
Automated Error Correction of
Business Process Models

Mauro Gambini1, Marcello La Rosa2,3, Sara Migliorini1,
and Arthur H.M. Ter Hofstede2,3,4

1 University of Verona, Italy
{mauro.gambini,sara.migliorini}@univr.it

2 Queensland University of Technology, Australia
{m.larosa,a.terhofstede}@qut.edu.au

3 NICTA Queensland Lab, Australia
4 Eindhoven University of Technology, The Netherlands

Abstract. As order dependencies between process tasks can get complex, it is
easy to make mistakes in process model design, especially behavioral ones such
as deadlocks. Notions such as soundness formalize behavioral errors and tools
exist that can identify such errors. However these tools do not provide assistance
with the correction of the process models. Error correction can be very challeng-
ing as the intentions of the process modeler are not known and there may be many
ways in which an error can be corrected. We present a novel technique for auto-
matic error correction in process models based on simulated annealing. Via this
technique a number of process model alternatives are identified that resolve one
or more errors in the original model. The technique is implemented and validated
on a sample of industrial process models. The tests show that at least one sound
solution can be found for each input model within a reasonable response time.

1 Introduction and Background

Business process models document organizational procedures and as such are often in-
valuable to both business and IT stakeholders. They are used to communicate and agree
on requirements among business analysts, or used by solution architects and developers
as a blueprint for process automation [15]. In all cases, it is of utmost importance that
these models are correct. Incorrect process models can lead to ambiguities and mis-
interpretations, and may not be directly automated [16]. There are different types of
errors. A process model can violate simple syntactical requirements (e.g. some nodes
are disconnected or used improperly), or suffer from behavioral anomalies (e.g. dead-
locks or incorrect completion). Behavioral errors only arise when process models are
executed and thus they are typically much more difficult to spot. For these reasons,
they are quite common in practice. For example, a recent analysis of more than 1,350
industrial process models reports that 54% of these models are unsound [6].

Formal correctness notions such as soundness [1] define behavioral anomalies for
process models, and advanced process modeling tools implement verification methods
based on these notions to automatically detect these anomalies in process models [6,16].
Process modelers can take advantage of the information provided by these verification

S. Rinderle-Ma, F. Toumani, and K. Wolf (Eds.): BPM 2011, LNCS 6896, pp. 148–165, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automated Error Correction of Business Process Models 149

features to fix design flaws. However, generally it is up to the user to understand the
(often very technical) output produced by these tools and to figure out how to fix these
errors. Correcting behavioral errors in process models is not trivial: apparently inde-
pendent errors can have a common cause and correcting one error may introduce new
errors in other parts of the model. This problem is amplified by the inherent complexity
of process models, which tends to grow as organizations reach higher levels of Business
Process Management (BPM) maturity [12].

This paper presents a novel technique called Petri Nets Simulated Annealing (PNSA)
for automatically fixing unsound process models. The core of this technique is a
heuristic optimization algorithm based on dominance-based Multi-Objective Simulated
Annealing (MOSA) [14,13]. Given an unsound process model and the output of its
soundness check, at each run, the algorithm generates a small set of solutions (i.e. al-
ternative models) similar to the original model but potentially containing fewer or no
behavioral errors, until a maximum number of desired solutions is found or a given
timeframe elapses. These solutions are produced by applying a number of perturbations
(i.e. small changes) on the current solution, which in turn is derived from the original
model. The similarity of a solution to the original model is determined by its structural
similarity and (to remain efficient) by an approximation of its behavioral similarity to
the original model. Since the intentions of the process modeler are not known and there
are usually many ways in which an error can be corrected, the algorithm returns a small
set of non-redundant solutions (i.e. no solution is worse than any of the others). The
differences between these solutions and the original model can then be presented to a
process modeler as suggestions to rectify the behavioral errors in the original model.
This technique is implemented in a prototype tool and validated on a sample of indus-
trial process models. The results indicate that multiple errors can be fixed in a short time
and at least one sound solution was found for each model.

The problem of automatically correcting errors has already been explored for soft-
ware bug fixing (see e.g. [2]). Given a program, a set of positive tests and at least one
failed test proving evidence for a bug, these algorithms produce a patch that fixes the
error in question, provided that this error is localized. In the BPM field, [3] describes a
technique for automatically fixing certain types of data anomalies that can occur in pro-
cess models, while [10] presents an approach to compute the edit operations required to
correct a faulty service in order to interact in a choreography without deadlocks. How-
ever, to the best of our knowledge, the problem of automatically fixing unsound process
models has not been addressed yet.

In this paper, we represent process models as Workflow nets—a class of Petri nets
that has been extensively applied to the formal verification of business process mod-
els [16]. In addition, mappings exist between process modeling languages used in prac-
tice (e.g. EPCs, BPMN, BPEL) and Petri nets [11]. This provides a basis to extend the
results of this paper to concrete process modeling notations.

Based on the above, the rest of this paper is organized as follows: Sec. 2 provides
the basic definitions of Workflow nets and soundness. Sec. 3 defines the problem in
question, while Sec. 4 describes the PNSA technique in detail. The evaluation of the
proposed technique is treated in Sec. 5 before Sec. 6 concludes the paper.

150 M. Gambini et al.

2 Preliminaries

Petri nets are graphs composed of two types of nodes, namely transitions and places,
connected by directed arcs. Transitions represent tasks while places are used for routing
purposes. Labels are assigned to transitions to indicate the business action they perform,
i.e. the observable behavior. A special label τ is used to represent invisible actions, i.e.
actions that are only used for routing purposes and do not represent any task from a
business perspective.

Definition 1 (Labeled Petri net). A labeled Petri net is a tuple N = (P, T, F, L, �)
where P and T (P ∩ T = ∅) are finite sets of places, resp., transitions, F ⊆ (P ×
T)∪ (T ×P) is a flow relation, L is a finite set of labels representing business actions,
τ �∈ L is a label representing an invisible action, and � : T → L ∪ {τ} is a labeling
function which assigns a label to each transition. For n ∈ P ∪ T , we use •n and n• to
denote the set of inputs to n (preset) and the set of outputs of n (postset).

We are interested in Petri nets with a unique source place and a unique sink place, and
such that all other nodes are on a directed path between the input and the output places.
A Petri net satisfying these conditions represents a process model and is known as a
Workflow net [1].

Definition 2 (Workflow net). Let N = (P, T, F, L, �) be a labeled Petri net and F ∗

be the reflexive transitive closure of F . N is a Workflow net (WF-net) if and only if (iff):

– there exists exactly one input place, i.e. ∃!pI∈P • pI = ∅, and
– there exists exactly one output place, i.e. ∃!pO∈P pO• = ∅, and
– each node is on a directed path from the input to the output place, i.e.

∀n∈P∪T ((pI , n) ∈ F ∗ ∧ (n, pO) ∈ F ∗).

Fig. 1 shows four example Petri nets, where actions are depicted within transitions, e.g.
�(t1) = a. All these nets have single start and end places, and any transition lies on a
path from the start to the end place. Hence all these nets are WF-nets.

Behavioral correctness of a WF-net is defined w.r.t. the states that a process instance
can be in during its execution. A state of a WF-net is captured by the marking of its
places with tokens. In a given state, each place is either empty or it contains one or
more tokens (i.e. it is marked). A transition is enabled in a given marking if all the
places in the transition’s preset are marked. Once enabled, the transition can fire (i.e.
can be executed) by removing a token from each place in the preset and putting a token
into each subsequent place of the transition’s postset. This leads to a new state.

Definition 3 (Marking notation). Let N = (P, T, F, L, �) be a WF-net. Then M :
P → N is a marking and Q is the set of all markings. Moreover:

– for any two markings M,M ′ ∈ Q, M ≥M ′ iff ∀p∈P M(p) ≥M ′(p),
– for any two markings M,M ′ ∈ Q, M > M ′ iff M ≥M ′ and M �= M ′.
– M(N) as the set of all markings of N ,
– MN

I as the initial marking of N with one token in place pI , i.e. MN

I = [pI],
– MN

O as the final marking of N with one token in place pO , i.e. MN

O = [pO],

Automated Error Correction of Business Process Models 151

t1
a

pI

p2

p4

t3p3t2
b

t7
fp7

pO
p8t5p5t4

c

p6t6
d

t1
a

pI

p2

p4

t3p3t2
b

t7
fp7

pO
p8t5p5t4

c

t6 d

t1
a

pI

p2

p4

t3p3t2
b

t7
fp7

pO
p8t5p5t4

c

t6 d

(a) (b)

(c) (d)

e

ee

t1
a

pI

p2

p4

t3p3t2
b

t7
fp7

pO
p8t5p5t4

c

p6t6
d

e

Fig. 1. Four example WF-nets

– for any transition t ∈ T and any marking M ∈ M(N), t is enabled at M , denoted
as M [t〉, iff ∀p∈•t M(p) ≥ 1. Marking M ′ is reached from M by firing t and
M ′ = M − •t+ t•,

– for any two markings M,M ′ ∈ M(N), M ′ is reachable from M in N , denoted as
M ′ ∈ N [M〉, iff there exists a firing sequence σ = t1.t2 . . . tn (n ≥ 0) leading
from M to M ′, and we write M σ→

N
M ′.

– Tr(N) = {σ ∈ T ∗ : ∃M∈M(N)MI
σ→

N
M} is its set of traces, i.e. firing se-

quences that start from the initial marking,
– CTr(N) = {σ ∈ T ∗ : MI

σ→
N
MO} is its set of correct traces, i.e. traces that

lead to the final marking,
– �̂ : T ∗ → L∗ returns the string of its visible actions, where

�̂(σ) =

⎧
⎨

⎩

ε if σ = ε (the empty string),
�(t).�̂(σ′), if σ = t.σ′ and �(t) �= τ ,
�̂(σ′), if σ = t.σ′ and �(t) = τ .

In the remainder, we omitN as superscript or subscript when it is clear from the context.
All the nets in Fig. 1 are marked with their initial marking, i.e. they have one token in
their input place depicted as a dot inside the place.

The execution of a process instance starts with the initial marking and should then
progress through transition firings until a proper completion state. This intuition is cap-
tured by three requirements [1]. First, every process instance should always have an
option to complete. If a WF-net satisfies this requirement, it will never run into dead-
locks or livelocks. Second, every process instance should eventually reach the final
marking, i.e. the state in which there is one token in the output place, and no tokens
are left behind in any other place, since this would signal that there is still work to be
done. Third, for every transition, there should be at least one correct trace that includes
at least one firing of this transition. A WF-net fulfilling these requirements is sound [1].

Definition 4 (Sound WF-net). Let N = (P, T, F) be a WF-net and MI ,MO be the
initial and end markings. N is sound iff:

152 M. Gambini et al.

– option to complete: for every marking M reachable from MI , there exists a firing
sequence leading from M toM ′ ≥MO, i.e. ∀M∈N [MI〉∃M ′∈N [M〉 M ′ ≥MO, and

– proper completion: the marking MO is the only marking reachable from MI with
one token in place pO , i.e. ∀M∈N [MI〉 M ≥MO ⇒M = MO, and

– no dead transitions: every transition can be reached by the initial marking, i.e.
∀t∈T ∃M∈N [MI〉 M [t〉.

A behavioral error is a violation of one of the three soundness properties. For example,
the first WF-net in Fig. 1 is not sound: it can only complete successfully if transition t5
fires only once before t3 fires. In fact, if t3 fires before t5, t7 will deadlock in marking
[p7] waiting for a token in p8 which will never arrive (no option to complete error).
Also, if t5 fires more than once before t3, it will put more than one token in p8 and
when t3 and t7 fire, the net will complete with the marking [pO + kp8] with k > 0 (no
proper completion error). Nets (b) and (c) also suffer from behavioral problems. (b) has
no proper completion in markings [pO + p5 + p8] and [pO + p6 + kp8] with k ≥ 0,
while (c) has a deadlock in [p7] and a dead transition t7. Net (d) is sound. In the next
section we focus on the problem of automatically fixing unsound process models.

3 Automatic Process Model Correction

We name the problem of automatically fixing process model errors as the Automatic
Process Model Correction (APMC) problem. Intuitively, given an unsound WF-net N
and the output of its verification method, we want to find a set of remedial suggestions,
each one presented as a minimal set of changes, that transforms N into a sufficiently
similar WF-net N ′ with fewer or no behavioral errors. Since there are usually different
ways to solve a behavioral error in an unsound model, we should return different alter-
native solutions N ′, such that none of these solutions is strictly worse than the others.
However since the set of solutions can be potentially large, we should limit it to a max-
imum number of solutions and a maximum timeframe that the user is willing to wait
to find such solutions. The user can then evaluate the solutions found to see if some of
these are consistent with their initial intentions, and apply the changes accordingly.

A solution should be sufficiently similar to the original model in order to preserve the
modeler’s intentions. Otherwise we could obtain a sound variant simply by reducing the
original model to a trivial sequence of actions. The notion of process model similarity
can be approached from a structural and from a behavioral perspective [5]. From a
structural perspective, we should create models whose structure is similar to that of
the original model, i.e. we should minimize the changes that we apply to the original
model in terms of insertion and deletion of nodes and arcs, and control the type of these
changes. From a behavioral perspective, we should preserve the observable behavior of
a process model as far as possible, and meantime, try to reduce the number of behavioral
errors without introducing new ones. Finally, a solution should not be inferior to the
others in terms of number and type of errors being fixed. For example, the final set of
solutions should not contain a model that fixes one error if there also exists another
model in the same set that fixes that error and a second error.

Structural similarity alone does not guarantee behavioral similarity. Also, two dif-
ferent process structures can have same observable behavior, thus a solution that is

Automated Error Correction of Business Process Models 153

structurally-different to the original model may actually suffer from the same behav-
ioral errors. While behavioral similarity may be sufficient to characterize a solution, a
solution that is behaviorally-similar to the original model but structurally very different
may not be recognized as a good solution by the user. Moreover, structural similarity
enhances confidence about not introducing new errors, and limits the search space. For
these reasons, we consider both structural and behavioral similarities in our study. In
the following section, we formalize these notions.

4 Petri Nets Simulated Annealing

A well-established measure for structural similarity of process models is based on
graph-edit distance [4]. A challenge in this technique is finding the best mapping be-
tween the nodes of the two graphs to compare, which can be computationally expensive.
However we avoid this problem because we measure the graph edit distance by com-
puting the costs of the operations that we perform to change the original model into a
given solution. Unfortunately, behavioral similarity cannot be computed efficiently. As
an example, the Transition Adjacency Relation technique [17] requires the exploration
of the entire state-space of the two models to determine their behavioral similarity. This
would be unfeasible in our case, as we would need to check the state-space of each
proposed solution against that of the original model, and we do build a high number of
candidate solutions. Thus, we opt for an approximation of behavioral similarity based
on two components. First, we introduce a notion of behavioral distance to measure
the ability of a solution to simulate a finite set of correct traces of the original model.
Second, we introduce a notion of badness to measure how many errors of the original
model are still present in the solution, and how many new errors have been introduced.

In the light of this, the APMC problem becomes a multi-objective optimization prob-
lem which can be solved by trying to simultaneously minimize three objective functions:
the structural distance, the behavioral distance and the badness of a solution w.r.t. the
original model. At each iteration of our algorithm, we search candidate solutions with
lower structural distance, behavioral distance and badness w.r.t. previous solutions. We
compute the behavioral distance and the badness over a sample set of traces of the orig-
inal model, which we select at each iteration. If we find a solution that increases these
objective functions, we discard it. Otherwise we maintain the solution so that it can
be tested with further sample traces in subsequent iterations. The more tests a solution
passes, the more the confidence increases that this is a good solution. The procedure
concludes when a maximum number of non-redundant solutions with high confidence
is reached (i.e. each solution is not worse than any of the others), or a given timeframe
elapses. In the following subsections, we formalize the ingredients of this technique and
describe its algorithm in detail.

4.1 Structural Distance

Each candidate solution is obtained by applying a minimal sequence of edit operations,
i.e. an edit sequence, in order to insert or remove a single arc or node. Inserting or
removing one arc is a single atomic operation and does not violate the properties of
a WF-net, i.e. the solution will always be a WF-net. Inserting a node implies adding

154 M. Gambini et al.

the node itself and one incoming and one outgoing arc to connect this new node to
the rest of the net (a total of three edit operations are needed). Deleting a node implies
removing the node itself and all its incoming and outgoing arcs, and can only be done
if the elements in the node’s preset and postset remain on a path from pI to pO after
removing the node. This requires at least three edit operations.

Given that each edit sequence is minimal, i.e. it corresponds to the insertion or re-
moval of one arc or node only, more complex perturbations on the original model can
be obtained by applying multiple edit sequences through a number of intermediate so-
lutions. Coming back to the example in Fig. 1, nets (b)-(d) are all solutions of (a) which
can be obtained via one or more edit sequences. For example, net (b) can be obtained
directly from (a) with one edit sequence consisting of one edit operation (removal of arc
p5 − t3), while net (c) can be obtained with two edit sequences consisting of four edit
operations in total (addition of arc p8 − t6 and removal of place p6 with its two arcs).

While it is safe to add or remove places and arcs, we need special considerations
for transitions. Since the modeler’s intentions are not known, we assume that a busi-
ness action was introduced with a specific business purpose, so its associated transition
should not be removed from the model. On the other hand, an invisible action (i.e. a τ
transition) is only used for routing purposes, so we assume it can be safely removed or
inserted. Thus, we only allow insertion and removal of τ transitions.

The cost of each type of edit operation can be controlled by the user. For example,
one may rate removal operations as more expensive than addition operations, based on
the assumption that it is less likely that modelers would introduce something erroneous
than that they forgot to introduce something essential. Similarly, one may rate opera-
tions on transitions as more expensive than operations on places, and the latter as more
expensive than operations on arcs.

The structural distance between two WF-nets is obtained by the total cost of the edit
sequence between the two nets.

Definition 5 (Structural distance). Let N and N ′ be two WF-nets, E the set of all
edit operations, e(N,N ′) = 〈ei ∈ E〉ki=1 the edit sequence between N and N ′, and
c : E → R a function that assigns a cost to each edit operation. The structural distance
λ : N×N → R between N and N ′ is λ(N,N ′) =

∑k
i=1 c(ei).

Let us assume a cost of 1 for each type of edit operation. Then the structural distance
between nets (b) and (a) is 1, between (c) and (a) is 4 and between (d) and (a) is 5.

4.2 Behavioral Distance

Given a sample set of traces R from the original model N , we compute the behavioral
distance of a solution N ′ from N as its ability to simulate the correct traces in R, i.e.
those traces that start from marking MI and complete in MO. Hence, this function can
only be used if the original model has at least one correct trace.

A modelN ′ can simulate a trace σ if its string of visible actions �̂(σ) can be replayed
in N ′. For example, given the trace σ1 = t1.t2.t4.t5.t6.t4.t3.t7 of net (a) in Fig. 1,
we want to check whether �̂(σ1) = a.b.c.d.c.e.f can be replayed in a solution of (a).
Precisely, we want to know to what extent �̂(σ1) can be simulated by its best simulation

Automated Error Correction of Business Process Models 155

trace, i.e. by the longest prefix of �̂(σ1) that can be replayed in N ′. For example, net (b)
can fully simulate σ1 while (c) cannot simulate action f because t7 is dead in (c). The

extent of a simulation is called simulation ratio and is given by |�̂(σ′)|
|�̂(σ)| where σ′ is the

best simulation of σ in a given solution. The simulation ratio of σ1 in net (b) is 1 while
in (c) it is 6

7 ≈ 0.86.
We limit the number of silent actions that can be used to simulate a trace via a

parameterm for efficiency reasons. In fact, the higherm is, the more the solution model
needs to be explored to see if a given trace can be simulated (and each silent action may
open new paths to explore).

Definition 6 (Trace simulation, Best simulation). Let N andN ′ be two WF-nets and
σ ∈ Tr(N) be a trace of N . Then Sim(N,N ′, σ,m) = {σ′ ∈ Tr(N ′) : |{t ∈
α(σ) : l(t) = τ}| ≤ m ∧ �̂(σ′) ∈ Pref(�̂(σ))} is the set of traces that can sim-
ulate σ in N ′ with at most m silent actions, where α(σ) returns the alphabet of σ
and Pref(s) returns the set of all prefixes of string s. We say that σ′ is a best simula-
tion of σ in N ′ with at most m silent actions, denoted as simb(N,N ′, σ,m), iff σ′ ∈
Sim(N,N ′, σ,m) and |�̂(σ′)| = max

θ∈Sim(N,N ′,σ,m)
|�̂(θ)|. Let σ′ = simb(N,N ′, σ,m)

such that MI
σ′→

N′ M . Then Mσ′
e = M is the final marking of σ′ and M

σ′
= {M ∈

M(N ′) : ∃θ∈Pref(σ′) MI
θ→

N′ M} is the set of all markings traversed by σ′.

The behavioral distance of a solution w.r.t. a set of traces R is the inverse of the cu-
mulative simulation ratio of all the best simulation traces, normalized to the number of
correct traces in R.

Definition 7 (Behavioral distance to N w.r.t. R and m). Let N be a WF-net such
that its set of correct traces CTr(N) �= ∅ and let N ′ be another WF-net. The be-
havioral distance δ : N ×N × 2Tr(N) × N → [0, 1] of N ′ to N w.r.t. a repre-
sentative set of traces R of N and a simulation parameter m is δ(N,N ′, R,m) =

1 −
∑

σ∈R∩CTr(N) ψ(N,N ′, σ,m)

|R ∩ CTr(N)| , where the simulation ratio ψ(N,N ′, σ,m) =
⎧
⎨

⎩

|�̂(σ′)|
|�̂(σ)| such that σ′ = simb(N,N ′, σ,m)

0 otherwise

With reference to Fig. 1, let us consider R1 = {(t1.t2.t4.t5.t6.t4.t3.t7), (t1.t4.t5.t6.t4.
t2.t3.t7), (t1.t2.t4.t3), (t1.t2.t4.t5.t6.t4.t5.t6.t4.t3.t7)} where the first two traces are
correct. The behavioral distance of nets (b) and (d) to (a) over the correct traces inR1 is
0 since all such traces in R1 can be fully simulated in (b) and (d), while the behavioral
distance of (c) to (a) is 1 − 0.86+0.86

2 = 0.14 (using at most m = 5 silent actions).

4.3 Badness

Broadly speaking a model is behaviorally better than another if it contains less behav-
ioral errors, but not all errors are equal and errors of the same type can have a different
severity. For example, a no option to complete may prevent an entire process fragment

156 M. Gambini et al.

from being executed, which is far worse than having a single dead transition in a model.
Thus, we need a function to rank errors based on their gravity. More precisely, given a
sample set of traces R, we want to find out if and to what extent each of these traces
leads to an error. In the WF-net context, a trace is proof of no option to complete if it pro-
duces a markingM such that M �= MO and no transition can be enabled in M . A trace
is proof of improper completion if it produces a marking M such that M > MO, i.e.
there are other marked places besides pO. These conditions can be efficiently checked
on a trace. Unfortunately it is not possible to provide evidence for a dead transition
unless the whole state space is explored, which we cannot afford to do when generat-
ing solutions (exploring the entire state space is notoriously an exponential problem).
However, given a trace, we can still provide a “warning” for a potentially-dead tran-
sition, i.e. a transition that is partially enabled in the last marking of that trace, due to
some places in its preset not being marked (where the maximum number of admissible
missing places is a parameter d).

Definition 8 (Potentially-dead transition). Given a WF-net N , a marking M ∈
M(N) and a transition t ∈ T , t is potentially-dead in markingM , i.e. pdt(N,M, t, d) iff
it holds that 0 < |{p ∈ •t |M(p) = 0}| ≤ d and ∃p∈•t M(p) > 0, where 0 < d < |• t|
denotes the maximum number of admissible missing places.

We can now provide the classification of erroneous traces.

Definition 9 (Erroneous trace classification). Let N be a WF-net, σ ∈ Tr(N) be one
of its traces (MI

σ→ M), and d be a parameter indicating the maximum number of
admissible missing places. Then σ has:

1. a no option to complete error iff M �= MO and � ∃t∈T M [t〉
2. an improper completion error iff M > MO

3. a potentially-dead transition, iff ∃t∈T pdt(N,M, t, d).

We denote the set of all erroneous traces for a net N as ETr(N). While no option to
complete and improper completion are mutually exclusive errors in a trace, a trace that
suffers from either of these problems can also have a potentially-dead transition.

For each σ in R of N , the badness is a function measuring the severity of each error
for a best simulation σ′ of σ in N ′ (if N ≡ N ′, the best simulation of σ is the trace
itself). For example, if σ has an improper completion error while its best simulation
σ′ in N ′ does not have this error, the badness of σ′ will be lower than that of σ (0 if
no errors are found for that trace). Thus, while for the behavioral distance we are only
interested in simulating correct traces, when computing the badness we need to make
sure R contains both correct and erroneous traces of N . Correct traces in N will have a
badness of 0 and can be tested against their simulations in N ′ to see if a new error has
been introduced (the badness of the simulation trace will be greater than 0); erroneous
traces in N will have a badness> 0 and can be tested against their simulations to see if
the errors have diminished or disappeared (the badness of the simulation trace will be
lower than that of the original trace).

The badness, denoted as β, consists of three components each measuring the severity
of one error type: βn for no option to complete, βi for improper completion and βd

for potentially-dead transitions. Given a trace σ of N , βn measures the probability of

Automated Error Correction of Business Process Models 157

ending up in a deadlock while executing one of its best simulations σ′ in N ′. This
is done by counting the number of enabled transitions that are not fired at each state
traversed by σ′: each such a transition provides an option to diverge from the route of
σ, thus potentially avoiding the final deadlock. So the more such options there are while
executing σ′, the lower the probability is of ending up in the deadlock in question, and
the less onerous this error is. βn is also proportional to the complexity of σ′, which is
estimated by counting the number of different transitions in σ′ over the total number
of transitions in N ′. The intuition is that an error appearing in a more complex trace is
worse than the same error appearing in a simple trace. Thus, if the badness of a complex
trace is higher than that of a simpler trace featuring the same error, we will prioritize the
fixing of the complex trace as opposed to fixing the simple one, with the hope that as a
side-effect of fixing the complex trace, other erroneous traces may be fixed. βi measures
the probability of ending up in an improper completion state while executing σ′. This
is done by counting the number of places that are marked when σ′ marks pO, over the
total number of places that are marked while executing σ′. βi is also proportional to the
complexity of σ′. Finally, βd returns the probability of having dead transitions in the
last state of σ′. This is done by counting how many places are not marked over the size
of the preset of each transition that i) is potentially-dead in the last state of σ′ and ii) is
not fired in any best simulation of any trace in R. Indeed, even if a transition satisfies
the potentially-dead condition, we know for sure that it is not dead if it can be fired in a
best simulation of a trace in R. This measure is counteracted by the complexity of the
trace, under the assumption that the more transitions are fired by σ′, the less likely it is
that the potentially-dead transitions in the last state of σ′ need to be fired.

Definition 10 (Badness w.r.t. R, m and d). Let N,N ′ be two WF-nets, R a set of
traces of N , m the simulation parameter and d the maximum number of admissible
missing places. Let also V =

⋃
σ∈R α(simb(N,N ′, σ,m)) be the set of all transitions

of N ′ fired in a best simulation of a trace in R. The badness of N ′ w.r.t. R, m and d is
β : N×N × 2Tr(N) × N × N → R:

β(N, N ′, R, m, d) =
∑

σ∈R

(wnβn(N, N ′, σ, m) + wiβi(N, N ′, σ, m) + wqβd(N, N ′, σ, m, d))

where wn, wi and wq are the weights of each error type. For each σ ∈ R, given
σ′ = simb(N,N ′, σ,m) with set of traversed markings M

σ′
and final marking Mσ′

e

we define:1

βn(N,N ′, σ,m) =
|α(σ′)|
|T ′| · [Mσ′

e (pO) = 0 ∧ �t∈T Mσ′
e [t〉]

1 + (
∑

M∈Mσ′ ,t∈T ′ [M [t〉]) − |σ′|

βi(N,N ′, σ,m) =
|α(σ′)|
|T ′| · [Mσ′

e (pO) > 0]
∑

p∈P ′\{pO} [Mσ′
e (p) > 0]

∑
M∈Mσ′ ,p∈P ′\{pO} [M(p) > 0]

βd(N,N ′, σ,m, d) =
1

|α(σ′)| ·
∑

t∈T ′\V,pdt(N ′,Mσ′
e ,t,d)

{|p ∈ •t : Mσ′
e (p) = 0|}

| • t|

1 [x] returns 1 if the boolean formula x is true, or 0 otherwise

158 M. Gambini et al.

Let us consider again set R1 used in Sec. 4.2 for net (a) and let us assumem = 5, d = 2
and wn = wi = wq = 1. We recall that net (a) has a deadlock in state [p7]. This can
be obtained by firing σ3 = t1.t2.t4.t3 ∈ R1 producing a badness of 0.29. This error is
corrected in net (b). In fact the best simulation of σ3 in (b) completes in state [p5 + p7]
which enables t5. Its badness is thus 0 (there are no potentially-dead transitions in this
state with d = 2). So (b) improves (a) w.r.t. σ3. On the other hand, since the deadlock
still remains in (c), the badness for σ3 in (c) is 0.41. This badness is higher than that of
(a) since t7 can never be executed in (c). So (c) worsens (a) w.r.t. σ3.

The no proper completion of (a) in [pO + p8], obtained e.g. by firing σ4 =
t1.t2.t4.t5.t6.t4.t5.t6.t4.t3.t7 with badness 0.12, is best simulated in (b) by a trace com-
pleting in [pO + p5 + p8]. Since this state marks two places besides pO instead of one,
it induces a badness of 0.17 which is worse than that of σ4. So (b) worsens (a) w.r.t. σ4.
For net (c), σ4 can be best simulated with a trace completing in state [p7] with a badness
of 0.28. In fact, while there is no improper completion error (the trace does not even
mark pO), there is still a deadlock in [p7] and t7 is dead. So (c) also worsens (a) w.r.t.
σ4. Since (d) is sound, its badness for the above traces is 0.

Finally, both (b) and (c) worsen (a) w.r.t. σ1 and σ2 (the correct traces of R1 shown
in Sec. 4.2), as they introduce new improper completion, resp., no option to complete
errors. The overall badness of (a), (b), (c) and (d) w.r.t. R1 is 0.41, 0.53, 1.19 and 0.

4.4 Dominance-Based Simulated Annealing

Given an erroneous modelN ∈ N , the goal of the PNSA technique is to produce a good
set of solutions S ⊆ N such that each modelNi ∈ S is similar to N but contains fewer
or no errors. S can be considered good if i) its members are good solutions according to
the three objective functions (structural distance, behavioral distance and badness); ii)
they are non-redundant, i.e. no member is better than the others; and iii) all have high
confidence, i.e. they have been tested against a given number of sets R.

In order to find good solutions while avoiding redundancy in the final solution set, we
need to be able to compare two solutions. To do so, we use the values of their objective
functions. First, we need to group these functions into a unique objective function w.r.t.
a set R. Since a solution can be tested against multiple sets R, we also need a notion of
average unique objective function over the various R.

Definition 11 (Unique objective function). Let N,N ′ be two WF-nets. Assuming N
and the simulation parameter m are fixed, we define the following objective functions
w.r.t. a set of traces R of N : f1(N ′, R) = λ(N,N ′), f2(N ′, R) = δ(N,N ′, R,m)
and f3(N ′, R) = β(N,N ′, R,m). These functions are grouped into a unique objec-
tive function f̄ : N ×2Tr(N) → R

3 such that for each N ′ and R, f̄(N ′, R) identi-
fies the triple (λ(N,N ′), δ(N,N ′, R,m), β(N,N ′, R,m)). Given i sets Rk with 1 ≤
k ≤ i, we compute the average unique objective function f̄avg({f̄k(N ′, Rk)}i

k=1) =
(avg1≤k≤i(f1(N

′, Rk)), avg1≤k≤i(f2(N
′, Rk)), avg1≤k≤i(f3(N

′, Rk))).

Considering our example setR1, the values of the unique objective functions for nets (a-
d) are: (0,0,0.41), (1,0,0.53), (4,0.14,1.19) and (5,0,0). The (average) unique objective
function can be used to compare two solutions via the notion of dominance. A solution

Automated Error Correction of Business Process Models 159

N1 dominates a solution N2 iff N1 is better than N2 in at least one objective function
and equivalent in the remaining ones.

Definition 12 (Dominance). Given a set of traces R, a solution N1 dominates a dif-
ferent solution N2 w.r.t. R , i.e. N1 ≺R N2, iff f̄(N1, R) ≤ f̄(N2, R) and there exists
a 1 ≤ j ≤ 3 such that fj(N1, R) < fj(N2, R). If N1 does not dominate N2, we write
N1 �≺R N2. When we have multiple sets R, we compute the average dominance by com-
paring the average unique objective functions of two solutions, and denote this relation
with ≺avg.

The dominance relation establishes a partial order and two solutionsN1 andN2 are mu-
tually non-dominating iff neither dominates the other. In our example, net (a) dominates
both (b) and (c), (b) dominates (c), while (d) is mutually non-dominating with all other
nets: (d) has higher structural distance than (a-c) although its behavioral similarity and
badness are lower than those of the other nets.

A Pareto-set is the set of all mutually non-dominating solutions w.r.t. the average
unique objective functions of the solutions, i.e. a set of non-redundant solutions.

Definition 13 (Pareto-set). Two solutions N1, N2 ∈ N are mutually non-dominating
w.r.t. a set of traces R iff N1 �≺R N2 and N2 �≺R N1. Similarly, N1 and N2 are
mutually non-dominating on average w.r.t. a number of sets of traces, iff N1 �≺avg N2

and N2 �≺avg N1. A Pareto-set is a set S ⊆ N such that for all solutions N1, N2 ∈ S,
N1 �≺avg N2 and N2 �≺avg N1.

A Pareto-optimum is a solution that is not dominated by any other solution. The set of
Pareto-optima is called the Pareto-front.

Definition 14 (Pareto-optimum, Pareto-front). A Pareto-optimum N1 ∈ N is a so-
lution for which no N2 ∈ N exists such that N2 ≺avg N1. A Pareto-front G is the set of
all Pareto-optima.

Our PNSA technique is an adaptation of dominance-based MOSA [13,14] to the prob-
lem of automatically fixing errors in process models. Dominance-based MOSA is a
robust technique for solving multi-objective optimization problems. At the core of the
MOSA technique is an optimization procedure called simulated annealing [9]. The term
“simulated annealing” derives from the “annealing” process used in metallurgy: the idea
is to heat and then slowly cool down a metal so that its atoms reach a low-energy, crys-
talline state. At high temperatures atoms are free to move around. However, as the tem-
perature lowers down, their movements are increasingly limited due to the high-energy
cost of movement. By analogy with this physical process, each step of the annealing
procedure replaces the current solution by a random “nearby” solution with a probabil-
ity that depends both on the difference between the corresponding objective values and
a global parameter Temp (the temperature), that is decreased during the process. The de-
pendency is such that the current solution changes almost randomly when Temp is high,
but increasingly less as Temp goes to zero. Allowing “uphill” moves potentially saves
the method from getting stuck at local optima, which is the main drawback of greedy
algorithms. The goal is thus to move towards the Pareto-front while encouraging the
diversification of the candidate solutions. It has been shown that simulated annealing

160 M. Gambini et al.

can be more effective than exhaustive enumeration when the goal is to find an accept-
ably good solution in a fixed amount of time, rather than the best possible solution [9].
Our technique differs from the classic dominance-based MOSA by the presence of ap-
proximate objective functions (behavioral distance and badness), and by the notion of
confidence, which is used to compensate for this approximation by testing each solution
against multiple sample traces.

In order to escape from local optima, and in-line with dominance-based MOSA, we
do not simply compare two solutions based on their dominance relation. This in fact
would exclude a candidate solution N2 that based on the current set of sample traces
R is dominated by the current solution N1 even if globally N2 may be better than
N1. Rather, we use a notion of energy. The energy of a solution measures the portion
of the front that dominates that solution. Thus, the lower the energy of a solution is,
the better the solution is. Unfortunately, the true Pareto-front G is unavailable during
an optimization procedure. To obviate this problem, the energy function is computed
based on a finite approximation of the Pareto-front G ⊆ N , called estimated Pareto-
front. G is built incrementally based on the Pareto-set S under construction. Thus, G is
initially empty and incrementally populated with new values as long as new mutually
non-dominating solutions are added to S during the annealing procedure.

Definition 15 (Energy). Let R be a set of traces and G ⊆ N be a finite estimation of
the Pareto-front G. The energy of a WF-netN ′ w.r.t.R andG is E(N ′, R,G) = |{N ′′ ∈
G : N ′′ ≺R N ′}|.
Having defined the notion of energy, we can use this to compare two solutions in the an-
nealing procedure. A candidate solution N2 is accepted in place of the current solution
N1 on the basis of their energy differenceΔE w.r.t.R and an estimated Pareto-front, i.e.
the difference in the number of solutions in the estimated Pareto-front that dominateN1

and N2 w.r.t. R.

Definition 16 (Energy difference). Let N1, N2 be two WF-nets, R be a set of
traces and G be the finite estimation of G. Given the set G̃ = G ∪ {N1, N2},
the energy difference between N1 and N2 w.r.t. R and G is ΔE(N2, N1, R,G) =
E(N2, R, G̃) − E(N1, R, G̃)

|G̃| .

A candidate solution N2 that is dominated by one or more members of the cur-
rent estimated Pareto-front, may still be accepted with a probability equal to
min (1, exp (−ΔE(N2, N1, R,G)/Temp(i))) where Temp(i) is a monotonically de-
creasing function indicating the temperature for the iteration i of the annealing proce-
dure. In Def. 16, the inclusion ofN1 andN2 in set G̃ yields a negativeΔE ifN2 ≺R N1.
This ensures that candidate solutions that move the estimated front towards the true
front are always accepted. The division by |G̃| also ensures that ΔE is always less than
1, and provides some robustness against fluctuations in the number of solutions in G.
A further benefit of ΔE is that, while fostering convergence to the front, it also fosters
its wide coverage. For example, let us assume we only have two objective functions f1
and f2. Fig. 2 depicts the objective values of two solutions, N1 and N2 (represented as
empty circles) in relation to the values of the Pareto-front and its estimation G. N1 and

Automated Error Correction of Business Process Models 161

N2 are mutually non-dominating (N1 is better than N2 along f2 but N2 is better along
f1). However N1 is dominated by fewer elements of G than N2 (2 instead of 4). Thus,
N1 has lower energy and would be more likely accepted in place of N1.

Fig. 2. Two solutions N1

and N2 and their energy

Let us assume an estimated Pareto-front of
{(0, 0, 0.41), (5, 0.12, 0.23), (9, 0, 0), (11, 0, 0.71)} for
our working example. Accordingly, net (b) has a lower en-
ergy than (c) so it has a higher probability of being accepted
than (c). In turn, despite (d) is mutually non-dominating
with both (b) and (c), it has a lower energy than these two
nets, so it has a higher probability of being accepted in
place of them.

At each iteration i of the annealing procedure we test the
solutions for a random set of tracesRi of the original model.
If at any iteration a candidate solution N2 has the same en-
ergy as the current oneN1,N2 has probability of 1 of being chosen (ΔE = 0). However,
we prefer to keep the current solution since this has also been tested against some other
sets Rj<i. This is captured by the notion of confidence of a solution, which indicates
how many annealing iterations a solution has survived through. The more iterations a
solution survives through, the more the confidence increases that this is a good solution.

We now have all ingredients to present the PNSA algorithm. The PNSA algorithm
consists of multiple runs of the annealing procedure so as to incrementally construct
a Pareto-set formed by mutually non-dominated solutions on average, with the same
high confidence. At each run the produced solutions are exploited to feed the estimated
Pareto-front, which in turn is used to compare solutions based on their energy differ-
ence. The PNSA algorithm terminates when a given timeframe tf elapses or a maximum
number of final solutions s is found, and returns the Pareto-set. The algorithm also re-
quires as input the original model N , a finite representation of its traces Tr(N) and
of its erroneous traces ETr(N), the desired confidence c of a solution, the maximum
number of iterations o for each run of the annealing procedure, a temperature Temp(i)
decreasing at each iteration i, the maximum size k of each set Ri, and the parameters
used for behavioral distance and badness (see Sec. 4.2 and 4.3).

The annealing procedure invoked at each run of the PNSA algorithm requires as
input the Pareto-set S of the current solutions (initially empty), and uses it to create the
estimated Pareto-frontG. Then, at each iteration the procedure creates a perturbation of
a solution randomly drawn from S ∪ {N}, and compares their energy difference w.r.t.
a random set of traces Ri of N and G. Based on the resulting probability, one of the
two solutions is added to a priority list of current solutions LS ordered by decreasing
confidence. The procedure terminates when the maximum number of iterations o is
reached or when the first member of LS has confidence c, and produces as output the first
element of LS if this has confidence equal to c. This solution is added to S for the next
run of the PNSA algorithm if it is non dominated on average by any element currently
in S. If so, the elements of S that are dominated on average by the solution being
added are removed to ensure that all elements of S are always mutually non-dominated
on average. The average dominance is computed by keeping for each solution N ′ an
archive AN ′ storing the values of the unique objective functions of N ′ for all sets Ri

used for testing N ′. The steps of the PNSA algorithm are:

162 M. Gambini et al.

1. Initialize the estimated Pareto-front G with the Pareto-set S and empty the solution list A
(in the initial run, S = ∅).

2. Randomly draw a solution N1 from S∪{N} and set N1 as the current solution (in the initial
run, N1 ≡ N).

3. Generate a random perturbation N2 ∈ N of N1 via a minimum sequence of edit operations.
4. Randomly draw a set Ri ⊆ Tr(N) of size k such that |ETr(N) ∩ Ri| = k/2 if |ETr(N)| >

k/2 or ETr(N) ⊂ Ri if |ETr(N)| ≤ k/2.
5. Compute the unique objective functions of N1 and N2 w.r.t. Ri and add their values to the

respective archives AN1 and AN2 .
6. Compute the energy difference ΔE(N2, N1, Ri, G) between N2 and N1 using the estimated

Pareto-front G.
7. If ΔE(N2, N1, Ri, G) 	= 0 replace the current solution N1 with N2 with a probability equal

to min (1, exp (−ΔE(N2, N1, Ri, G)/Temp(i))). Otherwise discard N2 and increase the
confidence of N1 by 1.

8. If N2 is accepted in place of N1, set N2 as the current solution with confidence 1, and add
N2 to LS.

9. Repeat from Step 3 while the confidence of the current solution is less than c and the maxi-
mum number of iterations o is not reached.

10. Add the current solution to LS. If the first element of LS, ls1, has confidence at least c,
compute its average unique objective function f̄avg(ls1, Als1) based on its archive Als1 . Add
ls1 to S if ls1 is not dominated on average by any element of S , and remove all elements of
S that are dominated on average by ls1.

11. Repeat from Step 1 until the timeframe tf elapses or |S| = s.

The complexity of each annealing iteration is dominated by Steps 3, 5 and 6 (the rest
is achieved in constant time). Step 3 computes a perturbation, which is linear on the
size of the WF-net to be changed (the net is explored depth-first to check if a node can
be removed; node/arc insertion and arc removal are achieved in constant time). Step 5
entails the computation of the objective functions. Computing the structural similarity
is linear on the number of edit operations used in the perturbation, which in turn is
bounded by the size of the WF-net. For the behavioral similarity and badness we use
a depth-first search on the WF-net, which is linear on the product of i) the sum of the
lengths of the traces in R to be simulated, ii) the maximum number of silent actions we
can use to simulate a trace, and iii) the size of the WF-net. Step 6 entails the computation
of the energy difference, which is done in logarithmic time on the size of the estimated
Pareto-front [13]. So each annealing iteration can be executed efficiently.

5 Experimental Results

We implemented the PNSA algorithm in a prototype Java tool (available at
www.apromore.org/tools). This tool imports an unsound WF-net in LoLA for-
mat, and builds a finite representation of its state-space using Karp-Miller’s accelera-
tion [8]. This is done by exploring as many distinct transitions as possible in the smallest
number of states. The result of the soundness check and the user parameters trigger the
PNSA algorithm. At each iteration i of the annealing procedure, the tool performs at
most k prioritized random walks on the state-space to extract the sample traces of set
Ri. More precisely, for each trace, the state-space is traversed backwards starting from

www.apromore.org/tools

Automated Error Correction of Business Process Models 163

a final state and by prioritizing those transitions that have been visited the least, until the
initial state is reached. Correct traces are extracted starting from MO; erroneous traces
are extracted starting from a final state that led to an error (available from the soundness
check). The output of the tool is a set of solutions in LoLA format, which is limited by
the maximum response time or by the maximum number of solutions set by the user.

We used the tool to fix a sample of 152 unsound nets drawn from the BIT process
library [6]. This library contains 1,386 BPMN models in five collections (A, B1, B2,
B3, C), out of which 744 are unsound. We converted these 744 models into WF-nets and
filtered out those models that did not result in lawful WF-nets (e.g. those models that
had multiple output places). In particular, we only kept models with up to two output
places, and when we found two output places we merged them in a single output place.
Since this operation may introduce a lack of synchronization, we discarded models
with more than two output places to minimize the impact of such artificial errors. As a
result, we obtained 152 models none of which from collection C. We set the maximum
number of final solutions to 6, the desired confidence to 100, the maximum number of
iterations for each annealing run to 1,000, the initial temperature to 144, the maximum
size of each set of sample traces to 50, and all the parameters for behavioral distance
and badness to 1. After the experiment each solution was checked for soundness. The
tests were conducted on a PC with a 3GHz Intel Dual-Core x64, 3GB memory, running
Microsoft Windows 7 and JVM v1.5. Each test was run 10 times by using the same
random seed (to obtain deterministic results) and the execution times were averaged.
The results are reported in Table 1.

Table 1. Experimental results

Input models Solutions
Collection No. Avg/Max Avg/Max Avg/Max Avg/Max Avg Error Sound Avg/Max str. Avg/Max Time

models nodes errors nodes errors reduction models distance [cost] [s]
BIT A 48 46.54 / 129 2.21 / 5 45.85 / 129 0.74 / 20 73.6% 85.7% 4.25 / 39 16.52 / 171.43
BIT B1 22 29.55 / 87 2.55 / 6 27.18 / 87 1.07 / 29 75.6% 82.9% 5.02 / 91 8.75 / 100.45
BIT B2 35 22.86 / 117 2.54 / 9 21.79 / 118 0.69 / 9 84.9% 87.3% 3.47 / 47 12.08 / 217.91
BIT B3 47 20.38 / 73 2.77 / 9 21.42 / 118 1.26 / 24 72.4% 79.6% 4.62 / 61 10.85 / 156.93

The error-reduction rate of a solution is the difference between the number of errors
in the initial model and the number of errors in the solution, over the number of errors in
the initial model. Table 1 shows the average error-reduction rate for all solutions of each
collection, which leads to an average error-reduction of 76.6% over all four collections.
This indicates that the algorithm is able to fix the majority of errors in the input models.
Moreover, the structural distance of the solutions is very low (4.34 on average using a
cost of 1 for each edit operation). Thus, the solutions are very similar to the original
model. These solutions are obtained with an average response time of 11s. Despite the
large response time in some outlier cases (218s), most solutions are behaviorally better
than their input models (83.9% are sound) and at least one sound solution was found
for each input model. Very few cases are worse than the input model (e.g. 29 errors
instead of 6 errors in the input model). This is due to the fact that we did not fine-tune
the annealing parameters based on the characteristics of each input model (e.g. if the
number of annealing iterations is too low w.r.t. the number of errors in the input model,
a solution could contain more errors than the input model).

164 M. Gambini et al.

6 Conclusion

This paper contributes a technique for automatically fixing behavioral errors in process
models. Given an unsound WF-net and the output of its soundness check, we generate a
set of alternative nets containing fewer or no behavioral errors, until a given number of
desired solutions is found or a timeframe elapses. Each solution is i) sufficiently similar
to the original model, ii) non-redundant in terms of fixed errors, and iii) optimal with
high-confidence, i.e. it must pass a number of tests. Moreover, there is no restriction on
the type of unsound WF-net that can be fixed (e.g. acyclic, non-free choice).

The core of this technique is a heuristic optimization algorithm based on dominance-
based MOSA. The choice of this algorithm over other optimization algorithms is mainly
motivated by i) the availability of a single individual (the unsound model) rather than a
population; ii) the fact that the modeler’s intentions are unknown, which determines the
fuzziness of the result; and iii) by the need to independently optimize different objec-
tives. Also, an important advantage of MOSA over other optimization algorithms is that
while converging to optimal solutions, it encourages the diversification of the candidate
solutions. In turn, this allows the algorithm to escape from local optima, i.e. solutions
that sub-optimally improve the original model. It has been shown that dominance-based
MOSA outperforms other multi-objective genetic algorithms [13]. Our adaptation of
MOSA to the problem of fixing unsound process models uses three objective functions
to drive the selection of candidate solutions. These functions measure the similarity of
a solution to the unsound model and the severity of its errors. Moreover, we embed a
notion of confidence to measure the reliability of a solution. This compensates for the
approximation of our definitions of behavioral distance and badness, which is due to
efficiency reasons. Clearly, more sophisticated metrics could be employed in place of
our objective functions, e.g. to identify dead transitions. However one has to strike a
trade-off between accuracy and computational cost. Indeed, we compute our objective
functions in linear time.

More generally, our work can be seen as a modular framework for improving busi-
ness process models. In fact one could plug in other objective functions to serve differ-
ent purposes, such as fixing non-compliance issues or increasing process performances.

We prototyped our technique in a tool and validated it on a sample of industrial pro-
cess models. While we cannot guarantee that the returned solutions are always sound,
we found at least one sound solution for each model used in the tests, and the response
times were reasonably short. However, in order to prove the usefulness of this technique,
the quality of the proposed changes needs to be empirically evaluated. In future work,
we plan to compare our solutions with those produced by a team of modeling experts
and use these results to train the algorithm to discard certain types of perturbations.

There are other interesting avenues for future work. First, the randomness of the
perturbations could be controlled by exploiting crossover techniques from genetic al-
gorithms [7], so as to obtain a new perturbation by combining correct (sub-)traces from
each solution in the current Pareto-set. Second, to accelerate the identification of op-
timal solutions, the energy resolution could be increased by using attainment surface
sampling techniques [13]. This would compensate for the small size of the estimated
Pareto-front at the beginning, which yields coarse-grained comparisons of solutions. Fi-
nally, the structural features of the unsound model and the result of its soundness check

Automated Error Correction of Business Process Models 165

could be exploited to estimate the annealing parameters (e.g. the number of annealing
iterations could depend on the number of errors found in the unsound model).

Acknowledgments. This research is partly funded by the NICTA Queensland Lab.

References

1. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W.,
Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification, Decidability, and
Analysis. Formal Aspects of Computing (2011)

2. Arcuri, A.: On the automation of fixing software bugs. In: ICSE (2008)
3. Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in process

models. In: BPM Workshops (2009)
4. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern

Recognition Letters 1(4), 245–253 (1983)
5. Dijkman, R., Dumas, M., van Dongen, B., Kaarik, R., Mendling, J.: Similarity of business

process models: Metrics and evaluation. Information Systems 36(2) (2011)
6. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: In-

stantaneous soundness checking of industrial business process models. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 278–293. Springer,
Heidelberg (2009)

7. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan, Ann Arbor
(1975)

8. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sci-
ences 3(2) (1969)

9. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220,
671–680 (1983)

10. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-based
graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

11. Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri net transformations for business processes
– a survey. TOPNOC 2, 46–63 (2009)

12. Reijers, H.A., Mans, R.S., van der Toorn, R.A.: Improved Model Management with Aggre-
gated Business Process Models. Data Knowl. Eng. 68(2), 221–243 (2009)

13. Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., Misra, R.: Dominance-based multi-
objective simulated annealing. IEEE Trans. on Evolutionary Computation 12(3) (2008)

14. Suman, B.: Study of simulated annealing based algorithms for multiobjective optimization
of a constrained problem. Computers & Chemical Engineering 28(9) (2004)

15. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Berlin (2007)

16. Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.:
Business process verification: Finally a reality! BPM Journal 15(1), 74–92 (2009)

17. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure based on
transition adjacency relations. Computers in Industry 61(5) (2010)

	Automated Error Correction of Business Process Models
	Introduction and Background
	Preliminaries
	Automatic Process Model Correction
	Petri Nets Simulated Annealing
	Structural Distance
	Behavioral Distance
	Badness
	Dominance-Based Simulated Annealing

	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

