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Abstract. This lecture script gives an introduction to rule based knowl-
edge representation on Web. It reviews the logical foundations of logic
programming and derivation rule languages and describes existing Web
rule standard languages such as RuleML, the W3C Rule Interchange
Format (RIF), and the Web rule engine Prova.

1 Introduction to Rule Based Knowledge Representation

Knowledge representation (KR) focuses on methods for describing the world in
terms of high-level, abstracted models which can be used to build intelligent
applications, i.e., it provides methods to find implicit consequences of explicitly
represented knowledge. Approaches can be roughly divided into logic based for-
malisms, usually a variant of first-order predicate calculus and non-logic based
formalisms such as graphical semantic networks, object frames or (early) pro-
duction rule systems. Non-logic based approaches, which are often based on ad
hoc data structures and graphical representations, typically lack a precise formal
semantics which makes it hard to verify the correctness of drawn consequences.
On the other hand, logic based approaches use the powerful and general seman-
tics of first-order logic (FOL) (typically a decidable subset of FOL) which allows
a precise characterization of the meaning of a world by expressing it as a knowl-
edge base (KB) of statements in a language which has a truth theory. While
the syntax may differ, the semantics of FOL KBs is often given in a Tarski-style
semantics.

Rule based systems have been investigated comprehensively in the realms of
declarative programming and expert systems over the last decades. Using (infer-
ence) rules has several advantages: reasoning with rules is based on a semantics
of formal logic, usually a variation of first order predicate logic, and it is rela-
tively easy for the end user to write rules. The basic idea is that users employ
rules to express what they want, the responsibility to interpret this and to decide
on how to do it is delegated to an interpreter (e.g., an inference engine or a just
in-time rule compiler). Traditionally, rule based systems have been supported by
two types of inferencing algorithms: forward chaining and backward chaining.
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1.1 Forward Chaining Rule Systems

Forward chaining is one of the two main methods of reasoning when using ”if-
then” style inference rules in artificial intelligence. Forward chaining is data-
driven. The inference engine makes inferences based on rules from given data. It
starts with the available data and uses inference rules to extract more data until
an optimal goal is reached. An inference engine using forward chaining searches
the inference rules until it finds one where the if clause is known to be true.
When found it can conclude, or infer, the then clause, resulting in the addition
of new information to its KB. The most common form of forward chaining is
the Rete algorithm. In a nutshell, this algorithm keeps the derivation structure
in memory and propagates changes in the fact and rule base. There are many
forward chaining implementations in the area of deductive databases and many
well-known forward-reasoning engines for production rules (”if condition then
action” rules) such as IBM ILOG’s commercial rule system or popular open
source solutions such as Drools, CLIPS or Jess which are based on variants of
the Rete algorithm.

1.2 Backward Chaining Rule Systems

The other main reasoning method for if-then rules is backward chaining which is
typically used in logic programming, where the rules are called derivation rules.
Backward chaining starts with a list of goals (hypothesis) and works backwards
to see if there are data available that will support any of these goals. Accordingly,
backward chaining is goal-driven. An inference engine using backward chaining
would search the inference rules until it finds one which has a then clause that
matches a desired goal. If the if clause of that inference rule is not known to be
true, then it is added to the list of goals. The common deductive computational
model of logic programming uses backward-reasoning (goal-driven) resolution to
instantiate the program clauses via goals and uses unification to determine the
program clauses to be selected and the variables to be substituted by terms.
The unification algorithm supports backtracking usually according to depth-
first recursive backward chaining, but forward chaining bottom-up approaches
are also possible.

1.3 Discussion Backward Chaining vs. Forward Chaining in the
Web Context

Forward chaining, e.g. based on the Rete algorithm in production rules, can be
very effective, e.g., if you just want to find out what new facts are true or when
you have a small set of initial facts and when there tends to be lots of different
rules which allow you to draw the same conclusion. However, in the context of
reasoning on top of Web content backward chaining often qualifies to be the
better choice:

– In forward-reasoning additional software must propagate changes to the
memory based fact base which leads to a lot of redundancy and difficul-
ties, e.g., a Web content database normally does not propagate changes and
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for dynamic real-time access the fact base and the Web database must be
synchronized.

– In Web applications often large set of initial facts are provided which are
likely to change. Using forward chaining, lots of rules would be eligible to
fire in any cycle and a lot of irrelevant conclusions are drawn. In backward-
reasoning the knowledge base can be temporarily populated with the needed
facts from external Web systems to answer a particular goal at query time
which can be discarded from the memory afterwards. Forward-reasoning on
the Web works best only for closed scopes, e.g., firing rules when certain
events occur.

– Open-distributed environments such as the Web are usually based on a pull-
model and most implementations of push-architectures (the push model re-
lates to active event processing) are basically pull-concepts, i.e., the push
functionality is simulated by frequently issuing queries, e.g., a mail client
which queries the mailbox every second for new mails. Therefore, a goal-
driven backward-reasoning system perfectly fits to those architectures.

– Forward-reasoning production rules have an operational semantics but no
clear logical semantics and a restricted expressiveness, e.g. no recursion, only
inflationary negation etc.

The further paper is structured as follows: Section 2 describes logical foundations
of logic programming, rules and reasoning. Section 3 introduces standard Web
rule languages on the platform independent interchange level and the platform
specific execution level. In particular, the W3C Rule Interchange Format (RIF),
RuleML and the Prova rule language (ISO Prolog like syntax) are detailed in this
section. Finally, the conclusion summarizes the current state-of-art and future
trends.

2 Logic Foundations

This section reviews general background knowledge about logic and logic pro-
gramming and its use for rule based knowledge representation and reasoning.

2.1 First-Order Logic

This subsection recalls the definition of a first order logic (FOL) language and clas-
sical FOL models (structures) under Tarski semantics adopted from [62, 63, 46].
Both are interrelated concepts and play a central role in logic and form a general
basis that allows to cover a wide range of logical formalisms for rule based reason-
ing and knowledge representation.

Syntax. This subsection defines the syntax of a first order language according
to [62, 63, 46].

Definition 1. (Signature) S is a signature if S is a four-tuple 〈P , F , arity, c〉
where:
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1. P is a finite sequence of predicate symbols 〈P1, .., Pn〉.
2. F is a finite sequence of function symbols 〈F1, .., Fm〉
3. For each Pi respectively each Fj , arity(Pi) resp. arity(Fj) is a non-zero

natural number denoting the arity of Pi resp. Fi.
4. c = 〈c1, .., co〉 is a finite or infinite sequence of constant symbols.

A signature is called function-free if F = ∅.
Definition 2. (Alphabet) An alphabet Σ consists of the following class of
symbols:

1. A signature S = 〈P , F , arity, c〉.
2. A collection of variables V which will be denoted by identifiers starting with

a capital letter like U ,V ,X
3. Logical connectives / operators: ¬. (negation), ∧ (conjunction), ∨ (disjunc-

tion), → (implication), ≡ (syntactical equivalent), = (equivalence), ⊥ (bot-
tom), 
 (top).

4. Quantifier: ∀ (forall), ∃ (exists).
5. Parentheses and punctation symbols: (, ) and ,.

Definition 3. (Terms) A term is defined inductively as follows:

1. A variable is a term.
2. A constant in c is a term.
3. If f is a function symbol with arity n and t1, .., tn are terms, then f(t1, .., tn)

is a (complex) term.

Function symbols are written in prefix notation whereby a function always pre-
cedes its terms. However, usually terms are also composed of both prefix and
infixed symbols, e.g., (f(2) − f(1)/f(1)). There are standard ways of dealing
with these issues.

Definition 4. (Atom) Let p be a predicate symbol with arity n ∈ ℵ. Let t1, .., tn
be terms, then p(t1, .., tn) is an atomic formula of terms. A ground atom is an
atomic formula without variables.

Definition 5. (Well-formed Formula) A (well-formed) formula is defined as
follows:

1. An atom is a formula.
2. If H and G are formulas then

- ¬H is a formula (negation)
- (H ∧G) is a formula (conjunction)
- (H ∨G) is a formula (disjunction)
- (H → G) is a formula (implication)
- (H ≡ G) is a formula (equivalence)

3. If H is a formula and X is a variable, then (∀XH) and (∃XH) are formulas.

The following precedences are defined:
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1. ¬, ∀, ∃
2. ∧, ∨
3. →, ≡

Definition 6. (First-Order Language) A FOL language is defined over an
alphabet Σ where the signature S may vary from language to language. It consists
of the set of all formulas that can be constructed according to the definitions of
well-founded formulas using the symbols of Σ. A FOL language is called function-
free if the signature is function-free.

Thus, a language in addition to a signature also contains the logical symbols and
a list of variables. The notion ”first-order” refers to the fact that quantification
is over individuals rather than classes (or functions).

Definition 7. (Scope of Variables) Let X be a variable and H be a formula.
The scope of ∀X in ∀XH and of ∃X in ∃XH is H. Combinations of ∀X and
∃X bind every occurrence of X in their scope. Any occurrences of variables that
are not bound are called free.

Definition 8. (Open and Closed Formula) A formula is open if it has free
variables. A formula is closed if it has no free variables.

Definition 9. (Literal) A literal L is an atom or the negation of an atom.

Definition 10. (Complement) Let L be a literal. The complement −L of L is
defined as follows:

−L :=
{¬A if L ≡ A
A if L ≡ ¬A

where A is an atom.

Definition 11. (Theory) A FOL theory Φ or FOL knowledge base is a set of
formulas in a FOL language Σ: Φ ⊆ Σ. The signature S of Φ is obtained from
all the constant, function and predicate symbols which occur in Φ.

Every finite FOL knowledge base (FOL KB) is equivalent to the conjunction of
its elements, i.e., it might be equivalently written as a conjunction of formulas.

Interpretations and Models. This subsection is concerned with attributing
meaning (or truth values) to sentences (well-formed formulas) in a FOL language.
The definitions follow [62,63,46]. Informally, the sentences are mapped to some
statements about a chosen domain through a process known as interpretation.
An interpretation which gives the value true to a sentence is said to satisfy
the sentence. Such an interpretation is called a model for the sentence and an
interpretation which does not satisfy a sentence is called a counter-model.

Definition 12. (Interpretation / Structure) Let S = 〈P , F , arity, c〉 be a
signature. I is called an interpretation (or a structure) for S if I = 〈|M |, P I

,
F

I
, cI〉 consists of:
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1. a non-empty set |M | called the universe of I or the domain of the interpre-
tation. The members of |M | are called individuals of I.

2. P
I

= 〈P I
1 , .., P

I
k 〉 associates with each predicate Pi in S of arity n = arity(Pi)

an n-ary relation P I
i on |M |, i.e., P I

i ⊆ |M |n, where |M |n denotes the
collection of all n-tuples from |M |.

3. F
I

= 〈F I
1 , .., F

I
l 〉 is an interpretation for each function symbol Fj of arity

m, where F I
j is an m-place function F

I

j : |M |m → |M |, i.e., F I
j is defined

on the set of m-tuples of individuals |M |m with values in |M |.
4. cI = 〈cI |c = constant〉 is an interpretation for the constants of S: c ∈ S,

where cI is an individual of M : cI ∈ |M |.
Definition 13. (Assignment)

1. Variable Assignment: Let Σ be a FOL language with X its set of variables,
and I an interpretation for Σ. An assignment is a function σ from X into
the universe of Σ.

2. Term Assignment: Let I be an interpretation of a FOL language Σ with
domain |M | and variable assignment σ. The term assignment wrt σ of the
term in Σ is defined as:
- Each variable is given its assignment according to σ.
- Each constant is given its assignment according to I.
- If t′1, .., t′n are the term assignments of t1, .., tn and f ′ is the assignment
of the function symbols f with arity n, then f ′(t′1, .., t

′
n) ∈ |M | is the term

assignment of f(t1, .., tn).

That is, given an assignment σ, any variable term of the language that is in the
domain of σ is given a constant value in |M |.
Definition 14. (Truth Values) Let I be an interpretation of a FOL language
Σ with domain |M | and σ be a variable assignment. A formula F ∈ Σ can be
given a truth value ”false” or ”true” as follows:

1. If the formula is an atom p(t1, .., tn) then the truth value is obtained by
calculating the value of p′(t′1, .., t

′
n) where p′ is the mapping assigned to p by

I and t′1, .., t
′
n are the term assignments of t1, ..tn wrt I and X.

2. The truth values of the following formulas is given by the following table:
F G ¬F F ∧G F ∨G F → G F = G

true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

3. If ∃XF , then the truth value of the formula is true if there exists c ∈ |M |
such that the formula F has truth value ”true” wrt I and σ(X/c); otherwise
it is false.

4. If the formula has the form ∀XF , then the truth value of the formula is true
if, for all c ∈ |M | F is ”true” wrt I and σ(X/c); otherwise, its truth value
is false.
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The satisfaction relation |= goes back to A. Tarski and is a major achievement
in logic.

Definition 15. (Satisfaction) If F is a formula and σ is an assignment to the
interpretation I of a FOL language Σ, then the relation I |= F [σ] means that
F is true in I when there is a substitute for each free variable X of F with the
value of σ(X). The inductive requirements of ”|=” are:

1. For any atomic formula of the form p(t1, ..tn)[σ] iff 〈tσ1 , .., tσn〉 ∈ pI .
2. I |= ¬F [σ] iff it is not the case that I |= F [σ]
3. I |= (F ∧ G)[σ] iff both I |= F [σ] and I |= G[σ]. Similarly, for the other

statements.
4. I |= ∃XF [σ] iff there exists some assignment σ′ such that

- for every variable Y different from X σ′(Y ) = σ(Y )
- σ′(X) is defined and I |= F [σ′]

5. I |= ∀XF [σ] iff for any assignment σ′, if σ′(X) is defined and σ′ is equal to
σ on each variable different from X, then I |= F [σ′]

Accordingly, a formula F is satisfied by an interpretation I (F is true in I:
I |= F ) iff I |=σ F for all variable assignments σ. F is valid iff I |= F for every
interpretation I.

Definition 16. (Model) Let I be an interpretation of a FOL language Σ. Then
I is a model of a closed formula F , if F is true wrt I. Further, I is a model of
a set F of closed formulas, if I is a model of each formula of F . I is a model of
an FOL KB Φ iff I |= F for every formula F ∈ Φ: I |= Φ.

Definition 17. (Logical Consequence, Entailment, Logical Implication)
A formula F ∈ Σ is a logical consequence of a FOL KB Φ written as Φ |= F ,
i.e., Φ entails F iff for all models I ∈ Σ for which I |= Φ also I |= F . For a
fixed FOL language (and signature) Σ let Φ and Ψ be two sets of sentences (two
KBs), then Φ → Ψ means that for every interpretation I of Σ, if I is a model
for Φ then it is also a model for Ψ .
Φ → Ψ is also meaningful when Φ and Ψ are sets of formulas with variables,

i.e., for every interpretation I of Σ and every assignment σ in I, if I[σ] satisfies
every formula in Φ then it also satisfies every formula in Ψ .

2.2 Logic Programming

Full first-order logic is not suitable as a declarative programming language, e.g.
due to the following reasons:

– unrestricted FOL is in general undecidable
– the results are not always unique
– finding (most general) unifier and solving formula is highly complex
– large search domains, which must be restricted using complex control struc-

tures
– danger of implementation incompleteness
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Hence, logic programming is based on a subset of FOL which deals with a spe-
cific class of well-formed formulas, so called statement clauses which consist of
an antecedent part and a consequent. The declarative meaning for such clauses
is that the consequent part is true, if the antecedents are true. The procedural
meaning is, that the consequent is proven by reducing it to a set of sub-goals
given by the antecedent part. The most common form of logic programming is
based on Horn Logic where clauses in normal form only have one positive literal
which is the consequent. Such programs are called definite LPs or Horn LPs.
The semantics of definite Logic Programs (LPs) is based on minimal Herbrand
models. Although definite LPs are expressive enough to model many problems
the formulation is often neither easy nor elegant. Hence, extensions to definite
LPs like different forms of negations have been proposed. This subsection intro-
duces relevant terms, concepts, syntax and semantics of different classes of logic
programs (LPs) derived from [62,63, 46].

Syntax of Logic Programs

Definition 18. (Clause) A clause is a formula such as ∀X(L1∨ ..∨Lm) where
each Li is a literal and X = {X1, .., Xn} are all the variables occurring in L1 ∨
.. ∨ Lm.

Different classes of clauses are distinguished: propositional clauses, Datalog
clauses, definite Horn clauses, normal clauses, extended clauses, positive clauses,
positive-disjunctive clauses, disjunctive clauses, and extended disjunctive clauses.
Associated with each type of clause is a class of logic programs: propositional LP,
Datalog LP, definite LP, stratified LP, normal LP (aka general LP), extended LP,
disjunctive LP and combinations of classes, with an increasing expressiveness as
illustrated in figure 1 for several classes of LPs. Each class can be propositional
(without terms), Datalog (without functions) or with terms and variables.

These LPs are defined as follows:

Definition 19. (Logic Programs and Rules) Given a FOL language Σ,
a (disjunctive extended) logic program P consists of logical rules (or program
clause) of the form
A1, .., Ak ← B1, .., Bm, notC1, .., notCn

or equivalently
∀X(A1 ∨ .. ∨Ak ← B1 ∧ .. ∧Bm ∧ notC1 ∧ .. ∧ notCn)

which is a convenient notation for a FOL clause where all variables Xi ∈ X
occurring in the literals Ai, Bj, Ck are universally quantified ∀X1..∀Xs, the
commas in the antecedent denote conjunction and the commas in the consequent
denote disjunction, and not denotes negation by default, rather than classical
negation. For short a rule is denoted in set notation as:
A← B ∧ notC
where A = A1 ∨ ..∨Ak, B = B1 ∧ ..∧Bm, C = C1 ∨ ..∨Cn. Note that C is a

disjunction and according to De Morgan’s law notC is taken to be a conjunction.
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Fig. 1. Classes of LPs

The A is called the rule head which consists of the set of head literals and B and
C is called the rule body which consists of the set of body literals. Note that this
set notation is legitime because the conjunction is commutative.

A clause is called:

– a fact if m = n = 0, i.e., A← ∅
– a query (or goal) if k = 0, i.e., ← B ∧ C. A query or goal is called atomic

if it consists of a single literal B1, i.e., m = 1 and n = 0.
– a propositional rule if the arity of all predicates is 0, i.e., all literals are

propositional ones. If all rules in a program P are propositional the P is
called a propositional LP.

– a Datalog rule if it contains no functions, i.e., is function-free and no pred-
icate symbol of the input schema appears in the rule head. A Datalog LP
(aka deductive database) is a function-free LP.

– a definite or positive rule (or Horn clause) if all literals are atoms, n = 0 and
k = 1, i.e., it neither contains negation nor disjunction. The corresponding
LP is called positive or definite LP (or Horn Program).

– positive-disjunctive rule if all literals are atoms and n = 0, i.e., it does not
contain negation. The corresponding LP is called positive-disjunctive LP.

– normal rule if all literals are atoms and k = 1, i.e., it does not contain
disjunction. The corresponding program is called a normal LP.

– extended rule if Ai, Bi and Ci are literals, i.e., are atoms or explicitly negated
atoms . The corresponding programm is called an extended LP.

– disjunctive rule if k > 1, i.e., it does contain a disjunction. The correspond-
ing program is called a disjunctive LP.

– range-restricted if all variable symbols occurring in the head also occur in
the positive body.

– ground if no variables occur in it.
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Semantics of Logic Programs. Proof-theoretically the semantics of a logic
program P is defined as a set of literals that is (syntactically) derivable from
P using a particular derivation mechanism such as SLDNF resolution. Model-
theoretically, a semantics for a logic program P is concerned with attributing
meaning (truth values) to clauses (rules). The properties of soundness and com-
pleteness establish a relation between the notions of syntactic (�) and semantic
(|=) entailment in logic programming. This subsection reviews several approaches
to define proof-theoretic and model-theoretic semantics for different types of logic
programs.

Substitution and Unification. At first, the concepts of substitution and uni-
fication from [62, 52] are introduced which are at the heart of proof-theoretic
semantics of non-ground LPs.

Definition 20. (Substitution) A substitution θ in a language Σ is a finite set
of the form {X1/t1, .., Xn/tn}, where each Xi is a variable in Σ, each ti is a
term in Σ distinct from Xi and the variables X1, .., Xn are pairwise distinct.
Each element Xi/ti is called a binding for Xi. θ is called a ground substitution
if the ti are all ground terms. θ is called a variable-pure substitution if the ti are
all variables.

Definition 21. (Expression) An expression E is either a term, a literal or a
conjunction or disjunction of literals.

Definition 22. (Instance) Let θ = {X1/t1, .., Xn/tn} be a substitution and E
be an expression then Eθ is the instance of E by θ is the expression obtained
from E by simultaneously replacing each occurrence of the variable Xi in E by
the term ti for i = 1, .., n. if Eθ is ground then Eθ is called a ground instance
of E.

Definition 23. (Variant) Let E and D be expressions. E and D are variants
if there exists substitutions θ and σ such that E = Dθ and D = Eσ.

Definition 24. (Renaming Substitution) Let E be an expression and X be
the set of variables occurring in E. A renaming substitution for E is a variable-
pure substitution {X1/Y1, .., Xn/Yn} such that {X1, .., Xn} ⊆ X, the Yi are
pairwise distinct and (X \ {X1, .., Xn}) ∩ {Y1, .., Yn} = ∅.
Definition 25. (Composition) Let θ = {X1/s1, .., Xm/sm} and
σ = {Y1/t1, .., Yn/tn} be substitutions. The composition θσ of θ and σ is the
substitution obtained from the set
{X1/s1σ, ..,Xm/smσ, Y1/t1, .., Yn/tn}

by deleting any binding Xi/siσ for which Xi = siσ and deleting any binding
Yj/tj for which Yj ∈ {X1, .., Xm}.
Definition 26. (Most General Unifier (MGU)) Let E be a finite set of ex-
pressions. A substitution θ is called a unifier for E if Eθ is a singleton. An
unifier for E is called most general unifier (MGU) for E if for each unifier σ
of E there exists a substitution γ such that σ = θγ. E is called unifiable if there
exists a unifier for E.
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Note that a MGU for a set of expressions is unique modulo renaming if there
exists a MGU at all.

Minimal Herbrand Model. For the model-theoretic semantics first the minimal
or least Herbrand model semantics is introduced which is considered as the
natural interpretation of a definite LP. Then the minimal Herbrand semantics is
extended for other more expressive subclasses of LPs and further (declarative)
semantics are introduced together with their proof-theoretic counterparts for
logic programming.

Definition 27. (Herbrand Universe) The Herbrand universe of a program P
defined over the alphabet Σ, denoted UP , is the set of all ground terms which can
be formed out of the constants and function symbols of the signature S of Σ.

Definition 28. (Herbrand Base) The Herbrand base of a program P , denoted
BP , is the set of all ground atomic literals which can be formed by using the pred-
icate symbols in the signature S of Σ with the ground terms in UP as arguments.

Definition 29. (Herbrand Instantiation aka Grounding) The Herbrand
instantiation ground(P ) of P consists of all ground instances of all rules in P
wrt the Herbrand universe UP which can be obtained as follows: The ground
instantiation of a rule r is the collection of all formulas r[X1/t1, .., Xn/tn] with
X1, .., Xn denoting the variables which occur in r and t1, .., tn ranging over all
terms in UP .

Definition 30. (Herbrand Interpretation) The Herbrand interpretation
IHerb of P is a consistent subset of BP . The interpretation is given as follows:

1. The domain of the interpretation is the Herbrand universe UP .
2. Constants are assigned themselves in UP .
3. If f is a function in P with arity n then the mapping f ′ : Un

P �→ UP assigned
to f is defined by f ′(t1, ..tn) := f(t1, .., tn).

Note that since the assignment to constant and function symbols is fixed for Her-
brand interpretations, it is possible to identify a Herbrand interpretation with a
subset of the Herbrand base. For any Herbrand interpretation, the corresponding
subset of the Herbrand base is the set of all ground atoms which are true wrt
the interpretation.

Definition 31. (Herbrand Model) Let P be a positive / definite program. A
Herbrand interpretation IHerb of P is a model of P , denoted as MHerb, iff for
every rule H ← B1, .., Bn ∈ ground(P ) the following holds: If B1, .., Bn ∈ IHerb

then H ∈ IHerb.

The Herbrand model MHerb satisfies the unique name assumption, i.e., for any
two distinct ground terms in BP , their interpretations are distinct as well.

Definition 32. (Unique Name Assumption and Domain Closure As-
sumption) Let Σ be a given language. The unique name assumption (UNA)
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restricts the model MHerb, where syntactically different ground terms t1, t2 are
interpreted as non-identical elements: tM

Herb

1 �= tM
Herb

2 .
The domain closure assumption (DCA) is a restriction to those models MHerb

where for any element a in MHerb there is a term t that represents this element:
a = tM

Herb

.

Model-theoretically the intended meaning of a LP is that a formula should be
true if it is a logical consequence of the program, i.e., it is true in all models of
the program. For definite LPs this intention leads to a semantics that coincides
with the intuition because of the model intersection property.

Definition 33. (Model Intersection Property) Let M
Herb

be the set of all
Herbrand models of a program P .The intersection of all Herbrand models⋂
M

Herb
(P ) of a definite LP P is also a Herbrand model of P .

Note that since every definite LP P has BP as an Herbrand model, the set of
all Herbrand models for P is always non-empty:

⋂
M

Herb
(P ) �= ∅.

Definition 34. (Minimal Herbrand Model) Let P be a definite LP then the
minimal or least Herbrand model MHerb

P of P is the intersection of all Herbrand
models for P .

The constructive computational characterization of the minimal Herbrand model
of a definite LP P is based on the least fixpoint of the immediate consequence
operator of P . A detailed description of the theory of lattices and fixpoints can
be found in [62, 52]. Here the relevant definitions are recalled.

Definition 35. (Immediate Consequence Operator) Let P be a definite LP.
Let IHerb ⊆ BP be a set of atoms. The set of immediate consequences of IHerb

wrt P is defined as follows:
TP (IHerb) := {A — there is A← B ∈ ground(P ) with B ⊆ IHerb}.

Definition 36. (Monotonic Mapping) Let T : P (U) → P (U) be a mapping
then T is monotonic if T (X) ⊆ T (Y ), whenever X ⊆ Y .

Definition 37. (Ordinal Power of T) Let T : P (U)→ P (U) be a monotonic
mapping then:
T ↑ 0 = ∅
T ↑ a = T (T ↑ (a− 1)) if a is a successor ordinal
T ↑ a =

⋃
(T ↑ b|b < a) if a is a limit ordinal

Definition 38. (Fixpoint of operators) An operator T is a function T :
P (U) → P (U), where P (U) denotes the powerset of a countable set U . A set
X ⊆ U is called a fixpoint of the operator T : P (U)→ P (U) iff T (X) = X

Definition 39. (Least Fixpoint) Let T : P (U) → P (U) be a mapping. An
element e ∈ P (U) is called a least fixpoint lfp(T ) iff e is a fixpoint of T and for
all fixpoints f of T it is that e ⊆ f .
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According to the Fixpoint Theorem of Knaster and Tarski (see [56] for more de-
tails) each monotonic operator T has a least fixpoint lfp(T ), which is the least
upper bound of the sequence T 0 = ∅, T i+1 = T (T i) for i ≥ 0. It appears that for
each set P of clauses lfp(T ) coincides with the unique least Herbrand model of P ,
where a model MHerb is smaller than a model NHerb, if MHerb ⊂ NHerb [43].

Definition 40. (Fixpoints of Monotonic Mappings) Let T be a monotonic
mapping. Then T has a least fixpoint lfp(T ). For every ordinal a, T ↑ a ⊆
lfp(T ). Moreover, there exists an ordinal b such that c ≥ b implies T ↑ c =
lfp(T ).

If the operator TP is not only monotonic but also continuous1, then a least
fixpoint of TP is always reached not later than at the first upper ordinal (see [62]).
By Kleene’s theorem (see [37]) lfp = T ↑ ω.

Theorem 1. (Fixpoint Characterization of the Minimal Herbrand
Model) Let P be a definite LP then MHerb

P = lfp(TP ) = TP ↑ ω.

In summary, the semantics of LPs is now defined as follows:

Definition 41. (Herbrand Semantics of Logic Programs) Let the ground-
ing of a clause r in a language Σ be denoted as ground(r,Σ) where ground(r,Σ)
is the set of all clauses obtained from r by all possible substitutions of elements
of UΣ for the variables in r. For any definite LP P
ground(P,Σ) =

⋃
r∈P ground(r,Σ)

The operator TP : 2BP → 2BP associates with P is defined by TP = Tground(P ),
where ground(P ) denotes ground(P,Σ(P )), and accordingly:
SEMHerb(P ) = MHerb

ground(P ).

Generating ground(P ) is often a very complex task, since, even in case of
function-free languages, it is in general exponential in the size of P . Moreover,
it is not always necessary to compute MHerb

ground(P ) in order to determine whether
P |= A for some particular atom A. In practice, various proof-theoretic strategies
of deriving atoms from a LP have been proposed. These strategies are based on
variants of Robinson’s famous Resolution Principle [87]. The major variant is
SLD-resolution [57].

SLD Resolution. In a nutshell, in SLD a goal is a conjunction of atoms. A
substitution θ is a function that maps variables to terms. Asking a query Q?,
where Q? may contain variables, to a program P means asking for all possible
substitutions θ of the variables in Q? such that Qθ follows from P , i.e., θ is the
answer to Q. In other words, SLD resolution repeatedly transforms the initial
goal by applying the resolution rule to an atom Qi from the query/goal and
a rule from P , unifying Qi with the head H of the rule, i.e., it tries to find a
substitution θ such that Hθ = Qiθ. The typical selection rule is to choose always
the first atom in the query. This step is repeated until all goals are resolved and
the empty goal is obtained.
1 In the sense of a Scott-continuous function, which is one that preserves all directed

suprema.
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Example 1. (Linear resolution computation step)

¬Q1, ..,¬Qn ¬A1, ..,¬Am, H
|

θ = unify(Q1,¬H)

Remark: The common deductive computational model of logic programming uses
backward-reasoning (goal-driven) resolution to instantiate the program clauses
via goals and uses unification to determine the program clauses to be selected
and the variables to be substituted by terms. In logic programming unification is
used to derive specific information out of general rules which assert general infor-
mation about a problem. The rules are instantiated via goals, leading to specific
instances of these rules. A goal G? initiates a refutation attempt unifying the
goalG? with the head of an appropriate ruleH ← B leading to an instance of the
rule (H ← B)′ if there exists a substitution θ = {V1/t1, .., Vn/tn} which assigns
terms ti to variables Vi such that (H ← B)′ = (H ← B)θ. Applying a substi-
tution θ to a term, atom or rule (program clause) yields the instantiated term,
atom or clause. For example, the rule son(X,Y ) : −parent(Y,X),male(X). and
a goal son(adrian, Y )? leads to the more specialized instance son(adrian, Y ) :
−parent(Y, adrian),male(adrian). The instance body Bθ is the goal reduction
(sub goal) for further derivation leading to more specific instances. Repeating
this process leads to an instance order (H ← B) ≥ (H ← B)′ ≥ whereas ≥ de-
notes the relation ”more general as”. The unification algorithm finds the greatest
lower bounds (glb) of terms under this instance order ≥, i.e. if θ is a most general
unifier (MGU) for a set of terms T then Tθ is the glb of T .

For a more precise account see [5,62] and [59] for resolution on normal clauses.
The task to find substitutions θ such that Qθ is derivable from the program P as
well as MHerb

P is closely related to SLD. The following properties are equivalent:

Theorem 2. (Soundness and Completeness of SLD)

– P |= ∀Qθ, i.e ∀Qθ is true in all models of P ,
– MHerb

P |= ∀Qθ,
– SLD computes an answer τ that subsumes θ wrt Q, i.e., ∃σ : Qτσ = Qθ.

Since SLD resolution is a top-down approach which starts with the query, the
main feature of it is, that it automatically ensures, that it only considers those
rules that are relevant for the query to be answered (see also section 1.3 for a
discussion of backward vs. forward reasoning). Rules that are not at all related
are simply not considered in the course of the proof. Note that there are also
several bottom up approaches for computing the least Herbrand model MHerb

P

from below. However, the bottom-up approach has two serious shortcomings:

1. The ”goal-orientedness” from top-down approaches is lost, i.e the whole
MHerb

P has to be computed even for those facts that have nothing to do
with the query.

2. In any step facts that are already computed before are recomputed again.
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Partial solutions have been proposed, e.g., semi-naive bottom-up evaluation [98,
26] or Magic Sets techniques [13]. However, as discussed in section 1 top-down
semantics are more appropriate in Web knowledge representation and the focus
is on backward-reasoning logic programming techniques.

Theory of Logic Programming with Negation. Definite LPs are typi-
cally not expressive enough for general knowledge representation on the Web
which is used to represent e.g. decision logics and situational logics. They e.g.,
exclude negative information and (non-monotonic) default statements such as
normally a implies c, unless something abnormal holds. Such statements and
the computation of default negation where the main motivation for alterna-
tive formulations of non-monotonic reasoning by circumscription [66], default
reasoning [84] or autoepistemic reasoning [65]. Independently of these work in
non-monotonic reasoning the proof-theory for negation-as-finite-failure (NAF),
the well-known SLDNF resolution (SLD+NAF), originated from SLD resolution.
In short, negation-as-finite-failure can be characterized as: A (default) negated
literal ∼ L succeeds, if L finitely fails. See [62, 5] for the formal definition of
SLDNF resolution and NAF. The implementation is often given as a cut-fail
test2:

not([P|Args]) :-
derive([P|Args]), % derive P(Args)
!, % cut
fail(). % fail

not([P|Args]). % positive answer

The corresponding model-theoretic semantics is defined by Clark’s completion
(COMP) [33] whose idea was to interpret ”←” in rules as ”↔” in the classical
sense.

Definition 42. (Clark’s Completion COMP) Clark’s completion semantics
COMP for a program P is given by the set of all classical models M(comp(P ))
of the completion theory comp(P ).

See Clark’s Equational Theory for more details [33]. COMP gives two rules for
inferring negative information:

– Infer ¬A iff BP \M(comp(P )) |= ¬A
– Infer ¬A iff M(comp(P )) |= ¬A

But, (two-valued) COMP is incomplete and does not characterize the transitive
closure correctly. In [80] various problems with loops in COMP were discussed.
Therefore, Fitting [44] introduced a three-valued formulation comp3(P ) of the

2 The basic idea behind this implementation is to make a closed world assumption
(i.e. all knowledge is completely known to the inference interpreter) and positively
proof the existence of the negated goal literal, which would refute the negation.
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two-valued COMP. It was shown by Kunen [58] that SLDNF is sound and com-
plete wrt COMP3 for propositional LPs and correct but not complete in the
predicate logic case [93].

SLDNF resolution suffers from problems with loops and floundering and its
implementation is only a simple test, i.e., no variable bindings are produced.
See [94] for a discussion of unsolvable problems related to SLDNF. Much work
has been done to define restriction properties (on the dependency graph whose
vertices are the predicate symbols from a program P ) for which SLDNF is com-
plete. The important ones are briefly reviewed here:

– stratified: no predicate depends negatively on itself
– strict: there are no dependencies that are both even and odd
– allowedness: at least every variable occurring in a clause must occur in at

least one positive literal of the body
– call-consistent: no predicate depends oddly on itself.
– hierarchical: no form of recursion is allowed

Stratified LPs for which the rules do not have recursion through negation have
been defined by [7]. The predicates of stratified LPs can be placed into strata
so that one can compute over the strata. The model-theoretic semantics, the
supported Herbrand model M supp

P , is defined by declaring M supp
P as the intended

model among all minimal Herbrand models of comp(P ) which could be obtained
by iterating over the strata. Przymusinski [77] showed that the selected model
was the so-called perfect model. The semantics of definite and stratified LPs lead
to the unique minimal model semantics which is generally accepted to be the
semantics for these classes of LPs.

However, this is not the case for more expressive LPs. Here are several possible
ways to determine the semantics and various approaches based on extensions
of the 2-valued classical logic to three-valued logics have been proposed, e.g.,
Fitting [44] or Kunen [58] semantics which are based on Kleene’s strong three-
valued logics, or the well founded semantics (WFS) [101] which is an extension
of the perfect model semantics. Another approach is based on the tradition of
non-monotonic reasoning in which the definition of entailment is based on the
notion of beliefs. The stable model semantics (STABLE) [47] is based on this
approach. For a discussion of the relationships between non-monotonic theories
and logic programming see [67]. In the following, the (declarative) semantics and
theory of more expressive types of LPs will be reviewed. Different semantics have
been defined in the past. Table 1 gives an incomplete overview.

In the following, the prominent semantics will be described, namely well-
founded semantics (WFS) and stable model semantics (STABLE) for normal
LPs with its extension answer set semantics (ASS) for extended LPs.

Stable Model Semantics. The Gelfond-Lifschitz transformation PM [47] of a
normal LP P wrt to its interpretation I is obtained from the ground instance
ground(P ) of P as follows:
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Table 1. Semantics for LP Classes (adapted from [36])

Class Semantics Ref.

Definite LPs Least Herbrand model: Mp [7]
Stratified LPs Supported Herbrand model: Msupp

p [7]
Normal LPs Clark’s Completion: COMP [33]

3-valued Completion: COMP3 [58,44]
Well-founded Semantics: WFS [101]

WFS+ and WFS
′

[34]
WFSC [91]
Strong Well-founded Semantics: WFSE [27]
Stable Model Semantics: STABLE [47]
Generalized WFS: GWFS [10]
STABLE+ [35]
STABLEC [91]

STABLErel [34]
Pereira’s O − SEM [74]
Partial Model Semantics: PARTIAL [90]
Regular Semantics: REG − SEM [102]
Preferred Semantics: PREFERRED [39]

Extended LPs Extended Well-founded Semantics: WFSS [54]
Answer Set Semantics: ASS [48,49]
Extended Well-founded Semantics: WFSX [73]

General Dis-
junctive

Disjunctive WFS: DWFS [21]

Generalized Disjunctive WFS: GDWFS [11]
Disjunctive Stable: DSTABLE [82]

Stratified Dis-
junctive

Perfect model PERFECT [77]

Weakly Perfect: WPERFECT [75]
Generalized Closed World Assumption: GCWA

Positive Dis-
junctive

Weak generalized closed world assumption:
WGCWA

[83]

Definition 43. (Gelfond-Lifschitz transform) Let P be a program and M ⊆
BP . The Gelfond-Lifschitz transform PM of P (aka reduct of P ) wrt M is defined
by PM = rM |r ∈ ground(P ). It is obtained from ground(P ) by:

1. Replace in every ground rule A← B ∧ notC ∈ ground(P ) the negative body
by its truth value wrt M .

2. Deleting each rule r in P with B−(r) ∩M �= ∅ where B− denotes the set of
negated atoms in the body of the rule r.

Based on PM the concepts of stable models [47] and partial stable models [82]
have been defined:

Definition 44. (Stable Model) An interpretation I of a normal LP P is a
stable model MStable of P if I is a minimal model of PM :
SEMStable(P ) =

⋂
MStable∈SEMStable(P )(M

Stable ∪ neg(BP \MStable))
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Definition 45. (Partial Stable Model) A partial Herbrand interpretation is
called a partial stable model of P if it is a partial minimal model of PM .

It can be shown that stable models are always partial models and that every
stratified LP P has a unique stable model where stratified and stable semantics
coincide.

Answer Set Semantics. Gelfond and Lifschitz [48,49] have extended the concept
of stable models to extended and disjunctive LPs based on the notion of answer
sets. The proposed answer-set semantics is defined as follows:

Definition 46. (Answer Set Semantics) Let P be an extended (disjunctive)
LP. P is transformed to a (explicit) negation-free program P ′ by replacing all
negative literals ¬A by positive literals A′ over new predicate symbols. Every
stable model MStable of P ′ defines an answer set of P , which is a set of literals:
L = A ∈ BP |MStable(A) = t ∪ ¬A ∈ ¬BP |MStable(A′) = t
If L does not contain complementary pairs A,¬A of literals, then the answer

set is L else it is BP ∪ ¬BP is the set of all ground literals.

Associated with SEMStable are two entailment relations:

Definition 47. (Cautious Entailment) An extended LP P cautiously entails
a ground atomic formula a iff a ∈ I for every answer set MStable of P .

Definition 48. (Brave Entailment) An extended program P bravely entails
a ground atomic formula a iff a ∈ I for some answer set MStable of P .

Well-founded Semantics. There exists several definitions to well-founded seman-
tics (WFS), e.g., [101, 45, 12, 81]. Van Gelder, Ross and Schilpf [101] were the
first to extend the work of Apt et al. [7] to the class of normal logic programs.
The well-founded semantics (WFS) of Gelder et al. is a three-valued logic: true,
false and unknown. WFS is an extension of the perfect model semantics, in con-
trast to Fitting and Jacob’s semantics which is based on Kleene’s strong three
valued logic. For instance, WFS (as well as perfect model semantics) assigns the
truth value ”false” to a clause p← p while Fitting and Jacob assign ”unknown”.
Following the definition from [101] WFS is defined as follows.

Definition 49. (Partial Interpretation) Let P be a normal LP. A partial
interpretation I is a set of ground literals such that for no atom A both A and not
A are contained in I, i.e., pos(I) ∩ neg(I) = ∅ and whose atoms are contained
in BP of P , i.e., pos(I) ∪ neg(I) ⊆ BP . I is a total interpretation, if I is a
partial interpretation and for every atom A ∈ BP it contains A or not A, i.e.,
pos(I) ∪ neg(I) = BP .

Definition 50. (Unfounded Set) Let P be a normal LP. Let I be a partial
interpretation. Let α ⊆ BP be a set of ground atoms. α is an unfounded set of
P wrt I, if for every atom A ∈ α and every ground rule instance A ← β ∈
ground(P ) at least one of the following conditions holds:
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1. at least one body literal L ∈ β is false in I.
2. at least one positive body literal B ∈ β is contained in α.

Definition 51. (Greatest Unfounded Set) Let P be a normal LP. Let I be
a partial interpretation. The greatest unfounded set of P wrt I is the union of
all unfounded sets of P wrt I.

Definition 52. (Pos. and Neg. Immediate Consequences) For a ground
normal LP P and a partial interpretation I ⊆ BP the following monotonic
transformation operators are defined:

– TP (I) := A ∈ BP |∃(A← β) ∈ ground(P ) : β ⊆ I
– UP (I) := the greatest unfounded set of P wrt I
– WP (I) := TP (I) ∪ ∼ UP (I)

Lemma 1. TP , UP and WP are monotonic operators.

Theorem 3. Let P be a normal LP. For every countable ordinal α, WP ↑ α is
a partial model of P .

Definition 53. (Well-founded Model) The least fixpoint of WP is the well-
founded (partial) model of P denoted W ∗

P . The least fixpoint can be computed as
follows, lfp(WP ) = W∞

P (∅)3. If lfp(WP ) ⊆ BP is a total interpretation of P
then lfp(WP ) is a well-founded model. An atom A ∈ BP is well-founded (resp.
unfounded) wrt P iff A (resp. ¬A) is in lfp(WP ).

WFS is defined for the grounding of an arbitrary normal LP: ground(P ), i.e.,
it defines a mapping SEMWFS, which assigns to every normal LP P a set
SEMWFS(P ) of (partial) models of P such that SEMWFS(P ) =
SEMWFS(ground(P )) (i.e., SEMWFS is instantiation invariant).

Definition 54. (Well-founded Semantics) The Well-founded semantics
(WFS) assigns to every normal LP P the well-founded partial model W ∗

P

of P :
SEMWFS(P ) := {W ∗

P }.
Remark: In the (van Gelder)-Definition of the well-founded semantics, WP is not
a function on the set of all three-valued interpretations, i.e. it is not well-defined.
Indeed, there are three-valued interpretations I such that WP (I) is not three-
valued (it becomes four-valued). However, this is not a serious problem because
the iterates WP ↑ α are provably still always all three-valued. [52]

Definition 55. (Entailment) A normal LP P entails a ground atom a under
WFS, denoted by P |= a, if it is true in SEMWFS(P ).

WFS can be considered an approximation of stable models, i.e., if a program
has stable models, then if an atom is true resp. false wrt the WFS then it is
true resp. false wrt STABLE. [81] Moreover, for weakly stratified LPs [76] WFS
coincides with STABLE. However, there are three important distinction between
STABLE and WFS:
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1. WFS is a three-valued semantics, whereas STABLE is two-valued.
2. every normal LP has exactly one WFS model, whereas every normal LP has

zero or more stable models.
3. Irrelevant clauses (tautologies) lead to the non-existence of stable models,

e.g., p← ¬p has no stable model.

While the alternating fixpoint on normal logic programs only captures the nega-
tion of positive existential closure such as e.g. transitive closure, it does not
capture the negation of positive universal closure. As shown by van Gelder [101]
the constructive characterization of the well-founded semantics for normal logic
programs in terms of alternating fixpoint partial models can be further extended
towards an alternating fixpoint semantics for general logic programs. There have
been also several proposals for extending WFS by classical negation leading to a
well-founded semantics for extended LPs - see e.g., [39,40,9,61,73,24]. Decidable
and semi-decidable fragments of the WFS have been discussed in [32].

Procedural Semantics for Normal and Extended LPs. Existing procedural se-
mantics for the computation of the well-founded model can be divided into
two groups: (1) bottom-up approaches such as the alternating fixpoint approach
[99,100,64], the magic set approach [89,55,68,95] and transformation based (aka
residual program) approaches [25, 41, 22, 23] and (2) top down approaches such
as non-tabling based approaches such as Global SLS resolution [78,88] or tabling
based approaches such as extensions to OLDT resolution [96], e.g., WELL [14],
XOLDTNF [29] or the approach of Bol and Degerstedt [16], SLT resolution [92]
or the well-known SLG resolution [28] (another prominent extension of OLDT).
There are also some proof procedures for well-founded semantics for extended
logic programs (WFSX) such as [97] or SLX resolution [3].

The well-known 2-valued top-down SLDNF (classical LP Prolog) resolution
[33], a resolution based method derived from SLD resolution [57, 8], as a proce-
dural semantics for LPs has many advantages. Due to its linear derivations it can
be implemented using efficient stack based memory structures, it supports very
useful sequential operators such as cut, denoted by !, or assert/retract and the
negation-as-finite failure test is computationally quite efficient. Nevertheless, it
is a too weak procedural semantics for unrestricted LPs with negations. It does
not support goal memoization and suffers from well-known problems such as
redundant computations of identical calls, non-terminating loops or floundering.
It is not complete for LPs with negation or infinite functions. Moreover, it can
not answer free variables in negative subgoals since the negation as finite failure
rules is only a simple test. For more information on SLDNF resolution I refer
to [62, 6]. For typical unsolvable problems related to SLDNF see e.g. [94].

SLG resolution [30, 28] is the most prominent tabling based top-down method
for computing the well-founded semantics for normal LPs and it has been show
in [31] how SLG can be used for query evaluation of general logic programs un-
der WFS alternating fixpoint semantics. SLG resolution overcomes infinite loops
and redundant computations by tabling. The basic idea of tabling, as implemented
e.g., in ODLT resolution [96], is to answer calls (goals)with the memorized answers
from earlier identical goals which are stored in a table. However, SLG
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resolution is a non-linear approach. SLG is based on program transformations us-
ing six basic transformation rules, instead of the tree based approach of SLDNF.
It distinguishes between solution nodes, which derive child nodes using the clauses
from the program and look-up nodes, which produce child nodes using the mem-
orized answers in the tables. Since all variant subgoals derive answers from the
same solution node, SLG resolution essentially generates a search graph instead
of a search tree and jumps back and forth between lookup and solution nodes, i.e.,
it is non-linear. Special delaying literals are used for temporarily undefined nega-
tive literals and a dependency graph is maintained to identify negative loops. Calls
to look-up nodes will be suspended until all answers are collected in the table, in
contrast to the linear SLD style where a new goal is always generated by linearly
extending the latest goal. It is up to this non-linearity of SLG that tabled calls are
not allowed to occur in the scope of sequential operators such as cut.

Global-SLS resolution [78, 79, 88] for WFS is a procedural semantics which di-
rectly extends SLDNF resolution and hence preserves the linearity property of
SLDNF. In contrast to SLDNF-trees, SLS-trees treat infinite derivations as failed
and recursions through negation as undefined. However, it assumes a positivistic
computation rule that selects all positive literals before negative ones and inherits
the problem of redundant computations from SLDNF. Moreover, a query fails if
the SLS-trees for the goal either end at a failure leave or are infinite, which makes
Global-SLS computationally ineffective [88]. To avoid redundant computations in
SLS, a tabling approach called tabulated SLS resolution [15] was proposed. But
the approach, like SLG, is based on non-linear tabling.

SLX resolution [3] is a procedural semantics for extended LPs which is sound
and complete wrt WFSX semantics. As in SLS resolution it uses a failure rule
to solve the problems of infinite positive recursions and distinguishes two kinds of
derivations for proving verity (SLX-T tree) and proving non-falsity (SLX-TU tree)
in the well-founded model in order to fail or succeed literals involved in recursion
through negation. Thus, SLX does not consider a temporal undefined status as
the other top-down approaches for WFS do, but implements the following deriva-
tions: if a goal L is to be undefined wrt WFS it must be failed, if it occurs in a
SLX-T derivation and refuted if it occurs in a SLX-TU derivation. To fulfill the
coherence requirement of WFSX a default negated literal ∼ L is removed from a
goal if there is no SLX-TU refutation for L or if there is one SLX-T refutation for
∼ L. In short, SLX is very close to SLDNF resolution. As already pointed out by
the authors [3,4] it is only theoretically complete, does not guarantee termination
since it lacks loop detection mechanisms, is in general not efficient and makes re-
dundant computations since tabling is not supported. Its implementation is given
as a meta program in Prolog.

SLE resolution (Linear resolution with Selection function for Extended WFS)
extends linear SLDNF with goal memoization based on linear tabling and loop
cutting. In short, it resolves infinite loops and redundant computations by tabling
without violating the linearity property of SLD style resolutions. SLE resolution
is based on four truth values: t (true), f (false), u (undefined) and u′ (temporar-
ily undefined) with t = ¬f , ¬f = t, ¬u = u and ¬u′ = u and a truth ordering
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¬f > t > u > u′. u′ will be used if the truth value of a subgoal is temporarily un-
decided. SLE resolution follows SLDNF, where derivation trees are constructed by
resolution. For more information on the notion of trees for describing the search
space of top-down proof procedures see e.g. [62]. In SLE a node in a tree is de-
fined by Ni : Gi, where Ni is the node name and Gi is the first goal labelling the
node. Tables are used to store intermediate results. In contrast to SLG resolution,
there is no distinction between lookup and solution nodes in SLE. The algorithm,
always, first tries to answer the call (goal) with the memorized answers in the ta-
bles. If there are no answers available in a table the call is resolved against program
clauses which are selected in the same top-down order as in SLDNF. This avoids
redundant computations. To preserve the order the answers stored in a table are
used in a FIFO (first-in-first-out) style, i.e., the first memorized answer is first
used to answer the call. In case of loops the two main issues in top-down procedu-
ral semantics for WFS are solutions to infinite positive recursions (positive loops)
and infinite recursion through negation by default (negative loops).

3 Web Rule Languages

Web rule languages have been developed for the declarative representation of,
e.g., privacy policies, business rules, and Semantic Web rules. Rules are central to
knowledge representation for the Semantic Web and are often considered as being
side by side with ontologies, e.g. in W3C’s hierarchical Semantic Web architecture
(2007 version shown in Figure 2).

There are different types of rules which can be used on the Web such as

– Derivation rules are sentences of knowledge that are derived from other knowl-
edge by an inference or mathematical calculation.

– Reaction rules are behavioral rules which react on occurred events or changed
conditions by executing actions.

– Integrity rules (or constraints) are assertions which express conditions that
must be always satisfied.

– Deontic rules describe rights and obligations of roles in the context of evolving
states (situations triggered by events/actions) and state transitions.

– Transformation rules - specify term rewriting, which can be considered as
derivation rules of logics with (oriented) equality

– Facts might describe various kinds of information such as events (event/action
messages, event occurences), (object-oriented) object instances, class individ-
uals (of ontology classes), norms, constraints, states (fluents), conditions of
various forms, actions, data (e.g., relational, XML), etc., which might be qual-
ified, e.g., by priorities, temporally, etc.

Rules can influence the operational and decision processes of Web systems.

– Derivation rules (deduction rules): establish / derive new information from
existing Web data that is used, e.g. in a decision process.

– Reaction rules that establish when certain activities should take place:
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Fig. 2. Semantic Web Layer Cake [adapted from (W3C, 2007)]

• Condition-Action rules (production rules)
• Event-Condition-Action (ECA) rules + variants (e.g. ECAP)
• Messaging reaction rules (event message reaction rules)

Rules can also act as constraints on the Web systems structure, behavior and in-
formation.

– Structural constraints (e.g. deontic assignments).
– Integrity constraints and state constraints
– Process and flow constraints.

Web rule markup languages provide the required expressiveness enabling machine-
interpretation, automated processing and translation into other such Web
languages, some of which also being the execution syntaxes of rule engines. One
of these languages may act as a lingua franca to interchange rules and integrate
with other markup languages, in particular with Web languages based on XML and
with Semantic Web languages (e.g. RDF Schema, OWL and OWL 2) for ontologies
based on RDF or directly on XML. Web rule languages may also be used for publi-
cation purposes on the Web and for the serialization of external data sources, e.g.
of native online XML databases or RDF stores. Recently, there have been several
efforts aiming at rule interchange and building a general, practical, and deployable
rule markup standard for the (Semantic) Web. These include several important
general standardization or standards-proposing efforts including RuleML (www.

www.ruleml.org
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ruleml.org), the W3C member submission SWRL (www.w3.org/Submission/
SWRL/), the W3C recommendation RIF (www.w3.org/2005/rules/), and others.

A complete specification of Web rule languages consists of a formalization of
their syntax, semantics and, often left implicit, pragmatics. The syntax of Web
rule markup languages always includes the concrete syntax of (XML) markup,
perhaps indirectly through other languages such as via RDF/XML. Often, there
is another more or less concrete syntax such as a compact shorthand or presen-
tation syntax, which may be parsed into the XML markup. While a presentation
syntax can already disregard certain details, an abstract syntax systematically re-
places character sequences with abstract constructors, often in a (UML) diagram
form or as an abstract syntax tree (AST). Together with different token dictio-
naries, it can be used to generate corresponding concrete syntaxes. The semantics
is formalized in a model-theoretic, proof-theoretic, or procedural manner, some-
times in more than one. When rules and speech-act-like performatives, such as
queries and answers, are transmitted between different systems, their pragmatic
interpretation, including their pragmatic context, becomes relevant, e.g. in order
to explain the effects of performatives - such as the assertion or retraction of facts
- on the internal knowledge base [72].

A general distinction of three rule modeling layers can be adopted from OMG’s
model driven architecture (MDA) engineering approach
(http://www.omg.org/mda/):

– A platform specific model (PSM) which encodes the rule statements in the
language of a specific execution environment

– A platform independent model (PIM) which represents the rules in a common
(standardized) interchange format, a rule markup language

– A computational independent model (CIM) with rules represented in a natu-
ral or visual language

The CIM level comprises visual and verbal rendering and rule modeling, e.g. via
graphical representation or a controlled natural language syntax for rules, mainly
intended for human consumption. Graphical representations such as UML dia-
grams or template-driven/controlled languages can also be used as presentation
languages.

The PIM level should enable platform-independent machine interpretation, pro-
cessing, interchange and translation into multiple PSM execution syntaxes of con-
crete rule engines. Hence, the concrete XML (or RDF/XML based) syntax of a
Web rule language such as RuleML, SWRL or RIF resides on this level, whereas
the abstract syntax is on the borderline between the PIM and CIM levels.

The PSM level is the result of translating/mapping PIM rule (interchange) lan-
guages into execution syntaxes, such as ISO Prolog, POSL, Prova
(http://prova.ws/), which can be directly used in a specific execution environ-
ment such as a rule engine. A general distinction can be made between a compiled
language approach, where the rules are statically translated into byte code (at
compile time) versus interpreted scripting languages, which are dynamically in-
terpreted (at run-time). While the compiled approach has obvious efficiency ben-
efits, the interpreted approach is more dynamic and facilitates, e.g., updates at

www.ruleml.org
www.w3.org/Submission/SWRL/
www.w3.org/Submission/SWRL/
www.w3.org/2005/rules/
http://www.omg.org/mda/
http://prova.ws/
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run-time. Often, Semantic Web Rule Languages are directly executable by their
respective rule engines; hence reside on the PSM level. As an intermediate step
between the concrete PSM level and the PIM level an abstract representation is
often introduced, such as N3, which provides an abstract rule syntax based on the
RDF syntax.

The correct execution of an interchanged PIM-level rule set serialized in a rule
markup language depends on the semantics of both the rule program and the
platform-specific rule inference engine (IE). To address this issue, the IE and the
interchanged rule set must reveal their intended/implemented semantics. This
may be solved via explicit annotations based on a common vocabulary, e.g. an
(Semantic Web) ontology which classifies the semantics. Annotations describing
the semantics of an interchanged rule set could even be used to find appropriate
IEs on the Web to correctly and efficiently interpret and execute the rule pro-
gram; for example, (1) by configuring the rule engine for a particular semantics
in case it supports different ones, (2) by executing an applicable variant of sev-
eral interchanged semantic alternatives of the rule program, or (3) by automatic
transformation approaches which transform the interchanged rule program into a
rule program with an applicable semantics.

In the following two subsections languages on the PIM and PSM level will be
described.

3.1 Platform Independent Web Rule Languages

In the following, three prominent platform independent Web Rule languages are
introduced.

RuleML
The Rule Markup Language (RuleML, www.ruleml.org) is a markup language
developed to express a family of Web rules in XML for deduction, rewriting, and
reaction, as well as further inferential, transformational, and behavioral tasks. It
is defined by the Rule Markup Initiative (www.ruleml.org), an open network of
individuals and groups from both industry and academia that was formed to de-
velop a canonical Web language for rules using XML markup and transformations
from and to other rule standards/systems. It develops a modular, hierarchical
specification for different types of rules comprising facts, queries, derivation rules,
integrity constraints (consistency-maintenance rules), production rules, and re-
action rules (Reaction RuleML, http://reaction.ruleml.org), as well as tools
and transformations from and to other rule standards/systems. Datalog RuleML
is defined over both data constants and individual constants with an optional at-
tribute for IRI (URI) webizing. Atomic formulas have n arguments, which can
be positional terms or, in Object-Oriented Datalog, slots (F-logic-like key→term
pairs); OO Datalog also adds optional types and RDF-like oids/anchors, via IRIs
(Boley, 2003). Inheriting all of these Datalog features, Hornlog RuleML adds po-
sitional or slotted functional expressions as terms. In Hornlog with equality, such
uninterpreted (constructor-like) functions are complemented by interpreted
(equation-defined) functions. This derivation rule branch is extended upward

www.ruleml.org
www.ruleml.org
http://reaction.ruleml.org
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towards First Order Logic, has subbranches with Negation-As-Failure, strong-
Negation, or combined languages, and is parameterized by ’pluggable’ built-ins.

SWRL
The Semantic Web Rule Language (SWRL, www.w3.org/Submission/SWRL/) is
defined as a language combining sublanguages of the OWL Web Ontology Lan-
guage (OWL DL and Lite) with those of the Rule Markup Language (Unary/
Binary Datalog). The specification was submitted to W3C in May 2004 by the
National Research Council of Canada, Network Inference (since acquired by web-
Methods), and Stanford University in association with the Joint US/EU ad hoc
Agent Markup Language Committee. Compared to Description Logic Programs
(DLP) [50], a slightly earlier proposal for integrating description logic and Horn
rule formalisms by an overlapping authoring team, SWRL takes the opposite in-
tegration approach: DLP can be seen as the intersection of description logic and
Horn logic; SWRL, as roughly their union. For DLP, the resulting rather inexpres-
sive language corresponds to a peculiar looking description logic imitating special
rules. It is hard to see the DLP restrictions, which stem from Lloyd-Topor trans-
formations, being either natural or satisfying. On the other hand, SWRL retains
the full power of OWL DL, but adds rules at the price of undecidability and a
lack of complete implementations, although the SWRL Tab of Protege has become
quite popular (http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab). Rules
in SWRL are of the form of an implication between an antecedent (body) conjunc-
tion and a consequent (head) conjunction, where description logic expressions can
occur on both sides. The intended interpretation is as in classical first-order logic:
whenever the conditions specified in the antecedent hold, then the conditions spec-
ified in the consequent must also hold.

SWRL [53] is a homogeneous approach combining rules with ontoligies with
relatively high complexity bounds for the ontology reasoning part (due to the fact
that standard rule engines are not optimized for DL reasoning). In general, the
works on combining rules and ontologies can be basically classified into two basic
approaches: homogeneous and heterogeneous integrations. Starting from the early
Krypthon language [20] among the heterogeneous approaches, which hybridly use
DL reasoning techniques and tools in combination with rule languages and rule
engines are e.g., CARIN [60], Life [2], Al-log [38], non-monotonic dl-programs [42]
and r-hybrid KBs [85]. Among the homogeneous approaches which combine the
rule component and the DL component in one homogeneous framework sharing
the combined language symbols are e.g., DLP [50], KAON2 [69] or SWRL [53].
Both integration approaches have pros and cons and different integration strate-
gies such as reductions or fixpoint iterations are applied with different restrictions
to ensure decidability. These restrictions reach from the intersection of DLs and
Horn rules [50] to leaving full syntactic freedom for the DL component, but re-
stricting the rules to DL-safe rules [69], where DL variables must also occur in a
non DL-atom in the rule body, or role-safe rules [60], where at least one variable
in a binary DL-query in the body of a hybrid rule must also appear in a non-DL
atom in the body of the rule which never appears in the consequent of any rule in
the program or to tree-shaped rules [51]. Furthermore, they can be distinguished

www.w3.org/Submission/SWRL/
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
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according to their information flow which might be uni-directional or bi-directional.
For instance, in homogeneous approaches bi-directional information flows between
the rules and the ontology part are naturally supported and new DL constructs
introduced in the rule heads can be directly used in the integrated ontology in-
ferences, e.g., with the restriction that the variables also appear in the rule body
(safeness condition). However, in these approaches the DL reasoning is typically
solved completely by the rule engine and benefits of existing optimized DL reason-
ers using, e.g. variants of tableau based algorithms, are lost. On the other hand,
heterogenous approaches, benefit from the hybrid use of both reasoning concepts
exploiting the advantages of both (using LP reasoning and tableaux based DL rea-
soning), but bi-directional information flow and fresh DL constructs in rule heads
are much more difficult to implement. A more complete survey and discussion of
the combination of rules and ontologies is given in chapter ”OWL and Rules” of
this lecture book. [1]

W3C RIF
The W3C Rule Interchange Format (RIF) Working Group [86] is an effort, influ-
enced by RuleML, to define a standard Rule Interchange Format for facilitating
the exchange of rule sets among different systems and to facilitate the development
of intelligent rule based applications for the Semantic Web. For these purposes,
RIF Use Cases and Requirements (RIF-UCR) have been developed. The RIF ar-
chitecture is conceived as a family of languages, called dialects. A RIF dialect is a
rule based language with an XML syntax and a well-defined semantics.

The W3C RIF recommendation defines the Basic Logic Dialect (RIF-BLD),
which corresponds to a definite Horn rule language with equality. RIF-BLD has a
number of syntactic extensions with respect to ’regular’ Horn rules, including in-
ternationalized resource identifiers (IRIs) as identifiers for concepts, F-logic-like
frames and slots, and a standard system of built-ins drawn from Datatypes and
Built-Ins (RIF-DTB). RIF Core (RIF-Core) in the intersection of RIF-BLD and
the Production Rule Dialect (RIF-PRD) influenced by OMG’s PRR, which can
then be further extended or supplemented by reaction rules. The connection to
other W3C Semantic Web languages is established via RDF and OWL Compati-
bility (RIF-SWC). Moreover, RIF-BLD is a general Web language in that it sup-
ports the use of IRIs (Internationalized Resource Identifiers) and XML Schema
data types. The RIF Working Group has also defined the Framework for Logic
Dialects (RIF-FLD). RIF-FLD uses a uniform notion of terms for both expres-
sions and atoms in a higher order logic (HiLog)-like manner.

In the following, the syntax and semantics of the basic logic dialect of RIF will
be summarized.

Definition 56. (Alphabet): The alphabet of the non-normative presentation lan-
guage of RIF-BLD, which maps to the normative XML syntax of RIF, consists of

– a countably infinite set of constant symbols Const
– a countably infinite set of variable symbols V ar
– a countably infinite set of argument/slot names, Arg
– connective symbols And, Or, and : −
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– quantifiers Forall and Exists
– the symbols→, External, =, #, ##, Import, Prefix, and Base
– the symbols Group and Document
– the auxiliary symbols (, ), [, ], <, >, and ∧∧.

Constants in RIF are written as literal∧∧symbolspace, where literal is a sequence
of Unicode characters and symbolspace is an identifier for a symbol space consist-
ing of an identifier and a lexical space. Symbol spaces supported in RIF are

– identifiers of Web entities, where the lexical space consists of strings that
syntactically are internationalized resource identifiers (IRIs), e.g.,
http://www.w3.org/2007/rif#iri

– datatypes supported by RIF, e.g.
http://www.w3.org/2001/XMLSchema#integer

– rif:local which is used for function and predicate symbols that are local to a
rule document.

Slot/argument names Arg and variables V ar are unicode strings. Variables start
with the symbol ?, e.g. ?x. The symbol → is used in terms that have named ar-
guments and in frame formulas. Equality in RIF is denoted by =. The symbols
#, and ## are used in formulas that define class membership and subclass rela-
tionships. The symbol External defines an external atomic formula or a function
term defined by a RIF built-in. The symbolDocument is used to specify RIF-BLD
documents. The symbol Import is used for importing documents, and the symbol
Group is used to organize RIF-BLD formulas into rule sets.

Using the above alphabet the language of RIF-BLD is constructed as a set of
formulas. The main building blocks that are used to construct formulas are terms.
RIF-BLD defines several kinds of terms: constants and variables, positional
(as in normal logic programs) and named-argument (slotted) terms (as in F-
Logic), and additionally equality, membership, subclass, frame, and exter-
nal terms.

Positional terms of the form p(v1...vn) and unpositional named arguments p(s1
→ v1...sn → vn), where p is a (webized) predicate symbol, are atomic formula.
Equality, subclass, membership, and frame terms are atomic formulas, too.
External(ϕ), where ϕ is an atomic formula, is an externally defined atomic for-
mula.

The condition language of RIF-BLD constructs condition formula from atomic
formula using Conjunction: And(ϕ1...ϕn) to build a conjunctive formula, Dis-
junction: Or(ϕ1 ...ϕn), to build disjunctive formula, and Existentials:
Exists?V1...?Vn(ϕ) to build existential formula.

Condition formulas are used inside the premises of rules in the RIF rule lan-
guage dialects (RIF Core, RIF BLD and RIF PRD). In RIF-BLD definite horn
rules are defined as rule implications: ψ : −ϕ which are universally quanti-
fied Forall ?V1...?Vn(ψ : −ϕ). A set of rules is grouped in a group formula:
Group(ϕ1...ϕn), where ϕi is either a universal fact, variable-free rule implication,
variable-free atomic formula, or another group formula. Finally, RIF-BLD docu-
ment formula are expressions of the form:Document(directive1...directivenΠ),

http://www.w3.org/2007/rif#iri
http://www.w3.org/2001/XMLSchema#integer
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where Π is an optional group formula (the knowledge base of the RIF document)
and the optional directives are

– import directive of the form Import(iri) or Import(iriprofile), where iri in-
dicates the location of another RIF document to be imported plus and op-
tional profile for import.

– base directives of the form Base(iri) defining syntactic shortcuts for expand-
ing relative IRIs into full IRIs

– prefix directive of the form Prefix(pv) defining a syntactic shortcut to enable
a compact URI representation for rif : iri constants.

Additionally, RIF-BLD allows every term and formula to be optionally preceded
by an annotation of the form (∗ id ϕ ∗), where id is a rif : iri constant and ϕ is
a formula.

The non-normative presentation syntax corresponds to the normative XML
syntax of RIF-BLD which uses the element and attribute names listed below:

– And: conjunction
– Or: disjunction
– Exists: quantified formula for existentials, containing declare and formula

roles
– declare: declare role, containing a Var
– formula: formula role, containing a FORMULA
– Atom: atom formula, positional or with named arguments
– External: external call, containing a content role
– content: content role, containing an Atom, for predicates, or Expr, for func-

tions
– Member: prefix version of member formula #
– Subclass: prefix version of subclass formula ##
– Frame: Frame formula
– object: Member/Frame role, containing a TERM or an object description
– op: Atom/Expr role for predicates/functions as operations
– args: Atom/Expr positional arguments role, with fixed ’ordered’ attribute,

containing n TERMs
– instance: Member instance role
– class: Member class role
– super: Subclass super-class role
– sub: Subclass sub-class role
– slot: prefix version of Name/TERM→TERM pair as an Atom/Expr or Frame

slot role, with fixed ’ordered’ attribute
– Equal: prefix version of term equation ’=’
– Expr: expression formula, positional or with named arguments
– left: Equal left-hand side role
– right: Equal right-hand side role
– Const: individual, function, or predicate symbol, with optional ’type’ attribute
– Name: name of named argument
– Var: serialized version of logic ’?’ variable
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– id: identifier role, containing IRICONST
– meta: meta role, containing metadata as a Frame or Frame conjunction
– Document: document, containing optional directive and payload roles
– directive: directive role, containing Import
– payload: payload role, containing Group
– Import: importation, containing location and optional profile
– location: location role, containing IRICONST
– profile: profile role, containing PROFILE
– Group: nested collection of sentences
– sentence: sentence role, containing RULE or Group
– Forall: quantified formula for ’Forall’, containing declare and formula roles
– Implies: prefix version of logic ’:-’ implication, containing if and then roles
– if : antecedent role, containing FORMULA
– then: consequent role, containing ATOMIC or conjunction of ATOMICs

Like RuleML, the XML syntax of RIF divides all XML tags into class descriptors
starting with upper case letters, called type tags, and property descriptors starting
with lower case letters, called role tags. [17]

The semantics of RIF-BLD is an adaptation of the standard semantics for Horn
clauses. It is specified using general models.

Definition 57. (Semantic Structure) A semantic structure, I, is a tuple of
the form ¡TV , DTS, D, Dind, Dfunc, IC , IV , IF , Iframe, INF , Isub, Iisa, I=,
Iexternal, Itruth¿, where D is a non-empty set of elements called the domain of
I, and Dind, Dfunc are nonempty subsets of D. Dind is used to interpret the ele-
ments of Const that play the role of individuals and Dfunc is used to interpret the
constants that play the role of function symbols. DTS denotes a set of identifiers
for primitive datatypes as defined in RIF-DTB. IC maps Const to D. IV maps
V ar to Dind. IF maps D to functions D∗ind → D with D∗ind being a set of all
finite sequences over the domain Dind. INF maps D to the set of total functions
SetOfFiniteSets(ArgNames×Dind)→ D, where ArgNames are named argu-
ments. Iframe mapsDind to total functions of the form SetOfFiniteBags(Dind×
Dind)→ D. Isub is a mapping of the form Dind×Dind → D. Iisa is a mapping of
the form Dind×Dind → D. I= is a mapping of the form Dind×Dind → D. Itruth

is a mapping of the form D → TV . Finally, Iexternal is a mapping of symbols into
Const described as external to fixed n-ary functions.

RIF-BLD also defines a generic mapping from terms to D as follows:

– I(k) = IC(k), if k is a symbol in Const
– I(?v) = IV (?v), if ?v is a variable in V ar
– I(f(t1...tn)) = IF (I(f))(I(t1), ..., I(tn))
– I(f(s1 → v1...sn → vn)) = INF (I(f))(< s1, I(v1) >, ..., < sn, I(vn) >)
– I(o[a1 → v1...ak → vk]) = Iframe(I(o))(< I(a1), I(v1) >, ..., < I(an), I(vn) >)

Note, that in RIF I(o[a→ b a→ b]) = I(o[a→ b]).
– I(c1##c2) = Isub(I(c1), I(c2))
– I(o#c) = Iisa(I(o), I(c))
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– I(x = y) = I=(I(x), I(y))
– I(External(p(s1...sn))) = Iexternal(p)(I(s1), ..., I(sn)).

The truth value of (non-document) formulas in RIF BLD is determined from the
semantic structures by the following truth valuation.

Definition 58. (Truth Valuation)The truth valuation TV alI is defined as
follows:

– Positional atomic formulas: TV alI(r(t1...tn)) = Itruth(I(r(t1...tn)))
– Atomic formulas with named arguments: TV alI(p(s1 → v1...sk → vk)) =
Itruth(I(p(s1 → v1...sk → vk)))

– Equality: TV alI(x = y) = Itruth(I(x = y)) with Itruth(I(x = y)) = t if
I(x) = I(y) and that Itruth(I(x = y)) = f otherwise

– Subclass: TV alI(sc##cl) = Itruth(I(sc##cl))
– Membership: TV alI(o#cl) = Itruth(I(o#cl))
– Frame: TV alI(o[a1 → v1...ak → vk]) = Itruth(I(o[a1 → v1...ak → vk]))
– Externally defined atomic formula: TV alI(External(t)) = Itruth(Iexternal(t))
– Conjunction: TV alI(And(c1...cn)) = t if and only if TV alI(c1) = ... =
TV alI(cn) = t. Otherwise, TV alI(And(c1...cn)) = f .

– Disjunction: TV alI(Or(c1...cn)) = f if and only if TV alI(c1) = ... =
TV alI(cn) = f . Otherwise, TV alI(Or(c1...cn)) = t.

– Quantification:
• TV alI(Exists?v1...?vn(ϕ)) = t if and only if for some TV alI∗(ϕ) = t
• TV alI(Forall?v1...?vn(ϕ)) = t if and only if TV alI∗(ϕ) = t, where I∗ is

a semantic structure with the special mapping I∗V which coincides with IV
on all variables except, possibly, on ?v1, ..., ?vn.

– Rule implication:
• TV alI(conclusion:-condition) = t, if either TV alI(conclusion) = t or
TV alI(condition) = f .
• TV alI(conclusion:-condition) = f otherwise.

– Groups of rules: If Π is a group formula of the form Group(ϕ1...ϕn) then
• TV alI(Π) = t if and only if TV alI(ϕ1) = t, ..., TV alI(ϕn) = t.
• TV alI(Π) = f otherwise.

Since RIF allows to import other documents which can have rif : local constants,
semantic multi-structures are introduced for the interpretation of documents. Se-
mantic multi-structures are essentially similar to regular semantic structures, as
defined above, but, in addition, they allow to interpret rif : local symbols that
belong to different documents differently.

The following logical entailment defines what it means for a set of RIF-BLD
rules to entail another RIF-BLD formula, in particular entailment of RIF condi-
tion formulas.

Definition 59. (Models) A multi-structure I is a model of a formula, ϕ, written
as I |= ϕ, iff TV alI(ϕ) = t.
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Definition 60. (Logical Entailment) Letϕ and ψ be formulas, thenϕ entailsψ,
written as ϕ |= ψ, if and only if for every multi-structure I for which both TV alI(ϕ)
and TV alI(ψ) are defined, I |= ϕ implies I |= ψ.

For a more detailed account of RIF and RIF BLD we refer to the W3C recommen-
dation [86] and [19].

The following subsection 3.3 exemplifies how platform independent rule lan-
guages such as RuleML and RIF are mapped into platform specific rule languages
such as Prova.

3.2 Prova - A Platform Specific Web Rule Language

Prova (http://www.prova.ws/) is both a (Semantic) Web rule language and a
highly expressive distributed (Semantic) Web rule engine which supports complex
reaction rule based workflows, rule based complex event processing, distributed
inference services, rule interchange, rule based decision logic, dynamic access to
external data sources, Web Services, and Java APIs. Prova follows the spirit and
design principles of the W3C Semantic Web initiative and combines declarative
rules, ontologies and inference with dynamic object-oriented programming and
access to external data sources via query languages such as SQL, SPARQL, and
XQuery. One of the key advantages of Prova is its separation of logic, data ac-
cess, and computation as well as its tight integration of Java, Semantic Web tech-
nologies and enterprise service-oriented computing and complex event processing
technologies.

Semantically Prova provides the expressiveness of serial Horn logic with a lin-
ear resolution for extended logic programs (SLE resolution) and with several extra
logical features which will be described in the following subsequent subsections.
Syntactically Prova builds on top of the ISO Prolog syntax (ISO Prolog ISO/IEC
13211-1:1995), but it extends it syntactically and semantically. The following dia-
gram 3 gives an overview on the Prova 3 language structure and its main language
elements.

The basic syntactic structures of the Prova language are rules (head :- body),
facts (rule heads with no body), and goals (rules with no head). Prova supports
atomic terms (constants and variables) and complex terms (functions internally
represented as lists). Constants in Prova can be simple strings starting with lower
case letters (e.g. const) or text in single or double quotes (e.g. ”Constant 1”),
numeric data (e.g. 12, -300L), as well as fully qualified static or instance fields
in Java objects (e.g. java.lang.Double(1.3)) or (Description Logic) individuals of
ontology concepts (e.g. 10∧∧math:Percentage). Variables start with upper case
letters (e.g. X). They can be typed (e.g. Integer.X) and assume the type of the
assigned constant (e.g. X = 1). Like in Prolog anonymous variables begin with
underscore ( ). Special global variables and constants have names starting with
’$’ (e.g. $Counter). Complex terms in Prova are functions which can be equally
represented as generic lists, where the first head element is the function opera-
tor and the list tail are its arguments, e.g. f(X,Y ) can be equally represented as
[f,X, Y ] or [f |R] (which binds the list tail to the variable R). Prova supports
positional literals as in Prolog, e.g. p(arg1, ..., argn) as well as unpositional

http://www.prova.ws/
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Fig. 3. Main Prova 3 Language Elements

slotted literals, as in slotted and object-oriented logics such as F-Logic, e.g.
p(slot1− > arg1, ..., slotn− > argn). In the following subsection we show how RIF
and RuleML syntacticallymaps to Prova.Provadistinguishes between for all quan-
tified solve goals and existential eval goals. For solve goals, for all successful infer-
ence all assignments for the variables in the goal predicate satisfying the query are
handed back. For eval goals, the engine executes an exhaustive existential search of
the rules and facts until no more backtracking is possible. Additionally, the built-
in meta-predicate derive allows to define (sub) goals dynamically with the pred-
icate symbol unknown until run-time, e.g. p(F ) : −derive([F |Args]). where the
variable F is assigned the function name at runtime.

3.3 Mapping from RIF to RuleML and Prova

This section by means of examples shows how RIF can be mapped into RuleML
and Prova (Prolog). These examples largely correspond to the partial mappings
defined for Datalog RuleML and the RIF-Core subset of RIF BLD [18]. While RIF
only supports neutral constants (Const), RuleML supports specialized constant
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RIF RuleML Prova
<Const type="&xs;string">
ABC

</Const>

<Data xsi:type="xs:string">
ABC

</Data>
"ABC"

<Var>x</Var> <Var>x</Var> X
<Expr>

<op>
<Const type="&rif;iri">

&func;f
</Const>

</op>
<args ordered="yes">

<Var>X</Var>
</args>

</Expr>

<Expr>
<Fun iri="func:f"

per="value"/>
<Var>X</Var>

</Expr>

func:f(X)

<Atom>
<op>
<Const type="&rif;iri">
&cpt;discount

</Const>
</op>
<args ordered="yes">
<Var>cust</Var>
<Var>prod</Var>
<Var>val</Var>

</args>
</Atom>

<Atom>
<Rel iri="cpt:discount"/>
<Var>cust</Var>
<Var>prod</Var>
<Var>val</Var>

</Atom>

cpt:discount(Cust,Prod,Val)

<Equal>
<left>

<Var>X</Var>
</left>
<right>

<Var>Y</Var>
</right>

</Equal>

<Equal oriented="yes">
<Var>X</Var>
<Var>Y</Var>

</Equal>

X=Y

<Member>
<instance>
<Const type="&rif;iri">

&ppl;Adrian
</Const>

</instance>
<class>
<Const type="&rif;iri">

&ppl;Person
</Const>

</class>
</Member>

<Ind iri="ppl:Adrian"
type="ppl:Person"/>

ppl:Adrian^^ppl:Person

<External>
<content>
<Expr>
<op>
<Const type="&rif;iri">

&rifb;numeric-add
</Const>

</op>
<args ordered="yes">
<Const type="&xs;integer">

1
</Const>
<Const type="&xs;integer">

1
</Const>

</args>
</Expr>
</content>

</External>

<Expr>
<Fun iri="rifb:numeric-add"

per="value"/>
<Data xsi:type="xs:integer">

1
</Data>
<Data xsi:type="xs:integer">

1
</Data>
</Expr>

1+1

<Atom>
<op>
<Const type="&rif;iri">
&ex;gold

</Const>
</op>
<slot>
<Name>customer</Name>
<Var>Customer</Var>

</slot>
</Atom>

<Atom>
<Rel iri="ex:gold"/>
<slot>
<Ind>customer</Ind>
<Var>Customer</Var>

</slot
</Atom>

ex:gold({customer->Customer})
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terms which distinguish data constants (Data) from individuals/instances object
constants (Ind). RIF does not support a multi-sorted logic with type definitions as
in RuleML (@type attribute). The special member built-in in RIF (Member) can
be used to define instances of classes which can be interpreted as an explicit type
definition. External functions (built-ins) in RIF are restricted to the predefined
RIF datatypes and built-ins (DTB) library which can be reused in RuleML to-
gether with other external built-in libraries (e.g. from SWRL, XPath etc.). Unpo-
sitional named arguments as well as positional arguments are supported by both
RIF and RuleML and can be mapped into positional terms in Prova like in Prolog
standard logic programs or into unpositional slotted terms.

In the following some of the extra logical extensions of Prova will be introduced.

3.4 Access to External Data, Type Systems and Procedural
Attachments

Prova follows the spirit and design of the W3C Semantic Web initiative and com-
bines declarative rules, ontologies and inference with dynamic object-oriented pro-
gramming and access to external data sources and type systems. Therefore, Prova
assumes not just a single universe of discourse, but several domains, so called sorts
(types) which are interpreted in a multi-sorted logic. The extension of the signa-
ture and the typed variables of the language alphabet with sorts (aka types) is
defined as follows.

Definition 61. (Multi-sorted Signature) The multi-sorted signature S of
Prova is defined as a tuple 〈T , P , F , arity, c, sort〉 where:

1. P is a finite sequence of predicate symbols 〈P1, .., Pn〉.
2. F is a finite sequence of function symbols 〈F1, .., Fm〉
3. For each Pi respectively each Fj, arity(Pi) resp. arity(Fj) is a non-zero natural

number denoting the arity of Pi resp. Fi.
4. c = 〈c1, .., co〉 is a finite or infinite sequence of constant symbols,
5. and, T = {T1, .., Tn} is a set of sort/type symbols called sorts.

The function sort associates with each predicate, function or constant its sorts:

– if c is a constant, then sort(c) returns the type T of c.
– if p is a predicate of arity k, then sort(p) is a k-tuple of sorts sort(p) = (T1, ..,
Tk) where each term ti of p is of some type Tj, i.e., ti : Tj.

– if f is a function of arity k, then sort(f) is a k + 1-tuple of sorts sort(f) =
(T1, .., Tk, Tk+1) where (T1, .., Tk) defines the sorts of the domain of f and Tk+1

defines the sorts of the range of f

Prova supports the following three basic types of sorts

1. primitive sorts are given as a fixed set of primitive data types such as integer,
string, etc.
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2. function sorts are complex sorts constructed from primitive sorts T1×...×Tn →
Tn+1 and other complex sorts defined in the external type alphabet

3. Boolean sorts are a (predicate) statement of the form T1 × ...× Tn

Definition 62. (Multi-sorted Logic) Prova’s multi-sorted logic associates
which each term, predicate and function a particular sort:

1. Any constant or variable t is a term and its sort T is given by sort(t)
2. Let f(t1, .., tn) be a function then it is a term of sort Tn+1 if sort(f) =
〈T1, .., Tn, Tn+1〉, i.e., f takes argument of sort T1, .., Tn and returns arguments
in sort Tn+1.

The intuitive meaning is that a predicate or function holds only if each of its terms
is of the respective sort given by sort.

The alphabet of the Prova language builds on top of the standard ISO Prolog
syntax standard, but further extends it. For typing each variableXj in the multi-
sorted alphabet of the Prova language is associated with a specific sort sort(Xj) =
Ti, written asXj : Ti, where Xj is a variable and Ti is a type sort associated with
the variable. That is, the extended Prova language considers external sort/type
alphabets. The combined signatures of the Prova rule language and the external
type languages form the basis for combined hybrid knowledge bases and the inte-
gration of external type systems into the rule system.

Definition 63. (Type alphabet) An external type alphabet T is a finite set of
monomorphic sort/type symbols built over the distinct set of terminological class
concepts of a (external type) language.

Definition 64. (Combined Signature) A combined signature S is the union of
all its constituent finite signatures: S = 〈S1 ∪ .. ∪ Sn〉

The type systems considered in Prova are order-sorted (i.e., with sub-type rela-
tions):

Definition 65. (Order-sorted Type System) A finite order-sorted type system
TS comes with a partial order ≤, i.e., TS under ≤ has a greatest lower bound
glb(T1, T2) for any two types T1 and T2 having a lower bound at all. Since TS is
finite also a least upper bound lub(T1, T2) exists for any two types T1 and T2 having
an upper bound at all.

Definition 66. (Combined Knowledge Base) The combined knowledge base
of a typed ProvaKB = 〈Φ, Ψ〉 consists of a finite set of (order-sorted) type systems
/ type knowledge bases Ψ = {Ψ1 ∩ .. ∩ Ψn} and a typed Prova KB Φ.

The combined signature is the union of all constituent signatures, i.e., each inter-
pretation of a Prova rule program has the set of ground terms of the combined
signature as its fixed universe.
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Definition 67. (Extended Herbrand Base) Let KB = 〈Φ, Ψ〉 be a typed com-
bined Prova KBP . The extended Herbrand base of P , denotedB(P ), is the set of all
ground literals which can be formed by using the predicate/function symbols in the
combined signature with the ground typed terms in the combined universe U(P ),
which is the set of all ground typed terms which can be formed out of the constants,
type and function symbols of the combined signature.

The grounding of the combined KB is computed wrt the composite signature.

Definition 68. (Grounding) Let P be a typed (combined) Prova KB and c its set
of constant symbols in the combined signature. The grounding ground(P ) consists
of all ground instances of all rules in P w.r.t to the combined multi-sorted signature
which can be obtained as follows:

– The ground instantiation of a rule r is the collection of all formulas r[X1 :
T1/t1, .., Xn : Tn/tn] with X1, .., Xn denoting the variables and T1, .., Tn the
types of the variables (which must not necessarily be disjoint) which occur in r
and t1, .., tn ranging over all constants in c wrt to their types.

– For every explicit query/goal Q[X1 : T1, .., Xm : Tm] to the type system, being
either a fact with one or more free typed variables X1 : T1, .., Xm : Tm or a
special built-in Prova query literal rdf(...) with variables as arguments in the
triple-like query, the grounding ground(Q) is an instantiation of all variables
with constants (individuals) in c according to their types.

Using equalities Prova assumes a notion of default inequality for the combined set
of individuals/constants which leads to a default unique name assumption:

Definition 69. (Default Unique Name Assumption) Two ground terms are
assumed to be unequal, unless equality between the terms can be derived.

The interpretation I of a typed Prova program P then is a subset of the extended
Herbrand base B(P ).

Definition 70. (Multi-sorted Interpretation) Let KB = 〈Φ, Ψ〉 be a com-
bined KB and c its set of constant symbols. An interpretation I for a multi-sorted
combined signature S consists of

1. a universe |M | = T I
1 ∪T I

2 ∪ ..∪T I
n , which is the union of the types (sorts), and

2. the predicates, function symbols and constansts/individuals c in the combined
signature, which are interpreted in accordance with their types.

The assignment function σ from the set of variable X of P into the combined uni-
verse U(P ) must respect the sorts/types of the variables (in order-sorted type sys-
tems also subtypes). That is, if Xi is a variable of type T , then σ(X) ∈ T I. In
general, if φ is a typed predicate or function in Φ and σ an assignment to the in-
terpretation I, then I |= φ[σ], i.e., φ is true in I when each variable X of φ is
substituted by the values σ(X) wrt to its type. Since the assignment to constant
and function symbols is fixed and the domain of discourse corresponds one-to-one
with the constants c in the combined signature U(P ), it is possible to identify an
interpretation I with a subset of the extended Herbrand base: I ⊆ B(P ).
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The assignment function in Prova is given as a query from the rule component to
the type system, so that there is a separation between the inferences in a type sys-
tem and the rule component. Moreover, explicit queries to a type system (Java or
Semantic Web) defined in the body of a rule, e.g., procedural attachments, built-
ins or ontology queries (special rdf query or free DL-typed facts) are based on this
hybrid query mechanism.

Definition 71. (Semantic Multi-Structure Model) Let KB = 〈Φ, Ψ〉 be a
combined KB of a typed Prova program P .
An interpretation I is a model of an untyped ground atom A ∈ KB or I satisfies
A, denoted I |= A iff A ∈ I.
I is a model for a ground typed atom A : T ∈ KB, or I satisfies A : T , denoted
I |= A : T , iff A : T ∈ I and for every typed term ti : Tj in A the type query
Tj = sort(ti), denoting the type check ”is ti of type Ti”, is entailed in KB, i.e.,
KB |= Ti = sort(ti) (note, in an order sorted type system subtypes are considered,
i.e., ti is of the same or a subtype of Tj).
I is an interpretation of an ground explicit query/goal Q to the type system Ψ if
Ψ |= Q.
I is a model of a ground rule r : H ← B iff I |= H(r) whenever I |= B(r). I
is a model a typed program P (resp. a combined knowledge base KB), denoted by
I |= P , if I |= r for all r ∈ ground(P ).

Informally, a typed Prova knowledge base consists of rules with logic programming
literals which have typed terms and a set of external (order-sorted) type systems
in which the types (sorts) are defined over their type alphabets. An external type
system might possibly define a complete knowledge base with types/sorts (Java
classes or T-Box in DL) and individuals associated with these types (Java object
instances of the classes or A-box in DL). Restricted built-in predicates and pro-
cedural attachment predicates or functions which construct or return individuals
of a certain type (boolean or object-valued) are also considered to be part of the
external type system(s), i.e., part of the external signature. The combined signa-
ture is then the union of the two (or more) signatures, i.e., the combination of the
signature of the rule component and the signatures of the external type systems
/ knowledge bases combining their type alphabets, their functions and predicates
and their individuals.

The operational semantics of typed Prova is implemented as hybrid polymor-
phic order-sorted unification. [71] In contrast to other hybrid (DL-typing) ap-
proaches which apply additional constraint literals as type guards in the rule body
and leave the usual machinery of resolution and unification unchanged, the oper-
ational semantics for prescriptive types in Prova’s typed logic is implemented by
an order-sorted unification. Here the specific computations that are performed in
the typed language are intimately related to the types attached to the atomic term
symbols. The order-sorted unification yields the term of the two sorts (types) in
the given sort hierarchy. This ensures that type checks apply directly during typed
unification of terms at runtime enabling ad-hoc polymorphism of variables leading
e.g., to different optimized rule variants and early constrained search trees. Thus,
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the order-sorted mechanism provides higher level of abstraction, providing more
compact and complete solutions and avoiding possibly expensive backtracking.

Prova provides support for two external order-sorted type systems, namely Java
class hierarchies and ontological type systems (e.g. OWL or RDFS ontologies) re-
spectively Description Logic knowledge bases.

Description Logic Type Systems / Ontologies. An external type systems
supported by Prova are Semantic Web ontologies (Description Logic KBs) repre-
sented e.g. in RDFS or OWL. That is, the combined signature SDL consisting of
the finite signature S of the rule component and the finite signature(s) Si of the
ontology language(s).

The type alphabet TS is a finite set of monomorphic type symbols built over
the distinct set of terminological atomic concepts T in a Semantic Web ontology
language ΣDL, i.e., defined by the atomic classes in the T-Box model.

Note, that restricting types to atomic concepts is not a real restriction, because
for any complex concept such as (T1�T2) or (T1�T2) one may introduce an atomic
concept T3 in the T-Box and use T3 as atomic type instead of the complex con-
cept. This approach is also reasonable from a practical point of view since dynamic
type checking must be computationally efficient in order to be usable in an order-
sorted typed logic with possible very large rule derivation trees and many typed
unification steps, i.e., fast type checks are crucial during typed term unification.
We assume that the type alphabet is fixed (but arbitrary), i.e., no new terminolog-
ical concepts can be introduced in the T-Box by the rules at runtime. This ensure
completeness of the domain and enables static type checking on the used DL-types
in Prova programs at compile time (during parsing the Prova script).

The set of constants/individuals c is built over the set of individual names in
ΣDL, but Prova do not fix the constant names and allow arbitrary fresh constants
(individuals) (under default UNA) to be introduced in the head of rules and facts
of the rule base. However, new individuals which are introduced in rules or facts
apply locally within the scope of the rules in which they are defined, i.e., within
a local reasoning chain; in contrast to the individuals defined in the A-box model
of the type system which apply globally as individuals of a class. DL-typed terms
in Prova are defined as follows:

Definition 72. (DL-typed Terms) A DL-type is a terminological concept/class
defined in the DL-type system (T-Box model). A typed DL-typed Prova term is de-
noted by the relation t∧∧T where t is the term and T is the DL-type of term.

The type ontologies are typically provided as Web ontologies (RDFS or OWL)
where types and individuals are represented as resources having an webized URI.
Namespaces can be used to avoid name conflicts and namespace abbreviations
facilitate are more readable language.

% A customer gets 10 percent discount, if the customer is a gold customer

discount(X^^business:Customer, 10^^math:Percentage) :-
gold(X^^business:Customer).

% fact with free typed variable acts as instance query on the ontology A-box
gold(X^^business:Customer).
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Free DL-typed variables are allowed in facts. They act as free instance queries
on the ontology layer, i.e., they query all individuals of the given type and bind
them to the typed variable.

Java Type System, Procedural Attachments and Built-Ins. For external
Java type systems, the combined multi-sorted signature SJava uses the fully qual-
ified order-sorted Java class hierarchy as type symbols. In order to type a variable
with a Java type the fully qualified name of the Java class to which the variable
should belong must be specified as a prefix separated from the variable by a dot
”.”.

java.lang.Integer.X variable X is of type Integer
java.util.Calendar.T variable T is of type Calendar
java.sql.Types.STRUCT.S variable S is of SQL type Struct

To sense the environment and trigger actions, query data from external sources
such as databases, call external procedural code such as Enterprise Java Beans,
and receive / send messages from / to other agents or external services, Prova
provides a set of built-in functions and additionally can dynamically instantiate
any Java object and call its API methods at runtime.

Java objects, as instances of Java classes, can be dynamically constructed by
calling their constructors or static methods using extra logical procedural attach-
ments. The returned objects, might then be used as individuals/constants that
are bound by an equality relation (denoting typed unification equality) to appro-
priate variables, i.e., the variables must be of the same type or of a super type of
the Java object.

A procedural attachment is a function that is implemented by an external
procedure (i.e., a Java method). They are used in Prova to dynamically call exter-
nal procedural methods during runtime, i.e., they enable the (re)use of procedu-
ral code and allow dynamic access to external data sources and tools using their
programming interfaces (APIs). They are a crucial extension to traditional logic
programming, combining the benefits of object-oriented languages (Java) with
declarative rule based programming, e.g., in order to externalize mathematical
computations such as aggregations to highly optimized procedural code in Java
or use query languages such as SQL by JDBC to select and aggregate facts from
external data sources.

Definition 73. (Procedural Attachments) A procedural attachment is a func-
tion or predicate whose implementation is given by an external procedure. Two
types of procedural attachments are distinguished:

– Boolean-valued attachments (or predicate attachments) which call
methods which return a Boolean value, i.e., which are of Boolean sort (type).

– Object-valued attachments (or functional attachments) which are
treated as functions that take arguments and return one or more objects, i.e.,
which are of a function sort.

Functional Java attachments have a left-hand side with which the results (the
returned object(s)) of the call are unified by a unification equality relation =,
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e.g., C = java.util.Calendar.getInstance(). If the left-hand side is a free (unas-
signed) variable the latter stores the result of the invocation. If the left-hand side
is a bound variable or a list pattern the unification can succeed or fail accord-
ing to the typed unification and consequently the call itself can succeed or fail.
List structures are used on the left-hand side to allow matching of sets of con-
structed/returned objects to specified list patterns. A predicate attachment is
assumed to be a test in such a way that the call succeeds only if a true Boolean vari-
able is returned. Static, instance and constructor calls are supported in both predi-
cate and functional attachments depending on their return type. Constructor calls
follow the Java syntax with the fully qualified name of the class and the construc-
tor arguments, e.g., X = java.lang.Long(123). Static method calls require fully
qualified class names to appear before the name of the static method followed by
arguments, e.g., Z = java.lang.Math.min(X,Y ). Instance methods are mapped
to concrete classes dynamically based on the type of the variable, i.e., the method
of a previously bound Java object is called. They require a variable before the
name of an instance method followed by the arguments, e.g., S = X.toString().

add(java.lang.Integer.In1,java.lang.Integer.In2,Result):-
Result = java.lang.Integer.In1 + java.lang.Integer.In2.

The first rule takes two Integer variables In1 and In2 as input and returns
the result which is bound to the untyped variable Result. Accordingly, a query
add(1, 1, Result)? succeeds with an Integer object 2 bound to the Result variable,
while a query add(”abc”, ”def”, Result)? will fail.

It is important to note, that Java objects can be bound to variables and their
methods can be dynamically used as procedural attachment functions anywhere
during the reasoning process, i.e., in other rules. This enables a tight and highly ex-
pressive integration of external object oriented functions into declarative agent’s
rules’ execution.

Definition 74. (Built-in Predicates or Functions) Built-in predicates or
functions (built-ins) are special restricted procedural attachment predicate resp.
function symbols in the Prova language for concrete domains, e.g., integers or
strings, that may occur in the body of a rules.

Examples are +, =, assert, bound, free etc. For instance, Prova provides a rich
library of built-ins for query languages such as SQL, SPARQL, and XQuery:

File Input / Output
..., fopen(File,Reader), ...

XML (DOM)
document(DomTree,DocumentReader) :- XML(DocumenReader),...

SQL
... ,sql_select(DB,cla,[pdb_id,"1alx"],[px,Domain]).

RDF
...,rdf(http://...,"rdfs",Subject,"rdf_type","gene1_Gene"),...

XQuery
..., XQuery = ’for $name in StatisticsURL//Author[0]/@name/text()

return $name’, xquery_select(XQuery,name(ExpertName)),...
SPARQL

...,sparql_select(SparqlQuery,...
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The following rule uses a SPARQL query built-in to access an RDF Friend-of-
a-Friend (FOAF) profile published on the Web. The selected data is assigned to
variables which can be used within an agent’s rule logic, e.g. to expose the agent’s
contact data.

exampleSPARQLQuery(URL,Type) :-
QueryString = ’ PREFIX foaf:

PREFIX rdf:
SELECT ?contributor ?url ?type
FROM
WHERE {

?contributor foaf:name "Bob DuCharme" .
?contributor foaf:weblog ?url .
?contributor rdf:type ?type . } ’,

sparql_select(QueryString,url(URL),type(Type)).

Note, that the structures in Java type systems are usually not considered as in-
terpretations in the strict model-theoretic definition, but are composite structures
involving several different structures whose elements have a certain inner com-
position. However, transformations of composite structures into their flat model
theoretic presentations is in the majority of cases possible. From a practical point
of view, it is convenient to neglect the inner composition of the elements of the
universe of a structure. These elements are just considered as ”abstract” points
devoid of any inherent meaning. This structural mapping between objects from
their interpretations in the Java universe to their interpretation in the rule system
ignoring finer-grained differences that might arise from the respective definitions
is given by the following isomorphism.

Definition 75. (Isomorphism) Let I1, I2 be two interpretations of the combined
signature S = {T1, .., Tn}, then f∼= : |M1| → |M2| is an isomorphism of I1 and I2
if f∼= is a one-to-one mapping from the universe |M1| of I1 onto the universe |M2|
of I2 such that:

1. For every type Ti, t ∈ T I1
i , iff f∼=(t) ∈ T I2

i

2. For every constant c, f∼=(cI1 ) ∼= cI2

3. For every n-ary predicate symbol pwith n-tuple t1, .., tn ∈ |M1|, 〈t1, .., tn〉 ∈ pI1

iff 〈f∼=(t1), .., f∼=(tn)〉 ∈ pI2

4. For every n-ary function symbol f with n-tuple t1, .., tn,∈ |M1|,
f∼=(f I1(t1, .., tn)) ∼= f I2(f∼=(t1), .., f∼=(tn))

For instance, in Prova an isomorphism between Boolean Java objects and their
model-theoretic truth value is defined, which makes it possible to treat boolean-
valued procedural attachments as conditional body literals in rules and establish a
model-theoretic interpreation as defined above between the Java type system and
the model-theoretic semantics of the typed logic of the rule component. Other ex-
amples are String objects which are treated as standard constants in rules, i.e., the
Java String object maps with the untyped theory of logic programming. Primitive
datatype values, from the ontology resp. XML domain (XSD datatypes) can be
mapped similarly.
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3.5 Modularization, Scopes and Guards

To capture the distributed, open structure of Web based rule bases and enable
scoped queries on explicitly closed parts of open and distributed knowledge, Prova
supports principles of information hiding and modularization, which makes it
easier to maintain and manage (distributed) rule sets.

Metadata Based Modularization and Module Imports/Updates. Prova
has a flexible approach towards modularization of the knowledge base which al-
lows constructing metadata based views on the knowledge base, so called scopes.
Therefore, Prova extends the rule language to a labelled logic programming rule
language (LLP) with metadata annotations such as rule labels, module (rule sets
in rule bases) labels and arbitrary other (Semantic Web) annotations (e.g., Dublin
Core author, date etc). These metadata annotations are used to manage the rules
and facts in the knowledge base.

In analogy to the multi-sorted extension for types, the meta-data extension of
the Prova language is defined over a combined signature S which is the union of
the signature of the rule language and the signatures of the used metadata vocab-
ularies (e.g. Dublin Core).

Definition 76. (Combined Signature with Metadata Annotations) The
combined metadata annotated signature S is defined as a tuple 〈T , P , F , arity, c,
sort, meta〉 where P is the union of the predicate symbols define in the signature of
the core Prova rule language and the metadata predicate symbols (denoting meta-
data key properties) defined in the signature(s) of the metadata vocabularie(s) and
c is the union of constant symbols defined in the rule signature and in the metadata
signature(s) (denoting metadata values). meta is a special unary function which
returns the assigned metadata.

To explicitly annotate clauses in a Prova program P with an additional set of
metadata labels a general 1-ary built-in function @ is introduced in the Prova lan-
guage.

Definition 77. (MetadataAnnotationLabels) The special 1-ary built-in func-
tion @ is a partial injective labelling function that assigns a set of metadata anno-
tations m (property-value pairs) to a clause cl in P , e.g.

@(L1, .., Ln) H : −B
where Li are a finite set of unary positive literals (positive metadata literals)

which denote an arbitrary metadata property(value) pair, e.g., @label(rule1).

The implicit form @(L1), ..,@(Ln) H : −B of the metadata function expresses
that @(H : −B) = L1, .., Ln. The explicit @() annotation is optional, i.e., a Prova
program P without metadata annotated clauses coincides with a standard unla-
belled logic program.

Clauses in Prova are treated as objects in KB having an unique object id (oid)
which might be user-defined, i.e., explicitly defined by a metadata annotation
@label(oid) H : −B or system-defined i.e., all rules are automatically ”labelled”
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with an auto-incremented oid (an increasing natural number) provided by the sys-
tem at compile time. Rules and facts might be bundled to clause sets, so called
modules, which also have an object id, the module oid. By default the module oid
is the URI or full document name of the Prova script which contains the mod-
ule. But the module oid might also be user-defined @src(moduleoid). All clauses
(rules and facts) defined in a module are automatically annotated with the module
oid @src(moduleoid) H : −B. The oids are used to manage the knowledge in the
(distributed) knowledge base, e.g., to import a rule set from an URI which is then
used as the module oid or remove a module from the KB by its oid. Beside oids
arbitrary other semantic annotations such as Dublin Core data might be specified
in the @ annotation function.

@label(r1) @dc:author("Adrian") @dc:date(2006-11-12)
p(X):-q(X).

@label(f1)
q(1).

The example shows a rule with rule label r1 and two additional Dublin Core
annotations dc : author(”Adrian”) and dc : date(2006− 11− 12) and a fact with
fact label f1. Since there is no explicitly user-defined module oid in the meta-data
labels, the default module oid for both clauses is the URI or document name of the
Prova script in which they are defined, e.g. @src(”http : //prova.ws/example1.
prova”).

In Prova it is possible to consult (import/load) distributed rulebases from local
files, a Web address, or from incoming messages transporting a rulebase. Further-
more, Prova supports update built-ins such as assert and retract.

%load from a local file
:- eval(consult("organization2009.prova")).
% import from a Web address
:- eval(consult("http://ruleml.org/organization2010.prova")).

The imported rulebases are managed as modules in the knowledge base, which
are uniquely identified by their source object id src(moduleOID). Since multiple
nested imports are possible, modules might be nested, i.e. a module denoting a
rule base (e.g. a Prova script) might consist of several nested submodules (e.g.
sets of rules and facts).

Similar to imports of external type systems and built-ins (procedural attach-
ments) which query and compute external data, the semantics for modules in
Prova is defined over the combined knowledge base of the modules, an extended
state based Herbrand Base and semantic multi-structures.

Definition 78. (Combined Knowledge Base) The combined knowledge base
of a modular Prova KB = 〈Φ, Ψ〉 consists of a finite set of modules Ψ = {Ψ1 ∩ ..∩
Ψn} and an initial primary Prova KB Φ.

Prova supports knowledge updates which import modules (consult) and add or
remove clauses (assert, retract). Each update leads to a new knowledge state of
the combined KB.
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Definition 79. (Knowledge State) A knowledge state represents the combined
knowledge base KBk at this particular state, where k ∈ ℵ.
Note that according to the modularized logic in Prova a state, i.e., a combined
knowledge baseKBk, might consist of nested submodules, each having an unique
ID (the module oid). Intuitively, a state represents the union of all clauses stored
in all modules in the combined knowledge base.

An update is then a transition which adds or removes facts and/or rules and
changes the knowledge base. That is, the KB transits from the initial state KB1

to a new state KB2. We define the following notion of positive (assert) and nega-
tive(retract) transition:

Definition 80. (Positive Update Transition) A positive update transition, or
simply positive update, to a knowledge state KBk is defined as a finite set Upos

oid :=
{rN : H : −B, factM : A} with A an atom denoting a fact, H : −B a rule,
N = 0, .., n and M = 0, ..m and oid being the update oid which is also used as
module oid to manage the knowledge as a new module in the KB. Applying Upos

oid to
KBk leads to the extended stateKBk+1 = {KBk∪Upos

oid }. Applying several positive
updates as an increasing finite sequence Upos

oidj
with j = 0, .., k and Upos

oid0
:= ∅ to

KB0 leads to a state KBk = {KB0 ∪ Upos
oid0
∪ Upos

oid1
∪ ... ∪ Upos

oidk
}.

That is a state KBk is decomposable in the previous knowledge state k − 1 plus
the update: KBk = {KBk−1 ∪Upos

k }. We define KB0 = {∅ ∪Upos
oid0
} and Upos

oid0
=

{KB : the set of rules and facts defined in the program P}, i.e., importing the
initial Prova program P from a Prova script document is the first update leading
to the knowledge state KB1.

Likewise, We define a negative update transition as follows:

Definition 81. (Negative Update Transition) A negative update transition,
or for short a negative update, to a knowledge state KBk is a finite set Uneg

oid :=
{rN : H : −B, factM : A} with A ∈ KBk, H : −B ∈ P , N = 0, .., n and
M = 0, ..m, which is removed fromKBk, leading to the reduced programKBk+1 =
{KBk \ Uneg

oid }.
Applying arbitrary sequences of positive and negative updates leads to a sequence
of KB states KB0, ..,KBk where each state KBi is defined by either KBi =
KBi−1 ∪ Upos

oidi
or KBi = KBi−1 \ Uneg

oidi
. In other words, KBi, i.e., the set of all

clauses in the KB at a particular knowledge state i, is decomposable in the previ-
ous knowledge state plus/minus an update, whereas the previous state consists of
the state i−2 plus/minus an update and so on. Hence, each particular knowledge
state can be decomposed in the initial state KB0 and a sequence of updates. Al-
though an update might insert more than one rule or fact, i.e., insert or remove a
complete module, it nevertheless is treated as an elementary update, a so called
bulk update, which transits the current knowledge state to the next state in an
elementary transition: 〈KBi, U

pos/neg
oid ,KBk+1〉. Intuitively, one might think of it

as a complex atomic update action which performs all knowledge inserts resp. re-
moves simultaneously.
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Elementary updates have both a truth value, i.e. they may succeed or fail, and a
side effect on the knowledge base leading to the transition of the knowledge state.
The extended Herbrand Base is defined on the notion of knowledge states and
transitions from one state to another.

Definition 82. (Extended State based Herbrand Base) Let P be the com-
bined KB at a particular knowledge state KBk. The extended Herbrand base of P ,
denotedB(P ), is the set of all ground literals which can be formed by using the pred-
icate/function symbols in the combined signature with the ground typed terms in
the combined universe U(P ), which is the set of all ground typed terms which can
be formed out of the constants, type and function symbols of the combined signature
of KBk.

Definition 83. (Modular semantic multi-structure) A modular multi-
structure I is model of a modular program P (resp. the knowledge state KBk of
the combined knowledge base KB), denoted by I |= P , if I |= c for all clauses
c ∈ ground(P ), where I |= c is a usual multi-sorted model for providing the inter-
pretation of Prova clauses.

Accordingly, all queries to a Prova program apply on the extended resp.
reduced transition knowledge state of the program, i.e., the truth valuation of a
goal G depends on its model at the current knowledge state KBk, denoted by
TV alKBk|=G(G).

Based on this modular knowledge state transition semantics and the metadata
based control of the knowledge state updates which are treated as modules in the
combined KB, Prova provides supports for transactional updates, where failing
sequences of knowledge updates can be rolled back by removing the associated
modules from the combined Prova KB. In the non-transactional style updates
in (serial) Prova rules are not rolled-back to the original state if the derivation
fails and the system backtracks. Typically this ”weak” non-transactional seman-
tics is intended when external Prova script are imported (consult) or new rule sets
are added (assert) as modules. That is, independently, of whether the particular
derivation in which the update is performed fails from some reason the update
transition to the next knowledge state subsists and is not rolled back in case of
failures.

Scoped Reasoning. The metadata annotation of rules/facts and rule sets (mod-
ules) enables scoped (meta) reasoning with the semantic annotations. The meta-
data can act as an explicit scope for constructive queries (creating a view) on the
knowledge base. For instance, the metadata annotations might be used to con-
strain the level of generality of a scoped goal literal to a particular module, i.e., to
consider only the set of rules and facts which belong to the specified module.

Definition 84. (Scoped Literal) A scoped literal is of the form @C L where L is
a positive or negative literal and @C is the scope definition which is a set of one or
more metadata constraints. Scoped literals are only allowed in the body of a rule.
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Informally, the semantics of scoped literals allows to explicitly close the domain
of discourse to certain parts of the KB.

Definition 85. (Metadata based Scope) Let KB be a combined KB consisting
of a set of submodulesKB = {KB1∪ ..∪KBk}. The scopeKB′ of a scoped literal
@C L is the set of clauses KB′ = {m′

1cl1, ..,m
′
ncln} ∈ KB, where for all clauses

cli(m′
i) ∈ KB′ its set of metadata annotations m′

i satisfy the scope constraints C
of the scoped literal L, i.e., m′

i |= C.

Accordingly, a scope (aka constructiv view) is constructed by one or more meta-
data constraints, e.g., the module oid @src(URI/Filename) or Dublin Core val-
ues @dc : author(...).

Definition 86. (Closure) Let KB be a combined KB. The closure of KB, de-
noted Cl(KB), is defined by KB plus all modules KBk which are in the scope of
any scoped literal in KB.

A scoped literal @C L is closed if each rule in KB which unifies with the literal
L is also closed, i.e., its body literals are closed in Cl(KB).

Intuitively, this means that the closure of a Prova program depends on the scopes
of the literals in the bodies of its rules. Obviously, if one of the subsequently used
goal literals in a proof attempt is open, i.e., without a scope, the closure expands
to the open KB.

Definition 87. (Scoped Semantics) Given a scoped KB
′
, where all literals are

scoped with closureCl(KB
′
), the truth value of a scoped literal @C L depends on the

partial model of the clauses ofKB
′
wrt the scope definition C, i.e., I

partialC
(KB

′
)

|= L.

Syntactically the scope definitions use the syntax of Prova metadata annotations.

@label(rule1) r1(X):-q(X).
@label(rule2) r2(X):-q(X).
@label(rule3) p1(X):-

@label(rule1) r1(X). % scoped goal literal
q(1).

:-solve(p1(Y)).

The example shows three metadata annotated rules. They query p1(Y ) will re-
turn only one solution with Y = 1, since the subgoal r1(X) of rule3 applies only
in the scope of the rule with label rule1, but not on rule1 and rule2, which would
be the case if there would be no scope constraint defined for the subgoal.

Prova allows variables in the scope definitions which are bound to the annotated
metadata values. The following example shows the definition of a scope, that con-
straints the application of the subgoal r2(X) on the rule with label rule3 and on
the module with source name AgentRole1.prova.
% get module label
r1(X,Y):-

@src(Y) @label(rule3)
r2(X).

:-solve(r1(X,"AgentRole1.prova")).
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Guards. In addition to scopes Prova supports literal guards which act as addi-
tional pre-condition constraints.

Guards in Prova are syntactically specified in the Prova rule language using
brackets after the goal literal. The model-theoretic semantics of guards is like for
goal literals, however in the proof-theoretic semantics guards act like pre-conditions
before the proofs of the standard goal literals starts.

For instance, the following rule makes decisions on the basis of rules which
haven been authored by different persons and only applies those rules from trusted
authors.

%simplified decision rules of an agent
@author(dev22) r2(X):-q(X).
@author(dev32) r2(X):-s(X).
q(2).
s(-2).

% for simplicity this is a fact, but could be also a complex rule
% which computes the trust value from the reputation value of dev22
trusted(dev22).

% Author dev22 is trusted but dev32 is not, so one solution is found: X=2
p1(X):-
@author(A)
r2(X) [trusted(A)].

% for all query
:-solve(p1(X1)).

This example uses metadata annotations on rules for the head literals r2/1 and
a scopes on the literal r2(X) in the body of the rule for p1(X). Since variableA in
@author(A) is initially free, it gets instantiated from the matching target rule(s).
Once A is instantiated to the target rule’s @author annotation’s value (dev22,
for the first r2 rule), the body of the target rule is dynamically non-destructively
modified to include all the literals in the additional guard trusted(A) before the
body start, after which the processing continues. Since trusted(dev22) is true but
trusted(dev32) is not, only the first rule for predicate r2 is used and so one solution
X1 = 2 is returned by solve(p1(X1)).

3.6 Prova Serial Horn Rules for Messaging

For communication between distributed rule agents Prova supports special built-
ins for asynchronously sending and receiving event messages within serial Horn
rules. The main language constructs of messaging reaction rules are: sendMsg
predicates to send messages, reaction rcvMsg rules which react to inbound mes-
sages, and rcvMsg or rcvMult inline reactions in the body of messaging reaction
rules to receive one or more context-dependent multiple inbound event messages:

sendMsg(XID,Protocol,Agent,Performative,Payload |Context)
rcvMsg(XID,Protocol,From,Performative,Paylod|Context)
rcvMult(XID,Protocol,From,Performative,Paylod|Context)

Here, XID is the conversation identifier (conversation-id) of the conversation
to which the message will belong. Protocol defines the communication protocol.
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Agent denotes the target party of the message. Performative describes the
pragmatic envelope for the message content. A standard nomenclature of per-
formatives is, e.g., the FIPA Agents Communication Language (ACL). Payload
represents the message content sent in the message envelope. It can be a specific
query or answer or a complex interchanged rule base (set of rules and facts). For
instance, the following rule snippet shows how a query is sent to an agent via an
Enterprise Service Bus (esb) and then an answer is received from this agent.

...
sendMsg(Sub_CID,esb,Agent,acl:query-ref, Query),
rcvMsg(Sub_CID,esb,Agent,acl:inform-ref, Answer),
...

Interchanged messages besides the conversation’s metadata and payload also
carry the pragmatic context of the conversation such as communicative situations
/ acts, mentalistic notions, organizational and individual norms, purposes or in-
dividual goals and values. The payload of incoming event messages is interpreted
with respect to the local conversation state, which is denoted by the conversation
id, and the pragmatic context, which is given by a pragmatic performative. For
instance, a standard nomenclature of pragmatic performatives, which can be inte-
grated as external (semantic) vocabulary/ontology, is e.g., defined by the Knowl-
edge Query Manipulation Language (KQML) (Finin et al. 1993), by the FIPA
Agent Communication Language (ACL), which gives several speech act theory
based communicative acts, or by the Standard Deontic Logic (SDL) with its nor-
mative concepts for obligations, permissions, and prohibitions. Depending on the
pragmatic context, the message payload is used, e.g. to update the internal knowl-
edge of the agent (e.g., add new facts or rulebases), add new tasks (goals), or detect
a complex event pattern (from the internal event instance sequence). For instance,
the following example shows a reaction rule that sends a complete rule base, which
is loaded from a local File to an agent service Remote using JMS as transport
protocol.

Example 2

% Upload a rule base read from File to the host
% at address Remote via JMS
upload_mobile_code(Remote,File) :-

% Opening a file returns an instance
% of java.io.BufferedReader in Reader
fopen(File,Reader),
Writer = java.io.StringWriter(),
copy(Reader,Writer),
Text = Writer.toString(),
% variable SB will encapsulate the whole content of File
SB = StringBuffer(Text),
% send the complete rule base to the receiver agent "Remote"
sendMsg(XID,jms,Remote,acl:inform,consult(SB)).

The corresponding receiving reaction rule of the remote agent is:

% wait for incoming messages with pragmatic context $acl:inform$
rcvMsg(XID,jms,Sender,acl:inform,[Predicate|Args]):-

% derive the message payload, i.e. consult the received rule set to the internal KB
derive([Predicate|Args]).
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This rule receives incoming JMS based messages with the pragmatic context
acl : inform and derives the message content, i.e. consults the received rule base
to the local knowledge base of the remote agent. It is important to note that via
the conversation id several reaction rule reasoning processes might run in parallel,
local to their conversation flows. Inactive reactions (conversation partitions) are
removed from the system, e.g. by timeouts. Self-activations by sending a message
to the receiver ”self” are possible. With the pragmatic performatives it is possible
to implement different coordination and negotiation protocols. For instance, if an
agent does not understand the semantics of the interchanged message payload, it
can inform the sender about this, using, e.g., the acl : not − understood perfor-
mative, so that the sender can additionally send the semantic information, e.g. a
pointer to the ontology that defines the concepts of the payload, and the receiving
agent can import this ontology to its internal knowledge base.

By using messaging reaction rules a Prova rule engine can be deployed as a
distributed rule inference service, e.g. in the Rule Responder agent architecture
[72], or e.g. as an OSGI component enabling massive parallelization of Prova agent
nodes in grid/cloud environments and (smart) devices (e.g. RFID networks)which
communicate via event messages.

4 Conclusion

Rule based systems have been investigated comprehensively in the realms of
declarative logic programming and expert systems in the past decades. Logic
programming has been a very popular paradigm and one of the most successful
representatives of declarative programming in general. It is based on solid and
well-understood theoretical concepts and has been proven to be very useful for
rapid prototyping and describing problems on a high abstraction level. In recent
years rule based technologies have experienced a remarkable come back namely in
two areas: business rules processing, and reasoning in the context of the (Seman-
tic) Web. The first trend is caused by the need to accelerate the slow and expensive
software development life cycle. The vision of treating application logic as declar-
ative business rules is particularly interesting for businesses with rapidly changing
business logic. The second trend is related to the Semantic Web initiative of the
W3C. The vision is that intelligent Semantic Web agents with their rule-based de-
cision and reaction logic are capable of processing the cross referenced, machine
processable knowledge on the Web in a platform independent manner. They are
able to infer new knowledge and make intelligent, possibly pro-active and self-
autonomous decisions and reactions. Emerging standards for rules operating in
the context of the Semantic Web include RuleML (and SWRL) and the new W3C
RIF recommendation.

A general rule markup language such as RuleML or RIF covers many different
rule types and rule families. Their syntax builds on well establish Web data rep-
resentation standards such as XML, RDF, URIs/IRIs etc. Some of the language
families such as classical production rules historically only define an operational
semantics, while other rule families such as logical rules are based on a model-
theoretic and/or proof-theoretic semantics. An open research question is whether
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there exists a unifying semantic framework for all different rule types. Work in this
direction is pursued, e.g. in the RIF Framework for Logic Dialects (RIF FLD) and
in Reaction RuleML for reaction rule and complex event processing semantics.
However, since there is no general consensus on one particular semantics for all
expressive rule languages, an exclusive commitment to one particular semantics
for a Web rule language should be avoided (even in well-researched fields such as
logic programming several semantics such as well-founded semantics and answer
set semantics are competing). Nevertheless, for certain subfamilies a preferred se-
mantics can still be given and semantic mappings between rule families be defined.

Another crucial extension to the classical theory of rule-based logic program-
ming in modern Web rule engines such as Prova is that they include practical
language constructs which might not (yet) have a standard formal semantics based
on classical model-theoretic logic. For instance, procedural calls to external (ob-
ject) functions, operational systems, data sources and terminological descriptions,
are often vital to deal with practical real-world settings of distributed Web appli-
cations. Recent research, e.g. in Prova, is done on adopting such practical language
constructs without a standard formal semantics but with a non-standard extra
logical one which allows for a hybrid knowledge representation. Further examples
of useful practical constructs are the annotation of rules and rule sets with ad-
ditional metadata such as rule qualifications, rule names, module names, Dublin
Core annotations, etc., which eases, e.g., the modularization of rules into rule sets
(bundling of rules), the creation of constructive views over internal and external
knowledge (scoped reasoning), as well as the publication and interchange of rules
/ rule sets on the Web (rule messaging). Advanced rule qualifications such as va-
lidity periods or rule priorities might for example safeguard dynamic updates (e.g.
the incorporation of interchanged rules into the existing rule base), where conflicts
are resolved by rule prioritizations. Although these extra logical features have no
direct formalization in first order logic, the benefits for a practical rule-based Web
system, which needs to cope with large problem sizes and which needs to effi-
ciently interoperate with existing systems and data sources on the Web, prevail.
The hybrid KR design which allows the integration of external vocabulary types,
methods and data into rule execution combines the benefits of declarative and im-
perativ (object-oriented) programming and helps to overcome typical problems
of declarative programming, e.g., wrt to computational efficiency of certain tasks.
While there is a risk that these concessions to non-standard semantics might en-
danger the benefits of formal semantics for the overall rule language, they turn
out to be a crucial means to avoid limitations of standard rule representations.
The rule component will rarely run in isolation, but interact with various exter-
nal components, hence call for functionalities such as efficient object-oriented,
relational/SQL-style, and RDF data retrieval and aggregation methods that are
common in modern Web information systems.

Another domain of research is the engineering and maintenance of large rule-
based applications, where the rules are serialized and managed in a distributed
manner, and are interchanged across domain boundaries. This calls for support
of verification, validation and integrity testing (V&V&I), e.g., by test cases that
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are written in the same rule markup language and are stored and interchanged
together with the rule program [70].
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