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Foreword

Andrea Scharnhorst, Data Archiving and Networked Services & e-Humanities
group, The Royal Netherlands Academy of Arts and Sciences, The Netherlands

Katy Börner, Cyberinfrastructure for Network Science Center, School of Library
and Information Science, Indiana University, Bloomington, USA

Peter van den Besselaar, Department of Organization Science & Network Institute,
VU University Amsterdam, The Netherlands

Motivation

Models of Science Dynamics aims to capture the structure and evolution of science –
scholars and science itself become “research objects.” These research objects might
be represented by conceptual models based on historical and ethnographic obser-
vations, mathematical descriptions of measurable phenomena, or computational
algorithms. Some models re-create the structure of co-authorship networks and their
evolution over time. Others capture the dynamics of citation diffusion patterns.

The philosophy, history, and sociology of science have produced valuable
insights into the nature of scholarly activities as a human activity and social system.
Within this area, the dynamics and structure of the science system, including the
social sciences and humanities, have been the focus of a variety of explanatory,
exploratory, and metaphorical models (Kuhn 1962; Cole and Cole 1967; Crane
1972; Elkana 1978; Nowakowska 1984; Price 1963; Nalimov and Mulchenko 1969;
Leydesdorff and Van den Besselaar 1997). Almost every progress in mathematical
modeling has also been applied to model science itself. Phenomena such as specific
growth laws of publications and citations (Price 1965, 1976), scientific productivity
(Lotka 1926), or the distribution of topics over journals (Bradford 1934) have
always raised the interest of mathematicians and natural scientists. Mathematical
models have been proposed not only to explain statistical regularities (Egghe and
Rousseau 1990), but also to model the spreading of ideas (Goffman 1966) and
the competition between scientific paradigms (Sterman 1985) and fields (Kochen
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1983; Yablonskiı̆ 1986; Bruckner et al. 1990). Furthermore, they have been used
to model the relation between publishing, referencing, and the emergence of new
topics (Gilbert 1997), as well as the co-evolution of co-author and paper-citation
networks (Börner et al. 2004; Börner and Scharnhorst 2009; Börner 2010). Outside
of the field of science and technology studies, such models have also been presented
and discussed at conferences about self-organization, system dynamics, agent-based
modeling, artificial societies, and complexity theory. Despite its evident importance,
however, the mathematical modeling of science still lacks a unifying framework and
a comprehensive study of the topic. This book aims to fill this gap.

Structure of the Book

This book reviews and describes major threads in the mathematical modeling of
science dynamics for a wider academic audience. The model classes presented
cover stochastic and statistical models, system-dynamics approaches, agent-based
simulations, game-theoretic models, and complex-network models. The book starts
with an introduction and a foundational chapter (Börner et al. 2012) that defines
and operationalizes terminology used in the study of science. This is followed by
a review chapter (Lucio-Arias and Scharnhorst 2012) that discusses the history of
mathematical approaches to modeling science from an algorithmic-historiography
perspective. The subsequent chapters review specific modeling approaches such
as population-dynamic (Vitanov and Ausloos 2012), agent-based (Payette 2012),
and game-theoretic models (Hanauske 2012). Different modeling approaches used
to capture the structure and dynamics of social networks (Mali et al. 2012) and
citation networks (Radicchi et al. 2012) are presented in two separate chapters.
Model classes often combine descriptive and predictive elements—this book places
a strong emphasis on the latter. The book concludes with a short outlook (van den
Besselaar et al. 2012) to remaining challenges for future science models and their
relevance for science and science policy.
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Preface

Andrea Scharnhorst, Data Archiving and Networked Services & e-Humanities
group, The Royal Netherlands Academy of Arts and Sciences, The Netherlands

Models of science – scattered knowledge

After World War II, scientists were increasingly subject to systematic and large
scale measurements efforts. The growth and changing roles of science stimulated
the need for governmental and “policy support of science” as well as the need
for an empirical basis for “science policy”. Since then a wealth of monitoring and
evaluative indicators has been created. Sociology of science (Bernal 1939; Kuhn
1962; Merton 1973) as well as Scientometrics (Nalimov and Mulchenko 1969; Price
1963) were established as scientific fields. The Society for Social Studies of Science
(4S), the European Association for the Study of Science and Technology (EASST)
and the International Society for Scientometrics and Informetrics (ISSI), among
others, are active as professional organisations in this field. At their conferences
“models of science” occasionally appear, but are not presented in a systematic
way on a regular basis. Not only other knowledge domains, such as sociology,
philosophy, economics, but also physics apply their models to science (Lucio-Arias
and Scharnhorst 2012, Chap. 2), but so far there has been no common reference
point such as a conference series, edited books, or monographs devoted to modeling
science. The only exception to our knowledge, beyond review sections in journal
articles (e.g., Börner et al. 2004), a review in ARIST (Börner et al. 2003), and a
recent special issue on Science of Science (Börner and Scharnhorst 2009), is the
monograph of Yablonskiı̆ published 1986 in Russian with Nauka and not translated
into English (Matematicheskie Modeli v Issledovanii Nauki (in Russian) Nauka,
Moscow (Yablonskiı̆ 1986)). This edited volume aims to fill this gap by presenting
an overview about major current trends in modeling of science (Chaps. 3 (Vitanov
and Ausloos 2012), 4 (Payette 2012), 5 (Hanauske 2012), 6 (Mali et al. 2012), and 7
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(Radicchi et al. 2012)) and a general framework to relate these trends to each other
(Börner et al. 2012, Chap. 1).

New possibilities and challenges from information
science – mapping science

This book is also an expression of a growing interest in the field of modeling
science. One origin of this development can be found in recent achievements
in information and computer sciences. They have made it possible to visualize
research activities at an unprecedented scale and with a high level of sophistication
(Börner et al. 2003). Networks of publications and their citation patterns, word use,
collaborating researchers, or topics in e-mail threads have been measured, analysed
and visualized over time. With the emergence of network science (Chaps. 6 (Mali
et al. 2012) and 7 (Radicchi et al. 2012)) as a new cross-disciplinary approach
(Barabási 2002; Barabási et al. 2002) and in particular with the achievements of
visualizing knowledge domains in the information sciences (Shiffrin and Börner
2004), old dreams of mapping the sciences (Garfield et al. 1964; Small and Griffith
1974) can now be realized. A prominent example of this approach are the so-called
“maps of science” which show all scientific disciplines—as far as their activities
are covered by the ISI Thompson Reuters Web of Knowledge, Elsevier’s Scopus, or
other databases (Boyack et al. 2005). A prominent initiative for mapping science is
the NSF funded “Mapping Science” exhibit (http://scimaps.org) informing a wide
audience about a new “cartography of science” (Börner 2010). The new maps of
science inspire new models as explanatory tools for emergent structures of the
science system. Mathematical models of complex systems play a specific role in
this discourse.

Beyond mapping – towards explanations

Information gathering about science as a backbone of the knowledge society is
only one aspect of these new developments. These instruments are also meant as
tools to detect and maybe forecast conditions under which scientific discoveries
emerge and areas where these discoveries can be found. At the same time, basic
questions about the understanding of science are raised, such as who are the actors
driving the development of science: individuals, groups or institutions. Earlier large-
scale maps concentrated on scientific communications as manifested in papers and
their citation interlinkage (Scharnhorst and Garfield 2010). Partly, this was due to
the fact that unique author names are hard to determine because of same names,
name variants and misspellings. So, a large part of bibliometrics and scientometrics
analyses texts (titles, keywords, words, references). Some automated techniques

http://scimaps.org/
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have partly solved this problem, at least on a higher level of aggregation. In maps
of scientific communication, authors as well as institutions can now be made visible
with a higher reliability. To explain the networks in which researchers are linked (by
publishing or communicating), current research in social-psychology and sociology
of science becomes relevant. Resumé analysis, ethnographic observations, and
interviews were presented as ways to gain access to local motivations and behavior
the collective effect of which is reflected in the large scale global maps of science.
We call this the return of the actors in scientometrics research. If one thinks
in terms of modeling network of scholars, these models entail assumptions about
the behavior of the “nodes” (Mali et al. 2012, Chap. 6). This is the moment when
qualitative, quantitative, and mathematical models need to come together.

A second observation concerns the increasing need to explain changes in
scholarly activities. The design of mostly static maps of science, social science and
the humanities is therefore only a starting point. Ultimately, we need to see and
understand the dynamics of science (Börner et al. 2004; Leydesdorff and Schank
2008; Börner and Scharnhorst 2009). Visualizations that show the unfolding of
scholarly activities in a ‘fast forward’ mode can help refute or confirm existing
theories and trigger questions for novel research into the basic mechanisms of
scientific growth. We call this the return of time and dynamics.

Contribution of models – models as heuristic devices. Meeting
between information science and physics

Mathematical models represent a very specific instrumentarium to analyse ele-
mentary processes behind measurable phenomena on a more global scale. As
mentioned above, in particular during the 1970s and 1980s, the science system
has been conceptualized as a self-organizing system in sociology (Luhmann 1990)
as well as modeled using concepts and techniques from physics and cybernetics
(Scharnhorst 1988). Nowadays, network models are proposed for studying scientific
collaborations or the emergence of topics. These new approaches to the modeling of
science look into the growth of scholarly networks (Barabási et al. 2002; Committee
on Network Science for Future Army Applications 2005; Börner et al. 2004), the
structure of scientific communities (Newman et al. 2006), the epidemics of ideas
on collaboration networks (Bettencourt et al. 2006), scholarly information foraging
(Sandstrom 1994), the formation of effective teams (Amaral and Uzzi 2007), the
competition of groups about paradigms (Chen et al. 2009), the scientific productivity
of generations of scientists over time (Fronczak et al. 2007), and modeling the
dynamics of actor networks (Snijders et al. 2007). However, as mentioned above, the
many existing models of science have been developed in many different scientific
fields ranging from physics, sociology to history of science. They exist often
unrelated and independently from each other and are seldom linked to other studies
of science. Nevertheless, in the last couple of years we have witnessed several
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encounters between physics and information sciences (Fortunato 2010; Bollen et al.
2009; Barabási 2002). This book aims to contribute to a consolidation of the
knowledge about models and their mutual dependencies.

Outline of the book

The book consists of four parts: Part I – Foundations, Part II – Exemplary Model
Types, Part III – Exemplary Model Applications and Part IV – Outlook.

Part I contains two chapters. In Chap. 1 “An introduction to modeling science:
Basic model types, key definitions, and a general framework for the comparison of
process models” Katy Börner, Kevin W. Boyack, Staša Milojević and Steven Morris
(Börner et al. 2012) develop a set of reference or frames along which models can
be ordered and compared. Departing from a general definition of the term “model”
the authors identify a set of dichotomies, such as descriptive versus process models,
which can be used to differentiate between essence, purpose and insights of different
models. Even if the reader might want to extend or alter the prosed criteria, he or she
has to accept that no comparison of models is possible without a clear articulation
of their main elements (units, interactions, targeted phenomena) and their tentative
ordering in a common reference framework. With a glossary at the end of this
chapter, the authors further deliver jigsaw pieces for a common ground on which
models can be related to each other.

One cannot understand the emergence and the essence of certain models without
looking into the history of modeling science. The emphasis of certain perspectives
of modeling science above others is obviously correlated with the overall Zeitgeist in
a certain time period. Accordingly, the second chapter (“Mathematical approaches
to modeling science from an algorithmic-historiography perspective ” by Diana
Lucio-Arias and Andrea Scharnhorst Lucio-Arias and Scharnhorst 2012) describes
the history of science models combining a participant story with a bibliometric
reconstruction. Histories are always told on the basis of a set of experiences on
the one side and a set of norms and values on the other. Consequently, a variety
of histories can be found. Only recently the different perception of members of a
scientific community could be made visible by a bibliometric analysis of the citation
network of this community (Havemann et al. 2010). Chapter 2 (Lucio-Arias and
Scharnhorst 2012) chooses the classical method of algorithmic historiography as
introduced by Eugene Garfield. One of the most interesting findings is that current
threads in mathematical modeling in scientometrics seem to ignore each other while
at the same time relying on the same classical papers.

Part II – Exemplary Model Types contains three chapters which all review models
belonging to a certain class of mathematics and partly also introduce new model
approaches. We are quite aware that these chapters do not cover all occurring threads
in the history and presence of science models. Missing are, for example, system
dynamics (Sterman 1985) which has been successfully applied in innovation studies
and urban development, or entropy and information measures. The threads reviewed
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in this part of the book have been selected based on the availability of authors. Of-
course this sequence could be extended. Although these chapters use an individual
language, what binds them together is a more generic perspective of science models.
All chapters depart from mathematical techniques available and interrogate to which
extent they can be used to obtain a better understanding of the science system.
Accordingly, the empirical validation of the models is discussed but not in the
foreground. These chapters introduce the reader to the details of the model building
process in terms of conceptualization, abstraction, operationalization and extension
towards increasingly more complex models. In Chap. 3 (Knowledge epidemics and
population dynamics models for describing idea diffusion) Nicolai Vitanov and
Marcel Ausloos (Vitanov and Ausloos 2012) present a rich inventory of dynamic
models based on the behavior of groups of scientists and suitable to describe the
emergence and spreading of new ideas in a competitive process. Groups of scientists
can be defined based on their actual acquaintance with a certain idea (epidemic
models) or their membership in a certain scientific community. That scientists can
change their membership in scientific communities creates an extra challenge for
modeling. The authors also discuss the role of fluctuations during the emergence
of innovation and when best to turn from deterministic models to more complex
stochastic models. This chapter also demonstrates that a further methodological
exploration is needed to fill the toolbox of science models. With this challenge
in mind the introduction of time-lag elements and the combination of time and
space are the most original contributions in this chapter. Nicolas Payette (2012)
introduces the reader in Chap. 4 “Agent-Based Models of Science” into the world of
agent-based modeling as practiced in computational sociology and computational
philosophy. Obviously, the type of rule based modeling as proposed by Epstein and
Axtell connects very well to known social theories about the behavior of social
beings. Payette digs out the longer history of agent-based modeling, which goes
back to John von Neumann. Actually, there are links to spin models (widely applied
in sociophysics) waiting for further exploration (Stauffer and Solomon 2007). The
chapter provides the reader with excellent and clear insights into the inner logic of
different ABM approaches to science. In difference to the dominant mathematical
language of the previous chapter, in an interesting contrast, Payette compares
models qualitatively by mapping their different conceptual frames. He highlights
possible links to other model threads such as network models. Matthias Hanauske
returns in Chap. 5 “Evolutionary Game Theory and Complex Networks of Scientific
Information” (Hanauske 2012) to the power of mathematics and scientific diagrams.
Triggered by a real-world phenomenon – the reorganization of the market of
scientific publishing – Hanauske questions the possibilities to model the interaction
of different players in this process (authors and scientific journals) with game theory.
Game theory is designed to explore the consequence of individual strategic behavior
in interactions between many individuals. In particular it allows statements for
multi-level networked systems – a suitable description for the complex interaction
of producers and disseminators of scientific products where the same individuals
often switch roles.
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Part III – Exemplary Model Applications describes models for two major
aspects of scientific communication: co-authoring and referencing. Not surprisingly
a network model approach is applied to both phenomena, relying on the different
epistemic traditions of sociology and physics. Co-authoring and referencing are
both part of scientific production. Consequently, in Chap. 6 “Dynamic Scientific Co-
Authorship Networks”, Mali et al. (2012) start with the whole universe of scientific
communication before zooming into their specific topic of co-authoring. They also
start with an excellent history of Social Network Analysis (SNA). Here the reader
is provided with detailed context to obtain a better understanding of the sources
of some still existing tensions between different network approaches. Among
the dynamic models, blockmodeling applied to evolving networks and stochastic
actor-oriented models form the cornerstones of this chapter. Empirical studies are
extensively reviewed; ordered alongside of dimensions of cross-disciplinary, cross-
sectoral and cross-national collaboration pattern; and linked to SNA model insights.
Among their own studies one of the interesting findings points to a tension between
strongly local (national) connectivity and the requirements of being interwoven into
the international (global) knowledge production. Chapter 7, “Citation Networks”
of Radicchi et al. (2012) complementary to Chap. 6 (Mali et al. 2012) looks into
(citation) networks from a statistical physics perspective. Again we see a recurrent
pattern. Following the epistemic tradition of physics, Radicchi et al. (2012) insist on
the search for universality and general organizing principles in their network studies
where Mali et al. (2012), in the epistemic tradition of sociology, emphasize how
best to incorporate the multi-facet roles of individuals in networks and the different
context of their link structures. Nevertheless, there is an overlapping area. Against
expectations based on the knowledge of how different the citation behavior is in
different disciplines, on a statistical level there are still similarities or universalities.
It remains open if these ‘general laws’ are just mathematical artefacts or if the point
to a shared feature in citing across disciplines. Also in SNA the aim is to detect
a general pattern in social behavior (as for instance by blockmodeling). In both
cases the challenge is to give these patterns a meaningful interpretation. Similar to
(Mali et al. 2012, Chap. 6), the authors of Chap. 7 (Radicchi et al. 2012) carefully
discuss empirical material. Time is a leading theme through both chapters. Time is
the ‘hidden constructor’ behind specific distributions of networks (such as degree
distributions). The authors of Chap. 7 address time more explicitly in dynamic
models of the evolution of citation networks and diffusion processes across citation
networks. Concerning the latter they take a very elegant and original approach –
namely to model papers in terms of their received reward by citations. While citation
networks are cumulative in time and the position of a paper in such a network cannot
change, its perception can change with each new generation of citing papers; so,
reward and recognition of a paper can travel in network topologies and in this way,
the diffusion of ideas become visible.

The book concludes with Part IV – Outlook. Chapter 8 “Science policy and the
challenges for modeling science” partly also reflects on the process of the making
of the book, and the lessons learned from it (van den Besselaar et al. 2012). Despite
the character of the book as a collection of chapters, authors and editors have taken
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specific measures to enhance the consistency of it. This becomes visible in the
different appendices of the book. A glossary of relevant terms comes as appendix
with Börner et al. (2012) Chap 1. Another group of appendices lists the (historic)
knowledge base of the field – adding details to Lucio-Arias and Scharnhorst (2012),
Chap. 2. Also all model chapters in Parts II and III contain overviews and short
descriptions of the models they address. They also contain text boxes (Key points)
highlighting main insights for the general audience and/or science policy makers.
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Chapter 1
An Introduction to Modeling Science: Basic
Model Types, Key Definitions, and a General
Framework for the Comparison of Process
Models

Katy Börner, Kevin W. Boyack, Staša Milojević, and Steven Morris

1.1 Introduction

Science is in a constant state of flux. Indeed, one of the purposes of science is to
continually generate new knowledge, to search for or create the next breakthrough
that will open new doors of understanding. Science can also be viewed as a
research process in which scholars coordinate their actions, working in a wide
range of institutions and using ever better methods and instruments, to generate new
knowledge, which is then recorded in tangible forms as journal articles, reports,
books, patents, data, and software repositories, etc. (Whitley 1984).

Science is a complex phenomenon, and as such it captures the interest of a wide
range of researchers in fields such as history, philosophy and sociology of science,
and scientometrics. From the standpoint and for the purposes of scientometrics and
modeling of science, science can be defined as a social network of researchers
that generate and validate a network of knowledge. This definition is based on
the premise that science consists of knowledge and ideas that are produced and
validated by a community of researchers. Researchers belong to institutions that
support activities related to scientific research and inquiry. The way knowledge
is produced, organized, and disseminated is dependent on historical, institutional,
political, and research contexts. At the same time, the meanings of the concepts
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one uses to describe science and knowledge are not only constantly changing but
are also culturally and historically specific. For example, in recent years, there is
a tendency towards heterogeneous (interdisciplinary) teams of researchers solving
pressing social problems with higher accountability (Gibbons et al. 1994; Nowotny
et al. 2001). Due to the changing nature of knowledge and the changing social
structure of science, some of the institutional forms and established practices in
science are undergoing changes themselves.

The idea of studying science using scientific methods is at the core of sciento-
metrics. Many scientometric studies describe the structure and evolution of science,
while a few others aim to replicate and predict the structure and dynamics of science.
It is the latter group that is the focus of this chapter and this book.

1.1.1 Science as a Social Activity

The relationships between scholars and the institutions they are affiliated with
constitute the social characteristics of science. Scientific knowledge does not exist
in a vacuum. It requires social infrastructure for support. This social infrastructure
can be manifest in forms such as funding, oversight, management, collaboration,
and less formal modes of communication. Researchers often work collaboratively
to produce new knowledge. They also use both formal and informal channels to
communicate their results. At the same time, they are embedded in a number of
organizations and institutions, such as university departments, research centers,
and research institutes. These institutions, together with meta-institutions such as
government agencies, industry segments, or universities, shape rewards in science.

Different interactions in which scholars engage can result in different aggregates,
such as invisible colleges, specialties, disciplines, and interdisciplines.1 Studies of
science as a social activity mostly focus on the stages of development of smaller
units of aggregation, such as specialties. Studies that focus on the social aspects of
science view science as a development of social structures, viewed qualitatively as
stages of social group formation (Crane 1972; Wagner 2008), or quantitatively as
stages of cluster formation (Palla et al. 2007).

The intricacies of the relationships between social and cognitive aspects of
science are most visible among relatively small groups of scholars over short periods
of times. At the same time, these scholars are embedded, through both training and
employment, in larger units, such as fields or disciplines or university departments,
which exercise significant power over rewards and thus shape the behavior of
scholars.

1The terms “multidisciplinary”, “interdisciplinary” and “transdisciplinary” have been used to
describe research activities, problems, institutions, teachings, or bodies of knowledge, each with
an input from at least two scientific disciplines.
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1.1.2 Science as a Knowledge Network

The cognitive structure of science consists of ideas and relationships between ideas.
Cognitive studies focus on science as a body of knowledge. There is no unanimously
accepted definition of cognitive structure, and studies on the topic range from those
dealing with epistemology, the structure of scientific theories, and the relationship
between theoretical and empirical work, to the studies of the cognitive consensus
among scientists. Given the importance of textual documents in the practice of
science (Callon et al. 1983; Latour and Woolgar 1986), it is natural to focus on
the shared conceptual system of scientific communities as expressed through the
terminology used in those documents. In this paper, we focus on the studies of
scientific knowledge using documents or artifacts produced by scholars as the data.

There are different ways in which one can study scientific knowledge using
documents as a starting point. One approach is to study textual elements associated
with the documents (e.g., words from titles, abstracts, keywords or index terms, or
even full text) using, for example, word co-occurrence analysis. Another approach
is to treat references as concept symbols (Small 1978) and then perform a whole
range of analyses using references as a data source. These analyses can be used
to produce maps of science that seek to visually describe the structure of the data
(Börner et al. 2003). A third approach is to take journals as units of analysis and
study their subjects. These analyses are often used for studying interdisciplinarity.
Regardless of the approach, these studies focus mostly on the evolving structure
of scientific ideas or the emergence, growth, and diffusion of scientific ideas. They
are highly relevant for funding agencies that continually seek to support the most
promising and/or emerging topics in science.

1.2 Science Models

This section introduces a general definition of science models and explains how
they are designed. It then discusses different model types. This book focuses on
quantitative predictive models that might be universal or concrete. Frequently, there
is the desire to model a system at multiple levels.

1.2.1 Definition and General Design of a Science Model

“Model” is a word with a number of meanings. The Oxford English Dictionary,
for example, states in one of its 17 definitions of the word that a model is “a
simplified or idealized description or conception of a particular system, situation,
or process, often in mathematical terms, that is put forward as a basis for theoretical
or empirical understanding, or for calculations, predictions, etc.; a conceptual or
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mental representation of something.”2 In philosophy of science, models can be
representations of certain phenomena or data, or they can represent a theory.3 In
the social sciences, models are simplified representations of an aspect of the real
world. They are “a generic term for any systematic set of conjectures about real
world observations.”4 In systems science and applied mathematics, a model is “an
encapsulation of some slice of the real world within the confines of the relationships
constituting a formal mathematical system.”5

Here, we are interested in models that capture the structure and dynamics of
scientific endeavor to gain insights into the inner workings of science. Structure can
be defined as a regular pattern in the behavior of elementary parts of a system based
on observations of repeated processes of interaction. Typical time frames used in
structural models can be as short as a month or as long as a decade. Dynamics refers
to the processes and behaviors that lead to changes (e.g., birth, merge, split, or death)
(Palla et al. 2007) in the structural units of science (e.g., research teams, specialties)
or their interlinkages. Different model types are discussed in the next section. Recent
work aims to develop models that describe the interplay of structure and dynamics
to increase our understanding of how usage (e.g., collaboration or citation activity)
impacts the structure of science and how structure supports activity.

In general, the study of science aims to answer specific questions such as when
(temporal), where (spatial), what (topical), or with whom (network analysis), or
combinations thereof. Temporal questions are commonly answered by dynamic
models, including those based on linear regression and those that use sudden bursts
of activity as an indicator of new developments. Spatial and topical questions
assume an underlying geographic or semantic space and are often answered using
structural models. They might simulate people’s foraging for information, collabo-
rators, or reputation in a model space analogous to that used by anthropologists to
study food foraging. Other models adopt approaches from epidemiology to help us
understand the impact of the origin of diffusing entities (tangible ones like people or
intangible ones like ideas), infection/adoption rate, seasonality effects (e.g., papers
published during spring semester or summer break), etc., on diffusion patterns and
dynamics. In addition, there are models that simulate the growth of homogeneous
or heterogenous networks, diffusion dynamics over networks, or the interplay of
network structure and usage. Recent work in epidemiology aims to understand the
interaction of epidemic spreading and social behavior (e.g., staying home when you

2Oxford English Dictionary Online, s.v. “model,” accessed January 20, 2011, http://www.oed.com/
view/Entry/120577?rskey=r3QCjg&result=1&isAdvanced=false.
3Roman Frigg and Stephan Hartmann, “Models in Science,” The Stanford Encyclopedia of
Philosophy (Summer 2009 Edition), ed. Edward N. Zalta, http://plato.stanford.edu/archives/
sum2009/entries/models-science/.
4Charles A. Lave and James G. March, An Introduction to Models in the Social Sciences (Lanham:
University Press of America, 1993), 4.
5John L. Casti, Alternate Realities: Mathematical Models of Nature and Man (New York: Wiley,
1989), 1.

http://www.oed.com/view/Entry/120577?rskey=r3QCjg&result=1&isAdvanced=false
http://www.oed.com/view/Entry/120577?rskey=r3QCjg&result=1&isAdvanced=false
http://plato.stanford.edu/archives/sum2009/entries/models-science/
http://plato.stanford.edu/archives/sum2009/entries/models-science/
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Fig. 1.1 General model design, validation, and refinement process

are sick). Analogously, it is desirable to study and model the effect of breakthrough
ideas on scholarly network formation and usage.

Model design typically involves the formulation of a scientific hypothesis about
the identification of a specific structure or dynamics. Often, this hypothesis is based
on analysis of patterns found in empirical data. Whether the hypothesis is based on
data or in theory, an empirical dataset needs to be available to test model results.
Next, an algorithmic process is designed and implemented using either tools (e.g.,
NetLogo, RePast) or custom codes that attempt to mathematically describe the
structure or dynamics of interest. Subsequently, simulated data are calculated by
running the algorithm and validated by comparison with empirical data. Resulting
insights frequently inspire new scientific hypotheses, and the model is iteratively
refined or new models are developed. The general process is depicted in Fig. 1.1.

1.2.2 Qualitative Models vs. Quantitative Models

There are two major types of models: Qualitative models often use verbal descrip-
tions of general behavior. Quantitative models express units of analyses, their
interrelations and dynamics using properties susceptible of measurement. The latter
are the focus of this book.

1.2.3 Deductive (Top-Down or Analytical) Models vs. Inductive
(Bottom-Up or Synthetic) Models

Deductive models take a “top-down” approach by working from the more general
to the more specific. For example, a deductive modeling approach might start with
a general theory and then narrow it down into more specific hypotheses that can be
tested. Deduction can be seen as the identification of an unknown particular based
on the resemblance of the particular to a set of known facts.
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Inductive models take a “bottom-up” approach that starts with specific
observations and measurements, continues with the identification of patterns and
regularities, formulates some tentative hypotheses that can be explored, and results
in general conclusions or theories. Induction is also known as the formation of a
generalization derived from examining a set of particulars. It is more open-ended
and exploratory, especially at the beginning.

1.2.4 Deterministic Models vs. Stochastic Models

Deterministic models describe the behavior of an object or phenomenon whose
actions are entirely determined by its initial state and inputs. In deterministic
models, a given input will always result in the same output. A single estimate is
used to represent the value of each model variable. Examples are physical laws
(e.g., Newton’s laws) that can be used to describe and predict planetary motion.

Stochastic (also called probabilistic) models make it possible to predict the
behavior of an object or phenomenon if the influence of several unknown factors
is sizable – the subsequent state is determined both by predictable actions and by a
random element. They cannot predict the exact behavior but predict the probability
that a particular value will be observed at a particular time within a known
confidence interval. Ranges of values (in the form of a probability distribution) are
used to describe each model variable.

1.2.5 Descriptive Models vs. Process Models

Quantitative models of science can be further divided into two categories: descrip-
tive models and process models. Both can be used to make predictions. Descriptive
models aim to describe the major features of typically static data sets. Results are
communicated via tables, charts, or maps. The focus of this book is on process
models, which aim to capture the mechanisms and temporal dynamics by which
real-world networks are created (Newman and Leicht 2007; Zhang et al. 2010),
with particular emphasis on identification of elementary mechanisms that lead to
the emergence of specific network structures and dynamics. These models aim
to simulate, statistically describe, or formally reproduce statistical characteristics
of interest, typically by means of formulas or implemented algorithms. Formal
mathematical approaches to process modeling work best for static, homogeneous
worlds. Computational models, however, allow us to investigate richer, more
dynamic environments with greater fidelity helping us to understand and explain
the dynamic nature of science.

Note the difference between laws and computational models. Bibliometric
laws are, in reality, descriptive models of data that are held true for certain
classes of systems. Examples include Lotka’s law (Lotka 1926), Bradford’s law
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(Bradford 1934), and Zipf’s law (Zipf 1949). Computational models describe the
structure of dynamics of science using different computational approaches such
as agent-based modeling, population models (Bettencourt et al. 2008), cellular
automata, or statistical mechanics.

A number of studies that use co-authorship networks to study network dynamics
(Barabási et al. 2002; Barabási and Albert 1999; Farkas et al. 2002; Nagurney
1999; Newman 2001) reveal the existence of small-world and scale-free network
topologies (see Sect. 1.2.6) and preferential attachment (Price 1976) as a structuring
factor. Preferential attachment in the context of networks means that the well-
connected nodes are more likely to attract new links.

1.2.6 Universal Models vs. Domain-Specific Models

Models can be designed at different levels of generality or universality. Universal
models aim to simulate processes that hold true across different domains and
datasets. Examples include scale-free network models (Barabási and Albert 1999)
or small-world network models (Watts and Strogatz 1998) generating network
structures that can be found in vastly diverse systems such as social, transportation,
or biological networks. Domain-specific models aim to replicate a concrete dataset
in a given domain. One example is Goffman’s (Goffman 1966) application of
an epidemic model to study the diffusion of ideas and the growth of scientific
specialties. By using mast cell research as a case study, he demonstrated that it was
possible to see growth and development as sequences of overlapping epidemics.
In this and in other dynamic models, one simulates the dynamic properties of the
system by applying certain global laws characteristic of complex systems. This
is particularly useful for modeling the growth of a whole system, some part of a
system, or of a measure that corresponds to a size. Price studied the growth of
science using data until about 1960 and observed an exponential growth (Price
1963). Since then, growth has been largely linear, mirroring the massive but linear
growth in R&D funding.

Today, it is assumed that there are two ways science can grow: homogeneously
and heterogeneously. Homogeneous growth is a simple expansion of a given unit.
Heterogeneous growth, on the other hand, means differentiation or rearrangement
of component elements. Highly differentiated, heterogeneous growth of science can
be viewed through authorship patterns. For example, not only is the number of
authors per paper increasing over time, but also these authors come from different
disciplines, different institutions, and different knowledge-production sites (e.g.,
universities and industries). In addition, there is a wide geographic distribution of
co-authors as well. This is the result of the globalization of science and the role
that specialized knowledge plays in the development of science. A particularly
promising area of research is the study of co-evolving networks of co-authors and
paper-citations (Börner et al. 2004), as well as work that examines the interplay of
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Fig. 1.2 Temporal levels (top left), data types (top right), reference systems (lower left), and levels
of aggregation (lower right)

existing network structures and resulting scholarly dynamics that, in turn, affect the
growth of scholarly networks.

1.2.7 Multi-Level and Multi-Perspective Models

It is often desirable to model a system at multiple levels using different vantage
points (see Fig. 1.2).

For example, the different levels could represent:

• Temporal scales – different levels describe the structure and/or dynamics of a
system at different points in time.

• Data types – different levels represent different relations/dynamics for the very
same set of elements (e.g., co-author, co-PI, co-investigator, co-inventor, author
co-citation, and topical similarity for a set of nodes).
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• Reference systems – different levels provide different views of the same data
(e.g., a map of NIH funding is linked to a map of authors is linked to a map of
their MEDLINE publications).

• Levels of aggregation – levels might represent different geospatial aggregations,
topical aggregations, or network aggregations such as individual, group, pop-
ulation level data, e.g., co-author networks, research communities, or invisible
colleges.

1.2.8 Exemplification Using Predictive Workflows

As mentioned in Sect. 1.2.1, models of science aim to answer when, where, what
and with whom questions at different levels of aggregation, e.g.,

• when (temporal): days, weeks, months, years, decades, centuries; several journal
volumes/issues make up years

• where (spatial): postal codes, counties, states/provinces, countries, continents.
NanoBank has an elaborate system for this. Congressional districts matter. OPEC
countries, EU, etc., aggregations of countries

• what (topical): terms make up topics, documents, and lines of research; papers
appear in journals, journals group into disciplines or subject categories, major
fields, or all of science

• with whom (network analysis): person is part of a research team, part of a
research community/invisible college; person works at an institution, institution
is part of a sector (e.g., academia, government, industry).

Answers to these different types of questions each demand their own data struc-
tures (e.g., time-stamped data or networks). Below, we provide sample modeling
workflows that aim to answer research or science policy questions.

Although models of science aim to answer the when, where, what, and with
whom questions mentioned above, it is important to relate them to the needs of
science policy and practice. There are many types of questions currently being asked
by decision-makers (from team leaders to university officials to agency heads) that
can potentially be informed by science models. These include:

• How do changing resources alter the structure of science (at multiple levels of
aggregation)? What areas would benefit most from increased funding?

• What science is currently emerging or likely to emerge in the near future?
• How can I create or strengthen a particular R&D area at my institution? What

key expertise and resources are needed?

To a large degree, science policy and practice is interested in models as a way to
make informed decisions regarding future (investment) strategies in science. In that
respect, they are interested in predictive models of science.

To date, the majority of predictive models have sought to describe phenomena at
high levels of aggregation. Descriptive models have much more often been able to
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describe phenomena at very detailed levels. What is needed in the future is a merging
of the scales that are currently possible using descriptive models with the predictive
power of computational models. This combination has an unparalleled opportunity
to impact science policy and the practice of science in very significant ways. We
would like to extend this as a challenge to the science-modeling community. To
illustrate this challenge and this opportunity, we provide an example of how such
a model (or combination of models) could be used to provide answers to detailed
questions.

Dynamics of the S&T system. It is well known that topics in science are
born, can merge or split, and eventually die. Some descriptive models can show
the past dynamics of topics or disciplines; isolated studies have examined this
issue in some segments of the literature. Predictive models have reproduced the
growth characteristic of the life span of many scientific fields (Gupta et al. 1997).
However, to date, there has been no comprehensive study to (1) track communities
or specialties over all of science to discover the empirical birth, merge, split, and
death rates (the comprehensive descriptive model), and (2) to correlate those rates
with properties of the communities or specialties (the comprehensive predictive
model). This combination could result in a highly specific model that could be used
to predict (based on model parameters fit to past performance) the status of each
current community for the next several years. Such a predictive model would be an
extremely powerful tool for decision-makers.

1.3 Basic Conceptualization and Science-Modeling
Terminology

Despite the fact that different science models have been designed to answer vastly
different questions at many levels of generality, the discussion above has implicitly
assumed, without explicitly stating, that any model of science must be based on
some sort of framework or conceptualization of science, its units, relationships,
and processes. In an attempt to provide a unifying conceptualization (Börner and
Scharnhorst 2009) for the comparison of models, we present here two different
frameworks, one starting with terms and definitions, and one starting with a
visual network approach. The two frameworks have a high degree of overlap, and
demonstrate that useful frameworks can be approached from multiple perspectives.
There are some facets of these frameworks that are similar to those previously
published by Morris and Rodriguez (Morris and van der Veer Martens 2008; Morris
and Yen 2004; Rodriguez et al. 2007). However, there are many differences as well.

The origin, usage, and utility of key terms very much depends on the goal and
type of modeling performed. Models that conceptualize science as a social activity
(see Sect. 1.1.1) will use researchers, teams, and invisible colleges as key social
terms. Models that simulate science as a knowledge network (see Sect. 1.1.2) have
to define knowledge terms such as documents and journals. Models that place a
central role on the bibliographic data used in model validation require a definition of
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bibliographic terms. Models that conceptualize science as an evolving system of co-
author, paper-citation, and other networks will need to define network terms. Other
models aim to capture the phenomenology of science or try to provide actionable
knowledge for science policy decisions and hence define phenomenological terms
and policy/infrastructure terms. Many of these terms are defined in the Glossary 18;
the definitions provide more information on the concrete interlinkages between
terms. Exemplary sets of essential terms (concepts) are given here:

• Social terms: researcher, team, invisible college, research community, specialty,
institution, collaboration.

• Knowledge terms: base knowledge, line of research, discipline, field of study,
research front, communication, knowledge diffusion, knowledge validation.

• Bibliographic terms: author, document (e.g., article, patent, grant), reference,
citation, journal, term, topic.

• Network terms: network, node, link, clustering, network metric.
• Phenomenological terms: core and scatter, hubs and authorities, aggregation,

overlap, distributions, bursts, drifts, trends.
• Policy/Infrastructure terms: funding, indicator, metrics.

Note that there are strong interrelations among these terms within and across the
different term sets:

• Most researchers are authors.
• References and citations are links between papers.
• Researchers aggregate to teams, invisible colleges, research communities; they

are affiliated with an institution.
• Journals include papers; papers have references and might be cited; papers are

comprised of terms and address specific topics.
• Clustering occurs not only in networks but also over time (e.g., only authors who

are alive can co-author) and geospatial and topic space (e.g., authors who are
geospatially close and work on similar topics are more likely to co-author).

The most inconsistently used terms are those used to describe

• Social groupings such as invisible colleges, research community, specialty and
• Knowledge groupings such as line of research, field of study, discipline.

Authors of the book chapters were encouraged to conform to or redefine the
definitions given in the Glossary. Readers of the book might like to do the same.

Note that many different groupings of these terms are possible. Leydesdorff
(Leydesdorff 1995) suggested a three-dimensional space of different units of
analysis: social dimensions (people, institutions), institutional dimensions (rules,
funding, metrics, indicators), and cognitive dimensions (texts, journals), see Fig. 1.3.
The three derivative two-dimensional spaces represent different lines of research.

• Social x institutional dimensions: Sociology of science
• Social x cognitive dimensions: Scientometrics, informetrics
• Institutional x cognitive dimensions: Philosophy of science, artificial intelligence
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Fig. 1.3 Three-dimensional space by Leydesdorff (Leydesdorff 1995). The three axes stand for
units of analysis. A phenomenon can be represented as a point in this space with a value on each
of the three axes via projection. For example, an institutional rule that would be attributed to an
institution might be represented as text, and has cognitive (substantive) content

In an analogy to a physical system, social dimensions are the “volume,” cognitive
dimensions are the “temperature,” and institutional dimensions are the “pressure.”

A system-theoretic approach by sociologist Luhmann (1995) depicts science as
a self-organizing process within society that takes human resources, education, and
funding as input and produces papers, books, patents, and innovations as output.
While science strives for “truth,” economy aims for profit.

A final alternative, network-based approach is given in Fig. 1.4. This concep-
tualization is useful when developing models for science policy-makers with a
deep interest in indicators. Here, social, knowledge, and topical descriptor networks
are extracted to study base entities and their physical aggregations into teams,
institutions, journals, and documents. Conceptual aggregations such as invisible
colleges, specialties, or smaller communities can be analyzed and mapped, and can
show signs of incremental growth, emergence, and breakthrough, or controversy
and conflict, depending on the actual dynamics of the science involved. Temporal
changes in lines of research or bursts and drifts in time-stamped texts can be
calculated and modeled. The ultimate goal is the support of effective funding,
communication, collaboration, and their validation.

We note that many different conceptualizations of science are possible, and
that those presented here are only examples. They are not intended to provide an
exhaustive list of the units of science that can be analyzed, but rather to suggest that
one should be able to place the units and interactions used in any model of science
in a coherent framework that will be useful to others.
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making. Terms in bold italic are defined in the Glossary

1.4 Overview of Major Science Models

The remainder of this book reviews major process models that were developed in
many different areas of science. Among them are

• Statistical approaches and models which are “based on the laws and distributions
of Lotka, Bradford, Yule, Zipf-Mandelbrot, and others [and] provide much useful
information for the analysis of the evolution of systems in which development is
closely connected to the process of diffusion of ideas” (Chap. 3, p. 1);

• Deterministic dynamical models that are “considered to be appropriate for the
analysis of [evolving] ‘large’ societal, scientific and technological systems for
the case when the influence of fluctuations is not significant” (Chap. 3, p. 1);

• Stochastic models which are “appropriate when the system of interest is ‘small’
but when the fluctuations become significant for its evolution” (Chap. 3, p. 1);

• Agent-based models (ABM), which “are concerned with the micro-level pro-
cesses that give rise to observable, higher-level patterns. If an ABM can generate
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some macrophenomenon of interest, then it can at least be considered a candidate
explanation for it.” (Chap. 4, p. 6)

• Evolutionary game theory (EGT) is “a time-dependent dynamical extension of
‘Game Theory’ (GT), which itself attempts to mathematically capture behavior
in strategic situations in which an individual’s success in making choices depends
on the choices of others. EGT focuses on the strategy evolution in populations
to explain interdependent decision processes happening in biological or socio-
economic systems” (Chap. 5, p. 2);

• Quantum game theory is “a mathematical and conceptual amplification of
classical game theory (GT). The space of all conceivable decision paths is
extended from the classical measurable strategy space in the Hilbert space of
complex numbers. Through the concept of quantum entanglement, it is possible
to include a cooperative decision path caused by cultural or moral standards”
(Chap. 5, p. 18).

Figure 2.1 in Chap. 2 sketches the temporal evolution of the different model
types. Chapters 3–7 each feature a table that lists major models reviewed in that
chapter. While Chaps. 3–5 each review one specific model type, Chaps. 6 and 7
discuss different types of models that address questions related to the structure and
dynamics of co-author and paper-citation networks respectively.
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Agent In the context of an agent-based model, an agent is an individual that is
capable of autonomous behavior. It usually has a well-defined internal state and
is situated in an environment with which it can interact. That environment usually
includes other agents and other targets of interaction.

Base knowledge Facts and ideas that are more or less widely known within a
specialty. These can correspond to widely accepted ideas and theories, techniques,
and empirical facts, but can also correspond to controversies or conflicting ideas.
Base knowledge is most often referred to by citing the documents in which those
facts or ideas were either first or most prominently elucidated. Cited documents, or
references, are thus used as symbols for base knowledge.
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Citation Citation is a term that can be easily misunderstood. It is used in two
different senses by different groups of researchers. In the biomedical and social
science literatures, “citation” typically refers to a document, or a node in the
document network. For example, a MEDLINE citation refers to the bibliographic
record of a document. By contrast, in bibliometrics and network science, “citation”
refers to the directed link between one document and another; it refers to the
citation of one document by another document. Citation counts thus accrue to cited
documents. In citation analysis, one speaks of a document having been cited n times,
or having n citations. In this work we use the bibliometric definition of “citation”
exclusively.

Clustering The process of assigning a set of elements into groups, where the
elements in a group are similar to each other in some sense (e.g., according to
selected properties of units). In the three network types listed here, researchers,
documents, and terms can each be clustered into groups based on similarities in
those elements. Although the individual elements of a network are the basic units,
clusters are often the unit of analysis that is reported. Clustering is often used
to approximate the composition of conceptual aggregations. For example, authors
can be clustered to approximate the memberships of different invisible colleges,
documents can be clustered to approximate the outputs of research communities or
specialties, and terms can be clustered to form broader topic spaces.

Collaboration Collaboration is an active process where two or more researchers
and/or institutions work together on something of common interest. Co-authorship
of a document is thought of as a direct indicator of collaboration.

Communication Communication in science can happen on a variety of levels, both
formal and informal. It is the mode by which an invisible college operates, and
can include everything from the most formal collaboration (co-authorship, which
is relatively easy to measure), to the transmission of ideas through the reading and
citing of articles (measurable), to informal discourse on scientific topics via face-to-
face, phone, or email conversations (far less measurable).

Discipline An academic or scientific discipline (or field) is an established body of
knowledge with similar cognitive content. This establishment, while fundamentally
cognitive, is most clearly evidenced in the existence of interconnected social
and institutional structures (or networks), such as discipline-specific university
departments or institutes where research is performed and instruction takes place,
as well as in discipline-specific academic journals, organizations, societies and
meetings. Disciplines fulfill a number of roles: they specify the objects that can
be studied, provide methods, train and certify practitioners, manufacture discourse,
provide jobs, secure funding, and generate prestige. Some of the traits a discipline
should have are: university departments and institutes, specialized scientific soci-
eties, specialized journals, textbooks, a specific domain of objects studied from a
specific perspective, methods for the production and analysis of data, means of
presentation using specific terminology as a conceptual framework, and forms of
communication. In science modeling, a discipline is most often defined as a set of
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journals, or as the papers published in a set of journals. Some people refer to a
discipline as a large set of papers around a particular field of study, without regard
to a particular set of journals. We prefer to call this type of aggregation a field rather
than a discipline.

Document For science and bibliometrics studies, scientific articles are usually the
basic independent record in the project database. Documents can include various
article types, including journal articles, review papers, conference papers, etc. If
extended beyond the scientific realm, documents can include gray literature, gov-
ernment reports, patents, and even the proposals associated with funded research.

Element Individual vertices or nodes.

Funding Monetary inputs into the science system. These can come in the form of
grants, contracts, investments (e.g., venture capital), or direct R&D monies within
an institution.

Indicator “Science indicators are measures of changes in aspects of sciences”
(Elkana, Lederberg, Merton, Thackray, & Zuckerman 1978).

Institution In the context of science modeling, an institution is an organization
that creates knowledge, typically through the mechanism of an author publishing
an article. In a practical sense, institution names are typically listed with author or
inventor names in documents. Institutions can also include funding agencies.

Invisible college The most recent definition of invisible college comes from
(Zuccala 2006): “An invisible college is a set of interacting scholars or scientists
[researchers] who share similar research interests concerning a subject specialty,
who often produce publications [documents] relevant to this subject and who
communicate both formally and informally with one another to work towards
important goals in the subject, even though they may belong to geographically
distant research affiliates.”

Journal A publication medium in which a selection of scientific articles (docu-
ments) on a particular topic or set of topics is published, typically in a series of
issues. A journal can appear in print or electronic form or both. Most journals that
are considered as the prime publication outlets by researchers are peer-reviewed,
meaning that other researchers review submitted manuscripts and recommend (or
not) their publication.

Knowledge diffusion The process by which science knowledge is spread (Wojick
et al. 2006).

Knowledge validation Peer review and replication.

Network A network is a set of vertices (or nodes) that represent the units, and
a set of lines (or links) that describe the relationship between those elements.
Networks are often represented visually by graphs using node/link diagrams. Many
different networks can be created from bibliographic data – for example, a social
network showing the relationships between people (researchers), a knowledge
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network showing relationships between documents, or a descriptor network that
shows relationships between terms.

Network metric A variety of metrics are used to characterize properties of
networks. These include edge count distributions (known as degree, in-degree, or
out-degree), path lengths, clustering coefficients, centralities of various types, etc.

Researcher As a broad definition, a researcher is a person who performs research.
In terms of modeling science, a researcher must not only perform research, but must
also publish that research. For the purpose of modeling of science and technology,
we can expand that definition to include authors who publish, inventors who apply
for patents, and investigators who apply for and receive funding through grant
proposals.

Research community Many years ago, sociologists, specifically Kuhn (1962) and
Merton (1973), suggested that researchers organize themselves into relatively small
socio-cognitive groups – on the order of 10 people – working on common problems.
Although the word “community” implies a group of people, the output of a single
such group can be thought of as a research community. A typical community will
publish around 10–15 articles (documents) per year, assuming the authors each
publish 1–2 articles annually on the problem focused on by the community.

Research front The working definition of a research front according to Thomson’s
ScienceWatch is that of a co-citation cluster of highly cited articles, limited to
the most recent 5 years. A more general definition might be “a specialty’s current
literature” or “the most recent development of a specialty” without regard to being
highly cited or not.

Research specialty A research specialty (or field) is usually defined at a higher
level of aggregation than a research community, and can be thought of (more or
less) as the documents published by an invisible college. A research specialty can be
comprised of many research communities and is comprised of, on average, hundreds
of articles per year. Lucio-Arias and Leydesdorff (2009) write that “a research
specialty can be operationalized as an evolving set of related documents. Each
publication can be expected to contribute to the further development of the specialty
at the research front.” Research specialty is often considered to be the largest
homogeneous unit of science, in that each specialty has its own set of problems,
a core of researchers, shared knowledge, a vocabulary, and literature.

Team A small group of researchers who tend to work together on a particular topic
or set of topics. Members of research teams are strongly connected – that is, each
team member knows and interacts with, and often co-authors with, the other team
members. Teams are typically low-level groups that cannot be further subdivided.

Term A single- or multiple-word phrase. Terms can be generated in different
ways. For instance, they can be chosen from a standardized set of terms (e.g., a
thesaurus like MeSH) by an author, indexer, or editor; or they can be extracted from
a document, title, or abstract using automated means.
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Topic A topic can be an area of interest or the focus of an article or document. The
notion of topic includes both a main idea and supporting details. Thus, a topic is
much broader than a single term.

Unit Element type (e.g., author, article, journal, etc.).



Chapter 2
Mathematical Approaches to Modeling Science
from an Algorithmic-Historiography Perspective

Diana Lucio-Arias and Andrea Scharnhorst

2.1 A Narrative of the History of Mathematical Models
of Science

The accumulative nature of knowledge requires systematic ways to comprehend and
make sense of what we know. In the case of scientific knowledge, this requirement
is enhanced by the importance given to science as a driver of social and economic
progress. The persistent interest in a “science of science” or a “social studies of
science” is a consequence of the reflexive endeavor to comprehend and assimilate
science and the growth of scientific knowledge – perhaps together with policy
intentions to design evaluation and stimulus mechanisms.

This interest has led to significant efforts to define and refine ways of modeling,
representing, and understanding science in the scientific community – efforts unre-
stricted to single disciplines or intellectual traditions. Reflection upon knowledge
production co-evolves with knowledge production itself. It reaches from early
philosophy to the arts, encompassing attempts to order knowledge. One famous
example of how to order knowledge is the arbor scientiae of the philosopher
Raimudus Lullus (1232–1316) (Dominguez Reboiras et al. 2002).

At the same time, in our modern understanding, the old symbol of the tree also
encompasses the idea of evolution. To characterize the evolution of the science sys-
tem (natural sciences, social sciences, humanities, and arts), its growth and differen-
tiation, mathematical models are one possible scientific method. This book reviews
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the transfer of models belonging to different branches of an imagined “(sub)tree
of mathematics” to scientometrics. Mathematical models in scientometrics are
developed to understand better the structure and evolution of the imagined whole
tree of knowledge, and so the circle closes. In this chapter, the metaphor of the
tree reoccurs once more in the method used to depict the history of mathematical
modeling of the sciences. Treelike structures are the core of the historiographic
method where, constructed from citations of key papers, they illustrate the evolution
of knowledge.

Mathematical models of the sciences do not stand alone in our modern day
but stem from formulations made earlier in time. Mathematics has penetrated
almost all other scientific disciplines. We not only know mathematical physics and
mathematical biology, but also mathematical economics, mathematical sociology,
mathematical psychology and mathematical finance.1 Although there is no field of
“mathematical science studies,” the emergence of quantitative studies of science –
bibliometrics, scientometrics, informetrics – came along naturally together with
mathematical approaches. Not surprisingly, methods of statistics are well estab-
lished in scientometrics (Egghe and Rousseau 1990). However, applications of
mathematical models to the dynamics of the science system form relatively singular
and isolated events. This observation, together with an increasing need for modeling
dynamic processes in science, was not only the trigger for this book, but also the
starting point for this chapter.

We can attempt to categorize mathematical models of science according to
the phenomena they try to explain and the epistemic approaches they follow.
Phenomena include: growth and distribution of expenditures for education and
research across countries and fields; number of PhD’s in different fields; growth
of the number of publications; formation of and competition between scientific
fields; citation structures; and different productivity patterns among researchers
from different disciplines, taking into account age and gender. Epistemic approaches
differ according to their perspective (which can be micro or macro), their basic
elements, their units of analysis, and how major dynamic mechanisms of the
system under study are identified. Scientific methods are part of the epistemics,
so models of science can differ by their use of mathematical technique and
mathematical language (see Börner et al. in Chap. 1). Concerning mathematical
approaches applied to the sciences as an object, we observe a mixture between new
mathematical techniques available and newly emerging scientific fields.

In Fig. 2.1, we try to sketch the appearance and diffusion of some mathematical
models of science. This sketch is based on the insights of one author who did

1 The appearance of separate subject classifications for these subfields or specialization in the
Mathematics Subject Classification (MSC) – a system used to categorize items covered by
the two reviewing databases, Mathematical Reviews (MR) and Zentralblatt MATH (Zbl) – can
indicate the consolidation of mathematical approaches in these fields. According to the MSC2010,
mathematical economics encompasses 37 subclasses, mathematical sociology 6, mathematical
psychology 5, and mathematical finance 9 (see http://www.ams.org/mathscinet/msc/msc2010.
html).

http://www.ams.org/mathscinet/msc/msc2010.html
http://www.ams.org/mathscinet/msc/msc2010.html
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Fig. 2.1 Branches of mathematics and appearance of mathematical models in scientometrics
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her PhD in this area in 1988 and kept publishing in the field (Scharnhorst 1988;
Bruckner et al. 1990). In the upper part of Fig. 2.1, branches of mathematics are
selected (labeled according to the Mathematics Subject Classification) according to
their relevance for models of science. Of course, inside mathematics, these branches
overlap and form a fabric (Boyack and Klavans 2009), or turbulent, reacting-
diffusing fluids, rather than a static tree with separable branches. The lower part
of Fig. 2.1 depicts growth curves of certain models of science. However, there
is no linear causality between a certain progress in mathematics and its possible
application to the science system, even if we indicate relations by arrows as in
Fig. 2.1. Few models enter the field of scientometrics via biology, psychology,
economy, or physics. Last but not least, it all depends if researchers are intrigued
enough by the problem to model mathematically the sciences as a cognitive and
social system.

For the time being, we would like to stick to such a narrative that combines
epistemic streams running across different disciplines with the first occurrence of
certain types of models applied to science as a system. In the main part of the
paper, we search for empirical evidence supporting or contradicting this historical
narrative.

We state that in parallel with the emergence and spreading of “approaches
and techniques” (for example, stochastic distributions at the end of the nineteenth
century; the emergence of system science and operations research; the paradigmatic
change in physics towards irreversible, dissipative and complex processes; and the
rise of rule-base agent modeling, to name only a few), researchers – most of the time
also pioneers in developing these methods – were curious also to apply them to an
environment in which they felt at home: the academic system.

For instance, Lotka described the skewed distribution of the productivity of
scientists (Lotka 1926) as part of his more general approach to apply methods
of (statistical) physics to evolution in nature as well as society (Lotka 1911).
Sterman’s system-dynamics model of Kuhn’s scientific revolution (Sterman 1985)
is embedded in his overall work on complex social systems, part of the emergence
of system dynamics as a specific mathematical systems theory (Sterman 1992), and
just another exemplification of feedback loops and complex correlations between
dynamic micromechanisms. Goffman modeled the diffusion of ideas similarly to
the spreading of diseases, and other researchers (Nowakowska, Kochen, Yablonsky,
Bruckner et al.) compared the emergence of scientific fields to the evolution
of biological species. They all made use of differential equations and master
equations at the moment non-linear differential equations became very popular
ways to describe the dynamics of complex systems (Nicolis and Prigogine 1977).
Gilbert’s agent-based model of science (1997) marks the entry and spread of rule-
based modeling into mathematical and computational sociology (Epstein and Axtell
1996), for which Gilbert also did pioneering work (Gilbert and Troitzsch 2005).
Furthermore, the interest of Gilbert was also obviously triggered by his earlier work
on the history and sociology of science (Gilbert and Mulkay 1984).

But not in all cases do we find a strict temporal correlation between the
establishment of the mathematical method and its testing out for the science system
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as one specific social system. In the case of game theory, developed in the 1930s and
1940s (see von Neumann and Morgenstern 1944), only now is the method tested
upon science itself (see Hanauske in Chap. 5).

Moreover, there are differences in the way the scientific community has
embraced these pioneering approaches. Lotka’s law is known today as a classic law
in scientometrics. Stochastic processes, which can explain also Lotka’s law, have
been present almost the whole time (e.g., Glänzel and Schubert 1995; Van Raan
2006; Egghe 2005). However, Lotka’s general framework of a physics of evolution
applicable to processes in nature and society did not travel. Even more, his famous
systems of non-linear differential equations (Lotka–Volterra equations), applied
extensively in mathematical biology (Lotka 1925), did not travel, at least not
through Lotka’s own initiation. Although Goffman’s epidemic model belongs to
the same type of models, the link to Lotka–Volterra equations has been made
explicit only in the 1980s. After seeing a first rush in the 1960s, 1970s and 1980s,
epidemic models themselves only reappeared in the context of epidemic processes
on networks, together with the emergence of a cross-disciplinary network science
(2005), from 2000 onwards. In the same context of the revival of networks, other
early network models like Price’s gain a second period of attention. In contrast,
applications of agent-based models and system-dynamics models remain rare
occurrences. Yet, agent-based models – outside of scientometrics and independent
from it – have been embraced by computational philosophy, which uses concepts
and mathematical approaches for epistemic spaces and dynamics quite similar to
those used in scientometrics ((Weisberg and Muldoon 2009) see Payette in Chap. 4).
All in all, the impression emerges that mathematical models applied to science
come in waves, remain relatively independent from each other, and form more an
ephemeral than a persistent thread in scientometrics (Fig. 2.1).

This is quite interesting. Why, unlike other sciences, does the modeling of science
dynamics appear as a process of eternal beginning, and why does it still lack a
coherent theoretical framework? Can we find facts for such an impression now
turned into a hypothesis? Can bibliometrics confirm that we indeed are faced today
with modeling approaches to science that are scattered, while older approaches
might have been obliterated or forgotten with time? Can historiographic analysis
also reveal some of the causes for such a situation?

The purpose of this chapter is to counter an individual account of science history
with a bibliometric study. We present a historiography of mathematical models
and approaches to science. This will give the opportunity to reveal the cognitive
history of the models. What might seem unrelated today might share a cognitive or
disciplinary memory or might stem from significant older papers that had citation
relations between them. We follow this section with a description of the method
of algorithmic historiography to reveal scientific developments. This method is
later used to (a) delineate the cognitive historiography of today’s mathematical
approaches to science and (b) illustrate approaches to science constituting a lasting
thread that may have been forgotten or obliterated by new models.
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2.2 The Use of Bibliometrics in Science History – Algorithmic
Historiography

Publishing as a means of communicating, corroborating, or refuting scientific
findings is a crucial operation for the development of scientific knowledge (Lucio-
Arias and Leydesdorff 2009). For this reason, citation practices have also become
established in this discursive construction of scientific knowledge (Wouters 1999).
Early in the invention of citation indexing, which was primarily aimed at advancing
information retrieval, Garfield proposed to use these databases to reconstruct the
history of scientific ideas (Garfield et al. 1964). The bibliographic information
contained in a collection of published articles and their references makes historical
reconstruction through citations a collective and social enterprise (ibid.). However,
one has to keep in mind that looking at citations represents a specific empirical
method. Both bibliometrics and scientometrics have known a long and continuing
debate over the meaning of citations in knowledge production, dissemination, and
reconstruction (De Bellis 2009). Recently, it has been observed that “it remains
a question what actually bibliometrics can add to science history based on text
analysis and eye witness accounts” (Scharnhorst and Garfield 2010). The method
of algorithmic historiography as applied in the following is therefore used as one
possible empirical method to test some of the hypotheses presented in the previous
section, and the results make explicit the limitations of this method.

The notion of algorithmic historiography is supported by the introduction of
HistCiteTM as a bibliometric tool that aids the process of uncovering transmissions
of knowledge that lead to scientific breakthroughs (Pudovkin and Garfield 2002).
It relies on citation data to describe historically scientific fields, specialties, and
breakthroughs (Garfield 1979). The software creates a mini-citation matrix for any
set of documents retrieved from the ISI Web of Science, facilitating historical
reconstructions based on a literary simplification of science (Garfield et al. 2003b,a,
2005). Depending on the seed nodes selected to start the citation, mining the method
can be applied to a scientific field or a journal, the oeuvre of a scholar, or an
individual paper (Scharnhorst and Garfield 2010).

The method of utilizing the textual footprint of scientific discoveries and break-
throughs to reconstruct their history has been employed in scientometrics. Citations
might be considered as the memory carriers of the system, and their use as nodes
in network-like historiographs can be further enhanced by using algorithms from
network and information theory (Lucio-Arias and Leydesdorff 2008). Even though
this approach is used to a lesser extent by philosophers and historians of science, the
algorithmic approach to historical reconstruction enables us to include more variety
in the perspective than a reconstruction based on dispersed narratives (Kranakis and
Leydesdorff 1989). This approach, labeled scientometric historiography, relies on
citation networks to build descriptive reconstructions of history, assuming that these
networks reflect a transmission or flow of ideas between papers.

Possible biases caused by the use of citations for empirical reconstructions
might include the overestimation of contributions from elite scientists (MacRoberts
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and MacRoberts 1987, 1989), negative or critical citations, or the perfunctory
acknowledgement of earlier work. Nevertheless, different studies have agreed that
around 70% of the references used in a scientific paper correspond to criteria of
scientific relevance (Vinkler 1996; Krampen et al. 2007). In other words, 70% of
citations respond to the normative theory of citing (Cronin 1984), which justifies
the value of citation analysis for historical reconstruction of scientific fields. We
use the main-path algorithm from social network analysis to identify those central
documents in the citation networks. Specifically, we use the Search Path Link
Count available in Pajek which accounts for the number of all possible search
paths through the network emanating from an origin (Hummon and Doreian 1989;
Batagelj 2003). These main paths have been acknowledged to identify documents
that build on previous work, while acting as authorities for later works (Yin
et al. 2006). These documents can be expected to be associated with thematic or
methodological transitions in the development of a topic (Carley et al. 1993) and
are significant for writing the history of science (Hummon and Doreian 1989).

In the following sections, we use two different approaches to chronological
networks of citations. Citations allow us to study the diffusion of ideas among
documents. But citations can also be understood in the process of codifying
scientific knowledge. They link older texts to today’s scientific knowledge while
providing information about the cognitive position of scientific knowledge claims,
which through citations and references get contextualized in scientific repertoires
and trajectories. Citations give disciplinary context to publications. We will take
both of these perspectives into account in the following sections. In the first part of
the results section, we will present the bibliographic history of mathematical models
used today to study science. We expect to encounter well-known pioneers like the
models mentioned throughout the book, but we will also encounter lesser-known
models that may have been obliterated or forgotten over time. We will show how dif-
ferent threads are codified in relation to different “classical” or seminal approaches
to mathematical models of science. The second reading given in the results section
corresponds to the trajectories constructed from the diffusion of seminal approaches
to science modeling. We reconstruct the diffusion of the ideas introduced by Alfred
J. Lotka, Derek de Solla Price, and William Goffman based on citation analysis.

2.3 Data Selection and Analysis Design

In this chapter, we use bibliometrics to study and follow the implementation
of mathematical models for science. The purpose will be to uncover different
characteristics of the process of codifying mathematical models that have been
published in the last 5 years in selected journals of Library and Information Science.
In this section, we look at the knowledge base of this set of papers to determine
their cohesiveness. The method of using mathematics to model the structure and
behavior of science presents scattered trajectories that could respond to the lack
of a unifying theory or intellectual base. In a later section, some of the models
that appear in chapters of this book will be presented from the perspective of their
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Table 2.1 Statistics of the search: present to past

Journal Documents Inside citations Total citations

JASIST 50 39 416
Scientometrics 47 44 271
IP&M 20 5 63
J. Informetrics 20 13 53
Total documents 137
Source: ISI Web of Science, query May 25, 2010, HistCiteTM.

diffusion trajectories. This will emphasize possible recombinations, cognitive links,
or disciplinary shifts that affect the appropriation of the models in the scientific com-
munity. In this specific section, the diffusion trajectories are detailed in relation to
the characteristics of the models presented in the introductory chapter of this book.

All our analyses are based on retrievals from the Thomson Reuters Web of
Science, which can easily be read by the HistCiteTM software.

For the cognitive history of contemporary papers using (or referring to) mathe-
matical models of science (Present to past analysis – Sect. 2.4.1), we selected four
major journals in ISI’s subject category of Library and Information Science. The
selection of the journals was determined by their popularity inside the community of
the information sciences. For retrieving documents using mathematical approaches
to science, we first used a topical search in the ISI Web of Science2 that retrieved
2,876 documents. However, we encountered the problem that the majority of them
were not in line with the purpose of our study. For this reason, we decided to down-
load all documents published in Scientometrics, Journal of the American Society
for Information Science and Technology, Journal of Informetrics, and Information
Processing and Management in the period considered. We made a manual selection
based on the titles, abstracts, and full text (when necessary) of those documents that
used mathematical approaches (ideally models) to explain science. The drawback
of this last approach is that there are various mathematical models in existence.
There is also an ambiguity in the use of the word “model” and even “mathematical
model.” Many of the documents selected claimed to be modeling approaches but
failed to have all the specifications necessary to be considered as such. Table 2.1
gives an overview of the number of retrieved documents per journal, as well as the
citations inside the retrieved set of documents (inside citations) and in the whole
web of science (total citations).3 Table 2.1 also presents a summary of the volume
of papers selected according to the sample of journals taken. The whole set of 137
documents selected as referring to mathematical models of science for 2005–2010
is available at the end of this chapter in Appendix 1.

The software HistCiteTM was used to build the inner-citation matrix of these
documents to illustrate their cognitive relatedness. Because they might be related in
a citation window larger than the years considered, the set was expanded to include
the most highly cited documents inside the set.

2 Query used: ts D (model* same (science or scientific or knowledge)).
3For comparable analysis, the whole data set can be requested from the authors.
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For the second part of the analysis, the diffusion trajectories of three different
models were chosen according to their relevance and impact in scientometric
studies. We chose Lotka’s law, Goffman’s epidemic model, and Price’s network
model. The three models differ in character. Lotka’s law is a statistical description
(a descriptive model) of certain structures in science. Goffman’s model departs from
assumptions of basic mechanisms of science on a micro level to reveal structures on
a macro level due to the dynamics imposed. It can be used for description as well as
for prediction. Price’s network model is a conceptual one that reflects upon possible
disciplinary meanings that emerge from the network structures formed by citation
relations between papers. It is empirically verified and exemplifies phenomena such
as obliteration, the relation between references and citations, and the emergence of
research fronts. However, there is only a small step between descriptive models
and predictive models. Distributions, as in the case of Lotka’s law, have been
explained from stochastic processes. Price has himself later proposed mathematical
models for the micromechanisms behind some of the features he explores in his
“Network” paper (Price 1976). The popularity of Lotka’s law as one of the few
basic laws of science and the fact that it operates at the border between descriptive
and predictive models were the reasons we included Lotka’s law in our selection.
In the case of Price’s network model, we chose an example of a comprehensive and
classical description of a basic pattern in scientific communication that has inspired

Table 2.2 Seed documents
Model Seed documents # cites

(papers
considered)

Citation
window (in
years)

Lotka–Volterra
model

Lotka, A.J. (1926). The frequency
distribution of scientific
productivity, J. Wash. Acad.
Sci., 16: 317

612 1939–2010

Price network
model

Price, D.J.D. (1965). Networks of
scientific papers. The pattern of
bibliographic references
indicates the nature of the
scientific front, Science, 149
(3683): 510-515

497 1978–2010

Goffman epidemic
model

Goffman, W. (1966). Mathematical
Approach to Spread of
Scientific Ideas – History of
Mast Cell Research, Nature,
212 (5061): 449
Goffman, W., & Newill, V.A.
(1964). Generalization of
Epidemic Theory: An
Application to the
Transmission of Ideas, Nature
204: 225.

73 1975–2010

Source: ISI Web of Science, query May 25, 2010.
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many other reflections, some of them mathematical. We explain each model at the
beginning of the corresponding results section.

Table 2.2 depicts the documents that were used as seed documents for these
models. It shows the amount of times the chosen seed documents were cited and the
publication years of those citing documents. All documents citing these seeding doc-
uments were downloaded and analyzed according to their modeling characteristics.

The downloaded citing documents were content analyzed to identify the purpose
of the paper (if it was a mathematical approach, an application or refutation of
informetric laws with empirical evidence, an evaluation or assessment exercise in
a specific context, etc.).

2.4 Results

2.4.1 The Current Presence of Mathematical Modeling in
Library and Information Science – Following Traces
from the Present to the Past

To analyze the intellectual base of the papers that are currently applying mathemati-
cal models to study science, we started from our sample database (Table 2.1), which
consists of 137 documents published in leading journals in ISI’s subject category
of Library and Information Science from 2005 to 2010. These papers were taken
as seeds for a HistCiteTM analysis with the purpose of tracing the citation relations
inside the set. The resulting historiograph (Fig. 2.2) depicts documents as nodes,
where the size of the node represents the amount of citations it gets inside the
considered set (outside citations are not taken into account). The arrow represents a
citation relation. We start from the current papers, dig into their bibliographies and
look for cross-connections. We also try to see how persistent models are, and which
mathematical models we encounter.

Figure 2.2 shows the citation diagram for the current mathematical approaches to
science. The number of the nodes corresponds to the numbers of the 137 documents
in table 2.6 in the first appendix. Most of the nodes are related to stochastic processes
in informetric data.

Already, one sees that the documents dealing with mathematical models belong
to different, isolated threads. We present a zoom of four of them in the subsequent
figures and label the nodes that are cited inside the set with their bibliographic
references.

Fig. 2.2 HistCiteTM output of papers using mathematical approaches to understand the science
system – overview
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Fig. 2.3 First thread in the current HistCiteTM graph of mathematical model papers

In the first group, from left, we find a paper by Van Raan (29) about statistical
properties of indicators. Some of the papers in our set emphasize modeling and
explaining through mathematical formulations citing behavior and growth (e.g.,
Nodes 4, 10, 15, 21, 38, 42, 63, 64, 65, 83 and 108). The complete list of documents
of this first group can be found in table 2.8.

As we move in Fig. 2.2 from left to right (or from Figs. 2.3 to 2.6), more
sophistication is added to the approaches, going from explanations and refinements
based on the Hirsch index, to model impact and relevance of authors, to research
group behavior (e.g., Nodes 29, 70, 83). However, most of the papers explain the
static structure of science. In the last few years, the efforts that have been undertaken
to explain growth in the system of science seem unrelated to the rest of the papers
(e.g., Nodes 2, 13, 70, 76, 96).

In the second group, we find papers about network algorithms and approaches
to mapping science – particularly, old and new approaches (Small 48, Börner 46,
Klavans 47) and Chen’s citespace software (28). This thread interestingly binds
mapping and network approaches with predictive models on epidemics of idea
spreading (Bettencourt 76) and the peer review process (Bornmann 67). (A list of
all papers is given in table 2.9 of Appendix 3.) All the nodes for the year 2009
correspond to the “Science of Science” special issue of the Journal of Informetrics.

A third group entails a paper about statistical features of the Hirsh-index, the
newest challenge to bibliometric rankings (e.g., Nodes 34, 35, 56). Documents in
the third thread are illustrated in Figure 2.5 and detailed in table 2.10 of appendix 3.
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Fig. 2.4 Second thread in the current HistCiteTM graph of mathematical model papers
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Fig. 2.5 Third thread in the current HistCiteTM graph of mathematical model papers

The documents in the fourth thread (Fig 2.6) are detailed in table 2.11 of the same
appendix.

Comparing our analysis of the different threads with Fig. 2.7, one can see that
although many of the documents treat similar issues (especially stochastic behavior),
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there is no clear relation between them. For instance, Node 76 (in Fig. 2.4) represents
the paper by Bettencourt, Kaiser, Kaur, Castillo-Chávez & Wojick from 2008 that
reuses the model of epidemic approaches for the transmission of ideas; as can be
seen in the historiograph, this node does not have any citation relation with the
other papers in the set.

Strikingly, the bibliometric analysis seems indeed to confirm the historic narra-
tive. Mathematical models of the sciences are divided into different branches and
exist largely in isolation, as can be seen by the occurrence of many single points at
the right side of both Figs. 2.2 and 2.7.

The isolation of the sets might respond to functional differentiation that results
from the growth in scientific publications, and that allows scientists to reduce
the levels of complexity in different disciplines (Lucio-Arias and Leydesdorff
2009). This means that the apparent isolation between sets might be reduced when
looking at the bibliographic antecedents of these models. In Fig. 2.7, the most
cited documents outside the set of the 137 documents selected for treating science
with mathematical models and approaches were incorporated to construct a new
historiograph.

From Fig. 2.7, it can be deduced that, even if different papers are not closely
related to other contemporary approaches, they seem to have a common cognitive
historiography, and there is a consensus on classical or seminal approaches to
current modeling exercises to understand the sciences. In Fig. 2.7, the main path
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Fig. 2.7 HistCiteTM output of papers using mathematical approaches to understand the science
system, enhanced with their cognitive history

of the set is highlighted in gray. Lotka’s seminal paper, which originated Lotka’s
law on scientific productivity based on the skewed distributions of authors, is
the starting point; due to the interdisciplinary nature of the paper, the next two
documents highlighted in the main path – Barabasi and Albert (1999) and Albert
and Barabasi (2002) – are also foreign to the field of Library and Information
Science and, more specifically, to scientometrics. These papers deal with networks
as random graphs from a physics perspective; the next nodes in the main path
(36, 77 and 90 – Van Raan (2006, 2008a, 2008b) reflect the discourse about the
importance of impact upon research groups and individuals. Interestingly, from this
wider perspective, statistical physics and complex networks, as well as rankings and
indicators, seem to be interwoven into one network of exchange of ideas.

The scattered impression depicted in Figs. 2.2–2.6 reflects the sparse relatedness
of mathematical approaches inside of Library and Information Science. It can also
be interpreted as a lack of consolidation around mathematical methods and as
competition between different threads of mathematical modeling that are related
in principle but divided in practice. Figure 2.7 shows that when overlooking larger
parts of the scientific landscape, these isolated branches or points are interconnected.
One could say that the generic and universal character of mathematical approaches
that can act as bridging and transporting structures of knowledge diffusion is more
visible in Fig. 2.7. In any case, the comparison of Figs. 2.2 and 2.7 shows the
relevance of the selection of the seed nodes. It also shows the restriction of a too
inner-field perspective. The position of mathematical modeling in scientometrics
cannot be fully understood from the field’s perspective only. We need to look at the
tension of evolution inside of one field and among different fields. “Neighboring
fields”4 of Library and Information Sciences might be seen as a relative constant
and as a neglected environment if it concerns threads inside of LIS that are mature.
For a rather marginal topic such as dynamic models of science, they gain importance
as a source of ideas travelling into LIS.

For Fig. 2.7, the set of 137 documents dealing with mathematical approximations
to science from the perspective of Library and Information Science was studied;

4Independently how we define neighborhood here.
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included in the set were the most highly cited documents (144 documents in total
detailed in table 2.7). While the recent documents could be considered the research
front of the field, the highly cited ones can be considered the intellectual base (Chen
2006). The main path has been acknowledged in scientometric studies to represent
the backbone of a journal or a field (Hummon and Doreian 1989; Carley et al. 1993).
Nevertheless, the main path depicted in Fig. 2.7, although highlighting important
documents in the topic of mathematical models of science, cannot be taken as
the main achievements of the field. The reason is that the set does not represent
a cohesive specialty or discipline.

We used bibliographic coupling of authors to measure cognitive cohesiveness
in terms of similarities between reference lists in the set of papers. This coupling
technique uses author names as variables and the references as cases. To correct for
productive authors with many papers, cosine normalization is applied. Figure 2.8
illustrates the results for 187 authors publishing mathematical models of science.

While Figs. 2.2–2.7 illustrate the citation network as a chronological network of
citation where documents are organized according to their publishing year and their
bibliographic antecedents and descendents, the coupling in Fig. 2.8 corresponds to
authors based on the similarities of the referenced works in their papers. It supports
the suggestion of Fig. 2.8 of a common cognitive history in these approaches to
modeling science.

2.4.2 The History of Mathematical Modeling of the Science
System – Following Traces from the Past to the Present

2.4.2.1 Lotka, Goffman, Price: Overall Growth and Diffusion of Reception

In this section, we present the diffusion trajectories of three specific models: Lotka’s
law (as discussed in Chap. 3 of this book), Goffman’s epidemic model (see also
Chap. 3), and the network model introduced by Derek de Solla Price (addressed
also in Chap. 7 of this book, Fortunato et al.). Even though the three models remain
very relevant in the information sciences, their impact measured in terms of citations
varies (see Fig. 2.9 and 2.10). Lotka and Price are still widely cited, while Goffman
has received less attention throughout the years. The total number of citations is 612
for Lotka’s paper of 1926, 73 citations for Goffman’s two papers, and 497 for Price’s
paper from 1965. It should be noted that even though the four seminal papers chosen
for the analysis describe models applied specifically to the study and understanding
of the science system, none of them were published in Library and Information
Science journals. Additionally, only Price is considered a pioneer in the scientific
community. His influence results from a series of documents and papers that keep
him visible in the scientometric community. Both Derek de Solla Price and Alfred
J. Lotka have around 50 papers in the ISI Web of Science, while William Goffman
has little more than 25.



38 D. Lucio-Arias and A. Scharnhorst

F
ig

.2
.8

B
ib

li
og

ra
ph

ic
co

up
li

ng
am

on
g

th
e

13
7

do
cu

m
en

ts
id

en
ti

fie
d

as
us

in
g

m
at

he
m

at
ic

al
m

od
el

s
of

sc
ie

nc
e

(c
os

in
e

0,
1)



2 Mathematical Approaches to Modeling Science 39

90

80
8

7

6

5

4

3

2

1

0
1975 1982 1989 1996 2003 2010

70

60

50

40

30

20

10

0
1930 1940 1950 1960

Lotka Goffman Price
1970 1980 1990 2000 2010

Fig. 2.9 Growth of papers citing the three historical models – Lotka’s law, Goffman’s model, and
Price’s model. The yearly citations of Goffman’s two papers are shown within the inlay

Figure 2.9 shows the annual number of citations for three cases. In the case of
Lotka, we see that his model is still influential eight decades after its publication,
although it took some years for it to become popular in the scientific community.
The reception of Price and Lotka (at least of their papers of 1926 and 1965) seems
to be similar. Although there is also an underlying growth of the Web of Science,
the reception of both papers grows together with the consolidation of scientometrics
as a field (Lucio-Arias and Leydesdorff 2009).

For the case of Goffman, there are few documents citing the two selected papers.
Therefore, we have displayed the annual citation numbers in an additional figure
as an inlay in Fig. 2.9. From this bar chart, we can see that the annual numbers
are small, the papers disappear from the radar now and then, and there is a kind
of revival of popularity beginning around 2000. With its more robust growth of
perception, the Price model also seems to gain popularity after 2000. Actually, both
models – Goffman’s as well as Price’s – have also been discussed together with the
emergence of network science and the application of network science to the science
system (Börner et al. 2007).

We also display the HistCiteTM graphs for all three cases (four papers) for a visual
impression. As can be seen from Fig. 2.10, they are quite different in nature. While
the graphs are very dense for the case of Lotka’s and Price’s models, in the case of
Goffman’s model there are fewer nodes and a more sparsely connected network. We
will look into the diffusion pattern in all three cases separately in more detail.
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Fig. 2.10 Historiographs for Lotka (left), Goffman (middle), and Price (right) – overview

2.4.2.2 Physics of Evolution: From Biological Species to Productive
Actors – A.J. Lotka

Lotka’s law reflects a regularity concerning the productivity of scholars (measured
by the number of publications). Lotka found that a majority of authors (consisting
of a given set of authors) only produce one publication in a given period of time
and only very few authors publish larger amounts of articles. If the number of
authors with n publications is plotted against the aggregated volume of publications,
we find an inverted power law with an exponent that is in many cases near 2.
Lotka’s law is an empirical law with authors as the basic unit of analysis. It is
one of the fundamental bibliometric laws that, relatively speaking, can be easily
tested against very different bibliometric samples, which explains its overwhelming
success. Researchers have discussed how collaboration influences productivity (e.g.
Kretschmer and Kretschmer 2007) and how productivity patterns change between
different generations of researchers (e.g. Fronczak et al. 2007). But Lotka’s law
is more than just a statistical regularity. It belongs to a class of mathematical
distributions that are characteristic of complex processes not only in social systems,
but also in natural systems (Bak 1996). For information processes, even the label
of “Lotkaian informetrics” has been used by Egghe in his systematic mathematical
analysis of functions used to describe Lotka’s law. Lotka’s mathematical model is
a descriptive one. But it can be used as a litmus test for any predictive model of
scientific activity that also entails scientists and publications. For instance, in his
agent-based model, through which topics, papers and authors find each other and
form scientific fields, Gilbert (1997) calculated Lotka’s law to see if his artificial
science simulation reveals structures similar to real science.

Details about Lotka’s law are given in Chap. 3 of this book. The emphasis here is
on its diffusion through the years, the applications of the law, and the characteristics



2 Mathematical Approaches to Modeling Science 41

Fig. 2.11 Historiograph of documents citing Lotka’s law and main path

of those documents citing it. A total of 612 documents cite “The frequency
distribution of scientific productivity,” Alfred Lotka’s 1926 paper published in
the Journal of the Washington Academy of Sciences. The number of publications
dealing with the informetric law of the skewed distribution of publications is so
large that it is possible to verify Lotka’s law using a set of papers devoted to his law
of scientific productivity (Yablonsky 1980).

The reconstruction of the diffusion trajectories of Lotka using HistCiteTM (see
Fig. 2.10, right) illustrates cohesiveness in the set: authors citing Lotka are also both
aware of each other and citing each other. Figure 2.10 also gives an impression
of the size and density of the network of papers citing Lotka’s paper of 1926 (the
graph is not displayed for detailed inspection5). Lotka’s law is cited in more than 200
different journals, but more than 50% of them correspond to the ISI subject category
of Library and Information Science. This way, the graph also reflects the dominance
of Scientometrics as part of LIS disciplines inside the set. The graph illustrates
how Lotka’s law becomes a relevant “knowledge item” that binds papers together
in the flows of information and knowledge production and that contributes to a
consolidation of scientometrics as a scientific field, for which a high connectivity
of networks of citations is one important feature. For a slightly more detailed
inspection, we reproduce the historiograph using as a threshold at least five citations
from other documents of the set (91 nodes).

In Fig. 2.11, the nodes of the main path or backbone are highlighted and labeled.
There is an important volume of documents that either refers to Lotka’s formula in
a more rhetorical way or discusses mechanisms for and implications of this law in
the light of social theories. But most of the documents highlighted by the main path

5We will provide a on-line version for detailed inspection.
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Table 2.3 Main path of documents citing Lotka

First PY Journal Title
Author

Zunde, P 1969 JASIST Indexing consistency and quality
Fairthor, RA 1969 J.DOC. Progress in documentation –

empirical hyperbolic
distributions
(Bradford–Zipf–Mandelbrot)
for bibliometric description
and prediction

Price, DJD 1976 JASIST General theory of bibliometric and
other cumulative advantage
processes

Rao, IKR 1980 JASIST Distribution of scientific
productivity and social-change

Pao, ML 1985 IP&M Lotka law – a testing procedure
Pao, ML 1986 JASIS An empirical-examination of

Lotka law
Egghe, L 1990 J. INFORMATION

SCIENCE
The duality of informetric systems

with applications to the
empirical laws

Burrell, Ql 1993 JASIST Yes, the GIGP really does work –
and is workable

Huber, JC 1998 JASIST Cumulative advantage and
success-breeds-success: the
value of time pattern analysis

Huber, JC 1999 SCIENTOMETRICS Inventive productivity and the
statistics of exceedances

Huber, JC 2001 SCIENTOMETRICS Scientific production: a statistical
analysis of authors in
mathematical logic

Huber, JC 2002 JASIST A new model that generates
Lotka’s law

of Fig. 2.11 (dark circles) entail mathematical formulations or applications (e.g., for
descriptive statistics of research fields, journals, or specific regions or countries).
Most of the documents using Lotka’s law rely on empirical data at a meso level
of aggregation (101–10,000 records). A bibliographic description of the documents
belonging to the main path is available in Table 2.3. Most of these papers discuss
Lotka’s law in the context of specific distribution functions and stochastic processes
that lead to them.

2.4.2.3 The Case of Modeling the Spreading of Ideas
as a Disease – W. Goffman

Goffman’s model describes the spreading out of an idea as analogous to the
spreading of a disease. Similar to Lotka’s law, which is part of the long history in
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the study of statistical distributions, the epidemic model Goffman adopted has a long
history. In 1927, Kermack and McKendrick published a mathematical model that is
still known as the SIR model. This model describes the spreading out of a disease
in terms of the relative growth of three subpopulations: the number of susceptible
but uninfected individuals (S), the number of infected individuals (I) who carry
the disease and can spread it further to the S-group, and the number of recovered
individuals (R) who cannot be reinfected again. Obviously, the growth of infected
individuals depends on the number of available susceptible individuals and is slowed
down by recovering. Goffman applied this idea to science. The number of “infected”
researchers represents the researchers working at an idea or in a field. The R-group
has lost interest and the S-group forms the reservoir for further growth. Unlike
Lotka’s law, for which only one key publication can be found, Goffman published
work about this model over the course of several years, and also with different co-
authors (Harmon 2008). For our analysis, we identified two main publications that
still gain sufficient recognition.

Goffman’s model entails many more variables (three instead of one) and
many more parameters than Lotka’s law. Although it has been tested empirically
(Wagner-Döbler 1999), the number of “susceptible” researchers is not easy to
estimate (Burger and Bujdoso 1985). Nevertheless, one prediction of Goffman’s
model can easily be measured: the growth of a scientific field. Scientometrics has
produced a large amount of growth studies of new scientific fields. Correspondingly,
the literature about growth laws in science also makes references to Goffman’s
model as one possible explanation of such observed growth curves (Tabah 1999).
Consequently, Goffman’s model has been extended – from the growth of one field
(based on the interaction of researchers at three different stages) to the growth of a
group of fields (Bruckner et al. 1990). It has also been extended from a group-based
model, where the probability of being “infected” with an idea is the same for each
subgroup member, to a network-based model, in which the concrete transmission
path and the topology of all possible contacts matter (Bettencourt et al. 2009;
Lambiotte and Panzarasa 2009).

This history of perception is visible in the main path of the HistCiteTM graph
(darker nodes in Fig. 2.12). The 73 citing documents are published in 47 journals
illustrating a much more dispersed trajectory of diffusion. Although the Goffman
epidemic model is known in the scientometric community, the participation of
Library and Information Science journals among the documents citing the seed
papers is never as relevant as was the case for Lotka’s law.

The main-path analysis also reveals that there is nearly 10-year between the
documents in the main path, meaning that once in a decade a paper appears that
reminds us of or reviews epidemic models and related approaches (Table 2.4).
Beginning in 2000, however, the situation changes. Works by Bettencourt et al.
(2008, 2009), and later Lambiotte et al. (2009), mark the emergence of the theory of
complex-networks in statistical physics (Scharnhorst 2003; Pyka and Scharnhorst
2009). This represents a solid hype, in which new attention from physicists was
drawn to the science system.
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Table 2.4 Main path of documents citing Goffman

First PY Journal Title
Author

Bujdoso, E 1982 J. RADIOANAL CHEM Prompt nuclear analysis – growth and
trends – a scientometric study

Bruckner, E 1990 SCIENTOMETRICS The application of evolution models
in scientometrics

Wilson, CS 1999 ANNUAL REVIEW OF
INFORMATION
SCIENCE AND
TECHNOLOGY

Informetrics

Tabah, AN 1999 ANNUAL REVIEW OF
INFORMATION
SCIENCE AND
TECHNOLOGY

Literature dynamics: studies on
growth, diffusion, and epidemics

Bettencourt,
LMA

2006 PHYSICA A The power of a good idea:
Quantitative modeling of the
spread of ideas from
epidemiological models

Bettencourt,
LMA

2008 SCIENTOMETRICS Population modeling of the
emergence and development of
scientific fields

Lambiotte, R 2009 JOURNAL OF
INFORMETRICS

Communities, knowledge creation,
and information diffusion

Chen, CM 2009 JOURNAL OF
INFORMETRICS

Towards an explanatory and
computational theory of scientific
discovery

Bettencourt,
LMA

2009 JOURNAL OF
INFORMETRICS

Scientific discovery and topological
transitions in collaboration
networks

The science system is a social system for which large (digital) data sets are
available. These sets entail a lot of relational information from which different
networks can be built and analyzed (Havemann 2009). At the moment, the complex-
networks community has shifted its focus from analyzing the structure (as the
logical first step of a statistical analysis) to examining the evolution of the network
structure (Pastor-Satorras and Vespignani 2004), and further to studying dynamic
processes on complex-network topologies. Epidemic modeling has experienced an
important revival, and it has been accompanied by a revival of epidemic models of
science. The new network science has also influenced the reception of our last case.

2.4.2.4 Network Dynamics from Science and Beyond – Derek de Solla Price

Derek de Solla Price is considered one of the pioneers in the field of Sciento-
metrics. He has written about many different topics, and his work is still highly
cited in the scientometric community. In 1965, he published a relatively short
paper in the journal Science entitled “Networks of papers.” Although this paper
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Fig. 2.12 Historiograph of documents citing Goffman’s epidemic model
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Fig. 2.13 Historiograph of documents citing Price’s network model of scientific papers and
main path

contains only a few formulas, it has established a foundation for further study of
scientific communication, including mathematical models. Price begins his paper
with the observation that citations are skewed in their distribution. He examines
the consequences of the (exponential) growth of publications (one of his other
major findings) for the future distribution of citations, and he argues that although
references and citations form a balance, their distribution over papers differs
fundamentally. Citations are not homogeneously distributed over the growing body
of literature. Instead, they cluster in time and space (defined as sets of papers).
Based on these structures, we can identify research fronts. Citing is the recursive and
constitutive process that redefines, reshapes, and re-creates scientific knowledge for
each generation of scholars. Price visualizes the evolution of networks of papers. He
not only reflects upon fundamental bibliographic questions such as classification, he
also points to a number of unknown or unclear characteristics of the self-organized,
collective process of references, later addressed by measurements and models.
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Table 2.5 Main path of documents citing Price

First PY Journal Title
Author

Griffith, BC 1979 J.DOC Aging of scientific literature –
citation analysis

Vlachy, J 1985 SCIENTOMETRICS Citation histories of scientific
publications – the data sources

Marton, J 1985 SCIENTOMETRICS Obsolescence or immediacy –
evidence supporting Price
hypothesis

Vlachy, J 1986 CZECH J PHYSICS Scientometric analyses in physics –
where we stand

Macroberts,
BR

1989 JASIST Problems of citation analysis – a
critical review

Seglen, PO 1992 JASIST The skewness of science
Seglen, PO 1994 JASIST Causal relationship between article

citedness and journal impact
Wilson, CS 1999 ANNUAL REVIEW OF

INFORMATION
SCIENCE AND
TECHNOLOGY

Informetrics

Borner, K 2003 ANNUAL REVIEW OF
INFORMATION
SCIENCE AND
TECHNOLOGY

Visualizing knowledge domains

Moya-
Anegon, F

2004 SCIENTOMETRICS A new technique for building maps
of large scientific domains
based on the cocitation of
classes and categories

Boyack, KW 2005 SCIENTOMETRICS Mapping the backbone of science
Leydesdorff, L 2006 JASIST Can scientific journals be classified

in terms of aggregated
journal-journal citation relations
using the journal citation
reports?

Leydesdorff, L 2007 JASIST Betweenness centrality as an
indicator of the
interdisciplinarity of scientific
journals

Due to Price’s overall relevance to the scientometric community and his rich
trajectory of published papers relevant to this field, documents citing Price’s network
model are mostly published in journals of Library and Information Science. This is
similar to the case of Lotka’s law. In Price’s case, we also present the HistCiteTM

graph for visual inspection (Fig. 2.13).
The historiograph shown in Fig. 2.13 illustrates a cohesive set of documents

similar to the case of Lotka’s law. However, the authors citing Price do not possess
the same awareness of each other as was for the case for authors using the Lotka
model. For this reason, it was possible to lower the threshold used in Lotka’s case
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(citing at least five other documents) to all those documents citing at least three
other documents (96 nodes). The network is less dense, justifying a lower threshold.
The documents in the main path (dark labeled nodes in Fig. 2.13) are detailed in
Table 2.5.

A comparison of the backbone of Lotka and Price reinforces the impression that
comes with an inspection of all journals in the two data sets. Both authors and both
models are part of the knowledge base of scientometrics and are fully embraced by
the community. This can still not be said for Goffman, however.

2.5 Concluding Remarks

To a certain extent, the analysis from present to past and from past to present
complement each other. We found empirical evidence for the narrative drawn at
the beginning of this chapter. In particular, the scattered and partly isolated nature
of mathematical approaches could be made visible with the help of citation analysis.
We found different schools or threads of mathematical approaches and models in a
wide sense in LIS – led by statistical analysis and stochastic processes. But although
they all draw on a more widely connected network of mathematical approaches,
they do not communicate this among each other. We also found evidence for the
still relatively marginal role of dynamic models in the set of current papers in LIS,
as well as in the way Goffman (as one of the proponents of dynamic models) is
hardly recognized in the LIS community.

Concerning the relation between predictive and descriptive models of science,
which is one of the topics addressed by this book (see in particular Chap. 1),
our empirical analysis underlines once more that when mathematical models are
currently applied to describe the development of science at all, they rather focus on
an analysis of the current state in a descriptive way. However, each mathematical
model with a dynamic component also has the potential to be applied for prediction.
Let us give an example: Lotka’s law of productivity is just a mathematical function
between variables (number of scientists, number of their publications) that can be
empirically tested. This means it is predictive in its essence. However, any stochastic
process proposed to explain the establishment of Lotka’s law as a quasi-stationary
distribution of a dynamic process makes assumptions about micromechanisms of
behavior. One possible assumption is that the probability of producing an additional
article depends on the number of articles an author has already produced. Such a rule
can be implemented in models explicitly designed to test the collective outcome of
behavioral rules on the level of individuals (such as Gilbert’s model). We can also
use such assumptions about micromechanisms and the parameters of Lotka’s law
to predict the productivity of a certain scientific community. However, only a few
attempts have been made to turn mathematical models of science into predictive
models for scientific development (see Fronczak et al. 2007). This may have more
to do with the actual focus of research agendas than the potential of mathematical
models as such.
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When talking about “predictive modeling,” what is often expressed is the wish to
forecast a new idea or a new field. However, in the history of mathematical models
of science, one of the predictive models in posse (Goffman’s epidemic model) has
been mainly applied in esse to the history of scientific fields (e.g., (Wagner-Döbler
1999)). There are two reasons for this apparent mismatch. First, innovative ideas
and new fields representing “real” breakthroughs cannot be predicted by definition.
Otherwise, there would not be structural changes of the whole science system, only
minor alterations of existing knowledge. Now, what can be predicted also depends
on how we define innovation and new ideas. We might reasonably be able to suggest
the directions of incremental scientific progress, but not (as said before) radical
innovations. In this respect, predictive models are condemned to fail. Peter Allen
used to express it in this way: “The more ‘credible’ predictions are, the more likely
they are to NOT happen” (Cited in Ebeling and Scharnhorst (2009)).

Yet, while models might fail to predict actual innovations, they have a great and
often overlooked potential to analyze the circumstances under which innovations –
new ideas and new fields emerging independently of their essence – will most likely
arise. Only some of the modeling attempts in the past figuring in our analysis
have discussed this aspect (Bruckner et al. 1990). Understood in this way, the
potential of models to predict “innovative sciences” – their collaboration pattern,
their selection mechanisms, their institutional frames, and so on – is unlimited, and
still unexplored. Within such a frame, both descriptive (or, better, statistical) models
and predictive (or, better, dynamical) models can be applied. The first can depict
characteristics of successful science in the past and search for similar patterns in
the present; the second can formulate hypotheses about mechanisms for successful
science, test them empirically in the past, and shape them for the present by means
of science policy.

Having pointed to this need of modeling for forecasting conditions of events
rather than the events themselves, we immediately have to admit that differentiating
and tracing such a use of mathematical models is almost impossible by the analysis
of citations only. Again, citation analysis can point us to interesting areas to look at
more closely. But for the actual use, application, and interpretation of models, we
either have to rely on manual inspection or on other kind of references that relate
a model to a certain use. That seems to be even harder to trace semi-automatically
than the pure appearance of mathematical models.

What we have done in this analysis is to describe the current state of diffusion
of mathematical modeling ideas irrespectively of their actual use. Already, this
confronted us with a lot of problems. To trace an adoption pattern as sketched in
Fig. 2.1, we would need to be able to automatically extract all documents (across all
disciplines) that address the application of the mathematical models to the science
system. Moreover, we would also like to see in parallel the bibliometric traces of
the mathematical branches feeding these models. However, there is no consistent
indexing of documents (outside of knowledge-domain-specific databases) concern-
ing the methods they apply. We also found that there is no term-keyword-subject
combination that delivers a specific enough set of documents for mathematical
models in science over the whole Web of Science database. This is why we have
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chosen the combination of tracing known model approaches to science (over all
disciplines) with screening a set of established LIS journals for the appearance of
mathematical modeling.

Despite this limited-sampling approach and specific-citation perspective, we
found evidence both for the relatively isolated existence of mathematical modeling
and its implicit commonly shared knowledge base. We also saw the influence
of developments in other fields on the implementation of new methods in LIS.
The emergence of the so-called new network science (Barabási 2002) and the
interest from statistical physics and, in a wider sense, complexity research (all three
representing the mother disciplines for dynamic processes) do not remain without
resonance in scientometrics. Partly, we observe a diffusion of new researchers;
partly, we also observe a taking up of themes and methods by established scien-
tometricians who in some way received their primary academic forming in natural
sciences and mathematics.

Our experiments show that developments in scientometrics cannot be understood
from an inner-situated perspective only. The use of mathematical dynamic models
to describe the sciences is not restricted to LIS journals. Actually, some interesting
developments in this area take place at very different locations, such as in journals of
computational philosophy (see Chap. 4 of this book), sociology (see Chap. 6 of this
book), and physics. But the universal nature of mathematical dynamic approaches –
their variety in methods and topics addressed – makes it impossible to set up a
string of keywords with which one can easily extract a good sample of mathematical
models applied to the science system. The same holds for a past-to-present analysis.
Mathematical models applied to science can pop up in all places. We selected
three researchers – Lotka, Goffman, and Price – who performed pioneering work
relevant to scientometrics, who have been interested in dynamic processes, and
who have developed mathematical models and/or ideas that have been central
for modeling. There might be many other researchers who have done interesting
modeling experiments and might only be rediscovered by chance. But even for
our three “landmark” scholars, it is not easy for us to pick one publication from
their oeuvre that fully represents their “science model” and nothing else. The work
of an individual scholar is like a journey through a landscape of science. Partly
discovering the existing landscape for her/himself and partly creating this landscape,
the scholar leaves marks and traces and is marked and imprinted by their journey.
One might argue that there is a certain arbitrariness in the selection of our cases and
the seed nodes for the historiographic methods. Indeed, we are aware of this. We do
not claim comprehensiveness; instead, we aim for an insightful illustration of the
complexity of knowledge and model transfer in science. Our practical problems in
the selection of samples also reflect a more fundamental problem.

The diffusion of ideas and methods across the sciences is a combination
of the progress of knowledge inside specialties and a diffusion of knowledge
between specialties in which knowledge is not just transmitted but also altered. The
evolution of knowledge entails processes of specification as well as generalization.
Correspondingly, in the cognitive and social space, specialties and invisible colleges
emerge and disappear, merge and split up, take form, stabilize, transform, and
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Fig. 2.14 Models travelling between generic and specific levels

pass different stages of life cycles, all based on a constant flow of creation and
recombination of elementary units of knowledge. This eternal flow also influences
the travel of mathematical models. Approaches to mathematical modeling can
emerge on a generic mathematical level or inside of a specialty or knowledge
domain. Independently from where they appear first, they are embedded in a cycle
of (re)generalization and (re)specification (Fig. 2.14). One of these special fields can
be scientometrics. Mathematical models can be developed specifically for science.
However, they will always share a generic structural element with other models and
contribute to this pool. On the other side, from the general pool of models they
can expect entries of new model ideas along all possible lines of mathematical
modeling. Mathematical models and approaches to science can be the result of
applying different mathematical approaches that have been used in other disciplines.
For example, some models using entropy statistics stem from the Mathematical
Theory of Communications, which originally addressed an engineering problem but
which has been applied in more social sciences like economics.

This feature of the model-building process – the cycle between generalization
and specification – makes it very complicated to trace a model transfer bibliometri-
cally. It also makes it hard to produce an overview of possible dynamic models of
science, which in principle encompass all dynamic modeling approaches.

Therefore, we applied a practical approach by concentrating on LIS journals for
the analysis of the present situation and by depicting a few “classics” from the past.
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The combination of both approaches provides bibliometric evidence for less cited
mathematical approaches that have been fading away, for models that have been
only recently (re)discovered, and for a shared underlying cognitive reference space
that is not always visible in direct citations. Our study also illustrates the process of
spreading new ideas and demonstrates how these can eventually converge. It can be
expected that such a historiographic study can be used as a departure point for an
evaluation of certain mathematical models. What are the characteristics of the most
successful models? Do they tend to be more universal or domain specific? Are they
multi-leveled? We can also imagine applying some of the characteristics of models
discussed in the Introduction Chapter in a future analysis. For instance, one could
ask about the quantitative or qualitative nature of the models applied, the type of
behavior in science targeted, and the representation used for results.

Last but not least, one remark. In our historic narrative at the beginning of this
chapter, we argued that eventually there need to be researchers who are intrigued
and curious enough to test mathematical models. However, while researchers as
the source of ideas remain utterly important, mathematical modeling will still
remain ephemeral if it is to be an activity driven by curiosity and not by demand.
The creativity of the human imagination is triggered by curiosity as well as by a
societal demand for a certain type of knowledge, method, and models. There is no
sustainable modeling without a thorough theoretical foundation, and, in this respect,
models should be mainly guided by theory.

One could argue that, compared to other fields and disciplines, scientometrics is a
relatively young field and has therefore not yet penetrated or been open to complex
models very much. But dynamic modeling of the science system will not emerge
if there is not a need to apply relatively complex, computational-intensive models
that also require diverse collaborations. The pertinent growth of the science system,
the scarcity of resources (human and material), and the increasing complexity that
requires other mechanisms of control might all be decisive in triggering a collective
action for Modeling Science Dynamics.

Appendix 1: Papers Using Mathematical Approaches
to Understand the Science System (Fig. 2.1)

Table 2.6 Statistics of the search: Present to past

Node Bibliographic metadata Times cited

1 Torvik VI, 2005, J AM SOC INF SCI TECHNOL, V56, P140 18
2 Xekalaki E, 2005, SCIENTOMETRICS, V62, P293 1
3 Santos JB, 2005, SCIENTOMETRICS, V62, P329 2
4 Simkin MV, 2005, SCIENTOMETRICS, V62, P367 8
5 Bailon-Moreno R, 2005, SCIENTOMETRICS, V63, P231 1

(continued)
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Table 2.6 (continued)

Node Bibliographic metadata Times cited

6 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P664 2
7 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P669 8
8 Sombatsompop N, 2005, J AM SOC INF SCI TECHNOL, V56, P676 15
9 Matia K, 2005, J AM SOC INF SCI TECHNOL, V56, P893 10
10 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P935 13
11 Efron M, 2005, J AM SOC INF SCI TECHNOL, V56, P969 4
12 Liang LM, 2005, J AM SOC INF SCI TECHNOL, V56, P1045 10
13 Burrell QL, 2005, SCIENTOMETRICS, V64, P247 5
14 Morris SA, 2005, J AM SOC INF SCI TECHNOL, V56, P1250 5
15 Burrell QL, 2005, INFORM PROCESS MANAGE, V41, P1317 8
16 Egghe L, 2005, INFORM PROCESS MANAGE, V41, P1330 2
17 Shan S, 2005, INFORM PROCESS MANAGE, V41, P1369 2
18 Lafouge T, 2005, INFORM PROCESS MANAGE, V41, P1387 3
19 Payne N, 2005, INFORM PROCESS MANAGE, V41, P1495 1
20 Coccia M, 2005, SCIENTOMETRICS, V65, P307 0
21 Burrell QL, 2005, SCIENTOMETRICS, V65, P381 11
22 Dominich S, 2006, INFORM PROCESS MANAGE, V42, P1 0
23 Zuccala A, 2006, J AM SOC INF SCI TECHNOL, V57, P152 14
24 Aksnes DW, 2006, J AM SOC INF SCI TECHNOL, V57, P169 13
25 Klavans R, 2006, J AM SOC INF SCI TECHNOL, V57, P251 33
26 Ackermann E, 2006, SCIENTOMETRICS, V66, P451 0
27 Martens BVD, 2006, J AM SOC INF SCI TECHNOL, V57, P330 1
28 Chen CM, 2006, J AM SOC INF SCI TECHNOL, V57, P359 67
29 van Raan AFJ, 2006, J AM SOC INF SCI TECHNOL, V57, P408 21
30 Choi J, 2006, INFORM PROCESS MANAGE, V42, P331 5
31 Wei CP, 2006, INFORM PROCESS MANAGE, V42, P350 12
32 Izsak J, 2006, SCIENTOMETRICS, V67, P107 2
33 Yoo SH, 2006, SCIENTOMETRICS, V69, P57 0
34 Egghe L, 2006, SCIENTOMETRICS, V69, P121 67
35 Glanzel W, 2006, SCIENTOMETRICS, V67, P315 73
36 Burrell QL, 2006, SCIENTOMETRICS, V67, P323 0
37 Rousseau R, 2006, J AM SOC INF SCI TECHNOL, V57, P1404 2
38 Burrell QL, 2006, J AM SOC INF SCI TECHNOL, V57, P1406 4
39 Samoylenko I, 2006, J AM SOC INF SCI TECHNOL, V57, P1461 7
40 Peng D, 2006, SCIENTOMETRICS, V69, P271 0
41 Roth C, 2006, SCIENTOMETRICS, V69, P429 5
42 Mingers J, 2006, INFORM PROCESS MANAGE, V42, P1451 6
43 Zitt M, 2006, INFORM PROCESS MANAGE, V42, P1513 17
44 Su Y, 2006, J AM SOC INF SCI TECHNOL, V57, P1977 0
45 Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377 10
46 Borner K, 2006, SCIENTOMETRICS, V68, P415 8
47 Klavans R, 2006, SCIENTOMETRICS, V68, P475 15
48 Small H, 2006, SCIENTOMETRICS, V68, P595 23
49 Contreras C, 2006, SCIENTOMETRICS, V69, P689 3
50 Kretschmer H, 2007, J INFORMETR, V1, P308 1
51 Jarneving B, 2007, J INFORMETR, V1, P338 0
52 Burrell QL, 2007, J INFORMETR, V1, P16 22

(continued)
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Table 2.6 (continued)

Node Bibliographic metadata Times cited

53 Leydesdorff L, 2007, J AM SOC INF SCI TECHNOL, V58, P25 14
54 McDonald JD, 2007, J AM SOC INF SCI TECHNOL, V58, P39 4
55 Koike A, 2007, J AM SOC INF SCI TECHNOL, V58, P51 2
56 Egghe L, 2007, J AM SOC INF SCI TECHNOL, V58, P452 29
57 Na SH, 2007, INFORM PROCESS MANAGE, V43, P302 1
58 Lucio-Arias D, 2007, SCIENTOMETRICS, V70, P603 3
59 Egghe L, 2007, J INFORMETR, V1, P115 5
60 Shibata N, 2007, J AM SOC INF SCI TECHNOL, V58, P872 2
61 Zitt M, 2007, INFORM PROCESS MANAGE, V43, P834 0
62 Zhao DZ, 2007, J AM SOC INF SCI TECHNOL, V58, P1285 2
63 Rousseau R, 2007, J AM SOC INF SCI TECHNOL, V58, P1551 3
64 Nadarajah S, 2007, SCIENTOMETRICS, V72, P291 1
65 Simkin MV, 2007, J AM SOC INF SCI TECHNOL, V58, P1661 6
66 Morris SA, 2007, J AM SOC INF SCI TECHNOL, V58, P1764 4
67 Bornmann L, 2007, SCIENTOMETRICS, V73, P139 1
68 de Moya-Anegon F, 2007, J AM SOC INF SCI TECHNOL, V58, P2167 9
69 Lariviere V, 2008, J AM SOC INF SCI TECHNOL, V59, P288 12
70 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P565 7
71 Bornmann L, 2008, J AM SOC INF SCI TECHNOL, V59, P830 38
72 Chavalarias D, 2008, SCIENTOMETRICS, V75, P37 3
73 Li XY, 2008, INFORM PROCESS MANAGE, V44, P991 0
74 Wan XJ, 2008, INFORM PROCESS MANAGE, V44, P1032 3
75 Molinari A, 2008, SCIENTOMETRICS, V75, P339 7
76 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495 7
77 Kim H, 2008, SCIENTOMETRICS, V75, P535 2
78 Harmon G, 2008, INFORM PROCESS MANAGE, V44, P1634 0
79 Bornmann L, 2008, J INFORMETR, V2, P217 2
80 Yu HR, 2008, J INFORMETR, V2, P240 0
81 Egghe L, 2008, SCIENTOMETRICS, V76, P117 4
82 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1608 13
83 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P1631 3
84 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1688 2
85 Ahlgren P, 2008, SCIENTOMETRICS, V76, P273 3
86 Burrell QL, 2008, INFORM PROCESS MANAGE, V44, P1794 1
87 Bornmann L, 2008, J INFORMETR, V2, P280 0
88 Ye FY, 2008, J INFORMETR, V2, P288 2
89 Quirin A, 2008, J AM SOC INF SCI TECHNOL, V59, P1912 2
90 Lucio-Arias D, 2008, J AM SOC INF SCI TECHNOL, V59, P1948 3
91 Levitt JM, 2008, J AM SOC INF SCI TECHNOL, V59, P1973 3
92 Cecchini RL, 2008, INFORM PROCESS MANAGE, V44, P1863 1
93 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P2133 0
94 Davis PM, 2008, J AM SOC INF SCI TECHNOL, V59, P2186 6
95 Egghe L, 2008, SCIENTOMETRICS, V77, P377 3
96 Szydlowski M, 2009, SCIENTOMETRICS, V78, P99 0
97 Wallace ML, 2009, J AM SOC INF SCI TECHNOL, V60, P240 1
98 Jensen P, 2009, SCIENTOMETRICS, V78, P467 0

(continued)
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Table 2.6 (continued)

Node Bibliographic metadata Times cited

99 Costas R, 2009, J AM SOC INF SCI TECHNOL, V60, P740 3
100 Perez JM, 2009, INFORM PROCESS MANAGE, V45, P356 0
101 Sandstrom U, 2009, SCIENTOMETRICS, V79, P341 1
102 Borner K, 2009, J INFORMETR, V3, P161 0
103 Chen CM, 2009, J INFORMETR, V3, P191 2
104 Bettencourt LMA, 2009, J INFORMETR, V3, P210 4
105 Frenken K, 2009, J INFORMETR, V3, P222 2
106 Skupin A, 2009, J INFORMETR, V3, P233 2
107 Lucio-Arias D, 2009, J INFORMETR, V3, P261 6
108 Zhao YY, 2009, SCIENTOMETRICS, V80, P91 0
109 Elmacioglu E, 2009, SCIENTOMETRICS, V80, P195 0
110 Zhu SF, 2009, INFORM PROCESS MANAGE, V45, P555 1
111 Deineko VG, 2009, SCIENTOMETRICS, V80, P819 0
112 Egghe L, 2009, J INFORMETR, V3, P290 2
113 Wallace ML, 2009, J INFORMETR, V3, P296 2
114 Yu LP, 2009, J INFORMETR, V3, P304 0
115 Kwakkel JH, 2009, J AM SOC INF SCI TECHNOL, V60, P2064 0
116 He ZL, 2009, J AM SOC INF SCI TECHNOL, V60, P2151 0
117 Tseng YH, 2009, SCIENTOMETRICS, V81, P73 1
118 Egghe L, 2009, J AM SOC INF SCI TECHNOL, V60, P2362 1
119 Bornmann L, 2009, SCIENTOMETRICS, V81, P407 1
120 Ye FY, 2009, SCIENTOMETRICS, V81, P493 0
121 Egghe L, 2009, SCIENTOMETRICS, V81, P567 0
122 Lucio-Arias D, 2009, J AM SOC INF SCI TECHNOL, V60, P2488 0
123 Luk R, 2009, J AM SOC INF SCI TECHNOL, V60, P2587 0
124 Guan JC, 2009, SCIENTOMETRICS, V81, P683 0
125 Kiss IZ, 2010, J INFORMETR, V4, P74 0
126 Bornmann L, 2010, J INFORMETR, V4, P83 1
127 Guan JC, 2010, SCIENTOMETRICS, V82, P165 0
128 Egghe L, 2010, SCIENTOMETRICS, V82, P243 0
129 Yu G, 2010, SCIENTOMETRICS, V82, P249 0
130 Xu ZB, 2010, INFORM PROCESS MANAGE, V46, P143 0
131 Pepe A, 2010, J AM SOC INF SCI TECHNOL, V61, P567 0
132 Liang LM, 2010, J INFORMETR, V4, P201 0
133 Minguillo D, 2010, J AM SOC INF SCI TECHNOL, V61, P772 0
134 Zhang HZ, 2010, J AM SOC INF SCI TECHNOL, V61, P964 0
135 Egghe L, 2010, SCIENTOMETRICS, V83, P455 0
136 Wray KB, 2010, SCIENTOMETRICS, V83, P471 0
137 Schiebel E, 2010, SCIENTOMETRICS, V83, P765 0
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Appendix 2: Cognitive Historiography of Papers Using
Mathematical Approaches to Understand the Science System
(Fig. 2.2)

Table 2.7 Statistics of the search: Present to past

Node Bibliographic metadata Times cited

1 Lotka AJ, 1926, J WASHINGTON ACADEMY, V16, P317 317
2 PRICE DJD, 1965, SCIENCE, V149, P510 664
3 PRICE DJD, 1976, J AMER SOC INFORM SCI, V27, P292 332
4 Barabási AL, 1999, SCIENCE, V286, P509 4818
5 Albert R, 2002, REV MOD PHYS, V74, P47 4030
6 Torvik VI, 2005, J AM SOC INF SCI TECHNOL, V56, P140 18
7 Xekalaki E, 2005, SCIENTOMETRICS, V62, P293 1
8 Santos JB, 2005, SCIENTOMETRICS, V62, P329 2
9 Simkin MV, 2005, SCIENTOMETRICS, V62, P367 8
10 Bailon-Moreno R, 2005, SCIENTOMETRICS, V63, P231 1
11 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P664 2
12 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P669 8
13 Sombatsompop N, 2005, J AM SOC INF SCI TECHNOL, V56, P676 15
14 Matia K, 2005, J AM SOC INF SCI TECHNOL, V56, P893 10
15 Egghe L, 2005, J AM SOC INF SCI TECHNOL, V56, P935 13
16 Efron M, 2005, J AM SOC INF SCI TECHNOL, V56, P969 4
17 Liang LM, 2005, J AM SOC INF SCI TECHNOL, V56, P1045 10
18 Burrell QL, 2005, SCIENTOMETRICS, V64, P247 5
19 Morris SA, 2005, J AM SOC INF SCI TECHNOL, V56, P1250 5
20 Hirsch JE, 2005, PROC NAT ACAD SCI USA, V102, P16569 549
21 Burrell QL, 2005, INFORM PROCESS MANAGE, V41, P1317 8
22 Egghe L, 2005, INFORM PROCESS MANAGE, V41, P1330 2
23 Shan S, 2005, INFORM PROCESS MANAGE, V41, P1369 2
24 Lafouge T, 2005, INFORM PROCESS MANAGE, V41, P1387 3
25 Payne N, 2005, INFORM PROCESS MANAGE, V41, P1495 1
26 Coccia M, 2005, SCIENTOMETRICS, V65, P307 0
27 Burrell QL, 2005, SCIENTOMETRICS, V65, P381 11
28 Bornmann L, 2005, SCIENTOMETRICS, V65, P391 86
29 Dominich S, 2006, INFORM PROCESS MANAGE, V42, P1 0
30 Zuccala A, 2006, J AM SOC INF SCI TECHNOL, V57, P152 14
31 Aksnes DW, 2006, J AM SOC INF SCI TECHNOL, V57, P169 13
32 Klavans R, 2006, J AM SOC INF SCI TECHNOL, V57, P251 33
33 Ackermann E, 2006, SCIENTOMETRICS, V66, P451 0
34 Martens BVD, 2006, J AM SOC INF SCI TECHNOL, V57, P330 1
35 Chen CM, 2006, J AM SOC INF SCI TECHNOL, V57, P359 67
36 van Raan AFJ, 2006, J AM SOC INF SCI TECHNOL, V57, P408 21
37 Choi J, 2006, INFORM PROCESS MANAGE, V42, P331 5
38 Wei CP, 2006, INFORM PROCESS MANAGE, V42, P350 12
39 Izsak J, 2006, SCIENTOMETRICS, V67, P107 2
40 Yoo SH, 2006, SCIENTOMETRICS, V69, P57 0

(continued)
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Table 2.7 (continued)

Node Bibliographic metadata Times cited

41 Egghe L, 2006, SCIENTOMETRICS, V69, P121 67
42 Glanzel W, 2006, SCIENTOMETRICS, V67, P315 73
43 Burrell QL, 2006, SCIENTOMETRICS, V67, P323 0
44 Rousseau R, 2006, J AM SOC INF SCI TECHNOL, V57, P1404 2
45 Burrell QL, 2006, J AM SOC INF SCI TECHNOL, V57, P1406 4
46 Samoylenko I, 2006, J AM SOC INF SCI TECHNOL, V57, P1461 7
47 Peng D, 2006, SCIENTOMETRICS, V69, P271 0
48 Roth C, 2006, SCIENTOMETRICS, V69, P429 5
49 Mingers J, 2006, INFORM PROCESS MANAGE, V42, P1451 6
50 Zitt M, 2006, INFORM PROCESS MANAGE, V42, P1513 17
51 Su Y, 2006, J AM SOC INF SCI TECHNOL, V57, P1977 0
52 Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377 10
53 Borner K, 2006, SCIENTOMETRICS, V68, P415 8
54 Klavans R, 2006, SCIENTOMETRICS, V68, P475 15
55 Small H, 2006, SCIENTOMETRICS, V68, P595 23
56 Contreras C, 2006, SCIENTOMETRICS, V69, P689 3
57 Kretschmer H, 2007, J INFORMETR, V1, P308 1
58 Jarneving B, 2007, J INFORMETR, V1, P338 0
59 Burrell QL, 2007, J INFORMETR, V1, P16 22
60 Leydesdorff L, 2007, J AM SOC INF SCI TECHNOL, V58, P25 14
61 McDonald JD, 2007, J AM SOC INF SCI TECHNOL, V58, P39 4
62 Koike A, 2007, J AM SOC INF SCI TECHNOL, V58, P51 2
63 Egghe L, 2007, J AM SOC INF SCI TECHNOL, V58, P452 29
64 Na SH, 2007, INFORM PROCESS MANAGE, V43, P302 1
65 Lucio-Arias D, 2007, SCIENTOMETRICS, V70, P603 3
66 Egghe L, 2007, J INFORMETR, V1, P115 5
67 Shibata N, 2007, J AM SOC INF SCI TECHNOL, V58, P872 2
68 Zitt M, 2007, INFORM PROCESS MANAGE, V43, P834 0
69 Zhao DZ, 2007, J AM SOC INF SCI TECHNOL, V58, P1285 2
70 Rousseau R, 2007, J AM SOC INF SCI TECHNOL, V58, P1551 3
71 Nadarajah S, 2007, SCIENTOMETRICS, V72, P291 1
72 Simkin MV, 2007, J AM SOC INF SCI TECHNOL, V58, P1661 6
73 Morris SA, 2007, J AM SOC INF SCI TECHNOL, V58, P1764 4
74 Bornmann L, 2007, SCIENTOMETRICS, V73, P139 1
75 de Moya-Anegon F, 2007, J AM SOC INF SCI TECHNOL, V58, P2167 9
76 Lariviere V, 2008, J AM SOC INF SCI TECHNOL, V59, P288 12
77 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P565 7
78 Bornmann L, 2008, J AM SOC INF SCI TECHNOL, V59, P830 38
79 Chavalarias D, 2008, SCIENTOMETRICS, V75, P37 3
80 Li XY, 2008, INFORM PROCESS MANAGE, V44, P991 0
81 Wan XJ, 2008, INFORM PROCESS MANAGE, V44, P1032 3
82 Molinari A, 2008, SCIENTOMETRICS, V75, P339 7
83 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495 7
84 Kim H, 2008, SCIENTOMETRICS, V75, P535 2
85 Harmon G, 2008, INFORM PROCESS MANAGE, V44, P1634 0
86 Bornmann L, 2008, J INFORMETR, V2, P217 2

(continued)
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Table 2.7 (continued)

Node Bibliographic metadata Times cited

87 Yu HR, 2008, J INFORMETR, V2, P240 0
88 Egghe L, 2008, SCIENTOMETRICS, V76, P117 4
89 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1608 13
90 van Raan AFJ, 2008, J AM SOC INF SCI TECHNOL, V59, P1631 3
91 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P1688 2
92 Ahlgren P, 2008, SCIENTOMETRICS, V76, P273 3
93 Burrell QL, 2008, INFORM PROCESS MANAGE, V44, P1794 1
94 Bornmann L, 2008, J INFORMETR, V2, P280 0
95 Ye FY, 2008, J INFORMETR, V2, P288 2
96 Quirin A, 2008, J AM SOC INF SCI TECHNOL, V59, P1912 2
97 Lucio-Arias D, 2008, J AM SOC INF SCI TECHNOL, V59, P1948 3
98 Levitt JM, 2008, J AM SOC INF SCI TECHNOL, V59, P1973 3
99 Cecchini RL, 2008, INFORM PROCESS MANAGE, V44, P1863 1
100 Egghe L, 2008, J AM SOC INF SCI TECHNOL, V59, P2133 0
101 Davis PM, 2008, J AM SOC INF SCI TECHNOL, V59, P2186 6
102 Egghe L, 2008, SCIENTOMETRICS, V77, P377 3
103 Szydlowski M, 2009, SCIENTOMETRICS, V78, P99 0
104 Wallace ML, 2009, J AM SOC INF SCI TECHNOL, V60, P240 1
105 Jensen P, 2009, SCIENTOMETRICS, V78, P467 0
106 Costas R, 2009, J AM SOC INF SCI TECHNOL, V60, P740 3
107 Perez JM, 2009, INFORM PROCESS MANAGE, V45, P356 0
108 Sandstrom U, 2009, SCIENTOMETRICS, V79, P341 1
109 Borner K, 2009, J INFORMETR, V3, P161 0
110 Chen CM, 2009, J INFORMETR, V3, P191 2
111 Bettencourt LMA, 2009, J INFORMETR, V3, P210 4
112 Frenken K, 2009, J INFORMETR, V3, P222 2
113 Skupin A, 2009, J INFORMETR, V3, P233 2
114 Lucio-Arias D, 2009, J INFORMETR, V3, P261 6
115 Zhao YY, 2009, SCIENTOMETRICS, V80, P91 0
116 Elmacioglu E, 2009, SCIENTOMETRICS, V80, P195 0
117 Zhu SF, 2009, INFORM PROCESS MANAGE, V45, P555 1
118 Deineko VG, 2009, SCIENTOMETRICS, V80, P819 0
119 Egghe L, 2009, J INFORMETR, V3, P290 2
120 Wallace ML, 2009, J INFORMETR, V3, P296 2
121 Yu LP, 2009, J INFORMETR, V3, P304 0
122 Kwakkel JH, 2009, J AM SOC INF SCI TECHNOL, V60, P2064 0
123 He ZL, 2009, J AM SOC INF SCI TECHNOL, V60, P2151 0
124 Tseng YH, 2009, SCIENTOMETRICS, V81, P73 1
125 Egghe L, 2009, J AM SOC INF SCI TECHNOL, V60, P2362 1
126 Bornmann L, 2009, SCIENTOMETRICS, V81, P407 1
127 Ye FY, 2009, SCIENTOMETRICS, V81, P493 0
128 Egghe L, 2009, SCIENTOMETRICS, V81, P567 0
129 Lucio-Arias D, 2009, J AM SOC INF SCI TECHNOL, V60, P2488 0
130 Luk R, 2009, J AM SOC INF SCI TECHNOL, V60, P2587 0
131 Guan JC, 2009, SCIENTOMETRICS, V81, P683 0
132 Kiss IZ, 2010, J INFORMETR, V4, P74 0

(continued)
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Table 2.7 (continued)

Node Bibliographic metadata Times cited

133 Bornmann L, 2010, J INFORMETR, V4, P83 1
134 Guan JC, 2010, SCIENTOMETRICS, V82, P165 0
135 Egghe L, 2010, SCIENTOMETRICS, V82, P243 0
136 Yu G, 2010, SCIENTOMETRICS, V82, P249 0
137 Xu ZB, 2010, INFORM PROCESS MANAGE, V46, P143 0
138 Pepe A, 2010, J AM SOC INF SCI TECHNOL, V61, P567 0
139 Liang LM, 2010, J INFORMETR, V4, P201 0
140 Minguillo D, 2010, J AM SOC INF SCI TECHNOL, V61, P772 0
141 Zhang HZ, 2010, J AM SOC INF SCI TECHNOL, V61, P964 0
142 Egghe L, 2010, SCIENTOMETRICS, V83, P455 0
143 Wray KB, 2010, SCIENTOMETRICS, V83, P471 0
144 Schiebel E, 2010, SCIENTOMETRICS, V83, P765 0

Appendix 3: Papers from Threads in Figs. 2.3–2.6

Table 2.8 Documents in Fig. 2.3

Node Author Year Journal Title

4 Simkin, MV 2005 SCIENTOMETRICS Stochastic modeling of citation
slips

10 Egghe, L 2005 JASIST Zipfian and Lotkaian continuous
concentration theory

12 Liang, LM 2005 JASIST R-sequences: Relative indicators
for the rhythm of science

15 Burrell, QL 2005 INFORMATION
PROCESSING &
MANAGEMENT

Symmetry and other
transformation features of
Lorenz/Leimkuhler
representations of informetric
data

21 Burrell, QL 2005 SCIENTOMETRICS Are “sleeping beauties” to be
expected?

29 van Raan, AFJ 2006 JASIST Statistical properties of
Bibliometric indicators:
Research group indicator
distributions and correlations

38 Burrell, QL 2006 JASIST On Egghe’s version of continuous
concentration theory

42 Mingers, J 2006 INFORMATION
PROCESSING &
MANAGEMENT

Modeling citation behavior in
Management Science journals

(continued)



60 D. Lucio-Arias and A. Scharnhorst

Table 2.8 (continued)

Node Author Year Journal Title

63 Rousseau, R 2007 JASIST On Egghe’s construction of
Lorenz curves

64 Nadarajah, S 2007 SCIENTOMETRICS Models for citation behavior
65 Simkin, MV 2007 JASIST A mathematical theory of citing
69 Lariviere, V 2008 JASIST Long-term variations in the aging

of scientific literature: From
exponential growth to
steady-state science
(1900–2004)

70 van Raan, AFJ 2008 JASIST Self-citation as an
impact-reinforcing mechanism
in the science system

83 van Raan, AFJ 2008 JASIST Scaling rules in the science
system: Influence of
field-specific citation
characteristics on the impact
of research groups

Table 2.9 Documents in Fig. 2.4

Node Author Year Journal Title

25 Klavans, R 2006 JASIST Identifying a better measure
of relatedness for
mapping science

28 Chen, CM 2006 JASIST CiteSpace II: Detecting and
visualizing emerging
trends and transient
patterns in scientific
literature

45 Van Den
Besselaar, P

2006 SCIENTOMETRICS Mapping research topics
using word-reference
co-occurrences: A
method and an
exploratory case study

46 Borner, K 2006 SCIENTOMETRICS Mapping the diffusion of
scholarly knowledge
among major US
research institutions

47 Klavans, R 2006 SCIENTOMETRICS Quantitative evaluation of
large maps of science

48 Small, H 2006 SCIENTOMETRICS Tracking and predicting
growth areas in science

58 Lucio-Arias, D 2007 SCIENTOMETRICS Knowledge emergence in
scientific
communication: from
“fullerenes” to
“nanotubes”

(continued)
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Table 2.9 (continued)

Node Author Year Journal Title

60 Shibata, N 2007 JASIST Topological analysis of citation
networks to discover the
future core articles

67 Bornmann, L 2007 SCIENTOMETRICS Row-column (RC) association
model applied to grant peer
review

72 Chavalarias, D 2008 SCIENTOMETRICS Bottom-up scientific field
detection for dynamical and
hierarchical science mapping,
methodology and case study

76 Bettencourt, LMA 2008 SCIENTOMETRICS Population modeling of the
emergence and development
of scientific fields

79 Bornmann, L 2008 JOURNAL OF
INFORMETRICS

Latent Markov modeling applied
to grant peer review

90 Lucio-Arias, D 2008 JASIST Main-path analysis and
path-dependent transitions in
HistCite (TM)-based
historiograms

102 Borner, K 2009 JOURNAL OF
INFORMETRICS

Visual conceptualizations and
models of science

103 Chen, CM 2009 JOURNAL OF
INFORMETRICS

Towards an explanatory and
computational theory of
scientific discovery

104 Bettencourt, LMA 2009 JOURNAL OF
INFORMETRICS

Scientific discovery and
topological transitions in
collaboration networks

105 Frenken, K 2009 JOURNAL OF
INFORMETRICS

Spatial scientometrics: Towards a
cumulative research program

106 Skupin, A 2009 JOURNAL OF
INFORMETRICS

Discrete and continuous
conceptualizations of science:
Implications for knowledge
domain visualization

107 Lucio-Arias, D 2009 JOURNAL OF
INFORMETRICS

The dynamics of exchanges and
references among scientific
texts, and the autopoiesis of
discursive knowledge

Table 2.10 Documents in Fig. 2.5

Node Author Year Journal Title

2 Xekalaki, E 2005 SCIENTOMETRICS Comments on the paper of Shan
et al.: The multivariate
Waring distribution

7 Egghe, L 2005 JASIST The power of power laws and an
interpretation of Lotkaian
informetric systems as
self-similar fractals

(continued)
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Table 2.10 (continued)

Node Author Year Journal Title

13 Burrell, QL 2005 SCIENTOMETRICS The use of the generalized
Waring process in modelling
informetric data

34 Egghe, L 2006 SCIENTOMETRICS An informetric model for the
Hirsch-index

35 Glanzel, W 2006 SCIENTOMETRICS On the h-index – A mathematical
approach to a new measure of
publication activity and
citation impact

43 Zitt, M 2006 INFORMATION
PROCESSING &
MANAGEMENT

Delineating complex scientific
fields by an hybrid
lexical-citation method: An
application to nanosciences

52 Burrell, QL 2007 JOURNAL OF
INFORMETRICS

Hirsch’s h-index: A stochastic
model

56 Egghe, L 2007 JASIST Dynamic h-index: The Hirsch
index in function of time

81 Egghe, L 2008 JASIST A Model for the Size-Frequency
Function of Coauthor Pairs

95 Egghe, L 2008 SCIENTOMETRICS The mathematical relation
between the impact factor
and the uncitedness factor

Table 2.11 Documents in Fig. 2.3

Node Author Year Journal Title

14 Morris, SA 2005 JASIST Manifestation of emerging
specialties in journal literature:
A growth model of papers,
references, exemplars,
bibliographic coupling,
cocitation, and clustering
coefficient distribution

39 Samoylenko, I 2006 JASIST Visualizing the scientific world and
its evolution

50 Kretschmer, H 2007 JOURNAL OF
INFORMETRICS

Lotka’s distribution and distribution
of co-author pairs’ frequencies

53 Leydesdorff, L 2007 JASIST Visualization of the citation impact
environments of scientific
journals: An online mapping
exercise

66 Morris, SA 2007 JASIST Manifestation of research teams in
journal literature: A growth
model of papers, coauthorship,
weak ties, authors,
collaboration, and Lotka’s law

68 de Moya-
Anegon, F

2007 JASIST Visualizing the marrow of science
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Chapter 3
Knowledge Epidemics and Population Dynamics
Models for Describing Idea Diffusion

Nikolay K. Vitanov and Marcel R. Ausloos

3.1 Knowledge, Capital, Science Research, and Ideas Diffusion

3.1.1 Knowledge and Capital

Knowledge can be defined as a dynamic framework connected to cognitive
structures from which information can be sorted, processed and understood
(Howells 2002). Along economics lines of thought (Barro and Sala-I-Martin
2004; Leydesdorff 2006; Dolfsma 2008), knowledge can be treated as one of the
“production factors”, – i.e., one of the main causes of wealth in modern capitalistic
societies (Tables 3.1–3.5).

According to Marshall (Marshall 1920) a “capital” is a collection of goods
external to the economic agent that can be sold for money and from which an income
can be derived. Often, knowledge is parametrized as such a “human capital”
(Romer 1996, 1994a,b, 2002; Jaffe and Trajtenberg 2002). Walsh (1935) was one
pioneer in treating human knowledge as if it was a “capital”, in the economic sense;
he made an attempt to find measures for this form of “capital”. Bourdieu (1986);
Coleman (1988), Putnam Putnam (1993), Becker and collaborators have further
implanted the concept of such a “human capital” in economic theory (Becker and
Murphy 1988; Becker 1996; Stiglitz 1987).

N.K. Vitanov (�)
Institute of Mechanics, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl. 4,
1113 Sofia, Bulgaria
e-mail: vitanov@imbm.bas.bg

M.R. Ausloos
7 rue des Chartreux, B-4122 Plainevaux, Belgium Previously at GRAPES, SUPRATECS,
University of Liege, B-4000 Liege, Belgium
e-mail: marcel.ausloost@ulg.ac.be

A. Scharnhorst et al. (eds.), Models of Science Dynamics, Understanding Complex
Systems, DOI 10.1007/978-3-642-23068-4 3,
© Springer-Verlag Berlin Heidelberg 2012

69



70 N.K. Vitanov and M.R. Ausloos

Table 3.1 Several questions and answers that should guide and supply useful and important
information for the reader
10 Important questions raised in this chapter And their answers in the form of guidance

1. What is the connection between knowledge
and capital?

Knowledge is often considered as a form of
human capital

2. What happens in the case of knowledge
diffusion?

Knowledge is transferred when the subjects
interact

3. Should quantitative research be
supplemented by qualitative research?

Yes, surely supplemented coordinated joint
aims are useful

4. Who are the pioneers of scientometrics? Alfred Lotka and Derek Price
5. What is the relation between epidemic

models and of population dynamics
models?

Epidemic models are a particular case of
population dynamics models

6. What has to be done if fluctuations
strongly influence the system evolution?

Switch from deterministic to stochastic
models and think

7. Why are discrete models useful? Often data is collected for some period of
time. Thus, such data is best described by
discrete models

8. Around which statistical law are grouped
all statistical tools described in the
chapter?

Around Lotka law

9. Are all possibly relevant models, presented
in this chapter?

NO ! Only an appropriate selection. For more
models, consult the literature or ask a
specialist

10. What is the strategy followed by the
authors of the chapter?

Proceed from simple to more complicated
models and from deterministic to
stochastic models supplemented by
statistical tools

Table 3.2 List of models described in the chapter with comments on their usefulness

Models described in this chapter Are useful for

Science landscapes Evaluation of research strategies. Decisions about
personal development and promotion

Verhulst Logistic curve Description of a large class of growth processes
Broadcasting model of technology

diffusion
Understanding the influence of mass media on

technology diffusion
Word-of-mouth model Understanding the influence of interpersonal contacts on

technology diffusion

Mixed information source model Understanding the influence of both mass media and
interpersonal contacts on technology diffusion

Lotka–Volterra model of innovation
diffusion with time lag

Understanding the influence of the time lag between
hearing about innovation and its adoption

Price model of knowledge growth
with time lag

Modeling the growth of discoveries, inventions, and
scientific laws

SIR models of scientific epidemics Modeling the epidemic stage of scientific idea spreading
SEIR models of scientific epidemics Extends the SIR model by specifically adding the role of

a class of scientists exposed to some scientific idea
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Table 3.3 List of models described in the chapter with comments on their usefulness (Continuing
Table 3.2)

Models described in this chapter Are useful for

Discrete model for the change in the
number of authors in a scientific
field

Modeling and forecasting the evolution in the number of
authors and papers in a scientific field

Daley model Modeling the evolution of a population of papers in a
scientific field

Coupled discrete model for
populations of scientists and
papers

Modeling and forecasting the joint evolution of
population of scientists and papers in a research field

Goffman–Newill model for the joint
evolution of one scientific field
and one of its sub-fields

Epidemic model for the increase of number of scientists
from a research field who start work in a sub-field of
the scientific field. The model also describes the
increase in the number of papers in the research
sub-field

Bruckner–Ebeling–Scharnhorst
model for the evolution of n

scientific fields

Understanding the joint evolution of scientific fields in
presence of migration of scientists from one field to
another field

Table 3.4 List of models described in the chapter with comments on their usefulness (Continua-
tion of Table 3.2)

Models described in this chapter Are useful for

SI model for the probability of
intellectual infection

Modeling the spread of intellectual infection along a
scientific network

SEI model for the probability of
intellectual infection

Modeling the spread of intellectual infection along a
scientific network in the presence of a class of
scientists exposed to the intellectual infection

Stochastic evolution model Modeling the number of scientists in a research subfield
as a stochastic variable described by a master
equation

Stochastic model of scientific
productivity

Modeling the influence of fluctuations in scientific
productivity through differential equations for the
dynamics of a scientific community

Model of competition between
ideologies

Understanding the competition between ideologies with
possible migration of believers

Reproduction-transport model Modeling the change of research field as a migration
process

However, the concept of knowledge as a form of capital is an oversimplification.
This global-like concept does not account for many properties of knowledge strictly
connected to the individual, such as the possibility for different learning paths or
different views, multiple levels of interpretation, and different preferences (Davis
2003). In fact, knowledge develops in a quite complex social context, within possi-
bly different frameworks or time scales, and involves “tacit dimensions” (beside the
basic space and time dimensions) requiring coding and decoding (Dolfsma 2008).
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Table 3.5 List of laws discussed in the chapter with a few words on their usefulness (Continuation
of Table 3.2)

Laws described in this chapter Are useful for

Lotka law Describing the number distribution of scientists with
respect to the number of papers they wrote

Pareto distribution Writing a continuous version of Lotka law
Zipf law and Zipf–Mandelbrot law Ranking scientists by the number of papers they wrote
Bradford law Reflecting the fact that a large number of relevant

articles are concentrated in a small number of
journals

Key point Nr. 1
Knowledge is much more than a form of capital: it is a dynamic framework
connected to cognitive structures from which information can be sorted,
processed and understood.

3.1.2 Growth and Exchange of Knowledge

Science policy-makers and scholars have for many decades wished to develop
quantitative methods for describing and predicting the initiation and growth of
science research (Price 1951, 1971; Foray 2004). Thus, scientometrics has become
one of the core research activities in view of constructing science and technology
indicators (van Raan 1997).

The accumulation of the knowledge in a country’s population arises either from
acquiring knowledge from abroad or from internal engines (Nonaka 1994; Nonaka
and Konno 1998; Nonaka and Takeuchi 1995; Bernius 2010). The main engines
for the production of new knowledge in a country are usually: the public research
institutes, the universities and training institutes, the firms, and the individuals
(Dahlman 2009). The users of the knowledge are firms, governments, public
institutions (such as the national education, health, or security institutions), social
organizations, and any concerned individual. The knowledge is transferred from
producers to the users by dissemination that is realized by some flow or diffusion of
process (Dahlman et al. 2007), sometimes involving physical migration.

Knowledge typically appears at first as purely tacit: a person “has” an idea
(Saviotti 1999; Cowan and Foray 1997). This tacit knowledge must be codified
for further use; after codification, knowledge can be stored in different ways, as
in textbooks or digital carriers. It can be transferred from one system to another.
In addition to knowledge creation, a system can gain knowledge by knowledge
exchange and/or trade.
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In knowledge diffusion, the knowledge is transferred while subjects interact
(Jaffe 1986; Antonelli 1996; Morone and Taylor 2010). Pioneering studies on
knowledge diffusion investigated the patterns through which new technologies are
spread in social systems (Rogers 1962; Casetti and Semple 1969). The gain of
knowledge due to knowledge diffusion is one of the keys or leads to innovative
products and innovations (Kucharavy et al. 2009; Ebeling and Scharnhorst 1985).

Key point Nr. 2
An innovative product or a process is new for the group of people who are
likely to use it. Innovation is an innovative product or process that has passed
the barrier of user adoption. Because of the rejection by the market, many
innovative products and processes never become an innovation.

In science, the diffusion of knowledge is mainly connected to the transfer
of scientific information by publications. It is accepted that the results of some
research become completely scientific when they are published (Ziman 1969). Such
a diffusion can also take place at scientific meetings and through oral or other
exchanges, sometimes without formal publication of exchanged ideas.1

Key point Nr. 3
Scientific communication has specific features. For example, citations are
very important in the communication process as they place corresponding
research and researchers, mentioned in the scientific literature, in a way
similar to the kinship links that tie persons within a tribe. Informal exchanges
happening in the process of common work at the time of meetings, workshops,
or conferences may accelerate the transfer of scientific information, whence
the growth of knowledge.

3.2 Qualitative Research: Historical Remarks

3.2.1 Science Landscapes

Understanding the diffusion of knowledge requires research complementary to
mathematical investigations. For example, mathematics cannot indicate why the

1For example, at Gordon Research Conferences, it is forbidden to take written notes and to quote
participant interventions later.
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exposure to ideas leads to intellectual epidemics. Yet, mathematics can provide
information on the intensity or the duration of some intellectual epidemics.

Qualitative research is all about exploring issues, understanding phenomena,
and answering questions (Bryman 1988) without much mathematics. Qualitative
research involves empirical research through which the researcher explores relation-
ships using a textual methodology rather than quantitative data. Problems and results
in the field of qualitative research on knowledge epidemics will not be discussed
in detail here. However, through one example it can be shown how mathematics
can create the basis for qualitative research and decision making. This example is
connected to the science landscape concepts outlined here below.

The idea of science landscapes has some similarity with the work of Wright
(1932) in biology who proposed that the fitness landscape evolution can be treated
as optimization process based on the roles of mutation, inbreeding, crossbreeding,
and selection. The science landscape idea was developed by Small (1997, 1998,
2006), as well as by Noyons and Van Raan (1998). In this framework, Scharnhorst
(1998, 2001) proposed an approach for the analysis of scientific landscapes, named
“geometrically oriented evolution theory”.

Key point Nr. 4
The concept of science landscape is rather simple: Describe the corresponding
field of science or technology through a function of parameters such as
height, weight, size, technical data, etc. Then a virtual knowledge landscape
can be constructed from empirical data in order to visualize and understand
innovation and to optimize various processes in science and technology.

As an illustration at this level, consider that a mathematical example of a
technological landscape can be given by a function C D C.S; v/, where C is the
cost for developing a new airplane, and where S and v represent the size and velocity
of the airplane.

Consider two examples concerning the use of science landscapes for evaluation
purposes:

(1) Science landscape approach as a method for evaluating national
research strategies

For example, national science systems can be considered as made of researchers
who compete for scientific results, and subsidies, following optimal research
strategies. The efforts of every country become visible, comparable and measurable
by means of appropriate functions or landscapes: e.g., the number of publications.
The aggregate research strategies of a country can thereby be represented by the
distribution of publications in the various scientific disciplines. In so doing, within
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a two-dimensional space,2 different countries correspond to different landscapes.
Various political discussions can follow and evolution strategies can be invented
thereafter.

Notice that the dynamics of self-organized structures in complex systems can
be understood as the result of a search for optimal solutions to a certain problem.
Therefore, such a comment shows how rather strict mathematical approaches, not
disregarding simulation methods, can be congruent to qualitative questions.

(2) Scientific citations as landscapes for individual evaluation
Scientific citations can serve for constructing landscapes. Indeed, citations
have a key position in the retrieval and valuation of information in scientific
communication systems (Scharnhorst 1998; Egghe 1998; Egghe and Rousseau
1990). This position is based on the objective nature of the citations as components
of a global information system, as represented by the Science Citation Index.
A landscape function based on citations can be defined in various ways. It can take
into account self-citations (Hellsten et al. 2006, 2007a,b; Ausloos et al. 2008), or
time-dependent quantitative measures (Hirsch 2005; Soler 2007; Burrell 2007).

Key point Nr. 5
Citation landscapes become important elements of a science policy (e.g., in
personnel management decisions), thereby influencing individual scientific
careers, evaluation of research institutes, and investment strategies.

3.2.2 Lotka and Price: Pioneers of Scientometrics

Alfred Lotka, one of the modern founders of population dynamics studies, was also
an excellent statistician. He discovered (Lotka 1926) a distribution for the number
of authors nr as a function of the number of published papers r , – i.e., nr D n1=r2.

However, Derek Price, a physicist, set the mathematical basis in the field of
measuring scientific research in recent times (Price 1963; Price and Gürsey 1975;
Price 1961). He proposed a model of scientific growth connecting science and time.
In the first version of the model, the size of science was measured by the number of
journals founded in the course of a number of years. Later, instead of the number
of journals, the number of published papers was used as the measure of scientific
growth. Price and other authors (Price and Gürsey 1975; Price 1961; Gilbert 1978)
considered also different indicators of scientific growth, such as the number of
authors, funds, dissertation production, citations, or the number of scientific books.

2For example, take the scientific disciplines and the number of publications as axes.
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In addition to the deterministic approach initiated by Price, the statistical
approach to the study of scientific information developed rapidly and nowadays
is still an important tool in scientometrics (Chung and Cox 1990; Kealey 2000).
More discussion on the statistical approach will be given in sect. 3.6 of this chapter.

Key point Nr. 6
Price distinguished three stages in the growth of knowledge: (a) a preliminary
phase with small increments; (b) a phase of exponential growth; (c) a
saturation stage. The stage (c) must be reached sooner or later after the new
ideas and opportunities are exhausted; the growth slows down until a new
trend emerges and gives rise to a new growth stage. According to Price, the
curve of this growth is a S-shaped logistic curve.

3.2.3 Population Dynamics and Epidemic Models
of the Diffusion of Knowledge

Population dynamics is the branch of life sciences that studies short- and long-term
changes in the size and age composition of populations, and how the biological
and environmental processes influence those changes. In the past, most models
for biological population dynamics have been of interest only in mathematical
biology (Murray 1989; Edelstein-Keshet 1988). Today, these models are adapted
and applied in many more areas of science (Dietz 1967; Dodd 1958). Here below,
models of knowledge dynamics will be of interest as bases of epidemic models.
Such models are nowadays used because some stages of idea spreading processes
within a population (e.g, of scientists), possess properties like those of epidemics.

The mathematical modeling of epidemic processes has attracted much attention
since the spread of infectious diseases has always been of great concern and
considered to be a threat to public health (Anderson and May 1982; Brauer and
Castillo-Chavez 2001; Ma and Li 2009). In the history of science and society,
many examples of ideas spreading seem to occur in a way similar to the spread
of epidemics. Examples of the former field pertain to the ideas of Newton on
mechanics and the passion for “High Critical Temperature Superconductivity” at
the end of the twentieth century. Examples of the latter field are the spreading
of ideas from Moses or Buddha (Goffman 1966), or discussions based on the
Kermack–McKendrick model (Kermack and McKendrick 1927) for the epidemic
stages of revolutions or drug spreading (Epstein 1997).

Epidemic models belong to a more general class of Lotka–Volterra models
used in research on systems in the fields of biological population dynamics, social
dynamics, and economics. The models can also be used for describing processes
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connected to the spread of knowledge, ideas and innovations (see Fig. 3.1). Two
examples are the model of innovation in established organizations (Castiaux 2007)
and the Lotka–Volterra model for forecasting emerging technologies and the growth
of knowledge (Kucharavy et al. 2009). In social dynamics, the Lanchester model
of war between two armies can be mentioned, a model which in the case of
reinforcements coincides with the Lotka–Volterra–Gause model for competition
between two species (Gause 1935). Solomon and Richmond (2001, 2002) applied a
Lotka–Volterra model to financial markets, while the model for the trap of extinction
can be applied to economic subjects (Vitanov et al. 2006). Applications to chaotic
pairwise competition among political parties (Dimitrova and Vitanov 2004) could
also be mentioned.

To start the discussion of population dynamics models as applied to the growth
of scientific knowledge with special emphasis on epidemic models, two kinds
of models can be discussed (Fig. 3.2): (1) deterministic models, see Sect. 3.3,
appropriate for large and small populations where the fluctuations are not drastically
important, (2) stochastic models, see Sect. 3.4, appropriate for small populations.
In the latter case the intrinsic randomness appears much more relevant than in
the former case. Stochastic models for large populations will not be discussed.
The reason for this is that such models usually consist of many stochastic differential
equations, whence their evolution can be investigated only numerically.

Finally, let us mention that the knowledge diffusion is closely connected to the
structure and properties of the social network where the diffusion happens. This is
a new and very promising research area. For example, a combination can be made

Fig. 3.1 Relation among epidemic models, Lotka–Volterra models, and population dynamics
models

Fig. 3.2 Relationships
between system size,
influence of fluctuations, and
discussed classes of models
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between the theory of information diffusion and the theory of complex networks
(Boccaletti et al. 2006). For more information about the relation between networks
and knowledge, see the following chapters of the book.

3.3 Deterministic Models

Below, 13 selected deterministic models (see Fig. 3.3) are discussed. The emphasis
is on models that can be used for describing the epidemic stage of the diffusion of
ideas, knowledge, and technologies.

3.3.1 Logistic Curve and Its Generalizations

In a number of cases, the natural growth of autonomous systems in competition can
be described by the logistic equation and the logistic curve (S-curve) (Meyer 1994).

SI model for
number of

publications
in scientific

field

Daley
model for

the
population
of papers

Coupled
discrete

model for
populations
of scientists
and papers

Broadcasting
model

Word-of-
mouth
models SIR model

of
intellectual
epidemics

SEIR model
for

spreading
of scientific

ideas

Goffman-
Newill model

for
populations
of scientists
and papers

More
complicated
models of

joint
evolution of

scientific
sub-fields

Lotka-
Volterra
model of

innovation
diffusion

Price model
with time lag

Models with
time lag

Models
without time

lag

Simple
models of
diffusion of
technology

Simple
epidemic
models

Discrete
models

Continuous
models

Deterministic
models

Logistic
curve

Bruckner-
Ebeling-

Scharnhorst
model for

growth of n
sub-fields of
a scientific

field

Mixed
information

source
model

Fig. 3.3 Discrete (3) and continuous (10) models discussed in the chapter. Two continuous models
account for the influence of time lag, three models are simple models of technological diffusion.
Two models are simple epidemic models and two models are more complicated models. In
addition, the basic logistic curve is discussed
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In order to describe trajectories of growth or decline in socio-technical systems, one
generally applies a three-parameter logistic curve:

N.t/ D K

1 C expŒ�˛t � ˇ�
(3.1)

where N.t/ is the number of units in the species or growing variable to study; K

is the asymptotic limit of growth; ˛ is the growth rate which specifies the “width”
of the S-curve for N.t/; and ˇ specifies the time tm when the curve reaches the
midpoint of the growth trajectory, such that N.tm/ D 0:5 K . The three parameters,
K , ˛, and ˇ, are usually obtained after fitting some data (Meade and Islam 1995).
It is well known that many cases of epidemic growth can be described by parts of
an appropriate S-curve. As an example, recall that the S-curve was also used for
describing technological substitution (Rogers 1962; Mansfield 1961; Modis 2007),
ca: 60 years ago.

However, different interaction schemes can generate different growth patterns
for whatever system species are under consideration (Modis 2003). Not every
interaction scheme leads to a logistic growth (Ausloos 2010). The evolution of
systems in such regimes may be described by more complex curves, such as a
combination of two or more simple three-parameter functions (Meyer 1994; Meyer
et al. 1999).

3.3.2 Simple Epidemic and Lotka–Volterra Models
of Technology Diffusion

As recalled here above, the simplest epidemic models could be used for describing
technology diffusion, like considering two populations/species: adopters and non-
adopters of some technology. Such models can be put into two basic classes: either
broadcasting (Fig. 3.4) or word-of-mouth models (Fig. 3.5). In the broadcasting
models, the source of knowledge about the existence and/or characteristics of the
new technology is external and reaches all possible adopters in the same way.
In the word-of-mouth models, the knowledge is diffused by means of personal
interactions.

(1) The broadcasting model (Fig. 3.4)
Let us consider a population of K potential adopters of the new technology and
let each adopter switch to the new technology as soon as he/she hears about its
existence (immediate infection through broadcasting). The probability that at time
t a new subject will adopt the new technology is characterized by a coefficient of
diffusion �.t/ which might or might not be a function of the number of previous
adopters. In the broadcasting model �.t/ D a with .0 < a < 1/; this is considered
to be a measure of the infection probability.

Let N.t/ be the number of adopters at time t . The increase in adopters for
each period is equal to the probability of being infected, multiplied by the current
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Fig. 3.4 Schematic
representation of a
broadcasting model of
technology diffusion. The
number of adopters of
technology increases by mass
media influence

Fig. 3.5 Schematic
representation of a
word-of-mouth model of
technology diffusion. The
number of adopters of
technology increases by
interpersonal interactions

population of non-adopters (Mahajan and Peterson 1985). The rate of diffusion at
time t is

dN

dt
D aŒK � N.t/�: (3.2)

The integration of (3.2) leads to the number of adopters: i.e.,

N.t/ D KŒ1 � exp.�at/�: (3.3)

N.t/ is described by a decaying exponential curve.
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(2) Word-of-mouth model (Fig. 3.5)
In many cases, however, the technology adoption timing is at least an order
of magnitude slower than the time it takes for information spreading (Geroski
2000). This requires another modelization than in (1): the word-of-mouth diffusion
model. Its basic assumption is that knowledge diffuses by means of face-to-face
interactions. Then the probability of receiving the relevant knowledge needed to
adopt the new technology is a positive function of current users N.t/. Let the
coefficient of diffusion �.t/ be bN.t/ with b > 0. The rate of diffusion at time t is

dN

dt
D b N.t/ ŒK � N.t/� : (3.4)

Then

N.t/ D K

1 C
�

K � N0

N0

�
e�bK.t�t0/

(3.5)

where N0 D N.t D t0/. N.t/ is described by an S-shaped curve.
A constraint exists in the word-of-mouth model: it explains the diffusion of an

innovation not from the date of its invention but from the date when some number,
N.t/ > 0, of early users have begun using it.

(3) Mixed information source model (Fig. 3.6)
In the mixed information source model, existing non-adopters are subject to two
sources of information (Fig. 3.6). The coefficient of diffusion is supposed to look
like a C bN.t/. The model evolution equation becomes

dN

dt
D .a C bN.t// ŒK � N.t/�: (3.6)

The result of (3.6) is a (generalized) logistic curve whose shape is determined by a

and b (Mahajan and Peterson 1985).

Fig. 3.6 Schematic
representation of mixed
information source model.
The number of adopters
increases by mass media
influence and interpersonal
contacts
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(4) Time lag Lotka–Volterra model of innovation diffusion (Fig. 3.7)
Let it be again assumed that the diffusion of innovation in a society is accounted
for by a combination of two processes: a mass-mediated process and a process
connected to interpersonal (word-of-mouth) contacts. Let N.t/ be the number of
potential adopters. Some of the potential adopters adopt the innovation and become
real adopters. The equation for the he rate of growth of the real adopters n.t/, in
absence of time lag, is

dn.t/

dt
D ˛ŒN.t/ � n.t/� C ˇn.t/ŒN.t/ � n.t/� � �n.t/; (3.7)

where ˛ denotes the degree of external influence such as mass media, ˇ accounts
for the degree of internal influence by interpersonal contact between adopters and
the remaining population; � is a parameter characterizing the decline in the number
of adopters because of technology rejection for whatever reason.

A basic limitation in most models of innovation diffusion has been the assump-
tion of instantaneous acceptance of the new innovation by a potential adopter
(Mahajan and Peterson 1985; Bartholomew 1982). Often, in reality, there is a finite
time lag between the moment when a potential adopter hears about a new innovation
and the time of adoption. Such time lags usually are continuously distributed (May
1974; Lal et al. 1988).

Fig. 3.7 Schematic representation of a Lotka–Volterra model with time lag. The model accounts
for the time lag between hearing about innovation and its adoption
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The time lag between the knowledge about the innovation and its adoption can be
captured by a distributed time lag approach in which the effects of time delays are
expressed as a weighted response over a finite time interval through appropriately
chosen memory kernels (Karmeshu 1982) (see Fig. 3.7). Whence (3.7) becomes

dn.t/

dt
D ˛

Z t

0

d� K�
1 .t � �/ ŒN.�/ � n.�/� C

ˇ

Z t

0

d� K�
2 .t � �/n.�/ŒN.�/ � n.�/� � �

Z t

0

d� K�
3 .t � �/n.�/: (3.8)

Equation (3.8) reduces to (3.7) when the memory kernels K�
i .t/ (i D 1; 2; 3) are

replaced by delta functions.
Two generic types of kernels are usually considered (Lal et al. 1988):

K�.t/ D � e��t (3.9)

K�.t/ D �2t e��t ; (3.10)

in which ��1 is some characteristic time scale of the system.
The number of potential adopters N.t/ changes over time. Several possible

functional forms of N.t/ are used (Sharif and Ramanathan 1981):

N.t/ D N0.1 C at/I N0 > 0; a > 0 (3.11)

N.t/ D N0 expŒgt�I N0 > 0; g > 0 (3.12)

N.t/ D b

1 C d exp.�ct/
I b > 0; d > 0; c > 0 (3.13)

N.t/ D b � q exp.�rt/I b > 0; q > 0; r > 0: (3.14)

Equation (3.12) represents an approximation for short- and medium-term forecast-
ing since for t large, N.t/ grows without bound, as in Keynes (1930). Equations
(3.13) and (3.14) are useful in long-term forecasting as N.t/ has an upper limit.
Such forms for N.t/ are valid within a deterministic framework.

However, a stochastic framework (see below) is more appropriate when the
carrying capacity N.t/ is governed by some stochastic process, as when the
influence of socioeconomic and natural factors are subject to “random” or hardly
explainable fluctuations. In such systems, N.t/ can be time-dependent: for example,
N.t/ � N0.1 C � cos.!t// where � << 1 and the periodicity takes into account
the influence of some (strong) cyclic economic factors. In presence of a strong
stochastic component, N.t/ can be stochastic: N.t/ D N0 C �.t/, where the noisy
component is �.t/ and N0 is the average value of the so-called carrying capacity
(Odum 1959).
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Key point Nr. 7
Time lags between observations and decisions lead to complicated dynamics.
Perform some preliminary careful analysis of system behavior based on time
lags before making a decision.

3.3.3 Price Model of Knowledge Growth: Cycles of Growth
of Knowledge

The Price evolution model of scientific growth ignited intensive research
(Fernandez-Camo et al. 2004; Szydlowski and Krawiez 2001) (see Fig. 3.8).
This model is in fact a dialectical addition to Kuhn’s idea (Kuhn 1962) about
the revolutionary nature of science processes: after some period of evolutionary

Fig. 3.8 Diagram of relationships between Price model and its modifications. The presence of
time lags can lead to much complication in the evolution dynamics of a scientific field



3 Knowledge Epidemics and Population Dynamics Models 85

growth, a scientific revolution occurs. Price considered the exponential growth as
a disease that retards the growth of stable science, producing narrower and less
flexible specialists.

Key point Nr. 8
An interesting result of the research of Price can be read as follows:
if a government wants to double the usefulness of science, it has to
multiply by about eight the gross number of workers and the total
expenditure of manpower and national income.

The unreserved application of the Price model faces several difficulties:

• Many scientific products which seem to be new are not really new
• Creativity and innovation can be confused (Plesk 1997; Amabile et al. 1996)
• Creative papers with new ideas and results have the same importance as trivial

duplications (Magyari-Beck 1984)
• Two things are omitted:

– Quality (whatever that means, but it is an economic notion) of research
– The cost or measure of complexity.

In answer to this, Price formulated the hypothesis that one should be studying only
the growth of important discoveries, inventions, and scientific laws, rather than
both important and trivial things. In so doing, one might expect that any of such
studied growth will follow the same pattern.

A generalized version of the Price model for the growth of a scientific field
(Szydlowski and Krawiez 2009; Price 1956) is based on the following assumptions:
(a) the growth is measured by the number of important publications appearing at a
given time; (b) the growth has a continuous character, though a finite time period
T D const is needed to build up a result of the fundamental character; (c) the inter-
actions between various scientific fields are neglected. If, in addition, the number
of scientists publishing results in this field is constant, then the rate of scientific
growth is proportional to the number of important publications at time t minus the
time period T required to build up a fundamental result. The model equation is

dx

dt
D ˛x.t � T /; (3.15)

where ˛ is a constant. The initial condition x.t/ D 	.t/ is defined on the interval
Œ�T; 0�.

Let the population of scientists be varying and consider the evolution of the
average number of papers per scientist. In general, instead of the linear right-hand
side (3.15), a non-linear model can be used:

dx

dt
D f .x.t � T /; x.t//; (3.16)
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where f .t �T / is a homogeneous function of degree one. The simplest form of such
a function is a linear function. Let n.t/ represent the rate of growth of the population
of scientists and write L.t/ D expŒn.t/ t �. For simplicity, let the population of
scientists grow at the constant rate n D 1

L
dL
dt

and let z D x=L. Then the evolution
of the number of papers written by a scientist has the form

d z

dt
D ˛z.t � T / � nz.t/: (3.17)

If n D 0 and T D 0, the Price model of exponential growth is recovered. Equa-
tion (3.17) is linear, but a cyclic behavior may appear because of the feedback
between the delayed and non-delayed terms.

3.3.4 Models Based on Three or Four Populations: Discrete
Models

(1) SIR (Susceptible-Infected-Removed) model (Fig. 3.9)
In 1927, Kermack and McKendrick (1927) created a model in which they considered
a fixed population with only three compartments: S.t/, the susceptibles; I.t/, the
infected; R.t/, the recovered, or removed.

Following this idea, Goffman (1966); Goffman and Newill (1964) considered
the stages of fast growth of scientific research in a scientific field as “intellectual
epidemics” and developed the corresponding scientific research epidemic stage
based on three classes of population: (i) the susceptibles S who can become
infectives when in contact with infectious material (the ideas); (ii) the infectives
I who host the infectious material; and (iii) the recovered R who are removed from
the epidemics for different reasons (Fig. 3.9).

Fig. 3.9 SIR (susceptibles S , infectives I , recovered R) model of intellectual infection with
influxes of susceptibles and infectives to the corresponding scientific ideas
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The epidemic stage is controlled by the system of differential equations

dS

dt
D �ˇSI � ıS C �; (3.18)

dI

dt
D ˇSI � 
I C �; (3.19)

dR

dt
D ıS C 
I (3.20)

where � and � are the rates at which the new supply of susceptibles and infectives
enter the population. A necessary condition for the process to enter the epidemic
state is dI

dt
> 0. Then

S >

 � �=I

ˇ
D � (3.21)

is the threshold density of susceptibles, i.e., no epidemics can develop from time
t0 unless S0, the number of susceptibles at that time, exceeds the threshold �: the
epidemic state cannot be maintained over some time interval unless the number
of susceptibles is larger than � through that interval of time. As I increases, �=I

converges to 0 and � converges rapidly to 
=ˇ.
In Goffman (1966), Goffman evaluated the rate of change of infectives �I=�t .

From the system equations, it is difficult to determine I.t/. Yet in the epidemic
stage, the behaviour of I.t/ is exponential. For small t close to t0, I.t/ can be
expanded into a power series: I.t/ D C0 C C1t C C2t

2 C : : : Cntn C : : : such
that the approximate rate of �I=�t can be obtained. On the basis of this rate and
the raw data, the development and peak of some research activity can be predicted, –
under the assumption that the research is in an epidemic stage.

(2) SEIR model for the spreading of scientific ideas (Fig. 3.10)
The SIR epidemic models can be further refined by introducing a fourth class, E ,
i.e., persons exposed to the corresponding scientific ideas (Fig. 3.10). Such models
are discussed in Bettencourt et al. (2008, 2006); they belong to the class of so-called
SEIR epidemic models. One typical model goes as follows

dS

dt
D N � ˇSI

N
I dE

dt
D ˇSI

N
� �E � �EI

N
I (3.22)

dI

dt
D �E C �EI

N
� 
I I dR

dt
D 
I (3.23)

where S.t/ is the size of the susceptible population at time t , E.t/ is the size of the
exposed class, I.t/ is the size of the infected class. These individuals have adopted
the new scientific idea in their publications. Finally, R.t/ is the size of the population
of recovered scientists, i.e., those who no longer publish on the topic. The size of the
entire population is: N D S CE CI CR. An exit term is assumed to be very small,
and because of this, t is included in the recovered class. N grows exponentially with
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Fig. 3.10 SEIR model of intellectual infection with influxes of susceptibles and infectives to the
corresponding scientific ideas, thus extending the SIR model by including a class of scientists
exposed (E) to the specific scientific ideas

rate . The parameters of the model are: ˇ, the probability and effectiveness of a
contact with an adopter; 1=�, the standard latency time, (in other words, the average
duration of time after one has been exposed but before one includes the new idea
in one’s own publication); 1=
 , the duration of the infectious period, thus how long
one publishes on the topic and teaches others; �, the probability that an exposed
person has multiple effective contacts with other adopters.

This simple model can incorporate a wide range of behaviors. For many values of
the parameters ,ˇ, �, 
 and �, the infected class grows as a logistic curve. For large
values of the contact rate ˇ or recruitment , I.t/ grows nearly linearly, as indeed
has been found empirically for some research fields (Bettencourt et al. 2008).

Key point Nr. 9
Epidemic models are the best suited for describing the expansion stage of a
process growth.

(3) SI discrete model for the change in the number of authors
in a scientific field (Fig. 3.11)
With the goal of predicting the spreading out of scientific objects (such as theories
or methods), Nowakowska (1973) discussed several epidemic discrete models for
predicting changes in the number of publications and authors in a given scientific
field. With respect to the publications, the main assumption of the models is that the
number of publications in the next period of time (say, 1 year) will depend: (i) on the
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Fig. 3.11 Schema of a
discrete SI evolution model of
the number of authors of
scientific papers. The model
takes into account that several
scientists stop their work in a
scientific field; it can be due
to different reasons as for
example death or losing
interest in particular questions

Infectives
(x)

Susceptibles
(y)

Died or
recovered

SI discrete model for change of
number of publications in a

scientific field

number of papers which recently appeared, and (ii) on the degree at which the sub-
ject has been exhausted. The numbers of publications appearing in successive peri-
ods of time should first increase, then would reach a maximum, and as the problem

becomes more and more exhausted, the number of publications would decrease.
Let it be assumed (Fig. 3.11) that if at a certain moment t the epidemics

state is (xt ; yt ) (xt is the number of infectives (authors who write papers on the
corresponding research problems), yt is the number of susceptibles), then for a
sufficiently short time interval �t , one may expect that the number of infectives
xtC�t will be equal to xt � axt �t C bxt yt �t , while the number of susceptibles
ytC�t will be equal to yt � bxtyt �t ; a and b being appropriate constants. Let
the expected number of individuals who either die or recover, during the interval
(t; t C �t), be axt �t , and let bxt yt �t be the expected number of new infections.
The equations of this model are:

xtC�t D axt � axt �t C bxt yt �t (3.24)

ytC�t D yt � bxt yt �t: (3.25)

Note here that such discrete models are useful for the analysis of realistic situations
where the values of the quantities are available at selected moments (every month,
every year, etc.).

(4) Daley discrete model for the population of papers (Fig. 3.12)
Daley (1967) investigated the spread of news as follows: individuals who have
not heard the news are susceptible and those who heard the news are infective.
Recovery is not possible, as it is assumed that the individuals have perfect memory
and never forget. The Daley model can be applied also to the population of papers
(Nowakowska 1973) (see Fig. 3.12). For �t D 1 (year), the Daley model equation
reads

xtC1 D bxt

 
N �

tX
iD1

xi

!
(3.26)
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Fig. 3.12 Daley model for
evolution of population of
papers on problems in a
scientific field. The
exhausting of the scientific
field is taken into account

where x1, x2 .... are the numbers of papers on the subject which appear in successive
periods of time, b and N being parameters. The expected number xtC1 of papers in
year t C 1 is proportional to the number xt of papers which appeared in year t , and
to the number N �x1 �x2 � � ��xt D N �Pt

iD1 xi . N is the number of papers which
have to appear in order to exhaust the problem: the problem under consideration
may be partitioned into N sub-problems, such that solving any of them is worth a
separate publication; these subproblems are solved successively by the scientists.
The b and N parameters may be estimated by the method of least squares, e.g. from
a given empirical histogram. A parameter characterizing the initial growth dynamics
in the number of publications can also be introduced: � D bN . Therefore, (3.26)
can be used for short-time prediction, even when the corresponding research field
is in the epidemic stage of its evolution.

(5) Discrete model coupling the populations of scientists and papers (Fig. 3.13)
A discrete model coupling the populations of scientists and papers can be considered
(Fig. 3.13); it depends on four parameters: N , a, b and c. N as above denotes the
number of sub-problems of the given problem; a is the probability that a scientist
working on the subject in a given year abandons research on the subject for whatever
reasons; b is the probability of obtaining a solution to a given subproblem by one
scientist during one year of research; c denotes the coefficient of attractiveness of the
subject. The basic variables of the model are: ut , the number of scientists working
on the subject in year t , and xt , the number of publications on the subject which
appear in year t .

The model equations are

utC1 D .1 � a/ut C cxt (3.27)
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Fig. 3.13 Discrete model for
the joint evolution of
populations of scientists and
papers. The attractiveness of
the field, the exhaustion of the
field, and the possibility for
declining interest for working
in the scientific field are taken
into account through adequate
rate parameters

xtC1 D Œ1 � .1 � b/ut �

 
N �

tX
iD1

xi

!
: (3.28)

The equation for the number utC1 of scientists working on the subject in year t C 1

tells that in year t C1, the expected number of scientists working on the subject will
be the number of scientists working on the subject in year t , ut , minus the expected
number of scientists who stopped working on the subject, aut , plus the expected
number of scientists, cxt , who became attracted to the problem by reading papers
which appeared in year t . The equation expressing the number of publications in
year t C 1 tells us that xtC1 equals the number of subproblems that were solved in
the year t . The probability that a given subproblem will be solved in year t by a given
scientist equals b. Then the probability of the opposite event, i.e. a given scientist
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will not solve a particular problem, equals 1 � b. As there are ut scientists working
on the subject in year t , the probability that a given subproblem will not be solved
by any of them is .1 � b/ut . Consequently, the probability that a given subproblem
will be solved in year t (by any of the ut scientists working on the subject) is equal
to 1 � .1 � b/ut . Next, in year t there remained N � Pt

iD1 xi subproblems to be
solved. The expected number of subproblems solved in year t is equal to the product
which gives the right-hand side of (3.28).
N.B. It is assumed, that the waiting time for publishing of the paper is one year.
A more realistic picture would be to assume that the unit of time is not 1 year, but 2
years, or that the publication has some other time delay.

Key point Nr. 10
In many cases, the data is available as one value per week, or one value per
month, or one value per 3 months, etc. For modeling and subsequent short-
range forecasting, so-called discrete (time) models are thus very appropriate.

3.3.5 Continuous Models of the Joint Evolution of Scientific
Sub-Systems

(1) Coupled continuous model for the populations of scientists and papers:
Goffman–Newill model
The Goffman–Newill model (Goffman and Newill 1964) (Fig. 3.14) is based on
the idea that the spreading process within a population can be studied on the basis
of the literature produced by the members of that population. There is a transfer
of infectious materials (ideas) between humans by means of an intermediate host
(a written article). Let a scientific field be F and SF a sub-field of F . Let the number
of scientists writing papers in the field F at t0 be N0 and the number of scientists
writing papers in SF at t0 (the number of infectives) be I0. Thus, S0 D N0�I0 is the
number of susceptibles; there is no removal at t0, but there is removal R.t/ at later
times t . The number of papers produced on F at t0 is N 0

0 and the number of papers
produced in SF at this time is I 0

0. The process of intellectual infection is as follows:
(a) a member of F is infected by a paper from I 0; (b) after some latency period,
this infected member produces ‘infected’ papers in N 0, i.e. the infected member
produces a paper in the subfield SF citing a paper from I 0; (c) this ‘infected’
paper may infect other scientists from F and its sub-fields, such that the intellectual
infection spreads from SF to the other sub-fields of F .

Let ˇ be the rate at which the susceptibles from class S become ‘intellectually
infected’ from class I . Let ˇ0 be the rate at which the papers in SF are cited by
members of N who are producing papers in SF . As the infection process develops,



3 Knowledge Epidemics and Population Dynamics Models 93

Fig. 3.14 Schema of Goffman–Newill model for the evolution of a scientific field. Scientists are
attracted to a sub-field after being intellectually infected by papers from the sub-field

some susceptibles and infectives are removed, i.e. some scientists are no longer
active, and some papers are not cited anymore. Let 
 and 
 0 be the rates of removal
of infectives from the populations I and I 0 respectively, and ı and ı0 be the rates of
removal from the populations of susceptibles S and S 0. In addition, there can be a
supply of infectives and susceptibles in N and N 0. Let the rates of introduction of
new susceptibles be � and �0, i.e. the rates at which the new authors and new papers
are introduced in F , and let the rates of introduction of new infectives be � and � 0,
i.e. the rates at which new authors and new papers are introduced in SF . In addition,
within a short time interval a susceptible can remain susceptible or can become
an infective or be removed; the infective can remain an infective or can become a
removal; and the removal remains a removed. The immunes remain immune and
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do not return to the population of susceptibles. If, in addition, the populations are
homogeneously mixed, the system of model equations reads

dS

dt
D �ˇSI 0 � ıS C �I dI

dt
D ˇSI 0 � 
I C � (3.29)

dR

dt
D 
I C ıS I dS 0

dt
D �ˇ0S 0I � ıS 0 C �0 (3.30)

dI 0

dt
D ˇ0S 0I � 
 0I 0 C � 0I dR0

dt
D 
 0I 0 C ı0S 0: (3.31)

The conditions for development of an epidemic are as follows. If as an initial
condition at t0, a single infective is introduced into the populations N0 and N 0

0,
then for an epidemic to develop, the change of the number of infectives must be
positive in both populations. Then, for � D 
��

ˇ
and �0 D 
 0��0

ˇ0
; the threshold for

the epidemic arises from the conditions ˇSI 0 > 
I � � and ˇ0S 0I 0 > 
 0I 0 � � 0,
such that the threshold is

S0S
0
0 > ��0: (3.32)

The development of epidemics is given by the equation dI
dt

D D.t/. The peaks of

the epidemic occur at time points where d2I
dt2 D 0, while the epidemic’s size is given

by I.t ! 1/.

(2) Bruckner–Ebeling–Scharnhorst model for the growth of n subfields
in a scientific field
The evolution of growth processes in a system of scientific fields can be modeled
by complex continuous evolution models. One of them, the Bruckner–Ebeling–
Scharnhorst approach (Bruckner et al. 1990) (Fig. 3.15), is closely related to several
generalizations of Eigen’s theory of prebiotic evolution and is briefly discussed
here (see also Ebeling et al. 2006). In 1912, Lotka (Lotka 1912) published the
idea of describing biological epidemic processes, like malaria, as well as chemical
oscillations, with the help of a set of differential equations. These equations, known
as Lotka–Volterra equations (Lotka 1925; Volterra 1927), are used to describe
a coupled growth process of populations. However, they do not reflect several
essential properties of evolutionary processes such as the creation of new structural
elements. Because of this, one has to consider a more general set of equations for
the change in the number xi of the scientists from the i th scientific subfield (a
Fisher–Eigen–Schuster kind of model), i.e.,

dxi

dt
D .Ai � Di /xi C

nX
j D1Ij ¤i

.Aij xj � Aj ixi / C
nX

j D1Ij ¤i

Bij xi xj � k0xi ;

i; j D 1; : : : ; n: (3.33)
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Fig. 3.15 Schema of Bruckner–Ebeling–Scharnhorst model of evolution of n scientific sub-fields.
Self-reproduction and decline of subfields as well as field mobility are taken into account

The model based on (3.33) describes the coupled growth of n subfields, of a
scientific discipline. Three fundamental processes of evolution are included in
(3.33) : (a) self-reproduction: students and young scientists join the field and
start working on corresponding problems. Their choice is influenced mainly by
the education process as well as by individual interests and by existing scientific
schools; (b) decline: scientists are active in science for a limited number of years.
For different reasons (for example, retirement) they stop working and leave the
system; (c) field mobility: individuals turn to other fields of research for various
reasons or maybe open up new ones themselves.

The reasoning to obtain (3.33) goes as follows. The general form of the law for
growth of the i th subfield is supposed to be

dxi

dt
D fi .x/; x D .x1; : : : ; xn/: (3.34)

By separation, fi D wi xi , one obtains the replicator equation

dxi

dt
D wi xi ; i D 1; 2; : : : ; n: (3.35)
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Notice that when wi D const, the fields are uncoupled, i.e., there is an exponential
growth in science. Otherwise, wi itself is a function of x and of various parameters,
but can be separated into three terms according to the above model assumptions, i.e.,

wi D Ai � Di C
nX

j D1;j ¤i

�
Aij

xj

xi

� Aij

�
: (3.36)

Equation (3.33) is thus obtained from (3.35) and (3.36) for Bij D 0, k0 D 0. To adapt
this model to real growth processes, it can be assumed that the coefficients Ai , Di ,
and Aij themselves are functions of xi :

Ai D A0
i C A1

i xi C : : : I Di D D0
i C D1

i xi C : : : I Aij D A0
ij C A1

ij xj C : : :

(3.37)

Each of the three fundamental processes of change is represented in (3.33) with a
linear and a quadratic term only. For example, the terms A1

i and D1
i account for

cooperative effects in self-reproduction and decline processes respectively, while
D0

i accounts for a decline, because of aging. The contributions A0
ij assume a linear

type of field mobility behavior for scientists analogous to a diffusion process. On
the other hand, the terms A1

ij represent a directed process of exchange of scientists
between fields. The best way to obtain these parameters is to estimate them for
specific data bases using the method of least squares.

Key point Nr. 11
The Bruckner–Ebeling–Scharnhorst model does not belong to the class of
epidemic models which are best applicable only for describing the expansion
stage of a process. The Bruckner–Ebeling–Scharnhorst model is an evolution
model: it describes all stages of the evolution of a system.

3.4 Small-Size Scientific and Technological Systems:
Stochastic Models (Fig. 3.16)

The movement of large bodies in mechanics is governed by deterministic laws.
When the body contains a small number of molecules and atoms, stochastic effects
such as the Brownian motion become important. In the area of scientific systems,
the fluctuations become very important when the number of scientists in a certain
research subfield is small. This is typical for new research fields with only a few
researching scientists.

Several examples of stochastic models for the description of the diffusion of
ideas or technology and the evolution of science are: (a) the model of evolution of
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Fig. 3.16 Hierarchy of
stochastic models discussed
in this chapter

scientific disciplines with an example pertaining to the case of elementary particles
physics (Kot 1987); (b) stochastic models for the aging of scientific literature
(Glänzel and Schoepflin 1994); c) stochastic models of the Hirsch index (Burrell
2007) and of instabilities in evolutionary systems (Bruckner et al. 1989); (d) models
of implementation of technological innovations (Bruckner et al. 1996), etc. (Braun
et al. 1985). In the following, see Fig. 3.16, two probabilistic and two stochastic
models are discussed. Some attention is devoted to the master equation approach
as well.

3.4.1 Probabilistic SI and SEI Models

Epidemiological models of differential-equation-based compartmental type have
been found to be limited in their capacity to capture heterogeneities at the individual
level and in the interaction between individual epidemiological units (Chen and
Hicks 2004). This is one of the reasons to switch from models in which the number
of individuals are in given known states to models involving probabilities. One
such model (Kiss et al. 2000) captures the diffusion of topics over a network of
connections between scientific disciplines, as assigned by the ISI Web of Science’s
classification in terms of Subject Categories (SCs). Each SC is considered as a
node of a network along with all its directed and weighted connections to other
nodes or SCs (Kiss et al. 2000, 2005). As with epidemic models, nodes can be
characterized in a medical way. SCs that are susceptible (S ) are either not aware of
a particular research topic or, if aware, may not be ready to adopt it. Incubating SCs
(E) are those that are aware of a certain topic and have moved to do some research
on problems connected with this topic. Infected SCs (I ) are actively working and
publishing in a particular research topic.

Two probabilistic models, i.e., (i) the Susceptible-Exposed-Infected (SEI) model
(Fig. 3.17) and (ii) a simpler Susceptible-Infected (SI) model (Fig. 3.18), are thereby
only discussed.
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Fig. 3.17 Schema of the probabilistic SEI model for epidemics in a network connecting scientific
disciplines

Fig. 3.18 Schema of the
probabilistic SI model for
epidemics in a network
connecting scientific
disciplines
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(1) Susceptible-Exposed-Infected (SEI) model
The SEI model equations for the evolution of the node state probabilities are given
by (Kiss et al. 2000):

dSi.t/

dt
D �

X
j

Aj i Ij .t/Si .t/; (3.38)

dEi.t/

dt
D
X

j

Aj iIj .t/Si .t/ � 
Ei .t/; (3.39)

dIi.t/

dt
D 
Ei.t/; (3.40)

where 0 � Ii .t/ � 1 denotes the probability of node i being infected at time
t (likewise for Si.t/ and Ei .t/). The directed and weighted contact network is
represented by Aij D r�ij with �ij = .wij /i;j D1;:::;N denoting the adjacency matrix
that includes weighted links; r is the transmission rate per contact and 1=
 is the
average incubation or latent period.

This set of equations states that an increase in the probability Ei of a node i being
exposed to an infection is directly proportional to the probability Si of node i being
susceptible and the probability Ij of neighbouring nodes j being infected. The
number of such contacts and the per-contact rate of transmission are incorporated
in Aij . Likewise, Ei decreases if exposed/infected nodes become infected after an
average incubation time 1=
 . The number of infected SCs at time t , according to
the model, can be estimated as I.t/ D P

i Ii .t/. Since Si.t/ C Ei .t/ C Ii .t/ D 1,
for each t > 0, (3.38)–(3.40) are readily understood, in view of (3.39).

(2) Susceptible-Infected (SI) model
The above SEI model can be simplified to an SI model when the possibility of an
exposed period is excluded, i.e,. if dEi .t/

dt
D 0. The equations for this simpler SEI

model are reduced to

dSi.t/

dt
D �

X
j

Aj iIj .t/Si .t/I dIi.t/

dt
D
X

j

Aj iIj .t/Si .t/; (3.41)

where the probability Ii of a node i being infected and infectious only depends
on the probability Si of the node i being susceptible. The comparison of both
models with available data shows (Kiss et al. 2000) that while the agreement at
the population level is usually much better for the SEI model, for the same pair of
parameters, the agreement at the individual level is better when the simpler SI model
is used.
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3.4.2 Master Equation Approach

(1) Stochastic evolution model with self-reproduction, decline, and
field mobility
There exists a high correlation between field mobility processes and the emergence
of new fields (Bruckner et al. 1990). This can be accounted for by a stochastic model
(see Fig. 3.19), in which the system at time t is characterized by a set of integers
N1; N2; : : : ; Ni ; : : : ; Nn, with Ni being, e.g., the number of scientists working in the
subfield i , which is considered now as a stochastic variable. The three fundamental
types of scientific change mentioned in the discussion of the Bruckner–Ebeling–
Scharnhorst model (see above) here correspond to three elementary stochastic
processes with three different transition probabilities:

(a) For self-reproduction, the transition probability is given by W.Ni C 1 j Ni/ D
A0

i Ni D A0
i Ni C A1

i Ni.Ni � 1/.
(b) The transition probability for decline is W.Ni � 1 j Ni/ D D0

i Ni C D1
i Ni

.Ni � 1/.

Fig. 3.19 Schema of the master equation model of evolution of scientific fields in presence of
self-reproduction, decline, and field mobility
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(c) The transition probability for field mobility is W.Ni C 1; Nj � 1 j Ni Nj / D
A0

ij Nj C A1
ij NiNj .

The probability density P.N1; : : : ; Ni ; Nj ; : : : ; t/ is given by the so-called master
equation

@P

@t
D WP (3.42)

which can be solved analytically only in some very special cases (van Kampen
1981).

(2) The master equation as a model of scientific productivity
The productivity factor is a very important ingredient in mathematically simu-
lating a scientific community evolution. One way to model such an evolution is
through a dynamic equation which takes into account the stochastic fluctuations
of scientific community members productivity (Romanov and Terekhov 1997)

Fig. 3.20 Schema of the
master equation model for
scientific productivity
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(Fig. 3.20). The main processes of scientific community evolution accounted for
by this model are, beside the biological constraints (like the self-reproduction,
aging of scientists, and death), their departure from the field due to mobility or
abandon of research activities. Call a the age of an individual and let a scientific
productivity index � be in incorporated into the individual state space; both a and �

are being considered to be continuous variables with values in Œ0; 1�. The scientific
community dynamics is described by a number density function n.a; �; t/, – another
form of scientific landscape, which specifies the age and productivity structure of
the scientific community at time t . For example, the number of individuals with
age in Œa1; a2� and scientific productivity in Œ�1; �2� at time t is given by the integralR a2

a1

R �2

�1
da d� n.a; �; t/.

A master equation for this function n.a; �; t/ can be derived (Romanov and
Terekhov 1997):

�
@

@a
C @

@t

�
n.a; �; t/ D �ŒJ.a; �; t/ C w.a; �; t/� n.a; �; t/ C

Z �

�1
d� 0 �.a; � � � 0; t/ n.a; � � � 0; t/; (3.43)

where w.a; �; t/ denotes the departure rate of community members. If x.t/ is a
random process describing the scientific productivity variation and if pa.x; t j y; �/

(with � < t) is the transition probability density corresponding to such a process,
then

�.a; �; � 0; t/ D lim
�t!0

pa.� C � 0; t C �t j �; t/

�t
: (3.44)

The transition rate, at time t from the productivity level �, J.a; �; t/ is by definition:
J.a; �; t/ D R1

��
d� 0 �.a; �; � 0; t/. The increment � 0 may be positive or negative.

The balance equation for n.a; �; t/ reads as follows

n.a C �a; �; t C �t/ D n.a; �; t/ � J.a; �; t/ n.a; �; t/ �t

C
"Z �

�1
�.a; � � � 0; t/ n.a; � � � 0; t/d� 0

#
�t � w.a; �; t/ n.a; �; t/ �t: (3.45)

The term on the right-hand side, Œ1�J.a; �; t/�t�n.a; �; t/, describes the proportion
of individuals whose scientific productivity does not change in [t; t C �t]; the
integral term describes the individuals whose scientific productivity becomes equal
to � because of increasing or decreasing in [t; t C �t]; the last term corresponds
to the departure of individuals due to stopping research activities or death. After
expanding n.a C �t; �; t C �t/ around a and t , keeping terms up to the first order
in �t , one obtains the master equation (3.43).

As the master equation is difficult to handle for an elaborate analysis, it is
often reduced to an approximated equation similar to the well-known Fokker–
Planck equation (Risken 1984; Hänggi and Thomas 1982; Gardiner 1983). The
approximation goes as follows. Let
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�k.a; �; t/ D
Z 1

��

d� 0.� 0/k�.a; �; � 0; t/ D lim
�t!0

1

�t
< .� 0/k >I k D 1; 2; : : : ;

(3.46)
where the brackets denote the average with respect to the conditional probability
density pa.� C � 0; t C �t j �; t/. In addition, the following assumptions are made:
(i) �1; �2 < 1; �k D 0 for k > 3; (ii) n.a; �; t/ and �.a; �; � 0; t/ are analytic in
� for all a, t and � 0. The additional assumption �k D 0 for k > 3 demands the
productivity to be continuous in the sense that as �t ! 0, the probability of large
fluctuations j � 0 j must decrease so quickly that <j � 0 j3>! 0 more quickly than �t .

When the above assumptions hold, the function n satisfies the equation
(Romanov and Terekhov 1997):

�
@

@a
C @

@t

�
n D �@.�1n/

@�
C 1

2

@2.�2n/

@�2
� wn: (3.47)

If w D 0, (3.47) is converted to the well known Fokker–Planck equation. (3.47)
describes the scientific community evolution through a drift along the age com-
ponent and a drift and diffusion with respect to the productivity component.
The diffusion term characterized by the diffusivity �2 takes into account the
stochastic fluctuations of scientific productivity conditioned by internal factors
(such as individual abilities, labour motivations, etc.) and external factors (such
as labor organization, stimulation system, etc.). The initial and boundary condi-
tions for (3.47) are: (a) n.a; �; 0/ D n0.a; �/, where n0.a; �/ is a known function
defining the community age and productivity distribution at time t D 0; and (b)
n.0; �; t/ D �.�; t/ where the function �.�; t/ represents the intensity of input flow of
new members at age a D 0 being set �.�; 0/ D n0.0; �/. In addition, n.a; �; t/ ! 0

as a ! 1.
The general solution of equation (3.47) with the above initial condition (a)

and boundary condition (b) is still a difficult task. However, for many practical
applications, a knowledge of first and second moments of distribution function
n.a; �; t/ is sufficient. Equation (3.47) can be solved numerically or can be reduced
to a system of ordinary differential equations (Romanov and Terekhov 1997).

Finally, two additional problems that can be treated by the master equation
approach can be mentioned:

• Age-dependent models where the birth and death rates connected to the selection
are age-dependent (Ebeling et al. 1986, 1990)

• The problem of new species in evolving networks (Ebeling et al. 2006). On
the basis of a stochastic treatment of the problem, the notion of ‘innovation’
can be introduced in a broad sense as a disturbance and/or an instability of a
corresponding social, technological, or scientific system. The fate of a small
number of individuals of a new species in a biological system can be thought
to be mathematically equivalent to some extent to the fate of a new idea, a new
technology, or a new model of behavior. The evolution of the new species can
be studied on evolving networks, where some nodes can disappear and new
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nodes can be introduced. This evolution of the network can change significantly
the dynamic behavior of the entire system of interacting species itself. Some of
the species can vanish in a finite time. This feature can be captured effectively
by the master equation approach.

Key point Nr. 12
In deterministic cases, the system is robust against fluctuations: it follows
some trajectory and the fluctuations are too weak to change it. When
the fluctuations are important, then different trajectories for the evolution
of the system become possible. To each trajectory, a probability can be
assigned. This probability reflects the chance that the system will follow
the corresponding trajectory. The collection of the probabilities leads to a
probability distribution which can be calculated, in many evolutionary cases,
on the basis of the master equation approach.

3.5 Space-Time Models: Competition of Ideas – Ideological
Struggle

A further level of complication is to include spatial variables explicitly in the above
models describing the diffusion of ideas. At this stage of globalization of economies,
with several of its concomitant features, like idea, knowledge, and technology
diffusion, to consider the spatial aspect is clearly a must. A large amount of research
on the spatial aspects of diffusion of populations is already available. As examples
of early work, papers by Kerner (1959); Allen (1975); Okubo (1980), and Willson
and de Roos (1993) can be pointed out. From the point of view of diffusion of
ideas and scientists, the previously discussed continuous model of research mobility
(Bruckner et al. 1990) has to be singled out. Moreover, the model presented below is
closely connected to the space-time models of migration of populations developed
by Vitanov and co-authors (Vitanov et al. 2009a,b). In addition, a reproduction-
transport equation model (see Fig. 3.21) can be discussed.

3.5.1 Model of Competition Between Ideologies

The diffusion of ideas is necessarily accompanied by competition processes. One
model of competition between systems of ideas (ideologies) goes as follows
(Fig. 3.22). Let a population of N individuals occupy a two-dimensional plane.
Suppose that there exists a set of ideas or ideologies P D fP0; P1; : : : ; Png and
let Ni members of the population be followers of the Pi ideology. The members N0
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Fig. 3.21 Relations between
space-time models discussed
in this chapter

Fig. 3.22 Schema of the space-time model for describing competition between ideologies

of the class P0 are not supporters of any ideology; in some sense, they have their
own individual one and do not wish to be considered associated with another one,
global or not. In such a way, the population is divided in n C 1 sub-populations of
followers of different ideologies. The total population is: N D N0 C N1 C : : : Nn.
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Let a small region �S D �x�y be selected in the plane. In this region there are
�Ni individuals holding the i th ideology, i D 0; 1; : : : ; n. If �S is sufficiently
small, the density of the i th population can be defined as �i .x; y; t/ D �Ni

�S
.

Allow the members of the i th population to move through the borders of the
area �S . Let ji .x; y; t/ be the current of this movement. Then .ji � n/ıl is the net
number of members of the i th population/ideology, crossing a small line ıl with
normal vector n. Let the changes be summarized by the function Ci .x; y; t/. The
total change of the number of members of the i th population is

@�i

@t
C divji D Ci : (3.48)

The first term in (3.48) describes the net rate of increase of the density of the i th
population. The second term describes the net rate of immigration into the area. The
r.h.s. of (3.48) describes the net rate of increase exclusive of immigration.

Let us now specify ji and Ci : ji is assumed to be made of a non-diffusion part j.1/
i

and a diffusion part j.2/
i where j.2/

i is assumed to have the general form of a linear
multicomponent diffusion (Kerner 1959) in terms of a diffusion coefficient Dik

ji D j.1/
I C j.2/

2 D j.1/
i �

nX
kD0

Dik.�i ; �k; x; y; t/r�k : (3.49)

Let some of the followers of the ideology Pi be capable of and interested in changing
ideology: i.e., they can convert from the ideology Pi to the ideology Pj . It can be
assumed that the following processes can happen with respect to the members of
the subpopulations of the property holders: (a) deaths: described by a term ri �i .
It is assumed that the number of deaths in the i th population is proportional
to its population density. In general ri D ri .��; x; y; t I p�/, where �� stands
for (�0; �1; : : : ; �N ) and p� stands for .p1; : : : ; pM / containing parameters of the
environment; (b) non-contact conversion: in this class are included all conversions
exclusive of the conversions by interpersonal contact between the members of
whatever populations. A reason for non-contact conversion can be the existence of
different kinds of mass communication media which make propaganda for whatever
ideologies. As a result, members of each population can change ideology. For the
i th population, the change in the number of members is:

Pn
j D0 fij �j , fii D 0.

In general, fij D fij .��; x; y; t I p�/; (c) contact conversion: it is assumed that
there can be interpersonal contacts among the population members. The contacts
happen between members in groups consisting of two members (binary contacts),
three members (ternary contacts), four members, etc. As a result of the contacts,
members of each population can change their ideology. For binary contacts, let
it be assumed that the change of ideology probability for a member of the j th
population is proportional to the possible number of contacts, i.e., to the density
of the i th population. Then the total number of “conversions” from Pj to Pi

is aij �i �j , where aij is a parameter. In order to have a ternary contact, one
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must have a group of three members. The most simple is to assume that such
a group exists with a probability proportional to the corresponding densities of
the concerned populations. In a ternary contact between members of the i th, j th,
and kth population, members of the j th and kth populations can change their
ideology according to Pi = bijk�i �j �k , where bijk is a parameter. In general,
aij D aij .��; x; y; t I p�/; bijk D bijk.�� ; x; y; t I p�/; etc.

On the basis of the above, the Ci term looks as follows (for more research of
these types of population models see (Dimitrova and Vitanov 2000, 2001a,b)):

Ci D ri�i C
nX

j D0

fij �j C
nX

j D0

aij �i �j C
nX

j;kD0

bijk�i �j �k C : : : ; (3.50)

and the model system of equations becomes

@�i

@t
C divj.1/

i �
nX

j D0

div.Dij r�j / D ri�i C
nX

j D0

fij �j

C
nX

j D0

aij �i �j C
nX

j;kD0

bijk�i �j �k C : : : (3.51)

The density of the entire population is � D Pn
iD0 �i . It can be assumed that it

changes in time according to the Verhulst law (but see the note after (3.56)!)

@�

@t
D r�

�
1 � �

C

�
(3.52)

where C.��; x; y; t I p�/ is the so-called carrying capacity of the environment
(Odum 1959) and r.��; x; y; t I p�/ is a positive or negative growth rate. When
pertinent sociological data are available, the same type of equation could hold for
any i th population with a given ri .

First, consider the case in which the current j.i/
i is negligible, i.e., j.i/

i � 0 (no

diffusion approximation). In addition, consider only the case when all parameters
are constants. The model system of equations becomes

@�i

@t
� Dij

nX
j D0

��j D ri �i C
nX

j D0

fij �j C
nX

j D0

aij �i �j

C
nX

j;kD0

bijk�i �j �k C : : : ; (3.53)

for

� D @2

@x2
C @2

@y2
; i D 0; 1; 2; : : : ; n: (3.54)
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Let plane-averaged quantities and fluctuations (linear or nonlinear) be enough
relevant. Let q.x; y; t/ be a quantity defined in an area S . By definition, a plane-
averaged quantity is q D 1

S

R R
S

dxdy q.x; y; t/. Call the fluctuations Q.x; y; t/

such that q.x; y; t/ D q.t/ C Q.x; y; t/. If the territory is large and within the
stationary approximation, S can be assumed to be large enough such that each
plane-averaged combination of fluctuations vanishes, such that Qi D Qi Qj D
QiQj Qk D � � � D 0. In addition to S being large and

R R
S

dxdy�Qk assumed to
be finite, it can be also assumed that �Qk D 1

S

R R
S dxdy�Qk ! 0.

On the basis of the above (reasonable) assumptions, it is possible to separate
the dynamics of the averaged quantities from the dynamics of fluctuations. As a
result of the plane-average of (3.53), the following equations for the dynamics of
the plane-averaged densities are obtained

�0 D � �
nX

iD1

�i I
d�

dt
D r�

�
1 � �

C

�
(3.55)

d�i

dt
D ri�i C

nX
j D0

fij �j C
nX

j D0

aij �i �j C
nX

j;kD0

bijk�i �j �k C : : : (3.56)

Instead of (3.55) we can write an equation for �0 from the kind of (3.56). Then the
total population density � will not follow the Verhulst law.

Equations (3.55) and (3.56) represent the model of ideological struggle pro-
posed by Vitanov et al. (2010). There is one important difference between the
Lotka–Volterra models (Lotka 1912; Volterra 1927), often used for describing prey-
predator systems, and the above model of ideological struggle. The originality
resides in the generalization of usual prey-predator models to the case in which
a prey (or predator) changes its state and becomes a member of the predator pack
(or prey band), due to some interaction with its environment or with some other prey
or predator. Indeed, it can be hard for rabbits and foxes to do so, but it can be often
the case in a society: a member of one population can drop his/her ideology and can
convert to another one.

In order to show the relevance of such extra conditions on an evolution of
populations, consider a huge (mathematical) approximation – it might be a drastic
one in particular in a country with a strictly growing total population. (Recall that
the growth rate r could be positive or negative or time-dependent). Let r be > 0

and let the maximum possible population of the country be C . Consider more
convenient notations by setting � D N ; �0 D N0; �i D Ni and assume that the
binary contact conversion is much stronger than the ternary, etc. conversions. The
system equations become

N D N0 C
nX

iD1

Ni I dN

dt
D rN

�
1 � N

C

�
(3.57)
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dNi

dt
D ri Ni C

nX
j D0

fij Nj C
nX

j D0

bij Ni Nj : (3.58)

Reduce the discussion of (3.57) and (3.58) to a society in which there is the
spreading of only one ideology; therefore, the population of the country is divided
into two groups: N1, followers of the “invading” ideology and N0, people who are
at first “indifferent” to this ideology. Let only the non-contact conversion scheme
exist, as possibly moving the ideology-free population toward the single ideology;
thus f10 is finite, but b10 D 0. Let the initial conditions be N.t D 0/ D N.0/ and
N1.t D 0/ D N1.0/. The solution of the system of model equations is

N.t/ D CN.0/

N.0/ C .C � N.0//e�rt
; (3.59)

like the Verhulst law, but

N1.t/ D e�.f10�r1/t

�
N1.0/ C Cf10

r

�
˚

�
� C � N.0/

N.0/
; 1; �f10 � r1

r

�

�e.f10�r1/t˚

�
� C � N.0/

N.0/ert
; 1; �f10 � r1

r

��	
(3.60)

with
N0.t/ D N.t/ � N1.t/ (3.61)

in which ˚ is the special function ˚.z; a; v/ D P1
nD0

zn

.vCn/a ; j z j< 1.
The obtained solution describes an evolution in which the total population N

reaches asymptotically the carrying capacity C of the environment. The number
of adepts of the ideology reaches an equilibrium value which corresponds to the
fixed point ON1 D Cf10=.f10 � r1/ of the model equation for dN1

dt
. The number of

people who are not followers of the ideology asymptotically tends to N0 D C � ON1.
Let C D 1, f10 D 0:03, and r1 D �0:02, then ON1 D 0:6, which means that the
evolution of the system leads to an asymptotic state in which 60% of the population
are followers of the ideology and 40% are not.

Other more complex cases with several competing ideologies can be discussed,
observing steady states or/and cycles (with different values of the time intervals
for each growth or/and decay), chaotic behaviors, etc. (Vitanov et al. 2010).
In particular, it can be shown that accepting a slight change in the conditions
of the environment can prevent the extinction of some ideology. After almost
collapsing, some ideology can spread again and can affect a significant part of
the country’s population. Two kinds of such resurrection effects have been found
and described as phoenix effects in the case of two competing ideologies. In the
phoenix effect of the first kind, the equilibrium state connected to the extinction
of the second ideology exists but is unstable. In the phoenix effect of the so-called
second kind, the equilibrium state connected to extinction of the second ideology
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vanishes. In fine, the above model seems powerful enough to discuss many realistic
cases. The number of control parameters seems huge, but that is the case for many
competing epidemics in complex systems. However, it was observed that the values
of parameters can be monitored when enough data is available, including the time
scales (Vitanov et al. 2010).

Key point Nr. 13
Space-time models are very appropriate for modeling migration processes
such as the spatial migration of scientists, besides the diffusion of ideas
through competition without strictly physical motion.

3.5.2 Continuous Model of Evolution of Scientific Subfields:
Reproduction-Transport Equation

The change of subject of a scientist can be considered as a migration
process (Bruckner et al. 1990; Ebeling and Scharnhorst 2000). Let research
problems be represented by sequences of signal words or macro-terms Pi D
.m1

i ; m2
i ; : : : ; mk

i ; : : : ; mn
i / which are registered according to the frequency of their

appearance, joint appearance, etc., respectively, in the texts. Each point of the
problem space, described by a vector q, corresponds to a research problem, with
the problem space consisting of all scientific problems (no matter whether they
are under investigation or not). The scientists distribute themselves over the space
of scientific problems with density x.q; t/. Thus, there is a number x.q; t/dq
working at time t in the element dq. The field mobility processes correspond to a
density change of scientists in the problem space: instead of working on problem q,
a scientist may begin to work on problem q0. As a result, x.q; t/ decreases and
x.q0; t/ increases. This movement of scientists (see also Fig. 3.23) can be described
by means of the following reproduction-transport-equation:

@x.q; t/

@t
D x.q; t/ w.q j x/ C @

@q

�
f .q; x/ C D.q/

@x.q; t/

@q

�
: (3.62)

In (3.62), self-reproduction and decline are represented by the term w.q j x/ x.q; t/.
For the reproduction rate function w.q j x/, one can write

w.q j x/ D a.q/ C
Z

dq0 b.q; q0/ x.q0; t/: (3.63)

The local value of a.q/ is an expression of the rate at which the number of scientists
on field q is modified through self-reproduction and/or decline, while b.q; q0/
describes the influence exerted on the field q by the neighbouring field q0. The field
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Fig. 3.23 Schema of the reproduction-transport equation model of joint evolution of scientific
fields

mobility is modeled by means of the term @
@q

�
f .q; x/ C D.q/ @

@q x.q; t/
�

. In most

cases, (3.62) can only be solved numerically. For more details on the model, see
Bruckner et al. (1990).

3.6 Statistical Approaches to the Diffusion of Knowledge

Solomon and Richmond (2001, 2002) have shown that the systems of generalized
Lotka–Volterra equations are closely connected to the Pareto–Zipf probability
distribution. Since such a distribution arises among other distributions and laws
connected to the description of the diffusion of knowledge, it is of interest to discuss
briefly the diffusion of knowledge within statistical approach studies. Lotka was its
pioneer; a large amount of research has followed. Just as examples, one can mention
the work of Yablonsky and Haitun on the Lotka law for the distribution of scientific



112 N.K. Vitanov and M.R. Ausloos

Fig. 3.24 Statistical laws and their relationships as discussed in the chapter

productivity and its connection with the Yule distribution (Yablonsky 1980, 1985;
Haitun 1982), where the non-Gaussian nature of the scientific activities is empha-
sized. Interesting applications of the Zipf law are also presented in (Li 2002). The
connection to the non-Gaussian distributions concepts of self-similarity and fractu-
ality have been applied to the scientific system in (Katz 1999) and (van Raan 2000).
Several tools for appropriate statistical analysis are hereby discussed. At the center
of the discussion Lotka law shall receive some special attention (see Fig. 3.24).3

As part of this discussion on the statistical approach, the analysis of the
productivity of scientists can be considered. The information connected to new
ideas is thought to be often codified in scientific papers. Thus, the statistical aspects
of scientific productivity is of practical importance. For example, the Lotka law
reflects the distribution of publications over the set of authors considered as the
information sources. Bradford law describes the distribution of papers on a given
topic over the set of journals publishing these papers and ranked according to the
order in the decrease of the number of papers on a given topic in each journal. These
laws have a non-Gaussian nature and, because of this, possess specific features such
as a concentration and dispersal effect (Yablonsky 1980): for example, it is found

3Let us mention a curious and interesting fact connected to statistical indicators. Very interesting is
the conclusion in Gao and Guan (2009) that the scale-independent indicators show that in the fast
growing innovation system of China, research institutions financed by the government play a more
important role than the enterprises.
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that there is a small number of highly productive scientists who write most of the
papers on a given topic and, on the other hand, a large number of scientists with low
productivity.

In order to give an example of the connection between the deterministic and
statistical approaches, remember that the Goffman–Newill model, discussed here
above, presents a connection between the number of scientists working in a research
area and the number of relevant publications. In Bettencourt et al. (2008), it was
found that the number of new publications scale as a simple power law with the
corresponding number of new authors: �P D C.�T /˛ where �P and �T are the
new publications and the new authors over some time period (for an example 1 year).
C is a normalization constant, and ˛ is a scaling exponent. It has been demonstrated
(Bettencourt et al. 2008) that the latter relationship provides a very good fit to data
for six different research fields, but with different values of the scaling exponent ˛.
For ˛ > 1, a field would grow by showing an increase in the number of publications
per capita, i.e., in such a research field, the individual productivity increases as
the field attracts new scientists. A field with ˛ < 1 has a per capita decrease in
productivity. This can be a warning signal for a dying subject matter. It would be
interesting to observe whether the exponent ˛ is time-dependent, as is the case
in related characterizing scaling exponents of financial markets (Vandewalle and
Ausloos 1997) or in meteorology (Ivanova and Ausloos 1999). Policy control can
thus be implemented for shaking ˛, thus the field mobility.

Key point Nr. 14
There exist two different kinds of statistical approaches for the analysis of
scientific productivity: (i) the frequency approach and (ii) the rank approach.
The frequency approach is based on the direct statistical counting of the
number of corresponding information sources, such as scientists or journals.
The rank approach is based on a ranking of the sources with respect to their
productivity. The frequency and the rank approaches represent different and
complementary reflections of the same law and form.

3.6.1 Lotka Law: Distributions of Pareto and Yule

Pareto (Chen et al. 1993) formulated the 80/20 rule: it can be expected that 20% of
people will have 80% of the wealth. Or it can be expected that 80% of the citations
refer to a core of 20% of the titles in journals. The idea of the rule of Pareto is very
close to the research of Lotka who noticed the following dependence for the number
of scientists nk who wrote k papers

nk D n1

k2
I k D 1; 2; : : : ; kmax: (3.64)
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In (3.64), n1 is the number of scientists who wrote just one paper and kmax is the
maximal productivity of a scientist.

kmaxX
kD1

nk D n1

kmaxX
kD1

1

k2
D N (3.65)

where N is the total number of scientists. If we assume that kmax ! 1 and take
into account the fact that

P1
kD1 1=k2 D �=6, we obtain a limiting value for the

portion of scientists with the minimal productivity (single paper authors) in the given
population of authors: P1 D n1=N � 0:6. Then, if the left and the right hand sides
of (3.64) are divided by N, the frequency expression for the productivity distribution
is: p1 D 0:6=k2;

P1
kD1 pk D 1. Equation (3.64) is called Lotka law, or the law of

inverse squares: the number of scientists who wrote a given number of papers is
inversely proportional to the square of this number of papers.

It must be noted that, like many other statistical regularities, Lotka law is
valid only on the average since the exponent in the denominator of (3.64) is not
necessarily equal to two (Yablonsky 1980). Thus, Lotka law should be considered
as the most typical among a more general family of distributions:

nk D n1

k1C˛
I p1 D p1

k1C˛
(3.66)

where ˛ is the characteristic exponent of the distribution, n1 is the normalizing
coefficient which is determined as follows:

p1 D n1

N
D
 

kmaxX
kD1

1

1 C k˛

!�1

: (3.67)

Then the distribution of scientific output, (3.66), is determined by three parame-
ters: the proportion of scientists with the minimal productivity p1, the maximal
productivity of a scientist kmax , and the characteristic exponent ˛. If one of these
parameters is fixed, it is possible to study the dependence between two others. Let
us fix kmax in (3.67). Then, we obtain the proportion of “single paper authors” p1 as
a function of ˛: p1.˛/. When (3.67) is differentiated with respect to ˛, one can show
that the corresponding derivative is positive for any ˛ : dp1.˛/=d˛ > 0. On the basis
of a similar analysis of the portion of scientists with a larger productivity pk.˛/ as
a function of ˛, we arrive at the conclusion: the increase of ˛ is accompanied by
the increase of low-productivity scientists. This means that when the total number
of scientists is preserved the portion of highly productive scientists will decrease.

Let us show that the Lotka law is an asymptotic expression for the Yule
distribution. In order to obtain the Yule distribution, one considers the process of
formation of a collection of publications as a Markov-type stochastic process. In
addition, it is assumed that the probability of writing a new paper depends on the
number of papers that have been already written by the scientist at time t : the
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probability of the transition into a new state on the interval Œt; t C �t� should be
a function of the state in which the system is at time t . Moreover, the probability of
publishing a new paper during a time interval �t; p.x ! x C 1; �t/ is assumed to
be proportional to the number x of papers that have been written by the scientists,
introducing an intensity coefficient : p.x ! x C 1; �t/ / x�t . After solving
the corresponding system of differential equations for this process, the following
expression (the Yule distribution) for the probability p.x=t/ of a scientist writing x

papers during a time t is obtained (Yablonsky 1980):

p.x=t/ D exp.�t/.1 � exp.�t//x�1; x D 1; 2 : : : (3.68)

The mean value of the Yule distribution is xt D exp.t/. Let us take into account the
fact that every scientist works on a given subject during a certain finite random time
interval Œ0; t � which depends on the scientist’s creative potential, the conditions for
work, etc. With the simplest assumption that the probability of discontinuing work
on a given subject is constant at any time, one obtains an exponential distribution
for the time of work of any author in the scientific field under study: p.t/ D
� exp.��t/, where � is the distribution parameter. The time parameter t which
characterizes the productivity distribution, (3.68), is a random number. Then in
order to obtain the final distribution of scientific output observed in the experiment
over sufficiently large time intervals, (3.68) should be averaged with respect to this
parameter t which is distributed according to the exponential law:

p.x/ D
Z 1

0

dt p.x=t/p.t/ D
Z 1

0

dt exp.�t/.1 � exp.�t//� exp.��t/:

(3.69)
After integrating (3.69), the distribution of scientific output reads

p.x/ D �


B
�
x;

�


C 1

�
D ˛B.x; ˛ C 1/; x D 1; 2; : : : (3.70)

where B.x; ˛ C 1/ D � .x/� .˛x C 1/=� .x C ˛ C 1/ is a Beta-function, � .x/ �
.x � 1/Š is a Gamma-function, and ˛ D �= is the characteristic exponent. For
instance, if ˛ � 1 then p.x/ D 1=Œx.x C 1/�. Let us assume that x ! 1 and
apply the Stirling formula. Thus, the asymptotics of the Yule distribution (3.70) is
like Lotka law (3.66) (up to a normalizing constant): p.x/ / � .˛ C 1/˛=x1C˛.

3.6.2 Pareto Distribution, Zipf–Mandelbrot and Bradford Laws

For large enough values of the total number of scientists and the total number of
publications, we can make the transition from discrete to continuous representation
of the corresponding variables and laws. The continuous analog of Lotka law, (3.66),
is the Pareto distribution
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p.x/ D ˛

x0

�x0

x

�˛C1 I x � x0I ˛ > 0 (3.71)

which describes the distribution density for a number of scientists with x papers; x0

is the minimal productivity x0 << x << 1, a continuous quantity.
Zipf law is connected to the principle of least effort (Zipf 1949): a person will

try to solve his problems in such a way as to minimize the total work that he
must do in the solution process. For example, to express with many words what
can be expressed with a few is meaningless. Thus, it is important to summarize an
article using a small number of meaningful words. Bradford law for the scattering
of articles over different journals is connected to the success-breeds-success (SBS)
principle (Price 1976): success in the past increases chances for some success in the
future. For example, a journal that has been frequently consulted for some purpose
is more likely to be read again, rather than one of previously infrequent use.

In order to obtain the law of Zipf–Mandelbrot, we start from the following
version of Lotka law : nx D C=.1 C x/1C˛ , where x is the scientist’s productivity,
˛ is a characteristic exponent, C is a constant which in most cases is equal to the
number of authors with the minimal productivity x D 1, i.e., to n1. On the basis
of this formula, the number of scientists r who are characterized by productivity
xr < x < kmax (kmax is the maximal productivity of a scientist) reads

r D
kmaxX
xDxr

nr � C

Z kmax

xr

dx

x1C˛
D C

˛

�
1

x˛
r

� 1

k˛
max

�
: (3.72)

Depending on the value of xr , r can have values 1; 2; 3; : : : and in such a way the
scientists can be ranked. If all scientists of a scientific community working on the
same topic are ranked in the order of the decrease of their productivity, the place of
a scientist who has written xr papers will be determined by his/her rank r . When
the productivity of a scientist xr is found from (3.72) as a function of rank r , the
relationship

xr D
�

A

r C B

�


I A D .C=˛/1=˛I B D C=.˛k˛
max/I 
 D 1=˛: (3.73)

This is the rank law of Zipf–Mandelbrot, which generalizes Zipf law: f .r/ D cr�ˇI
r D 1; 2; 3; : : : , where c and ˇ are parameters. Zipf law was discovered by counting
words in books. If words in a book are ranked in decreasing order according to their
number of occurrences, then Zipf law states that the number of occurrences of a
word is inversely proportional to its rank r .

Assuming that in Lotka law the exponent takes the value ˛ D 1 and that in most
cases C D n1, one has xr D n1=.r C a/, where a D n1=kmax , r � 0. Integration
of the last relationship yields the total productivity R.n/ of all scientists, beginning
with the one with the greatest productivity kmax and ending with the scientist whose
productivity corresponds to the rank n (the scientists are ranked in the order of
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diminishing productivity; the rank is assumed to be a continuous-like variable):

R.n/ D n1 ln
�n

a
C 1

�
: (3.74)

This is Bradford law. According to this law, for a given topic, a large number of
relevant articles will be concentrated in a small number of journals. The remaining
articles will be dispersed over a large number of journals. Thus, if scientific journals
are arranged in order of decreasing published articles on a given subject, they may
be split to a core of journals more particularly devoted to the subject and a shell
consisting of sub-shells of journals containing the same numbers of articles as the
core. Then the number of journals from the core zone and succeeding sub-shells will
follow the relationship 1 W n W n2 W : : : .

Key point Nr. 15
The Zipf–Pareto law, in the case of the distribution of scientists with respect
to their productivity, indicates that one can always single out a small number
of productive scientists who wrote the greatest number of papers on a given
subject, and a large number of scientists with low productivity. The same
applies also to scientific contacts, citation networks, etc. This specific feature
(so-called hierarchical stratification) of the Zipf–Pareto law reflects a basic
mechanism in the formation of stable complex systems. This can/must be
taken into account in the process of planning and the organization of science.

3.7 Concluding Remarks

Knowledge has a complex nature. It can be created. It can lead to innovations
and new technologies, and on this base, knowledge supports the advance and
economic growth of societies. Knowledge can be collected. Knowledge can be
spread. Diffusion of ideas is closely connected to the collection and spreading of
knowledge. Some stages of the diffusion of ideas can be described by epidemic
models of scientific and technological systems. Most of the models described
here are deterministic, but if the internal and external fluctuations are strong, then
different kinds of models can be applied taking into account stochastic features.

Much information about properties and stability of the knowledge systems can
be obtained by the statistical approach on the basis of distributions connected to the
Lotka–Volterra models of diffusion of knowledge. Interestingly, new terms occur in
the usual evolution equations because of the variability and flexibility in the opinions
of actors, due to media contacts or interpersonal contacts, when exchanging ideas.
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The inclusion of spatial variables in the models leads to new research topics, such
as questions on the spreading of systems of ideas and competition among ideas in
different areas/countries.

In conclusion, the epidemiological perspective renders a piece of mosaic to a
better understanding of the dynamics of diffusion of ideas in science, technology,
and society, which should be one of the main future tasks of the science of science
(Wagner-Döbler and Berg 1994).
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eling of the emergence and development of scientific fields. Scientometrics 75(3):495–518
(DOI:10.1007/s11192-007-1888-4)

http://dx.doi.org/10.1086/283000
http://dx.doi.org/10.1086/283000
http://www.jstor.org/stable/2459697
http://dx.doi.org/10.2307/256995
http://dx.doi.org/10.2307/256995
http://dx.doi.org/10.1007/BF01193634
http://dx.doi.org/10.1007/BF01193634
http://dx.doi.org/10.1142/S0129183108012224
http://dx.doi.org/10.1142/S0129183108012224
http://arxiv.org/abs/0710.1800
http://dx.doi.org/10.1142/9789814295895_0009
http://dx.doi.org/10.1142/9789814295895_0009
http://arxiv.org/abs/1103.5382
http://dx.doi.org/10.1086/261558
http://dx.doi.org/10.1086/261558
http://www.jstor.org/stable/1830469
http://dx.doi.org/10.1108/14684521011072990
http://dx.doi.org/10.1108/14684521011072990
http://dx.doi.org/10.1016/j.physa.2005.08.083
http://dx.doi.org/10.1016/j.physa.2005.08.083
http://arxiv.org/abs/physics/050206
http://dx.doi.org/10.1007/s11192-007-1888-4
http://dx.doi.org/10.1007/s11192-007-1888-4


3 Knowledge Epidemics and Population Dynamics Models 119

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and
dynamics. Phys Rep 424(4–5):176–308 (DOI:10.1016/j.physrep.2005.10.00)

Bourdieu P (1986) Forms of capital. In: Richardson JG (ed) Handbook of theory and research for
the sociology of education. Greenwood, New York, NY, pp 241–258

Braun T, Glänzel W, Schubert A (1985) Scientometric indicators: A 32-country comparative
evaluation of publishing performance and citation impact. World Scientific, Singapore

Brauer F, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology.
Texts in Applied Mathematics, vol 40. Springer, New York, NY

Bruckner E, Ebeling W, Scharnhorst A (1989) Stochastic dynamics of instabilities in evolutionary
systems. Syst Dyn Rev 5(2):176–191 (DOI:10.1002/sdr.4260050206)

Bruckner E, Ebeling W, Scharnhorst A (1990) The application of evolution models in scientomet-
rics. Scientometrics 18(1):21–41 (DOI:10.1007/BF02019160)
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Chapter 4
Agent-Based Models of Science

Nicolas Payette

4.1 What are Agent-Based Models?

This first section is mostly an introduction to ABMs in general. We will first take a
look at where they come from and what their main characteristics are. We will then
bring forward a few methodological considerations and illustrate some of those with
an actual agent-based model of science (Table 4.1).

4.1.1 A Little History

Agent-based models are intimately linked with computers and, perhaps unsur-
prisingly, we count John Von Neumann as a pioneer of both. In the late 1940s,
Von Neumann (with an eye towards artificial intelligence) was interested in self-
reproducing, self-regulating systems. Inspired by ideas from colleague Stanisław
Ulam, he designed the first cellular automaton.

What he came up with is a system made of “cells” laid out on a discrete,
orthogonal, grid (later described in von Neumann 1966). Time, in the system, is
also discrete, and at each time step, every cell updates its state according to a set of
rules based on its previous state and the state of its neighbors on the grid. Each
cell is a simple finite state machine, but the overall behavior of the system can
become quite complex. Von Neumann used that framework to design what he called
a “Universal Constructor”: a pattern of cells that can reproduce itself over time,
thereby providing a striking example of how an important system-level property
(self-reproduction) can be achieved through the interaction of individual parts that
behave independently from the whole (Fig. 4.1).
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Table 4.1 Major questions and their answers

Model Major question(s) the Key answers/insights in lay terms
model aims to answer

Gilbert
(1997)

Is it possible to generate
some of the quantitative
features of science by
using simple
mechanisms, and if so,
what are those?

“it is possible to generate many of the quantitative
features of the present structure of science and
that one way of looking at scientific activity is
as a system in which scientific papers generate
further papers, with authors (scientists)
playing a necessary but incidental role.”

Edmonds
(2007)

What can we learn by
modeling the collective
scientific process as a
form of distributed
computing?

The collective scientific process, modeled as a
distributed theorem prover, “has the potential
to [serve as an] intermediate between
observations concerning how science works
and areas of distributed knowledge discovery
in computer science”

Zollman
(2007)

What is the relation
between the network
structures of a
community of scientists
and its ability to
converge on the right
hypothesis given
limited information?

A more connected network will converge much
more rapidly on an hypothesis, but is much
more likely to converge on the wrong
hypothesis: there is an important trade-off
between speed and accuracy.

Sun and
Naveh
(2009)

What is the relationship
between individual
cognitive factors and
some of the quantitative
features of the scientific
system?

“while different cognitive settings may affect the
aggregate number of scientific articles
produced by the model, they do not generally
lead to different distributions of number of
articles per author. ... using more cognitively
realistic models in simulations may lead to
novel insights.”

Weisberg
and
Muldoon
(2009)

Which project selection
strategies by individual
researchers lead to the
optimal distribution of
cognitive labor for the
scientific community?

“scientists need to really divide their cognitive
labor, coordinating in such a way to take
account of what other scientists are doing”
and “a mixed strategy where some scientists
are very conservative and others quite risk
taking, leads to the maximum amount of
epistemic progress in the scientific
community.”

Grim (2009) What is the relation
between the network
structures of a
community of scientists
and its epistemic
success in different
epistemic landscapes?

Mean path length in the giant cluster of an
epistemic network qualitatively matches the
epistemic success of a community.

Muldoon
and
Weisberg
(2010)

What is the effect of
idealizations about the
rationality of scientists
on analytic models of
the distribution of
cognitive labor?

Analytic models of the distribution of cognitive
labor are not robust against weakenings of
idealizations about the rationality of scientists
and the information available to them. Under
certain conditions, this can lead to the model
predicting outcomes that are qualitative
opposites of the original model outcomes.
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Fig. 4.1 Von Neumann’s “Universal Constructor”. Source: http://en.wikipedia.org/wiki/File:
Nobili Pesavento 2reps.png (Pesavento 1995)

What really brought cellular automata to the forefront, though, is mathematician
John Conway’s Game of Life (Gardner 1970). While von Neumann’s cells could
be in 29 different states and dozens of different rules were needed to describe
transitions between them, Conway’s cells (he called them “counters”) are either
“alive” or “dead.” Only three rules are needed to describe their behavior:

1. Survivals. Every counter with two or three neighboring counters survives for the next
generation.

2. Deaths. Each counter with four or more neighbors dies (is removed) from overpopulation.
Every counter with one neighbor or none dies from isolation.

3. Births. Each empty cell adjacent to exactly three neighbors – no more, no fewer – is a birth
cell. A counter is placed on it at the next move.

(Gardner 1970, p. 120)

These simple rules, when applied to different initial patterns of cells, give rise to
an impressive (and well documented) menagerie of objects with complex behaviors:
blinkers, toads, beacons, pulsars, gliders, guns, puffers, etc. (e.g., Fig. 4.2). Again,
this shows how simple building blocks can be arranged in ways that lead to
surprising (i.e., hard to predict) results.

The systems we have seen so far are only models of very general phenomena
(“life,” self-replication), but the idea of cellular automata is also readily applicable
to a lot of social phenomena. Notwithstanding debates around methodological
individualism, many problems in the social sciences can be modeled as sets of
individual agents locally interacting with each other in some explicit space.

The firsts of such models are Thomas Schelling’s “Models of Segregation”
(1969; 1971a; 1971b). In these, Schelling explores the mechanisms leading to the
formation of clusters of homogeneous agents (i.e., ghettos) in geographical space.

http://en.wikipedia.org/wiki/File:Nobili_Pesavento_2reps.png
http://en.wikipedia.org/wiki/File:Nobili_Pesavento_2reps.png
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Fig. 4.2 Example of a
complex pattern in Conway’s
Life. This is Bill Gosper’s
“glider gun”: it builds
“glider” patterns that move
away from it. The gun keeps
on generating gliders forever,
unless it is disturbed by
interference from another
pattern. Source: http://en.
wikipedia.org/wiki/File:
Gospers glider gun.gif
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Fig. 4.3 State of the
Schelling neighborhood
before the simulation: a
mixed neighborhood

Space is modeled as a discrete grid, just like in von Neumann and Conway’s
automata, but this time, each individual cell represents a human agent. These
agents can be either “stars” or “zeros” (taken to stand for different ethnicities),
and they have preferences regarding the group membership of their neighbors
on the grid (Fig. 4.3). If they are not satisfied, they move to the closest location
that satisfies their requirements. Schelling explored the dynamics of the model
for many different initial patterns and many different distributions of preferences,
but the general conclusion is that even with agents that have very high tolerance
for neighbors different from themselves – just not wanting to be in too small a
minority – segregation occurs consistently (Fig. 4.4). As he points out himself, the
particular outcome depends on details of a simulation run, but not the character of
the outcome.

Skipping far ahead, another milestone model is the much more complex Sug-
arscape (Epstein and Axtell 1996). While most other models were designed to
investigate specific phenomena, the Sugarscape is a general framework for exploring
a wide range of issues: biological and cultural evolution, trading, warfare, disease
transmission, migration, pollution, etc. Agents in the Sugarscape are also situated
on a grid, but this time the environment is not an empty container: it contains
“sugar” and “spice,” generic resources that the agents need to survive (Fig. 4.5).
Agents move around the grid, collecting these resources (which, afterwards, need to

http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif
http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif
http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif
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Fig. 4.4 State of the
Schelling neighborhood
after the simulation:
segregation has
occurred

Fig. 4.5 A view of the
Sugarscape. Taken from Tony
Bigbee’s open-source
reproduction of the Axtell
and Epstein model using
MASON (Bigbee et al. 2007)

“grow back”). Agents also differ from one another in more than group membership:
they have different metabolic rates, vision, and life expectancy. These differences
introduce interesting opportunities for interaction between agents. Take metabolic
rate, for example: if you need more sugar and I need more spice, I can trade you
sugar for spice.

While it is interesting in its own right to analyse the behavior of individual agents
on the grid, it is the population-level patterns that are of most value to social science.
For example, the individual wealth of the agents in the Sugarscape – the amount
of resources they have accumulated – follows Pareto’s Principle: a power-law
distribution where very few agents control most of the wealth in the system. While
Pareto’s Principle has been observed in countless “real” social systems (starting with
land ownership in early twentieth century Italy), Sugarscape is acknowledged to be
the first computational generation of that pattern: it provides a set of micro-level
mechanisms that are sufficient to generate that macro-level phenomenum. As we
will see, the use of ABMs often follows that methodology.
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We chose to follow the historical path of cellular automata to introduce agent-
based models, but other influences should also be acknowledged. Game theory
(see, e.g., Axelrod and Hamilton 1981), artificial life (Reynolds 1987), connection-
ism (McClelland and Rumelhart 1987), genetic algorithms (Holland 1975) and
artificial intelligence research in general also played important roles.

We opened the present section by stating that agent-based models are intimately
linked with computers. While true, that statement can be slightly misleading: von
Neumann’s design for his Universal Constructor was not fully implemented until
much later (Pesavento 1995), Conway designed Life on a Go board, and Schelling
“ran” most of his simulations using pennies and dimes. In many cases, the local
rules of behavior are simple enough that their results can be computed by hand. The
computer is needed when the number of agents and steps in the simulation becomes
overwhelming for the very limited computational resources of a human being.

The rise of computational resources in recent years has driven researchers to
implement increasingly detailed models that aim to capture the finer aspects of
social phenomena. A quick glance at the Journal of Artificial Societies and Social
Simulations or at the “Model Archive” section of the OpenABM website1 will reveal
many of those, and there is also a trend to review and compare different classes of
ABM (Cristelli et al. 2011).

4.1.2 Their Main Characteristics (and How They Apply
to Models of Science)

Before paying attention to particular agent-based models of science, we want to
say a few words about some general characteristics of ABMs. We will focus on
the features listed by Joshua M. Epstein (2006): heterogeneity, autonomy, explicit
space, local interactions and bounded rationality. These should not be taken as
necessary conditions for a model to be considered agent-based. They should only
be seen as establishing some kind of wittgensteinian family resemblance. They are
not orthogonal either: some of them, such as local interactions and explicit space,
for instance, overlap.

In this section, we will try to show that those features are well suited to the
modeling of the scientific process.

Heterogeneity states that agents are not, as Epstein says, “aggregated in a few
homogeneous pools” (2006, p. 6). Instead, they can differ from one another in as
many ways as the parameter range for each of their individual properties will allow.
While this is something that would be very hard to track with traditional analytical
models, the computer makes it possible to deal with millions of heterogeneous
agents.

1http://www.openabm.org/models/browse.

http://www.openabm.org/models/browse
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We can think of these varying properties as being either static or dynamic and
either internal or external. Static properties are those that won’t change through the
agent’s lifetime. It does not mean that they should be considered “innate,” just that
their value stays constant in the course of a simulation. Examples of such properties
for scientists could be things like creativity, communication skill, testing ability,
etc. Perhaps more interesting, though, are the dynamic properties of the agents:
those that change, and hence, can be tracked through a simulation run. A dynamic
property can be as simple as the amount of grant money a researcher currently has,
but it can also be more than a simple numeric value: a list of the propositions that
a scientist holds to be true, a memory of past interactions with other scientists, a
current research goal, etc.

The examples that we have given so far are all internal properties. What we
call external properties are relations between an agent and its environment. What
university/lab/research center is a scientist attached to? Who are his collaborators?
If space is represented, where is he? External properties are often dynamic but can
also be static, depending on what the model is trying to capture.

Autonomy refers to the absence of central control. In the context of social
simulation, this can be likened to a form of methodological individualism: while
institutions (and other macro-structures) can set policies (rules, values, etc.) that
will influence an agent’s behaviour, they are not directly coordinating the agents
or moving them around. At each time step in a simulation, agents make their own
decisions in order to achieve their individual goals.

Explicit space requires that agents be situated in some environment. The
behaviours available to an agent are partly determined by its position. In many
ABMs, like in those we have seen so far, this is a grid representing geographic
space, but it does not have to be. It can be something more abstract like (as we will
see later) a scientist’s position in an epistemic landscape or his position in a social
network of collaboration. To quote Epstein again, “The main desideratum is that the
notion of ‘local’ be well posed” (2006, p. 6). The reason for this is closely linked to
the next property.

Local interactions are typical of agent-based models. When agents interact with
other agents, it is usually with their neighbors – those that are close to them in
geographical space or in social space: their collaborators, colleagues, students, etc.
The fact that not everyone interacts with everyone can make a significant difference
in some situations. Simulations by Zollman (2007) and Grim (2009), for example,
show important epistemic effects related to the non-universality of communication
in scientific networks.

Bounded rationality, finally, states that: “Agents do not have global information,
and they do not have infinite computational power. Typically, they make use of
simple rules based on local information [. . . ]” (2006, p. 6).

Scientists have sometimes been portrayed as somewhat irrational, uninformed,
self-interested thinkers (e.g., Latour and Woolgar 1979; Hull 1988b). While this is
slightly unpalatable to epistemologists who are concerned with perfect rationality,
it has interesting consequences for models of science. Given agents that (like real
scientists) have limited information and reasoning power, how can we set up the
social structure of science for epistemic efficiency?
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4.1.3 Some Methodological Considerations

Most of what applies to formal models in general (and that is covered elsewhere in
this book) also applies to ABMs. In this section, we will focus on some issues that
are specific to ABMs.

4.1.3.1 Micro vs. Macro

As we have hinted above, ABMs are concerned with the micro-level processes that
give rise to observable, higher-level patterns. If an ABM can generate some macro-
phenomenon of interest, then it can at least be considered a candidate explanation
for it. When taken seriously, that possibility can become a requirement. This is what
Epstein calls the generativist motto: “If you didn’t grow it, you didn’t explain it”
(2006, p. 51). On this view, a pattern like Lotka’s law (Lotka 1926) stands in need of
explanation, and even an algebraic derivation of the law, like that of Herbert Simon
(1955, p. 148), is still not sufficient for a complete explanation. One needs to supply
the mechanism that generates the distribution. In the particular case of Lotka’s law,
that was achieved by Nigel Gilbert (1997), as we will see in Sect. 4.2.1.

Now this raises the question of what scale to choose for a model. The difference
between micro and macro is relative to that choice. After all, if we were to grow a
scientist from a collection of cells, the behavior of the scientist as a whole would be
the macro-level. Now, it is assumed in agent-based modeling that the agent should
be the micro-level, but what is an agent? Most models of science will focus on
individual researchers as agents, but nothing prevents a modeler from focusing
instead on research teams, labs, institutions or even whole countries. In Gilbert’s
model (oddly, perhaps) the papers themselves are the agents. In the end, it is left
to the researcher to identify what Claudio Cioffi-Revilla, in a recent methodology
paper, calls the “Cast of Principal Characters”: “the main social entities themselves
and their main interactions or causal dynamics” (2009, 30).

4.1.3.2 Details Matter

Once the target level has been chosen and the relevant entities identified, there
remains the question of the amount of detail in which they must be modeled.
The first ABMs usually had very simple agents. In Schelling’s models, an agent’s
only properties were its position and its tolerance level. The interesting features of
the model result from the relations and interactions between objects, not from the
properties of the objects themselves. It is important to make sure, however, that such
simplifications are not responsible for the behavior of the model.

To illustrate this caveat, we will use a model by Ryan Muldoon and Michael
Weisberg (2010) looking at the distribution of cognitive labor over scientific
projects. Given multiple projects, with different probabilities of success, there is
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an optimal assignment of scientists to projects: how can we ensure that the actual
distribution of scientists approximate that optimum?

That question was previously studied by Philip Kitcher (1990) and Michael
Strevens (2003) using analytical models. It is the purpose of Muldoon and Weisberg
(2010) to show that some of the idealizing assumptions made by Kitcher and
Strevens lead to results qualitatively different than if a more realistic model of the
way the agents behave had been used. In other words, they fulfill only the first of
these two requirements:

[M]odels of cognitive labor must be simple enough for us to understand their dynamics,
but faithful enough to reality that we can use them to analyze real scientific communities.
(Muldoon and Weisberg 2010)

Kitcher and Strevens built their models using what Muldoon and Weisberg
call the marginal contribution/reward (MCR) approach, in which each project
is assigned a success function, “which represents the ability of the project to
productively utilize the cognitive resources of scientists and turn those resources into
the possibility of a successful outcome” (Muldoon and Weisberg 2010). Scientists
working on a project that succeeds get a reward, according to a scheme that can be
varied, so each scientist chooses to work on the particular project that maximizes
his own expected reward. We are looking for the reward scheme that produces the
best allocation.

Muldoon and Weisberg (2010) claim that Kitcher and Strevens’ models rest on
at least two unrealistic assumptions:

1. Distribution assumption: “every scientist knows the distribution of cognitive
labor before she chooses what project to work on.”

2. Success function assumption: each project’s “success function, which takes
as input units of cognitive labor (work from scientists) and outputs objective
probabilities of success,” is “known by all of the scientists in the model.”

Both of these are assumptions of complete knowledge on the part of the scientists.
To make their own model more realistic, Muldoon and Weisberg introduce complex-
ifications in line with some of the characteristics we have seen in Sect. 4.1.2: agents
do not have perfect knowledge (bounded rationality) and not every agent knows or
believes the same things (heterogeneity).

Let us start with the distribution assumption. Muldoon and Weisberg’s scientists
are distributed on a grid (a torus, actually) of 35 	 35, where distance represents
“communication distance.” Scientists have a “radius of vision”: they “see” the
project choices of other agents within that radius. To mimic Kitcher and Strevens’
perfect information scenarios, the radius of vision must be at least

p
578, the

distance at which everyone sees everyone.2 When Muldoon and Weisberg do that,

2For an agent standing exactly in the middle of a flattened 35�35 torus, euclidean distance to each
corner D p

172 C 172 D p
578 D 24:0416306.
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using Strevens’ Marge reward scheme, where payoff is divided equally between all
agents working on the successful project, they get the same results as Strevens:

As the number of agents was increased, an incentive was created for a minority of scientists
to work on the harder project. When the number of agents was increased further, scientists
allocated themselves to both projects, and eventually the number of scientists working
on the harder project overtook the number working on the easier project. (Muldoon and
Weisberg 2010)

When Muldoon and Weisberg decrease vision, however – i.e., they relax the
perfect knowledge distribution assumption – agents start to misallocate: when vision
drops below seven, no one works on the harder project. From a collective point of
view, this is far from optimal.

Now, for the success function assumption, Muldoon and Weisberg argue that it is
very unrealistic that every scientist would know the objective probability of success
of each project. Those probabilities should be subjective, and hence, vary from one
scientist to another. In their model, Muldoon and Weisberg use a success probability
function taken from Kitcher3 which has an “easiness” parameter, and evaluation of
that easiness is where agents differ. Muldoon and Weisberg assumed that the agents’
beliefs about the easiness of a project follow a normal distribution where the mean
is the objective probability of success of the project. A variance of zero in that
distribution mimics the Kitcher/Strevens perfect information scenario and, again,
a simulation with two projects (one easier, one harder) confirms that. But as soon
as variance is introduced – i.e, as soon as some agents misjudge the probability of
success – the resulting allocation is suboptimal.

Part of the appeal of models of science (and models in the social sciences at large,
for that matter) is that once we have a good one, it can possibly be used to inform
policy making. That is part of what Strevens is trying to do when he compares the
Marge reward scheme (equal payoff for everyone on the successful project) to the
Priority scheme that we use in reality (first successful scientist gets all the credit).
In Strevens’ model, Priority produces a better distribution of cognitive labor. In
Muldoon and Weisberg’s more realistic model, Priority does worse than Marge.
The take home message is that it is important to get the details right. As the case of
Muldoon and Weisberg show, and as we will further try to show in the next section,
ABMs are a good way to do that.

4.2 What Has Been Done So Far?

We now move on to Gilbert’s original model (1997), which is arguably the most
well-known ABM of science. We will describe it in a fair amount of detail, and use
it afterward to contrast other models.

3That is the logistic growth equation: P D K
1Ce�rN , where K is the maximum probability of

success, N the number of scientists working on the project, and r the easiness of the project.
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4.2.1 Gilbert’s Original Model: Papers and Kenes

Gilbert’s explananda are the quantitative regularities traditionally found in science.
That includes Lotka’s law, but also many features of “little science” pointed out
by de Solla Price in Little Science, Big Science (1963): e.g., exponential growth of
the number of papers and the fact that references in a paper tend to be to recently
published literature.

Gilbert starts out with a simple model of a candidate mechanism for simulating
Lotka’s law (Lotka 1926). In Gilbert’s words, Lotka’s law states that “for scientists
publishing in journals, the number of authors is inversely proportional to the square
of the number of papers published by those authors” (1997, 4.1). Most authors
publish only one or two papers, some of them publish a little more, and only a few
publish more than 10. Herbert Simon (1955) describes the probability of a paper
being published by a scientist already having i publications as f .i/ D a=ik (where
a and k are constants). Simon also found a constant probability ˛ D n=p that
the next article in a journal is by a previously unpublished author (where p is the
number of papers in the journal and n is the number of authors4). Gilbert’s proposed
mechanism for generating that pattern is actually quite simple:

1. Select a random number from a uniform distribution from 0 to 1. If this number is less than
˛, give the publication a new (i.e., previously unpublished) author.

2. If the publication is not from a new author, select a paper randomly from those previously
published and give the new publication the same author as the one so selected.

(1997, 4.4)

Note that Gilbert does not actually make use of f .i/. If the publication is to be
assigned to a previously published author, all authors have an equal chance of being
selected. The data produced by Gilbert’s model approximate Simon’s estimates and
actual bibliometric data very closely, even if the simulation is completely agnostic
of the expected probability distribution of authors.

Note, also, that the model is centered on papers: they are, in a way, the “agents”
in his simulation. That stays the case when Gilbert moves on to a more complex
simulation, in which the papers actually have some sort of content. They each
contain a “quantum of knowledge” that is represented by what Gilbert calls a “kene.”
A kene is basically a sequence of bits that could, in theory, be of any length. To allow
display of kenes in a two-dimensional plane, however, Gilbert makes them 32 bits
long, encoding two 16-bit integers for x; y coordinates on a 65;536 	 65;536 grid,
allowing talk about the location of a kene or a paper (which is that of its kene).

“Kene” is chosen to sound like “gene,” and the reason for that is that there is
an “evolutionary” component in the process. At each time step, at least one paper
reproduces itself, and other existing papers5 also have a small constant probability

4There is actually a typo in Gilbert’s paper, where he states that ˛ D p=n (it should be the other
way around).
5Though Gilbert does not mention it explicitly, the simulation has to be initialised with a certain
number of seminal papers: e.g. 1,000.
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! D 0:0025 of reproducing. The author of a new paper is either a new author (with
probability ˛) or the author of the parent paper. The new paper initially has the same
kene as its parent. The new paper also has references: it chooses, at random, other
papers located within a radius of � D 7;000.

It is supposed that each reference has an influence on the original kene, such that
the final kene of the new paper is a combination of the original kene and the kenes
of the references. If you think about kenes as points in space, you can think of each
of the references’ kenes as having a gravitational field that “pulls” the kene of the
new paper in its direction. More formally, given a random value m between 0 and 1,
increasing monotonically with each reference:

x0
p D xp C .xr � xp/

1 � m

2
and y0

p D yp C .yr � yp/
1 � m

2
:

This more detailed model still produces the Lotka’s law pattern for the distribu-
tion of papers per author, which is not surprising since the part of the mechanism that
generates that distribution is almost the same.6 The model also produces a highly
skewed distribution of citations per author, and that also matches empirical data.
The overall growth rate (driven by the probability ! of spawning a new paper) also
fits de Solla Price’s observations (Fig. 4.7).

Finally, a new result of the more complex model is that we can now observe
different clusters of papers in the space of possible kenes (Fig. 4.6). This is a
consequence of the evolutionary mechanism chosen by Gilbert, where each new
paper falls in the vicinity of his parent. Those clusters are interpreted by Gilbert as
representing different specialities in a field. A problem with that interpretation is
that the position of the kene is not taken into account when the paper “chooses” its
author. It would be fairly straightforward, however, to take that factor into account
(for example, by having the probability of a particular author being selected increase
if he has recently written a paper in the area of the new paper.)

4.2.2 Follow-Ups and Other Models

While fairly simple, Gilbert’s model is a striking example of the possibilities of
agent-based modeling of science. Gilbert himself, with collaborators Andreas Pyka
and Petra Ahrweiler, took the idea further in a series of papers on innovation
networks (Gilbert et al. 2001, 2007; Pyka et al. 2002, 2007, 2009; Ahrweiler et al.
2004). Börner et al. (2004) also have a model called TARL (for “topics, aging, and
recursive linking”) where they dynamically generate a network of co-authorship
relations in addition to a citation network similar to that of Gilbert, and which
they validated against a PNAS data set of significant size. Gilbert’s model also

6The only difference is that authors now “retire” after a random number of time steps (where the
maximum is 	 D 480).
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Fig. 4.6 Numerical relationships in a sample run of Gilbert’s simulation. Figure 4.6 shows the
approximation of Lotka’s law. The figures are taken from Gilbert’s NetLogo replication of his
original model, freely available at http://www.openabm.org/model-archive/ssas

Fig. 4.7 The 2D landscape
of papers in Gilbert’s
simulation, showing the
clustering into “specialities”

directly inspired models in fairly different areas (e.g., Boudourides and Antypas
2002). In this section, we will look at models by Sun and Naveh (2009) and
Edmonds (2007). We will then move on to models by Weisberg and Muldoon (2009)

http://www.openabm.org/model-archive/ssas
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and Grim (2009) that, while not concerned with the specific bibliometric patterns
explored by Gilbert, are closely related to an idea he almost touched on with his
spatial distribution of kenes: that of an epistemic landscape.

4.2.2.1 A View from Cognitive Science

The fact that scientists play only a very small role in Gilbert’s model can be a target
for criticism. It is hard to accept the idea that the only difference between the author
who published only one paper and the one who published 15 is that the latter got
lucky in that more papers selected her.

Cognitive scientists Sun and Naveh (2009), in particular, have been critical:
“Gilbert’s model lacks agents capable of meaningful autonomous action” (2007,
p. 142). They have attempted to provide a more realistic model, where “authors are
not merely passive placeholders, but cognitively capable individuals whose success
or failure depends on their ability to learn in the scientific world” (2006, p. 321).
In order to achieve that, they use a cognitive architecture they call CLARION
(Fig. 4.8), an acronym that stands for “Connectionist Learning with Adaptive
Rule Induction ON-line.” The full name is actually a fairly good description of
what CLARION does. It is a hybrid architecture: it has a learning mechanism
implemented in an artificial neural network, but it can extract explicit symbolic
rules from what it has learned at the connectionist level and use these rules to drive
its behavior. We will not go into the details of CLARION (see Sun (2006) for an
overview and Sun (2003) for a detailed description), but it is meant to be cognitively
realistic. Sun himself has argued extensively for such hybrid systems (Sun 2002),
and what has come to be called “dual process theories” are increasingly prevalent in
cognitive science (Evans 2008).

In Sun and Naveh’s model, as expected, it is now each scientist that selects
an idea to replicate, and not the other way around. The scientists also select the

Fig. 4.8 Sun and Naveh’s CLARION architecture, showing the interaction between explicit
(symbolic) representations and implicit (connectionist) representations
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neighboring ideas that they use to modify the original idea, but they do not stop
at that: they also optimize the resulting idea on their own, by searching the space
around it for slightly better positions. (We are still talking about ideas as points in a
multidimensional space, just like Gilbert’s kenes.) The fact that such an optimization
is going on implies that, as opposed to what we had in Gilbert’s model, some ideas
are better than others. Sun and Naveh name a few properties over which ideas
differ: clarity, insightfulness, empirical evidence, theoretical results and application
potential. Agents all have “subjective functions” for these different properties of
ideas: functions that they refine throughout the simulation, trying to approximate
the “communal” functions that determine if a paper gets published. No agent has
direct access to the communal functions: all they have is the feedback they get from
the submission of a paper: i.e., whether it is accepted or not. They use this feedback
to optimize two tasks: (1) choosing the focal idea and (2) choosing the pull ideas.
Agents that fail to publish enough are removed from the simulation and replaced
by new agents. In their model, it is that learning process, instead of luck, that is
responsible for the difference in the number of publications by each agent.

Sun and Naveh’s results also match the empirical data, but not as closely as
Gilbert’s model (Tables 4.2 and 4.3). There is, however, a good reason for that:

We put more distance between mechanisms and outcomes, which makes it harder to obtain
a match with the human data. Thus, the fact that we were able to match the human data
shows the power of our cognitive agent-based approach compared to traditional methods of
simulation. (Naveh and Sun 2007, p. 200–201)

Sun and Naveh’s model allows them to study the effect of cognitive differences
on the success of the whole community. The latter is measured by the total number
of papers published. In Gilbert’s model, that number was a direct result of the
parameter ! (the probability that a paper would spawn a new paper). Here, it is a
result of the ability of the agents to learn the communal rules of publication. Those
cognitive parameters are many (e.g., the learning rate of the agents, the probability
of using implicit vs. explicit learning, the randomness of the local search process),
and they all have significant effects on the overall number of papers.

Table 4.2 Number of
authors contributing to
Chemical Abstracts

# of Actual Simon’s Gilbert’s CLARION
Papers estimate simulation simulation

1 3991 4050 4066 3803
2 1059 1160 1175 1228
3 493 522 526 637
4 287 288 302 436
5 184 179 176 245
6 131 120 122 200
7 113 86 93 154
8 85 64 63 163
9 64 49 50 55
10 65 38 45 18
11 or more 419 335 273 145



142 N. Payette

Table 4.3 Number of
authors contributing to
Econometrica

# of Actual Simon’s Gilbert’s CLARION
Papers estimate simulation simulation

1 436 453 458 418
2 107 119 120 135
3 61 51 51 70
4 40 27 27 48
5 14 16 17 27
6 23 11 9 22
7 6 7 7 17
8 11 5 6 18
9 1 4 4 6
10 0 3 2 2
11 or more 22 25 18 16

4.2.2.2 Science as a Distributed Cognitive System

Cognition can also be conceived as going beyond the individual level. Some
philosophers (e.g., Thagard 1993b; Giere 2002; Cummins et al. 2004; Magnus 2007)
have been claiming that science as a whole should be thought of as a distributed
cognitive system. Joshua Epstein goes even further and claims that:

The agent-based approach invites the interpretation of society as a distributed computational
device, and in turn the interpretation of social dynamics as a type of computation. (Epstein
2006, p. 4)

Bruce Edmonds (2007) takes that idea seriously. He proposes an agent-based
model of science as a distributed theorem prover. In contrast to what we have seen
so far, the knowledge acquired by Edmond’s agents is something highly structured:
true sentences in a formal system, namely, propositional logic. In effect, agents are
trying to come up with new theorems by combining existing items of knowledge
(premises) into new ones by inference. In Edmond’s model, agents are confined to
using the modus ponens7 inference rule: i.e., ..p ! q/ ^ p/ ` q. Every agent has
a store of knowledge – sentences that can be used as premises for new inferences.
Those sentences come from inferences made by the agent, but also from a public
repository of knowledge: a “journal,” in which agents publish some of the theorems
they find (Fig. 4.9). At each time step, every agent:

1. Replaces some of the sentences in its private store by sentences from the journal.
2. Tries to combine sentences from its private store and adds the result of successful

inferences to its private store.
3. Submits previously unpublished items from its private store to the journal.

At the end of a time step, the journal ranks the received submissions as a weighted
sum of “the extent to which a formula had the effect of shortening formula when

7In (almost) plain English, the modus ponens rule says that if you know some proposition p to be
true and you also know that if p, then q, you are allowed to deduce that q is true.
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Fig. 4.9 A representation of
Edmond’s agents interacting
with the knowledge store

applied as the major premise in MP; the shortness of the formula itself; the past
publishing success of the author; and the fewness of the number of distinct variables
in the formula” (Edmonds 2007).

The success of the community is evaluated according to the number of useful
theorems it can find in a given number of time steps. “Useful,” here, means really
useful: the system is judged against a list of 110 target theorems taken from logic
textbooks.

One of the interesting findings of Edmond is that the number of useful theorems
found is fairly independent from the publication rate of the journal (i.e., the number
of submission it accepts each turn). Another interesting finding is the disparity
between individual agents: some of them publish a lot more than others. While
not quite as “Lotka-like” as Gilbert’s or Sun and Naveh’s results, it is still a fairly
skewed distribution.

Notwithstanding the detailed dynamics of Edmond’s model, an important insight
is that ABMs of science can be made to work on “real world” science problems.
Of course, propositional calculus (especially the “one inference rule version” used
by Edmond) is somewhat of a toy problem, but we can imagine a system working
on more complicated, more realistic problems. These would have to be well-defined
formal problems as opposed to the open-ended research that scientists are usually
involved in. The idea is not to use ABMs of science to computationally solve
new problems – that would be the job of computer scientists,8 not social science

8It has already been shown that some A.I. programs are capable of scientific reasoning. The classic
example would be BACON (Langley et al. 1981), which “rediscovered” Snail’s law of refraction,
conservation of momentum, Black’s specific heat law, and Joule’s formulation of conservation of
energy. The PI program (Thagard and Holyoak 1985) achieves similar results, and is perhaps more
suited to an agent-based approach (Thagard 1993a, ch. 10).
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modelers. Nonetheless, it seems conceivable that, if we pay close attention to the
analogues between computational problem-solving algorithms and the scientific
process, ideas from one could be used to improve the other, and vice versa.

4.2.2.3 Science as an Epistemic Landscape

Most of the models mentioned assume that there is some sort of (possibly highly
dimensional) space that the agents are trying to explore. Some positions in this
space are considered better than others and agents are trying to find these positions.
Different models assume different semantics for the space, the most common being
that proximity in the space corresponds to some sort of conceptual, theoretical, or
pragmatical similarity.

For that space to be interpreted as a landscape, however, one-dimension must
stand for “height.” Kenes in Gilbert’s model were situated in a two-dimensional
space, but no value was attached to them; the space was flat. In Sun and Naveh’s
model, ideas were also situated on a two-dimensional plane, but different ideas
had different values: some were clearer, better supported empirically, etc. If you
collapse all of these values in a single weighted sum, you get a third-dimension:
the height of the landscape. Of course, you can also have a n-dimensional space,
as long as there is one-dimension that you are trying to maximize.9 What Sun and
Naveh did not insist on, however, is how the shape of that landscape affects the
dynamics of science. To illustrate some of these dynamics, we will look at another
model by Weisberg and Muldoon (2009), one that builds on the work presented in
Sect. 4.1.3.2.

Agents in Muldoon and Weisberg (2010) were10 situated in space, but distance in
that space represented communication distance between researchers, not the value
of the projects they were working on. Weisberg and Muldoon are still interested
in the division of cognitive labor, but this time, instead of looking at just two
projects with different probabilities of success, they look at the whole range of
different approaches available to scientists within a research topic. As you might
have guessed, these approaches are represented by the position of a scientist agent
in two-dimensional space.11 The third-dimension is what they call the “epistemic

9You could also have many dimensions that you are trying to optimize. Those problems are known
as “multiobjective optimization problems” (Steuer 1986; Sawaragi et al. 1985) In those cases, you
are looking for the “pareto front”: the set of positions in space that are not “strictly dominated” by
any other. We will leave those complexities aside.
10Weisberg and Muldoon (2009) was published before Muldoon and Weisberg (2010), but the latter
reports on an earlier model.
11Weisberg and Muldoon, like Gilbert before them and, as we will see in Sect. 4.2.2.4, Patrick
Grim, leave the exploration of higher-dimensional space for “further research.” The main advantage
of 3D landscapes is, of course, that they can be visualised easily. They also simplify programming
and keep computations light. It would be interesting, nonetheless, to see a detailed study of the
impact of high-dimensionality on some models. The “curse of dimensionality” is a problem for
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Fig. 4.10 The epistemic
landscape used in (Weisberg
and Muldoon 2009). The
vertical axis represents
“epistemic significance”

significance” of the approaches. The goal of the agents is, of course, to find the
highest peaks of significance in the landscape. The landscape used by Weisberg
and Muldoon has two peaks, generated by two Gaussian functions (Fig. 4.10). The
way agents move around the landscape depends on the strategies (i.e., the rules
of behavior) they adopt. Investigating the way populations with different mixes of
strategies explore the landscape is the authors’ main purpose. They look at three
different strategies. Here they are, in very general terms:

• Controls are basically “hill climbers”: they set a direction and move forward as
long as they get better results. If they get worse results, they backtrack and set
a new, random, direction. They are “controls” in the sense that they do not take
into account what the other agents on the landscape are doing, and the authors
are mostly interested in the dynamics introduced by interactions between agents.

• Followers start by looking for squares in their Moore neighborhood (see
Fig. 4.11) that have previously been visited and have a greater significance than
their current approach. If there are such squares, they will move to the best among
those (breaking ties at random). If there are none, they will look for unvisited
squares and choose one at random. (In other words: they will only innovate if
they have to.) Finally, if all the neighborhood squares have already been visited
and none is better than their current one, they stop.

• Mavericks are a little bit like controls in that if their current location is worse
than their previous one, they will backtrack and change direction. But if their
new approach is equal or better than to the previous one, they will move to an
unvisited spot in their Moore neighborhood (choosing one at random if there are
many). Only if there is no unvisited spot will they act like followers and choose
the best-known approach around them.

Controls by themselves are not very efficient. They eventually find the peaks, but
since they cannot learn from one another, it takes a lot of time steps before they get

many optimization tasks, and computer scientists are developing special algorithms and techniques
to deal with it (e.g., Powell 2007), so it is conceivable that it would make a difference in the
results of the simulations we are looking at. Muldoon and Weisberg have both (independently)
been tackling that issue, but have not published about it yet.
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Fig. 4.11 A Moore
neighborhood simply consists
of the nine squares
surrounding a particular
position on a grid

Moore
neighborhood

Fig. 4.12 Initial (a) and later (b) position of followers on the epistemic landscape during a
simulation. The trails indicate the paths followed by agents

there. Followers alone do even worse: they get stuck in low-significance areas pretty
quickly. Unless they are lucky, they will just follow each other around (Fig. 4.12).
Mavericks, on the other hand, are very efficient: they always find the peaks, and they
find them a lot faster than controls (Fig. 4.13).

Things get more interesting when you start looking at mixed populations. Even
adding a single maverick in a population of followers makes a significant difference.
Mavericks help the followers get unstuck. The more mavericks you add, the more
performance improves, until you reach 100% mavericks, which is the optimum
(Fig. 4.14). In the real world, though, a balance between followers and mavericks is
probably needed. Followers seem well-suited to what Kuhn (1962) called “puzzle
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Fig. 4.13 Number of agents vs epistemic progress in homogeneous populations

Fig. 4.14 Ratio of mavericks and followers vs epistemic progress in mixed populations

solving”: finding solutions to very specific problems with well-defined methods.
Being a maverick is probably more risky for the individual: wandering off the beaten
path and possibly failing can be very costly for one’s career.

Weisberg and Muldoon’s work show that the way researchers deal with the
results of other agents around them makes a difference for the overall success of
the community.
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4.2.2.4 Epistemic Networks

Kevin Zollman has done some pioneering work on simulating the effect of the social
structure of the scientific community on its epistemic performance. The matter is
important, he says, because:

Once one fully articulates a theory of individual epistemic rationality, it is still an open
question what the optimal community structure is for these agents – the individualistic
question is only part of the answer. (Zollman 2007)

To try to answer the question of “optimal community structure,” Zollman sim-
ulates the behavior of networks of scientists trying to choose between two distinct
hypotheses, given limited information. Individual scientists can only communicate
their results to their immediate neighbors. We will not go in the detail of his
experiment, but what he found was essentially that a more connected network
will converge much more rapidly on an hypothesis, but is much more likely to
converge on the wrong hypothesis: there is an important trade-off between speed
and accuracy.

Partly inspired by Zollman, Patrick Grim also did some work about how the
social structure of science affects its results:

How does an individual figure out the structure of the world? The truth is that no individual
does. It is cultures and communities that plumb the structure of reality; individuals figure
out the structure of the world only as they participate in the epistemic networks in which
they are embedded. (Grim 2009)

The main difference with Zollman is that Grim’s agents, much like Weisberg
and Muldoon’s, are looking for the best hypothesis on an epistemic landscape (Fig.
4.15). But, instead of seeing the results obtained by other agents around them
on that landscape (like Weisberg and Muldoon’s agents), Grim’s agents see the
results of those with whom they are connected in a social network (like Zollman’s
agents). At each time step, an agent has a 50% probability of modifying their current
hypothesis by moving it halfway towards the best hypothesis amongst those of their
connections.

That allows Grim to test for the best network structure amongst many that are
prevalent in the social network literature: ring, small world, wheel, random, and
complete networks.12 What he finds is that the ring network performs the best,
while the complete network performs the worst (Fig. 4.16). In general (and he shows
this with random networks), above a very low threshold, adding links to a network
decreases performance. That is consistent with Zollman’s results.

Analyzing his results, Grim speculates that for at least some problems, the
scientific network of the seventeenth century, where communications between
researchers were few and far between, might have been better adapted than the
densely connected, round the clock, social network of twenty-first century science.

12Animations of the networks should be viewable on Grim’s website, at: http://www.pgrim.org/
ABMScience.

http://www.pgrim.org/ABMScience
http://www.pgrim.org/ABMScience
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Fig. 4.15 Different shapes of 2D epistemic landscapes in the Grim simulation. Notice how
landscape Fig. 4.15c is deceiving for the agents, and as such, considerably harder than the other two

In fact, what happens in the fully connected networks is similar to what happens
with Weisberg and Muldoon’s followers: researchers stay confined to regions of
the landscape that are already explored. That makes the community vulnerable to
getting stuck on peaks of non-optimal epistemic value (like the one on the left of
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(a) Ring (b) Small world (c) Random (d) Ring, radius 2

(e) Hub (f) Wheel (g) Complete

Fig. 4.16 Percentage of runs where the community finds the optimal hypothesis for different
network structures on the landscape Fig. 4.15. In general, the less connected the network, the better
its performance

Fig. 4.15c) because everyone will converge on the best initial hypothesis, and no
one will explore further once they have reached it. What Grim needs, it seems, is
a few mavericks: researchers who will deliberately avoid duplicating their peers’
hypotheses.

4.3 Where Should We Go From Here?

Having taken a look at a very diverse (but maybe not fully exhaustive)13 list of
agent-based models of science, we will end this chapter by trying to identify a few
questions that might benefit from agent-based modeling and, finally, point out a few
methodological issues faced by modelers today.

4.3.1 Directions for Future Research

While the details of the process are generally not agreed upon, many thinkers
concur that science, somehow, evolves (Popper 1959; Toulmin 1972; Campbell
1974; Hull 1988b). This is an important idea, as far as ABMs go, because they are
especially well suited for evolutionary models. The evolutionary notion of fitness

13Just before going to press with this book, the Journal of Artificial Societies and Social Simulation
published a special issue with position papers concerning the simulation of social processes in
science. Time did not permit taking into account those papers for the current chapter, but having
a look at them would be a logical next step for the reader interested in ABMs of science. (http://
jasss.soc.surrey.ac.uk/14/4/14.html)

http://jasss.soc.surrey.ac.uk/14/4/14.html
http://jasss.soc.surrey.ac.uk/14/4/14.html
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landscapes is closely related to the notion of epistemic landscapes that we have seen
in Sect. 4.2.2.3. Besides, evolutionary ABMs of science can draw heavily from the
field of genetic algorithms and related techniques (Holland 1975; Luke 2010).

Though Gilbert’s simulation has a small evolutionary component, in that each
kene is descended from a parent kene, an important element is missing: which
paper gets to “reproduce” is not a function of the content of the kene (papers are
just randomly selected for reproduction). If, on the other hand, you had differential
reproduction, based on the position of the kene in an epistemic landscape similar to
those used by Weisberg and Muldoon or Grim, then you would get adaptation: i.e.,
the kenes (or papers, ideas, theories, etc.) with a higher position on the landscape
would tend to out-reproduce the others. To our knowledge, this idea has not been
fully explored yet.

Another potentially important evolutionary component in science is the teaching
process: a supervisor transmits his ideas to his students, which in turn (if they are
successful) will teach a subsequent generation of students, and so on. You can build
a genealogy of researchers just like you can build a family tree. This can bring
interesting insights – for example, the idea that Hull (1988a) calls “conceptual
inclusive fitness,” which is based on Hamilton’s biological notion of “inclusive
fitness” (1964): just as altruistic behavior towards one’s relatives promotes the
replication of shared genes, altruistic behavior towards one’s graduate student (co-
authoring papers with her, sending her to conferences, helping her find a good
academic position) promotes the replication of ideas transmitted to her. Again, this
is something that an agent-based model would be well suited to explore.

Another interesting idea from David Hull is the trade-off between “credit” and
“support.” The main premise behind this one is that scientists’ primary motivation
is getting credit for their theories: that is, mostly, recognition from their peers. (That
credit can then be “cashed-in” in various ways.) Credit is mainly attributed by way
of citation: if you base part of your work on somebody else’s work, then you share
the credit by citing his work. But as Hull puts it:

One cannot gain support from a particular work unless one cites it, and this citation
automatically both confers worth on the work cited and detracts from one’s own originality.
Scientists would like total credit and massive support, but they cannot have both. Science is
so organized that scientists are forced to trade off credit for support. (2001, p. 100–101)

There is a whole continuum of strategies, between high risk/high reward and low
risk/low reward, which can be adopted by individual scientists. The distribution of
these strategies within a population of researchers should have an impact on the
scientific enterprise as whole, and what kind of impact is something that would be
interesting to assess using ABMs. One could also take into account feedback loops
related to these phenomena: e.g., the more credit you already have, the more likely
you are to be cited, and thus, gain even more credit.14

14The author of the present chapter is currently working on a model trying to take these issues into
account as part of a PhD thesis entitled: “Simulating Science: an Agent-Based Model of Scientific
Evolution”. (Université du Québec à Montréal, Département de philosophie).
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A final suggestion as to what should be addressed by ABMs of science is the
dynamics of research networks. We have seen, with Grim (2009) and Zollman
(2007), that network structure has important effects on social epistemic processes,
but how do these networks form? How do they change over time? Does having a
lot of credit allow a researcher to attract good collaborators, which would, in turn,
provide him with even more credit? Can we simulate the formation of invisible
colleges? What about the rivalry between different communities of researchers? All
these, and many more questions, could potentially be studied using ABMs.

The questions raised in this section are just a (fairly arbitrary) sample of what
could potentially be done by using agent-based models of the scientific process, but
going forward, there are also methodological issues to be addressed.

4.3.2 Methodological Issues

Agent-based modeling in the social sciences is still a fairly immature field, and
ABMs of science even more so. Many researchers are writing about methodological
issues (e.g. Axtell et al. 1996; Cioffi-Revilla 2009; Epstein and Axtell 1996; Gilbert
and Troitzsch 2005), but a common methodological framework for model building
has yet to emerge. In the meantime, many concerns come to mind.

Most of the models we have seen in this chapter have overlapping but slightly
different features. We have compared them to one another, but from a very high-
level, qualitative point of view. There is no doubt that the field would benefit from
more systematic comparisons between models (see Axtell et al. 1996). Independent
replication of existing models is also a useful – but seldom undertaken – endeavor,
which can reveal incoherence (or at least ambiguity) in the original description of a
model.

One can also ask if it is time to try to integrate all of these models into a single
framework (maybe open source?) that everyone can thoroughly explore and even
extend? (In other words, should we continue to be mavericks, or are we ripe for
some followers?)

Agent-based modeling of science calls for knowledge from many different
disciplines: scientometrics, information science, economics, game theory, artificial
intelligence, social network analysis, evolutionary computation, cognitive science
in general and even cognitive anthropology, all have something to contribute.
This probably requires the assembling of interdisciplinary teams and that is a
challenge in itself.

Also, though we did not raise the issue in the previous sections, the fact is that
agent-based simulations are computer programs, and building one is by no means
trivial. There are many tools that one can use to build an ABM: it can be built
from scratch using any programming language, or it can use a powerful low-level
library like MASON (Luke et al. 2005)15 or a high-level framework like NetLogo.16

15http://cs.gmu.edu/�eclab/projects/mason/
16http://ccl.northwestern.edu/netlogo/

http://cs.gmu.edu/~eclab/projects/mason/
http://ccl.northwestern.edu/netlogo/
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Other common frameworks are Repast17 and Swarm,18 but you will find many
others, with different degrees of simplicity, generality and popularity, in Nikolai
and Madey (2009). Lots of questions may be asked: Is this multiplicity of tools a
good or a bad thing? How does it affect collaboration between modelers? How does
it affect reproducibility of the results? Can the models be fully described in abstract,
mathematical language, or does implementation matter? Would we be better off with
a single framework (maybe targeted specifically for science modeling)?

Finally, agent-based modeling of science needs to find a place for itself amongst
traditional mathematical models and scientometrics. Just as it does for traditional
models, scientometrics provides explananda for ABMs. ABMs are able to generate
massive amount of data that can then be analyzed and visualized using the best
available tools from scientometrics. To our knowledge, this has not fully been done
yet, though Börner et al. (2004) took a significant step in the right direction. But
still, it is an area where ABMs of science are sorely lacking.19

As for the relationship between ABMs and traditional analytical models, we have
seen in Sect. 4.1.3.2 that ABMs can be used to challenge some idealizations made
by other models. Hopefully, this can lead to a process of back-and-forth exchange
that will be profitable for both types of models.

Key points
In their current state, agent-based models of science do not provide all that
much in the way of direct policy recommendations. Nonetheless, some of
the models we have seen point towards a few key insights that need to be
recognized:

• In all knowledge-seeking systems, there is a trade-off between exploitation
and exploration: a delicate balance between fine-tuning the knowledge you
already have and striving for completely new knowledge. As Weisberg and
Muldoon (2009) have shown, a population of scientists needs at least a few
“mavericks,” and that should be taken into account with things like funding
decisions.

• Closely related to that first point is the issue of the division of cognitive
labor: we want scientific resources to be allocated to different projects in a
way that is optimal for the community as a whole. Individual incentives
are a useful tool to try to achieve that, but as Muldoon and Weisberg
(2010) have shown, some of them might not be as efficient as we think

17http://repast.sourceforge.net/
18http://www.swarm.org/
19To be fair, Gilbert et al. (2007) and Sun and Naveh (2009) do compare their results to
scientometric data, but it is a very small dataset.

http://repast.sourceforge.net/
http://www.swarm.org/
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they are. The long reigning Priority Rule, for instance, might be due for a
reevaluation.

• Scientists are part of communities, and the structure of these communities
matter. The results we have so far regarding this question tend to show
that too much communication between scientists might lead to premature
agreement on some issues (Zollman 2007; Grim 2009). If that is indeed the
case, the pressure to publish early and often may be having adverse effects
on the performance of the science system.

• The concept of an “epistemic landscape” is probably a new one for most
policy-makers, but it has far reaching implications: different policies are
likely to have different effects on different epistemic landscapes, so the
shape of the landscape should be taken into account when trying to
influence the science system. It is not clear yet how to map the shape of
the landscape for any particular domain, but this is a question that is likely
to be at the forefront of “science of science” research in the coming years.

Those various insights show at least the potential of agent-based models of
science, so one last recommendation should be:

• Agent-based models should become part of the policy-maker’s toolbox, as
they enable us to capture a kind of complexity that is not easily tackled
using analytical models. While they are still in their infancy, they open up
a new range of possibilities for investigating the science system.
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Chapter 5
Evolutionary Game Theory and Complex
Networks of Scientific Information

Matthias Hanauske

5.1 Introduction

The encounter of information science with the theory of complex networks is the
main characteristic of a realistic model of science dynamics. Complex information
networks and the social dimension of the network of researchers are combined
in a multi-level network model which functions as the topological background
of the whole market of scientific information. A main goal of academic research
is the diffusion of new research results. This is achieved by interaction between
scientists through reading and citing other authors’ work (Bernius et al. 2010).
Complex citation, co-authorship, and semantic networks have been evolved in
reality, and the theoretical description of the dynamical behavior of these networks
has been addressed in several chapters of this book. The evolution of the market of
scientific information depends not only upon the researchers’ actions, but also upon
the actions of other actors involved in the knowledge-creation process (journals,
libraries, funding agencies, etc.). For some years, the market of scientific publishing
has been forced to make major changes in the process of distributing research
results among scientists. First, the increase in digitalization brought a shift towards
electronic publication, and second, shrinking library budgets in combination with
a constant rise of journal prices have resulted in massive cancellations of journal
subscriptions. In order to regain broad access to research findings, alternative ways
of publishing scientific literature have been developed and have received increased
attention. These new models are summarized under the term “Open Access (OA)”
(Bernius and Hanauske 2007).

Within this chapter, the market of scientific information is modeled as a game
between various actors involved in the knowledge-creation process. The main
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Table 5.1 Major questions raised in this chapter and their answers

Major questions raised in
this chapter

And their answers

1. Why should I deal with
game theory?

By analysing the game structure of a specific decision
problem, decision-makers can learn a lot about the
problem they are involved in.

2. What is the difference
between game theory and
evolutionary game theory?

Evolutionary game theory uses game-theoretical concepts,
but focuses on the strategic decisions within a whole
population of players, and describes the evolutionary,
time-dependent dynamics of the population.

3. What do I need for a
game-theoretical analysis
of my specific decision
problem?

You need only three things: The set of players, the set of
available actions (strategies), and the payoff structure of
the underlying game.

4. What are Nash equilibria,
dominant strategies, and
evolutionary stable
strategies?

These different equilibrium concepts will be defined,
visualized, and explained in detail (see Sect. 5.2). They
are, for example, important for the definition of different
game classes.

5. What types of games are
possible?

Symmetric and unsymmetric games. For symmetric games,
the three different game classes – “dominant games,”
“coordination games,” and “anti-coordination games,” are
possible. For unsymmetric games, there are three major
categories possible: “corner class,” “saddle class,” and
“center class”.

6. How can evolutionary game
theory be applied to
science dynamics?

Two applications are discussed within this chapter.
Section 5.3.1: “Scientific communication and the open
access decision” and Sect. 5.3.2: “Evolution of
Hub-and-Spoke Communication Networks”.

7. In the future, will scientific
information be free of
charge for everyone?

Scientists face a dilemma: Considering a potential loss in
reputation, incentives to perform open access are missing
(see Sect. 5.3.1). Scientific publishers also face a
dilemma, as they fear a profit loss within a totally
“green-open-access publishing market” (see Sect. 5.3.2).

8. Evolutionary game theory
depends only on a few
open parameters. How can
that be? Isn’t nature very
complicated?

With the use of this simple model, one can learn a lot about
the underlying game. However, some aspects are not
included within classical evolutionary game theory. Some
amplifications of the classical theory (“Evolutionary
Game Theory on Complex Networks” and “Evolutionary
Quantum Game Theory”) are discussed in Sect. 5.4.

research goal of the chapter is to understand different publication norms within
the scientific community, especially the description of the time evolution of the
average strategic decision of different actor populations, using the framework of
the evolutionary game theory. How can one include group behavior and social
norms (which might be caused by cultural or moral standards) into the theory of
population dynamics formulated within the evolutionary game theory? Evolutionary
game theory on complex networks using agent-based computation methods and
quantum game theory are recently developed models, and they will be discussed
briefly at the end of this chapter (see Sect. 5.4).
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Within this chapter of the book Models of Science Dynamics–Encounters
between Complexity Theory and Information Science, the framework of evolution-
ary game theory (EGT) is described in detail. After a general introduction and a
discussion of a simple game-theoretical example, the grounding of EGT (Sect. 5.2)
and a brief literature review is presented. The formal mathematical model, different
concepts of equilibria, and various classes of evolutionary games will be defined,
explained, and visualized. In Sect. 5.3, two applications are presented. The first
one (see Sect. 5.3.1) focuses on the open-access game of scientific communication
and extends it to an evolutionary game (for details, see (Hanauske et al. 2007,
2010b)). The second application (see Sect. 5.3.2) focuses on the evolution of
the interconnected network of scientific journals and scientific authors within a
formal “Hub-and-Spoke Communication Network” model. The combination of
evolutionary game theory with the theory of complex networks and the description
of a new framework that includes group behavior and social norms into evolutionary
population dynamics are briefly explained in Sect. 5.4. The chapter ends with a short
summary.

5.2 Evolutionary Game Theory

In 1928, the main inventor of game theory – Johann (John) von Neumann –
published the first article on this important topic (von Neumann 1928).1 The first
book about game theory was published in 1944 by von Neumann and Morgenstern
(von Neumann and Morgenstern 1944). Evolutionary game theory (Smith and
Price 1973; Smith 1974, 1982; Schlee 2004; Miekisz 2008; Szabó and Fáth 2007;
Schlee 2004; Amann 1999; Hanauske 2009) was developed after J.M. Smith had
found that stationary solutions to evolutionary differential equations are connected
with game theory (Smith 1972). In the following years, applications in respect to
biological systems (Sinervo and Lively 1996; Turner and Chao 1999; Kerr et al.
2002; Fraser et al. 2002; Nowak and Sigmund 2002, 2003) and socio-economic
systems–e.g., “public good” games (Clemens and Riechmann 2006), cultural or
moral developments (Enquist and Ghirlanda 2007; Harms and Skyrms 2008), the
evolution of languages (Pawlowitsch 2007), social learning (Enquist and Ghirlanda
2007), the evolution of social norms (Axelrod 1997; Ostrom 2000), the financial
crisis (Hanauske et al. 2009), and the evolution of social networks (Szabó and Fáth
2007; Janssen and Ostrom 2006; Ostrom 2009) – came into the focus of research.

1In principle, the groundings of GT go back to 1800 (e.g. Antoine-Augustin Cournot (1801–
1877) and Francis Ysidro Edgeworth (1845–1926) (Söllner 2001)). Additionally, in the 1913,
Ernst Zermelo had discussed the chess game using a backward-induction method (Zermelo 1913).
However, the first formal, mathematical description of GT was developed by John von Neumann
in the year 1928 (von Neumann 1928).
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5.2.1 Game Theory: A Simple Example

The necessary definitions and fundamental basics of GT and EGT will be explained
in the next subsection; however, the following section explains the use of game-
theoretical concepts with one simple example:

Two persons (Emma and Hans) have to make a decision. Each of them has to
choose between two possible actions. For both of them it is an important decision,
as they might get a great benefit (or a punishment) if they choose the “right” (or
“wrong”) decision. The amount of the potential benefit depends on the decisions of
both persons and not only on the action of one. Unfortunately, they do not have any
possibility of communicating with the other one to coordinate their actions.

GT is a mathematical concept used to analyze such decision states. Every
quantitative mathematical model that tries to explain processes happening in nature
begins with a definition of the necessary parameters. In the following, the parameter
A or B (later also �) will be used to describe a person, a player, a decision-maker,
or even a firm or an animal. In the above example, the parameter A means “Emma”
and the parameter B means “Hans”. The parameter SA will be used to describe the
set of possible strategies (actions) available to Emma, whereas SB describes the set
of available actions of player “Hans.” In the above example, this would be written
as SA D ˚

sA
1 ; sA

2



, as Emma can only choose between two possible actions namely,

strategy one (sA
1 ) and strategy two (sA

2 ). The strategy space of Hans is written in a
similar form: SB D ˚

sB
1 ; sB

2



. The parameter U is used to quantify the potential

benefit (or the amount of punishment) given to players after they have announced
their final decisions.

In principle, to define a game � , one needs three things:

• Who is playing the game? Definition of the set of players: I D fA; B; : : : ; g D
fEmma; Hans; : : : ; g

• What can the players do? Definition of the set of actions (strategies) available for
each player: SA D SEmma D ˚

sA
1 ; sA

2 ; : : : ;



and SB D SHans D ˚
sB

1 ; sB
2 ; : : : ;



• How much can the players win or lose? Definition of the payoff structure of the

game: OUA D OUEmma and OUB D OUHans

Every decision-maker who wants to analyse her/his decision problem (her/his
game) with game-theoretical concepts has to define these three things – therefore,
the simple example is extended with the use of an additional little story. The binary
decision of Emma (Player A) and Hans ( Player B) could be “To stay” or “To go,”
or it could be simply to choose between two strategies (e.g., fbuy, don’t buy g, f left,
rightg, fabove; belowg, fs1; s2g). The benefit if both choose the strategy s1 is very
good for both of them, and the parameter U11 is used in the following to quantify this
benefit. If Emma and Hans choose the strategy s2, it will be bad for both of them,
and the parameter U22 quantifies the value of punishment for both players. If Emma
decides to stay (sA

1 ) and Hans goes, the outcome for Hans will be even slightly better
than the situation for him if both stay (U B

11 < U B
12); the same holds true for Emma:

(U A
11 < U A

21). However, if Emma chooses the strategy sA
2 and Hans stays (strategy
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Fig. 5.1 Game tree of a (2 person)–(2 strategy) game with payoff for player A (UA) and player
B (UB )

sA
1 ), the outcome for Hans will be extremely bad .U B

21 
 U B
22/; the same holds

true for Emma: .U A
12 
 U A

22/. Figure 5.1 visualizes this (two player)–(two strategy)
game as a game tree with four possible payoff outcomes.

GT analyses such decision states, using mathematically defined equilibrium
concepts. The most famous concept of this kind is called the “Nash equilibrium”
(NE). As player B does not know for sure what player A will do, he starts to think
what would be the best for him, if player A chose the strategy sA

1 (staying): “It would
be good for me if player A stays and I stay, but in this case it would be even better
for me to go.” After remaining a moment at this thought, player B starts to think
in the other direction: “If player A goes and I stay, it will be extremely bad for
me – it is really advisable for me to go!” Within the framework of classical GT, the
predicted outcome of this example is that both players decide to go. In the language
of game theory, the strategy s2 is the only NE of this example, and as the game is
a (two player)–(two strategy) normal-form game, s2 is even a dominant strategy. To
be more precise:

The strategy combination .sA
2 ; sB

2 / is a Nash equilibrium because:

Nash equilibrium at .sA
2 ; sB

2 /:

UA.sA
2 ; sB

2 / D U A
22 � UA.sA; sB

2 / 8 sA 2 SA D ˚
sA

1 ; sA
2



UB.sA

2 ; sB
2 / D U B

12 � UB.sA
2 ; sB/ 8 sB 2 SB D ˚

sB
1 ; sB

2



(5.1)

The tragedy of this game is that after both players have made their decision, they
are in a worse situation than when they had chosen the strategy s1 (U A

22 < U A
11

and U B
22 < U B

11) – therefore, the game belongs formally to the class of prisoner’s
dilemma games (class of dominant games with a dilemma).
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Depending on the payoff structure of the game ( OUA and OUB ), different game
classes and outcomes are possible. By analysing the game structure of a specific
decision problem, decision makers can learn a lot about the problem they are
involved in.

The simple example within this subsection was used to explain game-theoretical
concepts. EGT uses these concepts, but focuses on the strategic decisions within
a whole population of players. There exist not only one Emma and one Hans, but
a whole group of players like Emma (group A) and a whole group of players like
Hans (group B). They do not play the game only once – at each time increment
the Emma’s and the Hans’s come together, play the game, receive their payoffs,
and search the next game partner for the next time increment. The framework of
EGT only needs one piece of additional information about the game � : What is
the fraction of players within group A (group A) choosing strategy sA

1 (choosing
strategy sB

1 ) at time zero – the initial value of the strategic decision of the whole
population. Knowing the game � and the initial value, the framework of EGT is
able to show the evolutionary dynamics of the population, and it gives answers about
the thing everybody wants to know: “How is it going to the end?”

5.2.2 Definition and Key Aspects of Evolutionary Game Theory

EGT is a time-dependent dynamical extension of “Game Theory” (GT), which itself
is a mathematical toolbox to explain interdependent decision processes happening in
biological or socio-economic systems. As the variety of different concepts in GT is
very large, and the article is not meant to summarize only GT, the game-theoretical
concepts presented in this article will only focus on “strategic-form games”,2 and
the article does not discuss “extensive-form games” nor “cooperative games.” In
the following, the formal framework of the mixed extension of a (N player)–
(m strategy) game in strategic form will be defined:

N-person game: � WD �I; QS; QU�
Set of players: I D f1; 2; : : : ; N g
Pure strategy space: S D S1 	 S2 	 : : : 	 SN

Pure strategy space of player � 2 I: S� D
n
.s

�
1 ; s

�
2 ; : : : ; s�

m�
/
o

Mixed-strategy space: QS D QS1 	 QS2 	 : : : 	 QSN

Mixed-strategy space of player � 2 I:

QS� D
(

.Qs�
1 ; Qs�

2 ; : : : ; Qs�
m�

/ j
m�X
iD1

Qs�
i D 1; Qs�

i � 0; i D 1; 2; : : : ; m�

)
(5.2)

2The category of “strategic-form games” is often also called “non-cooperative games”.
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Number of strategies available for player � 2 I m�

Mixed-strategy profile of player � 2 I: Qs� D
�

Qs�
1 ; Qs�

2 ; : : : ; Qs�
m�

�T 2 QS�

Vector function of mixed payoffs: QU D � QU1; QU2; : : : ; QUN
� W QS ! RN

Mixed payoff for player � 2 I:

QU�.Qs1; Qs2; : : : ; QsN / D
m1X

i1D1

m2X
i2D1

: : :

mNX
iN D1

U�.s1
i1

; s2
i2

; : : : ; sN
iN

/

NY
�D1

Qs�
i�

Definition (5.2) expresses that three main quantities are necessary to define a (N
player)–(m strategy) game in strategic form. The first quantity, the set of players I,
includes all of the actors involved in the underlying game. In respect to the focus of
this book, I could be understood as the set of entities involved in the knowledge-
creation process (subsets of I: researchers, journals, libraries, funding agencies,
etc.). The second quantity, the set of pure strategies S, expresses all of the available
strategies of all of the actors involved in the game. In principle, each actor � 2 I
could have her/his own set of available strategies (S�). If we focus again on a model
of science, the different subgroups of I will have similar strategy spaces (strategy
space of scholars, strategy space of journals, etc.). The set of mixed strategies of
player � ( QS�) is a mathematical amplification of the set of pure strategies (S�). The
elements belonging to the set of mixed strategies (Qs� D .Qs�

1 ; Qs�
2 ; : : : ; Qs�

m�/ 2 QS�)
consist of m� real numbers (Qs�

i 2 Œ0; 1� 8 i 2 f1; 2; : : : ; m�g) and can be interpreted
as the probability of player � for choosing the pure strategy s

�
i . The third quantity,

the mixed strategy payoff function QU , is used to quantify the potential benefit (or
the amount of punishment) given to the persons. The amount of the potential benefit
(punishment) given to a player � ( QU�) depends on the actions of all players and not
only on the strategy decision of player �.

To be more precise, the following part is constrained to the strategic form of
an unsymmetric (or symmetric) (2 player)–(2 strategy) game � (for details, see
(Hanauske 2009; Szabó and Fáth 2007)):

(2 	 2) game: � WD
�
fA; Bg ;SA 	 SB; OUA; OUB

�

Set of pure strategies of player A and B:

SA D ˚
sA

1 ; sA
2



; SB D ˚

sB
1 ; sB

2



Set of mixed strategies of player A and B:

QSA D ˚QsA
1 ; QsA

2



; QSB D ˚QsB

1 ; QsB
2



Mixed payoff of player � 2 fA; Bg: QU� W � QSA 	 QSB

� ! R

QU�..QsA
1 ; QsA

2 /; .QsB
1 ; QsB

2 // D U
�
11 QsA

1 QsB
1 C U

�
12 QsA

1 QsB
2 C U

�
21 QsA

2 QsB
1 C U

�
22 QsA

2 QsB
2

Payoff matrix for player A and B: OUA D
�

U A
11 U A

12

U A
21 U A

22

�
; OUB D

�
U B

11 U B
12

U B
21 U B

22

�
(5.3)
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The set of mixed strategies of player A ( QSA) and player B ( QSB ) is a mathematical
amplification of the set of pure strategies (SA and SB ). The elements belonging to
the set of mixed strategies (Qs� D .Qs�

1 ; Qs�
2 / 2 S�) of player � D A; B consist of two

real numbers (Qs�
1 2 Œ0; 1� and Qs�

2 2 Œ0; 1�) and can be interpreted as the probability
of player � for choosing the strategy 1 (Qs�

1 ) or 2 (Qs�
2 ). For two-strategy games, the

following normalization condition has to be fulfilled: Qs�
1 C Qs�

2 D 1 8 � D A; B .
Due to the normalizing condition, it is possible to simplify the functional

dependence of the mixed-strategy payoff function:

QU� W .Œ0; 1� 	 Œ0; 1�/ ! R

QU�.QsA; QsB/ D U
�
11 QsA QsB C U

�
12 QsA.1 � QsB/ C

C U
�
21.1 � QsA/QsB C U

�
22.1 � QsA/.1 � QsB/ ; (5.4)

where QsA WD QsA
1 , QsB WD QsB

1 , QsA
2 D 1 � QsA

1 and QsB
2 D 1 � QsB

1 .
In the following, two fundamental equilibrium concepts are defined, namely the

equilibrium in dominant strategies and the Nash equilibrium.
A strategy combination .QsA�; QsB�/ is an equilibrium in dominant strategies if the

following conditions are fulfilled:

Equilibrium in dominant strategies:

QU�.QsA�; QsB�/ � QU�.QsA; QsB/ 8 � D A; B and QsA; QsB 2 Œ0; 1� (5.5)

A strategy combination .QsA�; QsB�/ is called a Nash equilibrium if:

Nash equilibrium: QUA.QsA�; QsB�/ � QUA.QsA; QsB�/ 8 QsA 2 Œ0; 1�

QUB.QsA�; QsB�/ � QUB.QsA�; QsB/ 8 QsB 2 Œ0; 1� (5.6)

An interior (mixed-strategy) NE .QsA?; QsB?/ is a special case of the Definition 5.6,
as the partial derivative of the mixed-strategy payoff function vanishes at the value
of the interior NE:

Interior Nash equilibrium:

@ QUA.QsA; QsB/

@QsA

ˇ̌̌
ˇ̌
QsB DQsB?

D 0 8 QsA 2 Œ0; 1� ; QsB? 2 �0; 1Œ

@ QUB.QsA; QsB/

@QsB

ˇ̌
ˇ̌
ˇQsADQsA?

D 0 8 QsB 2 Œ0; 1� ; QsA? 2 �0; 1Œ (5.7)

The defined equilibrium concepts will be used in Sect. 5.2.3 to classify games
into different classes. The hitherto defined mathematical constructs can be used to
analyze one-shot (2	2) games, while the following equations will describe the time
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evolution of the strategic behavior of a large group of players (population). At each
time increment all of the individual players of the population search randomly for a
partner to play a (2	2) game. Then, after the players have chosen their strategies and
have received their payoffs, they search again for the next game partner. To describe
the time evolution of such a repeated version of the game � , replicator dynamics has
been developed. As the payoff matrices ( OUA and OUB/ of the two persons playing the
game are in general unsymmetric, the whole population of players separates into the
two subpopulations “A” and “B.” Replicator dynamics, formulated within a system
of differential equations, defines in which way the population vector x� D .x

�
1 ; x

�
2 /

evolves in time. Each component x
�
i D x

�
i .t/ (i D 1; 2 and � D A; B) describes

the time evolution of the fraction of different player types i in the �-subpopulation,
where a type-i player is understood as an actor � playing strategy s

�
i . Similar to the

normalizing condition of the mixed strategies, the two population vectors xA and xB

have to fulfill the normalizing conditions of a unity vector:

x
�
i .t/ � 0 and

2X
iD1

x
�
i .t/ D 1 8 i D 1; 2 ; t 2 R; � D A; B: (5.8)

The structure of the time evolution of the components of the two population
vectors xA.t/ D .xA

1 .t/; xA
2 .t/ and xB.t/ D .xB

1 .t/; xB
2 .t// is formulated through

a system of differential equations, known as the equation of Replicator Dynamics
(Amann 1999; Schlee 2004; Miekisz 2008; Hanauske 2009; Szabó and Fáth 2007):

dxA
i .t/

dt
D xA

i .t/

"
2X

lD1

U A
il xB

l .t/ �
2X

lD1

2X
kD1

U A
kl xA

k .t/ xB
l .t/

#

dxB
i .t/

dt
D xB

i .t/

"
2X

lD1

U B
li xA

l .t/ �
2X

lD1

2X
kD1

U B
lk xA

l .t/ xB
k .t/

#
(5.9)

As the number of available strategies in our approach is restricted to two, it is
possible to substitute the second strategy by using condition 5.8: xA

2 D 1 � xA
1 and

xB
2 D 1�xB

1 . The system of differential equations (5.9) can therefore be formulated
as follows (x.t/ WD xA

1 .t/, y.t/ WD xB
1 .t/):

dx.t/

dt
D

0
B@U A

11 � U A
21„ ƒ‚ …

WDaA

C U A
22 � U A

12„ ƒ‚ …
WDbA

1
CA
�
x.t/ � .x.t//2

�
y.t/

� �U A
22 � U A

12

�
„ ƒ‚ …

WDbA

�
x.t/ � .x.t//2

�

D �
aA C bA

� �
x.t/ � .x.t//2

�
y.t/ � bA

�
x.t/ � .x.t//2

�
DW gA.x; y/
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dy.t/

dt
D

0
B@U B

11 � U B
21„ ƒ‚ …

WDaB

C U B
22 � U B

12„ ƒ‚ …
WDbB

1
CA
�
y.t/ � .y.t//2

�
x.t/

� �U B
22 � U B

12

�
„ ƒ‚ …

WDbB

�
y.t/ � .y.t//2

�

D �
aB C bB

� �
y.t/ � .y.t//2

�
x.t/ � bB

�
y.t/ � .y.t//2

�
DW gB.x; y/

(5.10)

Equation (5.10) describes the time evolution of the strategic behavior of two
separate subpopulations playing an unsymmetric bimatrix game. The fraction of
players choosing strategy s1 at time t of the subpopulation “A” is quantified by
x.t/, whereas y.t/ describes the average strategic choice of subpopulation “B.” The
time evolution of the coupled system of differential equations (5.10) depends on the
properties of the two functions gA.x; y/ and gB.x; y/ and on the initial conditions
x.t D 0/ and y.t D 0/.

If we focus on a model of science, the two different subpopulations playing the
evolutionary game could be, for example, the group of scholars (subpopulation “A”)
and the group of journals (subpopulation “B”). The two pure strategies of a member
of the group A of researchers could be based on any relevant, recurring binary deci-
sion a scholar has to decide during her/his research lifetime (e.g., does she/he want
to put her/his new article on a open-access repository). The two pure strategies of a
member of the group B of journals could be any recurring binary decision a journal
has to make (e.g., does the journal allow the authors to put their submitted article
version on an open-access repository). The fraction of researchers choosing strategy
sA

1 OD (put the article on an open-access repository) at time t is quantified by x.t/,
where x D 1 corresponds to a situation where every scholar uses open-access
repositories, and x D 0 means nobody uses them. Similarly, the fraction of journals
choosing strategy sA

1 OD (allowing open-access repositories) at time t is quantified
by y.t/, where y D 1 corresponds to a situation where every journal allows open-
access repositories and y D 0 means no journal allows it. The two payoff matrices
finally quantify the potential benefit to the researchers ( OUA) and journals ( OUB ). This
particular bimatrix game will be discussed in more detail within Sect. 5.3.2.

By restricting the underlying payoff matrix to be symmetric ( OUA �
� OUB

�T

,

Ulk WD U A
lk D U B

kl ), the two separate subpopulations (A and B) cannot be
distinguished any more and the system of differential equations (5.9) simplifies as
follows:

dxA
i .t/

dt
D xA

i .t/

"
2X

lD1

Uil xB
l .t/ �

2X
lD1

2X
kD1

Ukl xA
k .t/ xB

l .t/

#

dxB
i .t/

dt
D xB

i .t/

"
2X

lD1

Uil xA
l .t/ �

2X
lD1

2X
kD1

Ukl xA
l .t/ xB

k .t/

#
(5.11)
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Equation (5.11) indicates that the mathematical structures of the two population
vectors xA and xB are identical, which simply means that a symmetric evolutionary
game can be described by a single population vector x WD xA D xB . In respect to
a model of science, this means that (5.11) can only be used for subgames with
strategic decisions involving only one set of knowledge entities. Therefore the
system of differential equations (5.11) reduces to one single equation:

dxi .t/

dt
D xi .t/

2
666664

2X
lD1

Uil xl .t/

„ ƒ‚ …
WDfi .t/

�
2X

lD1

2X
kD1

Ukl xk.t/ xl .t/

„ ƒ‚ …
WD Nf .t/

3
777775

(5.12)

where fi .t/ is the fitness of type i and Nf .t/ D P2
iD1 fi .t/ is the average fitness of

the whole population. Again, the overall vector x D .x1.t/; x2.t// has to fulfill the
normalizing conditions of a unity vector:

xi .t/ � 0 8 i D 1; 2 and
2X

iD1

xi .t/ D 1 8 t 2 R: (5.13)

For a symmetric game, (5.12) can therefore be simplified as follows:

dx

dt
D x


U11.x � x2/ C U12.1 � 2x C x2/ C U21.x

2 � x/ C U22.2x � x2 � 1/
�

D x

2
4.U11 � U21/„ ƒ‚ …

WDa

.x � x2/ � .U22 � U12/„ ƒ‚ …
WDb

.1 � 2x C x2/

3
5

D x

a.x � x2/ � b.1 � 2x C x2/

�
DW g.x/ with: x D x.t/ WD x1.t/ and x2.t/ D .1 � x.t// (5.14)

The function x.t/, describing the fraction of players choosing the strategy s1 at
time t , depends on the function g.x/ and on the initial starting value x.t D 0/. The
stationary solution of the asymptotic behavior lim

t!1.x.t// depends also on g.x/ and

on the initial condition, and it is formalized within the mathematical concept of the
Evolutionary Stable Strategy (ESS). For a general 2-player game � with the mixed
payoff functions QUA and QUB , a strategy combination .QsA�; QsB�/ 2 .Œ0; 1� 	 Œ0; 1�/ is
defined as an (ESS) if:

a) .QsA�; QsB�/ is a Nash equilibrium of the game

b) QUA.QsA; QsB/ � QUA.QsA�; QsB/ 8 QsA 2 rA.QsB�/ ; QsB ¤ QsB�
QUB.QsA; QsB/ � QUB.QsA; QsB�/ 8 QsB 2 rB.QsA�/ ; QsA ¤ QsA� .
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Let rB.QsA/ and rA.QsB/ signify the best response functions of players B and A
to the strategy QsA and QsB , respectively. An ESS .QsA�; QsB�/ therefore needs to be a
Nash equilibrium of the game, and also the inequations b) should be fulfilled for any
strategy combination .QsA; QsB/ belonging to the set of best responses to .QsA�; QsB�/.

This survey has focused on deterministic evolutionary game dynamics and
has specially concentrated on replicator dynamics. Stochastic evolutionary game
dynamics and adaptive or rational learning processes have not been discussed (for
a detailed analysis, see e.g., Sandholm 2010). The discussed evolutionary dynamics
uses only the revision protocol of replicator dynamics and other possible types of
dynamics (nonlinear payoff functions, general imitation dynamics, best-response
dynamics, logit dynamics and Brown-von Neumann–Nash dynamics) were not
discussed within this chapter either (for a detailed analysis, see e.g., (Sandholm
2010; Hofbauer and Sigmund 2003)). The conjunction of evolutionary game theory
with the theory of complex networks using concepts from agent-based modeling is
a new and interesting scientific topic, but it is not addressed within this chapter (for
a detailed analysis, see e.g., (Szabó and Fáth 2007; Hofbauer and Sigmund 2003)).

5.2.3 Classes of Evolutionary Games

Within this subsection, the possible classes of (2 player)–(2 strategy) games are
defined. The first part of this subsection focuses on classes of the symmetric version
of the game � (see (5.14)), whereas the second part deals with the bimatrix version
of the game (see (5.10)).

5.2.3.1 Classes of Symmetric Games

Following the classification scheme of (Weibull 1995) (see also Szabó and Fáth
2007), only three classes of symmetric (2 player)–(2 strategy) games are possible,
namely the dominant game class, the class of anti-coordination games, and the
coordination game class. For a < 0 and b > 0 (see (5.14)), the game belongs
to the class of dominant games having only one pure NE (sA

1 ; sB
1 ), which is also the

dominant strategy and the only ESS of the game. For a; b < 0, the game � is an anti-
coordination game, having two pure, non-symmetric Nash equilibria ((sA

1 ; sB
2 ) and

(sA
2 ; sB

1 )), and one symmetric interior mixed strategy NE .QsA?; QsB?/ D . b
aCb

; b
aCb

/,
which is the only ESS of the game. For a; b > 0, the game belongs to the
coordination game class, having two pure symmetric Nash equilibria ((sA

1 ; sB
1 ) and

(sA
2 ; sB

2 )), which are the two possible ESSs, and one symmetric interior NE at
.QsA?; QsB?/ D . b

aCb
; b

aCb
/. For b < 0 and a > 0, the game is again a dominant

game, having only one pure NE and ESS at (sA
2 ; sB

2 ).
To illustrate these formal results and visualize the outcomes of the different game

classes, this section presents the numerical simulations with different parameter
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Table 5.2 Parameter values of the three different sets of symmetric games

Parameter
setting

Game class U11 U12 U21 U22 a b Nash equilibria

Set1 Dominant
class

10 4 12 5 �2 1 One pure Nash
equilibrium (sA

2 ; sB
2 )

Set2 Coordination
class

10 4 9 5 1 1 Two pure Nash
equilibria and one
interior NE at
s? D 1

2

Set3 Anti-
Coord.
class

10 7 12 5 �2 �2 Two pure asymmetric
Nash equilibria and
one interior NE at
s? D 1

2

12
UA~

10

8

6

1
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Fig. 5.2 Mixed-strategy payoff function QUA.QsA; QsB/ for player A within parameter set Set1 as a
function of the mixed strategies of player A (QsA) and B (QsB )

settings of symmetric games. The parameter setting Set1 belongs to the class of
dominant games, parameter setting Set2 belongs to the coordination game class,
whereas the setting Set3 describes an anti-coordination game. Table 5.2 summarizes
the different parameters of the three sets.

Dominant Games

Figure 5.2 visualizes the mixed-strategy payoff function QUA.QsA; QsB/ (see (5.4)) for
player A within parameter set Set1. The right picture shows a special projection of
the surface in which the observer looks in the direction of the QsA-axis. The figure
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Fig. 5.3 Function x.t/, the fraction of players choosing the strategy s1 at time t , for different initial
conditions within parameter set Set1 (left picture). The picture on the right shows the function g.x/,
which determines the dynamical behavior of x.t/

shows that the parameter set Set1 belongs to the class of dominant games and that
only one pure NE exists ((sA

2 ; sB
2 ) OD.QsA D 0; QsB D 0)), which is the dominant

strategy of the game. This property can be seen in the left picture of Fig. 5.2 if
one fixes the mixed strategy of player B to an arbitrary value (QsB 2 Œ0; 1�). The best
response for player A will always be the dominant strategy sA

2 OD .QsA D 0/. However,
a dilemma appears within Set1, as the payoff for the dominant strategy combination
( QUA.QsA D 0; QsB D 0/ D 5) is far below the highest point of the surface. If both
players had chosen the strategy combination (sA

1 ; sB
1 ) OD.QsA D 1; QsB D 1), it would

have been much better for them ( QUA.QsA D 1; QsB D 1/ D 10). The structure of the
game within parameter set Set1 is comparable to a “prisoner’s dilemma” game. As
no interior NE is present within parameter set Set1, the partial derivative (see (5.7))
of QUA does not vanish within the given boundaries. The right picture of Fig. 5.2
visualizes this fact as no cord-up point was found within the special QsA-projection.

The right picture of Fig. 5.3 shows the function g.x/ within parameter set
Set1, whereas the left picture visualizes the numerical results of replicator dynam-
ics (x.t/, see (5.14)) for several initial conditions of the population function
(x.t D 0/ D 0; 0:05; 0:1; :::; 0:95). As the function g.x/ is negative for all x 2�0; 1Œ,
the fraction of players choosing the strategy s1 (x.t/) will always decrease until
everybody chooses the strategy s2, independently of the initial condition.

Coordination Games

Within parameter set Set2, the payoff U21 D 9 has decreased compared to the
value of Set1 (U21 D 12). Due to this decrease, the game class has shifted
from the class of dominant games to the coordination game class. The game
has now two pure, symmetric Nash equilibria ((sA

1 ; sB
1 ) OD.QsA D 1; QsB D 1) and

(sA
2 ; sB

2 ) OD.QsA D 0;QsB D 0)) and one interior mixed-strategy Nash equilibrium
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Fig. 5.4 Mixed-strategy payoff function QUA.QsA; QsB/ for player A within parameter set Set2 as a
function of the mixed strategies for player A (QsA) and B (QsB )

(.QsA?; QsB?/ D . 1
2
; 1

2
/). The apparency of the two pure Nash equilibria is visualized

within the left picture of Fig. 5.4. If player B is expected to choose a mixed strategy
QsB > s?, the best response for player A is the pure strategy s1 ODQsA D 1, whereas
if player B is expected to choose a mixed-strategy QsB < s?, the best response for
player A is the pure strategy s2 ODQsA D 0. The mixed-strategy Nash equilibrium
is visualized within the right picture of Fig. 5.4. Due to the fact that the partial
derivative of the payoff surface for player A vanishes at the value of the mixed
strategy NE, the whole surface shrinks to one point, if one projects the viewpoint in
the direction to the QsA-axis (see the right picture of Fig. 5.4).

The value of the mixed-strategy Nash equilibrium is equal to the zero point
of the function g.x/ (see right picture of Fig. 5.5). The function g.x/ (which
determines the dynamical behavior of the population function x.t/) has, beside
its negative region .g.x/ < 0 8 x 2�0; s?Œ /, also a region where its value is
positive (g.x/ > 0 8 x 2�s?; 1Œ). Due to this property, two evolutionary stable
strategies emerge (x.t ! 1/ D 0 and x.t ! 1/ D 1). To which of these ESSs
the population will evolve depends on the initial condition. If the fraction of s1-
player types at the initial time t D 0 is below the value of the mixed strategy
NE (x.0/ < s? D 0:5), the population will evolve to the ESS lim

t!1.x.t// D 0,

which corresponds to a population solely choosing the s2-strategy. Only if the initial
fraction is above the mixed strategy threshold (x.0/ > s?), the population will end
in the ESS lim

t!1.x.t// D 1. The horizontal population path at x.0:5/ D 0:5 is an

artefact of the numerical simulation and is not an ESS, as the solution is unstable in
respect to infinitely small perturbations.
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Fig. 5.5 Function x.t/, the fraction of players choosing the strategy s1 at time t , for different initial
conditions within parameter set Set2 (left picture). The picture on the right shows the function g.x/,
which determines the dynamical behavior of x.t/

Anti-Coordination Games

Within parameter set Set3, the payoff U12 D 7 has increased above the U22-value
(Set3: U22 D 5). Due to this increase, the game class has shifted towards the class
of anti-coordination games. Such games have two asymmetric pure Nash equilibria
((sA

1 ; sB
2 ) and (sA

2 ; sB
1 )) and one interior mixed-strategy Nash equilibrium, which is

the only ESS of such games. The apparency of the two asymmetric Nash equilibria
is visualized within the left picture of Fig. 5.6, whereas the mixed-strategy Nash
equilibrium (Set3: s? D 0:5) is visualized within the right picture.

The value of the mixed-strategy NE is again equal to the zero point of the function
g.x/ (see right picture of Fig. 5.7). The function g.x/ has now a positive region
at (g.x/ > 0 8 x 2�0; s?Œ) and a negative region at (g.x/ < 0 8 x 2�s?; 1Œ).
Independently of the specific value of the initial condition, the population will
always asymptotically end in the ESS x D s? D 0:5 (see the left picture of Fig. 5.7).

It was shown within this subsection that symmetric (2 	 2)-games can be
separated into three classes. However, if the number of available strategies increases,
the number of possible classes also needs to be extended. Zeeman has defined 19
different game classes of symmetric (2 	 3)-games (Zeeman 1980).

5.2.3.2 Classes of Bimatrix Games

This subsection summarizes the numerical results of the unsymmetric model,
where two separate subpopulations play an evolutionary bimatrix game.
Following the bimatrix classification scheme of Cressman (2003) (see also
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Fig. 5.7 Function x.t/, the fraction of players choosing the strategy s1 at time t , for different initial
conditions within parameter set Set3 (left picture). The picture on the right shows the function g.x/,
which determines the dynamical behavior of x.t/

(Szabó and Fáth 2007)), again only three major3 classes are possible within the
unsymmetric version of the game � , namely the corner class, the center class and
the saddle class. The game belongs to the saddle class if all of the parameters are
positive (aA; bA; aB ; bB > 0). Saddle-class games have an interior mixed-strategy

3Beside the three major (generic) classes there exist also degenerate cases, where one ore more of
the parameters aA; bA; aB and bB are zero (see Szabó and Fáth 2007).
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Table 5.3 Parameter values of the four different sets of unsymmetric games

Parameter
setting

� Class of
Game �

U
�
11 U

�
12 U

�
21 U

�
22 a� b� Nash equilibria

of game �

Game class
NE and ESS

Setus
1 A: Dominant

class
10 4 14 5 �4 1 One pure NE

(sA
2 ; sB

2 )
Corner class

B: Dominant
class

10 12 2 5 �2 3 One pure NE
(sA

2 ; sB
2 )

One NE
being
ESS
(sA

2 ; sB
2 )

Setus
2 A: Coord.

class
10 4 9 5 1 1 Two pure NE,

one int. NE
(s? D 1

2 )

Saddle class

B: Coord.
class

10 7 4 5 3 1 Two pure NE,
one int. NE
(s? D 1

4
)

Two ESSs
(sA

1 ; sB
1 ),

(sA
2 ; sB

2 )

Setus
3 A: Anti-Co.

class
10 7 12 5 �2 �2 Two pure NE,

one int. NE
(s? D 1

2
)

Saddle class

B: Anti-Co.
class

10 12 9 5 �2 �4 Two pure NE,
one int. NE
(s? D 2

3 )

Two ESSs
(sA

1 ; sB
2 ),

(sA
2 ; sB

1 )

Setus
4 A: Coord.

class
10 4 7 5 3 1 Two pure NE,

one int. NE
(s? D 1

4
)

Center class

B: Anti-Co.
class

10 12 9 5 �2 �4 Two pure NE,
one int. NE
(s? D 2

3
)

No NE nor
ESS

Nash equilibrium at .QsA?; QsB?/ D . bB

aB CbB ; bA

aACbA / and two pure, symmetric Nash
equilibria ((sA

1 ; sB
1 ) and (sA

2 ; sB
2 )), which are the two ESSs of the game. For

aA; bA > 0 and aB; bB < 0 (or aA; bA < 0 and aB; bB > 0), the game describes
a center-class game, having only one NE, namely the interior mixed-strategy NE
at .QsA?; QsB?/ D . bB

aB CbB ; bA

aACbA /. Center-class games do not have any ESS, and
the population trajectories are closed cycles. Corner-class games emerge if the
parameters fulfill the following conditions: aA < 0 < bA; bB > 0; aB ¤ 0

(or aB < 0 < bB; bA > 0; aA ¤ 0). Such games have only one pure Nash
equilibrium (sA

2 ; sB
2 ) (or (sA

1 ; sB
1 )), which is the dominant strategy and the only ESS

of the game.
To illustrate these theoretical results and visualize the outcomes of the different

game classes, the parameters were fixed within four different game settings (see
Table 5.3). The parameter setting Setus

1 belongs to the corner class of bimatrix games,
the sets Setus

2 and Setus
3 are saddle-class games, and the last setting (Setus

4 ) describes
a game that belongs to the center class.
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Fig. 5.8 Left picture: Mixed-strategy payoff function for player A ( QUA.QsA; QsB /, dark surface)
and player B ( QUB .QsA; QsB /, bright surface) within parameter set Setus

1 as a function of the mixed
strategies of player A (QsA) and B (QsB ). Right picture: gx.x; y/ (dark surface) and gy.x; y/ (bright
surface) as functions of the strategic population fractions of group A (x) and group B (y)

Corner class

The left picture of Fig. 5.8 visualizes the mixed-strategy payoff function for player
A– QUA.QsA; QsB/: dark surface, see (5.4) – and player B – QUB.QsA; QsB/: bright surface–
within parameter set Setus

1 . The set Setus
1 is similar to the symmetric parameter set

Set1 of a prisoner’s dilemma game. In contrast to the set Set1, the two game matrices
for player A and B are unsymmetric (U A

12 D 4 ¤ 2 D U B
21 and U A

21 D 14 ¤ 12 D
U B

12). The structure of the surfaces indicates that both groups have again only one
NE, which is the dominant strategy (sA

2 ; sB
2 ) OD.QsA� D 0; QsB� D 0/.

The right picture of Fig. 5.8 displays the two functions gx.x; y/ (dark surface)
and gy.x; y/ (bright surface) that determine the dynamical behavior of the strate-
gical decisions of group A (x.t/) and group B (y.t/) (see (5.10)). The amount
of players choosing strategy s1 will in both groups monotonically decrease and
will – independently of the initial value – finally reach the only ESS .x D 0;

y D 0/, because the two surfaces are always below or equal to zero (gx.x; y/ � 0;

gy.x; y/ � 0 8 x; y 2 Œ0; 1�).
The evolution of the strategic behavior of the two groups is visualized in

Fig. 5.9. The plot describes the numerical results of (5.10) for three different
initial conditions, displayed through the three curves (xy-trajectories). The three
trajectories are embedded in a field-plot phase diagram, where the little grey arrows
describe the direction of a “strategic wind” the population has to follow during its
time evolution. The three initial conditions (x.0/; y.0/) are marked with circles
at the beginning of the three curves. The several arrows which are on top of the
trajectories describe the population movement for some intermediate time steps,
where the length of arrows indicate the absolute value of the strategic change
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Fig. 5.9 Phase diagram of the xy-trajectories for three different initial conditions within parame-
ter set Setus

1 . x describes the fraction of players within group A choosing the strategy s1, while y is
a similar fraction within group B

velocity within the population. Within Fig. 5.9, the difference in the intermediate
time steps (ıt D 0:125) is equal for all three trajectories. The unsymmetric behavior
of the trajectories is due to the unsymmetry of the parameter set. The middle curve,
for example, starts at a symmetric initial value (x.0/ D 0:9; y.0/ D 0:9), but as
time evolves, it follows an unsymmetric evolution.

The interpretation of the results of Fig. 5.9 is comparable to the results for the
parameter set Set1 of the symmetric model. Both population subgroups play a
prisoner’s dilemma game and the evolution of their strategical choice will finally –
independently of the initial condition – reach a state where everybody chooses the
dominant strategy s2. Similar to the symmetric model, the players face a dilemma,
as the two populations evolve towards a low-payoff ESS ( QU�.0; 0/ D 5 < 10 D
QU�.1; 1/). The game category belongs formally to the corner class. The velocity of

the strategic change (length of the colored arrows) of the three trajectories differs
slightly during the evolution. In the middle region of the trajectories, the velocity is
the highest, whereas at the end (near to the ESS), the strategic change slows down
very much.

Saddle class

Within the parameter set Setus
2 , both subpopulations play a coordination game.

A bimatrix game that is composed of two coordination games always results in a
saddle-class game. The structure of the payoff surfaces (see left picture in Fig. 5.10)
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Fig. 5.10 Payoffs and functions gx.x; y/ and gy.x; y/ within set Setus
2 ; similar to the description

in Fig. 5.8
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Fig. 5.11 Phase diagram for three different xy-trajectories within set Setus
2 ; similar to the

description in Fig. 5.11

indicates that both groups have now two pure Nash equilibria ((sA
1 ; sB

1 ) and (sA
2 ; sB

2 )).
Additionally, there exists an interior mixed strategy NE (.QsA?; QsB?/ D . 1

2
; 1

4
/).

To indicate the zero-level, an additional white plane was added to Fig. 5.10 (right
hand side). Within this parameter set, the two surfaces have regions where they
have positive values (gx.x; y/ > 0 8 y 2�QsB?; 1� and gy.x; y/ > 0 8 x 2
�QsA?; 1�) and regions where they are negative (gx.x; y/ < 0 8 y 2�0; QsB?Œ and
gy.x; y/ > 0 8 x 2�0; QsA?Œ). The interior mixed strategy NE is exactly at the point
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Fig. 5.12 Payoffs and functions gx.x; y/ and gy.x; y/ within set Setus
3 ; similar to the description

in Fig. 5.8

where all of the three surfaces intersect. As all of the parameters (aA; aB; bA; bB )
are positive, the game category belongs to the saddle class of bimatrix games and it
has two symmetric ESSs.

The results of the evolutionary game of parameter set Setus
2 are visualized in

Fig. 5.11. As the strategic change velocities of the three different trajectories are
quite different, the time steps (ıt) between the arrows are not the same for the three
different population paths. The two trajectories, which start at .x.0/ D 0:1; y.0/ D
0:8/ and .x.0/ D 0:6; y.0/ D 0:1/, have the same time increment (ıt D 0:35),
whereas the arrows on the third path are separated by a time lag of ıt D 2.
The strategic change of this latter population path is the slowest; starting from an
initial condition (x.0/ D 0:7; y.0/ D 0:1), the fraction of players who choose the
s1-strategy monotonically decreases within group B (y.t/), while within group A
(x.t/), the s1-fraction first decreases and then increases until the whole population
finally ends in the ESS (sA

1 ; sB
1 ) OD.QsA� D 1; QsB� D 1/ (all players choose the s1-

strategy). The trajectory, which starts at the initial condition (x.0/ D 0:1; y.0/ D
0:8), also ends within the ESS (sA

1 ; sB
1 ). Its strategic change velocity, however, slows

down very much at the region near the interior NE. The evolution of the trajectory,
which starts at the initial condition .x.0/ D 0:6; y.0/ D 0:1/, however, is totally
different. The s1-fraction monotonically decreases within group A (x.t/), while
within group B (y.t/), the s1 fraction first increases and then decreases, until the
whole population finally ends in the ESS (sA

2 ; sB
2 ) OD.QsA� D 0; QsB� D 0/ (all players

choose the s2-strategy). Similar to the curve, which starts at .x.0/ D 0:1; y.0/ D
0:8/, the strategic change velocity slows down very much at the region near to the
interior NE.

Parameter set Setus
3 is a saddle-class bimatrix game in which both subpopulations

play an anti-coordination game. The structure of the payoff surfaces (see left picture
in Fig. 5.12) indicates that both groups have two asymmetric pure Nash equilibria
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Fig. 5.13 Phase diagram for three different xy-trajectories within set Setus
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Fig. 5.14 Payoffs and functions gx.x; y/ and gy.x; y/ within set Setus
4 ; similar to the description

in Fig. 5.8

((sA
1 ; sB

2 ) and (sA
2 ; sB

1 )) and one interior mixed strategy NE (.QsA?; QsB?/ D . 1
2
; 2

3
/).

As all of the parameters (aA; aB; bA; bB) are negative, the game category belongs to
the saddle class of bimatrix games, and it has two asymmetric ESSs.

The results of the evolutionary game of parameter set Setus
3 are visualized in

Figs. 5.12 and 5.13. The time steps (ıt) between the arrows are the same for all
three population paths (ıt D 0:125).
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Center class

Finally, the last parameter set (Setus
4 ) belongs to the category of center-class games.

Within parameter set Setus
4 , the subpopulation A plays a coordination game, while

subpopulation B plays an anti-coordination game. The structure of the payoff
surfaces (see left picture in Fig. 5.14) indicates that there is only one interior mixed-
strategy NE (.QsA?; QsB?/ D . 1

4
; 2

3
/).

The results of the evolutionary game of parameter set Setus
4 are visualized in

Fig. 5.15 and show that all of the trajectories cycle around the interior NE, which
indicates the absence of an ESS. The time needed for one cycle is larger for bigger
cycles and, as a result, the time steps (ıt) between the arrows are the smallest for the
inner trajectory (ıt D 6:5) and the biggest for the outer curve (ıt D 14:5) (middle
curve: ıt D 8).

5.3 Applications

In recent years, the market of scientific publishing faces several forces that may
cause a major change of traditional market mechanisms. Currently, two main
approaches have emerged. On the one hand, new open-access journals are brought
to being, either through transformation of traditional journals or through creation
of new titles. This approach is often called the “Golden Road to Open Access.” On
the other hand, authors may self-archive their articles in institutional or subject-
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Table 5.4 Researchers’
open-access payoff matrix

AnB o ø

o (r C ı,r C ı) (r � ˛,r C ˇ)
ø (r C ˇ,r � ˛) (r ,r)

based repositories, a model referred to as the “Green Road to Open Access”
(Harnad 2005; Guedon 2004). The digital revolution of the information age and,
in particular, the sweeping changes of scientific communication brought about
by computing and novel communication technology, potentiate global, high-grade
scientific information for free. The arXiv, for example, is the leading scientific
communication platform, mainly for mathematics and physics, to which everyone
in the world has free access on. In the following, we understand open-access
publishing as the electronic publication of scientific information on a platform
that provides access to this information for all potential users, without financial
or other barriers. In contrast, most other scientific disciplines do not make use of
open-access publishing, even though they support this model if asked for (Deutsche
Forschungsgemeinschaft 2006; Schroter et al. 2005). Instead, they submit research
papers to traditional journals that do not provide free access to their articles.
Considering that the majority of scientists regard open-access publishing as superior
to the traditional system, one may question why it is adopted only by a few
disciplines.

5.3.1 Scientific Communication and the Open-Access Decision

Based on the assumption that the main goal of scientists is the maximization of their
reputation, we try to answer this question from the perspective of the producers of
scientific information by using a game-theoretical approach. Scientific reputation
originates mainly from two different sources: on the one hand, the citations to the
articles of a scientist, and on the other hand, the reputation of the journals in which
she/he publishes her/his articles (Dewett and Denisi 2004). Starting from a general
symmetric (2 player)–(2 strategy) game � (see definition (5.3)), where two authors
have to decide whether they publish open access or not, different possible game
settings are developed. This application focuses on a one-population model of an
open-access game of scientific communication and extends it to an evolutionary
game (for details, see Hanauske et al. 2007, 2010b).

To describe the underlying open-access game, we use a normal-form representa-
tion of a two-player game � where each player (Player 1 OD A, Player 2 OD B) can
choose between two strategies (SA D fsA

1 ; sA
2 g, SB D fsB

1 ; sB
2 g). In our case, the

two strategies represent the authors’ choice between publishing open access (o) or
not (ø). The whole strategy space S is composed with use of a Cartesian product of
the individual strategies of the two players (scientists):

S D SA 	 SB D f(o,o); (o,ø); (ø,o); (ø,ø)g (5.15)
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As outlined before, it is assumed that the main objective of scientists is the
maximization of their reputation. In the following, we focus on a situation where the
two scientists belong to a scientific community in which the open-access paradigm
is not yet broadly adopted, and the publishers decline the acceptance of articles that
are already accessible on an open access server. The payoff structure of this game is
modeled by the following payoff matrix (Table 5.4).

The actual reputation of the two scientists is represented by a single parameter r .4

If both players decide to publish their papers only in traditional journals (ø,ø), their
reputation r does not change. If only one of the two players chooses the open-
access strategy ((ø,o) or (o,ø)), the parameters ˛ and ˇ (˛; ˇ � 0) describe the
decrease and the increase of the scientists’ reputation, depending on the selected
strategy. By modeling the payoff in this way, it is assumed that the reputation of
the player who performs open access decreases if the other player simultaneously
decides not to publish open access. This can be explained by the fact that in “non-
open-access communities,” reputation is mainly defined through the reputation of
the journals in which a scientist publishes. Thus, if performing open-access (making
publication in traditional journals impossible), the scientist has no chance to gain
journal-related reputation anymore. On the other hand, the parameter ˇ describes the
potential increase of reputation of a scientist who refuses to perform open-access,
while the other player selects the open-access strategy. The parameter ı represents
the potential benefit in the case that both players choose the open-access strategy
(o,o). The payoff for each player then is r C ı. In this case, it is assumed that if both
players choose the open-access strategy, the publishers are forced to accept articles
for publication even if they are already accessible (see also the application discussed
in Sect. 5.3.2). Then, scientists can gain reputation both through the reputation of
the journal they publish in and through the increase of citations due to a broader
accessibility (Lawrence 2001; Harnad and Brody 2004; Eysenbach 2006).

As the presented open-access game is a symmetric game and the parameter
b D ˛ is positive, the underlying game class depends only on the sign of the
parameter a D ı � ˇ. For ı > ˇ, the game belongs to the class of coordination
games, whereas for ı < ˇ, the game has the structure of a dominant game with
a dilemma. For example, if the payoff parameters are fixed to the values ˛ D 1,
ˇ D 2:25, and ı D 0:25 (a D �2 and b D 1), the results of the open-access game
would be identical to the parameter setting Set1 of the dominant game presented in
Sect. 5.2.3.1. Although the payoff for both players would be higher if they chose the
strategy set (o,o), they are stuck within the Nash equilibrium (ø,ø). This outcome
describes the paradox situation of many scientific disciplines: On the one hand,
scientists realize that they would benefit if all players adopt open access, but on
the other hand, no player has an individual incentive to change. For ˛ D 1,
ˇ D 0:25, and ı D 1:25 (a D 1 and b D 1), the game belongs to the class of
coordination games, and its corresponding results are also discussed in Sect. 5.2.3.1

4By using this formalization, we assume that both scientists are on a similar level of reputation. If
they would have different “starting” reputation values, the game would be unsymmetric.
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Table 5.5 Payoff matrix of
the “Author(A)–Journal(B)”
open-access bimatrix game

AnB o ø

o (r C ı C I , r � �) (r C ı , 0)
ø (r C I , r) (r � P C I , r C P )

(see parameter setting Set2). In contrast to set Set1, this game has two pure Nash
equilibria ((o,o) and (ø,ø)) and one mixed-strategy Nash equilibrium 1

2
(o,o). (o,o)

is payoff dominant, whereas (ø,ø) is the risk-dominant pure Nash equilibrium. The
mixed-strategy Nash equilibrium 1

2
(o,o) implies that one scientist has the incentive

to choose non-open-access if she/he expects the probability of the other player to
choose non-open-access to be higher than 50 % (for further details see (Hanauske
et al. 2007)). As b D ˛ > 0, the class of the open-access game cannot be
parameterized as an anti-coordination game.

5.3.2 Evolution of Hub-and-Spoke Communication Networks

Within this subsection, the interconnected network of scientific journals and
researchers is modeled as an unsymmetric bimatrix game. This application is
an example of a more general analysis of a “Hub-and-Spoke Communication
Network,” which is currently under investigation (Hanauske et al. 2010a). The main
actors within the scientific communication network are the authors of scientific
articles (Spokes, population group A) and the scientific journals (Hubs, population
group B). Following the approach of Habermann (Habermann and Habermann
2009), but restricting the focus to green open access, the researchers have two possi-
ble strategies fsA

1 ; sA
2 g D fo,øg ODfpublishing open access, conventional publishingg.

Within the underlying game, the group of scientific journals have the following two
strategies: fsB

1 ; sB
2 g D fo,øg ODfaccept open access, decline open accessg. Table 5.5

describes one possible way of a parameterization of the “Author(A)–Journal(B)”
open-access bimatrix game (see also (Habermann and Habermann 2009) for another
kind of parameterization). Similar to what was introduced in Sect. 5.3.2, the
parameter r describes the reputation of the scientist and the parameter ı quantifies
the author’s potential benefit if she/he chooses the open-access strategy o. The
parameter I describes the author’s additional increase in reputation if she/he
publishes her/his new article within the journal (e.g., the journal’s impact factor).
Parameter � is meant as a quantity that measures the journal’s hypothetical payoff
decrease due to fears of a totally green-open-access publishing market. Finally, the
parameter P quantifies the possibility of an extraordinary journal price increase due
to the journal’s market power in a totally conventional publishing market. Taking
the parameterization of Table 5.5, the underlying class is only dependent on the
following parameters: aA D ı, bA D I � P � ı, aB D r � �, and bB D P . Because
aA D ı > 0 and bB D P > 0, the game category cannot belong to the center-class
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Fig. 5.16 bA D I � 2 (solid, colored surface) and aB D 3 � � (wired surface) as a function of
the parameters I and �. The other parameters are fixed to the values: ı D 1, r D 3 and P D 1

games.5 For bA; aB > 0 (r > �; I > P C ı), the game’s category belongs
to the saddle-class having two pure, symmetric Nash equilibria (.sA

1 ; sB
1 / OD(o,o)

and .sA
2 ; sB

2 / OD(ø,ø)) and one mixed strategy NE at (.QsA?; QsB?/ D �
P

r��CP
; I�P �ı

I�P

�
).

The outcome of such a parameterization is comparable to the results discussed in
Sect. 5.2.3.2 (parametration set Setus

2 ). For all other parameterizations, the category
of the author-journal open-access game belongs to the corner class. For (bA < 0 and
aB > 0), the only NE is (o,o), for (bA > 0 and aB < 0), the only NE is (ø,ø), and
finally for (aB; bA < 0), there exists only the asymmetric NE (o,ø).

To visualize these outcomes, Fig. 5.16 shows the different possible classes within
the author-journal open-access game for a certain parameterization. The solid, dark
surface depicts the parameter bA as a function of the two payoff parameters � and
I (the other parameters were fixed to the following values: ı D 1, r D 3 and
P D 1). The wired grey surface depicts the parameter aB , and the solid white
surface indicates the zero level. The point where all of the three surfaces intersect
(bA.�ı; I ı/ D aB.�ı; I ı/ D 0 ! �ı D 3 ; I ı D 2) defines the class boundary.
Only for � > �ı ; I > I ı is a saddle-class game is realized, whereas in all of
the other parameterizations, only one NE and ESS is possible, as the game belongs
under such parametrisations to the corner class (for details see (Hanauske et al.
2010b)).

5Other parameterizations do, however, result in open-access center-class games (Habermann and
Habermann 2009).
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5.4 Summary and Outlook

One of the main criticism of EGT is the fact that the theory is based on a totally
connected network of an infinitely large number of actors, where every player (in
each time interval) chooses her/his game partner randomly. In reality, the players
are often organized in groups, and even within these groups the players often are
not fully connected to all of the group members. The theory of social grouping
in decision-based interacting complex networks is one of the most interesting
topics within the presented research field. Evolutionary Game Theory on Complex
Networks is a more realistic framework to simulate population dynamics; however,
it often needs a variety of additional parameters to classify the network topologies
and updating rules (see e.g., (Szabó and Fáth 2007; Miekisz 2008)).

A second, more recently developed model that tries to implement social grouping
into classical6 evolutionary game theory is Evolutionary Quantum Game Theory.
Quantum game theory is a mathematical and conceptual amplification of classical
game theory. The space of all conceivable decision paths is extended from the purely
rational, measurable space in the Hilbertspace of complex numbers. Through the
concept of a potential entanglement of the imaginary quantum strategy parts, it
is possible to include corporate decision paths, caused by cultural or moral group
standards. In quantum game theory, players may cooperate, depending on the degree
of entanglement 
 among players. The notion of entanglement is perhaps most
clearly expressed in terms of Adam Smith’s classical concept of sympathy or “fellow
feeling,” which is a cornerstone of Smith’s understanding of individual behavior
(Hanauske and Schäfer 2009). In his “Theory of Moral Sentiments” (1759) (Sugden
2002), Smith claims that there is a general tendency for fellow-feeling among human
beings, whereas the greater the strength of fellow-feeling is, the more closely related
the individuals are. For example, there tends to be more fellow-feeling between
friends than between acquaintances, and more between close relatives than between
distant ones. Fellow-feeling as the human capacity to emphasize and become
entangled with others is inversely related to the perceived and felt distance, whereas
distance has been interpreted in terms of psychological and physical distance (Sally
2001). It can be shown that Emma and Hans are able to escape the dilemma if
their strength of fellow-feeling (strength of strategic entanglement) is high enough
to overcome the game’s 
 -threshold. If this strategy entanglement is large enough,
then additional Nash equilibria can occur, previously present dominant strategies
could become nonexistent, and new evolutionary stable strategies might appear (see
e.g., (Hanauske 2011)).

Within this chapter, the framework of classical EGT has been described in
detail. After a general introduction and a brief literature review, the groundings
of EGT (Sect. 5.2) have been explained in detail. The formal mathematical model,

6Following the scientific classification of the physical literature, the notation “classical” is used to
describe the scientific sub-discipline that do not use “quantum” concepts to describe the underlying
natural processes (example in physics: Classical Mechanics vs. Quantum Mechanics).
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the different concepts of equilibria, and the various classes of evolutionary games
have been defined, explained, and visualized to understand the main ideas of EGT.
Additionally, in Sect. 5.3 two applications have been discussed:

• Application 1: Scientific communication and the open-access decision (see
Sect. 5.3.1)

• Application 2: Evolution of Hub-and-Spoke Communication Networks (see
Sect. 5.3.2)

Key points By analysing the game structure of a specific decision problem,
policy-makers can learn a lot about the problems they attempt to address. To
analyse the problem game theoretically, you need only three things:

• Who is playing the game? Definition of the set of players.
• What can the players do? Definition of the set of actions (strategies)

available for each player.
• How much can the players win or lose? Definition of the payoff structure

of the underlying game.

If the decision problem can be modelled as a symmetric (two player)–(two
strategy) game and you know the payoff structure (define the parameters U11,
U12, U21 and U22 and calculate a WD U11 � U21 and b WD U22 � U12), your
game belongs to the following class:

• b < 0 and a > 0 (or b > 0 and a < 0): Dominant class
• a; b > 0: Coordination class
• a; b < 0: Anti-coordination class

If your game belongs to the dominant class and there is no dilemma, use
the dominant strategy. If your game belongs to the dominant class and there
is a dilemma (or it belongs to the coordination class with a high and low
Nash equilibrium, or to the anti-coordination class with a dilemma), you have
to think about how much fellow-feeling you have with your game partner –
perhaps your socio-economic system is strong enough to escape the game’s
dilemma.
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Schlee W (2004) Einführung in die Spieltheorie: Mit Beispielen und Aufgaben. Fried. Vieweg &
Sohn Verlag, Wiesbaden

Schroter S, Tite L, Smith R (2005) Perceptions of open access publishing: interviews with journal
authors. Br Med J 330(7494):756, 4 pp (DOI: 10.1136/bmj.38359.695220.82)

Sinervo B, Lively C (1996) The rock-paper-scissors game and the evolution of alternative male.
Nature 380(6571):240–243 (DOI: 10.1038/380240a0)

Smith JM (1972) Game theory and the evolution of fighting. In: Smith JM On Evolution. Edinburgh
University Press, Edinburg, pp 8–28

Smith JM (1974) The theory of games and the evolution of animal conflicts. J Theor Biol
47(1):209–221 (DOI: 10.1016/0022-5193(74)90110-6)

Smith JM (1982) Evolution and the theory of games. Cambridge University Press, Cambridge
Smith JM, Price G (1973) The logic of animal conflict. Nature 246(5427):15–18

(DOI:10.1038/246015a0)
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Chapter 6
Dynamic Scientific Co-Authorship Networks

Franc Mali, Luka Kronegger, Patrick Doreian, and Anuška Ferligoj

6.1 Introduction

Network studies of science greatly advance our understanding of both the
knowledge-creation process and the flow of knowledge in society. As noted in
the introductory chapter, science can be defined fruitfully as a social network
of scientists together with the cognitive network of knowledge items (Börner et al.
2012). The cognitive structure of science consists of relationships between scientific
ideas, and the social structure of science is mostly manifested as relationships
between scientists. Here, we confine our attention to these relations. In particular,
co-authorship networks among scientists are a particularly important part of the
collaborative social structure of science. Modern science increasingly involves
“collaborative research”, and this is integral to the social structure of science.
Ziman argues that the organizational units of modern science are groups and not
individuals (Ziman 1994, p. 227).1 Namely, co-authorship in science presents a

1Co-authorship in science is not the only form of scientific collaboration. de Haan (1997)
suggests six operationalized indicators of collaboration between scientists: co-authorship; shared
editorship of publications; shared supervision of PhD projects; writing research proposal together;
participation in formal research programs; and shared organization of scientific conferences. As
this list suggests, there are many cases of scientific collaborations that do not result in co-authored
publications (Katz and Martin 1997; Melin and Persson 1996; Laudel 2002). Laudel (2002) reports
that about half of scientific collaborations are invisible in formal communication channels either

F. Mali (�) � L. Kronegger (�) � A. Ferligoj
Faculty of Social Sciences, University of Ljubljana, Kardeljeva pl. 5, 1000 Ljubljana, Slovenia
e-mail: franc.mali@fdv.uni-lj.si; luka.kronegger@fdv.uni-lj.si; Anuska.ferligoj@fdv.uni-lj.si

P. Doreian
Department of Sociology, University of Pittsburgh, 2602 WWPH, Pittsburgh, PA 15260, USA

Faculty of Social Sciences, Kardeljeva pl. 5, 1000 Ljubljana, Slovenia
e-mail: pitpat@pitt.edu

A. Scharnhorst et al. (eds.), Models of Science Dynamics, Understanding Complex
Systems, DOI 10.1007/978-3-642-23068-4 6,
© Springer-Verlag Berlin Heidelberg 2012

195



196 F. Mali et al.

more substantial indicator than just scientific communication in one way or another.
In continuation, we focus on the dynamics of different kinds of co-authorship
networks.

Over the last 50 years, the study of the dynamics of co-authorship networks has
been conditioned by the development of quantitative methodological approaches
in various forms that include relatively simple descriptive statistics presented in
time-series form, deterministic approaches, and stochastic agent-based modeling of
network dynamics. We provide a brief overview of these approaches in this chapter.
Many studies of co-authorship networks are typically described and understood in
terms of very large networks involving tens of thousands of nodes. Science can
be understood as social phenomena involving large numbers of scientists regularly
performing specific actions that are consciously coordinated into large schemes
(Ziman 2000, p. 4). Different disciplinary approaches allow the use of different
statistical quantities to explain the topology of scientific networks. Some of the
statistical quantities typically used to describe these networks are purely local. The
other statistical quantities correspond to global descriptions. For example, the local
property of a unit in the network is vertex degree, defined as the number of ties
relating this unit to other units in the network. Corresponding global descriptions
of the degree distribution, which is known to have a long tail for a wide range of
different networks, can be constructed (see, for example, Lambiotte and Panzarasa
2009.).

Although co-authorship networks may provide a window on patterns of col-
laboration within science, they have received far less attention than have citation
networks in bibliometrics (Newman 2004, p. 5200). There is a basic difference
between co-authorship networks and citation networks. Citation networks are not
personal social networks, even though they are, in part, the product of social
network phenomena involving scientists. They do not capture the social interaction
structure usually described in works on co-authorship networks. These social
interaction structures are best described by co-authorship networks. The vertices
of co-authorship networks represent authors, and two authors are connected by a tie
if they co-authored one or more publications. These ties are necessarily symmetric.
In citation networks, the vertices represent scientific productions,2 and the links
between them are directed citation ties from one scientific document to other
such documents. In that sense, co-authorship networks contain much important
information about cooperation patterns among authors as well as the status and
locations of authors in the broader scientific community structures. The study
of community structures through scientific co-authorship is particularly important

because they do not result in co-authored publications or in formal acknowledgments in scientific
texts. In this chapter, we will use the term collaboration primarily to designate research that results
in co-authored publications and other publicly available documents.
2We include papers, monographs, short articles, conference presentations, databases and patents
within the term ‘scientific production.’
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Table 6.1 List of major questions and models presented in this section

Major issues addressed Key answers/insights

Barabási and
Albert (1999)

Ways of modeling cumulative
advantage principle in
co-authorship networks.

Using the preferential attachment
model where a scale-free
power-law distribution of the
number of co-authors is a
consequence of two generic
mechanisms: (i) networks expand
continuously by the addition of
new vertices, and (ii) new vertices
attach preferentially to sites that
are already well connected.

Watts and Strogatz
(1998)

Ways of modeling the clustered
structure of co-authorship
networks at the macro level.

Small-world model overcomes the
gap in clustering of real-world
networks in comparison to random
networks. Such constructed
networks have small average
shortest paths and incorporate
clusterings (small dense parts of
the network) which emerge in
social networks.

Lorrain and White
(1971), Doreian
et al. (2005)

Ways of clustering the units in
co-authorship networks
regarding the structure of
collaboration and
representing the obtained
clusters with their
connections at the macro
level.

The procedural goal of blockmodeling
is to identify, in a given network,
clusters (classes) of units (actors)
that share structural characteristics
defined in terms of some relation.
Each such cluster forms a position.
The units within a cluster have the
same or similar connection
patterns.

Snijders (1996),
Snijders et al.
(2010)

Ways of modeling the effects of
actor characteristics and
network positions on
network evolution. Ways of
modeling network dynamics
and testing results using the
inferential methods.

Stochastic actor-based modeling for
network dynamics is based on
longitudinally observed network
data. It is meant to represent and
model co-evolution of longitudinal
network data and actor attributes,
and evaluate the results within the
framework of statistical inference.

because scientific (sub)disciplines might often display local properties that differ
greatly from the properties of the scientific network as a whole(Table 6.1).

This chapter is structured in the following way. Given that we treat co-authorship
networks as social networks, we continue this introduction with a definition of a
network. In the next section, we offer a brief historical overview of social network
analysis with a focus on the dynamics of social networks. Section 6.3 contains an
organizing typology of both the content and units of analysis for the topics we
consider. Section 6.4 is the core of the chapter and provides an overview of known
methodological approaches for studying dynamic scientific co-authorship networks.
In the final section, we outline some benefits and limitations of each approach and
finish with a statement of some open problems.
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6.1.1 Networks as Graphs

A network consists of observed units and the relationships among them. Units can
be represented as vertices and relationships (ties) as links. When using this skeleton
representation, each network is a graph.

But this is a simplification of a network. Units (vertices) in the network can have
properties. There can be multiple types of vertices in the network. An example is
a social network where the vertices represent people and the groups to which they
belong. Units also have many different properties (e.g. gender, age, income).

The links in networks can also be of different relational types and, further,
strength of relationships can be indicated by adding weights. The vertices and links
of networks studied in time have additional properties when time is considered.
The timing of relational formations and dissolutions can be recorded and modeled.
Duration of relational ties becomes another important property of relations when
they are present.

The information of a graph can also be presented in a matrix form. The most
common presentation is with the adjacency matrix in which there is a row and
a column for each vertex. Non-zero entries in the matrix are present when links
between two corresponding vertices exist.

Adjacency matrices can be extended further if we want to present more complex
graphs. For example, if we want to present a graph with multiple links between
the vertices, we associate the entry of a single cell aij in the adjacency matrix with
the number of links between the vertices i and j . For the representation of valued
graphs, which are graphs with values on the links, the value of a single cell aij in
the adjacency matrix corresponds to the value on the link between vertices i and j .

6.2 A Brief History of Social Network Analysis

Histories of most entities usually have starting dates. However, establishing a
starting date for an academic field is difficult because the contributing strands of
ideas and methods for a field begin in different times and different places. Modern
social network analysis (SNA) started when four distinct features were explicitly
brought together (Freeman 2004). These features are: (i) a focus on structural
matters by looking at actors embedded within a set of social relations and ties; (ii)
the extensive use of systematic empirical data; (iii) heavy use of graphical imagery;
and (iv) having foundations in formal, mathematical, and computational models.
Recognizing the combination of these elements as defining social network analysis
renders the establishment of a precise date of origin less than important. But, based
on Freeman’s narrative, a start date in the 1930s for what was to become SNA seems
reasonable. What matters far more for the field are the operational ways in which
the four core components are combined to help us understand network structures
and processes.
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Academic fields also require some social organization to support them in order
to provide an accepted arena for the exchange of ideas and the development of an
identity that nurtures a discipline. These were created for SNA within a span of
4 years. Barry Wellman established the International Network of Social Networks
Analysts (INSNA) in 1976. He founded Connections a year later as a newsletter
to distribute news, ideas, and information to members of the field. Lin Freeman
established the flagship journal, Social Networks, in 1978. Finally, Russ Bernard and
Alvin Wolfe started the annual Sunbelt Social Network Conference in 1980. All four
entities have grown in size and influence since they were established. The European
Network Conference was started in 1989, and in 1995 the two conferences were
combined to form the Annual Sunbelt International Social Network Conference.

If we allow that SNA is what social network analysts do, it does not follow
automatically that the field is coherent. Hummon and Carley (1993) examined all
of the papers in the first 12 volumes of Social Networks to assess the state of the
field and established that SNA was an integrated scientific community with a shared
paradigm. They used ‘main-path analysis,’ a technique pioneered by Hummon and
Doreian (1989, 1990) that helps study the citation patterns of a field. Hummon
and Carley (1993) identified 6 main paths in the literature: (i) Role analysis and
blockmodeling; (ii) Methods for network analysis; (iii) Concern with network data;
(iv) Biased networks; (v) Attention to structure; and (vi) Analyses of personal
networks. Of course, these paths for the movement of SNA intellectual ideas through
the literature are linked. Hummon and Carley (1993) noted other features of the
field. One was the heavy use of formal, mathematical, and quantitative methods.
Another was the creation of substantive network ideas, and a third was the presence
of prominent collaborative groups of social network analysts. All are consistent with
the practice of ‘normal science’ in the sense of Kuhn (1996).

On looking at that list of main paths as intellectual foci for SNA, one feature
leaps out by its absence: There is little about temporal issues3 even though main
path analysis is an explicitly temporal approach. Up until the beginning of the 1990s,
SNA appeared to have had a profoundly static bias. The field’s concern was centered
primarily – but not exclusively – on social structure and patterns of social structures.
Given this, four event streams that can be dated as starting in the 1990s have changed
the field dramatically.

The first was a series of three special issues of the Journal of Mathematical
Sociology (JMS) that appeared in 1996, 2001, and 2003. All three issues, edited
by Frans Stokman and Patrick Doreian, were devoted to “network evolution.” Based
on the intuition that “network processes are series of events that create, sustain and
dissolve social structures” (Doreian and Stokman 1997, p. 3), the three special issues
had a series of papers that looked at network dynamics and network evolution using
a variety of different formal models, simulation methods and statistical models.4

3This is consistent with the observations of Powell et al. (2005).
4Volume 30(1) of Social Networks (2010) was a special issue devoted to network dynamics that
noted the importance of the three JMS special issues with papers building upon some of the earlier
work.
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The second event was the take-off of exponential random graph models (ergms)
for the study of change in social networks. The origins of these models date from
an earlier time, including the work of Holland and Leinhardt (1981) and Frank and
Strauss (1986). One strand of this line work is founded on Wasserman and Pattison
(1996) and Pattison and Wasserman (1999) and takes the form of p*-models. This
forms the core of the software called Pnet (Wang et al. 2009), used for estimating
ergms. Another strand features the work of Snijders (2001) and takes the form
of SIENA (Snijders et al. 2010), also used for estimating ergms for studying the
co-evolution of social actors and social networks. Yet another strand of related work
is present in Statnet (Handcock et al. 2003) that includes the estimation of ergms.
There has been a lively debate and an extensive cross-fertilization and collaboration
between the groups centered at the University of Melbourne, the University
of Groningen, Oxford University, and the University of Washington regarding
ergms.

The third event is the movement of physicists into the realm of social networks,
which also started in the 1990s. Bonacich (2004) labeled this as “the invasion of the
physicists “in his review of Watts (2003) and Barabási (2002). To the extent that the
physicists are inattentive to the substantive content of the SNA and reinvent old –
and/or even square – wheels, this is an invasion. However, they also bring with them
a variety of new modeling strategies and additional conceptualizations of network
phenomena that include ‘small-world’ networks and ‘preferential attachment,’ two
terms that have made fruitful entrances into SNA. The physicists have focused
attention primarily on large networks with a view to delineating and understanding
network topologies and dynamics.

The final event started in the early 1990s and resulted in the establishment of
generalized blockmodeling (Doreian et al. 2005) as both a generalization and an
extension of traditional blockmodeling, the main path in the SNA literature through
1992 identified by Hummon and Carley (1993). Thus far, this approach has been
deterministic and not that attuned to network dynamics. Designed to delineate
network structures through the use of an expanding collection of block types and
types of blockmodels, it has the potential to contribute to the temporal delineation
of fundamental network structures.

At face value, the four ‘events’ and the lines of active research that have followed
them are different and could even be viewed as potential rivals. However, it will
be unfortunate if they are seen in this fashion. Some of the ideas of physicists
can be used to conceptualize mechanisms that can be incorporated into ergms to
test these ideas with social network data. It is clear that the efforts of physicists to
identify communities in networks have the same intent as blockmodeling. The work
of Handcock et al. (2007) on discerning network structure through model-based
clustering is also related, in intent, to blockmodeling, and it seems reasonable
to couple, in some way, ergms and blockmodels. All of these four strands of
research for understanding networks have been mobilized extensively since their
first appearance. They have all emerged since Hummon and Carley’s (1993)
assessment and have the potential to be combined fruitfully in future research. While
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these streams of research are changing SNA to focus on network dynamics and
network evolution, they do so while embodying all of the four defining features of
SNA identified by Freeman (2004).

6.3 Levels of Analysis of Scientific Collaboration

6.3.1 Introduction

Understanding science as a social system implies considering science as fundamen-
tally relational, and as a community-based social activity. “The collegian circles
around a scientist refer to those local and distant peers or professional colleagues”
(Schott 1993, p. 201). These collegian circles have several properties that vary
from one scientist to another. Within social studies of science, there has been a
strong interest in the spatial range of the collegian circle with attention given to
local, national, or transnational scientific communities. These professional collegian
circles in science have several other characteristics that are analytically distinct but,
in reality, may be intertwined. Co-authorship networks in science have a “modular
structure” (Lambiotte and Panzarasa 2009, p. 181). Understanding this modular
structure of scientific networks is especially important because it helps account
for the progress of science and the organization of scientific production within
disciplinary frameworks. In reality, science never operates as a single community
with hundreds of thousands of individual scientists. It is organized by many different
networks that cut across the formal boundaries dividing science with regard to
disciplinary, sectoral, and geographical levels. Of course, the membership of various
networks overlaps considerably. These research networks are also in continuous
processes of growth, decline, and dissolution (see, for example, Ziman 2000, p. 46
or Mulkay 1975, p. 519).

Classification of co-authorship networks can be done in several ways. Rogers
et al. (2001) suggested a typology based on three features: (1) according to
the units of the analysis, including individuals, teams of researchers, and R&D
organizations; (2) according to the type of information used to develop the links
between units – these might be based on interactions or information sharing or they
could be based on positions of people in the social hierarchy; and (3) according
to the institutionalized domains to which the authors belong, with an emphasis
on intra-organizational or inter-organizational links between them. Sonnenwald
(2007) suggested a more general classification to categorize various types of
co-authorship networks: between researchers in university and industry sectors,
between researchers in various scientific disciplines, and between researchers of
various countries. In this section, we prefer to use another categorization, one
adapting a suggestion by Andrade et al. (2009) who focused on three dimen-
sions of co-authorship networks with their associated sub-dimensions of intra-
and inter-dimensional co-authorship collaboration. The suggested dimensions are:
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Table 6.2 Classification of levels of analysis of scientific collaboration

Dimension of the study Examples of studies

Main
dimension

Sub-dimension

Cross-
Disciplinary

Disciplinarity Interaction links between Australian research networks
(Rigby 2005), (see also: Wray 2002; Glänzel and
Schubert 2004; Laband and Tollison 2000; Hornbostel
1997)

Inter-
disciplinarity

Interdisciplinary research analysis in French laboratories
(Sigogneau et al. 2005) (see also Gibbons et al. 1994;
Etzkowitz and Leydesdorff 2001; Qin et al. 1997;
Braun and Schubert 2003)

Cross-Sectoral Intramural Academic research networks analysis (Lowrie and
McKnight 2004; Wray 2002)

Extramural R&D cooperation models between industry and
universities in Belgium (Veugelers and Cassiman 2005)

Cross-
National

National The interaction between immunology research institutes in
Germany, due to their geographical location
(Havemann et al. 2006)

International Comparative analysis of several countries of their
international/national collaborated publications
(Glänzel and Schubert 2005)

disciplinary with sub-dimensions of interdisciplinary and intradisciplinary, sector
with intersector and intrasector, and geographic with international and intranational
sub-dimensions. These are presented in Table 6.2.

6.3.2 The Cross-Disciplinary Level

For the cross-disciplinary level, given the presence of disciplinarity, there is a
basic distinction between collaboration inside discipline (intra-disciplinarity) and
collaboration between disciplines (inter-disciplinarity).

6.3.2.1 Disciplinarity

As stated in the introductory chapter of this book (see page xi et sqq.), “an
academic discipline, or field of study, is a branch of knowledge which is taught
and researched at the college or university level. Disciplines are defined (in part)
and recognized by the academic journals in which research is published, and the
learned societies and academic departments or faculties to which their practitioners
[researchers] belong” (Börner et al. 2012). Many theorists of science have noted
that all scientific disciplines are intellectually (cognitive) and socially structured
(Fuchs 1992; Whitley 1984). Scientific disciplines represent institutional and
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organizational frameworks within which their intellectual products and cognitive
styles are connected to the social structures, mode, and organization of the pro-
duction of that knowledge. One of the basic characteristics of modern academic
scientific communities is that they are still sharply differentiated and structured in
terms of disciplines. Individual scientific disciplines can thus be seen as distinct
intellectual and social organizational contexts.

Although co-authorship publishing is more common in the natural sciences than
in the social sciences, it is continuously increasing in all main scientific areas (Wray
2002; Glänzel and Schubert 2004; Laband and Tollison 2000; Hornbostel 1997).
Collaboration, operationalized through co-authorship, is now normative behavior
and ubiquitous for practically all scientific disciplines (e.g., over 95% of articles in
major periodicals in physics, biochemistry, biology and chemistry are co-authored
(Braun-Munzinger 2009)).

6.3.2.2 Interdisciplinarity

In the last two decades, interdisciplinary collaboration has increased dramati-
cally (see, for example, Gibbons et al. 1994; Etzkowitz and Leydesdorff 2001).
This phenomenon is broadly discussed in Chap. 1 with attention focused on
a tendency of modern science to form heterogeneous (interdisciplinary) teams
of researchers solving pressing social problems and with higher accountability
requirements (Börner et al. 2012). These attempts have been made to bridge
narrow disciplinarities in science. An important feature stimulating interdisciplinary
collaboration in modern science is the demand for innovations resulting from the
juxtaposition of ideas, tools, and scholars from different scientific domains. Today,
there is an overall agreement that inter-disciplinary links are vital for scientific
progress because they have the potential to bring unprecedented intellectual and
technical power. For example, the converging technologies of the NBIC fields (i.e.
nanotechnology, biotechnology, information sciences, and cognitive sciences) are
an example of new interdisciplinary research from fields that previously showed
limited interdisciplinary connections (see, for example, Buter et al. 2010).

We know that different organizational and cognitive problems make the devel-
opment of interdisciplinary research particularly challenging. Interdisciplinarity
requires extensive networks of scientists and concepts, considerable time invest-
ments, and a need for researcher mobility between disciplines. As noted by
Bordons and her collaborators, while collaboration among scientists from different
disciplines is widespread, measuring it is not easy (Bordons et al. 2004, p. 441).
Using bibliometrics, measurement of interdisciplinarity in publications can be
approached from different perspectives that include co-authored publications among
scientists from different disciplines, co-occurrence of several classification codes
in publications, the interdisciplinary nature of journals, and the presence of cross-
disciplinary references or citations. The most often used bibliometric indicator of
such collaboration is the percentage of co-authored interdisciplinary publications.
Yet, computing this percentage is affected by many factors, including the nature of
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the organization of scientific communities, R&D policy orientations, and the chosen
operationalization of concepts (e.g., the classification scheme of disciplines that is
used (Qin et al. 1997; Braun and Schubert 2003)).

6.3.3 The Cross-Sectoral Level

There is a basic difference between collaborations inside the academic scientific
community (intramural cooperation) and collaborations between academic science,
industry, and governmental bodies (extramural collaboration). Intramural networks
in science are usually defined by collaboration within one department, research
group, or institute. Extramural collaborations, on the other hand, consider also coop-
eration between different sectors (see, for example, Glänzel and Schubert 2004).

6.3.3.1 Intramural Collaborations (Intra-Sectoral Collaboration)

In modern science, the establishment of intra-mural networks is the result of the
increased processes of professionalization of recent scientific activity. This has
led to a large change in the organizational structure of science, and it’s worth
repeating Ziman’s insight: “the organizational units of modern science are not
individuals but groups” (Ziman 1994, p. 227). The organization of R&D activity
in academic scientific institutions has created typical team structures – for example,
modern research groups consist of principal investigators, co-principal investigators,
junior researchers, post-docs, and doctoral students. Price suggested that research
collaboration is, in part, a response to the shortage of scientists, which allows them
to become “fractional” scientists (Price and Beaver 1966).

6.3.3.2 Extramural Collaborations (Cross-Sectoral Collaboration)

Cooperation between different sectors – academic science, industry and govern-
ment – is now understood as the most important type of extra-mural collaboration.
The concepts of ‘Mode 2’ and the ‘Triple Helix’ have extended the idea of research
networking within and across sectoral borders. Both concepts were developed in
the theory of science and R&D policy discussions after 1990. It seems that the
concept of Mode 2 knowledge production presented in The New Production of
Knowledge (Gibbons et al. 1994) became, in the mid-90s, the symbolic banner of
new viewpoints regarding scientific collaborations across sectors. The authors of the
new (Mode 2) production of knowledge linked the classical concept of transdisci-
plinarity, defined by common axioms that transcend the narrow scope of disciplinary
worldviews through an overarching synthesis, with two additional factors: problem-
driven research and research in applied contexts. Similarly, the concept of the
Triple Helix has been developed as a neoinstitutional and neoevolutionary model
for studying the networks across academic science, industry science, industry, and
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government sectors. In these networks, more important than the presence of the
agents is the quality of their relationships in a given configuration (Etzkowitz and
Leydesdorff 2001). Although there exists already an extensive expert literature on
this type of cross-sectoral networks, there is still a lack of bibliometric studies
dealing with co-authorship publications between academic and business-enterprise
sectors (Lowrie and McKnight 2004, p. 436).

6.3.4 Cross-National Level

Networks of international collaboration have undergone dramatic structural changes
in the last few decades. This is in contrast to intranational networks, where the
intensity of collaborations have decreased (see, for example: Hoekman et al. 2010;
Glänzel and Schubert 2004; Katz 1994).

6.3.4.1 National Collaborations

National collaboration, while visible in domestic contexts, is often regarded as
less visible and treated as less important than international collaborations. Often,
the observed (relative) high visibility and high citation attractiveness of interna-
tionally co-authored publications result in a kind of operational rule: international
co-publications appear in high-impact journals and receive more citations than
national papers (Glänzel and Schubert 2004). However, the overall visibility and
international relevance sometimes does not necessarily reflect the impact of specific
papers in solving specific problems at the local level. The results of national collab-
orations are often incorporated into publications dealing with trans-institutional and
international co-authorship (e.g. Munshi and Pant 2004), and are focused directly on
collaboration within a specific country (Gossart and Ozman 2009; Mali et al. 2010).
Another important aspect of national collaboration results from the international
orientation of bibliographic databases like the Web of Science or Scopus. Often,
the results of national co-authorship and the resulting citation patterns, especially
for smaller national scientific systems, are less visible in international bibliographic
databases. This can be linked to inter-sectoral collaboration within nations. National
collaborations across sectors have an additional complexity because they include the
involvement of different administrative units. As a result, such research projects are
complex and involve a wide range of different outputs of scientific production. Such
complex information can only be reported qualitatively or measured through local
information systems and electronic bibliographic systems; the Slovenian COBISS5

and SICRIS databases6 or the Turkish ULAKBIM database.7

5Co-operative Online Biographic System and Services, www.cobiss.si.
6Slovenian Current Research Information System, sicris.izum.si
7TURKISH ACADEMIC NETWORK and INFORMATION CENTER, www.ulakbim.gov.tr/eng/.

www.cobiss.si
sicris.izum.si
www.ulakbim.gov.tr/eng/


206 F. Mali et al.

6.3.4.2 International Collaborations

In thinking about the spatial range of collaboration, there is an important differ-
ence between geographic distance and crossing international boundaries. While
geographical distances between collaborative units in large nations can be long,
the geographical distances between collaborating units in different countries can
be short. Of the two, crossing international boundaries is more consequential than
geographical distance with regard to scientific collaboration. While international
scientific collaborations are important generally, they are especially important
for small scientific communities such as, for example, the Slovenian scientific
community. Isolated and parochial scientific communities are no longer a suitable
environment for recognized scientific excellence. Indeed, it can be argued that they
never were important in the history of science. Even in the early days of science,
different forms of cooperation between scientists of different nations became
important elements in the internationalization of science. Even so, because of the
new forms of the globalized connections of science, “the traditional cosmopolitan
individualism of science is rapidly being transformed in what might be described as
transnational collectivism” (Ziman 1994, p. 218).

This trend of increasing international scientific collaboration through co-
authorship is especially strong in recent decades. The number of internationally
co-authored articles has risen at a faster rate than traditional ‘nationally co-
authored’ articles (Wagner 2005). As noted in the expanding bibliometric literature,
the level of international co-authorship is determined by many factors: the size
of the country, ‘proximity’ between countries, either physical (geographical)
proximity or immaterial proximity stemming from cultural affinity in a broad
(historical, linguistic) sense, socioeconomic factors, changes in electronic forms of
communication, and last but not least, the dynamics created by the self-interest of
individual scientists pursuing their own careers.

6.4 Methodological Perspectives

6.4.1 Introduction

The development of methodological approaches for analyzing and modeling tem-
poral scientific co-authorship networks has been founded on developments in graph
theory and in SNA. To enable the discussion on temporal analysis of network
properties, we describe some of the most relevant basic definitions of network
properties that we need for understanding the content of coming sections (extensive
explanations of SNA terminology and concepts can be found in Wasserman and
Faust (1994)):

• Degree The degree of a vertex is defined as the number of ties linking this vertex
to other vertices in the network. In lay terms, the degree represents the number of
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co-authors for each researcher. As a global measure of the whole network, both
the average degree or centralization can be considered.

• Network density is the proportion of ties in a network relative to the total number
possible (sparse vs. dense networks).

• Path A path is a sequence of vertices and lines from initial vertex to the terminal
vertex where all vertices are different.

• Path length This is the number of ties it contains.
• A shortest path or a geodesic distance between two vertices u and v, denoted

as luv, is the shortest path length between these two vertices. In co-authorship
networks, the distance between two authors who collaborate is 1. As a global
network characteristic, the average shortest path is usually considered.

• The global clustering coefficient can be viewed as the average probability of a tie
between co-authors of a selected author. Technically, it measures the density of
triangles in the network and therefore measures the extent of densely connected
subgroups of vertices in the network.

Another important factor in the development of the field has been access to
data sources on scientific collaboration. Before the development of electronic
bibliographic databases and, especially, before the implementation of the scientific
citation indexes initiated by Garfield (1955) this was a very difficult and time-
consuming task. Some of the most visible electronic databases with academic
content are the Web of Science, SCOPUS and Google Scholar. A broader discussion
on databases and citation indexes can be found in Chap. 7 of this book.

The study of temporal networks, both with regard to network dynamics and
network evolution, gained increasing attention since 1996. As noted in Sect. 2,
special issues of the Journal of Mathematical Sociology (1996, 2001, 2003) were
of value. We distinguish three basic approaches for studying dynamic scientific co-
authorship networks: (i) basic analysis of network properties using temporal data
(usually in the form of a time-series of snapshots, (ii) deterministic approaches to
the analysis of scientific co-authorship networks, and (iii) statistical modeling of
network dynamics.

6.4.2 Basic Analyses of Network Properties

One of the first analyses of temporal co-publication was presented by Zuckerman
(1967) who studied the patterns of productivity, collaboration and co-authorship
among Nobel Laureates. While her analysis was quite narrow, in the sense of
focusing on a small elite among scientists, this was due to the limitations of the
data available at the time. More than 20 years later, Bayer and Smart (1991) focused
on publication patterns of US PhD recipients in chemistry in 1960–1962. They
used a longitudinal data set spanning from 1962 to 1985 to follow the careers
of these researchers through time. Besides single-authored and multi-authored
publications, they also distinguished dual-authorship and proposed a typology of
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publication patterns of scientists, including six categories which are highly corre-
lated with co-authorship patterns. Researchers were categorized into groups of: Low
producers, Burnouts, Singletons, Team Leaders, Team Players, Doubletons, and
Rank-and-File types. With the development of electronic bibliographic databases,
simple longitudinal analysis of network characteristics (including average vertex
degrees, clustering coefficients, and density) became a common part of most studies
of temporal co-authorship networks (see Babchuk et al. 1999; Glänzel et al. 1999;
Kronegger et al. 2011a).

6.4.3 Deterministic Analysis of Dynamic
Co-Authorship Networks

Although the time dimension is often included in the analysis of co-authorship
networks, it has been mostly restricted to simple temporal time-series descriptions
of some network characteristics and actor attributes. Such basic analyses can be
found in a wide range of publications since results of practically every method for
social network analysis can be represented in time as a series of snapshots. The
most common goal of these methods is delineating structures within co-authorship
networks and accounting for network properties by using some external parameters.
Efforts of researchers to push the methodology further from simple description of
differences between time snapshots are therefore rare and hard to find.

A fruitful way of delineating structures within co-authorship networks is to use
blockmodeling procedures: Let U be a finite set of units and let the units be related
by a binary relation R � U � U that determines a network N D .U; R/. One
of the main procedural goals of social network analysis is to identify, in a given
network, clusters of units that share structural characteristics defined in terms of the
relation R. The units within a cluster have the same or similar connection patterns to
the units of other clusters. Result of clustering C D fC1; C2; : : : Ckg is a partition of
units U and relations R into blocks R.Ci ; Cj / D R\Ci �Cj . Each block is defined
in terms of units belonging to clusters Ci and Cj and consists of all arcs from units
in cluster Ci to units in cluster Cj . If i D j , the block R.Ci ; Ci / is called a diagonal
block.

A blockmodel consists of structures obtained by shrinking all units from the same
cluster of the clustering C. For an exact definition of a blockmodel, we must be
precise about which blocks produce an arc in the reduced graph and which do not.
The reduced graph can be presented also by a relational matrix, called an image
matrix.

The partition is constructed by using structural information contained in R only,
and units in the same cluster are equivalent to each other in terms of R alone. These
units share a common structural position within the network.

Blockmodeling, as a set of empirical procedures, is based on the idea that units
in a network can be grouped according to the extent to which they are equivalent in
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terms of some meaningful definition of equivalence. In general, different definitions
of equivalence usually lead to distinct partitions.

Lorrain and White (1971) provided a definition of structural equivalence: Units
are equivalent if they are connected to the rest of the network in identical ways. From
this definition it follows that only four possible ideal blocks can appear (Batagelj
et al. 1992b; Doreian et al. 2005)

Type 0. bij D 0 Type 2. bij D 1 � ıij

Type 1. bij D ıij Type 3. bij D 1

where ıij is the Kronecker delta function and i; j 2 C . The blocks of types 0 and 1
are called the null blocks and the blocks of types 2 and 3 the complete blocks. For
the nondiagonal blocks R.Cu; Cv/; u ¤ v, only blocks of type 0 and type 3 are
admissible.

Attempts to generalize the structural equivalence date back at least to Sailer
(1978) and have taken various forms. Integral to all formulations is the idea that
units are equivalent if they link in equivalent ways to other units that are also
equivalent. Regular equivalence, as defined by White and Reitz (1983), is one such
generalization.

As was the case with structural equivalence, regular equivalence implies the exis-
tence of ideal blocks. The nature of these ideal blocks follows from the following
theorem (Batagelj et al. 1992a): Let C D fCig be a partition corresponding to a
regular equivalence � on the network N D .U; R/. Then each block R.Cu; Cv/ is
either null or it has the property that there is at least one 1 in each of its rows and
in each of its columns. Conversely, if for a given clustering C, each block has this
property, then the corresponding equivalence relation is a regular equivalence.

Until now, a definition of equivalence was assumed for the entire network and the
network was analyzed in terms of the permitted ideal blocks. Doreian et al. (2005)
generalized the idea of a blockmodel to one where the blocks can conform to more
types beyond the three mentioned above, and one where there is no single a priori
definition of ‘equivalence’ for the entire network.

The problem of establishing a partition of units in a network, in terms of a
considered equivalence, is a special case of the clustering problem – such that
the criterion function reflects the considered equivalence. Such criterion functions
can be constructed to reflect the considered equivalence. They measure the fit of
a clustering to an ideal one with perfect relations within each cluster and between
clusters, according to the selected type of equivalence.

For the direct clustering approach, where an appropriate criterion function that
captures the selected equivalence is constructed, a relocation approach can be used
to solve the given blockmodeling problem (Doreian et al. 2005).

Inductive approaches for establishing blockmodels for a set of social relations
defined over a set of units were discussed above. Some form of equivalence is
specified, and clusterings are sought that are consistent with a specified equivalence.
Another view of blockmodeling is deductive in the sense of starting with a
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blockmodel that is specified in terms of substance prior to an analysis. In this case,
given a network, a set of types of ideal blocks, and a family of reduced models, a
clustering can be determined which minimizes the criterion function. (For details,
see, Batagelj et al. 1998; Doreian et al. 2005). Some prespecified blockmodels are
designed as hierarchical models with the positions on paths linked by directed ties
in a consistent direction. A core-periphery model is such a model where there is one
(or several) core position that is strongly connected internally. Peripheral positions
are all connected to core positions but not connected to each other, and they are
not internally cohesive. There are variations of the core-periphery model; e.g., in
which the periphery is not even connected to the core positions. All described
blockmodeling approaches are implemented in the program Pajek (Batagelj and
Mrvar 2010).

An example of the multi–core–semi–periphery–periphery structure is presented
in Fig. 6.1. This specific structure, found in co-authorship networks, consists of:
(i) simple cores comprised of scientists co-authoring with all, or most, colleagues
in their core (units R3 to R5 and R13 to R16); (ii) bridging cores composed
of researchers who connect two or more other simple cores (units R1 and R2);
(iii) a semi-periphery made up of authors who co-author with proportionately fewer
others in their position and have no systematic patterns of ties to scientists in other
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Fig. 6.1 An example of a blockmodel of a network with it’s a structure that consists of three parts
structure.
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positions, and periphery of authors who do not co-author with other researchers
from the network.

Several applications of blockmodeling of co-authorship networks have been
published in recent years. For example, Said et al. (2008) distinguished several
styles of co-authorship, including solo models (no co-authors), mentor models,
entrepreneurial models, and team models. They conjectured that certain styles of
co-authorship lead to the possibility of group-thinking, reduced creativity, and the
possibility of less rigorous reviewing processes. Nooraie et al. (2008) examined
co-authorship networks in three Iranian academic research centers in order to
find an association between scientific productivity and impact indicators with
network features. The collaboration networks within centers shared many structural
features, including a “star-like” pattern of relations. Centers with more successful
scientific profiles showed denser and more cooperative networks. Kronegger et al.
(2011a) distinguished different co-authoring cultures in four scientific disciplines
and delineated typical structures of scientific collaboration. They also extended
blockmodeling by tracking locations, and hence positions, of authors across dif-
ferent time points.

Another effort to combine a static analysis of complexity at separate time
moments with a dynamic analysis was presented by Erten et al. (2004) and by
Gansner et al. (2005). They introduced a dynamic extension of multidimensional
scaling (Richardson 1938; Torgerson 1952). Multidimensional scaling (MDS) is
a set of data analysis techniques designed to display the structure of data in a
geometrical picture. The algorithm of dynamic MDS is driven by the minimization
of stress measured both within each analyzed year and over consecutive years
by optimizing the resulting stress for a three dimensional array. This algorithm
was recently implemented in Visone (Leydesdorff and Schank 2008) and used by
Leydesdorff (2010) to study co-authorship networks, with additional information
on co-word appearance and journal citation indexes. In this paper, he analysed the
complete bibliography of Eugene Garfield for the years 1950–2010, graphically
presenting its collaboration structure and citation dynamics around Garfields’ work
mainly dealing with the Science Citation Index.

6.4.4 Modeling Dynamic Scientific Co-Authorship Networks

Here, we present only an overview of modeling temporal co-authorship networks.
Static models of macro-level network properties, which are based on stochastic rules
of network generation, are discussed first. These have been mainly developed from
graph theory by mathematicians and physicists who, with the development of the
Internet in 1990, were interested in modeling accessible large real-world networks.
The developments led from purely random graphs, built according to the Erdös and
Rényi (1959) model, to small-world networks (Watts and Strogatz 1998), and to a
range of models based on the concept of preferential attachment (Barabási et al.
2002; Newman 2000).
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The idea of finding the rules fostering the growth and development of social
networks, or as it was stated, modeling the real world graphs, was widely captured
(mostly) by physicists. The basics for any kind of modeling of social networks
were provided by the Erdös–Rényi random graph model, which is determined by a
number of vertices (n) and the probability (p) that a link exists between two arbitrary
vertices. Therefore, each random graph has approximately p �n.n�1/=2 undirected
links. A single vertex is linked to a binomially distributed number of neighbors. The
limiting degree probabilities are Poisson distributed.8

The first generalization of the Erdös–Rényi random graph took the form of
a configuration model where specific degrees are assigned (usually from a pre-
specified distribution) to all the vertices which are then randomly linked according
to their degree. The construction of the model was proposed by Molloy and Reed
(1995) and studied by many authors (see the overview provided in Newman 2003).
This solved the problem of degree distribution in real-world graphs usually not
having a Poisson distribution, as in the Erdös–Rényis random graph, but not the
inability to model the clustered nature of empirical networks.

We consider also a very different approach to modeling social network dynamics,
one which returned to and is founded upon ideas within social science. The approach
of the physicists has been intent on reproducing the topological form of real-
world networks, and it proposes some generic processes of growth and change
while ignoring an extensive tradition of sociological and psychological knowledge
regarding the behavior of individuals. This alternative (more sociological) approach
focuses on single actors and their involvement in the smallest possible social unit
of analysis, the dyad. This type of modeling is labeled ‘stochastic actor-based
modeling’ (Snijders 1996). Its purpose is to represent network dynamics on the
basis of observed longitudinal data in the form of explicit models and to evaluate
them (or a family of models) within the paradigm of statistical inference. This
implies that the models are able to represent network change as the result of
dynamics being driven by many different tendencies, especially structurally based
micro-mechanisms. These mechanisms can be theoretically derived and/or based
on empirically established properties in earlier research. Of great importance is that
these mechanisms may well operate simultaneously (Snijders et al. 2010). One lim-
itation of these models is that they are restricted to a smaller predetermined number
of actors and do not directly consider more global mechanisms of network growth.

6.4.4.1 Modeling “Real-World” Networks

Social studies of science have long had an interest in linking scientific production
to the network structures of scientific communities. Different models have been
proposed as representations of processes driving co-authorship (as collaboration) in

8Mathematical notations of models in this section are based on those used by Kejžar (2007).
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science that help account for the form of large-scale scientific networks and predict
scientific production. One contains an argument that if scientists from particular sci-
entific disciplines (specialties) collaborate with others inside their disciplines, then
we would expect to find distinct clusters in the knowledge-production network –
exactly the clustering noted in many empirical networks – and this would correspond
to small-world network structure (as described below). Alternatively, if the network
was generated by preferential attachment (see below) as a mechanism – where young
scientists publish with well-established scientific stars – then we would expect to
find a scale-free network structure whose degree distribution satisfies a power-law.
If the network is based on a cross-topic collaboration, then we would not expect to
find strong fissures in the network, but instead find a structurally cohesive network
(Moody 2004). All of the above-mentioned network structural processes lead to
specific dynamics for scientific networks that, in turn, generate distinctive network
structures or topologies. These models for generating the structures of large-scale
and complex networks can be expected to hold also for co-authorship networks
in science. Large-scale co-authorship networks can have local (such as clustering)
structural properties as well as global (such as average distance between nodes)
structural features. Local and global characteristics of networks help to define
network topologies such as “scale-free networks” and “small-world networks.”
These network topologies are the result of network-generating processes and can
lead to further dynamics of these networks in different ways. For example, the
principle of preferential attachment to vertices of higher degree leads to a dynamics
where “the-rich-get-richer. “In the case of science, this implies that those scientists
who experience early success gain higher shares of subsequent rewards. We next
consider scale-free and small-world science network structures in more detail.

6.4.4.2 The Small-World Model

The small-world network structure of scientific co-authorship implies network
forms where the level of local clustering (one’s collaborators are also collaborators
with each other) is high, but the average number of steps between clusters is small.
In these small-world networks, internal ties to clusters tend to form more cohesive
clusters within boundaries, as compared to the more extensive and less cohesive
overall networks that include their external ties. According to various social network
analysts, the small-world model was inspired by the work of de Sola Pool and
Kochen (1978) who partially formalized the much more famous application of
Travers and Milgram (1969). It expresses the simple idea that any two individuals,
selected randomly from almost anywhere on the planet, are ‘connected’ via a path of
no more than a small number of intermediate acquaintances. The (limited) empirical
evidence suggested that this small number is about 6. This notion became a popular
idea in the Broadway play named Six Degrees of Separation. The first practical
evidence for the existence of a small-world phenomenon was first provided by
the psychologist Milgram (Berg 2005, p. 46). Milgram’s experimental result was
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regarded as a good starting point for analyzing the underlying structure of scientific
co-authorship.

Later, Watts and Strogatz (1998) formally defined the small-world model in
order to construct networks with the following properties that mirror some observed
social networks: (i) having short paths between any two vertices (and hence, smaller
average lengths for the shortest paths) and (ii) also incorporates clustering (small
dense parts of the network). Knowing that geographical proximity of vertices plays
a role in the formation of links (especially for humans), they considered a ring-lattice
with n vertices. Each vertex had msw edges to its neighbors. Then they rewired each
edge with a probability psw by relinking the second end of the edge to a randomly
chosen vertex. The probability psw enables this network to vary from an ordered,
finite dimensional lattice to a completely disordered network. The ring-lattice does
not show a small-world effect since the average shortest path grows faster than a
logarithmic rate of increase with the number of vertices, but it has strong local
clustering. When the edges are rewired, Watts and Strogatz noticed that replacing a
few long-distance connections hugely reduced the network’s average shortest path
and, as a result, a small-world effect appears. When psw D 1, the network becomes
completely disordered where local clustering is no longer present and the average
shortest path is small. Watts and Strogatz showed, by numerical simulation, that
there is a relatively large psw interval in between the two extremes, for which the
model exhibits both low path lengths and clustering (Fig. 6.2).

Newman (2001, 2004) provides an excellent overview of the analysis on the
topology of small-world network structures, highlighting key organizing principles
that guide ties among the nodes in the network. According to Moody (2004),
an archetypal small-world network will have many distinct clusters, connected to
each other by a small number of ties. An analysis dealing with the dynamics
of co-authorship publication networks in Slovenian sociology (Mali et al. 2010)
showed that, to some extent, they conform to the small-world network structure:
there are groups of sociologists that are very connected inside small groups but
connected with others in non-systematic ways. Further results, obtained by using
the blockmodeling approach, pointed to a publication strategy of those sociologists
in Slovenia who are included in these small-world structures and are more oriented

Regular graph
with psw=0

Small-world graph Random graph
with psw=1

Fig. 6.2 Small-world structure simulation with different levels of randomness
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to parochial scientific reports or publications in Slovene. Consistent with this, they
publish less in the international peer-reviewed journals than the sociologists outside
this small-world structure. The results of these empirical analyses of Slovenian
sociologists suggest that the presence of a too ‘closed’ and dense co-authorship
network in science can have negative effects on the international orientations of
scientists in a small scientific community. This implies that, for scientific perfor-
mance and scientific excellence, it is much more important to have ‘open’ networks
that have many structural holes (gaps between actors that create opportunities for
brokerage). This is especially important for linking micro-level interactions (coop-
eration inside internal scientific organizations) to macro-level patterns (cooperation
in the international scientific community). Burt provided evidence suggesting that
new ideas in society emerge from selection and synthesis processes that operate
across structural holes between groups. Positive performance evaluations and good
ideas are disproportionately in the hands of people whose networks span structural
holes. The ‘between-group brokers’ are more likely to have ideas viewed as valuable
(Burt 2004) within the community.

6.4.4.3 The Preferential Attachment Model

The scale-free network structure, in one version or another, corresponds fairly
closely to the sociological model of cumulative advantage in science. The first
systematic representation of this model was provided by Merton (1973). Following
Merton, there was a research stream in the literature that invoked the idea of
cumulative advantage as a central explanatory principle for the social stratification
of science. Merton’s studies were concerned with both organizational and functional
aspects of science as an institution capable of self-regulation. This approach found
its most significant (or at least most famous) expression in the description of
the normative structure of science. Merton focused his attention on four insti-
tutional imperatives: universalism, communism, disinterestedness, and organized
skepticism. Merton and other scholars working within institutional approaches
(including Barber, Zuckerman, and Hagstrom) analyzed how norms regulate sci-
entific activity. They studied the ways in which resources and rewards (including
scientific prestige and opportunities to publish) are assigned and distributed within
the scientific community (see, for example, Matthew 2005; Bucchi 2004).

The idea of cumulative advantages comes from the passage in Matthew’s Gospel:
“For unto every one that hath shall be given, and he shall have abundance: but
from him that hath not shall be taken away even that which he hath.” (Hence
the term “the Matthew effect.”) Translating the idea of cumulative advantage in
science implies that those scientists who already occupy a position of excellence are
rewarded far more than others in their field. Scientists who are rich in recognition
find it easier to obtain additional recognition. In contrast, scientists who receive little
recognition for their research efforts have reduced chances for future recognition.
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Merton argued that cumulative advantage is a primary mechanism in modern science
for the creation of scientific stars.9

A more quantitative and bibliometric basis for assessing the phenomenon of
unequal distribution of publications (in connection with the unequal distribution
of awards) in modern science has been provided also by Price (1976; 1963) in the
form of his measure of scientific productivity. According to Price’s law of scientific
productivity, “...half of the scientific papers published in a given sector are signed
by the square root of the total number of scientific authors in that field” (Price 1963,
p. 67). This means that a relatively small number of highly productive researchers
are responsible for most scientific publications. Price’s law is founded on the same
probabilistic basis as the earlier established Lotka Law,10 the Bradford Law,11 and
Pareto and Zipf12 distributions.

Both Price’s law and the Matthew effect depict the scientific community as a
structure characterized by marked inequality and a heavily pyramidal distribution of
scientific rewards and publications. They are linked by the principle of preferential
attachment which contains, for the case of scientific co-authorship networks, two
generic aspects: (1) the continuous addition of new vertices into the network
system and (2) preferential connectivity of new vertices. It means that a common
feature of the models of scientific co-authorship networks, based on the rationale
of preferential attachment, continuously expands by the addition of new vertices
that are connected to the vertices already present in the networks. Additionally, in
these models a new actor is, at best, most likely to be cast in a supporting role with
more established and better-known actors. Further, no scientific field expands with

9Merton and his sociological followers (see Allison et al. 1982; Cole and Cole 1973) have analyzed
several other similar mechanisms with regard to science networks, collaboration structures, and
recognition in science:

1. The “halo effect” in science denotes the advantage of scientists in more favorable institutional
locations.

2. The “Matilda effect” points to the discrimination against the participation of women in scientific
activity.

3. The “gatekeeper” labels those scientists who can influence the distribution of resources such
as research funds, teaching positions, or publishing opportunities because they occupy key
decision-making positions within scientific institutions.

4. The idea of an “invisible college” was introduced on the basis of a seventeenth century
expression denoting informal communities of researchers that cluster around specific projects or
a research theme and that often turn out to be more influential in terms of knowledge production
than formal communities (departments, research centers, scientific committees).

10Lotka’s law states: The number of authors making n contributions is about 1=na of those making
one contribution, where a is often about 2.
11Bradford’s law states: Journals in a field can be divided into three parts: (1) a core of a few
journals, (2) a second zone, with more journals, and (3) a third zone, with the bulk of journals. The
number of journals in these three parts is 1 W n W n2.
12Zipf’s law states: The probability of occurrence of words or other items starts high and tapers off.
Thus, a few occur very often while many others occur rarely. The formal definition is: Pn � 1=na ,
where Pn is the frequency of occurrence of the nth ranked item and a is close to 1.
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an endless growth of new vertices but is constrained by the operation of feedback
effects.13 It follows that there exist nodes, called “hubs” or “Angelpunkten oder
Naben” (Berg 2005, p. 53), that acquire more links than another nodes. In such
types of networks, preferential attachment and the system feedback dynamics play
very important roles.

Crane (1972) provided an analysis of (global) scientific networks where informal
members of scientific elites (in Moody’s terminology, scientific stars) through whom
the communication of scientific information both within scientific disciplines and
across scientific disciplines is directed have the position of “hubs”. Namely, they
are central scientists in the network from where the information is transferred to all
other scientists in the network. They also communicate intensively with each other.
The idea of scientific networks with hubs can be used as a starting point to relate
micro-level interactions (for example, in a local/national scientific community) to
macro-level patterns (for example, the global scientific community). Through the
informal groups of scientific elites, the small-scale interactions become translated
into large-scale patterns. These large-scale patterns (international science) also have
feedback effects on small groups (parochial/national science). The production and
diffusion of the most creative and excellent scientific ideas in the world arise from
the brokered networks (Granovetter 1973, p. 1360).

Albert and Barabási (2001) provide examples of many real-world networks
whose degree distributions are far from a Poisson distribution. They showed that
distributions can be approximated with a power-law function. They proposed a
new evolving network model – PA or preferential attachment model (Barabási and
Albert 1999). The model was presented as one that “shifts from modeling network
topology to modeling the network assembly and evolution” (Albert and Barabási
2001). The idea behind the model was to capture the construction (development) of a
network that could possibly explain the large number of observed power-law degree
distributions in real networks. Before, there existed mostly network models with a
fixed number of vertices among which links were added according to a particular
procedure (process). Since real networks typically grow with the addition of new
links and vertices that are not added randomly, Albert and Barabasi included the
following ideas in their model.

The algorithmic statement of their model, given a set of vertices in a network,
consists of the following two processes in a sequence of steps:

• At every time step, a new vertex v is added to the network.
• mba edges are created from the new vertex v to the vertices that are already in the

network. These vertices are chosen with a probability proportional to their current

13(Berg 2005, p. 54) points out that “the effect of the positive feed-backs, namely, the advantages
of old nodes against new ones as well as the attractiveness of the already networked nodes for
newly added ones are leading to the growth of networks based on the preferential attachment”,
(“...doch in einem bestimmten Bereich sind positiven Rueckkopplungen feststellbar. Beide Effekte
zusammen, der Vorteil, den alte Knoten gegenueber neuen haben sowie die Attraktivitaet besonders
vernetzter Knoten fuer neu hinzukommende, fuehren dazu, dass das Wachstum des Netzes einer
bevorzugehenden Verbindungswahl folgt.”)
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Fig. 6.3 Degree distribution in a co-authorship network of Slovenian researchers (Kronegger et al.
2011a) presented on a log-log scale. A large number of researchers with a small number of co-
authors and a small number of researchers with a high number of co-authors indicates the existence
of a preferential attachment mechanism in the process of network growth

degree. The probability of choosing vertex u can be written by ku=
P

j kj (where
ku represents the current degree of vertex u).

After t time steps, there are t C m0 vertices in the network (where m0 denotes
the number of vertices at the beginning of the process) and tmba edges. It was first
shown with simulations that the degree distribution of the whole network resulting
from the operation of this model follows a power-law distribution with an exponent
� D 3 (Fig. 6.3).

Such scale-free networks as these generated through the principle of preferential
attachment, in addition to not having a Poisson distribution of links around nodes,
also have the interesting property of being very resistant to random attack. Almost
80% of the links can be cut before a scale-free network is destroyed, while the
corresponding percentage for an exponential network is less than 20%.

Many generalizations about preferential attachment models have been made
(Albert and Barabási 2001; Newman 2003). Systematic divergence from the power-
law distribution at small degrees can be seen in many real-world networks.
Therefore, Pennock et al. (2002) proposed incorporating a mixture (weighted
addition) of preferential attachment and random attachment in the model. A further
refinement of this model, where a directed version of the model was taken into
account, is implemented in Pajek (Batagelj and Mrvar 2010). There, at each step
of the growth a new vertex is selected according to its weighted in-/outdegree and
some uniform attachment.



6 Dynamic Scientific Co-Authorship Networks 219

Another generalization about both small-world and preferential attachment,
developed for two-mode networks, comes from Latapy et al. (2008) who present
a nice overview of method developments for two-mode networks. Opsahl (2010)
provides another attempt to overcome the issues of higher clustering coefficients in
projections of two-mode to one-mode networks by redefining both the global and
local clustering coefficients so that they can be calculated directly for two-mode
structures.

6.4.4.4 Applications Featuring Co-Authorship Networks

Newman (2001) showed that collaboration networks form small-worlds in which
randomly chosen pairs of scientists are typically separated by only a short path
of intermediate acquaintances. He further provided information on the distribution
of the number of collaborators, demonstrated the presence of clustering in the
networks, and highlighted the number of apparent differences in the patterns of col-
laboration between fields. Also, Newman (2004) used data from three bibliographic
databases for biology, physics, and mathematics to construct networks in which the
nodes were scientists. He used these networks to answer a broad variety of questions
about collaboration patterns, how many papers did authors write and with how many
people, what is the typical distance between scientists through the network, and how
do patterns of collaboration vary between subjects and over time.

Barabási et al. (2002) analyzed co-authorship data from electronic databases
containing all relevant journals in mathematics and neuroscience for the period
between 1991 and 1998. They found that network evolution is governed by
preferential attachment. However, contrary to their predictions, the average degree
in the networks they analyzed increased, and the node separation decreased in time.
They also proposed a model that captured the network’s time evolution.

Moody (2004) made an important contribution by identifying several types
of individual scientific collaboration behavior that leads to the development of
co-authorship networks that resemble networks generated according to the prin-
ciples of small-world and preferential attachment. Recently, several articles that
test the principles of small-world and preferential attachment have been published.
Some are based on local databases like the Slovenian COBISS (Mali et al. 2010;
Perc 2010), while others use general databases like Web of Science (Wagner and
Leydesdorff 2005; Tomassini and Luthi 2007).

6.4.4.5 Developments of Models for Longitudinal Network Data

After the pioneering work of Erdös and Rényi on random graphs, and after the first
applications of graph theory appeared in the sociological community (de Sola Pool
and Kochen 1978), one group within the scientific community moved away from the
idea of merely reproducing some global properties of “real-world” network proper-
ties. Instead, they focused on an approach designed to include micro-mechanisms
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that generate local changes in networks that also help account for the macro-
structure of networks. Moreover, these efforts were designed to treat the micro-
mechanisms as hypotheses that could be evaluated through statistical inference. The
basics for these models of network change are (as already mentioned in the pre-
vious section) random graphs and random graph processes which incorporate the
probabilistic uncertainty into the models. Uncertainty is present because there are
many potential generators for observed graph structures, including co-authorship.
From a methodological perspective, modeling the dynamics in social networks led
to several obstacles. Probably the most persistent one was the interdependencies of
the units comprising the networks. This problem remained untouched for almost 20
years. Indepth overview of approaches and methods to modeling network changes
in time can be found in Frank (1991), Snijders (1996), and Snijders et al. (2010).

There are two distinct approaches to modeling network changes in time: models
that implement change in discrete time steps, and more advanced models where time
is modeled by continuous flows. Success in modeling change in social networks
began in 1959 when Katz and Proctor showed that change in preferences for
making ties in the network could be represented by a stationary, discrete-time
Markov model. Of course, they assumed the independence of dyads within which
all the modeling took place. In 1981, Holland and Leinhardt published a very
influential article on log-linear models of network change which initiated a vigorous
research stream devoted to the development of a broad class of models. One
basic model, called p1, was developed by Fienberg and Wasserman (1981) and
Wasserman and Weaver (1985). Authors also provided efficient algorithms to find
the maximum-likelihood estimators of parameters defining appropriate probability
functions. Fienberg et al. (1985) showed how to handle social network data with the
Holland-Leinhardt model and its extensions in contingency tables by using basic
log-linear models. The longitudinal dimension to the log-linear approach was added
by Wasserman (1987) and Wasserman and Iacobucci (1988).

Conditionally uniform models (Holland and Leinhardt 1975) are often used for
modeling directed graphs where the probability distribution for forming new ties is
uniform, conditional upon a certain set of attributes. In these models, the conditional
statistics are defined by attribute variables and contain the most relevant effects of
the studied phenomena, while the rest is explained by random factors. Conditionally
uniform models become very complicated when more informative conditioning on
attribute variables is included into the model. Such models for longitudinal binary
network data at 2 time points – conditional upon the entire network at the first time
point, and upon the numbers of newly formed and dissolved ties for each actor –
were developed by Snijders (1990). The idea of conditioning the changes in the
network on the first measured network resolves most of the unexplained factors that
determined the development of network before its first measurement.

Modeling changes in continuous time with Markov chains was adapted by
Coleman (1964) to tackle some classical sociological problems. Holland and
Leinhardt (1977) extended this idea to model networks of interpersonal affect
between actors. They developed a valued Markov chain approach to model the
process by which social structure based on affect influenced individual behavior.
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The basic assumptions underlying the use of the continuous time Markov chain
model are:

1. Between the observation moments, time runs continuously. Changes can be made
(but are likely to be unobserved) at any moment, t .

2. The network X.t/ is the outcome of a Markov process.
3. At each single moment, only one relational tie or variable attribute may change.

Wasserman (1978, 1980a,b) continued this approach and provided estimators for
parameters of various models. He started with a simple model of reciprocity in
directed graphs, but without complicated dependencies between ties such as those
generated by transitive closure.

The breakthrough in modeling the dynamics in social networks was the relax-
ation of the assumption of conditional independence between dyads (Mayer 1984).
This was an important step since most sociological theories assume at least some
kind of dependence structure between dyads. Another important step came in the
form of dropping the stationarity assumption (Leenders 1995). Leenders also
developed a mechanism to allow changing rates for all dyads to be dependent on
arbitrary covariates, with the assumption that these remain constant between the
observations.

In recent years, these models became known as stochastic actor-oriented mod-
els which have been developed to consider a variety of micro-mechanisms for
generating network structure. These models are based on an assumption that
each actor has his/her own goals which he/she tries to advance in accordance
with his/her constraints and possibilities. Snijders (1995) referred to this approach
as ‘methodological individualism’ where the driving force behind the network
dynamics comes in the form of actions by actors.

Each attempt to model specific sociological problems or theories produced a
new mathematical model that filled the gaps along the way to obtaining a better
representation of reality. Yet an important feature still had to be addressed because
most of these models lacked an explicit estimation theory.

The first models addressed some basic questions. A baseline of development
can be followed through the work of several authors. Jackson and Wolinsky (1996)
presented a model where the benefits and costs of ties affected the evolutionary
trajectories of networks and the form of equilibrium structures. Hummon (2000)
constructed actor-oriented simulation models of ‘Jackson and Wolinsky actors’ to
study temporal network dynamics. He specified choices under four combinations of
tie formation and deletion rules: unilateral and mutual tie formation, and unilateral
and mutual tie deletion. This process generated eight types of networks: Null,
near-Null, Star, near-Star, Shared, near-Shared, Complete and near-Complete as
equilibrium structures. Doreian (2006) provided a formal proof via exhaustive
examinations of the structures identified by Hummon (but only for tiny networks),
and this line of work was extended by Xie and Cui (2008a,b). In another line of
development, Marsili et al. (2004) presented a simple model using the creation of
links to friends of friends, a mechanism that was introduced by Vázquez (2003)
in the context of growing networks. This model is similar to the one proposed by
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Davidsen et al. (2002) which explained the emergence of the small-world property
in some social networks.

In the model of Skyrms and Pemantle (2000), individual agents begin to interact
at random, with the interactions modeled as games. The game payoffs determine
which interactions are reinforced, and network structures emerge as a consequence
of the dynamics of the agents’ learning behavior.

More complex network dynamic models with larger but still quite restricted
numbers of tendencies were presented by Jin et al. (2001). They propose some
simple models for the growth of social networks based on three general principles:
(i) meetings take place between pairs of individuals at a rate that is high if a pair has
one or more mutual friends and low otherwise; (ii) acquaintances between pairs
of individuals who rarely meet decay over time; (iii) there is an upper limit on
the number of friendships an individual can maintain. Their models incorporate
all of these principles and reproduce many of the features of real social networks,
including high levels of clustering or network transitivity and strong community
structure in which individuals have more links to others within their community
than they have to individuals from other communities. The important feature of
their models is the inclusion of a time scale on which people make and break social
connections.

6.4.4.6 Simulation Investigation for Empirical Network Analysis – Siena

The problem of inference in modeling dynamics of social networks on the basis
of the observed longitudinal data was addressed by Snijders (1996) and extended
further by Snijders et al. (2010). These models are based on longitudinal data and
include representations of network dynamics as being driven by many different ten-
dencies. These include micro-mechanisms, which have been theoretically derived
and/or empirically established in earlier research, and which may well operate
simultaneously. One of the most important characteristics of these models is the
evaluation of their results within the paradigm of statistical inference, which
makes them suitable for testing hypotheses and estimating tendencies that drive
tie formation and dissolution at the level of individual units using reciprocity,
transitivity, homophily, etc.

The model assumptions are:

• The model is basically defined for directed relations. In the case of undirected
networks (e.g., co-authorship networks) the tie formation is additionally modeled
using different mechanisms (e.g., a unilateral forcing model, unilateral initiative,
and reciprocal confirmation, etc.)

• The network is observed in 2 or more discrete timepoints. But the underlying
time parameter in the model is continuous.

• Changes in the network are outcomes of a Markov process, which means that the
change in the network from one state in time point ti to new state in time point
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tiC1 is conditioned only to the state of the network in time point ti . The process
does not take into account any other historical events.

• The actors control their ties, which means that changes in ties are made by actors
who send the tie on the basis of their and others’ attributes, their position in the
network, and their perceptions about the rest of the network. Regarding the last,
it is assumed that actors have full information about the network and the other
actors.

• At any given moment, only one probabilistically selected actor may get the
opportunity to change only one tie.

The actor-based process is decomposed into two stochastic sub-processes:

1. The change-opportunity process models the frequency of the tie changes by
actors. The opportunity to change the tie depends on the network locations of
the actor (e.g., his or her centrality) and on actor covariates (e.g., gender or age).

2. The change-determination process models the change of the tie when an actor
gets an opportunity to make a change. The change of the tie can be made
with equal probabilities or with probabilities depending on attributes or network
positions. Perceived attributes and position (the environment) of the actor is
included into the actor’s objective function, which expresses how likely it is for
the actor to change his or her network environment in specific way (i.e., initiate,
withdraw tie, or keep the present situation).

To use this model with observed data means that parameters have to be estimated
by some statistical procedure. Since the model is too complicated for classical
estimation methods such as maximum likelihood, Snijders (1996, 2001) proposed a
procedure using the method of moments implemented by a computer simulation of
the network change process. The procedure he proposed uses the first observation
of the network as the (unmodeled) starting point of the simulations. This implies
the estimation procedure is conditioned on the first observed network of a series of
observations of that network.

The limitation of such models is that they are limited to a predetermined
and rather small number of actors (between 100 and 200 actors) and do not
directly consider the mechanisms of network growth. The methods and algorithms
developed by Snijders et al. (2008) are implemented in the computer package
SIENA.

Stochastic actor-based modeling of network dynamics was initially developed
for modeling the change in directed networks. The undirected networks such as
co-authorship networks are a special case where reciprocity cannot be used as
a mechanism of network change. Although several articles have been published
using SIENA models, to our knowledge, only Kronegger et al. (2011b) dealt with
undirected networks to study the dynamics of co-authorship networks of Slovenian
researchers working in physics, mathematics, biotechnology, and sociology in the
time period from 1991 to 2005. In their study, they operationalized the modeling of
global network parameters used in the preferential attachment and the small-world
models with stochastic actor-oriented modeling.
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6.5 Summary

Access to bibliographic databases and the availability of powerful quantitative social
network approaches increased the number of studies of co-authorship networks in
different scientific fields. There are several classification schemes for analytical
approaches to analyzing the dynamics of co-authorship networks. We decided to
classify them according to the types of models. The first type of model provides the
basic analysis of whole co-authorship network properties. Such network character-
istics are degrees, clustering coefficients, and density. The usual statistical approach
used in these models is time-series analysis of listed properties.

Deterministic models (the second type) and stochastic models (the third type) are
usually used to analyze actor-based co-authorship networks and attribute charac-
teristics. To study the structure within the co-authorship networks, blockmodeling
approaches are recommended. To model dynamic co-authorship networks, sev-
eral approaches can be used according to the chosen level of analysis. Models on
the macro level (whole network level) were mostly developed by mathematicians
and physicists. These are models of “real-world” networks, small-world models,
and preferential attachment models. The alternative stochastic actor-based model
(implemented in SIENA) was developed by social scientists and statisticians. This
model focuses on single units and on dyads. This powerful model studies network
change in time as the result of micro-mechanisms for generating the network
structure.

There are several indicators that show a huge development of analytical
approaches to studying social networks through time. The powerful stochastic
actor-based networking model has one disadvantage in that it can only be used to
analyze a few hundred units in the network. Therefore, there is a need for similar
models to analyze large networks.

Key points
Modeling of co-authorship networks can be approached in terms of the
different perspectives and goals that have been outlined in this chapter. As
a partial summary, the following items are important:

1. Level of the analysis: the macro level (whole network) or the micro level
(unit). Which one is used depends on the goal(s) of the study. There are the
following three variants:

a. Describing the topology of the macro structure
b. Understanding the micro-level changes at the actor level
c. Coupling the micro-level processes to the generation of the network’s

macro structure.

2. Size of the network: some models can process only a limited number
of units (e.g. stochastic actor-based modeling and direct blockmodeling),
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while others can handle large networks (e.g., preferential attachment, the
small-world model, and indirect blockmodeling).

3. Discrete-time models (e.g., blockmodeling) or continuous-time models
(e.g., stochastic actor based modeling).

4. The analysis of the evolution of co-authorship networks only (e.g., small-
world model, preferential attachment, blockmodel) or including external
characteristic of network (e.g., scientific field) and/or actor attributes (e.g.,
age or gender of researcher) using modeling approaches (e.g., stochastic
actor based modeling).

5. Needs of graphical representation of co-authorship network evolution (e.g.,
preferential attachment, blockmodeling, multidimensional scaling).
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Bordons M, Morillo F, Gómez I (2004) Analysis of cross-disciplinary research through
bibliometric tools. In: Moed HF, Glänzel W, Schmoch U (eds) Handbook of quantitative science
and technology research: The use of patent and publication statistics in studies on S&T systems.
Kluwer, Dordrecht, pp 437–456 (DOI: 10.1007/1-4020-2755-9 20)

Braun T, Schubert A (2003) A quantitative view on the coming of age of interdisciplinarity in the
sciences 1980–1999. Scientometrics 58(1):183–189 (DOI: 10.1023/A:1025439910278)

Braun-Munzinger P (2009) Teilchenphysik und Teilgebiete der Kernphysik: Das Publika-
tionsverhalten in Großkollaborationen. In: Publikationsverhalten in unterschiedlichen
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Chapter 7
Citation Networks

Filippo Radicchi, Santo Fortunato, and Alessandro Vespignani

7.1 Introduction

Bibliographic databases represent the starting point for any empirical study of
the evolution and dynamics of scientific activity, citation patterns, and the ensu-
ing analysis of the importance of specific contributions, journals, and scientists.
Bibliographic datasets were first analyzed by Lotka (1926) and Shockley (1957)
in order to quantitatively measure the productivity of individual scientists and
research laboratories, respectively. Since the pioneering work of Derek de Solla
Price (1965), who realized that bibliographic data have a natural mathematical
representation in terms of directed graphs, the study of co-authorship and citation
networks has become the starting point for the formulation of key hypotheses such
as the mechanism of cumulative advantage (Price 1976) to explain the dynamical
pattern of citation accumulation. The mathematical description of social systems in
terms of networks or graphs has a long tradition in social sciences (Wasserman
and Faust 1994). However, it is only in the last decade that the analysis of
bibliographic data has received a boost from advances in information technology
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and the massive digitalization of documents. For the first time, data collection and
mining capabilities allow for system-level analysis of huge bibliometric datasets
that are regularly collected in digital format. The data collected in digital bib-
liographic databases report a wealth of information for each article, including:
title, journal, date of publication, a list of authors and their affiliations, a list of
bibliographic references, keywords, and an abstract. In this context, the use of
multipartite networks as the natural abstract mathematical representation of the
data is particularly convenient, and several studies have recently focused on the
study of co-authorship networks, paper citation networks, etc. In general, each
of these networks is an appropriate bipartite or unipartite network projection
of the original bibliographic dataset where authors and papers are nodes, and
citations, authorship, and other bibliographic information define the links between
nodes.

Nowadays, computational power allows us to generate and analyze citation
networks consisting of hundreds of thousands or millions of nodes and links.
On one hand, the sheer size of the networks under consideration challenges us
with new problems concerning the mathematical characterization of systems that
preserve the undeniable intricacies and, in some cases, haphazard sets of elements
and relations involved. On the other hand, the large size of the resulting networks
empowers us with a system-level view of the citation dynamics that was not
accessible in previous years. Indeed, in large systems, asymptotic regularities
cannot be detected by looking at local elements or properties: one has to shift
attention to statistical measures that take into account the global behavior of these
quantities.

The possibility of analyzing large-scale network data is one of the central
elements that has characterized the recent developments in network science and the
increased interest in complex networks (Albert and Barabási 2002; Dorogovtsev and
Mendes 2002; Newman 2003; Pastor-Satorras and Vespignani 2004; Boccaletti et al.
2006; Caldarelli 2007; Barrat et al. 2008). For this reason, citation networks in the
last several years have become one of the prototypical examples of complex network
evolution. Indeed, the new modeling and analysis techniques emerging in the area
of complex networks have provided new insights into citation networks, which have
facilitated understanding of the dynamical processes governing their evolution. In
this chapter, we will review the main structural characteristics of citation networks
and we will frame some of their properties in the language of complex networks.
We will also review the basic descriptive and generative models used to represent
citation networks and the use of dynamical processes to rank papers and authors
(Table 7.1).

Table 7.1 List of major questions and models addressed in this chapter

Major questions addressed Major models

Structure and dynamics of citation networks De Solla Price model
Citation distributions Barabási-Albert model
Ranking criteria Model by Karrer & Newman
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7.2 Bibliographic Databases and the Construction
of Citation Networks

In the last two decades, bibliographic databases have completely changed in terms
of accessibility and completeness. Most of these databases are now online and their
records can be searched by simple web queries. The Web of Science (WoS) database
of Thomson Reuters1 is the largest and most complete commercial source of
bibliographic data. WoS indexes papers from every part of the world and from every
scientific discipline. Like WoS, other databases store large sets of bibliographic data:
CrossRef,2 Scopus,3 GoogleScholar,4 Citebase,5 CiteSeer,6 Spires,7 and the Eprint
archive at www.arxiv.org are just a few examples. These databases do not offer
the same coverage of WoS (different journals and conference proceedings are listed
depending on the database), but, with the exception of CrossRef and Scopus, they
are accessible free of charge.

From the raw data, various kinds of citation graphs can be generated. The
simplest ones are citation networks between papers. Taking the list of references
appearing at the end of each article, one can draw directed connections from citing
articles to cited ones. In this case, the graph is directed, but no weight appears on
the arcs since it is natural to assume that each reference has the same importance.
The same information can be used to construct citation networks between scientists,
journals, and institutions. For example, the citation network between journals is
obtained by substituting each article with its journal of publication. Weighted
connections can be drawn in this case by assigning to the arcs a weight equal to
the number of times that a journal cites another journal. In Fig. 7.1, we show the
construction of an author citation network. Starting from the network of citations
between papers, the construction can be performed locally by translating the citation
from a paper i to a paper j into a set of citations between all ni co-authors of
paper i to all nj co-authors of article j . The weight of each of these directed
connections is simply w D 1=

�
ni � nj

�
, by naturally assuming that the citation

between papers carries a unit of weight and that this quantity is evenly split among
the involved scientists. The total weight of a connection between two authors is then
given by the sum of each of these elementary contributions over the entire network
of citations between papers. Furthermore, the longitudinal nature of bibliographic
datasets (expressed by the publication dates of the papers) allows one to follow the
evolution of citation networks.

1WoS: Web of Science, URL: http://isiknowledge.com/WOS.
2Crossref, URL: http://www.crossref.org.
3Scopus, URL: http://www.scopus.com.
4Google Scholar, URL: http://scholar.google.com.
5Citebase, URL: http://www.citebase.org.
6Citeseer, URL: http://citeseer.ist.psu.edu.
7SPIRES, URL: http://www.slac.stanford.edu/spires.

http://isiknowledge.com/WOS
http://www.crossref.org
http://www.scopus.com
http://scholar.google.com
http://www.citebase.org
http://citeseer.ist.psu.edu
http://www.slac.stanford.edu/spires
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Fig. 7.1 (a) In the network of citations between papers, the article i , written by two authors i1 and
i2, cites two papers j and k, written by one author j1 and two co-authors k1 and k2, respectively.
(b) The author citation projection is generated by simply connecting with a directed link both i1 and
i2 to j1, each with weight 1=2, and to k1 and k2, each with weight 1=4. From Radicchi et al. (2009)

It is important to mention that in the construction of citation (and collaboration)
networks between scientists, possible problems may arise. First, there is a problem
of identification for the authors. Unfortunately, scientists do not always sign their
papers using the same name and this has as a consequence the impossibility of
automatically relating different names to the same physical person. This fact may
happen for several reasons: different order between first and last name; possible
presence or absence of middle names; and change of last names (especially after
marriage). The second problem is basically the reverse of the formerly described
source of error. Generally in bibliographic databases, scientists are identified by
their full last name plus the initials of their first and middle names. Therefore,
disambiguation errors occur due to the impossibility to distinguish authors having
the same initials and the same last name. The solution for deleting this source of
errors is to use a unique identifier for each scientist as recently proposed by the
project ResearcherID8 of Thomson Scientific.

It is worth remarking that citation networks can also be constructed by consider-
ing data, and not concerning the scientific bibliography. For instance, there is a large
number of electronic databases collecting information on technological patents.
Examples are: NBER U.S. Patent Citations Data,9 containing all patents registered
in the United States from 1963 to 1999; Google patents,10 which collects patents

8URL: http://www.researcherid.com.
9NBER: The National Bureau of Economic Research, U.S. Patent Citations Data at the URL: http://
www.nber.org/patents.
10Google Patents, URL: http://www.google.com/patents.

http://www.researcherid.com
http://www.nber.org/patents
http://www.google.com/patents
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Fig. 7.2 Author citation network of scientists working on complex networks. The graph is derived
from the citation network of papers published in the journals of the American Physical Society14

whose titles contain the keywords “complex networks,” “small-world networks,” etc. A citation
by paper A to paper B turns into a set of citations from each author of paper A to each author of
paper B. Each edge of the author citation network is weighted, as an author may cite any other
author multiple times in the same or different papers. From Radicchi et al. (2009)

registered in many countries; and the database of the European Patent Office,11 in
which all patents registered in the European Community are stored. An additional
example is represented by legal citation networks. These are networks that can be
constructed by using data obtained from United States Supreme Court decisions
dating from 1789.12

Citation networks (see Fig. 7.2) immediately convey a sense of complexity, and,
in order to understand the organizing principles underlying these networks, it is
necessary to utilize statistical analysis. The first quantity to be scrutinized since the
early work of De Solla Price has been degree centrality. The degree ki of a vertex i

is defined as the number of edges in the graph incident on the vertex i . While this
definition is clear for undirected graphs, it needs some refinement for the case of
directed graphs. Thus, we define the in-degree kin

i of the vertex i as the number

11EPO: European Patent Office, URL: http://www.epo.org/patents/patent-information.html.
12Supreme Court of the United States, URL: http://www.supremecourt.gov.

http://www.epo.org/patents/patent-information.html
http://www.supremecourt.gov
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of edges arriving at i , while its out-degree kout
i is defined as the number of edges

departing from i . The degree of a vertex in a directed graph is defined by the sum
of the in-degree and the out-degree, ki D kin

i C kout
i . In the case of paper citation

networks, the in-degree kin
i corresponds to the number of papers citing the paper i

and the out-degree kout
i corresponds to the number of citations to other papers. In

large-scale graphs, a first statistical characterization is provided by the normalized
histogram of the in-degree and out-degree of the nodes that for a large number
of nodes (documents) can be considered analogous to the probability distributions
P
�
kin
�

and P .kout/ that a randomly chosen vertex has in-degree kin and out-degree
kout, respectively. While these two quantities have been considered extensively
in the literature, it is clear that many other indicators and metrics characterizing
the structure of networks are equally important in defining the ordering principles
of citation networks. In the next section, we will discuss some of the structural
features that characterize citation networks. However, it is important to stress that
the analysis of the degree distributions of citation networks immediately reveals a
high level of heterogeneity exemplified by the fact that many vertices have just a
few connections, while a few hubs collect hundreds or even thousands of edges. For
instance, this feature is easily discerned from Fig. 7.2. The same arrangement can
easily be perceived in many other networks where the presence of “hubs” is a natural
consequence of different factors such as popularity, strategies, and optimization.
For instance, in the World Wide Web, some pages become hugely popular and are
pointed to by thousands of other pages, while, in general, the majority of pages are
almost unknown. The presence of hubs and connectivity define degree distributions
P.kin/ with heavy-tails (Barabási and Albert 1999) that are highly variable in the
sense that degrees vary over a broad range, spanning several orders of magnitude.
This behavior is very different from the case of bell-shaped, exponentially decaying
distributions. In distributions with heavy tails, vertices with degrees much larger
than the average hkini are found with a significant probability. In other words, the
average behavior of the system is not typical.

The heterogeneity found in citation networks is common to many other networks
in very different domains. This evidence, first pointed out by Barabási and Albert
(1999), is at the root of the huge body of work aimed at uncovering general
dynamical principles explaining the structure and evolution of complex networks.
It is necessary however to clarify the distinction between what is “complex”
and what is merely complicated, in addition to what is conceptually relevant to
citation networks. A first point which generally characterizes complex systems
is that they are emergent phenomena in the sense that they are the spontaneous
outcome of the interactions of many constituent units. In other words, complex
systems are not engineered systems put in place according to a definite blueprint.
Indeed, loosely speaking, complex systems consist of a large number of elements
capable of interacting with each other and their environment in order to organize
within specific emergent structures. From this perspective, another characteristic
of complex systems is that decomposing the system and studying each component
in isolation does not allow for an understanding of the whole system and its
dynamics since the self-organization principles reside mainly in the collective and
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unsupervised dynamics of the many elements. It is easy to see that citation networks
are this type of systems. Another main feature characterizing many complex systems
concerns the presence of complications on all scales possible within the physical
constraints of the system. In other words, when facing complex systems, we are
in the presence of structures whose fluctuations and heterogeneities extend and
are repeated at all scales of the system. In the case of citation networks, the
all-scales complication is statistically encoded in the heavy-tail distributions that
characterize network structural properties. The larger the size of a system, the larger
its heterogeneity and the variability of its properties.

The question of the existence of some general organizing principles that might
explain the emergence of complex networks architecture in very different contexts
leads naturally to a shift of focus in the area of network modeling where the empha-
sis is on the microscopic processes that govern the appearance and disappearance of
vertices and links. In this context, citation networks have acquired a role that goes
beyond the specific interest of bibliometrics and the so-called “science of science”;
they are prototypical systems for the study of dynamical principles that could apply
in very different domains.

7.3 Structural Features of Citation Networks

7.3.1 Citation Distribution

The primary goal of a large number of empirical studies about citation networks
is represented by the characterization of the probability distribution function of
citations. This is the probability P

�
kin
�

that a paper has been cited kin times. In the
language of network science, measuring the number of citations of a paper means
counting the number of incoming links (in-degree) kin of a node. In the 1960s,
de Solla Price (Price 1965) was already in the middle of performing empirical
measurements on a relatively small subset of papers and was able to observe that
the number of articles with a given number of citations had a broad distribution.
Price conjectured a power law scaling P

�
kin
� � �

kin
��


with a decaying exponent

 ' 3. This result was confirmed much later in 1998 by Redner (1998). Redner
studied much larger datasets (all papers published in Physical Review D up to
1997 and all articles indexed by Thomson Scientific in the period from 1981–
1997) and found again that the right tail of the distribution (corresponding to highly
cited papers) shows a power law scaling with 
 D 3. At the same time, Redner
realized that the left part of the distribution was more consistent with a stretched
exponential. However, different conclusions were drawn by Laherrére and Sornette
(1998) in the same year. They studied the dataset of the top 1,120 most cited
physicists during the period from 1981–1997, finding that the whole distribution of

citations is more compatible with a stretched exponential P
�
kin
� � exp

h
� �kin

�ˇi
,

with ˇ ' 0:3. The puzzle was seemingly solved by Tsallis and de Albuquerque
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(2000). By analyzing the same datasets as Redner’s plus an additional one composed
of all the papers published up to 1999 in Physical Review E, the authors found that

the Tsallis distribution P
�
kin
� D P.0/=


1 C .ˇ � 1/  kin

�ˇ=.ˇ�1/
, with  ' 0:1

and ˇ ' 1:5, consistently fits the entire distribution of citations. However, a new
functional form was again attributed to Redner a little later. Redner performed an
analysis over all papers published in the 110-years-long history of journals in the
Physical Review collection (Redner 2005), finding that the distribution of citations
is best fitted by a log-normal distribution

P
�
kin
� D 1

kin
p

2��2
exp

n
� ln �kin

� � �
�2

=
�
2�2

�o
: (7.1)

In subsequent studies, depending on the particular dataset taken under consideration,
distributions of citations have been fitted with various functional forms: power-
laws (Seglen 1999; Vazquez 2001; Lehmann et al. 2003; Bommarito and Katz
2009), log-normals (Bommarito and Katz 2009; Stringer et al. 2008; Radicchi et al.
2008; Castellano and Radicchi 2009; Stringer et al. 2010), Tsallis distributions
(Wallace et al. 2009; Anastasiadis et al. 2009), modified Bessel functions (van Raan
2001a,b), and more complicated distributions (Kryssanov et al. 2007).

A typical bias present in many empirical results is the fact that citation distri-
butions are computed without taking into consideration any possible discipline-
or age-dependence of the statistics. Older papers may have more citations than
recent ones, not necessarily because of their merits, but because they stayed in
the literature longer and had more time to be cited. Even more serious is the bias
related to discipline dependence: papers in mathematics and biology are part of two
almost non-interacting citation networks, which follow different citing behaviors.
In Stringer et al. (2008); Radicchi et al. (2008); Castellano and Radicchi (2009);
Stringer et al. (2010), the authors accounted for these distinctions by analyzing a
large number of papers and classifying them according to the date and the journal
of publication (Stringer et al. 2008, 2010) and the scientific discipline to which
they belong (Radicchi et al. 2008; Castellano and Radicchi 2009). By restricting
the statistic to these subsets, the probability that a paper has received kin citations
is a log-normal distribution. Even more surprisingly, the authors of Radicchi et al.
(2008) realized that the only significant difference between different disciplines and
years of publication is the average value hkini. When the raw number of citations
is replaced by the relative quantity kin=hkini, a universal behavior is found and
no distinction between curves corresponding to different publication years and
scientific disciplines is visible (Fig. 7.3).

7.3.2 Other Topological Features of Citation Networks

Citation networks are directed graphs, and typical measurements used for undirected
networks must be adapted. Directions are naturally defined, since the arrows on the
arcs of the graph point from citing to cited articles. In good approximation, paper
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Fig. 7.3 Universality of citation distributions. Each curve refers to papers published in a given
year in journals belonging to the same discipline. The disciplines are those identified by ISI Web
of Science. The score on the x-axis is the ratio of the number of cites c of a paper by the average
number of cites c0 collected by all papers in that discipline. From Radicchi et al. (2008)

citation networks are also acyclic graphs. The lack of cycles is due to the natural
order underlying the network: papers are chronologically sorted, and citations only
go backward in time. However, this feature is not generally present in citation
networks, as, for example, in citation graphs between scientists and journals.
Moreover, though in rare cases, paper citation networks are not strictly acyclic since
special issues of journals often contain articles citing each other.

Triangles [important for computing local correlation properties like the clustering
coefficient (Watts and Strogatz 1998)] can be still observed, but only of the
type i ! j , i ! l , and j ! l . These local structures abound in scientific citation
networks (Chen et al. 2007; Wu and Holme 2009): generally speaking, in 50% of the
cases the presence of the citations i ! j and j ! l also implies the existence of the
arc i ! l . This means that there is a general tendency to copy the references of cited
papers. An interesting consequence of this mechanism is the spreading of errors
in referenced papers (Simkin and Roychowdhury 2005), due to the fact that often
citations are copied from other papers without paying attention to their correctness.

Another general difference with respect to undirected networks is the presence in
citation graphs of “sinks”: i.e., papers that do not cite any article and have therefore
zero out-degree. The presence of sinks is generally due to the incompleteness of
the datasets; the oldest papers indeed cite other articles, but those cited articles are
not included in the analysis as they are even older than the citing article. Similarity
indexes and distances can be formulated despite this. In Bommarito et al. (2010b) for
example, the distance between two nodes is quantified in terms of common ancestors
(sinks). The degree of similarity can be used for classification purposes through the
application of data clustering algorithms.
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7.3.3 Community Structure of Citation Networks

Real networks typically display an internal organization in clusters (communities).
Communities are intuitively defined as sets of vertices characterized by a density of
internal connections higher than the density of links between vertices of different
communities. The identification of communities in complex networks is a non-
trivial problem, originally considered in social science (Scott 2000) and later
analyzed in theoretical computer science in the context of the data clustering
problem (Jain et al. 1999). Recently, concepts and tools typical of statistical physics
have played a fundamental role for the detection of topological communities in
complex networks (Fortunato 2010).

Citation networks represent a difficult challenge for community detection. Since
they are directed (sometimes weighted) graphs with an internal natural ordering

Fig. 7.4 Community structure of a network of scientific journals. Communities, indicated by
the circles, were detected via Infomap, an algorithm based on the study of diffusion flows in the
network. Each circle is named after the discipline of the journals grouped in the corresponding
community. The thickness of the arcs is proportional to the size of the citation flows between
disciplines. From Rosvall and Bergstrom (2008)
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(publication time), standard tools of community detection, generally developed for
undirected and unweighted graphs, require modification, and in most cases this is
not possible. Fortunately, some new techniques for community detection have been
developed and applied for the identification of clusters in citation networks.

One interesting approach is the one proposed by Rosvall and Bergstrom (2008).
Using an information-theoretic framework, based on coding of diffusion processes
on graphs, the authors were able to determine the community structure in the
citation network between the scientific journals indexed by Thompson Scientific,
identifying the main divisions of journals in scientific disciplines (Fig. 7.4). A
different kind of analysis is the one recently performed by Chen and Redner (2010).
The authors studied the community structure of the citation network between papers
published in the collection of Physical Review by means of maximization of the
directed version of the modularity function (Leicht and Newman 2008). The study
by Chen and Redner leads to the observation of the surprising presence of strong
connections between fields of physics that are prima facie very different with respect
to their research topic or that are well-separated in time (Fig. 7.5). Other interesting
approaches are those proposed for the study of the community structure of the
legal citation network of the Supreme Court of the United States (Leicht et al.
2007; Bommarito et al. 2010a). In Leicht et al. (2007), an expectation-maximization
algorithm is used for monitoring the evolution of communities. In Bommarito et al.
(2010a), communities are found through different detection algorithms and their
stability along time is controlled.

Fig. 7.5 Time evolution of the community structure of the network of citations between papers
published in journals of the American Physical Society (APS). Time is divided into nine decades,
from 1927 until 2006. In each decade, the most cited papers were selected (about 3;000). The
communities are classified based on the APS journal where the largest relative fraction of papers in
the community were published (indicated by the symbols). While links between different decades
usually involve consecutive periods, there are five links connecting well-separated scientific ages
(thick edges in the figure). From Chen and Redner (2010)
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7.4 Modeling Citation Networks

7.4.1 Dynamical Models

Networks of citations between papers are growing systems with complex topolog-
ical features: the rate at which new papers are added (published) to the network
is almost exponential, while the number of references per paper (out-degree) and
the number of citations received (in-degree) are broadly distributed. One of the
most surprising features of the growth of citation networks, discovered already
by de Solla Price (Price 1976), is related to the mechanism ruling the assignment
of citations: the probability that a paper gets cited is proportional to the number
of citations it already has received. This mechanism is the so-called “cumulative
advantage,” based on which the “rich get richer,” already developed by Yule (1925)
and Simon (1957) in different contexts. The criterion, now widely referred to
as “preferential attachment,” was recently made popular by Barabási and Albert
(1999), who proposed it as a general criterion for the emergence of heterogeneous
connectivity patterns in networks generated for the description of systems belonging
to different scientific domains.

The model by Price (1976) anticipated the modern models of network growth.
It is very simple: one node (paper) is introduced (published) at each stage of
the growth carrying new connections (citations). The average number of citations
(mean degree) is m. The rate at which older nodes receive incoming connections
is assumed to be linearly proportional to the number of arcs already incident on
them and can be simply indicated by ˘

�
kin
� � �

1 C kin
�
. When a sufficiently large

number of papers has been published, the probability that an article has received kin

citations becomes stable and, in the limit of large in-degrees, equals

P
�
kin
� � �

kin
��2�1=m

; (7.2)

which means a power law (or “scale free”) distribution with exponent 2C1=m. The
exponent of the distribution 
 depends on the mean degree m and can therefore be
tuned rather arbitrarily.

The Barabási–Albert model (Barabási and Albert 1999), in its standard version,
considers the total degree, not the in-degree, and yields a power law degree
distribution with 
 D 3. Its extension to the directed case is essentially equivalent
to the Price model: the attachment rate is ˘

�
kin
� � �

A C kin
�
, where A > 0 is a

parameter that can be tuned (Krapivsky et al. 2000; Dorogovtsev et al. 2000b). In
this case, one has 
 D 2 C A=m, where m indicates the number of new citations
introduced by each new paper. The exponent 
 D 3 is recovered by setting A D m.
The preferential attachment model and its subsequent generalizations not only can
predict that the tail of the probability distribution for citations follows a power law,
but also that the tail will be predominantly composed of the earliest published
papers. This effect, supported by empirical evidence and nicely denominated as
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“first-mover advantage” (Newman 2009), reveals that in order to be well cited, it
is often more convenient to write one of the first papers in a particular topic than the
best article in that area.

However, the predominant weakness of the preferential attachment model and
its variants is the sensitivity to the assumption that the probability of being cited
is simply proportional to the number of citations previously collected. One might

consider the general ansatz ˘
�
kin
� � �

kin
�ˇ

for the attachment probability, with a
generic ˇ. The scale-free behavior of P

�
kin
�

is observed only for ˇ D 1: for ˇ < 1,
the distribution of citations turns out to be a stretched exponential, and for ˇ > 1,
a condensation of citations is observed and few papers are cited by nearly all other
articles (Krapivsky et al. 2000; Dorogovtsev et al. 2000b).

The preferential attachment hypothesis has undergone empirical validation.
Jeong et al. (2003) considered papers published in Physical Review Letters in
1988 and all citing articles published later. They divided the time axis into several
bins and tested whether the number of citations received up to a certain time
was influencing the number of citations received later (Fig. 7.6). They found that
papers are cited with a probability that is nearly a linear function of the number
of already-received citations, ˘

�
kin
� � �

kin
�
. A similar result was also observed

Fig. 7.6 Empirical verification of the validity of the preferential attachment mechanism for

citation networks. The cumulative attachment probability �.k in/ D R kin

0 ˘
�
k in
�

should scale as
.k in/˛C1 if the original attachment probability ˘

�
k in
�

scales like .k in/˛ (and vice versa). The
cumulative probability �.k in/ is more suitable than ˘

�
k in
�

for the empirical analysis because the
integral considerably reduces the fluctuations. The two empirical curves correspond to citations
received in 1991 and 1995, respectively, by papers published in Physical Review Letters in 1988. In
both cases �.k in/ � .k in/2 , so ˛ � 1, as in linear preferential attachment. From Jeong et al. (2003)
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by Redner (2005) by analyzing the whole dataset of publications in journals of the
American Physical Society. Therefore, a linear attachment probability seems to be
a typical characteristic of the evolution of citation networks.

An important effect not included in the preferential attachment mechanism is
the fact that the probability of receiving citations is time dependent. In the Price
model, papers continue to acquire citations independently of their age, while it is
reasonable to think and has been empirically observed (Hajra and Sen 2004a,b,
2005; Wang et al. 2008) that the probability for an article to be cited decreases
as the age of the same article increases. Some recent papers about growing network
models include the aging of nodes as a key feature (Hajra and Sen 2005; Wang et al.
2008; Dorogovtsev and Mendes 2000a, 2001; Zhu et al. 2003). The probability
that a paper receives a citation from a new article can be written as ˘

�
kin; t

�
,

with explicit dependence not only on the number of citations kin already received
but also on the publication time t . For simplicity, the two effects are generally
considered independent of each other, and the rate at which papers receive citations
becomes separable ˘

�
kin; t

� � K
�
kin
� � f .t/. Various models have been studied

by assuming different functional forms for K
�
kin
�

and f .t/. In Dorogovtsev and
Mendes (2000a) for example, K

�
kin
� D kin and f .t/ D t˛ . When ˛ < 0, the

aging effect competes with the preferential attachment mechanism, while for ˛ > 0,
older nodes are more favored and the age dependence enhances the “rich get richer”
effect. The distribution of the number of citations received continues to be a power
law for values of ˛ � �1. In Zhu et al. (2003), K

�
kin
� D kin and f .t/ D e˛t .

The model produces power law distributions for the citations only for ˛ � 0.
A more complicated situation is studied in Dorogovtsev and Mendes (2001), where

K
�
kin
� D �

kin
�ˇ

and f .t/ D t˛ . The limiting distributions for the number of
citations are studied in the ˛–ˇ plane: scale-free distributions arise only along the
line ˇ D 1; for ˇ > 1, condensation phenomena happen and a few nodes acquire
almost all the citations; for ˇ < 1 and ˛ � �1, the distribution is a stretched
exponential.

7.4.2 Static Models

Citation networks are directed and, in good approximation, acyclic graphs. The
simultaneous presence of directions and a lack of cycles requires the introduction of
specific models able to capture the topological properties of citation networks.

These two ingredients are the basis of the theoretical formulation developed by
Karrer and Newman (2009a,b), where the statistical properties of static acyclic and
directed graphs are analyzed in detail. Suppose we have a network composed of
N articles (nodes) and that the indices of the nodes are chronologically sorted
according to their publication date: j < i means that paper j has been published
before paper i . Imagine that both the in- and out-degree sequences of the network are
given. This means that the number kin

i of papers citing the i th article as well as the
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number kout
i of publications cited by paper i are completely specified. The study by

Karrer and Newman focuses on the statistical properties of the ensemble of networks
that can be constructed by preserving the constraint that all incoming and outgoing
stubs are paired, with the restriction that only connections of the type i ! j

with i > j are allowed. This static model is very similar to the one represented
by the popular configurational model (Molloy and Reed 1998). A natural variable,
fundamental for the analytical treatment of the model by Karrer and Newman, is

i D
i�1X
j D1

kin
j �

iX
j D1

kout
j ; (7.3)

which represents the number of incoming stubs “below” node i still available
for connections with outgoing stubs exiting from vertices “above” i . In other words,
i counts the number of edges that flow “around” the node i . A necessary and
sufficient condition for the construction of the model, assuming that all incoming
and outgoing stubs are paired in a way that preserves ordering, is that i � 0,
8 1 < i < N , while 1 D N D 0 arise as the natural boundary conditions of
the problem. The expected number of connections between nodes i and j can be
estimated to be

Pij D kin
i kout

j

Qj �1

lDiC1 lQj

lDiC1

�
l C kout

l

� ; (7.4)

for any pair i < j , while Pij D 0 otherwise. When the network size grows, Pij

becomes small and can be considered equal to the probability of observing a citation
from j to i .

The model by Karrer and Newman can reproduce some non-trivial properties of
real citation networks (Fig. 7.7) and may provide a useful null model for testing
topological properties of real citation networks including correlations and modular
structures. The model by Karrer and Newman is not able to reproduce a very
important topological feature of citation networks, represented by a high occurrence
of local triangular structures (Milo et al. 2002). A simple modification of the rules
governing the way in which connections are introduced in the network is able to
correct this problem. The model by Wu and Holme (2009) is very similar in spirit
to the one by Karrer and Newman, but adds two new fundamental ingredients.
First, the probability that paper i cites paper j is no longer dependent only on
topological and time constraints, but is inversely proportional to the age difference
between the two papers (aging effect). Second, once the connection between i

and j has been established, there is a finite probability that i copies citations
from j and therefore creates triangles. The simultaneous presence of these very
intuitive and natural ingredients makes the model more representative of real citation
networks.
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Fig. 7.7 Comparison of the static model by Karrer and Newman with empirical data. One focuses
on the function fij , which is proportional to the connection probability of vertices i and j . The
dataset is a citation network of papers on high-energy theory posted on the online eprint archive
ArXiv16 between 1992 and 2003. Papers are ordered from the oldest to the newest. The time of
paper i is i=N , and N is the total number of papers. The left panel deals with citations from papers
at time t > 0:1, the right panel with citations from papers at time t < 0:9. From Karrer and
Newman (2009a)

7.5 Dynamics on Citation Networks

Traditional citation metrics, which are used to assess the relevance or popularity of
papers, scientists, and journals, rely only on local properties of citation networks.
These measures are based on the number of incoming connections of a paper.
Simple citation counts quantify the popularity or success of a paper. The number
of citations acquired by papers are then transferred to journals and scientists for
judgments on their quality. The relevance of journals is quantified by the number of
citations received by articles published in them, while the scientific reputation of
scientists is measured by the number of citations their articles have received. Even
very popular bibliometric indicators, such as the impact factor (Garfield 1955) or
the h-index (Hirsch 2005), are based only on purely local properties of citation
networks.

Since complete citation networks are currently at our disposal, we can use their
entire structure for the formulation of more sophisticated bibliometric measures.
Citation networks basically contain information about the dissemination of notions
and theories in science, so they may therefore be used as the underlying structures
of diffusion processes, where the diffusing particles are nothing more than scientific
ideas. The process can be formulated in a straightforward manner where units
of scientific credit, carried by papers, diffuse over the network. The generic
paper i distributes its credit homogeneously among its kout

i outgoing connections,
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corresponding to its cited articles. The cited articles will increment their scientific
credit by a factor proportional to 1=kout

i , but then each of these papers will
redistribute its total credit to all cited articles, and so on. The entire diffusion process
can be mathematically described at the local level, by the following equation

Pi D q

N
C .1 � q/

X
j

aj i

kout
j

Pj ; (7.5)

valid for all i D 1; : : : ; N , with N total number of papers in the network. Pi stands
for the fraction of scientific credit present on the node i . The increment of Pi is
due to two different contributions, one having weight q and the other 1 � q. The
first contribution is global and does not depend on the network structure; each paper
receives an equal fraction, 1=N , of scientific credit from the system. Even if by
an infinitesimal amount, each and every paper contributes to the scientific advance
of a field and is entitled to an infinitesimal (1=N ) scientific credit. The second
contribution is represented by the flux of credit arriving from the citing papers
(the matrix element aj i is one only if j is citing i , while it is zero otherwise).
Under general conditions, there is a unique solution for (7.5). The solution can be
obtained by starting from suitable initial conditions and then iterating the set of
the N equations until each Pi converges to a stable value within an a priori fixed
precision. The solution depends on the model parameter q, ranging in the interval
Œ0; 1� and generally called the “damping” or “teleportation” factor. The quantity Pi

can be interpreted as a popularity score to be attributed to the paper i in the network.
The method described so far is the same as PageRank (Brin and Page 1998),

currently used by the Web search engine Google in order to quantify the popularity
of web pages. The score assigned to papers is on average linearly proportional to the
number of citations received (Fortunato et al. 2008), but large deviations from the
average are possible. Papers with high citation counts may have low ranks, while
articles with few citations may have high ones. Since the entirety of information of
the citation network is used, it is not important merely to be cited many times; the
source of citations becomes much more relevant. A single citation from a paper with
a high score can be much more important than many citations received by papers
with low scores.

In the following, we list the main applications of PageRank’s style algorithms
to citation networks. It should be stressed that there are no fundamental differences
between the various methods since all of them are based on a diffusion process,
i.e., (7.5). The differences regard mainly the type of elements ranked according to
the diffusion algorithm and, therefore, the application of PageRank algorithm to
different types of citation networks.

7.5.1 Ranking of Papers

Chen et al. (2007) applied the former idea to the citation network between papers
published in journals from the collection of Physical Review from 1893 to 2003.
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Using the score obtained from (7.5) with damping factor q D 0:5, they were able to
identify “gems” among physics papers, not visible from the mere citation count.

A more sophisticated method, based on the same bibliographic dataset, led
Walker et al. (2007) to formulate the so-called “CiteRank” score.17 In CiteRank,
the approach based on (7.5) is enriched. Credits still diffuse among the nodes of
the citation network, but the diffusion probability has an exponential suppression
in time, which prevents credits originating in recent papers from diffusing to much
older papers.

7.5.2 Ranking of Journals

The diffusion approach is also the key feature of the so-called “Eigenfactor” score,18

based on which the influence of scientific journals is assessed. In the original
formulation of Eigenfactor (Bergstrom 2007; Bergstrom et al. 2008), the authors
considered the dataset of Journal Citation Reports and constructed the network
of citations between all journals indexed by Thompson Scientific. The Eigenfactor
score of a journal is an estimation of the percentage of time that library users spend
on that journal. The diffusion process of (7.5) here is interpreted as a simple model
of bibliographic search, in which readers follow chains of citations as they move
from journal to journal. The Eigenfactor score has started to be widely accepted in
the scientific community and is at the moment one of the most concrete alternatives
to the impact factor.

Analogous to the Eigenfactor, the Science Journal Ranking (SJR) indica-
tor (González-Pereira et al. 2009) represents a bibliometric measure, based on a
diffusion algorithm, for the quantification of the prestige of scientific journals. The
main difference with respect to the Eigenfactor is the source of bibliographic data,
provided in this case by the database Scopus of Elsevier. The SJR indicator is
part of the SCImago project, which uses similar bibliometric measures also for the
scientific ranking of countries.19

7.5.3 Ranking of Scientists

A recent approach, still based on a diffusion process, is the Science Author Rank
Algorithm (SARA) proposed by Radicchi et al. (2009). The focus of SARA is
to assess the impact of scientists and monitor their evolution over time. Given a
weighted network of citations between scientists, the score assigned to each author i

17Citerank, URL: http://www.cmth.bnl.gov/�maslov/citerank/index.php.
18URL: http://www.eigenfactor.org.
19SCImago, URL: http://www.scimagojr.com.

http://www.cmth.bnl.gov/~maslov/citerank/index.php
http://www.eigenfactor.org
http://www.scimagojr.com
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is calculated by iterating the set of equations

Pi D .1 � q/
X

j

wj i

sout
j

Pj C qzi C .1 � q/
X

j

Pj ı
�
sout

j

�
: (7.6)

Equation (7.6) represents the analogue of (7.5) in the case of weighted networks.
The first term of the r.h.s. represents the diffusion contribution in the weighted
network. Here, the unweighted matrix element aj i is replaced by its weighted
version wj i , and the number of outgoing connections kout

j is replaced by the out-
strength sout

j D P
i wout

j i . Instead of being redistributed homogeneously, the scientific
credits here are drawn back to scientists with probability (zi ) proportional to their
scientific productivity (i.e., number of papers published). The last term of the r.h.s.
corrects the boundary effects by redistributing the credits of scientists with no
outgoing connections to the rest of the network [ı .x/ D 1 if x D 0 and ı .x/ D 0

for any x ¤ 0].
The evolution of SARA scores can be monitored by constructing time-dependent

networks, where only papers published in a certain time range are used for the
construction of the weighted network of citations between scientists. In order to
suppress time dependencies in the bare numbers Pi , the rank is constructed on the
relative quantity Ri D 1=N

P
j �

�
Pj � Pi

�
, which quantifies the probability of

finding another author with a SARA rank higher than Pi [� .x/ D 1 if x > 0 and
� .x/ D 0 for x < 0].

Radicchi et al. consider the practical application of their ranking procedure in the
case of papers published in journals of the American Physical Society between 1893

and 2006.20 The authors quantitatively tested the performances of SARA against
those of more traditional ranking schemes, such as citation counts. The test was
performed on the list of winners of the major prizes in Physics: Nobel Prize, Wolf
Prize, Boltzmann Medal, Planck Medal, and the Dirac Medal. By comparing the
ranks of these famous scientists based on their SARA scores with those obtained
with other measures, the SARA score appears to have a higher predictive value than
standard bibliometric indicators (e.g., citation counts).

7.6 Summary

The massive citation datasets currently available and the need to assess quantita-
tively the scientific performance of scholars, departments, and universities make
the study of citation networks more pressing and germane than ever (even though
the assumption that citations represent a proxy for the quantification of scientific
relevance may be questionable (Adler et al. 2009)). Citations may occur for many
different reasons (Bornmann and Daniel 2008), and papers may stop to receive

20Phys Author Rank Algorithm, URL: http://physauthorsrank.org.

http://physauthorsrank.org
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citations because they become obsolete or textbook material. These factors clearly
play important roles and impact the structure and dynamics of citation networks.
Since the seminal paper by Price (1965), this field has witnessed an explosive
growth, especially in the last decade, and a number of features are now quite well
understood.

The distribution of the number of citations received by a paper is broad, although
there is still much debate about the actual shape of the distribution. In fact, the shape
of the distribution is probably an ill-defined issue, as the distribution may depend
on the specific dataset at hand, and the way data are put together. For instance,
distributions may be different if one considers papers of the same age or spanning
a long period of time, in which case productivity trends may play a role in the final
distribution of citations. Furthermore, one has to distinguish the citation habits of
different scientific communities. Scholars working on citation networks are now
well aware of these issues and important advances are to be expected in the next
few years.

The main models for the evolution of citation networks, based on the cumulative
advantage rule originally proposed by Price (1976), and cast in a broader perspective
by Barabási and Albert (1999), seem to capture the basic features of citation
networks. Still, refined models are needed to reproduce real networks in more
detail. The attractivity of a paper does not depend only on the number of citations
collected by the paper, but also on the age of the paper. Moreover, models based on
cumulative advantage usually underestimate the number of (undirected) cycles that
one observes in citation networks, as well as the degree correlations between the
citing paper and the cited paper. Careful empirical analyses may disclose the origin
of such features and how they can be implemented in realistic network models.

Citation networks could also be used to classify papers by topic and subtopic,
based on their community structure. The latest developments of community detec-
tion in networks may in the near future enable one to analyze even the huge networks
that can be constructed with the largest citation databases (e.g., Web of Science).
One may reveal not only the communities, but also their hierarchical organizations,
from the most focused fields to the broadest categories. The resulting classification
necessarily will be dynamical, given the rapidly evolving structure of the underlying
networks. Processes like the birth, growth, and death of topics may be carefully
investigated and modeled.

The sheer number of citations is quite poor as a quantitative indicator of per-
formance. One can do much better by exploiting the full structure of the citation
network. Prestige measures based on dynamical processes taking place on citation
networks, like PageRank (Brin and Page 1998), are promising alternatives and
can still be fast and efficiently computed. In the future, one should consider
processes that take into account the specific nature of citation networks (e.g., their
approximately acyclic structure and the effect of papers’ age).

In general, we expect that the main feature characterizing the future investiga-
tions of citation networks will be the time dimension. The analyses of empirical
datasets will focus more and more on the evolution of networks, and, consequently,
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it will be possible to perform comparisons of dynamic network models with data to
a level of detail yet unreached.

Key points

1. Statistical laws governing citation distributions; dataset dependence and
parametrization.

2. Principle of cumulative advantage, characterization of the network struc-
ture.

3. Definition of algorithms for the classification of papers into topics and
subtopics based on the community structure of citation networks.

4. Definition of PageRank-like algorithms to achieve system-level ranking
measures for papers/authors and topics.

5. Dynamics and time evolution singled out as a crucial feature to achieve
understanding and predictive power on knowledge diffusion.
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Chapter 8
Science Policy and the Challenges
for Modeling Science

Peter van den Besselaar, Katy Börner, and Andrea Scharnhorst

8.1 Challenges and Opportunities

This book seeks to advance the modeling science to improve our collective
understanding of the functioning of science systems and of the dynamics of science.
It also attempts to make the modeling of science relevant from the perspective of
societal use – an issue that is increasingly important in scientific research.

In the last decade, we have witnessed a renewed interest among science policy-
makers in the science of science and of science policy (Executive Office 2008).
In several countries, new programs and institutes have been established to study
the dynamics of science with an explicit application orientation.1 The results of
these research activities are expected to inform science policy-makers in different
positions: within national government, within research councils and other agencies

1For example, the center for Science System Assessment in the Netherlands, the Institute for
Research Information and Quality Assurance (IFQ) in Germany, the NSF Science of Science and
Innovation Policy program in the US, the former Prime Network of Excellence in the EU.
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active in research agenda setting and research funding, and within universities and
public research institutes.

What type of knowledge would science policy-makers need, and what is the role
of modeling in this context? Three broad classes of questions can be distinguished.
Firstly, science policy has a need for the dynamic monitoring and forecasting of
scientific developments and technological breakthroughs. They are interested in
recognizing promising developments in existing and new research fields early in
support of agenda setting and investment decisions. Secondly, there is a need for
better understanding the institutional and organizational conditions for a healthy and
high-performing research system. How should the research system be organized to
realize the heterogeneous goals that come with research? What funding arrange-
ments function effectively under which conditions? How should research evaluation
be organized in order to improve performance of the research system, organizations,
and researchers? Thirdly, scientific knowledge is increasingly crucial for innovation
and societal problem solving. This, together with the rising investments in research,
increases the pressure on researchers, research organizations, and research funders
to show that their activities do have a societal impact. How should the interaction
between knowledge producers and (potential) knowledge users be organized in
order to maximize societal impact? What incentives may be implemented to
improve these interactions, without destroying the independence and autonomy of
science that are crucial for the long-term growth of knowledge? And, what metrics
could be developed to measure and show this impact?

These three domains of science policy problems (forecasting the dynamics of
science, accelerating research, and improving and measuring the societal impact of
research) can be translated into a broad research agenda for the science of science.

To be truly useful for informing science policy, such a research agenda should
not only be analytically divided into a large set of research questions focusing
on specific issues. There is also a strong quest for synthesis, for integrating the
knowledge obtained about the various different relevant mechanisms. From a policy
perspective, one is not primarily interested in the individual mechanisms, or in the
relations between small sets of variables, but in the working of the research system
as a whole with its many heterogeneous relations between many heterogeneous
agents. This asks for mixed-method, multi-level models of the science systems
(Börner et al. 2010) that help to understand the relevant processes, dynamics, and
complex interactions and their outcomes. Science policy needs a synthetic approach
next to analytical approaches to study separate dimensions of science, science
dynamics, and the science system.

Such a systems approach to science and science policy studies is becoming
possible because of three developments:

1. Firstly, new methodologies of modeling the dynamics of networks of scientific
information have been developed. Detailed models of science are becoming
available that help to understand the relevant processes, dynamics, and complex
interactions and their outcomes.
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2. Secondly, testing complex models requires large amounts of high-quality and
high-coverage data. Fortunately, new types of digital data are becoming available
for studying the structure, organization, and development of science. Among
them are survey datasets, and also new bibliographic and other databases, leading
to a growing system of “linked open data” and semantic web technologies
that enable the integration and use of these data for research (Berners-Lee and
Fischetti 1999; Berners-Lee et al. 2001; Heath and Bizer 2011). Many datasets
are crowd-sources by thousands using collaborative tools such as CiteULike2 or
Mendeley,3 but also more generally the WWW and a large variety of existing
data sources.

3. Finally, complex models and large-scale data analysis require new methodologies
and tools for visualizing and communicating results. Major progress has been
made over the last decade (Börner 2010), among others tools for data analysis
and visualization available in researcher networking support sites such as VIVO4

and Collexis,5 as well as in Scholarometer6 and author-mapping tools.7

8.2 Contributions of this Book

This book provides a review of major methodologies of modeling the dynamics
of networks of scientific information, many of which seem to have promising
applications in science and science policy studies. The chapters in this book review
major models, but not all modeling branches and possible approaches have been
covered. Although the team of editors and authors underwent extensive efforts to
link the chapters to each other and to use re-occurring elements – such as listings of
covered models and their main contributions in the beginning of the chapter and key
points at the end – each chapter comes with its own style and language expressing
the different epistemic cultures and traditions in which each specific author feels
at home. A variety of knowledge-domain-specific vocabulary and mathematical
languages can be found.

This points to an open problem that this first review of major models of science
does not manage to solve: the necessity of translation and mutual mapping. The
mathematical translation of the different models is as challenging as their conceptual
translation and integration. Possible dimensions along which the models presented
in the book can be related to each other comprise:

2URL: http://www.citeulike.org.
3URL: http://www.mendeley.com.
4URL: http://www.vivoweb.org.
5URL: http://www.collexis.com.
6URL: http://scholarometer.indiana.edu.
7URL: http://www.authormapper.com.

http://www.citeulike.org
http://www.mendeley.com
http://www.vivoweb.org
http://www.collexis.com
http://scholarometer.indiana.edu
http://www.authormapper.com
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• Units/parts of the science system that a model aims to reproduce.
• Questions that the model aims to answer.
• Mathematical approaches used.
• Visualizations employed to communicate results.
• Insights gained.

The comparison of different models for means of validation and their synergistic
combination to increase the quality and coverage of models for capturing the science
system require future research.

8.3 Future Work

The various models of science and science dynamics not only use different
mathematical approaches to model science, but they also capture different aspects of
science and its dynamics. Therefore, integrating models is not only a mathematical
task, but is also at the same time an effort to define and combine the different
conceptual and theoretical mechanisms specified by individual models.

Most efforts to model aspects of science focus on modeling knowledge spaces
and information spaces, and their dynamics – missing are the social and organiza-
tional aspects of knowledge production (van den Besselaar 2011). Social behavior
of agents in the models is often (but not always) very stylized, and does not represent
the richness of aims, interests, strategies, resource distributions, and rules that
characterize science. As argued above, from a science policy perspective one is not
only interested in modeling and mapping scientific information and the dynamics
of science. A second important and still open problem this book only addresses
marginally is modeling (i) those social and organizational factors influencing
knowledge production and knowledge dynamics, and (ii) the interactions between
knowledge growth and knowledge use, including the social characteristics of these
links between researchers and research institutions on the one hand, and the users
of knowledge on the other.

This leads to a second challenge for future science modeling research. There
is a need not only for integrating the existing models that focus on knowledge
dynamics and co-author patterns, but also for capturing the different processes in the
science system. It is useful to distinguish three dimensions of the science system:
researching, codifying, and organizing. Researching refers to the everyday practice
of doing research, of collaborating and communicating. Codifying refers to the
output of research, to the publication process where research results are integrated
into the existing body of knowledge. Finally, organizing refers to all processes for
creating the conditions for research at various levels, including but not restricted to
science policy.

Most existing models focus on the codifying dimension of science – the
communication processes in the formal (journal) literature. Thus, the focus is on the
output side, neglecting the underlying processes. Knowledge dynamics is modeled,
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and generally this only takes into account the underlying social processes of research
collaboration – operationalized as co-authoring. The processes of researching,
however, are only marginally covered (Gilbert 1997; Payette 2012). Here, different
kinds of researchers’ behavior become relevant, such as collaboration in informal
and more formal (projects) ways, and informal communication in a multitude of
forms, such as face-to-face and a variety of social media (research blogs, email
lists, etc.). Data about this dimension of researchers’ behavior becomes increasingly
accessible, as much behavior leaves digital traces in the used social media. This
refers to the second of the three developments mentioned in the first section: new
types of data are becoming available for the science of science.

Models that aim to capture the research process might help answer questions
such as “How to create productive teams?” or “Where do innovations come from?”
and not only where they are located in the formal communication spaces of
journals and papers. They will make it possible to study the interaction between
research communication and collaboration on the one hand and the formal scholarly
communication and publication on the other. If successful, this line of modeling
might be able to relate performance indicators, such as counts of publications
and citations, Crown-indicators and H-indices, to the underlying research process
Wallace (2009). And, an improved understanding of research processes may help to
develop new indicators, which are not necessarily based on publications and citation
Alt-metrics (Mendeley Group (see L)).8

The next challenge is to include processes of organizing research (in a broad
sense) in modeling efforts: the different modalities of research funding, agenda
setting, research evaluation, and selecting researchers and shaping academic careers.
Differences within and between science systems impact the behavior of individual
researchers and result in vastly different outcomes that have a strong impact on the
research profiles and strengths of different organizations and countries.

Thirdly, future science models should study the interactions between researchers
and their organizations on the one hand, and (potential) users of knowledge on
the other, in order to better understand the processes of uptake and societal use
of scholarly knowledge. They should attempt to capture how knowledge flows
through complex networks of researchers and knowledge users, and what attributes,
behaviors, incentives, and organizational forms have what effects on these flows.

8.4 Conclusions

In this outlook, we sketched briefly a broad agenda for the future development of
models of science, an agenda that combines scholarly and science policy relevance.
Traditionally, science models have aimed to answer isolated questions about specific
aspects of the science system. In the future there is a need for a more synthetic

8URL: http://www.mendeley.com/groups/586171/alt-metrics.

http://www.mendeley.com/groups/586171/alt-metrics
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approach that integrates different models to capture multiple interacting levels of the
science system. The research approach has to be multi-theoretical and multi-level –
spanning the individual decision making of researchers to the national science policy
decisions – to validate these models using the growing availability of (digital) data
about the science system, and use increasingly sophisticated methods and tools for
visualizing results.

Last but not least, we hope that the different research streams of science modeling
in economics, physics, social science, science of science, and other fields of science
will get interlinked not only along the arrow of time, through the historical roots
they share, but also in the current time slice in which they are located.
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