
Conformance Checking of Interacting Processes with
Overlapping Instances

Dirk Fahland, Massimiliano de Leoni, Boudewijn F. van Dongen,
and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
{d.fahland,m.d.leoni,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract. The usefulness of process models (e.g., for analysis, improvement,
or execution) strongly depends on their ability to describe reality. Conformance
checking is a technique to validate how good a given process model describes
recorded executions of the actual process. Recently, artifacts have been proposed
as a paradigm to capture dynamic, and inter-organizational processes in a more
natural way. Artifact-centric processes drop several restrictions and assumptions
of classical processes. In particular, process instances cannot be considered in iso-
lation as instances in artifact-centric processes may overlap and interact with each
other. This significantly complicates conformance checking; the entanglement of
different instances complicates the quantification and diagnosis of misalignments.
This paper is the first paper to address this problem. We show how conformance
checking of artifact-centric processes can be decomposed into a set of smaller
problems that can be analyzed using conventional techniques.

Keywords: artifacts, process models, conformance, overlapping process instances.

1 Introduction

Business process models have become an integral part of modern information systems
where they are used to document, execute, monitor, and optimize business processes.
However, many studies show that models often deviate from reality (see. [1]). To avoid
building on quicksand it is vital to know in advance to what extent a model conforms to
reality.

Conformance checking is the problem of determining how good a given process
model M describes process executions that can be observed in a running system S
in reality. Several conformance metrics and techniques are available [2,3,4,5,6,7]. The
most basic metric is fitness telling whether M can replay every observed execution of
S. In case M cannot replay some (or all) of these executions, the model M needs to
be changed to match the reality recorded by S (or the system and/or its underlying
processes are changed to align both).

Existing conformance checking techniques assume rather simple models where pro-
cess instances can be considered in isolation. However, when looking at the data mod-
els of ERP products such as SAP Business Suite, Microsoft Dynamics AX, Oracle E-
Business Suite, Exact Globe, Infor ERP, and Oracle JD Edwards EnterpriseOne, one can
easily see that this assumption is not valid for real-life processes. There are one-to-many

S. Rinderle-Ma, F. Toumani, and K. Wolf (Eds.): BPM 2011, LNCS 6896, pp. 345–361, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

346 D. Fahland et al.

and many-to-many relationships between data objects, such as customers, orderlines,
orders, deliveries, payments, etc. For example, an online shop may split its customers’
quotes into several orders, one per supplier of the quoted items, s.t. each order contains
items for several customers. Consequently, several customer cases synchronize on the
same order at a supplier, and several supplier cases synchronize on the same quote of a
customer. In consequence, we will not be able to identify a unique notion of a process
instance by which we can trace and isolate executions of such a process, and classical
modeling languages are no longer applicable [8, 9, 10].

The fabric of real-life processes cannot be straightjacketed into monolithic processes.
Therefore, we need to address two problems:

(1) Find a modeling language L to express process executions where several cases of
different objects overlap and synchronize.

(2) Determine whether a process model M expressed in L adequately describes actual
executions of a process in reality — despite the absence of process instances.

The first problem is well-known [8, 9, 10] and several modeling languages have been
proposed to solve it culminating in the stream of artifact-centric process modeling that
emerged in recent years [8, 9, 10, 11, 12]. In short, an artifact instance is an object that
participates in the process. It is equipped with a life-cycle that describes the states and
possible transitions of the object. An artifact describes a class of similar objects, e.g., all
orders. A process model then describes how artifacts interact with each other, e.g., by
exchanging messages [11, 12]. Note that several instances of one artifact may interact
with several instances of another artifact, e.g., when placing two orders consisting of
multiple items with an electronic bookstore items from both orders may end up in the
same delivery while items in the same order may be split over multiple deliveries.

In this paper we use proclets [8] as a modeling language for artifacts to study and
solve the second problem. A proclet describes one artifact, i.e., a class of objects with
their own life cycle, together with an interface to other proclets. A proclet system con-
nects the interfaces of its proclets via unidirectional channels, allowing the life-cycles
of instances of the connected proclets to interact with each other by exchanging mes-
sages; one instance may send messages to multiple other instances, or an instance may
receive messages from multiple instances.

After selecting proclets as a representation, we can focus on the second problem;
determine whether a given proclet system P allows for the behavior recorded by the
actual information system S, and if not, to which degree P deviates from S and where.
The problem is difficult because S does not structure its executions into isolated process
instances. For this reason we develop the notion of an instance-aware log. The system
S records executed life-cycle cases of its objects in separate logs L1, . . . , Ln — one
log per class of objects. Each log consists of several cases, and each event in a case is
associated to a specific object. For each event, it is recorded with which other objects
(having a case in another log) the event interacted by sending or receiving messages.
The artifact conformance problem then reads as follows: given a proclet system P and
instance-aware logs L1, . . . , Ln, can the proclets of P be instantiated s.t. the life-cycles
of all proclets and their interactions “replay” L1, . . . , Ln?

Depending on how objects in S interact and overlap, a single execution of S can be
long, possibly spanning the entire lifetime of S which results in having to replay all

Conformance Checking of Interacting Processes with Overlapping Instances 347

cases of all logs at once. Depending on the number of objects and cases, this may turn
out infeasible for conformance checking with existing techniques. Proclets may also
be intertwined in various ways. This makes conformance checking a computationally
challenging problem. Analysis becomes intractable when actual instance identifiers are
taken into account. Existing techniques simply abstract from the identities of instances
and their interactions.

Therefore, we have developed an approach to decompose the problem into a set of
smaller problems: we minimally enrich each case in each log to an interaction case,
describing how one object evolves through the process and synchronizes with other
objects, according to other cases in other logs. We then show how to abstract a given
proclet system P to an abstract proclet system P|P for each proclet P s.t. P can replay
L1, . . . , Ln iff the abstract proclet system P|P can replay each interaction case of P ,
for each proclet P of P . As an interaction case focuses on a single instance of a sin-
gle proclet at a time (while taking its interactions into account), existing conformance
checkers [6, 7] can be used to check conformance.

This paper is structured as follows. Section 2 recalls how artifacts describe processes
where cases of different objects overlap and interact. There, we also introduce the notion
of an instance-aware event log that contains just enough information to reconstruct
executions of such processes. Further, proclets are introduced as a formal language
to describe such processes. Section 3 then formally states the conformance checking
problem in this setting, and Section 4 presents our technique of decomposing proclet
systems and logs for conformance checking. The entire approach is implemented in the
process mining toolkit ProM; Section 5 presents the tool’s functionality and shows how
it can discover deviations in artifact-centric processes. Section 6 concludes the paper.

2 Artifacts

This section recalls how the artifact-centric approach allows to describe processes where
cases of different objects overlap and interact.

2.1 Artifacts and Proclets: An Example

To motivate all relevant concepts and to establish our terminology, we consider a back-
end process of a CD online shop that serves as a running example in this paper. The CD
online shop offers a large collection of CDs from different suppliers to its customers.
Its backend process is triggered by a customer’s request for CDs and the shop returns
a quote regarding the offered CDs. If the customer accepts, the shop splits the quote
into several orders, one for each CD supplier. One order handles all quoted CDs by the
same supplier. The order then is executed and the suppliers ship the CDs to the shop
which distributes CDs from different orders according to the original quotes. Some
CDs may be unavailable at the supplier; in this case notifications are sent to the CD
shop which forwards the information to the customer. The order closes when all CDs
are shipped and all notifications are sent. The quote closes after the customer rejected
the quote, or after notifications, CDs, and invoice have been sent. In the recent years,
the artifact-centric approach emerged as a paradigm to describe processes like in our

348 D. Fahland et al.

����� �����

�������	
�

��

����
����	�
������

�����

�����

��	������ ���

�������
������
�
���	���

�	
���������
����������
�

���

��	��

��������

������

	������

��������

���

���

����
���������

�	
�������
���������

��	��

Fig. 1. A proclet system describing the back-end process of a CD online shop. A customer’s
quote is split into several orders according to the suppliers of the CDs; an order at a supplier
handles several quotes from different customers

CD shop example where several cases of quotes object interact with several cases of
orders. Quotes and orders are the artifacts of this process. Figure 1 models the above
process in terms of a proclet system [8] consisting of two proclets: one describing the
life-cycle of quotes and the other describing the life-cycle of orders. Note that Fig. 1
abstracts from interactions between the CD shop and the customers. Instead the focus
is on interactions between quotes in the CD shop and orders handled by suppliers.

The distinctive quality in the interactions between quotes and orders is their cardi-
nality: each quote may interact with several orders, and each order may interact with
several quotes. That is, we observe many-to-many relations between quotes and orders.
For example, consider a process execution involving two quote instances: one over CDa

(q1) and the other over CDa, CDb, and CDc (q2). CDb and CDc have the same supplier,
CDa has a different supplier. Hence, the quotes are split into two order instances (o1

and o2). In the execution, CDa and CDb turn out to be available whereas CDc is not.
Consequently, CDa is shipped to the first quote, and CDa and CDb are delivered to
the second quote. The second quote is also notified regarding the unavailability of CDc.
This execution gives rise to the following cases of quote and order which interact as
illustrated in Fig. 2 (note that a CD is not an artifact as it does not follow a life-cycle in
this process).

q1 : create, send, accept, processed, deliver, generate, close
q2 : create, send, accept, notified, processed, deliver, generate, close
o1 : add CD, add CD, order, ship, close
o2 : add CD, add CD, order, notify, ship, close

Conformance Checking of Interacting Processes with Overlapping Instances 349

���

���

��� ���

���

���

��� ���

����
� ���� �����
 ��	������ ������� ������
� ��	��

����
� ���� �����
 ��	������ ������� ������
� ��	���	
�����

�

�!

������	 ������ 	���� ���� ��	��

������ 	���� ���� ��	���	
���	! ������

Fig. 2. An execution of the CD shop process involving two quote cases and two order cases that
interact with each other in a many-to-many fashion

2.2 Instance-Aware Logs

The task of checking whether a given process model accurately describes the processes
executed in a running system S requires that S records the relevant events in a log.
Classically, each process execution in S corresponds to a case running in isolation.
Such a case can be represented by the sequence of events that occurred. In an artifact-
centric process like Fig. 1, one cannot abstract from interactions and many-to-many
relations between different cases; quotes and orders are interacting in a way that cannot
be abstracted away.

Relating events of different cases to each other is known as event correlation; see [13]
for a survey of correlation patterns. A set of events (of different cases) is said to be cor-
related by some property P if each event has this property P . The set of all correlated
events defines a conversation. For instance in Fig. 2, events accept and processed of
q1, and events add CD and ship of o1 form a conversation. Various correlation mech-
anisms to define and set the correlation property of an event are possible [13]. In this
paper, we do not focus on the actual correlation mechanism. We simply assume that
such correlations have been derived; these are the connections between the different
instances illustrated in Fig. 2.

To abstract from a specific correlation mechanism we introduce the notion of an
instance-aware log. In the following we assume asynchronous interaction between dif-
ferent instances. Let e be an event. Event correlation defined the instances from which e
received a message and the instances to which e sent a message. As e could send/receive
several messages to/from the same instance, correlation data are stored as multisets of
instance ids. For sake of simplicity, in this paper we assume that correlation data on re-
ceiving and sending messages was defined by a single correlation property each. Hence,
e is associated to one multiset of instances from which e received messages and to one
multiset of instances to which e sent messages. A multiset m ∈ �I over a set I of in-
stance ids is technically a mapping m : I → � defining how often each id ∈ I occurs
in m; [] denotes the empty multiset.

Definition 1 (Instance-aware events). LetΣ = {a1, a2, . . . , an} be a finite set of event
types, and letI = {id1, id2, . . .} be a set of instance identifiers. An instance-aware event

350 D. Fahland et al.

e is a 4-tuple e = (a, id ,SID ,RID) where a ∈ Σ is the event type, id is the instance in
which e occurred, SID = [sid1, . . . , sidk] ∈ �I is the multiset of instances from which
e consumed messages, and RID = [rid1, . . . , ridl] ∈ �I is the multiset of instances
for which e produced messages.Let E(Σ, I) denote the set of all instance-aware events
over Σ and I.

Consider for example the third event of q2 in Fig. 2. This instance aware event is denoted
as (accept, q2, [], [o1, o2, o2]). The fifth event of q2 is denoted as
(processed, q2, [o1, o2], []). Instance-aware events capture the essence of event correla-
tion and abstraction from the underlying correlation property, e.g., CDa.

All events of one instance of an artifact A define a case; all cases of A define the
log of A. An execution of the entire process records the cases of the involved artifact
instances in different logs that together constitute an instance-aware log.

Definition 2 (Instance-aware cases and logs). An instance-aware case σ=〈e1, . . . , er〉
∈ E(Σ, I)∗ is a finite sequence of instance-aware events occurring all in the same in-
stance id ∈ I. Let L1, . . . , Ln be sets of finitely many instance-aware cases s.t. no two
cases use the same instance id. Further, let < be a total order on all events in all cases
s.t. e < e′ whenever e occurs before e′ in the same case1. Then L = ({L1, . . . , Ln}, <)
is called an instance-aware log.

For example, the instance-aware cases of Fig. 2 are the following:

σq1 : 〈(create, q1, [], []), (send, q1, [], []), (accept, q1, [], [o1]), (processed, q1, [o1], []),
(deliver, q1, [], []), (generate, q1, [], []), (close, q1, [], [])〉

σq2 : 〈(create, q2, [], []), (send, q2, [], []), (accept, q2, [], [o1, o2, o2]), (notified, q2, [o2], []),
(processed, q2, [o1, o2], []), (deliver, q2, [], []), (generate, q2, [], []), (close, q2, [], [])〉

σo1 : 〈(add CD, o1, [q1], []), (add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]),
(close, o1, [], [])〉

σo2 : 〈(add CD, o2, [q2], []), (add CD, o2, [q2], []), (order, o2, [], []), (notify, o2, [], [q2]),
(ship, o2, [], [q2]), (close, o1, [], [])〉

Together these instances form an instance-aware log with an ordering relation <, e.g.,
(accept, q1, [], [o1]) < (add CD, o1, [q1], []).

2.3 Proclets

Different languages for describing artifacts have been proposed [8, 9, 10, 11, 12]. In the
following, we use proclets [8] to study instantiation of artifacts and the many-to-many
interactions between different artifact instances in a light-weight formal model. A pro-
clet describes an artifact life-cycle as a labeled Petri net where some transitions are
attached to ports. A proclet system consists of a set of proclets together with channels
between the proclets’ ports. Annotations at the ports specify how many instances inter-
act with each other via a channel.

1 Note that technically two different events could have the same properties (e.g., in a loop). We
assume these to be different, but did not introduce additional identifiers.

Conformance Checking of Interacting Processes with Overlapping Instances 351

Definition 3 (Petri net, labeled). A Petri net N = (S, T, F, �) consists of a set S of
places, a set T of transitions disjoint from S, arcs F ⊆ (S × T) ∪ (T × S), and a
labeling � : T → Σ ∪ {τ} assigning each transition t an action name �(t) ∈ Σ or the
invisible label τ .

Definition 4 (Proclet). A proclet P = (N, ports) consists of a labeled Petri net N =
(S, T, F, �) and a set of ports , where

– some transition initial ∈ T has no pre-place (i.e., {s | (s, initial) ∈ F} = ∅) and
some transition final ∈ T has no post-place (i.e., {s | (final , s) ∈ F} = ∅),

– each port p = (T p, dirp, cardp,multp) is (1) associated to a set T p ⊆ T of tran-
sitions, has (2) a direction of communication dirp ∈ {in, out} (i.e., receive or
send messages, resp.), (3) a cardinality cardp ∈ {?, 1, ∗, +}, and (4) a multiplicity
multp ∈ {?, 1, ∗, +}, and

– each transition is attached to at most one input port and to at most one output port,
i.e., for all t ∈ T holds |{p ∈ ports | t ∈ T p, dirp = in}| ≤ 1, |{p ∈ ports | t ∈
T p, dirp = out}| ≤ 1.

Instead of an initial marking a proclet has an initial transition which will produce the
first tokens in the net. This will allow us to express the creation of multiple instances of
the same proclet.

Figure 1 shows two proclets. Each has three ports. The output port of accept has
cardinality + (one event may send messages to multiple orders) and multiplicity 1 (this
is done only once per quote). The input port of add CD has a cardinality of 1 (each
individual input message triggers one of the add CD transitions) and a multiplicity
+ (at least one message is received during the life-cycle of an order). Although the
example happens to be acyclic, proclets may contain cycles.

Definition 5 (Proclet system). A proclet system P = ({P1, . . . , Pn}, C) consists of a
finite set {P1, . . . , Pn}2 of proclets together with a set C of channels s.t. each channel
(p, q) ∈ C connects an output port p to an input port q, p, q ∈ ⋃n

i=1 portsi, dirp =
out , dir q = in .

Without loss of generality, we assume the proclets’ sets of transitions and places to
be pairwise disjoint. Hence, the labeling of the proclets lifts to the proclet system:
�P(t) := �i(t), for each transition t ∈ Ti of each proclet i = 1, . . . , n. We will also
write P = P1⊕ . . .⊕Pn as a shorthand for P = ({P1, . . . , Pn}, C). Figure 1 shows the
proclet system consisting of proclets quote and order. Extending the usual notation for
Petri nets, each half-round shape represents a port; the bow indicates the direction of
communication. A dashed line between 2 ports denotes a channel of the proclet system.

2.4 Semantics of Proclets: Overlapping Cases

During execution, there may be several instances of the same proclet running concur-
rently. Instances are created dynamically during process execution, that is, whenever

2 Introducing P implicitly introduces its components Np = (SP , TP , FP , �P) and portp; the
same applies to P ′,P1, etc. and their components N ′ = (S′, T ′, F ′, �′) and port′, and N1 =
(S1, T1, F1, �1) and port1, respectively.

352 D. Fahland et al.

there is a need for a new instance, one will be created. Initial and final transitions of
a proclet (depicted in bold in Fig. 1) express instantiation and termination, i.e., when-
ever create of proclet quote occurs, a new instance of quote is created; the top-most
transition add CD creates a new order instance.

Proclet instances interact with each other by sending messages over the channels of
the proclet system. A transition attached to an output port sends messages, a transition
attached to an input port receives messages. A port p’s annotations specify how many
messages are sent or received (cardinality cardp) and how often the port can be used
by a proclet instance to send or receive messages (multiplicity multp). For example,
cardinality + of the port of accept denotes that a quote sends out one or more messages
on quoted CDs to multiple orders per invocation. Its multiplicity 1 indicates that there
is precisely one such invocation during the lifecycle of a quote. Conversely, the process
repeatedly (multiplicity +) adds one CD of a quote to an order (cardinality 1).

Each message contains the sender’s instance id s and the recipient’s instance idr to
properly identify which proclet instances are interacting with each other; thus a message
is formally a pair (id s, idr). So, altogether a state of a proclet system is a configuration.

Definition 6 (Configuration). A configuration K = (I, mS , mC) of a proclet system
P = ({P1, . . . , Pn}, C) is defined as follows:

– The set I defines the active proclet instances in the system (as a set of instance ids).
– The place marking mS defines for each place s ∈ S :=

⋃n
i=1 Si the number of

tokens that are on place s in instance id . Formally, mS : S → �
I assigns each

place s ∈ S a multiset of instance ids, i.e., mS(s)(id) defines the number of tokens
on s in id .

– The channel marking mC defines for each channel c ∈ C the messages in this
channel. Formally mC : C → �

I×I is a multiset of pairs of instances ids, i.e.,
mC(c)(id s, id r) defines the number of messages that are in transit from ids to idr

in channel c.

The initial configuration K0 := (∅, mS,0, mC,0) defines mS,0(s) = [], for all s ∈ S,
and mC,0(c) = [], for all c ∈ C.

An execution of P starts in the initial configuration K0 = (∅, mS,0, mC,0) and occur-
rences of transitions of P take the system from configuration to configuration, creating
and terminating proclet instances as the execution evolves. Each transition t occurs in
a specific proclet instance id , thereby consuming a set of messages received from a
multiset SID of sender instances and producing messages to a multiset RID of recipi-
ent instances. If t is not attached to an input or output port, then SID and/or RID are,
respectively, always empty for each occurrence of t.

A transition t can only occur if it is enabled at the given configuration K = (I, mS ,
mC) in instance id . The enabling of t depends on the validity of the multiset SID of
sender instances, from which t expects to receive messages.

Definition 7 (Valid multiset of senders). Let P be a proclet system, K = (I, mS , mC)
a configuration of P , P = (N, ports) a proclet of P and t ∈ TP a transition of P . Let
SID be a multiset of sender instances, from which t expects to receive messages. SID
is valid w.r.t. t in proclet instance id at configuration K = (I, mS , mC) iff

Conformance Checking of Interacting Processes with Overlapping Instances 353

– if t is not attached to any port, then SID = [], and
– if t is attached to an input port p = (T p, dirp, cardp,multp), t ∈ T p, dirp = in

at channel c = (q, p) ∈ C and the channel contains messages from senders X =
{ids | (ids, idr) ∈ mC(c) ∧ idr = id} then
1. cardp = 1 implies SID ⊆ X and |SID | = 1,
2. cardp = ? implies SID ⊆ X and if X = ∅ then |SID | = 1,
3. cardp = + implies SID = X and |SID | ≥ 1, and
4. cardp = ∗ implies SID = X .

Validity of the recipient ids RID w.r.t. t is defined correspondingly: RID is either empty
(if t has no output port), or RID satisfies the cardinality constraint of its output port (i.e.,
1 implies |RID | = 1, ? implies |RID | ∈ {0, 1}|, + implies |RID | ≥ 1).

Definition 8 (Enabled transition). Let P be a proclet system, K = (I, mS , mC) a
configuration of P , P a proclet of P . A transition t ∈ TP is enabled in instance id at
configuration K w.r.t. multisets SID of sender- and RID of recipient ids, iff

1. if t has no pre-place, then id ∈ I (an initial transition creates a new instance),
2. each pre-place s of t in instance id has a token, i.e., mS(s)(id) > 0, and
3. SID and RID are both valid with respect to t.

When an enabled transition t occurs, it takes the system from a configuration K =
(I, mS , mC) to the successor configuration K ′ = (I ′, m′

S , m′
C), depending on SID

and RID .

Definition 9 (Occurrence of a transition). Let P be a proclet system, K a configu-
ration of P , and P a proclet of P . If transition t ∈ Tp is enabled in instance id at
configuration K w.r.t. SID and RID , then t can occur which defines an instance-aware
event e = (�P(t), id ,SID , RID), and yields the successor configuration K ′ as follows:

1. in instance id , consume a token from each pre-place s of t, and produce a token on
each post-place s of t,

2. if t is attached to an input port p, then for each id s ∈ SID , consume from channel
c = (q, p) ∈ C as many messages (ids, id) as expected, i.e., SID(id s) messages,
and

3. if t is attached to an output port p, then for each idr ∈ RID , produce on channel
c = (p, q) ∈ C as many messages (id , idr) as intended, i.e., RID(id r) messages.

An execution of the proclet system P is a sequence K0
e1−→ K1

e2−→ . . . Kn where each
Ki+1 is the successor configuration of Ki under the instance-aware event ei.

This semantics also allows to replay an instance-aware log L = ({L1, . . . , Ln}, <)
on a given proclet system P = P1 ⊕ . . .⊕Pn, or to check whether P can replay L. For
this replay, merge all events of all cases of all logs L1, . . . , Ln into a single sequence σ
of events that are ordered by <. P can replay L iff the events of σ define an execution
of P . For instance, merging the cases σq1, σq2, σo1, σo2 of Section 2.2 yields a case that
can be replayed in the proclet system of Fig. 1.

Note that proclets may have τ -labeled transitions which are usually interpreted as in-
ternal or unobservable transitions. The corresponding instance-aware event e = (τ, id ,
SID ,RID) would not be recorded in an event log. Replaying a log on a model with un-
observable transitions is the main technical problem addressed by conformance check-
ing as we discuss next.

354 D. Fahland et al.

3 The Interaction Conformance Problem

The problem of determining how accurately a process model describes the process im-
plemented in an actual information system S is called conformance checking
problem [2].

Classically, a system S executes a process as a set of isolated instances. The corre-
sponding observed system execution is a sequence of events, called case, and a set of
cases is a log L. The semantics of a process model M define the set of valid process
executions as sequences of M ’s actions. Conformance of M to L can be characterized
in several dimensions [2]. In the following, we consider only fitness. This is the most
dominant conformance metric that describes to which degree a model M can replay all
cases of a given log L, e.g., [7]. M fits L less, for instance, if M executes some actions
in a different order than observed in L, or if L contains actions not described in M .

There exist several techniques for the classical conformance checking problem [14,
7, 15, 2, 3, 4, 5, 6]. The approaches compare cases in a log with possible executions
of a process model, often by replaying the log on the model to see where model and
log deviate. The most advanced conformance metrics reflect that only parts of a case
are deviating [14], and pinpoint where deviations occur [6], while taking into account
that models may contain behavior that is unobservable by nature [7, 15]. The latter
techniques find for each case σ ∈ L an execution σ′ of M that is as similar as possible
to σ; the similarity of all σ to their respective σ′ defines the fitness of M to L. This
particulary allows to extend σ′ with τ -labeled transitions not recorded in σ, so σ′ can
be replayed on a model with unobservable transitions (see Sect. 2.4).

A proclet system raises a more general conformance checking problem, because a
case contains events of several proclet instances that all may interact with each other. In
our example from Section 2, handling one quote of the CD shop involves several order
instances, i.e., the case spans one quote instance and several order instances. From a
different angle, a complete handling of an order involves several quote instances.

In the light of this observation, we identify the following artifact conformance prob-
lem. A system records events in an instance-aware event log L. Each event can be asso-
ciated to a specific proclet P of a proclet system P , it knows the instance in which it
occurs and the instances with which it communicates. Can the proclet system P replay
L? If not, to which degree does P deviate from the behavior recorded in L?

4 Solving Interaction Conformance

A naı̈ve solution of the artifact conformance problem would replay the entire log L
on the proclet system P , by instantiating proclets and exchanging messages between
different proclet instances. This approach can become practically infeasible because
of the sheer size of L and the number of active instances. In typical case studies we
found logs with 80,000 events of 40-60 distinct actions. Checking conformance would
define a search space of 6080,000 possible solutions among which the most similar log
L′ has to be found. Even exploring only a small fraction of such a search space quickly
turns out infeasible. Moreover, existing techniques would be unable to distinguish the
difference instances. For these two reasons, we decompose the problem and reduce it

Conformance Checking of Interacting Processes with Overlapping Instances 355

to a classical conformance checking problem. Here we will use the technique presented
in [7, 15] which is most robust and flexible.

4.1 Reducing Artifact Conformance to Existing Techniques

A naive solution would be to simply decompose the conformance problem of proclet
system ({P1, . . . , Pn}, C) and instance-aware event log L = ({L1, . . . , Ln}, <) into n
smaller problems where classical techniques are used to compare Pi and Li. However,
it is not sufficient as the life-cycle of some case id does not only depend on “local”
events, but also on events that sent messages to id or received messages from id . So,
all events of id together with all events of L that exchange messages with id constitute
the interaction case σid of id . It contains all behavioral information showing how id
interacts with other proclet instances.

An interaction case σid of a proclet instance P id gives rise to the following con-
formance problem. The proclet system P fits σid iff σid (1) follows the life-cycle of
P , and (2) has as many communication events as required by the channels in P . The
interaction conformance problem is to check how good P fits all interactions cases of
all proclets.

We will show in the next section that decomposing artifact conformance into interac-
tion conformance is correct: if P fits L, then P fits each interaction case of each proclet
P of P ; and if P does not fit L, then there is an interaction case of a proclet P to which
P does not fit. As each interaction case is significantly smaller than L and involves only
one proclet instance, the conformance checking problem becomes feasible and can be
solved with existing techniques.

4.2 Structural Viewpoint: A Proclet and Its Environment

����� �����

�������

��	������ ���

�	
���������
����������
�

���

��������

������

	������

��������

���

���

����
���������

�	
�������
���������

��	��

Fig. 3. The proclet order of Fig. 1 together with
its environment order

Our aim is to decompose the confor-
mance checking problem of a proclet
system P = P1 ⊕ . . . ⊕ Pn w.r.t.
L into a set of smaller problems: we
check interaction conformance for each
proclet Pi. Interaction conformance of
Pi considers the behavior of Pi to-
gether with the immediate interaction
behavior of Pi with all other proclets
P1, . . . , Pi−1, Pi+1, . . . , Pn.

We capture this immediate inter-
action behavior by abstracting
P1, . . . , Pi−1, Pi+1, . . . , Pn to an en-
vironment Pi of Pi. Pi is a proclet
that contains just those transitions of
P1, . . . , Pi−1, Pi+1, . . . , Pn at the re-
mote ends of the channels that reach Pi — together with the corresponding ports for
exchanging messages with Pi. Obviously, occurrences of transitions of Pi are uncon-
strained up to messages sent by Pi. Composing Pi and Pi yields the proclet system
Pi ⊕ Pi in which we can replay the interaction cases of Pi.

356 D. Fahland et al.

Figure 3 shows the proclet order together with its abstracted environment order
from the proclet system of Fig. 1. The formal definition reads as follows.

Definition 10 (Environment Abstraction). Let P = ({P1, . . . , Pn}, C) be a proclet
system, Pi = (Ni, ports i), Ni = (Si, Ti, Fi, �i), i = 1, . . . , n with the global labeling
�P(t) = �i(t), t ∈ Ti, i = 1, . . . , n. We write t ∈ T p if a transition t is attached to
port p. The channels that reach Pi are Ci = {(p, q) ∈ C | (T p ∪ T q)∩Ti = ∅}.
The transitions at the remote ends of these channels are Ti = {t | (p, q) ∈ Ci, t ∈
(T p ∪ T q) \ Ti}.

The abstract environment w.r.t. Pi is the proclet Pi = (N, ports) with N = (∅, Ti,
∅, �P |Ti

), and ports = {q | (p, q) ∈ Ci ∪ C−1
i , q ∈ ports i}. The abstracted system

Pi ⊕ Pi is ({Pi, Pi}, Ci).

4.3 Behavioral Viewpoint: Extending Cases to Interaction Cases

After decomposing the proclet system, the next step is to check conformance of each
single proclet Pi with its abstract environment P i. For this, each case of Pi that is stored
in the instance-aware log L needs to be extended to an interaction case by inserting
all events of L that correspond to transitions of P i and exchange messages with the
instance id of this case.

Definition 11 (Interaction case, interaction log). Let L = ({L1, . . . , Ln}, <) be an
instance-aware log. Let E be the set of all events in all cases in L. Let Pi be a proclet
of a proclet system P = P1 ⊕ . . . ⊕ Pn, i ∈ {1, . . . , n}. Let σ ∈ Li be a case of an
instance id of Pi.

The set E|id of events of L that involve id contains event e = (a, id ′,SID ,RID) iff
e ∈ E ∧ (id ′ = id ∨ id ∈ SID ∨ id ∈ RID). The interaction case of σ is the sequence
σ containing all events E|id ordered by < of L. The interaction log of Pi w.r.t. L is the
set L|Pi := {σ | σ ∈ Li} containing the interaction case of each case of Pi in L.

For example, the interaction cases σo1 of σo1 and σo2 of σo2 shown in Section 2.2 are

σo1 : 〈(accept, q1, [], [o1]), (accept, q2, [], [o1, o2, o2]), (add CD, o1, [q1], []),
(add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]), (processed, q1, [o1], []),
(processed, q2, [o1, o2], []), (close, o1, [], [])〉

σo2 : 〈(accept, q2, [], [o1, o2, o2]), (add CD, o2, [q2], []), (add CD, o2, [q2], []), (order, o2, [], []),
(notify, o2, [], [q2]), (notified, q2, [o2], []), (ship, o2, [], [q2]), (processed, q2, [o1, o2], []),
(close, o1, [], [])〉.

The abstracted proclet system quote ⊕ quote can replay both interaction cases.

4.4 The Decomposition Is Correct

Decomposing a proclet system P = P1 ⊕ . . . ⊕ Pn into abstracted proclet systems
Pi ⊕ Pi and replaying the interaction log of Pi on Pi ⊕ Pi, for each i = 1, . . . , n
equivalently preserves the fitness of P w.r.t. the given instance-aware event log L.

Recall from Sect. 2.4 that L is replayed on P by ordering all events of L in a single
case σ. From Def. 11 follows that we obtain each interaction case σid of an instance id

Conformance Checking of Interacting Processes with Overlapping Instances 357

of a proclet Pi also by projecting σ onto events that occur in id or exchange messages
with id . By induction then holds that P1 ⊕ . . . ⊕ Pn can replay σ iff each proclet with
its environment Pi ⊕ Pi can replay each projection of σid onto events of each instance
id of Pi. In other words, P1 ⊕ . . . ⊕ Pn fits L iff Pi ⊕ Pi fits each interaction case of
Pi, i.e. Pi ⊕ Pi fits L|Pi . The full proof is given in [16].

4.5 Checking Interaction Conformance

The previous transformations of abstracting a proclet’s environment and extracting in-
teraction cases allow us to isolate a single proclet instance for conformance checking
w.r.t. the proclet and its associated channels. In other words, we reduced artifact confor-
mance to the problem of checking whether the proclet system Pi ⊕ Pi can replay the
interaction log L|Pi , where each case in L|Pi only refers to exactly one proclet instance.
Thus, the problem can be fed into existing conformance checkers.

Our conformance checker leverages the technique described in [7, 15]. As this tech-
nique only takes Petri nets as input, the conformance checking problem of Pi ⊕ Pi

w.r.t. L|Pi is further reduced to a conformance checking problem on Petri nets. This
reduction translates the proclet ports into Petri net patterns that have the same seman-
tics. Replacing each port of P in P ⊕ P with its respective pattern yields a Petri net
NP that equivalently replays the interaction cases L|P . Fig. 4 shows an example. Each
channel of Fig. 3 translates to a place, the port annotations of proclet order translate to
additional nodes and arcs.

�
��

���
��

��

�����

��	������

�	
���������
����������
�

������

������

	������

��������

����
���������

�	
�������
���������

��	��

�� 	�

�

	

Fig. 4. The result of translating order ⊕ order of Fig. 3
to a Petri net Norder

For instance, cardinality + of
the output port of ship available
translates to the Petri net pat-
tern highlighted grey in Fig. 4.
It ensures that an occurrence of
ship available yields one (t2) or
more messages (t1) on the chan-
nel. The multiplicity + of the in-
put port of add CD translates to
place p2 and adjacent arcs: each
occurrence of add CD produces
a token, the normal arc to the fi-
nal transition close ensures that
add CD occurred at least once
during the lifetime of order, the
reset arc (double arrow head) re-
moves all other tokens on p2 (al-
lowing for multiple occurrences
of add CD), the inhibitor arc
from the channel to close ensures that all messages were consumed; see [16] for details.

Moreover, the technique described in [7,15] is not aware of interaction cases (Def. 11).
In particular, it is unaware that event e = (a, id ′, [id , id , id ′′], []) sends two messages to
instance id and one message to instance id ′′. In our translation of ports to Petri nets [16],
each event e may produce one message to one instance. In order to preserve the number

358 D. Fahland et al.

of messages sent to instance id in an interaction case, we replace e by as many occur-
rences of a as e sends messages to id , i.e., two occurrences of a. For example, the inter-
action case σo2 (Sect. 4.3) is transformed to 〈accept, accept, add CD, add CD, order,
notify, notified, ship, processed, close〉, which can be replayed on the net of Fig. 4.
Further details are given in [16].

After converting the proclets into Petri nets NP1 , . . . , NPn and translating their in-
teraction cases as mentioned above, our conformance checker applies the technique
of [7,15] to check how good the net NPi replays L|Pi , for each i = 1, . . . , n separately.
Technically, the checker finds for each interaction case σ ∈ L|Pi an execution σ′ of NPi

that is as similar as possible to t. If NPi cannot execute σ, then σ is changed to an ex-
ecution σ′ of NPi by inserting or removing actions of NPi . The more σ′ deviates from
σ, the less NPi fits σ. The fitness of NPi on σ is defined by a cost-function that assigns
a penalty on σ′ for each event that has to be added or removed from σ to obtain σ′. The
most similar σ′ is found by efficiently exploring the search space of finite sequences of
actions of NPi guided by the cost function [7, 15]; this technique also checks confor-
mance of cyclic models. The fitness of NPi w.r.t. LPi is the average fitness of NPi w.r.t.
all cases in LPi .

The fitness of the entire proclet system P1 ⊕ . . .⊕ Pn w.r.t. L is currently computed
as the average fitness of each Pi to its interaction cases L|Pi . Alternatively, a weighted
average could measure the fitness of the entire proclet system: a proclet’s weight could
be for instance its size (i.e., number of transitions), or the size of its interface (i.e., the
number of ports, measuring the amount of interaction of the proclet).

To illustrate the misconformances that can be discovered with this technique, assume
that in the process execution of Fig. 2, case q1 did not contain an accept event. This
would lead to the following interaction case of o1:

〈(accept, q2, [], [o1, o2, o2]), (add CD, o1, [q1], []),
(add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]), (processed, q1, [o1], []),
(processed, q2, [o1, o2], []), (close, o1, [], [])〉.

Our conformance checker would then detect that the cardinality constraint + of the
input port of add CD would be violated: only one message is produced in the channel,
but two occurrences of add CD are noted, each requiring one message.

5 Implementation as a ProM Plug-in

The interaction conformance checker is implemented as a software plug-in of ProM, a
generic open-source framework for implementing process mining tools in a standard en-
vironment [17]. The plug-in takes as input the proclet system model and the interaction
logs of the proclet of interests and, by employing the techniques described in Sect. 4, re-
turns an overview of the deviations between the cases in the log and the proclet system
model.

As input for initial experiments, we generated event logs by modeling our CD shop
example as an artifact-centric system in CPN Tools (http://cpntools.org) and
simulating the model. The simulation yielded to instance-aware log of about 2914
events of 15 different types. Next we created the proclet model of the CD shop which

http://cpntools.org

Conformance Checking of Interacting Processes with Overlapping Instances 359

is visualized in ProM as shown in Fig. 5; invisible transitions are depicted as black
rectangles. Then we generated interaction logs from the instance-aware log (Def. 11).
The longest interaction case was part of the interaction log of quote and contained 31
events over 11 types. Therefore, our approach of decomposing the artifact conformance-
checking problem into a set of smaller sub-problems reduced the worst-case search
space size from 152914 to 1131.

Fig. 5. The CD shop example in ProM

For conformance checking, we imple-
mented generic conversions from proclet
systems to Petri nets as explained in
Sects. 4.2 and 4.5. The resulting Petri nets
were then checked for conformance w.r.t.
the respective interaction logs using the
existing conformance checker [15], capa-
ble to replay logs on Petri Nets with reset-
and inhibitor arcs.

The result of the conformance check-
ing is shown in Figure 6. For clarity, we
show a log with only two cases, one con-
forming case, one deviating case. Every
row identifies a different case in which
the replayed execution is represented as a
sequence of wedges. Every wedge corre-
sponds to (a) a “move” in both the model
and the log, (b) just a “move” in the model
(skipped transition), or (c) just a “move” in the event log (inserted event). For a case
without any problems, i.e., just moves of type (a), fitness is 1. The first case in Figure 6
has fitness 1. Note that the conformance checker identified some invisible transitions to
have fired (indicated by the black triangles). These are the transitions necessary in the
Petri net to model cardinality of the ports. The second case shows a lower conformance.
The conformance checker identifies where the case and the model deviate; and a color
coding indicates the type of deviation.

Fig. 6. The conformance results for the order proclet in ProM

360 D. Fahland et al.

6 Conclusion

In this paper, we considered the problem of determining whether different objects of
a process interact according to their specification. We took the emerging paradigm of
artifact-centric processes as a starting point. Here, processes are composed of interact-
ing artifacts, i.e., data objects with a life-cycle. The paradigm allows to model many-to-
many relationships and complex interactions between objects.

Existing conformance checking techniques allow only for checking the conformance
of artifacts in isolation. In this paper we went beyond and checked whether the complex
interactions among artifacts that are proposed in an artifact model fit the actual behav-
ior observed in reality. In particular, we showed that the problem of interaction confor-
mance can be decomposed a set of smaller sub-problems for which we can use classical
conformance checking techniques. The feasibility of the approach is demonstrated by a
concrete operationalization in the ProM framework.

An open problem is to generalize instance-aware events to have correlation data de-
fined by multiple correlation properties, and correspondingly to allow proclet transitions
to be attached to an arbitrary number of ports.

Acknowledgements. The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement no 257593 (ACSI).

References

1. Rozinat, A., Jong, I., Gunther, C., van der Aalst, W.: Conformance Analysis of ASML’s Test
Process. In: GRCIS 2009. CEUR-WS.org, vol. 459, pp. 1–15 (2009)

2. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.:
The Need for a Process Mining Evaluation Framework in Research and Practice. In: ter Hof-
stede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 84–89. Springer, Heidelberg (2008)

3. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering Expressive Process Models by
Clustering Log Traces. IEEE Trans. on Knowl. and Data Eng. 18, 1010–1027 (2006)

4. Weijters, A., van der Aalst, W.: Rediscovering Workflow Models from Event-Based Data
using Little Thumb. Integrated Computer-Aided Engineering 10, 151–162 (2003)

5. Medeiros, A., Weijters, A., van der Aalst, W.: Genetic Process Mining: An Experimental
Evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)

6. Rozinat, A., van der Aalst, W.: Conformance Checking of Processes Based on Monitoring
Real Behavior. Information Systems 33, 64–95 (2008)

7. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance
Checking. In: Muehlen, M.z., Su, J. (eds.) Business Process Management Workshops.
LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011)

8. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for
Lightweight Interacting Workflow Processes. Int. J. Cooperative Inf. Syst. 10, 443–481
(2001)

9. Nigam, A., Caswell, N.: Business artifacts: An Approach to Operational Specification. IBM
Systems Journal 42, 428–445 (2003)

10. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-
tions and processes. IEEE Data Eng. Bull. 32, 3–9 (2009)

Conformance Checking of Interacting Processes with Overlapping Instances 361

11. Fritz, C., Hull, R., Su, J.: Automatic Construction of Simple Artifact-Based Business Pro-
cesses. In: ICDT 2009. ACM ICPS, vol. 361, pp. 225–238 (2009)

12. Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 32–46. Springer, Heidelberg
(2010)

13. Barros, A.P., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-oriented ar-
chitectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 245–259.
Springer, Heidelberg (2007)

14. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer, Heidelberg (2011)

15. Adriansyah, A., Sidorova, N., van Dongen, B.: Cost-based fitness in conformance checking.
In: ACSD 2011 (to appear 2011)

16. Fahland, D., de Leoni, M., van Dongen, B., van der Aalst, W.: Checking behavioral confor-
mance of artifacts. BPM Center Report BPM-11-08, BPMcenter.org (2011)

17. Verbeek, H., Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.P.: ProM: The Process Mining
Toolkit. In: BPM Demos 2010. CEUR-WS, vol. 615 (2010)

	Conformance Checking of Interacting Processes with Overlapping Instances
	Introduction
	Artifacts
	Artifacts and Proclets: An Example
	Instance-Aware Logs
	Proclets
	Semantics of Proclets: Overlapping Cases

	The Interaction Conformance Problem
	Solving Interaction Conformance
	Reducing Artifact Conformance to Existing Techniques
	Structural Viewpoint: A Proclet and Its Environment
	Behavioral Viewpoint: Extending Cases to Interaction Cases
	The Decomposition Is Correct
	Checking Interaction Conformance

	Implementation as a ProM Plug-in
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

