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Preface

We are pleased to present the proceedings of the 11th Workshop on Algorithms
in Bioinformatics (WABI 2011) which took place in Saarbrücken, Germany,
September 5–7, 2011. The WABI 2011 workshop was part of the six ALGO
2011 conference meetings, which, in addition to WABI, included ESA, IPEC,
WAOA, ALGOSENSORS, and ATMOS. WABI 2011 was hosted by the Max
Planck Institute for Informatics, and sponsored by the European Association
for Theoretical Computer Science (EATCS) and the International Society for
Computational Biology (ISCB). See https://algo2011.mpi-inf.mpg.de/ for more
details. The Workshop in Algorithms in Bioinformatics highlights research in al-
gorithmic work for bioinformatics, computational biology, and systems biology.
The emphasis is mainly on discrete algorithms and machine-learning methods
that address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and
tested in simulations and on real datasets. The goal is to present recent research
results, including significant work-in-progress, and to identify and explore direc-
tions of future research.

Original research papers (including significant work-in-progress) or state-of-
the-art surveys were solicited for WABI 2011 in all aspects of algorithms in
bioinformatics, computational biology, and systems biology. In response to our
call, we received 77 submissions for papers and 30 were accepted. In addition,
WABI 2011 hosted a distinguished lecture by Vincent Moulton, of the University
of East Anglia, UK. We would like to sincerely thank the authors of all submitted
papers and the conference participants. We also thank the Program Committee
and their sub-referees for their hard work in reviewing and selecting papers for
the workshop.

We would especially like to thank Bernard Moret for all his advice and sup-
port in carrying out the role of being Co-chairs, as well as EasyChair for making
the management of the submissions to WABI such an easy process. Thanks once
again to all who participated in making WABI such a success in 2011. For us it
has been an exciting and rewarding experience.

June 2011 Teresa Przytycka
Marie-France Sagot
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Dan Gusfield UC Davis, USA
Ivo Hofacker University of Vienna, Austria
Barbara Holland University of Tasmania, Australia
Daniel Huson University of Tübingen, Germany
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Automated Segmentation of DNA Sequences

with Complex Evolutionary Histories

Broňa Brejová, Michal Burger, and Tomáš Vinař

Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská Dolina, 842 48 Bratislava, Slovakia

Abstract. Most algorithms for reconstruction of evolutionary histories
involving large-scale events such as duplications, deletions or rearrange-
ments, work on sequences of predetermined markers, for example protein
coding genes or other functional elements. However, markers defined in
this way ignore information included in non-coding sequences, are prone
to errors in annotation, and may even introduce artifacts due to partial
gene copies or chimeric genes.

We propose the problem of sequence segmentation where the goal
is to automatically select suitable markers based on sequence homology
alone. We design an algorithm for this problem which can tolerate certain
amount of inaccuracies in the input alignments and still produce segmen-
tation of the sequence to markers with high coverage and accuracy. We
test our algorithm on several artificial and real data sets representing
complex clusters of segmental duplications. Our software is available at
http://compbio.fmph.uniba.sk/atomizer/

1 Introduction

Genome rearrangements and segmental duplications, acting on long stretches of
DNA, pose a significant challenge to comparative genomics. Rearrangements
change the order of segments in the genome, resulting in new gene orders and new
chromosomal organization. In a typical rearrangement study, we aim at comput-
ing the shortest possible number of operations transforming one genome to an-
other or reconstructing a phylogenetic tree and ancestral gene orders (Moret et al.,
2001; Bourque and Pevzner, 2002; Adam and Sankoff, 2008).

Segmental duplications increase the length of the sequences by copying ge-
netic material to new locations, creating complex gene clusters, hotspots of evo-
lutionary innovation (Zhang, 2003). Reconstruction of duplication events within
such regions is a key to understanding their organization, function, and evolution
(Benson and Dong, 1999; Elemento et al., 2002; Zhang et al., 2009; Vinar et al.,
2010; Lajoie et al., 2010).

Most algorithms for these tasks do not work directly on the original sequences,
but rather on predetermined markers or synteny blocks. These are intervals of
the sequence such that all events in the true evolutionary history introduce
breakpoints only at or between the boundaries of these intervals, but not inside
them. The notion of such intervals was first introduced by Nadeau and Taylor

T.M. Przytycka and M.-F. Sagot (Eds.): WABI 2011, LNBI 6833, pp. 1–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 B. Brejová, M. Burger, and T. Vinař

(1984) (conserved segments) and in this work we call them atomic segments or
atoms. Splitting the sequence into atoms allows algorithm developers to abstract
from modeling local sequence alignments, and instead to concentrate on larger-
scale processes that reorder and duplicate blocks of segments.

Here, we introduce a new method for segmenting sequence into atoms, pri-
marily targeted at a fine-scale analysis of relatively recent evolutionary events
(for example events that happened in the last 85 My of mammalian evolution,
which approximately translates to higher than 80% sequence similarity for neu-
trally evolving sequences). We test our method in the context of reconstruction
of duplication histories; however, it is also applicable to other scenarios, includ-
ing rearrangement studies. In the rest of this section, we give an overview of the
methods used previously for this task, and we demonstrate examples of various
problems in real data sets that we address by our work.

Related work. Many algorithms for rearrangement or duplication analysis use
protein coding genes as atoms (Fitch, 1977; Benson and Dong, 1999; Moret et al.,
2001; Elemento et al., 2002; Bourque and Pevzner, 2002; Bertrand and Gascuel,
2005; Lajoie et al., 2007; Adam and Sankoff, 2008; Lajoie et al., 2010). In order
to do so, we need to annotate genes in the sequence and establish homology or
even orthology among them. The order and strand orientation of the genes is
then used as an input for further analysis.

While this is perhaps the only solution applicable to distantly related se-
quences that need to be aligned at the protein level, it is not universal. First
of all, necessary preprocessing, including gene finding and homology or orthol-
ogy detection, is difficult and can introduce errors. Even in cases where reliable
ortholog sets are available, this approach is not relevant for all evolutionary
scenarios. Many incomplete pseudogenes present in human and other genomes
clearly show that duplications and rearrangements do not respect gene bound-
aries. For example, the human PRAME gene cluster contains 38 copies of the
PRAME locus (preferentially expressed antigens in melanoma), but more than a
third of these copies are incomplete pseudogenes (Gibbs et al., 2007). Even more
problematic are chimeric genes that contain a breakpoint inside an intron. The
PRAME gene cluster contains a chimeric gene whose protein sequence consists
of two parts with different phylogenetic ancestries. Its inclusion in a phylogenetic
analysis may result in a completely incorrect phylogenetic tree.

Another example, where genes are not appropriate as atoms, is the UGT1A
cluster. In the human genome, this cluster contains a single alternatively-spliced
gene (UDP-glucuronosyltransferase) with at least 13 unique copies of the first
exon that apparently arose by segmental duplication (Bellemare et al., 2010).
To analyze this sequence, we would have to use exons as atoms instead of genes,
but these exons are too short for a reliable gene tree reconstruction, which is a
necessary step for many methods. Therefore it would be ideal to use also some
of the surrounding non-coding sequences, which have been copied together with
the exons, but that requires finding atomic segments unrelated to functional
annotation.
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Finally, a well-known KRAB zinc finger gene family in the human genome
contains more than 400 genes in 25 gene clusters spread across several chromo-
somes (Schmidt and Durrett, 2004; Huntley et al., 2006). Each zinc finger gene
is composed of the KRAB domain and between three and forty zinc fingers. In
this family, we can see duplication of whole genes, as well as duplication of zinc
finger domains within genes. For both UGT1A cluster and KRAB genes, the
traditional selection of atoms (i.e. first exons or zinc finger domains) requires
detailed functional annotation and a complex prior knowledge about the studied
region. Even with such knowledge, we may create errors due to chimeric atoms
or to loose valuable information due to insufficient sequence coverage.

Recently, a new approach to segmentation based on local sequence alignments
has been introduced in the context of ancestral genome reconstruction (Ma et al.,
2006). Briefly, using sequence alignment tools such as blastz (Schwartz et al.,
2003) or UCSC chain/net pipeline (Kent et al., 2003), they identify significant
local alignments of the sequence to itself with a desired level of homology and
then use boundaries of these sequence alignments as atomic segment boundaries,
and regions between the boundaries as atoms. Ma et al. (2006, 2008b) developed
a heuristic pipeline that creates a map of such segments considering events of
50kb or more in length, later refining the boundaries to a finer precision. Their
resolution is ideal for mammalian whole-genome analyses; however for smaller-
scale events (such as analysis of gene clusters), finer resolution is needed.

In our previous work, we have used a simple greedy heuristic (SGH) for this
type of analysis (Vinar et al., 2010). Analyzed sequences are first divided into
non-overlapping segments of size 500, and for each segment we search for se-
quence homologies in the rest of the sequence. The segment with the highest
number of homologs and its matching homologs are then designated as atoms.
All segments overlapping new atoms are removed and the whole process is
repeated.

There are several advantages to methods based on local alignments. The anal-
ysis is not dependent on possibly error-prone annotations. The atoms often span
longer sections of the sequence which allows more accurate determination of
phylogeny of individual atom instances. Finally, thanks to potentially finer reso-
lution of atoms, we can use assumptions of infinite sites model (Ma et al., 2008a),
such as low breakpoint reuse assumption that often helps to resolve symmetries
in duplication event direction (Zhang et al., 2009).

Problem statement. Our goal is to investigate systematic approaches to segmen-
tation of sequences into atoms. The input for our problem consists of several
evolutionarily related sequences or one sequence with segmental duplications.
We want to find non-overlapping segments called atoms (completely or partially
covering the input sequences) and divide atoms into classes so that: (a) coverage
of the sequences by atoms is high, to use as much sequence information as pos-
sible, (b) the number of atoms is low, to prevent unnecessary segmentation of
long atoms, (c) two atoms of the same class share high sequence similarity across
their entire length, (d) two atoms of different classes or two parts of the same
atom do not appear to be homologous at a chosen sequence similarity threshold.
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In practice, one has to find a trade-off these goals and to accommodate imper-
fect results of homology detection methods. In the rest of the paper we describe
our new algorithm for the segmentation problem and evaluate its performance
on both simulated and real sequences.

2 Algorithm

Alignments and breakpoint mapping. The input to our algorithm is a set of evo-
lutionarily related input sequences. We use the LASTZ program (Harris, 2007)
to align each sequence to itself and to every other sequence. One possible ap-
proach to sequence segmentation is to take the resulting set of local alignments,
add a breakpoint at every boundary of a local pairwise alignment and to create
an atom between every two adjacent breakpoints (Fig.1). To classify atoms, we
can simply create a graph with atoms as vertices and alignments between atoms
as edges. Then we create one class for each connected component of this graph.
This approach would work well on a perfect set of alignments, but on real data
we can encounter various artifacts.

In Fig.2, we see an example where one homology was not found by the local
alignment program, leading to a missing breakpoint and wrong class assignment
in the resulting segmentation. To avoid this problem, we will map boundaries
of every alignment through other overlapping alignments to create new break-
points, as suggested by a dotted line in Fig.2. Mapping a breakpoint through
an alignment is easy if the breakpoint is located at an aligned nucleotide. If it
is located at a nucleotide aligned with a gap, we find the nearest aligned nu-
cleotide to the left or to the right (whichever is closer) and map it according to
this nucleotide.

1 2 3 2 3 4 5 4 3 2 1

Fig. 1. Simple sequence segmentation.
The figure shows a dotplot of align-
ments of a sequence to itself. We can
consider each alignment boundary as a
breakpoint; segments between neighbour-
ing breakpoints will form atoms in classes
1, 2, 3, 4, 5.

1 2 1 1 3 1

A B C

Naive segmentation:

Correct segmentation:

2 1 31 4 4 4

Fig. 2. Example of an input with a missing
alignment. Region A is aligned to B and
end of B to C, but the alignment between
end of A and C is missing. The missing
breakpoint in A can be mapped from B
through the alignment between A and B,
as suggested by the dotted line. Without
mapping we get incorrect segmentation.
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Iterated homology mapping. In our algorithm we perform breakpoint mapping
iteratively, as a newly mapped breakpoint may need to be mapped further to
other regions. We call this general process iterative homology mapping (IHM).

Another common problem is that boundaries of overlapping local alignments
often do not coincide exactly, but are spread around the true breakpoint. This
is caused by uncertainty of sequence alignment near alignment boundaries. The
problem is even more exacerbated by mapping breakpoints through alignments,
as shown in Fig.3. Breakpoints x and y in regions B and C will be mapped to
region A through pairwise alignments. Although ideally they should map to the
same place, due to imprecision in alignment boundary between B and D, or due
to imprecision in pairwise alignment between A and B, the new breakpoint x′

is at some distance from the new breakpoint y′. The new breakpoint x′ is then
mapped to C and y′ is mapped to B, again creating pairs of nearby breakpoints.
In some cases, the iterative process may create long arrays of breakpoints orig-
inating from repeatedly mapping what should have been the same breakpoints
through a cycle of imprecise alignments. It is clearly not desirable to create a
very short atom between every pair of such nearby boundaries.

!h

x y

True multiple
alignment

A
B
C

D

A
B B

x

D
A
C

B
C

C
y

D

Input: pairwise alignments

DA B Cy’ x’ xy’’

DA B Cy’ x’

y x’’

Map x and y to A:

Map new boundaries:

Fig. 3. Example of imprecise breakpoint mapping. Breakpoints x and y are mapped to
two different positions in A, and each of them is then further mapped to a new position
in B or C. Each of atoms A, B, and C is thus split into three atoms instead of two.

To avoid this problem, we select a window size W and allow at most one
breakpoint within each window. This is achieved by clustering breakpoints and
replacing each cluster of nearby breakpoints with a new breakpoint roughly at
their center. The new breakpoints are chosen so that no two breakpoints are
closer than W and the sum of squared distances between the input breakpoints
and their new representatives is minimized. This can be done in O(NW 2) time
by a dynamic programming algorithm.

Outline of our approach is shown in pseudocode of Algorithm 1. We start
with a set of breakpoints created from alignment endpoints. In each iteration
of our algorithm, we first cluster breakpoints as described above. Each new
breakpoint is then checked against all alignments, and if it is inside an alignment,
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Algorithm 1. Iterative homology mapping
Data: set of alignments A, window length W

1 B ← endpoints(A) ; // current breakpoints

2 BM ← ∅ ; // all mapped breakpoints

3 repeat
4 B ← cluster(B, W );
5 B′ ← select to map(B, BM , W ) ; // get unmapped breakpoints from B
6 B′′ ← map(B′, A) ; // map B′ through A
7 B ← B ∪ B′′; BM ← BM ∪ B′;

8 until B′′ = ∅;
9 return B;

it is mapped to the other sequence in the alignment. However, we do not map
breakpoints that were already mapped in one of the previous iterations. Since
breakpoint position may change slightly in each iteration due to the clustering
process, we only map breakpoints that are at a distance of more than W from
every previously mapped breakpoint. For this purpose we keep a list BM of all
previously mapped breakpoints.

During the whole algorithm, we map at most N/W breakpoints, and therefore
the algorithm terminates in at most N/W iterations. In practical instances,
the number of iterations is usually quite low, ranging from two to six in the
experiments reported in this paper.

Atom classification. Once the breakpoints are fixed, we want to group atoms
to classes so that the atoms within a class form a cluster densely connected by
alignments, and there are relatively few alignments between atoms from different
classes. This can be formulated as an optimization problem, where we seek to
minimize the weighted sum of the number of false positive alignments (align-
ments connecting atoms from two different classes) and false negatives (pairs
of atoms in the same class not connected by an alignment). This is a weighted
variant of the NP-complete Cluster Editing Problem (Shamir et al., 2004).

We solve this problem exactly by CPLEX software from IBM using integer
linear programming (ILP) formulation. In order to efficiently process inputs with
large numbers of atoms, we employ several simple heuristics. First of all, atoms
that are in different components of the alignment connectivity graph will never
be in the same class in the optimal solution of the ILP. Therefore we process
each connected component separately. We also do not run ILP on components
that form a clique, because the optimal solution has then cost 0. If the size of a
component exceeds 200, for efficiency reasons we use a different graph clustering
strategy implemented in the MCL program (Van Dongen, 2008).

In the process of classification we also assign a strand to each atom so that
they are consistent with alignments (each alignment suggests either that the two
atoms should be on the same strand or on the opposite strands).

Segmentation postprocessing. In the resulting segmentation, we sometimes see a
pair of atom classes a and b such that each atom of class a is always followed
by an atom of class b and an atom of class b is always preceded by an atom of
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1 2 2 3 4 3

11 12 13 14 15 16 16

Correct:

Predicted:

Fig. 4. An example of reciprocal best matches between two segmentations. BRMs are
shown as arrows. Each atom is labeled by its class. BRM sensitivity is 4/6, specificity
is 4/7. Classes 12 and 16 are correctly predicted.

class a. We replace each such pair by a single atom, because there is no evidence
of a breakpoint between a and b at the segmentation level. We perform such
postprocessing on predicted segmentations as well as on the true segmentation
in the simulated data. If the segmentation does not cover the whole sequence,
the two atoms do not need to be adjacent in the sequence, as long as there are
no further atoms between them.

Since shorter atoms, with length close to window length W , are often less
accurate than longer ones, in some tests we also filter out all classes that have
all atoms shorter than some threshold T > W .

3 Experiments

Here, we evaluate our methods in the context of duplication history reconstruc-
tion of gene clusters from several related species. We have tested our new IHM
algorithm on both simulated and real data, comparing it to the simpler algorithm
from Vinar et al. (2010), which we will call SGH (Simple Greedy Homology).

Measuring segmentation accuracy. If we know the true segmentation of a se-
quence, which is the case for artificial sequences generated from an evolutionary
model, we can measure the quality of the predicted segmentation directly. To
compare two segmentations, we first compute reciprocal best matches (BRM)
between their atoms (see Fig.4). In particular, an atom from one segmentation
is a BRM of an atom in another segmentation if they cover overlapping regions
of the sequence and no other atom overlaps either of the two by a larger amount.

We use four quality measures comparing the predicted segmentation to the
true segmentation. Let p the number of atoms in the predicted segmentation, t
the number of atoms in the true segmentation, and b be the number of BRM
pairs between them. We define BRM sensitivity as b/t and BRM specificity as
b/p. If, for example, an algorithm splits a true atom into two predicted atoms,
one of them will not have a BRM pair, and therefore the BRM specificity will
decrease. Similarly, a predicted atom spanning two real atoms will lead to a
decrease in the BRM sensitivity.

The other two measures focus on the correctness of atom classification. Class
C1 is correctly predicted if each of its atoms has a BRM atom in the same true
class C2 and each atom in class C2 has a BRM atom in C1. Class sensitivity
is then c/t and specificity is c/p, where c is the number of correctly predicted
classes, t the number of true classes, and p the number of predicted classes.
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Data sets. We have tested our algorithms on 30 simulated data sets divided into
three categories with different parameter settings (see the overview in Table 1).
To produce them, we have simulated sequence evolution, allowing substitutions
according to the HKY model (Hasegawa et al., 1985), short insertions and dele-
tions, as well as large-scale deletions and duplications. The simulation started
with a 100kb sequence and proceeded along the human, chimpanzee, and rhesus
macaque phylogeny. The parameters of the substitution model, branch lengths
of the phylogenetic tree, and rate and length distributions of short insertions and
deletions were estimated from UCSC syntenic alignments (Fujita et al., 2011) of
human, chimpanzee, and macaque on the human chromosome 22. Parameters
of large-scale events (duplications and deletions) were taken from Vinar et al.
(2010). The Slow and Fast data sets differ in the rate of large-scale events per
site, with Fast data sets using 1.5 times the slower rate. The No indel data sets
were taken from Vinar et al. (2010) (first 10 out of 20 sets labeled as 300 in that
paper). These sequences were generated by a simpler simulator that did not al-
low short insertions and deletions and also assumed that the rate of large-scale
duplication and deletion is constant per sequence and does not depend on the
sequence length.

Segmentation accuracy on simulated data. We have segmented all simulated data
sets with our new method IHM, setting W = 250 and discarding atoms shorter
than 500. The SGH program from Vinar et al. (2010) also produces atoms of
length at least 500. On the first two categories, IHM noticeably outperforms
SGH, particularly in sensitivity at both the BRM and class levels (Table 2).
Since both programs work at the resolution of 500bp, they cannot predict very
short atoms, which is why their sensitivity is lower than their specificity. For
comparison, we also show the accuracy of the true segmentation with the atoms
shorter than 500bp filtered out. Our program is very close to this ideal sensitiv-
ity. Even without filtering, IHM maintains high specificity combined with much
higher sensitivity than the filtered IHM segmentation.

The last category of data does not contain small-scale indels, which makes the
segmentation problem much easier. Due to the higher number of short atoms,
the sensitivity is relatively small at resolution of 500bp, but almost identical for
both programs as well as for the true segmentation filtered at 500. Both programs
have achieved perfect specificity on these data sets, that is, every predicted atom
is covered by BRM and all predicted classes agree with the true segmentation.
The marked difference is in the boundary placement accuracy. About 86% of

Table 1. Overview of simulated data sets. Each category contains ten data sets.
The table lists mean values of various statistics over these data sets, or in the case of
sequence length, over all sequences from all data sets in the category combined.

Sequence Segmentation No. events
Data set length (kb) No. atoms No. classes dupl. del.

Slow 253 153 55 28 2.6
Fast 444 385 113 56 3.8
No indels 210 611 78 25 1.2
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Table 2. Accuracy of segmentation on simulated sets. TRUE500 is the true
segmentation with atoms shorter than 500 filtered out. SGH500 is the segmentation
created by method from Vinar et al. (2010). IHM250 is our new algorithm with W =
250 and IHM250.500 is the same method, only with atoms shorter than 500 filtered
out. Sensitivity and specificity at the BRM and class level are computed as explained
in the text.

BRM Class
Set Program sn sp sn sp

Slow TRUE500 86% 100% 89% 100%
SGH500 63% 97% 45% 83%
IHM250.500 86% 100% 88% 100%
IHM250 95% 100% 96% 100%

Fast TRUE500 80% 100% 86% 100%
SGH500 65% 99% 52% 91%
IHM250.500 79% 100% 84% 100%
IHM250 92% 100% 94% 99%

No indels TRUE500 55% 100% 61% 100%
IHM250.500 56% 100% 62% 100%
SGH500 56% 100% 60% 100%
IHM250 86% 100% 86% 98%

the BRM atoms produced by IHM have both their boundaries within 50nt of
the correct boundary, but this fraction is only 19% for the SGH method. This is
because IHM boundaries ultimately originate in alignment endpoints, whereas
SGH starts with arbitrarily placed sequence windows.

Influence of segmentation on evolutionary history reconstruction. In Vinar et al.
(2010), we have used the true segmentation of simulated sequences as a starting
point for evolutionary history reconstruction under a probabilistic model encom-
passing substitutions and large-scale duplications and deletions. In this work, we
compare the accuracy of the history reconstruction when run on different seg-
mentations using a subset of the simulated data from Vinar et al. (2010) (Table
3). We observe that in this case, using the predicted segmentation instead of
the true segmentation filtered at 500bp does not have a large impact on the
accuracy of the history reconstruction, yielding in most cases the same or very
similar number of events.

Segmentation of primate gene clusters. Finally, we have applied our algorithm to
the study of three complex primate gene clusters (PRAME, AMY and UGT1A),
considered in Vinar et al. (2010). Before running the segmentation algorithms,
we have masked the sequences with RepeatMasker, and then excised all masked
or unknown bases, obtaining a shorter sequence without repeats.

On all three sets, SGH has produced more atoms (Table 4). A large majority
of IHM atoms (81-91% in different sets) have a BRM atom in the SGH segmen-
tation, but only 37%-76% of classes agree completely with the SGH. We have
used these new segmentations to infer evolutionary history under the model of
large-scale duplications and deletions.
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Table 3. The predicted number of evolutionary events by the MCMC
method. For each data set D00-D09 in the No indel series, the left column indicates
the number of duplications and the right column the number of deletions. The two
rows labeled History list the actual number of events in the simulated history, counting
only events affecting at least one atom of length of at least 500 or 250 respectively.
The remaining rows show difference between the actual count and the count observed
in the maximum likelihood history predicted by the MCMC algorithm (Vinar et al.,
2010) run on different segmentations.

Program D00 D01 D02 D03 D04 D05 D06 D07 D08 D09

History 24 2 24 0 24 1 18 1 24 1 28 1 18 2 22 3 29 1 21 0
TRUE500 0 0 0 0 0 +2 0 0 -1 0 0 0 0 0 -1 +1 -1 1 0 0
SGH500 +1 -1 0 +1 0 +2 0 0 0 0 0 0 0 0 -1 +1 0 0 0 0
IHM250.500 0 0 0 0 +1 +2 0 0 -1 0 0 0 0 0 -1 +1 0 0 0 0

History 25 2 26 0 27 1 18 1 26 1 28 1 19 2 23 3 30 1 22 0
IHM250 0 0 0 +2 +1 +2 0 +1 +1 0 0 +1 0 +1 0 0 -1 +1 0 +1

Table 4. Results on complex primate gene clusters. Data set size, segmen-
tation parameters, and the predicted number of duplications and deletions from the
MCMC algorithm (Vinar et al., 2010). Species abbreviations: human (H), chimpanzee
(C), orangutan (O), rhesus (R).

Sequences Segmentation No. events
Set Program species lengths (kb) atoms classes coverage dup. del.

PRAME SGH500 H,R 373,92 454 57 60% 77 21
IHM250.500 288 51 74% 41 17

AMY SGH500 H,R 105,89 118 21 82% 14 10
IHM250.500 90 17 98% 12 8

UGT1A SGH500 H,C,O 90,87,108 138 17 55% 12 11
IHM250.500 134 23 76% 11 17

The IHM segmentations consistently lead to fewer events of both kinds (du-
plications and deletions), with the exception of deletions in the UGT1A cluster.
In this case, the IHM segmentation contains four atoms that are unique to the
orangutan region. Since the history reconstruction does not allow insertions,
these four segments are explained as deletions in the human-chimpanzee lin-
eage. On the other hand, the SGH does not predict atoms with only a single
occurrence, and thus these four deletions are not included in the history.

4 Conclusion

We have introduced the problem of automated segmentation of sequences with
complex evolutionary histories and proposed an accurate and efficient algorithm.
Unlike marker based methods, our algorithm can be used on sequence alone
and can be easily incorporated into sequence analysis pipelines. The method is
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suitable as a preprocessing step for duplication history reconstruction, and it
can also be applied to sequences with other large-scale events.

Our method consists of two stages: finding breakpoints and atom classifica-
tion. Errors introduced in the first stage cannot be resolved later on. One would
ideally solve both stages simultaneously. There are two obstacles to this course.
First, we need to optimize various contradictory criteria (coverage, the number
of false positives and false negatives, etc.). We can either combine them into a
single objective function by weights, or we can put a constraint on some cri-
teria by thresholds and optimize the remaining ones, but choosing the weights
and thresholds is difficult to do in a principled way. The second problem is that
even with breakpoints fixed, the problem of atom classification is already NP-
hard (Shamir et al., 2004). Nonetheless, it is possible to investigate heuristics or
approximation approaches to tackle this problem.

One can go even further and combine the segmentation and reconstruction
of evolutionary histories. Scoring of potential segmentations is then implied di-
rectly by the underlying evolutionary model. Such approaches were attempted
in the duplication scenario (Zhang et al., 2009; Song et al., 2010). Nonetheless,
segmentation makes the history reconstruction problems cleaner and allows us
to filter out problematic regions of the sequence (such as shorter atoms in our
experiments).

Another, perhaps less ambitious, avenue for improvement, is in the combi-
nation of segmentation and multiple alignment. Ideally all atoms of the same
class would form a high-quality multiple alignment. Our algorithm relies solely
on pairwise alignments, yet multiple alignments of longer homologous regions
could help us to map breakpoints more consistently.

Finally, our method was targeted at recently diverged atoms, where it is pos-
sible to recognize homology at a nucleotide sequence level. The question of ex-
tending our approach to more distant sequences remains open.
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Abstract. Recently, we have identified a quartet phylogeny algorithm
with O(n log n) expected runtime, which is asymptotically optimal. Re-
gardless of the true topology, our algorithm has high probability of re-
turning the correct phylogeny when quartet errors are independent and
occur with known probability, and when the algorithm uses a guide tree
on O(log log n) taxa that is correct with high probability. In practice,
none of these assumptions is correct: quartet errors are positively corre-
lated and occur with unknown probability, and the guide tree is often
error prone. Here, we bring our work out of the purely theoretical set-
ting. We present a variety of extensions which, while only slowing the
algorithm down by a constant factor, make its performance nearly com-
parable to that of neighbour-joining, which requires O(n3) runtime. Our
results suggest a new direction for quartet-based phylogenetic reconstruc-
tion that may yield striking speed improvements at minimal accuracy
cost.

1 Introduction

Any useful phylogenetic reconstruction algorithm must use Ω(n logn) time to re-
construct a phylogeny of n taxa. In practice, all commonly used algorithms take
much longer runtimes. To optimize parsimony, likelihood or the least-squares
objective is NP -hard, and the best distance-based methods require Θ(n3) run-
time in the worst case for neighbour-joining, or Θ(n2) time for UPGMA [9].
Typical quartet methods require Ω(n4) time, since they enumerate all quartets.
Common heuristics for the problem run in quadratic time, and the recent pro-
gram FastTree has a runtime of Θ(n1.5 logn) in practice. Programs with such
a subquadratic runtime are necessary: many projects currently desire trees on
hundreds of thousands of taxa, and new projects such as metagenomics or se-
quencing individual cells inside a human may require creating trees from millions
of sequences.

We have recently developed a quite different phylogenetic approach, based on
quartet queries, which achieves the O(n logn) runtime lower bound, in expec-
tation and with high probability, while giving probabilistic guarantees on the
quality of its performance in a simple error model; it also promises to return the

T.M. Przytycka and M.-F. Sagot (Eds.): WABI 2011, LNBI 6833, pp. 14–25, 2011.
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correct topology with 1 − o(1) probability. Our algorithm is randomized, so its
runtime is a random variable, but its expectation is O(n log n) regardless of the
true topology of the tree.

However, the probabilistic assumptions on which the program’s error analysis
depends are not realistic: we require that quartet queries err both independently
and with known probability. This presumption is false: for example, two quartet
queries that include the same taxon are definitely not independent. Moreover,
some quartets may have evidence of being of high quality, while others are not
very good. Our initial description of our algorithm did not incorporate this
evidence. Our algorithm also only places some taxa into the final tree; with
high probability in the theoretical model, all taxa are placed, but in preliminary
experiments, 40% of taxa did not find a placement in the tree returned.

Here, we describe our work to bring our algorithm away from a purely theoret-
ical approach to a substantially more practical, and extremely fast, phylogenetic
reconstruction method. We describe a number of extensions to our method which
increase both the fraction of taxa in the returned tree, which we call coverage, and
the accuracy of the topology of the tree that is returned. As a result of these exten-
sions, the coverage of our algorithm is now over 90%, and the accuracy of the tree
that results approaches that of neighbour joining: see Table 2 in Section 5.

Our methods show that quartet-based algorithms, properly used, can form
the basis of an effective phylogenetic reconstruction method, in time that is
both theoretically and practically faster than any commonly used approach for
the problem.

2 Background and Related Work

Our algorithm is an incremental phylogeny algorithm: it starts with a guide tree
on a small number of taxa, and then inserts each new taxon si into the phylogeny
created by the first i−1 taxa, until all n taxa are inserted. We use a randomized
balanced search tree structure to ensure that, with high probability, it requires
O(log i) time to insert taxon si.

2.1 Definitions

A phylogeny T is an unrooted binary tree with n leaves in 1-to-1 correspondence
with a set S of terminal taxa. Removing an internal node v from a phylogeny
yields three subtrees, ti(T, v) for i = 1, 2, 3. The tree ti(T, v) joined with its edge
to v is the child subtree ci(T, v).

A quartet is a phylogeny of four taxa. A quartet query q(a, b, c, d), returns one
of three possible quartet topologies: ab|cd, ac|bd and ad|bc: in ab|cd, if we remove
the internal edge, we disconnect {a, b} from {c, d}. In our work, we assume a
quartet query can be done in O(1) time; we discuss how to perform such queries
in Section 2.3.

A node query N(T, v, x) for internal node v of phylogeny T and new taxon x
is a quartet query q(x, a1, a2, a3), where ai is a leaf of T in ti(T, v). Such a query
identifies the ci(T, v) where taxon x belongs, if the returned quartet is correct.
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2.2 Summary of Our Previous Work

Our algorithm incrementally adds each taxon to the growing tree, using quartet
queries to direct the taxon to smaller and smaller parts of the tree. By using a
structure that is balanced (with high probability), we ensure that each search
requires logarithmic time, giving the asymptotically optimal runtime bound.

We direct the queries using a rooted ternary search tree structure (Figure 1).
Each internal node v in our search tree corresponds to a pair: a contiguous
region r(v) of the phylogeny, and a node s(v) within that region. Each leaf v
of the search tree corresponds to an edge r(v) in the phylogeny. For an internal
node v of the search tree, its three children correspond to each of the three
ti(r(v), s(v)) subtrees. If node queries are always correct, then asking the node
query (T, s(v), x) will identify which of the ti(r(v), s(v)) subtrees the taxon x
belongs in, and a traversal through the search tree to a leaf will identify which
edge of T is the one where the new taxon x belongs.

Quartet errors are common, which would lead to errors in this simple al-
gorithm. To allow for their existence, we incorporate a random walk method:
rather than requiring that we only move down the search tree, we allow for the
possibility that we backtrack. Specifically, at node v in the search tree, we ask
up to two node queries, corresponding to the boundaries of the current region
of the phylogeny; if either of them gives evidence that the new taxon does not
belong in r(v), we move to the parent of the current node in the search tree.
If they are consistent with r(v), we ask a node query at (T, s(v), x), and that
identifies which child of v we go to in the search tree.

Assuming that there is a bias toward going in the correct direction, and that
query errors are independent, there is a steady push toward winding up at the
correct node in the search tree: the random walk has positive drift, so it moves
at an expected constant speed toward the true goal. If we are at a leaf, then
we continue the algorithm, but each query that pushes us to stay at the chosen
leaf increments a counter and each query that pushes us away from the leaf
decrements the counter; we only move up from the leaf in the search tree when
the counter has value zero.

This random walk method is inspired by an approach for sorting a list where
comparisons are correct with high probability, but err independently with known
probability [11]. Our adaptation of the approach increases the number of queries
required to insert each new taxon by a constant factor (depending on error
probability) over simply descending the search tree. It guarantees that each new
taxon is placed in the correct location with 1− o(1/n) probability.

Further, the algorithm runs in O(n log n) runtime both in expectation and
with high probability, since if we use a uniformly-chosen permutation, the search
tree remains balanced with high probability. For full details, we refer the reader
to our original paper [2].

One key technical detail is that we must ensure that the algorithm never
runs out of queries to ask: each new quartet query must be distinct from all the
previous ones. This is achieved by first constructing a “guide tree” phylogeny for
a large enough subset of taxa. We then build a search tree for the guide tree and
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Fig. 1. A phylogeny and a corresponding search tree. Internal nodes of the search tree
correspond to subphylogenies: two, for r(B) and r(C), are indicated. Leaves of the
search tree correspond to edges of the phylogeny.

insert the remaining taxa into the search tree in random order. Additionally, we
guarantee that the guide tree is accurate; in our original paper [2], we show this
holds with probability 1-o(1) when the tree is the maximum quartet consistency
tree of a set of log logn taxa.

2.3 Quartets

There are several ways of inferring the subtopology of a phylogeny correspond-
ing to just four taxa, {W,X, Y, Z}. Perhaps the most natural is to compute an
estimate di,j for the pairwise distance between all pairs from the four taxa, and
then use ordinary least-squares estimation to compute the additive distance ma-
trix closest to the inferred distance matrix, and return the quartet correspond-
ing to the structure of that distance matrix. This is equivalent to comparing
dW,X + dY,Z, dW,Y + dX,Z and dW,Z + dX,Y ; if the smallest of the three values is
the first, we infer topology WX |Y Z, if the second is smallest, we infer WY |XZ,
and if the third is smallest, we infer WZ|XY .

In practice, quartet topology estimation is notably challenging. If the middle
edge of the true quartet is short and the other four edges are long, uncertainty in
estimating the four pairwise distances that cross the middle edge may dominate
the actual length of the edge, making for quartets that are hard to infer. In a
balanced phylogeny, a constant fraction of all quartets will have this problem.

As the traversal of the search tree progresses, the region of the tree that
is under search shrinks, so quartets will correspond to smaller total lengths,
meaning that the fraction of the total edge weight of the quartet that is falling
on the middle edge will drop as well; this suggests that quartet errors may be
rarer at lower levels of the search tree, as we discuss in Section 3.

Other methods to infer quartets include the ordinal quartet method [12],
weighted least-squares, and using maximum-likelihood methods. We note that
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our algorithm assumes all of these methods operate in O(1) time on a quartet,
as our runtime does not depend on the phylogenetic source data, whether it is
biological sequences, an alignment of such sequences, or microsatellite or other
data with phylogenetic signal in it. Indeed, our algorithm works in any scenario
in which quartets can be successful with sufficiently high probability.

2.4 Other Fast Phylogenetic Algorithms

The tree that optimizes the neighbour-joining objective is not known to be pro-
ducible in o(n3) time in worst case. However, heuristics for this problem have
been a subject of much research; Wheeler [20] gives an exact neighbour-joining
implementation, using clever data structures, which seems to require sub-cubic
runtime in typical instances, while other authors [7,14] have given heuristic algo-
rithms that operate in O(n2) time and that typically run in O(n

√
n logn) time,

but do not guarantee to optimize the neighbour-joining objective. The UPGMA
objective can, be optimized in O(n2) runtime [9]. Desper and Gascuel [6] give a
heuristic for the minimum-evolution objective that runs in O(n2 logn) for most
trees.

Erdös and co-authors have shown that the short quartet method can solve the
phylogenetic inference problem in O(n2polylog n) time on most trees, on suffi-
ciently long sequences, and assuming standard Markov models of evolution [8];
Csűros gives a practical algorithm that has similar guarantees [4]. There is also
a developing literature on sequence length requirements for various phylogeny
algorithms, and on identifying parts of the tree that can be reconstructed from
a given alignment [5].

Sub-quadratic phylogeny methods are quite rare: King et al. [13] give an
O(n2 log log n

log n )-time algorithm that is not widely used. When data are error free,
our algorithm is not the first O(n log n) algorithm, as Kannan et al. [10] have
given a rooted-triple algorithm with this runtime.

A more distressing lower bound, also in the same paper of King et al., shows
that any distance-based method requires Ω( n2

log n ) time to reconstruct correct
trees where simple Markov evolution models are used, and distances are inferred
using standard techniques, assuming sequences are quite short.

2.5 Quality Measures

We present two different quality measures: Robinson-Foulds quality and quartet
quality. Given a ground-truth topology for a set of taxa and a second topology
on the same taxa, the Robinson-Foulds quality is the fraction of the non-trivial
splits (internal edges) of one topology found in the other. The quartet quality
(see e.g. [3,1]) is the fraction of the

(
n
4

)
quartets that have the same result in

both tree topologies. We note that the Robinson-Foulds measure is fragile: a
single misplaced taxon can ruin all of the splits of the tree. By contrast, the
quartet distance is robust to individual errors: even a randomly-placed taxon
will probably have the correct topology in one-third of its quartets, as there are
only three choices for the topology.
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3 Extensions to Improve Performance

The basic algorithm suffers from a number of issues that greatly limit its practical
performance. The accuracy of quartet inference is often very low, particularly
for quartets asked at the top nodes of the search tree; when running the basic
algorithm on the COG840 data set, we found that only 66% of quartets were
inferred correctly, with only 50% of correct inferences at the root of the search
tree. In practice, quartet inference errors are also not independent, which may
cause the random walk to “drift away” from the optimal placement of the taxon.

3.1 Quartet Weights

The basic algorithm considers all quartets to be equally reliable. In practice, some
quartets are more likely to be correct than others. Assigning equal weight to all
quartets can lead to serious errors due to many erroneous quartets. Various quar-
tet phylogeny algorithms estimate the reliability of inferred quartet topologies
based on their likelihood scores [19,18,15] or distances between taxa (e.g. [16]).

We assign quartet weights based on the inferred middle edge length normalized
by the the sum of all the edge lengths of the quartet. For a quartet with external
edge lengths a, b, c, d and an internal edge length e, this becomes w = e/(a+ b+
c+d+e). The intuition behind this idea is that if the inferred middle edge is long
compared to the distances between taxa, then the inferred quartet topology is
less likely to have arisen from errors in the distance estimates. The edge lengths
are inferred using ordinary least squares, which was dictated by the speed of
this approach. This contrasts with most quartet algorithms, where quartets are
inferred using maximum likelihood.

We note that this weighing scheme is somewhat different than other commonly
used schemes. Most quartet algorithms use likelihood weights as opposed to
distances. Rao et al. use the topological diameter of the quartet in a preliminary
tree constructed by Neighbor Joining.

To incorporate the reliability information into the algorithm, we ask multiple
quartet queries at each node query and vote according to the weights. We have
tested two voting schemes. In the weighted-majority scheme, the weights of each
quartet pointing in the same direction are added and the direction with the
highest vote total is chosen. In the winner-takes-all scheme, the direction is
chosen according to the quartet query with the highest weight. We found that
the weighted-majority voting scheme results in better accuracy according to
the quartet measure, while the winner-takes-all approach yields higher accuracy
according to the Robinson-Foulds measure (see Section 5).

3.2 Biased Choice of Quartets

Many authors have suggested that large distances between taxa lower the ac-
curacy of quartet inference [16,8]. While our algorithm is forced to ask long
quartets at the top of the search tree, biasing the choice towards shorter quar-
tets at the lower nodes of the search tree might reduce the number of unreliable
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quartets. When asking a node query at node y of the search tree, we require
that the representatives for each quartet query are contained in a subtree r(y∗)
associated with a node y∗ that is at most d levels above y in the search tree.
The value d is chosen for each y so that the number of possible representatives
in each direction is at least 20. Note that this does not change the behaviour of
the algorithm in the upper parts of the search tree, since the subtrees associated
with the upper nodes are typically much larger.

3.3 Multiple Insertion Rounds

Due to the ambiguity in inferred quartets, the random walk will often terminate
at an internal node in the search tree, resulting in the taxon not being inserted
into the phylogeny. After the algorithm has attempted to insert every taxon in
the search tree, we try reinserting the taxa that did not make it to a leaf in the
first round. We have two such rounds of reinsertions.

3.4 Confidence Threshold

Incorrectly inserting a taxon can prevent subsequent taxa from being inserted
in the correct place. To mitigate this, we only add a new taxon to the phylogeny
if it has spent more than k last steps of the random walk at the current leaf.

3.5 Repeating the Random Walk

To improve our confidence in the placement of new taxa, we ran the random
walk two times for each inserted taxon. The taxon was then inserted only if
both walks terminated at the same leaf node.

4 As-Yet Unsuccessful Ideas

Several natural methods for improving our algorithm’s performance have not yet
been successful. We note these extensions here to document the challenging pro-
cess of improving a theoretical prototype into a useful method for phylogenetic
inference.

Increasing the number of quartet queries without weighting them improved
the fraction of taxa inserted, but decreased the accuracy. This emphasizes the
need for weighing quartets.

We have tried various other methods of estimating the reliability of quartets.
Earlier work on short quartet methods [16,8] suggested using the diameter of the
quartet for estimating its reliability. Contrary to our expectations, this approach
did not provide satisfactory results. This may be because the diameter of the in-
ferred quartets varies widely between different levels of the search tree. Quartets
inferred near the root of the search tree tend to have large distances between
taxa, whereas quartets inferred in the deeper parts of the search tree are shorter
since they only span a small fraction of the overall tree. Using least squares fit
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of the distances to the quartet topology also did not seem to improve the accu-
racy of node queries, and using weighted least squares also did not improve the
accuracy of quartet inferences.

We have tried to find a good starting point for the random walk by using
profile search. For each of the top log n nodes of the search tree, we constructed a
profile of sequences in the subtree associated with that search tree node. Before
starting the random walk for the new taxon, we matched its sequence to the
profiles and start the random walk from the highest-scoring subtree. This did
not have a significant effect on the results, perhaps because of the large diversity
of sequences within the top subtrees.

5 Experiments

We have evaluated our algorithm on several simulated data sets. The simulated
data sets are taken from Price et al. [14] who used them to evaluate their heuristic
program FastTree, which has O(n1.5 logn) runtime on typical instances. These
data sets were generated by taking real protein alignments and their maximum
likelihood trees, and then simulating evolution of sites along the phylogenetic
tree. The evolutionary rates varied across sites.

In most experiments, the initial guide tree was created using Neighbor Joining
on a randomly chosen subset of 200 taxa. We used ScoreDist [17] to estimate
distances for all versions of our algorithm. FastTree uses a similar, but distinct,
distance measure [14]. For a fair comparison of accuracies and running times, we
only compare against the initial Neighbor Joining phase of FastTree. FastTree
then performs nearest neighbour interchanges to improve the quality of the re-
sultant tree, which takes up much of its runtime; we have not incorporated these
into our algorithm, either, so we compare against the initial phase of FastTree
for consistency of comparison.

In the first experiment, we assessed how various improvements discussed in
Section 3 changed the performance of the algorithm. We ran each version of the
algorithm 100 times on the COG840 data set. The results are given in Table 1.

Overall, the improvements to the algorithm boosted the RF accuracy from
46% to around 60%, and increased the proportion of inserted taxa from 56% to
82-95%, depending on the settings. The biggest gains were achieved by intro-
ducing quartet weights and a confidence threshold. Multiple rounds of insertions
increased the coverage of the taxa set. Increasing the number of quartets and
running the random walk twice increased the accuracy, but at the cost of in-
creased running time. It should be noted, however, that the increase in running
time was not directly proportional to the number of quartets per query: one run
of the algorithm for 5 quartets per query takes around 11 seconds, compared
to just under 20 seconds for 20 quartets per query. This is because the running
time is dominated by computing the distances, which we save and reuse in the
subsequent quartet queries.
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Table 1. Shown are results for the COG840 data set with 1250 taxa. We show our
algorithm’s performance in various settings, and compare it to Neighbor Joining. We
report accuracies using the Robertson-Foulds measure. Our algorithm places approx-
imately 80% − 90% of taxa with accuracy around 60%. We ran each version of the
algorithm 100 times. In all cases, the guide tree is on 200 taxa; except in the second
line of the table, this was generated with Neighbor Joining, and had RF accuracy of
50% ± 3%.

method
taxa % taxa overall

inserted inserted accuracy

basic RW+NJ guide tree 704 ± 31 56.3 ± 2.4 46.3 ± 4.6

basic RW+true guide tree
716 ± 26 57.3 ± 2.1 49.4 ± 5.0

(not feasible in practice)

5 quartets per node query 955 ± 25 76.4 ± 2.0 41.0 ± 3.8

5 quartets, weights 1070 ± 21 85.6 ± 1.6 48.6 ± 3.7

5 quartets, weights, 2 extra rounds 1205 ± 13 95.4 ± 1.0 45.5 ± 3.4

confidence threshold 1024 ± 19 81.9 ± 1.5 58.4 ± 4.0

re-running the RW 985 ± 30 78.8 ± 2.4 59.5 ± 3.7

WTA voting, no re-run 1003 ± 26 80.2 ± 2.1 62.3 ± 2.9

WTA voting, 20 quartets per query 1151 ± 18 92.1 ± 1.4 60.8 ± 2.9

NJ 1250 n/a 62.6

In general, WTA voting tended to produce trees with higher RF accuracy
than weighted-majority voting. In contrast, weighted-majority voting resulted
in higher quartet accuracy, as we shall see in the next experiment.

We see that there is a trade-off between the proportion of the inserted taxa
and the RF accuracy. This is not surprising since incorrectly inserting a new
taxon into the phylogeny can cause many splits to be incorrect.

The accuracy of guide trees was considerably lower than that of the NJ tree
for the full data set. To investigate the impact of errors in the guide tree on
the accuracy of the algorithm, we ran the algorithm starting from a guide tree
consistent with the true phylogeny. Contrary to our expectations, errors in the
guide tree have little impact on the accuracy; substituting the NJ guide tree
with the true one improved the accuracy by 2 to 3 percent, depending on the
version of the algorithm.

In the second experiment, we evaluated the algorithm on three unrelated data
sets having 250, 1250, and 5000 taxa, respectively. For each data set, we ran the
algorithm in four different configurations, using two voting schemes and varying
the number of quartet queries per node query. The size of the guide tree was
200 except for the 250 taxon data set, where it was set to 100. The results are
shown in Table 2.

We see that the weighted-majority voting scheme tends to produce trees with
higher quartet accuracy, whereas the winner-takes-all voting scheme yields higher
RF accuracy. In general, we see that the two measures are very different: an
algorithm can have relatively good performance according to one while being
considerably worse in the other. In most cases, the accuracy of the random walk
algorithm is lower than the accuracy of Neighbor Joining.
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Table 2. Performance of the random walk algorithm on synthetic alignments.The size
of the guide tree was 200 except for the 250 taxon data set, where it was set to 100.
The average RF accuracy of the guide trees was 65, 50, and 46% for the 250, 1250, and
5000-taxon data sets, respectively. The average quartet accuracies for the guide trees
were 73, 83 and 55%.

data set
COG1011 COG840 COG1028

250 sequences 1250 sequences 5000 sequences

method % taxa RF QA % taxa RF QA % taxa RF QA

weighted majority,5 quartets 88.8 67.0 72.8 83.6 58.6 85.8 73.3 51.9 59.6

WTA-vote,5 quartets 86.0 69.4 70.8 80.0 62.3 85.4 70.1 57.0 59.6

weighted majority,20 quartets 95.6 60.4 69.9 96.4 50.6 83.9 94.3 41.1 56.5

WTA-vote,20 quartets 94.0 69.4 73.4 92.1 60.8 83.1 89.7 57.6 55.3

NJ 100 73.6 70.0 100 62.6 88.0 100 73.0 66.3

FastTree(NJ phase only) 100 69.7 85.9 100 61.0 86.6 100 73.6 66.4

In the final experiment, we measured the running time of our algorithm on
large data sets. For this experiment, we took a large simulated nucleotide align-
ment based on a real 16S alignment and compared the runtimes of the initial
phase of FastTree and our algorithm. We ran the algorithms on the full align-
ment and on two smaller alignments created by randomly sampling 20000 and
40000 sequences from the large alignment. All running times were measured on
a standard desktop computer with an AMD 7750 Dual Core 2712MHz processor
and 4 GB RAM. In all cases, our algorithm runs faster, with the relative speedup
increasing with the size of the data set; Table 3 shows the results.

Table 3. Running times of the random walk algorithm compared to FastTree. We
used the huge.1 alignment from the original FastTree paper [14]. Smaller data sets
were created by choosing a random subset of sequences from the large alignment. Our
algorithm runs 2.1 to 3.4 times faster than FastTree on these very large data sets.

# of sequences
20,000 40,000 78,132

weighted majority, 5 quartets 6m 41s 15m 52s 34m

FastTree (NJ phase only) 13m 52s 41m 15s 116m

6 Conclusion

We have presented our work in progress to move our extremely fast quartet
phylogeny algorithm from being a theoretical result to a practical algorithm for
inferring trees. We have shown that a variety of sensible heuristics, including
weighting quartets by our confidence in them, using multiple quartet queries per
insertion, and using multiple rounds of insertion, can increase both our coverage
and our accuracy substantially over our original implementation. At present,
our algorithm is close to being competitive with neighbour-joining, while being
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much faster. Certainly, for very large data sets, it may be suggested as one of
few heuristics for the task.

There is still much future work: in particular, we are currently limited in part
due to bad quartet inferences. If there were a way to bias our quartet choice
toward high-quality quartets, this could substantially improve our quality. Also,
it would be helpful if, after each round of insertions of taxa, we could remove
taxa that are likely in a poor placement, and re-insert them. Finally, we are
investigating a profiling technique, as described in Section 4, so as to pre-identify
a good starting search node for each new taxon, instead of the root, where we
predict errors are more common.

It remains to be seen whether a very fast quartet-based phylogeny method of
our sort can in fact be competitive with the best algorithms. However, over the
years, a number of other methods have grown up trading off speed with accuracy.
We see evidence that that speed can be pushed to the theoretical limit, and that
good trees can result from such procedures.
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Abstract. In the crossing schedule optimization problem we are given
an initial set of parental genotypes and a desired genotype, the ideotype.
The task is to schedule crossings of individuals such that the number of
generations, the number of crossings, and the required populations size
are minimized. We present for the first time a mathematical model for
the general problem variant and show that the problem is NP-hard and
even hard to approximate. On the positive side, we present a mixed in-
teger programming formulation that exploits the intrinsic combinatorial
structure of the problem. We are able to solve a real-world instance to
provable optimality in less than 2 seconds, which was not possible with
earlier methods.

1 Introduction

Plant breeding is the practice of creating improved varieties of cultivated crops
with for instance a higher yield, better appearance or enhanced disease resistance
[2]. Up to recently, selection of favorable traits has been solely on the basis of
observable phenotype [4]. With the availability of genetic maps, containing the
exact locations on the genome of genetic markers associated with desirable traits,
selection at the genotypic level has become possible [8]. This knowledge allows to
design a schedule of crossings of individuals resulting ultimately in an individual
with all alleles corresponding to desired favorable traits present. In the plant
breeding literature this process is called marker-assisted gene-pyramiding and
the resulting plan a gene-pyramiding scheme or a crossing schedule [3, 10, 14].
In this work we consider a mathematical programming approach to the problem
that asks to identify given (1) a genetic map, (2) an initial set of parental geno-
types and (3) the desired genotype—the so called ideotype—a crossing schedule
that results most cost-efficiently in the ideotype with respect to the following
three criteria. Firstly, it takes time for the progeny to mature such that a next
crossing can be performed. So the number of generations is a measure on the
time it takes to execute the crossing schedule. Secondly, every crossing between
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two individual plants requires an effort from the breeder, e.g. plants have to be
treated such that they flower at the same time. So typically the number of cross-
ings is also to be minimized. Thirdly, in order to obtain the genotypes required
by the schedule, for every crossing a specific number of offspring need to be
generated among which the desired genotype is expected to be present. Simply
speaking, the more difficult it is to obtain the desired genotype out of its parental
genotypes, the larger the required number of offspring will be. Since every indi-
vidual in the offspring has to be screened for having the desired genotype, the
total population size is also to be minimized.

Related work. Most work on gene pyramiding lacks a formal framework; in-
stead only an overview of guidelines and rules of thumb is given [6, 14]. A notable
exception, however, is the work by Servin et al. [10] who were the first to in-
troduce a special case of the problem considered in this paper in a formal way.
The authors show how to make use of the genetic map in determining the pop-
ulation sizes needed for all crossings. Contrary to our formulation, they allow a
genotype to only participate in one crossing. In addition, very restrictive assump-
tions about the genotypes of the initial parents were made. These restrictions
allowed the authors to exhaustively enumerate all crossing schedules and com-
pare them in terms of population size needed. By introducing a heuristic, which
partially alleviates the restriction on re-use of genotypes, the authors could com-
pute smaller population sizes for the instances considered. Later papers by Ishii
and Yonezawa [6] assume that target genes are always unlinked, which imposes
a lower bound on the genetic distance of pairs of target genes. Similar to our
work, in [6] the number of generations, number of crossings and the total popu-
lation size are identified as important attributes. An experimental evaluation is
performed on manually obtained crossing schedules having different topologies
for a fixed number of parents.

Our contribution. In this work we lift the restrictions imposed by Servin et al.
and consider a more general variant of the problem where genotypes are allowed
to be re-used and no assumption about the initial parental genotypes is made.
For the first time we formulate a mathematical model of the general problem.
We show NP-hardness using an approximation-factor preserving reduction from
an inapproximability result follows. We introduce a mixed integer linear program
(MIP) formulation which exploits various aspects of the inherent combinatorial
structure of the problem and which approximates the non-linear objective by a
piecewise linear curve. Finally, we show that our approach is capable of solving
real-world instances to provable optimality within a precise mathematical model,
which was not possible with earlier methods. The rest of the paper is organized
as follows. We start by formally defining the problem and showing hardness of
the problem. In Section 3 we introduce our method and state a MIP formulation.
An experimental evaluation on a real-word instance and on randomly generated
instances is presented in Section 4. We conclude with a discussion on our results
in Section 5. Due to the lack of space, we omit the proofs of the given lemmas.



28 S. Canzar and M. El-Kebir

2 Problem Definition and Complexity

A genotype C is a 2×m matrix whose elements are called alleles. The two rows,
C1,· and C2,·, are called the lower and upper chromosome, respectively. Each
column in C corresponds to a locus. So at a locus p two alleles are present, which
we denote by c1,p and c2,p. A locus is said to be homozygous if its two alleles are
identical, otherwise it is heterozygous. Likewise, a genotype is homozygous if all
its loci are homozygous, otherwise the genotype is said to be heterozygous. The
desired genotype is called the ideotype, which we denote by C∗. In plant breeding
often pure lines are desired, as they allow for instance for the production of F1
hybrids [2]. Therefore for the remainder of the paper we assume the ideotype to
be homozygous. In this case, actual alleles can be classified as being present in
the ideotype or not. Hence, the alleles in any genotype C are binary.

We represent a crossing schedule as a connected directed acyclic graph (DAG)
whose nodes are labeled by genotypes. Specifically, the source nodes correspond
to the initial parental genotypes. A non-source node, which we refer to as an
inner node, corresponds to a crossing. The single target node is labeled by the
ideotype. The arcs are directed towards the ideotype and relate a parent with
its child. Since a genotype is obtained from two parents, the in-degree of an
inner node is exactly 2. The two parents of a node need not be distinct. We say
that a genotype is obtained via selfing if its two parents are identical. From the
topology of a crossing schedule the number of generations and the number of
crossings can be inferred. The number of generations is the length of the longest
path from a source node to the target node. On the other hand, the number
of crossings corresponds to the number of inner nodes. In Figure 1 an example
crossing schedule is given.

The third attribute of a crossing schedule, the total population size, is the sum
of the population sizes implied by the crossings represented by inner nodes. Let
C be the genotype of an inner node and let D and E be the genotypes of the
two parents of C. Later, we will show what the probability Pr[D,E → C ] of
obtaining C out of D and E is. For now we denote this probability with ρ. The
population size N(ρ, γ) corresponding to ρ is the number of offspring one needs
to generate in order to find with a given probability of success γ an individual
with genotype C among the offspring. Since ρ is the probability of success in a
Bernoulli trial, the probability that none of the N(ρ, γ) offspring have genotype
C is (1 − ρ)N(ρ,γ) = 1− γ. Therefore we have that

N(ρ, γ) =
log(1− γ)
log(1− ρ) . (1)

As also remarked in [10], it is sensible to have an upper bound on every pop-
ulation size in the schedule, as depending on the plant species only a limited
number of offspring can be generated. For that purpose we define Nmax to be
the maximal population size to which every crossing in a crossing schedule has
to adhere.

In diploid organisms, the genotype of a zygote is obtained by the fusion of two
haploid gametes originating from one parent each. So one of the chromosomes of
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the resulting genotype C, say C1,·, corresponds to a gamete given rise to by D
and the other chromosome corresponds to a gamete produced by E. A gamete
is the result of a biological process called meiosis where in pairs of homologous
chromosomes crossover events may occur. In our setting, this means that an
allele c1,p corresponds to either d1,p or d2,p (where 1 ≤ p ≤ m). In case a pair
of alleles at loci p and q of C1,· do not correspond to the same chromosome of
D, we say that a crossover has occurred between loci p and q (see Figure 1).
From the genetic map, the probability of having a crossover between any pair
of loci can be inferred using for instance Haldane’s mapping function [5]. Let R
be a m ×m matrix containing all crossover probabilities. Due to the nature of
meiosis, we have that rp,q ≤ 0.5 for 1 ≤ p < q ≤ m. Let s = (ν(1), . . . , ν(k)) be
an ordered sequence of heterozygous loci in D. The probability of obtaining C1,·
out of D, i.e. Pr[D → C1,· ], is then as follows [10]. If there is an allele in C1,·
that does not occur in D at the same locus then Pr[D → C1,· ] = 0. Otherwise,
if s is empty then Pr[D → C1,· ] = 1. Otherwise

Pr[D → C1,· ] =
1
2

k−1∏
i=1

⎧⎪⎨⎪⎩
rν(i),ν(i+1) if c1,ν(i) = d1,ν(i) ∧ c1,ν(i+1) = d2,ν(i+1)

or c1,ν(i) = d2,ν(i) ∧ c1,ν(i+1) = d1,ν(i+1)

1− rν(i),ν(i+1) otherwise.

(2)

We can now compute Pr[D,E → C ] using the following lemma.

Lemma 1. The probability of obtaining C out of genotypes D and E is

Pr[D,E → C ] =

⎧⎪⎨⎪⎩
Pr[D → C1,· ] · Pr[E → C2,· ] if C1,· = C2,·
Pr[D → C1,· ] · Pr[E → C2,· ]

+ Pr[E → C1,· ] · Pr[D → C2,· ]
if C1,· �= C2,·

(3)

A common way to deal with multiple objectives is to consider a convex combina-
tion of the objective criteria involved [12]. Given a crossing schedule, let crs, gen
and pop denote the number of crossings, number of generations and the total
population size, respectively. For λcrs, λgen, λpop ≥ 0 and λcrs + λgen + λpop = 1,
the cost of that crossing schedule is given by the convex combination λcrs · crs+
λgen · gen + λpop · pop.

Problem 1 (CrossingSchedule). Given P = {C1, . . . , Cn}, the set of parental
genotypes we start with, the homozygous ideotype C∗ �∈ P , the recombination
matrix R, the desired probability of success γ ∈ (0, 1), the maximal population
size Nmax ∈ N allowed per crossing, and a vector λ of the cost efficients, problem
CrossingSchedule asks for a crossing schedule of minimum cost.

We propose a polynomial-time reduction from the decision problem SetCover

[7]: the loci correspond to the elements in the universe and the initial set of
parents to the family of subsets. The first chromosome of a parent Ci has a 1 at
locus p if p is contained in the corresponding subset. The second chromosomes of
all parental genotypes consists of only zeros. The ideotype has 1 alleles at every
locus. In the cost function we only consider the number of crossings, i.e. λcrs = 1
and λgen = λpop = 0.
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Theorem 1. CrossingSchedule is NP-hard.

Due to the approximation-factor preserving reduction, the inapproximability
result for SetCover [9] carries over:

Theorem 2. Approximating CrossingSchedule within O(logn) is NP-hard.

3 Method

After exploring the combinatorial structure of the problem, we present an algo-
rithm in which iteratively an MIP is solved. Details on the MIP formulation are
given in Section 3.1.

Since we are considering homozygous ideotypes, we can assume without loss
of generality that C∗ has only 1-alleles and derive a lower bound based on the
minimum set cover as follows. The universe corresponds to the loci, i.e. U =
{1, . . . ,m}, and the subsets S = {S1, . . . , Sn} correspond to P = {C1, . . . , Cn}.
We define p ∈ Si if either ci1,p = 1 or ci2,p = 1 where 1 ≤ i ≤ n and 1 ≤ p ≤ m.
The following lemma now follows.

Lemma 2. The cardinality of a minimum set cover is a lower bound on the
number of crossings of any feasible crossing schedule

Computing the minimum set cover is NP-hard. However, since in our experiments
the number of loci and parents are relatively small, we are able to obtain the
lower bound by solving a corresponding ILP [13] in a fraction of a second.

A lower bound on the population size can be obtained when considering the
set L of all pairs of consecutive loci for which there are no genotypes in P
containing 1-alleles at the respective loci on the same chromosome:

Lemma 3. The following is a lower bound on the total population size.

LBpop =
∑

(p,p+1)∈L
N(rp,p+1, γ) (4)

Using (3) one can show that there is an optimal crossing schedules where ho-
mozygous genotypes are obtained via selfings.

Lemma 4. There is an optimal schedule in which the (inner) homozygous geno-
types are obtained via selfings.

Finally, parental genotypes that contain a 1-allele at a locus at which all other
parental genotypes contain all 0 have to be used by any feasible schedule. To
reduce the search space explored by the MIP solver we fix these compulsory
parental genotypes to be contained in any solution.

We present a MIP formulation for the problem variant where the number of
crossings and the number of generations is fixed to F , respectively G. The reason
for this is to be able to introduce cuts that ensure monotonically better solutions.
In order to solve a problem instance, we iteratively consider combinations of
(F,G) starting from F = LBcrs and G = 1+�log2 F 	. In addition we enforce that
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the objective value of any feasible solution must be better than the currently best
one. We do this by computing an upper bound UBpop on the total population
size, based on the best objective value found so far and the current values of
(F,G) (see Algorithm 1, line 4). If at some point, say (F ′, G′), LBpop ≥ UBpop

then we know that none of the combinations of F ′′ ≥ F ′, G′′ ≥ G′ will lead to
a better solution. Therefore if G = 1 + �log2 F 	 and LBpop ≥ UBpop, we have
found the optimal solution (see Algorithm 1, line 7). To guarantee termination
for the case where λcrs = λgen = 0, we stop incrementing F as soon as it reaches
a pre-specified parameter UBcrs. Similarly, UBgen is a pre-specified parameter
bounding G. In Algorithm 1 the pseudo code is given.

Algorithm 1. OptCrossingSchedule(UBcrs,UBgen)
Input: UBcrs and UBgen are the maximum number of crossings and

generations considered.
OPT←∞1

for F ← LBcrs to UBcrs do2

for G← 1 + �log2 F � to min(F,UBgen) do3

UBpop ← 1
λpop

(OPT− F · λcrs −G · λgen)4

if LBpop < UBpop then OPT← min(OPT, MIP(F, G,UBpop))5

else UBgen ← G− 16

if UBgen ≤ 1 + �log2 F � then return OPT7

return OPT8

3.1 MIP Formulation

Given an instance to CrossingSchedule with initial parental genotypes P =
{C1, . . . , Cn}, a feasible solution with G generations and F crossings can be
characterized by the following five conditions: (i) The topology of the schedule
is represented by a DAG with n source nodes s1, . . . , sn, one target node t, and
F − 1 additional nodes, where every non-source node has in-degree two. Parallel
arcs are allowed and represent selfings. (ii) The longest path from a source node
to the target node has length G. (iii) The alleles of each non-source node are
derived from either the upper or lower chromosome of the node’s respective
predecessors. (iv) The genotype of a source node si is Ci, the genotype of t is
C∗. (v) The probability of obtaining the genotype of an inner node v is at least
1−(1−γ)

1
Nmax such that its corresponding population size is at mostNmax. In the

following we show how these conditions can be formulated as linear constraints.
Throughout our formulation, we let L := F + n be the total number of nodes.
Dummies 1 ≤ i, j ≤ L correspond to genotypes, loci are indexed by 1 ≤ p, q ≤ m
and chromosomes are referred to by 1 ≤ k, l ≤ 2L. In the remainder of the paper
we will omit the linearization of products of binary variables. Unless otherwise
stated, we applied a standard transformation [1]. Similarly, we omit the details
of the implementation of absolute differences of binary variables.
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Feasibility constraints. The first set of constraints encodes the structure of
the underlying DAG D = (V,A). We assume a numbering of the vertices ac-
cording to their topological order. In particular, arcs always go from vertices
j < i to a vertex i, i, j ∈ V . Based on the node numbering, the lower and upper
chromosomes of a node i ∈ V are respectively 2i − 1 and 2i. For convenience
we introduce a mapping function δ(k) that returns the node a chromosome k
corresponds to. Then binary variables xk,i ∈ {0, 1}, 2n < k ≤ 2L, i < δ(k),
denote whether chromosome k originates from genotype i, that is, they indicate
an arc (i, δ(k)). Since a chromosome originates from exactly one genotype, we
have

δ(k)−1∑
j=1

xk,j = 1 2n < k ≤ 2L (5)

We capture the second condition by fixing a path of lengthG using the x variables
and by restricting the depth of all remaining nodes, represented by additional
integer variables, to be at most G−1. To model the third condition, we introduce
binary variables ak,p, 1 ≤ k ≤ 2L, 1 ≤ p ≤ m, which indicate the allele at locus p
of chromosome k. Note that for chromosomes k corresponding to initial parental
genotypes, ak,p, 1 ≤ p ≤ m, is a constant rather than a variable. In addition to
knowing from which genotype a chromosome originates, we also need to know
from which of the two chromosomes of that parental genotype an allele comes.
Therefore we define binary variable yk,p, 2n < k ≤ 2L, 1 ≤ p ≤ m, to be 1
if the allele at locus p of chromosome k comes from the lower chromosome of
its originating genotype; conversely yk,p is 0 if the allele originates from the
upper chromosome. Now we can relate alleles to originating chromosomes. We
do this by introducing binary variables gk,p,l, for 2n < k ≤ 2L, 1 ≤ p ≤ m, and
1 ≤ l < 2δ(k) − 1. We define gk,p,l = 1 if and only if the allele at locus p of
chromosome k originates from chromosome l and has value 1. This is established
through constraints

gk,p,2i − a2i,p · xk,i · (1− yk,p) = 0 2n < k ≤ 2L, 1 ≤ p ≤ m, i < δ(k) (6)
gk,p,2i−1 − a2i−1,p · xk,i · yk,p = 0 2n < k ≤ 2L, 1 ≤ p ≤ m, i < δ(k) (7)

Finally, an allele is 1 if and only if it originates from exactly one 1-allele:

ak,p −
δ(k)−1∑

i=1

(gk,p,2i−1 + gk,p,2i) = 0 2n < k ≤ 2L, 1 ≤ p ≤ m (8)

The fourth property can be ensured by simply forcing the variables representing
the alleles of the parental genotypes and the alleles of the desired ideotype to
the actual value of the respective allele. Thus for the parental genotypes we have
a2i−1,p = ci1,p and a2i,p = ci2,p for 1 ≤ i ≤ n, 1 ≤ p ≤ m and for the ideotype
a2L−1,p = a2L,p = c∗1,p for 1 ≤ p ≤ m. The fifth property is enforced implicitly
by the objective function.
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Objective function. The probability of a given genotype i giving rise to a
specific chromosome k determines the required population size (see (1)). This
probability in turn depends on the exact set of crossovers necessary to generate
chromosome k and on the sequence s of heterozygous loci (see (2)). Binary
variable ãi,p = 1 if and only if locus p of genotype i is heterozygous: ãi,p =
|a2i−1,p − a2i,p| for 1 ≤ i ≤ L, 1 ≤ p ≤ m. Now a genotype i is heterozygous,
indicated by hi = 1, if at least one of its loci is heterozygous: hi ≥ ãi,p for
1 ≤ i ≤ L, 1 ≤ p ≤ m. It is ensured that hi = 0 whenever ãi,p = 0, ∀1 ≤
p ≤ m, as hi = 1 would increase the required population size. The distinction
between the two different cases in (2) is based on crossover events between two
successive heterozygous loci, i.e. ν(i) and ν(i+ 1). We capture the sequence s of
heterozygous loci used in (2) by binary variables bi,p,q, which indicate a maximal
block of homozygous loci between heterozygous loci p and q in genotype i:

bi,p,q = ãi,p · ãi,q ·
q−1∏

r=p+1

(1− ãi,r) 1 ≤ i ≤ L, 1 ≤ p < q ≤ m (9)

To formulate the probability given in (2), let ξj
k denote the event of obtaining

a chromosome k from a genotype j. Using variables h, b, and z, we can express
Pr[ ξj

k ] such that in the heterozygous case every maximal homozygous block
contributes rp,q if it contains at least one crossover, and (1 − rp,q) otherwise.
Finally, if j1 and j2 are the two parental genotypes of chromosomes k1 and
k2 forming genotype i, we compute in variable z̄i the log probability of event
ξj1
k1
∩ ξj2

k2
as ln(Pr[ ξj1

k1
]) + ln(Pr[ ξj2

k2
]). For that we have to sum over all possible

j < i to identify j1 and j2:

z̄i =
∑
j<i

∑
l∈{1,2}

xkl,j

(
hj ln(

1
2
) +

m−1∑
p=1

m∑
q=p+1

bj,p,q ln(1− rp,q)

+
m−1∑
p=1

m∑
q=p+1

q∑
r=p+1

bj,p,q · ln(
rp,q

1− rp,q
) · |yk,r − yk,r−1|

) (10)

Notice that we neglect the possibility that the two chromosomes k1 and k2 may
swap their originating genotypes as accounted for in the second case of equation
(3) and we therefore might overestimate the population size. We will discuss this
simplification in Section 5. Finally, we develop an approximation of the nonlinear
function N(ρ, γ) defining the required population size so that LP techniques can
be utilized. More precisely, we reduce N(ρ, γ) to a separable form [12] that
depends only on a single decision variable and approximate it according to the
λ-method [12] by a piecewise-linear curve specified by the points (aj , N(eaj , γ))
for j = 1, . . . , 	+ 1. We replace the populations size N(ez̄i , γ) for each crossing i
in the objective function by a convex combination of the respective breakpoint
scores to derive λpop ·

(∑L
i=n+1

∑�+1
j=1 λ

i
j ·N(eaj , γ)

)
+ λgen ·G+ λcrs · F.

Additional cuts. We consider three additional cuts. The first one is due to
Lemma 4. The following constraints enforce that a homozygous genotype re-
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sults via selfing: |x2i−1,j − x2i,j | ≤ hj for n < i ≤ L, 1 ≤ j < i. In addi-
tion, the lower and upper bound on the population size correspond to LBpop ≤∑L

i=n+1

∑�+1
j=1 λ

i
j · N(eaj , γ) ≤ UBpop for n < i ≤ L. For the sake of simplic-

ity we omit the additional constraints required to enforce compulsory parental
genotypes to be contained in the solution. To come back to condition five of our
characterization of feasible solutions in the beginning of this section, we simply
set a1 = log(1 − (1 − γ)

1
Nmax ). Then any z̄i < a1 implying a population size

larger than Nmax cannot be expressed as a convex combination of break points
aj , j = 1, . . . , 	 + 1, and hence any feasible solution must satisfy the bound on
the population size. In total, our MIP formulation comprises O(L(Lm2 + 	))
many variables and O(L2m) constraints.

4 Experimental Results

We have implemented OptCrossingSchedule in C++ using CPLEX 12.21

(default settings) with Concert Technology. We ran the experiments on a com-
pute cluster with 2.26 GHz processors with 24 GB of RAM, running 64 bit
Linux. We applied a time limit of 10 hours. Computations exceeding this limit
were aborted. As mentioned earlier, there exist no previous methods for the
general problem formulation we are considering. However, our problem formu-
lation subsumes the one given by Servin et al., therefore we consider the same
instances as well. In addition, we study a real-world instance. We conclude by
evaluating our method on automatically generated instances. Throughout this
section, the term ‘provably optimal solution’ indicates that the objective value
of any feasible solution with respect to the piecewise-linear approximation and
the simplification of (3) is at most the objective value of the obtained solution.

Instances by Servin et al. As opposed to our setting, in [10] a crossing sched-
ule is required to be a tree. In addition, the number of initial parental genotypes
P = {C0, C1, . . . , Cm} is one more than the number of loci m. Parental geno-
types are assumed to be homozygous. More specifically, C0 consists of only
0-alleles, whereas for a genotype Ci, 1 ≤ i ≤ m, the only 1-alleles are present at
locus i. The ideotype is comprised entirely of 1-alleles and only the population
size is considered, i.e. λpop = 1, λgen = λcrs = 0. The desired probability of
success is γ = 0.999 and the genetic distance between pairs of consecutive loci is
20 centimorgans (cM). By including constraints forcing a crossing schedule to be
a tree (i.e. the out-degree of a node is forced to be 1), we were obtained the same
optimal results (see Table 1). Servin et al. realize that better crossing schedules
can be obtained when dropping the tree restriction. Rather than considering
general DAGs, the authors consider a heuristic (PWC2) that transforms every
enumerated tree into a DAG with smaller total population size. As opposed to
the tree case, our method does not guarantee the solutions found in the DAG
case to be optimal. This is because the objective function does neither include
the number of crossings nor the number of generations. In addition, we put a
1 http://www.cplex.com

http://www.cplex.com


Marker-Assisted Gene Pyramiding 35

Table 1. Results for instances by Servin et al. First column are the results on the tree
cases (as obtained by Servin et al’s method and our MIP), second column corresponds
to PWC2 heuristic and the last column to our MIP for DAGs.

#loci
tree PWC2 MIP

pop crs gen pop crs gen pop crs gen

4 374 5 5 359 7 5 350 5 5
5 551 6 6 516 8 6 482 9 8
6 770 7 7 691 9 6 624 9 7
7 1046 8 8 890 13 7 901 10 9
8 1394 9 9 1147 15 7 1329 10 10

time limit of 10 hours in place. In Table 1 we can see that we obtain better
solutions w.r.t. the population size for the instances up to six loci. Due to the
time limit, the best feasible solutions found for the instances with 7 and 8 loci
are worse than the ones computed by Servin et al. Since PWC2 solutions are also
feasible to our general model, a higher time limit would result in solutions that
are at least as good as Servin’s. We expect our approach to be less competitive
with PWC2 on larger instances of this specific class. This comes at no surprise
since PWC2 is specifically tailored toward these restricted instances.

Real-world instance. We consider a real-world case that deals with a disease
in pepper called powdery mildew. This disease is caused by the fungus Leveil-
lula Taurica. In severe cases of the disease the infected pepper plant may lose a
significant amount of its leaves, which in turn results in crop loss. The fungus is
resistant to fungicides, so host-plant resistance is desired. There is a wild-type
pepper line that is resistant to the fungus. For this wild-type, three dominant
quantitative trait loci (QTLs), numbered 1,2 and 3, that explain the resistance
have been identified [11]. In addition to resistance, we also look at pungency,
which is a dominant monogenic trait whose locus we assign number 4. The pun-
gency gene is closely linked with one of the resistance QTLs, say the one of locus
3, with a genetic distance of 0.01 cM, i.e. r3,4 = 0.01 [5]. The resistant line is
pungent. On the other hand, the elite line used for production is sweet but suscep-
tible to the disease. Both lines are pure lines, i.e. they are homozygous at all loci.
The goal now is to come up with a crossing schedule that results in a homozy-
gous individual that is both resistant and sweet. We do this by using 1-alleles
to indicate desired alleles. Therefore the parent set is P =

{(
1 1 1 0
1 1 1 0

)
,
(
0 0 0 1
0 0 0 1

)}
,

and the ideotype is C∗ =
(
1 1 1 1
1 1 1 1

)
. Unlinked loci by definition have a crossover

probability of 1/2. So except for r3,4, rp,q = 1/2 for all 1 ≤ p < q ≤ 4. We set
Nmax = 5000 and γ = 0.95. Setting λpop = 1/201, λgen = λcrs = 100/201 is a
good trade off between the three criteria. In a practical setting, the λ-s are to
be chosen such that they reflect the actual costs. Since there is a cost associated
with the number of crossings and the number of generations, we are able to
obtain a provably optimal solution in 1.5 seconds which is depicted (right) in
Figure 1. It is important to note that this problem instance cannot be expressed
in the restricted framework of Servin et al.[10]: treating the resistance loci as a
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Fig. 1. Crossing schedules for the pepper instance. Inner nodes are obtained via cross-
ings requiring a population size shown on the arcs, in both schedules the final crossing
is a selfing. Chromosomes of an inner node are obtained via crossovers in their par-
ents. Left: F = 3, G = 3, pop = 2408 and obj = 14.69. Right: provably optimal, F = 4,
G = 4, pop = 633 and obj = 7.13.

single locus does not result in the best crossing schedule (see left of Figure 1),
as the second genotype is obtained via a crossover between the second and third
locus. To the best of our knowledge, such a real-world instance is solved for the
first time to provable optimality within a precise mathematical model.

Generated instances. We generate random instances on which we evaluate
the performance of our method. The instances either have 5 or 10 parents and
concern 4-8 loci. The number of correct alleles per parental genotype affects the
difficulty of the instances, we vary this number depending on the number of loci.
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Fig. 2. Results for generated instances. Left: optimality of solutions. Right: running
times; instances exceeding the time limit were not considered, objective value ratio
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In total 140 instances are generated, among which 20 concern instances of 4 loci;
the classes of 5-8 loci are comprised by 30 instances each. We run both the DAG
and the tree version of the MIP on all instances. For the DAG case, we were able
to obtain solutions to 128 instances compared to 119 instances (see Figure 2)
for the tree version. Among the unsolved instances for the tree case, there are
also instances that are infeasible due to the value of Nmax which requires re-use
of genotypes. The number of instances that were solved to provable optimality
in the DAG case is 58; for the tree case this number is 89. DAGs provide a
gain in solution quality of up to 5% on average compared to the tree. Note that
none of the instances is of the nature that is captured by Servin’s model. Not
surprisingly, trees are easier to solve.

5 Conclusion

For the first time we have described a mathematical model capturing the problem
of marker-assisted gene pyramiding to its full extent. We show that our approach
is capable of solving a real-world instance and generated instances, often to
provable optimality. As mentioned earlier, our method is not exact due to (i)
the piecewise-linear approximation of the population size function and (ii) a
simplification in (10) of neglecting the possibility that the two chromosomes
may swap their originating genotypes. However, in our experiments we have not
observed any crossing where this could have happened. The NP-hardness proof
involves only the number of crossings; as for the number of generations, the
same reduction can be applied. The hardness with respect to the population size
remains open. Possible extensions to our problem definition include considering
heterozygous ideotypes. This requires an extension to tertiary alleles. Another
extension would be to consider so called ‘don’t care’ alleles, which are alleles
that are not preserved due to crossover events, and as such do not need to be
considered in the probability function.
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constructive comments of the anonymous referees.
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Abstract. Next-generation de novo short reads assemblers typically use
the following strategy: (1) assemble unpaired reads using heuristics lead-
ing to contigs; (2) order contigs from paired reads information to produce
scaffolds. We propose to unify these two steps by introducing localized
assembly: direct construction of scaffolds from reads. To this end, the
paired string graph structure is introduced, along with a formal frame-
work for building scaffolds as paths of reads. This framework leads to
the design of a novel greedy algorithm for memory-efficient, parallel as-
sembly of paired reads. A prototype implementation of the algorithm has
been developed and applied to the assembly of simulated and experimen-
tal short reads. Our experiments show that our methods yields longer
scaffolds than recent assemblers, and is capable of assembling diploid
genomes significantly better than other greedy methods.

1 Introduction

De novo assembly of short reads consists in reconstructing a genome sequence
given a set of short subsequences (reads) obtained from DNA sequencing. In
practice, the original sequence cannot be retrieved unambiguously because a
genome contains repetitions longer than the reads. Hence, one aims at finding
a reasonable approximation of the sequence as a set of longer gap-less sub-
sequences (contigs) or gapped subsequences (scaffolds). Over the last decade,
three different genome assembly approaches have been adopted. Two of them
are graph-based. The string graph method is based on a graph containing all the
overlaps between reads [22]. The de Bruijn graph approach is based on the graph
of all the k-length substrings of reads [24,21,13]. The third approach performs
greedy extension of contigs using an ad-hoc structures [3,23]. Even producing
an approximation of the genome is a computationally difficult task. For assem-
bly of human-sized genomes using short reads (< 100 bp), current state of the
art implementations (using de Bruijn graphs) require hundreds of gigabases of
memory and several CPU weeks of computation [13]. For more details concerning
assembly approaches, refer to a recent survey [15].

Every next-generation sequencing technology is now able to massively pro-
duce paired reads separated by a known approximate distance (insert size). This
information is highly valuable for re-sequencing projects as it enables better
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mapping coverage, especially with long inserts [6]. It also permits better resolu-
tion of repeats shorter than the insert size for de novo assembly. To illustrate the
difference between single-end and paired assembly, an analogy with jigsaws can
be made: consider n jigsaw pieces where each piece is linked to another piece by
a string of finite length. The problem is to decide whether these pieces exactly
fit into a

√
n × √n box with the additional constraint that every string must

be tightened. In other words, pairing information indicates how far apart two
pieces are in the solution. It can be shown that the paired jigsaw problem is also
NP-complete. The reduction consists of splitting each classical jigsaw piece into
12 paired pieces.

Practically, pairs add more structure to the assembly problem, by indicating
the relative position of reads on the genome. While most current assemblers use
pairing information to improve assembly quality, they rely on single-end assembly
beforehand. For instance, recent implementations of de Bruijn graph assembly
methods use paired reads to simplify the graph once it is fully constructed and
simplified from single-end reads [9,24,13]. The process of improving an existing
assembly using paired reads is called scaffolding. The scaffolding problem is NP-
complete and several heuristics have been proposed [18,11]. However, it may
appear unsatisfactory to perform paired assembly using graph simplification or
scaffolding, as such approach requires to solve unpaired assembly beforehand,
which essentially ignores helpful pairing constraints.

Previous research has explored the benefits of using paired-end reads during
contigs construction. The Arachne assembler searches for pairs of paired Sanger
reads where both mates overlap to construct contigs [2]. The Shorty assembler
uses pairing information to greedily construct contigs from paired reads anchored
to long reads [10]. PE-Assembler extends contigs greedily and attempts to resolve
ambiguous extensions using paired reads anchored nearby [1]. Medvedev et al.
recently introduced the paired de Bruijn formalism, which incorporates pairing
information in the de Bruijn graph [14]. Donmez et al. also recently proposed an
approach to transform a string graph into a mate-pairs graph [7]. Each of these
approaches aim to resolve repeats when constructing contigs. Our approach is
essentially different as it uses paired reads for direct scaffold construction. One
main advantage is that missing read overlaps (possibly due to sequencing arte-
facts, such as coverage gaps or localized errors) can be represented by gaps in
scaffolds, whereas they would necessarily interrupt contigs. Note that all meth-
ods, including ours, do not implement mechanisms to resolve repetitions longer
than the insert size.

In the next section, assembly of paired reads is formalized using the paired
string graph representation. It is shown that scaffolds correspond to paths in
the graph under ideal sequencing conditions. The definition of these paths is
then refined to account for sequencing errors and biological variants. In section
3, a prototype implementation of path construction is applied to simulated and
experimental sequencing data. A comparison is made with two other popular
assemblers, using relevant assembly quality metrics.



Localized Genome Assembly from Reads to Scaffolds 41

2 Paired String Graph and Non-branching Paths

2.1 Paired Assembly Problem

The paired string graph is defined as an extension of the classical string graph
[16] over a set of paired reads R1×R2. Two reads (r, r′) ∈ R1∪R2 are said to k-
overlap if a suffix of r matches a prefix of r′ exactly over k characters. The paired
string graph PGk(R1×R2) is defined as a directed graph by assigning a vertex to
each read in R1∪R2. An edge r→ r′ is created between two reads if r k-overlaps
r′ (overlap edge). A special type of edge r ��� r′ is created if (r, r′) is a paired
read (paired edge). Classical string graph transformations are applied: reads
that are substrings of other reads, and transitively redundant overlap edges are
discarded (paired edges are ignored during this step). No transitive reduction is
performed for paired edges. For instance, consider the sequence S = abcdefcdgh
and perfect sequencing with insert of length 6 and paired reads of length 2. The
paired string graph of these reads is drawn in Figure 1.

A mixed path in the paired string graph is a succession of vertices linked by
either overlap edges or paired edges, e.g. r1 → r2 ��� r3 → r4. A path-string
is a string corresponding to the concatenation of nodes strings along a mixed
path. The path-string is formed by the following rules: after an overlap edge,
the string is appended with the concatenation of both nodes strings with their
overlap repeated only once; after a paired edge, the string is appended with
a gap corresponding to the paired insert size. In Figure 1, the path-string of
p = ab→ bc ��� fc is abc♦2fc, where ♦ is a single-character gap.

Similarly to the Assembly Problem (AP) [17], the Paired Assembly Problem
can be defined as a constrained flavor of AP. The Paired Assembly Problem
consists in finding a path that visits each node at least once (generalized Hamil-
tonian path) in PGk(R1×R2), and corresponds to a path-string s such that (1)
the length of s is minimized and (2) for every pair (r, r′) in R1 × R2, the dis-
tance between r and r′ in s matches the paired insert size. Note that a solution
is necessarily a contig. Similarly to AP, this problem can also be shown to be

Fig. 1. Example of a paired string graph from paired reads (insert size of 6) covering
the sequence S = abcdefcdgh. Dashes edges represent paired links and regular edges
represent 1-overlaps between reads.



42 R. Chikhi and D. Lavenier

NP-hard. The following section focuses on constructing a collection of sub-paths
(possibly scaffolds) that approximate a solution.

2.2 Non-branching Paths in the Ideal Case

Scaffolds can be directly constructed from the graph by following special types of
mixed paths. To illustrate this, we first assume unrealistic sequencing conditions:
error-free reads, perfect coverage and exact insert size (these will be relaxed
in the next section). A mixed path in PGk(R1 × R2) is a non-branching path
(NBP) if each node, except the first and the last, has in-degree of 1 in the graph
with respect to the corresponding in-edge type in the path, and out-degree of 1
corresponding to the out-edge type. In traditional assembly heuristics, a contig
can be represented as a NBP where each edge is an overlap edge (simple path).
For example, maximal-length contigs from the graph in Figure 1 are

{ab→ bc→ cd, cd→ de→ ef → fc→ cd, cd→ dg → gh}.

In contrast, a non-trivial non-branching path is

{ab ��� ef ��� gh},

where the path-string (ab♦2ef♦2gh) is a scaffold which covers the whole string.
Under ideal sequencing conditions, non-branching paths immediately correspond
to valid scaffolds. One can also consider in- (resp. out-) branching paths, for which
only out- (resp. in-) degree of nodes in the path with respect to the corresponding
edge type is 1. By similar reasoning, it can be shown that such paths also spell
valid scaffolds.

2.3 Practical Non-branching Paths

In actual sequencing, we distinguish two situations: undetected paired branch-
ing and additional overlap branching. Previously, paired branching was always
detected because of perfect coverage and exact insert size. Now, it is no longer
sufficient for a node to have an unique paired edge in order to unambiguously
extend a scaffold. Weaker conditions can be formulated to detect the absence
of paired branching, given imperfect coverage and variable insert size. First, as-
sume that the insert size deviation is bounded by a constant i. Second, consider
a simple path p of length 2i+ 1, and let n be the central node (pi+1).

Property 1. A paired edge n ��� n′ is considered to satisfy the non-branching
condition if the sub-graph induced by the opposite mates of nodes in p is a simple
path p′ of central node n′ = p′� |p′|

2 �.

In other words, it is possible to detect that p′ is the only genomic region which
appears at approximately an insert distance further than p. The original defini-
tion of non-branching paths can then be extended to include this condition in
place of the paired degree condition.
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Furthermore, sequencing errors and biological variants introduce additional
branching in the graph. The branching structures are referred as bubbles (mul-
tiple paths that starts and ends at the same nodes) and tips (short interrupted
paths) [24]. Graph-based assembly algorithms typically remove bubbles and tips
after the whole graph is constructed. Here, the bubble detection technique pre-
sented in [24] is adapted to also detect tips. As these structures are short, one
can set a maximal length d > 0 for paths within them. A general characteri-
zation of these structure can be made in terms of sub-graph traversal. Observe
that both structures form sub-graphs which start at a single node, and paths
which are not interrupted converge after a certain length.

Property 2. Given a variant sub-graph, the breadth-first tree constructed from
the start node has a single node of depth d.

Non-branching paths are extended to permit traversal in short branching sub-
graphs through overlap edges. Figure 2 illustrates both properties. In summary,
we define practical non-branching paths (PNBP) as follows:

Fig. 2. Practical non-branching path traversal (blue line) of a paired string sub-graph.
Thick lines represent paths of overlap edges. Dashed lines represent paired edges be-
tween reads. Property 1 is used to traverse a gap, as paired reads link together two
simple paths. Property 2 is used to traversal small branching regions (a tip and a
bubble).

– for path nodes n ��� m linked by a paired edge, both n and m are middle
nodes of simple paths of length 2i+ 1 for which Property 1 is verified.

– for path nodes n → m linked by an overlap edge, either the overlap out-
degree of n and the overlap in-degree of m are both 1, or n → m is part of
a sub-graph which satisfies Property 2.

Note that setting i = 0 and d = 1 corresponds to the original definition of non-
branching paths. Practical in-branching (resp. out-branching) paths are defined
similarly, except that Property 1 only needs to be verified for n (resp. m).

2.4 Localized, Parallel Assembly

For large genomes, constructing the classical string graph is a memory-intensive
operation. This issue also applies to paired string graphs, as they contain strictly



44 R. Chikhi and D. Lavenier

more information. Two possible solutions are considered to reduce memory usage.
A compressed FM-index [8] of the reads reduces the memory usage of the string
graph [20]. This approach could be extended to include paired edges, computed
dynamically from indexed paired reads to avoid memory overhead.

Another solution is to perform localized assembly, without initial construction
of the whole paired string graph. The key property of practical non-branching
paths is that only a small sub-graph needs to be explored for each path. We
propose to take advantage of this property to perform assembly both locally and
in parallel. Concretely, a greedy assembly algorithm can start from any read and
construct a sub-graph of the paired string graph on the fly, by following a PNBP
strategy. This is equivalent to splitting the complete paired string graph into
disjoint sub-graphs, each sub-graph corresponds to exactly one scaffold. This
approach induces a memory overhead due to the parallel construction of sub-
graphs, however only a constant number of scaffolds is assembled in parallel at
any given time. To construct each sub-graph, overlaps between paired reads and
pairing information need to be accessed efficiently. Hence, it is required that a
complete index of the reads resides in memory. However, such index occupies
less memory than a string graph. Provided that each worker can access the full
index, embarrassingly parallel construction of scaffolds can be achieved.

While it is technically a greedy algorithm, such approach overcomes the short-
comings of classical greedy algorithms. Except for Taipan [19], which does not
support paired reads nor parallel assembly, most greedy assemblers do not con-
struct a graph to solve local extension ambiguities [4,1,3]. As a consequence,
greedy assemblers stop contigs extension at small biological variations or se-
quencing artifacts. Localized graph-based assembly using Property 2 overcomes
this problem by explicitly performing traversal of such structures.

3 Results

We developed a prototype assembler called Monument based on local construc-
tion of practical in-branching paths. The prototype is implemented in the Python
language with C++ extensions for critical parts. For memory efficiency, a kmer-
based reads indexing structure is used. Specifically, the indexing procedure min-
imizes the number of reads referenced by each kmer, while still maintaining
branching information. For practical in-branching paths, the maximal graph
depth d for genomic variants is set such that any path has genomic length less
than 10 + k. The insert size deviation i is set to half the value of the insert size,
which is a very conservative deviation with respect to actual paired-end data. To
ensure fair comparison with other methods, we implemented a naive gap-closing
procedure which fill scaffolds gaps with any overlap path satisfying insert size
constraints.

Two short reads assemblers based on de Bruijn graphs are compared with
this prototype. The Velvet assembler (version 1.1.03) uses graph simplification
heuristics [24]. The Ray assembler (version 1.3.0) implements a greedy traversal
strategy [3]. The assemblers were run with default parameters and k = 23. By
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setting a similar kmer size, all assemblers, including ours, virtually explore the
same de Bruijn graph.

We first compared assemblers on experimental Illumina short paired reads
from E. coli (SRA SRX000429). This dataset (Dataset 1) contains 10 million
paired reads of length 36 bp and insert size 200 bp. We then investigated the
ability of our method to assemble diploid genomes. To this end, we simulated 3
million paired reads of a diploid genome based on the E. coli sequence (Dataset
2). The wgsim paired reads simulator was used with default parameters [12],
producing 75 bp reads (500 bp inserts) with simulated sequencing errors. As-
sembly results for the datasets are shown in Table 1. To understand why Ray
has difficulties assembling the second dataset, we simulated a third dataset of
reads, similar to Dataset 2 but without variants. This time, Ray obtains a scaf-
fold N50 of 89.4 Kbp and largest scaffold of length 268.5 Kbp. This experiment
confirms that mechanisms for biological variations traversal, such as PNBPs, are
a key requirement for greedy assemblers.

Table 1. Quality of the assemblies of simulated and experimental paired-end reads from
E.coli using Velvet, Ray and our prototype (Monument). The N50 metric measures the
length of the smallest element of the set of largest scaffolds (resp. contigs) which cover
at least 50% of the assembly. Coverage and accuracy of scaffolds are assessed using
evaluation tools from Allpaths [5]. Specifically, scaffolds are divided into chunks of size
less than 10kb. Considering the high coverage of the datasets, each chunk is considered
to be valid if it aligns with more than 99% identity to the reference genome (alignment
with undertermined nucleotides are considered valid).

Dataset Software Contig N50
(Kbp)

Scaffold
N50
(Kbp)

Longest
scaffold
(Kbp)

Coverage
(%)

Accuracy
(%)

Experimental
(1)

Monument 38.0 101.8 236.0 96.4 96.7

Velvet 26.3 95.3 267.9 96.9 99.1

Ray 69.5 87.3 174.4 97.4 98.4

Simulated
with variants

(2)

Monument 113.3 134.1 340.5 91.0 95.0

Velvet 30.8 132.6 327.2 87.9 92.3

Ray 10.2 10.2 41.2 89.2 100.0

We recorded execution time and memory usage during the assembly of the
experimental dataset. The size of the paired reads index is 0.4 GB and peak
memory usage during assembly is 0.6 GB. Velvet and Ray have peak memory
usage of 2.4 GB and 3.2 GB respectively. However, Ray can distribute its index-
ing structure on a cluster. Using 6 threads, our implementation completed the
assembly in 7 minutes, Velvet in 8 minutes and Ray in 16 minutes.

Our implementation can also assemble a scaffold around a specified genomic
region, i.e. perform targeted assembly. This is of particular interest as new
targeted assembly methods (TASR and Mapsembler, both unpublished) only
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produce contigs. Targeted assembly with our prototype is also very fast: one
scaffold is assembled in a few seconds. However, contrary to targeted assem-
blers, the prototype requires the complete reads index to reside in memory.

4 Discussion

In summary, a new de novo assembly framework is formulated by introduc-
ing paired string graphs. The novelty of this framework resides in its ability to
perform localized assembly of scaffolds. Prior to this work, scaffolds were con-
structed from an ordering of contigs, requiring a complete assembly of contigs
to be known beforehand. We show that it is possible to assemble scaffolds lo-
cally around a genomic region by following non-branching paths greedily. This
approach allows to design the first localized assembly algorithm which directly
constructs scaffolds from reads.

Compared to other greedy approaches, our approach takes into account bio-
logical variants. Hence, it does not suffer from degraded contiguity with diploid
genomes. Preliminary benchmark results on simulated and experimental datasets
indicate that this method yields longer scaffolds than two leading short reads
assemblers. We conjecture that scaffolders implemented in popular assemblers
do not take full advantage of the whole contigs graph, as our greedy traversal
obtains comparable results. Additionnally, practical benefits of this algorithm
are twofold. It is embarrassingly parallelizable, as scaffolds can be constructed
independently. It also does not require a large graph to be stored in memory, a
small graph is constructed for each scaffold.

A natural future direction for this work is to compare the prototype with more
existing tools, especially string graphs implementations, on larger datasets. Two
other aspects should also be considered: (1) gap-closing in scaffolds is a key
step for obtaining long contigs. Most complex repeats were not resolved by our
simple path-finding procedure, hence a more elaborate algorithm is needed. (2)
Incorporating mate-pairs with long inserts in genomic graphs is still an unad-
dressed challenge in the literature. These reads are produced with higher insert
size variability and lower coverage than paired-end reads. Mate-pairs cannot be
used in our current framework, because Property 1 almost never holds for such
data. An immediate solution would be to perform re-scaffolding of scaffolds using
mate-pairs links.

As short read sequencing is progressively shifting towards longer reads (over
100 bp), the landscape of assembly software has to adapt to high-coverage, longer
reads. Specifically, de Bruijn graph implementations appear to be unable to
assemble long reads with quality comparable to string graph implementations.
In contrast, string graph-based methods are limited to assembly of low-volume
datasets because of memory constraints. We believe that our methodology will
lead to software able to assemble both short and long reads at any coverage
without sacrificing running time or results quality.
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Abstract. Distance based phylogenetic reconstruction methods use the
evolutionary distances between species in order to reconstruct the tree
spanning them. This paper continues the line of research which attempts
to adjust to each given set of input sequences a distance function which
maximizes the expected accuracy of the reconstructed tree. We demon-
strate both analytically and experimentally that by deliberately assum-
ing an oversimplified evolutionary model, it is possible to increase the
accuracy of reconstruction.

1 Introduction

Distance based methods for reconstruction of phylogenetic trees from biological
sequences usually follow the following four steps: (1) a substitution model of
sequence evolution is assumed; (2) a substitution rate (SR) function Δ is selected
(Δ typically corresponds to additive distances in the assumed model); (3) the(
n
2

)
interspecies distances defined by Δ are estimated from alignments of the n

input sequences; (4) a tree that best fits the estimated distances is constructed
over the n input species.

There are two main sources for inaccuracies in the above reconstruction pro-
cess: (a) a wrong model chosen in (1) could imply that the function Δ selected
in (2) is not additive for the true model; (b) stochastic errors associated with
the estimation of distances from alignments of finite length in (3). In previous
works [9,10] we have shown that most common DNA substitution models (ex-
cept for Jukes-Cantor) have many different additive SR functions with different
patterns of stochastic error. We demonstrated that selecting a function that is
expected to be least noisy for the given input leads to significant improvement
in the accuracy of the reconstructed tree. In this paper we extend this line of
research to cases where the selected model is not the true model. Somewhat sur-
prisingly, we show both analytically and via experiments on real and simulated
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data, that by deliberately assuming an oversimplified evolutionary model and
using a non-additive but less noisy SR function, it is possible to increase the ac-
curacy of reconstruction. This result appears to be related to the following well
known phenomenon: the Maximum Parsimony reconstruction method, which is
not statistically consistent in general, provides a higher reconstruction accuracy
rate in certain cases compared to reconstruction methods that are statistically
consistent (see, e.g., [20,18,6]).

In Section 2 we present the required background and the concept of affine-
additive mappings. In Section 3 we present the concept of deviation from addi-
tivity which measures the deviation of a non-affine-additive mapping from the
closest affine-additive one. Section 4 demonstrates the possible advantage of
using an oversimplified model when reconstructing quartets by the four-points
method. We then present a useful heuristic, based on Fisher’s linear discriminant,
for identifying scenarios in which such oversimplification is useful. In Section 5
we give a brief demonstration of our approach in reconstruction of phylogenies
from real biological sequences.

Note: Due to space limitations, most of the formal analysis and some experimental
results are omitted from this extended abstract and can be found in [4].

2 Background

A DNA substitution modelM consists of a set of stochastic 4×4 transition ma-
trices (describing possible substitution patterns) closed under matrix product
(i.e., P,Q ∈ M → P · Q ∈ M). These matrices serve to describe the substi-
tution process along evolutionary paths in a phylogenetic tree. A model tree in
a substitution model M is an undirected tree T = (V,E) in which each edge
e ∈ E is associated with a transition matrix Pe ∈ M. A model tree T implies
an inter-leaf transition matrix Pij ∈ M for each pair of leaves {i, j} ⊂ L(T ).
In most common substitution models, each substitution matrix P is given as an
exponentiation P = eR of a rate matrix R, where R is a 4 × 4 matrix whose
off-diagonal elements are non-negative, and whose rows sum to 0. A homoge-
neous substitution model is a model defined by a fixed unit rate matrix R. i.e.:
MR = {etR : t ∈ R

+}. Homogeneous model trees are thus defined by a set of
edge-rates {te}e∈E(T ) (te is the evolutionary time associated with e). A substitu-
tion rate (SR) function for a modelM is a non-negative function Δ :M→ R

+

that maps each transition matrix onto a numerical value of “substitution rate”.
An SR function Δ induces the following “dissimilarity mapping” over the leaves
of a model tree T in M: DT

Δ(i, j) = Δ(Pij), for all {i, j} ⊂ L(T ). Of particular
interest in phylogenetic reconstruction are additive SR functions.

Definition 1 (Additive SR function). An SR function Δ is said to be addi-
tive for a substitution model M if for all P,Q ∈M, Δ(PQ) = Δ(P) +Δ(Q).

Let Δ be an additive SR function. Then for each model tree T , the pairwise
distances {DΔ(i, j) = Δ(Pij) : i, j ∈ L(T )} induce an additive metric on T ,
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which associates a positive weight w(e) for each edge e ∈ T . Moreover, the
tree T and the edge-weights {w(e) : e ∈ T } can be restored from the matrices
{Pij : i, j ∈ T }. This fact is at the heart of the common approach for distances
estimation, which starts by obtaining estimates {P̂ij}i,j∈L(T ) of the inter-leaf
transition matrices Pij (through maximum likelihood), and then estimates pair-
wise distances using some additive SR function Δ: D̂Δ(i, j) = Δ(P̂ij). Statistical
consistency of the reconstruction relies on the fact that as the sequence length
grows, the estimated matrices P̂ij converge to the true matrices Pij , and the
estimated distances D̂Δ(i, j) converge to the additive distances DΔ(i, j). Accu-
rate reconstruction of the topology of the tree is guaranteed when the distance
estimation errors are smaller than half the minimal weight of an internal edge
in the tree [1,5].

The above properties of additive SR functions are easily extended to affine
transformation Δaff = aΔ + b, where Δ is additive, a ∈ R

+ and b ∈ R. This
is due to a simple technical observation that such transformations “preserve”
the internal edge-weights of the implied weighted tree [4]. Such affine transfor-
mations of additive SR functions are termed affine-additive mappings, and as
we demonstrate are very useful in analyzing the accuracy and consistency of
non-additive SR functions, which is the main theme of this paper.

2.1 SR Functions for the Kimura 2-Parameter Model

We use Kimura’s two-parameter model (K2P) [13] as a simple case study through-
out the paper. K2P is a DNA substitution model in which each rate matrix is
defined by two parameters: α, β. The α parameter describes the rate of transi-
tion-type (ti) substitutions (A ↔ G, C ↔ T) and the β parameter describes the
rate of transversion-type (tv) substitutions ({A,G} ↔ {C,T}).

MK2P =
{
eRα,β | α ≥ β > 0

}
; Rα,β =

⎛⎜⎜⎝
− α β β
α − β β
β β − α
β β α −

⎞⎟⎟⎠ (1)

We assume a normalization scheme in which each rate matrix is factored as
follows: Rα,β = tRα′,β′ , where t = α + 2β and α′ + 2β′ = 1. We refer to Rα′,β′

and t as the unit rate matrix and evolutionary time (resp.) associated with Rα,β .
The matrix exponentiation eRα,β results in a stochastic transition matrix with
pα indicating the probability of a transition-type substitution and pβ indicating
the probability of a transversion-type substitution. The transformations between
(α, β) and (pα, pβ) are given by:

α = −1
2

ln(1− 2pβ − 2pα) +
1
4

ln(1 − 4pβ) β = −1
4

ln(1 − 4pβ) . (2)

pα =
1
4
(
1 + e−4β − 2e−2α−2β

)
pβ =

1
4
(
1− e−4β

)
. (3)

A homogeneous sub-model ofMK2P consists of all rate matrices proportional
to some unit K2P rate matrix, hence all rate matrices in such a model share
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the same ti-tv ratio R = α
2β ≥ 1

2 . The Jukes-Cantor (JC) model [12] is a special
homogeneous sub-model of MK2P in which R = 1

2 . In this paper we study two
SR functions in MK2P:

ΔK2P(pα, pβ) = −1
2

ln(1− 2pβ − 2pα)− 1
4

ln(1− 4pβ) = α+ 2β . (4)

ΔJC(pα, pβ) = −3
4

ln
(

1− 4
3
(pα + 2pβ)

)
=

3
4

ln
(

1
3
(e−4β + 2e−2α−2β)

)
.(5)

ΔK2P is the common (additive) SR function used in the general context of
MK2P, as suggested in [13]. ΔJC coincides with ΔK2P when the ti-tv ratio is
R = 1

2 , but it is non-affine-additive in all other homogeneous sub-models of
MK2P.

3 Deviation from Additivity in Homogeneous
Substitution Models

In this section we briefly review a general framework for analyzing non-affine-
additive SR functions in a homogeneous substitution model. In a homogeneous
model MR, defined by a unique unit rate matrix R, each rate matrix has the
form tR, and can thus be directly associated with the evolutionary time param-
eter t. It is useful to view an SR function forMR as a one-dimensional function
Δ which maps the evolutionary time t (rather than the matrix etR) to a dissim-
ilarity measure Δ(t). Viewed this way, an SR function Δ is affine-additive for
the homogeneous model if and only if Δ(t) = at+ b for some a ∈ R

+, b ∈ R.
In order to determine whether a non-affine-additive SR function implies con-

sistent reconstruction of a given model tree, we introduce the concept of deviation
from additivity. The deviation of an SR function Δ from a given affine-additive
function at+b in an interval [t0, t1] is defined as 1

a max{|Δ(t)−at−b| : t ∈ [t0, t1]}
(the factor 1

a normalizes the deviation to units of evolutionary time). The devia-
tion of Δ from additivity within [t0, t1] is the minimum deviation of Δ from any
affine-additive function in that interval. Relying on the results of Atteson [1], we
prove in [4] that an SR function Δ can be used to consistently reconstruct the
topology of a model tree when its deviation from additivity in the appropriate
interval (defined by the minimum and maximum inter-leaf evolutionary times of
the tree) is less than 1

2 tmin, where tmin is the evolutionary time associated with
a shortest edge in the model tree. We also show that for many common types of
functions, for instance convex or concave functions, the linear interpolation of
Δ can be used to minimize its deviation.

In our K2P case study, ΔJC is a concave SR function in any homogeneous
sub-model of MK2P. Figure 1a depicts ΔJC and its linear interpolation Δint in
the interval [0.4, 1.4] when the ti-tv ratio is R = 10. X in that figure denotes the
value max{|ΔJC(t)−Δint(t)| : t ∈ [0.4, 1.4]}. Figure 1b shows ΔJC in the same
setting with the SR function Δint + 1

2X , which is the affine-additive function
minimizing the deviation of ΔJC in that interval. In that figure we also plot the
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stochastic error margins, corresponding to the first-order approximation of the
standard deviation of these two functions. This approximation is obtained in
[9] by applying the delta method, and is inversely proportional to the sequence
length (the plots in Fig. 1b assume a sequence length of 500 bp). Note how the
margins of ΔJC are actually more tightly concentrated around its affine-additive
approximationΔint+ 1

2X than the margins of that affine-additive approximation.
This implies that in this setting, distances obtained by using the non-affine-
additiveΔJC are actually more likely to be near-additive than distances obtained
by using the additive SR function ΔK2P.

Δ
Δ
Δ Δ

Δ
Δ σ(Δ )
Δ
Δ σ(Δ )

Fig. 1. Deviation from additivity and stochastic error. (a) ΔJC is portrayed
(green) in the homogeneous sub-model of MK2P with R = 10 in the interval t ∈
[0.4, 1.4]. Its linear interpolation in that interval, Δint = At+ b0, is plotted in blue, and
the maximum difference between the two functions is designated by X. The deviation
of ΔJC from additivity within this setting can be shown to be X

2A
(A being the slope

of Δint). (b) The affine-additive SR function minimizing its deviation from ΔJC is
Δint + 1

2
X. The stochastic error margins for the two SR functions, assuming sequence

length of 500 bp, are indicated by the area between dashed lines.

4 Performance of Non-additive SR Functions in Quartet
Resolution

In this section we address the specific task of quartet reconstruction. We assume
that the true model tree is a homogeneous K2P quartet with ti-tv ratio R >
1
2 , and compare the performance of the non-additive function ΔJC with the
performance of ΔK2P (or an affine transformation of it). The topology of a
quartet spanning four taxa {1, 2, 3, 4} is represented by split notation (ij|kl)
(where {i, j, k, l} = {1, 2, 3, 4}), indicating that the internal edge of the quartet
separates i, j from k, l. The four-point method (FPM) [23,5] resolves this split
using the six observed pairwise distances {d̂ij : {i, j} ⊂ {1, 2, 3, 4}}: it first
partitions the six observed distances into three sums d̂12 + d̂34, d̂13 + d̂24, and
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d̂14 + d̂23, and then determines the quartet split according to the minimal sum
(the sum d̂ij + d̂kl corresponds to the split (ij|kl)).

Figure 2 demonstrates the effect of the concavity of ΔJC on the accuracy of
the FPM on two types of quartets. Both types have an internal edge with length
ti, two long external edges with length tl, and two short external edges with
length ts. In both types the quartet split is (12|34). In type A quartets (Fig. 2a),
the short edges are on one side of the split and the long edges are on the other
side. In this case, the sum associated with the split (d12 + d34) is of the smallest
and largest inter-leaf distances. The concavity of ΔJC increases the separation
between this sum and the other two competing sums, leading to an improvement
in reconstruction accuracy. The other quartet configuration (type B; Fig. 2b) has
a short edge and a long edge on both sides of the split. In this case, the interval
of interpolation is [d13, d24], and the distance d12 = d34 is in the center of this
interval. Thus the concavity of ΔJC decreases the separation between the sums
d13 + d24 and d12 + d34 by approximately twice the deviation from additivity
of ΔJC in that range. When the deviation from additivity exceeds 1

2 ti, the sum
d13 + d24 becomes the minimal sum, and ΔJC becomes inconsistent. Type B
quartets, which are sometimes termed Felsenstein quartets, provide a worst case
scenario for quartet resolution by a concave SR function.

Interestingly, ΔJC ends up performing better than ΔK2P even on many of
these “worst case” quartets, since its smaller stochastic noise compensates for

Fig. 2. Performance of the Four Point Method using ΔJC on K2P quartets
with ti-tv ratio R = 2. The concave non-additive SR function ΔJC is shown (solid
red line) in the interval [t0, t1], where t0 and t1 are the smallest and largest of the six
pairwise distances (resp.). The solid blue line shows the linear interpolation Δint =
At + b0 of ΔJC in the interval [t0, t1]. Horizontal bars correspond to half of each of the
three sums computed by FPM under the two SR functions (see legend to the right).
(a) In quartets of type A, the deviation from additivity of ΔJC increases its FPM
separation, compared to that of Δint. (b) In quartets of type B, the deviation from
additivity of ΔJC decreases its FPM separation, compared to that of Δint.
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ts

ti
tl

ts

tl

Δ
Δ

Δ
Δ

Fig. 3. Performance of ΔJC and ΔK2P on a series of quartets of type B. A
series of homogeneous K2P quartets is considered (left illustration), with ti-tv ratio of
R = 5, and edge rates ti = 0.2, tl = 1, and ts ∈ [0.2, 1]. (a) Reconstruction accuracy
using FPM and either ΔJC (red) or ΔK2P (blue) plotted against tl/ts. Accuracy ra-
tio is estimated using 100,000 independent replicates for each parameter setting and
sequences of length 1000 bp. (b) Fisher’s Linear Discriminant (FLD) for the sums cor-
responding to splits (12|34) and (13|24) under either ΔJC (red) or ΔK2P (blue) plotted
against tl/ts. For each SR function Δ ∈ {ΔJC, ΔK2P}, we plot FLD(Δ)/

√
k, where k

is the sequence length.

the deviation from additivity (see also Fig. 1). This is demonstrated in the
experiment described in Figure 3a, where series of homogeneous K2P quartets
of type B are considered. For each quartet in the series, we generated a total of
100,000 simulations using 1000 bp long sequences, and we recorded the number
of times (out of 100,000) it was accurately resolved using FPM and each of
the two SR function (ΔJC and ΔK2P). Despite its deviation from additivity,
ΔJC outperforms the additive SR function ΔK2P on many of these quartets.
Only when the deviation from additivity is sufficiently large (tl/ts > 3.6 in these
experiment),ΔK2P outperformsΔJC. We note that as the sequence length grows,
both methods become more accurate, but their relative behavior remains pretty
much the same, with a similar crossover point around 3.6 (results not shown).

4.1 Using Fisher’s Linear Discriminant

In order to provide a better understanding (and ability to predict) the results
of similar experiments, we present a simple and general framework based on
Fisher’s linear discriminant (FLD). FLD measures the separation between nor-
mal random variables X ∼ N(μ1, σ1) and Y ∼ N(μ2, σ2) using the following
measure ([7,2]):

FLD(X,Y ) =
|μ1 − μ2|√
σ2

1 + σ2
2

. (6)

We use FLD to measure the separability of the distance sum corresponding
to the true split (which should be the minimal sum for consistent SR functions)
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from the two remaining sums. For the expectation μ of each sum we use the
true distances as computed by the SR function on the actual model parameters.
For the variance σ2, we use the sum of the approximate variances of the two
distances involved in the sum. We expect that an SR function which provides a
larger separation of the smallest sum from the two other sums will imply a better
reconstruction probability. Figure 3b plots FLD of ΔJC and ΔK2P associated
with the comparison of the true split (12|34) and the “ΔJC favored split” (13|24)
along the quartet series considered in Figure 3a. Since both expressions are
proportional to square-root of the sequence length (

√
k), the comparison of the

two SR functions using FLD is independent of sequence length. We designate
this by plotting FLD(Δ)/

√
k. As shown, the equilibrium point of the Fisher

discriminants of ΔJC and ΔK2P is pretty close to the equilibrium point of the
accuracy of reconstructions of these two functions. This is despite the fact that
the formal conditions required from FLD (namely that the two values would be
independent normal variables) are not strictly met.

Perhaps the most useful feature of this framework is the natural way in which
it teases apart the stochastic error from the deviation from additivity. If we de-
note the enumerator of FLD by SEP and its denominator by NOISE, then
a comparison of FLD estimates between two SR function Δ1, Δ2 can be repre-
sented as a ratio of ratios:

FLD(Δ1)
FLD(Δ2)

=
SEP (Δ1)
SEP (Δ2)

/
NOISE(Δ1)
NOISE(Δ2)

. (7)

In Figure 4 we compare the SEP and NOISE ratios for ΔJC and ΔK2P for
the series of type B quartets assumed in the previous experiment, with ti-tv ratio

Fig. 4. SEP and NOISE ratios. SEP (ΔJC)/SEP (ΔK2P) (dashed) and
NOISE(ΔJC)/NOISE(ΔK2P) (dotted) plotted against tl/ts for the series of homoge-
neous K2P quartets of type B assumed in Fig. 3, with ti-tv ratio of R = 5 (left) and
R = 2 (right).
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of R = 5 (left) and ti-tv ratio of R = 2 (right). These plots indicate that the
NOISE ratios are constant throughout this series. This is because the stochastic
noise is dominated by the longest path in the quartet (the one connecting taxa
2 and 4), and that path does not change throughout the series. Conversely,
the SEP ratio is reduced as the ratio tl/ts increases, due to an increase in the
deviation of ΔJC from additivity. This reduction in the SEP ratio becomes more
dramatic as the ti-tv ratio grows. More examples of this type of analysis using
the FLD are presented in [4].

5 Inferring Trees from Genomic Sequences

The previous section demonstrates the usefulness of non-additive SR functions
in a controlled setting where the trees are quartets and the true substitution
model is simple and known. In order to test the usefulness of this approach in
more realistic scenarios we conducted several experiments on data simulated on
larger trees, as well as experiments on real genomic data. A complete description
of these experiments is presented in [4]. In this section we summarize the main
findings from our experiment on genomic data.

Our genomic data set is based on a set of 31 clusters of orthologous groups
(COGs) compiled by Ciccarelli et al. [3]. These gene families were selected to
capture the evolutionary history of the species from which they are extracted. We
identified 163 bacterial species which contained high quality alignments across
the 31 gene families. The 31 alignments were concatenated to form one long
163-way multiple sequence DNA alignment. The full technical details on the
procedure of obtaining this alignment are provided in [4]. As a reference tree for
comparing the reconstructed trees, we used the phylogenetic tree of microbial
species provided by the Living Tree Project [22]. This tree, spanning 8,029 species
at the time of writing, is based on widely accepted analysis of the small subunit
(SSU) 16S RNA. Although it is based on a very small genomic region, its careful
curation makes it a reasonable proxy for the true species tree. A subtree spanning
our 163 bacterial species was extracted from this tree and treated as the true
phylogenetic tree in our analysis.

We used the base set of 163 species to generate 40,000 random 10-species
sub-alignments. In the subsequent reconstruction process only four-fold degen-
erate sites of these sub-alignments were used, omitting those that contained gap
symbols. Each sub-alignment was used to compute three distance matrices – one
under ΔJC, one under ΔK2P, and one under the LogDet SR function ΔLogDet.
The LogDet function [19,15] is used here since it is additive in the general time-
reversible model, which is a general substitution model containing many common
models, such as K2P. The neighbor joining algorithm (NJ) [17,21] was then ap-
plied to the three matrices and the resulting trees were compared to the reference
LTP tree according to the Robinson-Foulds (RF) distance. For comparison, we
used a fourth reconstruction method that is a-priori expected to be better suited
than the other three in dealing with biological sequences. This reconstruction
method (termed BIONJ-GTR) uses the BIONJ reconstruction algorithm [8] on
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distances obtained under the general time-reversible model with invariant sites
and Gamma distribution of rates across sites (GTR+Γ+I) [14,16]. We use the
PhyML package [11] to infer this tree for each subset.

Our results show that in 83% of the 40, 000 subsets, the tree inferred using
ΔJC had an equal or lower RF-distance to the reference tree than the tree re-
constructed by BIONJ-GTR. Moreover, ΔLogDet was, by far, the least accurate
of all methods. These findings endorse our main argument that distances cor-
responding to better-fitting models can lead to less accurate reconstruction. In
order to sort out the results obtained across the 40,000 subsets, we partitioned
them according to the RF-distance of the BIONJ-GTR tree from the reference
tree. Results are shown in Figure 5. The mean accuracy of ΔJC is higher than
that of ΔK2P and ΔLogDet across all partitions. The advantage of ΔJC over the
other two methods seems to slightly increase with the accuracy of the BIONJ-
GTR tree. This indicates that over-simplified distance estimation techniques are
especially beneficial when the sequence data conveys a stronger phylogenetic
signal.
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Fig. 5. Evaluation against BIONJ-GTR tree. The 40,000 subsets of size 10 were
partitioned according to the the RF-distance of the tree reconstructed using BIONJ-
GTR from the reference LTP tree (X axis). The Y axis describes the difference between
the RF-distance associated with a particular SR function (ΔK2P, ΔJC, or ΔLogDet) and
the RF-distance associated with BIONJ-GTR. The bar plot in the background depicts
the number of subsets in each partition.

6 Discussion and Outlook

In this paper we study basic properties of evolutionary distance estimation using
SR functions and how they affect the accuracy of phylogenetic reconstruction.
When studying accuracy of statistical estimates, it is important to consider both
the bias of the estimate and its variance (often referred to as stochastic noise).
In some cases it might be worth trading off variance for bias, resulting in a
slightly skewed estimate which is less noisy. A challenge in carrying out such
a study for statistical estimation of evolutionary distances is that bias is not
completely well-defined in this case, since the “true” evolutionary distances can
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take many forms; any affine-additive SR function is a valid one for the purpose
of phylogenetic reconstruction.

We introduce the concept of deviation from additivity to quantify the bias
of an SR function in a homogeneous substitution model. We demonstrate this
analytic framework by studying the bias of the Jukes-Cantor SR function (ΔJC)
in Kimura’s two parameter model when the ti-tv ratio is strictly greater than 1

2 .
We show that even when the ti-tv ratio is as high as 5 or 10, this bias is small
enough such that the reduced variance of ΔJC makes it overall more accurate
than Kimura’s SR function (ΔK2P), which has no bias. We show this using
analytic bounds as well as detailed simulation experiments on quartet trees.

These results were also affirmed in a round of experiments on real biological
sequences. In the case of real data, the true substitution model is likely to be
very complex, and all common distance formulas are expected to have some
bias. Our results show that simpler SR functions with lower variance lead to
more accurately reconstructed trees on average, compared to SR functions that
are expected to have reduced bias but higher variance.

With the devised framework at hand, the study of distance estimation can
be extended in different directions. More complex models and non-additive SR
functions could be studied, and improved methods for the analysis of biologi-
cal sequences could be established. Additionally, there is a need for extending
the FLD-based heuristic to trees larger than quartets. Finally, incorporating
our methods in existing software for phylogenetic reconstruction looks like a
promising venue for increasing the accuracy of distance-based phylogenetic re-
construction at low (or even negative) computational cost.
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Abstract. Generalizations of the strict and loose consensus methods to the su-
pertree setting, recently introduced by McMorris and Wilkinson, are studied. The
supertrees these methods produce are conservative in the sense that they only pre-
serve information (in the form of splits) that is supported by at least one the input
trees and that is not contradicted by any of the input trees. Alternative, equiv-
alent, formulations of these supertrees are developed. These are used to prove
the NP-completeness of the underlying optimization problems and to give exact
integer linear programming solutions. For larger data sets, a divide and conquer
approach is adopted, based on the structural properties of these supertrees. Exper-
iments show that it is feasible to solve problems with several hundred taxa and
several hundred trees in a reasonable amount of time.

1 Introduction

Supertrees synthesize the information from a collection of phylogenetic trees for differ-
ent partially overlapping sets of taxa — the input trees — into a comprehensive phy-
logeny for all the species — a supertree. Beginning with the paper by Gordon where
supertrees were introduced [13], a variety of supertree construction methods have been
proposed (for surveys, see [4,18]). We cannot discuss supertree construction without re-
ferring to matrix representation with parsimony (MRP) [2], by far the most commonly
used method. While MRP often performs well [5], it is essentially an ad hoc adaptation
of parsimony to the supertree setting. This is reflected in the fact that MRP supertrees
may display relationships that are not supported by any of the input trees [12].

Here we consider methods based on splits, where a split is the bipartition of the taxon
set induced the removal of an edge from a tree (see Section 2). Following [22], we say
that a supertree method is liberal if it allows the inclusion of splits that are contradicted
by some subset of the input trees, provided a certain optimization criterion is met. Con-
servative methods produce supertrees that only display splits that are not contradicted
by any input tree. Previous work [8,9,10,11] has characterized the mathematical and
computational properties of majority-rule supertrees, a liberal approach. Recently, Mc-
Morris and Wilkinson introduced two conservative methods, strict and loose supertrees
[15], which generalize strict and loose consensus trees.

In a loose supertree, each split is compatible with every input tree and is supported by
at least one input tree. Each split in a strict supertree must meet the same requirements
as in a loose supertree, plus one additional property: Every input tree either supports the
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split or it has no say on it, because its leaf set does not have sufficient overlap with both
sides of the split (i.e., the split is trivial in the input tree — see Section 2). The formal
definitions of strict and loose supertrees are more complex than this, since one must be
careful in expressing the notions of support and conflict in the context of partial overlap
among trees (see Section 3). One appealing property of strict and loose supertrees is
that, in a well-defined sense, they express the least that we could expect from any split-
based supertree method. Thus, they offer a baseline against which other methods can
be compared. Furthermore, while the requirements imposed by their formulation might
seem stringent, conservative supertrees can be quite well-resolved.

We provide alternative and equivalent definitions of loose and strict supertrees, based
on Robinson-Foulds distance, along the lines of those proposed for majority-rule su-
pertrees [8,10]. They rely on the idea of filling in the input trees with the taxa missing
in them in such a way as to maximize the amount of agreement. There may be mul-
tiple ways to achieve this; the supertree returned is the strict consensus of all optimal
solutions. Based on our formulations, we show that obtaining strict and loose conserva-
tive supertrees is NP-complete. The new definition also enables us to express supertree
construction as an optimization problem based on Robinson-Foulds distance, which
we can solve exactly using integer linear programming (ILP). This method can handle
problems of moderate size, with at most 40 taxa and fewer than five trees. For larger
data sets, we turn to heuristics.

The idea behind our heuristics is simple: If we were somehow able to guess any of
the splits in the strict or loose supertree, we could break down the original problem
into two subproblems, one for each side of the split. Since we do not know the splits
in advance, we adopt a greedy approach and seek a split that at each step optimizes a
function based on Robinson-Foulds distance. The computational experience reported
here shows that the downsizing effect of divide and conquer can drastically reduce the
running time, allowing us to solve problems with hundreds of taxa and trees.

While the above divide-and-conquer technique performs extremely well, it is still
only a heuristic. To increase our confidence in the solution, we verify each of its edges,
checking to see if there is a better tree that does not include it. We also attempt multi-
ple runs with different decompositions. Even with all these safeguards, our supertrees
may not be precisely the strict or loose supertrees originally defined by McMorris and
Wilkinson. Nevertheless, the constraints we impose guarantee that our heuristically-
built supertrees are conservative. That is, every loose supertree that we generate has the
property that each of its splits is supported by some tree and contradicted by none. Also,
every strict supertree we generate has the property that for each input tree, each of the
splits of the supertree is either trivial in the tree or is supported by the tree.

Robinson-Foulds distance has been used to build supertrees in other work, including
the aforementioned majority-rule supertrees, and in the rooted and unrooted Robinson-
Foulds supertrees of [1,7]. None of these methods can be called conservative. Indeed,
for technical reasons, the Robinson-Foulds supertrees of [1,7] are required to be fully
resolved, which guarantees many unsupported splits. Closer to the spirit of the methods
studied here is PhySIC [16]. While PhySIC is based on triplets, not splits, and thus
assumes rooted input trees, its underlying principles ensure conservativeness.
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There is some debate about the right way to measure the quality of a supertree. Swen-
son et al. [21] argue that evaluating supertree methods solely on how accurately they
reflect the input trees can be problematic, as it may not say that much on how faithfully
they reconstruct the true tree. While these conclusions are based on simulations under
a particular set of experimental conditions, they do raise significant issues for methods
such as the ones studied here. Perhaps it is better to view conservative supertrees as a
way to summarize phylogenetic data in a principled manner rather than as a method to
somehow compensate for errors in the input trees. In our opinion, there is room for both
approaches in a phylogenetic toolbox.

2 Preliminaries

A phylogenetic tree is an unrooted leaf-labeled tree where every internal node has de-
gree at least three. We will use “tree” and “phylogenetic tree” interchangeably. The leaf
set of a tree T is denoted by L (T ). Each leaf is called a taxon (plural, taxa).

A profile is a tuple of trees P = (t1, . . . ,tk). Each ti in P is called an input tree. Let
L (P) =

⋃k
i=1 L (ti) and n = |L (P)|. Tree T is a supertree for P if L (T ) = L (P).

A split is a bipartition of a set. The split whose parts are A and B is denoted A|B. The
order here does not matter, so A|B is the same as B|A. Split A|B is nontrivial if each of
A and B has at least two elements; otherwise it is trivial. Split A|B extends another split
C|D if A⊇C and B⊇ D, or A⊇ D and B⊇C.

Tree T displays split A|B if there is an edge in T whose removal gives trees T1 and
T2 such that A ⊆L (T1) and B ⊆L (T2). A split A|B is full with respect to a tree T if
A∪B = L (T ).

The set of all nontrivial full splits displayed by T is denoted Spl(T ). It is well known
that the full splits of T uniquely identify T [19, p. 44]. Thus, we will often view trees as
sets of splits and write “A|B ∈ T ” if tree T displays split A|B. A tree T with Spl(T ) = /0
is called a fan.

Let S ⊆L (T ). The restriction of T to S, denoted T |S, is the phylogenetic tree with
leaf set S such that

Spl(T |S) = {A∩S|B∩S : A|B ∈ Spl(T ) and |A∩S|, |B∩S|> 1}.
Let T ′ be a phylogenetic tree such that S = L (T ′) ⊆ L (T ). Then, T displays T ′ if
Spl(T ′)⊆ Spl(T |S). Trees T1 and T2 are compatible if there exists a tree T such that T
displays T1 and T2.

A set of splits is compatible if there is a tree T that displays them all. Tree T is
compatible with a set of splits X if there is a tree T ′ that displays T and X .

Let t be an input tree in a profile P, T be a supertree for P, and A|B ∈ T . Let A′ =
A∩L (t) and B′ = B∩L (t). We say that t supports A|B if A′|B′ ∈ t; t is in conflict with
A|B if A′|B′ is incompatible with t.

Let T1 and T2 be two phylogenetic trees over the same leaf set. The symmetric-
difference distance, also known as Robinson-Foulds distance [17], between T1 and T2,
denoted d(T1,T2), is defined as

d(T1,T2) = |(Spl(T1)\Spl(T2))∪ (Spl(T2)\Spl(T1))| .
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The asymmetric difference from T1 to T2, denoted AD(T1,T2), is defined as

AD(T1,T2) = |(Spl(T1)\Spl(T2))|
Rooted phylogenetic trees can be viewed as a special case of unrooted trees. That is,

we can view a profile of rooted trees as unrooted trees, all of which have a common
taxon called the root. Thus, in a split in a rooted tree, one of the two parts must contain
the root; the part that does not contain it is called a cluster.

The consensus problem is the special case of the supertree problem where the profile
P = (T1, . . . ,Tk) consists of trees that have the same leaf set. The strict consensus of P,
denoted Str(P) is the tree that displays exactly the full splits that are in every tree in the
profile. The loose consensus of P, denoted Loose(P), is the tree that displays exactly
the full splits that are in some tree of P and compatible with every tree in P.

3 Strict and Loose Supertrees

McMorris and Wilkinson [15] defined strict and loose supertrees using asymmetric dis-
tance as follows. Let P = (t1, . . . ,tk) be a profile and S be a supertree for P. Define
AD−(S,P) = ∑k

i=1 AD(S|Li,ti) and AD−(P,S) = ∑k
i=1 AD(ti,S|Li). Define the follow-

ing two sets of candidate supertrees: σ = {S : AD−(S,P) = 0 and L (S) = L (P)}
and λ = {S : S is compatible with P and L (S) = L (P)}. The strict supertree for P,
denoted Strs(P), is the strict consensus of the supertrees in the set σ∗ = {S ∈ σ :
AD−(P,S) is minimum}. The loose supertree of P, denoted Looses(P), is the strict con-
sensus of all trees in the set λ ∗ = {S∈ λ : AD−(P,S) is minimum}. It can be shown that
(i) each split in Looses(P) is supported by at least one tree in P and is compatible with
every tree in P and (ii) for every split A|B in Strs(P) and each tree t in P, it must be the
case that either t supports A|B or A|B is trivial in t.

We now develop alternative definitions of strict and loose supertrees based on sym-
metric distances and on two different notions of the span of a tree. Let t be a tree in
a profile P. The graft/refine span of t is the set 〈t〉gr of supertrees of P that refine t;
i.e., 〈t〉gr = {T : T displays t and L (T ) = L (P)}. The graft-only span of t is the set
〈t〉g of all supertrees of P obtained by adding leaves and splits to t without refining the
original splits in t. That is, 〈t〉g = {T : T |L (t) = t and L (T ) = L (P)}. Observe that,
by definition, 〈t〉g⊆ 〈t〉gr. In particular, in the consensus setting (where L (t) = L (P)),
〈t〉g = {t}, while 〈t〉gr includes all the refinements of t. The graft-only span of a profile
P is 〈P〉g = (T1, . . . ,Tk) where Ti ∈ 〈t〉g for every i. The graft/refine span of a profile P
is 〈P〉gr = (T1, . . . ,Tk) where Ti ∈ 〈t〉gr for every i.

The score of a profile R = (T1, . . . ,Tk) of trees over the same leaf set, denoted
score(R), is defined as score(R) = ∑k

i=1 d(Str(R),Ti). Now, let P be an arbitrary pro-
file. Let R∗ be the set of all R ∈ 〈P〉g such that score(R) is minimum. For each R ∈R∗,
we refer to Str(R) is an optimal strict candidate supertree (strict OCT) for P. An opti-
mal loose candidate supertree (loose OCT) for P is defined analogously, with “strict”
replaced by “loose” and “〈P〉g” replaced by “〈P〉gr”.

Theorem 1. For any profile P, Strs(P) is the strict consensus of all strict OCTs for P
and Looses(P) is the strict consensus of all loose OCTs for P.1

1 Note the deliberate use of strict consensus for both strict and loose supertrees.
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Theorem 1 gives an alternative perspective on strict and loose supertrees. The use of
the graft-refine span in loose supertrees implies that Looses(P) can contain a split that
is not supported by all the input trees, as long as it is supported by one tree and com-
patible with all the trees. On the other hand, the use of the graft-only span in strict
supertrees implies that a split can appear in Strs(P) only if, for each input tree, the split
is either supported by that tree or it becomes trivial when reduced to the leaf set of that
tree. These facts give an alternative justification to the observation that strict and loose
supertrees generalize strict and loose consensus trees [15]. Formally:

Theorem 2. For any profile P where the input trees have identical leaf sets, Strs(P) =
Str(P) and Looses(P) = Loose(P).

Thus, we henceforth drop the subscript “s” from the notation for strict and loose su-
pertrees and simply write “Str(P)” and “Loose(P)”.

It follows from their definitions that the loose and strict supertrees of a profile are
compatible with every input tree. Indeed, each split in the strict or loose supertree is
supported by at least one input tree and in conflict with no input tree. Rather counterin-
tuitively, however, there exist profiles for which the strict supertree contains splits not
present in the loose supertree, something that is never true in the consensus setting.

The next result can be proved by reduction from the quartet compatibility problem,
which is known to be NP-complete [20].

Theorem 3. There is no polynomial-time algorithm to construct strict or loose OCTs
unless P = NP.

4 ILP Formulations

4.1 Formulations Based on the Restricted Span

Our first ILP formulation expresses the task of finding a strict or loose OCT (see Sec-
tion 3) as an optimization problem.

The restricted span of a tree t in a profile P, denoted 〈t〉r, is the set of all supertrees
T for P such that every nontrivial split in T extends a distinct nontrivial split in t [10].
Note that 〈t〉r ⊆ 〈t〉g ⊆ 〈t〉gr and that if T ∈ 〈t〉r, then |Spl(T )|= |Spl(t)|. The restricted
span of a profile P = (t1, . . . ,tk), denoted 〈P〉r is the set of all profiles R = (T1, . . . ,Tk)
such that Ti ∈ 〈ti〉r for i ∈ {1, . . . ,k}. As shown in [10], the set of all profiles in the
restricted span of P can be nicely expressed using integer linear constraints. We now
summarize the main ideas.

For each j ∈ {1, . . . ,k}, let m j be the number of nontrivial splits in t j. A matrix
representation of t j is a n×m j matrix M(t j) whose columns correspond to the nontrivial
splits of t j. Suppose column i of M(t j) corresponds to split A|B in t j and let x be a taxon
in L (P). Then, Mx,i(t j) = 1 if x ∈ A, Mx,i(t j) = 0 if x ∈ B, and Mx,i(t j) =? otherwise.
Let m = ∑k

j=1 m j. A matrix representation of P, denoted M(P), is a n×m matrix M(P)
obtained by concatenating matrices M(t1) through M(tk).

A legal fill-in of M(P) is a matrix M′ obtained by replacing each “?” in M(P) with
a “1” or a “0”, in such a way that M′ = M(R) for some R ∈ 〈P〉r. Clearly, for every
R ∈ 〈P〉r there is a legal fill-in corresponding to R. For each row x and column i, create
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a binary fill-in variable Fxi if Mxi(P) =?. It is straightforward to write integer linear
constraints to ensure the fill-in variables are assigned values that yield a legal fill-in of
M(P). The main function of these constraints is to avoid the “four gametes condition”,
so that, for each i ∈ {1, . . . ,k}, the filled-in submatrix for input tree ti corresponds to a
tree in 〈ti〉r (for details, see [10]). The size of the ILP is O(nm2).

To obtain strict and loose supertrees from the restricted span, we use a variation on
a technique from [10]. The first observation is that it suffices to have an ILP for finding
one loose or strict OCT. A verifier is a procedure that takes a loose or strict OCT T
and any split A|B ∈ T and determines if there is another OCT T ′ that does not contain
A|B. By Theorem 1, each split in Loose(P) (Str(P)) must be in every loose (strict) OCT
T . Thus, if the verifier answers “yes” when given an OCT T and some split A|B ∈ T ,
A|B is not in Loose(P) (Str(P)). Therefore, by repeatedly applying the verifier on an
OCT, discarding any splits that do not pass the test, we are left with the loose (strict)
supertree. As discussed in [10], given an ILP for finding an OCT, we can implement
a verifier by putting O(mn) additional variables and constraints on the original ILP
requiring that A|B is not displayed. If the resulting ILP has a higher objective value,
then A|B ∈ Loose(P) (Str(P)); otherwise, A|B /∈ Loose(P) (Str(P)).

We now describe ILPs for finding loose and strict OCTs based on the restricted
span. The key idea is to add implicitly certain splits to the profiles R ∈ 〈P〉r. Let us
consider loose OCTs first. Suppose that R = (T1, . . . ,Tk) is a profile of trees over the
same leaf set. Then, the loose completion of R is the profile R′ = (T ′1 , . . . ,T

′
k ) ∈ 〈R〉gr,

where T ′i = Ti∪Loose(R). Let R∗L(P) be the set of all profiles G such that G is the loose
completion of some R ∈ 〈P〉r and score(G) is minimum. The proof of the next result is
along the lines of those of Theorems 3 and 4 of [10].

Theorem 4. Let P be an arbitrary profile. Then for every G ∈R∗L(P), Str(G) is a loose
OCT.

Let G be the loose completion of some R ∈ 〈P〉r. Observe that score(G) equals the
sum over all trees t in R of the number of splits in t that are not in Loose(R). The
reason is that all loose splits of R are in every tree in G and, thus, do not contribute
to the total distance from G to Str(G). This observation allows us to compute score(G)
directly from R, without constructing G explicitly. To do this, we add to our ILP a binary
variable wi for each column i of M(P), and create additional variables and constraints so
that, for a given fill-in of M(P), we have wi = 1 if and only if the corresponding filled-
in column (split) is compatible with every other column. I.e., wi = 1 if and only if the
resulting split is in the loose consensus. The objective function becomes ∑m

i=1(1−wi).
For strict supertrees, let RL(R) be the set of all splits A|B of L (P), such that A|B ∈

Loose(R) and, for every tree t in the original profile P, either A|B is supported by t or
A|B is trivial when restricted to L (t) The RL-completion of R = (T1, . . . ,Tk) ∈ 〈P〉r is
R′ = (T ′1 , . . . ,T

′
k ) where T ′i = Ti ∪RL(R). Let R∗S(P) be the set of all profiles G such

that G is the RL-completion of some R ∈ 〈P〉r and score(G) is minimum. Similarly to
Theorem 4, we have the following.

Theorem 5. Let P be an arbitrary profile. Then for every G ∈R∗S(P), Str(G) is a strict
OCT.
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In analogy to loose supertrees, for any R ∈ 〈P〉r, the value of score(G) for the RL-
completion G of R can be found without constructing G explicitly. The only change
with respect to the loose case is that now the splits present in G but not in R must not
only be in Loose(R), but they must also be supported by or be trivial in every underlying
input tree. This condition can again be expressed with integer linear constraints.

4.2 ILPs for Finding Good Splits

The asymmetric distance-based formulations of conservative supertrees (see [15] and
Section 3) can also be expressed using integer linear programming. This approach tends
to yield larger problems than the one based in restricted spans, because the feasible
solutions represent trees whose splits are completely unknown. Nevertheless, restricted
versions of this problem can be very useful in finding splits that allow us to decompose
the original problem into smaller subproblems. We consider two problems.

1. Find a nontrivial split A|B of L (P) such that (i) for every input tree t, A|B is either
supported by t or is trivial in t, and (ii) the tree S whose only nontrivial split is A|B
minimizes AD−(P,S).

2. Find a nontrivial split A|B of L (P) that is compatible with every input tree and such
that the tree S whose only nontrivial split is A|B minimizes AD−(P,S).

Problem 1 is used in computing strict supertrees; problem 2 helps in finding loose
supertrees. We refer to a split A|B that answers problems 1 or 2 as good. In Section 5,
we discuss how a good split A|B can be used to break down a conservative supertree
problem on a profile P into two subproblems, one for the restriction of P to A, the other
for the restriction of P to B. While there is no guarantee that A|B is part of a strict or
loose OCT, in practice, this approach gives an excellent heuristic. Furthermore, if there
is no good split, then we can be certain that the strict (or loose) supertree is a fan.

To formulate the problem of finding a good split, define a binary vector y=(y1, . . . ,yn),
indexed by L (P). Each assignment of values to the entries of y corresponds to a split of
L (P), with yi = y j if and only if taxa i and j are on the same side of the split. Constraints
are needed to guarantee nontriviality; i.e., that y must contain at least two 0’s and two
1’s. Each input tree ti is represented via the matrix M(ti) defined in Section 4.1.

The conditions on split A|B imposed by problems 1 and 2 can easily be formulated
as integer linear constraints. For every i ∈ {1, . . . ,k} we need a binary variable xi, as-
sociated with input tree ti, that is 1 if and only if (A∩L (ti))|(B∩L (ti)) ∈ ti. This
information is used to evaluate the objective function (given by asymmetric distance).
The value of xi can be expressed using integer linear constraints in terms of y and M(ti).

5 A Divide-and-Conquer Heuristic

The ILP formulation of Section 4.1 is exact, but is limited in the range of problems it can
handle (see Section 6). We have found that good splits (in the sense of Section 4.2) yield
an excellent heuristic approach to break the input profile into manageable subproblems.
The same scheme, detailed in Algorithm 1, applies to both strict and loose supertrees.
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Algorithm 1. DIVIDEANDCONQUER(P,Avoid)
1: if (P,Avoid) is sufficiently small then
2: Find an OCT T for (P,Avoid) using the span-based ILP of Section 4.1
3: Let z be the objective value of T
4: return [T,z]
5: Search for a good split A|B for (P,Avoid) using the method of Section 4.2
6: if no such split exists then
7: Let T be a fan on L (P)
8: Let z = ∑{|Spl(t)| : t is an input tree in P}
9: return [T,z]

10: Create subproblems (PA,AvoidA) and (PB,AvoidB)
11: [TA,zA] = DIVIDEANDCONQUER(PA,AvoidA)
12: [TB,zB] = DIVIDEANDCONQUER(PB,AvoidB)
13: Combine TB and TB to create T
14: z = zA + zB
15: return [T,z]

The input to Algorithm 1 is a profile P and a set Avoid of splits. The goal of the
algorithm is to find a supertree T for P that does not display any of the splits in Avoid.
The algorithm also returns T ’s objective value, z. Initially, Avoid is empty, but as the
algorithm progresses, splits are added to the set. The threshold below which a problem
is considered “small enough” in step 1 is determined empirically, as described in Sec-
tion 6. As mentioned in Section 4.2, if step 5 fails to find a good split, the strict or loose
supertree must be a fan.

The split A|B of step 5 is computed by solving problem 1 or 2 of Section 4.2, de-
pending on whether we are after strict or loose OCTs. If A|B is found, it is used in
step 10 to create the subproblems (PA,AvoidA) and (PB,AvoidB), to be handled recur-
sively. The subproblems are constructed by restricting (P,Avoid) to A and B as follows.
For each split C|D ∈ Avoid, we add split (C∩A)|(D∩A) to AvoidA and (C∩B)|(D∩B)
to AvoidB. Profiles PA and PB have L (PA) = A∪{β} and L (PB) = B∪{β}, where β
is a taxon not present in either A or B. The specifics of PA and PB are different for strict
and loose supertrees.

– For the strict case, we know that for every tree t in P, A|B is either trivial in t or is
supported by t. For each tree t in P we do as follows: If B∩L (t) = /0, put t|A in PA,
and if A∩L (t) = /0, put t|B in PB. If neither of the previous two cases holds, let tA
be the tree obtained by contracting the minimal subtree of t containing B∩L (t) to
a single leaf node β and tB be the tree obtained by contracting the minimal subtree
of t containing A∩L (t) to a single leaf node β . Put tA in PA and tB in PB.

– For the loose case, consider again each input tree t in P. By construction, A|B is
compatible with t. If A|B is trivial in t or is supported by t, we handle t in the same
way as for strict trees. If neither of these conditions holds, then, by compatibility,
t must contain a node u with the following property: t can be refined into a tree
that supports A|B by splitting u into two nodes u1 and u2 joined by an edge, and by
making each neighbor of u a neighbor of either u1 or u2 as appropriate. Find that
u, and then create the edge (u1,u2) as just explained. Delete (u1,u2), yielding trees
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t1 and t2 containing u1 and u2, respectively. Assume without loss of generality that
A∩L (t2) = /0 and B∩L (t1) = /0. Let tA be the tree obtained by connecting a leaf
node β to u1 in t1 and let tB be the tree obtained by connecting a leaf node β to u2

in t2. Add tA to PA and tB to PB.

In both cases, after the recursive calls of steps 11 and 12, step 13 combines the returned
trees TA and TB by identifying leaves β and then suppressing the resulting degree-two
node.

Verification. The tree T returned by Algorithm 1 is a potential OCT. Even if it is indeed
an OCT, we still need to verify its splits to construct a strict or loose supertree. Since
the algorithm is heuristic, there is also the possibility that T is not an OCT, in which
case we should reject it and look for another tree. We exploit Algorithm 1 to obtain a
heuristic that either verifies a potential OCT or rejects it if it is not. The algorithm has
one-sided error; that is, it may incorrectly produce a “verified” strict or loose supertree,
but if it rejects a tree, then this tree cannot be an OCT.

The heuristic verification algorithm repeatedly picks a random split A|B in T and
invokes Algorithm 1 with A|B in the Avoid set. If this yields a tree T ′ with the same
objective value, A|B is eliminated from the supertree. If T ′ has a lower objective value,
the verifier adds A|B to the Avoid set and rejects the tree. If T ′ has a greater objective
value than T , we conclude that A|B is in the supertree and create two subproblems:
one for A and one for B (as described earlier in this section). The heuristic verifier then
recursively attempts to verify each tree independently, and combines the results from
the two calls, as done in Algorithm 1.

As an additional safeguard, we test each potential OCT T by repeatedly rerunning
Algorithm 1 using a different starting good splits — perhaps using splits found during
the execution of Algorithm 1 itself. If we obtain the same tree T or a different tree with
the same objective value, this gives further evidence of the correctness of T . If we get
a tree with the same objective value, this information can be used to discard splits from
the final supertree, speeding up split verification. If we get a tree with a better score
than T , then T is clearly not an OCT. Sufficiently many successful random restarts not
only improve our confidence in the quality of OCT, but can also show which edges of
an OCT are not in the supertree, accelerating verification.

6 Experimental Results

We developed a prototype implementation of the techniques described in the previous
sections, and used it to conduct a series of computational tests. Our system is based
on a collection of MATLAB2 scripts to automatically generate the appropriate ILPs of
Section 4.1 directly from the input profiles. These scripts invoke CPLEX3 to solve the
ILPs exactly or to apply the divide-and-conquer heuristics of Section 5.

Our first tests were aimed at finding the limits of the applicability of the exact ILP
formulation. As expected, this approach only allowed us to solve rather small problems.

2 MATLAB is a registered trademark of The MathWorks, Inc.
3 CPLEX is a trademark of IBM.



70 J. Dong and D. Fernández-Baca

The critical parameter is the product of n, the number of taxa, and m, the total number
of nontrivial splits in all the input trees. Generally speaking, problems with nm≥ 2000
are difficult to solve, while problems with nm ≤ 1000 are quickly solvable. Thus, we
chose nm = 1000 as a threshold to use divide and conquer in Algorithm 1. Note that this
is just a rule of thumb, as there are problems with nm> 1000 that are solvable, such as
the smaller of the primates datasets in [16], which has n = 33, m = 48, and nm = 1584.

We analyzed five large data sets using the divide-and-conquer heuristic: the larger of
the two primate data sets in [16], seabirds [14], placental mammals [3], legumes [24]
and marsupials [6]. The current version of our software assumes a common outgroup
among the input trees (i.e., that the trees are rooted). This assumption holds for all but
the placental mammal dataset. In the latter, 486 out of the 726 input trees are rooted;
the rest are deliberately unrooted. We therefore ran our programs in two different ways
on this dataset. In the first, we considered all 726 trees, treating the unrooted trees as
rooted. In the second, we took only the 486 rooted trees. Table 1 summarizes the results
of our analyses4.

Table 1. Summary of experimental results. Times are given in seconds or hours. Solution and
verification times are listed separately. When the solution was a fan, no verification was needed.

Strict OCT Loose OCT
Data set n k Soln. Verif. Soln. Verif.

Primates 72 24 74 s. 311 s. 240 s. 981 s.
Seabirds 121 7 86 s. 0.59 h. 1.93 h. 3.63 h.
Placental Mammals 1 116 726 608 s. 332 s. 28.4 h. 160 h.
Placental Mammals 2 116 486 282 s. 138 s. 65.8 h. n.a.
Legumes 571 22 31 s. fan n.a n.a.
Marsupial 267 158 0.97 h. 6.6 h. 4.73 h. 63.6 h.

The supertrees obtained appear quite reasonable5. For instance, all 26 of the clusters
in the strict marsupial supertree are in the published paper [6]. The loose marsupial su-
pertree contains all clusters in the strict supertree along with 38 additional clusters, most
of which are in the published supertree. Out of the 64 clusters in this loose supertree,
61 are in the published paper.

We note that many data sets encountered in practice — in particular, the above-
mentioned marsupial and placental mammal data sets — include a “scaffold” tree (also
called a “backbone” or “seed” tree); i.e., a tree that covers a broad span of taxa, with-
out necessarily being comprehensive. For instance, the marsupial dataset [6] includes
the tree implied by the marsupial classification of [23] “because it is currently widely
accepted as a taxonomic reference for mammals, and because its low resolution means
it can easily be overruled by more resolved phylogenies, minimizing its influence on
the final supertree.” However, a low-resolution scaffold has different effects on strict
and loose trees. By the definition of strict supertrees, if a set of taxa appears as a fan

4 Allexperiments were run on an Intel Core 2 64 bit quad-core processor (2.83GHz).
5 See http://www.cs.iastate.edu/∼fernande/WABIfigures.pdf.
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in any of the input trees, it must remain as a fan in the strict supertree, no matter what
the other trees say. Thus, a low-resolution scaffold can lead to a low-resolution strict su-
pertree. On the other hand, again by definition, scaffolds do not prevent loose supertrees
from being well-resolved. Our experimental results — e.g., on the marsupial data set
— confirm this observation.

An unexpected computational issue encountered during our experiments was the
need to deal with artificial splits. Informally, these are splits that combine families of
taxa in ways that are not justified by the data. More precisely, let A|B be a split that is
supported by at least one tree in profile P and that is compatible with all trees in P. Let
G be the intersection graph of all sets C ⊆ B such that C is one part of a split (say, C|D)
in some input tree. Then, A|B is artificial if G has more than one connected component.

Artificial splits are not only problematic biologically; they are also a computational
nuisance: We can prove that there always exists an OCT without artificial splits, so they
never occur in loose or strict supertrees. Unfortunately, they are encountered often, so
a lot of time can be spent verifying them, only to discard them. The present version of
our system has a mechanism to detect artificial splits. When one is found, we put it in
the Avoid set. The presence of artificial splits explains in part the fact that takes longer
to find the loose OCT for the second, smaller, placental mammals dataset than the first
one. The OCT for the second dataset is not only more resolved, but also many more
artificial clusters are found during its construction.

7 Discussion

Loose and strict supertrees provide a rigorous approach for combining phylogenetic in-
formation. We have shown that it is possible to construct such supertrees for datasets
on the scale of those encountered in practice. From a mathematical standpoint, it would
be interesting to elucidate the relationship between our approach and PhySIC’s triplet-
based approach [16], as well as possible quartet-based versions of the latter. From a
practical standpoint, a more detailed performance analysis of loose and strict supertrees
is needed to truly evaluate their scalability. To conduct such a study, we first need to
improve the efficiency of our prototype implementation. There are a number of ways
to do this. Something as simple as using a compiled version of the software should in-
crease the speed notably. Also, at present, the verifier repeats much of the work done by
Algorithm 1. Some extra bookkeeping during the execution of the divide-and-conquer
algorithm could prevent this duplication of effort. Another direction is to develop con-
straints to prevent the occurrence of the artificial splits.
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Introduction. Design of protein-protein interaction (PPI) inhibitors is a key challenge 
in Structural Bioinformatics and Computer Aided Drug Design [1, 2].  Peptides, 
which partially mimic the interface area of one of the interacting proteins, are natural 
candidates to form protein-peptide complexes competing with the original PPI [3, 4]. 
Some inhibitory peptides were designed by deriving a short linear segment from one 
of the proteins in a given PPI complex [5-9]. These peptides were successfully able to 
inhibit interactions with the partner protein. The prediction of such complexes is es-
pecially challenging due to the high flexibility of peptide conformations. 

We present PepCrawler, a new tool for deriving binding peptides from protein-
protein complexes and prediction of protein-peptide complexes. The implemented 
algorithm is extremely fast, while allowing backbone flexibility of the peptide com-
bined with side-chain flexibility for both the peptide and the receptor protein.  The 
preliminary results are very promising and in excellent agreement with existing ex-
perimental data [8, 9]. 

Methods. The algorithm accepts as input a structure of a protein-protein complex.  
First, it derives a relatively short, low-energy binding peptide from one of the interact-
ing proteins. Then, it generates a large amount of clash-free peptide docking confor-
mations by using Rapidly-exploring Random Trees (RRT) [10, 11] and grid-based 
collision detection. By computing the binding energy of each of the conformations, an 
initial protein-peptide conformation is refined to some low-energy docking solutions. 
Moreover, a dense binding-energy/RMSD plot is created, that assists in evaluating the 
affinity of the binding solution via energy funnels [12]. 

Results. We run PepCrawler on 20 input protein-peptide complexes from the PDB, 
creating the energy plot starting from the native conformation. In 19 complexes we 
could identify a clear energy funnel, with lowest energy solutions close to the native 
peptide (up to 1Å backbone-RMSD).  Then, we have tested the PepCrawler refine-
ment conformation mechanism on the previously selected structures. For each  
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structure, we have randomly created few clash-free random peptide conformations, 
with peptide backbone-RMSD of ~3.5Å and ~5Å from the original conformation. In 
88% of the 3.5Å input structures, one of the top-3 PepCrawler refinement solutions 
had less than 1.6Å backbone-RMSD from the native conformation. For the 5Å mod-
els, this success rate was 70%. 

To test the prediction ability of PepCrawler on "real-life" data, we applied it on 2 
cases were in-vivo examined peptide inhibitors were published: 

Protein Kinase CK2 Subunit Interaction. An eight-residue peptide was derived from CK2-
beta chain (residues 186–193), and shown to be effective inhibitor in-vivo [9]. We 
have tested PepCrawler on the input CK2 complex. The algorithm derived exactly the 
same peptide that was used in the in-vivo tests. The refinement solution of this pep-
tide had low binding-energy and its output plot clearly showed a visible steep energy 
funnel, which indicates its high binding affinity. 

HIV-1 Integrase and LEDGF Protein Complex. A short LEDGF-derived peptide was de-
signed containing residues 365-369, which were identified as the main residues that 
participate in IN binding [8].  In-vivo tests showed that this peptide is a weak IN in-
hibitor. Although the residues 365-369 are important for IN binding at the protein 
level, they are not sufficient for inhibition at the peptide level. We run PepCrawler on 
the IN-LEDGF complex input. The algorithm derived the peptide 365-369 from 
LEDGF. A significant funnel was not seen in any of the output energy plots. Al-
though few solutions with good complex energies were achieved, the lack of signifi-
cant energy funnels indicates low binding affinity of this peptide. 

Running Time. Compared to other state of the art flexible peptide-protein structure 
simulations, our algorithm is very fast, and takes only minutes to run on a single PC. 
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dation [grant no. 1403/09] and the Hermann Minkowski Minerva Geometry Center. 
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Abstract. Reconciliation is the commonly used method for inferring
the evolutionary scenario for a gene family. It consists in “embedding”
an inferred gene tree into a known species tree, revealing the evolution
of the gene family by duplications and losses. The main complaint about
reconciliation is that the inferred evolutionary scenario is strongly de-
pendant on the considered gene tree, as few misplaced leaves may lead
to a completely different history, with significantly more duplications
and losses. As using different phylogenetic methods with different pa-
rameters may lead to different gene trees, it is essential to have criteria
to choose, among those, the appropriate one for reconciliation. In this
paper, following the conclusion of a previous paper, we flag certain du-
plication vertices of a gene tree, the “non-apparent duplication” (NAD)
vertices, as resulting from the misplacement of leaves, and consider the
optimization problem of removing the minimum number of leaves lead-
ing to a tree without any NAD vertex. We develop a polynomial-time
algorithm that is exact for two special classes of gene trees, and show a
good performance on simulated data sets in the general case.

1 Introduction

Almost all genomes which have been studied contain genes that are present in
two or more copies. As an example, duplicated genes account for about 15% of
the proteins genes in the human genome [19]. In operational practise, homolo-
gous gene copies, e.g. copies in one genome or amongst different genomes that are
descended from the same ancestral gene, are identified through sequence similar-
ity. For example, using a BLAST-like method, all gene copies with a similarity
score above a certain threshold would be grouped into the same gene family.
Using a classical phylogenetic method, a gene tree, representing the evolution
of the gene family by local mutations, can then be constructed based on the
similarity scores.

From a functional point of view, grouping genes by sequence similarity is
not sufficient to infer a common function for genes. Indeed, it is important to
distinguish between two kinds of homologs: orthologs which are copies in different
species related through speciation, and thus likely to have similar functions, and
paralogs , which are copies that have evolved by duplication, and more likely
to have acquired new functions. Duplication is, indeed, a major source of gene
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innovation and creation of new functions [21]. In addition, gene losses, arising
through the pseudogenization of previously functional genes, also play a key
role in the evolution of gene families [2,8,11,17,21]. Understanding the evolution
of gene families through speciation, duplication and loss is thus a fundamental
question in functional genomics, evolutionary biology and phylogenomics [25,28].

The most commonly used methods to infer evolutionary scenarios for gene
families are based on the reconciliation approach that compares the species tree
S (describing the relationships among taxa) to the gene tree T . Assuming no
sequencing errors and a “correct” gene tree, the incongruence between the two
trees can be seen as a footprint of the evolution of the gene family through
processes other than speciation, such as duplication and loss. The concept of
reconciling a gene tree to a species tree under the duplication-loss model was
pioneered by Goodman [13] and then widely accepted, utilized and also gener-
alized to models of other processes such as horizontal gene transfer [18,9,27].
Several definitions of reconciliation exist in the literature, one of them expressed
in term of “tree extension” [5]. More precisely, a reconciliation R between T and
S is an extension of T (obtained by grafting new subtrees onto existing branches
of T ) consistent with the species tree, i.e. reflecting the same phylogeny. A du-
plication and loss history for the gene family is then directly deduced from R. As
many reconciliations exist, a natural approach is to select the one that optimizes
a given criterion. Natural combinatorial criteria are the number of duplications
(duplication cost), losses (loss cost) or both combined (mutation cost) [6,20].
The so called Lowest Common Ancestor (LCA) mapping between a gene tree
and a species tree, formulated in [15,24] and widely used [3,10,14,20,22,23,24],
defines a reconciliation that minimizes both the duplication and mutation costs.

The main complaint about reconciliation methods is that the inferred dupli-
cation and loss history for a gene family is strongly dependant on the gene tree
considered for this family. Indeed, a few misplaced leaves in the gene tree can
lead to a completely different history, possibly with significantly more duplica-
tions and losses [16]. Reconciliation can therefore inspire confidence only in the
case of a well-supported gene tree. Typically bootstrapping values are used as a
measure of confidence in each edge of a phylogeny. How should the weak edges of
a gene tree be handled? A strategy adopted in [6] is to explore the space of gene
trees obtained from the original gene tree T by performing Nearest Neighbour
Interchanges (NNI’s) around weakly-supported edges. The problem is then to
select, from this space, the tree giving rise to the minimum reconciliation cost.

In this paper, we explore a different strategy for correcting, or choosing an
appropriate gene tree among a set of possible trees, that consists in identifying a
number of “misplaced” gene copies in a given gene tree. Criteria for identifying
potentially misplaced leaves were given in a previous paper [5], where “non-
apparent duplication vertices”, were flagged as potentially resulting from the
misplacement of leaves in the gene tree. The reason is that each one of these
vertices reflects a phylogenetic contradiction with the species tree that is not
due to the presence of duplicated gene copies. We develop algorithmic methods
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for removing the minimum number of leaves resulting in a gene tree T without
any non-apparent duplication vertex.

In the next section, we begin by formally introducing our concepts. We then
motivate and state our problem in Section 3. Section 4 is dedicated to the algo-
rithmic developments. We first describe two special classes of gene trees which
lead to an exact polynomial-time algorithm. We then present a heuristic algo-
rithm for the general case. In Section 5, we test the optimality of our algorithm,
and the ability of the presented approach to identify misplaced genes. We finally
conclude in Section 6.

2 Definitions

2.1 Trees

In this paper, we only consider rooted trees. Let G = {1, 2, · · · , g} be a set of
integers representing g different species (genomes). A species tree on G is a
rooted binary tree with exactly g leaves, where each i ∈ G is the label of a single
leaf (Figure 1(a)). A gene tree on G is a rooted binary tree where each leaf is
labelled by an integer from G, with possibly repeated leaves (Figure 1(b)). A
gene tree represents a gene family, where each leaf labelled i represents a gene
copy located on genome i. In the case of a species tree or a uniquely leaf-labelled
gene tree, i.e. no leaf-label occurs more than once, we will make no difference
between a leaf and its label.

Given a tree U , the size of U , denoted |U |, is the number of leaves of U , and
the genome set of U , denoted by L(U), is the subset of G defined by the labels
of the leaves of U . Given a vertex x of U , Ux is the subtree of U rooted at x, and
the genome set of x, denoted by L(x), is the subset of G defined by the labels
of the leaves of Ux (for example, in the tree of Figure 1(a), L(B) = {1, 2}). If x
is not a leaf, we denote by xl and xr the two children of x. Finally, if x is not
the root, any vertex y on a path from x to the root is an ancestor of x.

Given a tree U , a leaf removal consists in removing a given leaf i from U ,
and suppress the resulting degree two vertex. A tree U ′ obtained from U through
a sequence of leaf removals is said to be included in U .

Finally, a subtree Ux of U , for a given vertex x, is said to be a maximum
subtree of U verifying a given property P iff Ux verifies property P and, for any
vertex y that is an ancestor of x, Uy does not verify property P.

2.2 Reconciliation

Applying a classical phylogenetic method to the gene sequences of a given gene
family leads to a gene tree T that is different from the species tree, mainly due
to the presence of multiple gene copies in T , and that may reflect a divergence
history different from S. The reconciliation approach consists in “embedding”
the gene tree into the species tree, revealing the evolution of the gene family by
duplications and losses.
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There are several definitions of reconciliation between a gene tree and a species
tree [3,10,14,15,20,22,24]. Here we define reconciliation in terms of subtree in-
sertions, following the notation used in [4,14]. We begin by introducing some
definitions:

– A subtree insertion in a tree T consists in grafting a new subtree onto an
existing branch of T .

– A tree T ′ is said to be an extension of T if it can be obtained from T by
subtree insertions on the branches of T .

– The gene tree T is said to be DS-consistent with S (DS standing for Dupli-
cation/Speciation) if T reflects a history with no loss, i.e. if for every vertex
t of T such that |L(t)| ≥ 2, there exists a vertex s of S such that L(t) = L(s)
and one of the two following conditions holds:

(D) either L(tr) = L(t�) (indicating a Duplication),
(S) or L(tr) = L(sr) and L(t�) = L(s�) (indicating a Speciation).

Definition 1. A reconciliation between a gene tree T and a species tree S on
G is an extension R(T, S) of T that is DS-consistent with S.

For example, the tree of Figure 1(c) is a reconciliation between the gene tree
T of Figure 1(b) and the species tree of Figure 1(a). Such a reconciliation be-
tween T and S implies an unambiguous evolution scenario for the gene family,
where a vertex of R(T, S) that satisfies property (D) represents a duplication
(duplication vertex), a vertex that satisfies property (S) represents a speciation
(speciation vertex), and an inserted subtree represents a gene loss. The number
of duplication vertices of R(T, S) is called the duplication cost of R(T, S).

2.3 LCA Mapping

The LCA mapping between T and S, denoted by M , maps every vertex t of T
towards the Lowest Common Ancestor (LCA) of L(t) in S. A vertex t of T is
called a duplication vertex of T with respect to S if and only if M(t�) = M(t)
and/or M(tr) = M(t) (see Figure 1(b)). We denote by d(T,S) the number of
duplication vertices of T with respect to S.

This mapping induces a reconciliation M(T, S) between T and S, where an
internal vertex t of T leads to a duplication vertex inM(T, S) iff t is a duplication
vertex of T with respect to S. In other words, the duplication cost of M(T, S)
is d(T, S) (see for example [3,20,22] for more details on the construction of a
reconciliation based on the LCA mapping). Moreover,M(T, S) is a reconciliation
that minimizes all of the duplication, loss and mutation costs [5,14]. In particular,
d(T, S) is the minimum duplication cost of any reconciliation between T and S.

2.4 Duplication Vertices and MD-trees

Let T be a gene tree. It is immediate to see that any vertex t of T such that
L(t�)∩L(tr) �= ∅ (i.e. the left and right subtrees rooted at t contain a gene copy
in the same genome) will be a duplication vertex in any reconciliation between
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Fig. 1. (a) A species tree S for G = {1, 2, 3, 4}. The three internal vertices of S are
named A, B and C; (b) A gene tree T . A leaf label x indicates a gene copy in genome
x. Internal vertices’ labels are attributed according to the LCA mapping between T
and S. Flagged vertices are duplication vertices of T with respect to S (Section 2.3);
(c) A reconciliation R(T, S) of T and S. Dotted lines represent subtree insertions.
The correspondence between vertices of R(T,S) and S is indicated by vertices’ labels.
Flagged vertices are duplication vertices. All other internal vertices of R(T, S) are
speciation vertices. This reconciliation reflects a history of the gene family with two
gene duplications preceding the first speciation event, and 4 losses.

T and any species tree S, in particular in M(T, S). Such a vertex is called an
apparent duplication vertex (AD vertex for short) of T . In the tree of
Figure 1(b), the root is an AD vertex as its left and right subtree both contain
a gene copy in genome 1. Following our notations in [5], given a species tree S,
we say that T is a Minimum-Duplication tree consistent with S, or equivalently
a tree that is MD-consistent with S, iff the duplication cost d(T, S) is equal
to the number of apparent duplications of T . In other words, all duplication
vertices of T with respect to S are AD vertices.

However, this is not always true, in other words, a duplication vertex of T with
respect to S is not necessarily an AD vertex. We call such a duplication vertex
that is not an AD vertex a non-apparent duplication vertex, or simply a
NAD vertex . For example, the tree of Figure 1(b) contains one NAD vertex,
indicated by a square, and thus T is not MD-consistent with S.

3 Motivation and Problem Statement

Non-apparent duplication vertices point to disagreements between a gene tree
and a species tree that are not due to the presence of repeated leaf labels, i.e.
multiple copies in the same genome. More precisely, we say that a vertex x of T
splits three species {a, b, c} into {a, b; c} if the genome set of one of its children
contains a and b but not c, and the genome set of its other child contains c but
neither a nor b. Then for any NAD x of T , there is a triplet of species {a, b, c}
that are split differently by x and by the LCA mapping of x in S. For example,
in Figure 1, {1, 2, 3} is split into {1, 3; 2} by the NAD vertex of T , and into
{1, 2; 3} by the vertex A in S. It has therefore been suggested that NAD vertices
may point at gene copies that are erroneously placed in the gene tree.
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1 23 132

(a) (b) (c)

1 2 3 1 23 12 3

Fig. 2. Let S = ((1, 2), 3) (the tree in (a)) be the phylogenetic tree for the three species
{1, 2, 3}. Let T = (1, 2) be a gene tree. (a), (b) and (c) are the three possibilities for
T after a random insertion of a leaf labelled 3. (a) is the only case leading to a tree
without any NAD vertex. It reflects a history of the three gene copies without any
duplication or loss; (b) and (c) each contains a NAD vertex, and can be explained by
a duplication-loss history of minimum mutation cost of 4: 1 duplication and 3 losses.

Different observations made in [5] tend to support this hypothesis. In particu-
lar, using simulated data-sets based on the species tree of 12 Drosophila species
given in [17] and a birth-and-death process, starting from a single ancestral
gene, and with different gene gain/loss rates, it has been found that 95% of gene
duplications lead to an AD vertex.

Notice however that a misplaced gene in a gene tree T , in other words, a
gene randomly placed in T , does not necessarily lead to a NAD vertex. In other
words, NAD vertices can only point to a subset of misplaced leaves. However,
in the context of reconciliation, the additional damage caused by a misplaced
leaf leading to a NAD vertex is the fact that it significantly increases the real
mutation-cost of the tree, as shown in Figure 2.

Following the later observations, we exploit the properties of NAD vertices for
gene tree correction. If T is not MD-consistent with S, then an MD-consistent
tree can always be obtained from T by performing a certain number of leaf
removals. Indeed, a gene tree with only two leaves is always MD-consistent with
any species tree. The optimization problem considered in this paper is therefore:

Minimum Leaf Removal Problem:

Input: A gene tree T on G and a species tree S for G;
Output: A tree TMAX included in T and MD-consistent with S of maximum
size (i.e. obtained form T by a minimum number of leaf removals).

4 Method

In the rest of this section, we assume that the set of genomes G and the species
tree S for G are fixed. Let T be a gene tree for a gene family on G. We suppose
that T is not an MD-tree consistent with S, i.e. there is at least one duplication
vertex of T that is a NAD vertex. We begin by describing special classes of gene
trees for which exact polynomial-time algorithms have been developed.
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4.1 Uniquely Leaf-Labelled Gene Trees

When the considered gene family contains at most a unique gene copy per
genome, the gene tree T is uniquely leaf-labelled. In this case, minimizing the
number of leaves that should be removed from T to obtain an MD-tree consis-
tent with S is equivalent to finding the maximum number of genes that lead to
the same phylogeny in T and S. In other words, it is immediate to see that the
Minimum Leaf Removal Problem reduces, in this case, to the Maximum

Agreement Subtree Problem given below.

Maximum Agreement Subtree (MAST) Problem:

Input: A uniquely leaf-labelled gene tree T on G and a species tree S for G;
Output: A tree TMAX included in T and MD-consistent with S of maximum
size.

A more general definition is given in the literature, where the MAST problem
is defined on a set of uniquely leaf-labelled trees as the largest tree included in
each tree of the set. This definition is equivalent to ours in the case of a gene
tree T and a species tree S.

The MAST problem arises naturally in biology and linguistics as a measure
of consistency between two evolutionary trees over species or languages, respec-
tively [7]. In the evolutionary study of genomes, different methods and different
gene families are used to infer a phylogenetic tree for a set of species, usually
yielding different trees. In such a context, one has to find a consensus of the
various obtained trees. Considering the MAST problem, introduced by Finden
and Gordon [12], is one way to obtain such a consensus. Amir et al. [1] showed
that computing a MAST of three trees with unbounded degree is NP-hard. How-
ever, in the case of two binary trees T and S (which is the case of interest in
this paper), the problem is polynomial. The first polynomial-time algorithm for
this problem was given by Steel and Warnow [26]. It is a dynamic programming
algorithm considering the solution for all pairs of subtrees of T and S; it has
a running time of O(n2), where n is the size of the trees. Later, Cole et al. [7]
developed an O(n log n) time algorithm, which, as far as we know, is the most
efficient algorithm for solving the MAST problem on two binary trees.

4.2 No AD above NAD

In this section, we consider a tree T containing no AD vertex above a NAD
vertex (Figure 3(a)). More precisely, T satisfies Constraint C below:

Constraint C: For each NAD vertex x of T , if y is an ancestor of x that is a
duplication vertex, then y is a NAD vertex.

We show, in what follows, that the Minimum Leaf Removal Problem re-
duces, in this case, to a “generalization” of the Maximum Agreement
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Fig. 3. Solving the Minimum Leaf Removal Problem for a tree satisfying Con-

straint C; (a) A gene tree T on G = {1, 2, 3, 4, 5, 6, 7, 8}; (b) A species tree S for G.
Internal vertices of S are identified with different characters. Labels of internal vertices
of T are attributed according to the LCA mapping between T and S. T contains 5 du-
plication vertices with respect to S: two AD vertices (surrounded by a circle) and three
NAD vertices (surrounded by a square); (c) The tree T I obtained by replacing the two
subtrees of T rooted at each of the two AD vertices by their weighted induced trees.
Leaves’ weights are given in brackets; (d) The weighted agreement subtree W MAX of
T I and S of maximum value. v(W MAX) = 7; (e) The subtree T MAX of T induced by
W MAX . T MAX is an MD-tree consistent with S.

Subtree Problem to weighted trees, where a weighted tree is a uniquely leaf-
labelled tree with weighted leaves.

Definition 2. Let U be a tree on G. The weighted tree U I induced by (U, S)
is the tree included in S obtained from S by removing all leaves that are not
in L(U), with a weight attributed to each leaf s, representing the number of
occurrences of s in U (i.e. the number of leaves of U labelled s).

Let T1, T2, · · ·Tm be the maximum subtrees of T rooted at an AD vertex (i.e.
subtrees of T rooted at the highest AD vertices). Then, the tree T I obtained by
replacing each Ti, for 1 ≤ i ≤ m, by the weighted tree T I

i induced by (Ti, S), is
a weighted uniquely leaf-labelled tree. An example is given in Figure 3(a), (b)
and (c). Let ρs be the operation of removing the weighted leaf s from T I . Then
the corresponding removals in T consist in removing from T all leaves labelled s.

Finally, we formulate the generalization of the MAST problem to weighted trees
as follows, where the value of a weighted treeW is the sum of its leaves’ weights.

Weighted Maximum Agreement Subtree (WMAST) Problem:

Input: A weighted tree W on G and a species tree S for G;
Output: A weighted tree WMAX included in W and MD-consistent with S of
maximum value.
We are now ready for the main theorem.
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Theorem 1. Let T be a gene tree satisfying Constraint C. Let WMAX be a
solution of the WMAST problem on T I and S, and TMAX be the subtree of T
induced by WMAX . Then TMAX is a solution of the Minimum Leaf Removal

Problem on T and S.

In other words, Theorem 1 states that solving the Minimum Leaf Removal

Problem on T is equivalent to solving the WMAST problem on T I . We have
developed an algorithm (not shown) for solving the WMAST problem, that
is a direct generalization of the dynamic programming algorithm of Steel and
Warnow [26] to weighted trees, and has the same quadratic running time
complexity.

A complete example of the algorithmic methodology used for solving the Min-

imum Leaf Removal Problem on T and S following Theorem 1 is given in
Figure 3. The algorithm will be detailed in the next section.

We now provide a proof of Theorem 1, subdivided into the two following
lemmas.

Lemma 1. The tree TMAX is MD-consistent with S.

Proof. We show, by contradiction, that TMAX does not contain any NAD ver-
tex. Suppose that TMAX contains a NAD vertex x. Then x maps to the same
vertex s of S than one of its child, let say the left child. Then there exist two
leaves of TMAX

xl
, labelled a and b, and one leaf of TMAX

xr
labelled c such that

the triplet (a, b, c) exhibits a wrong phylogeny. As a non-duplication vertex in
T can not become a duplication vertex after leaf removals, we have only two
possibilities for x in T :

1. x is a NAD vertex in T . Then the genome sets of Txl
and Txr are disjoint.

Moreover, the genome set of WMAX
xl

(respec. WMAX
xr

) is a subset of the genome
set of Txl

(respec. Txr). On the other hand, as x is not a duplication vertex in
WMAX , one of the three genes a, b and c should be absent in WMAX

x . And thus,
{a, b, c} can not be a subset of the genome set of TMAX

x : contradiction.

2. x is an AD vertex in T . Then the subtree Tx of T rooted at x contains at
least two leaves labelled with the same label d (different from a, b and c), one
in Txl

and one in Txr . Moreover the leaf labelled d in S should belong to the
subtree of S rooted at s, and thus to the subtree Si rooted at the left or right
child of s. Such subtree Si contains at least one leaf labelled a or b or c.

On the other hand, let y be the parent of x in T I . As an optimal solution of the
WMAST problem on T I removes leaves from the subtree T I

x , such an operation
should result in removing the duplication vertex y. In other words, x and y
should map to the same vertex s in S. Moreover the result of the leaf removal
from T I

x should result in a different LCA mapping for x and y. Indeed, otherwise
removing leaves from the corresponding subtree in T I does not contribute to
eliminate any NAD from T I . It follows that S should exhibit the phylogeny
((a, b, c), d), which is a contradiction with the result of the last paragraph �
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Lemma 2. Let T ′ be a tree included in T that is MD-consistent with S. Then
|T ′| ≤ |TMAX |.
Proof. We will show that, for any s ∈ G, if a leaf i labelled s is removed from T
(i.e. i is not a leaf in T ′), then all leaves of T labelled s are removed from T .

Suppose this is not the case. Let y be the vertex of T representing the least
common ancestor of all leaves labelled s in T . Then y is an AD node. As a leaf i
labelled s is removed from T , such removal should contribute in resolving a NAD
vertex x of T . From Constraint C, such vertex should be outside the subtree
of T rooted at y. Moreover, it should clearly be an ancestor of y (otherwise
removing i will have no effect on x).

As x is a NAD vertex, it maps to the same vertex s of S as one of its children,
say the left child. Then, there exist two leaves of Txl

labelled a and b, and one
leaf of Txr labelled c such that the triplet (a, b, c) exhibits a wrong phylogeny.
Moreover, as removing leaf i labelled s contributes in solving x, we can assume
that a = s. However, from our assumption, it remains, in T ′, a leaf labelled s.
Thus: (1) either it remains, in T ′, at least one leaf labelled b and one leaf labelled
c, or (2) all leaves labelled b, or all leaves labelled c are removed. In case (1),
the wrong phylogeny exhibited by the triplet (a, b, c) is still present, preventing
vertex x from being a non-duplication vertex. In case (2), as all copies of b (or
equivalently c) are removed, there is no need of removing leaf i labelled s for
correcting the wrong phylogeny exhibited by the triple (a, b, c).

Therefore, the weighted tree W ′ induced by T ′ is obtained from T I through
a sequence of leaf removals. Now, as WMAX is the solution of the WMAST
problem on T I , then v(WMAX) ≥ v(W ′), and thus |TMAX | ≥ |T ′| �

4.3 An Algorithm for the General Case

In this section, we present a general algorithm, that is exact in the case of a
uniquely leaf-labelled gene tree (Section 4.1) or a gene tree satisfying Con-

straint C (Section 4.2), and a heuristic in the general case. We first introduce
preliminary definitions. For a given tree U (weighted or not), consider the two
following properties on U :

Property ONLY-NAD: U has no AD vertices;
Property ONLY-AD: U is rooted at an AD vertex and contains no NAD vertex.

We define the NAD-border of U as the set of roots of the maximum subtrees
of U verifying Property ONLY-NAD, and the AD-border of U as the set of roots
of the maximum subtrees of U verifying Property ONLY-AD.

Algorithm Correct-Tree (Figure 4) is a recursive algorithm that takes as
input a gene tree T and a species tree S, and outputs a number of leaf removals
transforming T into a tree that is MD-consistent with S. It proceeds as follows:
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Algorithm Correct-Tree (T , S)

1. LeafRemoval=0;
2. IF T is a tree MD-consistent with S THEN

3. RETURN(LeafRemoval)
4. END IF

5. T I = T ;
6. FOR ALL x ∈ AD-border(T ) DO

7. Replace T I
x by its induced weighted tree;

8. END FOR

9. FOR ALL x ∈ NAD-border(T I) DO

10. W MAX
x = WMAST (T I

x );
11. Replace Tx by the subtree induced by W MAX

x ;
12. LeafRemoval = LeafRemoval + (v(T I

x )− v(W MAX
x ));

13. END FOR

14. RETURN(LeafRemoval+Correct-Tree(T , S))

Fig. 4. An algorithm that takes as input a gene tree T and a species tree S, and outputs
the number of leaf removals “LeafRemoval” performed to transform T into a tree that
is MD-consistent with S. Here, WMAST points out to an algorithm for solving the
WMAST problem.

• Stop condition - Lines 2 to 4: If T is MD-consistent with S, then no leaf removal
is performed, and the algorithm terminates.

• Recurrence Loop - Lines 6 to 13: Resolve all maximum subtrees of T verifying
Constraint C as described in Section 4.2, that is:

1. Construct the weighted tree T I (Lines 6-8);
2. For each root x of a maximum subtree T I

x of T I satisfying Constraint C

(Line 9), solve the WMAST problem on T I
x , which leads to the weighted

tree WMAX
x (Line 10), compute the induced tree Tx (Line 11) and store the

number of performed leaf removals (Line 12).

If T is a uniquely leaf-labelled tree then T I = T , NAD-border(T I) is reduced
to the root of the tree, and thus loop 9- 13 is just executed once. Moreover, as
T I is unweighted (all labels are equal to 1), WMAST is reduced to MAST. The
whole algorithm thus reduces to one resolution of the MAST problem.

If T satisfies Constraint C, then NAD-border(T I) is also reduced to the
root of the whole tree, and thus loop 9- 13 is just executed once. In this case,
the methodology is the one following Theorem 1, and illustrated in Example 3.

In the general case, NAD-border(T I) is not restricted to a single vertex, and
loop 9- 13 can be executed many times. Moreover, at the end of loop 9- 13, the
resulting tree is not guaranteed to be MD-consistent with S, as NAD vertices
higher than those in NAD-border(T I) may exist. Algorithm Correct-Tree

may therefore be applied many times.
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Complexity: Let n be the size of T . Loop 2- 4 requires to perform the LCA
mapping between T and S, and identify AD and NAD vertices. As the LCA
mapping can be computed in linear time [29,5], testing whether a tree T is MD-
consistent with S can be tested in time O(n). Clearly, Loop 6-8 can be executed in
time O(n). As for Loop 9- 13, it has the time complexity of WMAST. As stated
in the later section, the O(n2) algorithm of Steel and Warnow [26] naturally
generalizes to the case of weighted trees, and leads to the same running time
complexity O(n2). Therefore, the complexity for one execution of the recursive
Algorithm Correct-Tree is O(n2). As in the worst case, the algorithm can
be executed n times, the total worst case running time complexity is O(n3).

Notice that a more efficient algorithm running in O(n log(n)) time exists for
the MAST problem [7]. If, as we conjecture, this algorithm can be generalized to
the WMAST problem, then it will lead to a time complexity in O(n2 logn) for
Algorithm Correct-Tree. This is a short-term perspective for improvement.

5 Results

We only test the optimality of Algorithm Correct-Tree in the case of a gene tree
satisfying Property AD-above-NAD, i.e. containing at least one AD vertex above
a NAD vertex. Indeed, the algorithm is guaranteed to give the optimal solution
otherwise (i.e. for trees satisfying the constraints of Section 4.1 or Section 4.2).
We compared the number NbObtained of leaf-removal obtained by Algorithm
Correct-Tree with the number NbOptimal obtained by an exact naive algorithm
that tries all possible leaf-subset removals. More precisely, if the minimum num-
ber of leaf-removal output by Algorithm Correct-Tree is r, then, we try all subsets
of r−1, r−2 · · · r−i leaf removals, and stop as soon as a tree that is MD-consistent
with S is obtained. As the naive algorithm has clearly an exponential-time com-
plexity, tests are performed on trees of limited size.

We considered a genome set of fixed size 5, and gene trees with 6 to 24
leaves. For each size s (from 6 to 24, with steps of 2), we generated 500 random
gene trees of s leaves, and kept only those satisfying Property AD-above-NAD.
The left diagram of Figure 5 shows that Algorithm Correct-Tree gives an exact
solution for more than 65% of the trees (among all of those satisfying Property
AD-above-NAD). Moreover, when NbOptimal differs from NbOptimal, in mot
cases the difference is 1. The right diagram of Figure 5 is obtained by averaging,
for each size s, the results obtained for all the gene trees of that size. We can
see that the error-rate, computed as (NbObtained−NbOptimal)/NbObtained,
is independent from the size of the tree, and did not exceed 0.15, based on our
simulation settings. After testing other dependency factors (non-shown results),
it appears that the error-rate only depends on the number of times the loop
9- 13 of Algorithm Correct-Tree is executed, which is not directly related to the
number of NADs or ADs in the tree.

Finally, we tested the ability of the presented approach to identify misplaced
genes. To do so, we considered a genome set of fixed size 10, and gene trees of size
s varying from 10 to 100 (with a step of 10). For a random species tree S and a
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Fig. 5. Comparison of the number NbObtained of leaf-removal obtained by Algorithm
Correct-Tree with the optimal number NbOptimal obtained by an exact algorithm.
Left: Percentage of trees leading to a given number NbObtained−NbOptimal of errors
(see text for more details on the used parameters). Right: The error rate, computed
as (NbObtained − NbOptimal)/NbObtained, depending on the size of the gene tree
(number of leaves).

random tree T of size s that is MD-consistent with S, we incorporate randomly
NbAdded = s/10 leaves with randomly chosen labels. We then test how many
“misplaced” leaves our method is able to detect. For each size s, results are
averaged over 100 trees. Figure 6 shows the detection percentage of Algorithm

Fig. 6. Percentage of misplaced leaf detection, computed as (NbObtained/NbAdded)×
100, where NbAdded is the number of randomly added leaves, and NbObtained is the
number of leaf removals obtained by Algorithm Correct-Tree (see text for more
details)
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Correct-Tree, which is computed as (NbObtained/NbAdded) × 100. This
detection percentage decreases with increasing size of the gene tree. This is
mainly due to the fact that as an MD-consistent tree needs no leaf removal, its
detection percentage is always 100%, and that the more leaves we add (1 for a
gene tree of size 10, but 10 for a gene tree of size 100) the less chance we have to
end up with an MD-consistent tree. Removing the cases of MD-consistent trees
lead to a detection percentage around 40%.

6 Conclusion

Based on observations pointing to NAD vertices of a gene tree as indications
of potentially misplaced genes, we developed a polynomial-time algorithm for
inferring the minimum number of leaf-removals required to transform a gene
tree into an MD-tree, i.e. a tree with no NAD vertices. The algorithm is exact
in the case of a uniquely leaf-labelled gene tree, or in the case of a gene tree
that does not contain any AD vertex above a NAD vertex. In the general case,
our algorithm exhibited results very close to optimality under our simulation
settings. Unfortunately, NAD vertices can only reveal a subset of misplaced
genes, as a randomly placed gene does not necessarily lead to a NAD vertex.
Our experiments show that, on average, we are able to infer 40% of misplaced
genes. However, the additional damage caused by a misplaced leaf leading to a
NAD is an excessive increase of the real mutation-cost of the tree. Therefore,
removing NADs can be seen as a preprocessing of the gene tree preceding a
reconciliation approach, in order to obtain a better view of the duplication-loss
history of the gene family.

Another use of our method would be to choose, among a set of equally sup-
ported gene trees output by a given phylogenetic method, the one that can be
transformed to an MD-consistent tree by a minimum number of leaf removals.

A limitation of our approach is that a NAD resulting from a wrong bipartition
{a, b; c} can be, a priori, solved by removing any gene from this bipartition. Our
present approach is able to detect a number of misplaced genes but, in general,
it is insufficient to detect precisely the genes that have been erroneously added
in the tree. An extension would be to infer all optimal subsets of leaf removals,
and to use bootstrapping values on the edges of the tree for a judicious choice
of the genes to be removed.
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Abstract. Understanding transcriptional regulation requires a reliable
identification of the DNA binding sites that are recognized by each tran-
scription factor (TF). Building an accurate bioinformatic model of TF-
DNA binding is an essential step to differentiate true binding targets
from spurious ones. Conventional approches of binding site prediction are
based on the notion of consensus sequences. They are formalized by the
so-called position-specific weight matrices (PWM) and rely on the statis-
tical analysis of DNA sequence of known binding sites. To improve these
techniques, we propose to use genome organization knowledge about the
optimal positioning of co-regulated genes along the whole chromosome.
For this purpose, we use learning machine approaches to optimally com-
bine sequence information with positioning information. We present a
new learning algorithm called PreCisIon, which relies on a TF bind-
ing classifier that optimally combines a set of PWMs and chrommosal
position based classifiers. This non-linear binding decision rule drasti-
cally reduces the rate of false positives so that PreCisIon consistently
outperforms sequence-based methods. This is shown by implementing a
cross-validation analysis in two model organisms: Escherichia coli and
Bacillus Subtilis. The analysis is based on the identification of binding
sites for 24 TFs; PreCisIon achieved on average an AUC (aera under the
curve) of 70% and 60%, a sensitivity of 80% and 70%, and a specificity
of 60% and 56% for B. subtilis and E. coli, respectively.

1 Introduction

Transcription factors (TF) regulate gene expression through the physical inter-
action with specific cis-regulatory elements termed TF binding sites (TFBS).
Genome-wide TFBS identification has drawn substantial interests in the re-
cent years as it represents a critical step in delineating transcription regulatory
networks. Previous studies have used both experimental and computational
techniques to identify or to predict TFBS. However, traditional experimental
techniques, such as DNase I foot-printing and gel-mobility shift assay, are time-
consuming and are not suitable for genome-scale studies. While current high-
throughput approaches, such as ChIP-chip and CHIP-seq, are more efficient in
determining the binding specificity at a large scale [26], they are too costly for
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daily applications. Efficient computational approaches using cheap and readily
available genomic sequence data is therefore most welcome. Such methods can
be used, in particular, to complement analysis of high-throughput data. Indeed,
binding sites detected by high-throughput in vitro methods can be compared
with predicted binding sites to prioritize studies aimed at confirming sites that
are expected to regulate gene expression in vivo.

A number of computational methods have been developed for predicting
TFBS given a set of known binding sites. Commonly used methods are based on
the definition of a consensus sequence or the construction of a position-specific
weight matrix (PWM), where DNA binding sites are represented as a sequence
of letter coming from the alphabet {A, T,C,G}. They then use the PWM to
scan new sequences for additional binding sites [25]. Since TFBSs are in general
relatively short and possibly degenerate, these approaches systematically lead
to a high rate of false positives [26]. Nevertheless, in spite of the wealth of re-
search performed in the area of TFBS prediction, and the many insights gained,
achieving a qualitative jump in this field requires information of a conceptually
novel type, rather than improvements of methods which all rely essentially on
local sequence information [9]. More sophisticated approaches further constrain
the set of potential binding sites for a given TF by considering, in addition to
PWMs, phylogenetic comparisons [19] or chemical and structural properties [1].
Here we propose to additionally derive useful information from respective gene
positioning along the chromosome.

Proper genome-wide coordination of gene expression has been shown to be
linked to the spatial organization of genes within the cell [7]. In particular, tran-
scriptional activity is often detected in discrete foci called transcription factories,
rather than in a diffuse pattern [5]. These transcription factories gather RNA
polymerases, TFs and genes that can be far apart along the DNA [24]. Recent
experiments have further shown that genes within a given factory share similar
promoter sequences [32] and are co-regulated by the same transcription factors
[22]. In this respect, the periodic organization observed for co-regulated genes
in Escherichia coli [14], for co-expressed [4] and evolutionarily correlated [31]
genes in bacteria, has been shown to be crucial for achieving chromosome con-
formations that favor the formation of such transcription factories. This was
demonstrated using a thermodynamic model of chromosome folding where dis-
tal transcriptional operators can be cross-linked by TFs [13]. It has been shown,
in particular, that chromosomal periodicity favors the formation of solenoid-like
structures [15] whereas chromosomal proximity, which is also observed for co-
regulated genes [16], favors the formation of rosette-like structures [5]. These two
families of chromosomal conformations thus favor the spatial proximity of TF
binding sites, which in turn optimizes transcriptional repression or activation [30]
through local concentration effects [18]. In other words, there exists a positive
feedback loop connecting specific genome organization (periodicity/proximity)
to the cellular conformation of chromosomes on to transcriptional control [15].

The rationale proposed in this paper is to combine TFBS nucleic sequence
information with gene positioning information to obtain an accurate and robust



94 M. Elati et al.

TFBS prediction model. This combination must itself be optimized in order to
achieve a high classification performance. For this purpose, we model the TF-
DNA binding problem as a multi-views classification problem [2]. Combination of
multiple classifiers is an important research topic in the field of machine learning,
and widely discussed in literature [17]. Methods for classifier fusion range from
non-trainable combiners like the majority vote or simple functions, to sophis-
ticated methods that require an additional training step. Other methods such
as boosting and bagging [3] have been introduced to cope with the diversity in
the classifier opinions. Here, we modify the boosting algorithm AdaBoost [21]
to train a TF-DNA binding classifier as an ensemble model, which is a weighted
combination of a set of base classifiers trained on different views (gene local se-
quence and position) of the training data. A key aspect of the boosting technique
is that it forces some of the base classifiers to focus on the boundary between
positive and negatives examples, thus effectively reducing classification errors.
We demonstrate the power of this approach by empirical studies performed on
a benchmark dataset from two distinct bacteria: the Gram-negative Escherichia
coli and the Gram-positive Bacillus subtilis.

The paper is organized as follows. We first explain the base classifiers used
for TFBS prediction based on the consensus sequence and on the chromosome
position regularity of TFBS. We next introduce the classifier fusion algorithm.
Results are eventually presented and discussed.

2 PreCisIon: PREdiction of CIS-Regulatory Elements
Improved by Gene’s Position

PreCisIon is a general method to infer new regulatory relationships between
a known TF and all the genes of an organism. It requires two types of data as
inputs. First, each gene in the organism must be characterized by some prop-
erty (view), in our case two views: the promoter sequence and its chromosome
position. Second, a list of known regulatory relationships between known TF
and some genes is needed. More precisely, for each TF, we need a list of genes
known to be regulated by the TF and, if possible, a list of genes known not
to be regulated. Such lists can be constructed from publicly available databases
of experimentally characterized regulations, e.g. RegulonDB for E. coli genes
(Salgado et al., 2006). While such databases usually do not contain information
about the absence of regulations, we discuss below how to generate negative
examples. When such data are available, PreCisIon splits the problem of regu-
latory network inference into many binary classifications from disjoint views. For
each view, PreCisIon trains a binary classifier to discriminate between genes
known to be regulated and genes known to be not regulated by the TF, based on
the data that characterize the genes (e.g. classical sequence data). In this paper
we introduce a new chromosomal position view to benefit from information per-
taining to spatial chromosome conformation. The rationale behind this approach
is that, although we make no hypothesis regarding the relationship between the
position of a TF and its targets, we assume that if a set of genes is regulated



Boosting Binding Sites Prediction Using Gene’s Positions 95

by the same TF, then they are likely to exhibit 1D clustering and/or periodical
patterns. The final step is to combine all individual classifiers that are trained
in disjoint views. Once trained, the model associated with a given TF is able to
assign a class to each new gene which has not been used during training.

2.1 Individual Classifiers

Sequence classifier. Recurrent nucleotide motifs (binding sites) in a collection
of DNA sequences (promoter region of target genes) are most commonly modeled
by position weight matrices (PWM), which are also called profiles or position-
specific scoring matrices. In the general form of this model, an K-long sequence
motif is represented by a 4 × K matrix m of weights wm

b,k assigned to each
possible base b[A,C,G, T ] at each position i in the binding site [25]. A PWM is
generally learned from a collection of aligned DNA binding sites that are likely to
bound by a common transcription factor (TF). Theoretically, it is formulated as
a maximum likelihood problem—finding a PWM such that the likelihood of the
observed set of binding sites is maximised. Many alignment driven algorithms
have been developed; for instance MotifSampler [27].

Given a learned PWM, the sum of the elements that correspond to a specific
sequence s gives a total score for that sequence. This allows the model to provide
a binding score BS to all possible binding sites for the protein.

BS(s) =
K∑

k=1

∑
b∈[A,C,G,T ]

wm
b,kIb,k(s)

Ib,k(s) = 1 if base b occurs at position k of sequence s and 0 otherwise. The
higher the score, the more likely a site will be bound by the TF. The Sequence
classifier decides that s is a target of the TF whenever BS(s) > t and that it is
not a target site, otherwise; t is a threshold decided by some criteria (e.g., ROC
curve analysis—see below).

Positional classifier. Recent studies have unveiled regular patterns in the posi-
tion of cofunctional genes along DNA, both in eukaryotes and bacteria [15,14,31].
Two types of patterns have been identified for co-regulated genes: they tend ei-
ther to be clustered along the DNA, hereafter referred to as 1D clustering, or
to be periodically disposed along the genomes. Both patterns have been shown
to facilitate the formation of the so-called transcription factories in the cellular
space. More specifically, 1D clustering favors rosettes, while periodicity favors
solenoidal arrangements. As a consequence, the position of the genes shall be seen
as an expedient classifier for the prediction of transcription factor binding sites.
Here, we propose to use both the 1D clustering information and the periodic
trends to generate a positional score as an additional classifier. For this purpose,
we have recently developed a tool named ”Solenoidal Coordinate Method” or
”SCM” for analyzing the periodic trends in small sets of positions, which stand
here for the positions of target genes [12]. The tool aims i) to detect the presence
of a periodic pattern and ii) to allocate to each gene a period-dependent posi-
tional score, which reflects the tendency of the gene to be well positioned with
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Fig. 1. Principle of SCM, the solenoidal coordinate method. A set of sites (in
red, upper left corner) comes from a pattern that periodically repeats at some period
P (blurred red points). Some of the initial periodic sites are missing (false negative)
or have different positions (noise), and random sites have been added (false positive).
Although the resulting pattern seems to be aperiodic, the position of the sites in a
solenoidal coordinate of period P (lower left panel) reveals some alignment properties
along the solenoidal axis. A projection upon the face view of the solenoid captures
exceptionally dense or void regions (rightmost panel).

respect to the other genes at a given period (Fig. 1). By contrast, standard meth-
ods based on a Fourier analysis of auto-correlation functions or of pair-distance
histograms are poorly adapted to gene position datasets, which are often sparse,
noisy and distorted by the presence of false positives and false negatives. More-
over, they provide a collective assessment but do not deliver individual scores,
as required here.

SCM is based on a solenoidal representation of the position of the genes.
In particular, the presence of a periodic pattern at a certain period leads to an
alignment of the genes along the solenoid with the right period or, equivalently, to
a clustering of the genes when they are represented on the solenoid face view (Fig.
1). The algorithm is therefore built upon a distance-based information content for
the organization of the genes on the solenoid face view, rewarding dense clusters
and empty regions (Fig. 1). This information content is computed for all periods,
which leads to a spectrum. The peaks that are abnormally high in this spectrum
then reveal the periodic tendencies. For both artificial and biological data, the
SCM method has been shown to pinpoint periodic regularities that were missed
by the standard approaches [12].

At a given period, the SCM allocates a period-dependent positional score to
each gene, reflecting its periodic positioning with respect to the other genes.
This positional score is equal to the cologarithm of the likelihood for the gene
to be periodically positioned with respect to the other genes of the dataset.
This likelihood reflects the probability that the density in the vicinity of the
gene, on the face view of the solenoid, be obtained with randomized positions.
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In other words, the positional score rewards the genes that are located in the
dense regions of the solenoid face view (see Fig. 1).

2.2 Classifier Fusion Using Boosting

In this paper we propose a slight variation of the AdaBoost algorithm [21] for the
classifier fusion problem. AdaBoost has been shown to improve the prediction
accuracy of weak classifiers using an iterative weight update process. The tech-
nique combines weak classifiers (classifiers having classification accuracy slightly
greater than chance) in a weighted vote, resulting in an overall strong classifier.
The proposed variation to the regular form of AdaBoost (Table 1) consists in al-
lowing the algorithm to choose, at each iteration, among weak classifiers trained
on different views (here, sequence and position) of the training data. The combi-
nation of weights for the final weighting rule is obtained using a shared sampling
distribution. In each iteration, a weak classifier is greedily selected from the pool
of weak learners trained on disjoint views. This results in a minimization of the
training error for the final hypothesis.

Notice that while this is not the regular procedure for training AdaBoost, none
of the assumptions on which the algorithm is based is modified; its hypothesis
space is only extended by relying on an increased number of classifier types. The
weights of the two views of the training example are updated using the same
exponential cost function value. Since the same distribution is used for sampling

Table 1. Classifier fusion using shared sampling distribution for boosting

– Input and initialisation :
• N training examples (genes) in a training set T
• 2 views v (promoter sequence and chromosome position) available for each ex-

emple and hence 2 training sets such that Tv = 〈(gv
1 , y1), (g

v
2 , y2), · · · , (gv

N , yN)〉
• Given an example g with a class label c ∈ (0; 1), the weight is initialised to

ω1(g) = σc
nc

with σc the specified sum of class c’s weights and nc the number of
genes with the class label c. The sum of all the examples weight must be equal
to 1 and respective views for all the training examples are assigned equals
resulting in a uniform distribution ω1.

– For k=1 to kmax do :
1. For each view v (promoter Sequence or chromosome Position), train classifiers

Cv
k , using the distribution ωk.

2. Obtain the errors rates εv
k of each clasifier : εv

k = Pi∼ωk [Cv
k (gv

i ) = yi]
3. Select the base classifier C∗

k with the lowest error rate ε∗k < 0.5

4. Compute the value α∗
k = 1

2
ln

1−ε∗k
ε∗
k

5. Update examples’ weights: For misclassified examples : ωk+1(i) = ωi(i)e
α∗

k

Z∗
k

and for well classified example: ωk+1(i) = ωi(i)e
−α∗

k

Z∗
k

, where Z∗
k normalises the

weights so that ωk+1 becomes a normalised distribution.
– Final hypothesis: H(g) = sign(

∑kmax
k=1 α∗

kC∗
k(g∗)
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training example and updating the weights for all the views, all the convergence
proofs that apply to AdaBoost [21] also apply to the proposed version of the
algorithm.

3 Results

As a proof of concept, E. coli and B. subtilis were selected as model organisms.
The use of these particularly well-studied model organisms ensures a compete set
of annotations. It also allows to cover a broad range of the bacterial phylogeny
since E. coli is Gram-negative and B. subtilis is Gram-positive. In each organism,
the Position classifier was built upon the positions of their transcription units
(TU). One TU expresses one mRNA but may contain several genes. In this
case, it is called an operon and the corresponding genes, the cistrons. The list
of operons in E. coli, respectively B. subtilis, were downloaded from RegulonDB
[8], DBTBS [23] respectively. It contains 899 (633 resp.) operons. Genes not
present in these operons were further considered, resulting in a total of 3360
(resp. 3426) TUs from the initial 4345 (resp. 4100) genes. For each TU, two
features were associated, that is, the promoter sequence and the transcription
start position. The tool “retrieve-seq” of “Regulatory Sequence Analysis Tools”
(RSAT [28], http://rsat.ulb.ac.be/rsat/) was used to retrieve upstream
sequences (promoter sequence). Sequence lengths were computed to collect all
non-coding sequence up to the first upstream gene, with a maximal distance of
400 bp. Experimentally validated TF-binding sites and gene regulations were
downloaded from RegulonDB and DBTBS as well. To avoid having too few
positive samples, it was also required that each selected TF should have at least
ten positive examples (TUs). Twelve TFs for each model organism satisfy these
criteria and were selected.

The Sequence classifier was built using MotifSampler [27], an extension of
the Gibbs sampling algorithm for motif finding with a higher-order background
model [29]. The background model, usually defined as a n-order Markov model
(n = 0, 1, 2 or 3), tries to capture all the information in the non-binding sites,
which are much more heterogeneous than the binding sites. Since Sequence and
Position classifiers each provide an output score for any TU, a threshold is used
to discretise the score values to obtain binary decisions (class 0 for non target
genes and class 1 for target ones). ROC curves (Fig. 2) can be used to select the
optimal decision threshold by maximizing any pre-selected measure of efficiency
(e.g., accuracy). Accuracy is not always the best criterion, however, because it
is overestimated as a result of the high proportion of negative instances with
respect to the positive ones (e.g., 85% accuracy by simply predicting all the
cases as negative). In [10], the true rate is proposed to be the summation of the
true positive rate and the true negative rate as follows:

TrueRate =
TP

TP + FN
+

TN

TN + FP
The true rate is more relevant than the standard definition of accuracy when

the ratio of postive instances vs negative ones is small or large, which is the case

http://rsat.ulb.ac.be/rsat/
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here. In our study we obtain better performance using the True rate. We note
that the optimal threshold for the Sequence classifier is around 0.8 for B. subtilis
and E. coli, unlike the Position one which varies from one TF to another.

3.1 Comparison with Individual Classifiers

In order to assess the performance of the proposed method PreCisIon , and
compare it with other existing methods, we test it on a benchmark of known reg-
ulatory interactions. PreCisIon being a supervised method, a cross-validation
procedure is applied to make sure that its performance is measured on cases that
have not been used during the model-training step. Consequently the following
three-fold cross-validation strategy is adopted: given a TF, a set of genes and
operons, and relations between them, the gene set is split randomly in three
parts, PreCisIon is trained on two of these subsets and its prediction capacity
is measured on the third subset, i.e. on those genetic interactions that were not
used during training. This process is repeated on all three subset combinations,
and the prediction qualities of these three folds are averaged and compared.

The Sequence classifier achieved on average a AUC of 68% and 56%, a sensi-
tivity of 92% and 87%, and a specificity of 30% and 15% for B. subtilis and E.
coli, respectively. Importonly, a weak classifier can be built using only Position
information. This classifier achieved a AUC of 51% and 54%, a sensitivity of 25%
and 38%, and a specificity of 80% and 78% for B. subtilis and E. coli, respec-
tively. These results suggest that Position information can be used to improve
the specificity of the Sequence classifier. PreCisIon gave rise to the highest
performance by the criteria of AUC (70% and 60%, for B. subtilis and E. coli,
respectively), sensitivity (80% and 70%, resp.) and specificity (60% and 56%,
resp.). This result is also demonstrated by a ROC analysis (Fig. 2). In general,

Fig. 2. Receiver Operating Characteristic (ROC) curves on a test set for Position clas-
sifier, Sequence classifier and Boosting with classifiers fusion. These ROCs are average
curves over all TFs of the ROCs that have been obtained for each single TF.
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the ROC curve of an accurate classifier is close to the left-hand and top borders
of the plot. PreCisIon is therfore clearly better than the classical Sequence clas-
sifier alone. The use of gene positioning information thus improves prediction of
TFBS.

3.2 Comparison with Other Classifiers Fusion Methods

In order to find the best combination method for Sequence and Position classi-
fiers, PreCisIon was compared to other approaches ranging from simple non-
trainable methods (e.g. linear combination) to more sophisticated ones based on
an additional training step (e.g. stacked generalization, which uses the individual
classifiers outputs as input for a second classification step; this allows to weigh
the output of individual classifiers). A ROC analysis shows that PreCisIon is
more efficient than any other combination methods (Fig. 3).

3.3 Functional Analysis of Predicted Targets of Global TFs

As new TFBSs are predicted purely by computational methods, additional lines
of evidence were sought to support the functionality of the new regulatory links
obtained for the TFs.

We used the Gene Ontology (GO) enrichment analysis to characterize the
biological functions of newly predicted targets of global regulators. We next
compared these results against those coming from the set of known targets. For
each of the five TFs with the most targets in RegulonDB (CRP, FNR, IHF,
ArcA and Fis), we performed the analysis using UniProt GO annotations and
the GO enrichment analysis software DAVID [11]. In Table 2, we list for each
TF the top ranked GO category among its predicted targets along with the

Fig. 3. ROC analysis to compare three classifier fusion algorithms: PreCisIon (clas-
sifier fusion using boosting), linear combination based on average and Stacked gener-
alization using Naive Bayes
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Table 2. The table shows the most significant GO categories for new predicted gene
targets for the E. coli TFs using PreCisIon , with the most curated targets in Regu-
lonDB. The table compares the enrichment p-value (pv) of this category for the newly
predicted targets (PT) and known targets (KT).

TF Top GO Category pv PT pv KT

CRP carbohydrate catabolic process 2,7E-9 5.7E-7
FNR metal ion transport 4.1E-3 8.8E-1
IHF nitrogen biosynthetic process 2.1E-11 6.0E-9
ArcA cellular acid biosynthetic process 2.5E-9 1.3E-8
Fis carbohydrate catabolic process 5,9E-11 5.3E-2

enrichment p-value, as well as the p-value for this category among the curated
targets. We observe that for CRP, ArcA and IHF the top ranked GO category
based on the predicted targets is significant in the analysis on the curated targets.
These results support the assignments made by PreCisIon and indicate that
the newly predicted targets for most TFs can be used to correctly extend our
understanding of the function of these TFs.

4 Conclusion

How TFs selectively bind to DNA is one of the least understood aspects of TF-
mediated regulation of gene expression. An ability to better predict TF binding
sites from small training data sets may advance our understanding of TF-DNA
binding, and may reveal important insights into TF binding specificity, regula-
tion and coordination of gene expression, and ultimately into gene function. As
Sandve and colleagues mentioned [20], another mathematical reformulation of
existing approaches will certainly not change the status of the field of TFBS pre-
diction. In this paper we show that for bacteria, chromosomal gene positioning
carries significant information. This global positional information fundamentally
differs from local sequence information. As a result, they can be seamlessly com-
bined to significantly improve genetic network inference. On this basis, we set
up a tool named PreCisIon to optimize this combination using a powerful
machine-learning algorithm. Validation on datasets from two phylogenetically
remote bacteria shows that PreCisIon improves the specificity of TFBS pre-
diction. On the machine learning side, the work presented here provides a start-
ing point for future investigations of how a strong classifier can be obtained by
fusing classifiers from multiple views using boosting techniques.

Future work should focus at i) identifying the influence of transcription factor
cooperativity [6] on gene organization and in the definition of chromosomal sec-
tors of functional activity ii) extending the PreCisIon model to others views
of transcriptional control, for instance chemical aspects of TF-DNA binding [1].
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Abstract. In this paper, we study the problem of constructing perfect
phylogenies for three-state characters. Our work builds on two recent
results. The first result states that for three-state characters, the local
condition of examining all subsets of three characters is sufficient to de-
termine the global property of admitting a perfect phylogeny. The second
result applies tools from minimal triangulation theory to the partition
intersection graph to determine if a perfect phylogeny exists. Despite the
wealth of combinatorial tools and algorithms stemming from the chordal
graph and minimal triangulation literature, it is unclear how to use such
approaches efficiently to construct a perfect phylogeny for three-state
characters when the data admits one. We utilize structural properties of
both the partition intersection graph and the original data in order to
achieve a competitive time bound.

1 Introduction

In this paper, we study the problem of constructing phylogenies, or evolutionary
trees, to describe ancestral relationships between a set of observed taxa. Each
taxon is represented by a sequence and the evolutionary tree provides an expla-
nation of branching patterns of mutation events transforming one sequence into
another.

We will focus on the widely studied infinite sites model from population ge-
netics, in which the mutation of any character can occur at most once in the
phylogeny. Without recombination, the phylogeny is a tree called a Perfect Phy-
logeny. The problem of determining if a set of binary sequences fits the infinite
sites model without recombination corresponds to determining if the data can
be derived on a perfect phylogeny. A generalization of the infinite sites model
is the infinite alleles model, in which any character can mutate many times but
each mutation of the character must lead to a distinct allele (state). Again, with-
out recombination, the phylogeny is tree, called a multi-state Perfect Phylogeny.
Correspondingly, the problem of determining if multi-state data fits the infinite-
alleles model without recombination corresponds to determining if the data can
be derived on a multi-state perfect phylogeny.

Dress and Steel [7] and Kannan and Warnow [12] both give algorithms that
construct perfect phylogenies for three-state characters when one exists.

T.M. Przytycka and M.-F. Sagot (Eds.): WABI 2011, LNBI 6833, pp. 104–115, 2011.
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The goal of this work is to extend the results in [15] using the minimal sep-
arators of the partition intersection graph to create a three state construction
algorithm that is competitive with Dress and Steel’s algorithm.

2 Notation and Prior Results

The input to our problem is a set of n sequences (representing taxa), where
each sequence is a string of length m over r states. The input can be con-
sidered as a matrix of size n × m, where each row corresponds to a sequence
and each column corresponds to a character (or site). We denote characters by
C = {χ1, χ2, χ3, . . . , χm} and the states of character χi by χi

j for 0 ≤ j ≤ r − 1.
A species s is any sequence s1, s2, . . . , sm ∈ {χ1

j1
, χ2

j2
, . . . χm

jm
: 0 ≤ j ≤ r − 1 },

where si is the state of character χi for s. Note that a species need not be one
of the input sequences.

The perfect phylogeny problem is to determine whether an input set S can be
displayed on a tree such that

1. each sequence in input set S labels exactly one node in T ,
2. each leaf is labeled by a sequence in S,
3. each vertex of T is labeled by a species,
4. for every character χi and for every state χi

j of character χi, the set of all
vertices in T labeled by species whose state of character χi is χi

j forms a
connected subtree of T .

The general perfect phylogeny problem (with no constraints on r, n, and m)
is NP-complete [4,19]. However, the perfect phylogeny problem becomes poly-
nomially solvable (in n and m) when r is fixed. For r = 2, this follows from the
Splits Equivalence Theorem [9,18]. For r = 3, Dress and Steel gave an O(nm2)
algorithm [7] and for r = 3 or 4, Kannan and Warnow gave an O(n2m) algorithm
[12]. For any fixed r, Agarwala and Fernández-Baca gave an O(23r(nm3 +m4))
algorithm [1], which was improved to O(22rnm2) by Kannan and Warnow [13]).

Definition 1 ([5,18]). For a set of input sequences M , the partition intersec-
tion graph G(M) is obtained by associating a vertex for each character state and
an edge between two vertices χi

j and χk
l if there exists a sequence s with state j

in character χi ∈ C and state l in character χk ∈ C. For a subset of characters
Φ = {χi1 , χi2 , . . . , χik}, let G(Φ) denote the partition intersection graph G(M)
restricted to the characters in Φ.

Note that by definition, there are no edges in the partition intersection graph
between states of the same character.

Definition 2. A graph H is chordal, or triangulated, if there are no induced
chordless cycles of length four or greater in H.

See [6] and [3] for further details on chordal graphs.
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Consider coloring the vertices of the partition intersection graph G(M) as fol-
lows. For each character χi, assign a single color to the vertices χi

0, χ
i
1, . . . , χ

i
r−1.

A proper triangulation of the partition intersection graph G(M) is a chordal
supergraph of G(M) such that every edge has endpoints with different colors.
In [5], Buneman established the following fundamental connection between the
perfect phylogeny problem and triangulations of the corresponding partition in-
tersection graph.

Theorem 1. [5,18] A set of taxa M admits a perfect phylogeny if and only if
the corresponding partition intersection graph G(M) has a proper triangulation.

In particular, pairs of character states in the same node of a perfect phylogeny not
appearing in a shared row of M specifies the edges to add to properly triangulate
G(M). Conversely, if M has a perfect phylogeny, it can be constructed from the
clique tree of a proper triangulation of G(M). T is a clique tree for a graph G if

1. the nodes of T are in bijection with the maximal cliques of G,
2. for each vertex v of G, the maximal cliques containing v form a connected

subtree of T .

In recent work, it is shown that there is a complete description of minimal
obstruction sets for three-state characters analogous to a well-known result on
obstruction sets for binary characters (the four gamete condition) [15]. These
results allow us to expand upon recent work of Gusfield which uses properties of
triangulations and minimal separators of partition intersection graphs to solve
several problems related to multi-state perfect phylogenies [10].

An (a, b)-separator of graph G is a set of vertices whose removal from G
separates a and b. A minimal (a, b)-separator is an (a, b)-separator such that no
proper subset is an (a, b)-separator and a minimal separator is a separator that
is a minimal (a, b)-separator for some pair of vertices a and b. For a set of vertices
X , let G−X be the induced subgraph of G after removing vertices X . If S and
T are two minimal separators of G, we say S is parallel to T if there is a single
connected component C of G−T such that S ⊆ C∪T (otherwise S and T cross).
A pair of vertices a and b cross S if S is a (a, b)-separator. The neighborhood of
a set of vertices X is N(X) = {v ∈ G −X : (u, v) ∈ E(G) for some u ∈ X}. A
component C of G− S is full if the neighborhood N(C) is equal to S.

In a graph whose vertices are assigned colors, a legal separator is a separator
such that no two vertices have the same color. Let ΔG denote the minimal
separators of graph G. For vertices X in G, we saturate X by adding all edges
between vertices in X to create a clique. For X a collection of vertex subsets,
GX denotes the graph obtained by saturating every X ∈ X .

A proper triangulation of G(M) is minimal if no proper subgraph is a proper
triangulation of G(M). Parra and Scheffler [16,17] characterized minimal tri-
angulations of arbitrary graphs by extending results from Kloks, Kratsch, and
Spinard [14].

Theorem 2 (Minimal Triangulation Theorem [16,17]). Suppose Q ⊆ ΔG

is a maximal set of pairwise parallel minimal separators of G. Then GQ is a
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minimal triangulation of G and ΔGQ = Q. Conversely, if H is a minimal trian-
gulation of G, then ΔH is a maximal pairwise parallel set of minimal separators
of G.

The following are necessary and sufficient conditions for the existence of a perfect
phylogeny for data over arbitrary number of states. We refer the reader to [10]
for the proofs.

Theorem 3 (Theorem 2 (MSP) [10]). For input M over r states (r ≥ 2),
there is a perfect phylogeny for M if and only there is a set Q of pairwise parallel
legal minimal separators in G(M) such that every illegal minimal separator in
G(M) is crossed by at least one separator in Q.

Theorem 4 (Theorem 3 (MSPN) [10]). For input M over r states (r ≥
2), there is a perfect phylogeny for M if and only if there is a set Q of pairwise
parallel legal minimal separators in partition intersection graph G(M) such that
every mono-chromatic pair of nodes in G(M) is separated by some separator in Q.

For the special case of input M with characters over three states (r = 3), the par-
tition intersection graph satisfies additional structure and the following theorems
give necessary and sufficient conditions for the existence of a perfect phylogeny
for M [15].

Theorem 5. ([15]) Given an input set M with at most three states per char-
acter (r ≤ 3), M admits a perfect phylogeny if and only if every subset of three
characters of M admits a perfect phylogeny.

Furthermore, there is an explicit description of all minimal obstruction sets to
the existence of a perfect phylogeny.

Theorem 6. ([15]) For input M over 3-state characters, there exists a perfect
phylogeny for M if and only if both of the following conditions hold:

1. for every pair of columns of M , the partition intersection graph induced by
the columns is acyclic,

2. for every triple of columns of M , the partition intersection graphs induced
by the columns does not contain any of the graphs shown in Figure 1 up to
relabeling of the character states.

This complete characterization of minimal obstruction sets allows us to simplify
Theorem 4 in the case r = 3.

Theorem 7. ([15]) For input M on at most three states per character (r ≤ 3),
there is a three-state perfect phylogeny for M if and only if the partition inter-
section graph for every pair of characters is acyclic and every monochromatic
pair of vertices in G(M) is separated by a legal minimal separator.
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Fig. 1. Minimal obstruction sets for three-state characters up to relabeling. The boxes
highlight the input entries that are identical for three of the obstruction sets.

Theorem 7 shows that the requirement of Theorem MSPN that the legal mini-
mal separators in Q be pairwise parallel, can be removed for the case of input
data over three-state characters. The condition in Theorem 7 that the input is
over three state characters is necessary, as there are examples showing that the
theorem does not extend to data with four state characters.

It is known that all of the legal minimal separators for three-state input can
be found in O(nm2) time and the algorithm to check if each mono-chromatic
pair is separated by a legal minimal separator can be performed during the
algorithm for generating the legal minimal separators (see below). Therefore,
the 3-state perfect phylogeny decision problem can be solved in O(nm2) time
using minimal separators. However, it is not clear how minimal separators can
be used to solve the construction problem in a similar time bound. In [10],
Gusfield used the minimal separator approach and integer linear programming
methods to solve both the decision and construction problem for k-state perfect
phylogeny. Since integer linear programming methods in general do not have
polynomial time bounds, this naturally leads to the following question: is there
an O(nm2) algorithm for the construction problem for 3-state perfect phylogeny
using the separator approach?

In the next section, we study the structure of separators in the partition
intersection graph for 3-state input. We first state two lemmas from [15].

Lemma 1. (Lemma 3.4 [15]) Let M be a set of input species on three charac-
ters a, b, and c with at most three states per character. If partition intersection
graph G(a, b, c) is properly triangulatable, then the only possible chordless cy-
cles in G(a, b, c) are chordless 4-cycles, with two colors appearing once and the
remaining color appearing twice.
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Lemma 1 implies that if a subset of three characters χi, χj , χk in M is properly
triangulatable, then there is a unique set of edges F (χi, χj , χk) that must be
added to triangulate the chordless cycles in G(χi, χj , χk). Construct a new graph
G′(M) on the same vertices as G(M) with edge set E(G(M)) ∪ {∪1≤i<j<k≤m

F (χi, χj, χk)}. G′(M) is the partition intersection graph G(M) together with
additional edges to properly triangulate all chordless cycles in G(χi, χj, χk) (1 ≤
i < j < k ≤ m). In G′(M), edges from the partition intersection graph G(M)
are called E-edges and edges that have been added as triangulation edges for
some triple of columns are called F -edges.

Lemma 2 (Lemmas 4.2, 4.3, 4.7 [15]). Let M be a set of input species on
three characters a, b, and c with at most three states per character. Then G′(M)
cannot contain a chordless cycle with one or more F -edges. If C is a chordless
cycle in G′(M) with only E-edges, then C has length exactly four with four
distinct colors.

3 Structure of Separators

In this section, our goal is to study the structure of minimal separators in G(M)
and G′(M), with the ultimate goal of showing that it suffices to consider only the
legal minimal separators of G(M) while disregarding the illegal minimal separa-
tors. We will prove that when M has a perfect phylogeny, the minimal separators
of G′(M) are exactly the legal minimal separators of G(M). We build on tech-
niques developed in [10] to generate the minimal separators of G′(M) and their
parallel relations in O(nm2) time. This will allow us to use a greedy approach
to pick a maximal pairwise parallel set of legal minimal separators. These min-
imal separators will then define a set of fill edges, and a perfect phylogeny will
be constructed in the form of a clique tree using Maximum Cardinality Search
(MCS). MCS was introduced by Tarjan and Yannakakis [20] and may be used
to recognize chordal graphs. Blair and Peyton [3] showed how MCS can be used
to construct a clique tree for a chordal graph in linear time.

We now prove the following theorem on the separator structure of G′(M).

Theorem 8. Let M be a set of taxa over 3-state characters. M allows a perfect
phylogeny if and only if the graph G′(M) (the partition intersection graph G(M)
together with F -edges) does not contain any illegal minimal separators.

Proof. Suppose M allows a perfect phylogeny and suppose there is an illegal
minimal separator S in G′(M) with a monochromatic pair of vertices u and v.
Since S is a minimal separator, there exist two full components C,D of G−S and
paths connecting u and v in C∪{u, v} and D∪{u, v}. Consider the shortest such
paths PC and PD respectively (note that there are no chords within PC and no
chords within PD). Since C and D are components separated by S, there are no
edges between C and D. Also, u and v are not adjacent in G′(M) since u and v
have the same color and G′(M) contains no illegal edges. This implies the union
of PC and PD creates a chordless cycle. By Lemma 2, G′(M) cannot contain any
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chordless cycles of length five or greater, so the union of the paths PC and PD

must be a four cycle C and in particular, must be a cycle u→ x→ v → x′ → u,
where u and v have the same color. C is a chordless four cycle in G′(M) on at
most three colors, which cannot occur since we have triangulated all such cycles
by F -edges. This contradiction implies S cannot be an illegal minimal separator.

Now, suppose G′(M) does not contain any illegal minimal separators. By The-
orem 2, graph G′(M) has a proper triangulation and since G(M) is a subgraph
of G′(M), G(M) also has a proper triangulation. It follows that M has a perfect
phylogeny. ��
This suggests that analyzing the minimal separators of G′(M) suffices for 3-state
construction. In order to use techniques in [10], the goal of our next two results
will be to show how ΔG′(M) can be constructed using ΔG(M).

Lemma 3. Let M be a set of 3-state taxa with perfect phylogeny. Then H is a
minimal triangulation of G′(M) if and only if H is a minimal proper triangula-
tion of G(M).

Proof. Suppose H is a minimal proper triangulation of G(M). Each F -edge
comes from a chordless cycle of length four on three colors (see Lemma 1), so this
edge must appear in any proper triangulation of G(M). Thus the F -edges must
be edges of H , so G′(M) ⊆ H and H is a proper triangulation of G′(M). If H is
not minimal with respect to G′(M), there is some H ′ where G′(M) ⊆ H ′ ⊂ H
and thus G(M) ⊆ H ′ ⊂ H , contradicting the minimality of H . Thus H is a
minimal proper triangulation of G′(M).

Conversely, suppose H is a minimal triangulation of G′(M). H is a proper
triangulation of G(M) by Theorem 8, and if there is some G(M) ⊆ H ′ ⊂ H
the F -edges must be edges of H ′ or H ′ has a chordless four cycle. H ′ is then a
proper triangulation of G′(M), a contradiction, so H must be a minimal proper
triangulation of G(M). ��
Let ΔL

G(M) denote the set of legal minimal separators of G(M).

Theorem 9. Suppose M is a set of taxa with 3-state characters that has a
perfect phylogeny. Then the legal minimal separators of G(M) are exactly the
minimal separators of G′(M).

Proof. Let S be a minimal separator of G′(M), and suppose Q is a set of max-
imal pairwise parallel minimal separators of G′(M) with S ∈ Q. G′(M)Q is
a minimal triangulation of G′(M) by Theorem 2, and G′(M)Q is a minimal
proper triangulation of G(M) by Lemma 3. By Theorem 2, ΔG′(M)Q

= Q so
S ∈ ΔG′(M)Q

, and ΔG′(M)Q
⊆ ΔG(M) so S ∈ ΔG(M). S is legal by Theorem 8,

so ΔG′(M) ⊆ ΔL
G(M).

Conversely, let S ∈ ΔL
G(M). Assume that S is not a minimal separator of

G′(M). First we show that there must be an F -edge crossing S (i.e. f = xy where
x and y cross S). Suppose for the sake of contradiction that no F -edge crosses
S. Then every full connected component C of G(M) − S is also a connected
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component of G′(M) − S, and NG(M)(C) ⊆ NG′(M)(C) so NG′(M)(C) = S.
Thus S has two or more full components and is a minimal separator of G′(M), a
contradiction. Therefore some F -edge f = xy exists where x and y cross S. By
definition of F -edges, there is a four cycle x → u → y → v → x in G(M) with
monochromatic pair u, v that witnesses f . S is an xy−separator and must contain
u and v. Therefore S is illegal, a contradiction, so S is a minimal separator of
G′(M). ��
Combining Theorems 2, 8, and 9, we obtain the following.

Theorem 10. Let M be an instance of 3-state perfect phylogeny. Then M has a
perfect phylogeny if and only if any maximal pairwise parallel set of legal minimal
separators Q of G(M) induces a proper triangulation G(M)Q of G(M).

We are now ready to state our algorithm.

Algorithm. Proper Triangulation for 3-State Characters

1. Compute ΔL
G(M) using proper clusters [1,10,13].

2. Stop if there is a monochromatic pair not separated by any legal minimal
separator.

3. Compute the crossing relations for ΔL
G(M).

4. Greedily construct a maximal pairwise parallel subset Q of ΔL
G(M).

5. Add edges to G(M) to make each S ∈ Q a clique. Call this graph GQ.
6. Use MCS to construct a clique tree for GQ in O(|V (GQ)|+ |E(GQ)|) time

[3].

We analyze the complexity of our algorithm by showing that each step is
O(nm2). The first step uses concepts from [1,10,13], which we detail here for
completeness.

Lemma 4. [8] Let S be a subset of the vertices of a graph G. Then S is a
minimal separator of G if and only if G− S has two or more full components.

A proper cluster is a bipartition of the taxa such that each character shares
at most one state across the bipartition [1,13]. There are O(m) proper clusters
when k is fixed (O(2k) per character). Here, we elaborate on how each S ∈
ΔL

G(M) is witnessed by a proper cluster as discussed in [10]. For a connected
component C of G(M) − S, let t(C) = {ti | ti witnesses a vertex v ∈ C}. We
call {t(C) | C is a connected component of G(M) − S} the S−partition of the
taxa. G(M) − S has two or more full components C1 and C2. Place t(C1) and
t(C2) in separate parts of the bipartition, then for the remaining connected
components C of G(M) − S add t(C) to either part. This defines a bipartition
where the shared character states (known as the splitting vector [13]) are exactly
the vertices of S. This implies that |ΔL

G(M)| = O(m).
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Let g be a proper cluster with splitting vector x, and Sx be the vertices of
G(M) corresponding to the character states in x. Define the equivalence relation
g/x by the transitive closure of the relation tRt′ if and only if there is a character
χi where χi(t) = χi(t′) and (χi, χi(t)) is not a shared character state in x;
calculating g/x takes O(nm) time [12]. Given an equivalence class [t] of g/x, the
vertices {v /∈ x | some t′ ∈ [t] is witnessed by v} are a connected component
of G(M) − Sx, and every connected component can be described in this way.
For a connected component C of G(M) − Sx, the size of its neighborhood can
be calculated using the t(C) rows of M (i.e. for t ∈ t(C), count the character
states of [t] also in x, being careful not to overcount). Sx ∈ ΔL

G(M) if and only
if there are distinct equivalence classes [t] and [t′] that share all character states
in x. For each equivalence class, we examine each taxon once, so this requires a
single pass through every row of M and can be done in O(nm) time per proper
cluster, so step 1 takes O(nm2) time.

For step 2, we check that all monochromatic pairs are separated in order to
answer the decision question before construction proceeds. When S is witnessed
by a proper cluster g with splitting vector x, we calculate the S−partition (this
partition is exactly g/x). The S−partition will be useful in calculating the cross-
ing relations, so the S−partition is stored when S is generated. There are O(m)
legal minimal separators and computing g/x takes O(nm) time, so this calcu-
lation takes O(nm2) total time. Now, for each character there are 3 possible
monochromatic pairs, and a monochromatic pair χi

j , χ
i
k are separated by S iff

both character states are not in S and there is a pair of taxa s and t where
si = χi

j and ti = χi
k that lie in different pieces of the S−partition. This takes

constant time to check per character and there are O(m) characters, so it takes
O(m2) time to determine if all monochromatic pairs are separated.

Before analyzing step 3, we first state two structural lemmas on minimal
separators; the second follows from a lemma in [2].

Lemma 5. [17] Let S and T be non-parallel minimal separators. Then for each
full component C of G− T , S has a vertex in C.

Lemma 6 (Lemma 3.10, [2]). Let S and T be two minimal separators of a
graph G. Then S and T are parallel if and only if there exists a full component
CS of G− S and a connected component CT of G− T such that CS ⊆ CT .

Because of the slight change from Lemma 3.10 in [2] and for completeness, we
give a proof of Lemma 6.

Proof. Suppose S and T are parallel. Since S is a minimal separator, there are
at least two full components in G−S and since T is parallel to S, there is a full
component C1 of G− S that does not intersect T . C1 is connected in G− T , so
there is a connected component C of G− T containing C1.

Now, suppose there are CS and CT satisfying the conditions of the lemma.
Then S ⊆ N(CS) ⊆ N(CT ) ⊆ CT ∪ T , implying S and T are parallel. ��

Theorem 11. There is an O(nm2) algorithm to calculate the crossing relations
of ΔL

G(M).
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Proof. Let S, T ∈ ΔL
G(M). We begin by showing that S and T are parallel if and

only if there is a full component C of G(M) − S and connected component C′

of G(M)− T such that t(C) ⊆ t(C′).
Suppose S and T are parallel. From Lemma 6, there are connected components

C of G(M) − S and C′ of G(M) − T such that C ⊆ C′ and consequently
t(C) ⊆ t(C′). Conversely, suppose that S and T are not parallel. Let C be a full
component of G(M)− S and CT be a full component of G(M)− T . By Lemma
5, there is a vertex v ∈ C ∩ T , and because CT is full, there is a u ∈ CT ∩N(v).
The taxa form an edge clique cover for G(M), so there is a taxon t having both
character states corresponding to u and v. Note v ∈ C so t ∈ t(C) and u ∈ CT so
t ∈ t(CT ). T has at least two full components, so there is another full component
C′

T �= CT of G(M) − T such that t(C) ∩ t(C′
T ) �= ∅. Thus t(C) �⊆ t(C′) for any

connected component C′ of G(M)− T .
It suffices to check for each full component C of G(M) − S and connected

component C′ of G(M) − T if t(C) ⊆ t(C′). There are O(m2) pairs of legal
minimal separators, and this check takes O(n) time (O(nm2) time overall) when
the S-partition has been calculated. ��
Recall that there are O(m) minimal separators. Thus step 4 takes O(m2) time.
For a graphG and a set of verticesX , let G[X ] denote the subgraph of G induced
by vertices in X .

Lemma 7. Let H be a proper triangulation of G(M). Then H has at most n−1
minimal separators.

Proof. Suppose H is a proper triangulation of G(M). We proceed by induction,
with the trivial base case n = 1 (G(M) is a clique, and itself is the only proper
triangulation). Let S be a minimal separator of H that does not contain any
other minimal separator. Suppose the connected components of G(M) − S are
C1, C2, . . . , Ck. Then the minimal separators of H are partitioned by S along
with the minimal separators of H [Ci ∪ S] for i = 1, 2, . . . , k (see [11]). The
subsets of taxa t(Ci) for i = 1, 2, . . . , k partition the taxa defined by M . Let Mi

be the submatrix ofM induced by t(Ci). ThenH [Ci∪S] is a proper triangulation
for the partition intersection graph G(Mi). By induction, H [Ci ∪S] has at most
|t(Ci)| − 1 minimal separators, so H has at most 1 +

∑k
i=1(|t(Ci)| − 1) ≤ n− 1

minimal separators. ��
Each legal minimal separator has fewer than m vertices [10]. This fact along
with Lemma 7 gives the following result.

Theorem 12. Suppose that Q is a maximal pairwise parallel set of legal minimal
separators of G(M), and GQ is a proper triangulation of G(M). Then GQ has
O(n) minimal separators, |V (GQ)| = O(m), and |E(GQ)| = O(m2). The set
E(GQ)−E(G(M)) can be calculated in O(nm2) time by saturating each minimal
separator in Q.

Theorem 12 shows that step 5 takes O(nm2) time, and that O(|V (GQ)| +
|E(GQ)|) = O(m2) so using MCS in step 6 takes O(m2) time. Thus our minimal
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separator algorithm for constructing perfect phylogenies for r = 3 is competitive
with the algorithm of Dress and Steel [7], giving our main result.

Theorem 13. The algorithm Proper Triangulation for 3-State Characters is
O(nm2).

4 Conclusions and Further Work

We have demonstrated how to use the minimal separator approach introduced in
[10] to construct a perfect phylogeny for 3-state data in O(nm2) time. Attempt-
ing to pursue a time bound faster than O(nm2) raises a number of questions
and directions for future work. Naively, the number of edges of the partition
intersection graph and the number of F -edges are O(m2). Is this bound tight if
M is a set of 3-state taxa with a perfect phylogeny? If so, any approach that
utilizes MCS as a clique tree construction method will not improve our time
bound. This would imply that explicit analysis of the edges of the partition in-
tersection graph (or a proper triangulation of the partition intersection graph)
is inadequate to study a speedup, and all computations would be done using
M (instead of G(M)) aided with theoretical results about G(M). Constructing
tree representations in order to minimally triangulate a graph without explic-
itly computing the fill edges was studied in [2] in order to achieve a faster time
bound, and it would be interesting to see if these ideas can be extended to find
a faster construction algorithm for 3-state perfect phylogeny.
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Abstract. Perfect phylogeny consisting of determining the compatibil-
ity of a set of characters is known to be NP-complete [4,28]. We propose
in this article a conjecture on the necessary and sufficient conditions of
compatibility: Given a set C of r-states full characters, there exists a
function f(r) such that C is compatible iff every set of f(r) characters
of C is compatible. According to [7,9,8,25,11,23], f(2) = 2, f(3) = 3 and
f(r) ≥ r. [23] conjectured that f(r) = r for any r ≥ 2. In this paper,
we present an example showing that f(4) ≥ 5. Therefore it could be the
case that for r ≥ 4 characters the problem behavior drastically changes.
In a second part, we propose a closure operation for chordal sandwich
graphs. The later problem is a common approach of perfect phylogeny.

Keywords: perfect phylogeny, characters compatibility, chordal
sandwich graph, vertex-coloured graph, triangulation.

1 Introduction

Given an input biological data of a currently-living species set, phylogenetics
aims to reconstruct evolutionary history of their ancestors. The evolutionary
model of perfect phylogeny is phylogenetic tree, and the data are
characters of species. Characters can be morphological, biochemical, physiolog-
ical, behavioural, embryological, or genetic. Each character has several states.
Here are some examples. The character have wings has two states: with wings
and without wings. The character number of legs has many states: one leg, two
legs, four legs, ... These are morphological characters. For an example of genetic
characters, given a set of DNA sequences having a same length, if we consider
each position on the sequences to be a character, then each character has 4 states
corresponding to 4 bases of DNA as A, T, C, G.

Let L be a species set, and let c be a character on L. Then, c can be represented
by a partition of a non-empty subset L′ of L such that each part consists of all
species having the same state of c. So a set of characters is a set of partitions. A
character is said to be trivial if the partition has at most one part having more
than 1 element. Otherwise, it is non-trivial. If L′ = L, then c is a full character,
otherwise it is a partial character. If c has at most r parts, then c is an r-states
character. A binary character is a 2-states full character.

A phylogenetic tree on a species set L is a tree in which each leaf is labelled
distinctly by a species of L.

T.M. Przytycka and M.-F. Sagot (Eds.): WABI 2011, LNBI 6833, pp. 116–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Definition 1. [6] Let c be an r-states character and let T be a phylogenetic tree
on L. For i = 0, . . . , r − 1, denote by Ti(c) the minimal subtree of T on the leaf
set consisting of the species having the state i of c. So, c is said to be convex
on T iff the subtrees Ti(c) are pairwise vertex-disjoint.

A set of characters is compatible iff there exists a phylogenetic tree on which
every character is convex. The character compatibility problem is also known as
the perfect phylogeny problem.

Example 1. Let L = {a, b, c, d, e, f, g} and C = {C1, C2, C3, C4} be a collection of
characters on L such that: C1 = ab|cdefj|ghi, C2 = def |abcghij, C3 = gh|defi,
C4 = abcd|ghi. So, C is compatible because there is a phylogenetic tree T in
Figure 1 on which every character is convex. For example, C1 is convex on this
tree because the subtrees of T on {a, b}, {c, d, e, f, j} and {g, h, i} are pairwise
vertex-disjoint. Similarly, C2, C3, and C4 are also convex of this tree.

Fig. 1. A phylogenetic tree on which all
characters of C are convex

Fig. 2. The partition intersection graph
of C

Some previous works

Existence of perfect phylogeny: Given a set of characters on L, is there any
phylogenetic tree on which all characters are convex? It is easy to determine
whether a collection of binary characters is compatible. There are polynomial
algorithms for checking compatibility of 3-states full characters [6] and 4-states
full characters [21]. In general, there are polynomial algorithms in the number of
characters and species, but exponential in the number of states [24,1,22,2]. How-
ever the problem is NP-complete even for 2-states characters [4,28]. There exists
effective, practical approaches for 2-states characters [17], and a new approach
for this problem is proposed in [13].

Quartet problem: A minimal non-trivial character is a 2-states character such
that each state contains exactly two species. Such character is called a quartet.
As stated in the previous paragraph, the problem of compatibility of a set of
quartets is NP-complete [4,28]. However, there are some particular cases that
the problem is polynomial [3], see [26] for details.

Define a tree by characters: a set of characters defines a tree iff there is not
any other tree on which these characters are convex. [27] showed that a set of 3
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characters are not sufficient to define a tree but a set of 5 characters are. Later,
[20] showed that for any tree, there exist at most 4 characters which define this
tree. Hence, 4 is the optimal value. For the problem of whether a set of characters
defines a tree, this is recently proved to be NP-hard [18].

Maximum parsimony: When there is no perfect phylogeny that can be inferred
from data, it is desirable to find a model that minimize the number of reverse
and convergent transitions. That is the problem of maximum parsimony.

Perfect phylogeny with recombination: When the characters set are not tree-
representable, it is also interesting to construct a model that can represent
their evolution. The model used here is recombination networks. Introduced
by [19], intensive work have been done since then on this problem, including
[29,16,15,12,14].

In this article, we are interested in the necessary and sufficient conditions
of compatibility of a set of r-states full characters. We propose the following
conjecture.

Conjecture: For any set C of r-states full characters, there exists a function
f(r), which does not depend on n, such that C is compatible iff every set of f(r)
characters of C is compatible.

This conjecture is based on the following previous results. According to
[9,25,11,23], f(2) = 2 and f(3) = 3. There are polynomial algorithms in the num-
ber of characters and species, but exponential in the number of states [24,1,22,2].

2 Preliminaries

A very popular approach for studying perfect phylogeny is to consider chordal
completion of vertex-coloured graphs, or equivalently chordal sandwich graph
problems.

Definition 2. [5] Let L={x1, . . . , xm} be a species set and let C={C1, . . . , Cm}
be a set of characters on L. Each Ci is a partition of a subset of L. The partition
intersection graph G = (V,E) of C is constructed as follows:

– Each character of C is associated with a different colour.
– Each vertex of V corresponds to a state of a character of C. This vertex is

then coloured by the colour of the character.
– There is an edge between 2 vertices if the 2 corresponding states of the 2

characters have at least a common species.

In our figures, instead of colouring the vertices, we include the name of the
characters in the labels of the vertices. For example, let consider the character
set in Example 1. The partition intersection graph of C is in Figure 2. Each
vertex Ci,j represents the state j of character i.

A graph G is chordal if every cycle of length ≥ 4 contains at least a chord.
A chordal completion of G is a chordal graph G′ = (V,E′) such that E ⊆ E′.
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This completion is minimal iff when we remove any edge in E′ \ E, the result-
ing graph is not chordal. Given a vertex-coloured graph G, a proper chordal
completion of G is a chordal graph G′ = (V,E′) such that E ⊆ E′ and E′ does
not contain any edge connecting two vertices of the same colour.

Theorem 1. [5,25,28] A set of characters C is compatible iff its partition inter-
section graph has a proper chordal completion.

The set of characters in Example 1 is compatible, its partition intersection graph
(Figure 2) has indeed a proper chordal completion which is itself.

Proper chordal completion of vertex-coloured graph can be stated equivalently
under the form of sandwich problems, which were introduced by Golumbic, Ka-
plan and Shamir in [10] for DNA physical mapping problems.

Definition 3. Let us denote by G = [V,E, F ] the sandwich problem on a graph
G = (V,E), where F is a set of impossible edges such that E ∩ F = ∅.

If there is a graph GS = (V,ES) such that E ⊆ ES ⊆ V × V \F = F and GS

satisfies property Π, then GS is called a Π-sandwich graph of G.

It is easy to see that a chordal completion of a vertex-coloured graph G = (V,E)
is proper iff it is a chordal-sandwich graph of G = [V,E, F ] where F is the set
of pairs of vertices having a same colour. So, by considering this set F , we can
ignore the colours of the initial graph. We also call a chordal-sandwich graph of
G a proper chordal completion of G, i.e. a chordal completion of G without using
any edge belonging to F .

3 Our Contributions

Fitch-Meacham examples first introduced in [7,8], then later generalized in [25]
and formally proved in [23], showed that f(r) ≥ r for any r ≥ 2. [23] conjectured
that for any r, there is a perfect phylogeny on r-state characters if and only
if there is one for every subset of r characters, i.e. f(r) = r for any r ≥ 2.
However, we propose an example in the next Section which shows that f(4) ≥ 5.
It improves Fitch-Meacham’s lower bound and disproves the conjecture in [23].
Therefore it could be the case that for r ≥ 4 characters the problem
behavior drastically changes. After that, in Section 5, we propose a closure
chordal sandwich graph operation such that the obtained graph has a stronger
structure.

4 The 4-States Characters Case

We present here an example of a set of 4-states characters which is not compat-
ible, but every 4 characters subsets are compatible.

Let C be the following set of characters:
A = {x, u}|{z, t}|{y}|{v} = A0|A1|A2|A3

B = {x, y}|{t, v}|{z}|{u}= B0|B1|B2|B3
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Fig. 3. Graph G
Fig. 4. The induced subgraph of G on 4 colours
A, C, D, E

C = {y, z}|{u, v}|{x}|{t} = C0|C1|C2|C3

D = {x, u}|{y, z}|{t}|{v}= D0|D1|D2|D3

E = {z, t}|{u, v}|{x}|{y}= E0|E1|E2|E3

Each character has 4 states that we denote by A0, A1, A2, A3 for the character
A. The partition intersection graph G associated to C is in Figure 3.

Fig. 5. The induced subgraph of G on 4 colours A, B, C, D and its chordal completion

G does not accept any proper chordal completion. Indeed, if we consider only
the induced subgraph of G on 4 colours A,B,C,D and triangulate it, then there
is a unique way to do that by connecting (A1, B0), (B0, C1) and (C1, A1) (Figure
5). Similarly, if we consider the induced subgraph of G on 4 colours A,B,C,E,
there is also a unique way to triangulate it by connecting (A0, B1), (B1, C0)
and (C0, A0). So, to triangulate G, the cycle [A0, B1, A1, B0, A0] is forced to
be created. However, this cycle has no proper chordal completion, so G has no
proper chordal completion, i.e. C is not compatible.

However, as we see in Figure 4, the induced subgraph of G on 4 colours
A,C,D,E is chordal. The induced subgraph of G on 4 colours A,B,C,D has a
proper chordal completion (Figure 5) and similarly for the induced subgraph of
G on 4 colours A,B,C,E due to the symmetry. The induced subgraph of G on 4
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Fig. 6. The induced subgraph of G on 4 colours B, C, D, E and its chordal completion

colours B,C,D,E also has a proper chordal completion (Figure 6) and similarly
for the induced subgraph of G on 4 colours A,B,D,E.

It means that every 4 characters of C are compatible but the whole set C is
not compatible.

5 A Closure Operation for Chordal Sandwich Problems

Given a chordal sandwich problem G = [V,E, F ] where E ∩ F = ∅, let u, v be
two vertices of G such that (u, v) �∈ E.

(u, v) is an impossible edge if it is not included in any minimal proper chordal
completion of G. So (u, v) is impossible if either (u, v) ∈ F or if by connecting
them, the resulting graph does not have any proper chordal completion. The
impossible edges are represented by dashed lines in our figures.

(u, v) is a forced edge if it is contained in every proper chordal completion of
G. So if there is a cycle in G which has a unique proper chordal completion, then
the edges used to complete this cycle are forced.

A cycle C of G is impossible if every chordal completion of C contains at least
an edge in F . So if G has a proper chordal completion then it has no impossible
cycle. The converse is not always true. For example, see the graph G = [V,E, F ]
in Figure 7(b) where F consists of the pairs of vertices having a same colour. This
graph has 3 chordless cycles and each one can be chordally completed without
using any edge in F . However, G does not admit any proper chordal completion.

Example 2. In Figure 7(a) we have a cycle of size 5 on 3 colours a, b, c. The set
F consists of (a0, a1) and (b0, b1). One can deduce that (a1, b1) is impossible
since by connecting them we have the impossible cycle [a0, b0, a1, b1, a0]. We
deduce furthermore that (c0, a0) and (c0, b0) are forced because the unique way
to properly chordally complete this cycle is by connecting them.

Consider the graph in Figure 7(b) where F is the set of pairs of vertices having
a same colour. Similarly to the previous example on the cycle [a0, b1, c0, a1, b0, a0],
we deduce that c0a0 and c0b0 are forced. So, the cycle [b0, c0, b2, c1, b0] is forced to
be present in any proper chordal completion of this graph. However, this cycle is
impossible. Therefore, this graph does not have any proper chordal completion.
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(a) (b)

Fig. 7. Example 2

Note that by adding any forced edge into E or any impossible edge into F ,
we do not lose any proper chordal completion. Therefore we can introduce a
1-closure operation on sandwich problems by considering the effect on an edge
in the problem, more formally:

Definition 4. A chordal sandwich problem G = [V,E, F ] where E ∩ F = ∅, is
1-closed if:

a) by connecting any pair of vertices not in E∪F , there is no impossible cycle
created.

b) any cycle of G = (V,E) has at least two minimal proper chordal comple-
tions.

Observation 1. Given a cycle C = [u1, . . . , uk, u1], then:
(i) for any i ∈ {1, . . . , k}, every chordal completion of C must contain either

(ui−1, ui+1) or (ui, uj) for a certain j different from i, i− 1, i+ 1.
(ii) every chordal completion of C must contain a chord (ui−1, ui+1) for a

certain i.

Lemma 1 (Detecting impossible edges and forced edges)
Let G = [V,E, F ] be a chordal sandwich problem where E ∩ F = ∅ and (u, v)

be two vertices of G:
1) If there is a chordless path [u, t1, . . . , tk, v] such that for every i = 1, . . . , k,

either (u, ti) or (v, ti) is impossible, then (u, v) is also impossible (Figure 8).
2) Suppose that (u, v)∈ E. If there is a chordless cycle C=[u,w, t1, . . . , tk, v, u]

such that for every i = 1, . . . , k, either (u, ti) or (v, ti) is impossible, then (v, w)
is a forced edge (Figure 9).

Fig. 8. (u, v) is impossible Fig. 9. (v, w) is a forced edge
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Proof: 1) By connecting (u, v), we obtain the chordless cycle C = [u, t1,
. . . , tk, v, u]. We will prove that C is impossible. By Observation 1-(i), to chordally
complete C, we must connect either (t1, v) or (u, ti) for a certain i = 2, . . . , k.
However, (t1, v) is impossible because (u, t1) ∈ E and by the assumption, either
(u, t1) or (v, t1) must be impossible. So, we must connect an edge (u, ti), ti not
t1, which must not be an impossible edge. We deduce that (v, ti) is impossible.
The created chordless subcycle [u, ui, ui+1, . . . , uk, v, u] has the same property
as C. So, by using the same argument, to chordally complete this cycle, we
must connect an edge (u, uj) where i < j ≤ k. The size of the considering cycle
strictly decreases each time we apply this argument. Continuing with this rea-
soning, eventually u is forced to connect to tk, but (u, tk) is impossible because
(v, tk) ∈ E, a contradiction.

2) We will prove that, every proper chordal completion of C must contain
the chord (v, w). Suppose that there is a proper chordal completion of this cy-
cle which does not contain (v, w). By Observation 1-(i), this completion must
contain (u, ti) for a certain i = 1, . . . , k. We obtain then the chordless subcycle
[u, ti, ti+1, . . . , tk, v, u]. The path [u, ti, ti+1, . . . , tk, v] satisfies the condition of
1), so (u, v) is an impossible edge. However, (u, v) ∈ E, so this subcycle is im-
possible. In other words, C does not have any proper chordal completion which
does not contain (v, w). Hence, (v, w) must belong to every chordal completion
of G, i.e. it is a forced edge. �

Corollary 1. Let G = [V,E, F ] be a chordal sandwich problem, and denote by
F (u) the set of vertices u′ such that (u, u′) ∈ F . Then, for every pair of vertices
(u, v):

1) If (u, v) is not an edge of G and there is a chordless path [u, t1, . . . , tk, v]
such that for every i = 1, . . . , k, ti ∈ F (u) ∪ F (v) then (u, v) is impossible. We
call such a path a f(u, v) path.

2) If (u, v) is an edge of G and there is a chordless cycle [u,w, t1, . . . , tk, v, u]
such that w �∈ F (v) and for every i = 1, . . . , k, ti ∈ Fu ∪ Fv, then (v, w) is a
forced edge. We call such a cycle a g(u, v, w) cycle.

Theorem 2. Algorithm 1 takes time O(n4(n + m)) and either answers ”Yes
there is a solution or that there is no solution”, or the 1-closure of G.

Proof: Correctness: According to Corollary 1, the loop for recognizes all pairs
of vertices (u, v) which satisfy the conditions in the corollary to detect impossible
edges and forced edges. So the pairs of vertices added in F ′ at line 8 are the
impossible edges, i.e. the edges which are not included in any proper chordal
completion of G. Furthers, the pairs of vertices added in E′ at line 13 are forced
edges, i.e. the edges which are included in every proper chordal completion of G.
Therefore, any proper chordal completion of G′ is a proper chordal completion
of G and vice versa.

Moreover, if (u, v) is an edge and there exists a f(u, v) path then according
to the proof of Lemma 1, the chordless cycle consisting of f(u, v) and (u, v) is
impossible. Hence, G does not have any proper chordal completion (line 11).
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This process stops when there is no more impossible edges or forced edges de-
tected. So, in G′, for any pair of vertices (u, v), there is no f(u, v) path; and
if (u, v) ∈ E′, then there is no g(u, v, w) cycle. We will prove that G′ is the
1-closure of G, i.e. it satisfies the two properties in Definition 4.

a) The first property: we prove by induction on the size of cycles.

Data: A chordal sandwich problem G = [V,E, F ]
Result: Answer Yes-No on the existence of a proper chordal completion,

or the 1-closure of G
For any u ∈ V , calculate N(u) = {v| (u, v) ∈ E} and1

F (u) = {v| (u, v) ∈ F};
E′ = E; F ′ = F ; flag = true;2

while (flag) do3

flag = false;4

for (any pair of vertices (u, v)) do5

if (there is a f(u, v) path) then6

if (u �∈ N(v)) then7

Add u to F (v), v to F (u), and (u, v) to F ′;8

flag = true;9

else10

G does not have any proper chordal completion; exit;11

if (u ∈ N(v)) ∧ (there is a g(u, v, w) cycle) then12

Add v to N(w), w to N(v), and (u, v) to E′;13

flag = true;14

if (G′ = (V,E′) is chordal) then15

G′ is the unique chordal completion of G; return G′;16

else if (E′ ∪ F ′ = V × V ) then17

G does not have any proper chordal completion; exist;18

return G′ = [V,E′, F ′]19

Algorithm 1. Computing the 1-closure of a chordal sandwich problem

Let (u, v) be a pair of vertices not in E′ ∪ F ′. By connecting (u, v), let C be
a created cycle which contains (u, v). We will prove that C admits at least a
chordal completion without using any edge in F ′.

For the case |C| = 4, let C = [u, x, y, v, u]. By the assumption, G′ does not
contain any f(u, v) path, i.e. [u, x, y, v] is not a f(u, v) path. It means that either
(v, x) �∈ F ′ or (u, y) �∈ F ′. So, we can complete C by connecting either (v, x) or
(u, y).

Suppose that C has at least a chordal completion if |C| ≤ k.
For the case |C| = k+1, letC = [u, t1, . . . , tk−1, v, u]. Because [u, t1, . . . , tk−1, v]

is not a f(u, v) path in G′, there exists at least an i ∈ {1, . . . , k − 1} such that
(u, ti), (v, ti) �∈ F ′. By the induction hypothesis, if we connect (u, ti), (v, ti), the
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two subcycles [u, t1, . . . , ti, u] and [v, ti, . . . , tk, v] have proper chordal comple-
tions without using any pair of vertices in F ′ because both these two cycles have
size smaller than k + 1. Completing these two subcycles gives a proper chordal
completion for C. So, C admits at least one chordal completion.

b) The second property: Let C be a chordless cycle of G′. So C has at least one
proper chordal completion because otherwise Algorithm 1 returns No at line 11.
By Observation 1-(ii), this chordal completion must contain at least a triangle
(u, v, w) such that (u, v), (u,w) are edges of C. Let C = [u,w, t1, . . . , tk, v, u], so
C is not a g(u, v, w) cycle because otherwise (v, w) is a forced edge and it must
have been connected by the algorithm, a contradiction with the fact that C is
chordless. So, there is a ti such that (u, ti), (v, ti) �∈ F ′. Using the first prop-
erty, by connecting (u, ti) and (v, ti), we obtain two chordless subcycles which
have proper chordal completions. That implies another chordal completion of C
containing (u, ti), (v, ti) and does not contain (v, w). So it is different with the
initial one. In other words, C has at least 2 distinct minimal chordal completions
without using any pair of vertices in F ′.

Complexity

– Calculating N(u) and F (u) for any vertex u in line 1 is done in times O(n2).
– The loop while: For each iteration, there is at least a pair of vertices (u, v)

modified, i.e (u, v) becomes either an impossible edge or a forced edge. This
can only be done once. The loop stops when there is no more modification
on any pair of vertices. So, the number of iterations of this loop is bounded
by the number of pairs of vertices, i.e by O(n2).

– The loop for : there are O(n2) pairs of vertices (u, v). So there are O(n2)
iterations. In each iteration:

• Checking if there is a simple path f(u, v) can be done in linear time: We
proceed a Breadth First Search (BFS) starting at u such that the visited
vertices are in F (u) ∪ F (v) \ N(u). If we meet a vertex in N(v), then
there is a f(u, v) path. Otherwise, there is no such path.

• Checking if there is a g(u, v, w) cycle can also be done in linear time:
We proceed a BFS from u such that the first visited vertices is not in
N(v)∪F (v), and the remaining visited vertices are in F (u)∪F (v)\N(u).
If we meet a vertex in N(v) then we have a g(u, v, w) cycle. Otherwise,
there is no such cycle.

So, the total complexity is O(n4(n+m)) where n is the number of vertices of
G′ and m is the number of edges of the obtained graph. �

Although in most of our examples, computing the 1-closure is enough to decide
character compatibility, this is not true in general. This 1-closure operation only
reduces the size of the set F − E on which some other algorithm or method is
required.
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6 Conclusion

Our example in Section 4 showed that f(4) ≥ 5. We suggest that f(r) ≥ r + 1
for any r ≥ 4. So, a further work is to generalize this example. Another problem
is to prove the existence of f(r) by searching for an upper bound function F (r)
of f(r), i.e. if every set F (r) characters of C is compatible then C is compatible.
A harder question is determining f(r) for r ≥ 4.

Acknowledgements. The authors wish to thank the referees for their insightful
comments.
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Abstract. We propose here a multi-label semi-supervised learning al-
gorithm, PfunBG, to predict protein functions, employing a bi-relational
graph (BG) of proteins and function annotations. Different from most, if
not all, existing methods that only consider the partially labeled protein-
protein interaction (PPI) network, the BG comprises three components, a
PPI network, a function class graph induced from function annotations
of such proteins, and a bipartite graph induced from function assign-
ments. By referring to proteins and function classes equally as vertices,
we exploit network propagation to measure how closely a specific func-
tion class is related to a protein of interest. The experiments on a yeast
PPI network illustrate its effectiveness and efficiency.

Keywords: protein function prediction, multi-label learning, bi-relational
graph, network propagation.

1 Introduction

Designing computational algorithms to predict protein function can be traced
back to two decades ago. Traditional in silico protein function annotation mainly
relied on collecting a set of features from each protein and applying machine
learning algorithms, for example, the support vector machine (SVM), to get the
classification [12]. With the advent of high-throughput experimental techniques
(e.g., yeast two-hybrid and affinity purification with mass spectrometry), vast
amounts of genome-scale protein interaction data have been produced and accu-
mulated, which make it possible to discover gene/protein functions in the context
of a network.

A protein-protein interaction (PPI) network is a weighted, undirected graph
GP = (VP , EP ,WP ), where VP is the set of vertices (proteins), EP is the set
of edges (interactions), and WP ∈ R

n×n is the affinity matrix that indicates
the reliability of protein interactions. For a protein function prediction prob-
lem, we have a set of proteins P = {pi}i=1,...,n and K functional categories
C = {ci}i=1,...,K . Suppose each of the first l proteins has a set of labels Yi ⊆ F
represented by a binary vector yi ∈ {0, 1}K, such that yik = 1 if pi belongs
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Fig. 1. Key principles in protein function annotation. Circle nodes, square nodes and
diamond nodes represent proteins, function classes and node products, respectively.
Annotated proteins are shown in different colors, the uncharacterized protein of interest
is shown in white. We consider here assigning one function class (blue term) to the
unannotated protein, which can be viewed as label propagation on different graphs. (a)
local methods [7,13] only consider the functionality prevalent across the neighborhood
of the investigated protein, i.e., a subgraph of the PPI network. (b) global approaches
[14,9,10] take the full structure of network into account. (c) our previous algorithm,
MCSL [8] can be understood as label propagation on a constrained product graph
of PPI network and function class network. (d) The proposed algorithm in this paper
studies label propagation on a bi-relational graph of proteins and function annotations.

to the k-th class, and 0 otherwise. Our goal is to predict the labels {Yi}nl+1

for the remaining unlabeled proteins. This problem, classifying nodes in a par-
tially labeled graph, can be viewed as a graph-based supervised learning [19] or
more intuitively, a label propagation process on such a graph [18]. Specifically,
local methods (e.g., Majority[13] and χ2-score [7]) transfer annotations among
neighbor-nodes in the PPI network, assuming that nodes that are located close
to each other tend to share the same function classes (Fig.1a). By contrast,
global approaches take the full structure of the network into account (Fig.1b).
Examples of such schemes include global assignment that minimizes the number
of protein interactions between protein pairs that are annotated with different
functions [14,9], and function assignment via propagating functions using links
of the network [10].

However, most of the existing algorithms decompose the problem into K in-
dependent binary classification problems (one for each function class), and de-
termine the labels for each protein by aggregating the classification results from
all the classifiers [9,10]. Obviously, these algorithms ignore the inherent corre-
lations among function classes, which could be an important hint for deciding
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the class memberships [3,17], and thus they suffer from the labeled data sparsity
problem [8]. This phenomenon spurs the transition from multi-class learning to
multi-label learning. The essential difference between these approaches is that
classes in multi-class learning are assumed to be mutually exclusive while classes
in multi-label learning are often correlated. To exploit the correlations among
function classes, we recently built another graph, function class (FC) network
GF = (VF , EF ,WF ), where VF is the set of vertices (function classes), EF is the
set of edges, and WF ∈ R

K×K is the affinity matrix that captures the functional
similarity between each class, and proposed a new algorithm [8] that can effec-
tively overcome the sparsity of label instance problem often suffer by previous
approaches, and therefore significantly improve the prediction. It can be under-
stood as a label propagation on a constrained product graph of PPI network
and FC network (Fig.1c). Unfortunately, it may become time-consuming when
large-scale interaction data are addressed.

Inspired by these works [8,16], we propose here a semi-supervised learning
algorithm on a bi-relational graph that comprises three components, a PPI net-
work, a function class network induced from the function annotations of such
proteins, and a bipartite graph induced from the known function assignments.
By referring to proteins and function classes equally as vertices, protein func-
tion prediction is reformulated as a problem of measuring how closely a specific
function class is related to a given protein. Different from the work done by
Wang et al. [16], we use network propagation to get this relevance. In addition,
in the propagation process, all nodes of a cluster are not dealt with equally, as
was done in [16]; instead, a particular node is weighted by the reliability of its
interactions, compared with that of others nodes.

The rest of the paper is organized as follows. Section 2 presents the bi-
relational graph model which our method builds on. We give the details of our
algorithm in section 3 and experimentally evaluate the proposed approach in
section 4. Finally, in section 5, we discuss and summarize our results.

2 Bi-relational Graph Model

Traditional graph-based protein function prediction methods only consider the
PPI network GP . In multi-label learning, the classes are interrelated to each
other, and thus we built the FC network GF that improves the predictive per-
formance significantly [8]. In this paper, we plan to leverage both graphs.

The bi-relational graph of proteins and function annotations G = (Vp ∪
VF , EP ∪EF ∪ER) contains three components, the PPI graph GP , function class
graph GF , and a bipartite graph GR = (VP ,VF , ER). GR represents the known
association between the proteins and function classes, and its adjacency matrix
is WR ∈ R

n×m. Semi-supervised learning on this graph can also be referred to
as a label propagation process. For example, in Fig.1d, we aim to associate the
uncharacterized protein p with a specific function class f1 (blue term). We see
clearly that this protein can receive not only the label information from four
immediate neighbors, say, p2, p3, p4 and p6 which are annotated with function
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f1, but also the correlated label information from other partners which are as-
signed to function f2 or f3. This is the key idea underlying our previous work [8],
in which we viewed the two types of vertices differently and thus constructed a
constrained product graph. By contrast, in this paper, we treat protein vertices
and function class vertices equally. In this way, assigning a specific function class
to a given protein is equivalent to measuring the closeness between two vertices
in the bi-relational graph.

Estimating the relative importance is a fundamental issue in web browsing,
searching and navigation. One celebrated strategy is the personalized Pagerank
[6], which mimics a surfer performing a random walk with restart (RWR) on the
graph. The RWR model has been applied to different researches, ranging from
multimedia cross-modal correlation [11], to protein complex prediction [2], to
disease gene prioritization [4]. In particular, a recent computer vision research
study further developed the RWR on bi-relational graphs for automatic image
annotation and objective recognition [16]. Different from these previous works,
we measure the closeness between vertices based on the simulation of network
propagation. This idea is very similar to that of RWR, with one key difference.
Namely, in network propagation, the flow of information is normalized not only
by the total outgoing flow from each node, but also by the total incoming flow
into each node. Therefore, our presented study can be viewed as a generalization
of semi-supervised learning with local and global consistency [18] on the bi-
relational graph.

3 Methods

Network propagation based models can be uniformly expressed in a regularized
framework where the first term is a loss function to penalize the deviation from
the given labels, and the second term is a regularizer to prefer label smoothness
[18,3,17,8]. The key principle is the consistent assumption [18]: (1) nearby points
are likely to share the same label; and (2) points on the same structure (typ-
ically referred to as a cluster or a manifold) are likely to have the same label.
Algorithmically, let Ỹ = [ỹ1, . . . , ỹn]T where ỹik is the confidence score that the
i-th data can be annotated with the k-th function. The model can be simulated
iteratively as follows:

Ỹ (t+ 1) = (1− α)PNPỸ (t) + αY (1)

During each iteration, each vertex receives the information spreading from its
neighbors (the first term), and also retains its initial information (second term).
The parameter α specifies the relative amount of the information from its neigh-
bors and its initial label information. Finally, the label of each unannotated
protein is set to the function class of which it has received most information
during the iteration process.

Propagation matrix. Following the work [18], the intra-subgraph propagation
matrices PP and PF of GP and GF can be defined as

PP = D
− 1

2
P WPD

− 1
2

P PF = D
− 1

2
F WFD

− 1
2

F (2)
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where DP and DF are the degree matrices of graph GP and GF . Similarly, the
inter-subgraph propagation matrix PPF between GP and GF are formulated as

PPF = D
− 1

2
RLWRD

− 1
2

RR (3)

where

DRL = diag(
∑

j

WR(1, j), . . . ,
∑

j

WR(n, j))T (4)

DRR = diag(
∑

i

WR(i, 1), . . . ,
∑

i

WR(i,K))T (5)

Inspired by [8,16], we design the propagation matrix PNP on the bi-relational
graph G as follows

PNP =
[

(1− β)PP βPPF

βPT
PF (1 − β)PF

]
(6)

where 0 ≤ β ≤ 1 is a user-defined parameter that is used to adjust the relative
importance of intra-subgraph and inter-subgraph information.

Label induced matrix. We can directly use the known association between
proteins and function classes to feed the matrix Y in Eq.(1). But this strategy
does not fully make use of the available information. Similar to [16,4], we think
of both a function class vertex and its labeled training protein vertices as a
function group

Fk = vF
k ∪ {vP

i |yik = 1}
In this way, instead of measuring vertex-to-vertex relevance between a function
class vertex and an unannotated protein vertex, we measure the function group-
to-vertex relevance between a function group and the protein. We build K label
induced vectors, one for each function group Fk(1 ≤ k ≤ K)

Yk =
[

γY P
k

(1 − γ)Y F
k

]
∈ R

n+K
+ (7)

where YP
k (i) = 1/

∑
i yik if yik = 1 and YP

k (i) = 0 otherwise; YF
k (i) = 1 if

i = k and yF
k (i) = 0 otherwise. γ ∈ [0, 1] controls the relative importance of the

protein vertices and function class vertex in the function group. One drawback
of the above setting is that all protein vertices in a function group are treated
equally. Actually, the importance of each protein vertex should not be the same.
For example, if a particular vertex is known to be more reliable in the quality of
its interactions than others, it should be weighted more than the others. Suppose
that w(k)

v is the relative importance of node v in function group Fk. The weight of
protein vertex v in function group is defined as follows s(k)

v = w
(k)
v /

∑
u∈Fk

w
(k)
u

if v ∈ Fk, and 0 otherwise. In this work, we use the function group degree of a
protein vertex to represent its relative importance, i.e., w(k)

u =
∑

v∈Fk
Wuv.
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Iterative algorithm. Suppose ỸP ∈ R
n×K denote the confidence score that

the protein pi can be annotated with the k-th function, and ỸF ∈ R
K×K is the

vertex-to-vertex relevance in subgraph GF , respectively. Let Ỹ = [ỸP ; ỸF ] ∈
R

(n+K)×K and Y = [Y1, . . . ,YK ], the equilibrium solution Ỹ ∗ of Eq.(1) is
determined by

Ỹ ∗ = [I − (1− α)PNP]−1Y (8)

To avoid computing the inverse matrix, similar to [8,18], we give the following
iterative algorithm:

Algorithm 1. PfunBG:label propagation on a bi-relational graph

Input: Affinity matrix of PPI network WP , affinity matrix of FC network WF ,
function annotation {Yi}l1, a pre-defined maximum iteration number
max-iter, a pre-defined parameter α ∈ [0, 1]

Output: function prediction {Y}nl+1

Construct PNP by Eq.(2)–(6) and Y by Eq.(7);1

for t = 1; t ≤ max− iter do2

Ỹ (t + 1) = (1− α)Ỹ (t) + αY ;3

if Convergence then4

Break;5

end6

end7

Predict labels for pi using ỸP by adaptive decision boundary method [15];8

4 Experiments and Results

Experiment setup. We construct the functional-linkage network using the pro-
tein interaction dataset compiled from BioGRID (release 3.1.73) [1]. In order to
reduce the false positive rate, we used only those interactions that were confirmed
by at least two publications. The largest connected component of such network
consists of 3179 proteins with 12413 interactions. Nabieva et al. [10] show that
different experimental sources of deriving PPI may have different reliability and
the prediction results can be improved substantially when these differences in
reliability are taken into consideration. Here, we follow the approach proposed
by Nabieva et al. [10] and estimate the reliability of each experimental source
by simply finding the fraction of interaction pairs from that source which shares
at least one function. For each interaction between a pair of protein u and v, its
reliability can be estimated as

r(u,v) = 1−
∏

i∈E(u,v)

(1− ri)ni,(u,v) (9)

where ri is the reliability of experimental source i, E(u,v) is the set of experimen-
tal sources in which interaction between protein u and v is observed, and ni,(u,v)
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is the number of times which interaction between u and v is observed from exper-
imental source i. The function annotation scheme is taken from MIPS Funcat-
2.1(data-20070316), which consists of 507 functional classes (FCs) arranged in
hierarchical order. Note that a protein annotated with a FC is also annotated
with all its super-classes. To avoid this bias, we consider the 68 second-level FCs.
The key for building a function class network is deciding how to measure the
similarity between different FCs. Intuitively, we use the data-driven manner via
cosine similarity [8]

WF (i, j) = cos(zi, zj) =
〈zi, zj〉
‖zi‖‖zj‖ (10)

where Z = [z1, . . . , zK ] = WR. The conventional classification performance
metrics in statistical learning, precision and F1 score, are used to evaluate the
proposed algorithms. For every class, the precision and F1 score are computed
following the standard definition for a binary classification problem. To address
the multilabel scenario, following [5], macro average and micro average of preci-
sion and F1 score are computed to assess the overall performance across multiple
labels.

5-fold cross validation. We test the performance using 5-fold cross-validation,
i.e, these yeast proteins are randomly divided into 5 groups, and each group, in
turn, is separated from the original dataset and used for testing. In our imple-
mentation, we fixed the parameter α = 0.01 as suggested by [18]. The trade-off
parameters β and γ are selected through the validation process. We compare
our algorithm to four state-of-the-art methods: (1) Majority approach (MA)
[13], (2) GenMultiCut (GMC) [14,9], (3) FunctionFlow (Funflow) [10], and (4)
multi-label correlated semi-supervised learning (MCSL) [8]. The results are sum-
marized in Table 1. In Table 1, we see clearly that the algorithms, MCSL and
PfunBG, which take the correlations among function classes, consistently, and
sometimes significantly, outperforms the other three approaches that treat each
class independently. Specifically, the metrics improve more than 30% on aver-
age. This indicates that the correlations are indeed a good hint for membership
prediction in multi-label learning. Compared with our previous method MCSL,
our new algorithm can achieve slightly better performance, and it is much more
efficient due to reducing the order of propagation matrix from nK to n + K.
We also weighted the protein vertex in a function group and applied it to the
cross validation. As expected, this result, in further improvements of PfunBG-w.
In addition, we implemented the iterative version of Pfun, similar to [16]. That
is, during each iteration, we use the learned Causal Relationships to replace
the affinity matrix of function class network. Unfortunately, from the results,
PfunBG-iter in Table 1, we did not obtain the similar results as that shown
in [16]. The macro average precision and the micro average precision is almost
the same as that obtained by PfunBG-w. However, the macro average F1 score
and the micro average F1 score are dramatically lower. This may be due to two
reasons. One is that the PPI network has so much noise and false positives, and
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Table 1. Classification performance comparison by 5-fold cross validations

Metrics (%) MA GMC FunFlow MCSL PfunBG PfunBG-w PfunBG-iter

Macro
Precision 38.87 42.77 40.09 62.91 64.12 68.03 68.01

F1 32.33 30.43 31.32 71.07 77.54 80.12 33.12

Micro
Precision 45.48 54.66 51.88 65.18 73.82 75.92 74.47

F1 46.77 47.18 46.87 76.25 79.24 80.57 20.27
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Fig. 2. The average precision and F1 score for the first 20 function classes

is not complete at the current time. The other is that the correlations among
function classes are different from the correlation among semantic keywords. In
particular, it is reported in [16] that the keywords can be coarsely split into
two categories, objective class and background class. The relationship from an
objective class to a background class is greater than that of the reverse. But in
our case, it doesn’t seem reasonable to refer to some function classes as objective
classes and others as background classes.

Label propagation via label correlation. In order to explore why our new
algorithm can improve performance significantly, we further check the average
precision (AP) and F1 score for each function class. We observed that (1) when
there are enough proteins annotated with a function class or when a function
class is closely correlated with many other classes, all algorithms perform very
well. Comparatively, the methods that take the correlations among function
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Fig. 3. The upper panel illustrates the number of proteins annotated with the first 20
function classes. The lower panel shows the correlations among the first 20 function
classes.

classes into account can achieve better performance than the counterparts which
treat each function class independently; (2) Only the methods that consider the
correlations can successfully recover the annotations for a given function class
when there is only a handful of proteins annotated with it, i.e., when labeled data
sparsity occurs; (3) Only our new proposed algorithm can associate unlabeled
protein with a specific function when there are few proteins annotated with it
and when there is almost no correlation between this function class and the
others. Specifically, a more careful examination is supplied in Fig. 2 where we
give the AP and F1 score for the first 20 function classes. The number of proteins
annotated with these function classes is illustrated as a bar in the upper panel
of Fig.3. In addition, the data-driven correlations among the first 20 function
classes and others are shown in the lower panel of Fig.3.

From these figures, we see clearly that function classes, {01.01, 01.03, 01.04,
10.01} have many proteins labeled with them. Consequently, all algorithms per-
form very well even through our new algorithm always achieves superior per-
formance. Although there are comparatively fewer proteins annotated with two
functions {02.11, 02.13, 02.45}, they are closely correlated with each other (lower
panel of Fig.3). Therefore, all the methods also can successfully recover the la-
bels. However, the predictive performance changes significantly when the labeled
data sparsity problem occurs. For the functions {01.02, 02.08, 02.19}, there are
comparatively few proteins labeled with them, and they have loose correlations
with other classes. Hence, all the approaches that treat each function class in-
dependently failed to recover the labels. As a benefit of taking the correlations
among classes into account, MCSL and PfunBG still perform very well. As the
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case become much worse, say, for function classes {02.04, 02.16}, there are fewer
proteins annotated with them, and they have much looser correlations with other
function classes. None the approaches, except for our new algorithm, can assign
these functions to a protein. All the observations indicate that the reason for the
superior performance of our new algorithm is the additional label propagation
via label correlation. This key idea can be effectively and efficiently implemented
on the bi-relational graph.

5 Discussion and Conclusion

We introduce the Bi-relational Graph (BG) model to associate proteins with
multiple function classes simultaneously. By referring to the proteins and func-
tion classes equally as vertices, the order of matrix is reduced from nK to n+K.
We consider a function class and its training proteins as a function group. In this
way, the protein function prediction problem reduces to measuring how closely a
specific protein is related to a given function group. Based on our previous work
[8], we use network propagation to measure the relevance. During each iteration,
the proteins receive label information from the function groups and their ini-
tial labels, updating labels from the previous iteration. Therefore, our algorithm
can be understood as a generalization of the semi-supervised learning with local
and global consistency [18] on a bi-relational graph. 5-fold cross validations on a
yeast protein-protein interaction network compiled from the BioGRID database
show that our algorithm can achieve superior performance compared to four
state-of-the-art approaches.

As shown, the weight of the protein vertex in each function group has a very
important influence on the prediction results. The performance of our algorithm
is significantly improved even if a rather simple weighted strategy is introduced
in our study. We expect that the performance can be further improved by adopt-
ing a more comprehensive weighting scheme. Here we fix the parameter α = 0.01
as suggested by [18] and select the parameters β and γ through cross validation
process. In fact, choosing these three parameters can be formulated as a com-
binatorial optimization problem, to which more attention should be paid. We
leave all above-mentioned issues for our further investigation.
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Abstract. Large-scale model development for biochemical reaction net-
works of living cells is currently possible through qualitative model classes
such as graphs, Boolean logic, or Petri nets. However, when it is impor-
tant to understand quantitative dynamic features of a system, uncer-
tainty about the networks often limits large-scale model development.
Recent results, especially from monotone systems theory, suggest that
structural network constraints can allow consistent system decompo-
sitions, and thus modular solutions to the scaling problem. Here, we
propose an algorithm for the decomposition of large networks into mono-
tone subsystems, which is a computationally hard problem. In contrast
to prior methods, it employs graph mapping and iterative, randomized
refinement of modules to approximate a globally optimal decomposition
with homogeneous modules and minimal interfaces between them. Appli-
cation to a medium-scale model for signaling pathways in yeast demon-
strates that our algorithm yields efficient and biologically interpretable
modularizations; both aspects are critical for extending the scope of
(quantitative) cellular network analysis.

1 Introduction

Advances in experimental technologies have enabled the large-scale analysis of
cellular networks, for instance, those involved in gene regulation. In terms of
understanding network function through formal modeling, however, the com-
bination of network complexity and network dynamics poses substantial chal-
lenges. In particular, discrete models (e.g., based on graph theory, Boolean logic,
or Petri nets) are scalable, but often quantitative aspects of systems dynamics
are important. For such cases, much less scalable quantitative models, for in-
stance in the form of ordinary differential equation (ODE) systems, need to be
developed [12]. Examples for recently established large-scale dynamic models of
signaling networks are an integrated model of yeast MAP kinase signaling [19]
with 52 state variables or the epidermal growth-factor (EGF) network [4] with
nearly 500 state variables. It is one of the great challenges of computational
systems biology to develop tools that allow to analyze such complex models.
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One strategy to cope with large networks is an analysis on the level of subsys-
tems. This approach implies that a network is decomposed into smaller subsys-
tems according to given criteria such as minimal overall complexity. Then, the
subsystems and their interconnections are analyzed. While many examples ex-
ist for topology-based decompositions, a meaningful decomposition of dynamic
network models necessarily needs to take the dynamics of the subsystems into
account [1]. Examples of such strategies are the minimization of retroactivity [15],
that is, the effect of a downstream component on a subsystem, modular response
analysis [13], or analysis by stochastic independence of signals [3]. However, such
strategies often require detailed system models initially. While stoichiometries of
reactions are usually well-known, most parameters such as kinetic rate constants
and initial conditions are often ill-defined. This poses particular problems for a
network decomposition that takes into account the quantitative dynamics.

Recent theoretical results suggest that nontrivial conclusions about the net-
work dynamics can be drawn by exploiting the constraints on the equation sys-
tem imposed by the underlying network. For example, certain properties of graph
[5,6] and matrix [2] representations of the network structure allow one to distin-
guish systems capable and incapable of multiple equilibria, respectively. Here,
we are interested in applying the theory of monotone systems [16,8], extended to
systems with inputs and outputs [17], which even allows to infer general results
on the behavior of a system under perturbations. Importantly, these theories do
not require knowledge of numerical parameter values, but only a specification of
the stoichiometry of the reaction system and some weak, natural assumptions
on the reaction rate laws (detailed below). In addition, important special cases
of monotonicity can be established using a graph representation of the system,
which transforms the problem from a continuous, nonlinear ODE system into a
discrete graph problem.

We propose a new strategy to decompose a given reaction network into in-
terconnected input-output monotone subsystems, each of which has very well-
behaved responses to perturbations. The strategy comprises an initial decom-
position using a greedy-approach that exploits an approximate solution of a
MAX-CUT problem, followed by a refinement of the decomposition to minimize
the interconnections of the subsystems. The algorithms are graph-based and rely
on optimally cutting edges such that no subsystem contains a negative cycle. A
decomposition is independent of parameter values and the exact form of rate
laws, which enables the analysis of a system even with few data.

2 Monotone Systems

2.1 Dynamic Network Models

Consider a (bio)chemical reaction network with n chemical species S = {S1, . . . ,
Sn} and r reactions R = {R1, . . . , Rr}. An irreversible reaction Rj is given by

Rj :
n∑

i=1

aj,iSi →
n∑

i=1

bj,iSi,
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where aj,i, bj,i ∈ ZZ are the substrate and product molecularities, respectively.
The terms Ni,j := bj,i−aj,i are called the stoichiometries. They describe the net
production of species by the reaction and form the stoichiometric matrix N :=
(Ni,j)1≤i≤n,1≤j≤r . We can always split a reversible reaction into two irreversible
reactions, and thus always assume reactions to be irreversible. To capture the
dynamics of the system, let xi(t) ≥ 0 denote the concentration of species Si at
time t ≥ 0. The state of the system is then given by the concentration vector
x = (x1(t), . . . , xn(t))T ; as usual, the explicit dependence on time is suppressed.

Each reaction Rj is assigned a rate equation vj(x) : IRn
≥0 → IR, describing

the velocity of the reaction. Here, we restrict the feasible rate equations to the
class N1C. Informally, for irreversible reactions considered here, this ensures that
an increase in a species concentration cannot decrease the rate of any reaction
and that a species not participating in a reaction does not influence its rate.
Formally, a network is N1C if

∀x ∈ IRn
≥0∀i, j : Ni,j · ∂vj(x)

∂xi
≤ 0 and Ni,j = 0 =⇒ ∂vj(x)

∂xi
= 0.

Importantly, the stoichiometric matrix completely defines the topology of an
N1C network. Note that this class is very general and it contains, for example, the
mass-action, Michaelis-Menten, and Hill-type kinetic rate laws. For irreversible
reactions, N1C also implies ∂vj(x)/∂xi ≥ 0.

With v(x) = (v1(x), . . . , vr(x))T , the overall temporal dynamics of the system
is given by the set of n nonlinear ODEs

dx

dt
= f(x) = N · v(x).

2.2 Directed Species-Reaction Graph

Here, we are interested in a representation of the sign-structure of the system’s
Jacobian matrix J(x) = (∂f/∂x)(x). It can be derived from the directed species-
reaction graph GSR, a directed, bipartite graph with signed edges, see Fig. 1A
for an example. The graph’s vertex sets are the species and reactions of the
network, that is, (S,R). Specifically, if species Si is a substrate of reaction Rj

and thus Ni,j < 0, a positive edge (with label +) is drawn from the species to the
reaction vertex. This reflects the positive (more precisely: nonnegative) influence
that an increase in the species concentration has on the reaction rate. Similarly,
a negative edge is added from the reaction back to the species to reflect the
faster decrease of the species’ concentration with increasing reaction rate. If the
species is a product of the reaction, a positive edge is drawn from the reaction
to the species. The restriction to N1C rate laws ensures that edges always have
a well-defined sign and that there is at most one edge per direction between any
two vertices.

The system can be extended with m inputs u : IR≥0 → IRm and p outputs y
given by h : IRn

≥0 → IRp, and then takes the form

dx

dt
= f(x, u) = N · v(x, u) and y = h(x). (1)
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2.3 Identification of Monotonicity

A system (1) is called monotone if there are three partial orders, all denoted by
≺, on suitable subsets of IRm, IRn, and IRp, respectively, such that for all initial
conditions x1, x2, for all inputs u1(t), u2(t) and for all times t ≥ 0, we have that

x1 ≺ x2 and u1(t) ≺ u2(t) =⇒ φ(t;x1, u1(t)) ≺ φ(t;x2, u2(t)),

where φ(t;xi, ui(t)) denotes the solution of the ODE system at time t, with
initial condition xi and (time-varying) input ui(t). Monotone systems exhibit
several properties that make them very appealing for analyzing models in sys-
tems biology. Most importantly, they admit a single, global asymptotically stable
steady state under mild additional conditions, and they respond “well-behaved”
to perturbations. More details on monotone systems and their properties are
given in [17].

Here, we are only concerned with orders induced by an orthant cone of the
form K = {x ∈ IRn|eT ·x ≥ 0}, where e ∈ {−1, 1}n. A partial order is then given
by x ≺ y ⇐⇒ y − x ∈ K; different orthant cones may be chosen for the three
orders.

Establishing monotonicity of a system with respect to arbitrary cones is very
difficult. In contrast, monotonicity with respect to orthant cones can be estab-
lished by investigating the cycle structure of the influence or interaction graph
of the system (see Fig. 1B and C for examples). This graph is a signed directed
graph GI = (V,E) with one vertex for each species, input, and output, respec-
tively. An edge is drawn if the corresponding partial derivative ∂fi/∂xj, ∂fi/∂uj,
or ∂hi/∂xj (i.e., the corresponding entry in the Jacobian of the system) does
not vanish identically for all x, u, t.

Assuming that the derivatives do not change sign, each edge e ∈ E can be
assigned the sign (+/-) of the derivative, leading to a signed graph. We can
easily cover the case of changing signs by introducing a new vertex and splitting
the corresponding edge (see example below) because this procedure does not
change the structure of negative cycles in the graph. The influence graph thus
describes how species influence each other. Its adjacency matrix is associated to
the Jacobian matrix of the system, with a +1/-1 entry whenever the sign of the
corresponding entry in the Jacobian is positive/negative for at least one state x,
input u, and time t. Inputs and outputs are treated equivalently to species in the
influence graph, the only difference being the computation of the edge sign. We
can derive the influence graph and its edge signs by investigating all two-paths in
the species-reaction graph from one species to another. Paths from a species to
a reaction and back to the same species cause self-loops in the influence graph,
which can be ignored in the further analysis (see [17] for an explanation).

For computational reasons, one often works with an undirected version of the
influence graph. Clearly, having a negative cycle in the undirected version is a
necessary condition for a negative cycle in the directed graph. Hence, a system
is monotone with respect to some orthant cone, if the undirected influence graph
does not contain a negative cycle [17].



Graph-Based Decomposition of Biochemical Reaction Networks 143

2.4 Example Network

To illustrate the principles of monotone systems analysis, consider the reaction
network R1 : A+B → C and R2 : B+C → A with three species, two reactions,
and no inputs or outputs. Its dynamics is described by

d

dt

⎛⎝A
B
C

⎞⎠ =

⎛⎝−1 1
−1 −1

1 −1

⎞⎠ · (v1(A,B,C)
v2(A,B,C)

)
.

The Jacobian matrix and the Jacobian’s sign-pattern are given by

J(x) =

⎛⎝−∂v1
∂A −∂v1

∂B + ∂v2
∂B

∂v2
∂C

−∂v1
∂A −∂v1

∂B − ∂v2
∂B −∂v2

∂C
∂v1
∂A

∂v1
∂B − ∂v2

∂B −∂v2
∂C

⎞⎠ (x), sign(J) =

⎛⎝− ∓ +
− − −
+ ± −

⎞⎠ .

Three graphical representations are shown in Fig. 1: The directed, signed bipar-
tite species-reaction graph (A) as well as the species-species influence graph with
undefined edges (B) and with additional vertices to remove edges with undefined
sign (C).

Fig. 1. Example network. A: directed species-reaction graph GSR. B: influence graph
GI with undefined edge signs. C: influence graph for example network with additional
vertices X and Y to split edges with undefined sign. Solid lines: positive, dashed lines:
negative, dotted lines: undefined edges. Circles: species, diamonds: reaction.

This simple example illustrates that most biological networks are in fact not
monotone. It suffices to have two species occurring on the same side in one, and
on different sides in another reaction, to create a negative loop that makes the
system non-monotone. To obtain monotonicity, in [17,7,10,18,9], methods were
proposed to essentially “pull out” a minimal set of edges such that the resulting
system does not contain a negative cycle and is therefore a monotone system.
For near-monotone systems with few such edges, this strategy allows an analysis
of the overall system. In contrast, our goal is to decompose a system into several,
more homogeneous monotone subsystems that allow a coarse-grained analysis of
the feedback structures and potentially provides a biological interpretation.
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3 Algorithm for Monotone Systems Decomposition

3.1 Overview

Our aim is to compute a decomposition M = (M1, . . . ,Mq) of a given reaction
network into subsystems such that each subsystem Mi is connected and mono-
tone. Note that different decompositions may differ in size, and thus q is part of
the output of the method. A subsystem Mi is then identified with the subgraph
induced by the corresponding vertices in either GSR or, by projection on the
species, GI.

For evaluating a decomposition into monotone subsystems, we introduce the
interface of each subsystem as the set of species concentrations and fluxes that
need to be exchanged with other subsystems. A decomposition with smaller
interfaces is then preferred to a decomposition with larger interfaces. Let E(R) ⊆
S and P(R) ⊆ S be the sets of educt and product species of a reaction R ∈ R,
respectively, and define E(X ) =

⋃
R∈X E(R) for any X ⊆ R. Let SM and RM

be the species and reactions of any subsystem M . Then, the interface of M with
the remaining system is

I(M) = {R ∈ RM | E(R) ∪ P(R) ⊆ SM}
∪{R ∈ RM | (E(R) ∪ P(R)) ∩ SM = ∅}
∪{S ∈ SM |S ∈ E(R\RM )}
∪{S ∈ SM |S ∈ E(RM )}.

The first two sets define the incoming and outgoing fluxes and the second two
sets define the incoming and outgoing species concentrations, respectively. A
decomposition M is optimal if

∑
M∈M |I(M)| is minimal. Importantly, the in-

terface size is not the number of edges with one vertex in and one vertex outside
the subsystem, as for example a reaction in RM might have two product species
in another subsystem M ′, but still only one flux needs to be exchanged.

As shown in [7,9,17], even finding a minimal set of edges to be removed to make
the system monotone is hard and can be reduced to the MAX-CUT problem.
In contrast to these publications, we are not interested in detecting the largest
monotone subgraph, but in a decomposition of a reaction network into several
interconnected monotone subsystems. For this, we use a three-phase strategy:
In a first phase, we compute a decomposition that assigns each species to a sub-
system and guarantees that each subsystem is monotone by avoiding negative
cycles. In the second phase, the decomposition is translated to the decomposi-
tion M0 on the bipartite species-reaction graph to capture the interfaces. The
third —and computationally most demanding— phase iteratively refines the
initial decomposition by merging two subsystems and by splitting them again
into monotone subsystems with minimal pair-wise interface. This procedure is
repeated with randomly chosen pairs of subsystems until convergence, or until
a predefined time or step number threshold is reached. In practice, this third
phase often leads to merging of two subsystems into one, thereby reducing the
total number of subsystems.
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3.2 Phase 1: Initial Decomposition

We start with the trivial decomposition M = ({S1}, . . . , {Sn}) of the influence
graphGI, such that each species is in its own (monotone) subsystem. Subsystems
are then iteratively merged into larger monotone subsystems by joining their
vertex sets, until merging is no longer feasible.

To determine which merges potentially lead to a non-monotone subsystem, we
use the approximation algorithm for the modified MAX-CUT problem proposed
in [7]. This algorithm computes a minimal set I ⊆ E of inconsistent edges in
the undirected signed influence graph GI such that by removing these edges, the
system becomes monotone. Merging is then performed such that no two vertices
incident to an inconsistent edge are in the same subsystem. For this, we construct
a |S| × |S| feasibility matrix F such that

Fi,j =

⎧⎪⎨⎪⎩
0, if {i, j} ∈ E
−1, if {i, j} ∈ I
+1, else.

A positive entry Fi,j indicates that the vertices of subsystems i, j can be merged
and the induced subgraph is still monotone and connected; i, j are then called a
consistent pair.

Two subsystems i, j are chosen uniformly at random from the set of all con-
sistent pairs and merged into a new subsystem. The feasibility matrix is updated
by

Fi,k, Fk,i ←

⎧⎪⎨⎪⎩
−1, if Fi,k = −1 or Fj,k = −1
0, if Fi,k = 0 and Fj,k = 0
+1, else

for all k = 1, . . . , n and Fk,j , Fj,k ← 0 for all k = i. In essence, this removes
vertex j from the procedure and assigns the newly merged subsystem to vertex
i. In each step, the number of consistent pairs decreases or stays constant. The
merging of subsystems is continued until there are no more consistent pairs. The
result is the initial decompositionM0 for all species.

3.3 Phase 2: Assignment of Reaction Vertices

In the second phase, we extend the subsystem assignment from GI to GSR
by computing an initial assignment of reaction vertices. Because both flux and
concentration need to be exchanged if a reaction and one of its substrates are
in different subsystems, but only the flux for a product, we place the reaction
rate into the largest subsystem that contains most of its substrates to ensure
minimal subsystem interfaces for the given assignment of species. This yields
the full specification ofM0.

3.4 Phase 3: Refinement of Decomposition

The initial greedy strategy (phase 1) crucially depends on the set of inconsis-
tent edges; the algorithm basically selects one edge per negative cycle, and it
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is not intended to create any useful subsystem decomposition. Thus, the ini-
tial decomposition M0 often contains many small subsystems that cannot be
merged into larger ones anymore. However, they could disappear into a larger
subsystem if assignments were “shuffled” slightly. Obviously, such a reassign-
ment needs to ensure that all subsystems in the resulting decomposition are
still monotone. However, while the interfaces change locally by adding or re-
moving vertices, splitting all negative cycles requires a more global view on the
subgraphs. Cycles might be partially overlapping and each cycle can be split in
various positions which might lead to better or worse interfaces.

Correspondingly, the third phase employs a heuristic strategy by iteratively
merging pairs of subsystems–potentially creating a non-monotone subsystem–
and reassigning its vertices from the current decompositionMi in iteration i to a
new pair of subsystems with minimal interface, resulting in a new decomposition
Mi+1.

LetM,M ′ ∈Mi be the two selected subsystems. We then determine all funda-
mental negative cycles of the subgraph GM∪M’ ⊆ GI, induced by the two vertex
sets of M,M ′, using a version of Johnson’s algorithm for cycle enumeration [11]
adapted to undirected graphs. If GM∪M’ does not contain a negative cycle, it
is already monotone by itself. Otherwise, the graph GM∪M’ is re-partitioned
into two monotone subsystems, potentially leading again to M and M ′. In our
experience, monotone subsystems typically contain much less than 30 vertices
and their sizes are largely independent of the overall system size, making a cycle
enumeration feasible.

For computing all feasible bi-partitions of the merged system into connected
components, we employ a depth-first search strategy that starts from a vertex
v ∈ M ∪M ′, inducing two subsystems M1 = {v},M2 = (M ∪M ′)\{v}. The
first subsystem is then iteratively grown by adding neighboring vertices from
the second subsystem. Once a negative cycle appears in the first subsystem, we
abort the depth-first search, backtrack, and resume at the last feasible solution
because the cycle cannot vanish by adding more vertices. Thus, all subsequent
solutions along this search path are necessarily infeasible. If neither subsystem
contains a negative cycle, the interface is computed by assigning the reaction
vertices as in Phase 2, and the solution is kept if the interface size is smaller
than the previous minimum.

4 Application Example

To test our approach of monotone subsystems decomposition of a biochemical re-
action network, we used a dynamic model that describes four mitogen-activated
protein kinase (MAPK) pathways in S. cerevisiae. This model was published
and described in [19] and we downloaded it as an SBML file from the BioModels
database [14] (uncurated track). The network encompasses 52 chemical species
and 58 reactions, including several MAPK cascades and a highly connected sub-
network of protein complex formation. We introduced minor modifications to the
model to correct some obvious errors, in particular, by setting the reversibility
of reactions according to [19].
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Fig. 2. Decomposition of the MAPK signaling network into monotone subsystems. A:
Decomposition after 100 iterations of pairwise interface refinements. The number of
subsystems is 8, the interface size 38. Rectangles denote subsystems, labeled with the
number of vertices (species and reactions) assigned to them. The interfaces are given as
ellipses for species concentrations and diamonds for reaction rates, labeled with their
respective names. B: Interaction of two subsystems (given by grey box in A) with
5 vertices each. C: Subsystem with 27 vertices (given by grey circle in A) from the
decomposition.
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The initial decomposition using the greedy-approach and the reaction assign-
ment yielded 10 subsystems and an interface size of 49, with 20 species concen-
trations and 29 reaction rates. The individual subsystems have sizes (31,21,11
(3x),8,7,6,2,1), given by their number of species and reaction vertices. Certain
inputs (pheromone, starvation, and osmotic stress) are discarded if they are not
assigned into a module with at least one other vertex, so the sum of subsystem
sizes is smaller than the original number of vertices in the graph.

The result of the refinement after phase 3 (limited to 100 iterations) is shown
in Fig. 2A. The algorithm converged after about two dozen iterations, and in-
terface sizes and subsystems then stayed constant. The number of subsystems
is eight. Hence, two pairs of subsystems were merged in the process, reducing
the complexity of the representation. The subsystems now have individual sizes
(30,27,21,14,6,5). Overall, the subsystems are therefore both larger and more ho-
mogeneous. Importantly, also the interfaces were reduced considerably, resulting
in a total interface size of 38, with 16 species concentrations and 22 reaction rates
being exchanged between subsystems. In addition, there is only one species con-
centration that needs to be exchanged between three subsystems, while all other
interface components are pairwise. In contrast, the initial decomposition showed
several interface components for more than two subsystems. Overall, thus, with
respect to the aim of obtaining a globally minimal (in the sense defined above)
system decomposition, the iterative refinement using a randomized algorithm
proved critical.

While not intended by the algorithm, the decomposition is also interpretable
in more biological terms. In particular, with each subsystem being monotone,
negative feedback regulation must yield at least two subsystems. An example is
shown in Fig. 2B, which depicts the two subsystems marked by the grey rectangle
in Fig. 2A. These subsystems are a decomposition of a typical phosphorylation
cascade that is inherently non-monotone. Large subsystems with many species
and reactions also often contain parts of the network with little regulation. An
example is given in Fig. 2C, which shows the internal subsystem centered around
the scaffold protein Ste11 that is given by the grey circle in Fig. 2A. Multiple
edges between vertices as well as seemingly negative cycles are due to the re-
versibility of the original reactions, which is restored by the algorithm after the
reaction was split into two irreversible reactions for the analysis. Overall, the size
and interconnection of the subsystems give a first impression of the complexity
of interactions in the various parts of the network model.

5 Conclusion

We presented a new strategy for decomposing large-scale dynamic models of
biochemical reaction networks into interconnected subsystems. It employs results
from monotone systems theory and aims at finding an optimal decomposition
of a system into monotone components, which immediately guarantees various
important dynamic properties for these components. In particular, a monotone
system exhibits “well-behaved” responses to perturbations.
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By restricting ourselves to the case of systems that are monotone with respect
to so-called orthant cones, the problem of determining a system’s monotonicity
can be translated into analyzing a bipartite graph and an associated influence
graph closely related to the sign-structure of the Jacobian matrix of the system.
The decomposition itself is computed using a three-phase graph-based algorithm
that first computes a valid decomposition of the chemical species into monotone
subsystems, but not necessarily with minimal interfaces. After optimally assign-
ing the reaction rates to the subsystems, a third phase iteratively refines the
decomposition by merging and re-partitioning randomly selected pairs of sub-
systems, while keeping all subsystems monotone.

Many improvements can be imagined for the suggested algorithms. It would be
of particular interest to avoid the influence graph altogether and to perform a de-
composition directly on the directed species-reaction graph. In addition, devising
an algorithm that more globally (approximately) optimally cuts all fundamental
negative cycles and gives minimal interfaces could give an improvement of the
decomposition. A first step could be to merge more than two subsystems for the
iterative improvement.

Despite these limitations, our method gave meaningful results for a medium-
size dynamic model of integrated yeast MAP-kinase pathways. While the initial
decomposition is already useful, the refinement step clearly improves the decom-
position significantly by simultaneously reducing both the number of subsystems,
and the interface sizes.

Overall, we emphasize that the subsystems are not defined by topological
criteria such as connectedness, but rather by certain desired dynamic properties.
Nevertheless, they can be identified without parameter values and with only
minimal knowledge about reaction rates. This is a typical setting in systems
biology, which makes the approach very appealing to models in this field. In
future applications, for instance, the guaranteed dynamic features can further
be exploited to give a coarse-grained analysis of a system’s feedback structure.
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9. Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph
balancing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 297–310.
Springer, Heidelberg (2007)

10. Iacono, G., Ramezani, F., Soranzo, N., Altafini, C.: Determining the distance to
monotonicity of a biological network: a graph-theoretical approach. IET Systems
Biology 4(3), 223–235 (2010)

11. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

12. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks.
Nat. Rev. Mol. Cell. Biol. 9(10), 770–780 (2008)

13. Kholodenko, B.N., Kiyatkin, A., Bruggeman, F.J., Sontag, E.D., Westerhoff, H.V.,
Hoek, J.B.: Untangling the wires: A strategy to trace functional interactions in
signaling and gene networks. Proc. Natl. Acad. Sci. USA 99(20), 12841–12846
(2002)

14. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L.,
He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Le Novère, N., Laibe, C.:
BioModels Database: An enhanced, curated and annotated resource for published
quantitative kinetic models.. BMC Systems Biology 4, 92 (2010)

15. Saez-Rodriguez, J., Gayer, S., Ginkel, M., Gilles, E.D.: Automatic decomposition of
kinetic models of signaling networks minimizing the retroactivity among modules.
Bioinf. 24(16), i213–i219 (2008)

16. Smith, H.: Monotone dynamical systems: an introduction to the theory of com-
petitive and cooperative systems. Mathematical Surveys and Monographs, vol. 41.
American Mathematical Society AMS, Providence (1995)

17. Sontag, E.: Monotone and near-monotone biochemical networks. LNCIS, vol. 357,
pp. 79–122 (2007)

18. Soranzo, N., Ramezani, F., Iacono, G., Altafini, C.: Graph-theoretical decomposi-
tions of large-scale biological networks. Automatica (2010), conditionally accepted

19. Zou, X., Peng, T., Pan, Z.: Modeling specificity in the yeast MAPK signaling
networks. J. Theor. Biol. 250(1), 139–155 (2008)



Seed-Set Construction by Equi-entropy

Partitioning for Efficient and Sensitive
Short-Read Mapping

Kouichi Kimura1, Asako Koike1, and Kenta Nakai2

1 Central Research Laboratory, Hitachi Ltd., 1-280 Higashi-Koigakubo, Kokubunji,
Tokyo, 185-8601, Japan

2 The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-dai,
Minato-ku, Tokyo, 108-8639, Japan

Abstract. Spaced seeds have been shown to be superior to continu-
ous seeds for efficient and sensitive homology search based on the seed-
and-extend paradigm. Much the same is true in genome mapping of
high-throughput short-read data. However, a highly sensitive search with
multiple spaced patterns often requires the use of a great amount of in-
dex data. We propose a novel seed-set construction method for efficient
and sensitive genome mapping of short reads with relatively high error
rates, which uses only continuous seeds of variable length allowing a few
errors. The seed lengths and allowable error positions are optimized on
the basis of entropy, which is a measure of ambiguity or repetitiveness
of mapping positions. These seeds can be searched efficiently using the
Burrows-Wheeler transform of the reference genome. Evaluation using
actual biological SOLiD sequence data demonstrated that our method
was competitive in speed and sensitivity using much less memory and
disk space in comparison to spaced-seed methods.

1 Introduction

Since the advent of new-generation DNA sequencers, sequencing throughputs
have greatly increased and costs have drastically fallen. This has posed many
challenging problems in sequence analysis, in particular, genome mapping of un-
precedented amounts of sequencing data [7,19]. Thus, many mapping tools have
been developed that are designed for vast amounts of short reads, typically tens
of millions of short reads with lengths from 30 to 75. Among them, ELAND (Cox,
unpublished) and MAQ [12], early popular tools designed for Illumina Genome
Analyzer (GA), use gapped seeds for sensitive search. Recently introduced tools
based on the Burrows-Wheeler transform, such as BWA [11], Bowtie [10] and
SOAP2 [14], are now most widely used for mapping Illumina GA data because of
their overwhelming speed. The Burrows-Wheeler transform is a memory-efficient
alternative to a suffix array and widely used in text search and data compression
problems [3,1].

In addition to speed, sensitivity is a major concern in genome mapping of
short reads obtained from Applied Biosystems SOLiD sequencers. This is be-
cause a relatively high raw sequencing error rate should be assumed at first
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although high-quality data are eventually obtained by error correction based
on the mapping results and due to the redundancy of the two-base encoding
scheme [2]. BFAST [8], one of the most powerful tools for mapping SOLiD reads,
uses spaced seeds, which have been used in many efficient and sensitive homol-
ogy search tools [16,13,18]. BFAST is far more sensitive than BWA although it
requires rather large amounts of memory and disk space (e.g., 17 GB of memory
and 121 GB of disk space for index data in human genome mapping [8]).

In this article, we introduce a new seed-set construction method for efficient
and sensitive genome mapping of short reads following the seed-and-extend
paradigm. It uses only continuous seeds that can be explored efficiently with
the Burrows-Wheeler transform. However, for higher sensitivity, it uses shorter
seeds allowing a few errors per seed. The use of such seeds would result in pro-
hibitively large computational costs unless they were carefully chosen. Thus,
we select a suitable set of seeds for each read in a context-dependent manner,
which is particularly important when we encounter with repetitive sequences.
The concept underlying our method and some experimental evaluation results
are presented.

2 Equi-entropy Partitioning Method

2.1 Soft Seeds

In the conventional seed-and-extend paradigm for string search problems, seeds
mean short substrings of a query string that also appear only a limited number
of times in a large target string. They are expected to quickly reduce the number
of potential hit positions of the query in the target, which are later examined by
extensions at more computational costs typically with the dynamic programming
method. We refer to conventional seeds, which should exactly match substrings
in the target string, as hard seeds.

In sensitive genome mapping of short reads at high error rates, the utility of
hard seeds is limited due to the strong requirement for exact matching: there
may be few if any intact seeds free from error. For example, a read of length
50 bp with three errors may not be detected by any hard seeds with a length
of 13 bp or more. That is, with hard seeds, the sensitivity of mapping quickly
degrades as the error rate increases. We thus introduce soft seeds, which allow a
few errors inside. For clarity, we make the following definition.

Definition 1. Let s be a subsequence of query read q, let k be a small non-
negative integer, and let G be a target genome sequence. M(k/s) denotes the set
of all subsequences of G that can be matched with s with at most k errors (at
most k base pairs of substitutions, insertions, or deletions in total).

For k = 0, we refer to M(0/s) as hard seed s; for k > 0, we refer to M(k/s) as
soft seed s with at most k errors. Note that M(k/s) represents a set of matching
positions (in the genome) of the seed, hence a set of potential hit positions of
query q found by seed s with at most k errors. Thus, we will interchangeably
use the term “seed” to mean: a sequence s with the allowable number of errors
k, or the set of its matching positions in the genome.
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2.2 Partitioning Read into Seeds

For sensitive and efficient search, the set of seeds should be carefully chosen. They
should cover almost all of the query string with minimal overlap. Therefore,
we partition a query read into a set of seeds. Although partially overlapped
partitionings are acceptable in general, we mainly focus on disjoint partitionings.

When a read contains at most n− 1 errors and is partitioned into n parts, at
least one of the parts contains no errors. Thus, a mapping with at most n − 1
errors can always be found by using one of these n hard seeds. More generally,
for any non-negative integer k, when a read contains at most (k+1)n− 1 errors
and is partitioned into n parts, at least one of the parts contains at most k errors.
Thus, a mapping with at most (k+ 1)n− 1 errors can always be found by using
one of these n soft seeds with at most k errors. We refer to (k + 1)n− 1 as the
tolerable number of errors, which is a measure of the sensitivity of the seed set.
For example, for n = 3 and k = 1, a mapping of a read of length 50bp with up
to five errors can always be found by using a set of three soft seeds with lengths
of 16, 17, and 17 bp each with at most one error.

Note that the tolerable number of errors is given in terms of n and k. Thus, we
can optimize the seed lengths for efficient search without affecting the sensitivity
as long as the same values of n and k are used. Larger values of n and k result
in improved sensitivity at the expense of higher computational cost. We mostly
use k = 1 for efficiency, and k = 2 only for special cases. Different values of n
can be used for different reads, which is helpful in coping with repetitive reads.

2.3 Entropy and Adjustment of Seed Lengths

One can regard the role of a seed as an informant of potential hit positions for
a query. Without seeds, hits can be anywhere in the genome, and the amount
of ambiguity is represented as HG = log2 g bits in terms of information theory,
where g denotes the reference genome size. When seed s restricts the potential
hits to a limited number W(s) of positions, the amount of ambiguity is reduced
to H(s) = log2W(s) bits. In other words, the amount of information seed s
provides is given by I(s) = HG−H(s) bits. For example, if a seed has many hits
in repetitive regions, H(s) takes a large value and I(s) takes a small value. We
will use H(s) as a convenient measure of ambiguity or repetitiveness for seed s
instead of W(s), the number of potential hits, which takes values with a wide
range of magnitudes. We refer to H(s) as the entropy of seed s since it measures
the amount of ambiguity of unresolved mapping positions in terms of Shannon
entropy.

When a query read q is covered by a set of a fixed number (m) of disjoint
seeds of variable lengths: q = s1 � · · · � sm, the overall computational cost is
largely determined by the total number of potential hits: W =

∑W(si), since
their extensions are the most computationally intensive. Thus, for efficiency,
W should be minimized by adjusting the boundaries of seeds. Applying the
variational principle, one observes that the number of potential hits for each
seed should be almost equally small: W(si) � W̄ (∀i) for some constant W̄ > 0.
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Thus, giving an appropriate constant H̄ , we may use a set of minimal-length
seeds satisfying H(s) ≤ H̄. As a result, seed lengths are adjusted in a context-
dependent manner: longer seeds are selected for use in repetitive regions, and
shorter seeds are selected for use in unique regions. Thus, we can avoid the
enormous number of useless hits in repetitive regions that would be encountered
if fixed-length seeds were used.

2.4 Computation of Entropy

For a hard seed s with k = 0, the number of exact matches W(s) and hence the
entropy H(s) = log2W(s) can be computed very efficiently using the Burrows-
Wheeler transform [3]. In fact, the computation is reduced to repeatedly com-
puting rank functions on the transformed genomic sequence at most twice the
seed-length number of times [5,15], and rank functions can be computed in a
small constant time even for large genomes [4,6].

However, it is not an easy task to compute the entropy for soft seed s with
k > 0 in general. All of the approximate matches within edit distance k should
be enumerated. In terms of a suffix tree search, the number of branches that
should be explored (N) increases rapidly as search depth d (up to seed length
�) increases. When N is less than the genome size (e.g., 3 × 109 for human) at
the beginning of the search, N may increase as rapidly as the exponential in
dk, more precisely, as rapidly as 8C with C = d Ck, if eight types of errors —
a substitution with one of three alternative bases, a deletion, or an insertion of
one of four bases — are considered.

For clarity, letH0(s) denote the entropy of a hard seed s, and let Hk(s) denote
the entropy of a soft seed with at most k > 0 errors. Although H0(s) and H1(s)
can take quite different values, we have experimentally observed that they are
largely correlated, and the former can be used as a convenient approximate lower
bound for the latter. Therefore, in adjusting the lengths of soft seeds with k = 1,
we use entropy H0(s) instead of H1(s).

2.5 Bidirectional Search

When k = 1, the soft seed M(1/s) can be computed efficiently by a bidirec-
tional search (Figure 1). Let seed s be divided into two segments, s0 and s1.
If an approximate matching of s has a single error, the error should be located
either in the first segment s0 or in the second segment s1. In the former case,
a desired matching is given by a combination of an exact matching on s1 and
an approximate matching with an error on s0. For efficient search, one should
examine them from right to left:

1. search for exact matches on s1,
2. extend them into s0 with at most one error.

The exact matching on s1 reduces the entropy (ambiguity) to H(s1) in the first
step, and imposes constraints on the possible errors in the extended part (s0)
in the second step. Likewise, in the latter case, a desired matching is given by a
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s = s0 s1

(a) soft seed: M(1/s)

H 0(s0) left to right searchHG

s0 s1

(b) composite seed: M(0/s0, 1/s1)

H 0(s1)
right to left search HG

s0 s1

(c) composite seed: M(1/s0, 0/s1)

Fig. 1. Bidirectional search of approximate matching of seed with a single error

s0 s1 s2 …              sm – 3 sm – 2 sm – 1 s

t1 t0

Fig. 2. Partitioning of read into equi-entropy segments

combination of an exact matching on s0 and an approximate matching with an
error on s1, which should be examined from left to right. For convenience, we
introduce notations for each of these concatenated matchings on s.

Definition 2. Let s be a subsequence of query read q, which is divided into two
non-empty segments, s0 and s1 with s = s0s1. Let k0 and k1 be small non-
negative integers and G be the target genome sequence. M(k0/s0, k1/s1) denotes
the set of all subsequences of G that can be matched with s with at most k0 errors
on s0 and at most k1 errors on s1.

We refer to M(k0/s0, k1/s1) as a composite seed. Thus, a soft seed with at most
one error can be obtained by a union of two composite seeds:

M(1/s) = M(0/s0, 1/s1) ∪M(1/s0, 0/s1) ,

and can be computed efficiently by the the bidirectional search provided that
the both entropies, H0(s0) and H0(s1), are small.

2.6 Equi-entropy Partitioning

According to the above discussion, we may first partition a read into segments of
almost equally low entropies and then make concatenated pairs in order to get
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a covering of read by soft seeds with k = 1. More precisely, we partition a read
from left to right into segments s0, s1, . . . , sm−1 and possibly with a remainder
(s×) (equi-entropy partitioning, Figure 2). Each si is chosen so that it satisfies
H(si) ≤ H and has the minimal length, where H is a chosen constant referred to
as the entropy parameter. The remainder should satisfy H(s×) > H unless it is
empty. The number of segments, m, referred to as partition number, may differ
from read to read even if the read lengths are the same. Seeds are then given
by pairing them: s0s1, s2s3, s4s5, . . .. We do not use seeds like s1s2, s3s4, . . . in
order to avoid overlapping searches. However, if the partition number is odd, the
last segment, sm−1, is lost in these seeds. Accordingly, we repartition the right
end of the read when the partition number turns out to be odd. We take out
two additional segments, t0 and t1, from the right end of the read to the left so
that they satisfy H(ti) ≤ H (i = 0, 1) and have minimal lengths, as shown in
Figure 2. Now, for simplicity, assume that the partition number is equal to three
and consider the extended remainder (Figure 3):

r̃ = s0 � s1 � s2 � s× = s0 ∪ s1 ∪ s2 ∪ t0 ∪ t1.

Let r0 be the complement of t0 ∪ t1 in r̃, r2 be the complement of s0 ∪ s1 in r̃,
and r1 be the complement of r0 ∪ r2 in r̃, namely,

r0 = r̃ � (t0 ∪ t1), r2 = r̃ � (s0 ∪ s1), r1 = r̃ � (r0 ∪ r2).

Thus, the extended remainder, r̃, is repartitioned into these three segments:
r̃ = r0 ∪ r1 ∪ r2. In general, when the partition number is odd and greater than
three, r0, r1, and r2 can be defined similarly by substituting {s0, s1, s2} with
{sm−3, sm−2, sm−1}.

Now we define seed set S:

S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
M(1/s0s1),M(1/s2s3), . . . ,M(1/sm−2sm−1)

}
(m : even),{

M(1/s0s1),M(1/s2s3), . . . ,M(1/sm−5sm−4),
M(0/r0, 2/r1),M(1/r1r2)

}
(m ≥ 3 : odd),{

M(0/q)
}

(m = 1),

where q is the query read and M(0/r0, 2/r1) represents a composite seed that
allows no errors in r0 and at most two errors in r1. This composite seed can
be examined efficiently from left to right since the exact matching in r0 reduces
the entropy to H0(r0) ≤ H(s0) ≤ H . Soft seed M(1/r1r2) can also be examined
efficiently by using a bidirectional search because r1r2 = t1t0 and H(t0),H(t1) ≤
H . When m is even, remainder s× is simply neglected in constructing S, which
turns out to be nevertheless useful, as shown in the following proposition. Strictly
speaking, we should separately consider several degenerate cases in which some
of the boundaries of si and tj coincide with each other. We omit these details
since they can be treated similarly.
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s0 s1 s2 s

t0t1

r0 r1 r2

r~

(a) repartitioning of extended remainder r̃

r = r1r2r3
~

1 2 3

(b) soft seed: M(2/r̃)

r0 r1

H 0(r0) left to right searchHG

(c) composite seed: M(0/r0, 2/r1)

r1r2

(d) soft seed: M(1/r1r2) = M(1/t1t0)

Fig. 3. Repartitioning of extended remainder (m = 3)

Proposition 1. If partition number m is positive, the tolerable number of errors
of seed set S is m − 1. That is, if the read has a mapping with at most m − 1
errors, it is always detected by at least one of the seeds in S.
Remark. Note that the number of seeds in S is about half the partition
number; more precisely, we have |S| = �(m+ 1)/2�.
Proof. The proof is straightforward and hence omitted. ��

2.7 Adjusting Entropy Parameter H

The larger the entropy parameter (H), the larger the partition number (m)
and the greater the sensitivity for erroneous reads. However, the computational
cost also increases. In the trade off between sensitivity and cost, the entropy of
seeds should take a reasonable value (say, five), corresponding to the ambiguity
associated with a moderate number of possibilities (say, 32 = 25). Since H
controls the entropy of segments (halves of seeds) but not the seeds themselves,
we consider the effect of H on the entropy of seeds.

Intuitively speaking, if the genome sequence is random, and if a seed (s)
consists of two probabilistically independent adjacent segments, s0 and s1, the
sum of their information amounts to the information of the seed:

I(s) = I(s0) + I(s1).
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Namely, in terms of entropy (ambiguity), we have

H(s) = H(s0) +H(s1)−HG.

Since s0 and s1 are chosen such that H(s0) ∼ H and H(s1) ∼ H , we have

H ∼ (HG +H(s))/2.

Therefore, reasonable values of H are somewhat larger than HG/2, for example,
around (log2(3× 109) + 5)/2 ∼ 18.2 for the human genome (3 Gbp).

This intuitive discussion is actually not correct since genome sequences are
not random and contain many repetitive sequences and since adjacent segments
may be correlated. Nevertheless, the above discussion holds approximately for
the majority of seeds, which we have experimentally observed. Thus, the H value
selected above serves as a rough guide. However, when a seed is repetitive, the
additivity of segment information does not hold, and H(s) may take a large
value. In that case, the seed may have an enormous number of hit positions
and prohibitively large computational costs will be required in their extensions.
Therefore, we introduce a heuristic parameter, K: if H(s) > K, we do not try
to extend the alignment of that seed. K is referred to as the pruning parameter.
Note that K is an upper bound on the entropy of seeds to be explored and that
H is an upper bound on the entropy of segments (halves of seeds). Thus, we
should choose a K that is sufficiently greater than 2H − HG, otherwise most
seeds will be lost.

3 Experimental Results and Discussion

3.1 Implementation Issues

To evaluate the performance of the proposed method, we implemented a proto-
type genome mapping program in C++, referred to as EEP, for SOLiD color-
space reads. Several implementation issues are briefly described here.

Nucleotide sequences of reference genomes were first converted into sequences
of four colors (represented as 0, 1, 2, 3) in accordance with the SOLiD two-
base encoding scheme [2]. The Burrows-Wheeler transform was applied to the
sequences, and the results were formatted into a convenient data structure, hi-
erarchical binary strings [9].

Query reads, given as sequences of colors, were compared with the genomic
color sequences following the seed-and-extend paradigm. Seed sets were con-
structed using the equi-entropy method with appropriate entropy and pruning
parameters, H and K. The hit positions of the seeds were efficiently calcu-
lated using rank functions on the Burrows-Wheeler transform of the reference
genome [9]. Extensions were computed using a modified version of Myers’ bit-
parallel dynamic programming algorithm [17]. For the sake of bit-parallelism,
unit costs for all substitution/insertion/deletion errors were assumed. Finally,
optimal mapping positions on the reference genome with the minimal number
of color-space edits (referred to as edit distance) were identified.
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As for the human genome (3.2× 109 Gbp), the amount of disk space used by
the formatted index data was about 4.1 GB, and the amount of memory required
for mapping was about 4.2 GB.

3.2 Performance Estimation Using Random Reads

We examined the performance of EEP using the reference human genome (UCSC
hg19) and simulated read data: 50-bp-long subsequences randomly taken from
the reference genome, converted into color sequences in accordance with the
two-base encoding scheme [2], and introduced a fixed number (e) of random
substitution errors.

Mapped ratio is defined as the number of reads mapped anywhere on the
genome divided by the total number of reads. Figure 4 shows mapped ratio for
different values of H and e without any pruning (K = ∞). For example, for
H = 18 (closest to the 18.2 discussed in Section 2.7), almost all reads with five
errors, about 90% of reads with six errors, and many of reads with more errors
were mapped.

mapped ratio

100% e=2

80% e=3

60%
e=4

e=5

40%

e 5

e=6

20%
e=7

e=8

0%
e=8

e=9

1011121314151617181920 e=10

H

Fig. 4. Mapping ratio of EEP with different
values of H for data with different number
of errors per read (e = 2, 3, . . . , 10)

ratio
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H 14
60%

H=14
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40%

H=16

H=18

20% H=20

0%0%

1 2 3 4 5 6 7 8
m : partition number

Fig. 5. Distributions of partition num-
ber m for different values of H for ran-
dom reads with e = 5 (five errors each)

Table 1. Comparison of Partitioning Methods. A hundred thousand random reads of
50 bp with five substitution errors each (e = 5) are mapped on the human genome
using exactly the same method except for the partitionings.

(a) Equi-Entropy Partitioning (EEP)

H 12 16 18 20

mapped ratio 50.9% 84.6% 99.1% 100.0%
time(sec.)† 109 495 2,383 15,670

(b) Equi-Length Partitioning (ELP)

m 4 5 6 7

mapped ratio 38.8% 80.2% 100.0% 100.0%

time(sec.)† 408 2,242 8,426 28,025

† with a single core of an Intel Xeon E5540 (2.53 GHz) and 16 GB of memory.
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Fig. 6. Number of mapped reads for HLA-targeted sequence data

We compared the performances of the equi-entropy partitionings (EEP) with
those of equi-length partitionings (ELP). As shown in Figure 5, choosing the en-
tropy parameter H = 12, 16, 18, 20 mostly corresponds to choosing the partition
number m = 4, 5, 6, 7. As shown in Table 1, EEP performed better than ELP in
terms of both mapping sensitivity and speed.

3.3 Performance Estimation Using Actual Biological Data

We examined the performance of EEP on actual biological data1, HLA (human
leukocyte antigen)-targeted single-end SOLiD sequence data of length 50 bp.
Although the correct mapping positions are unknown, the overall correctness of
the mapping results can be evaluated by using the ratio of mappings that were
successfully mapped to the HLA region, which occupies only about 0.1% of the
genome. Thus, when a mapping position is in the HLA region, we say that it
is “presumably correct”. Note that there are two major reasons for presumably
false mappings: (i) reads were in fact taken from outside the HLA region due to
the limited sequence capture efficiency, and (ii) wrong mapping positions were
selected (with the minimum number of mismatches) due to accidental sequencing
errors or polymorphisms. We chose H = 16 and K = 10 to give higher priority
to the mapping speed, and searched for mappings with up to 12 errors per read.

We examined how the ratio of presumably correct mappings decreases as the
edit distance increases. A million reads of HLA-targeted sequence data were
mapped to the reference human genome. Of them, 595,375 were mapped to
somewhere in the genome, and 375,284 of which were presumably correct. As
shown by the plots of these numbers by edit distance (Figure 6), presumably
false mappings began to increase rapidly as the edit distance increased beyond
1 We are grateful to Professor Ituro Inoue and Dr. Kazuyoshi Hosomichi of the Insti-

tute of Medical Sciences at Tokai University for providing us these sequence data.
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Table 2. Comparison of performances on HLA-targeted data (10,000,000 reads)

program EEP BFAST BWA

12h1m48.9sec 16h20m10.5sec 4h11m40.6sec
12h38m14.3sec 16h29m30.6sec 4h15m23.7sec

computation time† 12h14m6.0sec 16h27m40.8sec 4h31m59.6sec
11h54m13.7sec 16h25m2.7sec 3h57m33.6sec
11h37m57.8sec 16h35m4.7sec 4h12m41.0sec

6,350,564 6,531,859 4,991,727
6,092,972 6,359,180 4,578,039

number of all mapped reads 6,248,750 6,455,366 4,830,035
6,306,924 6,462,882 4,973,647
6,409,901 6,541,348 5,104,839

4,221,048 4,268,423 3,601,443
3,931,308 3,954,435 3,280,134

number of presumably correct mappings 4,115,248 4,154,885 3,478,123
4,219,686 4,265,874 3,592,822
4,316,169 4,375,981 3,693,396

† with a single core of an AMD Opteron 8356 (2.3 GHz) and 128 GB of memory.

ten. In view of the above two possible reasons, (ii) seems to become dominant
over (i) as the edit distance increases. This is because (i) is basically independent
of the edit distance while (ii) occurs more frequently as the distance increases.

3.4 Performance Comparison with BFAST and BWA

We compared the performance of EEP with BFAST (in accurate mode with ten
mask patterns) and BWA (with maximum edit distance 12 (-n12)) using actual
biological data, HLA-targeted single-end SOLiD sequence data of length 50 bp.
Large datasets, each with ten million reads, were used, which was advantageous
for BFAST because it accessed a large amount of indexed data (121 GB). As
shown in Table 2, EEP was as sensitive as BFAST and somewhat faster. BWA
was much faster but much less sensitive than EEP and BFAST.

4 Conclusion

We have shown that efficient and sensitive genome mapping of short reads with
higher error rates can be achieved by following the seed-and-extend paradigm
and by using only continuous seeds, more precisely, for each read, by choosing
a suitable set of variable-length continuous seeds allowing at most one or two
errors according to the equi-entropy partitioning (EEP) method. They can be
efficiently computed by using the Burrows-Wheeler transform. Comparison with
BFAST, a highly sensitive genome mapping tool for short reads using spaced-
seeds, demonstrated that our method is as sensitive as BFAST (in accurate mode
with ten mask patterns) and somewhat faster using 1/4 less memory for mapping
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and 1/30 less disk space for indexed data in mapping 50-bp single-end SOLiD
reads to the human genome.

References

1. Adjeroh, D., et al.: The Burrows-Wheeler Transform: Data Compression, Suffix
Arrays, and Pattern Matching. Springer Science+Business Media, LLC, Heidelberg
(2008)

2. Breu, H.: A theoretical understanding of 2 base color codes and its application to
annotation, error detection, and error correction. White Paper, Applied Biosystems
(2010), publication 139WP01-02 CO13982

3. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

4. Clark, D.: Compact Pat Trees. Ph.D. thesis, the University of Waterloo (1996)
5. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:

Proceedings of the 41th Annual IEEE Symposium on Foundations of Computer
Science, pp. 390–398 (2000)
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Abstract. Genome rearrangements are a valuable source of information
about early evolution, as well as an important factor in speciation pro-
cesses. Reconstruction of ancestral gene orders on a phylogeny is thus one
of the crucial tools contributing to understanding of evolution of genome
organization. For most models of evolution, this problem is NP-hard.

We have developed a universal method for reconstruction of ancestral
gene orders by parsimony (PIVO) using an iterative local optimization
procedure. Our method can be applied to different rearrangement mod-
els. Combined with a sufficently rich model, such as the double cut and
join (DCJ), it can support a mixture of different chromosomal architec-
tures in the same tree. We show that PIVO can outperform previously
used steinerization framework and achieves better results on real data
than previously published methods.

Datasets, reconstructed histories, and the software can be downloaded
at http://compbio.fmph.uniba.sk/pivo/

1 Introduction

Genome rearrangements, such as inversions, transpositions, chromosome fusions
and fissions, are evolutionary events that change the order of genes in genomes.
These events are rare compared to point mutations, and are thought to be precur-
sors of speciation [1]. Due to their low evolutionary rates, rearrangements are a
valuable source of information about early evolution, and various rearrangement-
based distances can provide phylogenetic signal well beyond the saturation of
traditional nucleotide and protein point mutation models [2].

On the other hand, rearrangements make comparative analysis much more
complex. Even though it is possible to reconstruct ancestral sequences in regions
without breakpoints [3], it is much more difficult to order individual segments
of ancestral genomes correctly [4].

In this paper, we present a new method for analysis of rearrangement his-
tories, using gene orders of present-day species on a given phylogeny. Our goal
is to reconstruct gene orders in all ancestral nodes of the phylogenetic tree.
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(b) Graph G(π). Each marker consists of two ex-
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dashed edges are adjacencies.

Fig. 1. Genome π consisting of two linear chromosomes and one circular chromosome
(left) and its graph representation (right)

In particular, we are looking for the most parsimonious ancestral gene orders,
minimizing the overall rearrangement distance (this problem is also called the
small phylogeny problem). Even though our algorithm is not guaranteed to find
the optimal solution, it presents a framework that generalizes most search strate-
gies applied to various versions of this problem to date, e.g. [5,6].

Our method, PIVO (Phylogeny by IteratiVe Optimization), is one of the first
practical tools applicable to analysis of real datasets spanning a complex phy-
logeny and accommodating a variety of genome architectures (single vs. multiple
chromosomes, linear vs. circular chromosomes). In our experiments, we use the
double cut and join (DCJ) model [7,8] for measuring rearrangement distance,
but our method can be easily applied to other rearrangement distance measures
reviewed in the next section. We demonstrate the accuracy of our program on the
well-studied dataset of Campanulaceae chloroplast genomes [9], and apply it to
the reconstruction of rearrangement histories of newly sequenced mitochondrial
genomes of pathogenic yeasts from Hemiascomycetes clade [10].

Preliminaries, definitions, and related work. We will represent a genome
as a set of markers (e.g., genes or synteny blocks) with known order and orien-
tation. In this setting, a genome can be represented as a graph in which each
(oriented) marker corresponds to two vertices, called extremities of the marker;
the ends of linear chromosomes are represented by special vertices called telom-
eres. The edge set of this graph consists of the marker edges, joining the two
extremities of each marker, and the adjacencies, joining two consecutive extrem-
ities in the genome or an extremity with a telomere (Fig. 1). Each connected
component of this graph is thus a cycle or a path (representing a circular or a
linear chromosome, respectively).

In our program, we employ the double cut and join (DCJ) [7,8] and reversal
rearrangement model [11,12]. The DCJ model encompasses a rich set of rear-
rangement operations, and is able to represent both linear and circular chro-
mosomes. An evolutionary operation in the DCJ model takes two adjacencies,
{p, q} and {r, s}, and replaces them by either {p, r} and {q, s}, or {p, s} and
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{q, r}. This operation is quite general. A single DCJ operation can represent a
reversal, translocation, chromosome fusion or fission, and excision or integration
of a circular chromosome. Two operations can simulate a transposition. The
DCJ distance is defined as the minimum number of DCJ operations needed to
transform one genome into another. The distance between two genomes can be
computed in linear time [8].

The reversal model is another popular model of evolution by rearrangements
[13]. Each genome is represented by a signed permutation (a sequence of chro-
mosomal markers with their orientations), allowing only genomes with a single
linear chromosome. Genomes can be modified by a reversal operation that takes
a contiguous section of markers in the permutation and replaces it with the
markers in reversed order and with reversed orientations. The distance between
two genomes with the same marker content is then the minimum number of re-
versals needed to transform one genome into the other. Reversal distance can be
computed in linear time [14], and can be easily adapted for circular genomes. The
Hannenhalli-Pevzner (HP) model [15] generalizes the reversal model to genomes
with multiple linear chromosomes, allowing in addition to reversals also translo-
cations, fusions, and fissions. The HP-distance can also be computed in linear
time [16,17] and can be seen as a special case of the DCJ model restricted to
operations that do not create circular chromosomes.

For completeness, we also consider a simple breakpoint distance [18]. A break-
point between two genomes is a pair of markers that are consecutive in one
genome but not in the other. The number of breakpoints between the two
genomes is called the breakpoint distance. While this measure does not cor-
respond to a particular set of evolutionary operations, it is clear that various
rearrangement operations generally increase the breakpoint distance between
the genomes, unless they reuse already created breakpoints.

While we can compute distances in all of these models efficiently, finding
the most parsimonious solutions in more complex scenarios involving multiple
genomes is more difficult. Perhaps the simplest scenario is the median problem,
where we are given three extant genomes π1, π2, π3 and a rearrangement distance
measure d, and our task is to compute a single ancestral genome, a median πM ,
that would minimize the sum of distances to the extant genomes d(π1, πM ) +
d(π2, πM ) + d(π3, πM ).

Median problem has been shown to be NP-hard for almost every considered
rearrangement model (unichromosomal reversal distance [19], unichromosomal
breakpoint distance [20,21], multichromosomal linear breakpoint distance [22],
unichromosomal [19] and multichromosomal [22] DCJ distance) and is conjec-
tured to be NP-hard for other rearrangement models. One notable exception is
the breakpoint distance on multiple circular or mixed chromosomes for which
the median can be computed in polynomial time [22].

On the other hand, practical algorithms were developed for particular mod-
els, allowing to find good solutions to the median problem in many instances.
Blanchette, Bourque, and Sankoff [23,18] reduce the breakpoint median prob-
lem to the travelling salesman problem (TSP) and then use a branch-and-bound
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algorithm to solve the resulting instance of TSP exactly. Siepel and Moret [24]
and Caprara [25] propose exact practical solutions for the reversal median.

Heuristic median solvers try to move the given genomes closer and closer to
each other until they meet at an approximate median [6,26,27,28]. A similar
heuristic was also implemented for the DCJ model by Adam and Sankoff [29],
while Xu and Sankoff have recently developed a DCJ median solver that is exact
yet fast in practical instances [30].

The median problem is a special case of the small phylogeny problem, where we
are given multiple extant genomes and their phylogenetic tree, and our goal is to
compute genomes of their ancestors. According to the parsimony principle, the
best reconstruction is the one involving the smallest number of rearrangement
operations.

More formally, let G be the set of all possible genomes on a particular set of
markers according to the chosen rearrangement model and let d be a distance
measure on G. We are given a phylogenetic tree T = (V,E) with the set of
leaves L. For each leaf, we are also given a genome of the corresponding species,
i.e., we are given a function g : L → G. An evolutionary history is a function
h : V → G extending g to the internal (ancestral) vertices. Our goal is to find
an evolutionary history h which minimizes the overall evolutionary distance in
the tree d(h) =

∑
{u,v}∈E d(h(u), h(v)).

The small phylogeny problem is trivially NP-hard for most rearrangement
distance measures, since it is a generalization of the median problem. A no-
table exception is the breakpoint distance, for which the complexity of the small
phylogeny problem is unknown.

Perhaps the most popular method for solving the small phylogeny problem
is the steinerization method [31]. The main idea is to iteratively improve the
evolutionary history until a local optimum is reached. In each iteration, we go
through all internal vertices v. We take an ancestral genome πv and its three
neighbours πa, πb, πc, compute the median πM of πa, πb, πc, and replace πv with
πM if it yields a better overall score. If no vertex can be improved by taking the
median of its neighbours, we have found a locally optimal evolutionary history.
This approach is implemented in BPAnalysis software [23,18] for the breakpoint
model and in GRAPPA software [32,33,34] for both breakpoint and reversal models.
The same approach was implemented for the DCJ model by Adam and Sankoff
[29]. MGR [6], another small phylogeny solver for reversal model, uses the simple
heuristic based on using operations bringing genomes closer to other genomes
in the tree. Our new algorithm, presented in the next section, encompasses and
extends all these existing approaches.

Note that rearrangement models can also be used to reconstruct phylogenetic
trees based on the order of markers in genomes. Perhaps the easiest method is to
compute distances between all pairs of extant genomes and then use traditional
distance-based algorithms for phylogeny reconstruction [2]. Another option is to
solve the full large phylogeny problem, where we are looking for both the phylo-
genetic tree and the evolutionary history h minimizing the overall evolutionary
distance. The small phylogeny can be used as a subroutine in the large phylogeny
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Algorithm 1. Iterative local optimization
Data: evolutionary history h
Result: local optimum
s′ ← score(h), s←∞ ;1

while s′ < s do2

cand← generate lists of candidates (neighbourhood of h);3

h← best(cand);4

s← s′, s′ ← score(h);5

end6

return h7

problem solvers. For a small number of species, we can enumerate all possible
trees and for each tree compute the small phylogeny score, as in BPAnalysis
and GRAPPA [23,34]. Alternatively, we can use the sequential addition heuristics,
where we start from a trivial three-species star phylogeny and build the tree
iteratively by adding new species, and reconstructing ancestral genomes in each
step as in MGR or amGRP [6,35]. Our new method can also be used in this context.

2 Methods

In this section, we introduce a new general approach to the small phylogeny
problem based on iterative local optimization. The basic idea is that in each
step, we propose multiple candidates for ancestral genomes in each internal node
of the tree and choose the most parsimonious combination of the candidates by
dynamic programming. We will formulate the method in general terms for any
rearrangement distance measure d that can be efficiently computed.

Consider a phylogenetic tree T = (V,E) with the set of leaves L and genomes
of extant species g : L → G. We start with some history h0. For a particular
history h and each internal vertex v, we propose a set of candidates cand(h, v).
We define a neighbourhood of history h as the set of all possible combinations of
candidate genomes N(h) = {h′ | ∀v ∈ V : h′(v) ∈ cand(h, v)}. We then find the
best history in the neighbourhood N(h) by a dynamic programming algorithm.
If the new history is better than the previous one, we take it and repeat the iter-
ation. Otherwise, we have found a local minimum and the algorithm terminates.
We repeat the local optimization several times starting from different histories
h0. Algorithm 1 summarizes the local optimization method.

Example #1: For each internal vertex v, the set of candidates cand(h, v) can be
the set of all the genomes within the distance 1 from h(v). The neighbourhood of
h is then the set of all histories we can obtain from h by performing at most one
operation to each ancestral genome. Note that the size of N(h) is exponential
in the number of internal vertices, but as we will see later, we will never have to
enumerate the entire neighbourhood.

Example #2: The steinerization approach mentioned in Section 1 is a special
case of our method. Here, cand(h, v) = {h(v)} for all vertices except for one
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Fig. 2. A simple example showing a situation, where our more general approach out-
performs the steinerization method. Given a quartet phylogeny and genomes at the
leaves, the steinerization method has a local optimum with score 5 under the DCJ
model (left), while there is a better solution with score 4 (right) which may be ob-
tained when considering multiple candidates and choosing their best combination.

vertex w with neighbours a, b, c, for which cand(h,w) = {h(w),median(h(a),
h(b), h(c))}.

Note that the opposite is not true, and in fact, proposing multiple candidates
and then choosing the best combination is a crucial feature of our algorithm.
Consider a simple example on a quartet phylogeny in Figure 2. The steinerization
approach may get stuck in a local optimum as in Figure 2(a) (both ancestral
genomes are medians of the neighbouring vertices). To avoid such local optima,
the steinerization method is repeated from different starting configurations. On
the other hand, if we consider all solutions of the median problems as candidates
or if we consider the neighbouring genomes (that are within one DCJ operation
from the current ancestors) and then choose the best combination, we obtain a
better solution, shown in Figure 2(b).

We can generalize this example to configurations that will result in arbitrarily
bad local optima of the steinerization method, whereas the global optimum can
be found by our method.

2.1 Finding the Best History in a Neighbourhood

Even though the size of the neighbourhood N(h) can be exponential (it has∏
v | cand(h, v)| elements), the best history can be found in polynomial time

using dynamic programming.
Let cui be the i-th candidate from cand(h, u) and let M [u, i] be the lowest

score we can achieve for the subtree rooted at u if we choose candidate cui as an
ancestor. M [u, i] = 0 if u is a leaf. If u is an internal vertex with children v and
w, we first compute values M [v, j], M [w, k] for all j, k. Then

M [u, i] = min
j
{M [v, j] + d(cui , c

v
j )}+ min

k
{M [w, k] + d(cui , c

w
k )}.

This algorithm can be easily generalized for non-binary phylogenetic trees.
If n is the number of species, m the number of markers in each genome, and k

the number of candidates for each ancestor, the best history can be found in time
O(nmk2) (provided that the distance between two genomes can be computed in
O(m) time).
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2.2 Strategies for Proposing Candidates

A crucial part of our method is proposing good candidates. By proposing more
candidates, we explore a larger neighbourhood, but finding the best combination
of candidates is slower. Furthermore, if we propose only candidates that are close
to the genomes in the current history, the convergence to the local optimum may
be slow. Here, we list several strategies for proposing candidates.

Extant species. In the initialization step, we can take genomes of the extant
species as candidates in each internal node to get an evolutionary history to
start with.

Intermediates. For a vertex v with adjacent vertices u and w, we can take in-
termediate genomes as candidates, i.e. if π, γ are genomes at u and w, we can
sample genomes θ such that d(π, θ) + d(θ, γ) = d(π, γ).

Medians. The steinerization method uses a median of the genomes in the three
adjacent vertices as a candidate. Note that often there are many medians with
the same score. Furthermore, Eriksen [36] shows that medians of moderately
distant genomes may be spread wide apart. In our method, we do not need to
decide beforehand which median to use. Instead, we consider all the medians as
candidates, as already advocated by Eriksen [37] and Bernt et al. in amGRP [35]
(amGRP, however, backtracks over different choices).

If we compute the median by branch-and-bound, the time to list all medians
is comparable to the time to find just one median (median solvers of Siepel [24],
and Caprara [25] are capable of listing all medians). If we try to find the median
heuristically by repeatedly moving the given genomes closer to each other, we
can take the intermediate genomes as candidates. Another option is to find just
a single median and search its neighbourhood for medians which can be added
to the candidate list.

Neighbours. We can include neighbourhoods of individual genomes. In particular,
if h(v) = π, we can add the set N(π) = {γ ∈ G | d(π, γ) ≤ 1} to cand(h, v). For
most models, the size of N(π) is roughly quadratic in the number of markers.
Since for large genomes this becomes infeasible, we can include only genomes
that do not increase the total distance to adjacent vertices, genomes closer to
some genome in an adjacent vertex, or focus on a particular subset of neighbours.

Best histories. We can take several locally optimal histories and use the recon-
structed ancestors as candidates. In this way we can “recombine” locally optimal
solutions discovered previously.

2.3 Unequal Gene Content

A useful extension of our method is to allow a set of possible genomes in each leaf
to be given on input instead of one fixed genome g(v). This feature is useful if we
are uncertain about the order of markers in some genomes. The algorithm will
choose one of the alternative gene orders, so as to minimize the overall parsimony
cost. Note that this choice can change between the iterations, and consequently
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Table 1. The number of operations used to explain Campanulaceae dataset under
different models and with different algorithms

reversal unichr. general
distance DCJ DCJ

GRAPPA (Moret et al. [33]) 67
MGR (Bourque and Pevzner [6]) 65
GRAPPA (Moret et al. [38]) 64
BADGER (Larget et al. [39]) 64
ABC (Adam and Sankoff [29]) 64 59
PIVO (this paper) 62 62 59

we do not commit to a particular interpretation of the dataset until the end of
the local optimization.

In addition to modeling uncertainty about the gene order in the extant species,
we can also use this method for handling recent duplications or losses. Genome
rearrangement models usually require equal gene content in all considered
genomes. However, if one of the genomes contains a duplicated segment of mark-
ers, we can try to delete one or the other copy, producing two alternative gene
orders that are used as candidates for the corresponding leaf of the tree. The
algorithm will choose one of them for the locally optimal history h, presumably
the one corresponding to the ancestral state before the duplication happened.
We can extend this idea and use a larger set of candidates in case of multiple
duplications or a gene loss. However, list of candidates will become prohibitively
large for genomes with many such events.

3 Results

We have implemented our new method and the strategies for exploring neigh-
bourhoods described in the previous section using the DCJ and reversal rear-
rangement models. We demonstrate utility of our method on two datasets.

The Campanulaceae cpDNA dataset. For comparison, we applied our pro-
gram to a well-studied dataset of 13 Campanulaceae chloroplast genomes [9].
Each genome in this dataset consists of a circular chromosome with 105 markers.
Using the phylogenetic tree in Fig. 3(a) reconstructed by Bourque and Pevzner
[6] with MGR, the results are presented in Table 1.

Using GRAPPA software, Moret et al. [33] found 216 tree topologies and evo-
lutionary histories with 67 reversals. Bourque and Pevzner [6] using MGR later
found a solution with 65 reversals. Even better solutions with 64 reversals were
found by Moret et al. [38] (using GRAPPA) and Larget et al. [39] (using BADGER).

Adam and Sankoff [29] used the more general DCJ model and the phylogenetic
tree by Bourque and Pevzner. They found a history with 64 DCJ operations with
ancestors having a single chromosome, and a history with 59 DCJ operations
with unconstrained ancestors. However, as Adam and Sankoff note: “There is no
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Fig. 3. Phylogenetic trees used in the experiments

biological evidence in the Campanulaceae, or other higher plants, of chloroplast
genomes consisting of two or more circles.” The additional circular chromosomes
are an artifact of the DCJ model, where a transposition or a block interchange
operation can be simulated by circular excision and reincorporation.

We penalized multiple chromosomes in the dynamic programming objective
function to avoid such artifacts and found several histories with 62 DCJ opera-
tions, where all the ancestors had a single circular chromosome. Moreover, these
histories only require 62 reversals, which further improves on the best previously
known result of 64 reversals by Moret et al. [38] and Larget et al. [39].

The Hemiascomycetes mtDNA dataset. We have also studied evolution
of gene order in 16 mitochondrial genomes of pathogenic yeasts from the CTG
clade of Hemiascomycetes [10]. The phylogenetic tree (Fig. 3(b)) was calculated
by MrBayes [40] from protein sequences of 14 genes and is supported by high
posterior probabilities on most branches.

The genomes consist of 25 markers (synteny blocks): 14 protein-coding genes,
two rRNA genes, and 24 tRNAs. Several challenges make this dataset difficult.
First, it combines genomes with a variety of genome architectures: C. subhashii,
C. parapsilosis, and C. orthopsilosis are linear, C. frijolesensis has two linear
chromosomes, and the rest of the species have circular-mapping chromosomes.

Some of the genomes (C. albicans, C. maltosa, C. sojae, C. viswanathii) con-
tain recent duplications which cannot be handled by the DCJ model. As outlined
in Section 2.3, we have removed duplicated genes, and included both possible
forms of the genomes as alternatives in the corresponding leaves. Similarly, the
genomes of C. alai, C. albicans, C. maltosa, C. neerlandica, C. sojae, and L.
elongisporus contain long inverted repeats that are often subject to recombina-
tion resulting in reversal of the portion of the genome between the two repeats.
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Both forms of the genome are routinely observed in the same species, and we
include both of them in the corresponding leaf.

Finally, we penalized occurrences of multiple circular chromosomes and com-
binations of linear and circular chromosomes in ancestral genomes. Such combi-
nations would likely represent artifacts of the DCJ model.

Our algorithm, using the extant species, neighbours, and best histories strate-
gies, has found an evolutionary history with 78 DCJ operations. More detailed
discussion of this dataset (including comparison to manual reconstruction in a
subtree of closely related species) is included elsewhere [10].

4 Conclusion

We have developed a new method for reconstructing evolutionary history and
ancestral gene orders, given the gene orders of the extant species and their phy-
logenetic tree. We have implemented our method using the double cut and join
model and studied evolution of gene order in 16 mitochondrial yeast genomes,
demonstrating applicability of our approach to real biological datasets. We have
also analyzed the thoroughly studied Campanulaceae dataset and improved upon
the previous results [33,6,38,39,29].

Our framework is compatible with a variety of rearrangement models and the
optimization can be adjusted by introducing new strategies of generating candi-
date ancestral genomes. The use of the DCJ allowed us to study datasets that
contained both linear and circular genomes and to contribute towards under-
standing mechanisms of genome linearization during the evolution [10].

In our experiments, we have explored only a small fraction of possible strate-
gies offered by our framework. Systematic study of new initialization methods,
candidate sets, and rearrangement measures may lead to even better results for a
variety of practical problems. Our work also opened an avenue towards a system-
atic solution of the problems with unequal gene content. Similar directions can
perhaps lead to the possibility of incorporating incompletely assembled genomes,
a challenge posed by the next-generation sequencing technologies.
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In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp.
163–173. Springer, Heidelberg (2006)

9. Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman,
S.: An empirical comparison of phylogenetic methods on chloroplast gene order
data in Campanulaceae. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Ge-
nomics, pp. 99–121. Kluwer Academic Publishers, Dordrecht (2000)

10. Valach, M., Farkas, Z., Fricova, D., Kovac, J., Brejova, B., Vinar, T., Pfeiffer, I.,
Kucsera, J., Tomaska, L., Lang, B.F., Nosek, J.: Evolution of linear chromosomes
and multipartite genomes in yeast mitochondria. Nucleic Acids Research (accepted,
2011)

11. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. In: Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing, pp. 178–189. ACM,
New York (1995)

12. Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem. Math. of
Evolution and Phylogeny, 262–290 (2005)

13. Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica 13, 180–210
(1995)

14. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing in-
version distance between signed permutations with an experimental study. Journal
of Computational Biology 8(5), 483–491 (2001)

15. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Foundations of Computer Science (FOCS), pp.
581–592 (1995)

16. Bergeron, A., Mixtacki, J., Stoye, J.: HP distance via double cut and join distance.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 56–68.
Springer, Heidelberg (2008)

17. Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute
the genomic distance via the double cut and join distance. Theoretical Computer
Science 410, 5300–5316 (2009)

18. Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative
genomics. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp.
251–264. Springer, Heidelberg (1997)

19. Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15,
93 (2003)

20. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec-
tronic Colloquium on Computational Complexity (ECCC) 5 (1998)
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Abstract. Large-scale sequencing of genomes has enabled the inference of phy-
logenies based on the evolution of genomic architecture, under such events as
rearrangements, duplications, and losses. Many evolutionary models and associ-
ated algorithms have been designed over the last few years and have found use
in comparative genomics and phylogenetic inference. However, the assessment
of phylogenies built from such data has not been properly addressed to date. The
standard method used in sequence-based phylogenetic inference is the bootstrap,
but it relies on a large number of homologous characters that can be resampled;
yet in the case of rearrangements, the entire genome is a single character. Alter-
natives such as the jackknife suffer from the same problem, while likelihood tests
cannot be applied in the absence of well established probabilistic models.

We present a new approach to the assessment of distance-based phyloge-
netic inference from whole-genome data; our approach combines features of the
jackknife and the bootstrap and remains nonparametric. For each feature of our
method, we give an equivalent feature in the sequence-based framework; we also
present the results of extensive experimental testing, in both sequence-based and
genome-based frameworks. Through the feature-by-feature comparison and the
experimental results, we show that our bootstrapping approach is on par with the
classic phylogenetic bootstrap used in sequence-based reconstruction, and we es-
tablish the clear superiority of the classic bootstrap and of our corresponding new
approach over proposed variants. Finally, we test our approach on a small dataset
of mammalian genomes, verifying that the support values match current thinking
about the respective branches.

Our method is the first to provide a standard of assessment to match that of
the classic phylogenetic bootstrap for aligned sequences. Its support values fol-
low a similar scale and its receiver-operating characteristics are nearly identi-
cal, indicating that it provides similar levels of sensitivity and specificity. Thus
our assessment method makes it possible to conduct phylogenetic analyses on
whole genomes with the same degree of confidence as for analyses on aligned
sequences. Extensions to search-based inference methods such as maximum par-
simony and maximum likelihood are possible, but remain to be thoroughly tested.

1 Introduction

Large-scale sequencing of whole genomes has enabled the inference of phylogenies
based on the evolution of genomic architecture, under such events as rearrangements,
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duplications, and losses. Many evolutionary models and associated algorithms have
been designed over the last few years and have found use in comparative genomics and
phylogenetic inference (see [12, 24, 36]). However, the assessment of phylogenies built
from such data has not been properly addressed to date. The standard method used in
sequence-based phylogenetic inference is the bootstrap [7,10]. It relies on the presence
of a large number of homologous characters that can be resampled; yet in the case of re-
arrangements, the entire genome is a single character. Alternatives such as the jackknife
suffer from the same problem, while likelihood ratio tests [2, 13] cannot be applied in
the absence of well established probabilistic models. Two preliminary approaches have
been proposed, one based on the jackknife [32] and one based on random perturba-
tions [19], but both fall short of the performance standard of the bootstrap on sequence
data.

We describe a novel approach to the assessment of distance-based phylogenetic in-
ference from whole-genome data. Our approach restates the main characteristics of
the jacknife and bootstrap in terms of noise shaping, itself a longstanding approach
to robustness assessment in engineering. For each feature of our method, we give an
equivalent feature in the sequence-based framework and present the results of extensive
experimental testing, in both sequence-based and genome-based frameworks, demon-
strating that our bootstrapping approach for whole-genome data is on par with the clas-
sic phylogenetic bootstrap used in sequence-based reconstruction. We also establish the
clear superiority of the classic bootstrap and of our corresponding new approach over
proposed variants. (While the systematics community has long used the bootstrap as
its reference method and has gained confidence in its use, no systematic experimental
study of the approach had been conducted; our results fill this gap for distance-based
methods and confirm the validity of phylogenetic bootstrapping.) Finally, we test our
approach on a small dataset of mammalian genomes, verifying that the support values
match current thinking about the respective branches.

The focus on distance-based methods is due in part to simplicity and convenience:
by reducing the input genomes to a distance matrix, these methods not only simplify the
characteristics of the input data, but also make it straightforward to compare our method
with methods for sequence-based inference. The focus is also due in part to two other
characteristics of distance-based methods: they are very efficient compared to optimiza-
tion searches such as maximum parsimony and maximum likelihood; and they remain
the most commonly used in routine phylogenetic reconstruction—neighbor-joining[29]
and minimum evolution [5] account for nearly half of the citations to phylogenetic
methods. But most of all the focus is justified by a unique characteristic of whole-
genome data: under a model of rearrangements, duplications, and losses, it is possible
to compute very precise maximum-likelihood estimates of the true evolutionary dis-
tance, as we have a shown in a series of papers [22,18,34,20]. Moreover, such distance
estimates can be extended to take into account non-uniform distributions of the rear-
rangements (such as a preponderance of events affecting short segments of the genome),
whereas we have almost no results about the combinatorial models of rearrangements
when such rearrangements are not uniformly distributed. Finally, we have been able to
extend this bootstrapping approach to inferences made under the Maximum Parsimony
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or Maximum Likelihood criteria, although the quality of the assessment provided by
our approach for such settings remains to be established.

2 Background

We briefly review the bootstrap and jackknife approaches, as well as relevant character-
istics of rearrangement data and of distance-based methods for phylogenetic inference.

2.1 Bootstrap and Jackknife

Given n data points X = {x1, . . . ,xn} and a statistical estimator E(x1, . . . ,xn), a boot-
strap replicate is a fictional dataset Y = {y∗1, . . . ,y∗n} constructed by sampling with re-
placement from X . From each such fictional dataset a value of the estimator E can be
obtained. The key idea of bootstrapping is that the distribution of values thus obtained
closely matches the original distribution of E and can be used to estimate the confidence
limits on the estimator. The advantage of the method lies in its applicability to arbitrary
and complicated estimators that may be analytically intractable [6, 7].

In phylogeny reconstruction, the standard bootstrap for sequence data [10, 11] sam-
ples columns with replacement from a multiple sequence alignment to create a new
alignment matrix of identical dimensions. Thus each bootstrap replicate contains the
same number of species and the same number of columns per species, but some columns
from the original alignment may be duplicated and others omitted. Each column can be
viewed as a variable that is drawn from a space of 4s possible outcomes at each site—
assuming nucleic acid sequence data with s species and neglecting insertions, deletions,
and ambiguity codes. From each replicate, a tree can be reconstructed using any of the
available reconstruction techniques (such as distance-based methods, maximum parsi-
mony, or maximum likelihood). The tree thus obtained from a single bootstrap replicate
is a bootstrap tree. Many bootstrap trees are generated through repeated sampling and
the bootstrap score (or support) of a branch in the inferred tree is computed as the pro-
portion of the bootstrap trees that contain this branch (viewed as a bipartition of leaves).
Soltis and Soltis [33] and Holmes [15] discuss the pros and cons of the approach in phy-
logeny reconstruction.

A jackknife leaves out one observation at a time, thus creating a sample set X(i)
= {x1, . . .xi−1,xi+1, . . . ,xn}. The estimator can be calculated on this new sample. The
jackknife often provides a good approximation to the bootstrap, but it fails when the
estimator is not smooth; moreover, the number of distinct sample sets is limited to the
number of observations. Shao et al. [31] found that the generalized “delete-d” jackknife
works well in practice, even for non-smooth estimators; in this version, d (or some fixed
percentage) of the observations are randomly chosen and omitted to create the new sam-
ple set. A special case is parsimony jackknifing [8] in which an observation is omitted
with fixed probability of 1/e when creating a new sample set. In such a case, the ex-
pected size of the new sample set is (1− 1/e) times the size of the original set, which
corresponds to a modified bootstrapping procedure in which, after sampling, duplicate
samples are not added to the new sample set.
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No systematic comparison of these methods has been conducted in the context of
phylogeny reconstruction. Felsenstein [10] hinted at the equivalence of support val-
ues from classic bootstrapping and from 50% jackknifing. Farris et al. [9] argued that
50% jackknifing deletes too many characters and does not allow one to maintain a
useful relationship between group frequency and support; they advocated the use of
parsimony jackknifing. Salamin et al. [30] compared bootstrapping and jackknifing in
the context of maximum-parsimony reconstruction and reported that bootstrapping and
50%-jackknifing were comparable at confidence levels of 90% and higher. Finally, Mort
et al. [25] compared bootstrapping with 50% and 33% jackknifing (with and without
branch swapping) and reported that all three methods provide similar support values.

2.2 Rearrangement Data

Rearrangement data for a genome consists of lists of syntenic blocks (genes are an ex-
ample) in the order in which they are placed along one or more chromosomes. Each syn-
tenic block is identified by a marker, which is shared with all (or most) of its homologs
in the genomes under study; for convenience, distinct markers are indexed arbitrarily
from 1 to n. If every marker is shared and unique, the data is assumed to have been
produced solely through rearrangements; otherwise, duplications and losses of syntenic
blocks form another part of the evolutionary history. A chromosome (linear or circu-
lar) is represented by a signed permutation (linear or circular) of the markers’ indices;
the sign represents the strandedness of the corresponding syntenic block. A genome is
a collection of such permutations, one per chromosome. Note that the actual sequence
content of a syntenic block is ignored at this level: it was used only to identify the block.
Interest in this type of data comes in part from the hypothesis that large-scale structural
changes to the genome are “rare genomic changes” [28] and thus may clarify distant or
problematic relationships among organisms. For that reason, such data has been used in
a number of phylogenetic studies—see [24] for references.

2.3 Distance-Based Phylogeny Reconstruction from Rearrangement Data

Distance-based reconstruction methods typically run in time polynomial in the number
and size of genomes—and fast and accurate heuristics exist for those where the scoring
function cannot be computed in polynomial time, such as least-squares or minimum
evolution methods. Further, methods like Neighbor-Joining (NJ) [29] provably return
the true tree when given true evolutionary distances. However, the distances that can be
computed with sequence data are often far from the true evolutionary distances, partic-
ularly on datasets with markedly divergent genomes. The true evolutionary distance—
the actual number of evolutionary events between the two genomes—is impossible to
measure, but it can be estimated using statistical techniques. A statistical model of evo-
lution is used to infer an estimate of the true distance by deriving the effect of a given
number of changes in the model on the computed measure and (algebraically or numer-
ically) inverting the derivation to produce a maximum-likelihood estimate of the true
distance under the model. This second step is often called a distance correction and
has long been used for sequence data [35] as well as, more recently, for rearrangement
data [23, 37, 39]. For multichromosomal genomes, we described such an estimator as-
suming equal “gene” content [18]. As rearrangement data is typically given in terms of
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syntenic blocks rather than genes, and as syntenic blocks are often unique, the limita-
tion to equal gene content is not severe. Moreover, we recently refined our estimator to
include gene duplication and loss events [20].

3 Robustness Estimation for Trees Reconstructed from
Rearrangement Data

Providing bootstrap support scores is standard practice in phylogenetic reconstruction
from sequence data. However, the classic bootstrap cannot be applied directly to re-
arrangement data because the collection of permutations forms a single character—a
single rearrangement or duplication can affect an entire permutation or even several of
them. For example, sampling genes with replacement from leaf genomes is infeasible.
In the world of sequence data this is equivalent to an alignment with a single column, al-
beit one where each character can take any of a huge number of states. Two approaches
have been suggested in the past, but do not match the accuracy of the bootstrap. One,
proposed by Shi et al. [32], is a jackknifing technique; the second, proposed by us, uses
perturbations in the permutations with known effects on the distance [19].

We design different methods for rearrangement data and devise analogous methods
for sequence data (if they do not exist) and vice versa. We study their behavior with
both kinds of data with the aim of developing a method for rearrangement data that is
as successful as the classic bootstrap is for sequence data. For a method M that operates
on sequence data, we denote by M∗ the corresponding method for rearrangement data;
we use regular font to denote existing methods, bold font to denote the new methods
described in this paper.

The methods we present here for rearrangement data rely on our distance estima-
tor [18] and so must be used with distance-based reconstruction methods. Our dis-
tance estimator computes the estimated true distance between two multichromosomal
genomes, based only on the number of shared adjacencies and the number of linear
chromosomes in each genome. This limited view of the input data is crucial, as many of
the sampling approaches we describe below do not produce valid genome permutations
(e.g., because of additional copies of adjacencies), yet still allow us to tally the number
of linear chromosomes and of shared adjacencies.

Our robustness estimator based on distance perturbation [19], hereafter denoted BP*,
permutes each leaf genome through a (randomly chosen) number of random rearrange-
ments, estimates the new pairwise distances, then subtracts from each pairwise estimate
the number of rearrangement operations applied to each of the two genomes. Thus it
relies on additivity, a property likely to be respected with rearrangement data due to its
huge state space. We can design an equivalent for sequence data: for each sequence, ap-
ply some random number of randomly chosen mutations, then estimate every pairwise
distances, and finally subtract from that estimate the number of mutations applied in
the perturbation step to each of the two sequences—a method we denote BP. BP is less
reliable than BP*, as it is much more likely that some of the mutations used in the per-
turbations cancel each other or cancel some of the mutations on the edit path between
the two sequences.

We can view the classic bootstrap for sequence data (hereafter denoted BC) in terms
of noise generation. The original multiple sequence alignment gives rise to a distance
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matrix D. Each replicate dataset created by sampling columns with replacement from
the alignment also gives its corresponding matrix B of perturbed pairwise distances.
An entry of the replicate matrix corresponding to leaves i and j can thus be written
as B(i, j) = D(i, j)+ N(i, j) where N(i, j) denotes the perturbation in the distance in-
troduced by the resampling. This noise parameter is hard to characterize exactly, but it
leads us to define bootstrapping approaches based on producing increasingly refined es-
timates of the noise. (In that sense, BP* and BP attempt to shape the noise by returning
to the underlying evolutionary process of rearrangement or mutation.)

Bootstrapping by adding Gaussian Noise (hereafter denoted BGN), adds Gaussian
noise of mean 0 to each entry in the distance matrix. The standard deviation is empir-
ically determined to match as well as possible the noise added by BC. Since the noise
added during the sampling process in BC is not random, this is a very rough estimate,
but a useful comparison point. In the replicate matrices produced by BC, the noise
N(i, j) depends on the pairwise distance D(i, j), so the next step is to design a bootstrap
method based on pairwise comparisons, hereafter denoted BPC. The bootstrap matrix
B(i, j) for BPC is constructed by calculating the perturbed pairwise distance for each
pair: for each pair of sequences i, j, we construct a new pair of sequences i′, j′ by sam-
pling columns with replacement, where each column has only two characters and set
B(i, j) = D(i′, j′).

An equivalent method BPC* can be designed for rearrangement data, albeit with
some complications. Since our distance estimator relies on the number of shared adja-
cencies, a natural choice is to sample adjacencies in the genome. While the evolution of
a specific adjacency depends directly on several others, independence can be assumed
if we assume that once an adjacency is broken during evolution it is not formed again—
an analog of Dollo parsimony, but one that is very likely in rearrangement data due to
the enormous state space. For each pair of genomes i, j, we construct two new pairs of
genomes. We sample adjacencies from genome i with replacement and use only these
adjacencies to compute the distance D1(i, j) of leaf i to leaf j. (Note that some adjacen-
cies may be overcounted and some omitted.) Then we sample adjacencies from genome
j with replacement and use only these adjacencies to compute the distance D2(i, j) of
leaf j to leaf i. Finally, we set B(i, j) = (D1(i, j)+ D2(i, j))/2.

The noise N(i, j) may depend not just on the pairwise distance D(i, j), but also on
other distances in the tree, since BC samples columns with replacement for all leaf
sequences at once. The next step in modeling N(i, j) is thus to sample from all ad-
jacencies (including telomeres). The total number of possible adjacencies (including
telomeres) for n syntenic blocks is roughly 2n2, but in a given genome there are at most
2n adjacencies and each adjacency conflicts with at most 4n other adjacencies. Thus,
for large genomes, we may assume that adjacencies are independent, just as columns
of an alignment are assumed to be independent in BC. We can now mimic closely the
sampling procedure of BC in a rearrangement context, producing procedure BC*. From
the list of all possible adjacencies, BC* samples with replacement to form a collection
of adjacencies; only adjacencies in this collection are then considered in counting the
number of shared adjacencies and then estimating the true evolutionary distances be-
tween genomes. (Note that some shared adjacencies are counted more than once due to
the sampling with replacement.)
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We know that classic bootstrapping (BC) is comparable in performance to parsi-
mony jackknifing (which we denote PJ) in the sequence world. PJ is (asymptotically)
equivalent to sampling with replacement (as in BC), but without overcounting, that is,
when sampling gives a column that has been previously selected, it is not added to
the replicate. Thus we can obtain the equivalent of PJ for rearrangement data, call it
PJ*: selected adjacencies are not counted more than once for computing the number of
shared adjacencies between leaf genomes. Other versions of jackknifing are similarly
easy to design. For instance, a d%−jackknife (dJK) omits d% of the columns to create
a replicate, so, from the set of all adjacencies (in all the leaf genomes) a d%-jackknife
(dJK*) deletes d% of the adjacencies at random and only the remaining adjacencies
are used in estimating the true pairwise distances. In contrast, the previous jackknifing
approach for rearrangement data, developed by Shi et al. [32], produces replicates by
deleting syntenic blocks from the genome: a d%-jackknife, in their method, produces
a dataset where d% of the markers are randomly deleted from all leaf genomes. The
authors recommend setting d = 40; we call the resulting method JG*. Note that our
approach to jackknifing deletes adjacencies instead of markers.

In summary, we have designed a bootstrapping procedure, BC*, that closely mimics
the classic bootstrap for phylogenetic reconstruction, BC, and jackknifing procedures,
dJK* (including, as a special case, PJ*), that closely mimic the d%−jackknife (and
parsimony jackknife PJ). Along the way, we have also designed less refined versions
of bootstrapping and their equivalents for sequence data. In our experiments, we use
all of these, plus JG*, the marker-based jackknifing approach of Shi et al., plus BP*,
our earlier approach based on introducing perturbations, in the permutations, of known
effect on the distances [19]. A summary of all the methods can be found in table 1.

Table 1. A summary of all the methods

BGN, BGN* Bootstrap by adding Gaussian Noise to the distance matrix.
BPC, BPC* Bootstrap by Pairwise Comparisons: for each pair of sequences/genomes, sample

columns/adjacencies with replacement to compute pairwise distance.
BC, BC* Classic Bootstrap: sample columns with replacement to obtain replicate; sample adja-

cencies with replacement to compute distance matrix.
PJ, PJ* Parsimony Jackknifing: choose each column with 1−1/e probablity to create replicate;

sample adjacencies with replacement and discard duplicates to compute distance matrix.
dJK, dJK* d%-JackKnife: Omit d% of columns at random to produce replicate; omit d% of adja-

cencies at random to compute distance matrix.
BP, BP* Bootstrap by Perturbations: apply random mutations/rearrangements to get replicates.
JG* Jackknife Genes: Marker based jackknifing method of Shi et al for rearrangement data.

4 Experimental Design

Our simulation studies follow the standard procedure in phylogeny reconstruction (see,
e.g., [14]): we generate model trees under various parameter settings, then use each
model tree to produce a number of true trees on which we evolve artificial genomes
from the root down to the leaves to obtain datasets of leaf genomes for which we know
the complete history. The sequences are evolved by random point mutations under the
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Kimura 2-parameter (K2P) model (see [35]) using various transition/transversion ra-
tios; the permutations are evolved through double-cut-and-join (DCJ) operations chosen
uniformly at random. (DCJ [3, 41], has become the most commonly used model of re-
arrangement for multichromosomal data and is the rearrangement operator targeted by
our distance estimator.) The resultant leaf sequences are without gaps, are of the same
length and do not need further alignment. For distance-based reconstruction, the dis-
tances between leaf sequences are given by the standard distance estimate for the K2P
model [35] and the tree is reconstructed with the Neighbor-Joining (NJ) algorithm [29].
For rearrangement data we reconstruct trees by computing a distance matrix using our
DCJ-based true distance estimator [18] and then using this matrix as input to NJ. (We
chose to use NJ rather than the better FastME [5] in order to highlight the discriminating
ability of the bootstrapping methods.)

A model tree consists of a rooted tree topology and corresponding branch lengths.
The trees are generated by a three-step process. We first generate birth-death trees us-
ing the tree generator in the software R [27], with a death rate of 0 and various birth
rates (data shown below is for a rate of 0.001). The branch lengths in this tree are ul-
trametric (the root-to-leaf paths all have the same length), so, in the second step, the
branch lengths are modified to eliminate the ultrametricity. Choosing a parameter c,
for each branch we sample a number s uniformly from the interval [−c,+c] and mul-
tiply the original branch length by es (we used various values of c; data shown below
is for c = 2). Finally, we rescale branch lengths to achieve a target diameter D for the
model tree. (Note that the unit of “length” is one expected evolutionary operation—
rearrangement or mutation.) Each branch length now represents the expected number
of evolutionary operations on that branch. From a single model tree, a set of trees is
generated for simulation studies by retaining the same topology and varying the branch
lengths by sampling, for each branch in the tree, from a Poisson distribution with a
mean equal to that of the corresponding branch length in the model tree.

Experiments are conducted by varying the number of syntenic blocks and the tar-
get diameter. We use trees with 100 leaves. Among the many parameter values tested
we show the following representative settings: for sequence data, each leaf has 10,000
characters and the tree diameter is 20,000, while, for rearrangement data, each genome
has 5,000 markers and the tree diameter is 15,000. For each setting of the parameters,
100 model trees are generated and from each model tree 10 datasets are created; we
then average results over the resulting 1,000 trees. For each experiment we produce 100
replicates and thus 100 bootstrap trees from which to compute the bootstrap support of
each branch.

A Receiver-Operator-Characteristic (ROC) curve is drawn for every method we in-
vestigate. In this plot, a point is a particular bootstrapping test, defined by its sensitivity
and specificity; in the system of coordinates of our figures, a perfect test would yield
a point at the upper left-hand corner of the diagram, with 100% sensitivity and 100%
specificity. Define E to be the set of edges in the true tree and Tt , for a threshold t, to
consist of those edges in the inferred tree that are contained in more than t% of the boot-
strap trees. Sensitivity is the proportion of true edges that are also in Tt , |Tt ∩E|/|E|,
while specificity is the proportion of edges in Tt that are true edges, |Tt ∩E|/|Tt |. In our
tests we use every fifth value in the range [0,100] as thresholds.
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5 Experimental Results and Analysis

Fig. 1 shows the ROC curves of the methods for sequence data, for 100 sequences of
10,000 characters each, and a tree diameter of 20,000. The four “reference” methods—
50%-jackknifing (50JK), classic bootstrapping (BC), (1/e)%-jackknifing (37JK), and
parsimony jackknifing (PJ)—are nearly indistinguishable and clearly dominate the oth-
ers. The analogs of all the other methods developed for rearrangement data (BP, BPC
and BGN) are clearly worse than the above four, with BP and BPC being comparable
and the most primitive noise-shaping method, BGN, doing the worst.
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Fig. 1. Bootstrapping methods for sequence data

Fig. 2 shows the ROC curves for rearrangement data, for 100 genomes of 5,000
markers each, and a tree diameter of 15,000. The results follow the same pattern as for
sequence data: BC*, PJ*, 50JK*, and 37JK* are nearly indistinguishable and clearly
dominate all others. They are followed by BP* and BPC*, which are comparable, while
the Gaussian noise approach, BGN*, again does the worst. JG*, the marker-based jack-
knifing technique of Shi et al., is better than BGN*, but trails all other methods. The
differences are particularly marked at very high levels of specificity; at 98% specificity,
for instance, the top four methods retain nearly 90% sensitivity, but JG* drops to 80%.
Very high specificity is the essential characteristic of a good bootstrap method.
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Fig. 2. Bootstrapping methods for rearrangement data

5.1 A Dataset of Vertebrate Genomes

We also tested our bootstrapping methods on a real dataset: the genomes of 10 species
from the Ensembl Mercator/Pecan alignments with 8,380 common markers. Four of
these genomes (horse, chimpanzee, rhesus, and orangutan) are not well assembled: their
draft genomes have nearly twice as many contigs as there are chromosomes—but the
effect on our adjacency-based distance estimator is minimal, given the large number
of markers. Fig. 3 shows the inferred phylogeny and highlights the two edges with
lowest bootstrap support (according to our BC* method). Based on previous studies
[21, 26, 1, 17, 40, 4] the edge e1 is uncertain: some studies place the primates in a clade
with rodents, while others place them in a clade with the carnivores. Thus we would
expect e1 to receive the lowest support in the tree. BC* does give it the lowest support:
77% for e1 and 83% for e2. BP* gives low support values for both (49% for e1 and 44%
for e2), but fails to identify e1 as the least supported edge, while JG* erroneously gives
high support values to both (100% for e1 and 90% for e2).

6 Discussion

Our new approach for whole-genome data, based on the sampling of adjacencies,
matches the classic bootstrap and parsimony jackknife approaches and thus provides
the first reliable method for assessing the quality of phylogenetic reconstruction from
such data.
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Fig. 3. Inferred phylogeny of 10 vertebrates

In the process of testing various methods, we also confirmed past findings about the
superiority of the phylogenetic bootstrap and of the parsimony jackknife. Our results
clearly indicate that duplicate samples play no role in the process—parsimony jack-
knifing works at least as well and occasionally slightly better. Indeed, the best sampling
strategy appears to be a random sampling of half of the characters. Given the very high
computational cost of the bootstrap, using half the number of characters in sequence-
based analyses appears a worthwhile computational shortcut, especially as it delivers
even better results.

Our study focuses on distance-based methods, which reduce the collection of input
genomes to a distance matrix. Our basic approach is to equate sampling characters in
sequence data with sampling adjacencies in whole-genome data. Any reconstruction
method that can handle such data can use this bootstrap procedure. Our reconstruction
method is one such method since our distance estimator only counts the number of
shared adjacencies between genomes and the number of linear chromosomes in each of
them. Possible alternatives for methods (such as Maximum Parsimony) that are unable
to handle such data include parsimony jackknifing and direct encoding of adjacencies
into sequences. In parsimony jackknifing (PJ*), each original genome is represented
by a set of contiguous regions in the bootstrap; if the reconstruction method can handle
such inputs, then this is the best method. Encoding rearrangement data into sequences
was proposed many years ago (see [38]) in two different versions (binary encodings
and multistate encodings). In such methods, the input is simply a collection of (per-
fectly) aligned sequences and so the output can be assessed by the standard phyloge-
netic bootstrap. The early encodings fared poorly in comparison with MP methods (for
rearrangement data), but a recent paper [16] suggests that a more complex encoding
may overcome these problems.
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Abstract. Bayesian computations with Hidden Markov Models (HMMs)
are often avoided in practice. Instead, due to reduced running time, point
estimates – maximum likelihood (ML) or maximum a posterior (MAP)
– are obtained and observation sequences are segmented based on the
Viterbi path, even though the lack of accuracy and dependency on start-
ing points of the local optimization are well known. We propose a method
to speed-up Bayesian computations which addresses this problem for reg-
ular and time-dependent HMMs with discrete observations. In particular,
we show that by exploiting sequence repetitions, using the four Rus-
sians method, and the conditional dependency structure, it is possible
to achieve a Θ(log T ) speed-up, where T is the length of the observation
sequence. Our experimental results on identification of segments of ho-
mogeneous nucleic acid composition, known as the DNA segmentation
problem, show that the speed-up is also observed in practice.

Availability: An implementation of our method will be available as part
of the open source GHMM library from http://ghmm.org.

Keywords: Hidden Markov Model, Bayesian, MCMC, Gibbs Sampling,
Compression, Four Russians, Speed-up, DNA Segmentation.

1 Introduction

Hidden Markov Models have been used extensively for sequence classification
tasks in many areas including speech recognition [7], natural language process-
ing [19], and bioinformatics [12]. For analyzing biological sequences, HMMs are
particularly useful for example in sequence alignment problems [12], gene find-
ing [8], CpG island detection [11], DNA segmentation [10,11,18,24], and pro-
moter detection [25]. These application problems all lead to the computational
task of segmenting the input, an observation sequence, based on the most likely
assignment of hidden states.

For simplicity and efficiency reasons, point estimates such as maximum likeli-
hood (ML) or maximum a posterior (MAP), computed with Baum-Welch [2] and
variants, have traditionally been used for learning HMM parameters. Based on
these estimates segmentations have been computed with the Viterbi path. This
ignores uncertainty in model parameters and consequently predictions based on
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ML or MAP trained models often turn out to be inferior in practice. In contrast, a
full Bayesian approach integrates out model parameters and thus removes depen-
dency on one parameter estimate to improve HMM based prediction. As closed
form solutions are not available for HMMs, one frequently uses Markov Chain
Monte Carlo (MCMC) sampling techniques like Gibbs sampling or Metropolis-
Hastings [3] instead of integration. One particular form of Gibbs sampling for
HMM, known as forward-backward Gibbs sampling [9,29], is popular in several
communities [1,15,26,28,30,31] for its improved convergence rate through use of
forward and backward recursions.

However, depending on the problem, forward-backward Gibbs sampling can
still take many iterations to converge. Careful choice of prior distributions and
corresponding hyper-parameters can sometimes increase the convergence rate
but it remains computationally inefficient compared to using point estimates.
One possible source of improvement is to make use of the characteristics of the
observed sequence to speed-up computations.

Using text compression techniques (LZ78, byte pair encoding, four Russians,
etc.), Mozes et. al. [17,21] have exploited repetitions in long biological sequence
to improve the running time of the Viterbi algorithm which computes the most
likely hidden state sequence given the observation sequence as well as forward,
backward algorithms. Their main idea is to find contiguous repetitive sub-
sequences and pre-compute all quantities of interest for these sub-sequences so
that these quantities can be used multiple times without repeating the compu-
tation. Mozes et. al. have shown that, despite being one of the simplest com-
pression techniques, the four Russians method yields a logarithmic improvement
over the traditional Viterbi algorithm. That the four Russians method improves
dynamic programming algorithms for other applications has been shown previ-
ously [13,20,22,23]. Morever, Mozes et. al. have shown that for an HMM with few
states Baum-Welch training can be improved using partially computed forward
and backward variables.

While [17,21] shows asymptotic speed up for the Viterbi algorithm and im-
provedBaum-Welch training,we focus on Bayesiananalysis ofHMM using MCMC
simulations. Following their idea we pre-compute quantities of interest for all pos-
sible logT -sized sub-sequences (Note: in the following we assume sub-sequences
to be contiguous) and use these quantities to computeO

(
T

log T

)
forward variables.

While forward-backwardGibbs sampling needs T forward variables, we show that,
because of the conditional dependency structure in an HMM, one can use the par-
tially computed forward variables to implement a modified, but exact, version of
forward-backward Gibbs sampling. As forward variable computations dominate
the running time we achieve a O(log T ) speed-up.

To demonstrate the effectiveness of our method on biological problems, we
apply it to Bayesian analysis of DNA segmentation [4,5,6,18]. A segment is de-
fined to be a contiguous region of DNA sequence, where nucleic acid composition
is assumed to follow the same distribution. For example isochore classes can be
identified by solving the DNA segmentation problem using HMMs [11]; see [4,5]
for a fully Bayesian approach.
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In summary, we

– utilize characteristics of the discrete-valued observation sequence to improve
the running time of MCMC sampling. To the best of our knowledge this is the
first use of sequence repetitions in improving Bayesian HMM computations,

– prove that sequence repetitions can be used to speed-up MCMC sampling
by a factor of Θ(log T ). Note that the speed-up we achieve is as large as the
one in [17,21] for forward variable computations, and

– experimentally verify that the theoretical speed-up is also observed in practi-
cal problems like detecting homogeneous segments in DNA, where we achieve
a speed-up of up to 5 on bacterial genomes.

2 Hidden Markov Model

We consider HMM with discrete emission distributions; see [27] for an introduc-
tion. We will use the following notation: N denotes the number of states, S =
{s1, s2, . . . , sN} ≡ {1, 2, . . . , N} the set of states, Σ = {1, . . . , |Σ|} finite alpha-
bet, O = (o1, o2, . . . , oT ) ∈ ΣT the observation sequence, Q = (q1, q2, . . . , qT ) ∈
ST the hidden state sequence, A = {ai,j}1≤i,j≤N the transition matrix, π =
(π1, π2, . . . , πN ) the initial distribution over states, γ the order of observation
process, o

′

t =(omax(1,t−γ), . . . , ot−1), and B={bβi,j}β∈[Σ∪Σ2∪...∪Σγ ],1≤i≤N,1≤j≤|Σ|
the emission matrix.

The hidden state sequence Q follows a first-order markov chain, that is

P (q1) = πq1 , and (1)
P (qt|q1, . . . , qt−1) = P (qt|qt−1) = aqt−1,qt . (2)

In contrast to the usual literature, where emissions only depend on the state,
we consider the case of higher order emissions [16]. Then the probability of an
observation sequence O can be described using the following equation.

P (ot|q1, . . . , qt, o1, . . . , ot−1) = P (ot|qt, omax(1,t−γ), . . . , ot−1) = b
o
′
t

qt,ot . (3)

Fig. 1 shows the dependency structure in HMM using graphical models for
regular (γ = 0) and first-order (γ = 1) emission HMMs.

Fig. 1. Graphical model showing conditional dependency for HMM; γ = 0 (left) and
γ = 1 (right). To simplify notation we also use qt for the state and ot for the emission
random variables. An arrow from X to Y means Y is dependent on X.
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3 Bayesian Analysis: Forward-Backward Gibbs Sampling

To use Bayesian analysis we need to choose prior distributions. In this work we
use the Dirichlet distribution as prior for Ai,∗, Bi,∗, and π. Our analysis will still
be valid for any standard conjugate prior distribution.

As we are interested in computing the distribution P (Q|O), and closed form
solutions of the Bayesian integral are not feasible, the use of MCMC techniques
like Gibbs sampling or Metropolis-Hastings becomes mandatory [3,14]. MCMC
algorithms create a Markov chain that has the desired distribution, here P (Q|O),
as its stationary distribution. After an appropriate burn-in, performing a ran-
dom walk on the state transition graph, the state of the chain can be used
as a sample from the stationary distribution [14]. Scott [29] compares various
MCMC approaches and strongly argues in favor of forward-backward Gibbs sam-
pling (FBG-sampling) for it’s excellent convergence characteristics. Here we will
restrict our discussion to FBG-sampling only. We define forward variables as
αt(j) = P (qt = j, o1, . . . , ot|A,B, π) and briefly summarize FBG-sampling for a
HMM ≡ (A,B, π) = θ in Alg. 1; see [9,29] for details.

Algorithm 1. FBG-Sampling(O)
1: Choose initial parameters θ0 = (A0, B0, π0).
2: Perform the following steps for 0 ≤ m < M .

(a) Qm = StateSampler(O, θm) [See Alg. 2]
(b) Sample HMM parameters,

θm+1 ∼ PriorDistribution(hyperparameters,O, Qm, θm)

3: return Q0, Q1, . . . , QM−1.

FBG-sampling starts with an initial choice of parameters θ0 and alternatively
keeps sampling state sequence Qm and parameters θm+1. See [9] for a proof
that Qm returned by Alg. 2 is indeed sampled from the marginal distribution
P (Qm|O, θm).

Algorithm StateSampler uses O(TN2) space and runs in O(TN2) time; step 1
(forward variables) runs in O(TN2) time and step 2 (backward sampling) in
O(T logN). It is obvious from the above algorithm that all the pre-computed
forward variables are not used for sampling the state sequence Qm. In the next
section we will see that even without computing all forward variables Qm can
be sampled accurately.

4 Speeding Up MCMC

We reformulate the forward variables α using matrix notation following [17,21].
Let Mu(v), where u ∈ [Σ ∪Σ2 ∪ . . . ∪Σγ ] and v ∈ Σ, be a N ×N matrix with
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Algorithm 2. StateSampler(O, θ)
1: Forward Variables:

– Compute α1(j) = P (o1, q1 = j|θ) = πjb
o
′
1

j,o1
for all j.

– For 2 ≤ t ≤ T :

Compute αt(j) = P (o1o2 . . . ot, qt = j|θ) =
N∑

i=1

αt−1(i)ai,jb
o
′
t

j,ot
for all j.

2: Backward Sampling:

– Sample qT s.t. P (qT = i) ∝ αT (i).
– For T > t ≥ 1:

Sample qt s.t. P (qt = i) ∝ αt(i)ai,qt+1 .

3: return Q

elements Mu
i,j(v) = ai,jb

u
j,v. Forward variables at time t, αt, can be rewritten as

a row vector,

αt = π ·Mo
′
1(o1) ·Mo

′
2(o2) · · · · ·Mo

′
t−1(ot−1) ·Mo

′
t(ot) (4)

= αt−1 ·Mo
′
t(ot) . (5)

It is important to note that the matrix formulation does not change the running
time of the algorithm.

4.1 Compression and Forward Variables

Lets define Oi...j := oioi+1 . . . oj and Qi...j := qiqi+1 . . . qj . We define the matrix

Mo
′
i

(
Oi...j

)
as

Mo
′
i
(
Oi...j

)
= Mo

′
i(oi) ·Mo

′
i+1(oi+1) · · · · ·Mo

′
j−1(oj−1) ·Mo

′
j (oj) . (6)

We assume that the length of the observation sequence, T , is a multiple of k
such that d = T

k and create groups of fixed size from the observation sequence
O = O1...kOk+1...2k . . .O(d−1)k+1...T . Pre-computing all possible matrices M(X),
where |X | ≤ k, for future use is informally known as the four Russians method.
Now αlk can be expressed using (6) as

αlk = π ·Mo
′
1(O1...k) ·Mo

′
k+1(Ok+1...2k) · · · · ·Mo

′
(l−1)k+1(O(l−1)k+1...lk) (7)

= α(l−1)k ·Mo
′
(l−1)k+1(O(l−1)k+1...lk) . (8)

The compressed sequence allows us to skip computing forward variables inside a
group, which results in significant time savings. [17,21] similarly defines forward
variables using compressed sequence to improve Baum-Welch training. Note that
we cannot directly use the backward sampling in Alg. 2 in this setting. In the
remaining part of this section we will explain how we can overcome this problem.
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4.2 Backward-Forward State Sequence

Now we will modify the order of state sampling, turning backward sampling step
of Alg. 2 into backward-forward sampling, and express the distribution P (Q|O, θ)
in a way that helps us to sample Q accurately and efficiently. We write

P (Q|O, θ) = P (Q1...k−1|Qk...T , O, θ)︸ ︷︷ ︸
Part A

P (Qk...T |O, θ)︸ ︷︷ ︸
Part B

. (9)

By repeated application of Bayes theorem we can show that part B is propor-
tional to

P (qT |O, θ)︸ ︷︷ ︸
Part B1

∏
d≥i≥2

s=(i−1)k
e=ik

(
P (qs|Qe...T , O, θ)︸ ︷︷ ︸

Part B2

e−1∏
j=s+1

P (qj |Qs...j−1, Qe...T , O, θ)︸ ︷︷ ︸
Part B3

)
.

(10)

Part B1, B2, and B3 can be sampled using the following relations.

Sampling B1

P (qT |O, θ) ∝ P (qT , O|θ)
∝ αT (qT ) (11)

Sampling B2

P (qs|Qe...T , O, θ)
= P (qs|Qe...T , O1...s, Os+1...T , θ)
∝ P (qs|O1...s, θ)P (Os+1...T , Qe...T |qs, O1...s, θ) (12)

= P (qs|O1...s, θ)P (Os+1...T , Qe...T |qs, o′

s+1, θ) (13)

∝ P (qs, O1...s|θ)P (Os+1...e, Oe+1...T , qe, Qe+1...T |qs, o′

s+1, θ) (14)

= αs(qs)P (Os+1...e, qe|qs, o′

s+1, θ)P (Oe+1...T , Qe+1...T |qs, Os+1...e, qe, o
′

s+1, θ)
(15)

= αs(qs)P (Os+1...e, qe|qs, o′

s+1, θ)P (Oe+1...T , Qe+1...T |Os+1...e, qe, o
′

s+1, θ) (16)

∝ αs(qs)P (Os+1...e, qe|qs, o′

s+1, θ) (17)

= αs(qs)M
o
′
s+1

qs,qe(Os+1...e) (18)

Equation (12), (14), and (15) are derived from Bayes theorem. The condi-
tional dependency structure of the HMM given Qe...T (see Fig. 2) is used in (13)
and (16). As the last term in (16) is independent of qs it is dropped in (17).
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B2 : sampling qs in group i-1

oe

qe

oe-1

qe-1

os+1

qs+1

os

qs

os-1

qs-1

Fig. 2. Conditional dependency shown for sampling qs using B2 for γ = 0. Lightly
shaded variables are either observed or already sampled. Dashed rectangle represents
a group of observations. Here qt, ot are used as the random variable for state and
emission to simplify notation.

Sampling B3

P (qj |Qs...j−1, Qe...T , O, θ)

∝ P (qj , oj , Qe...T , Oj+1...T |Qs...j−1, O1...j−1, θ)

= P (qj , oj |Qs...j−1, O1...j−1, θ)P (Qe...T , Oj+1...T |Qs...j , O1...j , θ) (19)

= P (qj , oj |qj−1, o
′
j , θ)P (Qe...T , Oj+1...T |qj , o

′
j+1, θ) (20)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e, Qe+1...T , Oe+1...T |qj , o

′
j+1, θ)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e|qj , o

′
j+1, θ)P (Qe+1...T , Oe+1...T |qe, Oj+1...e, qj , o

′
j+1, θ)

(21)

= P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e|qj , o

′
j+1, θ)P (Qe+1...T , Oe+1...T |qe, o

′
j+1, θ) (22)

∝ P (qj , oj |qj−1, o
′
j , θ)P (qe, Oj+1...e|qj , o

′
j+1, θ) (23)

= M
o
′
j

qj−1 ,qj
(oj)M

o
′
j+1

qj,qe (Oj+1...e) (24)

Equation (19) and (21) are derived from Bayes theorem. The conditional depen-
dency structure of the HMM given Qs...j−1 and Qe...T (see Fig. 3) is used in (20)
and (22). As the last term in (22) is independent of qj it is dropped in (23).

4.3 Fast Sampling Algorithm

Now we formally describe the algorithm FastStateSampler (see Alg. 3) and an-
alyze it’s running time. Instead of using Alg. 2 (StateSampler) in step 2.a of
Alg. 1 (FBG-sampling) now we can use Alg. 3 for fast MCMC simulations.

In the Precompute step of Alg. 3, Mβ(X) matrices, which are required in (18)
and (24), are computed at first. To sample qj using (24) (in Backward-forward

Sampling step) we need to compute M
o
′
j

qj−1,qj (oj)M
o
′
j+1

qj ,qe(Oj+1...e) for all possible
values of qj , which is an O(N) operation. Considering these quantities as weights
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qj qj+1qj-1

oj-1 oj+1 oe

qe

oj

B3 : sampling qj in group i

group
(i-1)

group
(i+1)

Fig. 3. Conditional dependency shown for sampling qj using B3 for γ = 0. Lightly
shaded variables are either observed or already sampled. Dashed rectangle represents a
group of observations. Here qt, ot are again used as the random variable for state and
emission to simplify notation.

for possible states we can select qj using weighted random sampling, which again
takes O(N) time. Interestingly, these quantities are already precomputed as
intermediate parts of Mβ(Oj...e). Instead of simply storing these weights, if we
store the sum of these values from state 1 to c in Rβ

qj−1,qe,c(oj , Oj+1...e), we can
use binary search to select qj in O(logN) time. Similarly, we store the sum of
intermediate parts of α∗ in δ∗,∗,∗ to sample qs using binary search.

Running Time. As there are at most 2|Σ|k+γ matrices to be precomputed, the
pre-computation step takesO(2|Σ|k+γN3) time. Forward variables are computed
in O(T

kN
2) time. Using the stored values in R and δ, the state sequence is

sampled in O(T logN) time (the small portion where Alg. 2 is used does not
affect the order of the algorithm). The total running time is O(2|Σ|k+γN3 +
T
kN

2+T logN). If k is chosen to be 1
2 log|Σ| T−γ, the total running time becomes

O(2
√
TN3 + 2TN2

log|Σ| T−γ + T logN). Assuming N <
√

T
log|Σ| T−γ , FastStateSampler

achieves a speed-up of Θ(log|Σ| T − γ) and uses O( T
log|Σ| T−γN

2) space.

5 Empirical Results

In this section we apply our fast sampling technique to a Bayesian analysis
of DNA segmentation. A segment is defined as a contiguous region of a DNA
sequence with similar nucleic acid composition. Many DNA sequences can be
divided into homogeneous segments and interesting structures such as isochores
can be extracted from the segmentation. We compare the performance of our
method on the DNA segmentation problem with standard FBG-sampling.

We use Dirichlet priors and non-informative hyper-parameters as model pa-
rameter distributions. We measure the running time of forward-backward Gibbs
sampling (Alg. 1) using both Alg. 2 and Alg. 3 as the sampler in step 2.a.
The running time of forward-backward Gibbs sampling is proportional to the
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Algorithm 3. FastStateSampler(O, θ)
1: Precompute:

– Mβ(X) for all X ∈ ∪k
i=1Σ

i and β ∈ ∪γ
i=1Σ

i.
– Rβ(x,X) for all β ∈ ∪γ

i=1Σ
i, x ∈ Σ, and X ∈ ∪k−1

i=1 Σi such that

• Rβ
i,j,1(x,X) = Mβ

i,1(x)M
(β2...|β|,x)

1,j (X).

• Rβ
i,j,c(x,X) = Rβ

i,j,c−1(x,X) + Mβ
i,c(x)M

(β2...|β|,x)

c,j (X) for 1 < c ≤ N .

2: Forward Variables:

– Compute αk = πM0′1(O1...k).
– For 1 < i ≤ m and 1 ≤ j ≤ N , compute αik and δik,j,∗ in the following way.

• δik,j,1 = α(i−1)k(1)M
o
′
(i−1)k+1

1,j (O(i−1)k+1...e).

• δik,j,c = δik,j,c−1 + α(i−1)k(c)M
o
′
(i−1)k+1

c,j (O(i−1)k+1...e) for 1 < c ≤ N .
• Set αik(j) = δik,j,N .

3: Backward-forward Sampling:

– Sample qT from (11).
– For m ≥ i ≥ 2:

• Let s = (i− 1)k and e = ik.
• Sample qs from (18) by applying binary search on the monotonically in-

creasing sequence δs,qe,1, δs,qe,2, . . . , δs,qe,N .
• For s < j < e, sample qj from (24) by applying binary

search on the monotonically increasing sequence R
o
′
j

qj−1 ,qe,1(oj , Oj+1...e),

R
o
′
j

qj−1,qe,2(oj , Oj+1...e), . . . , R
o
′
j

qj−1 ,qe,N(oj , Oj+1...e).

– Given qk, sample q1, q2, . . . , qk−1 (part A) using a slightly modified version of
Alg. 2.

4: return Q

number of sampling iterations M (see step 2 of Alg. 1). We set M = 10 and
compare execution time of one run of the algorithms. In [4] Boys et. al. used
500, 000 iterations to segment Bacteriophage lambda DNA. They showed that
6 ≤ N ≤ 8 and 0 ≤ γ ≤ 2 produced the best segmentation for Bacteriophage
lambda. Unlike their model we keep γ and N fixed, but it can easily be modified
to variable model dimensions. Four bacterial genomes — Bacteriophage lambda
(genome size 0.05 Mbp), Mycoplasma leachii (1 Mbp), Planctomyces brasiliensis
(6 Mbp), and Sorangium cellulosum (13 Mbp) — are segmented and the running
time for different choices of N and γ are shown in Fig. 4. As both algorithms
converge to the same stationary distribution we do not report any segmentation
error.
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As expected, we see logarithmic speed-up for our method over standard FBG-
sampling (see Table 1). As the size of the dataset increases, so does the speed-up
we observe. For Sorangium cellulosum we achieve a speed-up of 5. For small val-
ues ofN , the state path sampling time is comparable to the pre-computation and
forward variable computation time. As a result there is no significant speed-up for
small N . For very large N >

√
T

log|Σ| T−γ (often impractical) the algorithm gradu-
ally loses it’s advantage. over standard FBG-sampling. However, this bound and
overall running time can be improved by computing Mβ(X) matrices using fast
matrix multiplication of order o(N3).

We implemented the algorithms in C++ and tested in a Linux machine with
a 2.2 GHz AMD Opteron processor. As there was very little variation between
the running time of two different runs of an algorithm, instead of averaging over
multiple runs, we report the running time of one single run in Fig. 4.
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Fig. 4. Running time comparison on four datasets. Execution times for forward-
backward Gibbs (red, +) and four Russians method (γ = 0 with (green, ×), γ = 1
with (blue, ∗), and γ = 2 with (pink, �)) are shown.
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Table 1. Speed-up using fast sampling method for HMM with γ = 0, 1, 2

Dataset HMM Order (γ)
Number of States (N)

4 8 12 16 20 24 28 32 36 40 44

Bacteriophage lambda (0.05 Mbp)
0 2.2 2.8 2.6 2.6 2.4 2.3 2.1 2.2 1.8 1.7 1.8
1 2.0 2.2 2.3 2.2 2.1 2.0 1.9 1.9 1.7 1.6 1.5
2 1.8 1.8 1.8 1.8 1.6 1.6 1.6 1.5 1.4 1.3 1.3

Mycoplasma leachii (1 Mbp)
0 2.6 3.2 3.6 3.8 4.0 4.0 3.8 3.9 3.7 3.7 3.9
1 2.4 2.7 3.1 3.2 3.4 3.3 3.3 3.3 3.2 3.2 3.1
2 2.2 2.3 2.6 2.7 2.6 2.7 2.8 2.6 2.5 2.4 2.5

Planctomyces brasiliensis (6 Mbp)
0 2.6 3.4 3.8 4.2 4.4 4.5 4.5 4.5 4.1 4.5 4.8
1 2.4 2.9 3.3 3.6 3.9 4.0 4.0 3.9 4.0 4.0 3.8
2 2.3 2.5 2.8 3.1 3.1 3.3 3.4 3.0 3.2 3.2 3.3

Sorangium cellulosum (13 Mbp)
0 2.7 3.0 4.1 4.4 4.5 5.0 4.9 4.7 4.6 5.1 5.4
1 2.5 3.0 3.5 3.8 4.2 4.3 4.3 4.0 4.0 4.3 4.1
2 2.3 2.5 2.9 3.3 3.4 3.6 3.8 3.2 3.5 3.4 3.7

6 Conclusion

In this paper we have presented a modified version of the forward-backward
Gibbs sampling algorithm for Bayesian analysis with a logarithmic improvement
in running time. We have used the four Russians method to pre-compute all
possible quantities of future interest and shown that exact sampling can work
with fewer forward variables by using the pre-computed quantities. To the best
of our knowledge, this is the first use of sequence repetition in discrete sequences
for faster MCMC simulations.

As biological sequences are often long and the alphabet size is small, our
approach can be adopted to make Bayesian computations faster in biological
applications. We have demonstrated the advantage of our method on the DNA
segmentation problem where we have achieved speed-ups similar to other appli-
cations of four Russians method.

A natural extension to our approach would be applying other compression
schemes. In some cases, when observations in a sequence are less uniform in
nature, other schemes may outperform the four Russians method. It will also be
interesting to apply our method, by taking advantage of faster computations, to
the problems where Bayesian analysis was not favored previously.
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Abstract. Identification of protein families is a computational biology challenge
that needs efficient and reliable methods. Here we introduce the concept of dom-
inance and propose a novel combined approach based on Distance Alignment
Search Tool (DAST), which contains an exact algorithm with bounds. Our exper-
iments show that this method successfully finds the most similar proteins in a set
without solving all instances.

Keywords: Protein structure comparison, classification, bounds, dominance.

1 Introduction

The 3D structure of macro-molecules underpins all biological functions. Similarities
between protein structures may come from evolutionary relationships [1,2], and similar
protein structures relate to similar functions. Thus, the protein structure comparison is
a key tool in structural biology, whose primary goal is to understand function through
structure. During the last decades, many protein structure comparison approaches have
been proposed, each aiming at quantifying the intuitive notion of structural similarity.
Most of the proposed methods are either based on optimal rigid-body superimposition
(like VAST[3] or STRUCTAL[4]), whose computation is based on the least Root Mean
Square Deviation of residue coordinates (RMSDc) as first defined by Kabsch[5], or on
the comparison of the internal distances between the residues (like DALI[6], CMO[7]
or DAST[8]). The main challenge in protein structure comparison is to design efficient
algorithms, since the comparison of two protein structures is often NP-complete, as first
shown in [9].

1.1 DAST

DAST (Distance-based Alignment Search Tool) is a protein structure comparison
method based on internal distances [8]. In DAST, two proteins p1 and p2 are repre-
sented by their ordered sets of residues N1 and N2. The matching between residues
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i ∈ N1 and k ∈ N2, denoted by i↔ k, is allowed only if i and k come from the same kind
of secondary structure (i.e. if either i and k both come from α-helices, or both come
from β-strands, or both come from loops). By assumption, for any pair of residues i
and j from the same protein we know the euclidean distance between their α-carbons
(denoted here by di j).

Definition 1. Pair (i, j) from p1 is compatible with pair (k, l) from p2 if and only if: (1)
i < j and k < l (order preserving) and ; (2) |di j−dkl| ≤ τ, where τ is a given distance
threshold (isometric relationship).

If (i, j) is compatible with (k, l) we are allowed to match (align) i↔ k and j↔ l (i.e.
they form a matching pair). An optimal structural alignment is given by the longest se-
quence of matching pairs “i1 ↔ k1, i2 ↔ k2, . . . , it ↔ kt” in which any two matching
pairs are compatible. As shown in section 3.2, DAST is equivalent to solving a maxi-
mum clique problem and is thus is an NP-Complete problem [10]. Set ncr (number of
common residues) to denote the length of the optimal alignment between p1 and p2.
Two similarity scores can be used:

SG
DAST (p1, p2) =

2×ncr
|N1|+ |N2| and SL

DAST (p1, p2) =
ncr

min(|N1|, |N2|) . (1)

The first score, SG
DAST (p1, p2), is normalized according to the mean of two proteins and

is oriented to detect global similarity between p1 and p2. The second one, SL
DAST (p1, p2),

is normalized according to the smallest between the two proteins and is more suitable
to detect local similarity.

Conceptually, DAST is inspired from the CMO approach which has been largely
studied in the literature [7,11,12]. Both approaches aim to maximize the number of
compatible matching pairs. However, the CMO compatibility does not consider the
isometric condition from definition 1. As a consequence, the underlying optimization
problems, the behavior of the corresponding solvers, as well as the characteristics of the
provided alignments differ in both approaches. The most interesting feature of DAST is
that it always returns an alignment (matching) of good quality, i.e. having a Root Mean
Squared Deviation of internal distances (RMSDd) which is less or equal than the given
threshold τ (see [8]). This property is not guaranteed in CMO. On the other hand, a
very efficient exact algorithm for finding the longest augmented path (the optimization
problems in CMO) has been recently proposed in [12]. The associate solver, A_purva,
is significantly faster than the nowadays maximum cardinality clique solvers. These
issues will be discussed and illustrated in the computational results section.

1.2 The Protein Family Identification Problem

The exponential growth of the number of known protein structures in the Protein Data
Bank [13] over the past decade led to the problem of protein classification. We mean
here how to automatically insert new protein structures into an already existing classi-
fied database such as CATH[14] or SCOP[15]. The problem of determining in which
classes new structures belong, referred here as the Protein Family Identification Prob-
lem , can be defined as follows.



Using Dominances for Solving the Protein Family Identification Problem 203

Definition 2. Given a set of to-be-classified query protein structures Q = {q1, q2,
. . . ,qm}, a set of classified target protein structures P ={p1, p2, . . . , pn}, and a pro-
tein structure similarity function S : Q ×P → R +, the Protein Family Identification
Problem (FIP) consists in classifying each query structure qi ∈ Q in the class of it’s
nearest neighbor NNi which is defined as NNi = argmax

p j∈P
S(qi, p j).

There are computational pitfalls in the FIP . The number of similarity scores S(qi, p j)
that need to be computed is |Q |× |P |, where |P | can be very large (there are currently
152920 classified protein structures in the expert classification CATH). Moreover, com-
puting a single similarity score is often equivalent to solving a NP-hard problem (ex:
DALI, DAST, CMO, VAST, etc...). Depending on how these NP-hard problems are
solved, two cases are possible. First, if the solver is a heuristic (ex: DALI, VAST),
then the similarity scores are only approximated, and thus the resulting classification
is not optimal (according to the similarity function). Second, if the solver is exact (ex
CMO, DAST), and because of the NP-hardness of the problem, some instances cannot
be optimally solved within reasonable time, leading to either sub-optimal or to missing
similarity scores, both implying that the obtained classification is not optimal, or cannot
be computed if too many similarity scores are missing.

In this paper, we propose a notion of dominance between the protein structure com-
parison instances that allows the computation of optimal protein structure classifications
without optimally solving all the comparison instances, and thus reduces the effect of
the NP-Hardness of the similarity score. As presented in section 2, using dominance
supposes to compute both upper and lower bound on the similarity score. In section 3.3,
we propose an efficient bounding strategy for DAST.

2 Dominance

The idea behind the dominance is that in FIP problem, given a query protein structure
q ∈ Q and a classified set of target protein structures P = {p1, p2, . . . , pn}, we are in-
terested only in finding the nearest neighbor of q in P , i.e. NNq = argmax

p j∈P
S(q, p j). If a

protein structure p j can be proved not to be NNq before S(q, p j) is optimally computed,
then spending more time on proceeding S(q, p j) is useless.

Let us suppose that the solving process can be stopped with a time limit t, and can
then return both a lower-bound Smin(q, pi) and an upper-bound Smax(q, pi) on the simi-
larity score S(q, pi), i.e Smin(q, pi) ≤ S(q, pi) ≤ Smax(q, pi) (if the instance is optimally
solved, then Smin(q, pi) = S(q, pi) = Smax(q, pi)).

Definition 3. Given a query q∈Q and two target protein structures p1 ∈P and p2 ∈P ,
the instance (q, p2) dominates the instance (q, p1) if Smin(q, p2)≥ Smax(q, p1).

If the instance (q, p2) dominates the instance (q, p1), then S(q, p2)≥ S(q, p1). Thus, p1

is not the nearest neighbor of q and there is no need to continue computing S(q, p1).
Moreover, if one instance (q, pi) dominates all the other instances (q, p j), p j ∈ P , then
NNq = pi, and the entire procedure can be stopped (including the instance (q, pi)).

From now on, we use the dominances to fasten the FIP as follows.
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1. All instances (qi, p j), qi ∈ Q , p j ∈ P are put in a queue, and a time limit argument
t is set to a small value.

2. For each instances (qi, p j) in the queue, the similarity S(qi, p j) is evaluated (by
computing Smin(qi, p j) and Smax(qi, p j)) within the time limit t.

3. All dominated instances are removed from the queue. If an instance (qi, p j) domi-
nates all the other instances (qi, pk), pk ∈ P , then the nearest neighbor of qi is set
to p j, and the instance (qi, p j) is also removed from the queue.

4. If the queue is empty, then the nearest neighbors of all the queries have been found
and the FIP is optimally solved. Otherwise, the time limit t is increased, and steps
2 to 4 are repeated until the queue is empty.

3 Modifying DAST for Using Dominance

Using dominances supposes that the solution process can return upper and lower-bounds
on the similarity score. Unfortunately, as presented in [8], DAST does not possess
such features. This section presents how these bounds were added into DAST. First, in
sections 3.2, we briefly recall DAST principle. Then, in section 3.3, we present our
bounding strategy.

3.1 Notation and Definitions

Let us first introduce some notations and definitions coming from [12] and [8].

Definition 4. A m× n alignment graph G = (V,E) is a graph in which the vertex set
V is depicted by a (m-rows) × (n-columns) array T , where each cell T [i][k] contains at
most one vertex i.k from V (note that for both arrays and vertices, the first index stands
for the row number, and the second for the column number). Two vertices i.k and j.l
can be connected by an edge (i.k, j.l) ∈ E only if i < j and k < l. An example of such
alignment graph is given in the figure 1:Right.

Definition 5. Given graph G = (V,E), a clique is a subset S of V such that for any two
vertices u ∈ S and v ∈ S, u �= v, u and v are connected by an edge (u,v) in E.

Definition 6. The maximum clique problem consists in finding in a graph G = V,E a
largest (in terms of vertices) clique, denoted by MCC(G). The maximum clique problem
is one of the first shown to be NP-complete [10].

In a n×m alignment graph G = (V,E), the subset of V restricted to the vertices in the
rows j > i and in the columns l > k is denoted by V i.k. Similarly, V̂ i.k is the subset of
V restricted to the vertices in the rows j, 0 ≤ j ≤ i and in the columns l, 0 ≤ l ≤ k.
The subgraph of G induced by the vertices in V i.k is denoted by Gi.k, and the subgraph
of G induced by the vertices in V̂ i.k is denoted by Ĝi.k. The vertex j.l is a successor
of the vertex i.k if i < j, k < l and edge (i.k, j.l) is in E , and the set of successors of a
vertex i.k is denoted by Γ+(i.k). The vertex a.b is a predecessor of the vertex i.k if a< i,
b< k and edge (a.b, i.k) is in E , and the set of predecessor of a vertex i.k is denoted by
Γ−(i.k). The maximum clique in a graph G is denoted by MCC(G), and its cardinality
is denoted by |MCC(G)|. An upper-bound on |MCC(G)| is denoted by |MCC(G)|.
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Definition 7. An increasing subset of vertices in an alignment graph G = {V,E} is an
ordered subset {i1.k1, i2.k2, . . ., it .kt } of V , such that ∀ j ∈ [1, t−1], i j < i j+1, k j < k j+1.
LIS(G) is the longest, in terms of vertices, increasing subset of vertices of G.

Definition 8. An increasing path in an alignment G = {V,E} is an increasing subset of
vertex {i1.k1, i2.k2, . . ., it .kt} such that ∀ j ∈ [1, t−1], (i j.k j, i j+1.k j+1)∈ E. The longest,
in terms of vertices, increasing path in G is denoted by LIP(G).

Lemma 1. |MCC(G)| ≤ |LIP(G)| ≤ |LIS(G)|.
Proof. Since any two vertices in a clique are adjacent, definition 4 implies that a clique
in G is both an increasing subset of vertices and an increasing path, thus |MCC(G)| ≤
|LIP(G)|. Moreover, LIP(G) is by definition an increasing subset of vertices, which
implies that |LIP(G)| ≤ |LIS(G)|.

3.2 Maximum Clique Formulation of DAST

DAST is rephrased as a maximum clique problem in an alignment graph as follows.
Let G be a |N1|× |N2| alignment graph, where each row corresponds to a residue of N1

and each column corresponds to a residue of N2. A vertex i.k is in V only if residues
i∈ N1 and k ∈ N2 both come from the same kind of secondary structure (i.e. if matching
i↔ k is possible). An edge (i.k, j.l) is in E if and only if (i) i < j and k < l, for order
preserving, and (ii) if |di j−dkl| ≤ τ.

As illustrated in figure 1, an optimal matching between two protein structures p1

and p2 corresponds to a maximum clique in G. For example the maximum clique
{(1.1),(2.2),(3.3)} in figure 1:Right corresponds to the optimal matching between
residues (1,2,3) from p1 and residues (1,2,3) from p2.

Å Å Å

ÅÅÅ

8Å 8Å

7Å 7Å

16Å

11Å

Fig. 1. Left: An optimal matching (represented by the arrows) between protein 1 and 2, when
using a distance threshold of 1Å. Right: the corresponding maximum clique in the |N1| × |N2|
alignment graph.

3.3 Bounding Strategy

Both DAST similarity scores 1 use ncr, the number of common residues, which is equal
to |MCC(G)|. Thus, bounding DAST score is equivalent to provide a lower and upper-
bound on the cardinality of the maximum clique in G, when the time limit t is reached.
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The case of the lower-bound is trivial, since the best clique found so far, Best, is by
definition a lower-bound of ncr. Computing an efficient upper-bound on |MCC(G)| is
less straightforward.

Intermediate state of execution. As explained in [8], the maximum clique solver
of DAST visits the vertices of V in decreasing order of column (first) and decreasing
order of row (second). For each visited vertex i.k, the clique solver computes (or upper-
bounds) the maximum clique in Gi.k. If a clique larger than the current best one (Best)
is found, then Best is updated. Finally, an array C is used to store, in each entry C[i][k],
the upper-estimated size of the maximum clique in Gi.k. This array is later used to
fasten the maximum clique computation starting from a vertex having lower row and
column indexes, and this implies that computation of C[i][k] requires that C[i + 1][ j],
C[i + 1][ j + 1] and C[i][ j + 1] are already computed. Since the evaluation of a given
cell T [i][k] (i.e. the computation of C[i][k]) only occurs after C[i + 1][ j], C[i + 1][ j + 1]
and C[i][ j +1] have been computed, an intermediate state of execution of DAST can be
represented as in figure 2. In such intermediate state, the cells of T can be split in the
following way.

– Cells in which C[i][k] has already been evaluated will be referred to as evaluated
cells. They correspond to the horizontally striped area in Figure 2:Left. The current
best clique, Best, has been found in this set.

– Cells for which C[i][k] have not yet been evaluated will be referred to as unevaluated
cells.

– Unevaluated cells which are adjacent to an evaluated cell (either side-wise or diago-
nally) will be referred to as boundary cells, and are shown in black in Figure 2:Left.
The unevaluated cells for which C[i][k] can be computed (i.e. for which C[i+ 1][ j],
C[i + 1][ j + 1] and C[i][ j + 1] are already computed), belong by definition to the
subset of the boundary cells, and are marked with a white square in Figure 2:Left.
Finally, unevaluated cells that are not boundary cells are shown as vertically striped.

Upper bounding strategy. It is important to remember that in an intermediate state of
execution, even if the possible contribution of a given vertex i.k into a maximum clique
of G is completely unknown if i.k lies in the unevaluated region, the contribution of
i.k in a maximum clique in Gi.k is tightly estimated by C[i][k] if the vertex lies in the
evaluated region. Here, we propose an upper-bound on |MCC(G)| that takes advantages
of this property.

Fig. 2. Left: An intermediate state of DAST computation; Right: Gi.k
L
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We define Gi.k
L , hereafter referred to as local induced subgraph, as the subgraph of

G induced by the vertex set V i.k
L = V i+1.k+1∪V̂ i.k. Figure 2:Right, describes Gi.k

L where
i.k is the black square.

Lemma 2. For any unevaluated cell T [i][k] and any evaluated cell T [ j][l] such that i< j
and k < l, there exists a boundary cell T [p][q] such that i≤ p < j and k ≤ q< l.

Proof. Consider the rectangle R ⊂ T induced by cells T [i][k] and T [ j][l] (R = {T [a][b]
such that i ≤ a ≤ j and k ≤ b ≤ l}). By definition, R contains both unevaluated (at
least T [i][k]) and evaluated cells (at least T [ j][l]), so there exists an unevaluated cell
T [p][q]∈ R, which is adjacent to an evaluated cell, and since T [p][q]∈ R, then i≤ p< j
and k≤ q< l.

Lemma 3. MCC(G) = max
i.k|T [i][k] is boundary

MCC(Gi.k
L ), and thus

MCC(G) = max
i.k|T [i][k] is boundary

MCC(Gi.k
L )

Proof. Proving Lemma 3 is equivalent to proving that the maximum clique lies in one of
the local induced subgraphs of G that is induced by a boundary cell. Toward this goal,
we will assume that we are in an intermediate state of execution, which implies that
T [1][1] is an unevaluated cell and that T [m][n] has been evaluated (where m = number
of rows in G, n = number of columns in G).

Any clique K in an alignment graph G is an increasing subset of vertices, namely,
K = {i1.k1, i2.k2, . . . , i|K|.k|K|}, where il < il+1 and kl < kl+1 for all 1≤ l < |K|. To prove
that K lies completely inside one locally induced subgraph, we instead prove that K′ =
{i0.k0, i1.k1, . . . , i|K|.k|K|, i|K|+1.k|K|+1} lies completely inside one locally induced sub-
graph, where i0.k0 = 1.1 and i|K|+1.k|K|+1 = m.n. Since K′ intersects with both the eval-
uated and the unevaluated region, there exists l, such that vertices i0.k0, i1.k1, . . . , il .kl

lie in the unevaluated region and vertices il+1.kl+1, . . . , i|K|.k|K|, i|K|+1.k|K|+1 lie in the
evaluated region. By invoking Lemma 2 with i = il,k = kl, j = il+1, l = kl+1, we obtain
that there exists a boundary cell T [p][q] such that il ≤ p< il+1 and kl ≤ q< kl+1. Thus,
K′ and hence the clique K lies entirely in the local induced subgraph induced by the
boundary cell T [p][q].

Since any clique in Gi.k
L implicitly defines a clique over V̂ i.k (that is in the unevaluated

region) and another clique over V i+1.k+1 (that is in the evaluated region), MCC(Gi.k
L )

≤MCC(Ĝi.k) + MCC(Gi+1.k+1). Then, |MCC(G)| is upper-bounded by:

MCC(G) = max
i.k|T [i][k] is boundary

MCC(Ĝi.k)+ MCC(Gi+1.k+1), (2)

where MCC(Gi+1.k+1) is tightly estimated by C[i + 1][k + 1], and where MCC(Ĝi.k)
is estimated in a preprocessing step by using the longest increasing path in Ĝi.k (i.e.
MCC(Ĝi.k) = |LIP(Ĝi.k)|).
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Computing all |LIP(Ĝi.k)|) can be done in O(n2×m2) time using the algorithm pre-
sented in [8]. Moreover, there are no more than n + m boundary cells in T . The global
upper-bound MCC(G) can be either computed once when the time limit is attained,
or also can be maintained at each execution step for the need of branch and bounds
strategy.

4 Computational Results

All presented results were obtained on a cluster under Linux RedHat Enterprise 5 ar-
chitecture 64 Bits, 64 GB RAM, 2.8GHZ Intel Xeon. The efficiency of the dominance
strategy for solving FIP was evaluated through two benchmarks. We tackled the FIP
problem using the following protocol: any of the proteins has been considered as a
query, then removed from the dataset and compared with the remaining proteins in or-
der to find its family based on its nearest neighbor.

First, we used Skolnick set, described in [11]. It is a popular benchmark that contains
40 protein domains having from 97 to 256 residues and classified in SCOP (v1.73)
into five families. The second benchmark comes from 3D SHape Recognition Contest
2010 (SHREC’10) [16] and consists of 50 query protein structures and 1000 target
protein structures, all classified into 100 super-families in the CATH classification. The
goal of this contest was to identify the family of each query. Identifying the 50 queries
implies solving 50000 comparison instances. The best results have been obtained by
the structure comparison tool A_purva [12]. We will us it to compare with the results
of DAST.

4.1 DAST on Skolnick Set

Running time comparison. Computing the upper-bound at each intermediate state
slowdowns the solving process. DASTa (without bounds computation) solves more in-
stances than DASTb (with upper-bounds computation) when both methods are given the
same distance threshold and the same time limit. For example, for a threshold of 3 Å
and when the running time was bounded by 2 seconds per instance DASTa solved 506
instances, versus 338 for DASTb (i.e. DASTa is about 1.5 times faster than DASTb).
However, as we will see below, the advantages of DASTb for solving FIP using the
dominances recompense notably this slowdown.

Solving FIP without dominance. Classifying all proteins from the Skolnick set with-
out dominances (i.e. using DASTa) requires solving 1560 instances. As shown in Ta-
ble 1 when the running time was bounded by 2 seconds per instance, 1054 instances
remained unsolved and none of the query could be assigned. Table 1 presents the evo-
lution of the number of solved instances by DASTa with different time limits. Even
with the larger time limit that we used (one hour per instance), 21 instances remained
unsolved. The whole computation time was about 15 days, and all of the 29 queries that
could be classified were correctly classified.

Solving FIP with dominance. As mentioned above, when the execution time was
bounded by two seconds per instance, DASTb solved only 338 over 1560 instances.
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Table 1. Three steps of the FIP computation over the Skolnick set. We use the following abbrevi-
ations: # ins –number of instances proceeded for the given lapse of time T (in seconds); # sol_ins
–number of solved instances; # uns_ins –number of unsolved (unclassified) instances; # dom_ins
–number of dominated instances when using DASTb and dominance; # ins_left –number of in-
stances to reload; # ass_q –number of assigned (classified) queries.

DASTa DASTb

Step T (s) # ins # sol_ins # uns_ins # ins # dom_ins # ins_left # ass_q
1 2 1560 506 1054 1560 1383 137 29 / 40
2 300 1054 767 287 137 122 15 37 / 40
3 3600 287 266 21 15 15 0 40 / 40

However, by applying the dominance relation, 29 queries where correctly assigned into
their family by the nearest neighbor measure. Only 137 instances required further pro-
cessing in order to complete the analysis. These instances were then reloaded with a
larger time limit and this process was repeated until the family identification was fully
completed. Table 1 details the 3 steps that were needed for Skolnick set. The entire
computation time was about 5 hours and 45 minutes. So we observe that DASTb is sig-
nificantly faster than DASTa when solving FIP. Moreover, using the dominance rela-
tions guarantees that the exact nearest neighbor is found without solving all instances,
which is not true for DASTa, neither for any algorithm that does not provide bounds.

4.2 DASTb versus A_purva on SHREC’10 Set

A_purva is an exact solver based on Contact Map Overlap maximization (CMO) simi-
larity measure [12,17]1. It has been shown to be both efficient (notably faster than the
previous exact algorithms), and reliable (providing accurate upper and lower bounds of
the solution). A_purva is based on an integer programming formulation of CMO, and
it converges to the optimal solution using a branch and bound strategy. At each node,
A_purva provides two numbers derived from a Lagrangian relaxation: a lowerbound
LB and an upperbound UB of the maximum number of common contacts (ncc). When
an instance is optimally solved, the relation LB = UB holds. Otherwise, UB> LB and
the so called relative gap value RG = (UB−LB)/UB gives the precision of the results.
This property is very useful in the context of large-scale database comparisons where
the execution time is usually bounded. The above properties make A_purva applicable
for large-scale protein comparison and classification. Since it is an exact solver, it is
often used to evaluate the quality of various heuristic approaches [18,19].

In this section, we compare DASTb with A_purva when solving FIP on SHREC’10
set. Both tools provide the best local matching (alignment) between proteins p1 and
p2 in their corresponding feasible sets (compatible matching pairs), and according to
their specific objective functions–maximum number of isometric pairs of amino-acids
for DAST and, respectively, maximum number of common contacts for A_purva. On
SHREC’10 dataset DASTb was more precise than A_purva. This can be explained by
the isometric constraint in definition 1. Table 2 presents the different steps of this pro-

1 A_purva is available at http://apurva.genouest.org
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cess. A_purva assigned all the 50 queries, 46 of them were correctly predicted according
to the CATH classification. However, A_purva failed for the queries 1tteA02, 1wwjA00,
1jftA01 and 3bioA02. DASTb also assigned the 50 queries, and correctly predicted 49
(it failed for 3bioA02). However, A_purva was significantly faster than DASTb (the cor-
responding total running time on SHREC’10 benchmark dataset was 28 hours versus
60 days).

Neither of the methods correctly classified the query 3bioA02. A_purva and DAST
found two nearest neighbors from different families with similarity scores of 0.6059
and 0.2 respectively. These low values of DAST similarity score indicate that there is
no true nearest neighbor for it in SHREC’10 data set. We contacted an expert from
the domain2 who confirmed the CATH classification of 3bioA02 and suggested us to
study its similarity with protein 1f06. As a consequence, we observed that adding the
domain 1f06A02 to SHREC’10 dataset allows to assign the query 3bioA02 correctly
(i.e. SHREC’10 data set is not enough representative).

Figure 3 visualizes the alignments provided by A_purva and DAST for the query
1tteA02 which was wrongly predicted by A_purva but was correctly identified by DAST
with 1ixrB03 as its nearest neighbor. Aiming to maximize the number of common con-
tacts, A_purva matched non-isometric residues in the middle loop and at both ends.
On the contrary, DAST matched closed sub-structures only (here the three helices of
1tteA02) and ignored the middle loop and extremities. For comparison purpose we also
present here the alignment given by TM-align–well know protein structure comparator
[20]. The TM-align alignment is very similar the DAST alignment.

Table 2. Number of dominated instances, of instances to reload and of assigned queries at each
of the three steps of the FIP computation over the SHREC’10 set when using dominance, for both
DASTb and A_purva

Method Step Time limit (s) # Instances # Dominated # Left # Assigned queries
DASTb 1 2 50000 41399 8551 12/ 50

2 300 8551 7894 619 19/ 50
3 3600 619 548 40 45 / 50
4 7200 40 12 28 46 / 50
5 60000 28 28 0 50 / 50

A_purva 1 2 50000 49721 229 43/ 50
2 10 229 227 2 48/ 50
3 50 2 2 0 50 / 50

Towards a combined tool. These results led us to propose a combined strategy for
protein family identification. It uses the normalized RMSDc, defined as NRMSDc =

RMSDc
length(Query). First we ran A_purva on SHREC’10 set and computed the correspond-

ing NRMSDc values. We observed that they were higher than 0.1 only for four instances
(query,NN)–an indication for a strong deviation between the corresponding structures.
For all other instances the NRMSDc value was obviously smaller, less than 0.05. We

2 Alexey Murzin from the Laboratory of Molecular Biology, Cambridge.
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A_purva DAST TM-align

len_align 53 43 45
cRMSD 5.35 2.37 2.71
TM-score 0.43 0.51 0.53

Fig. 3. The instance 1ixrB03-1tteA02 aligned by A_purva (left), DAST (center) and TM-align
(right). The parameters for DAST were τ = 5.0Å and sse1 (filter 1). The length of the associated
alignment, (len_align), as well as the corresponding RMSDc and TM-score are given. We observe
that A_purva matches as much as possible residues, while DAST and TM-align focuse on the
local similar structures only.

also realized that these four instances correspond to the four wrongly predicted by
A_purva couples (query-NN). Then DASTb was executed for these four queries only (it
required computing new 4000 instances). This combined strategy achieved an accuracy
of 50/50 correctly assigned queries (better than any of DAST or A_purva results) but
for much less computational time than DAST running time.

5 Conclusion and Future Work

In this paper we enrich the local structure comparator tool DAST with bounds. This per-
mits to use it in the context of a new dominance relation. The last one is very useful for
the protein family identification problem since avoids solving all instances. Moreover,
this relation is applicable to any NP-complete comparison methods and can be used for
solving the FIP or for clustering large sets of protein structures.

Acknowledgements. Thanks to Inken Wohlers from CWI for discussions and sugges-
tions. R. Andonov is supported by BioWIC ANR-08-SEGI-005 project. All computa-
tions were done on the Ouest-genopole bioinformatics platform (http://genouest.org)
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Abstract. High-throughput sequencing makes possible to process samples con-
taining multiple genomic sequences and then estimate their frequencies or even
assemble them. The maximum likelihood estimation of frequencies of the se-
quences based on observed reads can be efficiently performed using expectation-
maximization (EM) method assuming that we know sequences present in the
sample. Frequently, such knowledge is incomplete, e.g., in RNA-seq not all iso-
forms are known and when sequencing viral quasispecies their sequences are
unknown. We propose to enhance EM with a virtual string and incorporate it
into frequency estimation tools for RNA-Seq and quasispecies sequencing. Our
simulations show that EM enhanced with the virtual string estimates string fre-
quencies more accurately than the original methods and that it can find the reads
from missing quasispecies thus enabling their reconstruction.

Keywords: high-throughput sequencing, expectation maximization, viral qua-
sispecies, RNA-Sequencing.

1 Introduction

With the advent of high-throughput sequencing (HTS) technologies, it becomes pos-
sible to sequence samples containing multiple genomic sequences and then attempt to
estimate their frequencies or even assemble them. In this paper we will consider two
such HTS applications:

(i) RNA-seq, when the transcriptome (library of isoforms) is known but may be in-
complete and expression of isoforms (or genes) is estimated by their frequencies in
the sample and

(ii) viral quasispecies sequencing, when the reference sequence of the viral strain is
known but the task is to find sequences of distinct quasispecies which are slightly
different from the reference as well as to estimate their frequencies in the sample.

The maximum likelihood estimation of frequencies of the sequences (further referred
as strings) can be efficiently performed using expectation-maximization (EM) method
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for the viral quasispecies application(see [4,10,1]) and for RNA-seq1(see [7,8]). In brief,
the input to EM consists of a panel, i.e., a bipartite graph in which one part correspond to
the strings and another correspond to the reads. An edge connecting a read with a string
expresses the possibility of the read to be emitted by the string with the probability
associated with the edge. Given a panel and frequencies of the reads, EM can find
maximum likelihood estimate of string frequencies.

Although in the both applications a certain knowledge about the sequences in the
sample is available, such knowledge (recorded in the panel) is frequently incomplete.
In case of RNA-seq, not all isoforms are already in the databases and in case of viruses,
initially, no quasispecies sequences are known. In this paper, we propose a new method
of enhancing EM that tries to estimate the incompleteness of the panel obtaining more
accurate estimates of string frequencies and identifying reads that are more probable to
be emitted by missed strings.

The method adds a virtual string to the panel and then iteratively changes the panel
by assigning reads to the virtual string. The proposed enhanced method, so called Vir-
tual String EM (VSEM), has been incorporated into IsoEM [8] and ViSpA [1]. Our
simulations show that the VSEM-enhanced methods (IsoVSEM and ViSpA-VSEM)
estimate string frequency more accurately than the original methods and that ViSpA-
VSEM can find the reads from missing quasispecies thus enabling their reconstruction.

The rest of the paper is organized as follows. The next section describes VSEM.
In Section 3 we describe the IsoVSEM and results of its experimental validation on
transcriptome libraries. Section 4 describes the combination ViSpA-VSEM of ViSpA
and VSEM. In Section 5, we analyze experimental results comparing ViSpA, ViSpA-
VSEM and ShorAH [10] on the simulated reads with and without sequencing errors.

2 Virtual String Expectation Maximization

In this section we first formally define the panel and briefly describe EM method. Then
we show how to estimate the quality of the model. Finally we describe the VSEM
method enhancing EM with the virtual string.

The input data for EM method consists of a panel, i.e., a bipartite graph G =
{S⋃

R,E} such that each string is represented as a vertex s ∈ S, and each read is rep-
resented as a vertex r ∈ R. With each vertex s ∈ S, we associate unknown frequency
fs of the string. And with each vertex r ∈ R, we associate observed read frequency or.
Then for each pair si, rj , we add an edge (si, rj) weighted by probability of string si

to emit read rj with m genotyping errors:

hsi,rj =
(
l

m

)
(1− ε)l−m

εm,

where l is length of read sequence, and ε is the genotyping error rate.
Regardless of initial conditions EM algorithm always converge to maximum likeli-

hood solution (see [3]).The algorithm starts with the set of N strings. After uniform
initialization of frequencies fs, s ∈ S, the algorithm repeatedly performs the next two
steps until convergence:

1 Note that frequency estimation based on previous approaches is less accurate (see e.g. [9]).
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– E-step: Compute the expected number n(j) of reads that come from string i under
the assumption that string frequencies f(j) are correct, based on weights hsi,j

– M-step: For each i, set the new value of fs to to the portion of reads being originated
by string s among all observed reads in the sample

In order to decide if the panel is incomplete we need to measure how well maximum
likelihood model explains the reads. We suggest to measure the model quality by the
deviation between expected and observed read frequencies as follows:

D =

∑
j |oj − ej |
|R| ,

where |R| is number of reads, oj is the observed read frequency of the read rj and ej is
the expected read frequencies of the read rj calculated as follows:

ej =
∑

i

hsi,j∑
l hsi,l

fML
i (1)

where hsi,j is weighted match based on mapping of read rj to string si and fML
j is the

maximum-likelihood frequency of the string si.
The main idea of the VSEM algorithm (see Algorithm 1) is to add to set of candi-

date strings a virtual string which emits reads that do not fit well to existing sequences.
The flowchart of VSEM is on Fig. 1. Initially, all reads are connected to the virtual
string with weight hsi,j = 0. The first iteration finds the ML frequency estimations
of candidates strings, ML frequency estimations of virtual string will be equal to 0,
since all edges between virtual string and reads hvs,j = 0. Then these estimation are
used to compute expected frequency of the reads according to (1). If the expected read

ML estimates 
of string 

frequencies

Compute
expected read 

frequencies

Update weights
of  reads in 

virtual string

EM
(Incomplete) Panel

+ Virtual String
with 0-weights
in virtual string

Virtual 
String 

frequency
change> ?  

Output string
frequencies

EM

YESNO

Fig. 1. Flowchart for VSEM
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Algorithm 1. VSEM algorithm
add virtual string vs to the set of candidate strings
initialize weights hvs,j = 0
while Δvs > ε do

calculate fML
j by EM algorithm

ej =
∑

i

hsi,j∑
l hsi,l

fML
i

D =
∑

j |oj−ej |
|R|

δ = oj − ej

if δ > 0 then
hvs,j+ = δ

else
hvs,j = max{0, hvs,j + δ}

end if
end while

frequency is less than the observed one (under-estimated), then the lack of the read
expression is added to the weight of the read connection to the virtual string. For over-
estimated reads, the excess of read expression is subtracted from the corresponding
weight (but keeping it non-negative). The iterations are continued while the virtual
string frequency is decreasing by more than ε.

Enhancing of ViSpA. Resulted edge weight between virtual string and each read can
be interpreted as the probability of the read to be emitted by missing strings. VSEM
transmits to ViSpA assembler the rounded read weights and during assembling of addi-
tional candidate quasispecies the preference is given to reads which are likely emitted
by missing strings.

Enhancing of IsoEM. The IsoEM incorporates the virtual string and the resulting iso-
form frequency estimations are improved. Based on the frequency of virtual string it is
possible to decide if the panel is likely to be incomplete, the total frequency of missing
strings is estimated by frequency of virtual string.

3 Experimental Validation of IsoVSEM on RNA-Seq Data

IsoEM is a novel expectation-maximization algorithm for inference of alternative splic-
ing isoform frequencies from high-throughput transcriptome sequencing (RNA-Seq)
data proposed in [8]. IsoEM takes advantage of base quality scores, strand information
and exploits disambiguation information provided by the distribution of insert sizes
generated during sequencing library preparation. In the bipartite graph consisting of
isoforms and reads an edge from an isoform to a read represents possibility that a read
is emitted by the isoform. It is noted [8] that EM can run in parallel for each connected
component of this bipartite graph. We enhance IsoEM algorithm by adding virtual string
to each connected component. The resulted algorithm IsoVSEM in the nested loop ap-
plies IsoEM instead of EM (see Algorithm 1). Since isoforms have different length we
estimate missing isoforms by volume defined as frequency of isoform multiplied by its
length.
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Our validation of IsoVSEM includes two experiments over human RNA-seq data.
Below we describe the transcriptome data and read simulation and then give the settings
for the each experiment and analyze the obtained experimental results.

Data sets. IsoVSEM was tested on human RNA-Seq data. The human genome
data(hg18, NCBI build 36) was downloaded from UCSC and CCDS together with the co-
ordinates of the isoforms in the KnownGenes table. The UCSC database contains 66803
isoforms from 19372 genes, and CCDS database contains 20829 isoforms from 17373
genes. Genes were defined as clusters of known isoforms defined by the GNFAtlas2 table
such that CCDS data set can be identified with the subset of UCSC data set.

30M single error-free reads of length 25 were randomly generated by sampling frag-
ments of isoforms from UCSC data set. Each isoform was assigned a true frequency
based on the abundance reported for the corresponding gene in the first human tissue
of the GNFAtlas2 table, and a probability distribution over the isoforms inside a gene
cluster [8]. We simulate datasets with geometric (p=0.5) distributions for the isoforms
in each gene.

Table 1. Median percent error (MPE) and 15% error fraction (EF.15) for isoform expression
levels in Experiment 1

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All

Full panel 0.0 61.7 22.0 8.0 3.2 2.1 10.3
MPE Incomplete 0.0 59.3 41.3 24.8 19.7 5.9 33.7

Incomplete + VS 0.0 47.2 33.1 20.7 16.4 8.5 26.9
EF.15 Full panel 0.0 81.9 61.3 28.7 7.5 8.5 38.8

Incomplete 0.0 81.7 72.4 61.4 56.7 42.1 67.6
Incomplete+VS 0.0 77.2 68.2 57.6 53.0 36.8 63.6

Experiment 1: Comparison between IsoEm and IsoVSEM on reduced transcrip-
tome data. We assumed that in every gene 25% of isoforms is missing. In order to create
such an instance we assign to isoforms inside the gene geometric distribution(p=0.5),
assuming a priori that number of isoforms inside the gene is less or equal to 3. This way
we removed isoform with frequency 0.25. As a result 11339 genes were filtered out,
number of isoforms was reduced to 24099. Note that in our data set missing isoforms
do not have unique exon junctions that can emit reads indicating that certain isoforms
are missing.

We first check how well IsoVSEM can estimate the volume of missing strings. Al-
though the frequencies of all missing strings (isoforms) is the same (25%), the volumes
significantly differ because they have different length. Therefore, the quality can be
measured by correlation between actual missing volumes and predicted missing vol-
umes which are volumes of virtual strings. In this experiment it is 61% which is suffi-
ciently high to give an idea which genes are missing isoforms in the database.

Table 1 reports the median percent error (MPE) and .15 error fraction EF.15 for
isoform expression levels inferred from 30M reads of length 25, computed over groups
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Fig. 2. Error fraction at different thresholds for isoform expression levels inferred from 30M reads
of length 25 simulated assuming geometric isoform expression. Blue line correspond to IsoEM
with the full panel, read line is IsoEM with the incomplete panel, and green line is IsoVSEM.

of isoforms with various expression levels. MPE is the median relative error of isoform
frequency estimation and the error fraction with threshold t, denoted EFt, is defined as
the percentage of isoforms with relative error greater or equal to t.

Figure 2 gives the error fraction at different thresholds ranging between 0 and 1.
Clearly the best performance is achieved when the the isoform library is full, using vir-
tual string explains accuracy gain of IsoVSEM over IsoEM. IsoVSEM achieves better
accuracy in the case when the panel is incomplete. Performance of IsoEm and IsoVSEM
for the full panel is the same.

Experiment 2: Comparison between IsoEm and IsoVSEM on the CCDS panel. In
this experiment UCSC database represents the full set of isoforms and CCDS represents
the incomplete panel. Reads were generated from UCSC library of isoforms, while only
frequencies of known isoforms from CCDS database were estimated. In contrast to

Table 2. Median percent error (MPE) and 15% error fraction (EF.15) for isoform expression
levels in Experiment 2

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All

Full panel 0.0 100 22.7 7.3 3.5 2.5 11.8
MPE Incomplete 0.0 100 45.5 29.4 28.5 28.7 31.8

Incomplete + VS 0.0 100 43.2 27.09 25.68 14.34 29.61
EF.15 Full panel 5.1 91.2 62.8 29.3 15.8 7.6 45.5

Incomplete 18.6 95.6 85.6 83.3 89.2 86.7 80.0
Incomplete+VS 17.6 91.8 81.3 77.9 80.3 75.5 75.2
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Experiment 1, we do not control the frequency of missing isoforms (i.e., isoforms from
UCSC which are absent in CCDS). Therefore, one cannot expect as good improvements
as in Experiment 1.

Table 2 reports the median percent error (MPE) and .15 error fraction EF.15 for
isoform expression levels inferred from 30M reads of length 25, computed over groups
of isoforms with various expression levels. We do not report the number of isoforms
since they are different for UCSC and CCDS panels. Anyway, one can see a reasonable
improvement in frequency estimation of IsoVSEM over IsoEM.

4 VSEM Enhancement of ViSpA

In this section we first give high-level description of ViSpA [1], a recent viral spectrum
assembling tool for inferring viral quasispecies sequences and their frequencies from
pyrosequencing shotgun reads. Then we describe the flowchart of the combining tool
ViSpA-VSEM and required modifications to ViSpA.

ViSpA: Viral Spectrum Assembly. First, ViSpA aligns the reads to the consensus
genome sequence using SEGEMEHL [6] software correcting obvious sequencing er-
rors and removes subreads (reads that are completely covered by larger reads). Then it
builds a read graph with vertices representing remaining reads (superreads) and edges
representing overlaps between them. In this graph, each path from the leftmost vertex
to the rightmost vertex corresponds to a possible candidate quasispecies sequence. For
each edge e, ViSpA computes probability p(e) to connect two reads from the same
quasispecies. Then ViSpA assigns cost − log(p(e)) = log(1/p(e)) to each edge e,
making the minimum-cost paths more probable to represent quasispecies sequences.
Next, a set of candidate paths consisting of the max-bandwidth paths (paths minimizing
maximum edge cost) through each vertex is created and refined so that only distinct
sequences remain. The maximum-likelihood estimates of frequencies are calculated by
EM algorithm which takes in account all reads in the sample. Finally, ViSpA reports
most frequent candidate sequences and their frequencies as inferred viral quasispecies
spectrum.

Combining ViSpA with VSEM. Knowing which reads in a sample are likely to be pro-
duced from missing (unknown) quasispecies sequences may allow to expand ViSpA’s
candidate set. Additionally, we can improve ViSpA’s estimates for quasispecies fre-
quencies by taking in account incompleteness of the panel.

Figure 3 illustrates the proposed workflow between (modified) ViSpA and VSEM. At
each iteration, ViSpA gets a set of aligned reads and their 0/1-weights estimating prob-
ability to be emitted by unknown strings (candidates). Initially, all reads have weight
zero and ViSpA works as described above except the maximum likelihood estimates
for candidate quasispecies sequences (strings) are calculated by VSEM. On all other
iterations, VSEM panel includes not only newly assembled sequences but also candi-
date sequences stored from the previous iterations. All sequences with negligible EM
frequency are filtered out from the cumulative set of sequences, called quasispecies
library. Once frequencies distribution is obtained, VSEM assigns 0/1-weight for each
read: 0 corresponds to high probability to be emitted by a missing sequences and 1,
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Fig. 3. Flowchart of ViSpA-VSEM

otherwise. Finally, if the virtual string has high EM frequency and we expand our qua-
sispecies library with respect to previous iteration, we feed reads and their weights back
to ViSpA, and all process is repeated. At the end, we report sequences from quasispecies
library and their frequencies as reconstructed viral quasispecies spectrum.

The modifications of ViSpA in ViSpA-VSEM include (1) superread selection (a
weight-1 superread is removed if it shares a subread with a 0-weight superread), (2)
edge cost computation which takes in account vertex weights:

cost′(e) = cost(e) + 0.5 · L · (w(u) + w(v)),

where cost(e) is the original cost of e, L is the read length, and w(u), w(v) are the 0/1
weights assigned by VSEM to read v.

5 Experimental Validation of ViSpA-VSEM on Simulated Data

Data Sets. We simulate reads from 1739-bp long fragment from the E1E2 region of
44 HCV sequences [5]. Each population was created by randomly selecting either 10
or 40 sequences among these HCV variants and assigning frequencies following either
(1) uniform (all sequences have the same frequency), or (2) skewed uniform (a single
sequence has high frequency; all other sequences have uniformly low frequency), or (3)
geometric (the ith sequence is a constant percentage more frequent that the (i + 1)th

sequence) distributions.
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First, we simulate error-free reads without indels with respect to the reference se-
quence. The length of a read follows normal distribution with variance 400, and starting
position follows the uniform distribution. This simplified model of reads generation has
two parameters: number of the reads that varies from 20K up to 100K and the averaged
read length that varies from 100bp up to 500bp.

Then we simulate 454 pyrosequencing reads from the 10 random quasispecies (under
geometric distribution) out of 44 HCV sequences [5] using FlowSim [2]. The generated
dataset contains 39,131 reads with length varying from 50bp up to 550bp and average
length equaled to 322bp. Each position (except the end) is covered by at least 4000
reads. 99.96% of aligned reads has at least one indel with respect to the reference:
99.97% of deletions and 99.6% of insertions are 1bp long. Only 1.1% of aligned reads
have unknown base(s).

Frequency estimation quality. We evaluate predicted frequencies by the following
statistics.

– Kullback-Leibler divergence

RE =
∑
i∈I

pi log
pi

qi
,

where P = {pi} and Q = {qi} are true distribution and its approximation, and
I = {i|pi > 0, qi > 0} are real sequences among assembled candidate sequences,

– correlation between real and predicted frequencies,
– average prediction error:

err =
∑

i∈I |pi − qi|
|I| .

Detection of panel incompleteness. We have checked how well VSEM can detect
incompleteness of the panel in the following experiment. We have repeatedly (for dif-
ferent simulated frequency distribution for 10 quasispecies strings) deleted from the
full panel each string (one at a time) and record the resulted frequency of the virtual
string. If no string has been deleted, then virtual string has always stopped growing at
frequency less than 10−6, and if the frequency of the deleted string has been at least
1%, then the resulted virtual string frequency has grown to at least .5%. Thus VSEM
can reliably detect incomplete panel if missing strings have total frequency at least 1%.

Improving quasispecies frequencies estimation using VSEM. Fig. 3 show our ex-
perimental results on simulated error-free reads generated from 40 quasispecies. The
correlation is slightly improved for cases when the portion of missing strings is small
and increases to as much as 15% when bigger portion of strings is missing.

The results on reads generated by Flowsim [2] and corrected by ShorAH are very
similar to the results on error free reads.

Detection of reads emitted by missing strings. The output of VSEM besides estimated
frequency of the virtual string also contain the weights of edges connecting reads to the
virtual string. These weights can be interpreted as probabilities of reads to be emitted
by the missing strings. In our experiments we have repeatedly measure the correlation
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Table 3. Correlation (r) and average prediction error (err) between real quasispecies frequencies
and estimated quasispecies frequencies for EM vs VSEM. r.l/n.r denote the read length / number
of reads

% of missing strings
r.l./n.r < 10% 10%-20% 20%-30% 30%-40% 40%-50% > 50%

r err r err r err r err r err r err

ViSpA 100/20K 90.2 4.5 91.0 6.8 75.4 5.1 68.6 1.6 40.8 2.3 39.8 10.4
ViSpA-VSEM 100/20K 91.6 2.3 92.8 4.4 76.5 4.1 70.5 1.4 54.2 2.0 50.8 7.4
ViSpA 300/20K 95.7 3.8 93.2 10.2 89.8 1.0 66.7 1.5 62.1 2.1 46.8 9.7
ViSpA-VSEM 300/20K 95.4 1.7 95.8 1.1 96.9 0.6 85.7 0.9 88.0 0.9 60.4 2.6
ViSpA 100/100K 95.2 4.5 93.9 9.1 84.8 1.4 74.2 1.8 74.5 2.3 73.4 9.9
ViSpA-VSEM 100/100K 97.8 2.6 95.6 3.0 86.3 1.3 79.8 1.7 79.0 2.1 74.2 8.8
ViSpA 300/100K 96.2 3.9 88.6 12.4 88.9 1.0 85.1 1.4 75.1 2.3 49.5 10.5
ViSpA-VSEM 300/100K 96.2 2.0 92.8 0.9 93.7 0.7 90.2 1.2 84.4 1.7 67.1 4.8

between the edge weights and the spectrum of reads emitted by missing strings which
has always exceeded 65%.

ViSpA versus ViSpA-VSEM. We compare quality of assembling and frequency esti-
mation for both methods. Quality of assembling is measured by sensitivity (portion of
the assembled real sequences among all real quasispecies) and its positive predictive
value (portion of the real sequences among all assembled) in cross-validation tests.

Error-free reads. Previously [1], we demonstrate that ViSpA outperforms SHORAH
in assembling haplotypes on error-free reads. ViSpA-VSEM can further improve pre-
dictive power and frequency estimation of ViSpA (see Table 4). On average, it infers
additional two (in case of geometric distribution) to four sequences (in case of uni-
form and skewed uniform distributions). Taking into account unknown quasispecies
sequences allows ViSpA-VSEM to estimate frequencies more accurately (average er-
ror is decreased 2.5 times for geometric distribution and more than 5 times for skewed
uniform and uniform distributions). Since relative entropy and correlation coefficient
r are measured only on the correctly inferred quasispecies sequences and are not ad-
justed with respect to the number of all quasispecies sequences in a sample, increasing
relative entropy and decreasing of correlation coefficient r are not correlated with loss
of predictive power. For example, predictive power is improved by obtaining additional
real quasispecies in the case of geometric distribution whereas correlation coefficient
becomes smaller.

Reads with simulated genotyping errors. It has been shown that ViSpA outperforms
SHORAH if sequencing errors are initially corrected (see [1]). So in our experiments,
we compare ViSpA and ViSpA-VSEM only on ShoRAH-corrected reads (see Fig.
5). The table reports the difference between 10 most frequent assemblies obtained by
ViSpA and 10 most frequent assemblies obtained after two iterations of ViSpA-VSEM.
ViSpA-VSEM can additionally infer a real quasispecies without allowing any mis-
matches between sequences(k = 0). Again, the frequency estimation is more accurate



Maximum Likelihood Estimation of Incomplete Genomic Spectrum from HTS Data 223

Table 4. Comparison between ViSpA and ViSpA-VSEM. Experiments are run on 100K reads
from 10 quasispecies with average read length equaled to 300. The table reports PPV, sensi-
tivity(SE), relative entropy (RE), correlation between real and predicted frequencies (r), and
averaged prediction error (err)(reported in %). ”Gain” column reports averaged number of addi-
tionally inferred real quasispecies sequences after 4 iterations (on average) for skewed distribu-
tion, 5 iterations (on average) for geometric distribution and 13 iterations (on average) for uniform
distribution.

ViSpA ViSpA-VSEM
Distribution PPV SE RE r err PPV SE RE r err Gain

Geometric 0.767 0.5 -0.0099 0.954 7.36 0.5905 0.73 0.0276 0.9094 2.91 2.3
Skewed 0.733 0.4 -0.0196 0.6725 13.01 0.701 0.77 0.0085 0.9665 2.5 4
Uniform 0.733 0.4 -0.0191 0.716 12.76 0.645 0.73 0.0108 0.9762 2.34 3.7

Table 5. Comparison between ViSpA and ViSpA-VSEM on their 10 most frequent assemblies.
Experimental results are run on 100K reads from 10 quasispecies with average read length
equaled to 300. The quasispecies sequence is considered found if one of candidate sequences
matches it exactly (k = 0) or with at most k (2, 6 or 7) mismatches. The table reports PPV,
sensitivity(SE), relative entropy (RE), correlation between real and predicted frequencies (r),
and averaged prediction error (err)(reported in %). ”Gain” column reports averaged number of
additionally inferred real quasispecies sequences after 2 iterations.

ViSpA ViSpA-VSEM
#mismatchesPPV SE RE r err PPV SE RE r err Gain

k = 0 0.5 0.5 0.0720 0.9860 9.98 0.5455 0.6 0.0494 0.9741 7.54 1
k = 2 0.6 0.6 0.0668 0.9860 9.16 0.6364 0.7 0.0434 0.9680 6.67 1
k = 6 0.7 0.7 0.0577 0.9856 7.95 0.7273 0.8 0.0369 0.9463 6.20 1
k =7 0.8 0.8 0.0525 0.9866 7.26 0.8182 0.9 0.0335 0.9479 5.65 1

since ViSpA-VSEM EM takes into account missing quasispecies which is confirmed
by the drop of the average prediction error.

6 Conclusions and Future Works

In this paper, we propose VSEM, a novel modification of EM algorithm which allows to
estimate the frequencies of multiple genomic sequences present in a sample sequenced
with HTS technology. VSEM is aimed to improve the maximum likelihood frequency
estimations of assembled sequences and identify reads that belong to unassembled se-
quences. We have applied VSEM to enhance two tools: IsoEM (for inferring isofrom ex-
pression from RNA-seq data) and ViSpA (for inferring viral quasispecies spectrum from
pyrosequencing shotgun reads). Our experimental study shows that VSEM-enhanced
tools significantly improve their performance: IsoVSEM has better accuracy in estima-
tion isoform frequencies and ViSpA-VSEM can infer more quasispecies sequences and
better estimate their frequencies. Our results show potential of VSEM to improve other
metagenomics tools.
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Abstract. We discuss piecewise smooth hybrid systems as models for
regulatory networks in molecular biology. These systems involve both
continuous and discrete variables. The discrete variables allow to switch
on and off some of the molecular interactions in the model of the bi-
ological system. Piecewise smooth hybrid models are well adapted to
approximate the dynamics of multiscale dissipative systems that occur
in molecular biology. We show how to produce such models by a top down
approach that use biological knowledge for a guided choice of important
variables and interactions. Then we propose an algorithm for fitting pa-
rameters of the piecewise smooth models from data. We illustrate some
of the possibilities of this approach by proposing hybrid versions of eu-
karyotic cell cycle regulation.

Keywords: systems biology, hybrid models, cell cycle.

1 Introduction

Hybrid systems are widely used in automatic control theory to cope with sit-
uations arising when a finite-state machine is coupled to mechanisms that can
be modeled by differential equations [MS00]. It is the case of robots, plant con-
trollers, computer disk drives, automated highway systems, flight control, etc.
The general behavior of such systems is to pass from one type of smooth dy-
namics (mode) described by one set of differential equations to another smooth
dynamics (mode) described by another set of differential equations. The com-
mand of the modes can be performed by one or several discrete variables.
The mode change can be accompanied or not by jumps (discontinuities) of the
trajectories.

Depending on how the discrete variables are changed there may be several
types of hybrid systems: switched systems [SWM+07], multivalued differential
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automata [Tav87], differential equations with discontinuous vector fields [FA88],
piecewise affine [DJGH+04] and piecewise smooth systems [DB08]. Notice that
in the last two cases, the mode changes when the trajectories attain some smooth
manifolds.

Piecewise affine hybrid systems have been used to model dynamics of gene
networks [DJGH+04,GRW07]. In these models, the gene variables evolve towards
discrete values (attractors). The transient dynamics leading to attractors is con-
sidered to be piecewise affine where the linear part of the dynamical equations
is defined by a diagonal matrix with negative entries. The transitions between
discrete attractors are dictated by the relative position of the above variables
with respect to some thresholds. Piecewise-affine hybrid models can be effec-
tively used in verification studies, for instance computing the set of reachable
states of a model. Identification of piecewise-affine models is a difficult problem
approached elsewhere with various methods such as affine approximations of vec-
tor fields [DMT10] and discrete/continuous optimization algorithms [BBG00].

Although sufficient for certain applications like gene networks, piecewise affine
models are less adapted to describe phenomena where the dynamics between two
successive discrete events is strongly nonlinear. A typical example of such phe-
nomena is the machinery of the cell cycle. Proteolytic degradation of the cyclins
is switched on rapidly by the cyclin dependent kinase complexes but between two
successive switchings the complexes have non-linear dynamics implying several
positive (autocatalytic processes) and negative feed-back loops. These non-linear
processes contribute to the robustness of the mechanism.

The idea of piecewise smooth systems arises naturally in the context of bio-
chemical systems with multiple separated timescales. The dynamics of a mul-
tiscale, dissipative, large model, can be reduced to the one of a simpler model,
called dominant subsystem [RGZL08,GRZ10,GR08]. The dominant subsystem
depends on the comparison among the time scales of the large model. For non-
linear models, the dominant subsystem (which can be assimilated to a mode)
is only piecewise constant and can change several times during the dynamics.
The model reduction methods proposed in [GR08,RGZL08] generate dominant
subsystems whose reactions rates are multivariate monomials of the concentra-
tion variables, like in the well-known S-systems [SV87]. Indeed, when applied
to models using mass action kinetics, quasi-steady state and quasi-equilibrium
approximations [GRZ10] lead to lumped models in which the reactions rates
result from solving systems of polynomial equations. In general, these polyno-
mials contain only a few terms (fewnomials). The solutions of such systems are
much simplified in the case of total separation of the nonconstant terms in the
fewnomials and lead to monomial rates. The rate of the same reaction can be
represented by different monomials in different dominant subsystems (modes).
For instance, the rate of a Michaelis-Menten mechanism depends linearly on the
concentration of the substrate for small concentrations and is constant at satu-
ration. We expect that more general rate laws [LUK10] can be treated similarly
in our approach.
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In this paper we propose a heuristic to construct appropriate modes and
adequate piecewise smooth models by using a top-down approach. Then, we
show how the parameters of the hybrid model can be identified from data or
from trajectories produced by existing smooth, but more complex models.

2 Hybrid Models

We consider the so-called hybrid dynamical systems (HDS) consisting of two
components: a continuous part, u, satisfying the equations

dui

dt
= fi(u(t), s(t)), t > 0, (2.1)

where u(t) = (u1(t), u2(t), ..., un(t)) ∈ Rn, and a discrete part s(t) ∈ S, where
S is a finite set of states. We consider that there is an increasing series τ0 =
0 < τ1 < . . . < τk < . . . such that the discrete variables are piecewise constant
on the intervals [τi, τi+1[ and that they change values at t = τk. The continuous
variables can also have discrete jumps at t = τk.

Typically, in molecular networks, the continuous variables are protein concen-
trations and the discrete states may be gene or protein activities described by
boolean variables s(t) = (s1(t), s2(t), ..., sm(t)), where sj(t) ∈ {0, 1}.

There are several possible ways to define the evolution of the s variables.
Rather generally, this can be done by a time continuous Markov chain with
transition probabilities p(s, s′, u) from the state s to the state s′ (per unit time)
depending on current state u(t). However, in many molecular regulatory net-
works, transition probabilities dependence on u is not smooth. For instance, the
probability for s to jump is close to one if u goes above some threshold value,
and close to zero if u is smaller than the threshold. We can, in certain cases,
neglect the transition time with respect to the time needed for u variables to
change. Assuming that some of the discrete variables contribute to production
of u and that other contribute to the degradation of u we obtain a general model
of hybrid piece-wise smooth dynamical system

dui

dt
=

N∑
k=1

skPik(u) + P 0
i (u)−

M∑
l=1

s̃lQil(u)−Q0
i (u),

sj = H(
n∑

k=1

wjkuk − hj), s̃l = H(
M∑

k=1

w̃lkuk − h̃l), (2.2)

where H is the unit step function H(y) = 1, y ≥ 0, and H(y) = 0, y < 0,
Pik, P

0
i , Qil, Q

0
i are positive, smooth functions of u representing production, basal

production, consumption, and basal consumption, respectively. Here w, w̃ are
matrices describing the interactions between the u variables, i = 1, 2, ..., n, j =
1, 2, ..., N , l = 1, ...,M and h, h̃ are thresholds.

One will usually look for solutions of the piecewise-smooth dynamics (2.2)
such that trajectories of u are continuous. However, we can easily extend the
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above definitions in order to cope with jumps of the continuous variables. Sim-
ilarly to impact systems occurring in mechanics [DB08], the jumps of the con-
tinuous variables can be commanded by the following rule: u instantly changes
to p±

j (u) whenever a discrete variable ŝj = H(
∑n

k=1 ŵjkuk − ĥj) changes. The
± superscripts correspond to changes of ŝj from 0 to 1 and from 1 to 0, re-
spectively. We can consider reversible jumps in which case the functions p±

j (u)
satisfy p+ ◦ p− = Id. The typical example in molecular biology is the cell cycle.
In this case, the command to divide at the end of mitosis is irreversible and
corresponds to p+

j (u) = u/2. No return is possible, p−
j (u) = u.

The class of models (2.2) is too general. We will restrict ourselves to a subclass
of piecewise smooth systems where smooth production and degradation terms
are assumed multivariate monomials in u, plus some basal terms:

Pik(u) = aiku
αik

1
1 . . . u

αik
n

n ,

P 0
i (u) = a0

i

Qil(u) = ãilu
α̃il

1
1 . . . u

α̃il
n

n

Q0
i (u) = ã0

iui (2.3)

which will be chosen according to an heuristic presented in the next sections.
This restriction does not reduce the power of the method. As argued in the

introduction, the monomial rates represent good approximations for nonlinear
networks of biochemical reactions with multiple separated timescales [RGZL08,
GR08]. More generally, rational functions are good candidates for general rate
laws [LUK10]. However, when concentrations are very large or very small the
monomial laws are recovered. For instance, Michaelis Menten, Hill, or Goldbeter-
Koshland reactions switch from a saturated regime where rates are constant to
a small concentration regime where rates follow power laws. Finally, by methods
described in [Vak02,VG03] one can show that the above subclass of models can
approximate with arbitrary precision any structurally stable dynamics.

These models have several advantages with respect to standard models in
molecular biology and neuroscience based on differential equations. They allow
us to simulate, in a fairly simple manner, discontinuous transitions occurring in
such systems (see a typical graph describing time evolution of protein concentra-
tion within cellular cell cycle, Fig.1). The discontinuous transitions result either
from fast processes or from strongly non-linear (thresholding) phenomena. This
class of models is also scalable in the sense that more and more details can be
introduced at relatively low cost, by increasing the number of discrete variables
and the size of the interaction matrices.

The definition of the rates slightly extends the one used in S-systems, intro-
duced by Savageau [SV87]. Our choice was motivated by the fact that S-systems
proved their utility as models for metabolic networks whose dynamics we want
to encompass by considering the modes. The introduction of basal terms avoids
spurious long living states when some products have zero concentrations.
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3 Regulated Reaction Graphs and Hybrid Reaction
Schemes

Interaction mechanisms in molecular biology can be schematized as regulated
reaction graphs.

A regulated reaction graph is a quadruple (V,R,E,Er). The triplet (V,R,E),
where E ⊂ V × R ∪ R × V , defines a reaction bipartite graph, ie (x, y) ∈ E iff
x ∈ V, y ∈ R and x is a substrate of R, or x ∈ R, y ∈ V and y is a product of
x. Er ⊂ V × R is the set that defines regulations, (x, z) ∈ Er if the rate of the
reaction z ∈ R depends on x ∈ V and x is not a substrate of R.

Similar structures of regulated reactions where proposed elsewhere for non-
hybrid models [LUK10].

In order to define a hybrid model we first need a hybrid reaction scheme. This
consists in saying, for each given species, whether its production/degradation
can be switched on and off and by which species, also which species modulate
the production/degradation of a given species in a smooth way. This means
specifying a partition of the regulations Er = Ed

r ∪Ec
r . A regulation (x, r) ∈ Ed

r is
discrete if the decision to switch on and off the reaction r depends (among others)
on x. Discrete interactions manifest themselves punctually as a consequence of
thresholding and/or of rapid phenomena. The continuous regulations guide the
dynamics of the modes. Similarly, there is a partition of the reactions R =
Rs∪Rc. A reaction r belongs to the switched reactions r ∈ Rs if (x, r) ∈ Ed

r , for
some x ∈ V . The role of the regulators (continuous if they modulate the reaction
rate, discrete if they contribute to switching it on and off) should be indicated
on the graph together with the signs of the regulations.

4 Identification of Piecewise Smooth Models

We would like to develop methods allowing to find the parameters of a model
from the class introduced above that best describes the observed trajectories
of a biological system. These trajectories can come from experiments or can be
produced by non-hybrid models. In both situations we obtain a model whose
parameters can be easily interpreted in biological terms. The hybrid model can
be further analyzed or used to model more complex situations.

In the following we present a reverse engineering algorithm that works well
for systems with sharp transitions.

Data. n trajectories (time series) u1(t), ..., un(t) given at time moments t0, t1,
..., tN . A regulated reaction graph (the smooth/discrete partition of the regula-
tions can be unspecified).

Output. A model of the type (2.2), (2.3) with values of the parameters that fit
well the data.

The algorithm has several steps, some of them involving several alternative
numerical solutions. For some of the steps the choice of the numerical solution
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was adapted to the application presented in the paper, which is the reconstruc-
tion of a hybrid cell cycle oscillator.

I. Choice of hybrid reaction scheme and of monomials giving the smooth part of
the rates.
The reaction rates have the forms given by (2.3). The monomial exponents αij ,
α̃i

j , the rate functions defining the modes, the mode switching and the jumps
can be obtained from the following heuristic rules:

i) If a reaction j is activated then αi
j = 1 for all activators and αi

j = −1 for
all inhibitors i in the absence of cooperativity. Cooperativity may be taken
into account by considering |αi

j | > 1.
ii) Basal rates are constant for reactions without substrates and proportional

to the concentration of the substrate otherwise.
iii) If activated reactions are present with intermittence, their non-basal rates

are multiplied by discrete variables si; this defines the mode switching.
iv) If a continuous variable ui is known to induce a jump decision (for in-

stance cell division), it should appear in the definition of the jump discrete
variables ŝ. The functions p(u) follow from biological observations.

Once the hybrid reaction scheme chosen, we want to fit the remaining model
parameters in order to reproduce the observed dynamics.

II. Detection of the events locations.
We look for K time intervals I1, I2, ..., IK . The dynamics on each of the intervals
is smooth, it is given by (2.2) with the s variables fixed. Mode transitions (change
of the variables) occur at the borders of these intervals. We denote the switching
times as τ1, ...τK .

Finding τk is a problem of singularity detection. This could be done by various
methods, for example by wavelet analysis. Here we decided to use the derivatives
of the reaction rates to locate the mode switching events. The peaks of these
derivatives indicate the positions of switching events, whereas the sign of the
derivatives indicate the sign of the change (activation if positive, inactivation if
negative). With this simple criterion we are able to reconstruct the sequence of
modes which is defined by the values of the boolean variables s(t).

III. Determining the mode internal parameters.
The previous steps define a set of modes and the static event location. Given a
choice of the modes internal parameters the hybrid trajectories can be integrated
without knowing the discrete regulations (this will allow the dynamic event
location at the next step): the values of s between two successive events are
enough. Modes internal parameters are obtained by optimization. Let umodes

i (t)
be the continuous hybrid trajectories obtained by integrating the modes between
the calculated transition times. We use a parallel version of Lam’s simulated
annealing algorithm [CDR99] to minimize the following objective function:

F =
∑
i,k

Ck(umodes
i (tk)− ui(tk))2,
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where Ck are positive weights. The choice of the weights depends on the dynam-
ical features one wants to reproduce. For instance, for the cell cycle application
we choose weights that increase with time. We thus penalize large time devia-
tions that can arise from the loss of synchronicity among variables ui and avoid
the period misfit that could arise between the hybrid and the smooth dynamics
after dynamic event location.

IV. Determining the mode control parameters and dynamic event location.
Let sm = H(

∑
(m,j)∈Er wmjuj−hj) be the discrete variables determined above.

Let sm
k be the constant values of sm on Ik. Consider now the optimal trajectories

umodes∗
i (tl) obtained before.
Then, one should have

(
∑

(m,j)∈Er

wmju
modes∗
j (tl)− hj)sm

k > 0, for all tl ∈ Ik, (4.1)

which is a linear programming problem for wmj that can be resolved (if it has a
solution) in polynomial time.

5 Examples

A simple cell cycle model. As a simple example let us consider the minimal
model proposed by Tyson for Cdc2 and Cyclin interactions [Tys91]. This model,
which contains initially 6 species and 9 reactions, can be reduced to only 2
species and 4 reactions (details of the reduction will be given elsewhere), while
keeping the same dynamics. The two species left are Cyclin-Cdk complexes,
with two phosphorylation states: phosphorylation of both monomers (Cpp :=
Cyclinp.Cdc2p), or only Cyclin phosphorylated (Cp := Cyclinp.Cdc2).

Fig. 1. (Top Left) Trajectories of the non-hybrid model by Tyson [Tys91]. (Top Right)
Trajectories of the hybrid model. (Bottom Left) Reaction graph of the non-hybrid
model. (Bottom Right) Reaction graph of the hybrid model.
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d[Cpp]
dt

= k1 − k′4[Cpp]− k4[Cpp][Cp]2

d[Cp]
dt

= −k6[Cp] + k′4[Cpp] + k4[Cpp][Cp]2 (5.1)

The regulated reaction graph and the hybrid scheme are represented in Fig.1.
The dynamics of this model is quite simple. The linear dephosphorylation is
slower than the production of Cpp. This create an accumulation of Cpp. Then at
some threshold the Cp produced activates the second, faster, dephosphorylation,
which drains the accumulated Cpp. Here we model this second, faster reaction
as an hybrid reaction, totally controlled by thresholds. This is justified by the
observed peaks of the rate derivative (Fig.2) and leads to the following hybrid
model:

d[Cpp]
dt

= k̃1 − k̃′4[Cpp]− k̃4s[Cpp]

d[Cp]
dt

= −k̃6[Cp] + k̃′4[Cpp] + k̃4s[Cpp] (5.2)

where s = H(w1[Cpp] + w2[Cp]− h) is the boolean variable.
After the parameter fit we find that w1 and w2 are both positive.
For this model no jumps of the continuous variables are needed. Indeed, at the

end of mitosis, all continuous variables have small values. Bringing their values
to half would not change much the behavior of the model.

Generic mammalian cell cycle model. A complex example with mode switch-
ing and jumps is obtained from Novak and Tyson 2006 generic cell cycle model
[Csi06]. The generic model contains four different versions, each of them repro-
duce the cell cycle for a different eukaryote organism : Mammalians, Xenopus
embryo, Budding yeast, Fission Yeast. Our study will only focus on the mam-
malian version. This model contains 12 species and 34 reactions.

Fig. 2. Rate derivative for the simple cell cycle model
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We briefly discuss the steps of the algorithm applied to this model.

Choice of the hybrid scheme. Four of these reactions are typically switch-like, fol-
lowing Goldbeter-Koshland kinetics. Another reaction is following Hill kinetics,
and also shows switch-like behavior. These reactions are replaced by switched
reactions whose rates are simplified monomial rate multiplied by a boolean
variable.

For instance the reaction that produces Cyclin-B, induced by the cell mass,
is defined by the following kinetic rate:

R = ksbpp [Mass]GK(kafb [CycB], kifb, Jafb, Jifb) (5.3)

In this case we can replace the Goldbeter-Koshland (GK) function by a
boolean variable (see Fig.3) and obtain the following simpler rate:

R′ = ksbpp [Mass] s (5.4)

where s is a boolean variable.

Fig. 3. left: Reaction flow of the GK function, right: Derivative of reaction flow of the
GK function

Detection of the transitions. Static event locations follow from the positions of
the peaks of the derivative of the reactions rates with respect to time. For the
reaction considered above, we find 2 peaks per period of the cell cycle model (see
Fig. 3), which correspond to switching the reaction from an active state to an
inactive one and back. At the end of this step, we obtain a list of the transitions
points for each switched reaction, and the status of the switched reactions during
each mode (ie between successive transitions) as boolean variables.

Fitting the hybrid model parameters. Once we have this definition, we can fit the
model, using the parallel simulated annealing algorithm. As a control we can see
the results of the fitting on the rate of the reaction considered above (Fig.4).

Computing the mode control parameters. The final goal is to obtain a dynamic
definition of these events location, by computing the regulation matrix w and
the thresholds h for all the boolean variables.
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Fig. 4. left: Original reaction flow, right: Hybrid reaction flow

For instance, the reaction discussed is controlled by the function f(u) =
−37.32[CycA]− 1.694[CycB]− 173.7[CycE]− 177.8[APCP ] + 331.2[Cdc20a] +
97.8[Cdc20i]−78.5[Cdh1]−107.1[CKI]+0.3481Mass+53.52[pB]+1337[TriA]+
39.57[TriE], which is the parameter of the Heaviside function. The sign of this
event function will control the state of the reaction, keeping it inactive if the
function is negative, and activating the reaction when the function is positive
(Fig.5).

Fig. 5. Event location function, ie the Heaviside function parameter

On Fig.6, we can see the trajectories of the hybrid model (with dynamic event
location), compared to those of the original model.

Fig. 6. (Left) Trajectories of four main variables of the non-hybrid model by Novak
and Tyson [NT04]. (Right) Trajectories of the hybrid model. (blue : Cyclin-A, green :
Cyclin-B, red : Cyclin-C, aqua : cell size).
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6 Conclusion

The results that we present are a proof of principle that piecewise smooth hybrid
models can be constructed with a simple heuristic from basic information about
biochemical interactions. Using this class of hybrid models instead of piecewise-
linear approximations provides, in many situations, a better balance between
discrete and smooth interactions. The identification algorithm proposed in the
paper combines the static location of the events, the identification of the modes
by simulated annealing, and the identification of the mode control parameters by
dynamic location. The hardest step of this algorithm is the simulated annealing.
Furthermore, for large models, we expect several solutions for the mode control
parameters. We are currently improving the algorithm to cope with these sit-
uations. A better choice of the modes dictated by model reduction techniques
could reduce the time for simulated annealing. Also, we are investigating the use
of event location functions that are linear in the logarithms of the continuous
variables. According to the ideas of the introduction, these nonlinear location
functions will indicate changes of the dominant monomials in the rate func-
tions, more accurately than the linear location functions. Moreover, they can
be obtained directly from the initial smooth model without the need to solve
(eventually undetermined) dynamic location inequations. Improved segmenta-
tion techniques are needed for future application of the algorithm directly to
data.

In the future we will apply the heuristic and the fitting algorithm to model
complex situations when signaling pathways interact with the eucaryotic cell
cycle. The resulting hybrid models will also be used to investigate emerging
properties of regulatory networks such as viability and robustness.

Acknowledgements. We thanks J.Reinitz for sending us a version of his par-
allel simulated annealing code.
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Abstract. We consider the problem of reconstructing a maximally par-
simonious history of network evolution under models that support gene
duplication and loss and independent interaction gain and loss. We intro-
duce a combinatorial framework for encoding network histories, and we
give a fast procedure that, given a set of duplication histories, in practice
finds network histories with close to the minimum number of interaction
gain or loss events. In contrast to previous studies, our method does not
require knowing the relative ordering of unrelated duplication events.
Results on simulated histories suggest that common ancestral networks
can be accurately reconstructed using this parsimony approach.

1 Introduction

High-throughput experiments have revealed thousands of regulatory and protein-
protein interactions that occur in the cells of present-day species. To understand
why these interactions take place, it is necessary to view them from an evo-
lutionary perspective. In analogy with ancestral genome reconstruction [22], we
consider the problem of predicting the topology of the common ancestor of path-
ways, complexes, or regulatory programs present in multiple extant species.

Generating plausible ancestral networks can help answer many natural ques-
tions that arise about how present-day networks have evolved. For example, joint
histories can be used to compare the conservation and the route to divergence
of corresponding processes in two species. This allows us to more finely quan-
tify how modularity has changed over time [15] and how interactions within
a protein complex may have reconfigured across species starting from a single
shared state [24]. Such analysis can also be integrated to develop better network
alignment algorithms and better network-based phylogenies [11,27,8,9,16], and
it can be used to study robustness and evolvability [1,10,26]. Further, inferred
changes in metabolic networks can be linked to changes in the biochemical envi-
ronment in which each species has evolved, and this can reveal novel mechanisms
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of ecological adaptation [4,3]. Finally, comparing network histories inferred us-
ing different model parameters can be used to estimate the likelihoods of various
evolutionary events [18,21].

There has been some recent work on reconstructing ancestral interactions.
Gibson and Goldberg [13] presented a framework for estimating ancestral pro-
tein interaction networks that handles gene duplication and interaction loss us-
ing gene trees reconciled against a species phylogeny. However, their approach
assumes that interaction losses occur immediately after duplication and does
not support interaction gain outside of gene duplication. These assumptions are
limiting because interaction loses may occur well after duplication, and inde-
pendent gains are believed to occur at non-trivial rates [17]. Dutkowski and
Tiuryn [8] provided a probabilistic method for inferring ancestral interactions
with the goal of improved network alignment. Their approach is based on con-
structing a Bayesian network with a tree topology where binary random variables
represent existence or non-existence of potential interactions. A similar graphical
model was proposed by Pinney et al. [25], who applied it to inferring ancestral
interactions between bZIP proteins. In the former method, interaction addition
and deletion is assumed to occur only immediately following a duplication or
speciation event. Further, both methods assume the relative ordering of duplica-
tion events is known even between events in unrelated homology groups. Pinney
et al. [25] also explore a parsimony-based approach [19] and find it to work well;
however, it too assumes a known ordering of unrelated duplication events. The
main drawback of these approaches is that the assumed ordering comes from
sequence-derived branch lengths, which do not necessarily agree with rates that
would be estimated based on network evolution [31]. This motivates an approach
such as we describe below that does not use branch lengths as input.

Zhang and Moret [31,30] use a maximal likelihood method to reconstruct
ancestral regulatory networks as a means to improve estimation of regulatory
networks in extant species. Mithani et al. [20] study the evolution of metabolic
networks, but they only model the gain and loss of interactions amongst a fixed
set of metabolites, whereas we also consider node duplication and loss encoded by
a tree. Navlakha and Kingsford [21] present greedy algorithms for finding high-
likelihood ancestral networks under several assumed models of network growth.
They applied these methods to a yeast protein interaction network and a social
network to estimate relative arrival times of nodes and interactions and found
that the inferred histories matched many independently studied properties of
network growth. This attests to the feasibility of using networks to study evolu-
tion. The authors, however, only consider a single network at a time, and there
is no guarantee that independent reconstruction of two networks will converge
to a common ancestor.

Here, we introduce a combinatorial framework for representing histories of
network evolution that can encode gene duplication, gene loss, interaction gain
and interaction loss at arbitrary times and does not assume a known total or-
dering of duplication events. We show that nearly-minimal parsimonious histo-
ries of interaction gain and loss can be computed in practice quickly given a
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duplication history. In simulated settings, we show that these parsimonious his-
tories can be used to accurately reconstruct a common ancestral regulatory net-
work of two extant regulatory networks.

2 A Framework for Representing Network Histories

Any natural model of network evolution will include events for gene duplication,
gene loss, interaction gain, and interaction loss. Many such growth models have
been studied (e.g. [6,29,23,14,1,30]). We now describe how these events can be
encoded in a history graph.

Consider a set V of proteins or genes (henceforth “nodes”) descended from a
common ancestor by duplication events. Those duplication events can be encoded
in a binary duplication tree T with the items of V as the leaves. An internal node
u in T represents a duplication event of u into its left and right children, uL

and uR. In this representation, after a duplication event, the node represented
by u conceptually does not exist anymore and has been replaced by its two
children. The leaves of a duplication tree are labeled Present or Absent. Absent
leaves represent products of duplication events that were subsequently lost. A
collection of such trees is a duplication forest F .

The gain and loss of interactions can be represented with additional non-tree
edges placed on a duplication forest. A non-tree edge {u, v} represents an edge
flip event, where the present / absent state of the interaction between u and v
is changed to Present if the interaction is currently Absent or to Absent if the
interaction is currently Present. Let Pu and Pv be the paths from nodes u and
v to the root. An interaction exists between u and v if there are an odd number
of such flip non-tree edges between nodes in Pu and Pv. Every non-tree edge
between Pu and Pv, therefore, represents alternatively interaction creation or
deletion between nodes u and v in the evolution of the biological network.

A graph H consisting of the union of a duplication forest and flip non-tree
edges is a network history. A history H constructs a graph G when the Present
leaves of the duplication forest in H correspond to the nodes of G and the flip
edges of H imply an interaction between u and v if and only if {u, v} is an
interaction in G. See Figure 1 for an example history.

Not all placements of non-tree edges lead to a valid network history. The
interaction histories have to be consistent with some temporal embedding of the
tree. Let tcu and tdu be respectively the time of creation and duplication of node
u, Naturally, tcu < tdu, tdu = ∞ if u is a Present leaf, and if v is the child of u,
then by definition we have

tcu < tdu = tcv < tdv. (1)

If {u, v} is a flip edge, then the time t{u,v} of appearance of this edge must satisfy

tcu ≤ t{u,v} < tdu and tcv ≤ t{u,v} < tdv, (2)

because an event between u and v can only occur when both u and v exist. A
history graph H is said to be valid if there exist tcu, tdu for every node u such that
conditions (1) and (2) are satisfied for every non-tree edge.
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Fig. 1. A duplication forest (solid edges at top) with the non-tree edges (dashed)
necessary to construct G1 and G2 (shown at bottom). Nodes 1, 2, and 3 represent the
3 homology groups present in the ancestral graph. Node 14 was lost. As an example of
the connectivity induced by the non-tree edges, consider edge (27, 18) in G2 which is
implied by the directed non-tree edge from (3, 2). However, the reverse edge, (18, 27),
which is implied by (2, 3), does not exist because its state is flipped by (8, 20).

(a) 1 (b) 2 (c) 3

Fig. 2. Blocking loops of size 1, 2 and 3. The solid lines represent a subset of the tree
T . The dashed lines are non-tree edges representing interaction flip events.

Whether a particular history is valid can be checked combinatorially using the
following alternative characterization of validity. A k-blocking loop is a set of flip
edges {{ui, vi}}0≤i<k such that ui+1 is an ancestor of vi in the tree for 0 ≤ i < k
(where the index i+ 1 is taken modulo k). See Figure 2 for examples. Blocking
loops are not permitted in valid histories and, conversely, the non-existence of
blocking loops implies that a history is valid, as shown in Prop. 1.

Proposition 1. A history graph H is valid if and only if it does not have any
blocking loop of any length.
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Proof. Suppose there is a k-blocking loop. Using the same notation as above, we
have the inequalities

tdu0
> t{u0,v0} ≥ tcv0

≥ tdu1
> t{u1,v1} ≥ . . . ≥ tcvk−1

≥ tdu0
,

which is a contradiction. Hence, to not have any blocking loops is necessary.
Conversely, suppose that H does not have any blocking loops. We assign

times to the nodes and non-tree edges using a modified depth-first search (DFS)
algorithm following the tree edges only. First, the root of the tree is given a
creation time of 0. During DFS, just before calling DFS recursively on the left
and right children of a node u, we set the duplication time tdu = max{max t{u,v}+
1, tcu + 1}, where the second max is taken over all non-tree edges adjacent to u.
Also, we set the creation time of the children tcuL

= tcuR
= tdu.

When DFS visits a node u with some edge {u, v}where v has not been assigned
a creation time, u is added to a set Q and DFS is not called recursively on the
children of u. The main loop consists of calling DFS again on all the nodes in
Q until this set is empty. By construction, the algorithm assigns times which
satisfy conditions (1) and (2). Therefore, if the algorithm terminates, H is a
valid history.

At each main iteration, the nodes in the set Q are all the nodes u for which
tcu is set but tdu is not set. It suffices to show that at each such iteration, at least
one of the nodes in the set Q will not be added again to Q by a call to DFS.
In other words, for at least one node u ∈ Q, every non-tree edge {u, v} has tcv
set. For a contradiction, suppose not. Take u1 ∈ Q and {u1, v1} with tcv1

not
set. There is necessarily an ancestor of v1, call it u2, which is in Q. Similarly,
take {u2, v2} with tcv2

not set and its ancestor u3 ∈ Q, and so on. Because Q is
finite, uj = ui for some j > i, and we constructed a blocking loop. Hence, the
algorithm must terminate. ��

3 Parsimonious Reconstruction of a Network History

Traditional phylogenetic inference algorithms and reconciliation between gene
and species trees can be used to obtain duplication and speciation histories [5,7,2].
What remains is the reconstruction of interaction gain and loss events. This leads
to the following problem:

Problem 1. Given a duplication forest F and an extant network G, find H , a
valid history constructing G, with a minimum number of flip edges.

We will show that nearly optimal solutions to this problem for a large range of
instances can be solved in polynomial time in practice. Whether Problem 1 is
NP-hard or admits a polynomial-time algorithm for all instances remains open.

3.1 A Fast Heuristic Algorithm

The challenge of Problem 1 comes from avoiding the creation of blocking loops. A
polynomial-time algorithm can find a minimum set of flip edges that reconstructs
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a graphG and does not contain 1- and 2-blocking loops but allows longer blocking
loops. We define an interaction encoding of G = (V,E) as a function fG : V ×
V → {0, 1} such that: fG(u, v) = 1 if {u, v} is an interaction in G and fG(u, v) =
0 otherwise. We omit the subscript on fG if G is clear from the context.

The following intertwined dynamic programming recurrences find the mini-
mum number of flip edges required forH to construct a given graph G if blocking
loops of length ≥ 3 are allowed. First, S(u, f) finds the minimum number of flip
edges for the subtree rooted at u and interaction encoding f :

S(u, f) = S(uL, f) + S(uR, f) +A(uL, uR, f). (3)

The expression A(u, v, f) gives the minimum number of flip edges that should
be placed between the subtree rooted at u and the subtree rooted at v. This can
be computed using the recurrence:

A(u, v, f) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(uL, v, f) +A(uR, v, f)
A(u, vL, f) +A(u, vR, f)
1 +A(uL, v, f̄) +A(uR, v, f̄)
1 +A(u, vL, f̄) +A(u, vR, f̄).

(4)

In the above, if one of u or v is a leaf but the other is not, the options that look
at non-existent children are disallowed.

The function f̄ in Eqn. (4) is defined as 1− f and thus represents a function
such that f̄(x) has opposite parity from f(x) for all x. The A recurrence considers
two possible options: (1) We connect u and v with a non-tree edge, this costs
us 1 and flips the parity of all interactions going between the subtree rooted at
u and the subtree rooted at v; or (2) We do not connect u and v with a flip
edge. This costs 0 and keeps the parity requirement the same. Regardless of the
choice to create an edge, since we are not allowed to have a 2-blocking loop,
either (a) we possibly connect u to some descendant of v (and do not connect v
to a descendant of u) or (b) we possibly connect v to some descendant of u (and
do not connect u to a descendant of v).

The base case for the S recurrence when u is a leaf and the base case for the
A recurrence when u and v are leaves are:

S(u, f) = 0 and A(u, v, f) = f(u, v).

The minimum number of flip edges needed to turn a duplication forest F
into a history constructing G (allowing blocking loops of ≥ 3) is then given by∑

r S(r, dG) +
∑

r,q A(r, q, dG), where dG is the interaction encoding of G, and
the sums are over roots r, q of the trees in F . Standard backtracking can be used
to recover the actual minimum edge set. The dynamic program runs in O(n2)
time and space because only two functions f are ever considered: dG, and d̄G.
This yields ≈ n × n × 2 subproblems, each of which can be solved in constant
time.
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3.2 Removing Blocking Loops

If the solution contains blocking loops of length ≥ 3, one can choose an edge
in some blocking loop, forbid that edge from appearing in the solution, and
rerun the dynamic program. Because there are O(n2) possible non-tree edges,
iterating this procedure will terminate in polynomial time. In practice, we can
choose to exclude the non-tree edge that participates in the largest number of
loops. We repeat this until a valid solution is obtained. In the worst case, one may
obtain a solution where all non-tree edges are placed at leaves, but in practice
long blocking loops do not often arise, and the obtained solutions are close to
optimal (see Sec. 4.2).

3.3 Reconstruction of a Common Ancestor of Two Graphs

Given extant networks of several species, in addition to the reconstructed history,
we seek a parsimonious estimate for their common ancestor network. Specifically,
given extant networks G1 and G2, with interaction encodings d1 and d2, and
their duplication forests F1 and F2, we want to find an ancestral network X =
(VX , EX) such that the cost of X evolving into G1 and G2 after speciation is
minimized. VX is the set of roots of the homology forests. We assume that the
networks of the two species evolved independently after speciation. Therefore,
we can use the recurrence above applied to F1 and F2 to compute AF1(r, q, d1)
and AF2(r, q, d2) independently for r, q ∈ VX , and then select interactions in X
as follows. EX of X is given by the pairs r, q ∈ VX × VX for which creating an
interaction leads to a lower total cost than not creating an interaction. Formally,
we place an interaction {r, q} in EX if

1 +AF1(r, q, d̄1) +AF2(r, q, d̄2) < AF1(r, q, d1) +AF2(r, q, d2). (5)

Rule (5) creates an interaction in X if doing so causes the cost of parsimonious
histories inferred for G1 and G2 between the homology groups associated with
r and q to be smaller than if no interaction was created.

3.4 Modifications for Self-loops

Self-loops (homodimers) can be accommodated by modifying recurrence (3):

S′(u, f) =

{
S′(uL, f) + S′(uR, f) +A(uL, uR, f)
1 + S′(uL, f̄) + S′(uR, f̄) +A(uL, uR, f̄).

(6)

The intuition here is that paying cost 1 to create a self-loop on node u creates
(or removes) interactions, including self-loops, among all the descendants of u.

3.5 Modifications for Directed Graphs

Finally, the algorithm can be modified to handle evolutionary histories of di-
rected graphs. For this, only the recurrence A need be modified. When com-
puting A′(u, v, f), a non-tree edge can be included from u to v, from v to u,
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both, or neither. Each of these cases modifies the function f in a different way.
Specifically:

A′(u, v, f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 +A′(uL, v, f) +A′(uR, v, f)

1 +A′(uL, v,
←
f ) +A′(uR, v,

←
f )

1 +A′(uL, v,
→
f ) +A′(uR, v,

→
f )

2 +A′(uL, v,
↔
f ) +A′(uR, v,

↔
f ),

...

where the vertical ellipsis indicates the symmetric cases involving vL and vR,

and where
→
f ,

←
f ,

↔
f are defined, depending on u and v, as follows:

→
f (x, y) =

{
1− f(x, y) if x ∈ ST(u) and y ∈ ST(v)
f(x, y) otherwise

(7)

↔
f (x, y) =

{
1− f(x, y) if x ∈ ST(u) and y ∈ ST(v) or vice versa
f(x, y) otherwise,

(8)

with
←
f defined analogously to

→
f . Here, ST(u) indicates the set of nodes in the

subtree rooted at u.
The heuristic also can be extended to handle different costs for interaction

addition and interaction deletion by changing the constants in the recurrences
to be functions dependent on f .

4 Results

4.1 Generating Plausible Simulated Histories

We use a degree-dependent model (DDM) to simulate an evolutionary path from
a putative ancestral network to its extant state. The model simulates node dupli-
cation, node deletion, independent interaction gain, and independent interaction
loss with given probabilities Pndup, Pnloss, Pegain and Peloss, respectively. The
nodes or edges involved in a modification are chosen probabilistically based on
their degrees (as in [28]) according to the following expressions:

P(u | node duplication) ∝ 1/ku P(u | node loss) ∝ 1/ku (9)
P((u, v) | interaction gain) ∝ ko

u P((u, v) | interaction loss) ∝ 1/ko
u, (10)

where ko
u is the out-degree of a node u, and ku is the total degree. At each

time step, the distribution of possible modifications to the graph is calculated
as P(modification) = PoperationP(object | operation). Nodes with out-degree of 0
are removed. Varying parameters Pndup, Pnloss, Pegain and Peloss can produce a
wide variety of densities and sizes. We also consider a degree-independent model
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(DIM) in which the four conditional probabilities in Eqns. (9) and (10) are all
equal.

The DDM model is theoretically capable of producing evolutionary trajecto-
ries between any two networks while incorporating preferential attachment to
the source node and random uniform choice of the target node. Furthermore,
choosing a node for duplication or loss in inverse proportion to its degree favors
an event in inverse relation to its expected disruption of the network.

We also consider a model of regulatory network evolution by Foster et al. [12],
which is based on gene duplication, with incoming and outgoing interactions kept
after duplication as in other models (Pinkeep and Poutkeep probabilities respec-
tively). New edges are added with probability Pinnovation.

In all of the network evolution models, we started with a random connected
seed graph that has 10 nodes and 25 interactions. We evolved it to X by 200
operations after which we introduce a speciation event, and then both G1 and
G2 evolve from X by an additional 200 operations each. To generate more bi-
ologically plausible ancestral graphs, instances were kept only if the ancestral
graph X had an in-degree that fit an exponential distribution with parameter
between 1.0 and 1.2 or an out-degree that was scale-free with parameter between
1.8 and 2.2.

4.2 Reconstructing Histories

Optimality of loop breaking. The greedy procedure to break blocking loops pro-
duces histories that are very close to optimal. We generated 1400 networks using
the DDM model with the range of parameters on the x-axis of Fig. 3a. In the
vast majority of cases (1325 out of 1400), either no loop breaking is required,
or the solution discovered after greedily breaking all loops has the same cost as
the original solution. In these cases, therefore, the method returned a provably
maximally parsimonious set of interaction modification events. In the remain-
ing 75 cases (5.4%), greedily removing blocking loops increased the number of
interaction modifications by no more than 10 (< 2% of the initial number of in-
teraction modification events). Since the initial solution provides a lower bound
on the optimal, we can verify that the greedy procedure always found a solu-
tion within 2% of the optimal (and perhaps even better). Thus, it seems that
in practice, while blocking loops occur, the greedy procedure does a good job of
eliminating them without increasing the number of events significantly.

Effect of growth model and its parameters. Modeling the evolutionary dynamics
of a regulatory network is still an active topic of research. We therefore experi-
mented with three different network models (Sec. 4.1). Despite their differences,
high precision and recall (measured as the F1 score) can be obtained for all of
them for many choices of their parameters (Fig. 3a-c). Very good performance
can be achieved under the general model presented above whether degree distri-
butions are taken into account (Fig. 3a) or not (Fig. 3b) when selecting nodes
and interactions to modify. In these cases, for most parameter choices, precision
is close to 1.0, meaning every interaction predicted to be in the ancestor, in fact,
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(a) Degree-dependent model (Sec. 4.1)
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(b) Degree-independent model
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(c) Foster et al. [12] model
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(d) Divergence of G1, G2 from ancestor

Fig. 3. (a-c) Effect of model parameters on reconstruction accuracy under three differ-
ent models. “Prob” in (c) is Pinnovation. (d) Effect of evolutionary distance (number of
network modification operations) on the quality of the ancestral network reconstruc-
tion. In both plots, boxes show 1st and 3rd quartile over 100 networks with median
indicated by a line. Pentagons show the median if interactions incident to nodes lost
in both lineages are not considered.

was. Recall is often lower. The Foster et al. [12] model, with its heavy reliance on
duplication events and lack of node loss events, tends to be the simplest under
which to reconstruct the ancestral graph (Fig. 3c).

The largest factor leading to poorer performance is lower recall caused by
gene losses. If all descendants of a gene are lost in both extant networks, it is
not possible to reconstruct interactions incident to it. If these interactions are
excluded from the computation of recall, the F1 score often improves dramati-
cally. Median F1 scores excluding these interactions are shown as pentagons in
Fig. 3.
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Robustness to evolutionary divergence. Naturally, the ability to recover the an-
cestral network degrades as time passes and the extant networks diverge. How-
ever, the degradation is slow (Fig. 3d, using the degree-dependent model with
parameters fixed at Pndup = 0.35, Pnloss = 0.05, Pegain = 0.3, and Peloss = 0.3).
When the distance is small, we are almost always able to recover the ancestral
network well, as illustrated by the high F1-scores and small interquartile ranges
in Figure 3d. Even when the distance between the ancestral and extant networks
is large (300) compared to the average ancestral network size (55), we obtain
an F1-score of 0.72 (0.77 when homology groups lost in both lineages are not
considered).

5 Conclusion

We have presented a novel framework for representing network histories involv-
ing gene duplications, gene loss, and interaction gain and loss for both directed
and undirected graphs. A combinatorial characterization for valid histories was
given. We have shown that a fast heuristic can recover optimal histories in a
large majority of instances. We further provide evidence that, even with a prob-
abilistic, weighted, generative model of network growth, a parsimony approach
can recover accurate histories.
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Abstract. We extend an hypergraph representation, introduced by
Finkelstein and Roytberg, to unify dynamic programming algorithms
in the context of RNA folding with pseudoknots. Classic applications
of RNA dynamic programming (Energy minimization, partition func-
tion, base-pair probabilities. . . ) are reformulated within this framework,
giving rise to very simple algorithms. This reformulation allows one to
conceptually detach the conformation space/energy model – captured by
the hypergraph model – from the specific application, assuming unambi-
guity of the decomposition. To ensure the latter property, we propose a
new combinatorial methodology based on generating functions. We ex-
tend the set of generic applications by proposing an exact algorithm for
extracting generalized moments in weighted distribution, generalizing
a prior contribution by Miklos and al. Finally, we illustrate our full-
fledged programme on three exemplary conformation spaces (secondary
structures, Akutsu’s simple type pseudoknots and kissing hairpins). This
readily gives sets of algorithms that are either novel or have complexity
comparable to classic implementations for minimization and Boltzmann
ensemble applications of dynamic programming.

Keywords: RNA folding, Pseudoknots, Boltzmann Ensemble, Hyper-
graphs, Dynamic Programming.

1 Introduction

Motivation. Over the past decades biology as a field has become increasingly
aware of the importance and diversity of roles played by ribonucleic acids (RNA).
In addition to playing house-keeping parts, as initially contemplated by the
proteo-centric view of cellular processes, RNA is now accepted as a major player
of gene regulation mechanisms. For instance silencing activity (miRNAs, siR-
NAs) or multi-stable cis-regulatory elements (riboswitches) are currently the
subject of many research. Furthermore a recent genome-wide experiment has
revealed that a large portion of the human genome was subject to transcription
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into RNA. While it is unlikely for all these transcripts to be functional as RNAs,
novel classes and roles are currently under investigation. Most of the functional
roles played by RNA require the RNA to adopt a specific structure to make an
interaction possible, hide/exhibit an active site or allow for a catalytic action
(Ribozymes). Being able to understand and simulate how RNA folds is therefore
a crucial step toward understanding its function.

Ab initio secondary structure prediction. Initial algorithmic methods for
the ab-initio prediction of RNA folding considered a coarse-grain conformation
space, the secondary structure, where each conformation is defined as a non-
crossing subset of admissible base-pairs. This led Nussinov and Jacobson (39)
to design a Θ(n3) dynamic-programming (DP) algorithm for the base-pair max-
imization problem. Building on a nearest neighbor free-energy model proposed
by Tinoco et al (51) and extended by the Turner group, Zuker and Stiegler (56)
created MFold, a Θ(n3) algorithm for minimizing the free-energy (MFE fold-
ing), later shown to predict correctly ∼73% of base-pairs on a benchmark of
RNAs of length < 700 nucleotides (34). An independent implementation of the
algorithm is proposed within the popular ViennaRNA package maintained by
Hofacker (22). Probabilistic alternatives (SFold (11), ContraFold (14) and
CentroidFold (20)) have also recently been proposed with substantial im-
provement, relying on a dynamic programming scheme similar to that of MFold

to traverse the conformation space in polynomial time coupled with some post-
processing steps.

Ensemble approaches. Since the seminal work of McCaskill (35), the concept
of Boltzmann equilibrium has been used to embrace the diversity of folding ac-
cessible to an RNA sequence. He showed that the partition function of an RNA
– a weighted sum over the set of all compatible structures – could be computed
through a simple transposition of the DP scheme used for MFE folding. Coupled
with a variant of the inside/outside algorithm, this led to an exact computation
of base-pairs probabilities in the Boltzmann-weighted ensemble. This opened the
door for more robust predictions, e.g. for RNAs whose MFE folding is an out-
lier. This intuition was later validated by Mathews (33) who showed that the
Boltzmann probability correlated well with the actual presence of base-pairs in
experimentally-determined structures. Ding et al (11) pushed this paradigm shift
a step further by clustering sets of structures sampled within the Boltzmann dis-
tribution and computing a consensus, improving on the positive-predictive-value
(PPV) of existing algorithms. This ensemble view naturally spread toward other
applications of DP in Bioinformatics (sequence alignement (36), simultaneous
alignment and folding (21), 3D structural alignement (15)), and is increasingly
becoming a part of the algorithmic toolbox of bioinformaticians.

Pseudoknotted conformations. Although substantially successful in their
task, secondary structure prediction algorithms were intrinsically limited in by
their inability to explore conformations featuring crossing base-pairs. Such mo-
tifs, called pseudoknots, were initially excluded from the conformation space
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based on the rationale that their participation to the free-energy would remain
limited. Furthermore, the adjunction of all possible pseudoknots was shown
to turn MFE folding into an NP-complete problem even in a simple nearest-
neighbor model (1; 30). However such conformations do naturally occur, and can
be essential to functional mechanisms such as -1-frameshift recoding events (4)
or the formation of tertiary motifs (40). Therefore many exact DP approaches
(45; 30; 13; 42; 6; 7; 8; 7; 23; 50; 44) have been proposed over the years to ex-
tract the MFE structure within restricted – polynomially solvable – classes of
pseudoknots. However most of these approaches (with the notable exceptions
of (13; 6; 44)) were based on ambiguous DP schemes, leading them to consider
certain structures multiple times. While such an unambiguity would not be wor-
risome in the context of energy minimization, it prevents a direct transposition
of these algorithms to ensemble applications (partition function, base-pair prob-
abilities) by heavily biasing – for no biologically valid reason – derived estimates.

Unambiguous decompositions. This lack of focus on unambiguity in the de-
sign of RNA (pseudoknotted) DP algorithms can be explained by two main rea-
sons. Firstly certain conformation spaces may not admit unambiguous schemes.
Indeed it has been shown by Condon et al (9) that many PK conformational
spaces can be modeled as a formal language, while Flajolet (18) had shown, using
a combinatorial argument, that certain simple context-free languages are inher-
ently ambiguous, i.e. not generated by any unambiguous context-free grammar.
A second explanation is more historical: DP algorithms designers were initially
focused on optimization problems, and considered the DP equation, not the de-
composition of the search space, as the central object of their contributions.
Indeed in the optimization perspective, it is not mandatory for the conforma-
tion space to be completely (e.g. sparsification) or unambiguously (e.g. multiply
occurring best structure) generated. As decompositions grow more and more
complex to capture more complex energy models and topological limitations,
these two key properties are becoming increasingly hard to ascertain at the level
of DP equations. Consequently there is a need for more rational framework to
facilitate the design of conformational spaces.

Combinatorial dynamic programming. Over the last century, enumerative
combinatorics as a field has been focusing on providing elegant decompositions
for all sorts of objects. Our proposal is to adopt a similar discipline in the design
of DP decompositions, the only task worthy of human attention to our opinion,
and will eventually lead to an automated procedure for the actual production of
codes/algorithms. To that purpose we chose to build on and revisit an hyper-
graph analogy proposed by Finkelstein et al (16) as a unifying framework for
RNA folding and other applications of DP in Bioinformatics, which we generalize
into combinatorial classes amenable to analysis using generating functions.

Related work. The two main frameworks offering abstracts view over Dy-
namic Programming are Lefebvre’s multi-tape attributed grammars (26) and
Giegerich’s Algebraic Dynamic Programming (ADP) (19), respectively building
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Fig. 1. Illustration of F-Graphs, F-Paths and Independence property. Straight lines
indicate classic arcs, and bent lines indicate hyperarcs.

on multitape-attributed grammars and context-free grammars. Although very
elegant and mature in their implementations, they suffer from limitations in ex-
pressivity that are intrinsic to their underlying formalisms. For instance, ADP
has to resort to an explicit manipulation of indices in order to achieve competitive
complexities for canonical pseudoknots (42), while Lefebvre’s multi-tape gram-
mars (27) require increased complexity to capture pseudoknots. Another formal
description of pseudoknotted search spaces is M. Möhl’s split-types (37), which
focuses on how non-contiguous portions are combined, providing a very compact
description for pseudoknotted conformation spaces. Compared to these abstract
representations, the hypergraph formalism achieves a greater expressivity by: i)
Implementing an unordered product; ii) Allowing explicit manipulation of in-
dices; iii) Allowing additional information to be stored within nodes (Remember
that context-free grammars allow for a finite number of non-terminals). For in-
stance, polynomial hypergraphs could be proposed for counting homogeneous
alignments (25) whereas these objects cannot be generated by any context-free
grammar (5) and will not be expressed strictly within the alternative frame-
works. This improved expressivity comes at a price since the manual manipu-
lation of indices is error-prone, as pointed accurately by Giegerich et al, so one
may want to think of our proposal as more of a byte code, possibly produced
from a higher-level source code (ADP, split-types. . . ).

Outline. In Section 2, we briefly remind some basic definitions related to forward
directed hypergraphs. In Section 3, we remind and propose dynamic program-
ming algorithms for generic problems on F-graphs. Then in Section 4, we illus-
trate our programme by proposing and proving unambiguous decompositions for
three space of conformations: Classic secondary structures in the Turner energy
model (32), (weighted) base-pair maximisation version of Akutsu’s simple-type
pseudoknots (1) and fully-recursive kissing hairpins (Unambiguous restriction of
Chen et al (8)). We also describe a simplified proof strategy based on generating
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functions to prove the correctness of a given decomposition. Section 5 enriches
the scope of applications of our framework by proposing a general algorithm for
extracting the moments of additive features (free-energy, base-pairs, helices. . . )
in a weighted distribution (generalizing a previous contribution by Miklos et
al (38)). Finally Section 6 concludes with some remarks and possible extensions
and improvements.

2 Notations and Key Notions

Let us first remind that a directed hypergraph generalizes the notion of directed
graph by allowing any number of vertices as origin(tail) and destination (head)
for each (hyper)-arcs. We will be focusing here on Forward-Hypergraphs, or F-
graphs, which restrict the tail of their arcs to a single vertex.

Formally, let V be a set of vertices, an F-arc e = (t(e)→ h(e)) ∈ V ×P(V ),
connects a single tail vertex t(e) ∈ V to an ordered list of vertices h(e) ⊆ V . An
F-graph H = (V,E) is characterized by a set of vertices V and a set of F-arcs
E. Denote by cn the children of a node in a tree, then an F-path of H = (V,E)
is a tree T = (V ′ ⊆ V,E′) such that, for any node n ∈ V ′, (vn → cn) ∈ E. For
the sake of simplicity, we may omit the implicit V ′ and identify an F-path to its
set of edges E′.

An F-derivation from a vertex s ∈ V can be recursively defined as either
〈s,∅〉 if (s→ ∅) ∈ E, or 〈s,D1 . . . D|t|〉 if (s→ t) ∈ E, t = {t1, t2, . . . , t|t|}, and
each Di is an F-derivation starting from ti. An F-graph is acyclic if and only
if any vertex s ∈ V is present only once (as a root) in any derivations starting
from s. Moreover it is independent if and only if any vertex s ∈ V is reached
at most once in any derivation, regardless of its root.

A weighted F-graph is a triplet (V,E, π) such that (V,E) is an F-graph
and π : E → R

+ is a weight function that associates a weight to each F-arc.
Finally, an oriented F-graph is a quadruplet (v0, V, E, π) such that (V,E, π)
is a weighted independent F-graph, and v0 ∈ V is a distinguished initial vertex.

Remark 1: Notice that our definition of F-arcs and F-paths implicitly defines
terminal vertices, since any leaf l in a F-path has no child and our definition
of F-paths therefore requires l→ ∅ to be an F-arc of H.

Remark 2: Under the independence property, the derivations starting from any
node s ∈ V are trees, and are therefore in bijection with F-paths originating from
the same vertex.

3 Generic Problems and Algorithms for F-Paths in
F-Graphs

In the following, terminal cases will very seldom appear explicitly, but will
rather be captured by the limit cases of products

∏
u∈∅

f(u) = 1 and sums∑
u∈∅

f(u) = 0, k ∈ R.
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Generating and counting F-paths in oriented F-graphs. Let H =
(v0, V, E, π) be an oriented F-graph, we address the problem of generating the
set Pv0 of F-paths obtained starting from v0.

From the tree-like definition of F-paths and our remark on terminal vertices,
we know that any F-path starting from a vertex s can either be a leaf, provided
that there exists an F-arc s → ∅, or an internal node. In the latter case, any
F-paths is composed of auxiliary paths, generated from the vertices in the head
of some F-edge having s as tail. Remark that our definition of F-paths requires
each vertex from V to appear at most once in any F-path, a fact that is ensured
here by the acyclicity of H. Therefore we can recursively define the set of Ps of
F-paths starting from a root node s as

Ps =
{{(s,∅)} If (s,∅) ∈ E

∅ Otherwise

}
∪

⋃
(s→t)∈E

(
{s} ×

∏
u∈t

Pu

)
, ∀s ∈ V. (1)

Since E is a set, the candidate heads for a given tail s are distinct and the unions
in the above equations are disjoint. Furthermore, the products are Cartesian, so
we can directly transpose the recurrence above over the cardinalities ns = |Ps|
and obtain

ns =
∑

(s→t)∈E

∏
u∈t

nu, ∀s ∈ V. (2)

This immediately yields a Θ(|V |+ |E|+∑
e∈E |h(e)|)/Θ(|V |) time/memory dy-

namic programming algorithm for counting F-paths.

Minimal score F-path. Let us consider an additive scoring scheme based
on weights, and accordingly define the score of an F-path p to be α (p) =∑

e∈E π(e). We address here the problem of finding an F-path p0 having min-
imal score or more formally some p0 ∈ Pv0 such that ∀p ∈ Pv0 , p �= p0 ⇒
α (p) ≥ α (p0). From the independence of siblings and the strict additivity of the
score, we know that the path minimization problem has optimal substructure,
i. e. any optimal solution is composed of optimal solutions for its subproblems.
Consequently, the minimal score ms of a path starting from a root node s ∈ V
is given by

ms = min
e=(s→t)∈E

(
π(e) +

∑
u∈t

mu

)
, ∀s ∈ V. (3)

A classic backtrack procedure can then be used to reconstruct the F-path in-
stance pmin

s starting from s ∈ V and having minimal score. Alternatively, the
previous recurrence can be modified as follows

pmin
s = argmin

p′=
⋃

s′∈t pmin
s′

s.t. (s→t)∈E

α ({(s→ t)} ∪ p′) , ∀s ∈ V, (4)

giving a Θ(|V |+ |E|+∑
e∈E |h(e)|)/Θ(|V |) time/memory DP algorithm for the

minimal weighted F-path.
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Weighted count and weighted random generation. Let us extend multi-
plicatively on paths our weight function, defining the weight of any F-path
p to be π(p) =

∏
e∈p π(e). Then a small modification of Equation 2 gives a recur-

rence for computing the cumulated weight, or weighted count ws of F-paths
starting from a given vertex s:

ws =
∑

p′∈Ps

π(p′) =
∑

e=(s→h(e))∈E

π(e) ·
∏

s′∈h(e)

ws′ , ∀s ∈ V (5)

Provided that the weights are positive, this defines a weighted probability
distribution over F-paths, which assigns to each path p ∈ Pv0 a probability

P(p | π) =
π(p)∑

p′∈Pv0
π(p′)

≡ π(p)
wv0

. (6)

From the precomputed values ws, one can perform a weighted random
generation to draw at random a set of k F-paths from v0 according to a weighted
distribution. Starting from any vertex s, the algorithm chooses at each step an
F-arc e = (s→ h(e)) with probability

ps,e =
π(e) ·∏s′∈h(e) ws′

ws
,

and proceeds to the recursive generation of auxiliary paths from each vertex in
h(e). A simple induction argument shows that any F-path is then generated with
respect to the probability distribution of Equation 6. The weighted count recur-
rence is computed by a Θ(|V |+ |E| + ∑

e∈E |h(e)|)/Θ(|V |) time/memory algo-
rithm, and each path p is generated in Θ(|p|+∑

e∈p |h(e)|)/Θ(|p|) time/memory.

Remark 3: This worst-case complexity can be improved using additional in-
formation on the structure of the F-graph. For instance, when both the height
and maximal degree of a vertex are bounded by some constant n, Boustrophe-
don search (17; 41) can be used to decrease the worst-case complexity of each
generation from ×(n2) to O(n logn).

Arc traversal probabilities. Using the same probability distribution, a natu-
ral problem is to compute the probability pe of an F-arc e ∈ E being in a random
F-path. To that purpose one can use the classic inside/outside algorithm, which
can be rephrased as an F-graphs traversal.

Let us first point out that the probability pe is related to the cumulated weight
of all F-paths featuring an edge e = (t(e)→ h(e)) through

pe =

∑
p∈Pv0
s.t. e∈p

π(p)∑
p′∈Pv0

π(p′)
≡

∑
p∈Pv0
s.t. e∈p

π(p)

wv0

. (7)

From the independence of H, we know that each vertex appears at most once
in any given F-path, and consequently any F-path traversing e can therefore
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be unambiguously decomposed into: i) An e-outside tree, i.e. a derivation
from v0 whose leaves are either terminal or t(e), and which features exactly one
occurrence of t(e); ii) A support edge e = (t(e)→ h(e)); iii) An e-inside tree,
i.e. a set of F-paths issued from h(e).

The unambiguity of the decomposition, along with the independence of i) and
iii), translates into ∑

p∈Pv0
s.t. e∈p

π(p) = bt(e) · π(e) ·
∏

s′∈h(e)

ws′ (8)

where bs is the cumulated weight of all outside trees leaving s ∈ V underived.
Finally it can be shown that the cumulated weight bs over all e-outside trees
obey the following simple recurrence

bs = 1s=q0 +
∑
e′∈E

s. t. s∈h(e′)

π(e′) · bt(e′) ·
∏

s′∈h(e′)
s′ �=s

ws′ , ∀s ∈ V (9)

which can computed in O(|V |+ |E|+ ∑
e∈E |h(e)|2)/Θ(|V |) time/memory. The

probability of traversing pe in a random F-path can finally be computed through
the formula

pe =
bt(e) ·

∏
s′∈h(e) ws′

wv0

, ∀e ∈ E. (10)

4 F-Graphs Reformulation of (Pseudoknotted) RNA
Conformation Spaces

From the previous section, we know that very simple algorithms exist for weighted
optimization and enumeration problems over the F-paths of an F-graph. Let us
now consider MFE folding-related problems over an arbitrary conformation
space D for a sequence ω, under an energy model E : D → R and assume
that there exists: C1. An F-graph H whose F-paths P are in bijection with the
conformation space D; C2. A weight function π such that the (additive) score
of any F-path coincides with the energy of its corresponding conformation.

Under such conditions, it can be remarked that the minimal score algorithm
(Equation 3) exactly computes the Minimal Free-EnergyMFE = mins∈D Es.
Furthermore, the Weighted Count (Equation 5), applied to a weight function
π′(e) = e−π(e)/RT , computes the Partition Function Z =

∑
s∈D e−Es/RT .

Other quantities of interest for RNA folding can also be derived, as summarized
in Tables 1 and 2.

4.1 Foreword: Shortening Correctness Proofs through Generating
Functions

Our main challenge is to find an hypergraph/weight such that the energy func-
tion can be expressed in an additive fashion. Focusing first on Condition C1,
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one remarks that finding a function ψ : P → D which maps F-Paths to ele-
ments of the conformation space is not challenging, as it essentially amounts
to figuring out which derivation creates which base-pairs. Condition C1 is then
traditionally broken into two parts: an unambiguity condition which requires
distinct elements in P to give rise to distinct elements within D, i.e. ψ should be
injective; a completeness condition which requires each element in S to have
at least one pre-image, i.e. ψ should be surjective.

Since these notions are intimately related to the semantics associated with the
F-paths, they cannot be tackled in an automated way at the hypergraph level1.
Therefore correctness proofs will usually require user-assigned semantics coupled
with custom arguments, a task that may become challenging and/or tedious for
complex decompositions. In order to simplify the validation and therefore the
design of new conformation spaces, we propose a simplified proof technique based
on generating functions.

Indeed, instead of specializing the hypergraph for each and every input se-
quence, one can delegate to the weight function the responsibility of weeding out
conformations, e.g. by assigning them +∞ energetic contributions within MFE
folding. Therefore each class of conformations can be seen as a family of con-
formation space {Dn}n≥0 (secondary structures, simple type pseudoknots. . . ),
to which one associates a family of hypergraphs {Hn}n≥0, a decomposition,
both indexed by the length n of the sequence.

Let us remind that generating functions are formal power series that can be
used to store various information. For instance the counting generating function
for the conformation space family D can be defined as SD(z) =

∑
n≥0 |Dn| · zn

where z is a formal complex variable devoid of intuitive meaning. Furthermore
let Pn be the set of F-Paths associated with Hn, then the counting generating
function of the decomposition can be defined as SH(z) =

∑
n≥0 |Pn|·zn. Then the

formal identity SD(z) = SH(z) implies that |Dn| = |Pn|, ∀n ≥ 0. It follows from
basic set theory that unambiguity/injectivity (resp. completeness/surjectivity)
of ψ, in addition to the identity of generating functions, is in itself sufficient to
prove the bijectivity of ψ. Since reference generating functions are now available
for many conformation space families (47), this practically halves the burden of
designing a proof.

4.2 RNA Secondary Structures

Let us first illustrate our approach on RNA secondary structures, for which
Unafold (32) – the successor of MFold (56) – offers an unambiguous scheme.
Compared to the original decomposition presented in Markham’s thesis (31),
the one described in Figure 2 is simplified to ignore dangles.
Proving unambiguity

– Let us remark that both Q5 and Q1 either leave their last base j unpaired
(Left), or pairs it to i (Right). Furthermore these two cases are mutually
exclusive. Finally Q1 generates exactly one helix.

1 Algebraic Dynamic Programming partially addresses this issue, and the interested
reader is referred to an early contribution by Reeder et al (43).
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Fig. 2. Simplification of the Unafold (32) decomposition of the secondary structures
space. Framed states indicate origins of (hyper)arcs.

– Q always makes at least one call to Q1 and therefore creates at least one
helix. Therefore, it either creates exactly one helix (Left case) or more (Right
case), and these two cases are mutually exclusive.

– Q′ distinguishes different types of loops. Let m5, m3 be the numbers of un-
paired bases on the 5′ strand, 3′ strand, and h be the number of helices
starting from case Q′, one can label each of the cases and observe that they
are mutually non-overlapping. Namely from left to right, we get the follow-
ing (m5,m3, h) triplets: Interior loop (> 0, > 0, 1), stacking pair (0, 0, 1),
multiloop (≥ 0,≥ 0, > 1), bulges 5′ (> 0, 0, 1) and 3′ (0, > 0, 1), and hairpin
loop (> 0, > 0, 0).

Deriving completeness. From previous work by Waterman (54), we know
that the generating function of secondary structures with at least one unpaired
base between paired bases (θ = 1) is

S(z) =
1− z + z2 −√1− 2z − z2 − 2z3 + z4

2z2
. (11)

Following the general principle of the so-called DSV methodology (See Lorenz
et al (29) for a presentation in a similar context), the Unafold decomposition can
be translated into a system of algebraic equations. Namely, one simply replaces
any occurrence of k unpaired base with zk, each basepair with z2, and any vertex
with its associated generating function. Let Q5(z), Q(z), Q′(z) and Q1(z) be
the generating functions counting the F-paths generated from Q5, Q, Q′ and Q1

respectively:

Q5(z) =Q5(z) · z +Q5(z) ·Q ′(z) Q(z) = Seq(z) ·Q1(z)+Q(z) ·Q1(z) Q1(z) = z ·Q1(z)+Q ′(z)

Q ′(z) =z2 ·Seq+(z) ·Q ′(z) ·Seq+(z)+ z2 ·Q ′(z)+ z2 ·Q(z) ·Q ′(z)

+ z2 ·Q ′(z) ·Seq+(z)+ z2 ·Seq+(z) ·Q1(z)+Seq+(z)

Seq+(z) =z ·Seq(z) Seq(z) = z ·Seq(z)+1.
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Table 1. Reformulations of secondary structure applications as F-graphs problems and
associated complexities

Application Algorithm Weight fun. Time Memory Ref.

A – Energy minimization Minimal weight πT O(n3) O(n2) (56)

B – Partition function Weighted count e
−πT
RT O(n3) O(n2) (35)

C – Base-pairing probabilities Arc-traversal prob. e
−πT
RT O(n3) O(n2) (35)

D – Statistical sampling (k-samples) Weighted random gen. e
−πT
RT O(n3 + k · n log n) O(n2) (12; 41)

E – Moments of energy (Mean, Var.) Moments extraction e
−πT
RT O(n3) O(n2) (38)

F – m-th moment of additive features Moments extraction e
−πT
RT O(m3 · n3) O(m · n2) –

G – Correlations of additive features Moments extraction e
−πT
RT O(n3) O(n2) –

Solving the system yields Q5(z) = S(z) which, in conjunction with the unambi-
guity of the decomposition, proves its completeness.

Applicability of generic algorithms. Let us show that H fulfills the pre-
requisites of our algorithms. First it is easily verified that H is an F-graph.
Associating a region [i, j] (resp. [1, j]) with each vertex q1i,j , qi,j and q′i,j (resp.
q5j ), one easily verifies that for any F-arc e ∈ E the width of any region in the
head h(e) is strictly smaller than that of the tail t(e), and the acyclicity of
H directly follows. Furthermore, any two vertices in the head h(e) have non-
overlapping associated regions. Consequently H is independent, and a direct
application of our generic algorithms gives a set of algorithms summarized in
Table 1. This gives a family of efficient O(n3) algorithms for assessing RNA
secondary structure properties at the Boltzmann equilibrium.

Remark 4: In interior loops, the set of F-arcs generated for the Q′ case has
apparent cardinality in O(n4). This can be brought back to O(n3) by enforcing
constraints on the energy function. Traditionally, the accepted practice is to
bound the interior loop size (j′−j)+(i′−i) from above by a predefined constant
K ≈ 30. Exhaustive O(n3) decompositions can also be proposed (Figure 3)
by decomposing the internal loop into additively-contributing regions. A first
option may generate independently the left and right unpaired regions (Figure 3,
Left), while an alternative may decompose internal loops into a symmetric loop
followed by a fully asymmetric one (Figure 3, Right).

Fig. 3. Alternative exhaustive strategies for interior loops

4.3 Simple-Type Pseudoknots

In his seminal work, Akutsu (1) focused on a subset of pseudoknots motifs, the
simple-type pseudoknots, and proposed algorithms of complexity in O(n4) for
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Fig. 4. An unambiguous decomposition for simple non-recursive pseudoknots that
captures the Akutsu/Uemura class of pseudoknots. This decomposition yields
O(n4)/Θ(n4) time/memory algorithms for partially recursive pseudoknots and can
be extended to include recursive pseudoknots and/or Turner energy contributions in
O(n5)/Θ(n4).

simple non-recursive pseudoknots in a basepair-maximisation energy model, and
in O(n5) for recursive pseudoknots and loop-based energy models. However, the
decomposition proposed in (1) is ambiguous, e.g. there exists different ways
to create unpaired regions. Therefore we propose in Figure 4 an unambiguous
decomposition for the same conformation space.

Previous results. In a previous work (47; 48), one of the authors showed that
simple-type pseudoknots can be encoded by a simple formal language, in bi-
jection with a context-free language. Here we focus on partly recursive simple
pseudoknots presented in Figure 4. They can be encoded by a well-parenthesized
word p over two systems of parentheses {(f, f̄), (g, ḡ)}, respectively indicating
the leftmost and rightmost basepairs in Figure 4, and an unpaired character c
such that

p = (c∗f)n p′ (g c∗)m1 (f̄ c∗)n1 (g c∗)m2 (f̄ c∗)n2 · · · (g c∗)mk (f̄ c∗)nk−1 f̄ p′′ ḡ (c∗ḡ)m−1

(12)

where k is some integral value,
∑k

i=1 ni = n ≥ 1,
∑k

i=1mi = m ≥ 1, and p′, p′′

are any two recursively-generated conformations.

Completeness. Let us show that the decomposition in Figure 4 is complete, i.e.
that any partially recursive pseudoknot can be generated by the decomposition.

Let us initially focus on base-pairs and ignore unpaired bases. The smallest
word within the language of Equation 12 is fp′gf̄p′′ḡ which can be generated by
applying the initial case (Q→ AL → AM → A � p′ . . . g . . . ḡ) followed directly
by the terminal case (A → AT � f p′ g f̄ p′′ ḡ). Moreover through a sequence
A → AR → AM → A, one adds an outermost edge around the right part
g . . . ḡ. So through m iterations of the sequence the decomposition generates any
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structure gm1 . . . ḡm1 . Similarly through a sequence A → AL → AM → A one
adds an outermost edge around the left part f . . . f̄ , and after n1 iterations any
structure fn1 . . . f̄n1 is generated. Since these two sequences can be combined
and alternated (starting with the initial case and finishing with the terminal
case), then the decomposition generates any word

p = fn p′ gm1 f̄n1 gm2 f̄n2 · · · gmk f̄nk p′′ ḡmḡ. (13)

For the recursive call p′, it is easily verified thatQ∗ generates any (PK) structure.
For p′′ it is worth mentioning that, at a base-pairing level, A→ AT (right base
paired) and A→ ∅ cover all possible situations.

Arbitrary numbers of unpaired bases c can also be inserted right before the
opening f of a leftward base pair (resp. after closure f̄ of a leftward base pair,
after the opening g of a right base pair and before the closure ḡ of a right
base pair) by repeatedly applying the AL → AL (resp. AM → AM , AL → AL

and AM → AM ) rule after adding a left (resp. right) base pair. Consequently
any structure described by a word in Equation 12 can be generated by the
decomposition.

Unambiguity. Let us now address the unambiguity of the decomposition, using
our approach based on generating functions. Equation 12 immediately gives a
system of equations relating AU(z), the generating function of simple partially
recursive pseudoknots, to S(z) the gen. fun. of all structures:

AU (z) = ∑
k≥1

( z

1− z

)n
S(z)

( z

1− z

)m1
( z

1− z

)n1 · · ·
( z

1− z

)nk−1
z S(z) z

( z

1− z

)m−1
= z4 S(z)2 (1− z)

1−2 z − z2 .

Now consider the dynamic programming decomposition illustrated by Figure 4.
Associating generating functions to each type of vertices and translating assigned
bases into monomials, we obtain the following system of equations:

Q′(z) = z2 S(z) AR(z) AL(z) = z AL(z) + AM (z) AR(z) = z AR(z) + AM(z)

AM (z) = z AM (z) + A(z) A(z) = z2 AR(z) + z2 AL(z) + z2 S(z) AT (z) = S(z)(1 − z) − 1.

The last expression for AT (z) follows directly from the observation that any
structure in Q can be written as a sequence of structures fromQ′ interleaved with
sequences of unpaired bases. Given that AT cannot feature unpaired bases on its
right end, one of the sequence of unpaired base must be removed. Furthermore
AT does not generate the empty structure, so we have S(z) = (AT (z)+1)/(1−z).
Solving the system gives Q′(z) = S2(z) z4 (1−z)

1−2 z+z2 = AU(z) and the unambigu-
ity/correctness of the decomposition directly follow.

4.4 Fully-Recursive Kissing Hairpins

Kissing hairpins (KH) are pseudoknotted structure composed of two helices
whose terminal loops are linked by a third helix. These pseudoknots are fre-
quently observed, and are exhaustively predicted by Chen et al (8) in time
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Fig. 5. Unambiguous decomposition of fully recursive kissing hairpins

complexity in O(n5), and in O(n3)/O(n4) under restrictions by Theis et al (50).
Figure 5 presents an unambiguous decomposition which generates the space of
recursive kissing hairpins.

Previous results. Again, an encoding of kissing hairpins can be found in ear-
lier work by one of the authors (47), showing that any KH pseudoknot can be
represented by a word p over three systems of parentheses {(f, f̄), (g, ḡ), (h, h̄)}
(respectively denoting leftmost, central and rightmost helices) such that:

p = (fS)n (gS)m (f̄S)n (hS)k (ḡS)m (h̄S)k−1 h̄. (14)

Completeness. First let us remark that the minimal conformation generated
by the decomposition is KL → KR → K ′

R → KM � fSgSf̄ShSḡSh̄. Re-
mark that one can iterate arbitrarily over the states KL → K ′

L → KL, K ′
R →

KR → K ′
R and K ′

M → KM → KM . Consequently one may insert patterns
(KL → K ′

L → KL)n−1 � (S f)n−1 · · · (f̄ S)n−1, (K ′
R → KR → K ′

R)k−1 �
(hS)k−1 · · · (h̄ S)k−1 and (KM → K ′

M → KM )m � (g S)m−1

· · · (S ḡ)m−1 in the minimal word above, and produce any conformation denoted
by

f(Sf)n−1S(gS)m−1yS(f̄S)n−1f̄ShS(hS)k−1ḡ(Sḡ)m−1S(h̄S)k−1h̄

where one recognizes the language of Equation 14 upon simple expansion.

Unambiguity. Equation 14 allows to derive the generating function KH(z) of
kissing-hairpin as a function of S(z) the gen. fun. of all structures:

KH(z) =
∑

n,m,k≥1

(zS(z))n(zS(z))m(zS(z))n(zS(z))k(zS(z))m(zS(z))k−1z =
z6S(z)5

(1 − z2S(z)2)3
·

(15)

Now consider the dynamic programming decomposition illustrated by Figure 5,
and translate it into a system of functional equation:

K(z) = z4KL(z)S(z)

KL(z) = S(z)K′
L(z) + KR(z) K′

L(z) = z2KL(z)S(z) KM (z) = K′
M(z)S(z) + S(z)2

K
′
M (z) = z

2
KM (z)S(z) KR(z) = K

′
R(z)S(z) K

′
R(z) = z

2
KR(z)S(z) + z

2
KM (z)S(z)
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Solving the system gives K(z) = z6S(z)5

(1−z2S(z)2)3 = KH(z) and the unambiguity of
the decomposition immediately follows. Again hypergraphs algorithms can be
used, and specialize into the complexities summarized in Table 2.

Table 2. Summary of ensemble based algorithms on simple pseudoknots and kissing
hairpins. πbp stands for the simple Nussinov-Jacobson energy model, and πT for a
Turner-like model based on loops contributions.

Application Algorithm Weight fun. Time Memory Ref.

Simple type pseudoknots (Akutsu&Uemura)

A – Energy minimization Minimal weight πbp O(n4) O(n4) (1)

B – Partition function Weighted count e
−πbp
RT O(n4) O(n4) (6; 7) in Θ(n6)

C – Base-pairing probabilities Arc-traversal prob. e
−πbp
RT O(n4) O(n4) –

D – Statistical sampling (k-samples) Weighted rand. gen. e
−πbp
RT O(n4 + k · n log n) O(n4) –

E – Moments of energy (Mean, Var.) Moments extraction e
−πbp
RT O(n4) O(n4) –

F – m-th moment of additive features Moments extraction e
−πbp
RT O(m3 · n4) O(m · n4) –

Fully recursive Kissing Hairpins

A – Energy minimization Minimal weight πT O(n5) O(n4) (8)

B – Partition function Weighted count e
−πT
RT O(n5) O(n4) –

C – Base-pairing probabilities Arc-traversal prob. e
−πT
RT O(n5) O(n4) –

D – Statistical sampling (k-samples) Weighted rand. gen. e
−πT
RT O(n5 + k · n log n) O(n4) –

E – Moments of energy (Mean, Var.) Moments extraction e
−πT
RT O(n5) O(n4) –

F – m-th moment of additive features Moments extraction e
−πT
RT O(m3 · n5) O(m · n4) –

5 Extending the Framework: Extraction of Moments and
Exact Correlations

A last application addresses the extraction of statistical measures for additive
features. Let us first define a feature as a function α : E → R

+ extended
additively over F-paths such that α(p) =

∑
e∈p α(e). One may then want to

characterize the distribution of a random variable X = α(p), for p ∈ P a random
F-path drawn according to the weighted distribution. As it is not necessarily
feasible to determine the exact distribution of X , one can examine statistical
measures such as its

Mean μX = E[X ] and Variance VarX = E[X2]− μ2
X ,

e.g. from which the distribution is fully determined in the case of Gaussian dis-
tributions. Even when the distribution is not normal, it can still be characterized
by a list of measures called moments of X , the m-th moment being defined as
E[Xm] =

∑
p∈P α(p)m · π(p)/ws.

Moreover in the presence of multiple features (X1 := α1(p), . . . , Xk := αk(p)),
similar measures can be used to estimate their level of dependency. One such
measure is the Pearson product-moment correlation coefficient ρX1,X2

defined for two random variables as

ρX1,X2 =
CovX1,X2√

VarX1 ·VarX2

=
E[X1 ·X2]− E[X1] · E[X2]√

VarX1 ·VarX2
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The correlation above involves the expectation of a product of two random
variables which is an instance of a generalized moment, defined for the set of
F-paths starting from s ∈ V as

E[Xm1
1 · · ·Xmk

k | s] =
∑
p∈Ps

π(p)
ws

k∏
i=1

αi(p)mi . (16)

Extracting such moments can be quite useful, allowing one to get access to
average properties of structures (#Hairpins, #Occurrences of pseudoknots. . . )
and their correlations within a weighted ensemble. For instance, Miklos et al (38)
proposed an O(m2 ·n3) algorithm for computing the m-th moment of the Energy
distribution for secondary structure in order to compare the distribution of free-
energy in non-coding RNAs and random sequences. We are going to show how
these generalized moments can be extracted directly through a generalization of
the weighted count algorithm.

Theorem 1. Let α := (α1, · · · , αk) be a vector of additive features and m :=
(m1, · · · ,mk) be a k-tuple of natural integers. Then the pseudo-moment cms :=
E[Xm1

1 · · ·Xmk

k | s]·ws of α in a weighted distribution can be recursively computed
through

cms =
∑

e=(s→t)

π(e) ·
∑

m′,(m′′
1 ,··· ,m′′

|t|)
s. t. m′+

∑
j m′′

j =m

k∏
i=1

(
mi

m′
i,m

′′
1,i, · · · ,m′′

|t|,i

)
· αi(e)m′

i ·
|t|∏

i=1

c
m′′

i
ti

(17)

in O
(
(|E|+ |V |) · k · t+ ·∏k

i=1m
t++1
i

)
time complexity and Θ

(
|V | ·∏k

i=1mi

)
memory where t+ = max(s→t)∈E(|t|) is the maximal out-degree of an arc.

Adding this new generic algorithms automatically creates new applications for
each an every conformation space as summarized in Figure 2. This simultaneous
extension – for all conformational spaces – of possible ensemble applications
constitues in our opinion one of the main benefit of detaching the decomposition
from its exploration.

6 Conclusion and Perspectives

In this paper, we established the foundation of a combinatorial approach to the
design of algorithms for complex conformation spaces. We built on an hyper-
graph model introduced in the context of RNA secondary structure by Finkel-
stein and Roytberg (16), which we extended in several direction. First we formu-
lated classic and novel generic algorithms on Forward-Hypergraphs for weighted
ensembles, allowing one to derive base-pairing probabilities, perform statistical
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sampling and extract moments of the distribution of additive features. Then
we showed how combinatorial arguments based on generating functions could
be used to simplify the proof of correctness for designed decompositions. We
illustrated the full programme on classic secondary structures, simple type pseu-
doknots and fully-recursive kissing hairpin pseudoknots for which we provided
decompositions that were proven to be unambiguous and complete with respect
to previous work. The hypergraph formulation of the decomposition, coupled
with the generic algorithms, readily gave a family of novel algorithms for com-
plex – yet relevant – conformation spaces.

Let us mention some perspectives to our contribution. Firstly the principles
and algorithms described here could easily be implemented as a general compiler
tools for F-Graphs algorithms. Such a compiler could be coupled with helper
tools expanding hypergraphs from succinct descriptions, such as context-free
grammars (related to ADP (19)), or M. Möhl’s split types (37). More complex
search space could also be modeled, such as those relying on a more detailed
representation of RNA structure (e.g. MCFold’s NCMs (40)), those capturing
RNA-RNA interactions (2; 24), those offering simultaneous alignment and fold-
ing (Sankoff’s algorithm (46)) or performing mutations on the sequence (53).
Finally our hypergraph framework is not necessarily limited to polynomial algo-
rithms, and algorithmic developments could be proposed to address some of the
current algorithmic issues in RNA (inverse folding (3), kinetics (49)) for which no
exact polynomial algorithms are currently known (or suspected). More generally
it is our hope that, by simplifying and modularizing the process of developing
new – algorithmically tractable – conformation spaces, our contribution will help
design better, more topologically-realistic(52; 28; 44), energy and conformational
spaces to better understand and predict the structure(s) of RNA.
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[47] Saule, C.: Modèles combinatoires des structures d’ARN avec ou sans pseudo-
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Helsinki Institute for Information Technology (HIIT) &
Department of Computer Science, University of Helsinki, Finland

{jltsiren,nvalimak,vmakinen}@cs.helsinki.fi

Abstract. We propose a way to index population genotype information
together with the complete genome sequence, so that one can use the in-
dex to efficiently align a given sequence to the genome with all plausible
genotype recombinations taken into account. This is achieved through
converting a multiple alignment of individual genomes into a finite au-
tomaton recognizing all strings that can be read from the alignment by
switching the sequence at any time. The finite automaton is indexed
with an extension of Burrows-Wheeler transform to allow pattern search
inside the plausible recombinant sequences. The size of the index stays
limited, because of the high similarity of individual genomes. The index
finds applications in variation calling and in primer design.

1 Introduction

Due to the advances in DNA sequencing [17], it is now possible to have com-
plete genomes of individuals sequenced and assembled. Already several human
genomes have been sequenced [22,9,11,23,14] and it is almost a routine task to
resequence individuals by aligning the high-throughput short DNA reads to the
reference [7]. This rich and focused genotype information, together with the more
global genotype information (common single nucleotide polymorphisms (SNPs)
and other variations) created using earlier techniques, can be combined to do
different population-wide studies, now first time directly on whole genome level.

We propose a novel index structure that simultaneously represents and extrap-
olates the genotype information present in the population samples. The index
structure is built on a given multiple alignment of individual genomes, or alter-
natively for a single reference sequence and set of SNPs of interest. The index
structure is capable of aligning a given pattern to any path taken along the
multiple alignment, as illustrated in Figure 1.

To build the index, we first create a finite automaton recognizing all paths
through the multiple alignment, and then generalize Burrows-Wheeler transform
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G A C G T A - C T G C A G A T G - T A A T G C
G A C G T A - - - G C A G A T G C T A A T C C
G A T G T A - C T G C T G A T G C T - - T G C
G A C - T A C C T G C A G - T G C T A A T C C

Fig. 1. Pattern AGCTGTGT matching the multiple alignment when allowing it to change
row when necessary

(BWT) [2] -based self-index structures [19] to index paths in labeled graphs. The
backward search routine of BWT-based indexes generalizes to support exact pat-
tern search over the labeled graph in O(m) time, for pattern of length m. On
general labeled graphs, such index can take exponential space, but on graphs re-
sulting from finite automaton representation of multiple alignment of individual
genomes, the space is expected to stay limited.

Applications for our index include the following:

– SNP calling. We can take the known SNPs into account already in the short
read alignment phase, instead of the common pipeline of alignment, variation
calling, and filtering of known SNPs. This allows more accurate alignment,
as the known SNPs are no longer counted as errors, and the matches can
represent novel recombinants not yet represented in the database.

– Probe/primer design. When designing probes for microarrays or primers for
PCR, it is important that the designed sequence does not occur even approx-
imately elsewhere than in the target. Our index can provide approximate
search not only against all substrings, but also against plausible recombi-
nants, and hence the design can be made more selective.

– Large indel calling. After short read alignment, the common approach for
detecting larger indels is to study the uncovered regions in the reference
genome. We can model deletions with our index by adding an edge to the
automaton skipping each plausible deleted area. For insertions, we can apply
de novo sequence assembly with the unmapped reads to generate plausible
insertions, and add these as paths to the automaton.

– Reassembly of donor genome. Continuing from variation calling, one can use
the realignment of the reads to the refined automaton to give a probability
for each edge. It is then easy to extract, for example, the most probable path
through the automaton as a consensus for the donor.

We made some feasibility experiments on SNP calling problem. We created our
index on a multiple alignment of four instances of the 76 Mbp human chromo-
some 18. The total size of the index was about 67 MB. Aligning a set of 10
million Illumina Solexa reads of length 56 took 18 minutes, and about 1.1% of
exact matches were novel recombinants not found when indexing each chromo-
some instance separately (see Sect. 5). Leaving these exact matches out from
variation calling reduces the number of novel SNPs from 4203 to 1074.



272 J. Sirén, N. Välimäki, and V. Mäkinen

Related work and extensions. Jumping alignments of protein sequences were
studied in [21] as an alternative to profile Hidden Markov Models. They showed
how to do local alignment across a multiple alignment of protein family so that
jumping from one sequence to another is associated with a penalty. We study the
same problem but from a different angle; we provide a compressed representation
of the multiple alignment with an efficient way to support pattern matching.

Calling of large indels similar to our approach was studied in [1]. One differ-
ence is that they manage to associate probabilities to the putative genotypes,
resulting into a more reliable calling of likely variants. However, their indexing
part is tailored for this specific problem, whereas we develop a more systematic
approach that can be generalized to many directions. For example, we can take
the probabilities into account and index only paths with high enough probabili-
ties, to closely simulate their approach (see Sect. 6).

Our work builds on the self-indexing scenario [19], and more specifically is
an extension of the XBW transform [5] that is an index structure for labeled
trees. Our extension to labeled graphs may be of independent interest, as it has
potentially many more applications inside and outside computational biology.

The focus of this paper is the finite automaton representation of a multi-
ple alignment. This setting is closely related to our previous work on indexing
highly repetitive sequence collections [15]. In our previous work, we represented
a collection of individual genomes of total length N , with reference sequence of
length n, and a total of s mutations, in space O(n log N

n + s log2N) bits in the
average case (rough upper bounds here for simplicity). Exact pattern matching
was supported in O(m logN) time. The index proposed in this paper achieves
O(n(1 + s/n)O(log n)) bits in the expected case for constant-sized alphabets.

The paper is organized as follows. Section 2 introduces the notation, Sect. 3
reviews the necessary index structures we build on, Sect. 4 describes the new
extension to finite languages, Sect. 5 gives some preliminary experiments on SNP
calling problem, and Sect. 6 concludes the work by sketching the steps required
for making the index into a fully applicable tool.

2 Definitions

A string S = S[1, n] is a sequence of characters from alphabet Σ = {1, 2, . . . , σ}.
A substring of S is written as S[i, j]. A substring of type S[1, j] is called a prefix,
while a substring of type S[i, n] is called a suffix. A text string T = T [1, n] is a
string terminated by T [n] = $ �∈ Σ with lexicographic value 0. The lexicographic
order ”<” among strings is defined in the usual way.

A graph G = (V,E) consists of a set V = {v1, . . . , v|V |} of nodes and a set
E ⊂ V 2 of edges such that (v, v) �∈ E for all v ∈ V . We call (u, v) ∈ E an edge
from node u to node v. A graph is directed, if edge (u, v) is distinct from edge
(v, u). In this paper, the graphs are always directed. For every node v ∈ V , the
indegree in(v) is the number of incoming edges (u, v), and the outdegree out(v)
the number of outgoing edges (v, w).

Graph G is said to be labeled, if we attach a label �(v) to each node v ∈ V . A
path P = u1 · · ·u|P | is a sequence of nodes from u1 to u|P | such that (ui, ui+1) ∈
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E for all i < |P |. The label of path P is the string �(P ) = �(u1) · · · �(u|P |). A
cycle is a path from a node to itself containing, at least one other node. If a
graph contains no cycles, it is called acyclic.

A finite automaton is a directed labeled graph A = (V,E)1. The initial node
v1 is labeled with �(v1) = # with lexicographic value σ+ 1, while the final node
v|V | is labeled with �(v|V |) = $. The rest of the nodes are labeled with characters
from alphabet Σ. Every node is assumed to be on some path from v1 to v|V |.

The language L(A) recognized by automaton A is the set of the labels of all
paths from v1 to v|V |. If the language contains a finite number of strings, it is
called finite. A language is finite if and only if the automaton is acyclic. Two
automata are said to be equivalent, if they recognize the same language.

Automaton A is forward (reverse) deterministic if, for every node v ∈ V
and every character c ∈ Σ ∪ {#, $}, there exists at most one node u such that
�(u) = c and (v, u) ∈ E ((u, v) ∈ E). For any language recognized by some finite
automaton, we can always construct an equivalent automaton that is forward
(reverse) deterministic.

3 Compressed Indexes

The suffix array (SA) of text T [1, n] is an array of pointers SA[1, n] to the suffixes
of T in lexicographic order. As an abstract data type, a suffix array is any data
structure that supports the following operations efficiently: (a) find the SA range
containing the suffixes prefixed by pattern P ; (b) locate the suffix SA[i] in the
text; and (c) display any substring of text T .

Compressed suffix arrays (CSA) [8,6] support these operations. Their com-
pression is based on the Burrows-Wheeler transform (BWT) [2], a permutation
of the text related to the SA. The BWT of text T is a sequence BWT[1, n] such
that BWT[i] = T [SA[i]− 1], if SA[i] > 1, and BWT[i] = T [n] = $ otherwise.

BWT can be reversed by a permutation called LF -mapping [2,6]. Let C[1, σ]
be an array such that C[c] is the number of characters in {$, 1, 2, . . . , c− 1} oc-
curring in the BWT. We also define C[0] = C[$] = 0 and C[σ+1] = n. We define
LF -mapping as LF (i) = C[BWT[i]]+rankBWT[i](BWT, i), where rankc(BWT, i)
is the number of occurrences of character c in prefix BWT[1, i].

The inverse of LF -mapping is Ψ(i) = selectc(BWT, i − C[c]), where c is the
highest value with C[c] < i, and selectc(BWT, j) is the position of the jth
occurrence of character c in BWT [8]. By its definition, function Ψ is strictly
increasing in the range [C[c]+1, C[c+1]] for every c ∈ Σ. Note that T [SA[i]] = c
and BWT[Ψ(i)] = c for C[c] < i ≤ C[c+ 1].

These functions form the backbone of CSAs. As SA[LF (i)] = SA[i]−1 [6] and
hence SA[Ψ(i)] = SA[i] + 1, we can use these functions to move the suffix array
position backward and forward in the sequence. The functions can be efficiently
implemented by adding some extra information to a compressed representation
of the BWT. Standard techniques [19] for supporting SA functionality include

1 Unlike the usual definition, we label nodes instead of edges.
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using backward searching [6] for find, and sampling some suffix array values for
locate and display.

XBW [5] is a generalization of the Burrows-Wheeler transform for labeled
trees, where leaf nodes and internal nodes are labeled with different alphabets.
Internal nodes of the tree are sorted lexicographically according to path labels
from the node to the root. Sequence BWT is formed by concatenating the labels
of the children of each internal node in lexicographic order according to the
parent node. Every internal node v now corresponds to a substring BWT[spv, epv]
containing the labels of its children. The first position spv of each such substring
is marked with a 1-bit in bit vector F . Backward searching is used to support
the analogue of find. Tree navigation is possible by using BWT and F .

4 Burrows-Wheeler Transform for Finite Languages

In this section, we generalize the XBW approach to finite automata. We call
it the generalized compressed suffix array (GCSA). For the GCSA to function,
we require that the automaton is prefix-sorted. Refer to Section 4.4 on how to
transform an automaton into an equivalent prefix-sorted automaton.

Definition 1. Let A be a finite automaton, and let v ∈ V be a node. Node v
is prefix-sorted by prefix p(v), if the labels of all paths from v to v|V | share a
common prefix p(v), and no path from any other node u �= v to v|V | has p(v) as
a prefix of its label. Automaton A is prefix-sorted, if all nodes are prefix-sorted.

Every node of a prefix-sorted automaton A corresponds to a lexicographic range
of suffixes of language L(A).

In XBW, bit vector F is used to mark both nodes and edges. If node v
has lexicographic rank i, the labels of its predecessors are BWT[spv, epv] =
BWT[select1(F, i), select1(F, i+1)−1]. On the other hand, if node u is a child of
node v, and BWT[j] contains the label of node u, then LF (j) is the lexicographic
rank of the label of the path from node u through node v to the root. Hence
select1(F,LF (j)) gives us the position of edge (u, v).

While the latter functionality is trivial in trees, a node can have many outgoing
edges in a finite automaton. Hence we will use another bit vector M to mark
the outgoing edges.

Let A = (V,E) be a prefix-sorted automaton. To build GCSA, we sort the
nodes v ∈ V according to prefixes p(v). For every node v ∈ V , sequence BWT and
bit vectors F andM contain range [spv, epv] of length n(v) = max(in(v), out(v)).
See Figure 4 and Table 1 for an example.

– BWT[spv, epv] contains the labels �(u) for all incoming edges (u, v) ∈ E,
followed by n(v)− in(v) empty characters.

– F [spv] = 1 and F [i] = 0 for spv < i ≤ epv.
– M [spv, epv] contains out(v) 1-bits followed by n(v) − out(v) 0-bits. For the

final node v|V |, the range contains one 1-bit followed by 0-bits.
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function LF ([spv, epv], c):
1 i← C[c] + rankc(BWT, epv)
2 if selectc(BWT, i− C[c]) < spv:
3 return ∅
4 i← select1(M, i)
5 spu ← select1(F, rank1(F, i))
6 epu ← select1(F, rank1(F, i) + 1)− 1
7 return [spu, epu]

function �([spv, epv]):
8 return char(rank1(M, spv))

function Ψ([spu, epu]):
9 c← �([spu, epu])
10 res← ∅
11 low ← rank1(M, spu)
12 high← rank1(M, epu)
13 for i← low to high:
14 j ← selectc(BWT, i− C[c])
15 spv ← select1(F, rank1(F, j))
16 epv ← select1(F, rank1(F, j) + 1)− 1
17 res← res ∪ {[spv, epv]}
18 return res

Fig. 2. Pseudocode for the basic navigation functions LF , Ψ , and �

Array C is used with some modifications. We define C[σ + 1] = C[#] in the
same way as for regular characters, while C[σ + 2] is set to be |E|. Assuming
that each edge (u, v) ∈ E has an implicit label �(u)p(v), we can interpret C[c]
as the number of edges with labels smaller than c. We write char(i) to denote
character c such that C[c] < i ≤ C[c+ 1].

4.1 Basic Navigation

Let [spv, epv] be the range of BWT corresponding to node v ∈ V . We define the
following functions:

– LF ([spv, epv], c) = [spu, epu], where �(u) = c and (u, v) ∈ E, or ∅ if no such
u exists.

– Ψ([spu, epu]) = {[spv, epv] | (u, v) ∈ E}.
– �([spv, epv]) = �(v).

These are generalizations of the respective functions on BWT. LF can be used
to move backwards on edge (u, v) such that �(u) = c, while Ψ lists the endpoints
of all outgoing edges from node u. These functions can be implemented by using
BWT, F , M , and C, as seen in Figure 2.

Line 1 of LF is similar to the regular LF , determining the rank of edge
label cp(v) among all edge labels. On lines 2 and 3, we determine if there is an
occurrence of c in BWT[spv, epv]. On line 4, we find the position of edge (u, v) in
bit vector M , and on lines 5 and 6, we find the range [spu, epu] containing this
position.

4.2 Searching

As the generalized compressed suffix array is a CSA, most of the algorithms
using a CSA can be modified to use GCSA instead. In this section, we describe
how to support two of the basic SA operations (see Sect. 3):

– find(P ) returns the range [sp, ep] of BWT corresponding to those nodes v,
where at least one path starting from v has pattern P as a prefix of its label.

– locate([spv, epv]) returns a numerical value corresponding to node v.
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We use backward searching [6] to support find. The algorithm maintains an
invariant that [spi, epi] is the range returned by find(P [i,m]). In the initial step,
we start with the edge range [C[P [m]] + 1, C[P [m] + 1]], and convert it to range
[spm, epm] by using bit vectorsM and F . The step from [spi+1, epi+1] to [spi, epi]
is a generalization of function LF for a range of nodes. We find the first and last
occurrences of character P [i] in BWT[spi+1, epi+1], map them to edge ranks by
using C and BWT, and convert the ranks to spi and epi by using F and M .

For locate, we assume that there is a (not necessarily unique) numerical value
id(v) attached to each node v ∈ V . Examples of these values include node ids
(so that id(vi) = i) and positions in the multiple alignment. To avoid excessive
sampling of node values, id(v) should be id(u) + 1 whenever (u, v) is the only
outgoing edge from u and the only incoming edge to v.

We sample id(u), if there are multiple or no outgoing edges from node u, or
if id(v) �= id(u) + 1 for the only outgoing edge (u, v). We also sample one out
of d node values, given sample rate d > 0, on paths of at least d nodes without
any samples. The sampled values are stored in the same order as the nodes, and
their positions are marked in bit vector B (B[spu] = 1, if node u is sampled).

Node values are retrieved in a similar way as in CSAs [19]. To retrieve id(u),
we first check if B[spu] = 1, and return sample rank1(B, spu), if this is the
case. Otherwise we follow the only outgoing edge (u, v) by using function Ψ , and
continue from node v. When we find a sampled node w, we return id(w) − k,
where k is the number of steps taken by using Ψ .

4.3 Analysis

For each node v ∈ V , the length of range [spv, epv] is the maximum of in(v) and
out(v). As every node must have at least one incoming edge and one outgoing
edge (except for the initial and the final nodes), the length of BWT is at most
2|E| − |V |+ 2.

Theorem 1. Assume that rank and select on bit vectors require O(tB) time.
GCSA with sample rate d supports find(P ) in O(|P | · tB) and locate([spv, epv])
in O(d · tB) time.

Proof. We use bit vectors Ψc that mark the occurrences of character c ∈ Σ∪{#}
to encode BWT. This reduces rank and select on BWT to the same operations
on bit vectors. Basic operations � and LF take O(tB) time, as they require a
constant number of bit vector operations. Ψ also takes O(tB) time, if the current
node has outdegree 1. As find does one generalized LF per character of pattern,
it takes O(|P | · tB) time.

Operation locate checks from bit vector B if the current position is sampled,
and follows the unique outgoing edge using Ψ if not. This requires a constant
number of bit vector operations per step. As a sample is found within d−1 steps,
the time complexity is O(d · tB). ��
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# G G GA AC C CT

T

T $

Fig. 3. A reverse deterministic automaton corresponding to the first 10 positions of
the multiple alignment in Figure 1
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Fig. 4. A prefix-sorted automaton built for the automaton in Figure 3. The strings
above nodes are prefixes p(v).

Table 1. GCSA for the automaton in Figure 4. Nodes are identified by prefixes p(v).

$ ACC ACG ACTA ACTG AG AT CC CG CTA CTG G$ GA GT TA TG$ TGT #

BWT G T G G T T G A A A AC AT #-- CT CG- C A $

F 1 1 1 1 1 1 1 1 1 1 10 10 100 10 100 1 1 1

M 1 1 1 1 1 1 1 1 1 1 10 10 111 10 111 1 1 1

4.4 Index Construction

Our construction algorithm is related to the prefix-doubling approach to suffix
array construction [20]. We start with a reverse deterministic automaton (see
Figure 3), convert it to an equivalent prefix-sorted automaton (Figure 4), and
build the GCSA (Table 1) for that automaton.

Definition 2. Let A be a finite automaton recognizing a finite language, and let
k > 0 be an integer. A is k-sorted if, for every node v ∈ V , the labels of all
paths from v to v|V | share a common prefix p(v, k) of length k, or if node v is
prefix-sorted by prefix p(v, k) of length at most k.

Starting from a reverse deterministic automaton A = A0, we build a series of
automata Ai = (Vi, Ei) for i = 1, 2, . . . that are 2i-sorted, until we get an
automaton that is prefix-sorted. The construction algorithm is described and
analyzed in more detail in the full paper2

2 arXiv:1010.2656 [cs.DS].
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Due to the lack of space, we just summarize the result of the analysis here. As-
sume that we have a random reference sequence of length n from an alphabet of
size σ, with a random SNP at each position with probability p < 0.25. Then there
are f(n, p) = n(1 + p)O(logσ n) +O(1) nodes and edges in the expected case, and
the algorithm uses O(f(n, p) log f(n, p) logn) time and O(f(n, p) log f(n, p)) bits
of space. As we mostly use sorting, scanning and database joins, the algorithm
can be implemented efficiently in parallel, distributed, and external memory
settings.

5 Implementation and Experiments

We have implemented GCSA in C++, using the components from on our im-
plementation of RLCSA [15]3. For each character c ∈ Σ ∪ {#}, we use a gap
encoded bit vector to mark the occurrences of c in BWT. Bit vectors F and
M are run-length encoded. Bit vector B is gap encoded, while the samples are
stored using �log(idmax +1)� bits each, where idmax is the largest sampled value.

The implementation was compiled on g++ version 4.3.3. Index construction
was done on a system with 128 gigabytes of memory and four quad-core Intel
Xeon X7350 processors running at 2.93 GHz, while the other experiments were
done on another system with 32 gigabytes of memory and two quad-core In-
tel Xeon E5540 processors running at 2.53 GHz. We used only one core in all
experiments. Both systems were running Ubuntu 10.04 with Linux kernel 2.6.32.

We built a multiple alignment for four different assemblies of the human chro-
mosome 18 (about 76 Mbp each). Three of the assemblies were from NCBI4: the
assemblies by the Genome Reference Consortium (GRCh37), Celera Genomics,
and J. Craig Venter Institute. The fourth sequence5 was from Beijing Genomics
Institute. The sequences were aligned by the Mauve Multiple Genome Alignment
software [3]. We ran progressiveMauve 2.3.1 assuming collinear genomes, as we
do not support rearrangements. The multiple alignment took a few hours to
build: about 89.4% of nucleotides aligned perfectly, 0.19% with one or more mis-
matches, and 10.4% were inside of a gap. The number of gaps was high mainly
because of the differences in the centromere region.

We constructed a GCSA (sample rate 16) for the alignment with various
context lengths m. For each base Sj [i] of sequence Sj , we used the next m bases
as a context. We created a node for each base of each sequence, with an edge
to the next base in the sequence. The nodes for aligned bases Sj [i] and Sj′ [i′]
were then merged, if the bases and their contexts were identical. We also built
RLCSA (sample rate 32) and BWA 0.5.8a [12] for the four sequences.

We searched for exact matches of 10 million Illumina/Solexa reads of length
56, sequenced from the whole genome, as both regular patterns and reverse com-
plements. Table 2 lists results of these experiments. GCSA was 2.5–4 times slower
than RLCSA and 3.5–5 times slower than BWA. About 1% of the reads matched
3 http://www.cs.helsinki.fi/group/suds/gcsa/
4 ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/
5 ftp://public.genomics.org.cn/BGI/yanhuang/fa/

http://www.cs.helsinki.fi/group/suds/gcsa/
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/
ftp://public.genomics.org.cn/BGI/yanhuang/fa/
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Table 2. Index construction and exact matching with GCSA (sample rate 16), RLCSA
(sample rate 32), and BWA on a multiple alignment of four sequences of human chro-
mosome 18. Times for locate include the time used by find. GCSA-m denotes GCSA
with context length m.

Construction Matching
Index Size Time Space Matches Find Locate

GCSA-2 71.8 MB 342 min 77 GB 389,292 16 min 25 min
GCSA-4 66.9 MB 295 min 29 GB 388,521 16 min 18 min
GCSA-8 64.5 MB 286 min 22 GB 387,807 16 min 17 min
RLCSA 165.0 MB 11 min 2.3 GB 384,400 6 min 7 min
BWA 212.4 MB 4 min 1.4 GB 384,400 - 5 min

by GCSA were not matched by the other indexes. Construction requirements for
GCSA were high (but see Sect. 6 for discussion).

The performance gap between GCSA and RLCSA reflects differences in funda-
mental techniques, as the implementations share most of their basic components
and design choices. Theoretically GCSA should be about 3 times slower, as it
requires six bit vector operations per base in find, while RLCSA uses just two.
The differences between RLCSA and BWA come from implementation choices,
as RLCSA is intended for highly repetitive sequences and BWA for fast pattern
matching with DNA sequences.

To test GCSA in a more realistic alignment algorithm, we implemented BWA-
like approximate searching [12] for both GCSA and RLCSA. There are some
differences to BWA: i) we return all best matches; ii) we do not use a seed
sequence; iii) we have no limits on gaps; and iv) we have to match O(|P | log |P |)
instead of O(|P |) characters to build the lower bound array D(·) for pattern
P , as we have not indexed the reverse sequence. We used context length 4 for
GCSA, as it had the best trade-off in exact matching.

The results can be seen in Table 3. GCSA was about 2.5 times slower than
RLCSA, while finding from 1.1% (exact matching) to 2.5% (edit distance 3)
more matches in addition to those found by RLCSA. BWA is significantly faster
(e.g. finding 1,109,668 matches with k = 3 in 40 minutes), as it solves a slighly
different problem, ignoring a large part of the search space with biologically
implausible edit operations. A fair comparison with BWA is currently impossible
without significant amount of reverse engineering. With the same algorithm in all
three indexes, the performance differences should be similar as in exact matching.

Finally, we made a preliminary experiment on the SNP calling application
mentioned in Sect. 1 using in-house software. We called for SNPs from chromo-
some 18 with minimum coverage 2, using all 10 million reads, as well as only
those reads with no exact matches on GCSA-4. The number of called SNPs was
4203 with all reads and 1074 with non-matching ones. We did not yet compare
how much of the reduction can be explained by exact matches on recombinants
that would also be found using approximate search on one reference and how
much by more accurate alignment due to richer reference set.
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Table 3. Approximate matching with GCSA and RLCSA. The reported matches for
given edit distance k include those found with smaller edit distances.

GCSA-4 RLCSA
k Matches Time Matches Time

0 388,521 18 min 384,400 7 min
1 620,482 103 min 609,320 39 min
2 876,877 256 min 856,373 101 min
3 1,147,404 1,751 min 1,118,719 534 min

6 Discussion

Based on our experiments, GCSA is 2.5–4 times slower than a similar implemen-
tation of CSA used in the same algorithm. With typical mutation rates, the index
is also not much larger than a CSA built just for the reference sequence. Hence
GCSA does not require significantly more resources than a regular compressed
suffix array, while providing biologically relevant extended functionality.

While our current construction algorithm uses much resources, recent develop-
ments have improved it significantly. The next implementation should be faster
and use several times less memory than the current one. A parallel external mem-
ory implementation should allow us to build an index for the human genome and
all known SNPs in a few days. Extrapolating from current results, the final index
should be 2.5–3 gigabytes in size. We are also working on a different construction
algorithm in the MapReduce framework [4].

To improve the running time of short read alignment and related tasks, most
of the search space pruning mechanisms (in addition to the one mechanism
we already used from [12]) to support approximate matching on top of BWT
[10,12,13,16] can be easily plugged in.

As mentioned in Section 1, an obvious generalization is to index labeled
weighted graphs, where the weights correspond to probabilities for jumping from
one sequence to another in the alignment. This does not increase space usage
significantly, as the probabilities differ from 1.0 only in nodes with multiple out-
going edges. During the construction of the index, it is also easy to discard paths
with small probabilities, given a threshold. This approach can be used e.g. to
index recombinants only in the recombination hotspot areas [18].

The experiments conducted here aimed at demonstrating the feasibility and
potential of the approach. Once we have the genome-scale implementation ready,
we are able to test our claims on improving variant calling and primer design
accuracy with the index. Both require wet-lab verification to see the true effect
on reducing false positives.

Acknowledgements. We wish to thank Eric Rivals for pointing out recombi-
nation hotspots and Riku Katainen for running the variation calling experiment.
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Abstract. The perfect phylogeny problem is of central importance to
both evolutionary biology and population genetics. Missing values are a
common occurrence in both sequence and genotype data. In their pres-
ence, the problem of finding a perfect phylogeny is NP-hard, even for
binary characters [24]. We extend the utility of the perfect phylogeny
by introducing new efficient algorithms for broad classes of binary and
multi-state data with missing values.

Specifically, we address the rich data hypothesis introduced by Halperin
and Karp [11] for the binary perfect phylogeny problem with missing
data. We give an efficient algorithm for enumerating phylogenies com-
patible with characters satisfying the rich data hypothesis. This algorithm
is useful for computing the probability of data with missing values under
the coalescent model.

In addition, we use the partition intersection (PI) graph and chordal
graph theory to generalize the rich data hypothesis to multi-state charac-
ters with missing values. For a bounded number of states, k, we provide
a fixed parameter tractable algorithm for the k-state perfect phylogeny
problem with missing data. Our approach reduces missing data prob-
lems to problems on complete data. Finally, we characterize a commonly
observed condition, an m-clique in the PI graph, under which a perfect
phylogeny can be found efficiently for binary characters with missing val-
ues. We evaluate our results with extensive empirical analysis using two
biologically motivated generative models of character data.

1 Introduction and Background

A current and central problem in the study of molecular evolution concerns the
reconstruction of evolutionary history in the form of phylogenetic trees. Extant
haploid genomes (taxa) correspond to the tree leaves, while internal vertices
correspond to hypothetical ancestral taxa. Mutation is the primary process on
these trees, and each branch represents a historical opportunity for mutations.
The perfect phylogeny is a phylogeny that permits only one mutation at each
genomic site (character). This means that each edge in the tree is labeled with the
character(s) that mutate, and the vertices of the tree are labeled with haplotypes,
sequences of character states.

T.M. Przytycka and M.-F. Sagot (Eds.): WABI 2011, LNBI 6833, pp. 282–297, 2011.
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Perfect phylogenies have been used to obtain the haplotypes of diploid individ-
uals from genotype information [25]. Indeed, recent methods of whole genome
sequencing are able to find polymorphic sites at an unprecedented resolution
where recombination is unlikely to occur. The haplotypes inferred from genotype
data are used to estimate recombination rates [16] and to do case-control associa-
tion mapping to find disease loci [4]. Furthermore, general phylogenies have been
used to model somatic genome evolution and understand cancer genomes [21].
The perfect phylogeny may be ideally suited to studying cancer genomes, since
somatic genomes undergo mitosis without recombination.

The perfect phylogeny has a very close relationship to the coalescent of pop-
ulation genetics. A perfect phylogeny on binary characters results under the
commonly used infinite-sites model of evolution, characters are binary and only
mutate once in the history of the sample. A perfect phylogeny where characters
have more than two states occurs under the infinite-alleles model.

Formally, a phylogenetic tree T is an ordered pair (T, Φ). Here T = (V,E)
is a tree, and the labeling map Φ : X → P(V ), where X is a set of taxa with
cardinality n, and P(V ) is the powerset of V . Under the perfect phylogeny model,
a taxon always labels some connected subtree [11]. A fully labeled phylogenetic
tree is a phylogenetic tree where each taxon maps to a single vertex.

A full character is a map C : X → A from the taxa to the set of character
statesA with cardinality k. If k = 2, the character is called a binary character and
the states are labeled A = {0, 1}. A non-full character, C, is a partial character,
and can be written as C : X → A ∪ {∗} where the star indicates unspecified
states from missing data.

Let a collection of partial characters be C = {C1, ..., Cm}. Let X be the union
of the domains of C ∈ C. We say that a character C for taxon x ∈ X has a
specified state if C(x) �= ∗. We do not consider non-informative partial characters
with less than two states in A, i.e. characters C where |C(X)| < 2. A resolution
of C is a full character set CR which agrees with C in every specified character
state and gives an assignment for the unspecified states.

A character C : X → A ∪ {∗} is convex on a phylogenetic tree T if and only
if there is an extension C̄ : V → A of the character such that the following
conditions hold: i) The restriction of the domain of C̄ to the specified states
yields a function that agrees with C. ii) Let Ta be the subgraph of T induced
by the set of vertices mapped by C̄ to a particular character state a. For every
character state a ∈ A, Ta is connected and disjoint from all other Tb for b ∈ A.

We say that a set of full characters is compatible if and only if there is a phy-
logenetic tree on which all the characters are convex. A set of partial characters
C is compatible when there is a fully-specified resolution CR that is compatible.

Consider a set of partial characters C = {C1, ..., Cm} that are compatible
with a fully labeled phylogenetic tree T = (T, φ). For character Ci, let C̄i be the
extension of Ci on tree T . For a vertex v ∈ V in the tree, let the haplotype h(v)
be a sequence of character states, one for each character, where the hi(v) = a
if and only if v ∈ Ta for character C̄i. Then each edge (u, v) of the tree can
be labeled with the characters whose states change between h(u) and h(v). For
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a fully labeled phylogenetic tree, the labeling function φ yields a haplotype for
each taxon x, h(φ(x)).

The perfect phylogeny problem is as follows: given a set of characters, deter-
mine whether the characters are compatible and construct a tree on which the
characters are convex.

For full binary characters, there are O(nm) algorithms for the perfect phy-
logeny problem, e.g. [28]. For case of k = 3 an O(nm2) algorithm was first shown
in [6]. When the full characters can take on at most k states, the perfect phy-
logeny problem was found to be fixed parameter tractable in [1]. An improved
approach for bounded k is that of Kannan and Warnow [13] which has a running
time of O(22knm2).

On partial characters, the perfect phylogeny problem is known to be NP-
hard [24] even in the binary case. A common restricted instance, perfect phy-
logeny on directed binary partial characters, is solvable in polynomial time when
the state transitions are all directed from 0→ 1. This can be achieved under the
perfect phylogeny model if any complete taxon is available in the matrix. The
fastest solution to the directed problem is the algorithm of Pe’er et, al. which
runs in almost linear time [20]. Algorithms for solving the general problem on
binary partial characters are described in [10] using integer linear programming
and [22] by enumerating potential roots for the directed problem after an effec-
tive missing data reduction phase.

The Rich Data Hypothesis. For binary characters Ci and Cj , let V (Ci, Cj) ⊆
{(0, 0), (0, 1), (1, 0), (1, 1)} be the set of values that the pair of characters takes
over the the observed taxa in C. The classic splits-equivalence theorem [23], also
known as the four-gamete condition, states that a collection of full binary char-
acters is compatible if and only if |V (Ci, Cj)| ≤ 3 for all pairs of characters Ci

and Cj .

Definition 1 (rich data hypothesis). A set of binary partial characters where
|V (Ci, Cj)| = 3 for all pairs of characters Ci and Cj satisfies the rich data
hypothesis (RDH) of Halperin and Karp [11].

The rich data hypothesis is of theoretical importance in that it characterizes
a class of tractable perfect phylogeny problems on binary partial characters.
Halperin and Karp demonstrated that under a biologically motivated model,
described later, data will frequently conform to the rich data hypothesis. The rich
data hypothesis does not restrict the topology of trees in any way. And clearly,
not every collection of binary partial characters satisfying the RDH definition is
compatible. One drawback of RDH is that it does not allow for more than one
mutation per tree edge. This restriction is exploited by Halperin and Karp to
achieve a near-linear time perfect phylogeny algorithm for RDH characters.

We describe an efficient algorithm for finding all the perfect phylogeny trees
compatible with binary partial characters that satisfy the rich data hypothe-
sis in section 2. Our O(nm2) algorithm extends the tree-popping algorithm of
Meacham [19]. Using tree-popping, we are able to inductively prove that the tree
topology T for RDH characters is unique. The enumeration algorithm can be
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used to compute the likelihood of RDH characters under the coalescent model
or for Bayesian inference. This allows for estimation of the coalescent genealogy
and mutation rates in the presence of missing data.

Since the RDH only applies to binary partial characters where no two char-
acters label the same tree edge, we introduce more general criteria than the rich
data hypothesis that also allow for efficient solutions to the perfect phylogeny
problem with missing data.

These new criteria are motivated by the RDH and leverage chordal graph the-
ory and the partition intersection graph to dramatically increase the frequency
with which our simulations found a perfect phylogeny in the presence of miss-
ing data. To generalize the RDH we utilize a reduction from the missing data
problem to a problem on complete data. We give an O(22knm2) algorithm for
inferring a perfect phylogeny from k-state partial characters satisfying a general-
ized interpretation of the RDH. We also give an O(nm2) algorithm for directing
binary partial characters for a large class of problem instances which includes
the RDH.

We conclude with an extensive empirical analysis under two biologically mo-
tivated generative models: the coalescent and the finite haplotype model of
Halperin and Karp [11]. The results show a dramatic improvement over previ-
ously characterized methods. This is particularly true under the highly relevant
coalescent model.

2 Enumerating Fully Labeled Phylogenetic Trees

In this section we introduce the tree-popping enumeration algorithm for binary
partial characters satisfying the RDH. Enumeration allows computation of the
likelihood of the data, or the probability of the data being generated by the
coalescent model with infinite sites. Genealogies from the coalescent with infinite
sites are always consistent with the perfect phylogeny tree [29]. The perfect
phylogeny models only the tree structure, while the coalescent genealogy also
models the temporal order of coalescent and mutation events. For a given set of
binary partial characters, there may be multiple perfect phylogenies consistent
with the data. Thus, computing probabilities of the data requires integrating over
the perfect phylogenies consistent with the data, and for each perfect phylogeny,
computing the probability of the data over all coalescent genealogies consistent
with that perfect phylogeny.

When given m partial characters on n taxa that satisfies RDH, we can modify
Meacham’s tree-popping algorithm for full characters [19] to compactly repre-
sent all the fully labeled phylogenetic trees. A polynomial-time version of tree-
popping was reviewed in detail in [23]. Details for a linear-time tree-popping
algorithm on full characters are given in [28].

Our TREE-POPPING algorithm for RDH characters runs in O(nm2) time
and works by iteratively modifying a tree to respect the bipartition on the taxa
that is described by character Ci. The tree begins as a single vertex labeled with
all the taxa. For each new character, we find the unique vertex, b, that is labeled
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with taxa having both character states 0, 1 of Ci. A simple version of this step
takes O(nm) time. We then add a single edge to the tree by splitting b into
two vertices b0 and b1, each labeled with the taxa of b that belong to a single
bipartition of Ci. The edges incident to b, are then connected to either b0 and
b1 in a manner preserving convexity, and the taxa labels Φ are updated to be
consistent with the convexity of character Ci. This splitting operation is called
tree-popping.

Using our TREE-POPPING algorithm, we prove that the tree topology for
compatible RDH characters is unique, implying that the enumerated trees only
differ in the labeling of the taxa on the vertices. The tree-popping algorithm
represents all the fully labeled phylogenetic trees by representing, for each taxon,
the subgraph of the phylogenetic tree that a taxon can compatibly label. At each
step of the tree-popping, there is there is a unique vertex b that is labeled with
both states of the new character Ci, the tree-popping algorithm tree-pops this
vertex generating a unique change to the tree between the i − 1 and ith steps.
Since the beginning tree is unique, each step is determined, and the resulting tree
is invariant to permutation of the first i characters, the tree topology is unique.
Since the topology is unique, the set of haplotypes that label the vertices of
the tree are also well-defined and unique. Since a taxon may be consistent with
multiple tree haplotypes, there can, however, be multiple resolutions of of a
particular missing data value. This results in multiple fully-labeled phylogenetic
trees.

Indeed, the possible fully labeled phylogenetic trees differ only in the label-
ing functions φ : X → V which map each taxon to a single vertex. In general,
phylogenetic tree T = (T, Φ) can be fully labeled using

∏
s∈X |Φ(s)| different

φ. So, for partial characters C the probability of observing them under the coa-
lescent model is P[C] =

∑
φ P[C|φ, T ]P[φ|T ]P[T ] where P[φ|T ] is uniform over φ

and where P[C|φ, T ] is the probability of the data on coalescent genealogies con-
strained by φ and T . Since the topology is unique under the RDH, P[T ] is one.
An effective method for computing the coalescent probability is given in [29].
Integration over the possible trees can be done exhaustively or by Monte-Carlo
sampling of φ. P[C] is the likelihood and can be used for maximum likelihood or
Bayesian parameter inference.

3 Generalizing the Rich Data Hypothesis

In this section we characterize sufficient conditions and polynomial-time algo-
rithms for perfect phylogeny on partial characters, and generalize the rich data
hypothesis. The approach taken here relies heavily on chordal graph theory [8]
[17] and the partition intersection graph [3] [17] [23].

In the partition intersection (PI) graph for a set of characters C, denoted by
int(C), each character in C, C : X → A, induces a partition on the taxa given
by C−1(A). The PI graph int(C) = {VI , EI} summarizes the co-occurrence of
character, state pairs on the observed taxa. The PI graph int(C) is defined on
C as follows: there is a vertex in VI for each character, state pair. For a binary
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character Ci there will be vertices corresponding to C0
i and C1

i . There is an edge
between two vertices when their character state pairs co-occur in some taxon s
in X . In other words (Ca

i , C
b
j ) ∈ EI if there is some taxon s such that Ci(s) = a

and Cj(s) = b. The PI graph for a set of full characters is m-partite and m-
colorable with colors corresponding to characters [17] [18]. A legal edge in the
PI graph must connect two vertices belonging to different colors or characters.

An edge between two nonconsecutive vertices in a cycle is referred to as a chord
of that cycle. We note that a graphG is said to be chordal if every cycle in G with
greater than three vertices has a chord connecting non-adjacent vertices in the
cycle. So, a graph is chordal when there are no chord-less cycles. A triangulation
of a graph G is a chordal graph on the same vertex set but with additional edges
making it chordal. A legal triangulation H(int(C)), of the PI graph int(C), is a
triangulation where all the edges are legal.

The following classic theorem, originally due to Buneman, is valid for partial
characters with an arbitrary number of states:

Theorem 1. The collection of characters C is compatible if and only if there
exists a legal triangulation, H(int(C)), of int(C). [3] [23]

We now show that a legally triangulated partition intersection graph has a per-
fect phylogeny. Given any legal triangulation of int(C), it is possible to derive a
fully labeled perfect phylogeny tree. Let G = (V,E) be an arbitrary undirected
graph. A clique tree is defined as a tree R(G) = (W,E) having one vertex w ∈ W
for each max-clique γ(w) in G and satisfying the intersection property. The inter-
section property states that there is a connected subtree of R induced by graph
vertex v ∈ V , i.e. the subgraph induced by tree vertices {w ∈ W : v ∈ γ(w)}. A
graph G is chordal if and only if it has a clique tree R(G) [2][8][17]. Therefore,
from a legal triangulation of int(C), one can build a clique tree, R(H(int(C))).
Clearly R(H(int(C))) is a perfect phylogeny on which C are convex, because each
vertex in int(C) corresponds to a particular character state and the intersection
property guarantees that each character state is convex. This means that each
C ∈ C has at least one extension C̄ defined by the max-cliques of H(int(C)) in
which C participates and that C̄ is convex on R(H(int(C))).

It is convenient to extend our notion of haplotypes to the cliques of int(C).
Recall that each vertex, v of a perfect phylogeny has a haplotype h(v). Now,
consider a vertex w of the clique tree. This vertex corresponds to a max-clique
γ(w). If γ(w) is anm-clique, then it must contain one vertex from each character.
Therefore, given clique γ(w), we simply read off the haplotype h(γ(w)) which is
the character states appearing in the clique for each of the characters in order.

The reduction from the problem of finding a perfect phylogeny on partial
characters C to the problem of finding finding a legal triangulation of int(C) im-
plies that the latter problem is NP-hard even for binary characters. An effective
approach to the legal triangulation problem, for data of moderate size, using
integer linear programming, was recently described in [9].

In contrast, once the PI graph has been legally triangulated, it is known that
a clique tree can be constructed in time linear in the size of the PI graph [2]. This
will give us another way of observing why the RDH permits efficient algorithms:
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Lemma 1. For a set of binary partial characters that satisfies the RDH, int(C)
is legally triangulated if and only if C has a perfect phylogeny.

Lemma 1 can be easily shown by the fact that adding any legal edge to int(C)
creates a four vertex cycle containing two colors that can only be triangulated by
adding an additional edge connecting two vertices of the same color. It suggests
a way to generalize the RDH. It also implies an efficient alternative solution to
perfect phylogeny problem for characters that satisfy the RDH: use a linear algo-
rithm for recognizing a chordal graph [27], build a clique-tree from the graph [2],
and construct the corresponding perfect phylogeny [9]. We call this the chordal
method and examine its performance in detail later. The chordal method also
efficiently builds a perfect phylogeny from k-state characters, but only if their
PI graph is already chordal. Halperin and Karp presented their own algorithm,
analogous to finding a tree from a PI graph on binary RDH characters. They
reduce the problem to 2-SAT. Since their algorithm depends on |V (Ci, Cj)| = 3,
it is less general than the chordal method.

3.1 The Generalized Rich Data Hypothesis

In this section we build on previous observations to generalize the rich data
hypothesis to an arbitrarily bounded number of states k, and provide conceptual
solutions to missing data problems when the PI graph is not chordal. The main
idea is to reduce missing data problems to complete data problems. We will first
introduce the following definition:

Definition 2 (GRDH). A set of partial characters, C, satisfy the generalized
rich data hypothesis (GRDH) when there exists a resolution of the characters
CR such that int(C) = int(CR).

Notice this definition is a property only of the partial characters and does not
mention compatibility of the partial characters or their resolution. The GRDH
does not imply the PI graph is chordal. The definition includes all binary RDH
data for which there is a perfect phylogeny. Unlike the RDH, under the GRDH
two mutational events (characters) can label the same tree edge. This definition
also clearly applies to multi-state data. Finally, the feature that makes this
definition particularly useful for multi-state data is, as we will show, that it
defines a set of missing data problems on k-state data that can be efficiently
solved for bounded k in time polynomial in n, and m. It is also straightforward
to establish that Halperin and Karp’s argument that the RDH holds for a set of
characters with high probability for sufficiently large n under their biologically
motivated probibalistic generative model also applies to the GRDH.

Our approach uses an equivalent characterization of the GRDH. We say a
clique covers the edge between vertices u and v if both u and v are in the
clique’s vertex set. An edge clique cover for a graph G is a set of cliques in G
covering all the edges of G. The PI graph for any set of full characters will have
an a edge clique-cover consisting of max-cliques with m vertices, which we refer
to as an m-clique cover [17][18]. Importantly, if int(C) satisfies the GRDH, then
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it must also have an m-clique cover, since resolving the characters does not add
edges to the PI graph int(CR).

We first establish that a problem on partial characters C, can be reduced
to a problem on complete characters CR given an m-clique cover for int(C).
In the next section we show a simple efficient algorithm, FIND-m-CLIQUES,
for determining if int(C) has an m-clique cover, by enumerating all distinct m-
cliques of int(C) up to a bound imposed by the maximum number of m-cliques
possible in a legal triangulation of int(C).
Lemma 2. The PI graph of any set of full characters CR must have an m-clique
cover, where an m-clique cover is a collection of max-cliques covering the edges
of int(C) with each clique having m vertices [17][18].

Lemma 3. Let C be a set of partial characters with PI graph int(C). Any m-
clique in int(C) specifies a haplotype that will appear as a vertex in every perfect
phylogeny, if the characters are compatible.

Proof. An m-clique in int(C) appears as a maximal clique in every legal tri-
angulation H(int(C)), because an m-clique is always a maximum clique for an
m-partite graph. Now we simply want to show that the m-clique appears in
every perfect phylogeny. Assume that there is a perfect phylogeny without the
m-clique. We can use the perfect phylogeny to find a legal triangulation of int(C)
using Buneman’s first theorem [3]. This legal triangulation must not contain the
clique corresponding to the m-clique, because the phylogeny does not. But since
H(int(C)) is a chordal supergraph of int(C), the legal triangulation must contain
the m-clique. And this contradiction proves the claim. ��
Lemma 4. A collection of GRDH partial characters C is compatible if and only
if int(C) has an m-clique cover and each m-clique appears as a haplotype in a
perfect phylogeny.

Proof. By the definition of the GRDH and lemma 2, int(C) has an m-clique
cover. Using the established correctness of Buneman’s theorem for missing data
problems, C has a perfect phylogeny if and only if int(C) has a legal triangulation
H(int(C)). Also H(int(C)) is chordal if and only if it has a clique-tree labeled
by the maximal cliques of H(int(C)). Furthermore, there exists a resolution CR
obtained from H(int(C)), since every clique in H(int(C)) is a chordal supergraph
of the cliques in int(C). Suppose there is a clique-tree for H(int(C)). Since both
int(C) and H(int(C)) are m-partite, each m-clique in int(C) is also an m-clique
in H(int(C)) and must be maximal. Therefore each m-clique in int(C) must
appear as a vertex in this clique tree. Using the argument that obtains a perfect
phylogeny from clique tree, each m-clique appears as a haplotype in a perfect
phylogeny. ��
Lemma 3 establishes that every m-clique in int(C) corresponds to a haplotype
in any perfect phylogeny for C. Lemma 2 implies that that if C satisfies the
GRDH, it must also have m-clique cover. And finally, Lemma 4 establishes that
the resolved characters CR defined by the m-clique cover can be substituted for
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the partial characters. This reduction only works when the partial characters
C satisfy the GRDH. It remains to describe an approach for determining the
m-clique cover.

3.2 Finding m-Cliques

We begin by computing the maximum number of m-cliques in a legally triangu-
lated PI graph. This bound is essential to contain the complexity of the m-clique
enumeration algorithm. The approach taken here is similar in structure to the
chordal graph recognition algorithm of Fulkerson and Gross [7].

An important property of chordal graphs is the inheritance property [2]. It is
the fact that when any number of vertices are removed from a chordal graph, it
remains chordal (Lemma 5). A vertex s is simplicial if the subgraph induced by
the vertices adjacent to s forms a clique (or simplex). An important property of
chordal graphs with respect to simplicial vertices is stated as Lemma 6. It was
characterized by Dirac [5] and Lekkerkerker and Boland [14]. A fact of simplicial
vertices, proven in [15], is stated as Lemma 6.

Lemma 5. Any induced subgraph of a chordal graph is also chordal. [2]

Lemma 6. A non-trivial chordal graph has at least two simplicial vertices. [5]

Lemma 7. A vertex is simplicial iff it is contained in exactly one maximal
clique. [15]

Lemmas 5, 6, and 7 are useful to determine the upper bound on the number of
m-cliques for any m-partite chordal graph. Our approach iterates by counting a
simplicial vertex which by Lemma 7 must belong to at most one m-clique since
m-cliques are maximal. After counting the potential m-clique that contains the
simplicial vertex, we remove it from the PI graph. We may then examine the
other simplicial vertices of the same color, count potential m-cliques, and remove
them. If all vertices of this color are removed, we stop counting and terminate.
If a vertex is not simplicial then we can safely remove it from the PI graph
without decreasing the number of m-cliques counted in the resulting subgraph.
This easily proven fact is given here as Lemma 8.

Lemma 8. If a non-simplicial vertex s̄ is removed from G, the number of sim-
plicial vertices in the subgraph G/{s̄} does not decrease.

The counting procedure can be applied recursively with decreasing m. It is max-
imized when k − 1 vertices are simplicial for all colors but the last. When there
is only one color left there will be k m-cliques. Lemma 9 states an upper bound
on the number of m-cliques in a chordal PI graph with k vertices per color. This
is used by Theorem 2 to efficiently find all m-cliques.

Lemma 9. The legally triangulated m-partite PI graph G on data with k states
has at most k + (k − 1)(m− 1) cliques of size m.
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Theorem 2. [Find m-Cliques] If it is possible to legally triangulate a PI graph
int(C), all m-cliques in int(C) can be found in O(k2m3) time.

Proof. Proceed by induction on m. For m=1 we remove an arbitrary character
C from C and initialize a candidate list Q of all 1-cliques by adding a clique
Q to Q corresponding to each state of C. We then induct on m. We remove
a remaining character C from C. All m cliques must contain an m − 1 clique
from the candidate list as a subgraph as well as one of the vertices colored by
the current character C. For each state v of C and each clique Q in Q we can
check if Q∪ {v} is a clique. If it is, we place Q∪ {v} in a new candidate list Q′.
Otherwise we discard it since it will not appear as a subgraph of any clique in the
final list of |C|-cliques. Checking if a vertex v can extend a clique in the candidate
list can be done in O(m) time. For the current C, there are at most k vertices to
check. There are at most O(km) cliques that are checked for extension. If we find
more cliques than allowed by Lemma 9 at any time, we conclude that no perfect
phylogeny exists. A round of extension is done in O(k2m2) time. There are m
characters in the induction, leading to an overall complexity of O(k2m3). ��
When there are k > 3 states in the data, we use the algorithm of Kannan and
Warnow on CR obtained from the m-clique cover to find a perfect phylogeny for
partial characters C satisfying the GRDH. For smaller k, the faster specialized
algorithms may be applied. For k-state characters satisfying the GRDH, the time
complexity of the entire procedure is O(22knm2), assuming n > m.

3.3 Directed Binary Partial Characters

For binary partial characters it is possible to find a perfect phylogeny when the
character state transitions are directed 0 → 1. The most efficient algorithm for
directed characters is the near-linear time algorithm by Pe’er et, al. [20].

A surprising but obvious outcome of being able to efficiently enumerate all
m-cliques of any PI graph which can be legally triangulated, is that the solution
to the problem of finding a single m-clique is efficiently implemented by the same
algorithm. This is remarkable, because the very similar problems of finding the
clique of maximum size and an m-clique in an m-partite graph, such as the PI
graph, are NP hard [26]. The reason we have an efficient algorithm is because we
bound the enumeration using the total number of m-cliques possible in a legally
triangulated PI graph. In Theorem 3, we state an efficiently computable, very
general, sufficient condition on the data for directing binary characters:

Theorem 3. [m-clique rooted] A set of binary partial characters, C, can be di-
rected in O(nm2) time when int(C) contains an m-clique.

Theorem 3 follows directly from Theorem 2 (for k = 2 and n > m) and the
fact that every m-clique corresponds to a haplotype in every perfect phylogeny
(Lemma 3). Theorem 3 applies to all binary data satisfying the rich data hy-
pothesis, having an m-clique cover, or having a complete taxon. An important
distinction between this characterization and the RDH is that the unlabeled tree
is not always unique. In the next section we will demonstrate how commonly
the m-clique condition is observed.
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4 Empirical Results and Discussion

In this section, we evaluate the following implementations: tree-popping, chordal,
m-clique cover, single taxon rooted, and single m-clique rooted. Fig. 1 lists these
methods along with the algorithms that they implement, and, for binary char-
acters, shows a cartoon Venn diagram of which data inputs these methods apply
to. The similar Venn diagram (not shown) for k > 2 simply has two overlap-
ping sets, for chordal and m-clique cover, where neither set includes the other
completely.

Probabilistic Biological Generative Models. For our empirical analyses, we
consider two biologically motivated models, the coalescent model and Halperin
and Karp’s finite haplotype model. The RDH was originally motivated by a model
that assumes the population, from which individuals are sampled, consists of a
finite number of haplotypes with unknown frequency. Under both models, the
number of characters, m, states, k, sample size, n, and missing data rate, q, are
specified, and a simulated data matrix is returned.

For the coalescent model we used Hudson’s ms [12] to generate initial matrices
of complete binary data under the the infinite-sites model with n sampled indi-
viduals. Each entry of the matrix was masked with probability q independently.
The first m segregating characters were taken. To convert binary infinite-sites
data, to data under an infinite alleles model (bounded by k) we applied the
method described in [9] before masking.

For the finite haplotype model we begin with a fixed number of haplotypes
consisting of unique characters (the original RDH requirement for k = 2). To
obtain h ≤ k+(k−1)(m−1) unique haplotypes derived from a perfect phylogeny,
we used our coalescent simulator without masking and take the first m unique
characters. To obtain a sample of size n with missing data, the haplotypes were
sampled with probability 1/h and each position was masked with probability q.

In the context of population genetics, an important distinguishing feature
between the two models, is that under the coalescent, for a fixed number of ran-
domly chosen characters, the frequency of the rarest haplotype in the population
decreases as the sample size increases. This is because the coalescent models bi-
ological evolution without the ascertainment bias of polymorphism discovery.

k = 2

1 3

2 4
5

Name Implementation Time

1 tree-popping (RDH) TREE-POPPING O(nm2)
2 chordal We used [27] with [9] O(nm2)
3 m-clique cover (GRDH) FIND m-CLIQUES + [13] O(22knm2)

4 taxon rooted We find haplotype + [20] Õ(nm)
5 m-clique rooted FIND m-CLIQUES + [20] O(knm2)

Fig. 1. (left) For k = 2, the cartoon Venn diagram shows the space of input data and
each set illustrates the data instances for which a perfect phylogeny can be found with
the numbered method. (right) The methods are numbered corresponding to the Venn
diagram. Each method is described and is named as it is referred to in later plots.
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Fig. 2. The number of labeled trees grows as the missing data rate increases. (right)
For p = 0.5, mean log(l) is plotted against the number of taxa sampled under coalescent
with m = 10 until the matrix was RDH for 100 trials. As expected, the regression line
(red) shows a good linear fit (see text). We observe that the slope of this line increases
with the missing data rate. (left) Mean log(l) is plotted against p is super-linear.

The finite haplotype model is motivated by genotyping studies where ascertain-
ment biases the minor allele frequencies.

Counting RDH Trees. For many applications, it is important to consider all
trees consistent with the data. In Fig. 2 we characterize the explosive growth in
the number of trees as the amount of missing data increases. Under the coales-
cent model, for a fixed m = 10, we increase n until a perfect phylogeny could be
obtained with tree-popping. We then computed log(l), where l =

∏
s∈X |Φ(s)| is

the number of fully labeled phylogenetic trees. For a fixed missing data rate q,
the observed relationship between log(l) and n is approximately linear. Since l
can be computed as the product over taxa of the number of vertices in the sub-
tree each taxon can label, a log-linear relationship follows intuitively. The slope
corresponds to the expected log of the size of the subtree over which a taxon is
valid. The super-linear relationship of log(l) to q, is explained by a simultaneous
increase in the number of taxa required to obtain a perfect phylogeny and the
expected size of the subtree over which a taxon is valid.

Generalizing the Rich Data Hypothesis. We investigated the performance
of our algorithms under both models and compare to previous results. We ex-
amine m-clique cover first. In Fig. 3 we compare the relative performance of
m-clique cover for data obtained under the finite haplotype model for k =2, 3,
and 4. As intended, for fixed m, and large enough n, the matrix will satisfy the
GRDH with high probability regardless of the number of states in the data. We
compare the relative performance of m-clique cover to the original RDH criterion
implemented with tree-popping in Fig. 3 under both models. For binary charac-
ters, we observed that data frequently satisfied GRDH but not the RDH. For
example, a complete data matrix can be constructed with m-clique cover even if
some haplotypes are missing due to under-sampling. Under the coalescent model,
this difference is heightened due to a large number of mutation events observed
on the same tree edge.
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Fig. 3. Contour plots of the probability of an m-clique cover, for m = 10 and k =
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observe empirically that with high probability the matrix will have an m-clique cover
for sufficiently large n. As expected from theory, as k increases the number of samples
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Fig. 4. A thousand simulations were performed for each missing data rate plotted for
both the coalescent and finite haplotype models (k = 2, m = 10, n = 25). (left) We
compare m-clique cover to the original RDH criterion. The m-clique cover outperforms
RDH under both models. This is large under the coalescent model, because it does not
exclude multiple characters per tree edge. (right) Over a larger range of missing data
rates, we compare m-clique rooted to other methods specific to k = 2. While chordal
did not perform as well as m-clique rooted, it works for a non-nested set of instances
and can be combined with m-clique rooted to obtain significantly better results.

For binary characters, under the coalescent model, we observed remarkable
performance from m-clique rooted. In Fig. 4, it dramatically outperforms the
other efficient methods. This was true for all missing data rates tested (Fig. 5).
Since it is possible for the PI graph to be chordal and not have an m-clique, we
also show in Fig. 4 improvement by combining m-clique rooted and chordal.

For data with more than two states, we frequently observed with chordal
that the perfect phylogeny could be constructed efficiently. However, unlike the
m-clique cover criterion, this is not with high probability for sufficiently large
n, even under the finite haplotype model as observed in Fig. 5. The missing
ingredient is ancestral taxa. If ancestral taxa were present in the population,
then a chordal PI graph would have been a broader, faster, criterion to extend
the RDH to k-state data. Unfortunately, this assumption is not generally valid.
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Fig. 5. (left pair) Contour plots comparing taxon rooted to our method m-clique
rooted. Each plot consists of 2 × 105 draws from the coalescent model with m = 10.
For fixed m, the probability of obtaining an m-clique increases much faster than the
probability of obtaining a complete taxon. Intuitively, this is because when looking
for a complete taxon, the taxa are examined independently. However, m-clique rooted
combines multiple taxa to determine the root. (right pair) It is possible that the PI
graph is chordal. For k = 2 this offers a small increase in the probability of success
at very high missing data rates. For k > 2 the improvement is more pronounced.
However, unlike an m-clique cover the data is not guaranteed to be chordal as q → 0.
For k > 2, the critical missing component are the ancestral taxa unobserved in the
data.
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Abstract. The metagenomics approach allows the simultaneous
sequencing of all genomes in an environmental sample. This results in
high complexity datasets, where in addition to repeats and sequencing
errors, the number of genomes and their abundance ratios are unknown.
Recently developed next-generation sequencing (NGS) technologies sig-
nificantly improve the sequencing efficiency and cost. On the other hand,
they result in shorter reads, which makes the separation of reads from
different species harder. In this work, we present a two-phase heuristic
algorithm for separating short paired-end reads from different genomes
in a metagenomic dataset. We use the observation that most of the l-
mers belong to unique genomes when l is sufficiently large. The first
phase of the algorithm results in clusters of l-mers each of which belongs
to one genome. During the second phase, clusters are merged based on
l-mer repeat information. These final clusters are used to assign reads.
The algorithm could handle very short reads and sequencing errors. Our
tests on a large number of simulated metagenomic datasets concerning
species at various phylogenetic distances demonstrate that genomes can
be separated if the number of common repeats is smaller than the number
of genome-specific repeats. For such genomes, our method can separate
NGS reads with a high precision and sensitivity.

1 Introduction

Metagenomics [1] is a new field of study that provides a deeper insight into
the microbial world compared to the traditional single-genome sequencing tech-
nologies. Many well-known metagenomics projects use the whole genome shot-
gun sequencing approach in combination with Sanger sequencing technologies.
This approach has produced datasets from the Sargasso Sea [2], Human Gut
Microbiome [3] and Acid Mine Drainage Biofilm [4]. However, new sequencing
technologies have evolved over the past few years. The sequencing process has
been greatly parallelized, producing millions of reads with much faster speed and
lower cost. Since NGS technologies are much cheaper, they allow sequencing to
be performed at a much greater depth. The only drawback is that read length is
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reduced - NGS reads are usually of lengths 25-150 (Illumina/SOLiD) compared
to 800-1000 bps in Sanger reads.

The primary goals of metagenomics are to describe the populations of mi-
croorganisms and to identify their roles in the environment. Ideally, we want to
identify complete genomic sequences of all organisms present in a sample. How-
ever, metagenomic data is very complex, containing a large number of sequence
reads from many species. The number of species and their abundance levels are
unknown. The assembly of a single genome is already a difficult problem, compli-
cated by repeats and sequencing errors which may lead to high fragmentation of
contigs and misassembly. In a metagenomic data, in addition to repeats within
individual genomes, genomes of closely related species may also share homolo-
gous sequences, which could lead to even more complex repeat patterns that are
very difficult to resolve. A lot of research has been done for assembling single
genomes [5,6,7,8]. But due to the lack of research on metagenomic assemblers,
assemblers designed for individual genomes are routinely used in metagenomic
projects [2,4]. It has been shown that these assemblers may lead not only to
misassembly, but also severe fragmentation of contigs [9]. A plausible approach
to improve the performance of such assemblers is to separate reads from different
organisms present in a dataset before the assembly.

Many computational tools have been developed for separating reads from dif-
ferent species or groups of related species (we will refer to the problem as the
clustering of reads). Some of the tools also estimate the abundance levels and
genome sizes of species. These tools are usually classified as similarity-based (or
phylogeny-based) and composition-based. The purpose of similarity-based meth-
ods is to analyze the taxonomic content of a sample by comparing of fragments
against databases of known genes, proteins and genomic sequences [10,11,12].
The main drawback of similarity-based methods is that a large fraction of se-
quences may remain unclassified because of the absence of closely related se-
quences in the databases.

The second class of methods use compositional properties of the fragments (or
reads). These methods are based on the fact that some composition properties,
such asCGcontent andoligonucleotide frequencies are preserved across sufficiently
long fragments of the same genome, and vary significantly between fragments from
different organisms. K-mer frequency is the most widely used characteristics for
binning. For example, the method in [13] utilizes the property that each genome
has a stable distribution of k-mer frequencies for k = 1..6 in fragments as short as
1000 bps. The main challenge in the k-mer frequency approach is that these fre-
quencies produce large feature vectors, which can be even larger than the sizes of
fragments. Different methods have been proposed to deal with this problem. Com-
postBin [14], which uses hexamer frequencies, adopts a modified principle compo-
nent analysis to extract the top three meaningful components and then cluster the
reads based on principal component values. The work in [15] uses self-organizing
maps to reduce dimensionality. In TETRA [16], z-scores are computed for tetranu-
cleotide frequencies. MetaCluster 3.0 [17] uses Spearman Footrule distance be-
tween k-mer feature vectors. Another composition feature is used in TACOA [18]:
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the ratio between observed oligonucleotide frequencies and expected frequencies
given the CG content. The main limitation of composition based methods is that
the length of fragments may significantly influence their performance. In general,
these methods are not suitable for fragments shorter than 1000 bps [19].

AbundanceBin [20] is a recently developed tool for binning reads that uses an
approach different from the above similarity and composition based techniques.
It is designed to separate reads from genomes that have different abundance
levels. It computes frequencies of all l-mers in a metagenomic dataset and, as-
suming that these frequencies come from a mixture of Poisson distributions,
predicts the abundance levels of genomes and clusters l-mers according to their
frequencies. Then reads are clustered based on the frequencies of their l-mers.
This method is suitable for very short NGS reads. The limitation is that genomes
whose abundance levels do not differ very much (within ratio 1:2) will not be
separated.

In this paper, we present a two-phase heuristic algorithm for separating short
paired-end reads from different organisms in a metagenomic dataset, called
TOSS (i.e., TOol for Separating Short reads). The basic algorithm is devel-
oped to separate genomes with similar abundance levels. It is based on several
interesting observations about unique and repeated l-mers in a metagenomic
dataset, which enables us to separate unique l-mers (each of which belongs to
only one genome and is not repeated) from repeats (l-mers which are repeated
in one or more genomes) at the beginning of the first phase of the algorithm.
During the first phase, unique l-mers are clustered so that each cluster consists of
l-mers from only one of the genomes. This is possible due to the observation that
most l-mers are unique within a genome and, moreover, within a metagenomic
dataset. During the second phase, we find connections between clusters through
repeated regions and then merge clusters of l-mers that are likely to belong to
the same organism. Finally, reads are assigned to clusters. In order to handle
metagenomic datasets with genomes of arbitrary abundance ratios, we com-
bine the method with AbundanceBin which attempts to separate l-mers from
genomes with significantly different abundance levels. The integrated method
works for very short reads, and is able to handle multiple genomes with arbi-
trary abundance levels and sequencing errors. We test the method on a large
number of simulated metagenomic datasets for microbial species with various
phylogenetic closeness according to the NCBI taxonomy [21,22] and show that
genomes can be separated if the number of common repeats is less then the
number of genome-specific repeats. For example, genomes of different species of
the same genus often have a large number of common repeats and thus are very
hard to separate. In the tests, our method is able to separate fewer than a half
of groups of such closely related genomes. However, with the decrease in the
fraction of common repeats, the ability to accurately separate genomes signifi-
cantly increases. Due to the lack of appropriate short read clustering tools for
comparison, we modify a well-known genome assembly software, Velvet [23], to
make it behave like a genome separation tool and compare our clustering results
with those of the modified Velvet.
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The paper is organized as follows. In Section 2, we consider properties of l-
mers in a metagenomic dataset and make several observations which form the
intuition behind the algorithm, present the main algorithm, and extend the
algorithm to handle arbitrary abundance ratios. Section 3 gives the performance
evaluation on short reads and comparison with the well-known composition-
based tool CompostBin on longer reads. Section 4 concludes the paper. Due to
page limit, we omit the comparison with the modified Velvet on short reads,
all pseudocode and some illustrative figures in this extended abstract. These
omitted items can be found in the full paper [24].

2 Methods

2.1 Preliminaries

The algorithm we are going to present is based on l-mers from metagenomic
reads. In this section, we will discuss some properties of l-mers that are important
for our algorithm, and also make some important observations that lead to the
intuition behind the algorithm.

First, let us analyze the expected number of occurrence of l-mers in reads
sequenced from a single genome of length G. Let the number of paired-end reads
be N (which corresponds to 2N read sequences) and read length L. In shotgun
sequencing projects, as well as NGS, the reads are randomly distributed across
the genome. Since reads may begin at any positions of the genome with equal
probability, Lander and Waterman suggested that the left ends of reads follow a
Poisson distribution [25], which means that the probability for a read to begin
at a given position of the genome is α = 2N/(G−L+1) and the number of reads
starting at each position has a Poisson distribution with parameter α. Consider
a substring wi of length l that begins at the i-th position of the genome. Let
x(wi) be the number of reads that cover this particular l-mer. Since there are
L − l + 1 possible starting positions for such reads, x(wi) has a Poisson distri-
bution with parameter λ = α(L− l+ 1) (this parameter represents the effective
coverage [25,26]). This analysis assume that the l-mer wi occurs uniquely in the
genome, but in general, an l-mer may occur multiple times. Suppose that an
l-mer w has n(w) copies in the genome located at positions i1, . . . , in(w). Then

the total number of reads containing w is x(w) =
n(w)∑
j=1

x(wij ). If we assume that

a read covers at most one copy of w, then x(wij ), j = 1, ..., n(w), are indepen-
dent and identically distributed. So by the additivity property of the Poisson
distribution, the total number of occurrences of w in the reads, x(w), follows a
Poisson distribution with parameter α(L− l+1)n(w). In [27], this model is used
to find repeat families for a single genome, where a repeat family is a collection
of l-mers that have the same number of copies in the genome.

In a metagenome, besides repeats that occur within individual genomes,
genomes of different species may share common l-mers. Consider S genomes
gj, j = 1, ..., S, and assume that an l-mer w has nj(w) copies in each genome
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gj, j = 1, ..., S. Then the number of reads containing w is x(w) =
S∑

j=1

αj(L −

l+ 1)nj(w) =
S∑

j=1

λjnj(w), where λj represents the effective coverage of genome

gj. Since sequencing depth is the same for all genomes, we will refer to it as
the abundance. This model is quite difficult to use in practice because we do
not know the number of genomes and their repeat structures, common repeats
and abundance levels. A simplification of this model is used in AbundanceBin
[20], by assuming that for large enough l, most l-mers appear only once in the
genomes (not that in AbundanceBin, 20-mers are considered, compared to 12-
mers considered in [27]). This allows the authors to estimate the abundance
levels of genomes by modeling the abundance levels of the genomes as a mixture
of Poisson distributions, where the parameters are the abundance levels of the
genomes and their observed values are the counts of the l-mers (i.e., the number
of reads containing these l-mers). This approach works well if the abundance
levels are sufficiently different. Also, it is applicable only if the above simplifying
assumption holds. Below, we will discuss the validity of this assumption in real
bacterial genomes and make three important observations about the distribution
of l-mers. Before going into the details of the observations, let us introduce some
notations. Consider two different genomes, g1 and g2, of lengths G1 and G2. Let
ndist

1 denote the number of distinct l-mers in g1, n
uniq
1 the number of l-mers that

have only one copy in g1 (we will call them the unique l-mers in g1) and ntot
1

the total number of l-mers in g1 (including copies). Obviously ntot
1 = G1− l+ 1.

The notations for genome g2 are defined similarly. Our first observation is the
following: (1) Most of the l-mers in a bacterial genome are unique in this genome.
To confirm it, we have computed the ratio of unique l-mers to distinct l-mers for
all complete bacterial genomes downloaded from NCBI. Figure 1(a) shows the
estimated density of this value. We can conclude that fraction of unique l-mers
with l = 20 is between 96% and 100% for most of complete bacterial genomes.

In order to explain the second observation, let us introduce more notations.
Let us consider l-mers from two genomes g1 and g2. Denote by ndist the total
number of distinct l-mers in both genomes together. We say that an l-mer is
unique if it is present only in one genome and, moreover, unique in this genome.
Then nuniq denotes the number of unique l-mers in the genomes. Obviously,
nuniq

1 + nuniq
2 ≥ nuniq, because some l-mers that are unique in one genome may

not be unique in both genomes due to common repeats. Our second observation
is concerned with the percentage of unique l-mers in a metagenome: (2) Most
l-mers are unique in a metagenome if it consists of genomes of species separated
by sufficiently large phylogenetic distances. The validation of this observation is
discussed in the full paper [24].

From now on, by “unique l-mers” we will mean l-mers that appear only once
in all the genomes. The remaining l-mers are repeats. We will further classify the
repeats into two groups: individual repeats are l-mers which appear only in one
genome (but have several copies) and common repeats are l-mers that appear
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Fig. 1. (a) Estimated density functions of the fraction of unique l-mers in fully se-
quenced bacterial genomes for l = 14, 16, 18, 20. (b) Estimated density function of the
ratio of the number of common repeats to the total number of all distinct repeats.

in at least two genomes. Our final observation is: (3) If genomes are separated
by sufficient phylogenetic distances (they are at least from different families),
then most of the repeats are individual repeats. In addition, the bigger is the
phylogenetic distance between genomes, the fewer the common repeats. Figure
1(b) demonstrates the validity of this observation.

Our algorithm is based on these three observations. Since most of the l-mers
are unique in a metagenome, we can cluster the unique l-mers by using their
common membership in reads so that each cluster contains l-mers from only one
genome in the first phase. The second phase of our algorithm uses the property
that most of repeats are specific to an individual genome. This allows us to
merge clusters using the repeated l-mers in the metagenome.

2.2 Finding Unique l-Mers

Before performing the first phase of the algorithm, which clusters the unique
l-mers, l-mers have to be separated into unique l-mers and repeats. This is done
by choosing a threshold value K for the counts of l-mers so that l-mers with
counts less than K are most likely unique and the remaining are most likely
repeats. Below, we discuss how to chose K.

First, consider error-free metagenomic reads of genomes with equal abun-
dance levels. Let n be the number of distinct l-mers w1, w2, ..., wn with counts
x(w1), x(w2), ..., x(wn). Let n(i) be the number of distinct l-mers with counts
i. As we discussed in the previous section, the unique l-mers follow a Poisson
distribution and we may approximate the parameter of the Poisson distribution
by the most frequent count of any l-mers because most l-mers are supposed to
be unique. Then, given the estimated parameter, we can estimate the expected
number of l-mers with counts i, y(i). Figure 2 shows the count distributions of
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Fig. 2. Threshold choice for the separation of l-mers from different distributions

unique and non-unique l-mers, where the non-unique l-mers (i.e., repeats) are
assumed to be from a mixture Poisson distributions and the shaded area shows
the expected rate of misclassified l-mers for the given threshold value K. In the
figure, if we choose the threshold higher or lower, more repeats or unique l-mers
would be undetected, respectively. Although we do not know the distribution of
the repeats, we can see that the observed number of l-mers with count K is twice
the expected number of unique l-mers with count K, and this ratio increases for
count values greater than K. Based on this intuition, we can estimate the value
of K. The details are given in Algorithm 1 of [24]. A similar approach is used
to deal with sequencing errors, by finding a threshold value for counts of l-mers
that separates unique l-mers and l-mers with errors.

The set U of unique l-mers is then used to construct a graph which can help
detect more repeats and will be used to do the clustering. The nodes of the graph
G correspond to the elements of U and there is an edge between two nodes if both
l-mers are contained in a same read. To remove previously undetected repeats,
we use the fact that nodes that correspond to truly unique l-mers cannot have
more than 2(L− l) neighbors.

2.3 Clustering the Unique l-Mers

We use graph G described above to perform the clustering. The purpose is
to obtain clusters so that each cluster contains unique l-mers from only one
genome. Note that the number of such clusters for each genome can be large.
We initialize the first cluster with the l-mers from a randomly selected read and
then iteratively find sets of unclustered nodes that are connected to at least T
nodes in the current cluster (the choice of T is discussed later in the subsection).
It is important to note that the number of unique l-mers we can add at each step
is limited by 2(L− (l + T ) + 1), since we could add l-mers from both ends of a
read. If we need to add more than this many l-mers at some step, it means that
we have encountered true repeats that have not been removed and thus we stop
expanding the current cluster. We also stop expanding the current cluster if no
more nodes could be added. Then we go to the next iteration and construct the
next cluster. For each such subsequent iteration, we initialize a new cluster with
l-mers from some read that does not correspond to any of the current clusters.
A read corresponds to a cluster if at least a half of its l-mers belong to the
particular cluster. We create new clusters until there are no more unclustered
reads left. At the end of clustering, we obtain a set of disjoint clusters of l-mers.
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The paired-end information is then used to consolidate the clusters. The details
are given in Algorithm 2 of the full paper [24].

Threshold T (the minimum required number of edges between an unclustered
node and the nodes in a cluster so that the node can be added to this cluster) is
chosen to make the expected number of coverage gaps less than one. Recall that
the effective coverage is Cov = 2N(L− (l + T ) + 1)/(G− L + 1) and expected
number of gaps is 2Ne−Cov [26].

2.4 Merging Clusters and the Final Clustering of Metagenomic
Reads

The goal of the second phase is to merge clusters obtained during the previous
phase, based on the repeats and information provided by the paired-end reads.
First, for each cluster Ci, we compute the set of repeats Ri that may potentially
belong to the same genome as the unique l-mers in Ci. Each Ri consists of two
types of l-mers. For each read corresponding to cluster Ci, it may contain some
number of repeats. These repeated l-mers are assigned to the set Ri. For each
read corresponding to Ci, we also consider its mate (in a paired-end read) and
add to Ri all l-mers of the mate that have not been assigned to any clusters.
Then for each pair of sets Ri and Rj , we find the intersection of these sets, Rij .
Then, we build a weighted graph F , where nodes correspond to clusters Ci and
the weight of an edge (i, j) equals the size of set Rij . Finally, the clusters are
merged by using the algorithm MCL [28] on the graph F . MCL is an efficient
algorithm for clustering sparse weighted graphs and ideal for our situation. To
avoid confusion, we will call clusters produced by MCL the m-clusters. MCL has
a parameter (we denote it by r), corresponding to granularity of clusters. We
use an iterative algorithm to find the best parameter so that the m-clusters are
big enough (in terms of the number of l-mers contained in each m-cluster) and
the total weight of connections between elements within an m-cluster is higher
than the total weight of connections between two different m-clusters. Let us call
m-cluster that satisfy the first property big, and a subset of big m-clusters that
satisfy the second property (with respect to all other big m-clusters) valid. We
start with a parameter r which corresponds to a high granularity and evaluate
the resultant clusters in terms of size and validity. Based on the evaluation, we
either decrease the parameter to have less granularity or choose the current value
of r as the parameter for MCL. We obtain final clusters of the unique l-mers by
merging clusters that belong to the same m-cluster (see Algorithm 3 in the full
paper [24] for details).

Now we discuss how to define big and valid m-clusters. The minimum size of
a big m-cluster is specified by the user based on the minimum expected length
of a genome. Valid m-clusters are chosen from big m-clusters in the following
way. Let Wjj and Wii be the total weights of the connections within each of the
m-clusters j and i, and Wij the total weight of the connections between these
two m-clusters. The big m-cluster i is defined to be valid if for every other big

m-clusters j, the inequality
√

Wij

WiiWjj > 10−3 holds. The threshold of 10−3 is
chosen empirically.
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In the final step of the algorithm, the reads are assigned to the resultant
clusters of unique l-mers. Iterative algorithm is used to assign the reads. At
the first step, each reads that correspond to some cluster is assigned to this
cluster. During the second step, unassigned reads that have assigned mates are
assigned to the same clusters as their mates. In the third step, for each cluster of
unique l-mers we add all the l-mers from the reads assigned to the cluster. We
iteratively repeat the three steps for the unassigned reads until no more reads
can be assigned. If the read correspond to several clusters, we assign it to one of
the clusters.

2.5 Handling Genomes with Arbitrary Abundance Levels

We would like to extend the above algorithm to metagenomic data containing
genomes with different abundance levels. If the abundance level difference is not
significant, the above algorithm would still work well. In this case, the number of
wrongly determined unique l-mers and repeats in the first phase of the algorithm
may slightly increase, but the clustering of l-mers based on their counts using
the Poisson mixture model may incur a significantly higher drop of performance.
For genomes with significantly different abundance levels, it makes sense to first
separate reads according to genome abundance levels. Otherwise, repeats from
genomes with lower abundance levels will not be detected, which could lead to
a significant increase of granularity in the clustering result produced by the first
phase of the above algorithm. For this reason, we propose to use the algorithm
AbundanceBin [20] for the initial abundance-based binning of reads. Then we
run the first phase of our method for each of the subsets of reads. For the
second phase, we use all the reads to find the connections between clusters so
that connections between clusters from genomes with low abundance levels are
properly recovered, but MCL is performed on each subset separately.

A key question is what ratios of abundance levels should be considered as
significant? This ratio depends on the actual values of abundance levels and also
on the sizes of the genomes. Given abundance levels λ1 and λ2 (λ1 < λ2), genome
sizes G1 and G2, and a threshold K for classifying l-mers into the two genomes
based on count frequencies, we can estimate the expected rate of misclassified l-
mers from the count distributions of the l-mers in these two genomes as discussed
in Section 2.2. More specifically, the shaded area in Figure 2 represents the
expected fraction of misclassification for two distributions. The number of l-mer

in this area is l2
K−1∑
i=1

λi
2e

−λ2

i!
+ l1

Max∑
i=K

λi
1e

−λ1

i!
. So, we first use AbundanceBin

to predict the parameters of count distributions (i.e., the abundance ratios and
genome sizes) and then compute the expected rate of misclassification. If this
rate is unacceptable (we used 3% as the threshold in the experiments), it means
that the abundance levels are not significantly different and thus we do not run
AbundanceBin.
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3 Experimental Results

We test the performance of our algorithm on a variety of synthetic datasets with
different numbers of species, phylogenetic distances between species, abundance
ratios and sequencing error rates. Although simulated datasets do not capture all
characteristics of real metagenomic data, there are no real benchmark datasets
for NGS metagenomic projects and thus they are the only available option. Also,
to the best of our knowledge, there are no algorithms that are designed specif-
ically for separating short NGS reads from different genomes. We compare the
performance of our algorithm with the well-known composition-based method
CompostBin [14] on simulated metagenomic Sanger reads. We also apply the
algorithm to a real metagenomic dataset obtained from gut bacteriocytes of
the glassy-winged sharpshooter and achieve results consistent with the original
study [29].

3.1 Simulated Data Sets

We use MetaSim [30] to simulate paired-end Illumina reads for various bacterial
genomes to form metagenomic datasets. MetaSim is a software for generating
metagenomic datasets with controllable parameters, such as the abundance level
of each genome, read length, sequencing error rate and distribution of errors.
Thus, it can be used to simulate different sequencing technologies and generate
reads from available completely sequenced genomes (for example, those in the
NCBI database). In our experiments, paired-end reads of length 80 bps are
considered, with the mean insert size 500 bps and deviation 20 bps. The number
of reads for each experiment is adjusted to produce sufficient coverage depth
(ranging between 15 and 30). The sequencing error model is set according to the
error profile of 80 bps Illumina reads.

The first experiment is designed to test the performance of our method on a
large number of datasets of varying phylogenetic distances. For this experiment,
we create 182 synthetic datasets of 4 categories. Each dataset of the first category
contains genomes from the same genus but different species. Datasets in the
second category consist of genomes from the same family but different genera,
datasets in the third category involve genomes from the same order but different
families, and datasets in the fourth category involve genomes from the same
class but different orders. Genomes in each test are randomly chosen according
to a category of phylogenetic distances and assumed to have the same abundance
levels. The number of genomes in the datasets varies from 2 to 10 and depends on
the number of available complete sequences for each taxonomic group and on the
level of the group. Tests on genomes from the same genus typically involve 2 to 4
genomes since such genomes are similar to each other and hard to separate, while
tests on genomes from the same class may involve up to 10 genomes. Totally, we
have 79 experiments concerning a genus, 66 concerning a family, 29 concerning
an order, and 8 concerning a class. These datasets involve 515 complete genomes
from the NCBI.



308 O. Tanaseichuk, J. Borneman, and T. Jiang

We also performed some small-scale experiments to test the performance on
genomes with different abundance levels and on reads with sequencing errors.
For each of the experiments, we choose 10 random sets of genomes from the 182
datasets. For each set of genomes, two metagenomic dataset are simulated, one
with abundance ratio 1:2 and and the second with the error model but abundance
ratio 1:1. Finally, we test the performance of the combination of our algorithm
and AbundanceBin on a dataset of 4 genomes with abundances 1:1:4:4.

3.2 Performance Evaluation

To evaluate the results of clustering, there are a number of factors that should be
considered. First of all, we would like most of the reads from each genome to be
located in one cluster. In other words, each genome should correspond to a unique
cluster that contains most of its reads. We say that a genome has been broken if
there is no cluster that contains more than a half of all its reads. It may happen
that several genomes correspond to the same cluster. In this case, we assign
the cluster to all the genomes, and say that the genomes are not separated. We
will measure the performance of our algorithm in terms of pairwise separability.
During the separability analysis, we remove broken genomes from consideration.
Besides separability, we are interested in the precision and sensitivity of our
algorithm on the separated genomes. Since we assign a genome to the cluster
that has most of its reads, it is also interesting to know how many of its reads are
wrongly assigned to other clusters. We call this sensitivity. One way to estimate
sensitivity is to compute how many reads are correctly assigned to each cluster
and divide it by the total number of reads that should be in this cluster. Here,
true positives are the reads from all genomes located in this cluster. However,
consider the case when we have two genomes in a cluster, of lengths 1 Mbps and
5 Mbps respectively. Then, even if sensitivity is very low for the first genome,
the overall sensitivity (for all genomes in the cluster) will not be significantly
affected. Another way to normalize sensitivity is by computing sensitivity for
each genome in the cluster separately and then to find the average of these
sensitivities. We use the second approach. To compute precision of a cluster, we
find the ratio of the reads that are wrongly assigned to the cluster to the total
number of reads in the cluster.

To summarize the results for a set of experiments, we compute separability
based on the total number of pairs of genomes in all the experiments. For the
precision and sensitivity, we take the average values for all the clusters from all
the experiments.

3.3 Experiments on Genomes Separated by Different Phylogenetic
Distances

Our experimental results on metagenomic datasets containing genomes with dif-
ferent phylogenetic distances are summarized in Table 1. For genomes from the
same genus, separability rate is 45%. It increases to 77% for genomes from the
same family and more than 97% for higher level taxonomic categories. For sep-
arated pairs of genomes, our sensitivity increases from 90% for genomes from
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Table 1. Performance on pairs of genomes with different phylogenetic distances

# of genomes # of pairs Broken Separated
Sensitivity Precision
mean stdv mean stdv

Species 229 184 3 83 90.38 8.71 95.55 5.96

Genus 171 147 2 113 93.40 9.39 97.07 5.52

Family 80 79 2 75 94.98 6.56 97.46 5.86

Order 35 71 0 70 95.14 4.87 97.79 2.49

Table 2. Performance of the method on synthetic datasets with and without sequenc-
ing errors. The third row assumes the abundance ratio 1:2.

# of # of
Broken Separated Sensitivity Precision

genomes pairs

IdentAbund, error-free 24 18 0 18 93.48 96.08
IdentAbund, with errors 24 15 2 15 96.84 98.03
DiffAbund, error-free 24 18 0 17 91.00 98.25

the same genus to 95% for genomes from the same order. The range of preci-
sion is from 95% to 98%. These results are consistent with our expectation for
correlation between separability and phylogenetic distance.

3.4 Handling Sequencing Errors

Our approach for handling sequencing errors is very simple: we filter out l-
mers with counts lower than a certain threshold, since these infrequent l-mers
are likely to contain errors. However, there is a simple intuition behind it. We
can aggressively remove potential errors without attempting to correct them
or being afraid to lose important information, assuming that the genomes are
sufficiently covered by the reads. Note that we could be more aggressive than
genome assemblers in throwing out infrequent l-mers here because (i) when the
genomes are sufficiently covered, the filtration will not lead to many more gaps,
and (ii) we are less concerned with the fragmentation of genomes.

In Table 2, we summarize our experimental results on pairs of genomes with
and without sequencing errors. We can see that our method is able to separate
more pairs of genomes when the reads are error-free. However, when broken
genomes are discounted, the method actually achieves a slightly higher sensitivity
and precision on data with errors.

3.5 The Issue of Abundance Levels

In this section, we analyze the ability of our method to separate genomes with
different abundance levels. First, we test our algorithm (without any modifica-
tion) on pairs of genomes with abundance ratio 1:2 and compare the results with
those on the same set of pairs of genomes but with identical abundance levels.
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Table 3. Performance on synthetic datasets with abundance ratio (1:1:4:4)

# of genomes # of pairs Broken Separated Sensitivity Precision

DiffAbund 4 6 0 6 97.42 99.81
IdentAbund 4 6 0 6 92.10 93.81

The results are summarized in the last row of Table 2. We can see that sensi-
tivity slightly drops on genomes with different abundance levels, but precision
actually improves a little.

We also test the performance of a combination of AbundanceBin and our algo-
rithm on a set of four genomes with abundance levels (1 : 1 : 4 : 4) and compare
its result with that of our (original) algorithm on the same set of genomes with
identical abundance levels. The results are summarized in Table 3. As we can
see, the result on data with varying abundance levels is actually better. Sensitiv-
ity and precision increase from 92% and 93% on data with identical abundance
levels to 97% and 99% on data with varying abundance levels. In order to ex-
plain this (somewhat counter-intuitive) phenomenon, we analyzed intermediate
results, and found that two of the six pairs of genomes, (1,3) and (2,4), have
high percentages of common repeats. These common repeats negatively affected
the result on data with identical abundance levels. However, they did not cause
any trouble for the test on data with varying abundance levels since for both
pairs, reads from different genomes were separated by AbundanceBin early on
due to the difference in their abundance levels.

3.6 Comparison with CompostBin

In this section, we compare the performance of our algorithm with a composition-
based binning algorithm, CompostBin [14]. Note that composition-based meth-
ods require sufficiently long reads while TOSS is designed to separate short NGS
reads. On the other hand, our method requires a high coverage depth. To com-
pare the performance with CompostBin, we use the simulated paired-end Sanger
reads of length 1000 bps provided in [14]. We slightly adapt our method to han-
dle longer reads and lower coverage. In particular, we use a higher threshold in
the prediction of unique l-mers. Also, we cut the Sanger reads into fragments of
length 80 bps before constructing the graph of unique l-mers in order to minimize
memory usage. The linkage information of the fragments belonging to a same
read will be recovered and taken advantage of later in the cluster merging phase.
Normalized error rates (as defined in [14]) for our algorithm and for CompostBin
are reported in Table 4. Note that in the last three datasets, the average coverage
of genomes with lower abundance levels (not shown in the table) is close to 1
and, therefore, is insufficient for our algorithm. In addition, we simulate Illumina
reads from the same sets of genomes with a coverage depth between 15 and 30.
Normalized error rates for these datasets are shown in the last column of Table 4.
The highest error rates of our algorithm on Sanger and Illumina reads are 4.74%
and 4.92% respectively, and are less than 10% for CompostBin. For some of the
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Table 4. Comparison with CompostBin on the datasets described in [14]. Note that
some datasets involve genomes that are separated at several different taxonomic levels.

Species Ratio
Phylogenetic CompostBin TOSS TOSS

Distance Error, % (Sanger) (Illumina)
Error, % Error, %

Bacillus halodurans & Bacillus subtilis 1:1 Species 6.48 1.05 1.38
Gluconobacter oxydans&

1:1 Genus 3.39 4.72 4.92
Granulibacter bethesdensis
Escherichia coli & Yersinia pestis 1:1 Genus 10.00 3.11 2.58
Methanocaldococcus jannaschii &

1:1 Family 0.51 0.22 0.01
Methanococcus maripaludis
Pyrobaculum aerophilum &

1:1 Family 0.28 1.05 0.01
Thermofilum pendens
Gluconobacter oxydans &

1:1 Order 0.98 4.74 0.01
Rhodospirillum rubrum
Gluconobacter oxydans,

1:1:8
Family and

7.7 - 6.45Granulibacter bethesdensis & Order
Nitrobacter hamburgensis
Escherichia coli, Pseudomonas putida &

1:1:8
Order and

1.96 - 0.15
Bacillus anthracis Phylum
Escherichia coli, Pseudomonas putida, 1:1: Species, Order,

4.52 - 0.80
Thermofilum pendens, 1:1: Family,
Pyrobaculum aerophilum, 2:14 Phylum, and
Bacillus anthracis & Bacillus subtilis Kingdom

Sanger datasets, the performance of our algorithm is slightly worse compared
to CompostBin and for the others, it is slightly better. The performance of our
algorithm on the corresponding Illumina datasets is better in most of the cases.
Clearly, the higher coverage depths in Illumina datasets helped. A high coverage
depth is essential for the accurate prediction of unique and repeated l-mers in
the preprocessing phase of our algorithm.

3.7 Performance on a Real Dataset

A metagenomic dataset obtained from gut bacteriocytes of the glassy-winged
sharpshooter, Homalodisca coagulata, is known to consist of (Sanger) reads from
Baumannia cicadellinicola, Sulcia muelleri and some miscellaneous unclassified
reads [29] and studied in [14]. We apply our algorithm, adapted to handle Sanger
reads as discussed in Section 3.6, to the dataset. As in [14], we only measure our
ability to separate the reads from Baumannia cicadellinicola and Sulcia muelleri.
The sensitivity of the classification achieved by our algorithm is 92.21% and the
normalized error rate is 1.59%, which is lower than the normalized error rate of
9.04% achieved by CompostBin as reported in [14].

4 Implementation and Future Work

Our algorithm called TOSS was coded in C. Its running time and memory re-
quirement depend on the total length of all the genomes present in a metage-
nomic dataset and on the number of reads. The first phase of the algorithm
is the most time and memory consuming. In this phase, a graph of l-mers is
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constructed and the clustering of unique l-mers is performed. The size of the
graph is proportional to the total size of the genomes and 0.5 GB of RAM is
required for every million bases of the genomes. In the experiments, we ran the
algorithm on a single CPU with 2.8GHz AMD machine and 64GB RAM. Each
of the small-scale tests involving 2-4 genomes of total length of 2-6 Mbps was
completed within 1-3 hours and required 2-4 GB of RAM. A test on 15 genomes
with the total length of 40 Mbps ran for 14 hours and required 20GB of RAM.

In future work, we plan to explore the compositional properties of the clus-
ters of unique l-mers and try to improve the performance of our algorithm by
combining the compositional properties with the distribution of l-mers in reads.
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0711129 and NIH grant AI078885.
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Abstract. Cancer sequencing projects are now measuring somatic mu-
tations in large numbers of cancer genomes. A key challenge in interpret-
ing these data is to distinguish driver mutations, mutations important
for cancer development, from passenger mutations that have accumu-
lated in somatic cells but without functional consequences. A common
approach to identify genes harboring driver mutations is a single gene test
that identifies individual genes that are mutated in a significant number
of cancer genomes. However, the power of this test is reduced by the
mutational heterogeneity in most cancer genomes and by the necessity
of estimating the background mutation rate (BMR). We investigate the
problem of discovering driver pathways, groups of genes containing driver
mutations, directly from cancer mutation data and without prior knowl-
edge of pathways or other interactions between genes. We introduce two
generative models of somatic mutations in cancer and study the algorith-
mic complexity of discovering driver pathways in both models. We show
that a single gene test for driver genes is highly sensitive to the estimate
of the BMR. In contrast, we show that an algorithmic approach that
maximizes a straightforward measure of the mutational properties of a
driver pathway successfully discovers these groups of genes without an
estimate of the BMR. Moreover, this approach is also successful in the
case when the observed frequencies of passenger and driver mutations
are indistinguishable, a situation where single gene tests fail.

1 Introduction

Cancer is a disease driven in part by somatic mutations that accumulate during
the lifetime of an individual. These mutations include single nucleotide substi-
tutions, small indels, and larger copy number aberrations and structural aber-
rations. A key challenge in cancer genomics is to distinguish driver mutations,
mutations important for cancer development, from random passenger mutations
that have accumulated in somatic cells but do not have functional consequences.
Recent advances in DNA sequencing technologies allow the measurement of so-
matic mutations in large numbers of cancer genomes. Thus, a common approach
to identify driver mutations, and the driver genes in which they reside, is to
identify genes with recurrent mutations in a large cohort of cancer patients. The
standard approach to identify such recurrently mutated genes is to perform a
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single gene test, in which individual genes are tested to determine if their ob-
served frequency of mutation is significantly higher than expected [11,5,12]. This
approach has identified a number of important cancer genes, but has not revealed
all of the driver mutations and driver genes in individual cancers.

There are two difficulties with the identification of driver genes by a single gene
test of recurrentmutation. First, the test requires a reasonable estimate of the back-
ground mutation rate (BMR), which quantifies the accumulation of passenger mu-
tations.Obtaining such an estimate is not a straightforward task, as theBMR is not
just the rate of somatic mutation per nucleotide per cell generation, but also must
account for selection and clonal amplification in the somatic evolution of a tumor
[7,11]. Second, it is widely observed that there is extensive mutational heterogene-
ity in cancer, with mutations occurring in different genes in different patients. This
mutational heterogeneity is a consequence of both the presence of passenger mu-
tations in each cancer genome, and the fact that driver mutations typically target
genes in cellular signaling and regulatory pathways [8,16]. Since each of these path-
ways containsmultiple genes, there are numerous combinations of drivermutations
that can perturb a pathway important for cancer. This mutational heterogeneity
inflates the number of patients required to distinguish passenger from driver muta-
tions, as rare driver mutations may not be observed at frequencies above the back-
ground. Thus, a common alternative to single gene tests is to test the recurrence of
mutations in groups of genes derived from known pathways [6,2] or genome-scale
gene interaction networks [3,13]. However, these approaches require prior knowl-
edge of the interactions between genes/proteins, and this knowledge is presently
far from complete. Moreover, pathway/network based approaches typically also
require an estimate of the BMR.

The availability of somatic mutation data from increasing numbers of can-
cer patients motivates the question of whether it is possible to identify driver
pathways, groups of genes with recurrent driver mutations, de novo; i.e. with-
out prior knowledge of interactions between genes/proteins. At first glance, this
seems implausible because there are an enormous number of possible sets of
genes to consider. For example, there are more than 1025 sets of 7 human genes.
However, we previously showed that mild additional constraints on the expected
patterns of somatic mutations considerably reduce the number of gene sets to
examine, and make de novo discovery of driver pathways possible [14]. These
constraints are consistent with the current understanding of the somatic mu-
tational process of cancer [9,16]. In particular, we assume that an important
cancer pathway should be perturbed in a large number of patients. Thus, given
genome-wide measurements of somatic mutations, we expect that a driver path-
way will have high coverage: i.e. most patients will have a mutation in some
gene in the pathway. Second, a driver mutation in a single gene of the pathway
is often assumed to be sufficient to perturb the pathway. Combined with the
fact that driver mutations are relatively rare, most patients exhibit only a single
driver mutation in a pathway. Thus, we expect that the genes in a pathway ex-
hibit a pattern of mutually exclusive driver mutations, where driver mutations
are observed in exactly one gene in the pathway in each patient [17].



316 F. Vandin, E. Upfal, and B.J. Raphael

Note that the exclusivity constraint is assumed only for driver mutations in
the same pathway. As a cancer genome likely has multiple driver pathways,
the exclusivity assumption does not preclude the presence of co-occurring, and
possibly cooperative, mutations, examples of which are known [15,4]. It is also
possible that co-occurring mutations are necessary to perturb a pathway. In
this case, there will likely remain a large subset of genes in the pathway whose
mutations are exclusive, e.g. a subset obtained by removing one gene from each
co-occurring pair. The identification of these subsets of genes by the approaches
described here can be a starting point to later identify the other genes with
co-occurring mutations.

1.1 Our Contribution

This work proposes a mathematical framework to study the problem of de novo
discovery of driver genes and pathways. We define two generative models of
driver mutations in cancer and study the algorithmic complexity of the discovery
problem in each of the models, both analytically and in simulations. The two
generative models differ in how conditioning on a sample being from a cancer
patient affects the ratio between the driver and passenger mutation probabilities
in that sample. While the difference is relatively small, it has a major implication
on the practicality of the standard single gene test for identifying the driver
genes. In the first model we prove a bound on the number of patients required
to detect all driver genes with high probability using a single gene test, while in
the second model it is not possible to identify the driver genes using such a test
for any number of patients.

Next, we study a weight function on sets of genes that quantifies the cover-
age and exclusivity properties of a driver pathway. We introduced this function
in [14], and showed that finding sets with high weight provides an alternative
approach for identifying driver mutations. Here, we prove that for both genera-
tive models, when mutation data from enough patients is available, the weight
function is monotone in the number of discovered driver genes and is maximized
by the driver pathway. Based on this observation we prove that a simple greedy
algorithm identifies the driver pathways with high probability. This improves
the result in [14], where we showed that the discovery problem is NP-hard for
arbitrary mutation data and that a greedy algorithm performs well under dif-
ferent conditions that did not arise from a generative model of the data. We
also show that our earlier Markov Chain Monte Carlo (MCMC) approach for
identifying the driver pathways rapidly converges to the driver pathway in both
generative models, thus improving the convergence result of [14] for arbitrary
mutation data. These results show that we can identify driver pathways without
an estimate of the background mutation rate (BMR), giving a more reliable and
robust solution for the problem.

We complement our analytical results with experiments on simulated data
from the first model. We compare the number of patients required to identify
driver genes using the single gene test with the number required using the greedy
algorithm that maximizes the weight function. We show that the number of
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patients is similar when a perfect estimate of the BMR is available, but that
the greedy algorithm requires a smaller number of patients when the estimate of
the BMR deviates from its real value. Our analytical and experimental results
help characterize the limitations of detecting driver genes and pathways under
reasonable models of somatic mutation.

2 Stochastic Models for Somatic Mutations in Cancer

In this section we introduce two stochastic models for somatic mutations in
cancer. In both models driver mutations occur in sets of genes, which we refer
to as driver pathways. Passenger mutations occur randomly across all genes.
We assume that mutations have been measured in n genes in a collection of m
cancer patients, and represent the somatic mutations as a m×n binary mutation
matrix A. The entry Aig in row i and column g is equal to 1 if gene g is mutated
in patient i, and it is 0 otherwise. Let G be the set of all columns (genes). In
both models, we assume that the mutation matrix contains a driver pathway: a
subset D ⊆ G of genes, with |D| = k, such that in each patient exactly one of the
genes of D contains a driver mutation. Thus, a driver pathway D exhibits the
properties of high coverage – every patient has a mutation in a gene in D – and
mutual exclusivity – no patient has a driver mutation in more than one gene in
D. In both models, random passenger mutations occur at random in all genes,
including genes in D. The difference between the two models is in the relative
mutation rates in driver and passenger genes. In the following we consider the
case in which the mutation matrix contains only one driver pathway. However,
our results can be generalized to the case of multiple disjoint driver pathways. In
particular the following iterative procedure identifies all driver pathways using
our algorithms: once we identify a driver pathway, we remove its genes from the
mutation matrix, and look for driver pathways in the reduced mutation matrix.

Following the hypothesis that cancer is triggered by a mutation in a driver
gene, the sample of cancer patients can be viewed as a subset of a larger initial
population. The genome of each member of the initial population was subject to
random mutations, where each gene was mutated independently, and our sample
is the subset of the initial population with a driver mutation in a gene of D.

The first stochastic model captures the above intuition by modeling the dis-
tribution of mutations in patients as independent with fixed probability q, con-
ditioning on having a driver mutation. The mutation matrix A is generated by
the following process: in each row (patient) we choose one gene d ∈ D uniformly
at random to contain the driver mutation, and set the corresponding entry Aid

to 1. All other entries at that row are set to 1 with probability q < 1 and to 0
otherwise, and all events are independent. We call the parameter q the passenger
mutation probability1 , as it is the probability that a gene contains a passenger
mutation. We denote the model above as the D>P model.
1 Note that q is greater than the BMR, since it is the probability that a gene has a

passenger mutation. For example, estimates of the BMR are typically ≈ 10−5, and
since the length of most genes is around 104, we have that q ≈ 10−1.
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A possible limitation of the D>P model is that it implies a conditional distri-
bution in which driver genes have higher expected frequency of mutation than
the passenger genes (thus the name D>P model) in a cohort of patients. In prac-
tice the driver pathway could contain dozens of genes, and some of them may
have rare driver mutations. Thus the expected frequency of mutation of some
genes in D may be indistinguishable from the expected frequency of mutation of
some passenger genes. To examine this situation we introduce a second model,
which we call the D=P model, in which all genes in G are mutated with the same
probability in the patients, regardless of whether they are driver or passenger
genes. Of course, this is a “worst case” model, as any cancer cohort with a rea-
sonable number of patients will have some driver genes mutated at appreciable
frequency. Nevertheless, we study the D=P model to consider the limits of driver
pathway identification. The mutation matrix A in the D=P model is generated
by the following process: in row (patient) i an entry Aid is chosen uniformly at
random for d ∈ D and is set to 1. All other entries Aid′ for d′ ∈ D are set to 1
with probability r = qk−1

k−1 , and all entries Aig, for g ∈ G \ D are set to 1 with
probability q. All events are independent. We require q ≥ 1/k so that r is a
proper probability. Note that for any g ∈ G the probability that g is mutated is
the same since for d ∈ D, 1

k + (1− 1
k )r = q.

Note that both models differ from a simple binomial model, where each entry
of A is mutated independently with a fixed probability. Since we condition on
each patient having at least one mutation in D, the entries of A corresponding
to genes in D are not independent. In what follows, we let Γ (g) = {i : Aig = 1}
denote the set of patients in which a gene g is mutated. Similarly, for a set M
of genes, let Γ (M) denote the set of patients in which at least one of the genes
in M is mutated: Γ (M) = ∪g∈MΓ (g).

3 Finding Recurrently Mutated Genes

The standard approach to identify the driver genes is to identify recurrently
mutated genes, i.e. those genes whose observed frequency of mutations is signif-
icantly higher than the expected passenger mutation probability[5,11,12]. This
approach assumes a prior knowledge or a good estimate of the passenger mu-
tation probability, the parameter q in our models. This approach is combined
with a multi-hypothesis test to identify a list of genes, each mutated in signifi-
cantly more patients than expected. The pseudocode for such a test is given in
Algorithm RMG (Figure 1). (In Algorithm RMG we use Bonferroni correction for
multiple hypothesis testing. Other corrections, like Benjamini-Hochberg [1] to
control the False Discovery Rate, are possible. The results of this section also
apply to those other corrections.)

We first analyze the D>P model of Section 2. We start by showing that if q is
known and the number of patients is sufficiently large, then Algorithm RMG out-
puts all the driver genes with high probability.
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Algorithm. RMG
Input: An m× n mutation matrix A, a probability q that a gene contains a

passenger mutation in a patient, a significance level α.
Output: Set O of recurrently mutated genes.

O ← ∅;1

for g ∈ G do2

Γ (g)← {i : Aig = 1};3

pg ← Pr[B(m, q) ≥ |Γ (g)|];4

if pg ≤ α
n

then O ← O ∪ {g};5

return O;6

Fig. 1. Pseudocode of the algorithm for finding recurrently mutated genes, based on a
single-gene test

Theorem 1. Suppose an m × n mutation matrix A is generated by the the
D>P model, the family wise error rate of the test is α = 1

2nε and Algorithm RMG

outputs O. If m ≥ 2k2(1+ε)
(1−q)2 ln 2n for a constant ε > 0, then Pr[O �= D] ≤ 1

nε .

Proof. The p-value calculations and the Bonferroni correction in Algorithm RMG
guarantee that the probability that any gene g �∈ D is included in the output
set O is bounded by α = 1

2nε . It remains to prove that if m ≥ 2k2(1+ε)
(1−q)2 ln 2n the

probability that any d ∈ D is not included in O is bounded by 1
2nε .

Consider a gene d ∈ D. LetXi = 1 if gene d is mutated in patient i, andXi = 0
otherwise. Note that for i �= j, Xi and Xj are independent. Let X be the number
of patients in which d is mutated. We have X =

∑m
i=1Xi. To compute E[Xi] we

observe that a driver gene is mutated with probability 1 when it contains the
driver mutation, and with probability q otherwise. Since the gene d containing
the driver mutation is chosen uniformly at random among all the k genes inD, we
have E[Xi] = 1

k +
(
1− 1

k

)
q. Thus E[X ] =

∑m
i=1 E[Xi] = m( 1

k +
(
1− 1

k

)
q) > mq.

Let t = 1
k

(
1−q
2

)
. By the Chernoff-Hoeffding bound:

Pr[X ≤ E[X ]− tm] = Pr[X ≤ mE[Xi]− tm] ≤ e− 2m2t2
m ≤ 1

2n1+ε
.

Since |D| < n, by union bound we have:

Pr[∃d ∈ D mutated in ≤ (E[X ]− tm) patients] ≤ n 1
2n1+ε

=
1

2nε
.

Thus with probability at least 1 − 1
2nε all genes in D are mutated in at least

E[X ]− tm patients. Let B(m, q) be a binomial random variable with parameters
m, q. Using the Chernoff-Hoeffding bound we can upper bound the p-value pd

that Algorithm RMG derives for d ∈ D:

pd ≤ Pr[|B(m, q)−mq| ≥ tm] ≤ e−2 t2m2
m ≤ 1

2n1+ε
.
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Thus, with probability at least 1 − 1
2nε for any d ∈ D the number of patients

with a mutation in d is such that its p-value satisfies pd < α/n and thus it is
included in the output set O. ��
Theorem 1 shows that in the D>P model an estimate of the passenger mutation
probability q and a sufficient number of patients are enough to identify the driver
genes. This is not the case in the D=P model. It is easy to see that in D=P model
the expected number of rows in which a column g is mutated is the same for all
g ∈ G, that is for all g ∈ G we have E[|Γ (g)|] = qm. In fact, the number |Γ (d)|
of patients in which a gene d ∈ D is mutated and the number |Γ (g)| of patients
in which gene g �∈ D is mutated are both binomial random variables B(m, q).
We thus have the following.

Fact 1. Under the D=P model, the probability distribution of |Γ (d)| for d ∈ D
and |Γ (g)| for g �∈ D are the same. Thus Algorithm RMG cannot identify the genes
in D for any number of patients m.

4 A Weight Function to Identify Driver Pathways

In this section we analyze a method that identifies the set D of driver genes with
no prior information on the passenger mutation probability q, and works for both
the D>P and D=P models. The method relies on a weight function W (M), defined
on sets of genes, first introduced in [14]. The measure W quantifies the extent to
which a set simultaneously exhibits both: (i) high coverage: most patients have
at least one mutation in the set; (ii) high exclusivity: nearly all patients have
no more than one mutation in the set. (For lack of space, some proofs of the
results in this section are omitted. They will be included in the full version of
this work.)

For a set of genes, M , we define the coverage overlap ω(M) =
∑

g∈M |Γ (g)|−
|Γ (M)|. Note that ω(M) ≥ 0, with equality if and only if the mutations in M are
mutually exclusive. To account for both the coverage, Γ (M), and the coverage
overlap, ω(M), we define the weight function of M :

W (M) = |Γ (M)| − ω(M) = 2|Γ (M)| −
∑
g∈M

|Γ (g)|.

Finding a set M of genes with maximum weight is in general a computationally
challenging problem (it is NP-hard in the worst case). Nonetheless, we showed
in [14] that under some assumptions on the distribution of mutations in patients,
a greedy algorithm will identify the maximum weight set. We also proposed a
Markov Chain Monte Carlo (MCMC) approach that samples sets of genes with
probability proportional to their weight.

Based on the coverage and exclusivity properties of a driver pathway we expect
it has the highest weight among all sets of size k. In this section we formalize
this intuition for our generative models and show that under the two models the
maximum weight set is easy to compute. We use M∗

k to denote the set of size k
with maximum weight (M∗

k may not be unique).
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We start with the D>P model. Note that the parameter q controls the expected
number of passenger mutations in a set of k passenger genes. Since passenger
mutations are relatively rare and k (the number of genes in a driver pathway)
is relatively small, we expect that a set of k passenger genes will not have a
mutation in the majority of the patients. Thus we assume that the probability
1 − (1 − q)k that a set of k passenger genes contains a mutation is less than a
constant a < 1

2 . Since 1− (1− q)k ≈ qk we have q ≤ a
k . For ease of exposition in

what follows we use a = 1
4 , so that q ≤ 1

4k .
Let Mk,� ⊂ G be a set of k genes with exactly � genes of D, that is Mk,� =

{d1, d2, . . . , d�} ∪ {g1, . . . , gk−�} with dj ∈ D for 1 ≤ j ≤ �, and gj ∈ G \ D for
1 ≤ j ≤ k − �. We first prove that E[W (Mk,�)] is monotone in �.

Lemma 1. Let q ≤ 1
4k . For 0 ≤ � ≤ k − 1: E[W (Mk,�+1)] ≥ E[W (Mk,�)] + m

2k .

Next we show that for sufficiently large number of patients m, the random value
W (Mk,�) is concentrated near its expectation.

Theorem 2. Suppose A is generated by the D>P model with q ≤ 1
4k . For m ≥

8k3(k + ε) lnn, and for 0 ≤ � ≤ k − 1, Pr[∃Mk,� s.t. |W (Mk,�)−E[W (Mk,�)| ≥
m
4k ] ≤ 1

nε .

Combining the results of Lemma 1 and Theorem 2 we have

Corollary 1. If m ≥ 8k3(k + ε) lnn, then Pr[M∗
k �= D] ≤ 1

nε .

Corollary 1 shows that with sufficient number of patients the set D can be
identified by finding the set of maximum weight, without an estimate of the
probability q that a gene is mutated as a passenger. It was shown in [14] that
with an arbitrary mutation distribution identifying the set of maximum weight is
NP-Hard. However, a simple corollary of Theorem 2 shows that in our generative
model computing a set of maximum weight is easy.

Corollary 2. If m ≥ 8k3(k + ε) lnn and q ≤ 1
4k , a greedy algorithm that com-

putes the weight function of up to O(nk) sets finds M∗
k with failure probability

≤ 1
nε .

Proof. Start with an arbitrary set M of k genes. Now consider the elements
of M = {g1, . . . , gk} one after the other in a greedy process: for gj ∈ M , find
w = arg maxg∈G\M W (M \{gj}∪{g}). IfW (M) < W (M \{gj}∪{w}), substitute
gj with w in M ; then move to gj+1. Theorem 2 guarantees that if w is inserted
in M , it is in D, and that when a gene gj ∈ M \ D is considered, it will be
switched with a gene d ∈ D \M . ��
We now consider the D=P model. Analogously to what we proved under the
D>P model, we prove that maximizing the weight function W identifies the
driver pathway D when mutation data from enough patients is available.

Theorem 3. Suppose A is generated by the D=P model. If m ≥
k3(k+ε)

2(1−q)2k+2

(
k−1

k

)2k
lnn, then Pr[M∗

k �= D] ≤ 1
nε .
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We prove that a simple greedy algorithm, similar to the one proposed for the
D>P model, identifies the set M∗

k of maximum weight under the D=P model.

Corollary 3. If m ≥ k3(k+ε)
2(1−q)2k+2

(
k−1

k

)2k
lnn, a greedy algorithm that computes

the weight function of up to O(n2) sets finds M∗
k with failure probability ≤ 1

nε .

Thus under the D=P model we identify the driver pathway D by maximizing
W (M). Recall that Algorithm RMG cannot find driver genes under this model
(Section 3, Fact 1). Also note that when q ≤ 1/2 and the probability (1−q)k that
a set of k genes in G\D is not mutated in a patient is greater than 1

2

(
k−1

k

)k
(this

occurs when passenger mutations are relatively rare, for example when q ≈ 1/k)
the bound on m in Corollary 3 is the same as the bound in Corollary 2. That is,
the weight W identifies the set D under both models with the same number of
patients.

For completeness, we also analyze the Monte-Carlo Markov Chain approach
proposed in [14] to sample sets of genes with distribution exponentially propor-
tional to their weight. The states of the Markov chain are the subsets of G of size
k. If M (t) is the state at time t, M (t+1) is computed choosing uniformly at ran-
dom a gene w ∈ G and a gene v ∈M (t), and setting M (t+1) = M (t) \ {v} ∪ {w}
with probability min[1, ecW (M(t)\{v}∪{w})−cW (M(t))], and M (t+1) = M (t) oth-
erwise. It is easy to verify that the chain is ergodic with a unique stationary
distribution π(M) = ecW (M)∑

R∈Mk
ecW (R) , where Mk = {M ⊂ G||M | = k}. The ef-

ficiency of this algorithm depends on the speed of convergence of the Markov
chain to its stationary distribution.

In [14], we show that there is a non-trivial interval of values for c for which the
chain is rapidly mixing without assuming any generative model for the mutation
matrix. The analysis of [14] applied to D>P and D=P models requires c < 1/k.
However, applying Lemma 1 and 2 under the D>P model, and Theorem 3 under
the D=P model we show that for any c > 0 the process rapidly converges to the
set D.

Theorem 4. Suppose that A is generated by the D>P model with q ≤ 1
4k , or

the D=P model with q ≤ 1/2 and (1 − q)k ≥ 1
2

(
k−1

k

)k
. For m ≥ 8k3(k + ε) lnn

and any c > 0, the MCMC converges to the set D in O(nk log k) iterations with
probability ≥ 1− 1

nε .

5 Experimental Results

In this section we compare the single gene test provided in Algorithm RMG and
the weight function W (M) to detect the set of driver genes using mutation data
simulated using the D>P model. In particular, we use the greedy algorithm of
Section 4 (see Corollary 2) to identify the set M∗

k of maximum weight, where
k = |D|.

We generated mutation data according to the D>P model with k = |D| = 20,
q = 0.0125, n = 10000. We set α = 0.005 for Algorithm RMG which corresponds
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Fig. 2. Number of patients mR,0.99(s(q)) required to identify the driver pathway D
with Algorithm RMG , for different estimates s(q) of the probability q (dashed). Number
of patients mG,0.99 required to identify D with the greedy algorithm (solid).

to ε = 0.5. To compare the performance of the two approaches, we measured
the minimum number of patients required to detect the driver pathway D over a
range of estimates of the passenger mutation probability q. Specifically, let Es(q)

= “estimate s(q) of q is used by Algorithm RMG”. LetmR,x(s(q)) = minm{Pr[O =
D|Es(q)] > x} be the minimum number of patients required for Algorithm RMG to
output O = D with probability > x over all m × n mutation matrices generated
by the model when the estimate s(q) is used. Similarly, let P be the output of
the greedy algorithm of Corollary 2. Let mG,x = minm{Pr[P = D] > x} be the
minimum number of patients required for the greedy algorithm to output D with
probability > x over all m × n mutation matrices generated by the model. Re-
call that mG,x does not depend on s(q) by Corollary 2. Figure 2 shows the values
of mR,0.99(s(q)) and mG,0.99 as a function of s(q). We varied s(q) starting from
s(q) = q (i.e., q is perfectly estimated) and gradually increased s(q) while main-
taining s(q) < 1/k. The latter condition assures that s(q) is strictly smaller than
the expected probability of mutation of any gene in D, a necessary condition for
Algorithm RMG to be able to identify D. To estimate mR,0.99 and mG,0.99 we gen-
erated 100 mutation matrices for each mi = i ∗ 100 patients for 1 ≤ i ≤ 52. Fig-
ure 2 shows that mR,0.99(s(q)) is monotonically increasing with s(q). When the
estimate of q is perfect, the greedy algorithm requires more patients than Algo-
rithm RMG to correctly identify the setD, but when the estimate s(q) is larger than
the true value of q,mR,0.99(s(q)) increases and becomes much larger thanmG,0.99.
(Typically, an overestimate of q is used so that the test for recurrent genes in con-
servative [10]). Note that even when s(q) = q,mG,0.99 is close tomR,0.99(q), while
the bounds in Theorem 1 and Corollary 2 give mG,0.99

mR,0.99(s(q)) ≥ 1000. Similar re-
sults were obtained when comparingmR,0.95(s(q)) andmG,0.95; i.e. the minimum
number of patients for which Algorithm RMG and the greedy algorithm report the
driver set D at least 95% of the time (data not shown).

Finally, we consider the case s(q) < q where the estimate of q is smaller than
its true value. In this case, some genes not in D (false positives) are eventually
reported by Algorithm RMG. For example, with s(q) = 0.8q and m = 1000 (for
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which the correct result is always reported when s(q) = q), Algorithm RMG reports
false positives in approximately 16% of the datasets.

6 Conclusions

We investigate the problem of detecting recurrently mutated genes and pathways
using two simple generative models of driver mutations in cancer. In the first
D>P model, where the driver mutation probability is larger than the passenger
mutation probability, we prove a bound on the number of patients required to
detect all driver genes with high probability using a single gene test of recurrence.
In the second D=P model, where the driver mutation probability and passenger
mutation probability cannot be distinguished, it is impossible to identify driver
genes using the single gene test for any number of patients. We prove that under
either model, the weight function that we defined in [14] is maximized by a driver
pathway. Thus, with mutation data from enough patients, it is possible to iden-
tify driver pathways without an estimate of the passenger mutation probability
q. In particular, we show that a simple greedy algorithm finds driver pathways
with high probability. We also show that an MCMC approach converges rapidly.
Finally, we present results on simulated data showing that the greedy algorithm
successfully identifies the driver pathway with fewer patients than the single gene
test when the estimate of q deviates from its real value.

In practice, any test that identifies driver genes by recurrent mutations re-
quires a good estimate of q. An underestimate of q leads to false positive pre-
dictions of driver genes, while an over estimate (i.e. a conservative estimate to
minimize false positives) increases the number of patients required to find driver
genes. The passenger mutation probability is derived from the background mu-
tation rate (BMR), which is difficult to measure as it depends on a number of
parameters whose values are not easily determined. There has been extensive
discussion in the community about appropriate ways to estimate the BMR and
find recurrently mutated genes [7,11]. Therefore, methods that do not require
an estimate of the BMR, as the ones we provide here, can give increased power
in the discovery of driver genes. However, further study of more sophisticated
mutation models is necessary. For example, we assume a constant passenger mu-
tation probability q across all genes, but models that allow q to vary by gene
would be useful in applications and warrant further investigation.
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Abstract. Algorithms for detection of modules in genetics interaction networks, 
while often identifying new models of functional modular organization between 
genes, have been limited to the output of disjoint, non-overlapping modules, 
while natural overlapping modules have been observed in biological networks. 
We present CLOVER, an algorithm for clustering weighted networks into over-
lapping clusters. We apply this algorithm to the correlation network obtained 
from a large-scale genetic  interaction network of Saccharomyces cerevisiae de-
rived from Synthetic Genetic Arrays (SGA) that covers ~4,500 non-essential 
genes.  We compare CLOVER to previous clustering methods, and demonstrate 
that genes assigned by our method to multiple clusters known to link distinct 
biological processes. 

Keywords: graph clustering, genetic interactions, local search. 

1   Introduction 

Recent developments in Synthetic Genetic Arrays have enabled the mapping of quan-
titative genetic interactions on a genome-wide scale [1]. A central computational task 
in the analysis of the genetic interaction networks is to cluster genes into coherent 
modules. The resulting modules provide a higher-level organization of the cell, and 
may be mined to make new predictions about gene functions and provide insights into 
cellular pathways. Such unsupervised organization of a network’s nodes into highly-
interconnected modules is termed graph clustering. 

Several general-purpose graph clustering methods that use a number of diverse algo-
rithmic approaches have been applied to genetic and protein interaction networks. 
[2][3][4][5][6][7]The RNSC algorithm[4] is based on stochastic local search.  It was 
developed for clustering un-weighted general graphs and has been applied to the prob-
lem of predicting protein complexes in physical networks.  MCL [5] is a general-
purpose algorithm for clustering weighted graphs, and has been widely used to analyze 
both physical and genetic interaction networks.  MCL uses stochastic matrix operations 
to simulate flow through a weighted network, and determines clusters as groups of 
nodes connected by a large number of high-weight paths. Graph summarization [6] is a 
paradigm for clustering graphs in which the output is  a coarse-grained summary of  
the input graph, with super-nodes representing groups of nodes with similar interaction 
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patterns and super-edges represent groups of interactions between members of super-
nodes.  The cost of this summary can be formulated in terms of the number of single-
edge additions or deletions necessary to recover the input graphs. For module detection 
in genetic interactions specifically, the network of genetic profile correlations, rather 
than individual genetic interactions, has been found useful for determining cohesive 
modules even via hierarchical clustering [8][9].  In particular Ulitsky et al. achieved 
better results using clustering models biased toward strong profile correlation within 
modules versus strong intra-modular “monochromatic” alleviating interactions[10], 
despite the known enrichment of such interactions in protein complexes. All of these 
methods partition a network into non-overlapping clusters.  However, as many genes 
participate in multiple biological processes, it has been recognized that a more general 
approach, allowing clusters to overlap (so that multiple genes may participate in any 
number of distinct clusters), would facilitate the identification of clusters of genes which 
are biologically more meaningful, and possibly exhibit higher functional coherence. 

The need for clustering algorithms that explicitly model overlap was first proposed 
by Palla et al. [11].  Their algorithm for identifying overlapping clusters, CFINDER, 
is based on identifying overlapping k-connected subgraphs between maximal cliques, 
using a simple combinatorial definition of cluster which applies only to unweighted 
networks. The algorithm has exponential running time on dense graphs, making it 
impractical for analysis of genetic interaction networks, which are weighted, dense 
graphs. More recently Wang et al. proposed HACO[7], an algorithm that extends av-
erage-linkage hierarchical clustering to allow clusters to be re-used in multiple ag-
glomerative iterations, producing a lattice which can be used to induce overlapping 
clusters which are similar in cohesion.  It cannot be used to find overlaps between 
clusters of widely differing cohesion due to an exponential increase in the number of 
clusters which must be considered. 

Some pre-existing methods designed to find modules with particular characteristics 
operate by repeatedly seeding a search from a single node (as in MCODE[2]) or inte-
raction (as in the within/between-pathway model of Kelley and Ideker [12], using a 
similar search algorithm to Sharan et al[13]).  Implicit overlaps may exist in the cu-
mulative output and highly-overlapping modules are identified using a threshold of 
overlap with a higher-scoring module – overlaps are viewed as redundancies and not a 
targeted feature of optimization.  Finally, the MCL algorithm can occasionally pro-
duce overlapping clusters around exact symmetries; on the real data used in this study 
no such overlaps were observed. 

In this paper we present CLOVER (CLustering with OVERlap), a novel method 
for clustering weighted networks into overlapping clusters. CLOVER combines the 
ability to deal with large, weighted networks via local search optimization. We have 
applied our method to two large-scale genetic interaction networks [1][8] and CLOV-
ER was able to identify many clear instances of overlapping modularity in this data-
set.  We demonstrate that the modules identified by CLOVER show significant 
enrichment for known functional annotations, on par with previously published re-
sults, while the overlaps between clusters identify genes which indeed link distinct 
biological processes.      
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The CLOVER cost function generalizes this simple cost function in two ways. 
First, we deal with weighted networks by applying a penalty to missing and cross 
edges proportionate to their weights.  For simplicity we assume that edge weights are 
scaled to lie in the interval [0,1].  For all edges within clusters we apply a penalty that 
is proportionate to 1 minus the weight: a cluster-internal edge with zero weight is as-
signed the “full” penalty while an edge with the “full” weight is assigned zero penal-
ty. Conversely, for cross edges the penalty is directly proportional to the weight.  

The second generalization deals with overlapping clusters, which requires modifi-
cation of the cross-edge definition, as a single edge may be internal to one cluster, 
while crossing between several pairs of others.  Our solution is to regard each penalty 
applying to an edge ,  as being calculated twice: once from the perspective of  
and once from the perspective of .  Then for each cluster containing , we apply a 
“cross-edge” penalty if  is not also in that cluster, and a “missing edge” penalty oth-
erwise.  The penalties are divided by the number of clusters containing . Figure 1 (b) 
illustrates the application of this cost function to an example network. 

The formal definition of the cost function is simplified by assuming a complete 
weighted graph where every pair of vertices ,  exists in  and is assigned a weight 
by , which may be 0. We further assume that while a clustering may assign any 
number of nodes to each cluster and vice versa, no node is allowed to be “unclus-
tered” and thus not contribute to the clustering cost defined below.  In practice, very 
small clusters (< 3 nodes) are pruned from the final results. 

Formally, we define a clustering  of a weighted network , , , where :  assigns a weight in the range 0,1  to each edge, as a collection of sets 
, or clusters.  We use the notation  to denote the set of clusters to which a 

vertex  is assigned by . 
The cost function is defined as:          ,   , , 1 , ,  

where      , , 1| |   ,  

represents the total weight of edges ,  leading “out of” a cluster from vertex  
(cross-edge cost), and 

                                       , , | | ∑  ∑ 1 ,  

represents the total weight “missing” from each cluster containing  (missing edge 
cost). The real parameter  represents a trade-off between the two factors  and , 
across all nodes. 

The cost function calculates, for each vertex  and each cluster , a penalty for 
each edge , . If , the penalty is equal to 1 1 , . This rewards 
higher-weight edges within the same cluster. If , the penalty is just , , 
penalizing higher-weight edges leading out of  from .  In the absence of overlap, 
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ability to identify functionally cohesive modules while identifying genes working at 
the interface of these functions. 

3.1   Genetic Interaction Data Sets 

Two genetic interaction data sets for S. cerevisiae were used in this study.  The more 
recent and larger SGA (Synthetic Genetic Array) data set is obtained from [1] and 
comprises  more than 5.4 million interactions involving 4443 genes.  The raw genetic 
interactions from that work are modeled after the Fisher definition of epistasis as 
quantitative deviations from the expected multiplicative combination of independent-
ly functioning genes [14], which defines genetic interaction strength as follows: 

 

ƒa and ƒb denote the single mutant fitness of gene a and gene b respectively, and ƒab 
is the fitness of the double-knockout mutant of genes a and b. The Collins et al. 
EMAP (Epistatic Mini-Array Profile) data set [9] is an earlier yeast double-knockout 
array, including 743 genes.  While there is some overlap between the 
genes/interactions in these studies, they are independent and use different statistical 
techniques to compute interaction scores.  

Both data sets consist of a matrix of scores, with each row corresponding to a 
query gene, and each column to one single-knockout library gene with which each 
query was crossed.  A positive score indicates greater fitness in the resulting double 
mutant than expected according to a model based on single-knockout fitness measures 
for each of the two genes individually; such interactions are denoted alleviating. A 
negative score indicates lower fitness and is denoted aggravating [1].  In both data 
sets some individual scores are missing from the matrix.  

Because the individual interaction scores are noisy and incomplete, we use the cor-
relation network of the original interaction data, following the lead of previous studies 
(e.g. [15][9]). Each edge of the network corresponds to the similarity in the interac-
tion profile between the two genes, obtained from the interactions by computing the 
Pearson correlation of each pair of genes’ interaction profiles across all other genes. 

Positions in the profile where either interaction value was missing were ignored.  
To obtain a complete graph in which all edge weights fall in the interval 0,1 , nega-
tive correlations were truncated to zero values, followed by scaling the remaining 
values linearly so that the highest correlation value is mapped to 1.  We found this 
produced superior results to the two obvious alternatives: taking the absolute value of 
the correlation, and scaling all values into the range [0,1]. 

3.2   Evaluation on Genetic Interactions Networks 

To validate the efficacy of CLOVER for the analysis of genetic interaction data, we 
clustered the correlation networks generated from quantitative interaction data from 
[9] and [1] respectively, as described above. We also obtained clusters using MCL for 
the same networks, over a range of the “inflation” parameter  which determines the 
granularity of the derived clusters. Additionally, a recent study [10] evaluated a num-
ber of other clustering techniques on the data from[9], and we compare our results to 
the best reported result achieved in that study by using genetic interactions alone. 



 Clustering with Overlap for Genetic Interaction Networks 333 

 

3.3   Evaluation of Clusters 

To evaluate the fitness of clusters identified using CLOVER, we tested the enrich-
ment of clusters for known groups of functionally related genes.  For this purpose we 
used all biological process annotations from the Gene Ontology (GO[16]). We consi-
dered a cluster to be “matched” to an annotation or complex if its enrichment was 
significant (P-value 0.05) according to a Bonferroni-corrected hypergeometric test, 
following similar procedures in recent studies[10][6]. 

The number of matches based on this criterion, divided by the total number of clus-
ters, gives a precision value  between 0 and 1 for each clustering compared to each 
benchmark.  The number of matched benchmark groups, divided by the total number 
of groups, gives a recall value .  These values are combined into the harmonic mean 
F-measure defined as / . 

Table 1. Cluster Enrichment Summary for E-Map Network vs GO Annotations 

Method Precision (P) Recall (R) F-measure 
(P*R)/(P+R) 

#clusters #matches #overlapping 
match pairs 

#nodes in two 
clusters 

Ulitsky et al 0.58 0.31 0.41 48 28 N/A N/A 

MCL 4 1.0 0.20 0.33 9 9 N/A N/A 

CLOVER 0.45 
0.72 0.32 0.44 53 38 Total: 12 

Matched one-
sided: 2 
two-sided: 6 

138 

Table 2. Cluster Enrichment Summary for SGA Network vs GO Annotations 

Method Precision (P) Recall (R) F-measure 
(P*R)/(P+R) 

#clusters #matches #overlapping 
match pairs 

#nodes in two 
clusters 

MCL 4 0.9 0.35 0.51 42 38 N/A N/A 

CLOVER 0.65 
0.69 0.4 0.51 189 131 Total: 40 

Matched one-
sided: 3 
two-sided: 8 

138 

 
We compared the performance of CLOVER to MCL, a leading general-purpose clus-

tering algorithm, on correlation networks derived from the Collins et al. EMAP and 
Costanzo et al. SGA data sets. We chose MCL because of its favourable performance 
relative to other methods for clustering of the EMAP data set[10]. For both algorithms 
we obtained the clusterings over a wide range of cluster granularity parameters (  for 
MCL and  for CLOVER), and present the best of these results. The performance of 
CLOVER over the full range of  parameters is described in Results. For the Collins 
EMAP dataset we also compare our results with the clustering obtained by the "Correla-
tion" method of Ulitsky et al.[10], provided by the authors.  Details of the best cluster-
ing obtained with each method, as determined by the corresponding F-measure, are pre-
sented in Tables 1 and 2.  These results show that the CLOVER clustering captures co-
annotated genes as well as MCL on the SGA correlation network, and better than both 
MCL and the “Correlation” method on the EMAP correlation network, with a signifi-
cantly larger number of clusters in each case.  Tables 1 and 2 additionally list the num-
ber of matched overlaps in each CLOVER clustering, as defined in the following sec-
tion.  The number of genes assigned to two clusters is also given; note that at the given 
parameter setting no nodes were assigned to more than two clusters. 
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Fig. 4. Examples of double-sided matching pairs of clusters found by GO annotation mining.  
a) The genes XRS2 and MMS22 both participate in two of the three clusters shown.  b) An ex-
ample of three genes participating in two clusters. 

3.4   Evaluation of Overlaps 

We further assessed pairs of overlapping clusters with respect to the benchmarks ac-
cording to the following criteria.  A two-sided matched overlap is a pair of clusters ,  such that 

• Both  and  are enriched for distinct biological processes (e.g. they are 
both “true positives”) 

• The overlapping region between  and  (i.e. the set of genes assigned to 
both clusters) contains genes which are annotated for both processes  

Similarly, a one-sided match  overlap is a pair of clusters ,  such that  

• Both  and  are enriched for distinct biological processes 

• The overlapping region between  and  (i.e. the set of genes assigned to 
both clusters) contains genes which are annotated for at least one of these 
processes  

In addition to these categories we also counted the number of simple overlapping 
matches – pairs of clusters, each matching some biological process, which overlap.  
The number of matched overlaps of each kind is included in tables 1 & 2. 

In the remainder of this section, all specific examples of overlapping clusters are 
taken from the clustering of the SGA correlation network [1], using the parameter 0.65. Figure 4(a) illustrates two two-sided overlaps. Each of the three clusters is 
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enriched for a distinct subset of the GO biological process categories “negative regu-
lation of DNA metabolic process”, “chromosome organization”, and “DNA double-
strand break formation”.  Both of the genes XRS2 and MMS2 are assigned to multiple 
clusters, and share the annotations for which those clusters are enriched. Figure 4(b) 
illustrates two clusters which share 3 overlapped genes.  While all genes in both clus-
ters are annotated with the broad annotation “localization”, the cluster depicted at left 
is also enriched for “membrane organization”.  Two of the three genes shared by both 
clusters, sec17-1 and uso1-1, are annotated with both biological process categories.  

While this validation of overlaps participating in enriched biological functions is 
encouraging, the definitions of GO biological process annotations are coarse-grained, 
and cannot fully capture the fine distinctions evidenced by genetic interaction profiles 
and their modularity.  Some genes are clearly and strongly connected to multiple clus-
ters, and this can be validated by detailed analysis of the individual genes in each 
cluster. Figure 6 illustrates the intersection of two such clusters, with the CTF4 gene 
assigned to both. One cluster includes genes involved in sister chromatid cohesion, 
while the other contains genes involved in DNA replication.  In particular, the pro-
teins encoded by CTF18,CTF8, and DCC1 form a part of the replication factor C-like 
complex required for sister chromatid cohesion [18][19], while MRC1 & CSM3 gene 
products have been demonstrated present at replication forks [20][21]. 
POL32[22][23], RAD27[24], and ELG1 [25][26][27] are all involved in lagging 
strand DNA synthesis. The CTF4 gene product has also been found to act at replica-
tion forks[28][29][30][31], and in sister chromatin cohesion [19][32][18].  

4   Future Improvements 

Local search provides a great deal of control and flexibility due to the use of an expli-
cit objective function.  Recent work on special models of modularity in genetic inte-
raction networks (e.g. [33][17]) suggest that more complex and domain-specific scor-
ing schemes can be used to model specific types of modularity; we are interested in 
incorporating these models, possibly in combination, explicitly into our algorithm.  

 

Fig. 5. Clusters overlapping at CTF4. The cluster depicted at left contains genes involved  
in sister chromatid cohesion. The cluster depicted at right contains genes involved in DNA  
replication. 



336 J. Whitney et al. 

 

This flexibility comes at a cost in computational complexity; currently our imple-
mentation takes roughly 6 hours to produce the reported results on our Dell Xeon-
based servers, compared to e.g. under 20 minutes for MCL which does not perform 
explicit optimization.  A common approach to this kind of intractability is to use a 
faster, unspecialized (and possibly non-overlapping) clustering method as a pre-
processing step to reach a clustering which is “nearer” to optimal than a random or 
trivial starting point.  Speeding up the algorithm in this way will allow faster explora-
tion of different parameters and objective function variations. 
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Abstract. Algorithms for comparing trees have recently been found rel-
evant in the context of bioimage analysis. While previously proposed al-
gorithms deal with problems that are computationally hard in general, we
propose efficient algorithms for restricted versions that are able to handle
significantly larger instances in practice. We propose two dynamic pro-
gramming algorithms for the so-called tree assignment problem, which
generalizes bipartite matchings to trees. We formulate restricted versions
that are tractable by a dynamic programming algorithm. Furthermore,
we describe a second dynamic programming algorithm that deals with
the efficient computation of certain weights between so-called component
trees that can be applied to obtain certain cosegmentations in bioimaging
applications. Our investigations indicate that our algorithms are both ef-
ficient and effective, supported by evaluating the influence of the restric-
tions imposed by the dynamic programming formulation on a collection
of image data.

1 Introduction

Algorithms for comparing trees have been well-studied due to their relevance
in areas such as comparison of RNA secondary structures. However, their use
in image processing was established only recently. Here, comparing hierarchical
image representations obtained from the so-called component tree naturally leads
to a tree comparison problem that generalizes bipartite matching [10,15] instead
of edit distance, which is used for comparing RNA secondary structures [13,4]
and other applications.

In the most general form, generalizations of bipartite matching to trees have
recently been shown to be NP-hard [2]. Instances encountered in practice with
few dozens of vertices are often solvable within seconds using integer linear pro-
gramming (ILP), as shown by two of the authors in [10,15]. Yet, the computational
� These authors contributed equally.
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hardness imposes constraints on the size of the instances that are considered in
practice, so that constraint versions tractable in polynomial time are of high rel-
evance for practical applications. In this paper, we introduce a restricted version
of the problem that is solved in polynomial time using a dynamic programming
formulation. The same restriction was earlier used in the context of tree edit dis-
tance, thus our results extend the class of tree alignments and distance measures
surveyed in [1].

Currently, the main application of tree assignments is in bioimaging, where
such weighted assignments are computed between component trees that repre-
sent fluorescence-based images [15]. Introduced to image processing by Jones
[6], the component tree represents all connected components that occur by set-
ting some threshold in a gray-scale image. As these connected components are
hierarchically ordered, they define the component tree, which is computed in
near-linear time using a union-find data structure [11]. In [15], the weights be-
tween vertices of two component trees is the Jaccard index between the areas
represented by the vertices. While näıve approaches require at least quadratic
time to compute the weights between all pairs of vertices, we here introduce a
dynamic programming algorithm that is optimal in the sense that its running
time is proportional to the number of pixels in the image plus the number of
non-zero overlap weights. In an approach similar to the cosegmentations intro-
duced in [15], Mattes et al. [9] also used the idea of computing assignments
between vertices of component trees. They adopt a top-down approach whose
exact constraints on the matching results remain uncharacterized.

In [15], cosegmentations obtained from tree assignments are used in the con-
text of cell tracking, requiring to solve a sequence of N − 1 cosegmentation
instances for a microscopic video sequence of N time frames. In order to evalu-
ate whether the restriction to the three-point condition imposed by our dynamic
programming approach still yields results useful in practice, we evaluate our
approach using the same data as in [15]. Interestingly, there is also theoreti-
cal evidence that the three-point condition does not restrict meaningful results
as long as background inhomogeneity – a common phenomenon in fluorescence
microscopy – is similar among the cosegmented images.

2 Problem Formulation

General tree assignments. Let S and T denote two rooted unordered trees, with
vertices U and V , respectively. We will be dealing with tree assignments between
two trees, which are sets M = {(u1, v1), . . . , (uk, vk)} ⊂ U ×V such that for any
two distinct indices 1 ≤ i, j ≤ k, neither ui is an ancestor/descendant of uj nor
vi is an ancestor/descendant of vj . We refer to the set of all possible assignments
between S and T as match(S, T ). Given a weighting function w : U × V → R≥0

that assigns a score w(u, v) whenever u is matched with v, we can assign a weight
W (M) :=

∑
(u,v)∈M wu,v to an assignment M . Putting things together, this

allows us to define the tree assignment problem, which is to find the maximum
weighted tree assignment, given S, T and w. The tree assignment problem is a
generalization of the maximum weighted bipartite matching problem.
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Constrained tree assignments. The tree assignment problem can be modelled
and solved using integer linear programming [15]. In general, however, the tree
assignment problem has recently been shown to be NP-hard [2]. As such, we
consider a constrained tree assignment inspired by the constrained tree edit
distance [16]. Similar to the tree edit distance, we found that the constrained
version of the tree assignment problem is solvable in polynomial time. We call
the constraint the three-point condition because it introduces a restriction on the
topology of trees with three leaves. We adapt the recursions for the constrained
tree edit distance to solve the restricted tree assignment problem.

The three-point condition involves the lowest common ancestor of two vertices
a, b in a tree, which we denote by lca(a, b). Now, we call M ∈ match(S, T ) a con-
strained tree assignment if for any three assignments (a1, a2), (b1, b2), (c1, c2) ∈
M , we have

lca(a1, b1) = lca(a1, c1) ⇐⇒ lca(a2, b2) = lca(a2, c2)

Intuitively, the three-point condition ensures that for any three pairs of vertices
in an assignment, the topology of the two induced subtrees are identical. This
implies that distinct subtrees in one tree are assigned to distinct subtrees in the
other tree.

As a short hand notation, cmatch(S, T ) will refer to the set of all constrained
tree assignments between S and T . Corresponding to the tree assignment prob-
lem, the constrained tree assignment problem is to find the maximum weighted
constrained tree assignment between two trees based on a weight function w.

Component trees. In our image analysis setting, we are dealing trees S and T that
are component trees. These are computed from images I : P → {0, . . . , q − 1},
where P is the set of all image coordinates and q the number of gray values. For
a threshold 0 ≤ θ < q, the pixel set {p ∈ P | I(p) ≥ θ} falls apart into connected
components (e.g. with regard to the 4-neighborhood or 8-neighborhood of pixels
in a 2D image). The connected components for all possible thresholds 0, . . . , q−1
are hierarchically ordered, defining the component tree in which each vertex
represents one connected component. In a component tree, each vertex v is
associated with a (connected) set of pixels, we denote this set by β(v).

There is an intuitive interpretation of constrained tree assignments between
component trees involving background inhomogeneities that are of high rele-
vance in microscopic images [7]. This interpretation suggests that the restriction
to constrained tree assignments does not affect results as long as background
inhomogeneity (which can be dealt with using rolling-ball-type algorithms [14])
is consistent among the two underlying images, as illustrated in Fig. 1.

Calculating overlap weights. An important part of obtaining cosegmentation is
to compute the vertex weights between two given component trees S and T . To
simplify notation, we use the same symbol β for the vertex-to-pixels mappings
of S and T , so that for vertex u in S, β(u) refers to a pixel set in the image
underlying S and for vertex v in T refers to a pixel set in T ’s image. A weighting
function to be used for cosegmentation, as introduced in [15], is the Jaccard
index:
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Fig. 1. Relationship between the three-point condition and background inhomogeneity
in images: (1) Often, a biological image such as I1 contains an inhomogeneous back-
ground b in addition to the actual (e.g. fluorescence) signal s1, which contains three
objects that are represented by vertices α1, β1, γ1 in the corresponding component tree.
(2A) Given a second images I2 = b + s2 with same background b and similar objects
represented by vertices α2, β2, γ2, a tree assignment involving the three assignments
(α1, α2), (β1, β2), (γ1, γ2) respects the three-point condition. (2B) If, however, we have
image Ĩ2 with same signal s2 but completely different background b̃, an assignment
involving the three assignments (α1, α̃2), (β1, β̃2), (γ1, γ̃2) will violate the three-point
condition.

w(u, v) = |β(u) ∩ β(v)|/|β(u) ∪ β(v)|
Before solving either the constrained or the unconstrained tree assignment prob-
lem, it is necessary to compute the weights between all pairs of vertices.

3 A Quasi-Linear Time Algorithm for Computing
Overlap Weights

Before computing tree assignments between two trees, the weight between each
pair of nodes, one in each component tree, needs to be computed. In practice,
calculating weights is a major bottleneck for computing cosegmentations. Here,
we propose a linear time dynamic programming algorithm for calculating overlap
weights by systematically utilizing the inclusion relationship of a node and its
children in a component tree.

A component tree T can be described as T = (V,E, α, β), where V is the set
of vertices in the tree T , and α and β are two mappings from vertices to sets of
pixels in an image. For each vertex v, β(v) is the connected area in the image
that is associated with v, while α(v) is the connected area of v excluding the
connect areas of the children of v. The pixels in α(v) belong exclusively to v
and not to any of its children. Furthermore, let vi denote the i-th child of vertex
v and C(v) be the set of children of v. Then, we have

β(vi) ∩ β(vj) = ∅ for all vi �= vj ∈ C(v)
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Hence, β(v) can be decomposed as follows:

β(v) = α(v) ∪
⋃

vi∈C(v)

β(vi)

That is to say, β(v) can be partitioned into α(v) and β(vi), vi ∈ C(v). This
will be the guiding principle of our dynamic programing algorithm for weight
calculation.

Let S = (VS , ES , α, β) be the first component tree, and T = (VT , ET , α, β) be
the second component tree. Our task is to compute the Jaccard index between
each vertex u in S and vertex v in T , defined as

w(u, v) = |β(u) ∩ β(v)| / |β(u) ∪ β(v)|
We can rewrite the above as

w(u, v) =
|β(u) ∩ β(v)|

|β(u)|+ |β(v)| − |β(u) ∩ β(v)|
Thus, the weight calculation between vertex u in S and vertex v in T can be
rephrased as calculating intersections between β(u) and β(v). As a shortcut
notation, we denote the cardinality of the intersection of β(u) and β(v) as

ββ(u, v) = |β(u) ∩ β(v)|
Similarly, we define

αβ(u, v) = |α(u) ∩ β(v)|
αα(u, v) = |α(u) ∩ α(v)|

Decomposing β(v) into α(v) and β(vi), we can split ββ(u, v) into

ββ(u, v) = αβ(u, v) +
∑

ui∈C(u)

ββ(ui, v),

while αβ(u, v) can be decomposed into

αβ(u, v) = αα(u, v) +
∑

vi∈C(v)

αβ(u, vi),

For our dynamic programming algorithm, the idea is to use three dynamic
programming tables αα, αβ, and ββ. Based on the dependency relationship
between them, we compute them in the following order:

αα(u, v)→ αβ(u, v)→ ββ(u, v)

Let P be the set of all pixels in an image, and T (V,E, α, β) be its component
tree. Then, α(v) is a partition of P

P =
⋃

v∈V

α(v) (1)
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This allows us to define a reverse mapping of α−1 : P → V that identifies
for each pixel p ∈ P , the unique vertex v that satisfying p ∈ α(v). This reverse
mapping allows us to calculate all αα(u, v) in time O(|P |).

Based on the above recurrence relations, both ββ(u, v) and αβ(u, v) can be
calculated in a dynamic programming fashion by postorder traversal of the com-
ponent trees (see Algorithm 1). This leads to a time complexity of O(|S| · |T ).
Worst-case time complexity. For the whole weight calculation process, we first
compute all αα weights, then the αβ weights, and finally the ββ weights, yielding
a total running time of O(|P | + |S| · |T |).

From Eqn. (1), we get

|V | = |P |
avgv∈V (|α(v)|)

We always have |V | ≤ |P |, since avgv∈V (|α(v)|) ≥ 1. For large images (|P | ∼ 106)
such as the ones considered in Section 5, the full component tree contains about
105 vertices. However, after pruning, the tree size decreases dramatically, to
typically much less than 500, as observed in [15]. Usually, for large images, we
have avgv∈V (|α(v)|) > |V |, so |V |2 ! |P |. Under these circumstances, the total
running time, dominated by the number of pixels, is quasi-linear w.r.t |P |.

4 Dynamic Programming Algorithm for Constrained
Tree Assignment

Constrained tree assignments can be considered to be a special case of the con-
strained edit distance [16], where assigning node u to node v is equivalent to
changing the label of node u to the label of node v. The cost of changing node
u to v is w(u, v) and the rest of the operations have zero cost. In addition, once
we changed node u to v, we do not have to consider the descendants of u and v
anymore.

Hence, our dynamic programming algorithm is a simplification of the dy-
namic programming algorithm for computing constrained edit distance between
unordered labeled trees [16].

Let Tu be the tree rooted at node u and Fu be the forest of the subtrees of
u. As a slight abuse of notation, we refer to Tv as a subtree of another tree S if
vertex v belongs to some tree S. M(Tu, Tv) is the optimal assignment between
the two trees Tu and Tv and W (Tu, Tv) is the score of the optimal assignment.
The following lemmas establish the recurrence relation for W .

Lemma 1.

W (Tu, Tv) = max

⎧⎪⎨⎪⎩
W (u, Tv)

W (Tu, v)

W (Fu, Fv)

W (u, Tv) = max

{
w(u, v)

maxy∈C(v) w(u, Ty)
W (Tu, v) = max

{
w(u, v)

maxx∈C(u) w(Tx, v)
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Algorithm 1. Computing all overlap weights between component trees S and T
Compute post-order enumerations of the vertices in S and T as u1, . . . , un and
v1, . . . , vm, respectively

{αα weights calculation}
Initialize all αα(u, v) to 0
for each pixel p ∈ P do

u := α−1
1 (p)

v := α−1
2 (p)

increase αα(u, v) by one
end for

{αβ weights calculation}
for i from 1 to n do

for j from 1 to m do
Initialize αβ(ui, vj) to αα(ui, vj)
for each child c ∈ C(vj) do

αβ(ui, vj) := αβ(uu, vj) + αβ(ui, c)
end for

end for
end for

{ββ weights and Jaccard index calculation}
for i from 1 to n do

for j from 1 to m do
Initialize ββ(ui, vj) to αβ(ui, vj)
for each child c ∈ C(ui) do

ββ(ui, vj) := ββ(uu, vj) + ββ(c, vj)
end for
{|β(u)| and |β(v)| are tracked during the building of the component trees}
w(ui, vj) := ββ(ui, vj)/(|β(ui)|+ |β(vj)| − ββ(ui, vj))

end for
end for

Proof. Consider the nodes u and v, there are three possible cases: (1) u ∈ M ,
(2) v ∈M , and (3) u /∈M and v /∈M .

Case 1 (u ∈M). Node u is matched to some node in Tv. In order to maximize
the objective function node, u must be matched to some node x in Tv that
maximizes w(x, v).

Case 2 (v ∈M). Similar to case 1.
Case 3 (u /∈M and v /∈M). Since both u and v are not in M , we can remove

them and find an optimal assignment between the remaining forests, Fu and
Fv.
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Algorithm 2. Computing the optimal assignment between two trees, S and T
Compute post-order enumerations of the vertices in S and T as u1, . . . , un and
v1, . . . , vm, respectively

{Matching a node ui in S to all subtrees of T}
for i from 1 to n do

for j from 1 to m do
W (ui, Tvj ) := w(ui, vj)
for each child c in C(vj) do

W (ui, Tvj ) := max(W (ui, Tvj ), w(ui, Tc))
end for

end for
end for

{Matching a node vj in T to all subtrees of S}
for j from 1 to m do

for i from 1 to n do
W (Tui , vj) = w(ui, vj)
for each child c in C(ui) do

W (Tui , vj) = max(W (Tui , vj), w(Tc, vj))
end for

end for
end for

{Matching a subtree of S to a subtree of T}
for i from 1 to n do

for j from 1 to m do
Construct a weighted bipartite graph G = (U ∪V, E), where U = Fui , V = Fvj ,
and E = {(Tx, Ty , W (Tx, Ty)) | Tx ∈ Fuiand Ty ∈ Fvj}
MG = MaxWeightedBipartiteMatching(G)
W (Tui , Tvj ) = max(W (ui, Tvj ), W (Tui , vj),

∑
(Tx,Ty)∈MG

W (Tx, Ty))
end for

end for

Lemma 2. Let M be the set of all possible matchings between the trees in Fu

and the trees in Fv. Then,

W (Fu, Fv) = max
M∈M

∑
(Tx,Ty)∈M

W (Tx, Ty)

Proof. The key property of the three-point condition is that distinct trees in
Fu is assigned to distinct trees in Fv, hence it suffices to consider one-to-one
matchings between the trees in Fu and Fv. As we wish to maximize the final
assignments, we maximize over all possible one-to-one matchings between trees
in Fu and trees in Fv. This is precisely the maximum weighted bipartite matching
problem where the two partite sets are the trees in Fu and Fv respectively and
the weight between two trees is given by W .
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We first compute W (u, Tv) and W (v, Tu) for all possible pair of nodes u and
v, where u is in S and v is in T using dynamic programming. Then we com-
pute W (Tu, Tv) by solving a maximum weighted bipartite matching problem and
combining that with the results from the previous step. The pseudocode for the
whole algorithm is listed in Algorithm 2.

Worst-case time complexity. The number of subproblems in W is O(|S| · |T |) and
except for the computation of the maximum weighted bipartite matching, each
subproblem can be solved by taking the maximum of a fixed number of cases.
Therefore, the bottleneck in this algorithm is in the computation of maximum
weighted bipartite matching. The worst-case time complexity for computing the
maximum weighted bipartite matching on a graph with n vertices and m edges
is O(n(m + n lgn)) [3], thus the worst case time complexity for computing the
optimal assignment between Fu and Fv is O((nu +nv)(nunv +(nu +nv) lg(nu +
nv))), where nu is the number of children of node u and nv is the number of
children of node v. Hence, the worst-case time complexity of our algorithm is∑

u∈U

∑
v∈V

C × (nu + nv)(nunv + (nu + nv) lg(nu + nv))

≤ C
∑
u∈U

∑
v∈V

D · (nunv) +D lgD · (nu + nv)

= C (D(|S| · |T |) +D lgD(|S| · |T |))
≤ 2C ((|S| · |T |)D lgD)
= O((|S| · |T |)(deg(S)) + deg(T )) lg(deg(S) + deg(T )))

where deg(S) is the maximum degree of a node in S and D = deg(S) + deg(T ).

5 Results

In our application, we are interested in using a pair of fluorescence-based im-
ages, taken in two consecutive time frames, to identify regions that corresponds
to cells. Our general approach is to first convert each image into a hierarchal
representation (component tree) and then perform tree assignment to identify
similar segments in the two images.

In this section, we evaluated our dynamic programming algorithm for solving
constrained tree assignment against the ILP approach using synthetic and real
images from [15]. Real images display in-vivo time-lapse recordings of zebrafish
brain with a green fluorescent protein expressed specific to microglia (neural
immune cells); synthetic images contain ellipsoid objects perturbed by noise and
different types of background inhomogeneity. Both synthetic and real images are
three-dimensional involving around 200 × 200 × 40 voxels each. We compared
the running times and the scores obtained by the constrained tree assignments
against the unconstrained tree assignment to evaluate whether the constraint
affect solutions that are relevant in practice. As the quasi-linear time algorithm
for computing overlap weights has been implemented, although not described,
in [15], we did not further compare its running time to a näıve approach.
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Fig. 2. Running time of integer-linear programming approach vs. dynamic programming
approach. The number of vertices is the sum of the size of the two trees that were
aligned. Instances of different size were derived from the microglia dataset from [15]
by applying different pruning parameters for the component trees, again following [15].
The running time for computing weights becomes negligibly small using the quasi-linear
time algorithm from Section 3 (right).

Running time of unconstrained versus constrained tree assignments. In the first
experiment, we compared the running time of the integer linear programming
approach from [15] with the dynamic programming approach for the constrained
tree assignment as described in Section 4. As shown in Figure 2, our DP approach
allows us to solve substantially larger instances within a few seconds compared
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Fig. 3. Left Part. Histogram of score ratios between dynamic programming approach
and integer linear programming approach The majority of instances achievea a score of
more than 60% of the unconstrained version and can be expected to be reliable. Right
Part. (Top.) Example of a dataset where the constrained version (middle) achieves a
score of only 30.42% of the unconstrained version (left), thus missing relevant segments
representing microglia indicated by green circles in the original image (right). Bottom.
Instance where the constrained version achieves 70.21% of the unconstrained version’s
score. All microglia are identified equally by both versions (green circles on the right),
while the segments missed represent segments from background noise or unspecific
expression of the fuorescent marker (red circles). Visualized using v3d [12].
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to the ILP approach. The running time of the ILP solver increases much more
rapidly, especially when the number of vertices exceeds 2000.

Scores of unconstrained versus constrained tree assignments. To quantify how
the three-point condition affects the score of solutions (and thus the quality
results), we compared the scores obtained using Algorithm 2 versus the scores
obtained from the unconstrained tree assignment using the integer linear pro-
gramming approach from [15], utilizing both synthetic data and real microscopic
images of zebrafish brain from [15]. The results displayed in Fig. 3 indicate that
while a small number of constrained scores achieve less than 30% of the un-
constrained ones and can be considered to possibly loose critical segments, the
majority of instances achieves a score of around 60% of the unconstrained score.
Therefore, most of the results obtained using the constrained version are useful
in practice. The score ratio is virtually constant across different signal-to-noise
ratios in synthetic images with homogeneous background noise (data not shown).

6 Conclusion and Future Work

We have presented dynamic programming approaches to the tree assignment
problem, which is of importance in bioimaging applications. From a theoretical
point of view, constraining assignments to the three-point condition allows us
to design a fast polynomial-time algorithm. We evaluated the practical implica-
tions of this, demonstrating that the dynamic programming approach enables
us to solve large instances within a few seconds. Comparing the resulting scores
with the unconstrained version suggests that solving the constrained version is
sufficient in many cases. We plan to make the dynamic programming algorithm
available in a future release of the ct3d software package for cell tracking and
cosegmentation applications.

From an algorithmic point of view, investigating other variations of tree as-
signments is interesting from both theoretical and practical perspectives. We
note that the more relaxed condition introduced by Lu et al. for the less-
constrained edit distance [8] can also be applied to tree assignment. In that
case, we can adopt the dynamic programming algorithm from Jiang et al. [5],
for alignment of unordered rooted trees, to solve the less-constrained tree assign-
ment problem. The drawback is that the algorithm has running time exponential
in the degree of the trees. We are currently exploring the trade-off between the
running time and the quality of the solution.

While beyond the scope of this more algorithmically focussed contribution, a
more detailed evaluation of how restricting to the three-point condition affects
results on both synthetic and real biological image data is desirable.

Acknowledgments. The work of HWL was supported in part by the National
University of Singapore under ARF grant R-252-000-361-112.
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Abstract. The accumulation of whole-genome data has renewed interest in the
study of genomic rearrangements. Comparative genomics, evolutionary biology,
and cancer research all require models and algorithms to elucidate the mecha-
nisms, history, and consequences of these rearrangements. However, rearrange-
ments lead to NP-hard problems, so that current approaches, such as the MGR
tool, are limited to small collections of genomes and low-resolution data of a few
hundred syntenic blocks.

We describe the first algorithm for rearrangement analysis that scales up, in
both time and accuracy, to modern high-resolution genomic data. Our main con-
tribution is GASTS, an algorithm for scoring a fixed phylogenetic tree: given a
tree and a collection of genomes, one for each leaf of the tree, each genome given
by an ordered list of syntenic blocks, GASTS infers genomes for the internal
nodes of the tree so as to minimize the sum, taken over all tree edges, of the pair-
wise genomic distances between tree nodes. We present the results of extensive
testing on both simulated and real data showing that our algorithm runs several
orders of magnitude faster than existing approaches and scales up linearly instead
of exponentially with the size of the genomes involved; on the small instances that
current approaches can complete in a day, our algorithm also returns much better
scores. In simulations, our tree scores stay within 0.5% of the model value for
trees up to 100 taxa and genomes of up to 10,000 syntenic blocks. GASTS en-
ables us to attack heretofore unapproachable problems, such as accurate ancestral
reconstruction of large genomes and phylogenetic inference for high-resolution
vertebrate genomes, as we demonstrate on a set of vertebrate genomes with over
2,000 syntenic blocks.

1 Introduction

Genomic rearrangements were discovered early in the 20th century [20], but their sys-
tematic study started with the spread of sequencing technologies. In 1987 Day and
Sankoff [7] proposed two major problems about rearrangements: the edit distance—
given two genomes and a model of rearrangements, find the shortest sequence of re-
arrangements that transforms one input genome into the other; and the median—given
three genomes, construct a fourth genome that minimizes the sum of its pairwise dis-
tances to the other three. The edit distance is computable in linear time for most models,
while the median is NP-hard for most models [9]. Phylogenetic reconstruction from re-
arrangement data attracted attention, as rearrangements are “rare genomic events” [17]
and thus might help resolve difficult questions about ancient branching patterns in

T.M. Przytycka and M.-F. Sagot (Eds.): WABI 2011, LNBI 6833, pp. 351–363, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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evolution, but the computational complexity of parsimonious approaches precluded
widespread application of the approach. The best available tool for the purpose, MGR
[6] and its extensions, scales poorly in both accuracy and running time with genome
size (to a few hundred syntenic blocks at most) and also with the expected length of the
phylogenetic tree.

In this paper, we describe GASTS (Generalized Adequate Subtree Tree Scoring),
a tree-scoring method based on generalized adequate subgraphs. Scoring a fixed tree
given its leaf genomes is the core problem of phylogenetic inference, ancestral recon-
struction, and all other uses of phylogenetic trees. The problem is NP-hard, as it sub-
sumes the median problem. GASTS scales linearly with the expected length of the tree,
and, in extensive simulation tests, returns tree scores within 0.5% of the model tree
score. GASTS runs in seconds on datasets that MGR fails to complete in 24 hours and
returns better scores on those datasets that MGR can complete. GASTS provides accu-
rate values within the full range of practical applications in contemporary comparative
genomics.

We test GASTS on real data and on simulations, the latter to assess scalability and
absolute accuracy; in addition, we test its use within the contexts of both ancestral re-
construction and phylogenetic inference. Our simulations show that GASTS enables
highly accurate tree reconstruction: even for difficult datasets, the expected error re-
mains well below a single edge. On real data, GASTS enabled us to infer in just a few
minutes phylogenies from high-resolution vertebrate data (over 2’000 syntenic blocks).
Our new approach provides the kind of high-throughput tool needed today in compara-
tive genomics and opens new areas of genomics to computational investigation.

2 Rearrangements and Phylogenetic Analysis

Rearrangement data was used in phylogenetic analysis 80 years ago by the Sturtevant
and Dobzhansky [21]. Blanchette, Bourque, and Sankoff [5] introduced the first algo-
rithmic approach to the reconstruction of a phylogenetic tree from rearrangement data,
BPAnalysis. The algorithm seeks the tree and internal genomes which together mini-
mize the total number of breakpoints—adjacencies present in one genome, but absent
in the other. Moret et al. [14] reimplemented this approach in their GRAPPA tool and
extended it to inversion distances—inversions are the best documented of the hypoth-
esized mechanisms of genomic rearrangements; they also published the first studies of
the median problem [13,18]. Their work focused on unichromosomal genomes; to han-
dle multichromosomal genomes, Bourque and Pevzner [6] proposed MGR, based on
GRAPPA’s distance computations. Whereas BPAnalysis and GRAPPA search all trees
and report the one with the best score, MGR uses a heuristic sequential addition method
to grow the tree one species at a time.

Computing the parsimony score of a fixed tree for rearrangement data is NP-hard [9],
even if the tree has only three leaves, and for any of breakpoint distance, inversion
distance, and DCJ distance—a DCJ (Double-Cut-and-Join) operation changes two ad-
jacencies at a time and provides a general framework that subsumes all other rearrange-
ment operations [3]. The approach in BPAnalysis and GRAPPA is iterative refinement:
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A. assign some arrangement to each internal node
B. repeat

select an internal node x with a neighbor
that was just assigned a new arrangement

compute the median of the arrangements stored
at the three neighbors of x

if the median improves on the arrangement
stored at x, assign the median to x

until no change

The key problem here was long held to be the computation of medians, a problem that
one of us started studying 8 years ago [13, 18] and that we recently solved well enough
for most practical purposes [15] in the context of unichromosomal genomes, using the
concept of adequate subgraphs developed by one of us [26]. Using this median solver,
we discovered that an equally crucial problem is the initialization phase: because local
optima abound, an iterative refinement approach does well only when started with a
very good initial assignment.

Our algorithmic contribution is a novel method for accurate initialization of internal
(ancestral) genomes in a fixed tree. This contribution leads to an accurate tree-scoring
algorithm, which in turn we use to run two different styles of phylogenetic inference,
one through brute-force search (score all possible trees and retain the best) and one
through incremental construction. One of us used GASTS to explore patterns beyond
generalized adequate subgraphs on small phylogenetic trees [23], resulting in a collec-
tion of less constrained, yet more generally applicable configurations that can further
reduce the running time of our approach on the hardest inputs.

3 A Heuristic for Multichromosomal Medians

Our approach is based on a fast and accurate heuristic for the inversion median that we
recently developed [15] and now briefly review. This heuristic uses adequate subgraphs,
developed by one of us [26, 25], which provide optimality-preserving decompositions
of the median problem and thus the basis for a divide-and-conquer algorithm for the
median. Finding such decompositions in every instance remains an open problem; in
practice, however, a few of the simplest decompositions suffice in almost every case—
and when they do not, they can be supplemented by simple heuristics to produce highly
accurate solutions [15].

We extend that work to handle the capped version of the underlying multiple break-
point graphs—caps being necessary to move from unichromosomal to multichromoso-
mal genomes [24]. At each step, our new algorithm either detects a capped adequate
subgraph and decomposes the current instance into subproblems, or searches a poly-
nomial number of ways to add one more adjacency into the median genome, selecting
one choice according to a criterion that matches the definition of (capped) adequate
subgraphs. Since this algorithm simply combines our design for inversion medians
with Xu’s extensions to capped multiple breakpoint graphs, we do not give a more
detailed description, with one exception. Because DCJ-based approaches can produce
extra circular chromosomes, our algorithm greedily merges such circular chromosomes
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with regular linear chromosomes so as to minimize the incremental increase of median
scores. When tested on simulated data, these heuristics demonstrate very high accuracy,
in line with our results for inversions [15].

4 Initialization with Adequate Subgraphs

In their paper on BPAnalysis [5], Sankoff and Blanchette proposed several initialization
methods for step (A); both they and Moret et al. [14] settled on two approaches as the
most promising. The nearest-neighbor approach assigns to each internal node the me-
dian of its three nearest leaves (one in each of the three adjacent subtrees, breaking ties
within a subtree arbitrarily). The more complex adjacency-parsimony approach finds
arrangements that minimize the number of adjacencies not already present in the data.
This second method uses information in a more global manner than the first, although
experiments by both sets of authors using breakpoint or inversion distances showed no
gain in practice. Moreover, both initialization methods fail on difficult data, as the it-
erative refinement step (B) typically runs at most twice on each node—in other words,
both initialization methods tend to start the algorithm in a local optimum, preventing
any improvements and returning poor solutions. What is needed is an initialization that
avoids local optima or uses only those very close to the global optimum—all of which
argues for a better use of global information.

Our new initialization method put global information to use through adequate sub-
graphs and thus meshes well with the refinement phase of the scoring procedure, which
uses adequate subgraphs to compute medians. We initialize internal nodes progres-
sively: in order for an internal node to be a candidate for initialization, two of its three
neighbors must be already initialized (or leaves). The third, while typically not be ini-
tialized, is not devoid of information, so our method summarizes the data available in
the third subtree (rooted at the uninitialized neighbor) into a set of weighted adjacen-
cies. Thus information used in initializing a node consists of two 0-1 sets of adjacencies
from the two initialized neighbors and one weighted set of adjacencies from the third
neighbor. A suitable choice of the node to be initialized is thus a generalized version
of a median, one that takes into account the weighted nature of adjacencies in the third
node.

4.1 Weighted Adjacencies and a Weighting Schema

We define a perspective at a node along one of its incident edges to be the subtree
rooted at the other end of that edge. In Fig. 1, numbered nodes are uninitialized nodes
and labelled nodes are leaves or initialized nodes. The subtree rooted at node 2 and
extending rightward is the perspective at node 1 along edge z. We do not use the entire
perspective in guiding the initialization of node 1, however; instead, we consider only
the directive nodes in the perspective, that is, initialized nodes or leaves connected to
the node of interest via a path of uninitialized nodes. In Fig. 1, nodes a, b, and c are
initialized and connected to node 1 through paths of uninitialized nodes and so are
directive nodes.
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Fig. 1. A perspective at node 1 along edge z; shaded nodes are the directive nodes a, b, and c

Given a directive node g, we define the indicator function Ix(g) to be 1 if adjacency
x is present in g and 0 otherwise. We now define weighted adjacencies on perspective
p at internal node i as follows: the weight wx for each adjacency x is given by

wx = ∑
directive nodes g in p

Ix(g) ·2−d+1

where d is the depth of node g—the number of edges on the path connecting nodes g
and i. (The exponential decay reflects the exponential growth in the number of possible
directive nodes in a perspective.)

Xu and Sankoff [26] showed that, under the DCJ model, if two of the three neigh-
bors contain the same adjacency, then the median also contains it; under our weighting
scheme, this property is preserved. Consider the situation depicted in Fig. 2. Say that
nodes b, c, and e contain some adjacency x, while nodes a and d do not; should x be
assigned to node 1? The presence of x in node b and the “fractional presence” of x in
node 2 (the root of the perspective along edge z) together form a generalized adequate
subgraph (for which see below) causing an assignment of x to node 1; in consequence,
x also gets assigned to nodes 2 and 3.

Fig. 2. A perspective at node 1 along edge z and nodes that share adjacency x (in black)

4.2 Using the Generalized Adequate Subgraphs

Adequate subgraphs capture optimal substructures, as defined and described in previ-
ous work by Xu et al. [15, 24, 26]. An adequate subgraph on n vertices is a connected
subgraph of the multiple breakpoint graph, with which another set of edges can form at
least 3n/4 bicolored cycles. In the generalized version used in this paper, we count each
cycle according to its weight, which we define to be the smallest weight along the cy-
cle. Unlike the adequate subgraphs for the median problem, these generalized adequate
subgraphs (GAS) do not have an optimality guarantee: they form the basis for heuristic
assignment of the median in the initialization phase.
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Using fractional rather than 0-1 weights greatly increases the number of GAS, so that
detecting them can become a major computational task. However, each node to be ini-
tialized has two initialized (or leaf) nodes. The adjacencies in these two neighbors form
bicolored cycles and paths in the breakpoint graph; we search for GAS only in these
cycles and paths. This approach is not just efficient, but also reasonable: the genome to
be assigned lies on the DCJ edit path between those two genomes and minimizes the
average distance to the directive nodes. This genome may be slightly biased toward to
the two known neighbors, when their edit distance is smaller than the real number of
rearrangements. Since the genome we want to assign is well balanced between local
and global information, the bias can be remedied in the second phase of the scoring
procedure.

5 Testing Our New Tree-Scoring Method

We compare GASTS with the only existing method that can handle multichromoso-
mal data, MGR. However, MGR failed to complete within 24 hours of computation on
almost every test case of medium to large size, so, in order to get some basic compar-
isons, we introduce a third method, purely a strawman to enable some comparison of
GASTS scores and running times against at least one competitor on nontrivial datasets.
This third method, denoted NNM, uses the standard nearest-neighbor initialization, but
computes medians in both steps (A) and (B) using our GAS-based median solver.

We test tree-scoring quality and scalability on various model conditions with large
genomes. Model conditions vary from 10 to 80 genomes, each made of up to 2,000
syntenic blocks. These models conditions are produced according to standard practice
in phylogenetic reconstruction [10] as follows. We generate a rooted tree topology,
assign a “genome” to the root, then simulate the evolution of the genome down the tree
to the leaves. Trees are generated either following a standard birth-death process, in
which case the length of each tree branch is determined during the construction of the
tree topology, or by picking a tree uniformly at random among all distinct rooted trees
on the assigned number of leaves, in which case we assign the same length to every edge
of the tree. A tree with its branch lengths and root genome is a model tree; we view the
length of branch of a model tree as the expected value of the length of that branch. From
a model tree, we generate multiple datasets. To generate one dataset, we first assign real
lengths to the edges of the tree by sampling from a Poisson distribution with a mean
equal to the edge length in the model tree; we then “evolve” the root genome down the
tree to obtain genomes at the leaves. To evolve a parent genome down to its child, we
apply to the parent genome a number of rearrangements (chosen uniformly at random)
equal to the length of that branch. The resulting leaf genomes, plus the tree topology
(but not its branch lengths) form the dataset. Repeating the process on the same model
tree produces new datasets. The tree with its edge lengths in each simulation is a real
tree; the sum of its edge lengths is the real tree score. The sum of the edge lengths
assigned to an instance by the tree-scoring procedure is the inferred tree score. The
differential tree score is the difference between the inferred tree score and the real tree
score. Since the rearrangement scenarios are random, the real tree score need not be the
smallest score achievable for the tree.
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MGR’s computational limitations led us to generate a first group of model conditions
of modest scope: 10 genomes of size 100, with rearrangements limited to 80 to 340
inversions. As our own procedures, GASTS and NNM, can handle much larger trees
and genomes, we generated a second group of model conditions with from 10 to 80
genomes, each with 20 linear chromosomes and a total of 2’000 syntenic blocks, using
inversions, translocations, fissions, and fusions. In these datasets, model tree scores
vary very widely, from 0.5 to 23 times the number of syntenic blocks. Finally, to test
the computational scaling of GASTS, we generated a smaller number of large datasets,
with 10 to 80 genomes, each made of 20 chromosomes with a total of 10’000 syntenic
blocks.

On the first group of model conditions, GASTS and NNM ran in less than one sec-
ond on every instance, whereas MGR took a very long time (often days) on over half of
the instances—those derived from model trees with large scores. In order to run enough
datasets, we set an arbitrary cutoff of 24 hours of computation per instance (on a ded-
icated CPU). Fig. 3 shows the difference between the inferred tree score and the real
tree score for GASTS and MGR for the first group of model conditions. (Tree scores ob-
tained from NNM were similar to, but less accurate than, those obtained from GASTS,
so we do not present them here.) The horizontal axis denotes the real tree score, while
the vertical axis denotes the differential tree score for each of GASTS and MGR. In-
ferred tree scores obtained by GASTS correctly trend downwards (for larger model
tree scores we expect parsimony scores to be smaller than the model tree scores) and
are consistently better than those obtained by MGR, which trend upwards, indicating
increasing errors.

In the second group we used 50 different model conditions, with 10 datasets each.
Here our comparison is between GASTS and NNM, because MGR could not complete
any of these datasets within several weeks. On these datasets, GASTS runs in a few
seconds for the smaller datasets and in a few minutes for the larger ones. Since both
methods use the same median solver and share the same refinement step, the results
indicate the differences in the initialization method. The NNM approach suffers when
the number of leaves grows, as it must then compute medians of very divergent leaves,
which can take significant time; in contrast, GASTS initialization ensures that every
median computation is a median of three neighboring genomes. The speed difference is
large enough that, with the NNM approach, we could not complete instances for trees
with 20 or more taxa. Fig. 4 shows the results, including higher-resolution plots of the
final differential tree scores for GASTS. For both methods, we report the differential
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Fig. 4. Accuracy of GASTS and NNM, for 10-taxon trees (left) and 80-taxon trees (right), as a
function of the total number of rearrangement events. Thin lines show initial scores, thick lines
final scores. The lower plots zoom in on the final score produced by GASTS.

tree score right after initialization and at the completion of the scoring procedure. Our
initialization method clearly dominates the NNM method, particularly for large model
tree scores. The second phase of scoring—the iterative refinement—has little effect for
smaller distances, but quite dramatic ones for large distances, showing that our initial-
ization method helps the refinement procedure in avoiding local optima. Note that the
inferred score keeps tracking the real score even at very large evolutionary distances, as
evidenced in the lower plots. Thus GASTS is both highly accurate and very robust—in
particular, tree scores inferred by GASTS can meaningfully be compared.

6 Ancestral Genome Reconstruction

In scoring trees, we assign arrangements to the internal nodes. Such assignments should
not be confused with true ancestral reconstruction, as they do not obey specific biologi-
cal constraints, but simply optimize a distance function. Yet many ancestral reconstruc-
tion approaches to date use median computations as part of their guidance. Given the
high accuracy of our scoring algorithm, we may expect it to assign arrangements to
internal nodes that come quite close to the “true” ancestral genomes. Since our sim-
ulations create these “true” ancestral genomes, we can compare them to those recon-
structed by our scoring procedure. Indeed, the genomes assigned by GASTS are very
close to the true ancestral genomes, as shown in Fig. 5. Interestingly, ancestral nodes
farthest from the leaves are not much worse than those closest to the leaves, which also
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Fig. 5. Average total DCJ distance between genomes assigned to internal nodes and the corre-
sponding “true” ancestors

supports the quality of the scoring. (For the largest distances, direct reconstruction fails
due to the enormous number of optimal solutions, as was shown for a collection of
gamma proteobacteria [8].) Over all 22 model conditions, the average total distance
was less than 30; in 20 of the 22 model conditions it was less than 10 and, in 10 model
conditions, it was less than 1. Thus the high accuracy of GASTS indeed provides a good
starting point for ancestral reconstruction.

7 Phylogenetic Reconstruction

With good tree scoring, several reconstruction methods used with sequence data can be
adapted to rearrangement data. We present experimental results for two different uses of
GASTS in phylogenetic inference: an exhaustive search method that scores every tree
and returns the best, and a heuristic method that builds a tree by sequential addition.
Exhaustive tree search may give the best results, but is forcibly limited to at most 20
taxa—we did not attempt to use the many speed-up mechanisms of GRAPPA, as our
aim was to test GASTS, not to produce a better reconstruction algorithm. Adding one
taxon at a time is a very simple heuristic, but one with a long history in phylogenetic
analysis, including incremental parsimony [4] and quartet-puzzling [19] for sequence-
based data; in rearrangement-based phylogenetic work, MGR uses this approach. Un-
like these three methods, our sequential addition method rescores every tree after each
addition step. We compare these two approaches with MGR rather than with GRAPPA,
so as to test performance on multichromosomal as well as unichromosomal data.

We used datasets of modest size so as to allow a comparison with MGR. Rear-
rangement include: (i) inversions on unichromosomal circular genomes; (ii) inversions,
translocations, fusions, and fissions on multichromosomal genomes; and (iii) 80% in-
versions and 20% transpositions on unichromosomal circular genomes. We tested trees
generated from three different models: the birth-death model, the random model, and
the beta-splitting model [2] with β =−1. We report results only for the birth-death and
uniform random model, as results for the beta-splitting model were similar to those for
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the uniform random model. For each dataset completed by MGR in 24 hours, we com-
pute the Robinson-Foulds (RF) error rate to the real tree—half of the number of edges
present in one tree, but not in the other [16], divided by the number of internal edges in
the model tree.

MGR finished only the smaller datasets in each group, taking about 20 minutes per
dataset with tree scores of 85 and over 12 hours per dataset with tree scores of 200,
its running time increased exponentially as a function of the tree score. Our exhaus-
tive search method took just one minute on each dataset, except for a few datasets with
tree scores of 340, where it took around 12 minutes. Finally, our sequential addition
method took less than one second per dataset, except for a few datasets with tree scores
of 340, where it took 4 seconds. Table 1 shows the error rates for the three methods
averaged over 6 model conditions, using birth-death trees. All three show reasonable
accuracy, with the exhaustive search the most accurate, the sequential addition second,
and MGR third. The main drawback of MGR here is running time (empty table entries
correspond to model conditions under which MGR could not complete more than a few
test instances), not accuracy: the phylogenetic signal in the data is strong enough that
correct inferences can be made even if the reconstruction method does not take full ad-
vantage of the data. The introduction of transpositions worsened the results for all three
approaches, most significantly for MGR—as might be expected, since a transposition
takes two operations in the DCJ framework used in our methods, but three operations
in the inversion framework used by MGR.

Table 1. RF error rates (in %)on datasets of 10 genomes of size 100 on birth-death trees, as a
function of the number of rearrangements

(a) circular genome, inversions & transpositions

85 170 204 238 255 340
exhaustive 0.0 0.0 0.0 5.2 2.6 5.2
sequential 0.0 0.0 1.8 5.2 4.3 14.3

MGR 0.0 7.9 7.1

(b) linear genome, all rearrangements

85 170 204 238 255 340
exhaustive 0.0 0.0 0.0 0.0 2.9 5.7
sequential 0.0 1.4 0.0 0.0 4.3 2.9

MGR 0.0

To test the accuracy of the sequential addition heuristic on large trees with large
genomes, we generated eight model conditions (again with 10 datasets each) using
birth-death trees on 80 taxa, with genomes of 2,000 syntenic blocks allotted among
20 linear chromosomes. Four of the model conditions use a mix of 20% transpositions,

Table 2. Average RF error rates (in %) and running times (in mins.) for sequential addition on
datasets of 80 genomes of 20 chromosomes with 2,000 blocks as a function of the number of
rearrangements

(a) no transpositions

5,000 10,000 15,000 20,000
error 0.0 0.0 0.0 0.78
time 21.0 21.8 26.7 88.3

(b) 20% transpositions

5,000 10,000 15,000 20,000
error 0.0 0.0 1.56 1.95
time 22.9 28.7 74.3 845.0
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while the other four do not use transpositions; the total number of rearrangement events
ranges ranges from 5,000 to 20,000. Table 2 shows error rates and running times; the
approach shows excellent scalability and good accuracy, with error rates consistently
smaller than 2%.

8 Applications on Real Data

We applied our exhaustive approach to two biological datasets. The first is quite small:
the well studied Campanulaceae chloroplast dataset, with 13 taxa, each genome a cir-
cular chromosome with 105 genes. The second is a collection of 8 vertebrate genomes
(7 mammals and chicken), from a 13-way genomic alignment downloaded from EN-
SEMBL, from which we retained the best assembled genomes. We then generated syn-
teny blocks at five different resolutions: 1Kbp, 3Kbp, 10Kbp, 30Kbp, and 100Kbp—
meaning that the resolution value was used as a lower bound on the size of acceptable
blocks. (We ignored contigs that contained a single synteny block.)

Previous studies on the Campanulaceae dataset reported best tree scores of 64 inver-
sions and 64 DCJ operations [1, 11, 13]. Our approach improved the DCJ tree score by
finding 138 trees with a score of 63, all with a different topology from the tree with
DCJ score of 64 reported in [1]. The vertebrate set has not been analyzed by anyone
as whole genomes at these resolutions, so direct comparisons are not possible. Nor is
comparison with sequence-based analyses fruitful at this stage, since the use of rear-
rangement data in phylogenetic analysis is too immature for an interpretation of the
resulting trees; moreover, the decomposition of whole genomes into syntenic blocks is
itself a poorly resolved problem, one aggravated by the incomplete assembly of many of
these genomes. Instead, our purpose with these datasets is to demonstrate the scalabil-
ity of our approach and thus pave the way for detailed studies. Our exhaustive approach
completed each of the five datasets in a few minutes and returned the same tree for each
(the generally accepted tree), illustrated in Figure 6.

Gallus gallus

Monodelphis domestica

Mus musculus

Rattus norvegicus

Macaca mulatta

Pongo pygmaeus

Pan troglodytes

Homo sapiens

Fig. 6. Phylogeny of 8 vertebrates
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9 Conclusion

We presented a new approach to phylogenetic analysis of rearrangement data that inte-
grates past and recent work through various adaptations (such as generalized adequate
subgraphs) and includes GASTS, a fast, highly accurate, and surprisingly robust scor-
ing method for a fixed tree. We presented experimental results demonstrating that our
scoring procedure scales gracefully to trees far larger than anything used to date with
gene-order data, as well as to evolutionary distances that are well into saturation, all
while returning tree lengths in a very narrow interval around the true tree length (gen-
erally within less than 0.1% and even in the worst cases within 0.5%). We tested our
reconstruction methods under simulation and on datasets of whole genomes; the simu-
lations indicate that the reconstruction is perfect in almost all cases, while the whole-
genome datasets demonstrate the power of the method on a dataset of vertebrates with
up to 10,000 markers, a scale that had been entirely out of reach until now. While our
approach does not yet handle duplications and losses and so must be used with either
simple genomes like organelles or large genomes represented by sequences of unique
syntenic blocks (as is often done for vertebrates), it makes it possible, for the first time,
to conduct nontrivial phylogenetic analyses from high-resolution genomic data.
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Abstract. From the set of all pairwise homologies, weighted by sequence
similarities, among a set of genomes, we seek disjoint orthology sets of
genes, in which each element is orthogonal to all other genes (on a differ-
ent genome) in the same set. In a graph-theoretical formulation, where
genes are vertices and weighted edges represent homologies, we suggest
three criteria, with three different biological motivations, for evaluating
the partition of genes produced by deletion of a subset of edges: i) mini-
mum weight edge removal, ii) minimum degree-zero vertex creation, and
iii) maximum number of edges in the transitive closure of the graph after
edge deletion. For each of the problems, all either proved or conjectured
to be NP-hard, we suggest approximate and heuristic algorithms of find-
ing orthology sets satisfying the criteria, and show how to incorporate
genomes that have a whole genome duplication event in their immediate
lineage. We apply this to ten flowering plant genomes, involving 160,000
different genes in given pairwise homologies. We evaluate the results in
a number of ways and recommend criterion iii) as best suited to appli-
cations to multiple gene order alignment.

1 Introduction

Multiple alignment of the gene orders in sequenced genomes is an important and
timely problem in comparative genomics [1,2,3,4]. A key aspect is the construc-
tion of disjoint orthology sets of genes, in which each element is orthologous to
all other genes (on different genomes) in the same set. Approaches differ as to the
nature and timing and relative importance of sequence alignment, synteny block
construction, and paralogy resolution in constructing these sets. We argue that
these considerations are best integrated in the construction of pairwise synteny
blocks as a first step, followed by the conflation of the pairwise orthologies into
larger sets. The advantages of this are the availability of finely tuned pairwise
synteny block software (e.g., SynMap in the CoGe platform [5,6]), the possibility
of dealing with paralogs dating from ancient whole genome duplication (wgd)
in a natural way, and the opportunity to dispense with thresholds or other ar-
bitrary settings during the construction of the orthology sets themselves. The
task of discerning the orthology sets becomes a purely algorithmic problem on
graphs.

T.M. Przytycka and M.-F. Sagot (Eds.): WABI 2011, LNBI 6833, pp. 364–375, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Here we distinguish three variants of this Orthologs in Multiple Genomes

(omg) problem, differentiated by their objective functions and their biological
justifications. All are expected to be hard, from the algorithmic point of view,
although some have available approximation algorithms. In Section 2, we first
define the different formulations of the omg problem and discuss their biological
interpretations. We then present and analyze the algorithms we design for each
formulation, including variants of the omg problem incorporating paralogy data
from genomes known to be descendants of wgd events.

Our approach, though widely applicable, was developed within the context
of flowering plant genomics, an evolutionary domain characterized by recurrent
wgd events. The massive data set we analyze is described in Section 3.

Fig. 1. Homology set, showing “erroneous” edges between orthology sets

In Section 4, we compare the results of applying the algorithms to a large data
set of homologies among some 160,000 plant genes drawn from ten eudicotyledon
genomes. We compare the results of the three methods when evaluated by the
other two objectives, and by assessing the compatibility of the orthology sets
with the phylogenetic tree that is assumed to have generated them. We find
that some of the orthology sets recovered by each method are also recovered by
the other two, but each method also finds many sets specific to that method.

Section 5 contains the conclusions, including reflections on restrictions on
accessibility of genome data for the purposes of comparative genomics. We con-
clude that one of the three approaches produces somewhat bigger orthology
sets, so that insofar as these sets are biologically validated, this method can be
recommended for purposes of multiple gene order alignment.

2 The Competing Formulations and Their Algorithms

The pairwise homologies SynMap provides for all pairs of genomes constitute
the set of edges E of the homology graph H = (V,E), where V represents the set
of genes in any of the genomes participating in at least one homology relation.
In addition there is a weight w(e) ∈ (0, 1] associated with each edge e ∈ E,
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representing a protein similarity score. Let H = H1 ∪ · · · ∪ Hs represent the
decomposition of H into connected components. Since we expect SynMap to
resolve all or most paralogies, ideally all the genes in each Hi should be ortholo-
gous. There should be at most one gene from each genome in such an orthology
set, or at most two duplicate genes for genomes that descend from a wgd event.
In practice, however, as in Fig. 1, there may be several genes from the same
genome in an Hi, apparent paralogies, which we shall consider erroneous due to
spurious homologies (edges) in the input. The problem we address, then, is how
to convert H into a new graph O = O1 ∪ · · ·Ot with the orthogonality property
desired of each connected component Oj , namely that it contain no paralogs,
except for duplicates in genomes descended from wgds.

Definition 1. A graph O = (V,E) with vertices in c colour classes is an or-
thogonal partition if each of its components contains at most one vertex of any
one colour.
Given any graph H = (V,E) with coloured vertices, it can be converted into an
orthogonal partition O = (V,E \ E′) by deleting a subset E′ of edges from E.

Problem 1. Given a criterion κ = κ(V,E,E′), where (V,E \E′) is an orthogonal
partition, the omg problem is to find a subset E′ ⊂ E that optimizes κ.

Definition 2. Let c = c1 + c2 where there are c2 distinguished colours called
wgd colours. The graph O = (V,E) is a wgd-orthogonal partition if each of its
components contains at most two vertices of any of the c2 distinguished colours,
and at most one vertex of any of the c1 remaining colours.

Problem 2. Given c2 ≤ cdistinguished colour classes andcriterionκ= κ(V,E,E′),
where (V,E \E′) is an wgd-orthogonal partition, the omg problem is to find a
subset E ⊂ E′ that optimizes κ.

In Sections 2.1,2.2 and 2.3 we will discuss motivations for three different criteria κ
and present algorithms for each one, for both the usual definition of orthogonality
(Definition 1) and for the wgd version (Definition 2).

2.1 Minimum Weight Orthogonal Partition (MWOP)

Our first approach is simply to delete a set of edges E′ of minimum weight. This
definition of κ is motivated by the desire to conserve as many of the homology
inferences in the input data as possible, and to discard as noise as few as possible.
This is a NP-hard graph problem, Minimum Weight Orthogonal Partition

(mwop), for which He et al. have given an approximation algorithm [7].
The algorithm iteratively merges vertices into orthogonal sets using the max-

imum weight bipartite matching at each step; the result of a matching between
two colours produces orthogonal sets which each can be considered as single
vertices with two colours. Now a second matching can be found, and so on. We
used an auction routine for maximum weight bipartite matching [11,12].

The output of the algorithm depends on the order in which the vertices are
merged. In our version, this order is determined by phylogeny. Thus, part of the
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input is a rooted, binary tree T , with each leaf corresponding to one of the given
colours . The biological motivation is that a homology relation between genes in
closely related genomes is less likely to be spurious than in distant relatives.

The case of no WGD descendants (Problem 1).

1. for each genome i with ni genes, nm = maxi ni, define sets

Vi = {V {i}
1 = {v1}, · · · , V {i}

ni
= {vni}, V {i}

ni+1 = ∅, · · · , V {i}
nm

= ∅}.

2. All the leaves of T are eligible to merge. All ancestral nodes are ineligible.
3. while there remain unmerged but eligible sister nodes (same immediate

parent) in the tree T .
(a) choose eligible sister nodes i and j.
(b) construct a complete bipartite graph between Vi and Vj.
(c) if there is an edge uv, with u ∈ V {i}

a , v ∈ V {j}
b set

w(V {i}
a , V

{j}
b ) =

∑
u∈V

{i}
a ,v∈V

{j}
b

w(uv),

otherwise w(V {i}
a , V

{j}
b ) = 0.

(d) find the maximum weight matching for the bipartite graph.
(e) for each pair V {i}

a V
{j}
b in the matching, set

V {i}
a ← V {i}

a ∪ V {j}
b .

(f) the new Vi is associated with the ancestral node of T that is the
immediate parent of i and j, which now becomes eligible to merge;
V

{j}
b is now disregarded.

4. the remaining set V i corresponds to O (i.e. O1 = V
{i}
1 , O2 = V

{i}
2 , etc.).

WGD descendants allowed. (Problem 2.) If genome j is a wgd descendant,
then after Step 3 (e)

i. if a vertex V
{i}
a is matched to a vertex V

{j}
b in genome j, where

w(V {i}
a V

{j}
b ) > 0, then set V {j}

b ← ∅.
ii. construct a complete bipartite graph for Vi and the modified genome j.
iii. find the maximum weight matching for this graph.
iv. for any two positively weighted matching edges e1 = V

{i}
x V

{j}
y , e2 =

V
{i}
u V

{j}
v that share a gene z, remove the edge with less weight.

v. for all remaining edges e merge the vertex in genome j with the one in Vi

if a positively matched edge (w > 0) exists between these two vertices, and
remove that j genome gene from any other Vi vertex it may already be in
(from the merge in step 3 (e)).
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Fig. 2. Edges retained and degree-zero vertices created by the three omg methods

Fig. 3. Number and size of orthology sets produced by the three omg methods

2.2 Minimize Singleton Vertices (MISIV)

Deleting edges in E′ can create singletons, degree zero vertices. Each of these
trivial components contains no orthology information, and is of little use in
comparative genomic applications such as multiple gene order alignment. Our
second criterion, then, is to minimize the number of vertices of degree zero
created by edge removal. This definition of κ is designed to keep homology
information on as many genes as possible in the data set. We seek an orthogonal
partition O = (V1, E1) ∪ · · · ∪ (Vt, Et) to minimize |{Ei|Ei = ∅}|. We are not
aware of previous algorithms for this problem, and conjecture that it is NP-hard.

The case of no WGD descendants (Problem 1). We first initialize E′ = ∅,
subsets Vv = {v} for each v ∈ V , and the relation c such that Vv cVu if u and
v have the same colour and Vv �cVu if not. We set w(uv) = 0 if uv /∈ E. Without
ambiguity, we extend w to be a weight on pairs of sets, and w({u}, {v}) = w(uv).
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1. while there remains a subset Vv consisting of a single vertex of degree 1,
and an edge uv ∈ E \E′ for some vertex u ∈ Vx, where Vv �cVx, and w(uv)
is maximum over all Vv, do the following:
(a) Vx ← Vx ∪ Vv.
(b) if Vx cVz or Vv cVz for any set Vz , then we set Vx cVz .
(c) for all Vw consisting of a single vertex of degree 1, where zw ∈ E \E′,

z ∈ Vx, Vw cVx, delete edge zw, i.e. E′ ← E′ ∪ {zw}
(d) Vv ← ∅.

2. while there remains a subset Vv consisting of a single vertex v, and an
edge uv ∈ E \ E′ for some vertex u ∈ Vx, where Vv �cVx,
(a) Construct the subgraph of (V,E \E′) induced by all v satisfying these

conditions. Find the maximum weight matching of these subsets.
(b) for each pair Vx and Vy in the matching,

merge[Vx, Vy] :
i. Vx ← Vx ∪ Vy .
ii. if Vx cVz or Vy cVz for any set Vz , then we set Vx cVz and

w(Vx, Vz) = 0. If there is an edge e joining any vertex in Vx and
any vertex in Vz, delete it, i.e., E′ ← E′ ∪ {e}.

iii. for all Vz, Vz �cVx, set w(Vx, Vz) =
∑

{uv|u∈Vx,v∈Vz} w(u, v),
. if w(Vx, Vz) > 0, E = E ∪ {VxVz}.

iv. Vy ← ∅.
3. while there remain at least two subsets Vx �cVy , and vertices u ∈ Vx, v ∈ Vy,

where uv ∈ E \ E′,
(a) Find the maximum weight matching among all these subsets.
(b) for each pair Vx and Vy in the matching,

merge[Vx, Vy] (Steps 2 (b) i.–iv. above)
4. relabel the remaining sets O1, · · · , Ot; these contain the vertices of the

required components of O.

The strategy of this heuristic is to irreversibly enlarge the components by first
adding the vertices most vulnerable to becoming degree zero through edge dele-
tion, namely those of degree one. After as many of these as possible (or a com-
bination of them having greatest weight) are thus “protected”, we then try to
protect as many others as possible through a series of maximum weight matches
in the subgraph induced by unprotected vertices. Step 3 may merge some sets
of vertices without any effect on the objective function (minimum number of
degree zero vertices), but in a way that tends to improve our result with respect
to other objective functions (fewer and larger components; fewer, or lesser com-
bined weight of, edges deleted).

WGD descendants allowed. (Problem 2.) The algorithm is easily extended to
genomes that have paralogs resulting from wgd. The color relation c originally
served to block any merger of two sets that would result in two paralogs in the
same set. It needs only to be reinterpreted to block mergers resulting in three
paralogs in the same set from a wgd descendant.
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2.3 Maximum Edges in Transitive Closure (MEC)

The understanding of orthologous genes in two genomes as originating in a single
gene in the most recent common ancestor of the two species leads logically to
transitivity as a necessary property of the orthology relation. If gene x in genome
X is orthologous both to gene y in genome Y and gene z in genome Z, then y
and z must also be orthologous, even if SynMap does not detect this homology.

This motivates our third criterion for O = O1∪· · ·Ot, namely that the weights
of the edges in the transitive closure of O (or in all the cliques generated by the
components Oi) be maximized. In other words, this definition of criterion κ

maximizes the the sum of the weights over
∑t

1

(|Oi|
2

)
edges, preferring to create

a few large orthology sets rather than many smaller ones with the same total
number of edges. Again, we are not aware of any previous algorithm for this
problem, but conjecture it to be NP-hard.

Let H̄ = (V, Ē) be the transitive closure of graph H . To obtain H̄ we raise its
adjacency matrix MH (including 1’s on the diagonal) to successively higher pow-
ers until convergence to some M r

H . This could be accelerated using Warshall’s
algorithm [8]. (N.B. r ≤ diameter(H).) Without loss of generality we may as-
sume H is connected, so H̄ is a complete graph and all elements of M r

H are
non-zero. Elements of this matrix thus obtained should represent indirectly in-
ferred orthologies as discussed above, but there may in fact be many paralogies.
To remedy, this we first examine the star subgraph s(v) of H̄ containing ν(v)
vertices, namely v, its ν(v) − 1 neighbours, and the ν(v) − 1 edges connecting
the former to the latter.

Let c(v) ≥ 1 be the number of distinct colours among the vertices in s(v). Let
F (E) =

∑
v∈V c(v).

The case of no WGD descendants (Problem 1).

1. set E′ = ∅.
2. while there are still some v ∈ V where ν(v) > c(v),

(a) find the edge e ∈ E \ E′ that maximizes

F (E \ E′′) =
∑
v∈V

c(v),where E′′ = E′ ∪ {e}

(b) if there are several such e, find the one that minimizes

F+(E \ E′′) =
∑

(V,E\E′′)

ν(v)− c(v).

(c) if there are still several such e, find one with minimum w(e).
(d) E′ ← E′ ∪ {e}

3. relabel as O1, · · · , Ot the disjoint components created by deleting edges.
These contain the vertices of the required components of O.
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Implicit in each greedy step is an attempt to create large orthology sets. If
the deleted edges create two partitioned components, i.e., each with no internal
paralogy, then the increment in F will be proportional to the sum of the squares
of the number of vertices in each one. This favours a decomposition into one
large and one small component rather than two equal sized components.

WGD descendants allowed. (Problem 2.) To handle paralogs of wgd origin,
the definition of c(v) must be amended to take account an allowance of 2 vertices
of the same colour in s(v) if these are from the appropriate genomes. And the
condition in Step 2 must require that at most two vertices be contained in s(v)
of any one colour, and only if these involve wgd descendants.

2.4 Issues of Accuracy, Deliberate Bias and Interpretation

In the next section, we focus more on the systematically divergent output gen-
erated by the different objective functions κ than on accuracy issues of the
algorithms themselves. We know that the mwop algorithm [7] is an approxi-
mation algorithm with a large approximation constant. Notwithstanding this
uncertainty, it works well on small examples, as confirmed by our own testing.
The other heuristics also satisfy the objective functions, or come very close,
in small scale tests. In addition, they are efficient, an important consideration
when there are many components Hi each containing hundreds of edges. Most
importantly, however, the three algorithms will be seen to produce different in-
ventories of orthology sets, each with a bias for meeting a particular biological
motivation; mwop to retain more edges, misiv to avoid degree zero vertices and
mec to produce large orthology sets. This divergence was not contrived; indeed,
while trying to satisfy one objective criterion, as a secondary policy we tried to
satisfy the other criteria whenever there was a choice, e.g., step 3 of the misiv

algorithm.

Fig. 4. Compatibility of orthology sets with phylogeny
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3 Application to 10 Plant Genomes

We used data drawn from 10 core eudicotyledon genomes available in CoGe.
While all genomes have been publicly available for at least one year, some lack
a primary publication. To avoid infringing on the release conditions claimed by
some of the sequencing groups, we will not identify the genomes we sampled.
For the same reason, although we will make use of the phylogenetic relationships
among these plants, which respects the current consensus [9], we will not present
the phylogeny explicitly. However, for a list of sequenced eudicotyledon genomes
in CoGe, consult http://genomevolution.org/r/3119; for a list of sequenced
plant genomes, http://genomevolution.org/r/3118.

We used SynMap to produce sets of synteny blocks between all 45 pairs of
genomes, and additionally within each of the five descendants of wgd events.
Four different data sets were created using the QuotaAlign option [10], by vary-
ing the minimum block length parameter through the four values 1,2,3 and 5.
We used the default options for all other settings. An average of more than 10,000
pairs of homologous genes were inferred in the runs for minimum block size 5,
for example, involving slightly less than 10,000 distinct genes in each genome.

We extracted all the homology relations from all the synteny blocks in each
pair, and put them all together, along with the paralogies within the five wgd

descendants, to form the graph H . This had some 160,000 vertices and 485,000
edges, falling into 16,300 disjoint components.

3.1 Percolation, Tangles and Run Time

In order to pick up as many true orthologies as possible, SynMap will unavoid-
ably have some low rate of spurious identification of homologs. This has little
consequence for pairwise genomic correspondences for which SynMap was built,
but when multiple sets of correspondences are merged to generate the set H , a
kind of local percolation phenomenon manifests itself as a large tangle of genes,
most of which are not closely related, but are contained in the same compo-
nent. It is inherent in this non-zero rate of spurious homology, even though it
is low, that the larger the tangle, the more likely it is to grow as the number
of genomes increases. With our 10 genomes and for minimum block size 5, for
example, 29,000 of the 485,000 edges, or 6 %, were involved in one large tangle,
as shown in Table 1. With minimum block size 1, the tangle contained almost
90,000 edges.

Table 1. Distribution of component size, showing one large tangle

frequencies of size of component in H

edges in component 1 2-14 15-105 106-300 301-1000 29,134

frequency 2550 2776 9,350 523 26 1

http://genomevolution.org/r/3119
http://genomevolution.org/r/3118
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Tuning SynMap to be more conservative might lead to smaller tangles, but
the systematic experimentation that would be required is beyond the scope of
the present study. Note that the ortholog sets we require contain at most 15
genes all linked by 105 edges, one gene from each genome or possibly two from
each descendant of a wgd event. The current implementation of mec requires
excessive computing time when the number of edges exceeds a few hundred.
To avoid this, we simply preprocess the large components in H , filtering out
homologs with weights w below a threshold w∗. The value of w∗ is raised until
the tangle and other large components break up into pieces smaller than 300
edges. This step is unnecessary for mwop and misiv but for comparability we
use the same reduced input graph for all the methods.

The worst case run time for the auction method we use in our MWOP im-
plementation is O(w′|V |3), where w′ is an integer representing the maximum
weight on any edge in the current matching step - the original two-decimal in-
put weights having been converted at the outset to integers. Then O(Nw′|V |3)
is the run time for our entire algorithm, where N is the total number of genomes
being matched. Since |E| ≤ 300, the number of vertices |V | is small and the
algorithm runs in a few milliseconds.

Similarly, the small size of |V | means that implementation of an efficient max-
imum weight matching, say O(|V |3), within the MISIV algorithm is unnecessary
for the current comparison, even when the optional extra step 3 is executed. The
algorithm generally runs in less than a second, but can occasionally take a few
seconds.

The exhaustive greedy search at every step of the MEC algorithm is time
consuming, with even the Warshall algorithm for finding the transitive closure
requiring O(|V |3) time, or O(|E|2|V |3) for finding all edges to remove, each time
checking all |E| of them. This works out to about 30 seconds per run.

Recall that each of the algorithms was applied to 15-20,000 homology graph
components, for four different block length thresholds.

4 Results

Figure 2 shows that MWOP retains marginally more edges than the other two
methods, but that MISIV creates far fewer degree-zero vertices. For minimum
block length 5, the total number of deleted edges is about 8 % of all edges and
total gene deletions about 3.5 %. The increasing number of edges as a function
of minimum block length is an artifact of tangle size; in fact there may be
marginally more edges with smaller minimum block lengths, but the tangle is
much larger, so that when this is resolved by the method in Section 3.1, there
are fewer edges input to our algorithms for smaller minimum block lengths.

Figure 3 shows that MEC packs the same number of edges into fewer, bigger
(and therefore better for biological purposes) orthology sets.

To test to what extent the gene sets computed are compatible with the known
phylogeny, we computed for each gene the minimum number of times it would
have to be inserted and deleted on the tree (e.g. a gene set that includes a gene
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Fig. 5. Proportional Venn diagrams of the number (left) and mean size (right) of the
orthology sets recovered by three methods

from all the genomes in the phylogeny requires zero insertions and deletions).
The average of this value for each set size is shown in Figure 4. There is a strong
phylogenetic signal appearing for small to moderate sized orthology sets, when
compared to orthology sets with genes allocated at random to a given number of
genomes, i.e., the inferred orthology sets implied a smaller number of insertions
and deletion on the tree than random data.

Figure 5 depicts a proportional Venn diagram of the number of orthology sets
shared among the results of the three methods. It can be seen that about 60% of
the sets recovered by any of the methods were already orthogonal in the input
data, and another 8 - 9% are also found by both of the other two methods. An
additional 5 - 6.5 % of sets from one method are shared with only one of the
other two. The mec method can be seem as producing the smallest proportion
of “idiosyncratic” sets, around 18% (or 45 % of the inferred, or non-pre-existing
sets), and misiv the most, more than 25% (or 57 % of the inferred, or non-
pre-existing sets). mec in this sense is somewhat of a compromise between the
extreme “save homologies” goal of mwop and the “save genes” aim of misiv.

5 Conclusions

At least for the aims of gene-order alignment, the larger orthology sets produced
by mec lead to our recommendation of mec as the method of choice. This must
eventually be subjected, of course, to validation against curated orthology sets.

We can also recommend using minimum block length of at least 5 with Syn-

Map, as Figures 2 and 3 show improved results according to several parameters
with increasing block length. At some point, however, higher minimum block
length will reduce the number of edges produced by SynMap.

At present, we consider only wgd events in the immediate lineage of single
genomes in the data set; paralogs dating from ancient polyploidies shared by all
the genomes present will already have been resolved in the output of SynMap.
Future developments should allow several genomes to share a wgd event in their
ancestry, and for multiple wgd events to occur in the lineage of a single genome.
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The problem of tangles is a minor annoyance, quantitatively, in our work,
but it could become much worse as increasing numbers of genomes are included
in the analysis. Avenues available for attenuating this include tuning SynMap

to be more conservative, increasing minimum block length, and more stringent
criterion for wgd-origin paralogies in H .

The ultimate validation of the orthology sets produced by the different meth-
ods will involve the careful study of many of the sets, especially those that are
not captured by all methods, and their comparison with biologically curated
sets of homologs. This evaluation, as well as a comparison of the phylogenetic
consequences of using different methods for omg and the identification of ge-
nomic data most susceptible to tangles, is hindered by the severe interpretations
of the Fort Lauderdale convention imposed by many genome projects. These
constraints surpass those recognized by the broader community [13] and are not
necessarily respected by journals [14].
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Marçais, Guillaume 237
Moran, Shlomo 49
Moret, Bernard M.E. 175, 351
Mosig, Axel 339

Nakai, Kenta 151
Navlakha, Saket 237
Nicolae, Marius 213
Nicolle, Rémy 92
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