
Compliance by Design for

Artifact-Centric Business Processes

Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. Compliance to legal regulations, internal policies, or best
practices is becoming a more and more important aspect in business
processes management. Compliance requirements are usually formulated
in a set of rules that can be checked during or after the execution of the
business process, called compliance by detection. If noncompliant behav-
ior is detected, the business process needs to be redesigned. Alternatively,
the rules can be already taken into account while modeling the business
process to result in a business process that is compliant by design. This
technique has the advantage that a subsequent verification of compliance
is not required.

This paper focuses on compliance by design and employs an artifact-
centric approach. In this school of thought, business processes are not
described as a sequence of tasks to be performed (i. e., imperatively), but
from the point of view of the artifacts that are manipulated during the
process (i. e., declaratively). We extend the artifact-centric approach to
model compliance rules and show how compliant business processes can
be synthesized automatically.

1 Introduction

Business processes are the main asset of companies as they describe their value
chain and fundamentally define the “way, businesses are done”. Beside fundamen-
tal correctness criteria such as soundness (i. e., every started case is eventually
finished successfully), also nonfunctional requirements have to be met. Such re-
quirements are often collected under the umbrella term compliance. They include
legal regulations such as the often cited Sarbanes-Oxley Act to fight accounting
frauds, internal policies to streamline the in-house processes, or industrial best
practices to reduce complexity and costs as well as to facilitate collaborations.
Finally, compliance can be seen as a means to validate business processes [5].

Compliance requirements are usually defined without a concrete business pro-
cess in mind, for instance in legal texts such as “The Commission shall [...]
certify [...] that the signing officers have designed such internal controls to en-
sure that material information [...] is made known [...] during the period in which
the periodic reports are being prepared”.1 Such informal descriptions then must

1 Excerpt of Title 15 of the United States Code, § 7241(a)(4)(B).

S. Rinderle-Ma, F. Toumani, and K. Wolf (Eds.): BPM 2011, LNCS 6896, pp. 99–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

100 N. Lohmann

be translated by domain experts into precise rules that unambiguously capture
the essence of the requirement in a shape that it can be checked in concrete
business process. The example above could yield a rule such as “Information
on financial reports must be sent to the press team by the signing officers at
most two weeks after signing”. The rules clarify who has to take which actions
and when. That is, they specifically deal with the execution order of actions
of the business process or the reachability of data values. This formalization of
domain-specific knowledge is far from trivial and out of scope of this paper. In
the remainder, we assume— similar to other approaches [18] — that such rules
are already present.

Compliance rules are often declarative and describe what should be achieved
rather than how to achieve it. Temporal logics such as CTL [4], LTL [21] or
PLTL [20] are common ways to formalize such declarative rules. To make these
logics approachable for nonexperts, also graphical notations have been proposed
[1,2]. Given such rules, compliance of a business process model can be verified
using model checking techniques [6]. These checks can be classified as compliance
by detection, also called after the fact or retrospective checking [25]. Their main
goal is to provide a rigorous proof of compliance. In case of noncompliance,
diagnosis information may help to fix the business process toward compliance.
This step can be very complicated, because the rules may affect various parts
and agents of the business process (e. g., financial staff and the press team).
Furthermore, the declarative nature of the rules does not provide recipes on
how to fix the business process. To meet the previous example rule, an action
“send information to press team” needs to be added to the process and must
be executed at most two weeks after the execution of an action “sign financial
report”. Compliance can be eventually reached after iteratively adjusting the
business process model, cf. Fig. 1(a).

An alternative approach takes a business process model and the compliance
rules as input and automatically generates a business process model that is
compliant by design [25], cf. Fig. 1(b). This has several advantages: First, a
subsequent proof and potential corrections are not required. This may speed up
the modeling process. Second, the approach is flexible as the generation can be
repeated when rules are added, removed, or changed. Third, the approach is
complete in the sense that an unsuccessful model generation can be interpreted

uncompliant business
process model

adjust business
process model

business
process model

compliant business
process model

check compliance
rules

M

M? M

check
compliance

rules

(a) compliance by detection

generate

business
process model

R3
R2

R1

M

compliant business
process model

compliance
rules

M?

(b) compliance by design

Fig. 1. Approaches to achieve compliance

Compliance by Design for Artifact-Centric Business Processes 101

as “the business process cannot be made compliant” rather than “the current
model is not compliant”. Fourth, compliance is not only detected, but actually
enforced. That is, noncompliant behavior becomes technically impossible.

This paper investigates the latter compliance-by-design approach. We employ
a recent framework for artifact-centric business processes [17]. In this framework,
a business process is specified by a description of the life cycles of its data
objects (artifacts). From this declarative specification, which also specifies agents
and locations of artifacts, a sound, operational, and interorganizational business
process can be automatically generated.

Contribution. This paper makes two contributions: First, we extend the artifact-
centric framework [17] to model a large family of compliance rules. Second, we use
existing tools and techniques to achieve not only soundness, but also compliance
by design. We also sketch the diagnosis of noncompliant models.

Organization. The next section introduces a small example we use throughout
the paper to exemplify our approach and later extensions. Section 3 sets the
stage for our later contributions. There, we introduce artifact-centric business
processes and correctness by design. In Sect. 4, we demonstrate how a large
family of compliance rules can be expressed with in our approach. Section 5
presents how compliance by design can be achieved. We also discuss the diagnosis
of unrealizable compliance rules. Section 6 brings our approach in the context of
related work, before Sect. 7 concludes the paper.

2 Running Example: Insurance Claim Handling

We use a simple insurance claim handling process (based on [24]) as running
example for this paper. In this process, a customer submits a claim to an insurer
who then prepares a fraud detection check offered by an external service. Based
on the result of this check, the claim is either (1) assessed and the settlement
estimated, (2) detected fraudulent and reported, or (3) deemed incomplete. In
the last case, further information are requested from the customer before the
claim is resubmitted to the fraud detection service. In this situation, the customer
can alternatively decide to withdraw the claim. On successful assessment, a
settlement case is processed by a financial clerk. The claim is settlement paid
in several rates or all at once. A single complete payment further requires an
authorization of the controlling officer. When the settlement is finally paid, the
claim is archived.

One way to model this process is to explicitly order the actions to be taken and
to give an operational business process model. An alternative to this verb-centric
approach offers an artifact-centric framework which starts by identifying what
is acted on (noun-centric) and to derive a business process from the life cycles
of the involved artifacts. We shall discuss artifact-centric business processes in
the next section.

102 N. Lohmann

3 Artifact-Centric Business Processes

In this section, we shall introduce artifact-centric business processes [17]. We
first give an informal overview of all concepts involved. Then we present a Petri
net formalization and discuss it in on the basis of the running example. Admit-
tedly, this section takes a large part of this paper, but is required to discuss the
contributions to compliance.

3.1 Informal Overview

Artifact-centric modeling promotes the data objects of a business process (called
artifacts) and their life cycles to first-class citizens. In the running example, we
consider two artifacts: an insurance claim file and a settlement case. Each life
cycle describes how the state of an artifact may evolve over time. The actions
that change states are executed by agents, for instance the customer, the insurer,
the financial clerk, and the controlling officer. As multiple agents can participate
in a business process, the artifact-centric approach is particularly suited to model
interorganizational business processes.

Each artifact has at least one final state which models a successful processing
of the artifact, for instance “claim archived”, or “settlement paid”. Artifact-
centric business processes are inherently declarative: the control flow of the busi-
ness process is not explicitly modeled, but follows from the life cycles of the
artifacts. That is, any execution of actions that brings all artifacts to a final
state can be seen as sound. However, not every sound execution makes sense.
For instance, semantically ordered actions of different and independently mod-
eled artifacts (e. g., “assess claim” and “create settlement”) may be executed in
any order. In addition, not every combination of final states may be desirable, for
instance “claim withdrawn” in combination with “settlement paid”. Therefore,
the executions have to be constrained using policies and goal states. A policy
is a way of expressing constraints between artifacts. For instance, a policy may
constrain the order of state changes in different artifacts (e. g., always execut-
ing “assess claim” before “pay settlement”). Finally, goal states restrict final
states by reducing those combinations of artifacts’ final states that should be
considered successful.

In recent work [17], we presented an approach that takes artifacts, policies,
and goal states as input and automatically synthesizes an interorganizational
business process. This business process has two important properties: First, it
is operational. It explicitly models which agent may perform which action in
which state. In addition to the control flow, we can also derive the data flow
and even the message flow, because artifacts may be sent between agents. Op-
erational models can be translated into languages such as BPMN [19] and can
be easily refined toward execution. Second, the business process is weakly ter-
minating. Weak termination is a correctness criterion that ensures that a goal
state is always reachable from every reachable state. Any actions that would
lead to deadlocks or livelocks are removed. This means that the approach is
correct by design. To summarize, the artifact-centric approach allows to model

Compliance by Design for Artifact-Centric Business Processes 103

A3
A2

A1

Γ

artifact com
position

controller synthesis

P3
P2

P1

M weakly terminating
business process model

goal states

artifacts

policies

Fig. 2. Artifact-centric business processes in a nutshell

artifacts and to restrict their manipulation by additional domain knowledge such
as policies and goal states. From this declarative model we can then automati-
cally generate a weakly terminating operational model. Figure 2 illustrates the
overall approach.

3.2 Formalization

We model artifact-centric business processes with Petri nets [23]. Petri nets com-
bine a simple graphical representation with a rigorous mathematical foundation.
They can naturally express locality of actions in distributed systems. This al-
lows us to model the life cycles of several artifacts independently, yielding a
more compact model compared to explicit state machines.

Definition 1 (Petri net). A Petri net N = [P, T, F, m0] consists of two finite
and disjoint sets P of places and T of transitions, a flow relation F ⊆ (P ×T)∪
(T ×P), and an initial marking m0. A marking m : P → IN represents a state of
the Petri net and is visualized as a distribution of tokens on the places. Transition
t is enabled in marking m iff, for all [p, t] ∈ F , m(p) > 0. An enabled transition
t can fire, transforming m into the new state m′ with m′(p) = m(p)−W ([p, t])+
W ([t, p]) where W ([x, y]) = 1 if [x, y] ∈ F , and W ([x, y]) = 0, otherwise.

A Petri net shall describe the life cycle of an artifact. For our purposes, we have
to extend this model with several concepts: Each transition is associated with
an action from a fixed set L = Lc ∪ Lu of action labels. This set is partitioned
into a set Lc of controllable actions that are executed by agents and a set Lu of
uncontrollable actions that are not controllable by any agent, but are under the
influence of the environment. Such uncontrollable actions are suitable to model
choices that are external to the business process model, such as the outcome of
a service call, for instance to a fraud detection agency.

Definition 2 (Artifact [17]). An artifact A = [N, �, Ω] consists of (1) a Petri
net N = [P, T, F, m0], (2) a transition labeling � : T → L associating actions
with Petri net transitions, and (3) a set Ω of final markings of N representing
endpoints in the life cycle of the artifact.

Running example (cont.). Figure 3 depicts the claim and the settlement arti-
facts. Each transition is labeled by the agent that executes it (insurer, customer,

104 N. Lohmann

claim

cus

ins

cus

cus

ins ins

ins ins

ins

submit

withdraw

requestInfo

provideInfo

prepare

estimateHighestimateLow

sendToController

sendToInsurer

archive

ins

pending

withdrawn

preparedvoid

estimated archived

fraudulent

ok

reported

report

assess

assessed

@insurer @controllerins

con

submitted

Ω = {[withdrawn,@insurer], [archived,@insurer], [reported,@insurer]}

incomplete

settlement

fin fin fin

con fin

fin

create
authorize

payFull

payRestpayPart

payPart

paid

authorizedunchecked

createdempty

Ω = {[empty], [unchecked, paid], [authorized, paid]}

Fig. 3. Artifacts of the running example

controller, and financial cleark) or is shaded gray in case of uncontrollable ac-
tions. Two additional places (“@insurer” and “@controller”) model the locaction
of the insurance claim file. The artifact-centric approach allows to distinguish
physical objects (e. g., documents or goods) that need to be transferred between
agents to execute certain actions and virtual objects (e. g., data bases or elec-
tronic documents). By taking the shape of the artifacts and their location into
account, we can later derive explicit message transfer among the agents. In our
example, we assume that after submitting the claim, a physical file is created by
the insurer which can be sent to the controlling officer by executing the respec-
tive action “send to controller”. We further assume that the settlement case is a
data base entry that can be remotely accessed by the insurer, the financial clerk,
and the controlling officer.

We can now model each artifact of our business process independently with
a Petri net model. Together, the artifacts implicitly specify a process of actions
that may be performed by the agents or the environment according to the life
cycles of the artifacts. This global model is formalized as the union of the artifact
models, which is again an artifact.

Definition 3 (Artifact union [17]). Let A1, . . . , An be artifacts with pairwise
disjoint Petri nets N1, . . . , Nn. Define the artifact union

⋃n
i=1 Ai = [N, �, Ω] to

be the artifact consisting of (1) N = [
⋃n

i=1 Pi,
⋃n

i=1 Ti,
⋃n

i=1 Fi, m01 ⊕· · ·⊕m0n],
(2) �(t) = �i(t) iff t ∈ Ti (i ∈ {1, . . . , n}), and (3) Ω = {m1 ⊕ · · · ⊕ mn | mi ∈
Ωi ∧ 1 ≤ i ≤ n}. Thereby, ⊕ denotes the composition of markings: (m1 ⊕ · · · ⊕
mn)(p) = mi(p) iff p ∈ Pi.

Compliance by Design for Artifact-Centric Business Processes 105

The previous definition is of rather technical nature. The only noteworthy prop-
erty is that the set of final markings of the union consists of all combinations
of final markings of the respective artifacts. Conceptually, the union of the ar-
tifacts has several downsides as we discussed in Sect. 3.1. First, it may contain
sequences of actions that reach deadlocks or livelocks. That is, the model is not
necessarily weakly terminating. Second, the artifacts may evolve independently
which may result in implausible execution orders or undesired final states. As
stated earlier, the latter problems can be ruled out by defining policies, which
restrict interartifact behavior, and goal states, which restrict the final states of
the union. Before discussing this, we shall first cope with the first problem.

The transitions of the artifacts are labeled with actions that can be executed by
agents. Hence, the agents have control about the evolution of the overall business
process. To avoid undesired situations such as deadlocks or livelocks, their behavior
needs to be coordinated. That is, it must be constrained such that every execution
can be continued to a final state. This coordination can be seen as a controller syn-
thesis problem [22]: given an artifact A, we are interested in a controller C (in fact,
also modeled as an artifact) such that their interplay is weakly terminating. The
interplay of two artifacts is formalized by their composition, cf. Fig. 4.

Definition 4 (Artifact composition [17]). Let A1 and A2 be artifacts. Define
their shared labels as S = {l | ∃t1 ∈ T1, ∃t2 ∈ T2 : �(t1) = �(t2) = l}. The
composition of A1 and A2 is the artifact A1 ⊕ A2 = [N, �, Ω] consisting of:

– N = [P, T, F, m01 ⊕ m02] with
• P = P1 ∪ P2,
• T =

(
T1 ∪ T2 ∪ {[t1, t2] ∈ T1 × T2 | �(t1) = �(t2)}

) \ ({t ∈ T1 | �1(t) ∈
S} ∪ {t ∈ T2 | �2(t) ∈ S}),

• F = ((F1∪F2)∩ ((P ×T)∪ (T ×P)))∪{[[t1, t2], p] | [t1, p] ∈ F1∨ [t2, p] ∈
F2} ∪ {[p, [t1, t2]] | [p, t1] ∈ F1 ∨ [p, t2] ∈ F2},

– for all t ∈ T ∩ T1: �(t) = �1(t), for all t ∈ T ∩ T2: �(t) = �2(t), and for all
[t1, t2] ∈ T ∩ (T1 × T2): �([t1, t2]) = �1(t1), and

– Ω = {m1 ⊕ m2 | m1 ∈ Ω1 ∧ m2 ∈ Ω2}.
The composition A1 ⊕ A2 is complete if for all t ∈ Ti holds: if �i(t) /∈ S, then
�i(t) ∈ Lu (i ∈ {1, 2}).

A

Ω = {[final1], [final2]}

B

final

Ω = {[final]}

A⊕B

final

Ω = {[final1,final], [final2,final]}

⊕ =
a b b ba

final1 final2 final1 final2

Fig. 4. Composition of two artifacts

106 N. Lohmann

Given an artifact A, we call another artifact C a controller for A iff (1) their
composition A⊕C is complete and (2) for each reachable markings of the compo-
sition, a final marking m⊕m′ of A⊕C is reachable. The existence of controllers
(also called controllability [27]) is a fundamental correctness criterion for com-
municating systems such as services. It can be decided constructively [27]: If a
controller for an artifact exists, it can be constructed automatically [16]. Note
that the requirement of a complete composition makes sure that the controller
does not constrain the execution of uncontrollable actions.

Finally, we can define goal states and policies to constrain the interartifact
behavior. Goal states are a set of markings of the artifact union and are used as
final markings during controller synthesis. To model interdependencies between
artifacts, we employ policies. We also model policies with artifacts (similar to
behavioral constraints [15]); that is, labeled Petri nets with a set of final mark-
ings. These artifacts have no counterpart in reality and are only used to model
dependencies between actions of different artifacts. The application of policies
then boils down to the composition of the artifacts with these policies.

Running example (cont.). To rule out implausible behavior, we further define the
following policies to constrain interartifact behavior and the location’s impact
on actions:

P1. The claim may be archived only if it resides at the insurer and the settlement
is paid.

P2. A settlement may only be created after the claim has been estimated.
P3. To authorize the complete payment of the settlement, the claim artifact

must be at hand to the controlling officer.
P4. The claim artifact may only be sent to the controller if it has been estimated

and the settlement has not been checked.
P5. The claim artifact may only be sent back to the insurer if the settlement

has been authorized.

The policies address different aspects of the artifacts such as location (P1 and
P3), execution order (P2), or data constraints (P4 and P5). The modeling of the
policies as artifacts is straightforward and depicted in Fig. 5. Note that in policy
P2, we use an unlabeled place to express the causality between the transitions.

P5P4P3P2P1

ins

ins
con

ins

con

archive

@insurer

paid
fin

estimateHigh estimateLow

create

ins

@controller

authorize

sendToController

estimated

unchecked

sendToInsurer

authorized

Fig. 5. Policies for the running example

Compliance by Design for Artifact-Centric Business Processes 107

This place has no counterpart in any artifact and is added to the composition.
As goal states, we specify the set

Γ = {[withdrawn, @insurer, empty], [reported, @insurer, empty],

[archived, @insurer, paid, unchecked], [archived, @insurer, paid, authorized]}

which models four cases: withdrawal of the claim, detection of a fraud, and
settlement with or without authorization. Taking the artifacts, policies, and
goal states as input, we can automatically synthesize the weakly terminating
and operational business process depicted in Fig. 6.

cus

cus

ins

ins

cus

ins

ins

ins

ins

fin

ins con con

fin fin

insfin

ins

fin

submit

withdraw

requestInfo

provideInfo

prepare

estimateHigh

estimateLow

archive

report

assess

archive

create

authorize

payFull

payRestpayPart

payPart

sendToController sendToInsurer

initial final

Fig. 6. The running example as weakly terminating operational business process

4 Modeling Compliance Rules

This section investigates to what extend compliance rules can be integrated into
the artifact-centric approach. Before we present different shapes of compliance
rules and their formalization with Petri nets, we first discuss the difference be-
tween a policy and a compliance rule.

4.1 Enforcing Policies vs. Monitoring Compliance Rules

As described in the previous section, we use policies to express interdependencies
between artifacts and explicitly restrict behavior by making the firing of transi-
tions impossible. Policies thereby express domain knowledge about the business
process and its artifacts and are suitable to inhibit implausible or undesired
behavior. This finally affects the subsequent controller synthesis.

In contrast, a compliance rule specifies behavior that is not under the direct
control of the business process designer. Consequently, a compliance rule must
not restrict the behavior of the process, but only monitor it to detect noncompli-
ance. For instance, a compliance rule must not disable external choices within
the business process as they cannot be controlled by any agent. If such a choice
would be disabled to achieve compliance, the resulting business process model

108 N. Lohmann

would be spurious as the respective choice could not be disabled in reality. There-
fore, compliance rules must not restrict the behavior of the artifacts, but only re-
strict the final states of the model. This may classify behavior as undesired (viz.
noncompliant), but this behavior remains reachable. Only if this behavior can be
circumvented by the controller synthesis, we faithfully found a compliant business
process which can be actually implemented. We formalize this nonrestricting na-
ture as monitor property [15,27]. Intuitively, this property requires that in every
reachable marking of an artifact, it holds that for each action label of that arti-
fact a transition with that label is activated. This rules out situations in which
the firing of a transition in a composition is inhibited by a compliance rule.

4.2 Expressiveness of Compliance Rules

Conceptually, we model compliance rules by artifacts with the monitor property.
Again, adding a compliance rule to an artifact-centric model boils down to com-
position. The monitor property ensures that the compliance rule’s transitions are
synchronized with the other artifacts, but without restricting (i. e., disabling) ac-
tions. That is, the life cycle of a compliance rule model evolves together with
the artifacts’ life cycles, but may affect the final states of the composed model.

In a finite-state composition of artifacts, the set of runs reaching a final state
forms a regular language. The terminating runs of a compliance rule (i. e., se-
quences of transitions that reach a final marking) describe compliant runs. This
set again forms a regular language. In the composition of the artifacts and the
compliance rules, these regular languages are synchronized— viz. intersected—
yielding a subset of terminating runs. Regular languages allow to express a va-
riety of relevant scenarios. In fact, we can express all patterns listed by Dwyer
et al. [8], including:

– enforcement and existence of actions (e. g., “Every compliant run must con-
tain an action ‘archive claim’.”),

– absence/exclusion of actions (e. g., “The action ‘withdraw claim’ must not
be executed.”),

– ordering (precedence and response) of actions (e. g., “The action ‘create set-
tlement’ must be executed after ‘submit claim’, but before ‘archive claim’.”),
and

– numbering constraints/bounded existence of actions (e. g., “The action “par-
tially pay settlement” must not be executed more than three times”.).

The explicit model of data states of the artifacts further allows to express
rules concerning data flow, such as:

– enforcement/exclusion of data states (e. g., “The claim’s state ‘fraud re-
ported’ and the settlement’s state ‘paid’ must never coincide.”), or

– data and control flow concurrence (e. g., “The action ‘publish review’ may
only be executed if the review artifact is in state ‘reviewers blinded’.”).

On top of that, any combinations are possible, allowing to express complex
compliance rules.

Compliance by Design for Artifact-Centric Business Processes 109

The presented approach is, however, not applicable to nonregular languages.
For instance, a rule requiring that a compliant run must have an arbitrary large,
but equal number of a and b actions or that a and b actions must be prop-
erly balanced (Dyck languages) cannot be expressed with a finite-state models.
Similarly, rules that affect infinite runs (e. g., certain LTL formulae [21]) can-
not be expressed. Infinite runs are predominantly used to reason about reactive
systems. A business process, however, is usually designed to eventually reach a
final state— this basically is the essence of the soundness property. Therefore,
we shall focus on an interpretation of LTL which only considers finite runs, simi-
lar to a semantics described by Havelund and Roşu [11]. Just like Awad et al. [3],
we also do not consider the X (next state) operator of CTL∗, because we typi-
cally discuss distributed systems in which states are partially ordered. Finally,
we do not use timed Petri nets and hence can make no statements on temporal
properties of business processes. However, we can abstract the variation of time
by events such as “time passes” or data states such as “expired” as in [10,18].

4.3 Formalization

As mentioned earlier, we again use artifacts (i. e., Petri nets with final mark-
ings and action labels) that satisfy the monitor property to model compliance
rules. As an example, we consider the following compliance rules for our example
insurance claim process:

R1. All insurance claims with an estimated high settlement must be authorized.
R2. Customers must not be allowed to withdraw insurance claims.
R3. Settlements should be paid in at most three parts.

Figure 7 shows the Petri net formalizations of these compliance rules. In rule
R1, we exploited the fact that the actions “authorize” and “estimateHigh” are
executed at most once. In rule R2 and R3, the monitor property is achieved
by allowing “withdraw” and “payPart” to fire in any reachable state. Without

R3R1

ins

pol

estimateHigh

authorize

pol

ins

authorize

estimateHigh

final1

final2

Ω = {[final1], [final2]}

R2

cus

cus withdraw

withdraw

Ω = {[final]}

final
fin

fin fin

finpayPart

payPart

payPart

payPart

final1

final2

final3

Ω = {[final1], [final2], [final3]}

Fig. 7. Compliance rules modeled as Petri nets

110 N. Lohmann

restriction of the behavior, the final markings classify executions as compliant
or not. For instance, executing “estimateHigh” in rule R1 without eventually
executing “authorize” does not reach the final marking [final2].

4.4 Discussion

We conclude this section by a discussion of the implications of using Petri nets
to formalize compliance rules.

– Single formalism. We can model artifacts, policies, and compliance rules with
the same formalism. Though we do not claim that Petri nets should be used
by domain experts to model compliance regulations, using a single formalism
still facilitates the modeling and verification process. Furthermore, each rule
implicitly models compliant behavior which can be simulated. This is not
possible if, for instance, arbitrary LTL formulae are considered.

– Level of abstraction. Rules can be expressed using minimal overhead. Each
rule contains only those places and transitions that are affected by the rule and
plus some additional places to model further causalities. In particular, no place-
holder elements (e. g., anonymous activities in BPMN-Q [2]) are required.

– Independent design. The rules can be formulated independently of the arti-
fact and policy models. That is, the modeler does not need to be confronted
with the composite model. This modular approach is more likely to scale,
because the rules can also be validated independently of the other rules.

– Reusability. The composition is defined in terms of action labels. Therefore,
rules may be reused in different business process models as long as the labels
match. This can be enforced using standard naming schemes or ontologies.

– Runtime monitoring. The monitor property ensures that the detection of
noncompliant behavior is transparent to the process as no behavior is re-
stricted. Therefore, the models of the compliance rules can be also used to
check compliance during or after runtime, for instance by inspecting execu-
tion logs.

– Rule generation. Finally, the structure of the Petri nets modeling compli-
ance rules is very generic. Therefore, it should be possible to automatically
generate Petri nets for standard scenarios or to provide templates to which
only the names of the constrained actions need to be filled. Also, the monitor
property can be automatically enforced.

5 Compliance by Design

This section presents the second contribution of this paper: the construction of
business process models that are compliant by design. Beside the construction,
we also discuss the diagnosis of noncompliant business process models.

5.1 Constructing Compliant Models

None of the compliance rules discussed in the previous section hold in the exam-
ple process depicted in Fig. 6. This noncompliance can be detected by standard

Compliance by Design for Artifact-Centric Business Processes 111

model checking tools. They usually provide a counterexample which describes
how a noncompliant situation can be reached. For instance, the action sequence
“1. submit, 2. prepare, 3. requestInfo, 4. withdraw” is a witness that the process
does not comply with rule R2. To satisfy this requirement, the transition “with-
draw” can be simply removed. However, implementing the other rules is more
complicated, and each modification would require another compliance check.

We propose to synthesize a compliant model instead of verifying compliance.
By composing the Petri net models of the artifacts (cf. Fig. 3), the policies
(cf. Fig. 5), and the compliance rules (cf. Fig. 7) and by taking the goal states
into account, we derive a Petri net that models the artifacts’ life cycles that
are restricted by the policies and whose final states are constrained by the goal
states and the compliance rules. Compliant behavior is now reduced to weak
termination, and we can apply the same algorithm [27] and tool [16] to synthesize
a controller. If such a controller exists, it provides an operational model that
specifies the order in which the agents need to perform their actions. This model
is compliant by design — a subsequent verification is not required. Beside weak
termination (and hence, compliance), the synthesis algorithm further guarantees
the resulting model is most permissive [27]. That is, exactly that behavior has
been removed that would violate weak termination. Another important aspect
of the approach is its flexibility to add further compliance rules. That is, we do
not need to edit the existing model, but we can simply repeat the synthesis for
the new rule set.

Running example (cont.). Figure 8 depicts the resulting business process model.
It obviously contains no transition labeled with “withdraw”, but the implemen-
tation of the other rules yielded a whole different structure of the part modeling
the settlement processing. It is important to stress that the depicted business
process model has been synthesized completely automatically using the partner
synthesis tool Wendy [16] and the Petri net synthesis tool Petrify [7]. Admittedly,
it is a rather complicated model, but any valid implementation of the compliance

cus

cus

ins

ins ins

ins

ins

ins

fin

ins

con

con

fin fin

fin

fin

submit

requestInfo

provideInfo

prepare

estimateHigh

estimateLow

report

assess

archive

create

authorize

payFull

payRestpayPart

payPart

sendToInsurer

initial final

fin

ins

ins

ins

archive

payRest

sendToController

sendToController

Fig. 8. Operational business process satisfying the compliance rules R1–R3

112 N. Lohmann

rules would yield the same behavior or a subset. Though our running example
is clearly a toy example, experimental results [16] show that controller synthesis
can be effectively applied to models with millions of states.

5.2 Diagnosing Noncompliant Models

So far, we only considered the case that the business process can be constructed
such that it satisfies the compliance rules. Then, we can find a controller that
guarantees weak termination. In case a compliance rule is not met by the business
process, no such controller exists. That is, the business process cannot be made
compliant. Intuitively, the intersection between the behavior of the business pro-
cess and the compliance rule is empty. Just as a controller would be a witness
for compliant behavior, such witness does not exist in case of noncompliance.

In previous work [14], we studied uncontrollable models and presented an
algorithm that generates diagnosis information. This diagnosis information is
presented as a graph that overapproximates the behavior of any controller. As
no controller exists that can avoid states that violate weak termination, this
graph contains paths to such deadlocks or livelocking states. These paths and
the reason they cannot be avoided by a controller serve as a counterexample
similar to those of standard model checking. Note that such a counterexample
not only describes noncompliance of a concrete business process model, but for
a whole family of operational models that can be derived from a set of artifacts.

Running example (cont.). To exemplify this diagnosis information, consider the
following compliance rule:

R4. The customer should not be asked for further information more than once.

This rule is not realizable in the business process, because the outcome of the
fraud detection service is not under the control of any agent. Furthermore, rule
R2 excluded the possibility for the customer to withdraw the claim. Hence, we
cannot exclude a noncompliant run in which the transition “requestInfo” is fired
more than once. The diagnosis algorithm (which is also implemented in the tool
Wendy [16]) generates a graph similar to that depicted in Fig. 9. From this
graph, we pruned those paths that eventually reach a final state (represented as
check marks) and replaced them by dashed arrows. As we can see, a final state
cannot be reached after the second “requestInfo” action is executed. However,

su
bm

it

re
qu
es
tIn

fo

pr
ov
id
eIn

fo

pr
ep
ar
e

pr
ep
ar
e

re
qu
es
tIn

fo

report assess report assess

Fig. 9. Counterexample for an unrealizable compliance rule

Compliance by Design for Artifact-Centric Business Processes 113

we cannot avoid this situation, because in the gray state, the external service
decides whether or not the claim is fraudulent or whether further information
are required. For the business process, this choice is external and uncontrollable
and hence it must be correct for any outcome.

6 Related Work

Compliance has received a lot of attention in the business process management
community. Contributions related to our approach can be classified as follows.

Compliance by detection. Awad et al. [3] investigate a pattern-based compliance
check based on BPMN-Q [2]. They also cover the compliance rule classes defined
by Dwyer et al. [8] and give a CTL formalization as well as an antipattern for
each rule. These antipatterns are used to highlight the compliance violations in
a BPMN model. Such a visualization is very valuable for the process designer
and it would be interesting to see whether such antipatterns are also applicable
to the artifact-centric approach. Sadiq et al. [26] use a declarative specification
of compliance rules from which they derive compliance checks. These checks are
then annotated to a business process and monitored during its execution. These
checks are similar to the nonblocking compliance rule models that only monitor
behavior rather than constraining it. Lu et al. [18] compare business processes
with compliance rules and derive a compliance degree. This is an interesting
approach, because it replaces yes/no answers by numeric values which could
help to easier diagnose noncompliance. Knuplesch et al. [12] analyze data aspects
of operational business process models. Similar to the artifact-centric approach,
data values are abstracted into compact life cycles.

Compliance by design. Goedertier and Vanthienen [10] introduce the declarative
language PENELOPE to specify compliance rules. From these rules, a state space
and a BPMN model is generated which is compliant by design. This approach
is limited to acyclic process models. Furthermore, the purpose of the generated
model is rather the validation of the specified rules than the execution. Küster
et al. [13] study the interplay between control flow models and object life cycles.
The authors present an algorithm to automatically derive a sound process model
from given object life cycles. The framework is, however, not designed to express
dependencies between life cycles and therefore cannot specify complex policies
or compliance rules.

To the best of knowledge, this paper presents the first approach that gener-
ates compliant and operational business process models from declarative specifi-
cations of artifact life cycles, policies, and compliance rules.

7 Conclusion

Summary. We presented an approach to automatically construct business pro-
cess models that are compliant by design. The approach follows an artifact-
centric modeling style in which business processes are specified from the point

114 N. Lohmann

of view of the involved data objects. We showed how artifact-centric business
processes can be canonically extended to also take compliance rules into account.
These rules can express constraints on the execution of actions, but can also take
data and location information into account. By composing compliance rules to
the artifact-centric model, we could reduce the check for compliant behavior to
the reachability of final states. Consequently, we could use existing synthesis al-
gorithms and tools to automatically generate compliant business process models.
In case of noncompliance, we further sketched diagnosis information that can be
used to visualize the reasons that make compliance rules unrealizable.
Lessons learnt. With Petri nets, we can use a single formalism to model artifact
life cycles, interartifact dependencies, and compliance rules. Only this unified
way of modeling enabled us to approach the compliance-by-design approach with
only a few concepts (namely artifacts, composition, and partner synthesis). In
addition, it is notable that the compliance rule models can also be used to check
operational business process models for compliance: By composing compliance
rules to existing Petri net models, we reduced the compliance check by a check
for weak termination and allows to use standard verification tools [9].
Future work. We see numerous directions to continue the work in the area of
compliance by design. We are currently working on an extension for BPMN to
provide a graphical notation that is more accessible for domain experts to model
artifacts, policies, and compliance rules. A canonic second step would then be
the integration of the approach into a modeling tool and an empirical evaluation
thereof. Another aspect that needs to be addressed is the expressiveness of the
artifacts and compliance rules. Of great interest are instances and agent roles.
To model more involved scenarios, it is crucial distinguish several instances of
an artifact. We currently assume that for each artifact only a single instance
exists. Furthermore, agent roles would allow a fine-grained description of access
controls or concepts such as the four-eye principle.

References

1. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

2. Awad, A.: BPMN-Q: a language to query business processes. In: EMISA 2007. LNI
P-119, pp. 115–128. GI (2007)

3. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and explain-
ing their violations for business processes. J. Vis. Lang. Comput. 22(1), 30–55 (2011)

4. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In:
POPL 1981, pp. 164–176. ACM, New York (1981)

5. Cannon, J.C., Byers, M.: Compliance deconstructed. ACM Queue 4(7), 30–37 (2006)
6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge

(1999)
7. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:

A tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. Trans. Inf. and Syst. E80-D(3), 315–325 (1997)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999, pp. 411–420. IEEE, Los Alamitos (1999)

Compliance by Design for Artifact-Centric Business Processes 115

9. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous soundness checking of industrial business process models. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 278–293. Springer, Heidelberg (2009)

10. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obli-
gations and permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 5–14. Springer, Heidelberg (2006)

11. Havelund, K., Roşu, G.: Testing linear temporal logic formulae on finite execution
traces. Technical Report 01.08, RIACS (2001)

12. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling
data-aware compliance checking of business process models. In: Parsons, J., Saeki,
M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 332–346.
Springer, Heidelberg (2010)

13. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for
object life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

14. Lohmann, N.: Why does my service have no partners? In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 191–206. Springer, Heidelberg (2009)

15. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
271–287. Springer, Heidelberg (2007)

16. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. In:
Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 297–307.
Springer, Heidelberg (2010), http://service-technology.org/wendy

17. Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 32–46.
Springer, Heidelberg (2010)

18. Lu, R., Sadiq, S.W., Governatori, G.: Compliance aware business process design.
In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007.
LNCS, vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

19. OMG: Business Process Model and Notation (BPMN). Version 2.0, Object Man-
agement Group (2011), http://www.omg.org/spec/BPMN/2.0

20. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and models of concurrent systems. NATO Advanced Summer
Institutes, vol. F-13, pp. 123–144. Springer, Heidelberg (1985)

21. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE, Los
Alamitos (1977)

22. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control Optim. 25(1), 206–230 (1987)

23. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer, Heidelberg (1985)

24. Ryndina, K., Küster, J.M., Gall, H.: Consistency of business process models and
object life cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90.
Springer, Heidelberg (2007)

25. Sackmann, S., Kähmer, M., Gilliot, M., Lowis, L.: A classification model for au-
tomating compliance. In: CEC/EEE 2008, pp. 79–86. IEEE, Los Alamitos (2008)

26. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

27. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS,
vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

http://service-technology.org/wendy
http://www.omg.org/spec/BPMN/2.0

	Compliance by Design for Artifact-Centric Business Processes
	Introduction
	Running Example: Insurance Claim Handling
	Artifact-Centric Business Processes
	Informal Overview
	Formalization

	Modeling Compliance Rules
	Enforcing Policies vs. Monitoring Compliance Rules
	Expressiveness of Compliance Rules
	Formalization
	Discussion

	Compliance by Design
	Constructing Compliant Models
	Diagnosing Noncompliant Models

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

