Better Algorithms for Analyzing and Enacting
Declarative Workflow Languages Using LTL

Michael Westergaard*

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands
m.westergaard@tue.nl

Abstract. Declarative workflow languages are easy for humans to un-
derstand and use for specifications, but difficult for computers to check
for consistency and use for enactment. Therefore, declarative languages
need to be translated to something a computer can handle. One approach
is to translate the declarative language to linear temporal logic (LTL),
which can be translated to finite automata. While computers are very
good at handling finite automata, the translation itself is often a road
block as it may take time exponential in the size of the input. Here,
we present algorithms for doing this translation much more efficiently
(around a factor of 10,000 times faster and handling 10 times larger sys-
tems on a standard computer), making declarative specifications scale to
realistic settings.

1 Introduction

Worflow languages provide an efficient means of describing complex workflows
allowing analysis and assistance of users. Traditional workflow languages like,
e.g., BPMN [I2] require that the modeler explicitly specifies all possibilities from
each state of the system, making it difficult to model more abstract relations
between tasks when the user has many choices in each state. Descriptions such
as “you are only young once; when you are young you should get an education;
you can only get one master’s degree; and only with a master’s degree in business
information systems will you truly be a master of business process modeling”
can only with difficulty be implemented using a transitional workflow language
and the complexity grows as the freedom increases. For this reason declarative
workflow languages, such as Declare (also referred to as ConDec or DecSerFlow)
[15] are becoming popular. Declarative languages do not explicitly state the
allowed choices, but instead focus on constraints between tasks, and hence on
disallowed behaviour rather than allowed behaviour. They are therefore well-
suited to describing systems like the aforementioned example.

* This research is supported by the Technology Foundation STW, applied science
division of NWO and the technology programme of the Dutch Ministry of Economic
Affairs.

S. Rinderle-Ma, F. Toumani, and K. Wolf (Eds.): BPM 2011, LNCS 6896, pp. 83 [98] 2011.
© Springer-Verlag Berlin Heidelberg 2011

84 M. Westergaard

Specifications in Declare consist
of tasks, represented as rectan-
gles, and constraints, represented as
(hyper-) arcs between tasks. An ex-
ample Declare specification is shown
in Fig. [l Here we have five tasks
(e.g., Young) and four constraints.
The constraint response from Young
to MSc, BIS, MSc, ES, and Bsc states Fig. 1. A process described using Declare
that if Young is executed, at least
one of the others have to be executed to as well. The not co-existence constraint
between the two MSc tasks state that at most one of these can be executed.
Finally, the precedence from MSc, BIS to Master of BPM states that Master of
BPM can only be executed if MSc, BIS has been executed previously. Finally,
Young has a constraint stating that it can at most be executed once (the shape
with 0..1 above the task). Thus, this is a Declare implementation of the example
mentioned earlier. We shall not go into further details about the available con-
straints and their graphical representation here, but refer the interested reader
to [15].

To provide analysis for and enact declarative languages, we translate speci-
fications to a form that can be used by computers. For Declare, this has been
done by translating specifications to the event calculus [2] and by translating
specification to linear temporal logic (LTL) [I5]. Here, we are concerned with
translation to LTL as this allows more advanced analysis prior to execution, as
LTL formulae can be translated to finite automata accepting the traces accepted
by the LTL formula and original model [6[7] Analysis made available by this is
checking whether the specification is inconsistent, which manifests itself as an
empty acceptance language and easily checked on a finite automaton. We can
also identify tasks that can never be executed in a valid execution by inspect-
ing the labels of the automaton, and identify redundant constraints by checking
language inclusion using automata. Furthermore, an automaton is used for en-
actment of the workflow specification, by following states in the automaton and
provide the user choices based on what the automaton allows.

The classical approach to translating LTL to automata [6] results in a Biichi-
automaton accepting all infinite execution traces satisfying the formula. A slight
modification of the algorithm [7] instead constructs a standard finite automaton
accepting all finite traces accepted by the formula. This algorithm is intended for
general model-checking, and thus allows requiring multiple atomic propositions
to be satisfied at the same time. A problem with this algorithm is that the con-
struction may be exponential in time and space. As our atomic propositions are
events that cannot happen at the same time, [I4] further improves on the base
original algorithm by removing all transitions that require more than one event
occurring at the same time, resulting in smaller automata and shorter execution
time. The model-checking community has provisions for dealing with the size of
automata by minimizing the formula prior to translation [4] or minimizing the

precedence}

MSc, BIS

not co-existence

Master of
BPM

Better Algorithms 85

generated automata on-the-fly or afterwards [13,4]. While these techniques alle-
viate the explosion to a certain degree, the model-checking community typically
write formulae by hand which result in smaller formulae, and thus their prob-
lem is not so much difficulty in generating the automaton in the first place, but
rather the subsequent analysis. We, however, generate formulae automatically
from easier to understand descriptions, so our formulae become much larger,
making reduction during the initial generation important.

Here, we improve on state-of-the art by exploiting characteristics of LTL for-
mulae derived from declarative workflow specifications, namely that they are in
essence huge conjunctions of relatively simple formulae. Traditional LTL trans-
lations handle conjunctions quite poorly, so we instead translate both sides of a
conjunction individually and subsequently construct the synchronized product
of the two automata, resulting in better performance. Having sub-divided the
problem allows further improvement. For example, we can use automaton mini-
mization algorithms prior to synchronizing, and we can order the product using
heuristics to reduce intermediate products and achieve better performance. In
this paper we describe several algorithms for constructing the automaton for a
Declare model more efficiently. Most of our algorithms have a theoretical worst-
case execution time no better that the standard algorithms (i.e., exponential
in the size of the input), but behave much better in practise. One presented
algorithm only uses linear time to construct an automaton which is useful but
not the same as the one constructed by the traditional algorithm (it is a non-
deterministic automaton for the negation of the model). We have implemented
our algorithms in the Declare tool [3], and the improvements yields speed im-
provements of a factor 1,000-10,000 or more for randomly generated Declare
models, and allows us to generate automata for descriptions consisting of in
the order of 50 tasks and constraints, where previous algorithms only allowed
us to generate automata for descriptions consisting of around 5-10 tasks and
constraints. This in our view is a game-changer, as this makes it possible to
represent real-life systems and not just toy-examples.

The rest of this paper is structured as follows: In Sect. 2l we introduce the
concepts useful for understanding the details of the rest of the paper; this may be
skipped on a first reading for the reader not interested in the discussions about
theoretical run-time. In Sect. [3 we present algorithms for translating Declare
specifications to finite automata using LTL, and in Sect. [we provide experi-
mental results from our implementation of the improved algorithms. Finally, in
Sect. Bl we sum up our conclusions and provide directions for further work.

2 Background

In this section we briefly introduce linear temporal logic (LTL) interpreted over
finite traces, the specific kind of finite automata we are dealing with in this pa-
per, the classical algorithm for translating LTL to finite automata including the
improvements from [I4], and the complexity of common operations on automata.
This section can be skipped by a reader not interested in the asymptotic analysis

86 M. Westergaard

provided. Most of the material presented in this section is known; the contribu-
tion here is the formalization of the non-standard kind of finite automaton we
use (Def. [2) and single-event automata (Def.[3]), and the introduction of a notion
of a deterministic automaton for our kind of finite automaton (Def. [).

In the following, we interpret formulae and automata over finite sequences,
o = eperes...en_1 for e; € E. We call the set of all such sequences E* and use

the notation o(i) = e;, 0(i) = e;jei41...en—1, and |o| = |egey ...en—1| = n. The
concatenation of two sequences oy = €1,061,1---€1,n—1 and o9 = €2,0€2,1---€2.m—1
is 0102 = €1 0€1,1,...€1,n-1€2,0€2,1 - .- €2,m—1.

Definition 1 (LTL Syntax). Given a set, AP, of atomic propositions, a
formula ¢ of linear temporal logic (LTL) over a set of atomic propositions
AP has the form

pu=plop eV oAy]| Xe| Uy

where p € AP, and ¢ and ¥ are LTL formulae. We allow the abbreviations
= Y=—pVi, Fp=TUyp and Gp = ~F(—¢). O

We interpret LTL over finite sequences by assuming a labeling function: A :
S — 24P The standard logical connectives behave as normal, i.e., o |= p iff
pEX0(0),cEwif o, 0 EeVyiff o= poro =1, and o = p Ay iff
o | ¢ and 0 = 9. X means that ¢ must held in the next state, i.e., o = X iff
o(ly E , and U means that ¢ holds until ¢ holds and v holds eventually,
ie, o | Uy iff k.0 < k < |o| such that o(k) = ¢ and Vi.0 < ¢ < k it
holds that o (i) = . We call the set of all sequences satisfying a formula ¢ the
language of ¢, denoted L(p) = {o|o = ¢}.

Our definition of automata is very similar to the traditional one, except we
add a little more structure to the labels. Labels are a set of atomic proposi-
tions or negated atomic propositions. Intuitively, in order to transition from one
state to another, one must satisfy all positive atomic propositions and none of
the negative atomic propositions of a label. An empty set of labels indicates a
transition that can be followed regardless of the set of atomic satisfied.

Definition 2 (Finite Automaton). A finite automaton FA is a tuple FA =
(L, S,0,sr,A), where L is a finite set of labels, S is a finite set of states,
§ C S x 2LY7L xS is the transition relation where =L = {-plp € L}, s; € S
is the initial state, and A C S is the set of accepting states. g

We say a sequence o = $g87...8,_1 € E* with a labeling function A : E — AP
is accepted by a finite automaton FA = (L, S,d, sy, A) iff Vi.0 < i < n there
exists a transition, ¢, leading from s;_1 to s;, i.e., (si—1,t,8;) € 0, such that
so = sy and the labels of s;_1 are consistent with ¢, i.e., tN L C A(e;—1) and
—A(ej—1) Nt =0, and the trace ends up in an accepting state, i.e., sj,/_1 € A.

! There are some intricacies at the end of the trace leading to introduction of two
kinds of next operators [I1]; they are not material in this paper and is discussed in
a bit more detail when we talk about accept states for generated automata.

Better Algorithms 87

We call the set of all sequences accepted by a finite automaton the language of
FA, denoted by L(FA) = {o € E*|o is accepted by FA}. Note that we make no
assumptions about L = AP.

The standard algorithm for translating LTL to finite automata defines and
builds the automaton inductively. Each state has a proof obligation, a set of
formulae that must be satisfied in order for a trace starting in that state to be
satisfied. The algorithm starts by bringing the formula to negative normal form,
i.e., a form where negations only appear directly in front of atomic propositions.
This is done by using De Morgan’s laws, i.e., 7(AVB) = “AA—=B and ~(AAB) =
—A V —B, and introducing the release operator, ¢V defined as —(pUt) =
=V —=. Given a formula in negative normal form, ¢, the algorithm starts with
a single state with proof obligation . This state is furthermore marked as initial.
Now, proof obligations are split up according to the structure of . If ¢ = 1 A p,
we add ¢ and p as new proof obligations, and mark ¢ as satisfied. If p =¥ V p,
we duplicate the state (including any transitions) and add v to one copy and
p to the other, and mark ¢ as satisfied. For ¢ = X9, we add a new state
with the proof obligation ¢ and add a transition from the current state to the
new state. The intuition is that we consume a single event and in the next
state we must satisfy . ¢ = ¥YUp and ¢ = ¥V p are both handled using their
fix-point characterisation, namely that vUp = pV (¢ A X(¥Up)) and vVp =
pA (VX (¢¥Vp)), and using the other rules. We make sure only to create one state
for each set of proof obligations, reusing previously created states if possible. We
do not need to handle the case where ¢ = =) as this only happens when ¢ = p
for some p € AP.

To define a finite automaton FA, = (L, 5,6, s1, A), the set of states, S, and
the initial state sy are as defined by the inductive algorithm. L coincides with the
atomic propositions, AP, of ¢. A state can transition from one state to another
if we have created a transition as explained in the inductive algorithm and the
labels of the transition are atomic propositions and negated atomic propositions
of the source, i.e., (s,t,s") € § iff s and s’ are related as described above and ¢t =
5 N 24PYUAP The accepting states are all states with no outstanding temporal
obligations. For V' this does not have any impact, and for U it just means that
a state cannot have any U proof obligation (an obligation ¥Up has not yet
satisfied p, and hence cannot be accepted). For X the problem is a bit harder,
and one has to split X up into a weak and a strong variant [9]. The weak variant
basically means “if there is a next state, it must satisfy this formula” and the
strong variant means “there is a next state and it satisfies this formula”, and is
hence an outstanding proof obligation. Except at the end of the trace, the two
versions behave the same. We have that L(y) = L(FA,).

To improve the algorithm one typically checks each state for inconsistencies
before expanding it. A state is inconsistent if it contains both a formula, ¢, and
its negation, —. All inconsistent states are removed. In order to improve the
algorithm for workflow specifications, [I4] extends this requirement by adding
the additional condition that a state is inconsistent if it contains two atomic
propositions, p # ¢ (as a sequence from a workflow always produces exactly

88 M. Westergaard

one event so two atomic propositions can never be satisfied at the same time).
Furthermore, whenever a state contains an un-negated atomic proposition, p,
we can remove all negated atomic propositions (except —p). This may allow us
to merge the state with others as it contains fewer proof obligations and thus
may match another state. Thus, an automaton constructed using this approach
will only have transitions that are either a single positive label or a (possibly
empty) set of negative labels. We call such an automaton a single-event finite
automaton as formalised in the following definition.

Definition 3 (Single-event Finite Automaton). A finite automaton FA =
(L, S,9,sr1,A) is said to be a single-event finite automaton iff for all t such
that (si—1,t,s;) € 0 it holds that either t = {p} for some p € L or t C =L (note
that this includes). |

All automata we have used until now are non-deterministic, i.e., whenever we are
given a state, s, and a transition, ¢, there is not necessarily a unique successor
state, s, such that (s,t,s’) € § and (s,t,8") € § = s = s”. We define a
deterministic single-event finite automaton as an automaton where this holds:

Definition 4 (Deterministic Single-event Finite Automaton). A single-
event finite automaton DFA = (L, S, 0, s1, A) is said to be deterministic iff for
all s € S, either

there exists a s’ € S such that (s,0,s") € § and (s,t,s") € 6§ = " =

s’ At =10, or all of the following hold

— for allp € L there exists a s, € S such that (s, {p},s},) € 0 and (s,{p},s,) €
§ = s, =5,

— there exists a s’ such that (s,—L,s') € § and (s,—L,s") € = §" =4,

and

if (s,t,8;) € ¢ either t = {p} for somep € L ort=-L. |

Given two finite automata sharing labels, FA; and FAs, we can construct an
automaton FA; x FA, accepting the intersection of the languages accepted by
the original automata, i.e., such that L(FA;) N L(FA3) = L(FA; x FAg). Due
to the semantics of LTL, we have L(FA,ry) = L(p A1) = L(p) N L(y) =
L(FA,) N L(FAy) = L(FA, x FAy). We can construct this product using the
product construction, which carries deterministic automata over to determinis-
tic automata and uses time and space O(|S;]|Sa| - 221X if the automata are
non-deterministic (a non-deterministic automaton can have up to 221! different
transition labels) and O(]S1]]S2||L|) for deterministic automata (they have a
restricted set of labels). We can construct an automaton FA; + FAy accepting
the union of the original languages, i.e., L(FA;) U L(FAs) = L(FA; + FAs),
using the similar sum construction. If the resulting automaton does not have to
be deterministic, we can construct an automaton accepting the same language
by setting the states as the disjoint union of the original sets of states, make
the transition relation respect the original transition relations, and make ac-
cepting states of the sum be the disjoint union of the original accepting states.

Better Algorithms 89

The initial state is a new state which has transitions that are the union of
the transitions from the original initial states. This construction only uses time
and space O(|S1| + |Sa| + 2211, Tt is possible to minimise a finite automaton,
deterministic or not, i.e., given a finite automaton, FA, to find another au-
tomaton, FA’, such that L(FA) = L(FA’) but such that FA’ contains the min-
imum number of states possible to accept L(FA). Basically, one can try all
automata smaller than a given automaton and pick one with the fewest number
of states. For non-deterministic automata, this is the best possible algorithm in
the worst case, but for deterministic automata, it is possible to do this more
efficiently, and obtain a (unique up to renaming) minimal automaton in time
(O(|L] - |S|1og|S])) [8]. For every finite automaton FA = (L, S,d, sr, A), there
exists a deterministic finite automaton, DFAps = (L, 5’,¢, sh, A'), such that
they accept the same language, i.e., L(FA) = L(DFAFa). The automaton can be
constructed using the subset construction which uses time and space O(2!5122111)
(as we can have up to 427! different transitions). Given a deterministic automa-
ton, FA, we can construct an automaton, FA® accepting the complement, i.e.,
L(FA)¢ = L(FA®), interpreted over some domain. Due to the semantics of LTL,
we have L(—¢) = L(p)¢ = L(FA,)® = L(FA°®). Finding the complement of a
non-deterministic automaton is as hard as constructing a corresponding deter-
ministic automaton and negating that. This takes time and space O(|S|+|L|) for
deterministic automata. For any finite automaton, we can construct an automa-
ton accepting the set of all prefixes of L(FA), prefix(L(FA)) = {c|loT € L(FA)}
for non-deterministic automata in time O(|S| + 22/%1) and for deterministic au-
tomata in time O(|S| + |L|).

3 Algorithm

Here we describe various ways to construct an automaton accepting the language
of a Declare workflow specification or its complement. Our implementation as-
sumes that single-event automata are used, but the algorithms can be generalized
to handle arbitrary automata. Declare allows users to specify workflows by de-
scribing a set of tasks, T = {T;},, and a set of constraints, C = {C;}I_,,
which are LTL formulae with atomic propositions AP = T'. For the example in
Fig. [l we have T = {Young, MScBIS, MScES, BSc, MasterOfBPM} with m =5
and C = {~(F(Young A X(F(Young)))),G(Young — F(MScBIS V MScES Vv
BSc)), 7(FMScBISAFMScES), ~((MasterUMScBIS)V GMaster)} with n = 4 (the
constraints are in order: “you are only young once”, “when you are young you
should get an education”, “you can only get one master’s degree”, and “only
with a master’s degree in business information systems will you truly be a mas-
ter of business process modeling”). The allowed behaviour of the specification is
the language accepted by ¢ = /\ZL:1 C;.

In Declare constraints are picked from a set of templates, which are
instantiated to concrete atomic formulae. Thus, the set of possible formulae for
constraints is fixed and finite. It is easy to see that, given a formula, ¢, if r is a bi-
jective renaming of atomic propositions, the language of the formula obtained by

90 M. Westergaard

renaming atomic propositions of the original formula, ¢/r, is the same as the one
obtained by taking an automaton accepting the language of the original formula,
FA,, and renaming all labels of the automaton according to the renaming func-
tion, FA,/r, i.e., L(p/r) = L(FA,/,) = L(FA,/r). Thus, we can pre-compute
the automata for all constraint templates and construct an automaton accepting
L(C;), FAg,, in constant time. Furthermore, as the templates are known before-
hand, the size of the entire specification |¢| = |A]_, Ci| < n-max]_, |C,| € O(n)
as max!_; |C;| € O(1). We only use this for arguing about the speed; our imple-
mentation computes an automaton for each constraint on-the-fly. This is linear
in the size of the model as long as we stick to a pre-defined set of constraints.
A summary of the different algorithms developed in this paper can be seen in
Table [Il For each algorithm, we give the worst case execution time; here |¢| is
the length of the formula p = A, Cy,, n € 0(|¢]) is the number of constraints in
the input and m is the number of tasks, |\S] is the maximum number of states of a
automaton for any of the possible constraints and |S’| is the maximum number
of states in a deterministic such automaton. After renaming of labels in the
template automata, we can consider them to range over the same set of labels,
which corresponds to the tasks, so |L| = m. The memory requirement is the same
as the time requirement in all cases. We see that the improved algorithms rarely
provide better bounds than the base algorithm, except for algorithm 4, which
provides a less valuable result. In the next section we turn to an experimental
evaluation of the algorithms showing significant improvement in practise.

Base Algorithm. The base algorithm is using the standard translation with
single-event optimisation on ¢. The time for this algorithm is O(2/#).

Algorithm 1: Construct automaton for the negation. The first idea is,
instead of constructing an automaton for the specification ¢ = A", Cy, to con-
struct one for the negation, ~¢. The idea is that when translating —¢ to negative
normal form, we get ~¢p = = (A, Cn) = Vi, (=C,) using De Morgan’s laws.
While LTL translators are bad at handling conjunctions, as they just add proof
obligations, they are good at handle disjunctions as they sub-divide the problem.
This algorithm also runs in time O(2/¥1).

Table 1. Comparison of the algorithms

Algorithm Execution time

Non-deterministic Deterministic

Base o(2!%h -

1 o(z\wl) -
2 o(|s|"2*™) o(|S'"m)
3 o(2!51"22mp) O(|S’|*mn? log|S’|)
4 O(n) same as algorithm 2 or 3
5,6,8 same as algorithm 2 or 3 same as algorithm 2 or 3
7 same as algorithm 2 or 3 for each partition same as algorithm 2 or 3 for each partition

Better Algorithms 91

Algorithm 2: Use automaton operations to handle conjunctions. The
results of using algorithm 1 show significant speed improvement compared to
the base algorithm, and suggest that runtime is dominated by the difficulty in
efficiently coping with conjunctions. Unfortunately, we often want to construct
the prefix automaton for a Declare specification, but this cannot be done ef-
ficiently from a non-deterministic automaton for the negated model. We thus
seek an automaton accepting L(p)with as many of the nice traits of algorithm 1
as possible. One way to achieve our goal is to instead construct the automaton
using L(p) = L (A, Cn) = L([]_, FAc,) where [[_, FA¢, is shorthand for
FAc, x FAg, x -+ X FAg, . As we have pre-computed FA(,, time spent in this
algorithm is just the time for constructing the product, which is O(|S|"2%2™) for
non-deterministic automata and O(]S’|"m) for deterministic automata. While
|5’ € O(2!9]), the number of potential labels are smaller (Jm| vs 2°™) and in
practise they are rarely larger. Though n € 6(|y|), it is numerically smaller.

Algorithm 3: Use minimisation. One way to make the base of the run-
time of algorithm 2 smaller in practise is to minimize the sub-automata used
in the computation of []), FA¢,. For non-deterministic automata this takes
O (215"22mn) (n times minimization of at most |S|™ states, each dominating
the multiplication producing the automaton). For deterministic automata, this
takes O (]S’|"mn?log|S’|) (same reason as in the non-deterministic case, but
with a different complexity for minimization). While this theoretically is worse,
the hope is that using smaller automata improves performance in practise.

Algorithm 4: Using automata to compute the negation. Even though
the negation cannot be used to compute the prefix automaton directly, we can
still use it to find definite violations, and it is thus interesting to find efficient
algorithms for it. Using the results from algorithm 2 combined with algorithm 1,
we can obtain a non-deterministic automaton in time O(n|S|22™) we just have to
modify initial states n times, every time taking time proportional to the number
of out-going transitions. We note that |S| is a small constant only depending on
the constraints and 2" is an over-approximation as the total number of edges
is also independent of the model and known from the constraint automata, in
effect yielding a running time of O(n). For deterministic automata, we have to
use a product construction, leading to the same time as for algorithm 2 or 3.

Algorithm 5: Using balanced trees. The commutative law applies for con-
junctions of LTL formulae, so we may re-arrange the conjunction prior to trans-
lation. This allows us to arrange the conjunctions in a balanced tree as shown in
Fig. 2 (bottom) instead of sequentially as shown in Fig. @l (top). Arranging the
automata in a tree can done in linear time, and the time for computing the prod-
uct is theoretically the same as for algorithm 3 (as this is just a special-case).
We do not expect it to perform significantly better or worse than the sequential
implementation used for algorithm 3.

92 M. Westergaard

Algorithm 6: Using automaton size.
Looking at the tree arrangement in Fig.
(bottom), we have more freedom when it '
comes to the size of the intermediate prod-
ucts (the diamonds).The reason is that we
can compute half the intermediate products
independently of other computations. We
want to keep the size of intermediate prod-
ucts as small as possible to reduce the time
spent computing them (the time spent is
proportional to the size of the result). One
heuristics to do that is to ensure we never
compute the product of two large automata.
The idea of algorithm 6 is to construct a
tree like in algorithm 5 and order leaves so
large automata are paired with small ones.
On the next levels we do the same.

Fig. 2. Conjunction arrangements

Algorithm 7: Computing partial product only. In order to detect incon-
sistencies in a Declare model, we check whether the language of the derived LTL
formula is empty, i.e., if L(p) = (. If we can find C4 and Cp with ¢ = C4 ACp
such that L(¢) =0 <= L(C4) =0V L(Cp) = () we can just check the (possi-
bly) smaller automata for C4 and Cp for emptiness. As we have ¢ = /\;L=1 Ch,
we seek P C {1,2,...,n} s0o Ca = \;cpCi and Cp = \jc(1 5 oy p Cj- Even
though automata for C'4 and C'z may not be smaller than the automaton for ¢,
at least we can construct them easier (as they consist of fewer conjunctions).

In terms of languages we seek C4 and Cp such that L(C4)NL(Cp) = L(Ca A
Cp)=0 < L(Ca) =0VL(Cg) = 0. Let us consider the contraposition of the
direction we are interested in, left to right, namely = (L(C4) = 0V L(Cg) = 0)
< L(Ca) #ODANLCB)#0 = L(Ca)N L(Cg) # 0. We must construct
Ca and Cp such that if we have a a € L(C4) and a b € L(Cp) then we have a
c € L(Ca)Ace L(Cp). We construct C4 and Cp such that ¢ = ab can be used.
If Cy is closed under adding suffixes, i.e., if a € L(C4) then aw € L(C4) for any
word w € X*, we clearly have that ¢ = ab € L(C4). If furthermore Cp is closed
under adding prefixes, i.e., if b € L(Cp) then wb € L(Cp) for all words w € X*,
we also clearly have that ¢ = ab € L(Cp).

Imposing this notion of suffix/prefix closedness is a too strong condition, how-
ever, as we would be able to do anything in the suffix/prefix. Instead, we seek
a weaker notion that preserve the property. The idea is that constraints from
Declare typically have some part that activate them and some part that sub-
sequently satisfy them. The constraints do not care what happens when they
are not activated. In the example in Fig. [Il the constraint response is activated
by the execution of Young and satisfied by the execution of one of the MScs or
BSc. Whether the constraint is satisfied is not affected by any other tasks. Some
constraints are activated in the initial state, e.g., the 0..1 constraint on Young.

Better Algorithms 93

For a partitioning into C'4 and Cp we are satisfied if we can pick a
suffix/prefix to add to a string of the language accepted by one to the lan-
guage of the other. Assume that C4 is an automaton derived from a constraint
with formula ¢. We then denote by AP(C4) the set of all atomic propositions
occurring in . By construction, this coincides with the labels occurring in C'4.
Ifa e L(Cy) = av € L(Cy4) for any v ¢ AP(C4), we conclude that for any
string w € (AP(C4)%)* a € L(Ca) = aw € L(Cy). For the same reason, if
be L(Cp) = vbe L(Cp) for v ¢ AP(Cp) then b € L(Cp) — wb € L(B)
for any string w € (AP(Cp)°)*.

If we have two automata, C4 and Cpg, with AP(C4)NAP(Cg) = 0 then and
an a € L(Cy4) we can find another ' € L(C4) N (AP(Cp)°)* which does not
use any labels from AP(Cp), as labels of AP(Cp) does not occur in C4. This
is possible as C'4 cannot distinguish characters not in AP(C4). Similarly, for a
b e L(Cp) we can find a b’ € L(Cg) N (AP(C4)°)*. Thus, o't/ € L(C4) and
a'b € L(Cp), ie., a'b € L(Ca) N L(Cp) = L(Ca x Cp) as wanted.

We thus need two automata C'4 and C'p not sharing labels; one must satisfy
a € L(Cy) = av € L(Cy) for any v ¢ AP(C4) and the other must satisfy
be L(Cp) = wvb e L(Cp) for any v ¢ AP(Cp). The first is easily checked
by inspecting the labels of two automata and the latter can be identified by
looking for self-loops on accepting and initial states, respectively. Both of these
properties are preserved by automaton product, and any automaton derived
from a constraint in Declare satisfies the requirement of accepting any suffix not
in their own labels (when not enabled, they do not care what happens to tasks
unconnected tasks). Most additionally satisfy the requirement for accepting any
prefix not in their alphabet (all constraints not initially enabled).

This gives us the following partitioning algorithm: partition the graph with
constraints as nodes and tasks as edges into connected components, considering
not accepting any prefix as an additional constraint. This makes sure that no
two automata from different partitions share labels and hence that the product
of all automata from one partition does not share labels with the product of all
automata from another. Furthermore, the automata derived from all partitions
accept any suffix using different labels, and, except for at most one, all accept any
prefix. Thus, the language of the product of any two products of all automata
from two partitions is empty if and only if one of the factors is, and hence the
product of all automata in all partitions is empty if and only if the product of all
automata of at least one of the partitions is. We can construct the partitioning
in linear time in the size of the original model and compute the product for each
partitioning in the same time as for the other tree-based algorithms. This is an
improvement as, if we have more than one, the partitions are smaller than the
original system, thus reducing the exponent n in the running time. Automata
for partitions can be calculated using algorithms 2, 3, 5, 6, and 8.

Algorithm 8: Taking atomic propositions into account. The idea of this
algorithm is that synchronized products become smaller the more synchronisa-
tion takes place. In the previous section we have argued that partitioning ac-
cording to connected components of the graph induced by constraints as nodes

94 M. Westergaard

and tasks as edges is a good idea. This graph typically contains few connected
components (few tasks of the same specification that are not related by a chain
of constraints), but it often contains islands that are only connected by few
tasks. The idea of algorithm 8 is to use this graph for constructing the con-
junction tree. We want to partition the graph into two parts, representing the
left and right subtree, so as few atomic propositions as possible are shared be-
tween the two. This is equivalent to performing a minimum bisection or sparsest
cut [5] and thus NP-hard. As we just use this as a heuristics for partitioning
the constraints to construct a conjunction tree, we do not need a guaranteed
best solution, so we use a simple hill-climbing implementation working from
random partitions to approximate the problem. Aside from the improvement
arising from constructing smaller intermediate products, we also get another
benefit, as inconsistencies manifest them selves by incompatible requirements.
Thus, by grouping constraints more likely to violate each other, we expect to
find inconsistencies faster.

4 Experimental Validation

In this section we present results from experiments with the algorithms from the
previous section. Unfortunately, we do not have real-life models large enough for
our optimizations to really matter — for the most part because the base algo-
rithm was unable to handle that — making it impossible to conduct interesting
case studies beyond toy-examples. For this reason, we have experimented with
randomly generated models, generated by adding constraints with equal proba-
bility and assigning tasks randomly. We make sure not to add constraints that
are obviously in conflict (like forcing two tasks to be initial).

Completely randomly generated models are not interesting when they grow
large. This is mostly because a large model is difficult to make satisfiable. We
expect real-life models to be satisfiable or nearly satisfiable (i.e., by removing
a few constraints, they become satisfiable). For this reason, we have decided
to focus our evaluation on satisfiable models. We have made such models by
randomly generating models and testing them using all our algorithms, marking
them as satisfiable if any of the algorithms did. Naturally, this way of generating
models is not optimal, as it ensures that we only test our algorithms on models
that can be analyzed, but we still find this is better than using random models.
We also check completely random models to ensure that this method of testing
does not impose too much bias towards our algorithms.

We note that while the number of tasks, m, appear in the complexity of most
of the algorithms in the previous section, it does not manifest in the same way in
reality. The reason is that what is really interesting is the number of transitions
in the resulting automaton, and adding more tasks that are not connected to
any constraint does not add any more. Experiments show that the complexity
tops when the number of tasks is same as the number of constraints or slightly
larger. As most of our toy-examples have slightly more tasks than constraints
(case in point, Fig. [[]), we have chosen to only show such configurations.

Better Algorithms 95

In Table. 2] we see the performance of each algorithm on a set of randomly
generated models. All experiments are run with known satisfiable models, known
unsatisfiable models, and random models. The first column indicates the num-
ber of tasks (T) and constraints (C) for each model. For each algorithm, we
show the time spent for each model in milliseconds and the percentage of test-
cases that could complete successfully (in parentheses; omitted if 100). We have
indicated whether numbers result from running the non-deterministic or deter-
ministic version of each algorithm by adding an n or a d after the algorithm
number. We have run analysis for 120 random models in each case, allowing
the algorithms to use up to 256 MiB of memory. To see the performance when
granting algorithms more memory, we have also included numbers for the base
algorithm and algorithms 7 and 8 allowing them to use 4 GiB memory on a
slightly slower computer. These are indicated by adding a prime after the name
(e.g., Base'). For some executions we have indicated that the average execution
time is a minimum. This is because we have chosen to limit the execution for
each model to 5 hours; when a series of experiments have one or more instances
being terminated due to running out of time instead of running out of memory,
we have included it in the time average but not in the completion percentage,
and we have indicated that the time is a lower bound.

For satisfiable models, the base algorithm only copes for the smallest exam-
ples. Negating the property (algorithm 1) makes it handle all cases. We see the
same by computing the non-deterministic automaton for the negation (algorithm
4n). Using automaton properties (algorithm 2) does not improve on the base al-
gorithm in the non-deterministic case, as we end up computing products with
a large number of transitions. For deterministic automata, this approach fares
much better, however. Especially when we combine this approach with mini-
mization of intermediate automata (algorithm 3). Organizing the products in a
tree (algorithm 5), yields faster results but handles slightly fewer cases than just
computing the product (algorithm 3) as the intermediate products are smaller
requires slightly more memory as we have to store more of them. Being intel-
ligent about the organization of the tree yields an improvement, as shown by
ordering by size (algorithm 6) and especially when ordering by shared atomic
propositions (algorithm 8). The largest contribution is computing partial prod-
ucts only (algorithm 7). We have used algorithm 7 with the grouping of trees in
each factor using algorithm 8. While most algorithms impose a small penalty on
adding more tasks when keeping the number of constraints constant, algorithm
7 actually does the opposite. The reason is that more tasks makes it possible to
have more factors in randomly generated models.

We note that most algorithms fare better for unsatisfiable models than for
satisfiable models as they all have a notion of early termination as soon as a for-
mula is recognized as unsatisfiable. This case is not expected to occur commonly
in practise as human-constructed models are constructed to be consistent. The
algorithms grouping related constraints (7 and 8) fare particularly well, support-
ing our expectation that they find contradictions earlier.

96 M. Westergaard

Table 2. Experimental results

T,C Base Base’ 1 2n 2d 3d 4n
Time (%) Time (%) Time Time (%) Time (%) Time (%) Time
- 10,5 35 55 1 17 2 2 1
% 15,10 9172 (83) 4.82e4 1 71 70 1
S 20,15 1.28e4 (11) > 6.06e6 (48) 1 1096 (76) 1093 (85) 1
30,15 > 1.09e7 (26) 2 2117 (39) 2116 (65) 2
T 30,20 2 3365 (33) 2
§ 50,30 3 3
70,50 6 6
© 10,5 4 19 1 3 2 1 1
—S 15,10 1791 (98) 1.15e4 1 435 (42) 18 14 1
£ 20,15 > 2.36e5 (64) > 2.11e6 (86) 2 379 (91) 222 (98) 2
2 30,15 1650 (53) > 3.32¢6 (74) 2 1328 (76) 595 (93) 2
5 30,20 6424 (58) > 5.53e6 (61) 2 463 (35) 1057 (82) 2
£ 50,30 > 3.22e6 (50) > 5.12e6 (64) 3 196 (26) 1289 (40) 3
70,50 7 6
10,5 51 83 1 10 3 2 1
15,10 > 3.60e5 (83) 7.91e4 1 64 62 1
§ 20,15 > 3.66e5 (41) > 3.93¢6 (62) 1 776 (89) 650 (89) 1
T 30,15 > 8.97¢6 (36) 2 1889 (68) 1278 (68) 2
g 30,20 > 3.53¢6 (31) > 1.17e¢7 (32) 2 916 (42) 1537 (42) 2
50,30 > 7.88e¢6 (26) > 1.10e7 (31) 3 3
70,50 7 7
T,C 5d 6d 7d 7d’ 8d 8d’

Time (%) Time (%) Time (%) Time (%) Time (%) Time (%)

10,5 3 2 2 7 2 3

L 15,10 46 45 6 9 31 44

2 20,15 692 (86) 718 (88) 27 49 365 (90) 644

£ 30,15 1314 (60) 1144 (63) 9 20 728 (71) 1763

3 30,20 3313 (28) 152 (99) 261 1262 (43) 4135

% 50,30 210 (83) 2385
70,50 832 (54) 4512

© 10,5 1 2 11 4 2 1

2 15,10 8 10 9 7 4 5

& 20,15 204 109 (99) 9 14 21 24

£ 30,15 266 (94) 315 (95) 6 11 63 (97) 76

§ 30,20 491 (79) 945 (80) 25 37 205 (92) 1655

2 50,30 404 (33) 151 (93) 997 (98) 234 (69) 3825 (86)

® 70,50 360 (67) 8744 (89) 310 (41) 1782 (58)
10,5 3 2 11 4 2 3

. 15,10 57 40 8 8 30 34

5 20,15 375 (87) 349 (90) 18 26 235 (92) 744

T 30,15 992 (39) 783 (69) 10 15 583 (78) 2356 (99)

€ 30,20 1601 (39) 735 (43) 103 (98) 117 315 (55) 6878 (90)
50,30 325 (80) 1523 (93) 427 (43) 4140 (52)
70,50 595 (50) 3759 (63) 346 (33) 2057 (43)

Random models are harder to satisfy when the number of tasks and con-
straints increase, so running algorithms on completely random models without
checking a priori whether they are satisfiable or not, share characteristics with
satisfiable models for small numbers of tasks and constraints and with the un-
satisfiable models for large numbers. We notice that we only see a small bias for
our algorithms as the times are not significantly larger and percentages not sig-
nificantly lower than for the satisfiable and unsatisfiable models. Unfortunately,
the best algorithm (7) seems to be the one preferred the most by our testing
method, reinforcing that we should do experiments with real-life models.

5 Conclusion and Future Work

We have presented algorithms for translating declarative workflow models spec-
ified using Declare to finite automata using LTL for analysis and enactment of

Better Algorithms 97

the model. The best of our algorithms are several orders of magnitude faster
than the previous best algorithm. We have obtained the speed-up by exploiting
characteristics of LTL formulae originating from a Declare specification, espe-
cially that they are conjunction of simpler formulae defined by the individual
constraints of the models. We use automaton operations (automaton product)
instead of computing the automaton directly for the conjunction. By structuring
the product in balanced trees, grouping automata sharing atomic propositions
together, and partitioning the formulae according to the tasks constrained by the
originating constraints, we obtain speed-ups of a factor of 1.000-10.000 and more,
allowing us to handle models with 50 constraints in seconds, improving on the
previous state-of-the art of handling models with 10-15 constraints in minutes
or hours. This shows that simple generic algorithms are beat by domain-specific
algorithm engineering and heuristics exploiting known structure. We believe our
improvement is significant, as it allows us to analyse and enact models of a re-
alistic size, rather than just toy examples. Our next step is to try just that. Our
experiments show that we have a slight bias towards the best of our algorithms,
and it is interesting to see the improvement incurred by the algorithm on a
real-life model.

Only little work has been on improving the very specific kind of automata for
Declare. Aside from the generic LTL translation algorithm of [6l[7] and improve-
ment using single-event automata as described in [I4], work has been done on
parallel algorithms for computing binary decision diagrams (which is a specific
kind of finite automata, see [I]) using automaton operations. [I0] deals with ar-
bitrary propositional formulae and uses the structure of the formula to build a
tree of automaton operations (and/or/not) and compute the automaton for the
final product using a strategy similar to ours. As they focus on general formulae,
they are not free to restructure the computation tree, which yields the great-
est gain after taking the step from the standard LTL translation algorithm to
automaton operations.

We have already made experiments with improvements of our algorithms.
While the ideas have not paid off yet, we believe that improvement can ob-
tained. We have made some experiments with parallelized computation of the
products organized in trees. Unfortunately, little is gained as the last compu-
tation (computing the root of the tree) dominates the computation. Using a
parallel algorithm for product or automaton minimization [I6] may improve
on this. We would like to experiment with improved algorithms for computing
products and representing states, such as using binary decision diagrams [I] or a
sharing tree [10]. We have investigated dynamic update of the automaton, so a
user can add or remove constraints from the system and interactively obtain an
updated automaton for interactive model construction and enactment/analysis
or for dynamically reconfigurable models. The idea is that when we add an au-
tomaton to/remove an automaton from a tree, we only need update intermediate
products on path from the new/removed factor to the root. We can improve on
time spent for adding a constraint by adding it next to the old root, introducing
a new root. Unfortunately, this cannot compete with the algorithms grouping

98

M. Westergaard

constraints according to tasks (7/8) as we either void the grouping by multi-
ple additions/removals or make the tree unbalanced by inserting according to
the grouping. It would be interesting to investigate a way to rebalance the tree
respecting a dynamically computed grouping without having to rebuild it from
scratch. It would also be interesting to investigate uses of the non-deterministic
automaton for a negated model, as we can compute it very quickly (in millisec-
onds for models with even hundreds of constraints). One idea is to make an
approximation of the automaton for the model for quick analysis and guidance,
using the negated automaton to weed out spurious errors.

References

1.

= W

10.

11.

12.

13.

14.

15.

16.

Bryant, R.E.: Graph Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677-691 (1986)

. Chesani, F., Mello, P., Montali, M., Torroni, P.: Verification of Choreographies

During Execution Using the Reactive Event Calculus. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 55-72. Springer, Heidelberg (2009)

. Declare webpage, http://declare.sf.net
. Etessami, K., Holzmann, G.J.: Optimizing Biichi Automata. In: Palamidessi, C.

(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153-168. Springer, Heidelberg (2000)

. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph

problems. Theoretical Computer Science 1, 237-267 (1976)

. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple On-the-fly Automatic Veri-

fication of Linear Temporal Logic. In: Proc. of Protocol Specification, Testing and
Verification, pp. 3-18 (1995)

. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal

Properties on Running Programs. In: Proc. of ASE 2001, pp. 412-416. IEEE Com-
puter Society, Los Alamitos (2001)

. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.

Technical report, Stanford University (1971)

. Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University

of California (1968)

Kimura, S., Clarke, E.M.: A parallel algorithm for constructing binary decision
diagrams. In: Proc. of ICCD 1990, pp. 220-223 (1990)

Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

Object Management Group (OMG). Business Process Modeling Notation (BPML).
Version 2.0. OMG Avaiable Specification

Paige, R., Tarjan, R.E.: Three Partition Refinement Algorithms. STAM Journal on
Computing 16(6), 973-989 (1987)

Pei, M., Bonaki, D., van der Aalst, W.M.P.: Enacting Declarative Languages Using
LTL: Avoiding Errors and Improving Performance. In: van de Pol, J., Weber, M.
(eds.) Model Checking Software. LNCS, vol. 6349, pp. 146-161. Springer, Heidel-
berg (2010)

Pei, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
Based Workflow Models: Change Made Easy. In: Chung, S. (ed.) OTM 2007, Part
I. LNCS, vol. 4803, pp. 77-94. Springer, Heidelberg (2007)

Ravikumar, B., Xiong, X.: A Parallel Algorithm for Minimization of Finite Au-
tomata. In: Proc. of IPPS 1996, pp. 187-191. IEEE Computer Society, Los Alami-
tos (1996)

http://declare.sf.net

	Better Algorithms for Analyzing and Enacting Declarative Workflow Languages Using LTL
	Introduction
	Background
	Algorithm
	Experimental Validation
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

