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Abstract. The integration of both distributed schemas and data repos-
itories is a major challenge in data and knowledge management applica-
tions. Instances of this problem range from mapping database schemas
to object reconciliation in the linked open data cloud. We present a novel
approach to several important data integration problems that combines
logical and probabilistic reasoning. We first provide a brief overview of
some of the basic formalisms such as description logics and Markov logic
that are used in the framework. We then describe the representation of
the different integration problems in the probabilistic-logical framework
and discuss efficient inference algorithms. For each of the applications,
we conducted extensive experiments on standard data integration and
matching benchmarks to evaluate the efficiency and performance of the
approach. The positive results of the evaluation are quite promising and
the flexibility of the framework makes it easily adaptable to other real-
world data integration problems.

1 Introduction

The growing number of heterogeneous knowledge bases on the web has made data
integration systems a key technology for sharing and accumulating distributed
data and knowledge repositories. In this paper, we focus on (a) the problem of
aligning description logic ontologies and (b) the problem of object reconciliation
in open linked datasets1.

Ontology matching, or ontology alignment, is the problem of determining
correspondences between concepts, properties, and individuals of two or more
different formal ontologies [12]. The alignment of ontologies allows semantic ap-
plications to exchange and enrich the data expressed in the respective ontolo-
gies. An important results of the yearly ontology alignment evaluation initiative
(OAEI) [11,13] is that there is no single best approach to all existing matching
problems. The factors influencing the quality of alignments range from differences
in lexical similarity measures to variations in alignment extraction approaches.
This insight provides justification not only for the OAEI itself but also for the

1 The present chapter provides a more didactical exposition of the principles and
methods presented in a series of papers of the same authors published in several
conferences such as AAAI, UAI, and ESWC.
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development of a framework that facilitates the comparison of different strate-
gies with a flexible and declarative formalism. We argue that Markov logic [39]
provides and excellent framework for ontology matching. Markov logic (ML) of-
fers several advantages over existing matching approaches. Its main strength is
rooted in the ability to combine soft and hard first-order formulas. This allows
the inclusion of both known logical and uncertain statements modeling potential
correspondences and structural properties of the ontologies. For instance, hard
formulas can help to reduce incoherence during the alignment process while soft
formulas can factor in lexical similarity values computed for each correspon-
dence. An additional advantage of ML is joint inference, that is, the inference
of two or more interdependent hidden predicates. Several results show that joint
inference is superior in accuracy when applied to a wide range of problems such
as ontology refinement [53] and multilingual semantic role labeling [32].

Identifying different representations of the same data item is called object
reconciliation. The problem of object reconciliation has been a topic of research
for more than 50 years. It is also known as record linkage [14], entity resolu-
tion [3], and instance matching [15]. While the majority of the existing methods
were developed for the task of matching database records, modern approaches
focus mostly on graph-based data representations such as the resource descrip-
tion framework (RDF). Using the proposed Markov logic based framework for
data integration, we leverage schema information to exclude logically inconsis-
tent correspondences between objects improving the overall accuracy of instance
alignments. In particular, we use logical reasoning and linear optimization tech-
niques to compute the overlap of derivable types of objects. This information
is combined with the classical similarity-based approach, resulting in a novel
approach to object reconciliation that is more accurate than state-of-the-art
alignment systems.

We demonstrate how description logic axioms are modeled within the frame-
work and show that alignment problems can be posed as linear optimization
problems. These problems can be efficiently solved with integer linear program-
ming methods also leveraging recent meta-algorithms such as cutting plane in-
ference and delayed column generation first proposed in the context of Markov
logic.

The chapter is organized as follows. First, we briefly introduce some basic
formalism such as description logics and Markov logic. Second, we define ontology
matching and object reconciliation and introduce detailed running examples
that we use throughout the chapter to facilitate a deeper understanding of the
ideas and methods. We also introduce the syntax and semantics of the ML
framework and show that it can represent numerous different matching scenarios.
We describe probabilistic reasoning in the framework of Markov logic and show
that a solution to a given matching problem can be obtained by solving the
maximum a-posteriori (MAP) problem of a ground Markov logic network using
integer linear programming. We then report the results of an empirical evaluation
of our method using some of the OAEI benchmark datasets.
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2 Data Integration on the Web

The integration of distributed information sources is a key challenge in data
and knowledge management applications. Instances of this problem range from
mapping schemas of heterogeneous databases to object reconciliation in linked
open data repositories. In the following, we discuss two instances of the data in-
tegration problem: ontology matching and object reconciliation. Both problems
have been in the focus of the semantic web community in recent years. We inves-
tigate and assess the applicability and performance of our probabilistic-logical
approach to data integration using these two prominent problems. In order to
make the article comprehensive, however, we first briefly cover description logics
and ontologies as these logical concepts are needed in later parts of the document.

2.1 Ontologies and Description Logics

An Ontology usually groups objects of the world that have certain properties
in common (e.g. cities or countries) into concepts. A specification of the shared
properties that characterize a set of objects is called a concept definition. Con-
cepts can be arranged into a subclass–superclass relation in order to further
discriminate objects into subgroups (e.g. capitals or European countries). Con-
cepts can be defined in two ways, by enumeration of its members or by a concept
expression. The specific logical operators that can be used to formulate concept
expressions can vary between ontology languages.

Description logics are decidable fragments of first order logic that are de-
signed to describe concepts in terms of complex logical expressions2 The basic
modeling elements in description logics are concepts (classes of objects), roles
(binary relations between objects) and individuals (named objects). Based on
these modeling elements, description logics contain operators for specifying so-
called concept expressions that can be used to specify necessary and sufficient
conditions for membership in the concept they describe. These modeling ele-
ments are provided with a formal semantics in terms of an abstract domain
interpretation mapping I mapping each instance onto an element of an abstract
domain ΔI . Instances can be connected by binary relations defined as subsets
of ΔI × ΔI . Concepts are interpreted as a subset of the abstract domain Δ.
Intuitively, a concept is a set of instances that share certain properties. These
properties are defined in terms of concept expressions. Typical operators are
the Boolean operators as well as universal and existential quantification over
relations to instances in other concepts.

A description logic knowledge base consists of two parts. The A-box contains
information about objects, their type and relations between them, the so-called
T-Box consists of a set of axioms about concepts (potentially defined in terms of
complex concept expressions and relations. The first type of axioms can be used
to describe instances. In particular, axioms can be used to state that an instance

2 Details about the relation between description logics and first-order logic can be
found in [4] and [51].
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Table 1. Axiom patterns for representing description logic ontologies

DL Axiom Semantics Intuition

A-Box

C(x) xI ∈ CI x is of type C

r(x, y) (xI , yI) ∈ rI x is related to y by r

T-Box

C � D CI ⊆ DI C is more specific than D

C �D � ⊥ CI ∩DI = ∅ C and D are disjoint

r � s rI ⊆ sI r is more specific than s

r ≡ s− rI = {(x, y)|(y, x) ∈ sI} r is the inverse of s

∃r.� � C (xI , yI) ∈ rI ⇒ xI ∈ CI the domain of r is restricted to C

∃r−1.� � C (xI , yI) ∈ rI ⇒ yI ∈ CI the range of r is restricted to C

belongs to a concept or that two instances are in a certain relation. It is easy to
see, that these axioms can be used to capture case descriptions as labeled graphs.
The other types of axioms describe relations between concepts and instances. It
can be stated that one concept is a subconcept of the other (all its instances are
also instances of this other concept). Further, we can define a relation to be a
subrelation or the inverse of another relation. The formal semantics of concepts
and relations as defined by the interpretation into the abstract domain ΔI can
be used to automatically infer new axioms from existing definitions. Table 1 lists
a few examples of DL axioms, their semantics, and the intuition behind them.

Encoding ontologies in description logics is beneficial, because it enables infer-
ence engines to reason about ontological definitions. In this context, deciding sub-
sumption between two concept expressions, i.e. deciding whether one expression
is more general than the other one is one of the most important reasoning tasks as
it has been used to support various tasks including information integration [47],
product and service matching [27] and query answering over ontologies [2].

2.2 Ontology Matching

Ontology matching is the process of detecting links between entities in heteroge-
neous ontologies. Based on a definition by Euzenat and Shvaiko [12], we formally
introduce the notion of correspondence and alignment to refer to these links.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and
O2, let q be a function that defines sets of matchable entities q (O1) and q (O2). A
correspondence between O1 and O2 is a triple 〈3, e1, e2〉 r such that e1 ∈ q (O1),
e2 ∈ q (O2), and r is a semantic relation. An alignment between O1 and O2 is a
set of correspondences between O1 and O2.

The generic form of Definition 1 captures a wide range of correspondences by
varying what is admissible as matchable element and semantic relation. In the
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Fig. 1. Example ontology fragments

context of ontology matching, we are only interested in equivalence correspon-
dences between concepts and properties. In the first step of the alignment process
most matching systems compute a-priori similarities between matching candi-
dates. These values are typically refined in later phases of the matching process.
The underlying assumption is that the degree of similarity is indicative of the
likelihood that two entities are equivalent. Given two matchable entities e1 and
e2 we write σ(e1, e2) to refer to this kind of a-priori similarity. Before presenting
the formal matching framework, we motivate the approach by a simple instance
of an ontology matching problem which we use as a running example.

Example 1. Figure 1 depicts fragments of two ontologies describing the domain
of scientific conferences. The following axioms are part of ontology O1 and O2,
respectively. If we apply a similarity measure σ based on the Levenshtein dis-
tance [26] there are four pairs of entities such that σ(e1, e2) > 0.5.

σ(Document, Documents) = 0.88 (1)
σ(Reviewer, Review) = 0.75 (2)

σ(hasWritten, writtenBy) = 0.7 (3)
σ(PaperReview, Review) = 0.54 (4)

The alignment consisting of these four correspondences contains two correct (1
& 4) and two incorrect (2 & 3) correspondences resulting in a precision of 50%.
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Table 2. Discription logics axioms in the ontology of Figure 1

Ontology O1 Ontology O2

∃hasWritten � Reviewer ∃writtenBy � Paper

PaperReview � Document Review � Documents

Reviewer � Person Paper � Documents

Submission � Document Author � Agent

Document � ¬Person Paper � ¬Review

2.3 Object Reconciliation

The problem of object reconciliation has been a topic of research for more than
50 years. It is also known as the problem of record linkage [14], entity resolu-
tion [3], and instance matching [15]. While the majority of the existing methods
were developed for the task of matching database records, modern approaches fo-
cus mostly on graph-based data representations extended by additional schema
information. We discuss the problem of object reconciliation using the notion
of instance matching. This allows us to describe it within the well-established
ontology matching framework [12]. Ontology matching is the process of detect-
ing links between entities in different ontologies. These links are annotated by a
confidence value and a label describing the type of link. Such a link is referred
to as a correspondence and a set of such correspondences is referred to as an
alignment.

In the following we refer to an alignment that contains correspondences be-
tween concepts and properties as terminological alignment and to an alignment
that contains correspondences between individuals as instance alignment. Since
instance matching is the task of detecting pairs of instances that refer to the same
real world object [15], the semantic relation expressed by an instance correspon-
dence is that of identity. The confidence value of a correspondence quantifies
the degree of trust in the correctness of the statement. If a correspondence is
automatically generated by a matching system this value will be computed by
aggregating scores from multiple sources of evidence.

Example 2. An A-box is a set of membership statements of the following form:
C(a), P (a, b) where a,b are constants, C is a concept name and P is a property
name. Further, we extend the notion of an A-Box by also allowing membership
statements of the form ¬C(a) and ¬P (a, b) stating that object a is not a member
of Concept C and that the objects a and b are not in relation R, respectively.
We illustrate the problem of object reconciliation using the following example
A-Boxes and their corresponding graphs.

A-Boxes can be regarded as labeled directed multi-graphs, where object con-
stants are represented by nodes and binary relations between objects are rep-
resented by links labeled with the name of the corresponding relation. Object
reconciliation is the task of finding the ’right’ mapping between the nodes in dif-
ferent A-Box graphs. The basis for finding the right mapping between different
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(a) Graph for A-Box A1

(b) Graph for A-Box A2

Fig. 2. Examples of A-Boxes

objects is typically based on a measure of similarity between the nodes that is
determined on the local or global structures in the corresponding graph. Typical
features for determining the similarity of two objects are:

– the similarity of their labels
– the similarity of the classes the objects belong to
– the similarity of relations and related objects

Based on these features, we would generate a priori similarities. For the example
we would receive high values for σ(a5, b4), σ(a1, b1), σ(a3, b3), σ(a3, b2), σ(a2, b5)
and σ(a4, b6). Besides the similarity between objects, in the case where the A-Box
is based on an ontology, the logical constraints from the ontologies should be taken
into account in the matching process. In particular, objects should not be maps
on each other if they have incompatible types. In the example this means that
assuming the underlying ontology contains a statement student⊥pupil declaring
the classes ’student’ and ’pupil’ as disjoint, the objects a3 and b3 should not be
mapped on each other, despite the high a priori similarity.
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3 Probabilistic-Logical Languages and Ontologies

Data integration for heterogeneous knowledge bases typically involves both purely
logical and uncertain data. For instance, the description logic axioms of the on-
tologies are known to be true and, therefore, should be modeled as logical rules
– the alignment system should not alter the logical structure of the input on-
tologies. Conversely, matching systems usually rely on degrees of confidence that
have been derived through the application of lexical similarity, data mining, and
machine learning algorithms. The presence of both known logical rules and de-
grees of uncertainty requires formalism that allow the representation of both
deterministic and uncertain aspects of the problem. In the following, we intro-
duce such a probabilistic-logical framework based on Markov logic and show how
description logic ontologies are represented in the language. Moreover, we de-
scribe the application of an efficient probabilistic inference algorithm that uses
integer linear programming.

3.1 Markov Logic

Markov logic combines first-order logic and undirected probabilistic graphical
models [39]. A Markov logic network (MLN) is a set of first-order formulas with
weights. Intuitively, the more evidence we have that a formula is true the higher
the weight of this formula. To simplify the presentation of the technical parts we
do not include functions. In addition, we assume that all (ground) formulas of a
Markov logic network are in clausal form and use the terms formula and clause
interchangeably.

Syntax. A signature is a triple S = (O, H, C) with O a finite set of observable
predicate symbols, H a finite set of hidden predicate symbols, and C a finite set
of constants. A Markov logic network (MLN) is a set of pairs {(Fi, wi)} with each
Fi being a function-free first-order formula built using predicates from O∪H and
each wi ∈ R a real-valued weight associated with formula Fi. We can represent
hard constraints using large weights.

Semantics. Let M = (Fi, wi) be a Markov logic network with signature S =
(O, H, C). A grounding of a first-order formula F is generated by substituting
each occurrence of every variable in F with constants in C. Existentially quan-
tified formulas are substituted by the disjunctions of their groundings over the
finite set of constants. A formula that does not contain any variables is ground.
A formula that consists of a single predicate is an atom. Note that Markov logic
makes several assumptions such as (a) different constants refer to different ob-
jects and (b) the only objects in the domain are those representable using the
constants [39]. A set of ground atoms is a possible world. We say that a possible
world W satisfies a formula F , and write W |= F , if F is true in W . Let GC

F be
the set of all possible groundings of formula F with respect to C. We say that
W satisfies GC

F , and write W |= GC
F , if F satisfies every formula in GC

F . Let W
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be the set of all possible worlds with respect to S. Then, the probability of a
possible world W is given by

p(W ) =
1
Z

exp

⎛
⎜⎝

∑
(Fi,wi)

∑

G∈GC
Fi

: W |=G

wi

⎞
⎟⎠ .

Here, Z is a normalization constant. The score sW of a possible world W is the
sum of the weights of the ground formulas implied by W

sW =
∑

(Fi,wi)

∑
G∈GC

Fi
: W |=G

wi. (5)

We will see later that, in the data integration context, possible worlds corre-
spond to possible alignments. Hence, the problem of deriving the most probably
alignment given the evidence can be interpreted as finding the possible world W
with highest score.

3.2 Representing Ontologies and Alignments in Markov Logic

Our approach for data integration based on logics and probability is now based
on the idea of representing description logic ontologies as Markov logic networks
and utilizing the weights to incorporate similarity scores into the integration
process [34]. The most obvious way to represent a description logic ontology in
Markov logic would be to directly use the first-order translation of the ontology.
For instance, the axiom C � D would be written as ∀x C(x) ⇒ D(x). In
other words, the representation would simply map between concepts and unary
predicates and roles and binary predicates. However, we take a different approach
by mapping axioms to predicates and use constants to represent the classes and
relations in the ontology. Some typical axioms with their respective predicates
are the following:

C � D 
→ sub(c, d)
C � D � ⊥ 
→ dis(c, d)
∃r.T � C 
→ dom(r, c)
∃r−1.T � C 
→ range(r, c)

This way of representing description logic ontologies has the advantage that
we can model some basic inference rules and directly use them in the probabilistic
reasoning process. For example, we can model the transitivity of the subsumption
relation as

sub(x, y) ∧ sub(y, z) ⇒ sub(x, z)

and the fact that two classes that subsume each other cannot be disjoint at the
same time

¬sub(x, y) ∨ ¬dis(x, y)

While the use of such axioms in a Markov logic network does not guarantee
consistency and coherence of the results, they often cover the vast majority of
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Table 3. The description logic EL++ without nominals and concrete domains

Name Syntax Semantics

top � ΔI

bottom ⊥ ∅
conjunction C �D CI ∩DI

existential ∃r.C {x ∈ ΔI |∃y ∈ ΔI :
restriction (x, y) ∈ rI ∧ y ∈ CI}
GCI C � D CI ⊆ DI

RI r1 ◦ ... ◦ rk � r rI1 ◦ ... ◦ rIk ⊆ rI

conflicts that can exist in an ontology, especially in cases where the ontology is
rather simple and does not contain a complex axiomatization.

For certain description logics, it is possible to completely capture the model
using the kind of translation described above. In particular, if an ontology can
be reduced to a normal form with a limited number of axiom types, we can
provide a complete translation based on this normal form. An example for such
a description logic is EL++, a light weight description logic that supports poly-
nomial time reasoning. Table 3 shows the types of axioms an EL++ Model can
be reduced to.

We can completely translation any EL++ model into a Markov Logic repre-
sentation using the following translation rules:

C1 � D 
→ sub(c1, d)
C1 � C2 � D 
→ int(c1, c2, d)
C1 � ∃r.C2 
→ rsup(c1, r, c2)
∃r.C1 � D 
→ rsub(c1, r, d)
r � s 
→ psub(r, s)
r1 ◦ r2 � r3 
→ pcom(r1, r2, r3)

In principle, such a complete translation is possible whenever there is a normal
form representation of a description logic that reduces the original model to a
finite number of axiom types that can be captured by a respective predicate in
the Markov logic network.

Finally, being interested in data integration, we often treat correspondences
between elements from different models separately although in principle they
could be represented by ordinary DL axioms. In particular, we often use the
following translation of correspondences to weighted ground predicates of the
Markov logic network

(e1, e2, R, c) 
→ 〈mapR(e1, e2), c〉

where c is a a-priori confidence values.
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3.3 MAP Inference and Integer Linear Programming

If we want to determine the most probable state of a MLN, we need to compute
the set of ground atoms of the hidden predicates that maximizes the probability
given both the ground atoms of observable predicates and all ground formulas.
This is an instance of MAP (maximum a-posteriori) inference in the ground
Markov logic network. Let O be the set of all ground atoms of observable pred-
icates and H be the set of all ground atoms of hidden predicates both with
respect to C. We make the closed world assumption with respect to the observ-
able predicates. Assume that we are given a set O′ ⊆ O of ground atoms of
observable predicates. In order to find the most probable state of the MLN we
have to compute

argmax
H′⊆H

∑
(Fi,wi)

∑
G∈GC

Fi
: O′∪H′|=G

wi.

Every H′ ⊆ H is called a state. It is the set of active ground atoms of hidden
predicates. Markov logic is by definition a declarative language, separating the
formulation of a problem instance from the algorithm used for probabilistic in-
ference. MAP inference in Markov logic networks is essentially equivalent to the
weighted MAX-SAT problem and, therefore, NP-hard. Integer linear program-
ming (ILP) is an effective method for solving exact MAP inference in undirected
graphical models [41,50] and specifically in Markov logic networks [40]. ILP is
concerned with optimizing a linear objective function over a finite number of
integer variables, subject to a set of linear constraints over these variables [43].
We omit the formal details of the ILP representation of a MAP problem and
refer the reader to [40].

Example 3. Consider a small instance of the ontology alignment problem which
involves both soft and hard formulas. ML was successfully applied to ontology
matching problems in earlier work [34]. Let O1 and O2 be the two ontologies
in Figure 3 with the (a-priori computed) string similarities between the concept
labels given in Table 4. Let S = (O, H, C) be the signature of a MLN M with
O = {sub1, sub2, dis1, dis2}, H = {map}, and C = {a1, b1, c1, a2, b2}. Here, the
observable predicates model the subsumption and disjointness relationships be-
tween concepts C in the two ontologies and map is the hidden predicate modeling
the sought-after matching correspondences. We also assume that the predicates
are typed meaning that, for instance, valid groundings of map(x, y) are those
with x ∈ {a1, b1, c1} and y ∈ {a2, b2}. Furthermore, let us assume that the MLN
M includes the following formula with weight w = 10.0:

∀x, x′, y, y′ : dis1(x, x′) ∧ sub2(y, y′) ⇒ (¬map(x, y) ∨ ¬map(x′, y′))

The formula makes those alignments less likely that match concepts x with
y and x′ with y′ if x is disjoint with x′ in the first ontology and y′ subsumes
y in the second. We also include cardinality formulas with weight 10.0 forcing
alignments to be one-to-one and functional:
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Fig. 3. Small fragments of two ontologies

Table 4. A-priori similarities between concept labels

a1 b1 c1

a2 0.95 0.25 0.12

b2 0.55 0.91 0.64

∀x, y, z : map(x, y) ∧ map(x, z) ⇒ y = z

∀x, y, z : map(x, y) ∧ map(z, y) ⇒ x = z

In addition, we add the formulas map(x, y) with weight σ(x, y) for all x ∈
{a1, b1, c1, d1} and y ∈ {a2, b2} where σ(x, y) is the label similarity from Table 4.
The observed ground atoms are sub1(c1, a1), dis1(a1, b1), dis1(b1, a1), dis1(b1, c1),
dis1(c1, b1) for ontology O1 and sub2(b2, a2) for ontology O2. This results in the
following relevant ground formulas for the coherence reducing constraint where
each observable predicates has been substituted with its observed value:

¬map(a1, b2) ∨ ¬map(b1, a2) (6)
¬map(b1, b2) ∨ ¬map(a1, a2) (7)
¬map(b1, b2) ∨ ¬map(c1, a2) (8)
¬map(c1, b2) ∨ ¬map(b1, a2) (9)

For instance, the ground formulas (2) is encoded in an ILP by introducing a new
binary variable y which is added to the objective function with coefficient 10.0
and, in addition, by introducing the following linear constraints enforcing the
value of y to be equivalent to the truth value of the formula:

−xa,b − y ≤ −1
−xb,a − y ≤ −1

xa,b + xb,a + y ≤ 2

The binary ILP variables xa,b and xb,a correspond to ground atoms map(a1, b2)
and map(b1, a2), respectively. The ILP for our small example includes 19 vari-
ables (columns) and 39 linear constraints (12 from the coherence and 27 from the
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cardinality formulas) which we omit due to space considerations. The prepro-
cessing step of grounding only those clauses that can evaluate to false given the
current state of observable variables is similar to the approach presented in [44].
The ILP optimizations used for the inference procedures are not the focus of this
article and we refer the reader to [40] and [33] for the details. However, in the
following section we will show a typical matching formalization in Markov logic,
the resulting ground formulas, and the corresponding integer linear program.

4 Markov Logic and Ontology Matching

We provide a formalization of the ontology matching problem within the
probabilistic-logical framework. The presented approach has several advantages
over existing methods such as ease of experimentation, incoherence mitigation
during the alignment process, and the incorporation of a-priori confidence val-
ues. We show empirically that the approach is efficient and more accurate than
existing matchers on an established ontology alignment benchmark dataset.

4.1 Problem Representation

Given two ontologies O1 and O2 and an initial a-priori similarity σ we apply the
following formalization. First, we introduce observable predicates O to model
the structure of O1 and O2 with respect to both concepts and properties. For
the sake of simplicity we use uppercase letters D, E, R to refer to individual
concepts and properties in the ontologies and lowercase letters d, e, r to refer
to the corresponding constants in C. In particular, we add ground atoms of
observable predicates to Fh for i ∈ {1, 2} according to the following rules:

Oi |= D � E 
→ subi(d, e)
Oi |= D � ¬E 
→ disi(d, e)

Oi |= ∃R.� � D 
→ subd
i (r, d)

Oi |= ∃R−1.� � D 
→ subr
i (r, d)

Oi |= ∃R.� � D 
→ supd
i (r, d)

Oi |= ∃R−1.� � D 
→ supr
i (r, d)

Oi |= ∃R.� � ¬D 
→ disd
i (r, d)

Oi |= ∃R−1.� � ¬D 
→ disr
i (r, d)

The knowledge encoded in the ontologies is assumed to be true. Hence, the
ground atoms of observable predicates are added to the set of hard constraints
Fh, making them hold in every computed alignment. The hidden predicates
mapc and mapp, on the other hand, model the sought-after concept and property
correspondences, respectively. Given the state of the observable predicates, we
are interested in determining the state of the hidden predicates that maximize
the a-posteriori probability of the corresponding possible world. The ground
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atoms of these hidden predicates are assigned the weights specified by the a-
priori similarity σ. The higher this value for a correspondence the more likely
the correspondence is correct a-priori. Hence, the following ground formulas are
added to Fs, the set of soft formulas:

(mapc(c, d), σ(C, D)) if C and D are concepts
(mapp(p, r), σ(P, R)) if P and R are properties

Notice that the distinction between mc and mp is required since we use typed
predicates and distinguish between the concept and property type.

Cardinality Constraints. A method often applied in real-world scenarios is
the selection of a functional one-to-one alignment [7]. Within the ML framework,
we can include a set of hard cardinality constraints, restricting the alignment
to be functional and one-to-one. In the following we write x, y, z to refer to
variables ranging over the appropriately typed constants and omit the universal
quantifiers.

mapc(x, y) ∧ mapc(x, z) ⇒ y = z

mapc(x, y) ∧ mapc(z, y) ⇒ x = z

Analogously, the same formulas can be included with hidden predicates mapp,
restricting the property alignment to be one-to-one and functional.

Coherence Constraints. Incoherence occurs when axioms in ontologies lead
to logical contradictions. Clearly, it is desirable to avoid incoherence during the
alignment process. Some methods of incoherence removal for ontology align-
ments were introduced in [30]. All existing approaches, however, remove corre-
spondences after the computation of the alignment. Within the ML framework
we can incorporate incoherence reducing constraints during the alignment pro-
cess for the first time. This is accomplished by adding formulas of the following
type to Fh, the set of hard formulas.

dis1(x, x′) ∧ sub2(x, x′) ⇒ ¬(mapc(x, y) ∧ mapc(x′, y′))

disd
1(x, x′) ∧ subd

2(y, y′) ⇒ ¬(mapp(x, y) ∧ mapc(x′, y′))

The second formula, for example, has the following purpose. Given properties
X, Y and concepts X ′, Y ′. Suppose that O1 |= ∃X.� � ¬X ′ and O2 |= ∃Y.� �
Y ′. Now, if 〈X, Y,≡〉 and 〈X ′, Y ′,≡〉 were both part of an alignment the merged
ontology would entail both ∃X.� � X ′ and ∃X.� � ¬X ′ and, therefore, ∃X.� �
⊥. The specified formula prevents this type of incoherence. It is known that such
constraints, if carefully chosen, can avoid a majority of possible incoherences [29].

Stability Constraints. Several existing approaches to schema and ontology
matching propagate alignment evidence derived from structural relationships
between concepts and properties. These methods leverage the fact that existing
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evidence for the equivalence of concepts C and D also makes it more likely that,
for example, child concepts of C and child concepts of D are equivalent. One
such approach to evidence propagation is similarity flooding [31]. As a reciprocal
idea, the general notion of stability was introduced, expressing that an alignment
should not introduce new structural knowledge [28]. The soft formula below, for
instance, decreases the probability of alignments that map concepts X to Y and
X ′ to Y ′ if X ′ subsumes X but Y ′ does not subsume Y .

〈sub1(x, x′) ∧ ¬sub2(y, y′) ⇒ mapc(x, y) ∧ mapc(x′, y′), w1〉
〈subd

1(x, x′) ∧ ¬subd
2(y, y′) ⇒ mapp(x, y) ∧ mapc(x′, y′), w2〉

Here, w1 and w2 are negative real-valued weights, rendering alignments that
satisfy the formulas possible but less likely.

The presented list of cardinality, coherence, and stability constraints is by
no means meant to be exhaustive. Other constraints could, for example, model
known correct correspondences or generalize the one-to-one alignment to m-
to-n alignments. Moreover, a novel hidden predicate could be added modeling
correspondences between instances of the ontologies. To keep the discussion of
the approach simple, however, we leave these considerations to future research.

Example 4. We apply the previous formalization to Example 1. To keep it sim-
ple, we only use a-priori values, cardinality, and coherence constraints. Given the
two ontologies O1 and O2 in Figure 1, and the matching hypotheses (1) to (4)
from Example 1, the ground MLN would include the following relevant ground
formulas. We use the concept and property labels from Figure 1 and omit ground
atoms of observable predicates.

A-priori similarity

〈mapc(b1, b2), 0.88〉, 〈mapc(c1, e2), 0.75〉, 〈mapp(p1, p2), 0.7〉, 〈mapc(d1, e2), 0.54〉

Cardinality constraints

mapc(c1, e2) ∧ mapc(d1, e2) ⇒ c1 = d1 (10)

Coherence constraints

disd
1(p1, b1) ∧ subd

2(p2, b2) ⇒ ¬(mapp(p1, p2) ∧ mapc(b1, b2)) (11)
dis1(b1, c1) ∧ sub2(b2, e2) ⇒ ¬(mapc(b1, b2) ∧ mapc(c1, e2)) (12)

subd
1(p1, c1) ∧ disd

2(p2, e2) ⇒ ¬(mapp(p1, p2) ∧ mapc(c1, e2)) (13)

Let the binary ILP variables x1, x2, x3, and x4 model the ground atoms
mapc(b1, b2), mapc(c1, e2), mapp(p1, p2), and mapc(d1, e2), respectively. The set
of ground formulas is then encoded in the following integer linear program:

Maximize: 0.88x1 + 0.75x2 + 0.7x3 + 0.54x4
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Subject to
x2 + x4 ≤ 1 (14)
x1 + x3 ≤ 1 (15)
x1 + x2 ≤ 1 (16)
x2 + x3 ≤ 1 (17)

The a-priori confidence values of the potential correspondences are factored
in as coefficients of the objective function. Here, the ILP constraint (9) cor-
responds to ground formula (5), and ILP constraints (10),(11), and (12) cor-
respond to the coherence ground formulas (6), (7), and (8), respectively. An
optimal solution to the ILP consists of the variables x1 and x4 corresponding to
the correct alignment {mc(b1, b2), mc(d1, e2)}. Compare this with the alignment
{mapc(b1, b2), mapc(c1, e2), mapp(p1, p2)} which would be the outcome without
coherence constraints.

4.2 Experiments

We use the Ontofarm dataset [49] as basis for our experiments. It is the evalu-
ation dataset for the OAEI conference track which consists of several ontologies
modeling the domain of scientific conferences [11]. The ontologies were designed
by different groups and, therefore, reflect different conceptualizations of the same
domain. Reference alignments for seven of these ontologies are made available by
the organizers. These 21 alignments contain correspondences between concepts
and properties including a reasonable number of non-trivial cases. For the a-
priori similarity σ we decided to use a standard lexical similarity measure. After
converting the concept and object property names to lowercase and removing
delimiters and stop-words, we applied a string similarity measure based on the
Levensthein distance. More sophisticated a-priori similarity measures could be
used but since we want to evaluate the benefits of the ML framework we strive
to avoid any bias related to custom-tailored similarity measures. We applied
the reasoner Pellet [45] to create the ground MLN formulation and used The-
Beast3 [40] to convert the MLN formulations to the corresponding ILP instances.
Finally, we applied the mixed integer programming solver SCIP4 to solve the ILP.
All experiments were conducted on a desktop PC with AMD Athlon Dual Core
Processor 5400B with 2.6GHz and 1GB RAM. The software as well as additional
experimental results are available at http://code.google.com/p/ml-match/.

The application of a threshold τ is a standard technique in ontology matching.
Correspondences that match entities with high similarity are accepted while
correspondences with a similarity less than τ are deemed incorrect. We evaluated
our approach with thresholds on the a-priori similarity measure σ ranging from
0.45 to 0.95. After applying the threshold τ we normalized the values to the
range [0.1, 1.0]. For each pair of ontologies we computed the F1-value, which is
the harmonic mean of precision and recall, and computed the mean of this value
over all 21 pairs of ontologies. We evaluated four different settings:
3 http://code.google.com/p/thebeast/
4 http://scip.zib.de/
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– ca: The formulation includes only cardinality constraints.
– ca+co: The formulation includes only cardinality and coherence constraints.
– ca+co+sm: The formulation includes cardinality, coherence, and stability

constraint, and the weights of the stability constraints are determined man-
ually. Being able to set qualitative weights manually is crucial as training
data is often unavailable. The employed stability constraints consist of (1)
constraints that aim to guarantee the stability of the concept hierarchy, and
(2) constraints that deal with the relation between concepts and property
domain/range restrictions. We set the weights for the first group to −0.5 and
the weights for the second group to −0.25. This is based on the consider-
ation that subsumption axioms between concepts are specified by ontology
engineers more often than domain and range restriction of properties [10].
Thus, a pair of two correct correspondences will less often violate constraints
of the first type than constraints of the second type.

– ca+co+sl: The formulation also includes cardinality, coherence, and stabil-
ity constraint, but the weights of the stability constraints are learned with a
simple online learner using the perceptron rule. During learning we fixed the
a-priori weights and learned only the weights for the stability formulas. We
took 5 of the 7 ontologies and learned the weights on the 10 resulting pairs.
With these weights we computed the alignment and its F1-value for the re-
maining pair of ontologies. This was repeated for each of the 21 possible
combinations to determine the mean of the F1-values.
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Fig. 4. F1-values for ca, ca+co, and ca+co+sm averaged over the 21 OAEI reference
alignments for thresholds ranging from 0.45 to 0.95. AgreementMaker was the best
performing system on the conference dataset of the latest ontology evaluation initiative
in 2009.
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The lower the threshold the more complex the resulting ground MLN and the
more time is needed to solve the corresponding ILP. The average time needed
to compute one alignment was 61 seconds for τ = 0.45 and 0.5 seconds for
τ = 0.85. Figure 4 depicts the average F1-values for ca, ca+co, and ca+co+sm
compared to the average F1-values achieved by AgreementMaker [7], the best-
performing system in the OAEI conference track of 2009. These average F1-values
of AgreementMaker were obtained using two different thresholds. The first is the
default threshold of AgreementMaker and the second is the threshold at which
the average F1-value attains its maximum.

The inclusion of coherence constraints (ca+co) improves the average F1-
value of the alignments for low to moderate thresholds by up to 6% compared
to the ca setting. With increasing thresholds this effect becomes weaker and is
negligible for τ ≥ 0.9. This is the case because alignments generated with ca
for thresholds ≥ 0.9 contain only a small number of incorrect correspondences.
The addition of stability constraints (ca+co+sm) increases the quality of the
alignments again by up to 6% for low to moderate thresholds. In the optimal
configuration (ca+co+sl with τ = 0.85) we measured an average F1-value of
0.63 which is a 7% improvement compared to AgreementMaker’s 0.56. What is
more important to understand, however, is that our approach generates more
accurate results over a wide range of thresholds and is therefore more robust
to threshold estimation. This is advantageous since in most real-world matching
scenarios the estimation of appropriate thresholds is not possible. While the
ca setting generates F1-values > 0.57 for τ ≥ 0.75 the ca+co+sm setting
generates F1-values > 0.59 for τ ≥ 0.65. Even for τ = 0.45, usually considered
an inappropriate threshold choice, we measured an average F1-value of 0.51
and average precision and recall values of 0.48 and 0.60, respectively. Table 5
compares the average F1-values of the ML formulation (a) with manually set
weights for the stability constraints, (b) with learned weights for the stability
constraints, and (c) without any stability constraints. The values indicate that
using stability constraints improves alignment quality with both learned and
manually set weights.

Table 5. Average F1-values over the 21 OAEI reference alignments for manual weights
(ca+co+sm) vs. learned weights (ca+co+sl) vs. formulation without stability con-
straints (ca+co); thresholds range from 0.6 to 0.95.

threshold 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

ca+co+sm 0.56 0.59 0.60 0.61 0.62 0.63 0.62 0.62

ca+co+sl 0.57 0.58 0.58 0.61 0.61 0.61 0.63 0.62

ca+co 0.54 0.56 0.58 0.59 0.61 0.62 0.62 0.61

5 Markov Logic and Object Reconciliation

We are primarily concerned with the scenario where both A-Boxes are described
in terms of the same T-Box. The presented approach does not rely on specific
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types of axioms or a set of predefined rules but on a well defined semantic simi-
larity measure. In particular, our approach is based on the measure proposed by
Stuckenschmidt [48]. This measure has originally been designed to quantify the
similarity between two ontologies that describe the same set of objects. We apply
a modified variant of this measure to evaluate the similarity of two A-Boxes de-
scribed in terms of the same T-Box. Furthermore, our method factors in a-priori
confidence values that quantify the degree of trust one has in the correctness of
the object correspondences based on lexical properties. The resulting similarity
measure is used to determine an instance alignment that induces the highest
agreement of object assertions in A1 and A2 with respect to T .

5.1 Problem Representation

The current instance matching configuration leverages terminological structure
and combines it with lexical similarity measures. The approach is presented in
more detail in [37]. The alignment system uses one T-Box T but two different
A-Boxes A1 ∈ O1 and A2 ∈ O2. In cases with two different T-Boxes the T-Box
matching approach is applied as a preprocessing step to merge the two aligned
T-Boxes first. The approach offers complete conflict elimination meaning that
the resulting alignment is always consistent for OWL DL ontologies. To enforce
consistency, we need to add constraints to model conflicts, that is, we have to
prevent an equivalence correspondence between two individuals if there exists
a positive class assertion for the first individual and a negative for the second
for the same class. These constraints are incorporated for both property and
concept assertions. Analogous to the concept and property alignment before,
we introduce the hidden predicate mapi representing instance correspondences.
Let C be a concept and P be a property of T-Box T . Further, let A ∈ A1 and
B ∈ A2 be individuals in the respective A-Boxes. Then, using a reasoner such
as Pellet, ground atoms are added to the set of hard constraints Fh according
to the following rules:

T ∪ A1 |= C(A) ∧ T ∪ A2 |= ¬C(B) 
→ ¬mapi(a, b)
T ∪ A1 |= ¬C(A) ∧ T ∪ A2 |= C(B) 
→ ¬mapi(a, b)
T ∪ A1 |= P (A, A′) ∧ T ∪ A2 |= ¬P (B, B′) 
→ ¬mapi(a, b) ∨ ¬mapi(a′, b′)
T ∪ A1 |= ¬P (A, A′) ∧ T ∪ A2 |= P (B, B′) 
→ ¬mapi(a, b) ∨ ¬mapi(a′, b′)

In addition to these formulas we included cardinality constraints analogous
to those used in the previous concept and property alignment problem. In the
instance matching formulation, the a-priori similarity σc and σp measures the
normalized overlap of concept and property assertions, respectively. For more
details on these measures, we refer the reader to [37]. The following formulas are
added to the set of soft formulas Fs:

〈mapi(a, b), σc(A, B)〉 if A and B are instances
〈mapi(a, b) ∧ mapi(c, d), σp(A, B, C, D)〉 if A, B, C, and D are instances
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Algorithm 1. σ(entity1, entity2)
if entity1 and entity2 are either concepts or properties then

value← 0
for all Values s1 of URI, labels, and OBOtoOWL constructs in entity1 do

for all Values s2 of URI, labels, and OBOtoOWL constructs in entity1 do
value←Max(value, sim(s1, s2))

end for
end for
return value

end if
if entity1 and entity2 are individuals then

Map〈URI, double〉 similarities← null
for all dataproperties dp1 of entity1 do

uri1 ← URI of dp1

for all dataproperties dp2 of entity2 do
if uri1 equals URI of dp2 then

value← sim(valueofdp1, valueofdp2)
if uri1 is entailed in similarities then

update entry 〈uri1, old value〉 to 〈uri1, Minimum (old value+value, 1)〉
in similarities

else
add new entry pair 〈uri1, value〉 in similarities

end if
end if

end for
end for
return (sum of all values in similarities)/(length of similarities)

end if

5.2 Similarity Computation

Algorithm 1 was used for computing the a-priori similarity σ(entity1, entity2). In
the case of concept and property alignments, the a-priori similarity is computed
by taking the maximal similarity between the URIs, labels and OBO to OWL
constructs. In case of instance matching the algorithm goes through all data
properties and takes the average of the similarity scores.

5.3 Experiments

The IIMB benchmark is a semi-automatically generated benchmark for instance
matching. IIMB 2010 is created by extracting individuals from Freebase5, an
open knowledge base that contains information about 11 million real objects
including movies, books, TV shows, celebrities, locations, companies and more.
Data extraction has been performed using the query language JSON together
with the Freebase JAVA API6. From this large dataset, 29 concepts, 20 object
5 http://www.freebase.com/
6 http://code.google.com/p/freebase-java/

http://www.freebase.com/
http://code.google.com/p/freebase-java/
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properties, 12 data properties and a fraction of their underlying data have been
chosen for the benchmark. The benchmark has been generated in a small version
consisting of 363 individuals and in a large version containing 1416 individuals,
respectively. Furthermore, the dataset consists of 80 different test cases divided
into 4 sets of 20 test cases each. These sets have been designed according to the
Semantic Web INstance Generation (SWING) approach presented in [16]. In the
following, we will explain the SWING approach and its different transformation
techniques resulting in the 80 different test cases in more detail.

Data acquisition techniques. SWING provides a set of techniques for the acqui-
sition of data from the repositories of linked data and their representation as a
reference OWL ABox. In SWING, we work on open repositories by addressing
two main problems featuring this kind of data sources. First, we support the eval-
uation designer in defining a subset of data by choosing both the data categories
of interest and the desired size of the benchmark. Second, in the data enrichment
activity, we add semantics to the data acquired. In particular, we adopt specific
ontology design patterns that drive the evaluation designer in defining a data
description scheme capable of supporting the simulation of a wide spectrum of
data heterogeneities. These techniques include

– adding super classes and super properties,
– converting attributes to class assertions,
– determining and adding new disjointness restrictions,
– enriching the ontology with additional inverse properties, and
– specifying additional domain and range restrictions.

Data transformation techniques. In the subsequent data transformation process
the TBox is unchanged, while the ABox is modified in several ways by generating
a set of new ABoxes, called test cases. Each test case is produced by transforming
the individual descriptions in the reference ABox in new individual descriptions
that are inserted in the test case at hand. The goal of transforming the original
individuals is twofold: on one hand, we provide a simulated situation where data
referred to the same objects are provided in different data sources; on the other
hand, we generate a number of datasets with a variable degree of data quality
and complexity.

The applied transformation techniques are categorized as followed:

– Data value transformation operations work on the concrete values of data
properties and their datatypes when available. The output is a new concrete
value. This category has been applied to the test cases 1-20 of the IIMB 2010
benchmark.

– Data structure transformation operations change the way data values are
connected to individuals in the original ontology graph and change the type
and number of properties associated with a given individual. They are im-
plemented in the transformations 21-40 of the IIMB 2010 benchmark.

– Data semantic transformation operations are based on the idea of changing
the way individuals are classified and described in the original ontology. This
category was utilized in test cases 41-60.
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Table 6. Results for the OAEI IIMB track for the small (large) dataset

Transformations 0-20 21-40 41-60 61-80 overall

Precision 0.99 (0.98) 0.95 (0.94) 0.96 (0.99) 0.86 (0.86) 0.94 (0.95)
Recall 0.93 (0.87) 0.83 (0.79) 0.97 (0.99) 0.54 (0.53) 0.83 (0.80)
F1-value 0.96 (0.91) 0.88 (0.85) 0.97 (0.99) 0.65 (0.63) 0.87 (0.85)

– Combination This fourth set is obtained by combining together the three
kinds of transformations and constitute the last test cases 61-80 in IIMB.

Data evaluation techniques. Finally, in the data evaluation activity, we automat-
ically create a ground-truth in form of a reference alignment for each test case.
A reference alignment contains the correct correspondences (in some contexts
called “links”) between the individuals in the reference ABox and the corre-
sponding transformed individuals in the test case. These mappings are what an
instance matching application is expected to find between the original ABox and
the test case.

Results. The results of our approach on the IIMB 2010 benchmark are sum-
marized in Table 6. The first numbers are the results of the small IIMB dataset
containing 363 individuals, while the numbers in brackets represent our results
for the large IIMB benchmark consisting of 1416 individuals. When examining
the differences between the small and the large dataset, we notice that the values
are slightly better for the small dataset. The F1-values for the first category of
the large dataset decrease by 0.05 compared to the small one, for the second
category the disparity is 0.03, respectively. The third and forth category both
have 0.02 lower F1-values for the large dataset compared to the small one.

Since the large dataset is slightly more challenging, we report the results com-
pared to other matching systems over the large version. Figures 5 and 6 illustrate
the results for all of the participating matching systems at OAEI. Our object
reconciliation approach has been implemented in the combinatorial optimization
for data integration (CODI) system [36]. Besides our CODI matching applica-
tion, the systems ASMOV [22] and RiMOM [52] participated in this particular
track of the OAEI. ASMOV uses a weighted average of measurements of similar-
ity along different features of ontologies, and obtains a pre-alignment based on
these measurements. It then applies a process of semantic verification to reduce
the amount of semantic inconsistencies. RiMOM implements several different
matching strategies which are defined based on different ontological information.
For each individual matching task, RiMOM can automatically and dynamically
combine multiple strategies to generate a composed matching result.

Figure 5 compares the matching results with respect to precision, recall, and
F1-value. In the first category (data transformation) the ASMOV and the Ri-
MOM system having F1-values of 0.98 and 1.00 outperformed CODI’s F1-value
of 0.91. The reason for CODI’s worse performance in this category is due to
the näıve lexical similarity measures CODI applies as shown in Algorithm 1.
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Fig. 5. Results for the large IIMB subtrack of the OAEI 2010

However, leveraging terminological structure for instance matching with Markov
logic, like described in Section 5, leads to a significant improvement of CODI
in the structure transformation category and the semantic transformation cat-
egory. Our results compared to the ones of the ASMOV system are 5 per-cent
higher in F1-value for the structure transformation category and 9 per-cent in
the semantic transformation category, respectively. The RiMOM system has 7
per-cent lower F1-values in both the structure and the transformation category.
In the last and most challenging category where all three transformation cate-
gories are combined, CODI achieved a F1-value of 0.63 outperforming RiMOM
(0.58) and ASMOV (0.48).

The precision and recall diagram in Figure 6 shows the aggregated values for
recall on the x-axis and precision on the y-axis. For recall values ranging from
0.0 up to 0.6 the CODI system has the highest precision values compared to
the ASMOV and RiMOM system. Only for recall values of 0.7 and higher, first
the precision values of RiMOM (for recall values between 0.7 and 0.9) and then
the precision values of ASMOV (for recall value 1.0) are higher.

Aggregated over all 80 test cases CODI reaches an F1-value of 0.87 which
is 5 per-cent higher than the result of ASMOV (F1-value of 0.82) and 3 per-
cent higher than RiMOM (F1-value of 0.84)7. In summary, it is evident that
utilizing the probabilistic-logical framework based on Markov logic for object
reconciliation outperforms state-of-the-art instance matching systems.

6 Related Work

There have been a number of approaches for extending description logics with
probabilistic information in the earlier days of description logics. Heinsohn [18]
was one of the first to propose a probabilistic notion of subsumption for the
logic ALC. Jaeger [21] investigated some general problems connected with the

7 We refer the reader to http://www.instancematching.org/oaei/imei2010/iimbl.

html for detailed results of every single test case and their aggregation.

http://www.instancematching.org/oaei/imei2010/iimbl.html
http://www.instancematching.org/oaei/imei2010/iimbl.html


Probabilistic-Logical Web Data Integration 527

Fig. 6. Precision/recall of tools participating in the IIMB subtrack

extension of T-Boxes and ABoxes with objective and subjective probabilities and
proposed a general method for reasoning with probabilistic information in terms
of probability intervals attached to description logic axioms. Recently, Giugno
and Lukasiewicz proposed a probabilistic extension of the logic SHOQ along the
lines sketched by Jaeger [17]. A major advantage of this approach is the inte-
grated treatment of probabilistic information about Conceptual and Instance
knowledge based on the use of nominals in terminological axioms that can be
used to model uncertain information about instances and relations. An alterna-
tive way of combining description logics with probabilistic information has been
proposed by Koller et al. [24]. In contrast to the approaches mentioned above,
the P-CLASSIC approach is not based on probability intervals. Instead it uses a
complete specification of the probability distribution in terms of a Bayesian net-
work which nodes correspond to concept expressions in the CLASSIC description
logic. Bayesian networks have also been used in connection with less expressive
logics such as TDL [55]. The approaches for encoding probabilities in concept
hierarchies using Bayesian networks described in the section preliminaries and
background can be seen as a simple special case of these approaches.
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More recently proposals for combining the web ontology language OWL with
probabilistic information have been proposed. The first kind of approach im-
plements a loose coupling of the underlying semantics of OWL and probabilis-
tic models. In particular these approaches use OWL as a language for talking
about probabilistic models. An example of this approach is the work of Yang
and Calmet that propose a minimal OWL ontology for representing random
variables and dependencies between random variables with the corresponding
conditional probabilities [54]. This allows the user to write down probabilistic
models that correspond to Bayesian networks as instances of the OntoBayes
Ontology. The encoding of the model in OWL makes it possible to explicitly
link random variables to elements of an OWL ontology, a tighter integration on
the formal level, however, is missing. A similar approach is proposed by Costa
and Laskey. They propose the PR-OWL model which is an OWL ontology for
describing first order probabilistic models [5]. More specifically, the correspond-
ing ontology models Multi-Entity Bayesian networks [25] that define probability
distributions over first-order theories in a modular way. Similar to OntoBayes,
there is no formal integration of the two representation paradigms as OWL is
used for encoding the general structure of Multi-entity Bayesian networks on
the meta-level. The second kind of approaches actually aims at enriching OWL
ontologies with probabilistic information to support uncertain reasoning inside
OWL ontologies. These approaches are comparable with the work on probabilis-
tic extensions of description logics also presented in this section. A survey of the
existing work reveals, however, that approaches that directly address OWL as
an ontology language are less ambitious with respect to combining logical and
probabilistic semantics that the work in the DL area. An example is the work of
Holi and Hyvonnen [19] that describe a framework for representing uncertainty
in simple classification hierarchies using Bayesian networks. A slightly more ex-
pressive approach called BayesOWL is proposed by Ding and others [9]. They
also consider Boolean operators as well as disjointness and equivalence of OWL
classes and present an approach for constructing a Bayesian network from class
expressions over these constructs. An interesting feature of BayesOWL is some
existing work on learning and representing uncertain alignments between differ-
ent BayesOWL ontologies reported in [38]. An additional family of probabilistic
logics are log-linear description logics [35] which integrate lightweight description
logics and probabilistic log-linear models.

Probabilistic approaches to ontology matching based on undirected probabilis-
tic graphical models have recently produced competitive matching results [1].
There are numerous other non-probabilistic approaches to ontology matching
and to mention all of them would be beyond the scope of this article. We refer
the reader to the systems participating in the OAEI [13] which are described
in the respective papers. More prominent systems with a long history of OAEI
participation are Falcon [20], Aroma [8], ASMOV [23], and AgreementMaker [6].

The commonly applied methods for object reconciliation include structure
-based strategies as well as strategies to compute and aggregate value similarities.
Under the notion of instance matching, similarities between instance labels and
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datatype properties are mostly used to compute confidence values for instance
correspondences. Examples of this are realized in the systems RiMOM [56] and
OKKAM [46]. Both systems particpated in the instance matching track of the
Ontology Alignment Evaluation in 2009. Additional refinements are related to
a distinction between different types of properties. The developers of RiMOM
manually distinguish between necessary and sufficient datatype properties. The
FBEM algorithm of the OKKAM project assigns higher weights to certain prop-
erties like names and IDs. In both cases, the employed methods focus on appropri-
ate techniques to interpret and aggregate similarity scores based on a comparison
of datatype property values. Another important source of evidence is the knowl-
edge encoded in the T-Box. RiMOM, for example, first generates a terminological
alignment between the T-Boxes T1 and T2 describing the A-Boxes A1 and A2, re-
spectively. This alignment is then used as a filter and only correspondences that
link instances of equivalent concepts are considered valid [56]. An object recon-
ciliation method applicable to our setting was proposed in [42] where the authors
combine logical with numerical methods. For logical reasons it is in some cases
possible to preclude that two instances refer to the same object while in other
cases the acceptance of one correspondence directly entails the acceptance of an-
other. The authors extend this approach by modeling some of these dependencies
into a similarity propagation framework. However, their approach requires a rich
schema and assumes that properties are defined to be functional and/or inverse
functional. Hence, the approach cannot be used effectively to exploit type infor-
mation based on a concept hierarchy and is therefore not applicable in many web
of data scenarios.

7 Conclusion

We introduced a declarative framework for web data integration based on Markov
logic capturing a wide range of matching strategies. Since these strategies are
expressed with a unified syntax and semantics we can isolate variations and
empirically evaluate their impact. While we focused only on a small subset of
possible alignment strategies the results are already quite promising. We have
also successfully learned weights for soft formulas within the framework. In cases
where training data is not available, weights set manually by experts still result
in improved alignment quality.

We have demonstrated that both ontology matching and object reconciliation
problems can be expressed in the framework. Due to the declarative nature of the
approach numerous algorithms can be applied to compute the final alignments.
Based on our experience, however, integer linear programming in combination
with cutting plane inference and delayed column generation strategies are espe-
cially suitable since they guarantee that the hard formulas are not violated. The
framework allows one to combine lexical a-priori similarities between matchable
entities with the terminological knowledge encoded in the ontology. We argued
that most state-of-the-art approaches for ontology and instance matching focus
solely on ways to compute lexical similarities. These approaches are sometimes
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extended by a structural validation technique where class membership is used as
a matching filter. However, even though useful in some scenarios, these methods
are neither based on a well-defined theoretical framework nor generally applica-
ble without adjustment. Contrary to this, our approach is grounded in a coherent
theory and incorporates terminological knowledge during the matching process.
Our experiments show that the resulting method is flexible enough to cope with
difficult matching problems for which lexical similarity alone is not sufficient to
ensure high-quality alignments.

Acknowledgement. We thank Alfino Ferrara for providing us the IIMB bench-
mark and for the initiative at http://www.instancematching.org/.
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