However, more reelections do not guarantee more 
balanced energy among servers because there is an overhead of reelections and 
transferring the information from the old cluster head to the new one.  

 primarynonprimay N Ntions ad  reelecluster  heber  of  cTotal  num −+=  (7)

The fourth performance metric is the total amount of energy consumed by all 
servers in both active mode and doze mode.  This metric evaluates how energy-
efficient each technique is, where m is the total number of servers, ECRa (ECRd) is the 
energy consumption rate when a server is in active (doze) mode, and Ta,i (Td,i) is the 
total time when server Si is in active (doze) mode. 
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The fifth performance metric is the average difference in remaining energy 
between two servers to evaluate how balanced the system is in terms of energy 
consumption.  The more balanced the system is, the longer lifetime the system has.  
This metric is computed using the following formula, where m is the total number of 
servers, and REi and REj are the remaining energy of servers Si and Sj, respectively. 
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5.2   Simulation Results 

Fig. 3 shows in both SODA and SESAMO, that the total time when servers are in 
active mode increases when the transaction inter-arrival time increases.  The total 
time of SESAMO is always much longer than SODA’s because SESAMO is 
pessimistic and uses locks to hold limited system resources to prevent conflicting 
transactions from accessing them. In other words, servers have to be in active mode 
most of time to keep processing transactions. 

  
 

Fig. 3. The total time when servers are in 
active mode vs. inter-arrival time 

Fig. 4. The abort rate vs. inter-arrival time 

Fig. 4 shows that the abort rates of SODA and SESAMO decrease when the 
transaction inter-arrival time increases.  The abort rate of SODA is much lower than 
that of SESAMO right after the inter-arrival time is longer than 1 second.  This is 
mainly because SODA is optimistic and non-blocking, and conflicts among 
transactions become rare, so that servers are not in active mode most of time (as 
shown in Fig. 3) and can process transactions in time.  Although SESAMO does not 
enforce global serializability, strict 2PL running both locally and globally still blocks 
many conflicting transactions.  When the inter-arrival time is getting shorter, it is easy 
to see that the abort rate of SODA is close to SESAMO’s because conflicts among 
transactions increase; in addition, this confirms the fact that optimistic CC techniques 
work well only if conflicts among transactions are rare. 

Fig. 5 shows the total number of cluster head reelections of SODA increases as the 
inter-arrival time increases.  When the inter-arrival time reaches 10 seconds, the total 
simulation time is close to 3 hours (1000 transactions * 10 seconds = 10,000 seconds).  
Consequently, more cluster heads’ remaining energy is below the predefined 
threshold LET, and more reelections are triggered to change roles for preserving 
energy. However, the total number of reelections of SESAMO is always zero because 
its design does not involve any cluster heads.  In other words, SESAMO does not 
rotate roles among servers to balance energy. 
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Fig. 5. The total number of cluster head 
reelections vs. inter-arrival time 

Fig. 6. The total energy consumed by all 
servers vs. inter-arrival time 

Fig. 6 shows that the total energy consumption of all servers increases with the 
increase of the inter-arrival time.  This is expected because more transactions are 
committed as inter-arrival time increases as shown in Fig. 4, so that each server has to 
spend more time in active mode on processing these committed transactions as shown 
in Fig. 3.  SODA consumes at least 51,124 J and at most 749,727 J less than 
SESAMO right after when the inter-arrival time is longer than 1 second.  This 
happens because transactions arrive into the system with a slow rate, and conflicts 
among transactions become much rarer, so that optimistic SODA performs better than 
pessimistic SESAMO due to no prevention of conflicts overhead. 

The average difference in energy consumption between two servers when varying 
the inter-arrival time is shown in Fig. 7. Through this metric, we want to check 
whether the energy consumption is balanced among servers.  

  

It is easy to see that SODA balances 
remaining energy better than SESAMO. 
This is because more non-primary cluster 
heads and primary cluster heads with 
higher energy are reelected as shown in 
Fig. 5. However, in SESAMO, there 
is no role rotation strategy and clients 
may keep submitting transactions to the 
same servers so that these servers are 
overloaded. 

Fig. 7. The average difference in remaining 
energy between two servers vs. inter-arrival 
time 

6   Conclusion and Future Research 

In this paper, we introduced a database transaction concurrency control technique, 
called SODA, that can be used to support mission-critical applications such as disaster 
rescue and battlefields in a clustered MANET.  This technique considers transaction 
real-time constraints as well as mobility, energy limitation, and workload of both 
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mobile servers and mobile clients in a clustered MANET architecture.  Our solution is 
aimed at reducing transaction abort rate while saving the energy consumption by 
servers and balancing the energy consumption among servers.  With respect to these 
performance metrics, the simulation results show the superiority of SODA over the 
existing technique, SESAMO.  

For future research, we plan to incorporate data replication into our model to 
improve data access time and availability.  We will also investigate the impacts of 
mobility (speed) of mobile nodes, disconnection time and read-only transaction 
percentage on abort rate, response time, total energy consumed by all servers, and 
average difference in remaining energy between two servers.  We also plan to 
investigate alternative commit protocols. 
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Abstract. We present, in this paper, a duplicate detection method in
semantically annotated Web data tables, driven by a domain Termino-
Ontological Resource (TOR). Our method relies on the fuzzy semantic
annotations automatically associated with the Web data tables. A fuzzy
semantic annotation is automatically associated with each row of a Web
data table. It corresponds to the instantiation of a composed concept of
the domain TOR, which represents the semantic n-ary relationship that
exists between the columns of the Web data table. A fuzzy semantic
annotation contains fuzzy values expressed as fuzzy sets. We propose an
automatic duplicate detection method which consists in detecting the
pairs of duplicate fuzzy semantic annotations and relies on (i) knowledge
declared in the domain TOR and on (ii) similarity measures between
fuzzy sets. Two new similarity measures are defined to compare both,
the symbolic fuzzy values and the numerical fuzzy values. Our method
has been tested on a real application in the domain of chemical risk in
food.

1 Introduction

Today’s Web is not only a set of semi-structured documents interconnected via
hyper-links. A huge amount of scientific and technical documents, available on
the Web or on the hidden Web (digital libraries, ...), include structured data
represented in data tables. Those data tables can be seen as small relational
databases even if they lack the explicit metadata associated with a database.
They represent a very interesting potential external source for building a data
warehouse dedicated to a given application domain. They can be used to enrich
local data sources or to compare local data with external ones. In order to
integrate data, a preliminary step consists in harmonizing the vocabulary of the
external data with the vocabulary of the local data, which is represented by a
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domain ontology. Therefore, external and local data can be indexed and queried
using the same vocabulary. In [1], Hignette and al. have developed an automatic
and ontology-based method for semantic annotation of Web data tables. The
obtained annotations are expressed thanks to the domain ontology and fuzzy
(see [2], for more details on fuzzy sets). Fuzzy annotations may have two different
semantics: they represent either data imprecision or similarities between terms
of data tables and terms of the ontology.

The semantic annotation allows the integration of Web external data with lo-
cal ones, solving the vocabulary heterogeneity problem, but it does not prevent
the integration of duplicate data into the data warehouse. The presence of du-
plicates in the data warehouse impacts the data quality and therefore the results
of their exploitation (for instance, data analysis and decision aid). We propose
in this paper to study the duplicate detection problem in Web data tables, using
the fuzzy semantic annotations associated with the data tables thanks to a do-
main ontology. We propose an automatic method of duplicate detection which
relies on (i) knowledge declared in the domain ontology, as it is done in [3], and
on (ii) similarity measures between fuzzy sets.

The result of this work has been integrated in the @Web system which was
previously developed (see [4,1,5]). @Web system is based on the semantic Web
framework1 and language recommendations (XML, RDF, OWL), which allow
an XML/RDF data warehouse to be supplemented with Web data tables, as
presented in Figure 1. @Web system relies on a domain Termino-Ontological
Resource (TOR) manually built by domain experts.

Fig. 1. Main steps of the ONDINE system

We will present in this paper how @Web system can be extended with a new
duplicate detection step using the fuzzy semantic annotations associated with
the Web data tables. We suppose that the Web data tables were previously
automatically annotated thanks to the annotation method described in [1]. In
section 2, we briefly present the domain TOR, we recall the semantic annotation
method of @Web system (see [1]), and we recall the reference reconciliation

1 http://www.w3.org/standards/semanticweb/
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method (N2R) of [3] on which relies our work. In section 3, we present our
duplicate detection method in Web data tables driven by a domain TOR. In
section 4, we present some experiment results obtained on real data of chemical
risk in food domain. We conclude and present some future work in section 5.

2 Preliminaries

In subsection 2.1, we present the domain TOR. In subsection 2.2, we recall the
semantic annotation method of the @Web system presented in [1]. Finally, in
subsection 2.3, we recall the numerical reference reconciliation method N2R [3].

2.1 The Domain Termino-Ontological Resource

A Termino-Ontological Resource (TOR) [6,7] is composed of a conceptual com-
ponent and a terminological component. The conceptual component represents
the ontology of the TOR. It is composed of two main parts: a generic part, com-
monly called core ontology, which contains the structuring concepts of the data
table integration task, and a specific part, commonly called domain ontology,
which contains the concepts that are specific to the domain of interest. The core
ontology is composed of three kinds of generic concepts:

1. simple concepts which contain the symbolic concepts and the numerical con-
cepts. Symbolic concepts are hierarchically organized by the “is-a” relation-
ship. A numerical concept is described by a set of units, which are sub
concepts of the unit concept, and eventually a numerical interval;

2. unit concepts which contain the units used to characterize the numerical
concepts;

3. composed concepts which allow n-ary relationships to be represented between
simple concepts. A composed concept is described by a signature, which
is defined by a domain and a range. The domain contains one or several
simple concepts, called access concepts, while the range contains only one
simple concept, called result concept. A composed concept is denoted by
CC(Aa1, Aa2, . . . , Aan, Ar) where CC is the name of the composed concept
and (Aa1, Aa2, . . . , Aan, Ar) represents its signature: Aa1, Aa2, . . . , Aan are
the access concepts of CC and Ar its result concept. The simple concepts
which belong to the signature of a composed concept can be declared as
important or simply optional using FOL Horn rules.

The concepts belonging to the domain ontology, called specific concepts, appear
in the domain TOR as sub concepts of the generic concepts.

In the domain TOR, all concepts are represented by OWL classes. The Horn
rules are expressed using SWRL rules (Semantic Web Rule Language) recom-
mended by the W3C2. The disjunction constraints, which can be declared be-
tween simple concepts and/or composed concepts, are expressed using OWL

2 http://www.w3.org/Submission/SWRL/
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Fig. 2. Conceptual component of a TOR in the domain of chemical risk in food

constructor owl:disjointWith. Figure 2 gives an example of the conceptual com-
ponent of a TOR in the domain of chemical risk in food. The concepts belonging
to the core ontology are represented in bold.

The terminological component is the terminology of the TOR: it contains the
term set of the domain of interest. A term is defined as a sequence of words, in
a language, and has a label.

2.2 Semantic Annotation of Web Data Tables Driven by a Domain
TOR

A data table is composed of columns, themselves composed of cells. The cells of
a data table may contain terms or numerical values often followed by a measure
unit. The semantic annotation of a Web data table consists in annotating cells
content, in order to identify the symbolic or numerical concepts represented by
its columns and finally the semantic n-ary relationships between its columns.

Table 1. Example of a Web data table

Food Contaminant Max Value (μg/kg) Contamination Level (μg/kg)

Breakfast cereals Ochratoxin A 6 <0.2
Baby food Patulin 58 6.3

Example 1. Table 1 presents an example of a Web data table in which the
composed concept Contamination Range was identified. The first line of the Web
data table indicates that Breakfast cereals is contaminated by the Ochratoxin A
at a contamination level smaller than 0.2 μg/kg.

Several composed concepts of a domain TOR can be recognized to annotate a
Web data table. The semantic annotation of a Web data table consists in instan-
tiating each recognized composed concept for each row of the table. A composed
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concept instantiation associated with a row of a Web data table include values
expressed as fuzzy sets [2]. In a fuzzy set A defined on a domain X , each element
x ∈ X can belong partially to the fuzzy set with a membership degree, denoted
μA(x), between 0 (element which is not part of the fuzzy set) and 1 (element
which is completely part of the fuzzy set). The definition domain X can be con-
tinuous or discrete. The support S(A) and the kernel K(A) of the fuzzy set A
are the sets: S(A) = {x ∈ A|μA(x) > 0} and K(A) = {x ∈ A|μA(x) = 1}.
The fuzzy values, found in the composed concept instantiations, may express
two of the three classical semantics of fuzzy sets [8]: similarity or imprecision.
A discrete fuzzy set with a semantics of similarity is associated with each cell
belonging to a column recognized as symbolic. It represents the ordered list of
the most similar terms of the domain TOR associated with the original term
present in the cell. A continuous fuzzy set with a semantics of imprecision may
be associated with cells belonging to columns recognized as numerical ones. It
represents an ordered disjunction of exclusive possible values.

Definition 1. A discrete fuzzy set A, denoted DFS, is a fuzzy set associated
with a symbolic concept of the domain TOR. Its definition domain is the set
of terms of the domain TOR. We denote by {x1/y1, . . . , xn/yn} the fact that
element xk has membership degree yk.

Definition 2. A continuous fuzzy set A, denoted CFS, is a trapezoidal fuzzy
set associated with a numerical concept of the domain TOR. A trapezoidal
fuzzy set A is defined by its four (ordered) characteristic points [a, b, c, d] which
correspond to its support [a, d] and its kernel [b, c] (see Figure 3). Its definition
domain is the interval of possible values for the numerical concept.

Fig. 3. A trapezoidal continuous fuzzy set

Example 2. The discrete fuzzy set associated with the term “Breakfast cereal”
of the first row of Table 1 is: { breakfast cereal sweet/0.602, breakfast cake/0.5,
cereal bar chocolat/0.408, cereal bar/0.5, cereal bar low calorie/0.354 }. The
continuous fuzzy set associated with the numerical value “< 0.2” of the first row
of Table 1 is: [0, 0, 0.2, 0.2].

2.3 Reference Reconciliation Method (N2R)

To develop a duplicate detection method we have chosen to rely on reference
reconciliation methods which are automatic and ontology based, in order to
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benefit from the knowledge which is declared in the domain TOR. N2R method,
developed by Säıs and al [3], is a method which has two main distinguishing
characteristics. First of all, it is fully unsupervised, i.e., it does not require any
training phase from manually labeled data to set up coefficients or parameters.
Secondly, two functions modeling the influence between similarities of references
take into account the constraints associated with the functional properties de-
clared in the OWL ontology in a declarative way. Furthermore, ontology and data
knowledge (disjunctions and Unique Name Assumption) are exploited by N2R
in a filtering step to reduce the number of reference pairs which are considered
in the similarity computation step.

The duplicate detection method, present in the following, relies on N2R
method in the sense that it exploits knowledge declared in the domain TOR to
both, (i) filter the pairs of data to be compared, thanks to disjunctions declared
in the domain TOR, and (ii) to express the influence degrees existing between
the different similarities, thanks to the declaration of concept importance.

3 Duplicate Detection Method

We present in this section our duplicate detection method. Our method takes
as input two Web data tables which were previously automatically semantically
annotated thanks to a domain TOR using the method of [1]. Since each data
table is annotated by a set of composed concept instances, our method consists
in detecting the pairs of duplicate composed concept instances by comparing
them two by two. We first present the definitions of simple concept instances
and composed concept instances. Since the composed concept instances contain
fuzzy values, we then propose two new similarity measures to compare, on the
one hand, the discrete fuzzy sets and, on the other hand, the continuous fuzzy
sets. We finally present the algorithms of our method and an illustrative example.

3.1 Definitions of Simple and Composed Concept Instances

The input of our method is a set of composed concept instances associated with
each Web data table to be compared. A composed concept instance is composed
of the instances of the simple concepts which belong to its signature.

Definition 3. A simple concept instance, denoted instci where ci is a simple
concept (ci = SimpleConcept(instci)), can be represented by either:

– a discrete fuzzy set having a semantics of similarity which is composed of a
set of terms tk of the domain TOR with their membership degrees dk:
instci = (ci, { t1/d1, . . . , tn/dn });

– or a continuous trapezoid fuzzy set having a semantics of imprecision which
is described by its support [supmin, supmax] and its kernel [kermin, kermax]:
instci = (ci, [supmin, kermin, kermax, supmax]).

We can therefore give the definition of a composed concept instance.
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Definition 4. A composed concept instance, denoted ICC, is a couple (id,
descrid) where id is the ID associated with the composed concept CC and descrid
its description. The description of a composed concept is the set of the instances
of the simple concepts which belong to its signature: descrid = { (c1, instc1),
. . ., (cn, instcn) }. We denoted id.inst the set of the simple concept instances:
id.inst = {instc1, . . . , instcn}
Example 3. The description of the composed concept instance associated with
the first row of Table 1 is: { (Food Product, { breakfast cereal sweet/0.602,
breakfast cake/0.5, cereal bar chocolat/0.408, cereal bar/0.5, cereal bar low calo-
rie/0.354 }), (Contaminant, { Ochratoxin A/1 }), (Contamination level, [0, 0,
0.2, 0.2]) }.

3.2 Two Similarity Measures to Compare Fuzzy Sets

In this section, we propose two similarity measures to compare, on the one hand,
discrete fuzzy sets, and on the other hand, continuous fuzzy sets. [9] proposed a
classification of comparison measures between fuzzy objects into four categories:
satisfiability, inclusion, resemblance and dissimilarity. In this paper, we are look-
ing for a measure of resemblance, which is a measure of similitude between two
fuzzy sets looking at the characteristics they have in common, without regard-
ing one of them as a reference. In [9], this family of measures satisfies the two
properties of reflexivity and symmetry, which can be easily checked for the two
measures we propose in the following.

A similarity measure to compare discrete fuzzy sets. There exist several
similarity measures between sets of terms (see [10]). We can cite, in particular,
the measure of Jaccard [11], the measure of Tversky [12] or the measure of Soft-
Jaccard [13], which allow the comparison between sets of terms. The measure
we have to choose must take into account the fact that the discrete fuzzy sets
we want to compare are sets of terms associated with membership degrees (see
definition 3). We therefore propose a new similarity measure, called Sim, which
is inspired from the Jaccard measure. The Jaccard measure is defined as the
intersection (number of common terms) divided by the union (total number of
terms) of the two sets to compare. In our Sim measure, the number of common
terms corresponds to the sum of the minimum degrees associated with the com-
mon terms of both fuzzy sets. The total number of terms corresponds to the sum
of the maximum degrees associated with the terms of the fuzzy sets. These are
the classical ways to represent the intersection and the union of two fuzzy sets.
Let A and B be two discrete fuzzy sets, degA(t) (respectively degB(t)) the mem-
bership degree of the term t to the fuzzy set A (respectively B), the similarity
measure Sim is defined as follows:

Sim(A,B) =

∑
t∈A∩B

min(degA(t), degB(t))∑
t∈A∪B

max(degA(t), degB(t))
(1)
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A similarity measure to compare continuous fuzzy sets. There exist
several similarity measures between continuous fuzzy sets. We can cite, in par-
ticular, the measure of Hsieh and Chen [14], the measure of Chen [15] and the
measure of Chen and Chen [16]. The measure we have to choose must take into
account two constraints on the continuous fuzzy sets we want to compare. The
first constraint to be considered is that continuous fuzzy sets are not necessarily
normalized, i.e. their values are not necessarily included between 0 and 1. We
can cite for instance the numerical concept pH whose values belong to [0, 14]. In
the second constraint, redundancies between continuous fuzzy sets must be de-
tected even if they represent values with a different precision scale. For instance,
a table may contain the mean value of repeated experimental data whereas, in
a redundant table, the value is expressed by a mean value and associated stan-
dard deviation. Since the measure of Chen [15] does not allow the comparison
between not normalized continuous fuzzy sets and the measure of Hsieh and
Chen [14] does not allow the comparison between continuous fuzzy sets of dif-
ferent precision scales, we propose to use the measure of simple center of gravity
method (SCGM) of Chen and Chen [16]. This measure relies on a similarity
measure between the center-of-gravity points of the fuzzy sets to compare. Let
(a1, a2, a3, a4) be a continuous trapezoid fuzzy set, the coordinates x∗ and y∗ of
the center-of-gravity points are computed by the SCGM method as follows:

If a1 = a4 −→
{
y∗ = 1/2
x∗ = a1

, otherwise −→
{
y∗ =

a3−a2
a4−a1

+2

6

x∗ = y∗(a3+a2)+(a4+a1)(1−y∗)
2

(2)

In order to compute the similarity measure between two continuous trapezoid
fuzzy sets A and B, denoted Sim(A,B), we propose to use the distance between
their center-of-gravity points as follows:

Sim(A,B) = 1
1+d(centA,centB)

where d(centA, centB) =
√

(x∗A − x∗B)2 + (y∗A − y∗B)2
(3)

3.3 The Duplicate Detection Algorithm

We now detail our duplicate detection method between two Web data tables
which were semantically annotated thanks to a domain TOR. Our method con-
sists in detecting the pairs of duplicate composed concepts instances, which are
associated with the Web data tables. To do that, we propose to compute a simi-
larity score between the descriptions of each pair of composed concept instances.
This similarity score relies on the similarity measures presented in subsection 3.2
and on knowledge declared in the domain TOR. Algorithm 1 presents the main
steps of our duplicate detection method.

Algorithm 1 requires three kinds of inputs. Let T1 and T2 be two Web data
tables semantically annotated thanks to a domain TOR. The first input is the
two sets of composed concept instances Set1(ICC) and Set2(ICC) which are
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Algorithm 1. Duplicate detection Algorithm

Input: – Set1(ICC) : set of composed concept instances associated with the first Web
data table T1

– Set2(ICC) : set of composed concept instances associated with the second Web
data table T2

– Disj : set of disjunction constraints between the concepts of the domain TOR
– Tax : hierarchical relationships between simple concepts in the domain TOR
– ImportantSimpleConcepts: set of the signatures of the composed concepts in the
domain TOR with their important simple concepts
– Tdup: predefined threshold of the duplicate decision

Output: – set of duplicate pairs of composed concept instances
{1: building of the set of pairs of comparable composed concept instances}
S ← comparableICCPairs(Set1(ICC), Set2(ICC),Disj)
DUP ← ∅
{2: computation of the similarity score}
For Each (icc1, icc2) ∈ S Do

score ← SimilarityScore((icc1, icc2), Disj, Tax, ImportantSimpleConcepts)
{3: duplicate decision}
If score > Tdup Then

DUP ← DUP ∪ (icc1, icc2)
EndIf

End Each
return DUP

respectively associated with the Web data tables T1 and T2. The second kind of
input corresponds to the knowledge declared in the domain TOR: (1) the disjunc-
tions between composed concepts and the disjunctions between simple concepts,
which allows one to avoid some obvious comparisons between composed concept
instances and between simple concept instances, (2) the hierarchical relation-
ships between simple concepts represented by a taxonomy, (3) the importance of
the simple concepts in the signatures of the composed concepts. The third kind
of input is a predefined threshold used to determine if two composed concept
instances are duplicate or not according to their similarity score. Algorithm 1
has for output the set of duplicate pairs of composed concept instances. The first
step of Algorithm 1 consists in building the set of pairs of comparable composed
concepts instances using the disjunction constraints defined in the domain TOR.
Two composed concept instances icc1 and icc2 are said comparable if the com-
posed concepts cc1 and cc2 are not declared as disjoints in the TOR. A similarity
score is then computed for each pair of comparable composed concept instances
(step 2). The computation of this score is detailed in Algorithm 2 presented be-
low. Finally, two composed concept instances are said redundant if the similarity
score between their descriptions is greater than a given threshold (step 3).

Algorithm 2 gives details on the similarity score computation for one pair of
comparable composed concept instances. This score is computed thanks to the
similarity measures, presented in subsection 3.2, between each pair of comparable
simple concept instances, which belong to the signatures of the composed concept
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Algorithm 2. Computation of the similarity score for a pair of comparable
composed concept instances
Input: – (icc1, icc2) : pair of composed concept instances

– Disj : set of disjunction constraints between the concepts of the domain TOR
– Tax : hierarchical relationships between simple concepts in the domain TOR
– ImportantSimpleConcepts: set of the signatures of the composed concepts in the
domain TOR with their important simple concepts

Output: similarity score of the pair of comparable composed concept instances
(icc1, icc2)
fimp ← 1
ScoreNimp ← 0
{1: Computation of the similarity scores between each pair of comparable simple
concept instances}
For Each a ∈ id1.inst Do

best ← ∅
For Each b ∈ id2.inst Do

scoremax(a, b) ← 0
If ComparableSimpleConcepts(a, b, Disj) Then

scoreInst(a, b) = Sim(a, b)
If SimpleConcept(a) �= SimpleConcept(b) Then

scoreSem(a, b) = 1
1+LCS(SimpleConcept(a),SimpleConcept(b),Tax)

scorefinal(a, b) = scoreSem(a,b)+scoreInst(a,b)
2

Else
scorefinal(a, b) = scoreInst(a, b)

EndIf
If scorefinal(a, b) > scoremax(a, b) Then

best ← b
scoremax(a, best) ← scorefinal(a, b)

EndIf
EndIf

End Each
{2: Computation of the similarity score of the pair of comparable composed concept
instances (icc1, icc2)}
If (Is Important(a, ImportantSimpleConcepts) and Is Important(best,
ImportantSimpleConcepts)) Then

fimp = fimp × scoremax(a, best)
Else

ScoreNimp = ScoreNimp + scoremax(a, best)
EndIf

End Each
fNimp =

ScoreNimp

max(|id1.inst|,|id2.inst|)
S = max(fimp, fNimp))
return S
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instances. Two simple concept instances are said comparable if the corresponding
simple concepts are not declared as disjoint in the domain TOR. In the first step
of Algorithm 2, a similarity score is computed for each simple concept instance
a, which belongs to the composed concept instance icc1 (a ∈ id1.inst), with each
simple concept instance b, which belongs to the composed concept instance icc2
(b ∈ id2.inst). This score is a combination of:

1. a semantic similarity score scoresem between the simple concepts associated
with a and b, which relies on the notion of lowest common subsumer (LCS)
in the hierarchy of simple concepts in the domain TOR;

2. an instance score scoreinst which is computed thanks to the similarity mea-
sures Sim(a, b), presented in subsection 3.2, depending upon the simple con-
cepts associated with a and b are symbolic or numerical.

For each simple concept instance a ∈ id1.inst, we keep the best similarity score
with the simple concept instances b ∈ id2.inst. We can therefore compute the
similarity score of the pair of comparable composed concept instances (icc1, icc2)
(step 2). This similarity score is computed thanks to the importance of the simple
concepts in the signatures of the composed concepts associated with icc1 and
icc2, defined in the domain TOR. It is a combination of (i) a similarity score
fimp for the instances of the simple concepts which are declared as important,
computed as the product of the similarity scores of their pairs of instances and
(ii) a similarity score fNimp for the instances of the simple concepts which are
not declared as important, computed as the average value of the similarity scores
of their pairs of instances.

3.4 An Illustrative Example of Our Duplicate Detection Method

To illustrate our method, let us consider Table 1 presented in subsection 2.2 and
Table 2 presented below.

Table 2. Example of a Web data table (T2)

Food Contaminant Year Lod Contamination Level

Baby food Patulin 2000 0.7 6.3
Apple juice Patulin 1998 2 8.37
Breafast cereal Ochratoxin A 2003 0.7 <0.2

The identified composed concepts in Table 1 are the following:

– ContaminationRange (Food, Contaminant, year, ContaminationLevel)
– LodRelation (Food, Contaminant, year, SamplesTotalNumber, lod)

The identified composed concepts in Table 2 are the following:

– ContaminationRange (Food, Contaminant, year,ContaminationLevel)
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– MaxContaminationRange (Food, Contaminant, year, MaxContamina-
tionlevel)

The simple concepts in bold represent the important simple concepts of the sig-
nature of the composed concepts. We suppose that (i) the composed concepts
are declared as pairwise disjoint in the TOR except the composed concepts Con-
taminationRange and MaxContaminationRange and (ii) the simple concepts are
declared as pairwise disjoint in the TOR except the simple concepts Contamina-
tionLevel and MaxContaminationLevel. In the following, the composed concept
instances and the simple concept instances are denoted by the number of their
table and the number of their row. For instance, ICCnT ,nL corresponds to the
instance of the composed concept CC in Row nL of Table nT .

We first identify the pairs of comparable composed concept instances ac-
cording to the disjunction constraints defined in the domain TOR. For simplic-
ity reason, we only consider in the following the pair (ContaminationRange1,3,
ContaminationRange2,1). The descriptions associated with the two composed
concept instances are:
descr1,3={ (FoodProduct1,3, { “breakfast cereal sweet”/0.408, “cereal bar choco-
lat”/0.408, “cereal bar”/0.5, “cereal bar low calorie”/0.354 }), (Contaminant1,3,
{ “Ochratoxin” A/1 }), (year1,3, { [2003, 2003] }), (ContaminationLevel1,3 , [0,
0, 0.2, 0.2]) }.
descr2,1={ (FoodProduct2,1, { “breakfast cereal sweet”/0.602, “breakfast cake”
/0.5, “cereal bar chocolat”/0.408, “cereal bar”/0.5, “cereal bar low calorie”/0.354
}), (Contaminant2,1, {“Ochratoxin A”/1 }), (Contamination level2,1, [0, 0, 0.2,
0.2]) }.

We can now compute the similarity scores between each pair of comparable
simple concept instances:
scoreInst(FoodProduct1,3, FoodProduct2,1) = 0.408+0.408+0.5+0.354

0.602+0.5+0.408+0.5+0.354 = 0.7
scoreInst(Contaminant1,3, Contaminant2,1) = 1
scoreInst(ContaminationLevel1,3, ContaminationLevel2,1) = 1.

Finally, we compute the similarity score of the pair (ContaminationRange1,3,
ContaminationRange2,1) thanks to the importance of the simple concepts in the
signature of the composed concept ContaminationRange:
fImp = scoreInst(FoodProduct1,3, FoodProduct2,1) × scoreInst(Contaminant1,3,
Contaminant2,1) × scoreInst(ContaminationLevel1,3, ContaminationLevel2,1) =
0.7 × 1 × 1 = 0.7
fNImp = 0. Then, we obtain S = max(fImp, fNImp) = 0.7

If we set the duplicate threshold Tdup at 0.5, the third row of Table 2 and the
first row of Table 1 are therefore duplicates with the similarity score of 0.7.

4 Experimentation

To evaluate the efficiency of our method we have applied the duplicate detection
algorithm on several real Web Tables in the chemical risk in food domain. We
will first give details on the dataset and then discuss the obtained results.



Duplicate Detection in Web Data Tables 523

Table 3. Data set description

Tables Identified composed concepts

T1 Lod, MaxContamination, MeanContaminationLevel, MedianContamination

T2 MaxContamination, MeanContaminationLevel, MedianContamination

T3 MaxContamination, MeanContaminationLevel, SamplesPositives,
SdContaminationLevel

T4 MeanContaminationLevel, SamplesPositives, RangeContamination

T5 ContaminationLevel

T6 ContaminationLevel

T7 MeanContaminationLevel, SamplesPositives, RangeContamination

Dataset description. The considered data set is composed of seven Web tables
that are annotated by @Web system by using the TOR of the chemical risk in
food domain. In the Table 3 we give the web table list with the set of composed
concepts that are identified within them.

The obtained results. We will present here the results obtained by applying our
algorithm on the combinations of the above seven tables. We present here the
results obtained by the following comparisons: (T1, T2), (T1, T3), (T4, T7)
and (T5, T6). These combinations has been made in the way to combine tables
having most of common composed concepts.

Table 4. Results in terms of recall, precision and F-Measure for the 4 combinations of
tables: table (a) shows the best results for the 4 combinations and their corresponding
threshold Tdup and table (b) shows the results for the 4 combinations where Tdup = 0.7

(a) (b)

Recall Precision F-measure Best Tdup

(T1, T2) 1 1 1 1
(T4, T7) 1 1 1 1
(T5, T6) 1 1 1 0.75
(T1, T3) - - - -

Recall Precision F-measure

(T1, T2) 1 1 1
(T4, T7) 1 0.59 0.74
(T5, T6) 1 0.54 0.7
(T1, T3) - - -

We have computed the recall, the precision and the F-measure by comparing
the results obtained by our method with the gold-standard results given by a
domain expert. In Table 4 (a) we give the best results that are obtained for each
pair of tables and their corresponding threshold Tdup. For the table pairs (T1,
T2) and (T4, T7) we have obtained the maximum results, i.e. all the duplicate
data have been detected by our method and all the detected duplicates are
correct. These results are represented by a F-Meaure equals to 1 for a threshold
equals to 1. For the table pair (T5, T6) we have obtained the maximum results
where Tdup equals to 0.75. In Table 4 (b) we show the obtained results for the
four combinations where Tdup is fixed at 0.7. We obtain the maximum results
(F-measure equals to 1) for the tables T1 and T2. We obtain an F-meaure of
0.74 and 0.7 for the table pairs (T4, T7) and (T5, T6) respectively.
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We note that comparisons between T1 and T3 correspond to the case of
tables without duplicates. No duplicates have been detected by the method,
which corresponds to the expected behaviour. It is denoted by a dash in Table
4 (a) and (b).

5 Conclusion

In this paper we have presented our automatic and ontology-based approach of
duplicate detection in Web data tables. The originalities of this work is three-
fold: (i) the declarative way of exploiting ontology knowledge in the duplicate
detection process, (ii) the development and the use of suitable similarity mea-
sures between numerical and symbolic fuzzy sets; and (iii) the ability to handle
heterogeneous and imprecise data at different levels of granularity.

Our proposal in this paper can be compared to approaches studying the ref-
erence reconciliation problem, i.e., detecting whether different data descriptions
refer to the same real world entity (e.g. the same person, the same paper, the
same protein). Different approaches have been proposed. [17,18,10] have devel-
oped supervised reference reconciliation methods which use supervised learning
algorithm in order to help the duplicate detection. Those methods require a set
of reference pairs labeled as reconciled or not reconciled. [19,3] proposes a declar-
ative approach which relies on expert knowledge expressed in an ontology and
does need a learning phase. Since we have a domain TOR and we do not want
to add a learning phase, we have proposed to extend the work of [3] in order to
detect duplicates between data tables using their fuzzy semantic annotations. In
a close domain to the references reconciliation, works have been done on data
table fusion. [20,21], in particular, study the data integration into the Cloud
in order to help end-users to collaboratively manage their data. Our approach
is complementary since it detects duplicates between data tables which were
extracted from the Web, before storing them in a data warehouse.

The efficiency of our duplicate detection method has been evaluated and vali-
dated on real data in the chemical risk in food domain. As future work, we plan
to test our method on bigger data sets form different domains, in order to show
its scalability and its generality. We aim also to study how information on data
provenance (e.g., document authors, source reputation, etc) can help to improve
the distinction between duplicate data, similar data and distinct data. Finally,
it will be interesting to extend the proposed approach by studying how to deal
with duplicate detection when data tables were annotated thanks to different
ontologies.
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Abstract. Observational data plays a critical role in many scientific disciplines,
and scientists are increasingly interested in performing broad-scale analyses by
using data collected as part of many smaller scientific studies. However, while
these data sets often contain similar types of information, they are typically rep-
resented using very different structures and with little semantic information about
the data itself, which creates significant challenges for researchers who wish to
discover existing data sets based on data semantics (observation and measure-
ment types) and data content (the values of measurements within a data set). We
present a formal framework to address these challenges that consists of a seman-
tic observational model, a high-level semantic annotation language, and a declar-
ative query language that allows researchers to express data-discovery queries
over heterogeneous (annotated) data sets. To demonstrate the feasibility of our
framework, we also present implementation approaches for efficiently answering
discovery queries over semantically annotated data sets.

1 Introduction

Accessing and reusing observational data is essential for performing scientific anal-
yses at broad geographic, temporal, and biological scales. Classic examples in earth
and environmental science include examining the effects of nitrogen treatments across
North American grasslands [17], and studying how changing environmental conditions
affect bird migratory patterns [19]. These types of studies often require access to hun-
dreds of data sets collected by independent research groups over many years. Tools that
aim to help researchers discover and reuse these data sets must overcome a number of
significant challenges: (1) observational data sets exhibit a high level of structural het-
erogeneity (e.g., see Fig. 1), which includes the use of various terms and conventions
for naming columns containing similar or compatible information (e.g., “dw”, “wt”,
“m”, “biomass” may each be used to denote a “mass” measurement); and (2) semantic
information about data sets, which is crucial for properly interpreting data, is typically
either missing or only provided through natural-language descriptions.
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site plt size ph spp len dbh

GCE6 A 7 4.5 piru 21.6 36.0
GCE6 B 8 4.8 piru 27.0 45
... ... ... ... ... ... ...
GCE7 A 7 3.7 piru 23.4 39.1
GCE7 B 8 3.9 piru 25.2 42.7
... ... ... ... ... ... ...

yr field area acidity piru abba ...

2005 f1 5 5.1 20.8 14.1 ...
2006 f1 5 5.2 21.1 15.2 ...
... ... ... ... ... ... ...
2010 f1 5 5.8 22.0 18.9 ...
2005 f2 7 4.9 18.9 15.3 ...
... ... ... ... ... ... ...

Fig. 1. Typical examples of similar (but not identical) observational data sets consisting of study
locations (plot, field), soil acidity measurements, and height and diameter measurements of trees

Despite these challenges, a number of efforts are being developed with the goal of
creating and deploying specialized software infrastructures (e.g., [5,1]) to allow re-
searchers to store and access observational data contributed from various disciplines.
While a large number of data sets are stored using these repositories, these sites provide
primarily simple keyword-based search interfaces, which for many queries are largely
ineffective for discovering relevant data sets (in terms of precision and recall) [7].

This paper presents a formal semantic annotation and data discovery framework that
can be used to uniformly represent and query heterogeneous observational data. We
adopt an approach that is based on a number of emerging observation models (e.g.,
[3,11,9,15]), which provides canonical representations of observation and measurement
structures that researchers can use to help describe, query, and access otherwise hetero-
geneous data sets. Here we consider the use of description-logic (i.e., OWL-DL) based
ontologies for domain-specific terms to specify observation and measurement types that
can be used to both annotate data sets and to specify data-discovery queries.

Semantic annotations in our framework define concrete mappings from relational
data sets to a uniform observational model specialized by domain-specific terms. The
annotation language was designed to support annotations created either manually or
automatically (e.g., by employing attribute similarity measures or data-mining tech-
niques). The language is currently being used to store annotations created (via a graph-
ical user interface) within a widely used metadata editing tool [2] for earth and en-
vironmental science data sets. A key contribution of our annotation approach is that it
provides a declarative, high-level language that follows the “natural” way in which users
describe their observational data sets semantically (by focusing on attribute-level meta-
data, and inferring remaining structural relationships). We also support data-discovery
queries posed over both the types of observations and measurements used to annotate
data sets as well as over (possibly summarized) values contained within data sets. For
instance, using our framework, it is possible to express queries that range from simple
“schema-level” filters such as “Find all data sets that contain height measurements of
trees within experimental locations” to queries that access, summarize, and select re-
sults based on the values within data sets such as “Find all data sets that have trees
with a maximum height measurement larger than 20 m within experimental locations
having an area smaller than 10 m2”.

Finally, we describe different storage and query evaluation approaches that have been
implemented to support the framework. We consider both a “data warehouse” approach
that uses a single “materialized” database to store underlying observational data sets
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Fig. 2. Main observational modeling constructs used in semantic annotation and data discovery

(where query evaluation involves rewriting a discovery query into a query over the
warehouse) and an approach that treats semantic annotations as logical views over the
underlying data set schemas (where query evaluation involves rewriting the original
query using the annotation into corresponding queries over the underlying data sets).
Based on our initial experimental results, we demonstrate the feasibility of querying a
large corpus using these approaches, and that querying data in place can lead to better
performance compared with more traditional warehousing approaches.

The rest of this paper is organized as follows. In Sec. 2 we present the observa-
tional model, semantic annotation language, and data-discovery language used within
our framework. In Sec. 3 we describe two implementation approaches. In Sec. 4 we
present an initial experimental evaluation. In Sec. 5 we discuss related work, and in
Sec. 6 we summarize our contributions.

2 Semantic Annotation and Discovery Framework

Fig. 2 shows the modeling constructs we use to describe and (depending on the imple-
mentation) store observational data. An observation is made of an entity (e.g., biological
organisms, geographic locations, or environmental features, among others) and primar-
ily serves to group a set of measurements together to form a single “observation event”.
A measurement assigns a value to a characteristic of the observed entity (e.g., the height
of a tree), where a value is denoted through another entity (which includes primitive val-
ues such as integers and strings, similar to pure object-oriented models). Measurements
also include standards (e.g., units) for relating values across measurements, and can
also specify additional information including collection protocols, methods, precision,
and accuracy (not all of which are shown in Fig. 2 due to space limitation). An obser-
vation (event) can occur within the context of zero or more other observations. Context
can be viewed as a form of dependency, e.g., an observation of a tree specimen may
have been made within a specific geographic location, and the geographic location pro-
vides important information for interpreting and comparing tree measurements. In this
case, by establishing a context relationship between the tree and location observations,
the measured values of the location are assumed to be constant with respect to the mea-
surements of the tree (i.e., the tree measurements are dependent on the location mea-
surements). Context forms a transitive relationship among observations. Although not
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considered here, we also employ a number of additional structures in the model for rep-
resenting complex units, characteristics, and named relationships between observations
and entities [9]. When describing data sets using the model of Fig. 2, domain-specific
entity, characteristic, and standard classes are typically used. That is, our framework
allows subclasses of the classes in Fig. 2 to be defined and related, and these terms can
then be used when defining semantic annotations.

A key feature of the model is its ability for users to assert properties of entities (as
measurement characteristics or contextual relationships) without requiring these prop-
erties to be interpreted as inherently (i.e., always) true of the entity. Depending on the
context an entity was observed (or how measurements were performed), its properties
may take on different values. For instance, the diameter of a tree changes over time,
and the diameter value often depends on the protocol used to obtain the measurement.
The observation and measurement structure of Fig. 2 allows RDF-style assertions about
entities while allowing for properties to be contextualized (i.e., the same entity can have
different values for a characteristic under different contexts), which is a crucial feature
for modeling scientific data [9]. Although shown using UML in Fig. 2, the model has
been implemented (together with a number of domain extensions) using OWL-DL.1

2.1 Semantic Annotation

Semantic annotations are represented using a high-level annotation language (e.g., see
Fig. 3), and each annotation consists of two separate parts: (1) a semantic template that
defines specific observation and measurement types (and their various relationships) for
the data set; and (2) a mapping from individual attributes of the data set to measurement
types defined within the semantic template. The left side of Fig. 3 gives an example
annotation for the first table of Fig. 1. Here we define four observation types denoting
measurements of sites, plots, soils, and trees, respectively. A site observation contains
a simple (so-called “nominal”) measurement that gives the name of the site. Similarly,
a plot observation records the name of the plot (where a plot is used as an experimental
replicate) as well as the plot area. Here, plots are observed within the context of a
corresponding site. A soil observation consists of an acidity measurement and is made
within the context of a plot observation (although not shown, we would typically label
the context relation in this case to denote that the soil is part of the plot). Finally, a tree
observation consists of the taxonomic name of the tree along with height and diameter
measurements in meters and centimeters, respectively.

The right side of Fig. 3 shows the relationship between (a portion of) the semantic
template (top) and an attribute mapping (dashed-lines, middle) from the underlying data
set schema (bottom) to the template. As shown, each attribute is assigned to a single
measurement type in the template. This approach follows the typical view of attributes
in data sets as specifying measurements, where the corresponding entities, observation
events, and context relationships are implied by the template. We note that users will
not typically specify annotations directly using the syntax shown in Fig. 3. Instead,
we have developed a graphical user-interface within [2] that allows users to specify
attribute-level mappings to measurement types and the corresponding measurement and

1 e.g., see http://ecoinformatics.org/oboe/oboe.1.0/oboe-core.owl

http://ecoinformatics.org/oboe/oboe.1.0/oboe-core.owl
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Observation {distinct} ot1: Entity = Site  

    Measurement {key} mt1: Characteristic = Name 

Observation {distinct} ot2 : Entity = Plot, Context {identifying} = ot1  

    Measurement {key} mt2: Characteristic = Name 

    Measurement {key} mt3: Characteristic = Area, Standard = MeterSquare 

Observation ot3: Entity = Soil, Context = ot2  

    Measurement mt4: Characteristic = Acidity, Standard = pH 

Observation ot4: Entity = Tree, Context {identifying} = ot2  

    Measurement {key} mt5: Characteristic = TaxonName  

    Measurement mt6: Characteristic = Height, Standard = Meter  

    Measurement mt7: Characteristic = Diameter, Standard = Centimeter 

Map site to mt1, plt to mt2, size to mt3, ph to mt4, spp to mt5, len to mt6,  

        dbh to mt7 

site plt size ph … 

Semantic Template Semantic Annotation 

Dataset Schema 

Fig. 3. Semantic annotation of the first data set of Fig. 1 showing the high-level annotation syntax
(left) and a portion of the corresponding “semantic template” and schema mapping (right)

observation types of the data set. The annotation language shown here is used to store
(via an XML serialization) the mappings and semantic templates generated by the tool.

The meaning of a semantic annotation can be viewed as the result of processing a
data set row-by-row such that each row creates a valid instance of the semantic template.
For example, in the first row of the data set, the site value “GCE6” implies: (1) an
instance m1 of the measurement type mt1 whose value is “GCE6”; (2) an instance c1
of the Name characteristic for m1; (3) an instance o1 of an observation (corresponding
to type ot1) having measurement m1; and (4) an instance e1 of the Site entity such
that e1 is the entity of o1. Similarly, assuming the plot attribute value “A” of the first
row corresponds to an observation instance o2 (of observation type ot2), the context
definition for ot2 results in o2 having o1 as context.

The “key”, “identifying”, and “distinct” constraints are used to further specify the
structure of semantic-template instances. These constraints are similar to key and weak-
entity constraints used within ER models. If a measurement type is defined as a key
(e.g., mt1 in Fig. 3), then the values of instances for these measurement types identify
the corresponding observation entity. For example, both the first and second row of the
first table in Fig. 1 have a site value of “GCE6”. Thus, if the observation instance for the
site attribute in the second row of the table is o3, then the key constraint ofmt1 requires
that e1 be an entity of o3 where e1 is the entity instance of the first-row’s corresponding
observation. An identifying constraint requires the identity of one observation’s entity to
depend (through context) on the identity of another observation’s entity. In our example,
plot names are unique only within a corresponding site. Thus, a plot with the name “A”
in one site is not the same plot as a plot with the name “A” in a different site. Identifying
constraints define that the identity of an observation’s entity is determined by both its
own key measurements and its identifying observations’ key measurements. Thus, each
site name determines the entity observed through the key constraint, whereas, each plot
name determines the plot entity with respect to both its name and its corresponding
site (as given by the identifying constraint on the context relationship). The “distinct”
constraint on observations is similar to the “key” constraint on measurements, except
that it is used to uniquely identify observations (as opposed to observation entities). In
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Fig. 3, each row with the same value for the site attribute maps not only to the same
observed entity (via the key constraint) but also to the same observation instance (via
the distinct constraint). A distinct constraint can only be used if each measurement of
the observation is constrained to be a key.

More formally, we can materialize semantic annotations as follows. First, we repre-
sent sets of annotations using the following relations.

– Annot(a, d) states that a is an annotation of data set with id d.
– ObsType(a, ot, et, isDistinct) states that ot is an observation type in annotation a,

has entity type et, and whether it distinct.
– MeasType(a, mt, ot, ct, st, ..., isKey) states that mt is a measurement type in a, is

for observation type ot, and has characteristic type ct, standard type st, etc., and
whether mt is defined as a key.

– ContextType(a, ot, ot′, isId) states that observation type ot′ is a context type of
observation type ot in a, and whether the context relationship is identifying.

– Map(a, attr, mt, φ, v) states that data set attribute attr is mapped to measurement
type mt in a, where φ is an optional condition specifying whether the mapping
applies (based on the values of attributes within the data set) and v is an optional
value to use for the measurement (instead of the data set value).

We use the following relations to represent instances of semantic templates.

– Entity(d, e, et) states that entity e in data set d is an instance of entity type et.
– Obs(d, o, ot, e) states that observation o in data set d is of type ot and is an obser-

vation of entity e.
– Meas(d, m, mt, v, o) states that measurement m in d is of measurement type mt,

has the value v, and is a measurement for observation o.
– Context(d, o, o′) states that observation o is within the context of o′ in d.

We can then evaluate the mapping defined by a semantic annotation a over a data set
d using the following algorithm, which results in populating the above relations for
template instances.

Algorithm MaterializeDB(a, d)
1). EntityIndex = ∅; // an index of the form {〈ot, keyvals〉 → e}
2). for each row = 〈attr1, attr2, · · · , attrn〉 ∈ d
3). MeasSet = CreateMeasurements(a, row);
4). // partition measurements based on observation types
5). MeasIndex = PartitionMeasurements(a, MeasSet ); // returns index {ot → {m}}
6). ObsIndex = ∅; // an index of the form {ot → o}
7). for each ot → {m} ∈ MeasIndex
8). e = CreateEntity(a, ot, {m}, EntityIndex ); // updates EntityIndex
9). CreateObservation(a, ot, e, ObsIndex ); // updates ObsIndex
10). ConnectContext(a, ObsIndex );

As shown, while processing each row we create measurement instances for each mapped
attribute (cell) in the row (Line 3), link them to their related observation instances (Line
5–9), and then create proper context links between observation instances (Line 10). The
EntityIndex is used to ensure only unique entities are created within the data set (based
on the values for measurements having a key constraint). Thus, before an entity instance
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is created (Line 8), the CreateEntity function first checks using the index if the entity
has already been created from a previous row. The CreateMeasurements, CreateObser-
vation, and ConnectContext functions are straightforward and each use the annotation’s
semantic template to create and connect the corresponding instances. This algorithm
runs in O(n logm) time where n is the number of rows in a data set and m (� n) is
the number of distinct keys within the data set. The algorithm uses O(nc) space where
c is the number of columns in the data set (thus, nc is the total number of cells).

The semantic annotation language can easily be expressed using standard schema
mapping approaches [16], i.e., annotations have a straightforward reduction to source-
to-target tuple-generating dependencies and target equality-generating dependencies.
A source-to-target tuple-generating dependency (st-tdg) is a first-order formula of the
form ∀x̄(ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)) where ϕ(x̄) and ψ(x̄, ȳ) are conjunctions of relational
atoms over source and target schemas, respectively, and x̄ and ȳ are tuples of variables.
We can use st-tdgs to define instances of semantic templates, e.g., the following rule
maps the first attribute in the data set of Fig. 3 to measurement type mt1, where R is
used as the name of the data set relation:

∀x̄(R(x̄) → ∃ȳMeas(d, y1, mt1, x1, y2) ∧ Obs(d, y2, ot1, y3) ∧ Entity(d, y3, Site))

Here we assume x1 is the first variable in x̄, each yi in the rule is a variable of ȳ, and
d, mt1, ot1, and Site are constants. A target equality-generating dependency (t-egd)
takes the form ∀ȳ(φ(ȳ) → u = v) where φ(ȳ) is a conjunction of relational atoms
over the target schema and u, v are variables in ȳ. We can use t-egds to represent key,
identifying, and distinct constraints, e.g., the following rule can be used to express the
key constraint on measurement type mt1:

∀ȳ(Meas(d,m1, mt1, v, o1) ∧ Obs(d, o1, ot1, e1) ∧ Meas(d,m2, mt1, v, o2)
∧Obs(d, o2, ot1, e2) → e1 = e2)

The annotation language we employ is also similar to a number of other high-level
mapping languages used for data exchange (e.g., [10,6]), but supports simple type as-
sociations to attributes (e.g., as shown by the red arrows on the right of Fig. 3) while
providing well-defined and unambiguous mappings from data sets to the observation
and measurement schema.

2.2 Data Discovery Queries

Data discovery queries can be used to select relevant data sets based on their observation
and measurement types and values. A basic discovery query Q takes the form

Q ::= EntityType(Condition)

where EntityType is a specific observation entity class and Condition is a conjunc-
tion or disjunction of zero or more conditions of the form

Condition ::= CharType [ op value [ StandardType ] ]
| f(CharType) [ op value [ StandardType ] ]
| count( [ distinct ] ∗) op value
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Square brackets above denote optional components and f denotes a standard aggrega-
tion function (i.e., sum, avg, min, or max). A data set is returned by a basic discovery
query if it contains observations of the given entity type that satisfy the correspond-
ing conditions. We consider three basic types of conditions (for the three syntax rules
above): (1) the observation must contain at least one measurement of a given charac-
teristic type (CharType) with a measured value satisfying a relational (i.e., =, �=, >,
<, ≥, ≤) or string comparison (e.g., contains); (2) the aggregate function applied to
measurements of the characteristic type (CharType) for all observations of the entity
type must satisfy the relational comparison; and (3) the number (count) of all obser-
vations of the entity type must satisfy the relational comparison (where distinct
restricts the set of observations to those within unique entities). For instance, in the
following basic discovery queries

Tree(TaxonName = ‘piru’)
Tree(TaxonName = ‘piru’ ∧ count(distinct ∗) ≥ 5)

the first query select data sets with at least one Tree observation labeled as having the
(abbreviated) taxon name “piru”, and the second query restricts the returned data sets
of the first query to contain at least five such observations.

A contextualized discovery query generalizes basic discovery queries to allow selec-
tions on context. A contextualized query QC for n ≥ 1 has the form

QC ::= Q1 → Q2 · · · → Qn

where each Qi is a basic discovery query and → denotes a context relationship. In par-
ticular, a data set satisfies a contextualized query if it satisfies each basic query Qi and
each matching Qi is related by the given context constraint. To illustrate, the following
examples can be used to express the two queries of Sec. 1:

Tree(Height) → Plot()
Tree(max(height) ≥ 20 Meter) → Plot(area < 10 MeterSquared).

That is, the first query returns data sets that contain height measurements of trees within
plots (experimental locations), and the second returns data sets that have trees of a
maximum height larger than 20 m within plots having an area smaller than 10 m2. For
a collection of data sets D and a contextualized discovery query Q, in the normal way,
we writeQ(D) to denote the subset of data sets inD that satisfyQ. Note thatQ(D) can
be computed on a per data set basis, i.e., by checking each data set in D individually to
see whether it satisfies Q.

3 Implementation Strategies

In this section we describe two different strategies for evaluating data discovery queries
over annotated observational data sets, as shown in Fig. 4. Both strategies utilize seman-
tic annotations (and corresponding ontologies) to answer discovery queries. We assume
annotations are stored using the relations described in Sec. 2.1, namely the Annot, Ob-
sType, MeasType, ContextType, and Map tables. The two approaches differ in how they
utilize different representations of the underlying data sets. The first query strategy (rdb)
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Fig. 4. Different strategies for answering a data discovery query Q: the first strategy stores each
data set in its “raw” form (left), and the second strategy materializes each data set into the a
common schema (right).

stores each data set in its “raw” form (i.e., “in place”) according to its defined schema.
Thus, each data set is stored as a distinct relation in the database. For instance, both
data sets of Fig. 1 would be stored as tables without any changes to their schemas. The
second query strategy (mdb) materializes each data set using the MaterializeDB algo-
rithm. In this approach, the observations and measurements stored in each data set are
represented using the Entity, Obs, Meas, and Context tables described in Sec. 2.1.

3.1 Query Evaluation over In-Place Database

Evaluating a discovery query Q in the rdb approach consists of three steps. Here we
assume that each data set (denoted by id d) is stored in a relation Rd. The first step
prunes the search space of candidate data sets to select only those data sets with the
required entity, characteristic, and standard types specified within Q. The candidate
data sets (i.e., those that potentially match Q) are selected by accessing the semantic-
annotation relations ObsType, MeasType, and Annot. This pruning step can help
decrease the cost of evaluating discovery queries by reducing the number of data sets
whose values must be accessed (for those queries that select data sets based on data
values). The second step translates Q into an SQL query Q′ over each candidate data
set relation Rd. After the first step, we obtain the measurement types (mt) related to
the discovery query Q (via the MeasType relation). We then find the attributes attrq
in each candidate relation Rd via the Map relation (which contains correspondences
between attributes attr and measurement types mt). If a basic query does not have any
aggregations, these attributes are enough to form the resulting SQL overRd. Otherwise,
we must obtain the key measurement types attrkey for the observation types of Q. The
key measurement types of an observation type consist of its own key measurement types
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and those of its identifying observation types, which must be retrieved by traversing the
identifying context chain (i.e., by searching theObsType andContextType relations).
Once the needed attributes for each candidate data set d are obtained, Q is translated
into the following SQL query (where square brackets denote optional clauses).

SELECT DISTINCT d[, attrkey] FROM Rd

WHERE non-aggregation conditions
[GROUP BY attrkey]
[HAVING aggregation condition];

We illustrate the rewriting process with the following example. Consider the semantic
annotations in Fig. 3 and the basic discovery query

Tree(TaxonName = ‘piru’ ∧ count(distinct ∗) ≥ 5)

from Sec. 2.2. The first step is to find the attributes involved in the condition (i.e.,
TaxonName = ‘piru’). From the entity type “Tree” and the characteristic “TaxonName”,
we can find the corresponding observation type “ot4”, measurement type “mt5”, and
the attribute “spp”. We then find the key attributes to perform the aggregation. The key
measurement types for entity type “Tree”, whose observation type is ot4, come from
ot4 and ot4’s identifying observation types ot2 and ot1. Since these observation types’
key measurement types are mt5, mt3, mt2 and mt1, the key attributes attrkey are spp,
size, plt, and site (from the Map relation). The resulting SQL query is expressed as
follows where the data set id is denoted d1 and corresponding relation is denotedRd1.

SELECT DISTINCT d1 FROM Rd1

WHERE spp = ’piru’
GROUP BY d1, spp, size, plt, site
HAVING count(*) ≥ 5

Finally, in the third step of the rdb approach, we execute the SQL query for each of the
candidate data sets such that the answer for Q is the union of these results.

Cost analysis. The major computation cost using the rdb approach is to send multiple
SQL queries to the database server to search the needed information for all the different
candidate data tables. Thus, the cost increases with larger numbers of candidate data
sets.

3.2 Query Evaluation over Materialized Database

The second query strategy (mdb) evaluates a given discovery queryQ over the material-
ized database by directly rewriting Q into an SQL query expressed over the annotation
and instance relations of Sec. 2.1. This approach differs from rdb, which requires ob-
taining the underlying attributes for each individual candidate table and where one SQL
query is constructed per candidate table. Instead, using mdb, a single SQL query is cre-
ated to answer the entire basic data discovery query.

The way in which a basic query is rewritten depends on whether it has an aggre-
gation condition. For a basic query without an aggregation condition, we access the
Entity and Obs relations to check the entity conditions, and search the MeasType and
Meas tables for characteristic and standard conditions. For a basic discovery query with
an aggregation condition, we perform the aggregation by grouping Entity.e or Obs.o
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depending on whether the aggregation is on a distinct entity instance or observation in-
stance. Thus, a discovery query Q can be re-written to an SQL query Q′ using the mdb
approach as follows.

SELECT DISTINCT Annot.d [, Entity.e][, Obs.o]
FROM Annot, Entity, Obs, MeasType,Meas
[WHERE table join condition [AND selection condition]]
[GROUP BY Annot.d[, Entity.e][, Obs.o] ]
[HAVING aggregation condition ];

where:
table join condition= (Annot.a = MeasType.a) AND (Annot.d = Meas.d)

AND (MeasType.mt=Meas.mt) AND(Meas.o=Obs.o) AND (Obs.e=Entity.e)

If a basic query contains multiple measurement conditions (of the same entity type), the
corresponding SQL query must be combined using “INTERSECTION” or “UNION”
operations to answer the basic query of one entity type. For example, the query

Tree(TaxonName = ‘piru’ ∧ count(distinct ∗) ≥ 5)

is rewritten using the mdb approach as:

SELECT DISTINCT Annot.d
FROM Annot, Entity, Obs, MeasType,Meas
WHERE table join condition

AND MeasType.ct=’TaxonName’ AND Meas.v = ‘piru’
GROUP BY Annot.d, Obs.o
HAVING COUNT(*)>5;

Cost analysis: The major computation cost in mdb involves the cost of joining over
the type and instance relations, and the selection cost over the measurement values.

De-normalized materialized database. The join condition shows that a large portion
of the cost comes from the join operation over the measurement instance, observation
instance, and entity instance relations. To reduce the join cost, we can de-normalize the
instance relations Entity, Obs, and Meas into a single relation. This strategy will use
slightly more space, but can improve the performance of query evaluation for mdb.

Horizontally partitioned database. When all the data values are placed into a single
measurement table, their data types must be of the same type. This requires using type
casting functions provided by the database system to perform type conversion for eval-
uating queries with algebraic or aggregation operators. This incurs a full scan of the
Meas table regardless of whether there is an index on the value columns or not. In our
current implementation, we address this issue by partitioning the measurement instance
table according to the different data types (e.g., numeric, char, etc.). This partitioning
does not incur additional space overhead.

3.3 Executing Complex Discovery Queries

To evaluate more complex data-discovery queries that consist of context relationships,
or conjunctions and disjunctions of basic queries (with different entity types), we de-
compose the query into query blocks and then combine the results of each decomposed
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query block. In the first step of query decomposition, a complex query is reformulated
into disjunctive normal form (DNF) such that each DNF component is either (1) a basic
data discovery query, (2) a conjunction of basic discovery queries with different entity
types, or (3) a contextualized discovery query. In the second step of implementing and
integrating the decomposed query blocks, we propose two approaches, ExeD and ExeH.

ExeD: Executing a query block based on Decomposed query units. In ExeD, each
DNF is further decomposed into basic discovery query components. Each of these most
decomposed query units is rewritten and executed using one of the strategies discussed
in the above two sections. Then, the result of each such most decomposed component
is combined (outside of the DBMS) to obtain the result of every DNF. In particular, for
the first case where the DNF clause is a basic discovery query, the algorithm simply ex-
ecutes this basic query. For the second case where the DNF component is a conjunction
of basic discovery queries, the algorithm intersects the results of the further decom-
posed components in this DNF. For the third case of contextualized discovery queries,
the algorithm runs the basic queries and their context queries and intersects the results.
Finally, the results of different DNF components are unioned as the final result.

ExeH: Executing a query block based on Holistic sub-queries. The ExeD approach
may incur unnecessarily repeated scans of the database since it evaluates each decom-
posed basic unit using the DBMS and combines the results externally, outside of the
system. For instance, consider the query

Tree(max(height) ≥ 20 Meter) → Plot(area < 10 MeterSquared).

Using the ExeD approach, we need to send two basic queries, Tree(max(height) ≥
20 Meter) and Plot(area < 10 MeterSquared), to the same table. Instead, we form a
“holistic” SQL query for each possible basic query block. This holistic SQL is then
executed by taking advantage of the optimization capabilities of the DBMS.

Note that not every complex query can be rewritten to one holistic SQL query.
Specifically, queries with aggregations must be performed by grouping key measure-
ments. When we have discovery queries with multiple aggregation operations, the group
by attributes for each aggregation may not be the same. In ExeH, we categorize query
blocks into those with and without aggregations. All the query blocks without aggrega-
tion conditions are combined and rewritten into one holistic SQL query, while the query
blocks with aggregations are processed individually.

4 Experimental Evaluation

In this section we describe the results of our experimental evaluation of the framework
and algorithms discussed above. Our implementation was written in Java, and all ex-
periments were run using an iMac with a 2.66G Intel processor and 4G virtual memory.
We used PostgreSQL 8.4 as the back-end database system. To report stable results, all
numbers in our figures represent the average result of 10 different runs (materialization
tasks or queries) with the same settings for each case.

Data. We generated synthetic data to simulate a number of real data sets used within
the Santa Barbara Coastal (SBC) Long Term Ecological Research (LTER) project [4].
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Fig. 8. Scalability test on (a) the number of logic connectors (e.g., AND and OR), (b) data set
size (with three basic queries connected by the logic connector)), and (c) length of context chains
(compared with logic connectors). (ExeH(mdb) is not included because it shows similar results to ExeD(mdb).)

This repository contains ∼130 data sets where each one has 1K to 10K rows and on
average 15 to 20 columns. To simulate this repository (to test scalability, etc.), our data
generator used the following parameters. The average number of attributes and records
in a data set is 20 and 5K respectively. The average number of characteristics for an
entity is two. The distinctive factor f ∈ (0, 1], which represents the ratio of distinct
entity/observation instances in a data set, is set to 0.5. Our synthetic data generator also
controls the attribute selectivity to facilitate the test of query selectivity. In particular,
given a selectivity s ∈ (0, 1] of an attribute attr, a repository with |D| data sets will be
generated to have |D|·s data sets with attribute attr.

Queries. Test queries were generated with controlled characteristic selectivity and value
selectivity, where the characteristic selectivity determines the percentage of data sets
that satisfy a given query and the value selectivity determines the percentage of data
rows in a data set satisfying the query. We omit the details of query generation due to
space limitations.

Test 1: Materializing data. We first tested the efficiency of the materialization method
using data sets generated with distinctive factor f = 0.5, number of columns 20, and
various number of rows. The annotations over these data sets are the same on observa-
tion and measurement types. They differ in the key constraints. “No key constraint” and
“Key constraint yes” refer to cases where either no key or key constraints exist in the
semantic annotations of data sets; both of these two cases do not include any context
constraints. The “context (5)” represents data sets that are semantically annotated with
a context chain of 5 observation types (with implicit key constraints).

Fig. 5 shows that the materialization time for each case (every line) is linear to the
number of rows in these data sets. This is consistent with our analysis in Sec. 2.1. The
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“no key constraint” uses the least amount of time because it does not need to do any ad-
ditional computation to enforce the uniqueness of the entity and observation instances.
The “context (5)” uses the most amount of time because of the context materialization.

Test 2: Querying databases. We also tested the effectiveness and efficiency of our two
query strategies: query evaluation using rdb andmdb by utilizing ExeD and ExeH. Test
2.1 examines how the different query strategies are affected by value selectivity and
characteristic selectivity. For this test, we used a data repository with 100 data sets and
evaluated queries consisting of two basic discovery units connected with the “AND”
logic connector. Fig. 6 shows that the execution time of different query strategies in-
creases with the increase of the characteristic selectivity. For rdb, higher characteristic
selectivity means that more candidate tables are involved in answering a query, thus
more SQL queries (against these candidates) are executed. For mdb, higher selectiv-
ity involves more materialized instances in the join condition, thus more time is used.
When we fix the characteristic selectivity and vary the value selectivity, we can see
that the execution time is almost constant (Fig. 7) for rdb because the number of can-
didate data tables is the same. For mdb, the execution time grows slightly with the
increase of the value selectivity also due to the increase in the number of material-
ized instances. These two figures show that, with smaller characteristic selectivity (e.g.,
0.01), the query strategy over mdb performs better than for rdb. But with larger charac-
teristic selectivities (e.g., 0.5), query strategies over rdb perform better. This is because
queries over larger amounts of materialized instances, which is the case for larger char-
acteristic selectivities, take more time to perform joins, compared with executing SQL
queries over individual candidate data tables in rdb.

Test 2.2 focuses on the scalability of the different query strategies. Fig. 8(a) illus-
trates that the three methods grow linearly to the number of logic connectors. When the
number of logic connectors grow, ExeD(mdb) grows much faster than Exe(rdb). This
is because every basic query in the complex query needs to access the large number of
instance tables once for mdb. While using rdb, when the number of logic connectors is
large, ExeH(rdb) is still almost constant because the times required to scan the database
are almost the same. Fig. 8(b) shows that these different approaches grow linearly to the
size of data sets |D| when the value selectivity and characteristic selectivity are fixed.
Fig. 8(c) plots the ratio of the execution time of performing a complex query with logic
connectors and that of performing a contextualized query with the same number of
basic query units. All three methods grow linearly to the number of basic queries. How-
ever, the query over rdb grows slower than the mdb since the latter needs to access the
context instance table. As these results show, rewriting queries to the underlying data
set schemas outperforms the materialization approach (i.e., the standard warehousing
approach) with respect to both the cost of storage (especially due to de-normalization
and executing the materialization algorithm) and overall query execution time.

5 Related Work

Data management systems are increasingly employing annotations to help improve
search (e.g., [12,18,8]). For example, MONDRIAN [12] employs an annotation model
and query operators to manipulate both data and annotations. However, users must be
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familiar with the underlying data structures (schemas) to take advantage of these oper-
ators, which is generally not feasible for observational data in which data sets exhibit
a high degree of structural and semantic heterogeneity. Efforts have also been carried
out for leveraging annotations, e.g., for the discovery of domain-specific data [13,20].
These approaches are largely based on keyword queries, and do not consider structured
searches. Our work differs from these approaches in that we consider a highly structured
and generic model for annotations with the aim of providing a uniform approach for is-
suing structured data-discovery searches. Our work is closely aligned to traditional data
integration approaches (e.g., [14,16]), where a global mediated schema is used to (phys-
ically or logically) merge the structures of heterogeneous data sources using mapping
constraints among the source and target schemas. As such, the observational model we
employ in our framework can be viewed as a (general-purpose) mediation schema for
observational data sets. This schema can be augmented with logic rules (as target con-
straints) and uses the semantic annotations as mapping constraints. However, instead
of users specifying logic constraints directly, we provide a high-level annotation lan-
guage that simplifies the specification of mappings and more naturally aligns with the
observation model. In addition, our work focuses on implementing practical approaches
for rewriting and optimizing queries (that can include aggregation and summarization
operators) over our annotation approach. In particular, our goal is to create a feasible,
scalable, and deployable system for applying these approaches for data discovery and
exploratory data analysis within existing scientific data repositories.

6 Conclusion

We have presented a novel framework for querying observational data based on formal
semantic annotations and a data discovery language that allows structural queries over
both schema and data. We also have considered different strategies for efficiently imple-
menting the framework. Our approach involves different forms of query rewriting over
annotations and data set schemas. We also have examined the effect of different storage
schemas on the query strategies. Our experiments show that in most cases answering
queries “in place” outperforms more traditional warehouse-based approaches. As future
work we intend to continue to investigate approaches for optimization including the use
of indexing schemes and their use in query rewriting approaches.
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Abstract. Folksonomies have become a powerful tool to describe, dis-
cover, search, and navigate online resources (e.g., pictures, videos, blogs)
on the Social Web. Unlike taxonomies and ontologies, which overimpose
a hierarchical categorisation of content, folksonomies empower end users,
by enabling them to freely create and choose the categories (in this case,
tags) that best describe a piece of information. However, the freedom
afforded to users comes at a cost: as tags are informally defined and un-
governed, the retrieval of information becomes more challenging. In this
paper, we propose Clustered Social Ranking (CSR), a novel search and
recommendation technique specifically developed to support new users
of Web 2.0 websites finding content of interest. The observation under-
pinning CSR is that the vast majority of content on Web 2.0 websites
is created by a small proportion of users (leaders), while the others (fol-
lowers) mainly browse such content. CSR first identifies who the lead-
ers are; it then clusters them into communities with shared interests,
based on their tagging activity. Users’ queries (be them searches or rec-
ommendations) are then directed to the community of leaders who can
best answer them. Our evaluation, conducted on the CiteULike dataset,
demonstrates that CSR achieves an accuracy that is comparable to the
best state-of-the-art techniques, but at a much smaller computational
cost, thus affording it better scalability in these fast growing settings.

Keywords: cold-start problem, scalability, recommender systems, so-
cial tagging, clustering.

1 Introduction

The rise of Web 2.0 has transformed users from passive consumers to active pro-
ducers of content. This has exponentially increased the amount of information
that is available to users, from videos on sites like YouTube and MySpace, to
pictures on Flickr, music on Last.fm, blogs on Blogger, and so on. This con-
tent is no longer categorised according to pre-defined taxonomies (or ontolo-
gies). Rather, a new trend called social (or folksonomic) tagging has emerged,
and quickly become the most popular way to describe content within Web 2.0
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websites. Unlike taxonomies, which overimpose a hierarchical categorisation of
content, folksonomies empower end users by enabling them to freely create and
choose the tags that best describe a piece of information (a picture, a blog entry,
a video clip, etc.). However, this freedom comes at a cost: since tags are infor-
mally defined, continually changing, and ungoverned, finding content of interest
has become a main challenge, because of the number of synonyms, homonyms,
polysemy, as well as the inevitable heterogeneity of users and the noise they
introduce.

In order to assist users finding content of their own interest within this in-
formation abundance, new techniques, inspired by traditional recommender sys-
tems, have been developed: users’ profiles are built, collecting information about
their tastes/interests; these profiles are then processed to predict what resources
they will like. While high accuracy can be afforded for users whose preferences
are well known in the system (e.g., users who have rated/tagged a lot of content)
[9], very little has been done so far for new users. However, the so-called cold
start problem is dominant in Web 2.0 websites, where a large number of new
users joins the system daily; furthermore, their tastes are more difficult to learn
than in traditional recommender systems, as they are not simply expressed as
numerical ratings over consumed content, but as freely chosen sets of tags as-
sociated to it. In order to retain these users, a recommender system must be
capable of recommending content, even when very little information is available
about a user’s interests.

In this paper, we propose Clustered Social Ranking (CSR), a novel search and
recommendation technique specifically developed to support new users of Web
2.0 websites finding content of interest. The observation underpinning CSR is
that the vast majority of content on Web 2.0 websites is created by a small
proportion of users, while the others mainly browse such content. We call the
former leaders, and the latter followers. CSR first identifies who the leaders are;
it then clusters them into communities with shared interests, based on their tag-
ging activity. Users’ queries (be them searches or recommendations) are then
directed to the community of leaders who can best answer them. We have eval-
uated Clustered Social Ranking on the Web 2.0 CiteULike1 website; our results
demonstrate that CSR achieves an accuracy that is comparable to the best state-
of-the-art recommender system techniques, but with a computational cost that
is by orders of magnitude smaller, thus affording it better scalability in these
fast growing settings.

The remainder of the paper is structured as follows: in Section 2 we review the
state-of-the-art in recommender systems for the social web, highlighting their
limitations in terms of cold-start problem. In Section 3 we present Clustered
Social Ranking; Section 4 presents our experimental setup, in terms of dataset
used, computed metrics, and benchmarks, while Section 5 analyses the obtained
results. Finally, Section 6 concludes the paper.

1 http://www.citeulike.org
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2 Related Work

Research has been very active in the area of folksonomic searches and recom-
mendations, splurged by the huge popularity of social tagging websites, such
as Delicious, Flickr, Digg, Reddit, and the like. In these scenarios, users’ tastes
and interests are not expressed as numerical ratings, but rather as freely chosen
tags associated to content. As a large study of social tagging conducted on the
popular Delicious bookmarking system illustrated, folksonomies are so large and
dynamic that traditional web search techniques are no longer affordable ([8]).
Novel techniques, helping users to find relevant content in these settings, are
thus called for.

One stream of research has focused on inferring the semantic relationship
between tags, starting from an analysis of how users employ them. For exam-
ple, [7] and [18] tried to build a navigable hierarchical taxonomy of tags, purely
starting from tag usage. In [24], a simple technique to disambiguate tags is pro-
posed, based on an analysis of the relationship between users, tags and resources.
In [3], tag co-occurrence is broadly studied, starting from a tri-partite network
of users, tags and resources; once again, the aim is to discover semantic relation-
ships between tags, starting from information about how users associate them
to resources.

A second stream of research has built upon the inferred relationship between
tags to develop recommender system algorithms that assist users finding content
of relevance within folksonomies. Some approaches have focused on mixed sce-
narios, where both numerical ratings and tags are available (e.g., [22,16]). Other
approaches have been developed to target pure folksonomic settings, where users’
preferences can only be inferred by analyzing their tagging activity. For exam-
ple, [11] first identifies the best recommenders for a target user, based on what
tags they have used in common (and how often); such user then receives as
recommendations those items that have been most frequently tagged by them.
FolkRank [9] uses a PageRank-like algorithm that employs the traditional ran-
dom surfer model on the tri-partite graph of users-items-tags, producing very
accurate recommendations in well connected networks.

One of the main issues left open by state-of-the-art tag-based recommender
systems is the cold-start problem: when new users join the system, very little is
known about their interests, so that predictions about what items they may like
cannot be computed. This problem, well-known also in traditional recommender
systems, appears to be aggravated in scenarios where likes and dislikes are not
expressed as unambiguous numerical ratings, but rather as freely chosen tags.
Some researchers have already moved in this direction: for example, [15] proposes
to replace the old concept of users’ similarity (which is not computable if users
have not rated enough items in common), with a new concept of trust; in so
doing, users make explicit who their trusted recommenders are. Such approaches
are viable only in scenarios where bootstrapping a user’s social network comes
at no extra cost; moreover, the underpinning assumption that user’s trust is a
warranty of user’s similarity limits the applicability of such approaches.
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In the next section we present Clustered Social Ranking (CSR), our approach
to tackle the cold-start problem both effectively and efficiently.

3 Clustered Social Ranking

In order to help new users of Web 2.0 websites find content of interest, we have
built a technique that leverages upon the following two observations:

– Leaders and Followers - the vast majority of content on Web 2.0 websites
is created by a rather small proportion of users (leaders), while the others
mainly browse such content (followers). For example, according to an analy-
sis of the CiteULike social bookmarking website, only 45% of the registered
users actively posts items on the website, while the remaining 55% simply
browse through other users’ libraries [4]; this is confirmed by [25], whose
analysis shows that more than 70% of the CiteULike users bookmark less
than 10 resources overall.

– Domains of Interest - users tend to share interests with a rather small
group of other users only. In a study of the CiteULike website [25], it was
shown that even the most active users bookmark a rather tiny portion of the
whole resource set; moreover, they use a rather small subset of the whole
folksonomy, which they share with few other users only. This suggests that
users have scoped interests that map to a small proportion of the whole
social media content.

Clustered Social Ranking (CSR) exploits these observations as follow: rather
than considering, as potential recommenders, the whole set of users within the
Web 2.0 website, the much smaller set of leaders is considered (first observation).
This is aligned with recent studies of more traditional recommender systems,
where it was shown that accurate recommendations could be computed by nar-
rowing the set of potential recommenders to the smaller set of users who have
engaged the most with the system [1]. These leaders are clustered in domains of
interest, based on their past tag activity (second observation). Whenever a user
queries the system (be that a search initiated using an explicit set of tags, or a
recommendation generated based on the tags used so far), CSR answers it by
first identifying the community (or cluster) that can best answer it; it then relies
on state-of-the-art tag-based recommender system techniques, applied within the
cluster only, to rank content of interest to the user. We describe how leaders are
identified and clustered in Section 3.1, while we illustrate how users’ queries are
dynamically associated to the best cluster to answer them in Section 3.2. Once
a query has been associated to a cluster, we rely upon a previously developed
algorithm (Social Ranking [25]) to finally compute an answer.

3.1 Clustering of Leaders

Based on the observation that the vast majority of content in Web 2.0 websites is
actually produced by a very small proportion of users, Clustered Social Ranking
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begins with the identification of so-called leaders, that is, users who have engaged
with the system substantially more than average. Furthermore, based on the
observation that users bookmark a rather tiny portion of the whole resource
set, such leaders are clustered into domains of interest (i.e., users tagging the
same resources, thus exhibiting similar interests). We decided to group users
according to tagged content rather than considering the set of tags they used to
avoid ambiguities that synonym or homonym tags may introduce. The rationale
behind this clustering of leaders is that it should be much easier to find what
cluster can best answer a query, among a small set (in the order of tens) of
domain-focused clusters, rather than searching among tens of thousands of users
who the best recommenders are, most especially so if the target user is new to
the system. Leadership is simply defined in terms of activity: users who have
tagged more resources than the average user within the system are elected.

The literature on clustering algorithms is very rich; we chose to experiment
with the Fuzzy c-Means algorithm ([2]) because it has the very desirable property
of each point having a degree of belonging to a cluster, rather than belonging
completely to just one cluster. In our domain, this means that each user can
be interested in multiple topics (i.e., belong to multiple clusters). Moreover,
Fuzzy c-Means has a small computational complexity, which is linear in the
number of existing clusters, in the number of items clustered and in the number
of iterations performed (the latter being rather small, as we shall demonstrate
later). To implement Fuzzy c-Means in our target scenario, we modeled each
user ui as a binary vector ri over resources, where ri[j] is set equal to 1 if the
user ui has tagged resource pj . k clusters are initially created, with k chosen
following the empirical rule of thumb described in [12], that is, k ≈ (n/2)1/2,
with n being the number of data points (in our case, users) to be clustered; each
cluster is represented by a vector (called centroid) ck, also modeled as a binary
vector rk over resources. The initialisation of such vectors was done by selecting,
as centroids, the vectors of k real leaders with non-overlapping resource sets.

After this initialisation phase, Fuzzy c-Means performs a series of iterations
in which each user is associated to one or more clusters, depending on how well
the user is represented by the cluster she is being assigned to. In practice, this
degree of belonging is computed as the cosine similarity between the user vector
and each centroid vector:

sim(ui, ck) = cos(ri, rk) =
ri · rk

||ri|| ∗ ||rk||

After each iteration, these values are normalized and fuzzyfied with a real pa-
rameter m > 1 so that their sum is 1 for each user; moreover, the centroid of each
cluster is updated to be the mean of all users’ vectors assigned to it, weighted
by their degree of belonging to the cluster. This process is repeated until the
algorithm has converged, that is, the change in the degree of belonging between
two iterations is no more than a given sensitivity threshold.

Once the clustering of leaders has been completed, we maintain, for each
cluster k, the following information:
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– Item Vector: a vector Rk, where Rk[j] counts how many users within the
cluster have tagged resource j.

– Tag Activity Vector: a vector TAk of all distinct tags used by users within
k, whereby TAk[i] counts how many times tag ti has been used to describe
resources in Rk.

– Tag Popularity Vector: a vector TPk of all distinct tags used by users within
k, whereby TPk[i] counts how many distinct users within k have used tag ti
to bookmark items in Rk.

The above values have all been normalized in a [0−1] range. In the next section,
we explain how these vectors are being used to answer users’ queries.

3.2 Answering Users’ Queries

We use the term user’s query q to represent both a (proactive) search and a
(reactive) recommendation. The former represents the case whereby the user
interacting with the system explicitly defines what she is looking for, by means of
user-entered tags; the latter represents the case whereby the system recommends
items to the user, based on all tags she has used so far. In the following, we do
not distinguish between the two cases, and represent a user query qu as a set
of query tags qu = {t1, . . . , tn}. In order to answer such query, Clustered Social
Ranking performs the following two steps:

(1) Query Association. First, CSR must find what cluster(s) can best answer
qu. To do so, it analysis the user’s activity thus far with the system and the
query tags. If the user has had little interaction with the system (i.e., she has
tagged less than l resources, where l is not necessarily the same thresholding
value used to define leaders), the query tags drive the association (tag similarity
association). If the user has been actively engaged with the system instead, CSR
further looks into the query tags: if {t1, t2, . . . , tn} have been rarely used by u
before (that is, they have been used less than the average tag usage for u), the
association is driven once again by query tags; otherwise, it is driven by the
user profile (resource similarity association). The underpinning idea is that, for
users with a long history of interaction with the system, and querying the system
within their well defined domain of interest, such history gives more information
about what the best cluster is (i.e., who the best recommenders are) to answer
a query; however, if the user is not well known to the system (cold-starter), or
if indeed she is known, but she is currently looking for content outside her usual
domain of interest, then the query tags are more informative of what she is after.

Association of users to cluster is then performed as follow: in the case of
tag similarity association, we compute the cosine similarity between the query
qu and both the tag activity vector TAk (simTA = cos(qu, TAk)) and the tag
popularity vector TPk (simTP = cos(qu, TPk)), for all clusters k. Groups are
ranked based on max(simTA, simTP ), and those with a similarity higher than
a given threshold elected to answer the query (in all our experiments, we used
a threshold of zero as cosine similarity values in these high-dimensional spaces
tend to be very low; we leave the exploration of alternative similarity measures
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and thresholds for future work). Note that we use both TA and TP as these
vectors provide complimentary information about the cluster: the former indi-
cates how many different resources are a potential match for the query; the latter
indicates how many different users within the cluster speak the same language
of the query user (i.e., use the very same tags). In the case of resource similarity
association, that is, the user is well known and her query tags correspond to her
domain of interest, we compute the cosine similarity between her profile ru (with
ru[j] set equal to 1 if she has tagged resource j) and the item vector Rk (listing
what resources have been tagged within cluster k), for all clusters k; as with tag
association, groups are ranked based on cos(ru, Rk), and those with a similarity
higher than a given threshold elected to answer the query (once again, in all our
experiments, we used a threshold of zero). In both cases, if the similarity is zero
towards all clusters, the query is associated to all of them; in practice, this means
relying on all leaders to answer the query, regardless of their domain of interest.
Note that, as leaders are substantially fewer than users, this is still much lighter
than relying on the whole community, as traditional recommender system ap-
proaches do. Furthermore, in the experiments reported in the evaluation section,
less than 3% of queries required associations to all groups.

(2) Resource Discovery and Ranking. Once the cluster(s) of suitable rec-
ommenders have been identified, Social Ranking (SR) [25] is used within the
cluster(s) to discover and rank resources. In brief, Social Ranking works in two
steps: when user u submits a query (be that a search or a recommendation)
qu = {t1, t2, . . . , tn} to discover content that can be described by query tags
{t1, t2, . . . , tn}, the set of query tags qu is expanded so to include all ti | ti ∈ qu
(for which sim(ti, ti) = 1), plus all tags tn+1, . . . , tn+m that are deemed sim-
ilar to the query tags (for which 0 < sim(ti, tj) ≤ 1, with i ∈ [1, n] and
j ∈ [n + 1, n + m]). Given tags ti and tj , tag similarity is computed as the
cosine similarity of the tag vectors wi and wj , where wi[p] counts the number of
times that tag ti was associated to item p. After query expansion, all resources
that have been tagged with at least one tag from the extended query set are
retrieved. Their ranking depends on a combination of: the relevance of the tags
associated to the resource with respect to the query tags (resources tagged with
ti, i ∈ [1, n] should count more than those tagged with tj , j ∈ [n + 1, n + m]);
and, the similarity of the taggers with respect to the querying user u (resources
tagged by similar users should be ranked higher, as these users are more likely
to share interests with u than others, and thus are in a better position to recom-
mend relevant content). In CSR, rather than considering the similarity between
the query user u and each user ui within the selected cluster(s), we use the sim-
ilarity computed during association. In so doing, the ranking of resources found
within a cluster solely depends on the query tags; if the query is associated to
more than one cluster, recommendations coming from the closest cluster are
ranked higher than those coming from clusters with looser associations instead;
to mark the difference further, we magnified the value of the query association
by raising it to the power of a positive constant α > 1. The rationale for this
ranking process is the following: if the query user is a cold starter, or if she is
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known to the system but with main interest in a different domain, computing
user/user similarity would give meaningless values (in the former case) or mis-
leading values (in the latter); in such case, only the query tags hold meaningful
information for the ranking, and we further use the tag similarity association
to better discriminate between resources coming from different clusters. If the
user is well known to the system and she is seeking recommendations within her
domain of interest, then user/user similarity should provide the same informa-
tion given by the resource similarity association; we thus prefer the latter as it
is cheaper to compute (one similarity computation per cluster instead of one per
user within the cluster). The ranking of an item p found within cluster k would
thus be computed as:

R(p) =

⎛⎝∑
tj

sim(tj , q∗u,k)

⎞⎠ ∗ (simASSOC + 1)α

where simASSOC is the similarity computed during association between the
query user u and the cluster k, and q∗u,k is the set of query tags expanded within
k (i.e., using the tag similarity matrix of cluster k).

4 Simulation Setup

Having described the functioning of Clustered Social Ranking, we now describe
how we have evaluated it. We begin with a presentation of the simulation setup:
we define the metrics we have computed (Section 4.1), illustrate the dataset we
have used (Section 4.2), and the benchmarks against which we have compared
(Section 4.3). As CSR relies on a number of customisable parameters, we also
discuss how these have been set (Section 4.4). We will then analyse the results
obtained in Section 5.

4.1 Metrics

To evaluate the effectiveness of our query model, we adopted the standard Preci-
sion/Recall metrics computed at different cutting points of the recommendation
list. More precisely:

Precision =
|relevantContent| ∩ |retrievedContent|

|retrievedContent|

Recall =
|relevantContent| ∩ |retrievedContent|

|relevantContent|

The former illustrates how much relevant content is retrieved, out of all content
returned to the user; it thus gives a measure of how accurate the approach is.
The latter computes how much relevant content is retrieved, out of all relevant
content instead; it thus give a measure of coverage. Both metrics have been
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computed after cutting the final recommendation list at the first 10, 20, 50, 100,
500, 1000 results retrieved.

To evaluate the scalability of our query model, we also analysed the com-
putational complexity it entails, both in terms of online processing (opera-
tions computed whenever a query is issued) and offline processing (operations
computed in batch mode, when the system is updated, for example, once a
week/fortnight/month).

4.2 Dataset

We have conducted experiments using CiteULike, a social bookmarking web-
site that aims to promote the sharing of scientific references. CiteULike enables
scientists to organize their libraries with freely chosen tags which produce a
folksonomy of academic interests. CiteULike runs a daily process which pro-
duces a snapshot summary of what articles have been posted by whom and with
what tags up to that day. We downloaded one such archive in November 2009,
containing bookmarks made between November 2004 to November 2009. We
preprocessed the dataset to remove all non-alphabetical and non-numerical tags,
following the same methodology proposed by the organisers of the ECML PKDD
Discovery Challenge 20092. The so-pruned archive contained 41,246 users, who
had tagged 1,254,406 papers overall, using 210,385 distinct tags. To further re-
move excessive noise in the data, we used the p-Core preprocessing strategy,
using the very same approach described in [5]. Based on this technique, both
users, resources and tags are iteratively removed from the dataset, in order to
produce a smaller but denser subset that guarantees each user, resource and tag
to occur in at least p posts/bookmarks. We set p = 5; the final dataset contains
2,557 users, 7,480 papers, 3,153 tags, and 59,820 bookmarks.

During the experiments, we ordered the bookmarks according to the original
date in which they were published, and we then performed a temporal split,
so that the first 90% bookmarks have been used for training purposes, while
the most recent 10% have been used for testing. We chose a temporal split,
rather than a random one, to mimic the actual deployment of a social tagging
website. On the training set, Clustered Social Ranking has been executed to
pre-compute clusters and the associated information (see Section 3); each test
bookmark has then been used as a query: the user who registered the bookmark
is treated as the query user, and the tags associated to the bookmark as query
tags. This information is given in input to CSR and a list of recommendations
thus produced. The previously described metrics (i.e., precision and recall) have
then been measured, considering as relevant the one resource to which the test
bookmark refers to. Note that, because there is only one relevant resource we are
after in the recommendation list (whose length has been cut from 10 to 1000),
the measured precision is always very small; indeed, what is important is not
the absolute precision value, but rather the precision that CSR entails relative
to our benchmarks, described next.

2 http://www.kde.cs.uni-kassel.de/ws/dc09/
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4.3 Benchmarks

We have compared the precision/recall that Clustered Social Ranking achieves
by comparing them with those of two benchmarks:

1. FolkRank (FR) - We have implemented the algorithm proposed by [9], which
models the system as a weighted tri-partite graph where nodes refer to users,
tags and resources. FR uses a random surfer strategy to recommend resources
to users, following the idea that a resource that has been tagged with im-
portant tags and by important users becomes important itself. FolkRank is
a state-of-the-art algorithm in tag-based recommender systems, whose accu-
racy has proved to be very high in dense Web 2.0 datasets.

2. Social Ranking (SR) - We have been comparing Clustered Social Ranking
with the Social Ranking algorithm [25], where tag expansion is conducted
by leveraging information from the whole community, and considering as
potential recommenders any user of the system. Unlike FR, SR has shown
high accuracy in sparse datasets; however, its computational overhead is non
negligible in large folksonomies.

4.4 Parameters Tuning

Implementing Clustered Social Ranking requires the setting of a number of pa-
rameters. The first parameter refers to the thresholding value used to distinguish
leaders from followers. In an actual deployment, this parameter would be set by
dynamically studying the average bookmarking activity of users in the system,
and by selecting a value above the average so to elect as leaders the smallest
set of users who collectively tagged (almost) all resources in the system. In our
datasets, we have used two thresholds: the first elects as leaders those users who
have tagged more than 10 resources in the training set (shortly called UM10);
the second selects as leaders those users tagging more than 30 items instead
(shortly called UM30). Table 1 reports how many users are elected as leaders,
and how many resources they have collectively bookmarked, with respect to the
original dataset. Note that, when using a threshold of 30, less than 20% of users
are elected as leaders, while only loosing less than 3% of bookmarked resources.
This confirms the fact that a small portion of users is responsible for the vast
majority of tagged content in the system; we thus expect that, by restricting our
attention to this small set of users, coverage (i.e., recall) should not be hindered.

Table 1. Clusters Features

Dataset Num. of Users Num. of Resources Num. of Tags

CiteULike 2484 7310 3137

CiteULike UM10 1189 (47%) 7291 (99%) 3056 (97%)

CiteULike UM30 432 (17%) 7116 (97%) 2811 (89%)
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The second parameter affecting CSR is the number k of clusters. We have
adopted the empirical rule of thumb described in [12], whereby k ≈ (n/2)1/2,
with n being the number of data points (in our case, users) to be clustered.
When considering leaders those who tagged more than 10 resources (CiteULike
UM10), we used 26 clusters, to which we converged after 12 iterations; when
clustering leaders who tagged more than 30 resources (CiteULike UM30), we
used 14 clusters, to which we converged after just 5 iterations.

We set the remaining parameters required by CSR as follow: query expansion
was limited to a maximum of 5 ∗ m tags, with m being the number of query
tags; upon query association, the minimum number of bookmarks l required for
a user not to be considered in the cold start region was set to 10; finally, the
α exponent used to mark differences between recommendations coming from
clusters of different relevance was set to 5.

5 Results

We now present the results of our evaluation, focusing on effectiveness first (Sec-
tion 5.1). As our approach is particularly geared towards new users, we present
results subdivided in two groups: queries performed by active users, that is,
those who have bookmarked at least 10 resources in the training set (UM10);
and queries performed by new users, who have bookmarked less than 10 re-
sources in the training set (UL10). In both cases, we discarded from the test
set all queries for which the searched content does not belong to the training
set, since none of the implemented algorithms would be able to answer such
queries successfully. Of the remaining 4,575 test bookmarks (i.e., our queries),
3,156 were done by active users (UM10) and 1,419 by non active ones (UL10).

5.1 Evaluation of Effectiveness: Precision and Recall

As shown in Figure 1, Clustered Social Ranking (CSRUM10 and CSRUM30),
Social Ranking and FolkRank all achieve very similar precision and recall for
active users (with (C)SR being slightly better than FR).

We now turn our attention to new users instead. As Figure 2 illustrates, these
users are much more difficult to predict, and even an advanced query engine like
FolkRank is not capable of computing valuable recommendations, as too little
information is available about these users. However, CSR is capable of exploiting
the little information available in the query and about leaders to produce a
precision and recall which are comparable to those of SR, and 28% and 40%
respectively better than those provided by FR (for recommendation lists of 50
elements). We can thus conclude that, when considering active users, both SR,
CSR and FR have very similar performance, both in terms of precision and recall.
When considering cold-start users instead, SR and CSR are the most effective
techniques, with a neat gain over FR. As we shall discuss next, the computational
cost that CSR entails is sensibly lower than both FR and SR, thus making it
the most suitable approach overall in scenarios where both effectiveness and
efficiency equally matter.
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Fig. 1. Precision/Recall for Active Users on CiteULike

5.2 Evaluation of Efficiency: Computational Complexity Analysis

In this section, we analyse the computational complexity that FR, SR and CSR
entail, in order to demonstrate that CSR is the most lightweight approach, with
a computational cost which is by orders of magnitude lower than that entailed
by the other techniques.

In quantifying the computational cost of such approaches, we distinguish be-
tween offline cost, that is, the cost entailed to pre-compute all the data structures
the algorithms rely on (for example, the matrix of users’ similarities). Typically,
recommender systems recompute these values periodically (e.g., weekly, fort-
nightly, monthly); there is a tension between accuracy and scalability: the more
often the update process is run, the more accurate the recommendations com-
puted, but also the higher the computational cost entailed. For each approach,
we will also quantify the online computational cost of executing each query.
Table 2 reports the computational complexity of each approach.

FolkRank requires no offline pre-computation; rather, it maintains the tri-
partite graph of users, resources and tags live. Whenever a new query arrives,
FR traverses such graph using i iterations (typically 30-35), computes a score
for all resources, and derives a recommendation list based on such scores. If we
indicate with Y the number of arches in this graph, the online cost entailed by
FolkRank is thus O(i ∗ Y ).
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Fig. 2. Precision/Recall for New Users on CiteULike

Table 2. Computational Complexity of FR, SR and CSR

Approach Offline Online ˜
(per query)

OfflineCUL OnlineCUL (all
queries)

FR - O(i ∗ Y ) - 23,000 Million

SR O
(

U∗(U−1)
2

+ T∗(T−1)
2

)
O(R ∗ T ) 8 Million 10 Million

CSR O
(
i ∗ k ∗ u + k ∗ t∗(t−1)

2

)
O(k ∗ r ∗ t) 1.5 Million 4 Million

Social Ranking requires the offline computation of two matrices: one storing
users’ similarity, and another storing tags’ similarity. These matrices are sym-
metric, thus its offline cost is O(U ∗ (U − 1)/2 + T ∗ (T − 1)/2), with U being
the number of users in the system and T the number of tags. The online cost
depends instead on the number of resources and tags which have to be taken
into account in order to answer each user query; in the worst case, all resources
R have been tagged with all tags T in the system, thus O(R ∗ T ).

Clustered Social Ranking requires two offline computations: the execution of
the Fuzzy c-Means Algorithm to cluster leaders, and the computation of the
tags’ similarity matrices for each cluster. The former is linear in the number
of users to cluster u, the number of iterations i required to converge, and the
number of clusters k [10]. The latter is a symmetric matrix, so if we indicate
with t the number of tags used within each cluster, the offline cost of CSR is
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O(i ∗ k ∗ u + k ∗ t ∗ (t − 1)/2). The online computational complexity can be
estimated as O(k ∗ r ∗ t), in the worst case where the query is associated to all
clusters k, within which all resources r have been tagged, with all tags t.

These theoretical limits are upper bounds on the actual complexity of each
approach. For example, queries in SR/CSR never require all R/r resources and
T/t tags to be answered, nor are they associated to all k clusters. To give a
flavour of the actual cost entailed by each approach in a real deployment, we
have computed their offline and online cost, when answering all 4, 575 queries
from the CiteULike UM30 dataset. The results are reported in the last two
columns of Table 2. As shown, the online cost of FolkRank is prohibitive in real
deployments, despite the fact that the actual size of the tri-partite graph Y is
much smaller (i.e., sparser) than a full one. FR’s main disadvantage is that it
requires a complete computation of the Page Rank vector for each query, making
it unsuitable to work with data from large Folksonomies (as also confirmed
by [5]).

Both CSR and SR amortize the cost of pre-computing tags’ and users’ simi-
larities, affording a much smaller computational cost overall (offline + online);
note that, for example, the offline processing of SR could be repeated once every
other query in the test set, and still be computationally cheaper than FR (in
practice, several thousands queries are normally answered within a single offline
update). We now take a closer look at CSR versus SR. The online cost of CSR
is half that of SR. More importantly, the offline cost is an order of magnitude
smaller; this is because, in practice, u << U (leaders are much fewer than all
users), so the cost of clustering them is much smaller than computing users’ sim-
ilarity. For example, in CiteULike UM30, there are only 432 leaders, as opposed
to 2,484 users overall: the cost of clustering leaders is only 30K computations
(with k = 14 clusters and i = 5 iterations to converge), while the cost of quanti-
fying users’ similarity is 3M. Moreover, each cluster has a much smaller number
of tags, so that, even if a separate tags’ similarity matrix has to be computed for
each cluster, their overall cost (1.5M computations) is much smaller than that
entailed by the single matrix maintained by SR (5M computations). The neat
reduction in the offline cost of CSR also means that such data structures can
be re-computed more often that those used by SR, thus being able to achieve
higher accuracy without compromising scalability. Note that frequent updates
are of paramount importance in rapidly growing settings and especially for new
users, where one update more can make the difference between knowing a little
about the user’s preferences (her first few bookmarks) or nothing at all.

6 Conclusion

In this paper, we have presented Clustered Social Ranking, a novel search and
recommendation technique specifically developed to support new users of Web
2.0 websites finding content of interest. CSR exploits the fact that the vast ma-
jority of content on Web 2.0 websites is created by a small proportion of users,
while the others mainly browse such content. CSR first identifies who the leaders
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are, clusters them into communities with shared interests, and subsequently an-
swers users’ queries (be them searches or recommendations) by directing them
towards the community of leaders who can best answer them. Our evaluation
conducted on the CiteULike website demonstrates that CSR achieves high accu-
racy, while entailing a low computational cost, thus making it the most suitable
solution in these fast growing settings.
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Bouchou, Béatrice I-94
Bouillot, Flavien II-154
Bowers, Shawn I-526
Bressan, Stéphane I-448
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Gançarski, Stéphane I-394
Ghedira, Chirine I-202
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Jurić, Damir II-439

Karydis, Ioannis I-62
Kashyap, Shrikant I-232
Kawamoto, Junpei I-341
Kaymak, Uzay I-440
Kern-Isberner, Gabriele I-27
Khefifi, Rania I-511
Ko�laczkowski, Piotr II-475
Kouba, Zdeněk II-188
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Natschläger, Christine II-264
Ng, See Kiong I-187
Nguyen, Khanh I-425
Nicklas, Daniela II-311
Nieves, Javier II-519
Nin, Jordi II-234
Nobari, Sadegh I-448

Oswald, Annahita I-349
Otagiri, Kenichi I-364
Ou, Xinming I-217

Patro, Sunanda I-172
Pires, Carlos Eduardo II-502
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