
Chapter 6
Dynamic Scientific Co-Authorship Networks

Franc Mali, Luka Kronegger, Patrick Doreian, and Anuška Ferligoj

6.1 Introduction

Network studies of science greatly advance our understanding of both the
knowledge-creation process and the flow of knowledge in society. As noted in
the introductory chapter, science can be defined fruitfully as a social network
of scientists together with the cognitive network of knowledge items (Börner et al.
2012). The cognitive structure of science consists of relationships between scientific
ideas, and the social structure of science is mostly manifested as relationships
between scientists. Here, we confine our attention to these relations. In particular,
co-authorship networks among scientists are a particularly important part of the
collaborative social structure of science. Modern science increasingly involves
“collaborative research”, and this is integral to the social structure of science.
Ziman argues that the organizational units of modern science are groups and not
individuals (Ziman 1994, p. 227).1 Namely, co-authorship in science presents a

1Co-authorship in science is not the only form of scientific collaboration. de Haan (1997)
suggests six operationalized indicators of collaboration between scientists: co-authorship; shared
editorship of publications; shared supervision of PhD projects; writing research proposal together;
participation in formal research programs; and shared organization of scientific conferences. As
this list suggests, there are many cases of scientific collaborations that do not result in co-authored
publications (Katz and Martin 1997; Melin and Persson 1996; Laudel 2002). Laudel (2002) reports
that about half of scientific collaborations are invisible in formal communication channels either
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more substantial indicator than just scientific communication in one way or another.
In continuation, we focus on the dynamics of different kinds of co-authorship
networks.

Over the last 50 years, the study of the dynamics of co-authorship networks has
been conditioned by the development of quantitative methodological approaches
in various forms that include relatively simple descriptive statistics presented in
time-series form, deterministic approaches, and stochastic agent-based modeling of
network dynamics. We provide a brief overview of these approaches in this chapter.
Many studies of co-authorship networks are typically described and understood in
terms of very large networks involving tens of thousands of nodes. Science can
be understood as social phenomena involving large numbers of scientists regularly
performing specific actions that are consciously coordinated into large schemes
(Ziman 2000, p. 4). Different disciplinary approaches allow the use of different
statistical quantities to explain the topology of scientific networks. Some of the
statistical quantities typically used to describe these networks are purely local. The
other statistical quantities correspond to global descriptions. For example, the local
property of a unit in the network is vertex degree, defined as the number of ties
relating this unit to other units in the network. Corresponding global descriptions
of the degree distribution, which is known to have a long tail for a wide range of
different networks, can be constructed (see, for example, Lambiotte and Panzarasa
2009.).

Although co-authorship networks may provide a window on patterns of col-
laboration within science, they have received far less attention than have citation
networks in bibliometrics (Newman 2004, p. 5200). There is a basic difference
between co-authorship networks and citation networks. Citation networks are not
personal social networks, even though they are, in part, the product of social
network phenomena involving scientists. They do not capture the social interaction
structure usually described in works on co-authorship networks. These social
interaction structures are best described by co-authorship networks. The vertices
of co-authorship networks represent authors, and two authors are connected by a tie
if they co-authored one or more publications. These ties are necessarily symmetric.
In citation networks, the vertices represent scientific productions,2 and the links
between them are directed citation ties from one scientific document to other
such documents. In that sense, co-authorship networks contain much important
information about cooperation patterns among authors as well as the status and
locations of authors in the broader scientific community structures. The study
of community structures through scientific co-authorship is particularly important

because they do not result in co-authored publications or in formal acknowledgments in scientific
texts. In this chapter, we will use the term collaboration primarily to designate research that results
in co-authored publications and other publicly available documents.
2We include papers, monographs, short articles, conference presentations, databases and patents
within the term ‘scientific production.’
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Table 6.1 List of major questions and models presented in this section

Major issues addressed Key answers/insights

Barabási and
Albert (1999)

Ways of modeling cumulative
advantage principle in
co-authorship networks.

Using the preferential attachment
model where a scale-free
power-law distribution of the
number of co-authors is a
consequence of two generic
mechanisms: (i) networks expand
continuously by the addition of
new vertices, and (ii) new vertices
attach preferentially to sites that
are already well connected.

Watts and Strogatz
(1998)

Ways of modeling the clustered
structure of co-authorship
networks at the macro level.

Small-world model overcomes the
gap in clustering of real-world
networks in comparison to random
networks. Such constructed
networks have small average
shortest paths and incorporate
clusterings (small dense parts of
the network) which emerge in
social networks.

Lorrain and White
(1971), Doreian
et al. (2005)

Ways of clustering the units in
co-authorship networks
regarding the structure of
collaboration and
representing the obtained
clusters with their
connections at the macro
level.

The procedural goal of blockmodeling
is to identify, in a given network,
clusters (classes) of units (actors)
that share structural characteristics
defined in terms of some relation.
Each such cluster forms a position.
The units within a cluster have the
same or similar connection
patterns.

Snijders (1996),
Snijders et al.
(2010)

Ways of modeling the effects of
actor characteristics and
network positions on
network evolution. Ways of
modeling network dynamics
and testing results using the
inferential methods.

Stochastic actor-based modeling for
network dynamics is based on
longitudinally observed network
data. It is meant to represent and
model co-evolution of longitudinal
network data and actor attributes,
and evaluate the results within the
framework of statistical inference.

because scientific (sub)disciplines might often display local properties that differ
greatly from the properties of the scientific network as a whole(Table 6.1).

This chapter is structured in the following way. Given that we treat co-authorship
networks as social networks, we continue this introduction with a definition of a
network. In the next section, we offer a brief historical overview of social network
analysis with a focus on the dynamics of social networks. Section 6.3 contains an
organizing typology of both the content and units of analysis for the topics we
consider. Section 6.4 is the core of the chapter and provides an overview of known
methodological approaches for studying dynamic scientific co-authorship networks.
In the final section, we outline some benefits and limitations of each approach and
finish with a statement of some open problems.
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6.1.1 Networks as Graphs

A network consists of observed units and the relationships among them. Units can
be represented as vertices and relationships (ties) as links. When using this skeleton
representation, each network is a graph.

But this is a simplification of a network. Units (vertices) in the network can have
properties. There can be multiple types of vertices in the network. An example is
a social network where the vertices represent people and the groups to which they
belong. Units also have many different properties (e.g. gender, age, income).

The links in networks can also be of different relational types and, further,
strength of relationships can be indicated by adding weights. The vertices and links
of networks studied in time have additional properties when time is considered.
The timing of relational formations and dissolutions can be recorded and modeled.
Duration of relational ties becomes another important property of relations when
they are present.

The information of a graph can also be presented in a matrix form. The most
common presentation is with the adjacency matrix in which there is a row and
a column for each vertex. Non-zero entries in the matrix are present when links
between two corresponding vertices exist.

Adjacency matrices can be extended further if we want to present more complex
graphs. For example, if we want to present a graph with multiple links between
the vertices, we associate the entry of a single cell aij in the adjacency matrix with
the number of links between the vertices i and j . For the representation of valued
graphs, which are graphs with values on the links, the value of a single cell aij in
the adjacency matrix corresponds to the value on the link between vertices i and j .

6.2 A Brief History of Social Network Analysis

Histories of most entities usually have starting dates. However, establishing a
starting date for an academic field is difficult because the contributing strands of
ideas and methods for a field begin in different times and different places. Modern
social network analysis (SNA) started when four distinct features were explicitly
brought together (Freeman 2004). These features are: (i) a focus on structural
matters by looking at actors embedded within a set of social relations and ties; (ii)
the extensive use of systematic empirical data; (iii) heavy use of graphical imagery;
and (iv) having foundations in formal, mathematical, and computational models.
Recognizing the combination of these elements as defining social network analysis
renders the establishment of a precise date of origin less than important. But, based
on Freeman’s narrative, a start date in the 1930s for what was to become SNA seems
reasonable. What matters far more for the field are the operational ways in which
the four core components are combined to help us understand network structures
and processes.
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Academic fields also require some social organization to support them in order
to provide an accepted arena for the exchange of ideas and the development of an
identity that nurtures a discipline. These were created for SNA within a span of
4 years. Barry Wellman established the International Network of Social Networks
Analysts (INSNA) in 1976. He founded Connections a year later as a newsletter
to distribute news, ideas, and information to members of the field. Lin Freeman
established the flagship journal, Social Networks, in 1978. Finally, Russ Bernard and
Alvin Wolfe started the annual Sunbelt Social Network Conference in 1980. All four
entities have grown in size and influence since they were established. The European
Network Conference was started in 1989, and in 1995 the two conferences were
combined to form the Annual Sunbelt International Social Network Conference.

If we allow that SNA is what social network analysts do, it does not follow
automatically that the field is coherent. Hummon and Carley (1993) examined all
of the papers in the first 12 volumes of Social Networks to assess the state of the
field and established that SNA was an integrated scientific community with a shared
paradigm. They used ‘main-path analysis,’ a technique pioneered by Hummon and
Doreian (1989, 1990) that helps study the citation patterns of a field. Hummon
and Carley (1993) identified 6 main paths in the literature: (i) Role analysis and
blockmodeling; (ii) Methods for network analysis; (iii) Concern with network data;
(iv) Biased networks; (v) Attention to structure; and (vi) Analyses of personal
networks. Of course, these paths for the movement of SNA intellectual ideas through
the literature are linked. Hummon and Carley (1993) noted other features of the
field. One was the heavy use of formal, mathematical, and quantitative methods.
Another was the creation of substantive network ideas, and a third was the presence
of prominent collaborative groups of social network analysts. All are consistent with
the practice of ‘normal science’ in the sense of Kuhn (1996).

On looking at that list of main paths as intellectual foci for SNA, one feature
leaps out by its absence: There is little about temporal issues3 even though main
path analysis is an explicitly temporal approach. Up until the beginning of the 1990s,
SNA appeared to have had a profoundly static bias. The field’s concern was centered
primarily – but not exclusively – on social structure and patterns of social structures.
Given this, four event streams that can be dated as starting in the 1990s have changed
the field dramatically.

The first was a series of three special issues of the Journal of Mathematical
Sociology (JMS) that appeared in 1996, 2001, and 2003. All three issues, edited
by Frans Stokman and Patrick Doreian, were devoted to “network evolution.” Based
on the intuition that “network processes are series of events that create, sustain and
dissolve social structures” (Doreian and Stokman 1997, p. 3), the three special issues
had a series of papers that looked at network dynamics and network evolution using
a variety of different formal models, simulation methods and statistical models.4

3This is consistent with the observations of Powell et al. (2005).
4Volume 30(1) of Social Networks (2010) was a special issue devoted to network dynamics that
noted the importance of the three JMS special issues with papers building upon some of the earlier
work.
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The second event was the take-off of exponential random graph models (ergms)
for the study of change in social networks. The origins of these models date from
an earlier time, including the work of Holland and Leinhardt (1981) and Frank and
Strauss (1986). One strand of this line work is founded on Wasserman and Pattison
(1996) and Pattison and Wasserman (1999) and takes the form of p*-models. This
forms the core of the software called Pnet (Wang et al. 2009), used for estimating
ergms. Another strand features the work of Snijders (2001) and takes the form
of SIENA (Snijders et al. 2010), also used for estimating ergms for studying the
co-evolution of social actors and social networks. Yet another strand of related work
is present in Statnet (Handcock et al. 2003) that includes the estimation of ergms.
There has been a lively debate and an extensive cross-fertilization and collaboration
between the groups centered at the University of Melbourne, the University
of Groningen, Oxford University, and the University of Washington regarding
ergms.

The third event is the movement of physicists into the realm of social networks,
which also started in the 1990s. Bonacich (2004) labeled this as “the invasion of the
physicists “in his review of Watts (2003) and Barabási (2002). To the extent that the
physicists are inattentive to the substantive content of the SNA and reinvent old –
and/or even square – wheels, this is an invasion. However, they also bring with them
a variety of new modeling strategies and additional conceptualizations of network
phenomena that include ‘small-world’ networks and ‘preferential attachment,’ two
terms that have made fruitful entrances into SNA. The physicists have focused
attention primarily on large networks with a view to delineating and understanding
network topologies and dynamics.

The final event started in the early 1990s and resulted in the establishment of
generalized blockmodeling (Doreian et al. 2005) as both a generalization and an
extension of traditional blockmodeling, the main path in the SNA literature through
1992 identified by Hummon and Carley (1993). Thus far, this approach has been
deterministic and not that attuned to network dynamics. Designed to delineate
network structures through the use of an expanding collection of block types and
types of blockmodels, it has the potential to contribute to the temporal delineation
of fundamental network structures.

At face value, the four ‘events’ and the lines of active research that have followed
them are different and could even be viewed as potential rivals. However, it will
be unfortunate if they are seen in this fashion. Some of the ideas of physicists
can be used to conceptualize mechanisms that can be incorporated into ergms to
test these ideas with social network data. It is clear that the efforts of physicists to
identify communities in networks have the same intent as blockmodeling. The work
of Handcock et al. (2007) on discerning network structure through model-based
clustering is also related, in intent, to blockmodeling, and it seems reasonable
to couple, in some way, ergms and blockmodels. All of these four strands of
research for understanding networks have been mobilized extensively since their
first appearance. They have all emerged since Hummon and Carley’s (1993)
assessment and have the potential to be combined fruitfully in future research. While
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these streams of research are changing SNA to focus on network dynamics and
network evolution, they do so while embodying all of the four defining features of
SNA identified by Freeman (2004).

6.3 Levels of Analysis of Scientific Collaboration

6.3.1 Introduction

Understanding science as a social system implies considering science as fundamen-
tally relational, and as a community-based social activity. “The collegian circles
around a scientist refer to those local and distant peers or professional colleagues”
(Schott 1993, p. 201). These collegian circles have several properties that vary
from one scientist to another. Within social studies of science, there has been a
strong interest in the spatial range of the collegian circle with attention given to
local, national, or transnational scientific communities. These professional collegian
circles in science have several other characteristics that are analytically distinct but,
in reality, may be intertwined. Co-authorship networks in science have a “modular
structure” (Lambiotte and Panzarasa 2009, p. 181). Understanding this modular
structure of scientific networks is especially important because it helps account
for the progress of science and the organization of scientific production within
disciplinary frameworks. In reality, science never operates as a single community
with hundreds of thousands of individual scientists. It is organized by many different
networks that cut across the formal boundaries dividing science with regard to
disciplinary, sectoral, and geographical levels. Of course, the membership of various
networks overlaps considerably. These research networks are also in continuous
processes of growth, decline, and dissolution (see, for example, Ziman 2000, p. 46
or Mulkay 1975, p. 519).

Classification of co-authorship networks can be done in several ways. Rogers
et al. (2001) suggested a typology based on three features: (1) according to
the units of the analysis, including individuals, teams of researchers, and R&D
organizations; (2) according to the type of information used to develop the links
between units – these might be based on interactions or information sharing or they
could be based on positions of people in the social hierarchy; and (3) according
to the institutionalized domains to which the authors belong, with an emphasis
on intra-organizational or inter-organizational links between them. Sonnenwald
(2007) suggested a more general classification to categorize various types of
co-authorship networks: between researchers in university and industry sectors,
between researchers in various scientific disciplines, and between researchers of
various countries. In this section, we prefer to use another categorization, one
adapting a suggestion by Andrade et al. (2009) who focused on three dimen-
sions of co-authorship networks with their associated sub-dimensions of intra-
and inter-dimensional co-authorship collaboration. The suggested dimensions are:
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Table 6.2 Classification of levels of analysis of scientific collaboration

Dimension of the study Examples of studies

Main
dimension

Sub-dimension

Cross-
Disciplinary

Disciplinarity Interaction links between Australian research networks
(Rigby 2005), (see also: Wray 2002; Glänzel and
Schubert 2004; Laband and Tollison 2000; Hornbostel
1997)

Inter-
disciplinarity

Interdisciplinary research analysis in French laboratories
(Sigogneau et al. 2005) (see also Gibbons et al. 1994;
Etzkowitz and Leydesdorff 2001; Qin et al. 1997;
Braun and Schubert 2003)

Cross-Sectoral Intramural Academic research networks analysis (Lowrie and
McKnight 2004; Wray 2002)

Extramural R&D cooperation models between industry and
universities in Belgium (Veugelers and Cassiman 2005)

Cross-
National

National The interaction between immunology research institutes in
Germany, due to their geographical location
(Havemann et al. 2006)

International Comparative analysis of several countries of their
international/national collaborated publications
(Glänzel and Schubert 2005)

disciplinary with sub-dimensions of interdisciplinary and intradisciplinary, sector
with intersector and intrasector, and geographic with international and intranational
sub-dimensions. These are presented in Table 6.2.

6.3.2 The Cross-Disciplinary Level

For the cross-disciplinary level, given the presence of disciplinarity, there is a
basic distinction between collaboration inside discipline (intra-disciplinarity) and
collaboration between disciplines (inter-disciplinarity).

6.3.2.1 Disciplinarity

As stated in the introductory chapter of this book (see page xi et sqq.), “an
academic discipline, or field of study, is a branch of knowledge which is taught
and researched at the college or university level. Disciplines are defined (in part)
and recognized by the academic journals in which research is published, and the
learned societies and academic departments or faculties to which their practitioners
[researchers] belong” (Börner et al. 2012). Many theorists of science have noted
that all scientific disciplines are intellectually (cognitive) and socially structured
(Fuchs 1992; Whitley 1984). Scientific disciplines represent institutional and
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organizational frameworks within which their intellectual products and cognitive
styles are connected to the social structures, mode, and organization of the pro-
duction of that knowledge. One of the basic characteristics of modern academic
scientific communities is that they are still sharply differentiated and structured in
terms of disciplines. Individual scientific disciplines can thus be seen as distinct
intellectual and social organizational contexts.

Although co-authorship publishing is more common in the natural sciences than
in the social sciences, it is continuously increasing in all main scientific areas (Wray
2002; Glänzel and Schubert 2004; Laband and Tollison 2000; Hornbostel 1997).
Collaboration, operationalized through co-authorship, is now normative behavior
and ubiquitous for practically all scientific disciplines (e.g., over 95% of articles in
major periodicals in physics, biochemistry, biology and chemistry are co-authored
(Braun-Munzinger 2009)).

6.3.2.2 Interdisciplinarity

In the last two decades, interdisciplinary collaboration has increased dramati-
cally (see, for example, Gibbons et al. 1994; Etzkowitz and Leydesdorff 2001).
This phenomenon is broadly discussed in Chap. 1 with attention focused on
a tendency of modern science to form heterogeneous (interdisciplinary) teams
of researchers solving pressing social problems and with higher accountability
requirements (Börner et al. 2012). These attempts have been made to bridge
narrow disciplinarities in science. An important feature stimulating interdisciplinary
collaboration in modern science is the demand for innovations resulting from the
juxtaposition of ideas, tools, and scholars from different scientific domains. Today,
there is an overall agreement that inter-disciplinary links are vital for scientific
progress because they have the potential to bring unprecedented intellectual and
technical power. For example, the converging technologies of the NBIC fields (i.e.
nanotechnology, biotechnology, information sciences, and cognitive sciences) are
an example of new interdisciplinary research from fields that previously showed
limited interdisciplinary connections (see, for example, Buter et al. 2010).

We know that different organizational and cognitive problems make the devel-
opment of interdisciplinary research particularly challenging. Interdisciplinarity
requires extensive networks of scientists and concepts, considerable time invest-
ments, and a need for researcher mobility between disciplines. As noted by
Bordons and her collaborators, while collaboration among scientists from different
disciplines is widespread, measuring it is not easy (Bordons et al. 2004, p. 441).
Using bibliometrics, measurement of interdisciplinarity in publications can be
approached from different perspectives that include co-authored publications among
scientists from different disciplines, co-occurrence of several classification codes
in publications, the interdisciplinary nature of journals, and the presence of cross-
disciplinary references or citations. The most often used bibliometric indicator of
such collaboration is the percentage of co-authored interdisciplinary publications.
Yet, computing this percentage is affected by many factors, including the nature of
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the organization of scientific communities, R&D policy orientations, and the chosen
operationalization of concepts (e.g., the classification scheme of disciplines that is
used (Qin et al. 1997; Braun and Schubert 2003)).

6.3.3 The Cross-Sectoral Level

There is a basic difference between collaborations inside the academic scientific
community (intramural cooperation) and collaborations between academic science,
industry, and governmental bodies (extramural collaboration). Intramural networks
in science are usually defined by collaboration within one department, research
group, or institute. Extramural collaborations, on the other hand, consider also coop-
eration between different sectors (see, for example, Glänzel and Schubert 2004).

6.3.3.1 Intramural Collaborations (Intra-Sectoral Collaboration)

In modern science, the establishment of intra-mural networks is the result of the
increased processes of professionalization of recent scientific activity. This has
led to a large change in the organizational structure of science, and it’s worth
repeating Ziman’s insight: “the organizational units of modern science are not
individuals but groups” (Ziman 1994, p. 227). The organization of R&D activity
in academic scientific institutions has created typical team structures – for example,
modern research groups consist of principal investigators, co-principal investigators,
junior researchers, post-docs, and doctoral students. Price suggested that research
collaboration is, in part, a response to the shortage of scientists, which allows them
to become “fractional” scientists (Price and Beaver 1966).

6.3.3.2 Extramural Collaborations (Cross-Sectoral Collaboration)

Cooperation between different sectors – academic science, industry and govern-
ment – is now understood as the most important type of extra-mural collaboration.
The concepts of ‘Mode 2’ and the ‘Triple Helix’ have extended the idea of research
networking within and across sectoral borders. Both concepts were developed in
the theory of science and R&D policy discussions after 1990. It seems that the
concept of Mode 2 knowledge production presented in The New Production of
Knowledge (Gibbons et al. 1994) became, in the mid-90s, the symbolic banner of
new viewpoints regarding scientific collaborations across sectors. The authors of the
new (Mode 2) production of knowledge linked the classical concept of transdisci-
plinarity, defined by common axioms that transcend the narrow scope of disciplinary
worldviews through an overarching synthesis, with two additional factors: problem-
driven research and research in applied contexts. Similarly, the concept of the
Triple Helix has been developed as a neoinstitutional and neoevolutionary model
for studying the networks across academic science, industry science, industry, and
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government sectors. In these networks, more important than the presence of the
agents is the quality of their relationships in a given configuration (Etzkowitz and
Leydesdorff 2001). Although there exists already an extensive expert literature on
this type of cross-sectoral networks, there is still a lack of bibliometric studies
dealing with co-authorship publications between academic and business-enterprise
sectors (Lowrie and McKnight 2004, p. 436).

6.3.4 Cross-National Level

Networks of international collaboration have undergone dramatic structural changes
in the last few decades. This is in contrast to intranational networks, where the
intensity of collaborations have decreased (see, for example: Hoekman et al. 2010;
Glänzel and Schubert 2004; Katz 1994).

6.3.4.1 National Collaborations

National collaboration, while visible in domestic contexts, is often regarded as
less visible and treated as less important than international collaborations. Often,
the observed (relative) high visibility and high citation attractiveness of interna-
tionally co-authored publications result in a kind of operational rule: international
co-publications appear in high-impact journals and receive more citations than
national papers (Glänzel and Schubert 2004). However, the overall visibility and
international relevance sometimes does not necessarily reflect the impact of specific
papers in solving specific problems at the local level. The results of national collab-
orations are often incorporated into publications dealing with trans-institutional and
international co-authorship (e.g. Munshi and Pant 2004), and are focused directly on
collaboration within a specific country (Gossart and Ozman 2009; Mali et al. 2010).
Another important aspect of national collaboration results from the international
orientation of bibliographic databases like the Web of Science or Scopus. Often,
the results of national co-authorship and the resulting citation patterns, especially
for smaller national scientific systems, are less visible in international bibliographic
databases. This can be linked to inter-sectoral collaboration within nations. National
collaborations across sectors have an additional complexity because they include the
involvement of different administrative units. As a result, such research projects are
complex and involve a wide range of different outputs of scientific production. Such
complex information can only be reported qualitatively or measured through local
information systems and electronic bibliographic systems; the Slovenian COBISS5

and SICRIS databases6 or the Turkish ULAKBIM database.7

5Co-operative Online Biographic System and Services, www.cobiss.si.
6Slovenian Current Research Information System, sicris.izum.si
7TURKISH ACADEMIC NETWORK and INFORMATION CENTER, www.ulakbim.gov.tr/eng/.

www.cobiss.si
sicris.izum.si
www.ulakbim.gov.tr/eng/
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6.3.4.2 International Collaborations

In thinking about the spatial range of collaboration, there is an important differ-
ence between geographic distance and crossing international boundaries. While
geographical distances between collaborative units in large nations can be long,
the geographical distances between collaborating units in different countries can
be short. Of the two, crossing international boundaries is more consequential than
geographical distance with regard to scientific collaboration. While international
scientific collaborations are important generally, they are especially important
for small scientific communities such as, for example, the Slovenian scientific
community. Isolated and parochial scientific communities are no longer a suitable
environment for recognized scientific excellence. Indeed, it can be argued that they
never were important in the history of science. Even in the early days of science,
different forms of cooperation between scientists of different nations became
important elements in the internationalization of science. Even so, because of the
new forms of the globalized connections of science, “the traditional cosmopolitan
individualism of science is rapidly being transformed in what might be described as
transnational collectivism” (Ziman 1994, p. 218).

This trend of increasing international scientific collaboration through co-
authorship is especially strong in recent decades. The number of internationally
co-authored articles has risen at a faster rate than traditional ‘nationally co-
authored’ articles (Wagner 2005). As noted in the expanding bibliometric literature,
the level of international co-authorship is determined by many factors: the size
of the country, ‘proximity’ between countries, either physical (geographical)
proximity or immaterial proximity stemming from cultural affinity in a broad
(historical, linguistic) sense, socioeconomic factors, changes in electronic forms of
communication, and last but not least, the dynamics created by the self-interest of
individual scientists pursuing their own careers.

6.4 Methodological Perspectives

6.4.1 Introduction

The development of methodological approaches for analyzing and modeling tem-
poral scientific co-authorship networks has been founded on developments in graph
theory and in SNA. To enable the discussion on temporal analysis of network
properties, we describe some of the most relevant basic definitions of network
properties that we need for understanding the content of coming sections (extensive
explanations of SNA terminology and concepts can be found in Wasserman and
Faust (1994)):

• Degree The degree of a vertex is defined as the number of ties linking this vertex
to other vertices in the network. In lay terms, the degree represents the number of
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co-authors for each researcher. As a global measure of the whole network, both
the average degree or centralization can be considered.

• Network density is the proportion of ties in a network relative to the total number
possible (sparse vs. dense networks).

• Path A path is a sequence of vertices and lines from initial vertex to the terminal
vertex where all vertices are different.

• Path length This is the number of ties it contains.
• A shortest path or a geodesic distance between two vertices u and v, denoted

as luv, is the shortest path length between these two vertices. In co-authorship
networks, the distance between two authors who collaborate is 1. As a global
network characteristic, the average shortest path is usually considered.

• The global clustering coefficient can be viewed as the average probability of a tie
between co-authors of a selected author. Technically, it measures the density of
triangles in the network and therefore measures the extent of densely connected
subgroups of vertices in the network.

Another important factor in the development of the field has been access to
data sources on scientific collaboration. Before the development of electronic
bibliographic databases and, especially, before the implementation of the scientific
citation indexes initiated by Garfield (1955) this was a very difficult and time-
consuming task. Some of the most visible electronic databases with academic
content are the Web of Science, SCOPUS and Google Scholar. A broader discussion
on databases and citation indexes can be found in Chap. 7 of this book.

The study of temporal networks, both with regard to network dynamics and
network evolution, gained increasing attention since 1996. As noted in Sect. 2,
special issues of the Journal of Mathematical Sociology (1996, 2001, 2003) were
of value. We distinguish three basic approaches for studying dynamic scientific co-
authorship networks: (i) basic analysis of network properties using temporal data
(usually in the form of a time-series of snapshots, (ii) deterministic approaches to
the analysis of scientific co-authorship networks, and (iii) statistical modeling of
network dynamics.

6.4.2 Basic Analyses of Network Properties

One of the first analyses of temporal co-publication was presented by Zuckerman
(1967) who studied the patterns of productivity, collaboration and co-authorship
among Nobel Laureates. While her analysis was quite narrow, in the sense of
focusing on a small elite among scientists, this was due to the limitations of the
data available at the time. More than 20 years later, Bayer and Smart (1991) focused
on publication patterns of US PhD recipients in chemistry in 1960–1962. They
used a longitudinal data set spanning from 1962 to 1985 to follow the careers
of these researchers through time. Besides single-authored and multi-authored
publications, they also distinguished dual-authorship and proposed a typology of
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publication patterns of scientists, including six categories which are highly corre-
lated with co-authorship patterns. Researchers were categorized into groups of: Low
producers, Burnouts, Singletons, Team Leaders, Team Players, Doubletons, and
Rank-and-File types. With the development of electronic bibliographic databases,
simple longitudinal analysis of network characteristics (including average vertex
degrees, clustering coefficients, and density) became a common part of most studies
of temporal co-authorship networks (see Babchuk et al. 1999; Glänzel et al. 1999;
Kronegger et al. 2011a).

6.4.3 Deterministic Analysis of Dynamic
Co-Authorship Networks

Although the time dimension is often included in the analysis of co-authorship
networks, it has been mostly restricted to simple temporal time-series descriptions
of some network characteristics and actor attributes. Such basic analyses can be
found in a wide range of publications since results of practically every method for
social network analysis can be represented in time as a series of snapshots. The
most common goal of these methods is delineating structures within co-authorship
networks and accounting for network properties by using some external parameters.
Efforts of researchers to push the methodology further from simple description of
differences between time snapshots are therefore rare and hard to find.

A fruitful way of delineating structures within co-authorship networks is to use
blockmodeling procedures: Let U be a finite set of units and let the units be related
by a binary relation R � U � U that determines a network N D .U; R/. One
of the main procedural goals of social network analysis is to identify, in a given
network, clusters of units that share structural characteristics defined in terms of the
relation R. The units within a cluster have the same or similar connection patterns to
the units of other clusters. Result of clustering C D fC1; C2; : : : Ckg is a partition of
units U and relations R into blocks R.Ci ; Cj / D R\Ci �Cj . Each block is defined
in terms of units belonging to clusters Ci and Cj and consists of all arcs from units
in cluster Ci to units in cluster Cj . If i D j , the block R.Ci ; Ci / is called a diagonal
block.

A blockmodel consists of structures obtained by shrinking all units from the same
cluster of the clustering C. For an exact definition of a blockmodel, we must be
precise about which blocks produce an arc in the reduced graph and which do not.
The reduced graph can be presented also by a relational matrix, called an image
matrix.

The partition is constructed by using structural information contained in R only,
and units in the same cluster are equivalent to each other in terms of R alone. These
units share a common structural position within the network.

Blockmodeling, as a set of empirical procedures, is based on the idea that units
in a network can be grouped according to the extent to which they are equivalent in
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terms of some meaningful definition of equivalence. In general, different definitions
of equivalence usually lead to distinct partitions.

Lorrain and White (1971) provided a definition of structural equivalence: Units
are equivalent if they are connected to the rest of the network in identical ways. From
this definition it follows that only four possible ideal blocks can appear (Batagelj
et al. 1992b; Doreian et al. 2005)

Type 0. bij D 0 Type 2. bij D 1 � ıij

Type 1. bij D ıij Type 3. bij D 1

where ıij is the Kronecker delta function and i; j 2 C . The blocks of types 0 and 1
are called the null blocks and the blocks of types 2 and 3 the complete blocks. For
the nondiagonal blocks R.Cu; Cv/; u ¤ v, only blocks of type 0 and type 3 are
admissible.

Attempts to generalize the structural equivalence date back at least to Sailer
(1978) and have taken various forms. Integral to all formulations is the idea that
units are equivalent if they link in equivalent ways to other units that are also
equivalent. Regular equivalence, as defined by White and Reitz (1983), is one such
generalization.

As was the case with structural equivalence, regular equivalence implies the exis-
tence of ideal blocks. The nature of these ideal blocks follows from the following
theorem (Batagelj et al. 1992a): Let C D fCig be a partition corresponding to a
regular equivalence � on the network N D .U; R/. Then each block R.Cu; Cv/ is
either null or it has the property that there is at least one 1 in each of its rows and
in each of its columns. Conversely, if for a given clustering C, each block has this
property, then the corresponding equivalence relation is a regular equivalence.

Until now, a definition of equivalence was assumed for the entire network and the
network was analyzed in terms of the permitted ideal blocks. Doreian et al. (2005)
generalized the idea of a blockmodel to one where the blocks can conform to more
types beyond the three mentioned above, and one where there is no single a priori
definition of ‘equivalence’ for the entire network.

The problem of establishing a partition of units in a network, in terms of a
considered equivalence, is a special case of the clustering problem – such that
the criterion function reflects the considered equivalence. Such criterion functions
can be constructed to reflect the considered equivalence. They measure the fit of
a clustering to an ideal one with perfect relations within each cluster and between
clusters, according to the selected type of equivalence.

For the direct clustering approach, where an appropriate criterion function that
captures the selected equivalence is constructed, a relocation approach can be used
to solve the given blockmodeling problem (Doreian et al. 2005).

Inductive approaches for establishing blockmodels for a set of social relations
defined over a set of units were discussed above. Some form of equivalence is
specified, and clusterings are sought that are consistent with a specified equivalence.
Another view of blockmodeling is deductive in the sense of starting with a
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blockmodel that is specified in terms of substance prior to an analysis. In this case,
given a network, a set of types of ideal blocks, and a family of reduced models, a
clustering can be determined which minimizes the criterion function. (For details,
see, Batagelj et al. 1998; Doreian et al. 2005). Some prespecified blockmodels are
designed as hierarchical models with the positions on paths linked by directed ties
in a consistent direction. A core-periphery model is such a model where there is one
(or several) core position that is strongly connected internally. Peripheral positions
are all connected to core positions but not connected to each other, and they are
not internally cohesive. There are variations of the core-periphery model; e.g., in
which the periphery is not even connected to the core positions. All described
blockmodeling approaches are implemented in the program Pajek (Batagelj and
Mrvar 2010).

An example of the multi–core–semi–periphery–periphery structure is presented
in Fig. 6.1. This specific structure, found in co-authorship networks, consists of:
(i) simple cores comprised of scientists co-authoring with all, or most, colleagues
in their core (units R3 to R5 and R13 to R16); (ii) bridging cores composed
of researchers who connect two or more other simple cores (units R1 and R2);
(iii) a semi-periphery made up of authors who co-author with proportionately fewer
others in their position and have no systematic patterns of ties to scientists in other
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Fig. 6.1 An example of a blockmodel of a network with it’s a structure that consists of three parts
structure.
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positions, and periphery of authors who do not co-author with other researchers
from the network.

Several applications of blockmodeling of co-authorship networks have been
published in recent years. For example, Said et al. (2008) distinguished several
styles of co-authorship, including solo models (no co-authors), mentor models,
entrepreneurial models, and team models. They conjectured that certain styles of
co-authorship lead to the possibility of group-thinking, reduced creativity, and the
possibility of less rigorous reviewing processes. Nooraie et al. (2008) examined
co-authorship networks in three Iranian academic research centers in order to
find an association between scientific productivity and impact indicators with
network features. The collaboration networks within centers shared many structural
features, including a “star-like” pattern of relations. Centers with more successful
scientific profiles showed denser and more cooperative networks. Kronegger et al.
(2011a) distinguished different co-authoring cultures in four scientific disciplines
and delineated typical structures of scientific collaboration. They also extended
blockmodeling by tracking locations, and hence positions, of authors across dif-
ferent time points.

Another effort to combine a static analysis of complexity at separate time
moments with a dynamic analysis was presented by Erten et al. (2004) and by
Gansner et al. (2005). They introduced a dynamic extension of multidimensional
scaling (Richardson 1938; Torgerson 1952). Multidimensional scaling (MDS) is
a set of data analysis techniques designed to display the structure of data in a
geometrical picture. The algorithm of dynamic MDS is driven by the minimization
of stress measured both within each analyzed year and over consecutive years
by optimizing the resulting stress for a three dimensional array. This algorithm
was recently implemented in Visone (Leydesdorff and Schank 2008) and used by
Leydesdorff (2010) to study co-authorship networks, with additional information
on co-word appearance and journal citation indexes. In this paper, he analysed the
complete bibliography of Eugene Garfield for the years 1950–2010, graphically
presenting its collaboration structure and citation dynamics around Garfields’ work
mainly dealing with the Science Citation Index.

6.4.4 Modeling Dynamic Scientific Co-Authorship Networks

Here, we present only an overview of modeling temporal co-authorship networks.
Static models of macro-level network properties, which are based on stochastic rules
of network generation, are discussed first. These have been mainly developed from
graph theory by mathematicians and physicists who, with the development of the
Internet in 1990, were interested in modeling accessible large real-world networks.
The developments led from purely random graphs, built according to the Erdös and
Rényi (1959) model, to small-world networks (Watts and Strogatz 1998), and to a
range of models based on the concept of preferential attachment (Barabási et al.
2002; Newman 2000).
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The idea of finding the rules fostering the growth and development of social
networks, or as it was stated, modeling the real world graphs, was widely captured
(mostly) by physicists. The basics for any kind of modeling of social networks
were provided by the Erdös–Rényi random graph model, which is determined by a
number of vertices (n) and the probability (p) that a link exists between two arbitrary
vertices. Therefore, each random graph has approximately p �n.n�1/=2 undirected
links. A single vertex is linked to a binomially distributed number of neighbors. The
limiting degree probabilities are Poisson distributed.8

The first generalization of the Erdös–Rényi random graph took the form of
a configuration model where specific degrees are assigned (usually from a pre-
specified distribution) to all the vertices which are then randomly linked according
to their degree. The construction of the model was proposed by Molloy and Reed
(1995) and studied by many authors (see the overview provided in Newman 2003).
This solved the problem of degree distribution in real-world graphs usually not
having a Poisson distribution, as in the Erdös–Rényis random graph, but not the
inability to model the clustered nature of empirical networks.

We consider also a very different approach to modeling social network dynamics,
one which returned to and is founded upon ideas within social science. The approach
of the physicists has been intent on reproducing the topological form of real-
world networks, and it proposes some generic processes of growth and change
while ignoring an extensive tradition of sociological and psychological knowledge
regarding the behavior of individuals. This alternative (more sociological) approach
focuses on single actors and their involvement in the smallest possible social unit
of analysis, the dyad. This type of modeling is labeled ‘stochastic actor-based
modeling’ (Snijders 1996). Its purpose is to represent network dynamics on the
basis of observed longitudinal data in the form of explicit models and to evaluate
them (or a family of models) within the paradigm of statistical inference. This
implies that the models are able to represent network change as the result of
dynamics being driven by many different tendencies, especially structurally based
micro-mechanisms. These mechanisms can be theoretically derived and/or based
on empirically established properties in earlier research. Of great importance is that
these mechanisms may well operate simultaneously (Snijders et al. 2010). One lim-
itation of these models is that they are restricted to a smaller predetermined number
of actors and do not directly consider more global mechanisms of network growth.

6.4.4.1 Modeling “Real-World” Networks

Social studies of science have long had an interest in linking scientific production
to the network structures of scientific communities. Different models have been
proposed as representations of processes driving co-authorship (as collaboration) in

8Mathematical notations of models in this section are based on those used by Kejžar (2007).
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science that help account for the form of large-scale scientific networks and predict
scientific production. One contains an argument that if scientists from particular sci-
entific disciplines (specialties) collaborate with others inside their disciplines, then
we would expect to find distinct clusters in the knowledge-production network –
exactly the clustering noted in many empirical networks – and this would correspond
to small-world network structure (as described below). Alternatively, if the network
was generated by preferential attachment (see below) as a mechanism – where young
scientists publish with well-established scientific stars – then we would expect to
find a scale-free network structure whose degree distribution satisfies a power-law.
If the network is based on a cross-topic collaboration, then we would not expect to
find strong fissures in the network, but instead find a structurally cohesive network
(Moody 2004). All of the above-mentioned network structural processes lead to
specific dynamics for scientific networks that, in turn, generate distinctive network
structures or topologies. These models for generating the structures of large-scale
and complex networks can be expected to hold also for co-authorship networks
in science. Large-scale co-authorship networks can have local (such as clustering)
structural properties as well as global (such as average distance between nodes)
structural features. Local and global characteristics of networks help to define
network topologies such as “scale-free networks” and “small-world networks.”
These network topologies are the result of network-generating processes and can
lead to further dynamics of these networks in different ways. For example, the
principle of preferential attachment to vertices of higher degree leads to a dynamics
where “the-rich-get-richer. “In the case of science, this implies that those scientists
who experience early success gain higher shares of subsequent rewards. We next
consider scale-free and small-world science network structures in more detail.

6.4.4.2 The Small-World Model

The small-world network structure of scientific co-authorship implies network
forms where the level of local clustering (one’s collaborators are also collaborators
with each other) is high, but the average number of steps between clusters is small.
In these small-world networks, internal ties to clusters tend to form more cohesive
clusters within boundaries, as compared to the more extensive and less cohesive
overall networks that include their external ties. According to various social network
analysts, the small-world model was inspired by the work of de Sola Pool and
Kochen (1978) who partially formalized the much more famous application of
Travers and Milgram (1969). It expresses the simple idea that any two individuals,
selected randomly from almost anywhere on the planet, are ‘connected’ via a path of
no more than a small number of intermediate acquaintances. The (limited) empirical
evidence suggested that this small number is about 6. This notion became a popular
idea in the Broadway play named Six Degrees of Separation. The first practical
evidence for the existence of a small-world phenomenon was first provided by
the psychologist Milgram (Berg 2005, p. 46). Milgram’s experimental result was
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regarded as a good starting point for analyzing the underlying structure of scientific
co-authorship.

Later, Watts and Strogatz (1998) formally defined the small-world model in
order to construct networks with the following properties that mirror some observed
social networks: (i) having short paths between any two vertices (and hence, smaller
average lengths for the shortest paths) and (ii) also incorporates clustering (small
dense parts of the network). Knowing that geographical proximity of vertices plays
a role in the formation of links (especially for humans), they considered a ring-lattice
with n vertices. Each vertex had msw edges to its neighbors. Then they rewired each
edge with a probability psw by relinking the second end of the edge to a randomly
chosen vertex. The probability psw enables this network to vary from an ordered,
finite dimensional lattice to a completely disordered network. The ring-lattice does
not show a small-world effect since the average shortest path grows faster than a
logarithmic rate of increase with the number of vertices, but it has strong local
clustering. When the edges are rewired, Watts and Strogatz noticed that replacing a
few long-distance connections hugely reduced the network’s average shortest path
and, as a result, a small-world effect appears. When psw D 1, the network becomes
completely disordered where local clustering is no longer present and the average
shortest path is small. Watts and Strogatz showed, by numerical simulation, that
there is a relatively large psw interval in between the two extremes, for which the
model exhibits both low path lengths and clustering (Fig. 6.2).

Newman (2001, 2004) provides an excellent overview of the analysis on the
topology of small-world network structures, highlighting key organizing principles
that guide ties among the nodes in the network. According to Moody (2004),
an archetypal small-world network will have many distinct clusters, connected to
each other by a small number of ties. An analysis dealing with the dynamics
of co-authorship publication networks in Slovenian sociology (Mali et al. 2010)
showed that, to some extent, they conform to the small-world network structure:
there are groups of sociologists that are very connected inside small groups but
connected with others in non-systematic ways. Further results, obtained by using
the blockmodeling approach, pointed to a publication strategy of those sociologists
in Slovenia who are included in these small-world structures and are more oriented

Regular graph
with psw=0

Small-world graph Random graph
with psw=1

Fig. 6.2 Small-world structure simulation with different levels of randomness



6 Dynamic Scientific Co-Authorship Networks 215

to parochial scientific reports or publications in Slovene. Consistent with this, they
publish less in the international peer-reviewed journals than the sociologists outside
this small-world structure. The results of these empirical analyses of Slovenian
sociologists suggest that the presence of a too ‘closed’ and dense co-authorship
network in science can have negative effects on the international orientations of
scientists in a small scientific community. This implies that, for scientific perfor-
mance and scientific excellence, it is much more important to have ‘open’ networks
that have many structural holes (gaps between actors that create opportunities for
brokerage). This is especially important for linking micro-level interactions (coop-
eration inside internal scientific organizations) to macro-level patterns (cooperation
in the international scientific community). Burt provided evidence suggesting that
new ideas in society emerge from selection and synthesis processes that operate
across structural holes between groups. Positive performance evaluations and good
ideas are disproportionately in the hands of people whose networks span structural
holes. The ‘between-group brokers’ are more likely to have ideas viewed as valuable
(Burt 2004) within the community.

6.4.4.3 The Preferential Attachment Model

The scale-free network structure, in one version or another, corresponds fairly
closely to the sociological model of cumulative advantage in science. The first
systematic representation of this model was provided by Merton (1973). Following
Merton, there was a research stream in the literature that invoked the idea of
cumulative advantage as a central explanatory principle for the social stratification
of science. Merton’s studies were concerned with both organizational and functional
aspects of science as an institution capable of self-regulation. This approach found
its most significant (or at least most famous) expression in the description of
the normative structure of science. Merton focused his attention on four insti-
tutional imperatives: universalism, communism, disinterestedness, and organized
skepticism. Merton and other scholars working within institutional approaches
(including Barber, Zuckerman, and Hagstrom) analyzed how norms regulate sci-
entific activity. They studied the ways in which resources and rewards (including
scientific prestige and opportunities to publish) are assigned and distributed within
the scientific community (see, for example, Matthew 2005; Bucchi 2004).

The idea of cumulative advantages comes from the passage in Matthew’s Gospel:
“For unto every one that hath shall be given, and he shall have abundance: but
from him that hath not shall be taken away even that which he hath.” (Hence
the term “the Matthew effect.”) Translating the idea of cumulative advantage in
science implies that those scientists who already occupy a position of excellence are
rewarded far more than others in their field. Scientists who are rich in recognition
find it easier to obtain additional recognition. In contrast, scientists who receive little
recognition for their research efforts have reduced chances for future recognition.



216 F. Mali et al.

Merton argued that cumulative advantage is a primary mechanism in modern science
for the creation of scientific stars.9

A more quantitative and bibliometric basis for assessing the phenomenon of
unequal distribution of publications (in connection with the unequal distribution
of awards) in modern science has been provided also by Price (1976; 1963) in the
form of his measure of scientific productivity. According to Price’s law of scientific
productivity, “...half of the scientific papers published in a given sector are signed
by the square root of the total number of scientific authors in that field” (Price 1963,
p. 67). This means that a relatively small number of highly productive researchers
are responsible for most scientific publications. Price’s law is founded on the same
probabilistic basis as the earlier established Lotka Law,10 the Bradford Law,11 and
Pareto and Zipf12 distributions.

Both Price’s law and the Matthew effect depict the scientific community as a
structure characterized by marked inequality and a heavily pyramidal distribution of
scientific rewards and publications. They are linked by the principle of preferential
attachment which contains, for the case of scientific co-authorship networks, two
generic aspects: (1) the continuous addition of new vertices into the network
system and (2) preferential connectivity of new vertices. It means that a common
feature of the models of scientific co-authorship networks, based on the rationale
of preferential attachment, continuously expands by the addition of new vertices
that are connected to the vertices already present in the networks. Additionally, in
these models a new actor is, at best, most likely to be cast in a supporting role with
more established and better-known actors. Further, no scientific field expands with

9Merton and his sociological followers (see Allison et al. 1982; Cole and Cole 1973) have analyzed
several other similar mechanisms with regard to science networks, collaboration structures, and
recognition in science:

1. The “halo effect” in science denotes the advantage of scientists in more favorable institutional
locations.

2. The “Matilda effect” points to the discrimination against the participation of women in scientific
activity.

3. The “gatekeeper” labels those scientists who can influence the distribution of resources such
as research funds, teaching positions, or publishing opportunities because they occupy key
decision-making positions within scientific institutions.

4. The idea of an “invisible college” was introduced on the basis of a seventeenth century
expression denoting informal communities of researchers that cluster around specific projects or
a research theme and that often turn out to be more influential in terms of knowledge production
than formal communities (departments, research centers, scientific committees).

10Lotka’s law states: The number of authors making n contributions is about 1=na of those making
one contribution, where a is often about 2.
11Bradford’s law states: Journals in a field can be divided into three parts: (1) a core of a few
journals, (2) a second zone, with more journals, and (3) a third zone, with the bulk of journals. The
number of journals in these three parts is 1 W n W n2.
12Zipf’s law states: The probability of occurrence of words or other items starts high and tapers off.
Thus, a few occur very often while many others occur rarely. The formal definition is: Pn � 1=na ,
where Pn is the frequency of occurrence of the nth ranked item and a is close to 1.
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an endless growth of new vertices but is constrained by the operation of feedback
effects.13 It follows that there exist nodes, called “hubs” or “Angelpunkten oder
Naben” (Berg 2005, p. 53), that acquire more links than another nodes. In such
types of networks, preferential attachment and the system feedback dynamics play
very important roles.

Crane (1972) provided an analysis of (global) scientific networks where informal
members of scientific elites (in Moody’s terminology, scientific stars) through whom
the communication of scientific information both within scientific disciplines and
across scientific disciplines is directed have the position of “hubs”. Namely, they
are central scientists in the network from where the information is transferred to all
other scientists in the network. They also communicate intensively with each other.
The idea of scientific networks with hubs can be used as a starting point to relate
micro-level interactions (for example, in a local/national scientific community) to
macro-level patterns (for example, the global scientific community). Through the
informal groups of scientific elites, the small-scale interactions become translated
into large-scale patterns. These large-scale patterns (international science) also have
feedback effects on small groups (parochial/national science). The production and
diffusion of the most creative and excellent scientific ideas in the world arise from
the brokered networks (Granovetter 1973, p. 1360).

Albert and Barabási (2001) provide examples of many real-world networks
whose degree distributions are far from a Poisson distribution. They showed that
distributions can be approximated with a power-law function. They proposed a
new evolving network model – PA or preferential attachment model (Barabási and
Albert 1999). The model was presented as one that “shifts from modeling network
topology to modeling the network assembly and evolution” (Albert and Barabási
2001). The idea behind the model was to capture the construction (development) of a
network that could possibly explain the large number of observed power-law degree
distributions in real networks. Before, there existed mostly network models with a
fixed number of vertices among which links were added according to a particular
procedure (process). Since real networks typically grow with the addition of new
links and vertices that are not added randomly, Albert and Barabasi included the
following ideas in their model.

The algorithmic statement of their model, given a set of vertices in a network,
consists of the following two processes in a sequence of steps:

• At every time step, a new vertex v is added to the network.
• mba edges are created from the new vertex v to the vertices that are already in the

network. These vertices are chosen with a probability proportional to their current

13(Berg 2005, p. 54) points out that “the effect of the positive feed-backs, namely, the advantages
of old nodes against new ones as well as the attractiveness of the already networked nodes for
newly added ones are leading to the growth of networks based on the preferential attachment”,
(“...doch in einem bestimmten Bereich sind positiven Rueckkopplungen feststellbar. Beide Effekte
zusammen, der Vorteil, den alte Knoten gegenueber neuen haben sowie die Attraktivitaet besonders
vernetzter Knoten fuer neu hinzukommende, fuehren dazu, dass das Wachstum des Netzes einer
bevorzugehenden Verbindungswahl folgt.”)
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Fig. 6.3 Degree distribution in a co-authorship network of Slovenian researchers (Kronegger et al.
2011a) presented on a log-log scale. A large number of researchers with a small number of co-
authors and a small number of researchers with a high number of co-authors indicates the existence
of a preferential attachment mechanism in the process of network growth

degree. The probability of choosing vertex u can be written by ku=
P

j kj (where
ku represents the current degree of vertex u).

After t time steps, there are t C m0 vertices in the network (where m0 denotes
the number of vertices at the beginning of the process) and tmba edges. It was first
shown with simulations that the degree distribution of the whole network resulting
from the operation of this model follows a power-law distribution with an exponent
� D 3 (Fig. 6.3).

Such scale-free networks as these generated through the principle of preferential
attachment, in addition to not having a Poisson distribution of links around nodes,
also have the interesting property of being very resistant to random attack. Almost
80% of the links can be cut before a scale-free network is destroyed, while the
corresponding percentage for an exponential network is less than 20%.

Many generalizations about preferential attachment models have been made
(Albert and Barabási 2001; Newman 2003). Systematic divergence from the power-
law distribution at small degrees can be seen in many real-world networks.
Therefore, Pennock et al. (2002) proposed incorporating a mixture (weighted
addition) of preferential attachment and random attachment in the model. A further
refinement of this model, where a directed version of the model was taken into
account, is implemented in Pajek (Batagelj and Mrvar 2010). There, at each step
of the growth a new vertex is selected according to its weighted in-/outdegree and
some uniform attachment.
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Another generalization about both small-world and preferential attachment,
developed for two-mode networks, comes from Latapy et al. (2008) who present
a nice overview of method developments for two-mode networks. Opsahl (2010)
provides another attempt to overcome the issues of higher clustering coefficients in
projections of two-mode to one-mode networks by redefining both the global and
local clustering coefficients so that they can be calculated directly for two-mode
structures.

6.4.4.4 Applications Featuring Co-Authorship Networks

Newman (2001) showed that collaboration networks form small-worlds in which
randomly chosen pairs of scientists are typically separated by only a short path
of intermediate acquaintances. He further provided information on the distribution
of the number of collaborators, demonstrated the presence of clustering in the
networks, and highlighted the number of apparent differences in the patterns of col-
laboration between fields. Also, Newman (2004) used data from three bibliographic
databases for biology, physics, and mathematics to construct networks in which the
nodes were scientists. He used these networks to answer a broad variety of questions
about collaboration patterns, how many papers did authors write and with how many
people, what is the typical distance between scientists through the network, and how
do patterns of collaboration vary between subjects and over time.

Barabási et al. (2002) analyzed co-authorship data from electronic databases
containing all relevant journals in mathematics and neuroscience for the period
between 1991 and 1998. They found that network evolution is governed by
preferential attachment. However, contrary to their predictions, the average degree
in the networks they analyzed increased, and the node separation decreased in time.
They also proposed a model that captured the network’s time evolution.

Moody (2004) made an important contribution by identifying several types
of individual scientific collaboration behavior that leads to the development of
co-authorship networks that resemble networks generated according to the prin-
ciples of small-world and preferential attachment. Recently, several articles that
test the principles of small-world and preferential attachment have been published.
Some are based on local databases like the Slovenian COBISS (Mali et al. 2010;
Perc 2010), while others use general databases like Web of Science (Wagner and
Leydesdorff 2005; Tomassini and Luthi 2007).

6.4.4.5 Developments of Models for Longitudinal Network Data

After the pioneering work of Erdös and Rényi on random graphs, and after the first
applications of graph theory appeared in the sociological community (de Sola Pool
and Kochen 1978), one group within the scientific community moved away from the
idea of merely reproducing some global properties of “real-world” network proper-
ties. Instead, they focused on an approach designed to include micro-mechanisms
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that generate local changes in networks that also help account for the macro-
structure of networks. Moreover, these efforts were designed to treat the micro-
mechanisms as hypotheses that could be evaluated through statistical inference. The
basics for these models of network change are (as already mentioned in the pre-
vious section) random graphs and random graph processes which incorporate the
probabilistic uncertainty into the models. Uncertainty is present because there are
many potential generators for observed graph structures, including co-authorship.
From a methodological perspective, modeling the dynamics in social networks led
to several obstacles. Probably the most persistent one was the interdependencies of
the units comprising the networks. This problem remained untouched for almost 20
years. Indepth overview of approaches and methods to modeling network changes
in time can be found in Frank (1991), Snijders (1996), and Snijders et al. (2010).

There are two distinct approaches to modeling network changes in time: models
that implement change in discrete time steps, and more advanced models where time
is modeled by continuous flows. Success in modeling change in social networks
began in 1959 when Katz and Proctor showed that change in preferences for
making ties in the network could be represented by a stationary, discrete-time
Markov model. Of course, they assumed the independence of dyads within which
all the modeling took place. In 1981, Holland and Leinhardt published a very
influential article on log-linear models of network change which initiated a vigorous
research stream devoted to the development of a broad class of models. One
basic model, called p1, was developed by Fienberg and Wasserman (1981) and
Wasserman and Weaver (1985). Authors also provided efficient algorithms to find
the maximum-likelihood estimators of parameters defining appropriate probability
functions. Fienberg et al. (1985) showed how to handle social network data with the
Holland-Leinhardt model and its extensions in contingency tables by using basic
log-linear models. The longitudinal dimension to the log-linear approach was added
by Wasserman (1987) and Wasserman and Iacobucci (1988).

Conditionally uniform models (Holland and Leinhardt 1975) are often used for
modeling directed graphs where the probability distribution for forming new ties is
uniform, conditional upon a certain set of attributes. In these models, the conditional
statistics are defined by attribute variables and contain the most relevant effects of
the studied phenomena, while the rest is explained by random factors. Conditionally
uniform models become very complicated when more informative conditioning on
attribute variables is included into the model. Such models for longitudinal binary
network data at 2 time points – conditional upon the entire network at the first time
point, and upon the numbers of newly formed and dissolved ties for each actor –
were developed by Snijders (1990). The idea of conditioning the changes in the
network on the first measured network resolves most of the unexplained factors that
determined the development of network before its first measurement.

Modeling changes in continuous time with Markov chains was adapted by
Coleman (1964) to tackle some classical sociological problems. Holland and
Leinhardt (1977) extended this idea to model networks of interpersonal affect
between actors. They developed a valued Markov chain approach to model the
process by which social structure based on affect influenced individual behavior.
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The basic assumptions underlying the use of the continuous time Markov chain
model are:

1. Between the observation moments, time runs continuously. Changes can be made
(but are likely to be unobserved) at any moment, t .

2. The network X.t/ is the outcome of a Markov process.
3. At each single moment, only one relational tie or variable attribute may change.

Wasserman (1978, 1980a,b) continued this approach and provided estimators for
parameters of various models. He started with a simple model of reciprocity in
directed graphs, but without complicated dependencies between ties such as those
generated by transitive closure.

The breakthrough in modeling the dynamics in social networks was the relax-
ation of the assumption of conditional independence between dyads (Mayer 1984).
This was an important step since most sociological theories assume at least some
kind of dependence structure between dyads. Another important step came in the
form of dropping the stationarity assumption (Leenders 1995). Leenders also
developed a mechanism to allow changing rates for all dyads to be dependent on
arbitrary covariates, with the assumption that these remain constant between the
observations.

In recent years, these models became known as stochastic actor-oriented mod-
els which have been developed to consider a variety of micro-mechanisms for
generating network structure. These models are based on an assumption that
each actor has his/her own goals which he/she tries to advance in accordance
with his/her constraints and possibilities. Snijders (1995) referred to this approach
as ‘methodological individualism’ where the driving force behind the network
dynamics comes in the form of actions by actors.

Each attempt to model specific sociological problems or theories produced a
new mathematical model that filled the gaps along the way to obtaining a better
representation of reality. Yet an important feature still had to be addressed because
most of these models lacked an explicit estimation theory.

The first models addressed some basic questions. A baseline of development
can be followed through the work of several authors. Jackson and Wolinsky (1996)
presented a model where the benefits and costs of ties affected the evolutionary
trajectories of networks and the form of equilibrium structures. Hummon (2000)
constructed actor-oriented simulation models of ‘Jackson and Wolinsky actors’ to
study temporal network dynamics. He specified choices under four combinations of
tie formation and deletion rules: unilateral and mutual tie formation, and unilateral
and mutual tie deletion. This process generated eight types of networks: Null,
near-Null, Star, near-Star, Shared, near-Shared, Complete and near-Complete as
equilibrium structures. Doreian (2006) provided a formal proof via exhaustive
examinations of the structures identified by Hummon (but only for tiny networks),
and this line of work was extended by Xie and Cui (2008a,b). In another line of
development, Marsili et al. (2004) presented a simple model using the creation of
links to friends of friends, a mechanism that was introduced by Vázquez (2003)
in the context of growing networks. This model is similar to the one proposed by
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Davidsen et al. (2002) which explained the emergence of the small-world property
in some social networks.

In the model of Skyrms and Pemantle (2000), individual agents begin to interact
at random, with the interactions modeled as games. The game payoffs determine
which interactions are reinforced, and network structures emerge as a consequence
of the dynamics of the agents’ learning behavior.

More complex network dynamic models with larger but still quite restricted
numbers of tendencies were presented by Jin et al. (2001). They propose some
simple models for the growth of social networks based on three general principles:
(i) meetings take place between pairs of individuals at a rate that is high if a pair has
one or more mutual friends and low otherwise; (ii) acquaintances between pairs
of individuals who rarely meet decay over time; (iii) there is an upper limit on
the number of friendships an individual can maintain. Their models incorporate
all of these principles and reproduce many of the features of real social networks,
including high levels of clustering or network transitivity and strong community
structure in which individuals have more links to others within their community
than they have to individuals from other communities. The important feature of
their models is the inclusion of a time scale on which people make and break social
connections.

6.4.4.6 Simulation Investigation for Empirical Network Analysis – Siena

The problem of inference in modeling dynamics of social networks on the basis
of the observed longitudinal data was addressed by Snijders (1996) and extended
further by Snijders et al. (2010). These models are based on longitudinal data and
include representations of network dynamics as being driven by many different ten-
dencies. These include micro-mechanisms, which have been theoretically derived
and/or empirically established in earlier research, and which may well operate
simultaneously. One of the most important characteristics of these models is the
evaluation of their results within the paradigm of statistical inference, which
makes them suitable for testing hypotheses and estimating tendencies that drive
tie formation and dissolution at the level of individual units using reciprocity,
transitivity, homophily, etc.

The model assumptions are:

• The model is basically defined for directed relations. In the case of undirected
networks (e.g., co-authorship networks) the tie formation is additionally modeled
using different mechanisms (e.g., a unilateral forcing model, unilateral initiative,
and reciprocal confirmation, etc.)

• The network is observed in 2 or more discrete timepoints. But the underlying
time parameter in the model is continuous.

• Changes in the network are outcomes of a Markov process, which means that the
change in the network from one state in time point ti to new state in time point
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tiC1 is conditioned only to the state of the network in time point ti . The process
does not take into account any other historical events.

• The actors control their ties, which means that changes in ties are made by actors
who send the tie on the basis of their and others’ attributes, their position in the
network, and their perceptions about the rest of the network. Regarding the last,
it is assumed that actors have full information about the network and the other
actors.

• At any given moment, only one probabilistically selected actor may get the
opportunity to change only one tie.

The actor-based process is decomposed into two stochastic sub-processes:

1. The change-opportunity process models the frequency of the tie changes by
actors. The opportunity to change the tie depends on the network locations of
the actor (e.g., his or her centrality) and on actor covariates (e.g., gender or age).

2. The change-determination process models the change of the tie when an actor
gets an opportunity to make a change. The change of the tie can be made
with equal probabilities or with probabilities depending on attributes or network
positions. Perceived attributes and position (the environment) of the actor is
included into the actor’s objective function, which expresses how likely it is for
the actor to change his or her network environment in specific way (i.e., initiate,
withdraw tie, or keep the present situation).

To use this model with observed data means that parameters have to be estimated
by some statistical procedure. Since the model is too complicated for classical
estimation methods such as maximum likelihood, Snijders (1996, 2001) proposed a
procedure using the method of moments implemented by a computer simulation of
the network change process. The procedure he proposed uses the first observation
of the network as the (unmodeled) starting point of the simulations. This implies
the estimation procedure is conditioned on the first observed network of a series of
observations of that network.

The limitation of such models is that they are limited to a predetermined
and rather small number of actors (between 100 and 200 actors) and do not
directly consider the mechanisms of network growth. The methods and algorithms
developed by Snijders et al. (2008) are implemented in the computer package
SIENA.

Stochastic actor-based modeling of network dynamics was initially developed
for modeling the change in directed networks. The undirected networks such as
co-authorship networks are a special case where reciprocity cannot be used as
a mechanism of network change. Although several articles have been published
using SIENA models, to our knowledge, only Kronegger et al. (2011b) dealt with
undirected networks to study the dynamics of co-authorship networks of Slovenian
researchers working in physics, mathematics, biotechnology, and sociology in the
time period from 1991 to 2005. In their study, they operationalized the modeling of
global network parameters used in the preferential attachment and the small-world
models with stochastic actor-oriented modeling.
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6.5 Summary

Access to bibliographic databases and the availability of powerful quantitative social
network approaches increased the number of studies of co-authorship networks in
different scientific fields. There are several classification schemes for analytical
approaches to analyzing the dynamics of co-authorship networks. We decided to
classify them according to the types of models. The first type of model provides the
basic analysis of whole co-authorship network properties. Such network character-
istics are degrees, clustering coefficients, and density. The usual statistical approach
used in these models is time-series analysis of listed properties.

Deterministic models (the second type) and stochastic models (the third type) are
usually used to analyze actor-based co-authorship networks and attribute charac-
teristics. To study the structure within the co-authorship networks, blockmodeling
approaches are recommended. To model dynamic co-authorship networks, sev-
eral approaches can be used according to the chosen level of analysis. Models on
the macro level (whole network level) were mostly developed by mathematicians
and physicists. These are models of “real-world” networks, small-world models,
and preferential attachment models. The alternative stochastic actor-based model
(implemented in SIENA) was developed by social scientists and statisticians. This
model focuses on single units and on dyads. This powerful model studies network
change in time as the result of micro-mechanisms for generating the network
structure.

There are several indicators that show a huge development of analytical
approaches to studying social networks through time. The powerful stochastic
actor-based networking model has one disadvantage in that it can only be used to
analyze a few hundred units in the network. Therefore, there is a need for similar
models to analyze large networks.

Key points
Modeling of co-authorship networks can be approached in terms of the
different perspectives and goals that have been outlined in this chapter. As
a partial summary, the following items are important:

1. Level of the analysis: the macro level (whole network) or the micro level
(unit). Which one is used depends on the goal(s) of the study. There are the
following three variants:

a. Describing the topology of the macro structure
b. Understanding the micro-level changes at the actor level
c. Coupling the micro-level processes to the generation of the network’s

macro structure.

2. Size of the network: some models can process only a limited number
of units (e.g. stochastic actor-based modeling and direct blockmodeling),
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while others can handle large networks (e.g., preferential attachment, the
small-world model, and indirect blockmodeling).

3. Discrete-time models (e.g., blockmodeling) or continuous-time models
(e.g., stochastic actor based modeling).

4. The analysis of the evolution of co-authorship networks only (e.g., small-
world model, preferential attachment, blockmodel) or including external
characteristic of network (e.g., scientific field) and/or actor attributes (e.g.,
age or gender of researcher) using modeling approaches (e.g., stochastic
actor based modeling).

5. Needs of graphical representation of co-authorship network evolution (e.g.,
preferential attachment, blockmodeling, multidimensional scaling).
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