

Lecture Notes in Computer Science 6848
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Axel Polleres Claudia d’Amato
Marcelo Arenas Siegfried Handschuh
Paula Kroner Sascha Ossowski
Peter Patel-Schneider (Eds.)

Reasoning Web

Semantic Technologies
for the Web of Data

7th International Summer School 2011
Galway, Ireland, August 23-27, 2011
Tutorial Lectures

13

Volume Editors

Axel Polleres
DERI, National University of Ireland, Galway, Ireland/Siemens AG, Austria
E-mail: axel@polleres.net

Claudia d’Amato
University of Bari, Computer Science Department, Bari, Italy
E-mail: claudia.damato@di.uniba.it

Marcelo Arenas
Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
E-mail: marenas@ing.puc.cl

Siegfried Handschuh
DERI, National University of Ireland, Galway, Ireland
E-mail: siegfried.handschuh@deri.org

Paula Kroner
Skytec AG, Oberhaching, Germany
E-mail: paula.kroner@skytecag.com

Sascha Ossowski
Universidad Rey Juan Carlos, Móstoles (Madrid), Spain
E-mail: sascha.ossowski@urjc.es

Peter Patel-Schneider
Bell Labs Research, Alcatel-Lucent, Murray Hill, NJ, USA
E-mail: pfps@research.bell-labs.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23031-8 e-ISBN 978-3-642-23032-5
DOI 10.1007/978-3-642-23032-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011933830

CR Subject Classification (1998): H.4, H.3, I.2, H.5, C.2, D.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the lecture notes of the 7th Reasoning Web Summer School
2011 held during August 23-27, 2011 in Galway, Ireland.

The Reasoning Web Summer School has become a well-established event
in the area of applications of reasoning techniques on the Web both targeting
scientific discourse of established researchers and attracting young researchers to
this emerging field. After the previous successful editions in Malta (2005), Lisbon
(2006), Dresden (2007 and 2010), Venice (2008), and Bressanone-Brixen (2009),
the 2011 edition moved to the west of Ireland, hosted by the Digital Enterprise
Research Institute (DERI) at the National University of Ireland, Galway. By
co-locating this year’s summer school with the 5th International Conference on
Web Reasoning and Rule Systems (RR2011)1 we hope to have further promoted
interaction between researchers, practitioners and students.

The 2011 school programme focused around the central topic of applications
of reasoning for the emerging “Web of Data,” with 12 exciting lectures. Along
with the lecture slides which will be made available on the summer school’s
Website2 the chapters in the present book provide educational material and
references for further reading. The excellent overview articles provided by the
lecturers did not only serve as accompanying material for the students of the
summer school itself: we are happy to present a volume that also provides the
general reader an entry point to various topics related to reasoning over Web
data.

The first four chapters are devoted to foundational topics, providing introduc-
tory material to the Resource Description Framework (RDF) and Linked Data
principles (Chap. 1), Description Logics as a foundation of the Web Ontology
Language (OWL)(Chap. 2), the query language SPARQL and its usage together
with OWL (Chap. 3), as well as database foundations relevant to efficient and
scalable RDF processing (Chap. 4).

Based on these foundations, Chap. 5 presents approaches for scalable OWL
reasoning over Linked Data, whereafter the following two chapters introduce
rules and logic programming techniques relevant for Web reasoning (Chap. 6)
and particularly the combination of rule-based reasoning with OWL (Chap. 7).

Chapter 8 takes a closer look at models for the Web of data. Chapter 9 dis-
cusses the important issue of trust management methodologies for the Web. The
last two chapters continue on non-standard reasoning methods for the Seman-
tic Web: Chap. 10 discusses the application of inductive reasoning methods for
the Semantic Web which are also applied in software analysis, whereas Chap. 11

1 Proceedings of this event are available in a separate volume also published in
Springer’s LNCS series.

2 http://reasoningweb.org/2011/

VI Preface

focuses on an approach that combines logical and probabilistic reasoning for
Web data integration.

The school also had an additional lecture on constraint programming and
combinatorial optimisation.

We want to thank all the lecturers and authors of the present volume—
without your effort and enthusiasm this school would not have been possible. We
are further grateful to the members of the Programme Committee and the sub-
reviewers who provided feedback to help the authors improve their articles and
tailor them to the audience of the school. Last, but not least, we thank the local
organisation team and all sponsors who supported this event financially: The
European COST Action IC0801 “Agreement Technologies,” the European FP7
project LOD2, the Artificial Intelligence Journal (AIJ), as well as our industry
sponsors Alcatel-Lucent, IOS Press, Siemens AG, Skytec AG, Storm Technology,
and the Office of Naval Research Global (ONRG).

June 2011 Axel Polleres
Claudia D’Amato

Marcelo Arenas
Siegfried Handschuh

Paula Kroner
Sascha Ossowski

Peter Patel-Schneider

Organisation

Programme Committee

Marcelo Arenas Pontificia Universidad Católica de Chile, Chile
Claudia D’Amato University of Bari, Italy
Siegfried Handschuh DERI, National University of Ireland, Galway
Paula Kroner Skytec AG, Oberaching, Germany
Sascha Ossowski University Rey Juan Carlos, Spain
Peter Patel-Schneider Bell Labs Research, Alcatel-Lucent, USA
Axel Polleres (chair) DERI, National University of Ireland,

Galway / Siemens AG, Austria

Local Organisation

Alessandra Mileo DERI, National University of Ireland, Galway
Maria Smyth DERI, National University of Ireland, Galway

Additional Reviewers

Stefan Bischof
Renaud Delbru
Alberto Fernandez Gil
Ramón Hermoso
Nuno Lopes
Alessandra Mileo
Vit Novacek
Alexandre Passant
Jodi Schneider

VIII Organization

Sponsors

Platinum Sponsors

The Artificial Intelligence Journal

COST Action IC0801 “Agreement-Technologies”

The Office of Naval Research Global (ONRG)

Gold Sponsors

Siemens AG Österreich

Storm Technology

Other Sponsors

– The EU FP7 Integrated Project “LOD2”
– The Marie Curie IRSES Action “Net2”
– Alcatel-Lucent
– IOS Press
– Skytec AG
– The Digital Enterprise Research Institute (DERI)

Table of Contents

Introduction to Linked Data and Its Lifecycle on the Web 1
Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo

Foundations of Description Logics . 76
Sebastian Rudolph

Using SPARQL with RDFS and OWL Entailment 137
Birte Glimm

Database Foundations for Scalable RDF Processing 202
Katja Hose, Ralf Schenkel, Martin Theobald, and Gerhard Weikum

Scalable OWL 2 Reasoning for Linked Data . 250
Aidan Hogan, Jeff Z. Pan, Axel Polleres, and Yuan Ren

Rules and Logic Programming for the Web . 326
Adrian Paschke

OWL and Rules . 382
Adila Krisnadhi, Frederick Maier, and Pascal Hitzler

Modeling the Web of Data (Introductory Overview) 416
Claudio Gutierrez

Trust Management Methodologies for the Web . 445
Denis Trček

Application and Evaluation of Inductive Reasoning Methods for the
Semantic Web and Software Analysis . 460

Christoph Kiefer and Abraham Bernstein

Probabilistic-Logical Web Data Integration . 504
Mathias Niepert, Jan Noessner, Christian Meilicke, and
Heiner Stuckenschmidt

An Introduction to Constraint Programming and Combinatorial
Optimisation (Abstract) . 534

Barry O’Sullivan

Author Index . 535

Introduction to Linked Data
and Its Lifecycle on the Web

Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo

AKSW, Institut für Informatik, Universität Leipzig, Pf 100920, 04009 Leipzig
lastname@informatik.uni-leipzig.de

http://aksw.org

Abstract. With Linked Data, a very pragmatic approach towards achieving the
vision of the Semantic Web has recently gained much traction. The term Linked
Data refers to a set of best practices for publishing and interlinking structured data
on the Web. While many standards, methods and technologies developed within
by the Semantic Web community are applicable for Linked Data, there are also
a number of specific characteristics of Linked Data, which have to be consid-
ered. In this article we introduce the main concepts of Linked Data. We present an
overview of the Linked Data lifecycle and discuss individual approaches as well
as the state-of-the-art with regard to extraction, authoring, linking, enrichment as
well as evolution of Linked Data. We conclude the chapter with a discussion of is-
sues, limitations and further research and development challenges of Linked Data.

1 Introduction

One of the biggest challenges in the area of intelligent information management is the
exploitation of the Web as a platform for data and information integration as well as for
search and querying. Just as we publish unstructured textual information on the Web
as HTML pages and search such information by using keyword-based search engines,
we will soon be able to easily publish structured information, reliably interlink this
information with other data published on the Web and search the resulting data space
by using more expressive querying beyond simple keyword searches.

The Linked Data paradigm has evolved as a powerful enabler for the transition of the
current document-oriented Web into a Web of interlinked Data and, ultimately, into the
Semantic Web. The term Linked Data here refers to a set of best practices for publishing
and connecting structured data on the Web. These best practices have been adopted by
an increasing number of data providers over the past three years, leading to the creation
of a global data space that contains many billions of assertions - the Web of Linked
Data (cf. Figure 1).

In this chapter we give an overview of recent development in the area of Linked Data
management. The different stages in the linked data life-cycle are depicted in Figure 2.

Information represented in unstructured form or adhering to other structured or semi-
structured representation formalisms must be mapped to the RDF data model (Extrac-
tion). Once there is a critical mass of RDF data, mechanisms have to be in place to
store, index and query this RDF data efficiently (Storage& Querying). Users must have
the opportunity to create new structured information or to correct and extend existing

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 1–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://aksw.org

2 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 1. Overview of some of the main Linked Data knowledge bases and their interlinks available
on the Web. (This overview is published regularly at http://lod-cloud.net and generated
from the Linked Data packages described at the dataset metadata repository ckan.net.).

Fig. 2. The Linked Data life-cycle

ones (Authoring). If different data publishers provide information about the same or
related entities, links between those different information assets have to be established

Introduction to Linked Data and Its Lifecycle on the Web 3

(Linking). Since Linked Data primarily comprises instance data we observe a lack of
classification, structure and schema information. This deficiency can be tackled by ap-
proaches for enriching data with higher-level structures in order to be able to aggregate
and query the data more efficiently (Enrichment). As with the Document Web, the Data
Web contains a variety of information of different quality. Hence, it is important to
devise strategies for assessing the quality of data published on the Data Web (Quality
Analysis). Once problems are detected, strategies for repairing these problems and sup-
porting the evolution of Linked Data are required (Evolution & Repair). Last but not
least, users have to be empowered to browse, search and explore the structure informa-
tion available on the Data Web in a fast and user friendly manner (Search, Browsing &
Exploration).

These different stages of the linked data life-cycle do not exist in isolation or are
passed in a strict sequence, but mutually fertilize themselves. Examples include the
following:

– The detection of mappings on the schema level, will directly affect instance level
matching and vice versa.

– Ontology schema mismatches between knowledge bases can be compensated for
by learning which concepts of one are equivalent to which concepts of the other
knowledge base.

– Feedback and input from end users can be taken as training input (i.e. as positive or
negative examples) for machine learning techniques in order to perform inductive
reasoning on larger knowledge bases, whose results can again be assessed by end
users for iterative refinement.

– Semantically-enriched knowledge bases improve the detection of inconsistencies
and modelling problems, which in turn results in benefits for interlinking, fusion,
and classification.

– The querying performance of the RDF data management directly affects all other
components and the nature of queries issued by the components affects the RDF
data management.

As a result of such interdependence, we envision the Web of Linked Data to realize an
improvement cycle for knowledge bases, in which an improvement of a knowledge base
with regard to one aspect (e.g. a new alignment with another interlinking hub) triggers
a number of possible further improvements (e.g. additional instance matches).

The use of Linked Data offers a number of significant benefits:

– Uniformity. All datasets published as Linked Data share a uniform data model, the
RDF statement data model. With this data model all information is represented in
facts expressed as triples consisting of a subject, predicate and object. The elements
used in subject, predicate or object positions are mainly globally unique IRI/URI
entity identifiers. At the object position also literals, i.e. typed data values can be
used.

– De-referencability. URIs are not just used for identifying entities, but since they can
be used in the same way as URLs they also enable locating and retrieving resources
describing and representing these entities on the Web.

4 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

– Coherence. When an RDF triple contains URIs from different namespaces in sub-
ject and object position, this triple basically establishes a link between the entity
identified by the subject (and described in the source dataset using namspace A)
with the entity identified by the object (described in the target dataset using names-
pace B). Through the typed RDF links, data items are effectively interlinked.

– Integrability. Since all Linked Data source share the RDF data model, which is
based on a single mechanism for representing information, it is very easy to at-
tain a syntactic and simple semantic integration of different Linked Data sets. A
higher level semantic integration can be achieved by employing schema and in-
stance matching techniques and expressing found matches again as alignments of
RDF vocabularies and ontologies in terms of additional triple facts.

– Timeliness. Publishing and updating Linked Data is relatively simple thus facili-
tating a timely availability. In addition, once a Linked Data source is updated it is
straightforward to access and use the updated data source, since time consuming
and error prune extraction, transformation and loading is not required.

The development of research approaches, standards, technology and tools for support-
ing the Linked Data lifecycle data is currently one of the main challenges. Developing
adequate and pragmatic solutions to these problems can have a substantial impact on
science, economy, culture and society in general. The publishing, integration and aggre-
gation of statistical and economic data, for example, can help to obtain a more precise
and timely picture of the state of our economy. In the domain of health care and life
sciences making sense of the wealth of structured information already available on the
Web can help to improve medical information systems and thus make health care more
adequate and efficient. For the media and news industry, using structured background
information from the Data Web for enriching and repurposing the quality content can
facilitate the creation of new publishing products and services. Linked Data technolo-
gies can help to increase the flexibility, adaptability and efficiency of information man-
agement in organizations, be it companies, governments and public administrations or
online communities. For end-users and society in general, the Data Web will help to ob-
tain and integrate required information more efficiently and thus successfully manage
the transition towards a knowledge-based economy and an information society.

Intended audience. This chapter is part of the lecture notes of the ReasoningWeb Sum-
mer School 2011. As such it is primarily intended for postgraduate (PhD or MSc) stu-
dents, postdocs, and other young researchers investigating aspects related to the Data
Web. However, the chapter might also be beneficial to senior researchers wishing to
learn about Linked Data issues related to their own fields of research. Most parts of
this chapter should be self-contained. However, we committed a detailed description of

Table 1. Juxtaposition of the concepts Linked Data, Linked Open Data and Open Data

Representation \ degree of openness Possibly closed Open (cf. opendefinition.org)
Structured data model Data Open Data
(i.e. XML, CSV, SQL etc.)
RDF data model Linked Data (LD) Linked Open Data (LOD)
(published as Linked Data)

opendefinition.org

Introduction to Linked Data and Its Lifecycle on the Web 5

SPQRQL, since SPARQL is already tackled by the lecture Using SPARQL with RDFS
and OWL entailment by Birte Glimm later in this book.

Structure of this chapter. This chapter aims to explain the foundations of Linked Data
and introducing the different aspects of the Linked Data lifecycle by highlighting a par-
ticular approach and providing references to related work and further reading. We start
by briefly explaining the principles underlying the Linked Data paradigm in Section 2.
The first aspect of the Linked Data lifecycle is the extraction of information from un-
structured, semi-structured and structured sources and their representation according to
the RDF data model (Section 3). We omit the storage and querying aspect, since this is
already well covered by the Using SPARQL with RDFS and OWL entailment chapter of
this book. We present the user friendly authoring and manual revision aspect of Linked
Data with the example of Semantic Wikis in Section 4. The interlinking aspect is tack-
led in Section 5 and gives an overview on the LIMES framework. We describe how the
instance data published and commonly found on the Data Web can be enriched with
higher level structures in Section 6. We present an approach for the pattern-based evo-
lution of Linked Data knowledge-bases in Section 7. Due to space limitations we omit
a detailed discussion of the quality analysis as well as search, browsing and exploration
aspects of the Linked Data lifecycle in this chapter.

2 The Linked Data Paradigm

In this section we introduce the basic principles of Linked Data. The section is partially
based on the Section 2 from [48]. The term Linked Data refers to a set of best practices
for publishing and interlinking structured data on the Web. These best practices were
introduced by Tim Berners-Lee in his Web architecture note Linked Data1 and have
become known as the Linked Data principles. These principles are:

– Use URIs as names for things.
– Use HTTP URIs so that people can look up those names.
– When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).
– Include links to other URIs, so that they can discover more things.

The basic idea of Linked Data is to apply the general architecture of the World Wide
Web [56] to the task of sharing structured data on global scale. The document Web
is built on the idea of setting hyperlinks between Web documents that may reside on
different Web servers. It is built on a small set of simple standards: Uniform Resource
Identifiers (URIs) and their extension Internationalized Resource Identifiers (IRIs) as
globally unique identification mechanism [19], the Hypertext Transfer Protocol (HTTP)
as universal access mechanism [39], and the Hypertext Markup Language (HTML) as
a widely used content format [52]. Linked Data builds directly on Web architecture and
applies this architecture to the task of sharing data on global scale.

1 http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

6 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

2.1 Resource Identification with IRIs

To publish data on the Web, the data items in a domain of interest must first be iden-
tified. These are the things whose properties and relationships will be described in the
data, and may include Web documents as well as real-world entities and abstract con-
cepts. As Linked Data builds directly on Web architecture [56], the Web architecture
term resource is used to refer to these things of interest, which are in turn identified by
HTTP URIs. Linked Data uses only HTTP URIs, avoiding other URI schemes such as
URNs [82] and DOIs2. HTTP URIs make good names for two reasons:

1. They provide a simple way to create globally unique names in a decentralized fash-
ion, as every owner of a domain name or delegate of the domain name owner may
create new URI references.

2. They serve not just as a name but also as a means of accessing information describ-
ing the identified entity.

2.2 De-referencability

Any HTTP URI should be de-referencable, meaning that HTTP clients can look up the
URI using the HTTP protocol and retrieve a description of the resource that is identified
by the URI. This applies to URIs that are used to identify classic HTML documents,
as well as URIs that are used in the Linked Data context to identify real-world objects
and abstract concepts. Descriptions of resources are embodied in the form of Web doc-
uments. Descriptions that are intended to be read by humans are often represented as
HTML. Descriptions that are intended for consumption by machines are represented
as RDF data. Where URIs identify real-world objects, it is essential to not confuse the
objects themselves with the Web documents that describe them. It is therefore common
practice to use different URIs to identify the real-world object and the document that
describes it, in order to be unambiguous. This practice allows separate statements to be
made about an object and about a document that describes that object. For example, the
creation year of a painting may be rather different to the creation year of an article about
this painting. Being able to distinguish the two through use of different URIs is critical
to the consistency of the Web of Data.

The Web is intended to be an information space that may be used by humans as
well as by machines. Both should be able to retrieve representations of resources in a
form that meets their needs, such as HTML for humans and RDF for machines. This
can be achieved using an HTTP mechanism called content negotiation [39]. The basic
idea of content negotiation is that HTTP clients send HTTP headers with each request
to indicate what kinds of documents they prefer. Servers can inspect these headers and
select an appropriate response. If the headers indicate that the client prefers HTML then
the server will respond by sending an HTML document If the client prefers RDF, then
the server will send the client an RDF document.

There are two different strategies to make URIs that identify real-world objects de-
referencable [105]. Both strategies ensure that objects and the documents that describe
them are not confused and that humans as well as machines can retrieve appropriate
representations.

2 http://www.doi.org/hb.html

http://www.doi.org/hb.html

Introduction to Linked Data and Its Lifecycle on the Web 7

303 URIs. Real-world objects can not be transmitted over the wire using the HTTP
protocol. Thus, it is also not possible to directly de-reference URIs that identify real-
world objects. Therefore, in the 303 URI strategy, instead of sending the object itself
over the network, the server responds to the client with the HTTP response code 303
See Other and the URI of a Web document which describes the real-world object.
This is called a 303 redirect. In a second step, the client de-references this new URI and
gets a Web document describing the real-world object.

Hash URIs. A widespread criticism of the 303 URI strategy is that it requires two HTTP
requests to retrieve a single description of a real-world object. One option for avoiding
these two requests is provided by the hash URI strategy. The hash URI strategy builds
on the characteristic that URIs may contain a special part that is separated from the base
part of the URI by a hash symbol (#). This special part is called the fragment identifier.
When a client wants to retrieve a hash URI the HTTP protocol requires the fragment
part to be stripped off before requesting the URI from the server. This means a URI that
includes a hash cannot be retrieved directly, and therefore does not necessarily identify
a Web document. This enables such URIs to be used to identify real-world objects and
abstract concepts, without creating ambiguity [105].

Both approaches have their advantages and disadvantages. Section 4.4. of the
W3C Interest Group Note Cool URIs for the Semantic Web compares the two ap-
proaches [105]: Hash URIs have the advantage of reducing the number of necessary
HTTP round-trips, which in turn reduces access latency. The downside of the hash URI
approach is that the descriptions of all resources that share the same non-fragment URI
part are always returned to the client together, irrespective of whether the client is inter-
ested in only one URI or all. If these descriptions consist of a large number of triples,
the hash URI approach can lead to large amounts of data being unnecessarily transmit-
ted to the client. 303 URIs, on the other hand, are very flexible because the redirection
target can be configured separately for each resource. There could be one describing
document for each resource, or one large document for all of them, or any combination
in between. It is also possible to change the policy later on.

2.3 RDF Data Model

The RDF data model [1] represents information as sets of statements, which can be
visualized as node-and-arc-labeled directed graphs. The data model is designed for the
integrated representation of information that originates from multiple sources, is hetero-
geneously structured, and is represented using different schemata. RDF aims at being
employed as a lingua franca, capable of moderating between other data models that are
used on the Web.

In RDF, information is represented in statements, called RDF triples. The three parts
of each triple are called its subject, predicate, and object. A triple mimics the basic
structure of a simple sentence, such as for example:

Burkhard Jung is the mayor of Leipzig
(subject) (predicate) (object)

The following is the formal definition of RDF triples as it can be found in the W3C
RDF standard [1].

8 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Definition 1 (RDF Triple). Assume there are pairwise disjoint infinite sets I, B, and L
(IRIs, blank nodes, and RDF literals, respectively). A triple (v1, v2, v3) ∈ (I ∪ B) × I ×
(I ∪ B ∪ L) is called an RDF triple. In this tuple, v1 is the subject, v2 the predicate and
v3 the object. We denote the union I ∪ B ∪ L as by T called RDF terms.

The main idea is to use IRIs as identifiers for entities in the subject, predicate and object
positions in a triple. Data values can be represented in the object position as literals.
Furthermore, the RDF data model also allows in subject and object positions the use of
identifiers for unnamed entities (called blank nodes), which are not globally unique and
can thus only be referenced locally. However, the use of blank nodes is discouraged in
the Linked Data context as we discuss below. Our example fact sentence about Leipzig’s
mayor would now look as follows:

<http://leipzig.de/id>
<http://example.org/p/hasMayor>

<http://Burkhard-Jung.de/id> .
(subject) (predicate) (object)

This example shows, that IRIs used within a triple can originate from different
namespaces thus effectively facilitating the mixing and mashing of different RDF vo-
cabularies and entities from different Linked Data knowledge bases. A triple having
identifiers from different knowledge bases at subject and object position can be also
viewed as an typed link between the entities identified by subject and object. The pred-
icate then identifies the type of link. If we combine different triples we obtain an RDF
graph.

Definition 2 (RDF Graph). A finite set of RDF triples is called RDF graph. The RDF
graph itself represents an resource, which is located at a certain location on the Web
and thus has an associated IRI, the graph IRI.

An example of an RDF graph is depicted in Figure 3. Each unique subject or object
contained in the graph is visualized as a node (i.e. oval for resources and rectangle
for literals). Predicates are visualized as labeled arcs connecting the respective nodes.
There are a number of synonyms being used for RDF graphs, all meaning the essentially
the same but stressing different aspects of an RDF graph, such as RDF document (file
perspective), knowledge base (collection of facts), vocabulary (shared terminology),
ontology (shared logical conceptualization).

Problematic RDF features in the Linked Data Context. Besides the features mentioned
above, the RDF Recommendation [1] also specifies some other features. In order to
make it easier for clients to consume data only the subset of the RDF data model de-
scribed above should be used. In particular, the following features are problematic when
publishing RDF as Linked Data:

– RDF reification should be avoided if possible, as reified statements are rather cum-
bersome to query with the SPARQL query language. In many cases using reification
to publish metadata about individual RDF statements can be avoided by attaching
the respective metadata to the RDF document containing the relevant triples.

Introduction to Linked Data and Its Lifecycle on the Web 9

Fig. 3. Example RDF graph containing 9 triples describing the city of Leipzig and its mayor

– RDF collections and RDF containers are also problematic if the data needs to be
queried with SPARQL. Therefore, in cases where the relative ordering of items
in a set is not significant, the use of multiple triples with the same predicate is
recommended.

– The scope of blank nodes is limited to the document in which they appear, meaning
it is not possible to create links to them from external documents. In addition, it
is more difficult to merge data from different sources when blank nodes are used,
as there is no URI to serve as a common key. Therefore, all resources in a data set
should be named using IRI references.

2.4 RDF Serializations

The initial official W3C RDF standard [1] comprised a serialization of the RDF data
model in XML called RDF/XML. Its rationale was to integrate RDF with the existing
XML standard, so it could be used smoothly in conjunction with the existing XML
technology landscape. Unfortunately, RDF/XML turned out to be rather difficult to un-
derstand for the majority of potential users, since it requires to be familiar with two
data models (i.e. the tree-oriented XML data model as well as the statement oriented
RDF datamodel) and interactions between them, since RDF statements are represented
in XML. As a consequence, with N-Triples, Turtle and N3 a family of alternative text-
based RDF serializations was developed, whose members have the same origin, but bal-
ance different between readability for humans and machines. Later in 2009, RDFa (RDF
Annotations, [2]) was standardized by the W3C in order to simplify the integration of
HTML and RDF and to allow the joint representation of structured and unstructured
content within a single source HTML document. Another RDF serialization, which is
particularly beneficial in the context of JavaScript web applications and mashups is the
serialization of RDF in JSON. In the sequel we present each of these RDF serializa-
tions in some more detail. Figure 5 presents an example serialized in the most popular
serializations.

N-Triples. This serialization format was developed specifically for RDF graphs. The
goal was to create a serialization format which is very simple. N-Triples are easy to
parse and generate by software. They are a subset of Notation 3 and Turtle but lack, for

10 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 4. Various textual RDF serializations as subsets of N3 (from [18])

example, shortcuts such as CURIEs. This makes them less readable and more difficult
to create manually. Another disadvantage is that N-triples use only the 7-bit US-ASCII
character encoding instead of UTF-8.

Turtle. Turtle (Terse RDF Triple Language) is a subset of, and compatible with, Nota-
tion 3 and a superset of the minimal N-Triples format (cf. Figure 4). The goal was to
use the essential parts of Notation 3 for the serialization of RDF models and omit ev-
erything else. Turtle became part of the SPARQL query language for expressing graph
patterns. Turtle, just like Notation 3, is human-readable, and can handle the "%" charac-
ter in URIs (required for encoding special characters) as well as IRIs due to its UTF-8
encoding.

Notation 3. N3 (Notation 3) was devised by Tim Berners-Lee and developed for the
purpose of serializing RDF. The main aim was to create a very human-readable serial-
ization. Hence, an RDF model serialized in N3 is much more compact than the same
model in RDF/XML but still allows a great deal of expressiveness even going beyond
the RDF data model in some aspects. Since, the encoding for N3 files is UTF-8 the use
of IRIs does not pose a problem.

RDF/XML. The RDF/XML syntax [80] is standardized by the W3C and is widely used
to publish Linked Data on the Web. However, the syntax is also viewed as difficult
for humans to read and write, and therefore consideration should be given to using

Introduction to Linked Data and Its Lifecycle on the Web 11

N-Triples
1 <http://dbpedia.org/resource/Leipzig> <http://dbpedia.org/property/hasMayor>
2 <http://dbpedia.org/resource/Burkhard_Jung > .
3 <http://dbpedia.org/resource/Leipzig> <http://www.w3.org/2000/01/rdf-schema#label>
4 "Leipzig"@de .
5 <http://dbpedia.org/resource/Leipzig> <http://www.w3.org/2003/01/geo/wgs84_pos#lat>
6 "51.333332"^^<http://www.w3.org/2001/XMLSchema#float> .

Turtle
1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix rdfs="http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix dbp="http://dbpedia.org/resource/> .
4 @prefix dbpp="http://dbpedia.org/property/> .
5 @prefix geo="http://www.w3.org/2003/01/geo/wgs84_pos#> .
6

7 dbp:Leipzig dbpp:hasMayor dbp:Burkhard_Jung ,
8 rdfs:label "Leipzig"@de ,
9 geo:lat "51.333332"^^xsd:float ,

RDF/XML
1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4 xmlns:dbpp="http://dbpedia.org/property/"
5 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
6 <rdf:Description rdf:about="http://dbpedia.org/resource/Leipzig">
7 <property:hasMayor rdf:resource="http://dbpedia.org/resource/Burkhard_Jung" />
8 <rdfs:label xml:lang="de">Leipzig </rdfs:label>
9 <geo:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#float">51.3333</geo:lat>

10 </rdf:Description >
11 </rdf:RDF>

RDFa
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
3 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
4 <html version="XHTML+RDFa 1.0" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml"
5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
7 xmlns:dbpp="http://dbpedia.org/property/"
8 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
9 <head><title>Leipzig </title></head>

10 <body about="http://dbpedia.org/resource/Leipzig">
11 <h1 property="rdfs:label" xml:lang="de">Leipzig </h1>
12 <p>Leipzig is a city in Germany. Leipzig’s mayor is
13 Burkhard Jung. It is located
14 at latitude 51.3333.</p>
15 </body>
16 </html>

RDF/JSON
1 {
2 "http://dbpedia.org/resource/Leipzig" : {
3 "http://dbpedia.org/property/hasMayor":
4 [{ "type":"uri", "value":"http://dbpedia.org/resource/Burkhard_Jung" }],
5 "http://www.w3.org/2000/01/rdf-schema#label":
6 [{ "type":"literal", "value":"Leipzig", "lang":"en" }] ,
7 "http://www.w3.org/2003/01/geo/wgs84_pos#lat":
8 [{ "type":"literal", "value":"51.3333",
9 "datatype":"http://www.w3.org/2001/XMLSchema#float" }]

10 }
11 }

Fig. 5. Different RDF serializations of three triples from Figure 3

12 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

other serializations in data management and curation workflows that involve human
intervention, and to the provision of alternative serializations for consumers who may
wish to eyeball the data. The MIME type that should be used for RDF/XML within
HTTP content negotiation is application/rdf+xml.

RDFa. RDF in Attributes (RDFa, [2]) was developed for embedding RDF into XHTML
pages. Since it is an extension to the XML based XHTML, UTF-8 and UTF-16 are
used for encoding. The "%" character for URIs in triples can be used because RDFa
tags are not used for a part of a RDF statement. Thus IRIs are usable, too. Because
RDFa is embedded in XHTML, the overhead is higher compared to other serialization
technologies and also reduces the readability.

RDF/JSON. JavaScript Object Notation (JSON) was developed for easy data inter-
change between applications. JSON, although carrying JavaScript in its name and being
a subset of JavaScript, meanwhile became a language independent format which can be
used for exchanging all kinds of data structures and is widely supported in different
programming languages. Compared to XML, RDF/JSON requires less overhead with
regard to parsing and serializing. There is a non-standardized specification3 for RDF se-
rialization in JSON. Text in JSON and, thus, also RDF resource identifiers are encoded
in Unicode and hence can contain IRIs.

3 Extraction

Information represented in unstructured form or adhering to a different structured repre-
sentation formalism must be mapped to the RDF data model in order to be used within
the Linked Data life-cycle. In this section we give an overview on some relevant ap-
proaches for extracting RDF from unstructured and structured sources.

3.1 From Unstructured Sources

The extraction of structured information from unstructured data sources (especially
text) has been a central pillar of natural language processing (NLP) and Informa-
tion Extraction (IE) for several decades. With respect to the extraction of RDF data
from unstructured data, three sub-disciplines of NLP play a central role: Named En-
tity Recognition (NER) for the extraction of entity labels from text, Keyword/Keyphrase
Extraction (KE) for the recognition of central topics and Relationship Extraction (RE,
also called relation mining) for mining the properties which link the entities and key-
words described in the data source. A noticeable additional task during the migration
of these techniques to Linked Data is the extraction of suitable IRIs for the discovered
entities and relations, a requirement that was not needed before. In this section, we give
a short overview of approaches that implement the required NLP functionality. Then
we present a framework that applies machine learning to boost the quality of the RDF
extraction from unstructured data by merging the results of NLP tools.

3 http://n2.talis.com/wiki/RDF_JSON_Specification

http://n2.talis.com/wiki/RDF_JSON_Specification

Introduction to Linked Data and Its Lifecycle on the Web 13

Named Entity Recognition. The goal of NER is to discover instances of a prede-
fined classes of entities (e.g., persons, locations, organizations) in text. NER tools and
frameworks implement a broad spectrum of approaches, which can be subdivided into
three main categories: dictionary-based, rule-based, and machine-learning approaches.
The first systems for NER implemented dictionary-based approaches, which relied on
a list of NEs and tried to identify these in text [120,5]. Following work that showed that
these approaches did not perform well for NER tasks such as recognizing proper names
[104], rule-based approaches were introduced. These approaches rely on hand-crafted
rules [27,112] to recognize NEs. Most rule-based approaches combine dictionary and
rule-based algorithms to extend the list of known entities. Nowadays, handcrafted rules
for recognizing NEs are usually implemented when no training examples are available
for the domain or language to process [84].

When training examples are available, the methods of choice are borrowed from
supervised machine learning. Approaches such as Hidden Markov Models [127], Max-
imum Entropy Models [30] and Conditional Random Fields [40] have been applied
to the NER task. Due to scarcity of large training corpora as necessitated by machine
learning approaches, semi-supervised [93,83] and unsupervised machine learning ap-
proaches [85,36] have also been used for extracting NER from text. [83] gives an ex-
haustive overview of approaches for NER.

Keyphrase Extraction. Keyphrases/Keywords are multi-word units (MWUs) which
capture the main topics of a document. The automatic detection of such MWUs has been
an important task of NLP for decades but due to the very ambiguous definition of what
an appropriate keyword should be, current approaches to the extraction of keyphrases
still display low F-scores [59]. From the point of view of the Semantic Web, the extrac-
tion of keyphrases is a very similar task to that of finding tags for a given document. Sev-
eral categories of approaches have been adapted to enable KE, of which some originate
from research areas such as summarization and information retrieval (IR). Still, accord-
ing to [58], the majority of the approaches to KE implement combinations of statistical,
rule-based or heuristic methods [43,87] on mostly document [79], keyphrase [115] or
term cohesion features [92]. [59] gives a overview of current tools for KE.

Relation Extraction. The extraction of relations from unstructured data builds upon
work for NER and KE to determine the entities between which relations might exist.
Most tools for RE rely on pattern-based approaches. Some early work on pattern extrac-
tion relied on supervised machine learning [46]. Yet, such approaches demanded large
amount of training data, making them difficult to adapt to new relations. The subse-
quent generation of approaches to RE aimed at bootstrapping patterns based on a small
number of input patterns and instances. For example, [25] presents the Dual Iterative
Pattern Relation Expansion (DIPRE) and applies it to the detection of relations between
authors and titles of books. This approach relies on a small set of seed patterns to max-
imize the precision of the patterns for a given relation while minimizing their error rate
of the same patterns. Snowball [3] extends DIPRE by a new approach to the generation
of seed tuples. Newer approaches aim to either collect redundancy information from the
whole Web [91] or Wikipedia [121,126] in an unsupervised manner or to use linguistic
analysis [47,86] to harvest generic patterns for relations.

14 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

URI Disambiguation. One important problem for the integration of NER tools for
Linked Data is the retrieval of IRIs for the entities to be manipulated. In most cases, the
URIs can be extracted from generic knowledge bases such as DBpedia by comparing
the label found in the input data with the rdfs:label or dc:title of the entities
found in the knowledge base. Furthermore, information such as the type of NEs can be
used to filter the retrieved IRIs via a comparison of the rdfs:label of the rdf:type
of the URIs with the name of class of the NEs. Still in many cases (e.g., Leipzig, Paris),
several entities might bear the same label.

3.2 The FOX Framework

Several frameworks have been developed to implement the functionality above for the
Data Web including OpenCalais4 and Alchemy5. Yet, these tools rely mostly on one
approach to perform the different tasks at hand. In this section, we present the FOX
(Federated knOwledge eXtraction) framework6, which makes use of the diversity of
the algorithms available for NER, KE and RE to generate high-quality RDF.

The architecture of FOX consists of three main layers as shown in Figure 6. The
machine learning layer implements interfaces for accommodating ensemble learning
techniques such as simple veto algorithms but also neural networks. It consists of two
main modules. The training module allows to load training data so as to enable FOX
to learn the best combination of tools and categories for achieving superior recall and
precision on the input training data. Depending on the training algorithm used, the user
can choose to tune the system for either precision or recall. When using neural networks
for example, the user can decide to apply a higher threshold for the output neurons,
thus improving the precision but potentially limiting the recall. The prediction module
allows to run FOX by loading the result of a training session and processing the input
data according to the tool-category combination learned during the training phase. Note
that the same learning approach can by applied to NER, KE, RE and URI lookup as
they call all be modelled as classification tasks.

The second layer of FOX is the controller, which coordinates the access to the mod-
ules that carry out the language processing. The controller is aware of each of the
modules in its backend and carries out the initialisation of these modules once FOX
is started. Furthermore, it collects the results from the backend modules and invokes
the results of a training instance to merge the results of these tools.

The final layer of FOX is the tool layer, wherein all NLP tools and services integrated
in FOX can be found. It is important to notice that the tools per se are not trained during
the learning phase of FOX. Rather, we learn of the models already loaded in the tools
to allow for the best prediction of named entities in a given domain.

The ensemble learning implemented by FOX was evaluated in the task of NER by
integrating three NER tools (Stanford NER, Illinois NER and a commercial tool) and
shown to lead to an improvement of more than 13% in F-Score (see Figure 7) when
combining three tools, therewith even outperforming commercial systems.

4 http://www.opencalais.com
5 http://www.alchemyapi.com
6 http://aksw.org/projects/fox

http://www.opencalais.com
http://www.alchemyapi.com
http://aksw.org/projects/fox

Introduction to Linked Data and Its Lifecycle on the Web 15

Machine Learning

Controller

Tools

Prediction

Training

Named Entity
Recognition

Keyphrase
Extraction

Relation
Extraction

URI Lookup

Fig. 6. FOX Architecture

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

Precision Recall F-Score

Stanford NER

Illinois NER

Commecial Tool

FOX

Fig. 7. Comparison of precision, recall and F-score of the best runs of FOX and its components
on NER

3.3 From Structured Sources

Structured knowledge, e.g. relational databases and XML, is the backbone of many
(web) applications. Extracting or converting this knowledge to RDF is a long-standing
research goal in the Semantic Web community. A conversion to RDF allows to integrate
the data with other sources and perform queries over it. In this lecture, we focus on the
conversion of relational databases to RDF (see Figure 8). In the first part, we summarize
material from a recent relational database to RDF (RDB2RDF) project report. After
that, we describe the mapping language R2RML, which is a language for expressing
database to RDF conversion mappings.

16 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 8. Illustration of RDB to RDF conversion
Source: http://www.w3.org/2001/sw/rdb2rdf/use-cases/

Fig. 9. Table comparing relevant approaches from [7]

Triplify and RDB2RDF Survey report. The table displayed in Figure 9 is taken from
the Triplify WWW paper [7]. The survey report [103] furthermore contained a chart(see
Figure 10) showing the reference framework for classifying the approaches and an ex-
tensive table classifying the approaches (see Figure 11).

The following criteria can be extracted:

Automation Degree. Degree of mapping creation automation.
Values: Manual, Automatic, Semi-Automatic.

Domain or Database Semantics Driven. Some approaches are tailored to model a do-
main, sometimes with the help of existing ontologies, while others attempt to extract
domain information primarily from the given database schema with few other resources
used (domain or database semantics-driven). The latter often results in a table-to-class,
column-to-predicate mapping.Some approaches also use a (semi) automatic approach
based on the database, but allow manual customization to model domain semantics.

http://www.w3.org/2001/sw/rdb2rdf/use-cases/

Introduction to Linked Data and Its Lifecycle on the Web 17

Fig. 10. Reference framework by [103]

Values: Domain, DB (database), DB+M (database and later manual customisation),
Both (Domain and DB).

Access Paradigm. Resulting access paradigm (ETL [extract transform load], Linked
Data, SPARQL access). Note that the access paradigm also determines whether the
resulting RDF model updates automatically. ETL means a one time conversion, while
Linked Data and SPARQL always process queries versus the original database.
Values: SPARQL, ETL, LD.

Mapping Language. The used mapping language as an important factor for reusability
and initial learning cost.
Values: Visual Tool, intern (internal self-designed language), FOL, n/a (no information
available), R2O, XSLT, D2RQ, proprietary, SQL.

Domain reliance. Domain reliance (general or domain-dependent): requiring a pre-
defined ontology is a clear indicator of domain dependency.
Values: Dependent, General.

Type. Although not used in the table the paper discusses four different classes:
Values: Alignment, Database Mining, Integration, Languages/Servers.

R2RML - RDB to RDF Mapping Language. The R2RML working draft7 specifies
an RDF notation for mapping relational tables, views or queries into RDF. The primary
area of applicability of this is extracting RDF from relational databases, but in special
cases R2RML could lend itself to on-the-fly translation of SPARQL into SQL or to con-
verting RDF data to a relational form. The latter application is not the primary intended
use of R2RML but may be desirable for importing linked data into relational stores.
This is possible if the constituent mappings and underlying SQL objects constitute
updateable views in the SQL sense.

7 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/

18 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 11. Comparison of approaches from [103]

Introduction to Linked Data and Its Lifecycle on the Web 19

Data integration is often mentioned as a motivating use case for the adoption of RDF.
This integration will very often be between relational databases which have logical en-
tities in common, each with its local schema and identifiers.Thus, we expect to see
relational to RDF mapping use cases involving the possibility of a triple coming from
multiple sources. This does not present any problem if RDF is being extracted but does
lead to complications if SPARQL queries are mapped into SQL. In specific, one will
end up with potentially very long queries consisting of joins of unions. Most of the joins
between terms of the unions will often be provably empty and can thus be optimized
away. This capability however requires the mapping language to be able to express
metadata about mappings, i.e. that IRIs coming from one place are always disjoint from
IRIs coming from another place. Without such metadata optimizing SPARQL to SQL
translation is not possible, which will significantly limit the possibility of querying col-
lections of SQL databases through a SPARQL end point without ETL-ing the mapped
RDF into an RDF store.

RDF is emerging as a format for interoperable data publishing. This does not entail
that RDF were preferable as a data warehousing model. Besides, for large warehouses,
RDF is far from cost competitive with relational technology, even though LOD2 ex-
pects to narrow this gap. Thus it follows that on the fly mapping of SPARQL to SQL
will be important. Regardless of the relative cost or performance of relational or RDF
technology, it is not a feasible proposition to convert relational warehouses to RDF in
general, rather existing investments must be protected and reused. Due to these rea-
sons, R2RML will have to evolve in the direction of facilitating querying of federated
relational resources.

4 Authoring with Semantic Wikis

Semantic Wikis are an extension to conventional, text-based Wikis. While in conven-
tional Wikis pages are stored as blocks of text using a special Wiki markup for structur-
ing the display of the text and adding links to other pages, semantic Wikis aim at adding
rich structure to the information itself. To this end, two initially orthogonal approaches
have been used: a) extending the markup language to allow semantic annotations and
links with meaning or b) building the Wiki software directly with structured information
in mind. Nowadays, both approaches have somewhat converged, for instance Seman-
tic MediaWiki [61] also provides forms for entering structured data (see Figure 12).
Characteristics of both approaches are summarized in Table 2 for the two prototypical
representatives of both approaches, i.e. Semantic MediaWiki and OntoWiki.

Extending Wikis with Semantic Markup. The benefit of a Wiki system comes from
the amount of interlinking between Wiki pages. Those links clearly state a relationship

Table 2. Conceptual differences between Semantic MediaWiki and OntoWiki

Semantic MediaWiki OntoWiki

Managed entities Articles Resources
Editing Wiki markup Forms
Atomic element Text blob Statement

20 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Categorial
navigation

Form-based
editing

Graph
navigation

History Search
Free text
editing

Fig. 12. Comparison of Semantic MediaWiki and OntoWiki GUI building blocks

between the linked-to and the linking page. However, in conventional Wiki systems this
relationship cannot be made explicit. Semantic Wiki systems therefore add a means
to specify typed relations by extending the Wiki markup with semantic (i.e. typed)
links. Once in place, those links form a knowledge base underlying the Wiki which
can be used to improve search, browsing or automatically generated lists and category
pages. Examples of approaches for extending Wikis with semantic markup can be found
in [61,106,12,90,110]. They represent a straightforward combination of existing Wiki

Introduction to Linked Data and Its Lifecycle on the Web 21

Application Layer

OntoWiki API,
Access Interfaces

Zend Framework

Persistence Layer

RDF Store

S
to

re
 A

da
pt

er

Authentication, ACL,
Versioning, …

User Interface Layer

CSS
Framework

OntoWiki UI
API

RDFauthor Templates

Extensions
(Evolution,

Multimedia, …)

Fig. 13. Overview of OntoWiki’s architecture with extension API and Zend web framework
(modified according to [49])

systems and the Semantic Web knowledge representation paradigms. Yet, we see the
following obstacles:

Usability: The main advantage of Wiki systems is their unbeatable usability. Adding
more and more syntactic possibilities counteracts ease of use for editors.

Redundancy: To allow the answering of real-time queries to the knowledge base, state-
ments have to be additionally kept in a triple store. This introduces a redundancy,
which complicates the implementation.

Evolution: As a result of storing information in both Wiki texts and triple store, sup-
porting evolution of knowledge is difficult.

Wikis for Editing Structured Data. In contrast to text-based systems, Wikis for struc-
tured data – also called Data Wikis – are built on a structured model of the data being
edited. The Wiki software can be used to add instances according to the schema or (in
some systems) edit the schema itself. One of those systems is OntoWiki8 [9] which
bases its data model on RDF. This way, both schema and instance data are represented
using the same low-level model (i.e. statements) and can therefore be handled identi-
cally by the Wiki.

4.1 OntoWiki - A Semantic Data Wiki

OntoWiki started as an RDF-based data wiki with emphasis on collaboration but has
meanwhile evolved into a comprehensive framework for developing Semantic Web ap-
plications [49]. This involved not only the development of a sophisticated extension
interface allowing for a wide range of customizations but also the addition of several ac-
cess and consumption interfaces allowing OntoWiki installations to play both a provider
and a consumer role in the emerging Web of Data.

8 Available at: http://ontowiki.net

http://ontowiki.net

22 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

OntoWiki is inspired by classical Wiki systems, its design, however, (as men-
tioned above) is independent and complementary to conventional Wiki technologies. In
contrast to other semantic Wiki approaches, in OntoWiki text editing and knowledge
engineering (i. e. working with structured knowledge bases) are not mixed. Instead, On-
toWiki directly applies the Wiki paradigm of “making it easy to correct mistakes, rather
than making it hard to make them” [70] to collaborative management of structured
knowledge. This paradigm is achieved by interpreting knowledge bases as information
maps where every node is represented visually and interlinked to related resources.
Furthermore, it is possible to enhance the knowledge schema gradually as well as the
related instance data agreeing on it. As a result, the following requirements and corre-
sponding features characterize OntoWiki:

Intuitive display and editing of instance data should be provided in generic ways, yet
enabling domain-specific presentation of knowledge.

Semantic views allow the generation of different views and aggregations of the knowl-
edge base.

Versioning and evolution provides the opportunity to track, review and roll-back
changes selectively.

Semantic search facilitates easy-to-use full-text searches on all literal data, search re-
sults can be filtered and sorted (using semantic relations).

Community support enables discussions about small information chunks. Users are
encouraged to vote about distinct facts or prospective changes.

Online statistics interactively measures the popularity of content and activity of users.
Semantic syndication supports the distribution of information and their integration

into desktop applications.

OntoWiki enables the easy creation of highly structured content by distributed commu-
nities. The following points summarize some limitations and weaknesses of OntoWiki
and thus characterize the application domain:

Environment: OntoWiki is a Web application and presumes all collaborators to work
in a Web environment, possibly distributed.

Usage Scenario: OntoWiki focuses on knowledge engineering projects where a single,
precise usage scenario is either initially (yet) unknown or not (easily) definable.

Reasoning: Application of reasoning services was (initially) not the primary focus.

4.2 Generic and Domain-Specific Views

OntoWiki can be used as a tool for presenting, authoring and managing knowledge
bases adhering to the RDF data model. As such, it provides generic methods and views,
independent of the domain concerned. Two generic views included in OntoWiki are the
resource view and the list view. While the former is generally used for displaying all
known information about a resource, the latter can present a set of resources, typically
instances of a certain concept. That concept must not necessarily be explicitly defined as
rdfs:Class or owl:Class in the knowledge base. Via its faceted browsing, OntoWiki
allows the construction of complex concept definitions, with a pre-defined class as a
starting point by means of property value restrictions. These two views are sufficient for

Introduction to Linked Data and Its Lifecycle on the Web 23

browsing and editing all information contained in a knowledge base in a generic way.
For domain-specific use cases, OntoWiki provides an easy-to-use extension interface
that enables the integration of custom components. By providing such a custom view, it
is even possible to hide completely the fact that an RDF knowledge base is worked on.
This permits OntoWiki to be used as a data-entry frontend for users with a less profound
knowledge of Semantic Web technologies.

4.3 Workflow

With the use of RDFS [24] and OWL [94] as ontology languages, resource definition
is divisible into different layers: a terminology box for conceptual information (i. e.
classes and properties) and an assertion box for entities using the concepts defined
(i. e. instances). There are characteristics of RDF which, for end users, are not easy
to comprehend (e. g. classes can be defined as instances of owl:Class). OntoWiki’s
user interface, therefore, provides elements for these two layers, simultaneously in-
creasing usability and improving a user’s comprehension for the structure of the data.
After starting and logging in into OntoWiki with registered user credentials, it is pos-
sible to select one of the existing ontologies. The user is then presented with general
information about the ontology (i. e. all statements expressed about the knowledge base
as a resource) and a list of defined classes, as part of the conceptual layer.

After starting and logging in into OntoWiki with registered user credentials, it is
possible to select one of the existing knowledge bases. The user is then presented with
general information about the ontology (i. e. all statements expressed about the knowl-
edge base as a resource) and a list of defined classes, as part of the conceptual layer.
By selecting one of these classes, the user obtains a list of the class’ instances. OntoWiki
applies basic rdfs:subClassOf reasoning automatically. After selecting an instance
from the list – or alternatively creating a new one – it is possible to manage (i. e. in-
sert, edit and update) information in the details view.OntoWiki focuses primarily on the
assertion layer, but also provides ways to manage resources on the conceptual layer.
By enabling the visualization of schema elements, called System Classes in the On-
toWiki nomenclature, conceptional resources can be managed in a similar fashion as
instance data.

4.4 Authoring

Semantic content in OntoWiki is represented as resource descriptions. Following the
RDF data model representing one of the foundations of the Semantic Web vision, re-
source descriptions are represented (at the lowest level) in the form of statements. Each
of these statements (or triples) consist of a subject which identifies a resource as well as
a predicate and an object which together represent data about said resource in a fashion
reminiscent of key-value pairs. By means of RDFa [2], these statements are retained in
the HTML view (i.e. user interface) part and are thus accessible to client-side techniques
like JavaScript.

Authoring of such content is based on said client-side representation by employ-
ing the RDFauthor approach [114]: views are declared in terms of the model language
(RDF) which allows the underlying model be restored. Based on this model, a user
interface can be generated with the model being providing all the domain knowledge

24 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 14. OntoWiki views: (background) A tabular list view, which contains a filtered list of re-
sources highlighting some specific properties of those resources and (foreground) a resource view
which allows to tag and comment a specific resource as well as editing all property values

required to do so. The RDFauthor system provides an extensible set of authoring wid-
gets specialized for certain editing tasks. RDFauthor was also extended by adding ca-
pabilities for automatically translating literal object values between different languages.
Since the semantic context is known to the system, these translation functionality can
be bound to arbitrary characteristics of the data (e. g. to a certain property or a missing
language).

Versioning& Evolution. As outlined in the wiki principles, keeping track of all changes
is an important task in order to encourage user participation. OntoWiki applies this
concept to RDF-based knowledge engineering in that all changes are tracked on the
statement level [10]. These low-level changes can be grouped to reflect application-
and domain-specific tasks involving modifications to several statements as a single ver-
sioned item. Provenance information as well as other metadata (such as time, user or
context) of a particular changeset can be attached to each individual changeset. All
changes on the knowledge base can be easily reviewed and rolled-back if needed. The
loosely typed data model of RDF encourages continuous evolution and refinement of
knowledge bases. With EvoPat, OntoWiki supports this in a declarative, pattern-based
manner (cf. section 7).

Introduction to Linked Data and Its Lifecycle on the Web 25

4.5 Access Interfaces

In addition to human-targeted graphical user interfaces, OntoWiki supports a number
of machine-accessible data interfaces. These are based on established Semantic Web
standards like SPARQL or accepted best practices like publication and consumption of
Linked Data.

SPARQL Endpoint. The SPARQL recommendation not only defines a query language
for RDF but also a protocol for sending queries to and receiving results from remote
endpoints9. OntoWiki implements this specification, allowing all resources managed in
an OntoWiki be queried over the Web. In fact, the aforementioned RDFauthor authoring
interface makes use of SPARQL to query for additional schema-related information,
treating OntoWiki as a remote endpoint in that case.

Linked Data. Each OntoWiki installation can be part of the emerging Linked Data Web.
According to the Linked Data publication principles (cf. section 2), OntoWiki makes all
resources accessible by its IRI (provided, the resource’s IRI is in the same namespace
as the OntoWiki instance). Furthermore, for each resource used in OntoWiki additional
triples can be fetches if the resource is de-referenceable.

Semantic Pingback. Pingback is an established notification system that gained wide
popularity in the blogsphere. With Semantic Pingback [113], OntoWiki adapts this idea
to Linked Data providing a notification mechanism for resource usage. If a Pingback-
enabled resource is mentioned (i. e. linked to) by another party, its pingback server is no-
tified of the usage. Provided, the Semantic Pingback extension is enabled all resources
used in OntoWiki are pinged automatically and all resources defined in OntoWiki are
Pingback-enabled.

4.6 Exploration Interfaces

For exploring semantic content, OntoWiki provides several exploration interfaces that
range from generic views over search interfaces to sophisticated querying capabilities
for more RDF-knowledgable users. The subsequent paragraphs give an overview of
each of them.

Knowledge base as an information map. The compromise between, on the one hand,
providing a generic user interface for arbitrary RDF knowledge bases and, on the other
hand, aiming at being as intuitive as possible is tackled by regarding knowledge bases
as information maps. Each node at the information map, i. e. RDF resource, is repre-
sented as a Web accessible page and interlinked to related digital resources. These Web
pages representing nodes in the information map are divided into three parts: a left side-
bar, a main content section and a right sidebar. The left sidebar offers the selection of
content to display in the main content section. Selection opportunities include the set of
available knowledge bases, a hierarchical browser and a full-text search.

9 http://www.w3.org/TR/rdf-sparql-protocol/

http://www.w3.org/TR/rdf-sparql-protocol/

26 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Full-text search. The full-text search makes use of special indexes (mapped to propri-
etary extensions to the SPARQL syntax) if the underlying knowledge store provides
this feature, else, plain SPARQL string matching is used. In both cases, the resulting
SPARQL query is stored as an object which can later be modified (e. g. have its filter
clauses refined). Thus, full-text search is seamlessly integrated with faceted browsing
(see below).

Content specific browsing interfaces. For domain-specific use cases, OntoWiki pro-
vides an easy-to-use extension interface that enables the integration of custom compo-
nents. By providing such a custom view, it is even possible to hide completely the fact
that an RDF knowledge base is worked on. This permits OntoWiki to be used as a data-
entry frontend for users with a less profound knowledge of Semantic Web technologies.

Faceted-browsing. Via its faceted browsing, OntoWiki allows the construction of com-
plex concept definitions, with a pre-defined class as a starting point by means of prop-
erty value restrictions. These two views are sufficient for browsing and editing all
information contained in a knowledge base in a generic way.

Query-builder. OntoWiki serves as a SPARQL endpoint, however, it quickly turned out
that formulating SPARQL queries is too tedious for end users. In order to simplify the
creation of queries, we developed the Visual Query Builder10 (VQB) as an OntoWiki
extension, which is implemented in JavaScript and communicates with the triple store
using the SPARQL language and protocol. VQB allows to visually create queries to the
stored knowledge base and supports domain experts with an intuitive visual representa-
tion of query and data. Developed queries can be stored and added via drag-and-drop to
the current query. This enables the reuse of existing queries as building blocks for more
complex ones.

4.7 Applications

Catalogous Professorum. The World Wide Web, as an ubiquitous medium for pub-
lication and exchange, already significantly influenced the way historians work: the
online availability of catalogs and bibliographies allows to efficiently search for content
relevant for a certain investigation; the increasing digitization of works from histori-
cal archives and libraries, in addition, enables historians to directly access historical
sources remotely. The capabilities of the Web as a medium for collaboration, however,
are only starting to be explored. Many, historical questions can only be answered by
combining information from different sources, from different researchers and organiza-
tions. Also, after original sources are analyzed, the derived information is often much
richer, than can be captured by simple keyword indexing. These factors pave the way for
the successful application of knowledge engineering techniques in historical research
communities.

In [99] we report about the application of an adaptive, semantics-based knowl-
edge engineering approach using OntoWiki for the development of a prosopographical
knowledge base. In prosopographical research, historians analyze common character-
istics of historical groups by studying statistically relevant quantities of individual bi-
ographies. Untraceable periods of biographies can be determined on the basis of such

10 http://aksw.org/Projects/OntoWiki/Extension/VQB

http://aksw.org/Projects/OntoWiki/Extension/VQB

Introduction to Linked Data and Its Lifecycle on the Web 27

accomplished analyses in combination with statistically examinations as well as pat-
terns of relationships between individuals and their activities.

In our case, researchers from the historical seminar at Universität Leipzig aimed
at creating a prosopographical knowledge base about the life and work of professors
in the 600 years history of Universität Leipzig ranging from the year 1409 till 2009
- the Catalogus Professorum Lipsiensis (CPL). In order to enable historians to collect,
structure and publish this prosopographical knowledge an ontological knowledge model
was developed and incrementally refined over a period of three years. The community
of historians working on the project was enabled to add information to the knowledge
base using an adapted version of OntoWiki. For the general public, a simplified user
interface11 is dynamically generated based on the content of the knowledge base. For
access and exploration of the knowledge base by other historians a number of access
interfaces was developed and deployed, such as a graphical SPARQL query builder, a
relationship finder and plain RDF and Linked Data interfaces. As a result, a group of
10 historians supported by a much larger group of volunteers and external contributors
collected information about 1,300 professors, 10,000 associated periods of life, 400
institutions and many more related entities.

The benefits of the developed knowledge engineering platform for historians are
twofold: Firstly, the collaboration between the participating historians has significantly
improved: The ontological structuring helped to quickly establish a common under-
standing of the domain. Collaborators within the project, peers in the historic commu-
nity as well as the general public were enabled to directly observe the progress, thus
facilitating peer-review, feedback and giving direct benefits to the contributors. Sec-
ondly, the ontological representation of the knowledge facilitated original historical in-
vestigations, such as historical social network analysis, professor appointment analysis
(e.g. with regard to the influence of cousin-hood or political influence) or the relation
between religion and university. The use of the developed model and knowledge en-
gineering techniques is easily transferable to other prosopographical research projects
and with adaptations to the ontology model to other historical research in general. In
the long term, the use of collaborative knowledge engineering in historian research
communities can facilitate the transition from largely individual-driven research (where
one historian investigates a certain research question solitarily) to more community-
oriented research (where many participants contribute pieces of information in order
to enlighten a larger research question). Also, this will improve the reusability of the
results of historic research, since knowledge represented in structured ways can be used
for previously not anticipated research questions.

OntoWiki Mobile. As comparatively powerful mobile computing devices are becom-
ing more common, mobile web applications have started gaining in popularity. An im-
portant feature of these applications is their ability to provide offline functionality with
local updates for later synchronization with a web server. The key problem here is the
reconciliation, i. e. the problem of potentially conflicting updates from disconnected
clients. Another problem current mobile application developers face is the plethora
of mobile application development platforms as well as the incompatibilities between

11 Available at: http://www.uni-leipzig.de/unigeschichte/professorenkatalog/

http://www.uni-leipzig.de/unigeschichte/professorenkatalog/

28 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

them. Android (Google), iOS (Apple), Blackberry OS (RIM), WebOS (HP/Palm), Sym-
bian (Nokia) are popular and currently widely deployed platforms, with many more
proprietary ones being available as well. As a consequence of this fragmentation, real-
izing a special purpose application, which works with many or all of these platforms
is extremely time consuming and inefficient due to the large amount of duplicate work
required.

The W3C addressed this problem, by enriching HTML in its 5th revision with ac-
cess interfaces to local storage (beyond simple cookies) as well as a number of devices
and sensors commonly found on mobile devices (e. g. GPS, camera, compass etc.). We
argue, that in combination with semantic technologies these features can be used to re-
alize a general purpose, mobile collaboration platform, which can support the long tail
of mobile special interest applications, for which the development of individual tools
would not be (economically) feasible.

In [34] we present the OntoWiki Mobile approach realizing a mobile semantic col-
laboration platform based on the OntoWiki. It comprises specifically adopted user inter-
faces for browsing, faceted navigation as well as authoring of knowledge bases. It allows
users to collect instance data and refine the structured knowledge bases on-the-go. On-
toWiki Mobile is implemented as an HTML5 web application, thus being completely
mobile device platform independent. In order to allow offline use in cases with restricted
network coverage (or in order to avoid roaming charges) it uses the novel HTML5 local
storage feature for replicating parts of the knowledge base on the mobile device. Hence,
a crucial part of OntoWiki Mobile is the advanced conflict resolution for RDF stores.
The approach is based on a combination of the EvoPat [100] method for data evolution
and ontology refactoring along with a versioning system inspired by distributed version
control systems like Git. OntoWiki Mobile is a generic, application domain agnostic
tool, which can be utilized in a wide range of very different usage scenarios ranging
from instance acquisition to browsing of semantic data on the go. Typical OntoWiki
Mobile usage scenarios are settings where users need to author and access semantically
structured information on the go or in settings where users are away from regular power
supply and restricted to light-weight equipment (e. g. scientific expeditions).

Semantics-based Requirements Engineering. Semantic interoperability, linked data,
and a shared conceptual foundation become increasingly important prerequisites in soft-
ware development projects that are characterized by spatial dispersion, large numbers
of stakeholders, and heterogeneous development tools. The SoftWiki OntoWiki exten-
sion [74] focuses specifically on semantic collaboration with respect to requirements
engineering. Potentially very large and spatially distributed groups of stakeholders, in-
cluding developers, experts, managers, and average users, shall be enabled to collect,
semantically enrich, classify, and aggregate software requirements. OntoWiki is used
to support collaboration as well as interlinking and exchange of requirements data. To
ensure a shared conceptual foundation and semantic interoperability, we developed the
SoftWiki Ontology for Requirements Engineering (SWORE) that defines core concepts
of requirement engineering and the way they are interrelated. For instance, the ontol-
ogy defines frequent relation types to describe requirements interdependencies such as
details, conflicts, related to, depends on, etc. The flexible SWORE design allows for
easy extension. Moreover, the requirements can be linked to external resources, such as

Introduction to Linked Data and Its Lifecycle on the Web 29

publicly available domain knowledge or company-specific policies. The whole process
is called semantification of requirements. It is envisioned as an evolutionary process:
The requirements are successively linked to each other and to further concepts in a
collaborative way, jointly by all stakeholders. Whenever a requirement is formulated,
reformulated, analyzed, or exchanged, it might be semantically enriched by the respec-
tive participant.

5 Automatic Linking

The fourth Linked Data Principle, i.e., “Include links to other URIs, so that they can
discover more things” (cf. section 2) is the most important Linked Data principle as it
enables the paradigm change from data silos to interoperable data distributed across the
Web. Furthermore, it plays a key role in important tasks such as cross-ontology ques-
tion answering [20,75], large-scale inferences [116,81] and data integration [76,17].
Yet, while the number of triples in Linked Data sources increases steadily and has sur-
passed 26 billions12, links between knowledge bases still constitute less than 5% of
these triples. The goal of linking is to tackle this sparseness so as to transform the Web
into a platform for data and information integration as well as for search and querying.

5.1 Instance Matching

Linking can be generally defined as connecting things that are somehow related. In the
context of Linked Data, linking is especially concerned with establishing typed links
between entities (i.e., classes, properties or instances) contained in knowledge bases.
Over the last years, several link discovery frameworks have been developed to address
the lack of typed links between the different knowledge bases on the Linked Data web.
Overall, two main types of link discovery frameworks can be differentiated. The first
category implements ontology matching techniques and aims to establish links between
the ontologies underlying two data sources. The second and more prominent category of
approaches, dubbed instance matching, aims to discover links between instances con-
tained in two data sources. It is important to notice that while ontology and instance
matching are similar to schema matching [96,95] and record linkage [124,33,22] re-
spectively (as known in the research area of databases), linking on the Web of Data is
a more generic and thus more complex task, as it is not limited to finding equivalent
entities in two knowledge bases. Rather, it aims at finding semantically related entities
and establishing typed links between them, most of these links being imbued with for-
mal properties (e.g., transitivity, symmetry, etc.) that can be used by reasoners and other
application to infer novel knowledge. In this section, we will focus on the discovery of
links between instances. An overview of ontology matching techniques is given in [37].

Formally, instance matching can be defined as follows:

Definition 3 (Instance Matching). Given two sets S (source) and T (target) of in-
stances, a semantic similarity measure σ : S × T → [0, 1] and a threshold θ ∈ [0, 1],
the goal of instance matching task is to compute the set M = {(s, t), σ(s, t) ≥ θ}.
12 http://lod-cloud.net/

http://lod-cloud.net/

30 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE LIMES SYSTEM "limes.dtd">
3 <LIMES>
4 <PREFIX>
5 <NAMESPACE>http://www.w3.org/1999/02/22-rdf-syntax-ns#</NAMESPACE>
6 <LABEL>rdf</LABEL>
7 </PREFIX>
8 <PREFIX>
9 <NAMESPACE>http://www.w3.org/2002/07/owl#</NAMESPACE>

10 <LABEL>owl</LABEL>
11 </PREFIX>
12 <PREFIX>
13 <NAMESPACE>http://data.linkedct.org/resource/linkedct/</NAMESPACE>
14 <LABEL>linkedct</LABEL>
15 </PREFIX>
16 <PREFIX>
17 <NAMESPACE>http://bio2rdf.org/ns/mesh#</NAMESPACE>
18 <LABEL>meshr</LABEL>
19 </PREFIX>
20 <SOURCE> <ID> linkedct </ID>
21 <ENDPOINT> http://data.linkedct.org/sparql </ENDPOINT>
22 <VAR> ?x </VAR>
23 <PAGESIZE> 5000 </PAGESIZE>
24 <RESTRICTION> ?x rdf:type linkedct:condition </RESTRICTION>
25 <PROPERTY> linkedct:condition_name </PROPERTY>

</SOURCE>
26 <TARGET> <ID> mesh </ID>
27 <ENDPOINT> http://mesh.bio2rdf.org/sparql </ENDPOINT>
28 <VAR> ?y </VAR>
29 <PAGESIZE> 5000 </PAGESIZE>
30 <RESTRICTION> ?y rdf:type meshr:Concept </RESTRICTION>
31 <PROPERTY> dc:title </PROPERTY>

</TARGET>
32 <METRIC> levenshtein(x.linkedct:condition_name , y.dc:title) </METRIC>
33 <EXEMPLARS> 70 </EXEMPLARS>
34 <ACCEPTANCE>
35 <THRESHOLD> 0.9 </THRESHOLD> <RELATION> owl:sameAs </RELATION>
36 <FILE>diseases_accepted.nt</FILE> </ACCEPTANCE>
37 <REVIEW>
38 <THRESHOLD> 0.8 </THRESHOLD> <RELATION> owl:sameAs </RELATION>
39 <FILE>diseases_review.nt</FILE> </REVIEW>
40 </LIMES>

Fig. 15. Example of a link specification for the LIMES framework

In general, the specification for a matching is described by using a link specification
(sometimes called linkage decision rule [55]). Figure 15 shows an example of such
a link specification for the instance matching framework LIMES13. This specification
links diseases in LinkedCT14 with diseases in Bio2RDF15 via the owl:sameAs property
when the Levenshtein similarity [71] (i.e., the similarity derived from the edit distance)
of their labels is greater or equal to 0.9. Instances whose labels bear a similarity between
0.8 and 0.9 are returned for manual examination.

5.2 Challenges

Two key challenges arise when trying to discover links between two sets of instances:
the computational complexity of the matching task per se and the selection of an appro-
priate link specification.

13 http://limes.sf.net
14 http://linkedct.org
15 http://bio2rdf.org

http://limes.sf.net
http://linkedct.org
http://bio2rdf.org

Introduction to Linked Data and Its Lifecycle on the Web 31

The first challenge is intrinsically related to the link discovery process. The time
complexity of a matching task can be measured by the number of comparisons neces-
sary to complete this task. When comparing a source knowledge base S with a target
knowledge base T , the completion of a matching task requires a-priori O(|S ||T |) com-
parisons, an impractical proposition as soon as the source and target knowledge bases
become large. For example, discovering duplicate cities in DBpedia [6] alone would
necessitate approximately 0.15 × 109 similarity computations. Hence, the provision of
time-efficient approaches for the reduction of the time complexity of link discovery is a
key requirement to instance linking frameworks for Linked Data.

The second challenge of the link discovery process lies in the selection of an ap-
propriate link specification. The configuration of link discovery frameworks is usually
carried out manually, in most cases simply by guessing. Yet, the choice of a suitable link
specification measure is central for the discovery of satisfactory links. The large num-
ber of properties of instances and the large spectrum of measures available in literature
underline the complexity of choosing the right specification manually16. Supporting the
user during the process of finding the appropriate similarity measure and the right prop-
erties for each mapping task is a problem that still needs to be addressed by the Linked
Data community. Methods such as supervised and active learning can be used to guide
the user in need of mapping to a suitable linking configuration for his matching task. Yet,
these methods could not be used so far because of the time complexity of link discovery,
thus even further amplifying the need for time-efficient methods. In the following, we
give a short overview of existing frameworks for Link Discovery on the Web of Data.
Subsequently, we present a time-efficient framework for link discovery in more detail.

5.3 Approaches to Instance Matching

Current frameworks for link discovery can be subdivided into two main categories:
domain-specific and universal frameworks. Domain-specific link discovery frameworks
aim at discovering links between knowledge bases from a particular domain. One of
the first domain-specific approaches to carry out instance linking for Linked Data was
implemented in the RKBExplorer17 [45] with the aim of discovering links between en-
tities from the domain of academics. Due to the lack of data available as Linked Data,
the RKBExplorer had to extract RDF from heterogeneous data source so as to popu-
late its knowledge bases with instances according to the AKT ontology18. Especially,
instances of persons, publications and institutions were retrieved from several major
metadata websites such as ACM and DBLP. The linking was implemented by the so-
called Consistent Reference Service (CRS) which linked equivalent entities by com-
paring properties including their type and label. So far, the CRS is limited to linking
objects in the knowledge bases underlying the RKBExplorer and cannot be used for
other tasks without further implementation.

Another domain-specific tool is GNAT [97], which was developed for the
music domain. It implements several instance matching algorithms of which the most

16 The SimMetrics project (http://simmetrics.sf.net) provides an overview of strings sim-
ilarity measures.

17 http://www.rkbexplorer.com
18 http://www.aktors.org/publications/ontology/

http://simmetrics.sf.net
http://www.rkbexplorer.com
 http://www.aktors.org/publications/ontology/

32 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

sophisticated, the online graph matching algorithm (OGMA), applies a similarity prop-
agation approach to discover equivalent resources. The basic approach implemented
by OGMA starts with a single resource s ∈ S . Then, it retrieves candidate matching re-
sources t ∈ T by comparing properties such as foaf:name for artists and dc:title for
albums. Ifσ(s, t) ≥ θ, then the algorithm terminates. In case a disambiguation is needed,
the resourced related to s and t in their respective knowledge bases are compared and
their similarity value is cumulated to recompute σ(s, t). This process is iterated until a
mapping resource for s is found in T or no resource matches.

Universal link discovery frameworks are designed to carry out mapping tasks in-
dependently from the domain of the source and target knowledge bases. For exam-
ple, RDF-AI [107], a framework for the integration of RDF data sets, implements a
five-step approach that comprises the preprocessing, matching, fusion, interlinking and
post-processing of data sets. RDF-AI contains a series of modules that allow for com-
puting instances matches by comparing their properties. Especially, it contains trans-
lation modules that allow to process the information contained in data sources before
mapping. By these means, it can boost the precision of the mapping process. These
modules can be configured by means of XML-files. RDF-AI does not comprise means
for querying distributed data sets via SPARQL19. In addition, it suffers from not being
time-optimized. Thus, mapping by using this tool can be very time-consuming.

A time-optimized approach to link discovery is implemented by the SILK frame-
work [119]. SILK implements several approaches to minimize the time necessary for
mapping instances from knowledge bases. First, it allows to specify restrictions on the
instances to be loaded from each knowledge base. Furthermore, it uses rough index
pre-matching to reach a quasi-linear time-complexity. In addition, it allows to specify
blocking strategies to reduce the runtime of the system. It can be configured by us-
ing the SILK-Link Specification Language, which is based on XML. The drawback of
the pre-matching approach and of most blocking approaches is that their recall is not
guaranteed to be 1. Thus, some links can be lost during the instance-matching process.

It is important to notice that the task of discovering links between knowledge bases is
related with record linkage [124,33] and de-duplication [22]. The database community
has produced a vast amount of literature on efficient algorithms for solving these prob-
lems. Different blocking techniques such as standard blocking, sorted-neighborhood,
bigram indexing, canopy clustering and adaptive blocking [16,21,60] have been devel-
oped to address the problem of the quadratic time complexity of brute force comparison
methods. The idea is to filter out obvious non-matches efficiently before executing the
more detailed and time-consuming comparisons. In the following, we present a state-of-
the-art framework that implements lossless instance matching based on a similar idea
in detail.

5.4 LIMES

LIMES (Link Discovery Framework for metric spaces) is an instance-matching frame-
work that implements time-efficient approaches for the discovery of links between
Linked Data sources. It addresses the scalability problem of link discovery by utilizing
the triangle inequality in metric spaces to compute pessimistic estimates of instance

19 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

Introduction to Linked Data and Its Lifecycle on the Web 33

similarities. Based on these approximations, LIMES can filter out a large number of
instance pairs that cannot suffice the matching condition set by the user. The real simi-
larities of the remaining instances pairs are then computed and the matching instances
are returned.

Mathematical Framework. In the remainder of this section, we use the following
notations:

1. A is an affine space,
2. m, m1, m2, m3 symbolize metrics on A,
3. x, y and z represent points from A and
4. α, β, γ and δ are scalars, i.e., elements of R.

Definition 4 (Metric space). A metric space is a pair (A,m) such that A is an affine
space and m : A × A→ R is a function such that for all x, y and z ∈ A

1. m(x, y) ≥ 0 (M1) (non-negativity),
2. m(x, y) = 0⇔ x = y (M2) (identity of indiscernibles),
3. m(x, y) = m(y, x) (M3) (symmetry) and
4. m(x, z) ≤ m(x, y) + m(y, z) (M4) (triangle inequality).

Note that the definition of a matching based on a similarity function σ can be rewritten
for metrics m as follows:

Definition 5 (Instance Matching in Metric Spaces). Given two sets S (source) and T
(target) of instances, a metric m : S × T → [0,∞[and a threshold θ ∈ [0,∞[, the goal
of instance matching task is to compute the set M = {(s, t)|m(s, t) ≤ θ}.
Example of metrics on strings include the Levenshtein distance and the block distance.
However, some popular measures such as JaroWinkler [123] do not satisfy the triangle
inequality and are consequently not metrics.

The rationale behind the LIMES framework is to make use of the boundary condi-
tions entailed by the triangle inequality (TI) to reduce the number of comparisons (and
thus the time complexity) necessary to complete a matching task. Given a metric space
(A,m) and three points x, y and z in A, the TI entails that

m(x, y) ≤ m(x, z) + m(z, y). (1)

Without restriction of generality, the TI also entails that

m(x, z) ≤ m(x, y) + m(y, z), (2)

thus leading to the following boundary conditions in metric spaces:

m(x, y) − m(y, z) ≤ m(x, z) ≤ m(x, y) + m(y, z). (3)

Inequality 3 has two major implications. The first is that the distance from a point x
to any point z in a metric space can be approximated given the distance from x to a
reference point y and the distance from the reference point y to z. Such a reference point

34 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

z'

x

y

z

known distances
distances to approximate

Fig. 16. Approximation of distances via exemplars. The lower bound of the distance from x to z
can be approximated by m(x, y) − m(y, z).

is called an exemplar following [44]. The role of an exemplar is to be used as a sample
of a portion of the metric space A. Given an input point x, knowing the distance from
x to an exemplar y allows to compute lower and upper bounds of the distance from x
to any other point z at a known distance from y. An example of such an approximation
is shown in Figure 16. In this figure, all the points on the circle are subject to the
same distance approximation. The distance from x to z is close to the lower bound of
inequality 3, while the distance from x to z′ is close to the upper bound of the same
inequality.

The second implication of inequality 3 is that the distance from x to z can only be
smaller than θ if the lower bound of the approximation of the distance from x to z via
any exemplar y is also smaller than θ. Thus, if the lower bound of the approximation of
the distance m(x, z) is larger than θ, then m(x, z) itself must be larger than θ. Formally,

m(x, y) − m(y, z) > θ ⇒ m(x, z) > θ. (4)

Supposing that all distances from instances t ∈ T to exemplars are known, reducing
the number of comparisons simply consists of using inequality 4 to compute an approx-
imation of the distance from all s ∈ S to all t ∈ T and computing the real distance only
for the (s, t) pairs for which the first term of inequality 4 does not hold. This is the core
of the approach implemented by LIMES.

Computation of Exemplars. The core idea underlying the computation of exemplars
in LIMES is to select a set of exemplars in the metric space underlying the matching
task in such a way that they are distributed uniformly in the metric space. One way
to achieve this goal is by ensuring that the exemplars display a high dissimilarity. The
approach used by LIMES to generate exemplars with this characteristic is shown in
Algorithm 1.

Let n be the desired number of exemplars and E the set of all exemplars. In step 1
and 2, LIMES initializes E by picking a random point e1 in the metric space (T,m) and

Introduction to Linked Data and Its Lifecycle on the Web 35

Algorithm 1. Computation of Exemplars
Require: Number of exemplars n
Require: Target knowledge base T

1. Pick random point e1 ∈ T
2. Set E = E ∪ {e1};
3. Compute the distance from e1 to all t ∈ T
while |E| < n do

4. Get a random point e′ such that e′ ∈ argmaxt
∑
t∈T
∑
e∈E

m(t, e)

5. E = E ∪ {e′};
6. Compute the distance from e′ to all t ∈ T

end while
7. Map each point in t ∈ T to one of the exemplars e ∈ E such that m(t, e) is minimal
return E

Fig. 17. Mapping of points to three exemplars in a metric space. The exemplars are displayed as
gray disks.

setting E = {e1}. Then, it computes the similarity from the exemplar e1 to every other
point in T (step 3). As long as the size of E has not reached n, LIMES repeats steps 4 to
6: In step 4, a point e′ ∈ T such that the sum of the distances from e′ to the exemplars
e ∈ E is maximal (there can be many of these points) is chosen randomly. This point is
chosen as new exemplar and consequently added to E (step 5). Then, the distance from
e′ to all other points in T is computed (step 6). Once E has reached the size n, LIMES
terminates the iteration. Finally, each point is mapped to the exemplar to which it is
most similar (step 7) and the exemplar computation terminates (step 8). This algorithm
has a constant time complexity of O(|E||T |).

An example of the results of the exemplar computation algorithm (|E| = 3) is shown
in Figure 17. The initial exemplar was the leftmost exemplar in the figure.

Matching Based on Exemplars. The instances associated with an exemplar e ∈ E in
step 7 of Algorithm 1 are stored in a list Le sorted in descending order with respect to
the distance to e. Let λe

1...λ
e
m be the elements of the list Le. The goal of matching an

instance s from a source knowledge base to a target knowledge base w.r.t. a metric m is

36 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Algorithm 2. LIMES’ Matching algorithm
Require: Set of exemplars E
Require: Instance s ∈ S
Require: Metric m
Require: threshold θ

1. M = ∅
for e ∈ |E| do

if m(s, e) ≤ θ then
2. M = M ∪ {e}
for i = 1...|Le| do

if (m(s, e) − m(e, λe
i)) ≤ θ then

if m(s, λe
i) ≤ θ then

3. M = M ∪ {(s, λe
i })

end if
else

break
end if

end for
end if

end for
return M

to find all instances t of the target knowledge source such that m(s, t) ≤ θ, where θ is
a given threshold. LIMES achieves this goal by using the matching algorithm based on
exemplars shown in Algorithm 2.

LIMES only carries out a comparison when the approximation of the distance is less
than the threshold. Moreover, it terminates the similarity computation for an exemplar e
as soon as the first λe is found such that the lower bound of the distance is larger than θ.
This break can be carried out because the list Le is sorted, i.e., if m(s, e) − m(e, λe

i) > θ
holds for the ith element of Le, then the same inequality holds for all λe

j ∈ Le with
j > i. In the worst case, LIMES’ matching algorithm has the time complexity O(|S ||T |),
leading to a total worst time complexity of O((|E|+ |S |)|T |), which is larger than that of
brute force approaches. However, as the results displayed in Figure 18 show, a correct
parameterization of LIMES leads to significantly smaller numbers of comparisons and
runtimes.

Implementation. The LIMES framework consists of seven main modules (see
Figures 19 and 20) of which each can be extended to accommodate new or improved
functionality20.

LIMES carries out matching processes as follows: First, the controller calls the I/O-
module, which reads the configuration file and extracts all the information necessary to
carry out the comparison of instances, including the URL of the SPARQL endpoints
of the knowledge bases, the restrictions on the instances to map (e.g., their type), the
expression of the metric and the threshold to be used. An example of such a config-
uration file is given in Figure 15. Note that the LIMES configuration takes similarity

20 The framework is open source and can be found at http://limes.sf.net

http://limes.sf.net

Introduction to Linked Data and Its Lifecycle on the Web 37

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(a) Size = 2000

0

50

100

150

200

250

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(b) Size = 5000

0

100

200

300

400

500

600

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(c) Size = 7500

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

(d) Size = 10000

Fig. 18. Comparisons required by LIMES for different numbers of exemplars on knowledge bases
of different sizes. The x-axis shows the number of exemplars, the y-axis the number of compar-
isons in multiples of 105.

Organizer Metric Factory

Query Module

Cache

C
ontroller

I/O Module

Data

Fig. 19. Architecture of LIMES

(and not distance) thresholds as input for the users’ convenience. Given that the config-
uration file is valid w.r.t. the LIMES Specification Language (LSL)21, the query module
is called. This module uses the configuration for the target and source knowledge bases
to retrieve instances and properties from the SPARQL-endpoints of the source and tar-
get knowledge bases that adhere to the restrictions specified in the configuration file.

21 The DTD for the LSL can be found in the LIMES distribution along with a user manual at:
http://limes.sf.net

http://limes.sf.net

38 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 20. The LIMES Web dashboard

LIMES can also retrieve data for linking from other data sources including CSV files
describing tabular data or vector data. The query module writes its output into a cache
which can either be a file (for large number of instances) or main memory. For the
user’s convenience, the cache module serializes the data retrieved from remote sources
to a file to ensure swift subsequently matching processes with other data sources. Once
all instances have been stored in the cache, the controller calls the organizer module.
This module carries out two tasks: first, it computes the exemplars of the source knowl-
edge base. Then, it uses the exemplars to compute the matchings from the source to the
target knowledge base. Finally, the I/O-module is called to serialize the results, i.e. to
write the results in a user-defined output stream according to a user-specified format,
e.g., in an N-Triples file.

5.5 Conclusion

We presented and discussed semi-automatic linking instance matching approaches for
Linked Data and the challenges they face. In addition, we gave an overview of several
state-of-the-art approaches for instance matching for Linked Data. Finally we presented
a time-efficient approach for instance matching . Time-efficient frameworks that address
the performance challenge also provide the backbone necessary to address other sub-
stantial challenges of link discovery on the Web of Data. The main quality criteria of
matching tasks are performance, precision/recall and ease-of-use. These quality criteria
are not unconnected. Rather, they influence each other strongly. In particular, perfor-
mance can be traded for precision/recall and substantially increase the ease-of-use for
users with faster matching algorithms by using supervised matching. On the other hand,

Introduction to Linked Data and Its Lifecycle on the Web 39

increasing precision/recall with faster matching algorithms can be carried out by involv-
ing the user into an interactive feedback loop, where he/she feeds hints on the quality
of matching results back into the system. These hints can be used subsequently for au-
tomatically adjusting thresholds and/or matcher configurations. Such semi-automatic
adjustments of thresholds and matcher configurations can in turn dramatically increase
the ease-of-use for the users of a matching framework, since they are released from the
burden of creating a comprehensive a-priori configuration.

6 Enrichment

The term enrichment in this chapter refers to the (semi-)automatic extension of a knowl-
edge base schema. It describes the process of increasing the expressiveness and se-
mantic richness of a knowledge base. Usually, this is achieved by adding or refining
terminological axioms.

Enrichment methods can typically be applied in a grass-roots approach to knowl-
edge base creation. In such an approach, the whole ontological structure is not created
upfront, but evolves with the data in a knowledge base. Ideally, this enables a more ag-
ile development of knowledge bases. In particular, in the context of the Web of Linked
Data such an approach appears to be an interesting alternative to more traditional on-
tology engineering methods. Amongst others, Tim Berners-Lee advocates to get “raw
data now”22 and worry about the more complex issues later.

Knowledge base enrichment can be seen as a sub-discipline of ontology learning.
Ontology learning is more general in that it can rely on external sources, e.g. written
text, to create an ontology. The term knowledge base enrichment is typically used when
already existing data in the knowledge base is analysed to improve its schema.

Enrichment methods span several research areas like knowledge representation and
reasoning, machine learning, statistics, natural language processing, formal concept
analysis and game playing. Considering the variety of methods, we structure this sec-
tion as follows: First, we give an overview of different types of enrichment and list some
typical methods and give pointers to references, which allow the reader to obtain more
information on a topic. In the second part, we describe a specific software – the ORE
tool – in more detail.

6.1 State of the Art and Types of Enrichment

Ontology enrichment usually involves applying heuristics or machine learning tech-
niques to find axioms, which can be added to an existing ontology. Naturally, different
techniques have been applied depending on the specific type of axiom.

One of the most complex tasks in ontology enrichment is to find definitions of
classes. This is strongly related to Inductive Logic Programming (ILP) [88] and more
specifically supervised learning in description logics. Research in those fields has many
applications apart from being applied to enrich ontologies. For instance, it is used in
the life sciences to detect whether drugs are likely to be efficient for particular dis-
eases. Work on learning in description logics goes back to e.g. [28,29], which used

22 http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

40 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

so-called least common subsumers to solve the learning problem (a modified variant
of the problem defined in this article). Later, [15] invented a refinement operator for
ALER and proposed to solve the problem by using a top-down approach. [35,53,54]
combine both techniques and implement them in the YINYANG tool. However, those
algorithms tend to produce very long and hard-to-understand class expressions. The al-
gorithms implemented in DL-Learner [67,68,62,69] overcome this problem and inves-
tigate the learning problem and the use of top down refinement in detail. DL-FOIL [38]
is a similar approach, which is based on a mixture of upward and downward refinement
of class expressions. They use alternative measures in their evaluation, which take the
open world assumption into account, which was not done in ILP previously. Most re-
cently, [66] implements appropriate heuristics and adaptations for learning definitions
in ontologies. The focus in this work is efficiency and practical application of learning
methods. The article presents plugins for two ontology editors (Protégé and OntoWiki)
as well stochastic methods, which improve previous methods by an order of magnitude.
For this reason, we will analyse it in more detail in the next subsection. The algorithms
presented in the article can also learn super class axioms.

A different approach to learning the definition of a named class is to compute the
so called most specific concept (msc) for all instances of the class. The most specific
concept of an individual is the most specific class expression, such that the individual is
instance of the expression. One can then compute the least common subsumer (lcs) [14]
of those expressions to obtain a description of the named class. However, in expressive
description logics, an msc does not need to exist and the lcs is simply the disjunction
of all expressions. For light-weight logics, such as EL, the approach appears to be
promising.

Other approaches, e.g. [72] focus on learning in hybrid knowledge bases combining
ontologies and rules. Ontology evolution [73] has been discussed in this context. Usu-
ally, hybrid approaches are a generalisation of concept learning methods, which enable
powerful rules at the cost of efficiency (because of the larger search space). Similar as
in knowledge representation, the tradeoff between expressiveness of the target language
and efficiency of learning algorithms is a critical choice in symbolic machine learning.

Another enrichment task is knowlege base completion. The goal of such a task is to
make the knowledge base complete in a particular well-defined sense. For instance, a
goal could be to ensure that all subclass relationships between named classes can be
inferred. The line of work starting in [102] and further pursued in e.g. [13] investigates
the use of formal concept analysis for completing knowledge bases. It is promising,
although it may not be able to handle noise as well as a machine learning technique. A
Protégé plugin [108] is available. [117] proposes to improve knowledge bases through
relational exploration and implemented it in the RELExO framework23. It focuses on
simple relationships and the knowledge engineer is asked a series of questions. The
knowledge engineer either must positively answer the question or provide a counterex-
ample.

[118] focuses on learning disjointness between classes in an ontology to allow for
more powerful reasoning and consistency checking. To achieve this, it can use the ontol-
ogy itself, but also texts, e.g. Wikipedia articles corresponding to a concept. The article

23 http://code.google.com/p/relexo/

http://code.google.com/p/relexo/

Introduction to Linked Data and Its Lifecycle on the Web 41

Table 3. Work in ontology enrichment grouped by type or aim of learned structures

Type/Aim References
Taxonomies [125]
Definitions often done via ILP approaches such as [67,68,69,66,38,35,53,54,15],

genetic approaches [62] have also been used
Super Class Axioms [66]
Rules in Ontologies [72,73]
Disjointness [118]
Properties of properties usually via heuristics
Alignment challenges: [109], recent survey: [26]
Completion formal concept analysis and relational exploration [13,117,108]

includes an extensive study, which shows that proper modelling disjointness is actually
a difficult task, which can be simplified via this ontology enrichment method.

Another type of ontology enrichment is schema mapping. This task has been widely
studied and will not be discussed in depth within this chapter. Instead, we refer to [26]
for a survey on ontology mapping.

There are further more light-weight ontology enrichment methods. For instance, tax-
onomies can be learned from simple tag structures via heuristics. Similarly, “properties
of properties” can be derived via simple statistical analysis. This includes the detection
whether a particular property might be symmetric, function, reflexive, inverse func-
tional etc. Similarly, domains and ranges of properties can be determined from existing
data. Enriching the schema with domain and range axioms allows to find cases, where
properties are misused via OWL reasoning.

In the following subsection, we describe an enrichment approach for learning defini-
tions and super class axioms in more detail. The algorithm was recently developed by
the first authors and is described in full detail in [66].

6.2 Class Expression Learning in DL-Learner

The Semantic Web has recently seen a rise in the availability and usage of knowledge
bases, as can be observed within the Linking Open Data Initiative, the TONES and
Protégé ontology repositories, or the Watson search engine. Despite this growth, there
is still a lack of knowledge bases that consist of sophisticated schema information and
instance data adhering to this schema. Several knowledge bases, e.g. in the life sciences,
only consist of schema information, while others are, to a large extent, a collection
of facts without a clear structure, e.g. information extracted from data bases or texts.
The combination of sophisticated schema and instance data allows powerful reasoning,
consistency checking, and improved querying possibilities. We argue that being able to
learn OWL class expressions24 is a step towards achieving this goal.

Example 1. As an example, consider a knowledge base containing a class Capital
and instances of this class, e.g. London, Paris, Washington, Canberra etc. A machine

24 http://www.w3.org/TR/owl2-syntax/#Class_Expressions

http://www.w3.org/TR/owl2-syntax/#Class_Expressions

42 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

learning algorithm could, then, suggest that the class Capitalmay be equivalent to one
of the following OWL class expressions in Manchester OWL syntax25:

City and isCapitalOf at least one GeopoliticalRegion
City and isCapitalOf at least one Country

Both suggestions could be plausible: The first one is more general and includes cities
that are capitals of states, whereas the latter one is stricter and limits the instances to
capitals of countries. A knowledge engineer can decide which one is more appropriate,
i.e. a semi-automatic approach is used, and the machine learning algorithm should guide
her by pointing out which one fits the existing instances better. Assuming the knowledge
engineer decides for the latter, an algorithm can show her whether there are instances
of the class Capital which are neither instances of City nor related via the property
isCapitalOf to an instance of Country.26 The knowledge engineer can then continue
to look at those instances and assign them to a different class as well as provide more
complete information; thus improving the quality of the knowledge base. After adding
the definition of Capital, an OWL reasoner can compute further instances of the class
which have not been explicitly assigned before.

Using machine learning for the generation of suggestions instead of entering them
manually has the advantage that 1.) the given suggestions fit the instance data,
i.e. schema and instances are developed in concordance, and 2.) the entrance barrier
for knowledge engineers is significantly lower, since understanding an OWL class ex-
pression is easier than analysing the structure of the knowledge base and creating a
class expression manually. Disadvantages of the approach are the dependency on the
availability of instance data in the knowledge base and requirements on the quality of
the ontology, i.e. modelling errors in the ontology can reduce the quality of results.

Overall, we describe the following in this chapter:

– extension of an existing learning algorithm for learning class expressions to the
ontology engineering scenario,

– presentation and evaluation of different heuristics,
– showcase how the enhanced ontology engineering process can be supported with

plugins for Protégé and OntoWiki,
– evaluation of the presented algorithm with several real ontologies from various do-

mains.

The adapted algorithm for solving the learning problems, which occur in the ontology
engineering process, is called CELOE (Class Expression Learning for Ontology En-
gineering). It was implemented within the open-source framework DL-Learner.27 DL-
Learner [63,64] leverages a modular architecture, which allows to define different types
of components: knowledge sources (e.g. OWL files), reasoners (e.g. DIG28 or OWL
API based), learning problems, and learning algorithms. In this overview, we focus on
the latter two component types, i.e. we define the class expression learning problem in
ontology engineering and provide an algorithm for solving it.

25 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see [51].
26 This is not an inconsistency under the standard OWL open world assumption, but rather a hint

towards a potential modelling error.
27 http://dl-learner.org
28 http://dl.kr.org/dig/

http://dl-learner.org
http://dl.kr.org/dig/

Introduction to Linked Data and Its Lifecycle on the Web 43

Learning Problem. The process of learning in logics, i.e. trying to find high-level ex-
planations for given data, is also called inductive reasoning as opposed to inference or
deductive reasoning. The main difference is that in deductive reasoning it is formally
shown whether a statement follows from a knowledge base, whereas in inductive learn-
ing new statements are invented. Learning problems, which are similar to the one we
will analyse, have been investigated in Inductive Logic Programming [88] and, in fact,
the method presented here can be used to solve a variety of machine learning tasks apart
from ontology engineering.

In the ontology learning problem we consider, we want to learn a formal description
of a class A, which has (inferred or asserted) instances in the considered ontology. In the
case that A is already described by a class expression C via axioms of the form A C
or A ≡ C, those can be either refined, i.e. specialised/generalised, or relearned from
scratch by the learning algorithm. To define the class learning problem, we need the
notion of a retrieval reasoner operation RK (C). RK (C) returns the set of all instances of
C in a knowledge base K . If K is clear from the context, the subscript can be omitted.

Definition 6 (class learning problem). Let an existing named class A in a knowl-
edge base K be given. The class learning problem is to find an expression C such that
RK (C) = RK (A).

Clearly, the learned expression C is a description of (the instances of) A. Such an expres-
sion is a candidate for adding an axiom of the form A ≡ C or A C to the knowledge
base K . If a solution of the learning problem exists, then the used base learning algo-
rithm (as presented in the following subsection) is complete, i.e. guaranteed to find a
correct solution if one exists in the target language and there are no time and mem-
ory constraints (see [68,69] for the proof). In most cases, we will not find a solution to
the learning problem, but rather an approximation. This is natural, since a knowledge
base may contain false class assignments or some objects in the knowledge base are de-
scribed at different levels of detail. For instance, in Example 1, the city “Apia” might be
typed as “Capital” in a knowledge base, but not related to the country “Samoa”. How-
ever, if most of the other cities are related to countries via a role isCapitalOf, then the
learning algorithm may still suggest City and isCapitalOf at least one Country
since this describes the majority of capitals in the knowledge base well. If the knowl-
edge engineer agrees with such a definition, then a tool can assist him in completing
missing information about some capitals.

According to Occam’s razor [23] simple solutions of the learning problem are to
be preferred over more complex ones, because they are more readable. This is even
more important in the ontology engineering context, where it is essential to suggest
simple expressions to the knowledge engineer. We measure simplicity as the length of
an expression, which is defined in a straightforward way, namely as the sum of the
numbers of concept, role, quantifier, and connective symbols occurring in the expres-
sion. The algorithm is biased towards shorter expressions. Also note that, for simplicity
the definition of the learning problem itself does enforce coverage, but not prediction,
i.e. correct classification of objects which are added to the knowledge base in the future.
Concepts with high coverage and poor prediction are said to overfit the data. However,
due to the strong bias towards short expressions this problem occurs empirically rarely
in description logics [69].

44 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 21. Outline of the general learning approach in CELOE: One part of the algorithm is the
generation of promising class expressions taking the available background knowledge into ac-
count. Another part is a heuristic measure of how close an expression is to being a solution of the
learning problem. Figure adapted from [50].

Base Learning Algorithm. Figure 21 gives a brief overview of the CELOE algorithm,
which follows the common “generate and test“ approach in ILP. This means that learn-
ing is seen as a search process and several class expressions are generated and tested
against a background knowledge base. Each of those class expressions is evaluated us-
ing a heuristic, which is described in the next section. A challenging part of a learning
algorithm is to decide which expressions to test. In particular, such a decision should
take the computed heuristic values and the structure of the background knowledge into
account. For CELOE, we use the approach described in [68,69] as base, where this
problem has already been analysed, implemented, and evaluated in depth. It is based on
the idea of refinement operators:

Definition 7 (refinement operator). A quasi-ordering is a reflexive and transitive re-
lation. In a quasi-ordered space (S ,�) a downward (upward) refinement operator ρ is a
mapping from S to 2S , such that for any C ∈ S we have that C′ ∈ ρ(C) implies C′ � C
(C � C′). C′ is called a specialisation (generalisation) of C.

Refinement operators can be used for searching in the space of expressions. As ordering
we can use subsumption. (Note that the subsumption relation is a quasi-ordering.)
If an expression C subsumes an expression D (D C), then C will cover all exam-
ples which are covered by D. This makes subsumption a suitable order for searching
in expressions as it allows to prune parts of the search space without losing possible
solutions.

The approach we used is a top-down algorithm based on refinement operators as
illustrated in Figure 22 (more detailed schemata can be found in the slides29 of the

29 http://reasoningweb.org/2010/teaching-material/lehmann.pdf

http://reasoningweb.org/2010/teaching-material/lehmann.pdf

Introduction to Linked Data and Its Lifecycle on the Web 45

Fig. 22. Illustration of a search tree in a top down refinement approach

ontology learning lecture of Reasoning Web 2010 [65]). This means that the first class
expression, which will be tested is the most general expression (�), which is then
mapped to a set of more specific expressions by means of a downward refinement op-
erator. Naturally, the refinement operator can be applied to the obtained expressions
again, thereby spanning a search tree. The search tree can be pruned when an expres-
sion does not cover sufficiently many instances of the class A we want to describe. One
example for a path in a search tree spanned up by a downward refinement operator is
the following (� denotes a refinement step):

�� Person� Person � takesPartinIn.�
� Person � takesPartIn.Meeting

The heart of such a learning strategy is to define a suitable refinement operator and
an appropriate search heuristics for deciding which nodes in the search tree should be
expanded. The refinement operator in the considered algorithm is defined in [69]. It
is based on earlier work in [68] which in turn is built on the theoretical foundations
of [67]. It has been shown to be the best achievable operator with respect to a set of
properties (not further described here), which are used to assess the performance of
refinement operators. The learning algorithm supports conjunction, disjunction, nega-
tion, existential and universal quantifiers, cardinality restrictions, hasValue restrictions
as well as boolean and double datatypes.

6.3 Finding a Suitable Heuristic

A heuristic measures how well a given class expression fits a learning problem and is
used to guide the search in a learning process. To define a suitable heuristic, we first
need to address the question of how to measure the accuracy of a class expression. We
introduce several heuristics, which can be used for CELOE and later evaluate them.

We cannot simply use supervised learning from examples directly, since we do not
have positive and negative examples available. We can try to tackle this problem by us-
ing the existing instances of the class as positive examples and the remaining instances

46 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

as negative examples. This is illustrated in Figure 23, where K stands for the knowl-
edge base and A for the class to describe. We can then measure accuracy as the number
of correctly classified examples divided by the number of all examples. This can be
computed as follows for a class expression C and is known as predictive accuracy in
Machine Learning:

predacc(C) = 1 − |R(A) \ R(C)| + |R(C) \ R(A)|
n

n = |Ind(K)|
Here, Ind(K) stands for the set of individuals occurring in the knowledge base. R(A)\

R(C) are the false negatives whereas R(C) \ R(A) are false positives. n is the number of
all examples, which is equal to the number of individuals in the knowledge base in this
case. Apart from learning definitions, we also want to be able to learn super class axioms
(A C). Naturally, in this scenario R(C) should be a superset of R(A). However, we
still do want R(C) to be as small as possible, otherwise � would always be a solution.
To reflect this in our accuracy computation, we penalise false negatives more than false
positives by a factor of t (t > 1) and map the result to the interval [0, 1]:

predacc(C, t) = 1 − 2 · t · |R(A) \ R(C)| + |R(C) \ R(A)|
(t + 1) · n n = |Ind(K)|

While being straightforward, the outlined approach of casting class learning into a stan-
dard learning problem with positive and negative examples has the disadvantage that
the number of negative examples will usually be much higher than the number of posi-
tive examples. As shown in Table 4, this may lead to overly optimistic estimates. More
importantly, this accuracy measure has the drawback of having a dependency on the
number of instances in the knowledge base.

Therefore, we investigated further heuristics, which overcome this problem, in par-
ticular by transferring common heuristics from information retrieval to the class learn-
ing problem:

1. F-Measure: Fβ-Measure is based on precision and recall weighted by β. They can
be computed for the class learning problem without having negative examples. In-
stead, we perform a retrieval for the expression C, which we want to evaluate. We
can then define precision as the percentage of instances of C, which are also in-
stances of A and recall as percentage of instances of A, which are also instances of
C. This is visualised in Figure 23. F-Measure is defined as harmonic mean of pre-
cision and recall. For learning super classes, we use F3 measure by default, which
gives recall a higher weight than precision.

2. A-Measure: We denote the arithmetic mean of precision and recall as A-Measure.
Super class learning is achieved by assigning a higher weight to recall. Using the
arithmetic mean of precision and recall is uncommon in Machine Learning, since
it results in too optimistic estimates. However, we found that it is useful in super
class learning, where Fn is often too pessimistic even for higher n.

3. Generalised F-Measure: Generalised F-Measure has been published in [31] and
extends the idea of F-measure by taking the three valued nature of classification
in OWL/DLs into account: An individual can either belong to a class, the negation
of a class or none of both cases can be proven. This differs from common binary

Introduction to Linked Data and Its Lifecycle on the Web 47

Fig. 23. Visualisation of different accuracy measurement approaches. K is the knowledge base,
A the class to describe and C a class expression to be tested. Left side: Standard supervised
approach based on using positive (instances of A) and negative (remaining instances) examples.
Here, the accuracy of C depends on the number of individuals in the knowledge base. Right side:
Evaluation based on two criteria: recall (Which fraction of R(A) is in R(C)?) and precision (Which
fraction of R(C) is in R(A)?).

classification tasks and, therefore, appropriate measures have been introduced (see
[31] for details). Adaption for super class learning can be done in a similar fashion
as for F-Measure itself.

4. Jaccard Distance: Since R(A) and R(C) are sets, we can use the well-known Jaccard
coefficient to measure the similarity between both sets.

We argue that those four measures are more appropriate than predictive accuracy
when applying standard learning algorithms to the ontology engineering use case.
Table 4 provides some example calculations, which allow the reader to compare the
different heuristics.

Efficient Heuristic Computation. Several optimisations for computing the heuristics are
described in [66]. In particular, adapted approximate reasoning and stochastic approxi-
mations are discussed. Those improvements have shown to lead to order of magnitude
gains in efficiency for many ontologies. We refrain from describing those methods in
this chapter.

The Protégé Plugin. After implementing and testing the described learning algorithm,
we integrated it into Protégé and OntoWiki. Together with the Protégé developers, we
extended the Protégé 4 plugin mechanism to be able to seamlessly integrate the DL-
Learner plugin as an additional method to create class expressions. This means that
the knowledge engineer can use the algorithm exactly where it is needed without any
additional configuration steps. The plugin has also become part of the official Protégé 4
repository, i.e. it can be directly installed from within Protégé.

A screenshot of the plugin is shown in Figure 24. To use the plugin, the knowledge
engineer is only required to press a button, which then starts a new thread in the back-
ground. This thread executes the learning algorithm. The used algorithm is an anytime
algorithm, i.e. at each point in time we can always see the currently best suggestions.
The GUI updates the suggestion list each second until the maximum runtime – 10 sec-
onds by default – is reached. This means that the perceived runtime, i.e. the time after
which only minor updates occur in the suggestion list, is often only one or two seconds
for small ontologies. For each suggestion, the plugin displays its accuracy.

48 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Table 4. Example accuracies for selected cases (eq = equivalence class axiom, sc = super class
axiom). The images on the left represent an imaginary knowledge base K with 1000 individuals,
where we want to describe the class A by using expression C. It is apparent that using predictive
accuracy leads to impractical accuracies, e.g. in the first row C cannot possibly be a good descrip-
tion of A, but we still get 80% accuracy, since all the negative examples outside of A and C are
correctly classified.

illustration pred. acc. F-Measure A-Measure Jaccard
eq sc eq sc eq sc

80% 67% 0% 0% 0% 0% 0%

90% 92% 67% 73% 75% 88% 50%

70% 75% 40% 48% 63% 82% 25%

98% 97% 90% 90% 90% 90% 82%

95% 88% 67% 61% 75% 63% 50%

When clicking on a suggestion, it is visualized by displaying two circles: One stands
for the instances of the class to describe and another circle for the instances of the
suggested class expression. Ideally, both circles overlap completely, but in practice this
will often not be the case. Clicking on the plus symbol in each circle shows its list of
individuals. Those individuals are also presented as points in the circles and moving
the mouse over such a point shows information about the respective individual. Red
points show potential problems detected by the plugin. Please note that we use closed
world reasoning to detect those problems. For instance, in our initial example, a capital
which is not related via the property isCapitalOf to an instance of Country is marked
red. If there is not only a potential problem, but adding the expression would render the
ontology inconsistent, the suggestion is marked red and a warning message is displayed.
Accepting such a suggestion can still be a good choice, because the problem often lies
elsewhere in the knowledge base, but was not obvious before, since the ontology was
not sufficiently expressive for reasoners to detect it. This is illustrated by a screencast
available from the plugin homepage,30 where the ontology becomes inconsistent after

30 http://dl-learner.org/wiki/ProtegePlugin

http://dl-learner.org/wiki/ProtegePlugin

Introduction to Linked Data and Its Lifecycle on the Web 49

Fig. 24. A screenshot of the DL-Learner Protégé plugin. It is integrated as additional tab to create
class expressions in Protégé. The user is only required to press the “suggest equivalent class
expressions” button and within a few seconds they will be displayed ordered by accuracy. If
desired, the knowledge engineer can visualize the instances of the expression to detect potential
problems. At the bottom, optional expert configuration settings can be adopted.

Fig. 25. The DL-Learner plugin can be invoked from the context menu of a class in OntoWiki

adding the axiom, and the real source of the problem is fixed afterwards. Being able to
make such suggestions can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings. Those settings
include the maximum suggestion search time, the number of results returned and set-
tings related to the desired target language, e.g. the knowledge engineer can choose
to stay within the OWL 2 EL profile or enable/disable certain class expression con-
structors. The learning algorithm is designed to be able to handle noisy data and the
visualisation of the suggestions will reveal false class assignments so that they can be
fixed afterwards.

50 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 26. Extraction with three starting instances. The circles represent different recursion depths.
The circles around the starting instances signify recursion depth 0. The larger inner circle rep-
resents the fragment with recursion depth 1 and the largest outer circle with recursion depth 2.
Figure taken from [50].

The OntoWiki Plugin. Analogous to Protégé, we created a similar plugin for On-
toWiki (cf. section 4). OntoWiki is a lightweight ontology editor, which allows dis-
tributed and collaborative editing of knowledge bases. It focuses on wiki-like, simple
and intuitive authoring of semantic content, e.g. through inline editing of RDF content,
and provides different views on instance data.

Recently, a fine-grained plugin mechanism and extensions architecture was added to
OntoWiki. The DL-Learner plugin is technically realised by implementing an OntoWiki
component, which contains the core functionality, and a module, which implements the
UI embedding. The DL-Learner plugin can be invoked from several places in OntoWiki,
for instance through the context menu of classes as shown in Figure 25.

The plugin accesses DL-Learner functionality through its WSDL-based web service
interface. Jar files containing all necessary libraries are provided by the plugin. If a user
invokes the plugin, it scans whether the web service is online at its default address. If
not, it is started automatically.

A major technical difference compared to the Protégé plugin is that the knowledge
base is accessed via SPARQL, since OntoWiki is a SPARQL-based web application. In
Protégé, the current state of the knowledge base is stored in memory in a Java object. As
a result, we cannot easily apply a reasoner on an OntoWiki knowledge base. To over-
come this problem, we use the DL-Learner fragment selection mechanism described
in [50]. Starting from a set of instances, the mechanism extracts a relevant fragment
from the underlying knowledge base up to some specified recursion depth. Figure 26
provides an overview of the fragment selection process. The fragment has the property
that learning results on it are similar to those on the complete knowledge base. For a
detailed description we refer the reader to the full article.

The fragment selection is only performed for medium to large-sized knowledge
bases. Small knowledge bases are retrieved completely and loaded into the reasoner.
While the fragment selection can cause a delay of several seconds before the learning

Introduction to Linked Data and Its Lifecycle on the Web 51

Fig. 27. Screenshot of the result table of the DL-Learner plugin in OntoWiki

algorithm starts, it also offers flexibility and scalability. For instance, we can learn class
expressions in large knowledge bases such as DBpedia in OntoWiki.31

Figure 27 shows a screenshot of the OntoWiki plugin applied to the SWORE [98]
ontology. Suggestions for learning the class “customer requirement” are shown in
Manchester OWL Syntax. Similar to the Protégé plugin, the user is presented a table
of suggestions along with their accuracy value. Additional details about the instances
of “customer requirement”, covered by a suggested class expressions and additionally
contained instances can be viewed via a toggle button. The modular design of OntoWiki
allows rich user interaction: Each resource, e.g. a class, property, or individual, can be
viewed and subsequently modified directly from the result table as shown for “design
requirement” in the screenshot. For instance, a knowledge engineer could decide to
import additional information available as Linked Data and run the CELOE algorithm
again to see whether different suggestions are provided with additional background
knowledge.

Evaluation. To evaluate the suggestions made by our learning algorithm, we tested it
on a variety of real-world ontologies of different sizes and domains. Please note that we
intentionally do not perform an evaluation of the machine learning technique as such on
existing benchmarks, since we build on the base algorithm already evaluated in detail in
[69]. It was shown that this algorithm is superior to other supervised learning algorithms
for OWL and at least competitive with the state of the art in ILP. Instead, we focus on
its use within the ontology engineering scenario. The goals of the evaluation are to
1. determine the influence of reasoning and heuristics on suggestions, 2. to evaluate
whether the method is sufficiently efficient to work on large real-world ontologies.

To perform the evaluation, we wrote a dedicated plugin for the Protégé ontology
editor. This allows the evaluators to browse the ontology while deciding whether the

31 OntoWiki is undergoing an extensive development, aiming to support handling such large
knowledge bases. A release supporting this is expected for the first half of 2012.

52 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Table 5. Statistics about test ontologies

Ontology #l
og

ic
al

ax
io

m
s

#c
la

ss
es

#o
bj

ec
tp

ro
pe

rt
ie

s

#d
at

a
pr

op
er

ti
es

#i
nd

iv
id

ua
ls

DL expressivity
SC Ontology32 20081 28 8 5 3542 AL(D)
Adhesome33 12043 40 33 37 2032 ALCHN(D)
GeoSkills34 14966 613 23 21 2620 ALCHOIN(D)
Eukariotic35 38 11 1 0 11 ALCON
Breast Cancer36 878 196 22 3 113 ALCROF (D)
Economy37 1625 339 45 8 482 ALCH(D)
Resist38 239 349 134 38 75 ALUF (D)
Finance39 16014 323 247 74 2466 ALCROIQ(D)
Earthrealm40 931 2364 215 36 171 ALCHO(D)

suggestions made are reasonable. The plugin works as follows: First, all classes with
at least 5 inferred instances are determined. For each such class, we run CELOE with
different settings to generate suggestions for definitions. Specifically, we tested two
reasoners and five different heuristics. The two reasoners are standard Pellet and Pellet
combined with approximate reasoning (not described in detail here). The five heuristics
are those described in Section 6.3. For each configuration of CELOE, we generate at
most 10 suggestions exceeding a heuristic threshold of 90%. Overall, this means that
there can be at most 2 * 5 * 10 = 100 suggestions per class – usually less, because
different settings of CELOE will still result in similar suggestions. This list is shuffled
and presented to the evaluators. For each suggestion, the evaluators can choose between
6 options (see Table 6):

1 the suggestion improves the ontology (improvement)
2 the suggestion is no improvement and should not be included (not acceptable) and
3 adding the suggestion would be a modelling error (error)

In the case of existing definitions for class A, we removed them prior to learning. In this
case, the evaluator could choose between three further options:

4 the learned definition is equal to the previous one and both are good (equal +)
5 the learned definition is equal to the previous one and both are bad (equal -) and
6 the learned definition is inferior to the previous one (inferior).

32 http://www.mindswap.org/ontologies/SC.owl
33 http://www.sbcny.org/datasets/adhesome.owl
34 http://i2geo.net/ontologies/current/GeoSkills.owl
35 http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl
36 http://acl.icnet.uk/%7Emw/MDM0.73.owl
37 http://reliant.teknowledge.com/DAML/Economy.owl
38 http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
39 http://www.fadyart.com/Finance.owl
40 http://sweet.jpl.nasa.gov/1.1/earthrealm.owl

http://www.mindswap.org/ontologies/SC.owl
http://www.sbcny.org/datasets/adhesome.owl
http://i2geo.net/ontologies/current/GeoSkills.owl
http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl
http://acl.icnet.uk/%7Emw/MDM0.73.owl
http://reliant.teknowledge.com/DAML/Economy.owl
http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
http://www.fadyart.com/Finance.owl
http://sweet.jpl.nasa.gov/1.1/earthrealm.owl

Introduction to Linked Data and Its Lifecycle on the Web 53

Table 6. Options chosen by evaluators aggregated by class. FIC stands for the fast instance
checker, which is an approximate reasoning procedure.

reasoner/heuristic im
pr

ov
em

en
t

eq
ua

lq
ua

li
ty

(+
)

eq
ua

lq
ua

li
ty

(-
)

in
fe

ri
or

no
ta

cc
ep

ta
bl

e

er
ro

r

m
is

se
d

im
pr

ov
em

en
ts

in
%

se
le

ct
ed

po
si

ti
on

on
su

gg
es

ti
on

li
st

(i
nc

l.
st

d.
de

vi
at

io
n)

av
g.

ac
cu

ra
cy

of
se

le
ct

ed
su

gg
es

ti
on

in
%

Pellet/F-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.82 ± 2.93 96.91
Pellet/Gen. F-Measure 15.24 0.44 0.66 0.11 66.60 16.95 16.30 2.78 ± 3.01 92.76
Pellet/A-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.84 ± 2.93 98.59
Pellet/pred. acc. 16.59 0.44 0.66 0.00 64.83 17.48 15.22 2.69 ± 2.82 98.05
Pellet/Jaccard 16.81 0.44 0.66 0.00 64.66 17.43 14.67 2.80 ± 2.91 95.26
Pellet FIC/F-Measure 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 95.01
Pellet FIC/Gen. F-M. 33.41 0.44 0.66 0.00 53.41 12.09 7.07 1.77 ± 2.69 89.42
Pellet FIC/A-Measure 36.19 0.55 0.55 0.00 52.84 9.87 1.63 2.21 ± 2.71 98.65
Pellet FIC/pred. acc. 32.99 0.55 0.55 0.11 55.58 10.22 4.35 2.17 ± 2.55 98.92
Pellet FIC/Jaccard 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 94.07

We used the default settings of CELOE, e.g. a maximum execution time of 10 seconds
for the algorithm. The knowledge engineers were five experienced members of our re-
search group, who made themselves familiar with the domain of the test ontologies.
Each researcher worked independently and had to make 998 decisions for 92 classes
between one of the options. The time required to make those decisions was approxi-
mately 40 working hours per researcher. The raw agreement value of all evaluators is
0.535 (see e.g. [4] for details) with 4 out of 5 evaluators in strong pairwise agreement
(90%). The evaluation machine was a notebook with a 2 GHz CPU and 3 GB RAM.

Table 6 shows the evaluation results. All ontologies were taken from the Protégé
OWL41 and TONES42 repositories. We randomly selected 5 ontologies comprising in-
stance data from these two repositories, specifically the Earthrealm, Finance, Resist,
Economy and Breast Cancer ontologies (see Table 5).

The results in Table 6 show which options were selected by the evaluators. It clearly
indicates that the usage of approximate reasoning is sensible. The results are, however,
more difficult to interpret with regard to the different employed heuristics. Using predic-
tive accuracy did not yield good results and, surprisingly, generalised F-Measure also
had a lower percentage of cases where option 1 was selected. The other three heuristics
generated very similar results. One reason is that those heuristics are all based on pre-
cision and recall, but in addition the low quality of some of the randomly selected test
ontologies posed a problem. In cases of too many very severe modelling errors, e.g.
conjunctions and disjunctions mixed up in an ontology or inappropriate domain and

41 http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
42 http://owl.cs.manchester.ac.uk/repository/

http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
http://owl.cs.manchester.ac.uk/repository/

54 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

range restrictions, the quality of suggestions decreases for each of the heuristics. This is
the main reason why the results for the different heuristics are very close. Particularly,
generalised F-Measure can show its strengths mainly for properly designed ontologies.
For instance, column 2 of Table 6 shows that it missed 7% of possible improvements.
This means that for 7% of all classes, one of the other four heuristics was able to
find an appropriate definition, which was not suggested when employing generalised
F-Measure. The last column in this table shows that the average value of generalised F-
Measure is quite low. As explained previously, it distinguishes between cases when an
individual is instance of the observed class expression, its negation, or none of both. In
many cases, the reasoner could not detect that an individual is instance of the negation
of a class expression, because of the absence of disjointness axioms and negation in
the knowledge base, which explains the low average values of generalised F-Measure.
Column 4 of Table 6 shows that many selected expressions are amongst the top 5 (out
of 10) in the suggestion list, i.e. providing 10 suggestions appears to be a reasonable
choice.

In general, the improvement rate is only at about 35% according to Table 6 whereas it
usually exceeded 50% in preliminary experiments with other real-world ontologies with
fewer or less severe modelling errors. Since CELOE is based on OWL reasoning, it is
clear that schema modelling errors will have an impact on the quality of suggestions.
As a consequence, we believe that the CELOE algorithm should be combined with
ontology debugging techniques. We have obtained first positive results in this direction
and plan to pursue it in future work. However, the evaluation also showed that CELOE
does still work in ontologies, which probably were never verified by an OWL reasoner.

Summary. We presented the CELOE learning method specifically designed for extend-
ing OWL ontologies. Five heuristics were implemented and analysed in conjunction
with CELOE along with several performance improvements. A method for approxi-
mating heuristic values has been introduced, which is useful beyond the ontology en-
gineering scenario to solve the challenge of dealing with a large number of examples
in ILP [122]. Furthermore, we biased the algorithm towards short solutions and im-
plemented optimisations to increase readability of the suggestions made. The resulting
algorithm was implemented in the open source DL-Learner framework. We argue that
CELOE is the first ILP based algorithm, which turns the idea of learning class expres-
sions for extending ontologies into practice. CELOE is integrated into two plugins for
the ontology editors Protégé and OntoWiki and can be invoked using just a few mouse
clicks.

7 Pattern-Based Evolution

Facilitating the smooth evolution of knowledge bases on the Data Web is still a ma-
jor challenge. The importance of addressing this challenge is amplified by the shift
towards employing agile knowledge engineering methodologies (such as Semantic
Wikis, cf. section 4), which particularly stress the evolutionary aspect of the knowledge
engineering process.

Introduction to Linked Data and Its Lifecycle on the Web 55

As an example, how the evolution on the Web of Data can be facilitated, we present
in this section the EvoPat approach [100], which is heavily inspired by software refac-
toring. In software engineering, refactoring techniques are applied to improve software
quality, to accommodate new requirements or to represent domain changes. The term
refactoring refers to the process of making persistent and incremental changes to a sys-
tem’s internal structure without changing its observable behavior, yet improving the
quality of its design and/or implementation [42]. Refactoring is based on two key con-
cepts: code smells and refactorings. Code smells are an informal but still useful char-
acterization of patterns of bad source code. Examples of code smells are “too long
method” and “duplicate code”. Refactorings are piecemeal transformations of source
code which keep the semantics while removing (totally or partly) a code smell. For ex-
ample, the “extract method” refactoring extracts a section of a “long method” into a new
method and replaces it by a call to the new method, thus making the original method
shorter (and clearer).

Compared to software source code refactoring, where refactorings must be per-
formed manually or with limited programmatic support, the situation in knowledge base
evolution on the Data Web is more advantageous. On the Data Web we have the unified
RDF data model, which is the basis for both, data and ontologies. With EvoPat we ex-
ploit the RDF data model by devising a pattern-based approach for the data evolution
and ontology refactoring of RDF knowledge bases. The approach is based on the defi-
nition of basic evolution patterns, which are represented declaratively and can capture
atomic evolution and refactoring operations on the data and schema levels. In essence, a
basic evolution pattern consists of two main components: 1) a SPARQL SELECT query
template for selecting objects, which will be changed and 2) a SPARQL/Update query
template, which is executed for every returned result of the SELECT query. In order
to accommodate more advanced and domain-specific data evolution and refactoring
strategies, we define a compound evolution pattern as a linear combination of several
simple ones.

To obtain a comprehensive catalog of evolution patterns, we performed a survey of
possible evolution patterns with a combinatorial analysis of all possible before/after
combinations. Starting with the basic constituents of a knowledge base (i. e. graphs,
properties and classes), we consider all possible combinations of the elements poten-
tially being affected by an evolution pattern and the prospective result after applica-
tion of the evolution pattern. This analysis led to a comprehensive library of 24 basic
and compound evolution patterns. The catalog is not meant to be exhaustive but cov-
ers the most common knowledge base evolution scenarios as confirmed by a series of
interviews with domain experts and knowledge engineers. The EvoPat approach was
implemented as an extension for OntoWiki (cf. section 4).

This section is structured as follows: First, we describe the evolution pattern concepts
and survey possible evolution patterns. Then, we showcase our implementation and
present our work in the light of related approaches.

7.1 Concepts

The EvoPat approach is based on the rationale of working as closely as possible with
the RDF data model and the common ontology construction elements, i. e. classes,

56 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

instances as well as datatype and object properties. With EvoPat we also aim at delegat-
ing bulk of the work during evolution processing to the underlying triple store. Hence,
for the definition of evolution patterns we employ a combination of different SPARQL
query templates. In order to ensure modularity and facilitate reusability of evolution
patterns our definition of evolution patterns is twofold: basic evolution patterns ac-
commodate atomic ontology evolution and data migration operations, while compound
evolution patterns represent sequences of either basic or other compound evolution
patterns in order to capture more complex and domain specific evolution scenarios.
The application of a particular evolution pattern to a concrete knowledge base is per-
formed with the help of the EvoPat pattern execution algorithm. In order to optimally
assist a knowledge engineer we also define the concept of a bad smell in a knowledge
base. We describe these individual EvoPat components in more detail in the remainder
of this paper.

Evolution Pattern. Figure 28 describes the general composition of EvoPat evolution
patterns. Bad smells (depicted in the lower left of Figure 28 have a number of basic or
compound evolution patterns associated, which are triggered once a bad smell is traced.
Basic and compound evolution patterns can be annotated with descriptive attributes,
such as a label for the pattern, a textual description and other metadata such as the
author of the pattern the creation date, revision etc.

Basic Evolution Pattern (BP). A basic evolution pattern consists of two main com-
ponents: 1. a SPARQL SELECT query template for selecting objects, which will be
changed and 2. a SPARQL/Update query template, which is executed for every returned

bad smells

compound pattern (CP)

0<i n

basic pattern (BP)

0<j m variable update query

Fig. 28. Pattern composition with descriptive attributes, functional attributes and cardinality
restrictions

Introduction to Linked Data and Its Lifecycle on the Web 57

result of the SELECT query. In addition, the placeholders contained in both query tem-
plates are typed in order to facilitate the classification and choreography of different
evolution patterns. Please note, that in the following we will use the term variable for
placeholders contained in SPARQL query templates. These should not be confused with
variables contained in SPARQL graph patterns, which, however, do not play any par-
ticular role in this article. The following definition describes basic evolution patterns
formally:

Definition 8 (Basic Evolution Pattern). A basic evolution pattern is a tuple (V, S ,U),
where V is a set of typed variables, S is a SPARQL query template with placeholders
for the variables from V, and U is a SPARQL/Update query template with placeholders
referring to a result set which is generated by the SPARQL query template S .

Listing 1.1. Basic Evolution Pattern example: moving axioms from one property to another
V: dtProp type: PROPERTY
objProp type: PROPERTY
p type: TEMP
o type: TEMP

S: SELECT DISTINCT * WHERE {
%dtProp% %p% %o% .
FILTER (
!sameTerm(%p%, rdfs:range) &&
!sameTerm(%p%, rdf:type)

)
}

U: INSERT: %objProp% %p% %o% .
DELETE: %dtProp% %p% %o% .

Listing 1.1 shows a basic evolution pattern, which moves axioms from one property
to another. Lines 1-4 define the typed variables used in the pattern. Lines 5-11 con-
tain the SELECT query template, while lines 12-13 contain the SPARQL/Update query
template to be executed for each result of the SELECT query.

Query preprocessor. In order to give a SPARQL query for previously unknown entities
(since they are selected by the pattern SPARQL query), we introduce an extension to
SPARQL that defines two additional types of variables and preprocessor functions:

– Pattern variables are enclosed in % characters and will be replaced with the corre-
sponding entity. Input variables are defined by the user applying the pattern (e. g. on
which entity the pattern is to operate.). Temp variables are variables to which query
results from the pattern SPARQL query are bound. They can be used in the SPAR-
QL/Update query of the same pattern to describe triple updates. In Listing 1.1, line
12 the variable %objProp% is used to bind the newly created object property.

– Preprocessor functions are a means of performing certain actions with the entities
bound to a variable. If e. g. the user wants URIs of a certain format or change
the datatype of a created literal value, those functions can be used. We provide a
number of pre-defined functions for the most common use cases.

Compound Evolution Pattern (CP). Basic evolution patterns alone are not sufficient
to cover arbitrary evolution scenarios. Especially on higher abstraction levels of rep-
resented domain knowledge, it is feasible to represent ontology changes on the same

58 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

level of abstraction. To this end, we define compound evolution patterns, consisting of
several evolution patterns that are subsequently applied to a knowledge base.

Definition 9 (Compound Evolution Pattern). Let 0 < i ≤ n, Pi be (basic or com-
pound) patterns and Vi the corresponding sets of unbound variables in Pi. A sequence
CP � (Vi,Pi) of patterns is called a compound pattern (CP).

An example of a compound pattern for transforming a datatype property into an object
property (including instance transformation) is given in listing 1.2. It consists of the
following four basic sub patterns: moving property axioms, deleting datatype property,
transforming instance data and creating object property.

Listing 1.2. Compound Evolution Pattern example: transforming a datatype into an object
property while maintaining instance consistency
languagelanguage
// Sub pattern 1: (move axioms from dtProp to objProp)
V: dtProp type: PROPERTY
objProp type: PROPERTY
p type: TEMP
o type: TEMP

S: SELECT DISTINCT * WHERE {
%dtProp% %p% %o% .
FILTER (
!sameTerm(%p%,rdfs:range) &&
!sameTerm(%p%,rdf:type)

)
}

U: INSERT: %objProp% %p% %o% .
DELETE: %dtProp% %p% %o% .

// Sub pattern 2: (delete dtProp)
V: dtProp type: PROPERTY
p type: TEMP
o type: TEMP

S: SELECT DISTINCT * WHERE {
%dtProp% %p% %o% .

}
U: DELETE: %dtProp% %p% %o% .

// Sub pattern 3: (transform instance data)
V: dtProp type: PROPERTY
inst type: TEMP
o type: TEMP
objProp: PROPERTY

S: SELECT DISTINCT * WHERE {
%inst% %dtProp% %o% .

}
U: INSERT:
%inst% %objProp% getTempUri(getNamespace(%objProp%),%o%).
getTempUri(getNamespace(%objProp%),%o%) rdfs:label %o%.
DELETE: %inst% %dtProp% %o%

// Sub pattern 4: (create property)
V: objProp type: PROPERTY
S:
U: INSERT: %objProp% rdf:type owl:ObjectProperty .

Evolution Pattern Processing. Algorithm 3 outlines the evolution pattern processing.
The algorithm uses an evolution pattern P, a graph G and a set of variable bindings B
as input. Depending on the type of pattern (basic or compound) the following steps are
performed.

Introduction to Linked Data and Its Lifecycle on the Web 59

Algorithm 3. Pattern execution sequence
Require: Pattern P
Require: RDF graph G
Require: Variable bindings B

if P is Basic Pattern then
substitute variables in SPARQL Query according to B
execute preprocessor functions in P
QR := SPARQL query result of P on G
for all update patterns of P as UP do

if UP has graph then
active graph AG = graph of UP

else
active graph AG = default graph G

end if
substitute variables in UP according to B
generate changes CS of UP on AG with QR
apply changes CS to AG

end for
else

for all basic patterns in compound pattern P as SP do //maintain correct order
execute Base Pattern SP //see above

end for
end if

Basic pattern. If P is a basic pattern, the variables in the query are substituted with
respect to their binding in B. Each of the update patterns contained in P is processed as
follows:

1. If the update pattern sets an explicit graph, the active graph is set to that graph, else
it is set to the default graph.

2. The variables in the update pattern are substituted according to B
3. Changes are determined by executing the SPARQL query in P on G.
4. The changes are then applied to the active graph.

Compound pattern. Compound patterns are resolved to basic patterns. For each of the
basic patterns the above steps are performed. The output of the algorithm is a set of
changes on the respective graphs.

Bad Smells. In order to assist knowledge engineers and domain experts as much as
possible with the evolution of a knowledge base we also provide a formal definition
for a bad smell in a certain knowledge base. In essence, a bad smell is represented via
a SPARQL SELECT query, which detects a suspicious structure in a knowledge base.
In most scenarios, there will be one (or multiple) evolution patterns addressing exactly
the issue raised by a certain bad smell. Hence, we allow to assign one (or multiple)
evolution patterns to the bad smell for resolving that issue. In order to further automatize
the resolving of bad smells each evolution pattern can be assigned with a mapping from
the bad smells result set to the variables used in the evolution patterns.

60 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Definition 10 (Bad smell). A bad smell is a tuple (S , (Pi, μi)), where S is a SPARQL
query and (Pi, μi) is a list of possible evolution patterns Pi for resolving the bad smell
with an associated mapping μi, which maps results of S to the variables in Pi.

Listing 1.3. Bad smell example: selecting statements for which the datatype of the object doesn’t
match the rdfs:range of the property

SELECT ?s ?p ?o
WHERE {
?s ?p ?o .
?p a owl:DatatypeProperty .
?p rdfs:range ?range .
FILTER (DATATYPE(?o) != ?range)

}

An example of a bad smell is given in listing 1.3. It selects all statements whose
object is a literal with a datatype that does not match the rdfs:range of the property
of that statement. The result set from the bad smell query can be directly applied as
input to a pattern that typecasts literal values to the correct datatype.

In certain cases a knowledge base evolution can be even performed completely au-
tomatically. This is the case if and only if both of the following conditions are met.

– The bad smell can only be resolved by exactly one evolution pattern and
– the mapping to the evolution pattern’s variables is complete in the sense that all

variables will be assigned values from the bad smell’s query result set.

Serialization in RDF. To facilitate the exchange and reuse of previously defined evo-
lution patterns we developed an RDF serialization, i. e. an RDF vocabulary for rep-
resenting evolution patterns43. Together with an updated log publishing (such as e.g.
proposed in [8]) on the Linked Data Web this facilitates the creation of an evolution
ecosystem, where generic and domain specific evolution patterns are shared and reused
and data cleansing and migration strategies can be also performed in network of linked
knowledge bases.

7.2 Pattern Survey and Classification

In order to obtain a comprehensive catalog of evolution patterns we pursued a three-
fold strategy: (1) we performed a comprehensive literature review, (2) we looked at
all combinatorial combinations of before/after states and (3) we conducted a number
of interviews with knowledge engineers and domain experts, which were involved in
medium-scale knowledge base construction projects and retrospectively reviewed the
evolution of these knowledge bases.

Literature review. Most work concerned with ontology evolution patterns identifies a
number of useful patterns but gives only an informal description which cannot be used
for implementing an evolution software system. In [89], evolution patterns that work
on the ontology level are identified. A classification of evolution patterns in four lev-
els of abstraction is presented in [57]. The levels identified by the authors helped us in

43 The vocabulary for representing evolution patterns is available at:
http://ns.aksw.org/Evolution/

http://ns.aksw.org/Evolution/

Introduction to Linked Data and Its Lifecycle on the Web 61

Table 7. Combinatorially possible before/after evolution states. C, P, G stand for class, property,
graph respectively. The ’+’ indicates that multiple entities of the same type participate in the
evolution pattern. Impossible combinations are blackened out.

∅ C+ P+ G+ PC PG CG

∅ ok ok ok ok
C+ ok ok ok invalid invalid invalid ok
P+ ok ok ok invalid ok ok invalid
G+ ok invalid invalid ok invalid invalid invalid
PC invalid ok invalid invalid invalid
PG invalid ok invalid invalid invalid
CG ok invalid invalid invalid invalid

our classification system. In the interviews we conducted, the need for representational
changes was identified. Thus, we added another layer that deals with syntactic changes
to resources (i. e. renaming a URI). The authors of [32] present a number of patterns
with formally defined participants and execution steps. We extended the approach, pro-
viding a pattern behavior in the form of SPARQL/Update queries that can directly be
built into Semantic Web applications.

Combinatorial analysis. In order to ensure, that we achieved a comprehensive coverage
of all possible evaluation patterns we followed a combinatorial analysis. We considered
all possible combinations of ontology construction elements (i. e. classes, properties
and (sub-)graphs) which are potentially affected by the application of a basic evolu-
tion pattern and the possible combinations of remaining elements after the pattern has
been applied. All possible combinations are displayed in Table 7. For each of the po-
tentially possible combinations we performed an analysis whether evolution patterns
actually exist in practice. The results of this analysis are also summarized in Table 8.
Combinations where possible patterns can be represented as combinations of basic evo-
lution patterns are marked with a white background. Those combinations were no basic
evolution patterns exist are blackened out.

Interviews and retrospective coverage checks. In order to ground our findings from
the literature review and combinatorial analysis, we had an in-depth look at several
medium- to large-scale knowledge base construction projects. These included in partic-
ular the Vakantieland e-tourism knowledge base for the Netherlands [78], the Leipzig
Professors Catalog [11] and the development of an ontology for the energy sector, which
was performed by our industry partner Business Intelligence GmbH. We also retrospec-
tively reviewed the evolution of these knowledge bases and analyzed to what extend the
previously defined evolution patterns would cover the evolution steps found.

7.3 Implementation

The EvoPat approach was implemented as an extension to OntoWiki (cf. section 4). The
general architecture of the EvoPat extension is depicted in Figure 29. It consists of four
distinct components. Core of the EvoPat implementation is the pattern engine, which

62 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

information flow

flow of control

Legend:

Frontend: OntoWiki extension
(browsing, editing and applying patterns)

Backend: triple store

LOD Cloud

P
at

te
rn

 M
an

ag
em

en
t

User Interaction

Pattern Processing

SPARQL Support

Pattern Control

Pattern
Deserialization

Statement-level
Support P

at
te

rn
 E

ng
in

e
Fig. 29. System architecture with internal functional units and provided services. Patterns are
exposed as Linked Data.

in particular handles processing, storing, versioning and exposing evolution patterns as
Linked Data on the data web. It interacts via SPARQL with a triple store represent-
ing the EvoPat backend. The EvoPat frontend facilitates the user friendly browsing/s-
election, configuration and application of evolution patterns. The pattern management
component as a logical component spans several architectural layers. It implements the
required APIs as needed by both the user interface and the backend for managing pat-
terns.

Different versions of ontologies resulting from applying evolution patterns can be
managed through OntoWiki’s versioning component. Similar to database transactions,
the changes on the statement level that result from applying a certain evolution pattern
can be grouped and versioned as a single change.

Figure 30 showcases the EvoPat user interface with the pattern editor and the pattern
execution. The pattern editor allows to create basic and compound evolution patterns.
A user-friendly form is generated, where the descriptive attributes, the variables used in
the pattern and the respective SPARQL SELECT and UPDATE queries can be filled in.
For pattern execution (as shown in the upper left part of Figure 30), the EvoPat imple-
mentation generates a form based on the variables definition of the evolution pattern at
hand. Employing the typing of the variable a type ahead search simplifies the selection
of concrete values for the variables.

Scalability evaluation. One of the main goals of developing EvoPat was to push as
much of the evolution pattern processing down to the underlying triple store. In order to
evaluate whether EvoPat lives up to this promise we evaluated the processing of selected
evolution patterns with different knowledge base sizes. The results of the evaluation are
summarized in Table 9. We used the Catalogus Professorum Lipiensis knowledge base
and simply created three different versions of it in different sizes, by simply copying

Introduction to Linked Data and Its Lifecycle on the Web 63

Table 8. Overview of valid evolution patterns on four levels of abstraction

Ontology level (OWL)
Before After Description

∅ ∅ Trivial empty pattern (no actions taken)
∅ C+, P+ or G+ Creating class, property or graph
C+, P+ or G+ ∅ Deleting class, property or graph
C+ C+ Subclassing, union, merging, splitting classes
P+ P+ Property axioms (functional, symmetric, domain,

range, etc.)
G+ G+ Graph merging and splitting, graph annotation
C+ P+ Remodeling from class membership to distinct property

value
P+ C+ Remodeling from distinct property value to class mem-

bership
C+ CG Class extraction from named graph
CG C+ Merging classes into graph
P PC Converting datatype to object property
PC P Converting object to datatype property (incl. axioms)

Instance and data level (RDFS)
Input Output Description

I∗ I Instances merging
I∗,C∗ I∗ Instances reclassification
I∗, P,O I∗ Adding data to instances
I∗, P, P∗ I∗ Generating data from existing instances data
I∗, L∗ I∗ Converting literal property values to resources
I∗,R∗ I∗ Converting resources to literal property values
I∗(, P∗,O∗) I∗ Moving data (predicates and objects) from one instance

to another

Entity level (RDF)
Input Function Description

Literal, datatype Setting datatype on
literal

Datatype added, changed or removed

Literal, language Setting language
on literal

Literal language added, changed or removed

RegExp search/ re-
place

regexp replace Performs a regular expression search and replace on lit-
eral value

Syntactic/representational level (RDF/XML, N3, etc.)
Input Function Description

URI, namespace Set URI prefix Changes prefixes for a resource
URI, local name Set local name Changes local name of a resource

64 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 30. EvoPat user interface showing pattern editor (right) and pattern execution view (left)

the data. The results of the performance evaluation show, that the evolution pattern
processing grows linearly with the knowledge base size. As a consequence, EvoPat can
be used with arbitrarily large knowledge bases, since the performance of the evolution
pattern processing primarily depends on the speed of the underlying triple store.

7.4 Other Evolution Approaches

Ontology evolution has constantly been under research during the past two decades. In
recent years a ramp-up is evident due to Semantic Web research activity, thus providing
a more user-centric view on ontology evolution.

A comprehensive overview on the field of ontology change is given in [41]. The
authors conduct an extensive literature review, extracting and defining common vocab-
ulary as a base for discussion. They define ontology evolution as a “response to a change
in the domain or conceptualization”. The term ontology evolution, as used in this pa-
per, covers what Flouris et al. refer to as ontology translation and by which they mean
changes in the syntactical representation of the ontology (e. g. changing the URI of a
resource).

The most closely related approach for formally specifying modular evolution
patterns in a declarative manner is a categorization of pattern-based change operators in
[57]. The paper defines four levels of abstraction of an ontology (element, element con-
text, domain-specific and generic abstract level) to whose elements the said operators

Introduction to Linked Data and Its Lifecycle on the Web 65

Table 9. Scalability evaluation with two compound patterns on Catalogus Professorum Lipsien-
sis. The benchmarks were performed in three different sizes of the original knowledge base:
original size (150K triples), 3 × the size (450K triples), 5 × the size (750K triples). Figures are
quoted for two patterns each KB size.

Pattern exec. [s] Affect. rsrc. [pcs] Throughput [pcs
s]

KB size: 1 × 150K triples
Datatype to Object Property 8.593 1300 151.3
Class merging 5.949 1500 252.1

KB size: 3 × 150K triples
Datatype to Object Property 24.813 3900 157.2
Class merging 17.753 4500 253.4

KB size: 5 × 150K triples
Datatype to Object Property 39.822 6500 163.2
Class merging 30.603 7500 245.1

can be applied. Taking into account the Data Web infrastructure, our approach defines
an additional level on the representation layer.

Stojanovic et al. in [111] define three requirements for ontology evolution: 1) ensur-
ing consistency, 2) allowing the user supervision of evolution and 3) advice for con-
tinuous ontology refinement. In addition, the authors identify six phases of ontology
evolution, namely 1) capturing, 2) representation, 3) semantics of change, 4) implemen-
tation, 5) propagation and 6) validation of changes. The KAON API44, implementing
the approach, also introduced by the authors. Furthermore, they identify the need for
representing changes on different levels of granularity. To cope with different methods
of applying changes to an ontology, they introduce basic evolution strategies, which
define the steps of a complex evolution process. For a given change request there are
usually more than on applicable strategy, resulting in different ontologies. Seen in a
broader sense, these basic evolution strategies can be combined into so called advanced
evolution strategies, of which they introduce four. EvoPat’s compound patterns are sim-
ilar in nature to Stojanovic’s basic evolution strategies, but differ in the inclusion of
explicit declarative semantics by means of SPARQL/Update queries.

An interesting approach to ontology evolution with particular respect to consistency
management is given by Djedidi and Aufaure [32]. A process model, a pattern and a
versioning layer are proposed. If applying a change pattern results in a match to an in-
consistency pattern, an alternative pattern is automatically applied by the proposed sys-
tem. Furthermore, a quality assessment step is integrated into the process. The system
can thus alleviate the need for user interaction by applying quality-improving patterns
in an automated fashion.

Noy and Klein determine in [89] to what extent ontology evolution resembles schema
evolution, which has been extensively researched in the database community. By argu-
ing that different versions of an ontology have to be kept in parallel, they conclude
that the traditional distinction between schema evolution and schema versioning is not

44 http://kaon.semanticweb.org/developers

http://kaon.semanticweb.org/developers

66 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

applicable to ontology evolution and ontology versioning. Even though, EvoPat dis-
tinguishes between versioning and evolution, both subsystems are closely related and
cannot be used exclusively. All evolutionary changes are automatically versioned and
can be reverted at any time.

A declarative update language for RDF graphs, named RUL is defined in [77]. RUL
is based on the RDF query language RQL and the RDF view language RVL and en-
sures consistency on the RDF and RDFS levels. It, therefore, contains primitive, set-
oriented and complex updates as compositions of primitive or complex ones. Primitive
RUL updates are similar in expressiveness to SPARQL 1.1 updates. Complex updates
are expressed by means of fine-grained updates on class and property instance level.
Our basic evolution patterns with variable placeholders are similar to the set-oriented
RUL updates (i. e. repeating the same query for several bindings). Additionally, we,
however, define a functional extension that allows for arbitrarily replacing entities in a
preprocessor-like manner.

Finally, applying the software engineering concept of code smell [42] to ontologies
has been inspired by the work of Rosenfeld et al. [101]. They use bad smells in a Se-
mantic Wiki context for triggering refactoring operations.

7.5 Conclusion

We introduced an approach to pattern-based evolution of RDF knowledge bases. By
considering the complete stack of Semantic Web knowledge representation techniques
including its syntactic infrastructure as opposed to just the ontology layer, our ap-
proach fulfills additional requirements identified for example in user interviews (cf.
section 7.2). We provide a concrete implementation that leverages the plug-in archi-
tecture of OntoWiki, our semantic collaboration platform and framework. Thus, our
implementation can make use of existing functionality of the OntoWiki framework like
versioning of RDF knowledge bases. Compared to existing approaches for knowledge
base evolution, the declarative, pattern-based EvoPat approach has a number of advan-
tages:

– EvoPat is a unified method, which works for both data evolution and ontology refac-
toring.

– The modularized, declarative definition of evolution patterns is relatively simple
compared to an imperative description of evolution. It allows domain experts and
knowledge engineers to amend the ontology structure and modify data with just a
few clicks.

– Combined with our RDF representation of evolution patterns and their exposure on
the Linked Data Web, EvoPat facilitates the development of an evolution pattern
ecosystem, where patterns can be shared and reused on the Data Web.

– The declarative definition of bad smells and corresponding evolution patterns pro-
motes the (semi-)automatic improvement of information quality.

On the limitations side, EvoPat, currently, only ensures consistency through the defi-
nition of consistency-preserving patterns by the knowledge engineer. User-defined pat-
terns can, however, lead to inconsistent knowledge bases. An approach that ensures
consistency by proposing only those patterns whose application will not result in an

Introduction to Linked Data and Its Lifecycle on the Web 67

inconsistent ontology, would thus be desirable. A straightforward (but admittedly not
very scalable) solution to this problem is to combine EvoPat with a reasoner and test
the application of a pattern employing the reasoner before its actual application in order
to ensure correctness.

As opposed to bad smells, which indicate modeling problems, a promising approach
is also to share and reuse modeling best practices. A problem which must be solved
in this regard, is the formalization and elicitation of a user’s modeling requirements.
A related idea for future work is the consumption of Linked Data. Our current imple-
mentation publishes evolution patterns on the Data Web but makes no use of gathering
further information about resources. Doing so, could deliver hints for the applicability
of specific patterns.

In a number of application projects we learned, that a key factor for the success
of a knowledge engineering project is the efficient co-design of knowledge-bases and
knowledge-based applications. Through the declarative definition of evolution with
EvoPat it becomes possible to (semi-)automatize this co-design, since a knowledge base
refactoring can trigger code refactoring and vice versa.

8 Outlook and Future Challenges

Although the different approaches for aspects of the Linked Data life-cycle as presented
in this chapter are already working together, much more effort must be done to further
integrate them in ways that they mutually fertilize themselves. The discovery of new
links or the authoring of new resource descriptions, for example, should automatically
trigger the enrichment of the linked knowledge bases. The enrichment in turn can trig-
ger the application of inconsistency detection and repair techniques. The browsing and
exploration paths followed by end-users can be taken into account for machine learn-
ing techniques to refine the knowledge bases etc. etc. Ultimately, when the different
aspects of Linked Data management are fully integrated we envision the Web of Data
becoming a washing machine for knowledge. A progress in one particular aspect will
automatically trigger improvements in many other ones as well. In the following we
outline some research challenges and promising research directions regarding some of
the Linked Data management aspects.

Extraction. One promising research direction with regard to the extraction from
unstructured sources is the development of standardized, LOD enabled integration in-
terfaces between existing NLP tools. An open question is whether and how efficient bi-
directional synchronization between extraction source and target knowledge base can
be established. With regard to the extraction from structured sources (e.g. relational,
XML) we need a declarative syntax and semantics for data model transformations.
Some orthogonal challenges include the use of LOD as background knowledge and
the representation and tracing of provenance information.

Authoring. Current Semantic Wikis still suffer from a lack of scalability. Hence, an
important research and development target are large-scale Semantic Wikis, which in-
clude functionality for access control and provenance. In order to further flexibilize and
simplify the authoring an adaptive choreography of editing widgets based on underly-
ing data structures is needed. Also, the joint authoring of unstructured and structured

68 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

Fig. 31. Three steps to the supervised discovery of linking configurations

sources (i.e. HTML/RDFa authoring) and better support for the integrated semantic an-
notation of other modalities such as images, audio, video is of paramount importance.

Towards Zero-Configuration Linking. While link discovery frameworks such as LIMES
make it easier to compute links and link candidates for large instance sets, they do
not address the second challenge of instance linking, i.e., the discovery of appropriate
linking configurations for Linked Data. First steps in this direction follow the simple
yet efficient approach for discovering such configurations shown in Figure 31.

The first step consists of detecting atomic configurations automatically. We call a
configuration atomic when the mapping condition of this configuration links exactly
one property of the source with one property of the target instances. The detection of an
atomic configuration is carried out by applying a simple metric to all frequent properties
of the source and target instances. For each property pair, the average best matches are
computed for a limited number of source instances to ensure acceptable runtimes. Only
those metric pairs which generate average best match values beyond that of random
noise are considered in the subsequent steps. This step can be very time-demanding as
mappings have to be carried out for each possible combination of property pairs. Thus,
efficient mapping approaches such as LIMES are central for reducing the waiting time
of the user.

The second step consists of detecting the best metric for each atomic configuration.
For this purpose, the similarity of the matching instances detected by using atomic con-
figurations is computed anew by using other metrics. The metric that yields the highest
average best match score is then considered the best metric for matching these proper-
ties. In most cases, atomic configurations are sufficient to achieve high precision [119].
Still, complex configurations that combine several properties are needed for some diffi-
cult tasks.

The third step aims to compute such complex configurations by using active learning.
Here, the user is presented with the best matching pairs from each of the current config-
urations. These results are sorted according to the average of the similarity of matching
instances pairs. The user can then choose sets of pairs that yield promising results. For n
chosen configurations c1, ..., cn, a set of configurations of the form

∑
i=1...n

αici are created,

whereby the coefficients αi can either be set by the user or generated automatically.
The resulting configurations are then used as next input for the third step until the user
selects a configuration as being optimal. Finally, the results of the chosen configuration
on all instances from the source data set are returned.

Introduction to Linked Data and Its Lifecycle on the Web 69

Acknowledgments. We would like to thank our colleagues from the AKSW research
group in Leipzig as well as the LOD2 and LATC project consortia, without whom writ-
ing this chapter would not have been possible. In particular, we would like to thank
Christian Bizer and Tom Heath, whose Chaper 2 of the book ‘Linked Data – Evolving
the Web into a Global Data Space’ [48] served as a blueprint for Section 2; Sebas-
tian Hellmann, Jörg Unbehauen for their contributions to Section 3, Sebastian Tramp,
Michael Martin, Norman Heino, Phillip Frischmuth and Thomas Riechert for their con-
tributions to the development of OntoWiki as described in Section 4. We are also very
extremely grateful to the recommendations provided by the anonymous reviewers from
the Reasoning Web 20011 Programme Committee for this chapter. This work was sup-
ported by a grant from the European Union’s 7th Framework Programme provided for
the projects LOD2 (GA no. 257943), LATC (GA no. 256975) and the Eureka project
SCMS.

References

1. Resource description framework (RDF): Concepts and abstract syntax. Technical report,
W3C (February 2004)

2. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syntax and pro-
cessing – a collection of attributes and processing rules for extending XHTML to support
RDF. W3C Recommendation (October 2008), http://www.w3.org/TR/rdfa-syntax/

3. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections.
In: ACM DL, pp. 85–94 (2000)

4. Agresti, A.: An Introduction to Categorical Data Analysis, 2nd edn. Wiley Interscience,
Hoboken (1997)

5. Amsler, R.: Research towards the development of a lexical knowledge base for natural lan-
guage processing. SIGIR Forum 23, 1–2 (1989)

6. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nu-
cleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer,
Heidelberg (2007)

7. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-weight
linked data publication from relational databases. In: Quemada, J., León, G., Maarek, Y.S.,
Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web,
WWW 2009, Madrid, Spain, April 20-24, 2009, pp. 621–630. ACM Press, New York (2009)

8. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-weight
linked data publication from relational databases. In: Quemada, J., León, G., Maarek, Y.S.,
Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web,
WWW 2009, Madrid, Spain, April 20-24, pp. 621–630. ACM Press, New York (2009)

9. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A tool for social, semantic collaboration. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer, Heidelberg (2006)

10. Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge bases. In:
Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 55–69. Springer, Hei-
delberg (2007)

http://www.w3.org/TR/rdfa-syntax/

70 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

11. Augustin, C., Kuchta, B., Morgenstern, U., Riechert, T.: Datenbank und website catalogus
professorum lipsiensis. ein sozialstatistisches analyseinstrumentarium und seine repräsen-
tation im netz. In: Schattkowsky, M., Metasch, F. (eds.) Biografische Lexika im Internet.
Bausteine, vol. 14, TUDPress, Verlag der Wissenschaften GmbH, Dresden (2009)

12. Aumüller, D.: Semantic Authoring and Retrieval within a Wiki (WikSAR). In: ESWC (May
2005), http://wiksar.sf.net

13. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge
bases using formal concept analysis. In: IJCAI 2007. AAAI Press, Menlo Park (2007)

14. Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a
background terminology. J. Applied Logic 5(3), 392–420 (2007)

15. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In:
Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer,
Heidelberg (2000)

16. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record
linkage. In: KDD 2003 Workshop on Data Cleaning, Record Linkage, and Object Consoli-
dation (2003)

17. Ben-David, D., Domany, T., Tarem, A.: Enterprise data classification using semantic web
technologies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 66–81. Springer,
Heidelberg (2010)

18. Berners-Lee, T.: Notation 3 (1998),
http://www.w3.org/DesignIssues/Notation3.html

19. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (URI): Generic
syntax. Internet RFC 2396 (August 1998)

20. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search:
Effectively combining keywords and semantic searches. In: Bechhofer, S., Hauswirth,
M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568.
Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-68234-9_41 ,
doi:10.1007/978-3-540-68234-9_41

21. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up record
linkage. In: ICDM 2006, pp. 87–96. IEEE, Los Alamitos (2006)

22. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)
23. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Readings in

Machine Learning, pp. 201–204. Morgan Kaufmann, San Francisco (1990)
24. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. In:

W3C Recommendation, W3C (February 2004),
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

25. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendel-
zon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Hei-
delberg (1999)

26. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3),
34–41 (2006)

27. Coates-Stephens, S.: The analysis and acquisition of proper names for the understanding of
free text. Computers and the Humanities 26, 441–456 (1992) 10.1007/BF00136985

28. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description
logics. In: AAAI 1992, pp. 754–760 (1992)

29. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experi-
mental results. In: KR 1994, pp. 121–133. Morgan Kaufmann, San Francisco (1994)

30. Curran, J.R., Clark, S.: Language independent ner using a maximum entropy tagger. In:
Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003,
vol. 4, pp. 164–167. Association for Computational Linguistics, Morristown (2003)

http://wiksar.sf.net
http://www.w3.org/DesignIssues/Notation3.html
http://dx.doi.org/10.1007/978-3-540-68234-9_41
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Introduction to Linked Data and Its Lifecycle on the Web 71

31. d’Amato, C., Fanizzi, N., Esposito, F.: A note on the evaluation of inductive concept clas-
sification procedures. In: Gangemi, A., Keizer, J., Presutti, V., Stoermer, H. (eds.) SWAP
2008. CEUR Workshop Proceedings, vol. 426, CEUR-WS.org (2008)

32. Djedidi, R., Aufaure, M.-A.: ONTO-EVOAL an Ontology Evolution Approach Guided by
Pattern Modeling and Quality Evaluation. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS,
vol. 5956, pp. 286–305. Springer, Heidelberg (2010)

33. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering 19, 1–16 (2007)

34. Ermilov, T., Heino, N., Tramp, S., Auer, S.: OntoWiki Mobile - Knowledge Management in
your Pocket. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De
Leenheer, P., Pan, J. (eds.) ESWC 201. LNCS, vol. 6644, Springer, Heidelberg (2011)

35. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive in-
duction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen,
F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

36. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld,
D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study.
Artif. Intell. 165, 91–134 (2005)

37. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
38. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Log-

ics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121.
Springer, Heidelberg (2008)

39. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext transfer protocol – http/1.1 (rfc 2616). Request For Comments (1999),
http://www.ietf.org/rfc/rfc2616.txt (accessed July 7, 2006)

40. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into informa-
tion extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL 2005, pp. 363–370. Association for
Computational Linguistics, Morristown (2005)

41. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: classification and survey. Knowledge Eng. Review 23(2), 117–152 (2008)

42. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading
(1999)

43. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific
keyphrase extraction. In: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, IJCAI 1999, pp. 668–673. Morgan Kaufmann, San Francisco (1999)

44. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,
972–976 (2007)

45. Glaser, H., Millard, I.C., Sung, W.-K., Lee, S., Kim, P., You, B.-J.: Research on linked data
and co-reference resolution. Technical report, University of Southampton (2009)

46. Grishman, R., Yangarber, R.: Nyu: Description of the Proteus/Pet system as used for MUC-
7 ST. In: MUC-7, Morgan Kaufmann, San Francisco (1998)

47. Harabagiu, S., Bejan, C.A., Morarescu, P.: Shallow semantics for relation extraction. In:
IJCAI, pp. 1061–1066 (2005)

48. Heath, T., Bizer, C.: Linked Data - Evolving the Web into a Global Data Space. Synthesis
Lectures on the Semantic Web:Theory and Technology, vol. 1. Morgan & Claypool, San
Francisco (2011)

49. Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing semantic web applications with
the ontowiki framework. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.)
Networked Knowledge - Networked Media. SCI, vol. 221, pp. 61–77. Springer, Heidelberg
(2009)

http://www.ietf.org/rfc/rfc2616.txt

72 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

50. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large
knowledge bases. Int. J. Semantic Web Inf. Syst. 5(2), 25–48 (2009)

51. Horridge, M., Patel-Schneider, P.F.: Manchester syntax for OWL 1.1. In: OWLED 2008
(2008)

52. HTML 5: A vocabulary and associated APIs for HTML and XHTML. W3C Working Draft
(August 2009), http://www.w3.org/TR/2009/WD-html5-20090825/

53. Iannone, L., Palmisano, I.: An Algorithm Based on Counterfactuals for Concept Learning in
the Semantic Web. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533,
pp. 370–379. Springer, Heidelberg (2005)

54. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept
learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

55. Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to private
record linkage. In: ICDE, pp. 496–505 (2008)

56. Jacobs, I., Walsh, N.: Architecture of the world wide web. In: World Wide Web Consortium,
Recommendation REC-webarch-20041215, vol. 1 (December 2004)

57. Javed, M., Abgaz, Y.M., Pahl, C.: A Pattern-Based Framework of Change Operators for
Ontology Evolution. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops.
LNCS, vol. 5872, pp. 544–553. Springer, Heidelberg (2009)

58. Kim, S.N., Kan, M.-Y.: Re-examining automatic keyphrase extraction approaches in sci-
entific articles. In: Proceedings of the Workshop on Multiword Expressions: Identification,
Interpretation, Disambiguation and Applications, MWE 2009, pp. 9–16. Association for
Computational Linguistics, Stroudsburg (2009)

59. Kim, S.N., Medelyan, O., Kan, M.-Y., Baldwin, T.: Semeval-2010 task 5: Automatic
keyphrase extraction from scientific articles. In: Proceedings of the 5th International Work-
shop on Semantic Evaluation, SemEval 2010, pp. 21–26. Association for Computational
Linguistics, Stroudsburg (2010)

60. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution approaches
with fever. In: Proc. VLDB Endow., vol. 2(2), pp. 1574–1577 (2009)

61. Krzsch, M., Vrandecic, D., Vökel, M., Haller, H., Studer, R.: Semantic wikipedia. Journal
of Web Semantics 5, 251–261 (2007)

62. Lehmann, J.: Hybrid Learning of Ontology Classes. In: Perner, P. (ed.) MLDM 2007. LNCS
(LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)

63. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine
Learning Research (JMLR) 10, 2639–2642 (2009)

64. Lehmann, J.: Learning OWL Class Expressions. PhD thesis, University of Leipzig, PhD in
Computer Science (2010)

65. Lehmann, J.: Ontology learning. In: Proceedings of Reasoning Web Summer School (2010)
66. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology

engineering. Journal of Web Semantics 9, 71–81 (2011)
67. Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description Logics. In:

Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894,
pp. 161–174. Springer, Heidelberg (2008)

68. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the ALC de-
scription logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS
(LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

69. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators.
Machine Learning Journal 78(1-2), 203–250 (2010)

70. Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the Internet. Pro-
fessional. Addison-Wesley Professional, Reading (2001)

71. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Technical Report 8 (1966)

http://www.w3.org/TR/2009/WD-html5-20090825/

Introduction to Linked Data and Its Lifecycle on the Web 73

72. Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic
programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)

73. Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008.
CEUR Workshop Proceedings, vol. 426, CEUR-WS.org (2008)

74. Lohmann, S., Heim, P., Auer, S., Dietzold, S., Riechert, T.: Semantifying requirements en-
gineering the softwiki approach. In: Proceedings of the 4th International Conference on
Semantic Technologies (I-SEMANTICS 2008), J.UCS, pp. 182–185 (2008)

75. Lopez, V., Uren, V., Sabou, M.R., Motta, E.: Cross ontology query answering on the se-
mantic web: an initial evaluation. In: K-CAP 2009, pp. 17–24. ACM, New York (2009)

76. Ma, L., Sun, X., Cao, F., Wang, C., Wang, X., Kanellos, N., Wolfson, D., Pan, Y.: Seman-
tic enhancement for enterprise data management. In: Bernstein, A., Karger, D.R., Heath,
T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS,
vol. 5823, pp. 876–892. Springer, Heidelberg (2009)

77. Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A declarative update
language for RDF. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 506–521. Springer, Heidelberg (2005)

78. Martin, M.: Exploring the netherlands on a semantic path. In: Auer, S., Bizer, C., Müller, C.,
Zhdanova, A. (eds.) Proceedings of the 1st Conference on Social Semantic Web, Leipzig,
Germany. LNI, vol. 113, p. 179. Bonner Köllen Verlag (2007) ISSN 1617-5468

79. Matsuo, Y., Ishizuka, M.: Keyword Extraction From A Single Document Using Word
Co-Occurrence Statistical Information. International Journal on Artificial Intelligence
Tools 13(1), 157–169 (2004)

80. McBride, B., Beckett, D.: Rdf/xml syntax specification. W3C Recommendation (February
2004)

81. McCusker, J., McGuinness, D.: Towards identity in linked data. In: Proceedings of OWL
Experiences and Directions Seventh Annual Workshop (2010)

82. Moats, R.: Urn syntax. Internet RFC 2141 (May 1997)
83. Nadeau, D.: Semi-Supervised Named Entity Recognition: Learning to Recognize 100 En-

tity Types with Little Supervision. PhD thesis, University of Ottawa (2007)
84. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisti-

cae Investigationes 30(1), 3–26 (2007)
85. Nadeau, D., Turney, P., Matwin, S.: Unsupervised named-entity recognition: Generating

gazetteers and resolving ambiguity, pp. 266–277 (2006)
86. Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Relation extraction from wikipedia using subtree

mining. In: AAAI, pp. 1414–1420 (2007)
87. Nguyen, T., Kan, M.-Y.: Keyphrase Extraction, pp. 317–326. Scientific Publications, Sin-

gapore (2007)
88. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming.

LNCS, vol. 1228. Springer, Heidelberg (1997)
89. Noy, N.F., Klein, M.C.A.: Ontology Evolution: Not the Same as Schema Evolution. Knowl.

Inf. Syst. 6(4), 428–440 (2004)
90. Oren, E.: SemperWiki: A Semantic Personal Wiki. In: Decker, S., Park, J., Quan, D.,

Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop at the ISWC, Galway, Ireland,
November 6, vol. 175 (2005)

91. Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automatically har-
vesting semantic relations. In: ACL, pp. 113–120. ACL Press (2006)

92. Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond terminology
identification. In: Proceedings of the 19th International Conference on Computational Lin-
guistics, COLING 2002, vol. 1, pp. 1–7. Association for Computational Linguistics, USA
(2002)

74 S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo

93. Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Organizing and searching the world
wide web of facts - step one: the one-million fact extraction challenge. In: Proceedings of
the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1400–1405. AAAI Press,
Menlo Park (2006)

94. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language - Semantics
and Abstract Syntax. W3c:rec, W3C (February 10, 2004),
http://www.w3.org/TR/owl-semantics/

95. Rahm, E.: Schema Matching and Mapping. Springer, Heidelberg (2011)
96. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The

VLDB Journal 10, 334–350 (2001)
97. Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the se-

mantic web. In: 1st Workshop about Linked Data on the Web (2008)
98. Riechert, T., Lauenroth, K., Lehmann, J., Auer, S.: Towards semantic based requirements

engineering. In: Proceedings of the 7th International Conference on Knowledge Manage-
ment, I-KNOW (2007)

99. Riechert, T., Morgenstern, U., Auer, S., Tramp, S., Martin, M.: Knowledge engineering for
historians on the example of the catalogus professorum lipsiensis. In: Patel-Schneider, P.F.,
Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC
2010, Part II. LNCS, vol. 6497, pp. 225–240. Springer, Heidelberg (2010)

100. Rieß, C., Heino, N., Tramp, S., Auer, S.: EvoPat – pattern-based evolution and refactoring
of RDF knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L.,
Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 647–662.
Springer, Heidelberg (2010)

101. Rosenfeld, M., Fernández, A., Díaz, A.: Semantic Wiki Refactoring. A strategy to assist Se-
mantic Wiki evolution. In: Proceedings of the Fifth Workshop on Semantic Wikis (SemWiki
2010), co-located with 7th European Semantic Web Conference, ESWC 2010 (2010)

102. Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delu-
gach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg
(2004)

103. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr, T., Auer, S., Sequeda, J., Ez-
zat, A.: A survey of current approaches for mapping of relational databases to rdf (January
2009)

104. Sampson, G.: How fully does a machine-usable dictionary cover english text. Literary and
Linguistic Computing 4(1) (1989)

105. Sauermann, L., Cyganiak, R.: Cool uris for the semantic web. W3C Interest Group Note
(December 2008)

106. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In: Pro-
ceedings of the 1st International Workshop on Semantic Technologies in Collaborative Ap-
plications (STICA), (2006)

107. Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and
interlink. In: Proc. IJCAI 2009 IR-KR Workshop (2009)

108. Sertkaya, B.: OntocomP system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler,
U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009,
Oxford, UK, July 27-30. CEUR Workshop Proceedings, vol. 477, CEUR-WS.org (2009)

109. Shvaiko, P., Euzenat Ten, J.: challenges for ontology matching. Technical report (August 1,
2008)

110. Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5), 87–91 (2005)
111. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evolution

Management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI),
vol. 2473, p. 285. Springer, Heidelberg (2002)

http://www.w3.org/TR/owl-semantics/

Introduction to Linked Data and Its Lifecycle on the Web 75

112. Thielen, C.: An approach to proper name tagging for german. In: Proceedings of the EACL
1995 SIGDAT Workshop (1995)

113. Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a social data web with semantic
pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 135–149.
Springer, Heidelberg (2010)

114. Tramp, S., Heino, N., Auer, S., Frischmuth, P.: RDFauthor: Employing rDFa for collab-
orative knowledge engineering. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS,
vol. 6317, pp. 90–104. Springer, Heidelberg (2010)

115. Turney, P.D.: Coherent keyphrase extraction via web mining. In: Proceedings of the 18th
International Joint Conference on Artificial Intelligence, pp. 434–439. Morgan Kaufmann,
San Francisco (2003)

116. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with
webPIE: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvö-
nen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010.
LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

117. Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology re-
finement. In: Web Intelligence, pp. 454–460. IEEE, Los Alamitos (2008)

118. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg
(2007)

119. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links on the
Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer,
Heidelberg (2009)

120. Walker, D., Amsler, R.: The use of machine-readable dictionaries in sublanguage analysis.
Analysing Language in Restricted Domains (1986)

121. Wang, G., Yu, Y., Zhu, H.: PORE: Positive-Only Relation Extraction from Wikipedia Text.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 580–594. Springer, Heidelberg (2007)

122. Watanabe, H., Muggleton, S.: Can ILP Be Applied to Large Datasets? In: De Raedt, L. (ed.)
ILP 2009. LNCS, vol. 5989, pp. 249–256. Springer, Heidelberg (2010)

123. Winkler, W.: The state of record linkage and current research problems. Technical report,
Statistical Research Division, U.S. Bureau of the Census (1999)

124. Winkler, W.: Overview of record linkage and current research directions. Technical report,
Bureau of the Census - Research Report Series (2006)

125. Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Pro-
ceedings of the seventeenth conference on Hypertext and hypermedia, HYPERTEXT 2006,
pp. 111–114. ACM, New York (2006)

126. Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., Ishizuka, M.: Unsupervised relation extraction
by mining wikipedia texts using information from the web. In: ACL 2009, pp. 1021–1029
(2009)

127. Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceed-
ings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002.
Association for Computational Linguistics, Morristown (2002)

Foundations of Description Logics

Sebastian Rudolph

Institute AIFB, Karlsruhe Institute of Technology, DE
rudolph@kit.edu

Abstract. This chapter accompanies the foundational lecture on Descrip-
tion Logics (DLs) at the 7th Reasoning Web Summer School in Galway,
Ireland, 2011. It introduces basic notions and facts about this family of
logics which has significantly gained in importance over the recent years
as these logics constitute the formal basis for today’s most expressive on-
tology languages, the OWL (Web Ontology Language) family.

We start out from some general remarks and examples demonstrating
the modeling capabilities of description logics as well as their relation
to first-order predicate logic. Then we begin our formal treatment by
introducing the syntax of DL knowledge bases which comes in three
parts: RBox, TBox and ABox. Thereafter, we provide the corresponding
standard model-theoretic semantics and give a glimpse of the alternative
way of defining the semantics via an embedding into first-order logic with
equality.

We continue with an overview of the naming conventions for DLs
before we delve into considerations about different notions of semantic
alikeness (concept and knowledge base equivalence as well as emulation).
These are crucial for investigating the expressivity of DLs and performing
normalization. We move on by reviewing knowledge representation ca-
pabilities brought about by different DL features and their combinations
as well as some model-theoretic properties associated thereto.

Subsequently, we consider typical reasoning tasks occurring in the
context of DL knowledge bases. We show how some of these tasks can
be reduced to each other, and have a look at different algorithmic ap-
proaches to realize automated reasoning in DLs.

Finally, we establish connections between DLs and OWL. We show
how DL knowledge bases can be expressed in OWL and, conversely, how
OWL modeling features can be translated into DLs.

In our considerations, we focus on the description logic SROIQ which
underlies the most recent and most expressive yet decidable version of
OWL called OWL 2 DL. We concentrate on the logical aspects and omit
data types as well as extralogical features from our treatise. Examples
and exercises are provided throughout the chapter.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 76–136, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Foundations of Description Logics 77

1 Introduction
Come join the DL vaudeville show!
It’s variable-free, although
With quantifiers, not, and, or
Quite deeply rooted in FOLklore.
Still, curing the first-order ailment
We sport decidable entailment!

Fig. 1. The DL logo

While formal, logic-based approaches to rep-
resenting and working with knowledge occur
throughout human history, the advent and wide-
spread adoption of programmable computing de-
vices in the 20th century has led to intensified
studies of both theoretical and practical aspects of
knowledge representation and automated reason-
ing. Rooted in early AI approaches, Description
Logics (DLs) have developed into one of the main
knowledge representation formalisms. The matu-
rity of the field is also reflected by the adoption of
description logics as prior specification paradigm
for ontological descriptions – culminating in the standardization of the OWL
web ontology language by the World Wide Web Consortium (W3C) – as well
as the availability of highly optimized and readily deployable (yet open source)
tools for automated inferencing. Thanks to this “dissemination path,” DLs con-
stitute the theoretical backbone for information systems in many disciplines,
among which life sciences can be seen as the “early adopters” [Sidhu et al., 2005;
Wolstencroft et al., 2005; Golbreich et al., 2006].

1.1 Outlook

What is in this Lecture. This document is supposed to give a gentle intro-
duction into state-of-the-art description logics. Before going into technicalities
the remainder of this section will briefly discuss how DLs are positioned in the
landscape of knowledge representation formalisms, provide some examples for
modeling features of DLs, and sketch the most prominent application context:
the Semantic Web.

Section 2 starts the formal treatment by introducing the syntax of knowledge
bases of the description logic SROIQ. Section 3 provides the corresponding
model-theoretic semantics and substantiates the claimed connection between
DLs and first-order predicate logic (FOL) by giving a translation from SROIQ
into FOL with equality.

Section 4 reviews the naming scheme for DLs between the basic DL ALC
and the high-end DL SROIQ. Section 5 provides several notions that capture
that different syntactic specifications may have the same (or “alike”) semantical
impact. The motivation of Section 6 is to give a feeling for the modeling power
provided by different constructs and the according model-theoretic consequences.

Subsequently, Section 7 considers typical reasoning tasks normally occurring
in the context of DL-based knowledge representation and discusses the mutual

78 S. Rudolph

reducibility of these tasks. In Section 8, we give a shallow overview over different
algorithmic paradigms for automated inferencing with DLs. Finally, in Section 9,
we provide a way to translate SROIQ knowledge bases into OWL ontologies
and, conversely, show how OWL axioms can be translated into DLs.

What is not in this Lecture. Due to space limitations, we have to restrict
this lecture in many respects. We will focus on the core logical aspects of descrip-
tion logics and hence omit datatypes, keys, etc. despite their obvious practical
importance for knowledge representation. Likewise, this is not supposed to be
an introduction into OWL nor any other Semantic Web specification language.
Thus, we will only briefly state how DL knowledge bases can be translated into
OWL such that OWL reasoning tools can be harnessed to perform DL reasoning
tasks. Moreover, we will refrain from looking into sub-Boolean fragments of DLs,
even though they are practically important for serving as theoretical basis for
the tractable profiles of the latest version of OWL. On the theoretical side, we
will omit considerations about computational complexity of reasoning tasks.

Required Previous Knowledge. This lecture is meant to be introductory and
foundational. Consequently, we tried to make it as self-contained as feasibly pos-
sible and hope that it is comprehensible even without any background in formal
logics, although it can do no harm either. We presume, however, a certain famil-
iarity with basic concepts and notations of näıve set theory. We do not expect
prior knowledge about Semantic Web formalisms like the Resource Description
Framework (RDF) or OWL, still it would come handy to fully comprehend the
comments about the connections between DLs and OWL.

1.2 DLs in the Context of Other Formalisms

Historically, DLs have emerged from semantic networks [Quillian, 1968] and
frame-based systems [Minsky, 1974]. These early knowledge representation ap-
proaches had the advantage of being rather intuitively readable and compre-
hensible. On the downside, it turned out that the understanding of the precise
meaning of these diagrammatic representations differed widely amongst humans.
This also became apparent by the heterogeneous behavior of tools implemented
to reason with these structures. Under a plethora of names (among them ter-
minological systems and concept languages), description logics developed out of
the attempt to endow these intuitive representations with a formal semantics to
establish a common ground for human and tool interoperability.

With the formal semantics introduced it was rather immediately clear that –
abstracting from the syntax used – DLs can be seen as a fragment of first-order
predicate logic (short: FOL), many of them even as a fragment of FOL’s two-
variable fragment [Borgida, 1996] in cases extended with counting quantifiers
[Pratt-Hartmann, 2005]. As opposed to general FOL where logical inferencing is
undecidable, DL research has been focusing on decidable fragments to such an
extent that today, decidability is almost conceived as a necessary condition to
call a formalism a DL.

Foundations of Description Logics 79

Remark 1. Recap that in theoretical computer science, a class of problems is
called decidable, if there is a generic algorithm that can take any problem instance
from this class as an input and provide a yes-or-no answer to it after finite time. In
the context of logics, the generic problem normally investigated is whether a given
set of statements logically entails another statement. In case there is no danger of
confusion about the type of problem considered, sometimes the logic itself is called
decidable or undecidable.

In contrast to the well-known correspondence to FOL, it took some time to
discover the close relation of DLs to modal logics [Schild, 1991]; in fact, the basic
description logic ALC is just a syntactic variant of the multi-modal logic Km.
As a consequence of this, there is also a close relationship of DLs to the Guarded
Fragment [Andréka et al., 1998], a very expressive fragment of FOL which is still
decidable.

For application purposes, DLs can be tailored to the specific requirements
of a concrete usage scenario. To this end, a set of modeling features is selected
such that the resulting logic has sufficient expressivity for the intended purpose
while still being manageable in terms of the inferencing needed. This strategy
has led to thorough investigations and finally a deeper understanding of the
impact of the diverse standard modeling features on decidability and complexity
of reasoning.

Remark 2. Thereby, the boundaries of the above mentioned fragments are some-
times crossed. For instance, functionality statements and cardinality constraints in
general are not supported by the Guarded Fragment, the same holds for transitivity
statements, which also lie outside the two-variable fragment. DLs featuring regu-
lar expressions on roles [Calvanese et al., 2009] even go beyond FOL with equality,
but we will not discuss them here.

Beyond decidability, a crucial design principle in DLs is to establish favor-
able trade-offs between expressivity and scalability. On the theoretical side, es-
tablishing complexity results for inferencing problems (a tradition started by
Brachman and Levesque [1984] and meanwhile widely accepted as central part
of the DL research methodology) helps to roughly estimate how scalable and
how “implementable” reasoning methods are likely to be. Of course, for the
deployment in practice, many engineering and optimization considerations are
necessary even if they do not influence the worst-case complexities. Today, there
exist several highly optimized and efficient systems for reasoning in DL-based
formalisms [Motik et al., 2009c; Sirin et al., 2007; Tsarkov and Horrocks, 2006].

1.3 DL Modeling in a Nutshell

This section provides an informal introduction of the most common modeling
features in DLs. For the interested reader with some background in logics, we
will relate them to FOL with equality by giving the corresponding terms and
logical translations in square brackets.

All DLs are based on a vocabulary [signature] containing individual names
[constants], concept names [unary predicates] and role names [binary predicates].

80 S. Rudolph

Two specific class names, � and ⊥, denote the concept containing all individuals
and the empty concept, respectively. Usually, a DL knowledge base [theory]
is partitioned into an assertional part, called ABox and a terminological part,
which is further subdivided into TBox and RBox. The ABox contains assertional
knowledge [ground facts], the notation of which coincides with FOL: there are
concept assertions such as

Actor(angelina)

(indicating that the individual named angelina belongs to the set of all actors)
and role assertions like

married(angelina,brad)

(stating that the individuals named angelina and brad are in the relation of
being married). The TBox contains universal statements. The notation used
in DLs does not need variables and is inspired by set theory. We can specify
subsumptions, e.g. by expressing that every actor is an artist via

Actor � Artist

[∀x
(
Actor(x) → Artist(x)

)
]. A specific feature of DLs is that concept names

can be combined into complex concepts by Boolean operators, as in

Actor� USGovernor � Bodybuilder� ¬Austrian

[∀x
(
Actor(x)∧USGovernor(x) → Bodybuilder(x)∨¬Austrian(x)

)
], expressing

that every actor who is a US governor is also a bodybuilder or not Austrian.
Another way to define complex concepts is by quantifying over roles, as for
instance in

∃knows.Actor � ∀hasfriend.Envious
[∀x
(
∃y(knows(x, y) ∧ Actor(y)) → ∀z(hasfriend(x, z) → Envious(z))

)
], which

states that everybody knowing some actor has only envious friends.
The modeling features introduced above constitute ALC (attributive language

with complements, [Schmidt-Schauß and Smolka, 1991]), the smallest DL that is
Boolean-closed (i.e. it allows Boolean operators to be applied to concepts without
restriction).

As stated before, in order to satisfy requirements emerging from practical
modeling scenarios, these basic modeling features have been enriched by more
and more expressive features for specifying and querying knowledge. In DLs, this
development has led from the basic ALC to more expressive formalisms. Role
inverses can be used to “traverse” roles backward e.g. in

∃HasChild.� � ∀hasChild−.Grandparent

[∀x(∃y(hasChild(x, y)) → ∀z(hasChild(z, x) → Grandparent(x)))], expressing
that everybody having a child is the child of only grandparents. Cardinality
constraints allow for specifying the number of related instances:

Polygamist � �2.Married.�

Foundations of Description Logics 81

[∀x(Polygamist(x) → ∃y∃z(Married(x, y)∧Married(x, z)∧y �= z))] states that
a polygamist is married to at least two distinct individuals. By means of nomi-
nals, classes can be defined by enumerating their instances: the axiom

∃Married.{brad} � {angelina}

[∃x(Married(x, brad)→ x = angelina)] claims that being married to Brad is a
property only applying to Angelina.

The RBox of a DL knowledge base allows for further, role-centric modeling
features. These include role inclusion statements as for instance:

married � loves

[∀x∀y(married(x, y) → loves(x, y))], which states that being married to some-
body implies loving them. A more general and expressive variant of role inclu-
sions are role-chain axioms as in

hasChild− ◦ hasChild � hasSibling

[∀x∀y∀z(hasChild(y, x)∧hasChild(y, z)→ hasSibling(x, z))], saying that the
child of somebody I am a child of is my sibling.

1.4 The Semantic Web

The rise of the World Wide Web as a large body of digitally accessible knowledge
has inspired a plethora of research related to the question how to organize and
formalize knowledge on the Web in order to allow for automated, intelligent
retrieval and combination of the stored information. The term Semantic Web
stands for a variety of research and standardization efforts towards this goal,
and DLs constitute a crucial part of this endeavor. The underlying idea of the
Semantic Web is to provide information on the Web in a sufficiently formal
and structured way to enable “intelligent” processing by machines. To this end,
several key requirements can be identified: First, it is necessary to agree on
common and open standards for representing information, in order to enable
the exchange of information between diverse applications and platforms and
subsequently the combination of pieces of information from different origins.
Such standards have to be defined in a clear formal way but at the same time,
they need to be flexible and extendable.

In fact, the World Wide Web Consortium (W3C) has fostered and approved
the definition of the basic Semantic Web standards. The ontology languages RDF
and its extension RDF Schema (RDFS) as well as OWL have been deliberately
developed for a deployment in the Semantic Web.1

1 Originating from philosophy, the term ontology is not precisely defined in the com-
puter science context either and a lot of deviating definitions can be found through-
out the literature. In this treatise, we will use the term to simply refer to a document
created in RDF(S) or OWL, modeling knowledge of an application domain. Thereby,
we will consider it to be equivalent with the arguably more appropriate term knowl-
edge base.

82 S. Rudolph

As the second key ingredient for the Semantic Web, methods are needed which
automatically infer new knowledge from given knowledge. In order to maximally
benefit from specified knowledge, it must be possible to obtain information that
is not explicitly given but constitutes a logical consequence of what is known.
This directly leads to the multifarious field of formal logic, and in particular to
the area of automated reasoning. A significant portion of DL research has been
spawned by problems and usage scenarios from the Semantic Web area.

2 Syntax Deluxe DL delivery
Will come in boxes (number: three),
Precisely marked with A, T, R.
The first exhibits solid grounding,
The next allows for simple counting,
The third one’s strictly regular.

In this section, we provide the definition of the expressive description logic
SROIQ [Horrocks et al., 2006] which serves as the logical basis for OWL 2 DL,
the most expressive member of the OWL family where inferencing is still decid-
able. Most of today’s mainstream DLs are, in fact, sublanguages of SROIQ.

DLs are based on three disjoint sets of primal elements:

– The set NI of individual names contains all names used to denote singular
entities (be they persons, objects or anything else) in our domain of interest.
Examples would be brad, excalibur, rhine, or sun.

– The set NC of concept names contains names that refer to types, categories,
or classes of entities, usually characterized by common properties. Typical
concept names are Mammal, Country, Organization, but also Yellow or
English.

– The set NR of role names contains names that denote binary relationships
which may hold between individuals of a domain, for instance: marriedWith,
fatherOf, likes, or locatedIn.

Remark 3. There are no mandatory rules for writing and typography of vocab-
ulary elements. According to a convention most widely adopted, we capitalize
concept names whereas individual and role names are written in lower case. More-
over, camel case is used for names corresponding to multi word units in natural
language.

Having these name sets at hand (they are usually jointly referred to as vocab-
ulary or signature), we can now turn to the three building blocks of SROIQ
knowledge bases: RBox, TBox and ABox.

2.1 RBox

A SROIQ RBox captures interdependencies between the roles of the considered
knowledge base. Given the set NR of role names, a role is either the universal

Foundations of Description Logics 83

role u or it has the form r or r− for any role name r. The set of roles will be
denoted by R. For convenience, we introduce the function Inv that “inverts”
roles, i.e. we set Inv(r) := r− and Inv(r−) := r in order to simplify notation. In
the sequel, we will use the symbols r, s, possibly with subscripts, to denote roles.

A role inclusion axiom (RIA, sometimes also referred to as role chain axiom) is
a statement of the form r1 ◦ . . .◦ rn � r where r1, . . . , rn, r are roles. As a special
case thereof (for n = 1), we obtain simple role inclusions r � s. Typical examples
of role inclusion axioms are owns ◦ partOf � owns or fatherOf � childOf−. A
finite set of such RIAs is called a role hierarchy.

Given a role hierarchy, it is useful to distinguish the roles that can be “created”
by role chains of length greater than one from those which cannot. Consequently,
we define non-simple roles as follows:

S1. Every role r occurring in a RIA r1 ◦ . . . ◦ rn � r where n > 1 is non-simple.
S2. Every role r occurring in a simple role inclusion s � r with a non-simple s

is itself non-simple.
S3. If r is non-simple then so is Inv(r).
S4. No other role is non-simple.

We let Rn denote the set of all non-simple roles of a role hierarchy and call all
the other roles simple denoted by Rs = R \Rn.

Example 4. Consider the following role hierarchy:

motherOf � parentOf (1)

parentOf � ancestorOf (2)

ancesterOf ◦ ancestorOf � ancestorOf (3)

ancestorOf � descendantOf
− (4)

Then we can use S1. to find that ancestorOf is non-simple due to (3). This allows
us to conclude that descendantOf− is non-simple via (4) and S2.. From the above
follows via S3. that also ancestorOf− and descendantOf must be non-simple. Fi-
nally, S4. ensures that motherOf, motherOf−, parentOf, and parentOf− are simple.

In order to ensure decidability of the ensuing logic, we cannot allow arbitrary
role hierarchies but have to restrict to those which have the property of being
regular. Formally, a role hierarchy is regular if there is a strict partial order ≺
on the non-simple roles Rn such that

– S ≺ R iff Inv(S) ≺ R, and
– every RIA is of one of the forms

R1 r ◦ r � r,
R2 Inv(r) � r,
R3 s1 ◦ . . . ◦ sn � r,
R4 r ◦ s1 ◦ . . . ◦ sn � r,
R5 s1 ◦ . . . ◦ sn ◦ r � r,
such that r ∈ NR is a (non-inverse) role name r, and si ≺ r for i = 1, . . . , n
whenever si is non-simple.

84 S. Rudolph

Example 5. Consider the following role hierarchy containing the RIAs: s◦s � s,
r ◦ s � r, and r ◦ s ◦ r � t. First observe that all involved atomic roles are non-
simple. If we define ≺ such that s− ≺ s ≺ r− ≺ r ≺ t− ≺ t, then all the above
criteria are satisfied: the first RIA is an instance of R1, the second is an instance
of R4, and the third is an instance of R3. Hence this role hierarchy is regular.

Example 6. Assume a role hierarchy containing r ◦ t ◦ s � t as the only axiom.
Only t is non-simple here, still this role hierarchy is not regular, as the RIA does
not fit any of the allowed forms R1–R5 (to see this, note that ≺ is required to be
strict, therefore t �≺ t must always be the case, irrespective of the concrete choice
of ≺).

Example 7. Let a role hierarchy contain the two RIAs r ◦ s � s, and s ◦ r � r.
While each of these RIAs alone would be acceptable as a role hierarchy, they do not
go well together: the first requires r ≺ s (due to R5) whereas the second enforces
s ≺ r (due to R4) which as a whole violates the condition of ≺ being a strict order.
Thus the considered role hierarchy is not regular.

A role characteristic is a statement of the form Ref(r) (reflexivity), Asy(s)
(asymmetry), or Dis(s, s′) (role disjointness), where s and s′ are simple roles
while r may be simple or non-simple. A SROIQ RBox (usually denoted by R)
is the union of a finite set of role characteristics together with a role hierarchy.
A SROIQ RBox is regular if its role hierarchy is regular.

2.2 TBox

Given a SROIQ RBox R as defined in the previous section, we now inductively
define concept expressions (also simply called concepts) as follows:

• every concept name C ∈ NC is a concept expression,
• � and ⊥ are concept expressions, called top concept and bottom concept,

respectively,
• {a1, . . . , an} is a concept expression for every finite set {a1, . . . , an} ⊆ NI of

individual names; concepts of this type are called nominal concepts,
• if C and D are concept expressions then so are ¬C (negation), C �D (in-

tersection), C �D (union),
• if r is a role and C is a concept expression, then ∃r.C (existential quantifi-

cation) and ∀r.C (universal quantification) are also concept expressions,
• if r is a simple role, n is a natural number and C is a concept expression,

then ∃r.Self (self restriction), �nr.C (at-least restriction), and �nr.C (at-
most restriction) are also concept expressions. The latter two are also jointly
referred to as qualified number restrictions or cardinality constraints.

We will denote the set of all concept expressions thus defined by C. Throughout
this chapter, the symbols C, D will be used to denote concept expressions.

Foundations of Description Logics 85

Remark 8. Note that the definition of concept expressions depends on the un-
derlying RBox due to the restriction of some concept expressions to contain only
simple roles.

A general concept inclusion axiom (short: GCI) has the form C � D where C
and D are concepts. This kind of statement is also sometimes called subsump-
tion axiom, as C � D is often read “C is subsumed by D.” Sometimes, this
axiom type is also referred to as is-a relationship, inspired by the often chosen
wording for this type of statement (e.g. “a cat is a mammal” would be a typical
verbalization of Cat � Mammal).

Remark 9. Sometimes, C � D is also called a subconcept statement with C � D
being read “C is a subconcept of D.” While this is well justified by standard formal
theories of (human) conceptual thinking where concepts are hierarchically ordered
by subconcept-superconcept relationships [Ganter and Wille, 1997], this naming
is unfortunate in the DL setting since it can also be understood syntactically to
mean subformula of a concept term. Thus we do not use this term and whenever
referring to the latter meaning, we speak of subexpressions of a concept.

Finally, a SROIQ TBox (usually denoted by T) is a finite set of GCIs.

2.3 ABox

The ABox of a knowledge base contains information that applies to single indi-
viduals as opposed to the GCIs in the TBox, which represent statements which
are generally true for all individuals alike.

An individual assertion can have any of the following forms:

• C(a), called concept assertion,
• r(a, b), called role assertion,
• ¬r(a, b), called negated role assertion,
• a ≈ b, called equality statement, or
• a �≈ b, called inequality statement,

with a, b ∈ NI individual names, C ∈ C a concept expression, and r ∈ R a role.

Remark 10. Of course, also the form ¬C(a) is captured by the above definition
since ¬C is again a concept expression, as opposed to roles, which do not allow
for negation (note that the inverse of a role is something quite different from its
negation).

A SROIQ ABox (usually denoted by A) is a finite set of individual assertions.
We call an ABox extensionally reduced if the only concepts and roles occurring
therein are concept names and roles names, respectively.

Remark 11. It should be noted that the separation between ABox and TBox
– originally conceived for less expressive DLs – becomes less sharp once nominal
concepts are allowed, since nominal concepts allow for referring to single individuals
in the TBox as well. In fact, every of the different types of individual assertions
can be expressed by a GCI featuring nominals: C(a) becomes {a} � C, (¬)r(a, b)
is equivalent to {a} � (¬)∃r.{b}, a ≈ b can be rewritten into {a} � {b}, and
a �≈ b into {a} � ¬{b}. Still the distinction is not entirely meaningless even for
DLs featuring nominals as soon as data complexity of reasoning is investigated.

86 S. Rudolph

A SROIQ knowledge base KB is the union of a regular RBox R and a TBox
T as well as an ABox A for R. The elements of KB are referred to as axioms.
Given a knowledge base KB we write NI(KB), NC(KB), and NR(KB) to denote
those individual names, concept names, and role names which occur in KB,
respectively.

Example 12. As an example consider the following knowledge base KB:

RBox R
owns � caresFor

“If somebody owns something, they care for it.”

TBox T
Healthy � ¬Dead

“Healthy beings are not dead.”

Cat � Dead � Alive

“Every cat is dead or alive.”

HappyCatOwner � ∃owns.Cat 	 ∀caresFor.Healthy

“A happy cat owner owns a cat and all beings
he cares for are healthy.”

ABox A
HappyCatOwner (schrödinger)

“Schrödinger is a happy cat owner.”

3 Semantics
Semantics has wide applications
To relationship-based altercations,
For semantics unveils
What a statement entails
Depending on interpretations.

Like for any other logic, the definition of a formal semantics for DLs boils
down to providing a consequence relation that determines whether an axiom
logically follows from (also: is entailed by) a given set of axioms. The semantics
of description logics is defined in a model-theoretic way. Thereby, one central
notion is that of an interpretation. Interpretations might be conceived as poten-
tial “realities” or “worlds.” In particular, interpretations need in no way comply
with the actual reality.

3.1 Interpretations

In the case of DLs, an interpretation, normally denoted with I, provides

• a nonempty set ΔI , called the domain or also universe of discourse which
can be understood as the entirety of individuals or things existing in the
“world” that I represents, and

Foundations of Description Logics 87

• a function ·I , called interpretation function which connects the vocabulary
elements (i.e., the individual, concept, and role names) to ΔI , by providing
• for each individual name a ∈ NI a corresponding individual aI ∈ ΔI

from the domain,
• for each concept name A ∈ NC a corresponding set AI ⊆ ΔI of domain

elements (as opposed to the domain itself, AI is allowed to be empty),
and

• for each role name r ∈ NR a corresponding (also possibly empty) set
rI ⊆ ΔI ×ΔI of ordered pairs of domain elements.

I

aI CI

rI

individual names NI role names NR class names NC

...a... ...C... ...r...

ΔI

Fig. 2. Structure of DL interpretations

Figure 2 depicts this definition graphically. For domain elements δ, δ′ ∈ Δ, the
intuitive meaning of δ ∈ AI is that the individual δ belongs to the class described
by the concept name A, while 〈δ, δ′〉 ∈ r means that δ is connected to δ′ by the
relation denoted by the role name r.

Remark 13. To avoid confusion, it is important to strictly separate syntactic no-
tions (referring to the vocabulary and axioms) from the semantic notions (referring
to the domain and domain elements). Individual names, concept names and role
names are syntactic entities and so are roles and concepts. Individuals are elements
of ΔI and hence semantic entities. In order to refer to the semantic counterparts
of concepts and roles, one would use the terms concept extension or role extension,
respectively. Single elements of the extension of a concept or role are also called
concept instances or role instances.

88 S. Rudolph

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (ΔI , ·I) as follows: Let our domain ΔI

contain the following elements: �, �, ♀, ♁, �, ♂, �, �, 	,
, �. We define the interpre-
tation function by

sunI = �
morning starI = ♀
evening starI = ♀

moonI = �
homeI = ♁

PlanetI = {�, ♀, ♁, ♂, �, �, 	,
}
StarI = {�}

orbitsAroundI = {〈�,�〉, 〈♀,�〉, 〈♁,�〉, 〈♂,�〉, 〈�,�〉,
〈�,�〉, 〈	,�〉, 〈
,�〉, 〈�,�〉, 〈�, ♁〉}

shinesOnI = {〈�, �〉, 〈�, ♀〉, 〈�, ♁〉, 〈�, �〉, 〈�, ♂〉,
〈�, �〉, 〈�, �〉, 〈�, 	〉, 〈�,
〉, 〈�, �〉}

For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals ΔI where a node δ ∈ ΔI gets labeled by the individual
names assigned to it (i.e. those a ∈ NI for which aI = δ) as well as the concept
names A in the extensions of which δ lies (i.e. δ ∈ AI). Moreover, whenever a pair
of two domain individuals δ, δ′ ∈ ΔI is in the extension of a role name r (that
is, if 〈δ, δ′〉 ∈ rI), a directed arc is drawn from δ to δ′ and labeled with r. The
graphical representation of the interpretation I defined above would then look like
this (where we abbreviate orbitsAround by o and shinesOn by s):

Planet♀

o

��

morning star
evening star home

Planet♁

o

��

Planet�

o

��

�
o

��

moon

�
o

��
Star

�
sun

s

�� s

��

s

��

s

��

s

		
s

s

��

s

��

s

s
��
Planet♂

o

�
Planet

o

��

	
Planet

o

��

Planet

o

��

�
Planet

o

��

Foundations of Description Logics 89

Remark 15. One should keep in mind that the domain ΔI is not required to be
finite, but can also be an infinite set. It is also possible to consider only interpreta-
tions with finite domains, but then one explicitly talks about finite models or finite
satisfiability. There are logics where infinite interpretations are “dispensable” as
there are always finite ones that do the same job, these logics are said to have the
finite model property. SROIQ does not have this property. However, since DLs
are normally fragments of first-order logic, we can safely restrict our attention to
interpretations with countable domains (that is, domains having at most as many
individuals as there are natural numbers). This is a consequence of the downward
part of the Theorem of Löwenheim-Skolem, according to which every FOL theory
that has an arbitrary infinite model also has a countable one.

Example 16. As an example of an interpretation, this time with an infinite do-
main, consider the following vocabulary:

– NI = {zero}.
– NC = {Prime, Positive}.
– NR = {hasSuccessor, lessThan, multipleOf}.

Now, we define I as follows: let ΔI = N = {0, 1, 2, . . .}, i.e., the set of all natural
numbers including zero. Furthermore, we let zeroI = 0, as well as PrimeI = {n |
n is a prime number} and PositiveI = {n | n > 0}. For the roles, we define

– hasSuccessorI = {〈n, n + 1〉 | n ∈ N}
– lessThanI = {〈n, n′〉 | n < n′, n, n′ ∈ N}
– multipleOfI = {〈n, n′〉 | ∃k.n = k · n′, n, n′, k ∈ N}

Note that this interpretation is well defined, although it has an infinite domain. For
space reasons, we refrain from providing the corresponding graph representation.

Remark 17. Note that the definition of an interpretation does not require that
different individual names denote different individuals, that is, it may happen
that for two individual names a and b, we have aI = bI . A stronger definition
of DL interpretations that excludes such cases is usually referred to as unique
name assumption (short: UNA). Note also, that not every domain element δ ∈ Δ
needs to be named, i.e., there may be δ for which no individual name a with
aI = δ exists. For obvious reasons, such individuals are usually referred to as
anonymous individuals.

3.2 Satisfaction of Axioms

By now, we have seen that an interpretation determines the semantic counter-
parts of vocabulary elements. However, in order to finally determine the truth of
complex axioms, it is necessary to also find the counterparts of complex concepts
and roles. We provide a definition according to which the semantics of a com-
plex language construct can be obtained from the semantics of its constituents
(thereby following the principle of compositional semantics). Formally, this is
done by “lifting” the interpretation function ·I to these complex expressions.

90 S. Rudolph

First we extend the interpretation function from role names to roles by letting
uI = ΔI ×ΔI (that is: the universal role interconnects any two individuals of
the domain and also every individual with itself), and assigning to inverted
role names r− the set of all pairs 〈δ, δ′〉 of domain elements for which 〈δ′, δ〉 is
contained in rI .

Next we define the interpretation function for concepts:

• � is the concept which is true for every individual of the domain, hence
�I = ΔI .

• ⊥ is the concept which has no instances, hence ⊥I = ∅.
• {a1, . . . , an} is the concept containing exactly the individuals denoted by
a1, . . . , an, therefore {a1, . . . , an}I = {aI1 , . . . , aIn}

• ¬C is supposed to denote the set of all those domain individuals that are
not contained in the extension of C, i.e., (¬C)I = ΔI \ CI .

• C � D is the concept comprising all individuals that are simultaneously in
C and D, thus we define (C �D)I = CI ∩DI .

• C �D contains individuals being present in C or D (or both), therefore we
let (C �D)I = CI ∪DI .

• ∃r.C is the concept that holds for an individual δ ∈ ΔI exactly if there
is some domain individual δ′ ∈ ΔI such that δ is connected to δ′ via the
relation denoted by r and δ′ belongs to the extension of the concept C,
formally: (∃r.C)I = {δ ∈ ΔI | ∃δ′ ∈ ΔI .

(
〈δ, δ′〉 ∈ rI ∧ δ′ ∈ CI)}.

• ∀r.C denotes the set of individuals δ ∈ ΔI with the following property:
whenever δ is connected to some domain individual δ′ ∈ ΔI via the relation
denoted by r, then δ′ belongs to the extension of the concept C, formally:
(∀r.C)I = {δ ∈ ΔI | ∀δ′ ∈ ΔI .

(
〈δ, δ′〉 ∈ rI → δ′ ∈ CI)}.

• ∃r.Self comprises those domain individuals which are r-related to themselves,
thus we let (∃r.Self)I = {x ∈ ΔI | 〈x, x〉 ∈ rI}.

• �n r.C refers to the domain elements δ ∈ ΔI for which no more than n
individuals exist to which δ is r-related and that are in the extension of C,
formally: (�n r.C)I = {δ ∈ ΔI | #{δ′ ∈ ΔI | 〈δ, δ′〉 ∈ rI ∧ δ′ ∈ CI} ≤ n}
(thereby #S is used to denote the cardinality of a set S, i.e., the number of
its elements).

• �n r.C, dual to the case before, denotes those domain elements having at
least n such r-related elements: (�n r.C)I = {δ ∈ ΔI | #{δ′ ∈ ΔI | 〈δ, δ′〉 ∈
rI ∧ δ′ ∈ CI} ≥ n}.

Remark 18. The reader should be aware that by the above definition, the ex-
tension of the concept ∀r.C contains every domain individual δ ∈ ΔI that is not
r-connected to any δ′. For instance, the concept ∀hasChild.Happy comprises all
individuals all of whose children are happy (alternatively, and arguably less con-
fusing: all individuals that do not have children which are not happy). This includes
those individuals not having children at all. In fact, when modeling with DLs, the
concept ∀r.⊥ is often used to refer to all individuals not being r-connected to any
other individual (nor to themselves).

Foundations of Description Logics 91

Example 19. Consider the interpretation I from Example 14. With the lifting of
the interpretation function just defined, we are able to determine the extension of
concepts and roles as follows:

orbitsaround−I

= {〈�, �〉, 〈�, ♀〉, 〈�, ♁〉, 〈�, ♂〉, 〈�, �〉, 〈�, �〉, 〈�, 	〉, 〈�,
〉, 〈�, �〉}(
∀orbitsAround.(¬Star)

)I
= {δ | ∀δ′.

(
〈δ, δ′〉 ∈ orbitsAroundI → δ′ ∈ (¬Star)I

)
}

= {δ | ∀δ′.
(
〈δ, δ′〉 ∈ orbitsAroundI → δ′ ∈ ΔI \ StarI

)
}

= {δ | ∀δ′.
(
〈δ, δ′〉 ∈ orbitsAroundI → δ′ ∈ {�, ♀, ♁, �, ♂, �, �, 	,
, �})}

= {�, �}(
(¬Planet) 	 ∃orbitsAround.Star

)I
= (¬Planet)I ∩ (∃orbitsAround.Star)I

= ΔI \ PlanetI ∩ {δ | ∃δ′.
(
〈δ, δ′〉 ∈ orbitsAroundI ∧ δ′ ∈ StarI

)
}

= {�, �, �} ∩ {�, ♀, ♁, ♂, �, �, 	,
, �}
= {�}(

�2shinesOn.{morning star, evening star}
)I

= {δ | #{δ′ | 〈δ, δ′〉 ∈ shinesOnI ∧ δ′ ∈ {morning star, evening star}I} ≥ 2}
= {δ | #{δ′ | 〈δ, δ′〉 ∈ shinesOnI ∧ δ′ ∈ {morning starI , evening starI} ≥ 2}
= {δ | #{δ′ | 〈δ, δ′〉 ∈ shinesOnI ∧ δ′ ∈ {♀}} ≥ 2}
= ∅

Exercise 1. Describe – both verbally and formally – the extension of the following
concepts with respect to the interpretation I defined in Example 16:

(a) ∀ hasSuccessor−.Positive
(b) ∃ multipleOf.Self
(c) ∃ multipleOf.∃hasSuccessor−.∃hasSuccessor−.{zero}
(d) �10 lessThan−.Prime
(e) ¬Prime 	 �2 multipleOf.�
(f) ∃lessThan.Prime
(g) ∀ multipleOf.

(
∃hasSuccessor−.{zero}

� ∃multipleOf.∃hasSuccessor−.∃hasSuccessor−.{zero}
)

The final purpose of the (lifted) interpretation function is to determine sat-
isfaction of axioms. In the following, we define when an axiom α is true (also:
holds), given a specific interpretation I. If this is the case, we also say that I is
a model of α or that I satisfies α and write I |= α.

• A role inclusion axiom r1 ◦ . . . ◦ rn � r holds in I if for every sequence
δ0, . . . , δn ∈ ΔI for which holds 〈δ0, δ1〉 ∈ rI1 , . . ., 〈δn−1, δn〉 ∈ rIn , also
〈δ0, δn〉 ∈ rI is satisfied. Figuratively, this means that every path in ΔI

that traverses the roles r1, . . . , rn (in the given order) must have a direct

92 S. Rudolph

r-“shortcut.” When using ◦ as symbol for the relation product, we can write
down this condition as rI1 ◦ . . . ◦ rIn ⊆ rI .

• A role disjointness statement Dis(r, s) is true in I if every two domain in-
dividuals δ, δ′ ∈ ΔI that are connected via an r-relation are not connected
via an s-relation. In other words, we can say that the two roles are mutually
exclusive which can be formally expressed by the condition rI ∩ sI = ∅.

• A general concept inclusion C � D is satisfied by I, if every instance of C
is also an instance of D. An alternative wording of this would be that the
extension of C is contained in the extension of D, formally CI ⊆ DI .

• A concept assertion C(a) holds in I if the individual with the name a is an
instance of the concept C, that is aI ∈ CI .

• A role assertion r(a, b) is true in I if the individual denoted by a is r con-
nected to the individual denoted by b, i.e. the extension of r contains the
corresponding pair of domain elements: 〈aI , bI〉 ∈ rI .

• I is a model of ¬r(a, b) exactly if it is not a model of r(a, b).
• The equality statement a ≈ b holds in I if the individual names a and b

refer to the same domain individual, i.e. aI = bI .
• I is a model of a �≈ b exactly if it is not a model of a ≈ b.

Example 20. We now check for some example axioms whether interpretation I
from Example 14 satisfies them.

– morning star ≈ evening star is true, since morning starI = ♀ =
evening starI , i.e. the two names denote the same domain individual.

– orbitsAround ◦ orbitsAround � shinesOn− is also true: The only chain of
domain individuals δ1, δ2, δ3 with 〈δ1, δ2〉 ∈ orbitsAroundI and 〈δ2, δ3〉 ∈
orbitsAroundI is δ1=�, δ2=♁, δ3=�. Therefore, we obtain orbitsAroundI ◦
orbitsAroundI = {〈�,�〉}. On the other hand, due to 〈�, �〉 ∈ shinesOnI

we obtain 〈�,�〉 ∈ shinesOn−I
.

– Star(evening star) is false since the domain element evening starI = ♀ is
not contained in StarI = {�}.

– Planet � ¬{sun, moon} is valid in I as we get (¬{sun, moon})I = ΔI \
({sun, moon})I = ΔI \ {�, �} = {�, ♀, ♁, ♂, �, �, 	,
, �} which is a superset of
PlanetI = {�, ♀, ♁, ♂, �, �, 	,
}.

– shinesOn(moon, earth) does not hold in I since the pair of the respec-
tive individuals is not contained in the extension of the shinesOn role:
〈moonI , earthI〉 = 〈�, ♁〉 �∈ shinesOnI .

– � � ∀shinesOn−.{sun} is true. To see this we first need to find
(∀shinesOn−.{sun})I . In words, this concept comprises those objects that are
shone upon by nothing but the sun (if they are shone upon by anything at all).
Formally, to check whether a domain individual δ is in the extension of that

concept, we have to verify that every individual δ′ with 〈δ, δ′〉 ∈ shinesOn−I

(which is equivalent to 〈δ′, δ〉 ∈ shinesOnI) also satisfies δ′ ∈ {sun}I which
just means δ′ = �. Scrutinizing all elements of ΔI , we find this condition
satisfied for each, therefore we have �I = ΔI ⊆ ΔI = (∀shinesOn−.{sun})I .

– Dis(orbitsAround, shinesOn) is satisfied by I since no pair 〈δ, δ′〉 is con-
tained in the extensions of both orbitsAround and shinesOn and therefore
orbitsAroundI ∩ shinesOnI = ∅.

Foundations of Description Logics 93

Exercise 2. Decide whether the following axioms are satisfied by the interpreta-
tion I from Example 16.

(a) hasSuccessor � lessThan

(b) ∃hasSuccessor−.∃hasSuccessor−.{zero} � Prime

(c) � � ∀multipleOf−.{zero}
(d) Dis(divisileBy, lessThan−)
(e) multipleOf ◦ multipleOf � multipleOf

(f) � � �1hasSuccessor.Positive
(g) zero �≈ zero

(h) �1multipleOf−.�(zero)
(i) � � ∀lessThan.∃lessThan.(Prime 	 ∃hasSuccessor.∃hasSuccessor.Prime)

Now that we have defined when an interpretation I is a model of an axiom,
we can easily extend this notion to whole knowledge bases: we say that I is a
model of a given knowledge base KB (also: I satisfies KB, written I |= KB), if
it satisfies all the axioms of KB, i.e., if I |= α for every α ∈ KB. Moreover, a
knowledge base KB is called satisfiable or consistent if it has a model, and it is
called unsatisfiable or inconsistent or contradictory otherwise.

Example 21. The following knowledge base is inconsistent.

Reindeer	∃hasNose.Red(rudolph)
∀worksFor−.(¬Reindeer�Flies)(santa)

worksFor(rudolph, santa)

santa �≈ batman

Reindeer � Mammal

Mammal	Flies � Bat

Bat � ∀worksFor.{batman}

Remark 22. Note that, for determining whether a knowledge base satisfies an
interpretation I, only the value of ·I for those individual, concept, and role names
are relevant, that occur in KB. All vocabulary elements not contained in NI(KB)∪
NC(KB)∪NR(KB) can be mapped arbitrarily and do not influence the semantics.

3.3 Logical Consequence

So far, we have defined a “modelhood” relation, which for a given interpretation
and a given set of axioms determines whether the axiom is true with respect to
the interpretation. Remember that the actual purpose of a formal semantics is
to provide a consequence relation, which tells us whether an axiom is a logical
consequence of a knowledge base. This consequence relation is commonly also
denoted by |= and defined as follows: an axiom α is a consequence of (also
entailed by) a knowledge base KB (written: KB |= α) if every model of KB is
also a model of α, i.e. for every I with I |= KB also holds I |= α.

Remark 23. As a straightforward consequence of this model-theoretic definition
of consequences we obtain the fact that an inconsistent knowledge base entails any
axiom, since the considered set of models which have to satisfy the axiom is empty
and hence the condition is vacuously true. This effect, well-known in many logics,
is called the principle of explosion according to which “anything follows from a
contradiction.”

94 S. Rudolph

Exercise 3. Decide whether the following propositions about the knowledge base
KB from Example 12 are true and give evidence:

(a) KB is satisfiable,
(b) KB |= Alive(schrödinger),
(c) KB |= Dead 	 Alive � ⊥,
(d) KB |= Alive � Healthy.

Exercise 4. Decide whether the following statements are true or false and justify
your decision. For arbitrary SROIQ knowledge bases KB and KB′ holds:

(a) If an axiom α is a logical consequence of the empty knowledge base, i.e. ∅ |= α,
then it is the consequence of any other knowledge base KB.

(b) The larger a knowledge base, the more models it has. That is, if KB ⊆ KB′

then every model of KB is also a model of KB′.
(c) The larger a knowledge base, the more consequences it has. That is, if KB ⊆

KB′ then every logical consequence from KB is a logical consequence from KB′.
(d) If ¬C(a) ∈ KB, then KB |= C(a) can never hold (for arbitrary concepts C).
(e) If two knowledge bases are different (KB �= KB′), then they also differ in

terms of logical consequences, i.e., there is an axiom α such that KB |= α and
KB′ �|= α or vice versa.

3.4 Excursus: Semantics via Embedding into FOL

As mentioned before, it is often said that most description logics, including
SROIQ, are fragments of first-order predicate logic (FOL). Technically, this
statement is somewhat misleading since, from a syntax point of view, most DL
axioms are not FOL formulae. What is rather meant by this statement is the
following: It is obvious that DL interpretations have the same structure as FOL
interpretations if one conceives individual names as constants, concept names as
unary predicates and role names as binary predicates. Under this assumption,
one can define an easy syntactic translation τ which, applied to a DL axiom α,
yields a FOL sentence τ(α) such that the model sets of α and τ(α) coincide,
that is an interpretation I is a model of α exactly if it is a model of τ(α).
Consequently, every reasoning problem in a DL is easily transferrable to an
equivalent reasoning problem in FOL, whence the semantics of description logics
could – as an alternative to the previously introduced way – be defined by
reducing it to the semantics of FOL via the mentioned translation.

Remark 24. Obviously, the converse cannot be the case, for any decidable DL:
supposing it were, we could decide any FOL reasoning problem by translating it to
the DL and then deciding the DL version. This clearly contradicts the well-known
undecidability of FOL.

We provide here a definition of τ but omit a proof of its correctness. More
precisely, the translation outputs first-order predicate logic with equality, a mild
generalization of pure first-order predicate logic featuring an equality predicate

Foundations of Description Logics 95

=. Every SROIQ knowledge base KB thus translates via τ to a theory τ(KB)
in first-order predicate logic with equality. We define

τ(KB) =
⋃

α∈KB
τ(α),

i.e., we translate every axiom of the knowledge base separately into a FOL
sentence. How exactly τ(α) is defined depends on the type of the axiom α.

However, first we have to define auxiliary translation functions τR : R ×
Var × Var → FOL for roles and τC : C × Var → FOL for concepts (where
Var = {x0, x1, . . .} is a set of variables):

τR(u, xi, xj) = true
τR(r, xi, xj) = r(xi, xj)

τR(r−, xi, xj) = r(xj , xi)

τC(A, xi) = A(xi)
τC(�, xi) = true
τC(⊥, xi) = false

τC({a1, . . . , an}, xi) =
∨

1≤j≤n
xi = aj

τC(¬C, xi) = ¬τC(C, xi)
τC(C �D, xi) = τC(C, xi) ∧ τC(D, xi)
τC(C �D, xi) = τC(C, xi) ∨ τC(D, xi)

τC(∃r.C, xi) = ∃xi+1.
(
τR(r, xi, xi+1) ∧ τC(C, xi+1)

)
τC(∀r.C, xi) = ∀xi+1.

(
τR(r, xi, xi+1)→ τC(C, xi+1)

)
τC(∃r.Self, xi) = τR(r, xi, xi)
τC(�nr.C, xi) = ∃xi+1 . . . xi+n.

(∧
i+1≤j<k≤i+n

(xj �= xk)
∧
∧

i+1≤j≤i+n
(τR(r, xi, xj) ∧ τC(C, xj)

)
τC(�nr.C, xi) = ¬τC(�(n + 1)r.C, xi)

Obviously, the translation assigns to a role a FOL formula with (at most) two
free variables and to a concept a FOL formula with (at most) one free variable.
Now we are ready to translate axioms:

τ(r1 ◦ . . . ◦ rn � r) = ∀x0 . . . xn(
∧

1≤i≤n
τR(ri, xi−1, xi)) → τR(r, x0, xn)

τ(Dis(r, r′)) = ∀x0x1(τR(r, x0, x1)→ ¬τR(r′, x0, x1))
τ(C � D) = ∀x0(τC(C, x0)→ τC(D, x0))

τ(C(a)) = τC(C, x0)[x0/a]
τ(r(a, b)) = τR(C, x0, x1)[x0/a][x1/b]

τ(¬r(a, b)) = ¬τ(r(a, b))
τ(a ≈ b) = a = b

τ(a �≈ b) = ¬(a = b)

96 S. Rudolph

Exercise 5. Translate the axioms from Example 20 and Exercise 2 into first-order
logic with equality.

Remark 25. The considerations in this section do not apply to all DLs, since also
extensions of DLs with non-first-order features have been defined and investigated
such as non-monotonic features, regular expressions as role constructors or fixpoint
operators. However, the mainstream DLs for which mature reasoners exist and
which have been used as a basis for OWL are all first-order-embeddable.

4 Description Logics Nomenclature

What’s in a name? That which we call, say, SHIQ,
By any other name would do the trick.
While DL names might leave the novice SHOQed,
Some principles of ALCHemy unlocked
Enable understanding in a minute:
Though it be madness, yet there’s method in it.

There is a well-established naming convention for DLs. The naming scheme
for mainstream DLs can be summarized as follows:(

(ALC | S)[H]| SR
)
[O][I][F |N |Q]

The meaning of the name constituents is as follows:
• ALC is an abbreviation for attributive language with complements

[Schmidt-Schauß and Smolka, 1991]. This DL disallows RBox axioms as well
as the universal role, role inverses, cardinality constraints, nominal concepts,
and self concepts.

• By S we denote ALC where we additionally allow transitivity statements,
i.e., specific role chain axioms of the shape r ◦ r � r for r ∈ NR. The name
goes back to the name of a modal logic called S.

• ALC and S can be extended by role hierarchies (obtaining ALCH or SH)
which allow for simple role inclusions, i.e., role chain axioms of the shape
r � s.

• SR denotes ALC extended with all kinds of RBox axioms as well as self
concepts.

• The letter O in the name of a DL indicates that nominal concepts are sup-
ported.

• When a DL contains I then it features role inverses.
• The letter F at the end of a DL name enables support for role functionality

statements which can be expressed as � � �1.�.
• N at the end of a DL name allows for unqualified number restrictions, i.e.,

concepts of the shape �nr.� and �nr.�.
• Q indicates support for arbitrary qualified number restrictions.

As becomes clear from the previous descriptions, S contains ALC. Moreover SR
subsumes all of ALC, ALCH, S, and SH. Finally F becomes obsolete once N
is present and both are superseded by Q.

Foundations of Description Logics 97

Exercise 6. Come up with a partial order diagram displaying syntactic contain-
ment of all DLs that match the above naming scheme and do not contain F or
N .

Exercise 7. Name, for each of the following knowledge bases, the “smallest” DL
that contains it:

(a) the knowledge base from Example 12,
(b) the knowledge base from Example 21,
(c) the knowledge base consisting of the axioms (a), (b) and (e) from Exercise 2,
(d) the knowledge base containing the axioms

� � ∃sameAs.Self � � �1sameAs.� batman � ¬∃sameAs−.{santa}.

5 Equivalences, Emulation,
Normalization Don’t give told consequences lip,

Nor ’bout equivalences quip,
’Cause often it’s the formal norm
That statements be in normal form.

The language of the DL SROIQ is rather redundant, that is, a matter can be
formulated in in many ways that are syntactically different but semantically the
same. In the following, we will survey different kinds of “semantical alikeness.”
Moreover we also discuss how this “syntactic redundancy” can be reduced by
reverting to so-called normal forms, which come handy for preprocessing knowl-
edge bases before performing actual automated reasoning, but are also useful to
alleviate proof work when certain meta-logical properties have to be shown.

5.1 Concept Equivalences

A very basic form of “semantical alikeness” is concept equivalence. Two concepts
C, D ∈ C are called equivalent – which is usually denoted by C ≡ D – if they
have the same extension in any interpretation I, i.e. CI = DI . Note that this
notion does not presume a fixed knowledge base, thus it really refers to all
possible interpretations I.

Remark 26. It is easy to see that the definition of concept equivalence can be
reformulated in terms of axiom entailment: C ≡ D holds exactly if the empty
knowledge base entails both C � D and D � C, i.e. ∅ |= C � D and ∅ |= D � C.
In fact, sometimes in the literature, statements of the form C ≡ D are allowed to
occur in knowledge bases as TBox axioms.

Exercise 8. Contemplate whether the condition from Remark 26 can be captured
by just one axiom, i.e. whether there is an axiom α such that ∅ |= α if and only
if C ≡ D. If this question cannot be answered right now, you may revisit it after
having read this section.

98 S. Rudolph

Quite a few basic concept equivalences (which are normally simply taken
for granted without further consideration) can be directly traced back to the
semantics definition for concepts. To recognize and memorize the equivalences
it is quite helpful that the syntactical notation of concept constructors (�, �)
is inspired by the associated set-theoretical interpretation (∪, ∩) and is also
very related to the corresponding notation in propositional logic (∨,∧). First, we
find that both concept intersection and union are commutative, associative and
idempotent.

C �D ≡ D � C
(C �D) � E ≡ C � (D � E)

C �C ≡ C

C �D ≡ D � C
(C �D) � E) ≡ C � (D � E)

C �C ≡ C

commutativity
associativity
idempotency

The law of associativity alone already releases us from the duty to put paren-
theses if the union or intersection of more than two concepts is written down,
this allows us to write C � D � D or C � D � D without causing semantical
ambiguity due to the missing precedence information. By virtue of the laws of
commutativity, associativity, and idempotency together, we can even conceive
unions and intersections of many concepts as sets and write for concept sets
{C1, . . . , Cn} = C ⊆ C

⊔
C∈C

C or
�

C∈C

C

instead of C1 � . . . � Cn or C1 � . . . � Cn, respectively.
While the aforementioned laws deal with semantical properties of � and �

separately, the following cope with their mutual interactions. On the right hand
side, we see that the two connectives are distributive over each other, while the
equivalences on the right are usually referred to as absorption laws.

(C �D) � E ≡ (C � E) � (D � E)
(C �D) � E ≡ (C � E) � (D � E)

(C �D) � C ≡ C
(C �D) � C ≡ C

Next, we investigate equivalence correspondences involving negation and are
certainly not too surprised to find that double negation can be removed and also
that the laws of de Morgan are valid in the DL setting:

¬¬C ≡ C
¬(C �D) ≡ ¬D � ¬C
¬(C �D) ≡ ¬D � ¬C

Beyond but similar to the de Morgan laws, negation can be shifted past quan-
tifiers or be “absorbed” by number restrictions and we obtain:

¬∃r.C ≡ ∀r.¬C
¬∀r.C ≡ ∃r.¬C

¬�nr.C ≡ �(n + 1)r.C
¬�(n + 1)r.C ≡ �nr.C

Foundations of Description Logics 99

The above laws provide a lot of leeway to move negation around. In particular,
they ensure that for every concept there exists a concept in negation normal
form. A concept is said to be in negation normal form (short: NNF), if the only
negation symbols in it occur in front of concept names, nominal concepts or
self concepts. Given a concept C, we determine the concept nnf (C) which is
in negation normal form and satisfies C ≡ nnf (C) by applying the recursive
function nnf :

nnf (C) := C if C∈{A,¬A, {a1,..., an},¬{a1,..., an}, ∃r.Self,¬∃r.Self,�,⊥}
nnf (¬¬C) := nnf (C)

nnf (¬�) := ⊥ nnf (¬⊥) := �
nnf (C �D) := nnf (C) � nnf (D) nnf (¬(C �D)) := nnf (¬C) � nnf (¬D)
nnf (C �D) := nnf (C) � nnf (D) nnf (¬(C �D)) := nnf (¬C) � nnf (¬D)
nnf (∀r.C) := ∀r.nnf (C) nnf (¬∀r.C) := ∃r.nnf (¬C)
nnf (∃r.C) := ∃r.nnf (C) nnf (¬∃r.C) := ∀r.nnf (¬C)
nnf (�n r.C) := �n r.nnf (C) nnf (¬�n r.C) := �(n + 1) r.nnf (C)
nnf (�n r.C) := �n r.nnf (C) nnf (¬�n r.C) := �(n− 1) r.nnf (C)

The following equivalences show that �0 cardinality constraints are vacuously
true and that existential and universal quantification can be seen as a special
case of number restrictions.

�0r.C ≡ �
�1r.C ≡ ∃r.C
�0r.C ≡ ∀r.¬C

Exercise 9. Argue that for every ALCQ concept C, there exists a concept C′ with
C ≡ C′ containing (next to concept and role names) only the connectives ¬,�, and
�n. Provide a function that computes C′.

We finish our enumeration of concept equivalences with some correspondences
showing, next to some interactions of quantifiers with � and ⊥, that quantifiers
may distribute over corresponding connectives, that nominal concepts can be
“split” into unions of singleton nominal concepts, and that in self concepts,
inverses don’t make a difference.

∃r.⊥ ≡ ⊥
∀r.� ≡ �

∃r.(C �D) ≡ ∃r.C � ∃r.D
∀r.(C �D) ≡ ∀r.C � ∀r.D
{a1, . . . , an} ≡ {a1} � . . . � {an}

∃r−.Self ≡ ∃r.Self

Exercise 10. Give formal proofs for all concept equivalences established in this
section.

100 S. Rudolph

Exercise 11. Show that the following equivalences are not valid:

(a) ∃r.(C 	 D) ≡ ∃r.C 	 ∃r.D,
(b) C 	 (D � E) ≡ (C 	 D) � E,
(c) ∃r.{a} 	 ∃r.{b} ≡ �2.{a, b},
(d) ∃r.� 	 ∃s.� ≡ ∃r.∃r−.∃s.�.

5.2 Knowledge Base Equivalences

Another notion of semantical alikeness is axiom or knowledge base equivalence.
Two knowledge bases KB1 and KB2 are called equivalent (which we will write
KB1 ⇐⇒ KB2), if their model sets coincide, i.e. if an interpretation I is a model
of KB1 exactly if it is a model of KB2. As a special case, we obtain axiom
equivalence: α1 and α2 are equivalent (written α1 ⇐⇒ α2) if the two singleton
knowledge bases {α1} and {α2} are equivalent.

In the following, we will review some of the most important knowledge base
equivalences which are e.g. used to define knowledge base normal forms. The first
two equivalences show that unions on the left hand side as well as intersections
on the right hand side of a GCI can be “taken apart” into several axioms. These
correspondences are also well known in the logic programming field where they
are usually referred to as Lloyd-Topor transformations [Lloyd and Topor, 1984].

{A �B � C} ⇐⇒ {A � C, B � C}
{A � B � C} ⇐⇒ {A � B, A � C}

An axiom equivalence also often used for normalization purposes is the fol-
lowing:

C � D ⇐⇒ � � ¬C �D

This allows to transform arbitrary GCIs into the statement that a certain
concept (in our case ¬C �D) is “universal”, i.e., that its extension is the whole
domain. Moreover, this transformation together with a reverse Lloyd-Topor mod-
ification allows to transform an entire TBox into one single universal concept
statement.

Example 27. Considering the TBox of the knowledge base from Example 12, we
can first perform the following transformations:

– Healthy � ¬Dead becomes � � ¬Healthy � ¬Dead
– Cat � Dead � Alive becomes � � ¬Cat � Dead � Alive

– HappyCatOwner � ∃owns.Cat 	 ∀caresFor.Healthy becomes
� � ¬HappyCatOwner � (∃owns.Cat 	 ∀caresFor.Healthy)

Finally, due to the coinciding left hand side of the created GCIs, we can put them
together to obtain

� �
(
¬Healthy � ¬Dead

)
	
(
¬Cat � Dead � Alive

)
	
(
¬HappyCatOwner � (∃owns.Cat 	 ∀caresFor.Healthy)

)

Foundations of Description Logics 101

As already mentioned before, ABox statements can be translated into equiv-
alent TBox statements in any DL that allows for nominals, according to the
following equivalences:

C(a) ⇐⇒ {a} � C
r(a, b) ⇐⇒ {a} � ∃r.{b}
¬r(a, b) ⇐⇒ {a} � ¬∃r.{b}
a ≈ b⇐⇒ {a} � {b}
a �≈ b⇐⇒ {a} � ¬{b}

Exercise 12. It might come as a surprise that the GCI {a} � {b} is sufficient
to express a ≈ b. Argue why the converse inclusion {b} � {a} is redundant given
{a} � {b}.

In turn this allows to transfer any knowledge base consisting only of an ABox
and a TBox into a singular universal concept statement.

Exercise 13. Consider whether there is a way to also translate RBox axioms into
GCIs by a similar technique.

Example 28. The said equivalences can also be applied reversely and thus used
to remove axioms containing nominal concepts from TBoxes. This may be worth-
while doing as nominals in TBoxes normally lead to worse runtimes of reasoning
algorithms. Give examples of GCIs containing nominals where this removal is not
possible.

The following two equivalences may take a moment to verify intuitively. The
essential idea here is to transfer the “standpoint” from the source to the target
of a role. These correspondences can be used to remove some inverses from a
knowledge base.

∃r−.C � D ⇐⇒ C � ∀r.D
C � ∀r−.D ⇐⇒ ∃r.C � D

Example 29. Give a formal proof for the two preceding axiom equivalences.

Exercise 14. Consider whether the inverse can be removed in axioms of the shape
C � ∃r−.D.

Inverses also give rise to an equivalence between role chain axioms. Intuitively,
all roles on both sides of the statement have to be inverted and (which is not
really a big surprise) additionally the order of the roles in the chain has to be
reverted.

r1 ◦ . . . ◦ rn � r ⇐⇒ Inv(rn) ◦ . . . ◦ Inv(r1) � Inv(r)

Exercise 15. In the light of this section, revisit Exercise 7 and discuss how the
knowledge bases there could be equivalently rewritten to fit an even “smaller” DL.

102 S. Rudolph

5.3 Emulation

In the previous sections, we considered very strong notions of semantic alikeness
based on the equality of extensions or model sets, respectively. These notions are
symmetric (i.e. they hold both ways) and presume that the signatures used are
the same. However, there are certain modeling tasks and certain normalization
requirements that can be accomplished only by virtue of additional vocabulary
(i.e. auxiliary individual, concept and role names; often those signature elements
are called fresh in order to indicate that they must not have been used in the
knowledge base before).

Example 30. As an easy example, consider the SROIQ axiom � � ∃u.C, which
specifies that the concept C is non-empty, i.e. in every model I, there must be
some individual δ ∈ ΔI for which δ ∈ CI holds. While we cannot express this
equivalently in any DL not featuring the universal role, it is rather easy to do so in
an emulating way: we introduce a new individual name c which is meant to denote
δ and specify that it denotes an instance of C by the ABox statement C(c). Note
that this example also represents a simple form of Skolemisation (which is not the
case for all examples of emulation).

This kind of semantic similarity that allows for introducing additional vocab-
ulary is referred to as (semantic) emulation. Formally, a knowledge base KB′

semantically emulates a knowledge base KB if the two following conditions hold:

– Every model of KB′ is a model of KB, formally: given an interpretation I,
we have that I |= KB′ implies I |= KB.

– For every model I of KB there is a model I ′ of KB′ that has the same
domain as I, and coincides with I on the vocabulary used in KB. In other
words ΞI′

= ΞI for every Ξ ∈ NI(KB) ∪ NC(KB) ∪ NR(KB).

Remark 31. Note that knowledge base equivalence is a special case of emula-
tion. In particular, every knowledge base emulates itself. Moreover, emulation is
transitive: if KB′′ emulates KB′ and KB′ emulates KB, then KB′′ emulates KB.

Another common wording for expressing that KB′ emulates KB is saying
that KB′ is conservative over KB. The semantic correspondence between two
knowledge bases KB′ and KB where the former emulates the latter is still quite
tight: KB′ is satisfiable exactly if KB is, the two knowledge bases coincide in
terms of entailment for every axiom α which does not use any name from the
auxiliary vocabulary used in KB′, i.e. in this case, we have KB |= α exactly if
KB′ |= α. In fact, we even obtain that KB∪KB1 |= KB2 exactly if KB′∪KB1 |=
KB2 for any knowledge bases KB1,KB2 that do not contain any of KB′s auxiliary
vocabulary. Thus, KB′ can do the same job as KB in many respects while the
possible usage of auxiliary signature elements provides quite some freedom in
terms of normalization possibilities.

Foundations of Description Logics 103

Example 32. Remember that we call an ABox of a knowledge base extensionally
reduced if the only concepts and roles occurring therein are concept names and roles
names, respectively. While it is easy to convert an ABox into one not containing
statements of the form r−(a, b) (as they can be equivalently expressed by r(b, a)),
concept assertions of the form C(a) where C is not a concept name cannot be
removed by equivalent transformations in general. However, by making use of an
additional, newly introduced concept name AC , we can rewrite C(a) into the two
axioms AC(a) and AC � C which together do the same job as the original axiom.
Thereby, the complex concept is shifted from the ABox into the TBox, whence an
exhaustive application of this step to all concept assertions results in a knowledge
base KB′ which is extensionally reduced and emulates KB.

Exercise 16. Prove that {AC(a), AC � C} indeed emulates {C(a)}.

One normalization being of particular importance for many reasoning algo-
rithms is known under the name structural reduction. Essentially, structural
reduction aims at reducing the complex structure of axioms by means of intro-
ducing concept names for substructures and substituting them. This allows us
to omit nestings of role restrictions and boolean operators. Technically, the idea
works as follows: let C[D] be a complex concept containing D as a subexpression.
Then, we can introduce a fresh concept name AD and force it to extensionally co-
incide with D by adding the two axioms AD � D and D � AD to the knowledge
base. This enables us to exchange all occurrences of D in C[D] by AD, obtaining
C[AD].

Example 33. Consider the axiom

∃livesAt.{northPole} � ∃worksFor−.(Reindeer 	 ∃hasNose.(Red 	 Shiny)).

Performing structural reduction (and using ≡ as a shortcut for mutual �) we
obtain

A∃livesAt.{northPole} � A∃worksFor−.(Reindeer�∃hasNose.(Red�Shiny))

A∃livesAt.{northPole} ≡ ∃livesAt.A{northPole}
A{northPole} ≡ {northPole}

A∃worksFor−.(Reindeer�∃hasNose.(Red�Shiny)) ≡ ∃worksFor−.AReindeer�∃hasNose.(Red�Shiny)

AReindeer�∃hasNose.(Red�Shiny) ≡ Reindeer 	 A∃hasNose.(Red�Shiny)

A∃hasNose.(Red�Shiny) ≡ ∃hasNose.ARed�Shiny

ARed�Shiny ≡ Red 	 Shiny

Remark 34. There are other, more elaborate and space-saving ways to perform
structural reduction. In fact normally only one of the two axioms AD � D or
D � AD is necessary to achieve emulation. Which one depends on the position of
D inside an axiom related to scopes of negation and other junctors. This position
information is captured by the notion of polarity of a subexpression.

104 S. Rudolph

Exercise 17. Using the technique of structural reduction and other semantic
alikeness correspondences introduced above, argue that any knowledge base KB can
be emulated by a knowledge base KB′ the TBox of which contains only GCIs of the
form �

C∈C

C �
⊔

D∈D

D

where C ∪ D contains only concepts of the forms {a}, A, ∃r.Self, �nr.A, or �nr.A
with a ∈ NI , A ∈ NC and r ∈ R (note that no negation is allowed, whatsoever).

Example 35. Given a concept expression of the form A � �nr.B, the cardinality
constraint can be removed as follows: We introduce fresh role names r1, . . . rn which
we specify as subroles of r (by the axioms ri � r for all 1 ≤ i ≤ n) and as pairwise
disjoint (i.e. we add Dis(ri, rj) for all 1 ≤ i < j ≤ n). With that background
axiomatization, the above statement can be rewritten into A �

�
1≤i<j≤n ∃ri.B.

Emulation techniques can also be used to show that a number of statements
which can be directly expressed in other logics (such as FOL) but not in DL, are
nevertheless expressible by using some “makros” involving auxiliary vocabulary.
In the following, we give some examples for this.

The universal role. The universal role u connects all individuals of the de-
scribed domain. In a DL where this feature is not built in, we may want to
introduce a new role u′ and write down statements which force u′ to behave
like the universal role (by making sure that u′ must be interpreted as ΔI ×ΔI

in every model I). Note that this can be easily done in FOL by the statement
∀x, y(u′(x, y)). However, if a DL supports transitivity and nominal concepts, we
can obtain the same by introducing a new nominal aaux and specify the axioms
� � ∃u′.{aaux} and � � ∃u′−.{aaux} and u′◦u′ � u′. The only downside to this
is that u′ is then necessarily non-simple whence it cannot be used in all places
where u could.

Concept products. Sometimes, there are situations where one wants to express
that any instance of a concept C is connected with any instance of a concept D
via a role r. In fact, concept product statements of the form C ×D � r which
express exactly that have been introduced into description logics rather early
but never found their way into the mainstream.

Example 36. As an example, the fact that alkaline solutions neutralize acid
solutions could expressed by the concept product axiom AlkalineSolution ×
AcidSolution � neutralises.

Again, it is rather easy to find that the FOL statement ∀x, y(C(x) ∧D(y) →
r(x, y)) realizes this (where we for the sake of simplicity assume that C, D are
concept names and r is a role name). However, SROIQ provides enough model-
ing capabilities to emulate this situation as well via the GCIs C � ∃raux.Self and
D � ∃r′aux.Self as well as the complex role inclusion raux ◦u◦r′aux � r. Concept
products and their impact on reasoning complexity have e.g. been considered by
Rudolph et al. [2008].

Foundations of Description Logics 105

Qualified role inclusion. Likewise, the specialization of roles due to concept
memberships of the two involved individuals seems to surpass the modeling capa-
bilities of the DLs treated here. The FOL statement ∀x, y(C(x)∧r(x, y)∧D(y) →
s(x, y))(expressing that any C-instance and D-instance that are interconnected
by r are also interconnected by s) can be emulated by a DL axiomatization
in a similar way as discussed above: Introduce the GCIs C � ∃raux.Self and
D � ∃r′aux.Self as well as the complex role inclusion raux ◦ r ◦ r′aux � s.

Exercise 18. Use this technique to express the proposition “any person of age
having signed a contract which is legal is bound to that contract.” Use the concept
names OfAge, Contract, Legal and the role names hasSigned and boundTo.

Qualified role inclusions and concept products constitute special cases of the
more general framework of description logic rules as described by Krötzsch et al.
[2008].

Boolean Combination of Axioms. From the point of view of FOL, it seems
quite straightforward that any statement can be negated or any two statements
can be connected by disjunction and conjunction, obtaining a new statement
inside the logic. In other words, FOL is Boolean-closed on the sentence level.
In DLs, the situation is quite different: there is no direct way to, for instance,
say that one of the two GCIs A � B and C � D must hold. This is, roughly
speaking, due to the fact that DL axioms can be understood as “element-wise”
propositions (the verbalization of which starts “for each element of the domain
holds...”), whereas the above statement gives an alternative choice concerning all
individuals at once. Fortunately, SROIQ provides a way to handle this by virtue
of the universal role. We first recap that the above axioms can be rewritten into
� � ¬A � B and � � ¬C � D respectively. Then we axiomatize the following
statement: “every domain element is an instance of A � B or every domain
element is an instance of C � D.” To this end we exploit the fact that every
individual is connected to every individual via the universal role, whence we can
formally express the above wording by the axiom� � ∀u.(¬A�B)�∀u.(¬C�D).

Exercise 19. In fact, the encoding introduced above doesn’t need any auxiliary vo-
cabulary. However, arbitrary Boolean combinations of axioms can also be emulated
in SHOIQ. In that case, the vocabulary must be extended. Explain how this can
be done. Hint: try using a “hub nominal.”

Exercise 20. Find a way to emulate C(a) ∨ D(b) in SHIQ.

Exercise 21. Consider whether it is possible to emulate ABox statements of the
shape ¬r(a, b), a ≈ b, and a �≈ b with an ALCHIQ knowledge base by using only
ABox statements of the form C(a) and r(a, b).

106 S. Rudolph

6 Modeling with DLs While frowning on plurality,
The pope likes cardinality:
It can enforce infinity,
And hence endorse divinity.
But, theologically speaking,
The papal theory needs tweaking
For it demands divine assistance
to prove “the three are one”-consistence.

In this section, we will discuss the added value brought about by certain DL
modeling features. We will also discuss specific types of statements for which
some formalisms provide dedicated modeling primitives, although they are just
“syntactic sugar,” that is they can be expressed by virtue of the modeling fea-
tures already introduced. Moreover, we will provide some insight about model-
theoretic consequences that arise from using or not using certain constructs.

Remark 37. Thereby, one can see that the expressive power of a logic can be char-
acterized by its capability to “distinguish” interpretations. That is, a “stronger”
logic might be able to distinguish two interpretations I1 and I2 meaning that there
is a knowledge base KB such that I1 |= KB but I2 �|= KB (or vice versa), whereas a
“weaker” logic may not have this capability. In many cases, this indistinguishabil-
ity can be cast into statements of the following type: given any knowledge base KB
in a certain DL and a (set of) model(s) of KB then performing a certain operation
or manipulation on that model(s) will inevitably result in an interpretation which
is again a model of KB. We then say the set of models of KB is closed under the
considered operation.

6.1 A Lot Can Be Done in ALC
Already ALC features many modeling capabilities usually found in knowledge
representation languages. Beyond the ones explicitly introduced, quite some
more correspondences can be expressed indirectly. We will tackle the most im-
portant ones.

Concept Disjointness. Two concepts C and D are disjoint with respect to
an interpretation I, if their extensions do not overlap, i.e. CI ∩ DI = ∅. It is
straightforward that this semantic condition can be cast into the GCI C �D �
⊥. Equivalently, this can be expressed by C � ¬D or D � ¬C. Disjointness
information is often neglected when doing logical modeling. It can, however,
be very useful to derive negative information, e.g., the guarantee that some
individual is not an instance of a concept.

Domain and Range of Roles. Given a role r, we may want to make state-
ments about the source and target individuals for the respective relation. We
say that the role r has domain C in an interpretation I if any source individual
of the relation associated with r is an instance of C, in other words, for every
〈δ, δ′〉 ∈ rI , we have δ ∈ CI . Likewise, we say that r has target D if for every

Foundations of Description Logics 107

〈δ, δ′〉 ∈ rI , also δ′ ∈ DI is satisfied. The standard DLs covered here do not pro-
vide modeling primitives for specifying domain or range of a role, but they can
be easily expressed with the means already present in ALC. The above domain
statement is equivalent to the GCI ∃r.� � C whereas the range statement can
be written as � � ∀r.D.

The Empty Role. It might seem a bit peculiar that, while SROIQ supports
both the universal and the empty concept (� and ⊥, respectively), it features
only the universal role u whereas the empty role is not part of the definition. This
is, however, not a severe omission as the empty role can be easily axiomatized:
for a new role name emptyRole we can use the GCI � � ∀emptyRole.⊥ to force
the extension of emptyRole to be empty. An alternative axiom (beyond ALC)
with the same effect is Dis(u, emptyRole).

Exercise 22. Come up with an ALC GCI that expresses the following statement:
“If an academic supervises a project, then he is a project leader and the project is
a research project.” Use the role name supervises as well as the concept names
Academic, Project, ProjectLeader, and ResearchProject.

6.2 Looking Back: Inverse Roles

Inverses allow for traversing roles in reverse direction. While DLs without in-
verses only allow for describing domain individuals by means of their “outgoing”
roles, by means of inverses, “incoming” roles can be taken into account as well.

Example 38. Consider the interpretation I from Example 16. It is rather easy
to see that the domain individuals 3 and 5 (as well as any other prime number)
are not distinguishable by ALC concepts (in fact, not even by SROQ concepts),
that is, there is no concept C having 3 as an instance but not 5, or vice versa. On
the other hand, the ALCI concept ∃succ−.∃succ−.∃succ−.¬∃succ−.� does the
job.

Moreover, some rather natural properties of relations can be expressed by
means of inverses. A role r is called symmetric if for any 〈δ, δ′〉 ∈ rI also 〈δ′, δ〉 ∈
rI holds, that is, relatedness via r always holds both ways. On the other hand
it is called asymmetric if for all 〈δ, δ′〉 ∈ rI satisfy 〈δ′, δ〉 �∈ rI holds, this means
that r-relatedness never holds both ways. Sometimes, symmetry or asymmetry
of a role r is included in a DL as a separate axiom type, denoted by Sym(r) or
Asy(r), respectively. The former can be easily expressed by stating that r has
its own inverse as a subrole: r− � r. The latter can be characterized by stating
that r and its inverse are disjoint: Dis(r, r−).

6.3 Model Manipulation Part I: Filtration

Now we will turn our attention to our first model transformation. Given a set C
of concepts and an interpretation I, we can obtain the filtration of I with respect

108 S. Rudolph

to C as follows: First, we define an equivalence relation � on the domain elements
of I by letting δ � δ′ for anonymous δ, δ′ ∈ ΔI whenever δ and δ′ coincide in
terms of concept memberships for concepts from C, that is, for every C ∈ C we
have δ ∈ CI exactly if δ ∈ CI . Then, for some δ ∈ ΔI we let [δ]� = {δ′ | δ � δ′}
and ΔI

/� = {[δ]� | δ ∈ Δ}. Verbally, the set ΔI
/� consists of “bags” of domain

elements from I where all elements in one bag coincide on the concepts from C
they satisfy. The filtration of I is the interpretation J with

– ΔJ = ΔI
/�

– for each a ∈ NI , set aJ = [aI]�;
– for each concept name A ∈ NC , set AJ = {[δ]� | δ ∈ AI};
– for each role name r ∈ NR, set rJ = {〈[δ]�, [δ]�〉 | 〈δ, δ′〉 ∈ rI};

Intuitively, this means, that the filtration is obtained by collapsing domain
elements which are not distinguishable by virtue of concepts from C (nor by
individual names) into one.

Example 39. Let I be the interpretation from Example 14 and let C contain all
ALC concepts. Then the according filtration can be sketched as follows.

Planet

{♀}

o

��

morning star
evening star home

Planet

{♁}

o

��

{�}

o

��

{�}
o

��

moon

Star

{�}
sun

s

		
s

��

s

��

s

��

s
��

Planet

{�,♂,	,�,
,�}o

If, for a given SROI knowledge base KB, we let C be all concepts occurring
in KB (including the subexpressions of concepts) then the filtration of a model
of KB will again be a model of KB. On the other hand, since in this case, C
is finite, there can be only finitely many “bags” in ΔI

/� which means that the
filtration will even be a finite model of KB. This allows to conclude that every
satisfiable SROI knowledge base has a finite model.

Remark 40. In general, logics for which the existence of an arbitrary model im-
plies the existence of a model where ΔI is a finite set (usually briefly called finite
model) are said to have the finite model property. This is a rather convenient
property, since one may disregard infinite representations when looking for models
of a knowledge base. Moreover, for any logic that has the finite model property
and that can be embedded into FOL, the problem of knowledge base satisfiability
is decidable.

Foundations of Description Logics 109

Concluding, we can state that filtrations are quite stable in terms of model-
hood preservation, however they fail as soon as cardinality constraints come into
play.

Exercise 23. Consider Example 39 and find an ALCQ axiom which is not satis-
fied in the interpretation given there although it is satisfied in the original inter-
pretation from Example 14.

6.4 Up to Infinity: Cardinality Constraints

By means of cardinality constraints, precise statements about the number of
individuals related to a certain individual via a role can be made. This kind of
modeling features is of obvious practical value and wide-spread in other knowl-
edge specification formalisms such as entity-relationship modeling or UML. Car-
dinality constraints also naturally capture certain role characteristics.

For instance, role functionality can be seen and treated as a special case of
cardinality constraints. In words, a role is functional, if every domain individual
is connected to at most one domain individual via the relation associated to that
role. Formally, a role r is functional, if for every domain individual δ ∈ ΔI there
is at most one individual δ′ ∈ ΔI satisfying 〈δ, δ′〉 ∈ rI . This condition can be en-
forced by the axiom � � �1.�. Sometimes, in DLs which do not support number
restrictions in general, the according axiom is noted as Fun(r). Typical examples
for functional roles are hasFather, marriedWith, or locatedInCountry.

Remark 41. Note that by definition, a role can be functional and still not start
from every domain individual, as in the case of marriedWith. Thus the term “func-
tional” may be misleading as it may cause the erroneous impression that the role
extension is a (total) function. Rather, functional roles semantically correspond to
partial functions.

In fact, in the presence of cardinality constraints allows to enforce that a
knowledge base has only models the domain of which is infinite. Consider the
following knowledge base:

(∀succ−.�)(zero) � � ∃succ.� � � �1.succ−.�

It is not to difficult to find a model for this knowledge base which has an
infinite domain: in fact the interpretation described in Example 16 is such a
model. On the other hand the knowledge base cannot have a model with finite
domain.

Exercise 24. Prove this. Hint: assume a finite number of domain elements and
count sources and targets for succ.

Note that we have just shown that any extension of ALCIF does not have
the finite model property.

110 S. Rudolph

6.5 Model Manipulation Part II: Unraveling

However, another nice property still holds in the presence of number restrictions.
Roughly speaking, this property states that we can take an arbitrary model and
“unfold” or “unroll” it such that all the parts of the model not containing named
individuals are tree-like (i.e., cycle-free). More formally, the unraveling of an
interpretation I is an interpretation that is obtained from I as follows: First, we
define the set S ⊆ (ΔI)∗ of paths to be the smallest set of sequences of domain
elements such that

– for every a ∈ NI , aI is a path;

– δ1 · · · δn · δn+1 is a path, if

• δ2 �= aI for all a ∈ NI ,

• δ1 · · · δn is a path,

• δi+1 �= δi−1 for all i = 2, . . . , n,

• 〈δn, δn+1〉 ∈ rI for some r ∈ R.

For each w = δ1 · · · δn ∈ S, set last(w) = δn. Now, we define the unraveling
of I as the interpretation J = 〈ΔJ , ·J 〉 with ΔJ = S and, for each sequence
w ∈ ΔJ , we define the interpretation of concept and role names as follows:

(a) for each a ∈ NI , set aJ = aI ;

(b) for each concept name A ∈ NC , set w ∈ AJ iff last(w) ∈ AI ;

(c) for each role name r ∈ NR, set 〈w, w′〉 ∈ rJ iff

– w′ = wδ for some δ ∈ ΔI and 〈last(w), δ〉 ∈ rI or

– w = w′δ for some δ ∈ ΔI and 〈δ, last(w′)〉 ∈ rI or

– w = aI , w′ = bI for some a, b ∈ NI and 〈aI , bI〉 ∈ rI .

With this notion of unraveling we find that for any ALCHIQ knowledge base
KB, an interpretation I is a model exactly if its unraveling is. This correspon-
dence has some practical consequences: First it guarantees that ALCHIQ has
the forest model property. That means that every satisfiable ALCHIQ knowl-
edge base KB has a model with a particular shape: there is a “root tangle”
of named elements from which trees of anonymous elements grow. This prop-
erty is for instance of particular interest to prove the completeness of tableau
algorithms.

Foundations of Description Logics 111

Example 42. To demonstrate what happens during the unraveling of an inter-
pretation, consider this small example interpretation (where mbt is intended to
mean “more beats than”):

doubleQuaver � � � �
��
�

mbt

��

mbt

��
� Silent

crotchet � � �

mbt

��

In order to unravel this interpretation, intuitively, we first pick all named
individuals (i.e., � � � �

��
and � �) and keep them as well as their mutual relationships.

Then, in the original interpretation, we walk along the (incoming and outgoing)
role links to anonymous elements to find the named individuals’ role neighbors,
these neighbors are (as well as the corresponding role links) reproduced in the
unraveling. Even if the neighbors are the same, we introduce separate copies in
the unraveling, using the “origin element” as a prefix to distinguish them. In our
example, we introduce � � � �

��
� as the mbt-neighbor of � � � �

��
(caused by � in the original

interpretation) and � � � as the mbt-neighbor of � � (caused by the same �). We then
proceed to neighbors of neighbors and so forth. Thereby, we exclude the elements
that we “just came from” in the previous step. We may, however, traverse elements
of the original interpretation several times, we will however disregard their names
and create anonymous copies of them in the unraveling. In our case, the re-
sult of this procedure is an infinite interpretation which is partially depicted below.

Silent Silent

doubleQuaver � � � �
��
�

mbt

��

mbt
�� � � � �
��
� � � � �

��
� � �mbt

�� � � � �
��
� � � � � � �

��
mbt

��
mbt

�� � � � �
��
� � � � � � �

��
� � � � �

��
� � � � � � �

��
� � �mbt

�� � � � �
��
� � � � � � �

��
� � � � � � �

��
mbt

�� · · ·

crotchet � � �
mbt �� � � � � � � � � � �

��mbt�� mbt �� � � � � � � �
��
� � mbt �� � � � � � � �

��
� � � � � � � � � �

��
� � � � � � �

�� mbt ��mbt�� � � � � � � �
��
� � � � � � �

��
� � · · ·

Silent Silent

Exercise 25. Sketch or formally describe the unravelings of the interpretations
from Example 14 and Example 16. For the latter and for Example 42, give one
axiom from the DL S and one from the DL ALCOI, either of which hold in the
interpretation but not the according unraveling.

Remark 43. In fact, variants of the forest model property also hold for some DLs
containing role chain axioms and/or nominal concepts, requiring also to modify
the employed unraveling technique. In the presence of role chain axioms, one usu-
ally defines a “skeleton” of the model via unraveling into a forest structure and
thereafter adds further “role links” the presence of which is enforced by the RIAs.
In the presence of nominals, one has to allow so-called “backlinks” i.e. tree indi-
viduals are allowed to have role links back into the root tangle (but not into other
trees).

112 S. Rudolph

6.6 Far Far Away: Transitivity

Transitivity of a role r is expressible by the complex role inclusion r ◦ r � r. In
DLs that do not feature any complex role inclusions but transitivity this axiom
is often alternatively written as Tra(r). Role transitivity statements come about
quite naturally for a variety of relations that are to be modeled. Typical examples
for transitive roles are ancestorOf, superiorOf, partOf, greaterThan, etc. Role
transitivity declarations allow for a more succinct modeling and better querying
capabilities via entailment checks.

Example 44. Envisioning a company and a knowledge base containing employee
data, it would of course be possible to explicitly add all superior relations as ABox
role assertions superiorOf(a, b). On the other hand, the same can be achieved
(in terms of inferrable superior information) by only adding role assertions for
the cases of where a denotes a direct superior of b, if we additionally state that
superiorOf is transitive. Moreover this second version is advantageous in terms
of maintenance: whenever a new employee joins the company, only their direct
superior(s) and inferior(s) need to be explicitly specified.

However, what can be expressed in terms of transitivity in standard DLs is
limited. Thereby the limitations are inherited from FOL. What cannot be done
in the DLs treated here is to precisely talk about the transitive closure of a given
role. In other words, there is no way to axiomatize the condition that one role r is
the transitive closure of another role s (formally, this condition can be expressed
by rI = (sI)∗). What can be done is to say that the extension of r contains
the transitive closure of s (i.e. (sI)∗ ⊆ rI) by specifying s � r and r ◦ r � r.
Presuming this axiomatization of an upper bound for the transitive closure, we
can e.g. check whether there is an “s-path” of arbitrary length from an individual
a to an individual b in every model of the knowledge base by checking whether
the knowledge base entails the role assertion s(a, b). Still, there is no way to
check for the necessary absence of such a path in all models of the knowledge
base.

6.7 Model Manipulation Part III: Disjoint Union

We now consider a transformation which, roughly speaking, takes two interpre-
tations and puts them side by side. More formally, given two interpretations I =
(ΔI , ·I) and J = (ΔJ , ·J), assuming that ΔI ∩ ΔJ = ∅, we
define the disjoint union of I with J denoted by I+J = (ΔI+J , ·I+J) as fol-
lows: ΔI+J = ΔI ∪ ΔJ , aI+J = aI , AI+J = AI ∪ AJ and rI+J = rI ∪ rJ .
Note that, unlike most definitions of disjoint unions, this definition is asymmet-
ric since, for the mapping of the individuals, preference is given to I. One can
show that whenever I and J are models of a SHIQ knowledge base KB then
so is their disjoint union I+J .

Exercise 26. Prove the claim above. Hint: An intermediate lemma showing
CI+J = CI ∪CJ will come handy for that. This will require a structural induction
over the concepts.

Foundations of Description Logics 113

Example 45. Given the interpretation I from Example 14, let I′ denote I
where every domain element δ has been renamed into δ′. Then the interpretation
I + I′ can be displayed as follows:

Planet♀

o

��

morning star
evening star home

Planet♁

o

��

Planet�

o

��

�
o

��

moon

�
o

��
Star

�
sun

s

�� s

��

s

��

s

��

s

		
s

s

��

s

��

s

s
��
Planet♂

o

�
Planet

o

��

	
Planet

o

��

Planet

o

��

�
Planet

o

��

Planet♀’

o

��

Planet♁’

o

��

Planet�’

o

��

�’

o
��

�’
o

��
Star

�’

s

�� s

��

s

��

s

��

s

		
s

s

��

s

��

s

s
��
Planet♂’

o

�’
Planet

o

��

	’
Planet

o

��

’
Planet

o

��

�’
Planet

o

��

In fact, the above result can be generalized to disjoint unions of infinitely
many models. This gives rise to a property which could be called the infinite
model property : whenever there is an arbitrary model for a SHIQ knowledge
base KB, then there is also an infinite one.

Remark 46. More generally, these properties even hold for all SRIQ knowledge
bases not containing the universal role.

Exercise 27. Consider Example 45 and find an ALCO axiom which is not satis-
fied in the interpretation given there although it is satisfied in the original inter-
pretation from Example 14.

Wrapping up, what we have learned about model manipulations, their range
of applicability, and the model properties they give rise to can be summarized
in the following table.

manipulation preserves models for associated property
filtration SROI finite model property
unraveling ALCHIQ forest model property
disjoint union SRIQ\u infinite model property

6.8 Know Your Bounds: Nominal Concept and Universal Role

The modeling power brought about by nominal concepts and universal roles
is quite similar. For instance, having the universal role at disposal, we can re-
move all nominal concepts from a SROIQ knowledge base as follows: first,

114 S. Rudolph

rewrite every nominal concept {a1, . . . , an} into {a1} � . . . � {an} according to
the equivalence given in Section 5. Next, introduce fresh concept names A{a} for
all singleton nominal concepts thus obtained and substitute every occurrence of
any {a} by the according A{a}. Finally, add the concept assertion A(a) as well as
the GCI � � �1u.A{a} for any introduced A{a}.

On the other hand, the universal role can be emulated once nominal concepts
are allowed: we introduce a fresh individual name center and a new role name
toCenter and force every individual to have a toCenter relation to the indi-
vidual denoted by center by means of the axiom � � ∃toCenter.{center}.
Now we can get from every domain individual to every other by a two-hop
travel along toCenter and toCenter−. Thus we can replace every Ξu.C with
Ξ ∈ {∀, ∃, �n, �n} by the concept expression ∃toCenter.ΞtoCenter−.C.

Exercise 28. Find a way to remove the RBox occurrences of u as well.

A crucial feature showing the added expressivity obtained from nominal con-
cepts or the universal role is the capability to bound or fix the number of in-
dividuals in the extension of a class or even in the whole domain. Both the
GCIs AtMostTwo � {one, two} and � � �2u.AtMostTwo specify that the con-
cept AtMostTwo has at most two instances in every model. In order to cause
the extension size to be exactly two, we would have to add one �≈ two or
� � �2u.AtMostTwo, respectively. Likewise, we can enforce the whole domain
to contain at most (or exactly) two individuals by imposing these axiom with
AtMostTwo substituted by �.

Remark 47. These considerations show that as soon as nominal concepts or the
universal role is involved, models of knowledge bases need not be closed under
disjoint union as it was the case for e.g. SHIQ.

Exercise 29. As we have seen, SROIQ allows to enforce that the domain size
(i.e. the number of its elements) is at most n for any given n ∈ N. Contemplate
whether there is a knowledge base KBfin that emulates finite models, i.e., for every
knowledge base KB not using vocabulary from KBfin the models of KB ∪KBfin are
exactly those models of KB with finite domain, if one abstracts from the vocabulary
of KBfin.

Exercise 30. Is it possible to create a SHIQ knowledge base KB such that ev-
ery model contains one individual which is connected via a role r to infinitely
many other individuals? Can the same be achieved in ALCHOIQ? What about
ALCHIQ? For each of the cases either provide such a knowledge base or argue
why this is not possible.

6.9 Selfishness

The self concept enables to speak about “role loops”, i.e. situations where an
individual is simultaneously source and target of the same relation, or in other

Foundations of Description Logics 115

words the individual is connected to itself. This allows to define concepts based
on such situations, for instance we could define PersonCommittingSuicide ≡
∃kills.Self or Narcissist ≡ ∃loves.Self. Beyond that, this feature comes
handy when global properties of roles are to be enforced. A role r is said to
be reflexive if its associated relation is, i.e. if 〈δ, δ〉 ∈ rI for all δ ∈ ΔI . Con-
versely, it is called irreflexive if δ �= δ′ for all 〈δ, δ′〉 ∈ rI . In some places,
the definition of SROIQ includes additional RBox axioms of the form Ref(r)
or Irr(r) to specify reflexivity or irreflexivity of r, respectively. However, these
role characteristics can be equivalently expressed by the GCIs � � ∃r.Self or
∃r.Self � ⊥, respectively.

Exercise 31. If one has a closer look into the literature, these additional axiom
types require r to be simple in the case of irreflexivity but not in the case of re-
flexivity statements. In our current translation, role simplicity would be required in
both cases. How can this restriction be circumvented by an alternative translation
of the reflexivity statement?

6.10 Open World vs. Closed World

A useful distinction often made in the context of logic-based information sys-
tems is that between closed-world and open-world reasoning. Essentially, this
distinction is concerned with the question how missing information is treated.
Under the closed-world assumption (CWA) facts which cannot be deduced from
a knowledge base are supposed to be false whereas under the open-world assump-
tion the truth of these facts is simply unknown. Expert or database systems often
implement the CWA. Opposed to this, as a consequence of the semantics intro-
duced in Section 3, DLs follow the OWA. This is also implied by the fact, that
(most) DLs are fragments of first-order logic, which also adheres to the OWA.

Example 48. Consider the following knowledge base KB containing merely ABox
statements:

Planet(home)

Planet(morning star)

Star(sun)

orbitsAround(home, sun)

orbitsAround(moon, home)

orbitsAround(morning star, sun)

evening star ≈ morning star

While Planet(evening star) and orbitsAround(evening star, sun) are conse-
quences of KB, negated statements like ¬Star(home) or ¬orbitsAround(sun, moon)
or moon �≈ home are not due to the OWA. This can be explained by the fact, that
there are models for the KB where these statements do not hold (but rather their
unnegated variants). In order to enforce these negated statements they would heave
to be explicitly added to the knowledge base.

While the OWA is commonly argued to be the right perspective in the context
of the Semantic Web where completeness seems to be hard to achieve, there are
cases, where e.g. the extension of a concept or a role is entirely known and one

116 S. Rudolph

wants to express this information in order to guarantee that the according addi-
tional consequences can be drawn. To a certain extent, this can be implemented
by virtue of nominal concepts.

Example 49. Revisiting Example 48, to obtain the consequence ¬Star(home) we
could alternatively state that sun is the name of the only individual belonging to
the concept Star by adding the TBox axiom Star � {sun}. This has the advantage
that also the concept membership of anonymous individuals is thereby excluded
which cannot be achieved by ABox statements. Yet, in order to get the above
consequence we still have to additionally assert sun �≈ home, thereby excluding the
case that home and sun refer to the same individual. In the same way, we can treat
roles. For example, the axiom {home} � ∀orbitsAround.{sun} expresses that home
is orbitsAround-connected to nothing but (possibly) sun.

While nominals come handy for making “nothing but” statements, they can-
not fully simulate closed-world behavior. Therefore (local) closed-world exten-
sions to DLs have been investigated. Notable approaches in that direction are
(auto)epistemic DLs, and circumscriptive DLs.

7 Reasoning Tasks and
Their Reducibility

A knowledge base with statements in it
Seeks a model sound and nice
No matter, finite or infinite,
It asks a hermit for advice.
Yet, shattering is the reaction:
“Inconsistency detection,
You can’t get no satisfaction.”

It is one of the major selling points of logic-based knowledge representation
in general and of DLs in particular that, once a body of knowledge has been
accumulated and transferred into a logical representation, this knowledge can
be queried and worked with in an intelligent way which goes well beyond what
can be done with traditional information systems such as databases. In this
section we will review typical tasks that can be performed with DL knowledge
bases and that require elaborate inferencing. We can see that some of those tasks
can be reduced to others which alleviates the task of creating tools performing
those tasks.

7.1 Knowledge Base Satisfiability

Remember that a knowledge base KB is called satisfiable (also: consistent) if it
has a model, i.e., there is an interpretation I with I |= KB, otherwise it is called
unsatisfiable, inconsistent, or contradictory. Deciding whether a knowledge base
is consistent is important in its own right, as knowledge base inconsistency often
hints at severe modeling errors: since knowledge bases are supposed to describe
real state of affairs, they should not be contradictory. Moreover, due to the
principle of explosion, an inconsistent knowledge base entails every statement

Foundations of Description Logics 117

which renders any derived information useless. Additionally, as we will see in
a bit, axiom entailment checks can be reduced to detecting inconsistency of
knowledge bases.

7.2 Axiom Entailment

We remember that a knowledge base KB entails a DL axiom α if every model
of KB is also a model of α. Axiom entailment can be seen as the prototypical
reasoning task for querying knowledge: given a body of knowledge formally spec-
ified in a knowledge base, this knowledge is to be “logically queried” by checking
whether some statement is necessarily true, presuming the statements of the
knowledge base.

The problem of checking axiom entailment can be reduced to deciding knowl-
edge base satisfiability. The idea behind this reduction is proof by contradiction:
we show that something holds by assuming the opposite and deriving a contra-
diction from that assumption. Suppose α and β are axioms claiming the opposite
of each other. Then every interpretation (hence in particular every model of the
knowledge base KB) satisfies either α or β, but not both. Now, if α is a conse-
quence of KB, we know that every model of KB is a model of α. This means that
no model of KB can be a model of β. In other words, the extended knowledge
base KB′ = KB ∪ {β} can have no model which just means that KB′ is unsatis-
fiable. Thus the axiom entailment problem can be easily recast into a knowledge
base unsatisfiability problem, provided we find such an “opposite” axiom for the
given α. In SROIQ this is obvious for some cases. In some other cases, we have
to revert to finding an axiom or a set of axioms emulating the opposite of α,
which works just as well. We give the correspondences for all types of SROIQ
axioms in Table 1.

Table 1. Definition of axiom sets Aα such that KB |= α exactly if KB∪Aα is unsatis-
fiable. Individual names c with possible subscripts are supposed to be fresh. For GCIs
(third line), the first variant is normally employed, however, we also give a variant
which is equivalent instead of just emulating.

α Aα

r1 ◦ . . . ◦ rn � r {¬r(c0, cn), r1(c0, c1), . . . , rn(cn−1, cn)}
Dis(r, r′) {r(c1, c2), r′(c1, c2)}

C � D {(C 	 ¬D)(c)} or: {� � ∃u(C 	 ¬D)}
C(a) {¬C(a)}

r(a, b) {¬r(a, b)}
¬r(a, b) {r(a, b)}

a ≈ b {a �≈ b}
a �≈ b {a ≈ b}

118 S. Rudolph

7.3 Concept Satisfiability

Given a knowledge base KB, a concept C ∈ C is called satisfiable with respect
to KB, if it may contain individuals, i.e. there is a model I of KB that maps C
to a nonempty set, formally: CI �= ∅. Obviously, there are concepts which are
unsatisfiable irrespective of the underlying knowledge base, like A�¬A or simply
⊥. If, however some atomic concept A ∈ NI is unsatisfiable, this may as well
indicate modeling errors. A knowledge base where all atomic concepts are satis-
fiable is usually called coherent. Note that a knowledge base can be incoherent
but satisfiable. Like knowledge base satisfiability and axiom entailment, concept
satisfiability is a decision problem, i.e. we get yes or no as an answer.

The problem of deciding concept satisfiability can be reduced to axiom en-
tailment. An unsatisfiable concept C is necessarily empty in any model I, i.e.,
CI = ∅. This can be rewritten into CI ⊆ ∅ (since the other direction is trivial),
and further (using the fact that ⊥I = ∅) into CI ⊆ ⊥I . However this means
I |= C � ⊥ for every model I of KB, therefore KB |= C � ⊥. Hence, unsatisfia-
bility of of a concept C with respect to some knowledge base KB can be decided
by checking whether KB entails the GCI C � ⊥.

7.4 Instance Retrieval

Given a knowledge base KB and a concept C, it is a rather natural desire to ask
for C’s instances. However, there are two issues with that: First, a knowledge
base usually has many models and a specific individual may be instance of C in
one model but not in another. So, one typically asks for individuals which are
instances of C in every model. The other problem is that from model to model,
the domain ΔI may vary and does not need to contain the same individual.
The only way to refer to individuals in a sensible, cross-domain way is via their
names. This is why one restricts to named individuals for the instance retrieval
task. Consequently, the task could be formulated as follows: given a knowledge
base KB and a concept C, give me all individual names a ∈ NI for which aI ∈ CI

for every model I of KB.

Remark 50. This definition of instance retrieval may even lead to the peculiar
case that one can infer from a knowledge base that a concept C is nonempty in
every model (which can e.g. be tested by asking whether KB |= � � ∃u.C) while
the instance retrieval for C yields nothing. A simple example for this would be the
knowledge base containing only the axiom (∃r.C)(a).

Given the definition of instance retrieval above, it is obvious that an individual
name a will be delivered as part of the answer of an instance retrieval with
respect to a concept C precisely if KB |= C(a). Therefore, instance retrieval can
be performed by successively checking whether the considered knowledge base
entails C(a) for every individual name a. This takes |NI(KB)| entailment checks.
Depending on what concrete reasoning algorithm is employed, fewer calls to the
reasoning procedure may be required since it might be possible to retrieve many

Foundations of Description Logics 119

instances at once. This particularly applies to reasoning methods based on logic
programming and/or database systems.

Sometimes, the term instance retrieval is also used for roles. In that case we are
looking for all pairs 〈a, b〉 of individual names a, b ∈ NI for which 〈aI , bI〉 ∈ rI

for every model I of KB. This can be easily checked by asking for the entailment
KB |= r(a, b) for every combination of individual names.

7.5 Classification

Given a knowledge base KB, the concept names occurring therein can be put
into a hierarchy according to their subsumption relationships. More precisely,
if we define a relation �KB on the set NC of concept names by A �KB B iff
KB |= A � B, we find that this relation is a preorder, that is, we have A �KB A
for all A ∈ NC and from A �KB B and B �KB C follows A �KB C.

Exercise 32. Prove that �KB is indeed a preorder.

Classification of a knowledge base is the task of entirely determining�KB. This
task is practically important due to several reasons: During the knowledge base
modeling process, the modeler has an overview over the hierarchical structure
of the used concept names which can be diagrammatically visualized in a nice,
intuitive way. On the other hand, classification can serve as a preprocessing
step that speeds up subsequently performed reasoning tasks with respect to the
underlying knowledge base.

Obviously, classification of a knowledge base can be performed by checking
the entailment KB |= A � B for any pair A, B of class names, which amounts to
|NC | · (|NC | − 1) separate entailment checks. However, exploiting the properties
of preorders and concept subsumption statements explicitly given by GCIs, the
number of such checks can be drastically reduced [Shearer and Horrocks, 2009].

7.6 Conjunctive Query Answering

Conjunctive queries (CQs) and unions of conjunctive queries (UCQs) are well
known in the database community [Chandra and Merlin, 1977] and constitute an
expressive query language with capabilities that go well beyond standard reason-
ing tasks in DLs. In terms of first-order logic, these CQs and UCQs are formulae
from the positive existential fragment. Free variables in a query (not bound by an
existential quantifier) are also called answer variables or distinguished variables,
whereas existentially quantified variables are called non-distinguished. As an ex-
ample, ∃y∃z(childOf(x, y) ∧ childOf(x, z) ∧ married(y, z)) with distinguished
variable x and non-distinguished variables y and z represents a conjunctive query
asking for all children whose parents are married with each other. If all variables
in the query are non-distinguished, the query answer is just true or false and
the query is called a Boolean query. Given a knowledge base KB and a Boolean
UCQ q, the query entailment problem is deciding whether q is true or false w.r.t.
KB, i.e., we have to decide whether each model of KB provides for a suitable

120 S. Rudolph

assignment for the variables in q.2 For a query with distinguished variables, the
answers to the query are those tuples of individual names (constants) for which
the knowledge base entails the query that is obtained by replacing the free vari-
ables with the individual names in the answer tuple. The problem of finding all
answer tuples is known as query answering.

In general, conjunctive query answering or checking Boolean conjunctive query
entailment are not easily (more precisely: polynomially) reducible to any of the
other standard reasoning tasks treated above, which can be concluded from the
fact that the worst-case complexities for these problems are usually way harder
than the complexities of the other tasks [Lutz, 2008]. Conversely, it is trivial to
reduce the task of checking knowledge base consistency to checking conjunctive
query entailment: for instance, KB is inconsistent exactly if for fresh concept
names Aaux and Baux the knowledge base KB ∪ {Aaux � Baux � ⊥} satisfies the
conjunctive query ∃x(Aaux(x) ∧ Baux(x)).

Exercise 33. A conjunctive query is called tree-shaped if for any two query
variables x, y there is exactly one sequence of pairwise different query variables
z0, . . . , zn and exactly one sequence r1, . . . rn of role names such that z0 = x,
zn = y, and for every 1 ≤ i ≤ n either ri(zi−1, zi) ∈ q or ri(zi, zi−1) ∈ q. Argue
that query answering for a tree-shaped conjunctive query with one distinguished
variable can be reduced to (concept) instance retrieval.

7.7 Other Reasoning Tasks

The reasoning tasks described above, excluding conjunctive query answering, are
often referred to as standard reasoning tasks. Still, conjunctive query answering is
conceptually in line with those, since it can be formulated as entailment checking.
Beyond those deductive tasks which are all concerned with determining logical
consequences, there are several non-standard reasoning tasks where the goal is
somewhat different. In the following, we will briefly go through a selection of
these.

Induction. As opposed to the aforementioned deductive methods, inductive
approaches3 usually take an amount of factual (assertional) data and try to gen-
eralize therefrom by generating hypotheses expressed as terminological axioms
or complex concepts. This sort of reasoning tasks are related to data mining
problems and respective approaches draw their inspiration from machine learn-
ing and in particular inductive logic programming (ILP, [Lehmann, 2009]). Since
inductive reasoning is not truth-preserving (i.e. hypotheses which are generated
may be falsified), also interactive methods with human expert involvement have
been proposed [Rudolph, 2004].

2 Note that in general, solving this task is way harder than querying a classical
database, as the considered models may be infinite in both size and number.

3 Not to be confused with the mathematical proof technique of induction.

Foundations of Description Logics 121

Abduction. Like induction and unlike deduction, abduction is an inferencing
method which is not truth-preserving. Roughly speaking, abduction could be
described as “premise guessing.” More precisely, given a knowledge base KB in
some DL and an axiom α such that α is not entailed by KB, abductive reasoning
is concerned with finding a knowledge base KB′ with specific properties such
that α is a logical consequence of KB ∪KB′. In ontology engineering, abductive
reasoning services come handy when a wanted consequence is not entailed and
one wants to determine what information is missing [Noia et al., 2009].

Explanation. If results of automated reasoning are to be shared with human
users, it is often not sufficient to just display the result. Often it is also desirable
to give an account on the cause why some axiom is entailed by the knowledge
base, in other words to give an explanation for it. In most cases, only few axioms
actually contribute to an entailment. Thus it is already quite helpful to find a
minimal subset of a knowledge base for which the entailment still holds. More
precisely, given a knowledge base KB and an axiom α with KB |= α, a justi-
fication for the entailment is a knowledge base KB′ ⊆ KB such that KB′ |= α
but for every KB′′ ⊂ KB′ holds KB′′ �|= KB. In general, a justification does not
need to be unique, there might be more than one justification for an entailment
[Horridge et al., 2008].

Module extraction. When confronted with large knowledge bases, it might be
worthwhile to identify natural partitions of them which logically interact which
each other only in a restricted way, such that they can be handled independently
when it comes to query answering or reasoning in general. In other cases, one
may be interested only in a part of the knowledge specified in a knowledge base
which is expressible in a certain fraction of the vocabulary. In general, the task
of identifying or computing such knowledge base parts is referred to as module
extraction [Stuckenschmidt et al., 2009].

8 Algorithmic Approaches to
DL Reasoning

Is it consequence-driven
Automatically given
What we base our system upon?
Or do, fueled by Rousseau,
we say “Guerre aux tableaux!
Et vive la resolution!”?

Various reasoning paradigms have been investigated with respect to their
applicability to DLs. Most of them originate from well-known approaches for
theorem proving in a first-order logic setting. However, in contrast to the un-
avoidable downside that reasoning methods for first-order logic cannot be sound,
complete, and terminating, approaches to reasoning in DLs aim at a sound and
complete decision procedures, whence the adopted reasoning techniques have to
be adapted in order to guarantee termination.

The majority of state-of-the art OWL reasoners, such as Pellet
[Sirin et al., 2007], FaCT++ [Tsarkov and Horrocks, 2006], or RacerPro

122 S. Rudolph

[Haarslev and Möller, 2001] use tableau methods with good performance results,
but even those successful systems are not applicable in all practical scenarios.
This motivates the search for alternative reasoning approaches that employ dif-
ferent methods in order to address cases where tableau algorithms exhibit certain
weaknesses. Successful examples in this respect are the works based on resolu-
tion [Motik and Sattler, 2006] and hyper-tableaux [Motik et al., 2009c] as well
as consequence-based approaches [Kazakov, 2009].

As we have seen in the previous section, many important reasoning tasks
can be reduced to checking knowledge base satisfiability, hence we will focus on
this specific task. In general, reasoning methods can be subdivided into model-
theoretic methods on one hand and proof-theoretic methods on the other.

Model-theoretic methods essentially try to construct models of a given knowl-
edge base in an organized way. If this succeeds, the knowledge base has obviously
been shown to be satisfiable, if it can be shown that the construction must nec-
essarily fail, unsatisfiability has been established. Typical reasoning paradigms
of that sort are tableau procedures and automata-based approaches.

Remark 51. If models are represented explicitly (i.e., for an interpretation I =
(ΔI , ·I) both ΔI and ·I are stored in some data structure), a näıve model con-
struction strategy can only arrive at finite models, obviously. While this may be
enough for logics that satisfy the finite model property, it is insufficient in the
general case. However, this problem can be circumvented if one reverts to finite
model representations, which only store a finite part of the model explicitly and
provide additional (finite) information how this partial model could be determinis-
tically extended into a real model. Intuitively, this can be compared to the decimal
representation of rational numbers: while the correct value of 13

11
= 1.18181818 . . .

needs infinitely many digits to be precisely noted down, it is not hard to come up
with a finite representation, namely 1.18 which, by virtue of the additional extra
information provided by the overline, shows how the infinite “pure” representation
could be constructed (if one had infinite time and memory). Of course, when work-
ing with finite representations, it is crucial that these allow for effective detection
of axiom satisfaction.

As opposed to model-theoretic reasoning methods, proof-theoretic approaches
operate more on the syntactic side: starting out from a normalized version of the
knowledge base, deduction rules are applied to derive further logical statements
about a potential model. If, in the course of these derivations an overt contra-
diction is derived, the considered knowledge base has shown to be unsatisfiable.
In order to guarantee a termination of the procedure also in the case of satisfi-
ability it is crucial that in the course of derivation, some sort of saturation will
be reached in finite time. This can e.g. be achieved by restricting the relevant
propositions (which may or may not be derived) to a finite set.

In the following, we will survey some well-known reasoning paradigms for DLs
without going into technical details.

Foundations of Description Logics 123

8.1 Tableau

Tableau procedures aim at constructing a model that satisfies all axioms of the
given knowledge base. The strategy here is to maintain a set D of elements repre-
senting domain individuals (including anonymous ones) and acquire information
about their concept memberships and role interrelatedness. D is initialized by
all the individual names and the according ABox facts. Normally, the partial
model thus constructed does not satisfy all the TBox and RBox axioms. Thus,
the intermediate model is “repaired” as required by the axioms. This may mean
to establish new concept membership or role interrelatedness information about
the maintained elements, yet sometimes it may also be necessary to extend the
set of considered domain individuals. Now and again, it might be required to
make case distinctions and backtrack later. If we arrive at a state, where the in-
termediate model satisfies all the axioms and hence does not need to be repaired
further, the knowledge base is satisfiable. If the intermediate model contains
overt contradictions (such as an element marked as instance of a concept C and
its negation ¬C or an element marked as an instance of ⊥), we can be sure
that repairing it further by adding more information will never lead to a proper
model, hence we are in a “dead end” need to backtrack. If every alternative
branch thus followed leads into such a “dead end”, we can be sure that no model
can exist.

Example 52. Omitting a lot of technical details, we shortly explain how the
satisfiability of the knowledge base from Example 12 would be established by a
tableau algorithm. For better reference, we first recap the knowledge base.

owns � caresFor (5)

Healthy � ¬Dead (6)

Cat � Dead � Alive (7)

HappyCatOwner � ∃owns.Cat 	 ∀caresFor.Healthy (8)

HappyCatOwner(schrödinger) (9)

As explained we first initialize the set of domain elements by letting D =
{schrödinger}, moreover, due to the only ABox axiom (9) we mark schrödinger

with HappyCatOwner. Inspecting the axioms, we find that (8) is not satisfied by the
current representation. Thus, we repair it as required by (8), “inventing” a new
element, say , and adding it to D. Accordingly, we stipulate that schrödinger

is connected to by an owns relation and marking with Cat. We find that,
as a consequence of these changes, (8) is satisfied (for the moment). However, the
changes have invalidated axioms (5) and (7). We account for the former by in-
troducing a caresFor connection from schrödinger to . The latter essentially
leaves us with two options: we need to mark either by Dead or by Alive. This
means, we have to make a case distinction and investigate each option separately.

124 S. Rudolph

– Let us try and pick Dead. Again, examining the axioms, we find (8) violated
due to the second part of its consequence. Repairing this requires to mark

with Healthy which in turn invalidates (6). Hence we have to mark by
¬Dead. Unfortunately, we now observe that is marked both by Dead and
¬Dead, thus we have reached a “dead end” and need to backtrack.

– So, we mark by Alive. Also here, we find (8) violated and repair it by
marking with Healthy, obtaining invalidation of (6) and coping with it by
marking by ¬Dead. We have thus arrived at a state where our intermediate
model satisfies all axioms. Hence, we have obtained a proper model of KB and
conclude that the knowledge base is satisfiable.

However, note that the continued “repairing” performed in a tableau proce-
dure does not necessarily terminate, since performing one repair might cause the
need for another repair and so forth ad infinitum.

Example 53. Consider the knowledge base containing the single axiom � �
∃succ.�, which forces every domain element to have a successor. Applying the
näıve repair approach from above we will need to introduce a successor for every
individual, then successors of successors etc.

Therefore, in order to be applicable as a decision procedure, these infinite
computations must be prevented to ensure termination. This can be achieved by
a strategy called blocking, where certain domain elements are “blocked” (which
essentially means that they are exempt from the necessity of being repaired) by
other domain individuals which “look the same” in terms of concept member-
ships. For more advanced DLs, more complicated blocking strategies are needed.

A tableau algorithm for SHOIQ is described by Horrocks and Sattler [2007].
A refinement of the tableau technique, called hypertableau is at the core of the
OWL 2 DL reasoner HermiT [Motik et al., 2009c].

8.2 Automata

As mentioned earlier, most DLs satisfy some sort of tree-model property. On the
other hand, families of trees (in other words: tree languages) can be represented
by appropriate tree-automata. Thus, given an automaton that characterizes the
tree models of a knowledge base, the problem of knowledge base satisfiability
can be rephrased into the question whether the tree language represented by this
corresponding automaton is non-empty. This line of research has been followed
by several investigations targeted at standard reasoning as well as conjunctive
query answering. Approaches along those lines are e.g. described by Glimm et al.
[2008a] and Calvanese et al. [2009].

Exercise 34. To get a feeling for the relatedness between automata and DL rea-
soning, try to design an ALC knowledge base KB with the property that for any
r1, r2, . . . , rn ∈ NR we have that KB |= A � ∃r1∃r2 . . .∃rn.B exactly if the word
r1r2 . . . rn matches the regular expression s∗(rs|srr)∗.

Foundations of Description Logics 125

8.3 Consequence-Based Reasoning

As suggested by their name, consequence-based (also: consequence-driven) rea-
soning approaches start from the given knowledge base and derive logical con-
sequences of it by means of applying deduction rules. A deduction rule has the
shape

name
α1 · · · αn

α
with α, α1, . . . , αn being axioms of the underlying logic. To apply a deduction
rule means to add α to the set of statements known to be true if truth is already
established for α1, . . . , αn (be it due to their presence in the knowledge base or
because they have been derived by an earlier application of a deduction rule). If,
given a set D of deduction rules, an axiom β can be generated like this from an
axiom set {β1, . . . , βk} by (possibly manifold) applications of deduction rules,
we say that β is derivable from {β1, . . . , βk} and write {β1, . . . , βk} � β.

In order to be of proper use for the reasoning, the used set D of deduction
rules (also jointly called a deduction calculus) has to mimic the logical entail-
ment as defined by the formal semantics. That means that on one hand, β must
be a logical consequence of {β1, . . . , βk} whenever β is derivable therefrom (in
short: {β1, . . . , βk} � β implies {β1, . . . , βk} |= β) – a property called soundness
of the deduction calculus. On the other hand, we require its completeness, i.e.
that every logical consequence of {β1, . . . , βk} can also be derived from it (in
short: {β1, . . . , βk} |= β implies {β1, . . . , βk} � β). Sometimes, completeness is
constrained to specific axiom types β, e.g. a deduction calculus is called refu-
tationally complete, if inconsistency of a knowledge base implies derivability of
� � ⊥.

Example 54. The following deduction calculus is sound and refutationally com-
plete for ALC TBoxes in an appropriate normal form (for details see Simancik et al.
[2011]). Thereby A and B denote concept names, H and K are conjunctions of
negated and unnegated concept names, whereas M , N , and Ni are disjunctions of
concept names.

R+
A A 	 H � A

R−
A

¬A 	 H � N � A

¬A 	 H � N

Rn
�

H � N1 � A1 · · · H � Nn � An

�n
i=1 Ai � M

H � M �
⊔n

i=1 Ni

R+
∃

H � N � A A � ∃r.B
H � N � ∃r.B

R−
∃

H � N � ∃r.K K � N � A ∃r.A � B

H � M � B � ∃r.(K 	 ¬A)

R⊥
∃

H � N � ∃r.K K � ⊥
H � M

R∀
H � N � ∃r.K H � N � A A � ∀r.B

H � M � N � ∃r.(K 	 B)

126 S. Rudolph

Exercise 35. Using the above deduction calculus, show that the axiom D � G can
be derived from the knowledge base containing the axioms
A � B � C D � ∀r.A ∃r.B � E D � F � ∃r.¬C E 	 F � G.

However, just a sound and complete deduction calculus is not sufficient for a
decision procedure (note that FOL itself has such a calculus while being unde-
cidable). In addition to that, one has to ensure that the “enrichment process” of
adding more and more derived consequences to the set of true statements will ter-
minate at some point. One way to guarantee this is to make sure that only finitely
many (syntactically) different axioms can be derived. Consequence-driven ap-
proaches are described e.g. by Kazakov [2009] and Simancik et al. [2011].

8.4 Resolution

Resolution is a technique prominently used in first-order logic theorem proving.
At the core of reasoning via resolution is the resolution rule which looks as
follows:

Res
A1 ∨ . . . ∨Ai ∨ . . . An B1 ∨ . . . ∨Bj ∨ . . . Bm

A1 ∨ . . . ∨Ai−1 ∨Ai+1 ∨ . . . An ∨B1 ∨ . . . ∨Bj−1 ∨Bj+1 ∨ . . . Bm

Thereby, Ak and Bk denote literals, i.e. negated or unnegated FOL atoms and
the two literals Ai and Bj are assumed to be complements of each other (i.e.
Ai = ¬Bj or Bj = ¬Ai). As the resolution rule is a deduction rule, resolution
can be seen as a variant of consequence-based reasoning. One of the differences
is that resolution is performed not on DL knowledge bases directly but on a FOL
translation thereof. Resolution-based methods have been described for DLs up
to SHOIQ [Motik and Sattler, 2006; Kazakov and Motik, 2008].

9 Description Logics
and OWL

In fact, in terms of syntax, OWL
Just tends to be a bulky fowl,
However, if it mates with Turtle
This union turns out rather fertile;
I deem the offspring of this love
As graceful as a turtledove.

As mentioned before, the web ontology language OWL is based on Description
Logics but also features additional types of extra-logical information, concerning,
e.g., ontology versioning information and annotations. Moreover, OWL supports
modeling and reasoning with datatypes which we omitted from our considera-
tion. Likewise, keys are supported in OWL but not discussed here.

In this section, we will see how any OWL DL compliant reasoning tool can
be used to decide SROIQ knowledge base satisfiability as well as any other
reasoning task which can be reduced to it.

Foundations of Description Logics 127

“OWL speak” differs partially from the terms normally used in description
logics. The following table gives a synopsis of the corresponding terms used in
the OWL vs. the DL community as well as in the domain of classical first-order
logic.

OWL DL FOL

class name concept name unary predicate
class concept formula with one free variable
object property name role name binary predicate
object property role formula with two free variables
ontology knowledge base theory
axiom axiom sentence
vocabulary vocabulary / signature signature

In the next two sections, we briefly explain how a SROIQ knowledge base can
be translated into an OWL 2 DL ontology such that satisfiability and entailment
checks can be performed by OWL reasoning engines.

9.1 Translating DL KBs into OWL

For translating a SROIQ knowledge base into an OWL ontology, some
technical issues need to be taken care of. First of all, both the used vocabulary as
well as the constructors have to be URIs (i.e. uniform resource identifiers, that is,
terms following the prescribed naming scheme prevalent in the Semantic Web).
The URIs for the used individual, concept, and role names can be chosen rather
arbitrarily, while the URIs for constructors etc. are prescribed and associated to
specific namespaces usually associated to the prefixes owl:, rdfs:, rdf:, and
xsd:. For the sake of simplicity, we will assume that all used individual, con-
cept and role names from the DL knowledge base are syntactically well-formed
URIs.

Second, the mainly used encoding of OWL is as an RDF document
[Manola and Miller, 2004]. One one hand, this is advantageous from a down-
ward compatibility and tool interoperability point of view; in fact the encoding
of concept and role assertions in OWL and RDF coincide and some other RDFS
statements are available in OWL as well with a similar semantics. On the other
hand, the encoding as RDF also imposes some restrictions on the way logical
axioms can be encoded. As RDF is a graph-based formalism consisting of node-
edge-node triples, DL axioms and complex concepts have to be transformed into
a graph-like representation. This is done by virtue of the typical means used to
encode complex structures in RDF: structural bnodes and graph-based encoding
of lists.

Forour treatise,wewillusetheTurtle [Beckett and Berners-Lee, 14 January 2008]
notation, which seems most appropriate as it illustrates the underlying RDF triple

128 S. Rudolph

structure while at the same time hiding the very low-level details (such as the tripli-
fication of the list structures employed for the RDF encoding of OWL).

The translation of a SROIQ knowledge base KB contains three parts: a
preamble containing the definition of namespaces, declarations of the used con-
cept (resp. class) and role (resp. object property) names, and finally a part
containing the OWL counterparts of the axioms from KB. Hence, we let

[[KB]] = Pre + Dec(KB) +
∑

α∈KB
[[α]]

where + denotes concatenation of strings. Thereby the preamble is defined by

Pre =

⎧⎪⎨
⎪⎩

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

whereas the declarations are expressed by according typing statements:

Dec(KB) =
∑

A∈NC(KB) A rdf:type owl:Class .

+
∑

r∈NR(KB) r rdf:type owl:ObjectProperty .

As displayed above, the actual knowledge base is translated axiom-wise via
the function [[·]] defined on the next page. The latter makes calls to the functions
[[·]]C and [[·]]R given further below, which are used to decompose and recursively
translate complex concepts and roles, respectively.

[[r1 ◦ . . . ◦ rn � r]] = [[r]]R owl:propertyChainAxiom ([[r1]]R · · · [[rn]]R) .

[[Dis(r, r′)]] = [[r]]R owl:propertyDisjointWith [[r′]]R .

[[C � D]] = [[C]]C rdfs:subClassOf [[D]]C .

[[C(a)]] = a rdf:type [[C]]C .

[[r (a , b)]] = a r b .

[[r−(a , b)]] = b r a .

[[¬r(a , b)]] = [] rdf:type owl:NegativePropertyAssertion ;

owl:assertionProperty [[r]]R ;

owl:sourceIndividual a ; owl:targetValue b .

[[a ≈ b]] = a owl:sameAs b .

[[a �≈ b]] = a owl:differentFrom b .

Foundations of Description Logics 129

[[u]]R = owl:topObjectProperty

[[r]]R = r

[[r −]]R = [owl:inverseOf :r]

[[A]]C = A

[[�]]C = owl:Thing

[[⊥]]C = owl:Nothing

[[{a1, . . . , an}]]C = [rdf:type owl:Class ; owl:oneOf (:a1 . . . :an)]

[[¬C]]C = [rdf:type owl:Class ; owl:complementOf [[C]]C]

[[C1	. . .	Cn]]C = [rdf:type owl:Class ; owl:intersectionOf ([[C1]]C . . . [[Cn]]C)]

[[C1�. . .�Cn]]C = [rdf:type owl:Class ; owl:unionOf ([[C1]]C . . . [[Cn]]C)]

[[∃r.C]]C = [rdf:type owl:Restriction ;

owl:onProperty [[r]]R ; owl:someValuesFrom [[C]]C]

[[∀r.C]]C = [rdf:type owl:Restriction ;

owl:onProperty [[r]]R ; owl:allValuesFrom [[C]]C]

[[∃r.Self]]C = [rdf:type owl:Restriction ;

owl:onProperty [[r]]R ; owl:hasSelf ’’true’’^^xsd:boolean]

[[�n r.C]]C = [rdf:type owl:Restriction ;

owl:minQualifiedCardinality n ^^xsd:nonNegativeInteger ;

owl:onProperty [[r]]R ; owl:onClass [[C]]C]

[[�n r.C]]C = [rdf:type owl:Restriction ;

owl:maxQualifiedCardinality n ^^xsd:nonNegativeInteger ;

owl:onProperty [[r]]R ; owl:onClass [[C]]C]

Example 55. For the knowledge base KB from Example 12, the transla-
tion [[KB]] looks as follows (for better readability, we use the namespace
http://www.example.org/# for individual, concept, and role names and abbrevi-
ate it by the empty prefix as shown in the first line of the translation):

@prefix : <http://www.example.org/#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:owns rdf:type owl:ObjectProperty .

:caresFor rdf:type owl:ObjectProperty .

:Cat rdf:type owl:Class .

:Dead rdf:type owl:Class .

:Alive rdf:type owl:Class .

:Healthy rdf:type owl:Class .

:HappyCatOwner rdf:type owl:Class .

130 S. Rudolph

:owns rdfs:subPropertyOf :caresFor .

:Healthy rdfs:subClassOf [owl:complementOf :Dead] .
:Cat rdfs:subClassOf [owl:unionOf (:Dead :Alive)] .
:HappyCatOwner rdfs:subClassOf

[owl:intersectionOf
([rdf:type owl:Restriction ;

owl:onProperty :owns ; owl:someValuesFrom :Cat]
[rdf:type owl:Restriction ;
owl:onProperty :caresFor ; owl:allValuesFrom :Healthy])

] .

:schrödinger rdf:type :HappyCatOwner .

To give an idea, how the RDF graph representation of an OWL ontology looks
like, the last TBox axiom is displayed graphically in the following picture.

rdfs:subClassOf

owl:Rest
riction

:Cat

:Healthy

:caresFo
r

:owns

rdf:nil

rdf
:fir
st

rd
f:r
es
t

rd
f:r
es
trdf:type

rdf:type

owl:onProperty

owl:onProperty

owl:allvalues
From

owl:someValuesFrom

owl:intersectionOf

rdf
:fir
st

owl:Restriction

:Cat

:Healthy

:caresFor

:owns

:HappyCatOwner

Exercise 36. Translate the knowledge base from Example 21 and the initial axiom
from Example 33 into OWL ontologies in Turtle syntax.

9.2 Expressing OWL Axioms in SROIQ
In fact, the OWL specification features much more axiom types than the ones
used above to translate SROIQ knowledge bases. As far as the purely logical
axioms are concerned (i.e. excluding everything referring to datatypes, keys,
annotations, or the like), all these axioms can be considered as syntactic sugar,
i.e., they can be conceived as shortcuts for other axioms expressed in the “core”
OWL language used in the definitions above. In the sequel, we give the DL
paraphrases of these axioms

Foundations of Description Logics 131

Axiom type Turtle notation DL paraphrase

Class Equivalence [[C]]C owl:equivalentClass [[D]]C . C � D, D � C

Class Disjointness [[C]]C owl:disjointWith [[D]]C . C 	 D � ⊥
Disjoint Classes [] rdf:type owl:AllDisjointClasses ; Ci 	 Cj � ⊥

owl:members ([[C1]]C ... [[Cn]]C) . for all 1≤i<j≤n

Disjoint Union [[C]]C owl:disjointUnionOf
⊔

i<j
Ci � C

([[C1]]C ... [[Cn]]C) . Ci 	 Cj � ⊥
for all 1≤i<j≤n

Property Equivalence [[r]]R owl:equivalentProperty [[s]]R . r � s, s � r

Disjoint Properties [] rdf:type owl:AllDisjointProperties ; Dis(ri, rj)
owl:members ([[r1]]R ... [[rn]]R) . for all 1≤i<j≤n

Inverse Properties [[r]]R owl:inverseOf [[s]]R . Inv(r) � s

Property Domain [[r]]R rdfs:domain [[C]]C . ∃r.� � C

Property Range [[r]]R rdfs:range [[C]]C . � � ∀r.C

Functional Property [[r]]R rdf:type owl:FunctionalProperty . � � �1r.�
Inverse Functional [[r]]R rdf:type

Property owl:InverseFunctionalProperty . � � �1Inv(r).�
Reflexive Property [[r]]R rdf:type owl:ReflexiveProperty . � � ∃r.Self

Irreflexive Property [[r]]R rdf:type owl:IrreflexiveProperty . ∃r.Self � ⊥
Symmetric Property [[r]]R rdf:type owl:SymmetricProperty . Inv(r) � r

Asymmetric Property [[r]]R rdf:type owl:AsymmetricProperty . Dis(Inv(r), r)

Transitive Property [[r]]R rdf:type owl:TransitiveProperty . r ◦ r � r

Different Individuals [] rdf:type owl:AllDifferent ; ai �≈ aj

owl:members (a1 . . . an) . for all 1≤i<j≤n

10 Further Reading

At the end of this chapter, we give a few pointers to further reading with respect
to different aspects of the contents presented here. Note that this list is certainly
incomplete and subject to personal inclinations.

Description Logics. As central reference to the area of Description Logics, the
primary resource is certainly theDescriptionLogicHandbook [Baader et al., 2007],
providing an overview of the subject, introductory parts as well as parts dedicated
to advanced issues. The description logic SROIQ which, together with its sub-
logics, was the main subject of our treatise is introduced by Horrocks et al. [2006],
the according reasoning complexity results are established by Kazakov [2008].

Conjunctive Queries in Description Logics. While the principled problem
of reasoning in DLs up to SROIQ can considered to be solved, conjunctive query
answering is still a subject of active research and only preliminary decidabil-
ity and complexity results are available. Most notably, decidability of SROIQ
and even of SHOIQ is unsolved. On the other hand, the problem is settled

132 S. Rudolph

for SHIQ [Glimm et al., 2008c] and SHOQ [Glimm et al., 2008b]. Moreover,
Calvanese et al. [2009] captured additionally SHOI and extended the results
to regular path queries. The most expressive Boolean-closed DL simultaneously
featuring nominal concepts, inverses and number restrictions (i.e., O, I, and Q)
for which decidability is known is ALCHOIQb [Rudolph and Glimm, 2010].

Relations to Logics in General. For foundations of logics, the textbook by
Schöning [2008] is certainly a good starting point in particular for computer sci-
entists, whereas Ebbinghaus et al. [1996] capture mathematical aspects. Model
theory is treated in depth by Chang and Keisler [1990]. For an introduction into
the area of theorem proving in a first-order logic setting, we recommend the
textbook by Fitting [1996]. We suggest to consult Papadimitriou [1994] for the
study of algorithmic complexity theory.

The correspondence of DLs and first-order logic (in particular the 2-variable
fragment) has e.g. been described by Borgida [1996], the complexity treatment
on the 2-variable fragment of FOL with counting quantifiers by Pratt-Hartmann
[2005] has served as basis for a row of DL complexity results. The relatedness
of DLs with modal logics (see the textbook by Blackburn et al. [2006] for a
thorough introduction) is treated by Schild [1991]. As another closely related
logic, the guarded fragment of FOL is described by Andréka et al. [1998].

AI and Knowledge Representation. A central reference for a comprehensive
overviewof the area of AI as a whole is the seminal textbook by Russell and Norvig
[2003]. Knowledge Representation in particular is treated by Sowa [1984] and
van Harmelen et al. [2008].

Semantic Web and OWL. The Semantic Web vision is described in the
seminal paper by Berners-Lee et al. [2001]. In order to get an overview over all
aspects of (Web) ontologies, the Ontology Handbook by Staab and Studer [2009]
is a central reference.

As far as technical questions about syntax and semantics of OWL is con-
cerned, the primary resource are the W3C Recommendation Documents. Next to
an overview [OWL Working Group, 2009], syntax and semantics are treated by
Motik et al. [2009b] and Motik et al. [2009a], respectively, whereas
Patel-Schneider and Motik [2009] tackle the RDF serialization of OWL. The
OWL 2 Primer by Hitzler et al. [2009a] gives an informal introduction into the
use of OWL. A thorough treatment of all the standardized Semantic Web for-
malisms is provided by the textbook Foundations of Semantic Web Technologies
[Hitzler et al., 2009b].

Acknowledgements. I thank all people who helped me in one or the other way
to accumulate the knowledge about DLs which I gave a partial overview of in this
lecture. I am grateful to the organizers of the Reasoning Web Summer School
2011 for giving me the opportunity to teach. I thank the anonymous reviewers for
their comments on an earlier version of this document. I am indebted to Anees ul
Mehdi, Nadeschda Nikitina and Jens Wissmann for their thorough proofreading.

Foundations of Description Logics 133

Special thanks go to Ian Horrocks for his valuable feedback in terms of poetic
quality assurance. The DL logo displayed at the beginning of the chapter goes
back to Enrico Franconi, the deduction calculus for ALC comes from Yevgeny
Kazakov. Further inspiration was drawn from (in alphabetical order) Benedict
XVI, Nicolas Chamfort, Edward Lear, the Rolling Stones, William Shakespeare
and W.A. Spooner.

References

[Andréka et al., 1998] Andréka, H., van Benthem, J.F.A.K., Németi, I.: Modal lan-
guages and bounded fragments of predicate logic. Journal of Philosophical
Logic 27(3), 217–274 (1998)

[Baader et al., 2007] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-
Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation,
and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)

[Beckett and Berners-Lee, 14 January 2008] Beckett, D., Berners-Lee, T.: Turtle –
Terse RDF Triple Language. W3C Team Submission (January 14, 2008), http://
www.w3.org/TeamSubmission/turtle/

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web.
In: Scientific American, pp. 96–101 (May 2001)

[Blackburn et al., 2006] Blackburn, P., van Benthem, J.F.A.K., Wolter, F. (eds.):
Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Else-
vier Science, Amsterdam (2006)

[Borgida, 1996] Borgida, A.: On the relative expressiveness of description logics and
predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)

[Brachman and Levesque, 1984] Brachman, R.J., Levesque, H.J.: The tractability of
subsumption in frame-based description languages. In: Brachman, R.J. (ed.) Pro-
ceedings of the 4th National Conference on Artificial Intelligence (AAAI 1984), pp.
34–37. AAAI Press, Menlo Park (1984)

[Calvanese et al., 2009] Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in
expressive description logics with nominals. In: Boutilier, C. (ed.) Proceedings of
the 21st International Conference on Artificial Intelligence (IJCAI 2009), pp. 714–
720 (2009)

[Chandra and Merlin, 1977] Chandra, A.K., Merlin, P.M.: Optimal implementation of
conjunctive queries in relational data bases. In: Hopcroft, J.E., Friedman, E.P.,
Harrison, M.A. (eds.) Proceedings of the 9th Annual ACM Symposium on Theory
of Computing (STOC 1977), pp. 77–90. ACM Press, New York (1977)

[Chang and Keisler, 1990] Chang, C.C., Jerome Keisler, H.: Model Theory, 3rd edn.
Studies in Logic and the Foundations of Mathematics, vol. 73. North Holland,
Amsterdam (1990)

[Ebbinghaus et al., 1996] Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical
Logic. Springer, Heidelberg (1996)

[Fitting, 1996] Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd
edn. Springer, Heidelberg (1996)

[Ganter and Wille, 1997] Ganter, B., Wille, R.: Formal Concept Analysis: Mathemat-
ical Foundations. Springer, Heidelberg (1997)

[Glimm et al., 2008a] Glimm, B., Horrocks, I., Sattler, U.: Deciding SHOQ∩ knowl-
edge base consistency using alternating automata. In: Baader, F., Lutz, C., Motik,
B. (eds.) Description Logics. CEUR Workshop Proceedings, vol. 353 (2008),
CEUR-WS.org

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
CEUR-WS.org

134 S. Rudolph

[Glimm et al., 2008b] Glimm, B., Horrocks, I., Sattler, U.: Unions of conjunctive
queries in SHOQ. In: Brewka, G., Lang, J. (eds.) Proceedings of the 11th In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR 2008), pp. 252–262. AAAI Press, Menlo Park (2008)

[Glimm et al., 2008c] Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Answering con-
junctive queries in the SHIQ description logic. Journal of Artificial Intelligence
Research 31, 150–197 (2008)

[Golbreich et al., 2006] Golbreich, C., Zhang, S., Bodenreider, O.: The foundational
model of anatomy in OWL: Experience and perspectives. Journal of Web Seman-
tics 4(3) (2006)

[Haarslev and Möller, 2001] Haarslev, V., Möller, R.: RACER System Description. In:
Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 701–705. Springer, Heidelberg (2001)

[Hitzler et al., 2009a] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F.,
Rudolph, S. (eds.): OWL 2 Web Ontology Language: Primer. W3C Recommen-
dation (2009), http://www.w3.org/TR/owl2-primer/

[Hitzler et al., 2009b] Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic
Web Technologies. Chapman & Hall/CRC (2009)

[Horridge et al., 2008] Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Jus-
tifications in OWL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338.
Springer, Heidelberg (2008)

[Horrocks and Sattler, 2007] Horrocks, I., Sattler, U.: A tableau decision procedure for
SHOIQ. Journal of Automated Reasoning 39(3), 249–276 (2007)

[Horrocks et al., 2006] Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible
SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006), pp. 57–67. AAAI Press, Menlo Park (2006)

[Kazakov and Motik, 2008] Kazakov, Y., Motik, B.: A resolution-based decision pro-
cedure for SHOIQ. Journal of Automated Reasoning 40(2-3), 89–116 (2008)

[Kazakov, 2008] Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In:
Brewka, G., Lang, J. (eds.) Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2008), pp. 274–284.
AAAI Press, Menlo Park (2008)

[Kazakov, 2009] Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontolo-
gies. In: Boutilier, C. (ed.) Proceedings of the 21st International Conference on
Artificial Intelligence (IJCAI 2009), pp. 2040–2045 (2009)

[Krötzsch et al., 2008] Krötzsch, M., Rudolph, S., Hitzler, P.: Description logic rules.
In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.) Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 80–84.
IOS Press, Amsterdam (2008)

[Lehmann, 2009] Lehmann, J.: Dl-learner: Learning concepts in description logics.
Journal of Machine Learning Research 10, 2639–2642 (2009)

[Lloyd and Topor, 1984] Lloyd, J.W., Topor, R.W.: Making prolog more expressive.
Journal of Logic Programming 1(3), 225–240 (1984)

[Lutz, 2008] Lutz, C.: The complexity of conjunctive query answering in expressive
description logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

[Manola and Miller, 2004] Manola, F., Miller, E. (eds.): Resource Description Frame-
work (RDF): Primer. W3C Recommendation (2004), http://www.w3.org/TR/

rdf-primer/

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

Foundations of Description Logics 135

[Minsky, 1974] Minsky, M.: A framework for representing knowledge. Artificial intel-
ligence memo, A.I. Laboratory. Massachusetts Institute of Technology, Cambridge
(1974)

[Motik and Sattler, 2006] Motik, B., Sattler, U.: A Comparison of Reasoning Tech-
niques for Querying Large Description Logic ABoxes. In: Hermann, M., Voronkov,
A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 227–241. Springer, Heidelberg
(2006)

[Motik et al., 2009a] Motik, B., Patel-Schneider, P.F., Grau, B.C. (eds.): OWL 2 Web
Ontology Language: Direct Semantics. W3C Recommendation (2009), http://

www.w3.org/TR/owl2-direct-semantics/

[Motik et al., 2009b] Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web
Ontology Language: Structural Specification and Functional-Style Syntax. W3C
Recommendation (2009), http://www.w3.org/TR/owl2-syntax/

[Motik et al., 2009c] Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for
description logics. Journal of Artificial Intelligence Research (JAIR) 36, 165–228
(2009)

[Noia et al., 2009] Di Noia, T., Di Sciascio, E., Donini, F.M.: A tableaux-based calculus
for abduction in expressive description logics: Preliminary results. In: Grau, B.C.,
Horrocks, I., Motik, B., Sattler, U. (eds.) Description Logics. CEUR Workshop
Proceedings, vol. 477 (2009), CEUR-WS.org

[OWL Working Group, 2009] W3C OWL Working Group. OWL 2 Web Ontology Lan-
guage: Document Overview. W3C Recommendation (2009) http://www.w3.org/

TR/owl2-overview/

[Papadimitriou, 1994] Papadimitriou, C.H.: Computational Complexity. Addison-
Wesley, Reading (1994)

[Patel-Schneider and Motik, 2009] Patel-Schneider, P.F., Motik, B. (eds.): OWL 2
Web Ontology Language: Mapping to RDF Graphs. W3C Recommendation (2009),
http://www.w3.org/TR/owl2-mapping-to-rdf/

[Pratt-Hartmann, 2005] Pratt-Hartmann, I.: Complexity of the two-variable fragment
with counting quantifiers. Journal of Logic, Language and Information 14, 369–395
(2005)

[Quillian, 1968] Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic
Information Processing, ch. 4, pp. 227–270. MIT Press, Cambridge (1968)

[Rudolph and Glimm, 2010] Rudolph, S., Glimm, B.: Nominals, inverses, counting,
and conjunctive queries or: Why infinity is your friend! Journal of Artificial In-
telligence Research (JAIR) 39, 429–481 (2010)

[Rudolph et al., 2008] Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are big-
ger than all mice. In: Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of the
21st International Workshop on Description Logics (DL 2008). CEUR Workshop
Proceedings, vol. 353 (2008), CEUR-WS.org

[Rudolph et al., 2008b] Rudolph, S., Krötzsch, M., Hitzler, P.: Terminological reason-
ing in SHIQ with ordered binary decision diagrams. In: Pro- ceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 529–534. AAAI Press,
Menlo Park (2008)

[Rudolph, 2004] Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E.,
Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–
212. Springer, Heidelberg (2004)

[Russell and Norvig, 2003] Russell, S., Norvig, P.: Artificial Intelligence: A Modern
Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/
CEUR-WS.org
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-mapping-to-rdf/
CEUR-WS.org

136 S. Rudolph

[Schild, 1991] Schild, K.: A correspondence theory for terminological logics: Prelimi-
nary report. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 466–471.
Morgan Kaufmann, San Francisco (1991)

[Schmidt-Schauß and Smolka, 1991] Schmidt-Schauß, M., Smolka, G.: Attributive con-
cept descriptions with complements. Journal of Artificial Intelligence 48, 1–26
(1991)

[Schöning, 2008] Schöning, U.: Logic for Computer Scientists. Birkhäuser, Basel (2008)
[Shearer and Horrocks, 2009] Shearer, R., Horrocks, I.: Exploiting Partial Information

in Taxonomy Construction. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 569–584. Springer, Heidelberg (2009)

[Sidhu et al., 2005] Sidhu, A., Dillon, T., Chang, E., Sidhu, B.S.: Protein ontology de-
velopment using OWL. In: Proceedings of the 1st OWL Experiences and Directions
Workshop (OWLED 2005). CEUR Workshop Proceedings, vol. 188 (2005), http://
ceur-ws.org/

[Simancik et al., 2011] Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based
reasoning beyond horn ontologies. In: Walsh, T. (ed.) Proceedings of the 22nd
International Conference on Artificial Intelligence, IJCAI 2011 (2011)

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet:
A practical OWL-DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

[Sowa, 1984] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, Reading (1984)

[Staab and Studer, 2009] Staab, S., Studer, R. (eds.): Handbook on Ontologies, 2nd
edn. International Handbooks on Information Systems. Springer, Heidelberg (2009)

[Stuckenschmidt et al., 2009] Stuckenschmidt, H., Parent, C., Spaccapietra, S.
(eds.):Modular Ontologies: Concepts, Theories and Techniques for Knowledge Mod-
ularization. LNCS, vol. 5445. Springer, Heidelberg (2009)

[Tsarkov and Horrocks, 2006] Tsarkov, D., Horrocks, I.: FaCT++ Description Logic
Reasoner: System Description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)

[van Harmelen et al., 2008] van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of
Knowledge Representation. Foundations of Artificial Intelligence. Elsevier, Ams-
terdam (2008)

[Wolstencroft et al., 2005] Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sattler,
U., Turi, D., Stevens, R.: A little semantic web goes a long way in biology. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 786–800. Springer, Heidelberg (2005)

http://ceur-ws.org/
http://ceur-ws.org/

Using SPARQL with RDFS and OWL Entailment

Birte Glimm

The University of Oxford, Department of Computer Science, UK

Abstract. This chapter accompanies the lecture on SPARQL with entailment
regimes at the 7th Reasoning Web Summer School in Galway, Ireland, 2011.
SPARQL is a query language and protocol for data specified in the Resource De-
scription Format (RDF). The basic evaluation mechanism for SPARQL queries
is based on subgraph matching. The query criteria are given in the form of RDF
triples possibly with variables in place of the subject, object, or predicate of a
triple, called basic graph patterns. Each instantiation of the variables that yields
a subgraph of the queried RDF graph constitutes a solution. The query language
further contains capabilities for querying for optional basic graph patterns, al-
ternative graph patterns etc. We first introduce the main features of SPARQL as
a query language. In order to define the semantics of a query, we show how a
query can be translated to an abstract query, which can then be evaluated ac-
cording to SPARQL’s query evaluation mechanism. Apart from the features of
SPARQL 1.0, we also briefly introduce the new features of SPARQL 1.1, which
is currently being developed by the Data Access Working Group of the World
Wide Web Consortium.

In the second part of these notes, we introduce SPARQL’s extension point for
basic graph pattern matching. We illustrate how this extension point can be used
to define a semantics for basic graph pattern evaluation based on more elaborate
semantics such as RDF Schema (RDFS) entailment or OWL entailment. This al-
lows for solutions to a query that implicitly follow from an RDF graph, but which
are not necessarily explicitly present. We illustrate what constitutes an extension
point and how problems that arise from using a semantic entailment relation can
be addressed. We first introduce SPARQL in combination with the RDFS entail-
ment relation and then move on to the more expressive Web Ontology Language
OWL. We cover OWL’s Direct Semantics, which is based on Description Logics,
and the RDF-Based Semantics, which is an extension of the RDFS semantics.
For the RDF-Based Semantics we mainly focus on the OWL 2 RL profile, which
allows for an efficient implementation using rule engines.

We assume that readers have a basic knowledge of RDF and Turtle, which we
use in examples. For the OWL parts, we assume some background in OWL or
Description Logics (see lecture notes Foundations of Description Logics). The
examples for the OWL part are given in Turtle, OWL’s functional-style syntax
and Description Logics syntax. Although the inferences that are relevant for the
example queries are explained, a basic idea about OWL’s modeling constructs
and their semantics are certainly helpful.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 137–201, 2011.
© Springer-Verlag Berlin Heidelberg 2011

138 B. Glimm

1 Introduction

Query answering is important in the context of the Semantic Web, since it provides a
mechanism via which users and applications can interact with ontologies and data. Sev-
eral query languages have been designed for this purpose, including RDQL, SeRQL
and, most recently, SPARQL. We consider the SPARQL [26] query language (pro-
nounce sparkle) here, which was standardized in 2008 by the World Wide Web Con-
sortium (W3C) and which is now supported by most RDF triple stores. Currently, the
next SPARQL standard is being developed by W3C, named SPARQL 1.1 [13]. Apart
from being a query language, the W3C standard also defines a protocol for communi-
cating queries between client and server [11] and a results format for representing query
results in XML [5].

The main mechanism for computing query results in SPARQL is subgraph matching:
RDF triples in both the queried RDF data and the query pattern are interpreted as nodes
and edges of directed graphs, and the resulting query graph is matched to the data graph
using variables as wild cards.

In this section, we give some simple examples of SPARQL queries and the query
evaluation process. We further introduce the basic ideas behind entailment regimes. In
Section 2, we introduce the general features of SPARQL in more detail and explain
more formally how a SPARQL query is evaluated. We then introduce SPARQL en-
tailment regimes and explain the design rationals behind the RDFS entailment regime
in Section 3. Next, we clarify the relationship between OWL’s structural specification
and RDF graphs in and introduce the OWL Direct Semantics Entailment Regime in
Section 4. Finally, we give some exercises and pointers to additional literature for fur-
ther reading.

1.1 SPARQL Query Examples

We start with a simple example that illustrates SPARQL’s standard query evaluation
mechanism, which is based on sub-graph matching. We use Turtle [4] to write down
RDF data throughout this chapter and we use the RDF triples shown in Table 1 through-
out this and the next section.

Example 1. We consider the following SPARQL query over that data from Table 1:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name?mbox
WHERE { ?x foaf:name ?name . ?x foaf:mbox ?mbox }

For the query, we start by declaring a prefix that allows for abbreviating otherwise long IRIs
in the query body. In the remainder we omit this prefix declaration, but assume that the foaf
prefix is declared as above. The main part of the query starts with a select clause that specifies
which variables should be returned with their bindings as part of the result. The where clause
specifies the conditions that answers have to satisfy. Note that the where clause is still written
as a set of triples as in the data above, but the subject and the object are now variables. In order
to evaluate such a basic graph pattern (BGP), we substitute the variables with terms from the
data and if the substitution yields a subgraph of the queried graph, the substituted values are
called a solution. The BGP from the above query yields the solutions:

Using SPARQL with RDFS and OWL Entailment 139

Table 1. Example data used in Section 1 and 2

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

_:a foaf:name "Birte Glimm".
_:a foaf:mbox "b.glimm@googlemail.com".
_:a foaf:icqChatID "b.glimm".
_:a foaf:aimChatID "b.glimm".

_:b foaf:name "Sebastian Rudolph".
_:b foaf:mbox <mailto:rudolph@kit.edu>.

_:c foaf:name "Pascal Hitzler".
_:c foaf:aimChatID "phi".

foaf:icqChatID rdfs:subPropertyOf foaf:nick.
foaf:name rdfs:domain foaf:Person.

?x ?name ?mbox
_:a "Birte Glimm" "b.glimm@googlemail.com"
_:b "Sebastian Rudolph" <mailto:rudolph@kit.edu>

Since the select clause only specifies ?name and ?mbox as output variables, a further projection
step is required to evaluate the complete query, which only leaves the values for ?name and
?mbox in the query solutions.

1.2 RDF Datasets

Some might be surprised by the absence of a from clause in the query from Exam-
ple 1, which specifies which data is to be queried. This is because SPARQL queries
are executed against an RDF dataset, which represents a collection of graphs, and each
SPARQL query engine has a default dataset that is normally used. An RDF dataset
comprises one graph, called the default graph, which does not have a name, and zero or
more named graphs, where each named graph is identified by an IRI. Unless we change
the so called active graph for the BGP evaluation with the GRAPH keyword to one of
the named graphs, the query is executed against the default graph. In Example 1 the ac-
tive graph is the default graph, which we have implicitly assumed to contain the given
set of triples. Alternatively, a SPARQL query may specify a custom dataset that is to be
used for matching by using the FROM and FROM NAMED keyword. In this case, the
dataset used for the query consists of a default graph, which is obtained by merging all
graphs referred to in a from clause, and a set of (IRI, graph) pairs, one from each from
named clause.

Example 2. For an example with custom datasets, let us assume that the data from Table 1
is available under the IRI <http://example.org/foaf/myFoaf>. The following query creates a
custom dataset with an empty default graph (no FROM clause) and one named graph.

140 B. Glimm

SELECT ?name ?mbox
FROM NAMED <http://example.org/foaf/myFoaf>
WHERE { GRAPH <http://example.org/foaf/myFoaf>

{ ?x foaf:name ?name. ?x foaf:mbox ?mbox }
}

Since we used the GRAPH keyword, the active graph for the BGP evaluation is the given
named graph. Alternatively, we could use a variable instead of the IRI for the GRAPH keyword,
which would evaluate the BGP once over each named graph, binding the graph variable to the
corresponding IRI of the named graph. The query answer is the same as for Example 1.

1.3 Blank Nodes in Queries and Query Results

Finally, we want to point out that in our intermediate results for the query from Ex-
ample 1 we use exactly the same blank node names as in the data from Table 1. This
does not have to be the case. Blank nodes just denote the existence of something and we
cannot rely on a label being used consistently, it can change when a graph is reloaded or
during a merge operation. Furthermore, the query is in fact evaluated against the scop-
ing graph, which is equivalent to the active graph, but allows for renaming of blank
nodes. Thus, evaluating the BGP could equally result in the solutions where _:a is re-
named into _:x and _:b is consistently renamed into _:y. Note, however, that we cannot
rename _:a and _:b into the same blank node, nor can we rename the first occurrence
of _:b different from the second occurrence.

Since blank node merely denote the existence of something, we can also not under-
stand a blank node in the query as referring to an element with exactly that blank node
label in the queried graph. Blank nodes in a BGP can rather be understood as variables,
which are immediately projected out after BGP matching, i.e., a blank node cannot oc-
cur in the SELECT clause. Since in Example 1 we are not interested in the concrete
value that ?x is mapped to, we could equally replace the query pattern with

{ _:x foaf:name ?name . _:x foaf:mbox ?mbox }
which exactly the same results.

1.4 SPARQL Entailment Regimes

Various W3C standards, including RDF and OWL, provide semantic interpretations
for RDF graphs that allow additional RDF statements to be inferred from explicitly
given assertions. The entailment regimes in SPARQL 1.1 [12] define how basic graph
pattern matching can be defined using semantic entailment relations instead subgraph
matching.

Example 3. We again use the data from Table 1 to illustrate the use of inference with the query:

SELECT ?name ?nick
WHERE { ?x foaf:name ?name . ?x foaf:nick ?nick }

Using SPARQL with RDFS and OWL Entailment 141

Using subgraph matching, we do not get an answer. The triple _:a foaf:nick "b.glimm" is, how-
ever, entailed by the given triples under RDFS semantics since any subject related with the
property foaf:icqChatID is necessarily related to that object also with the property foaf:nick in
any RDFS-interpretation that satisfies the data. Under the RDFS entailment regime we expect,
therefore, to get "Birte Glimm" as binding for ?name and "b.glimm" as binding for ?nick in the
solution.

The entailment regimes developed by the W3C specify exactly what answers we
get for several common entailment relations such as RDFS entailment or OWL Direct
Semantics entailment. Aspects that have to be addressed include:

– How are the infinitely many axiomatic triples under the RDF(S) semantics handled?
These are entailed even by an empty graph and infinite answers, at least due to such
axiomatic triples, are rarely desirable.

– How are entailed triples handled that just differ in blank node labels?
– How are inconsistent graphs handled?
– What happens in case of errors?

For OWL’s Direct Semantics we further have to address the issue that the semantics is
not defined in terms of triples, but in terms of structural objects, which correspond to
Description Logic constructs.

1.5 SPARQL as a Protocol

The SPARQL Protocol for RDF defines how a SPARQL query can be conveyed from
a query client to a query processor. The protocol is firstly described in an abstract in-
terface independent of any concrete realization, implementation, or binding to another
protocol; but a HTTP and SOAP binding of the interface is also provided. We do not
further explain the protocol and instead focus on the semantics of SPARQL queries ei-
ther with subgraph matching (aka simple entailment) or with more elaborate entailment
regimes.

2 SPARQL Basics

In the previous examples, we have already seen some basic SPARQL queries. We now
make it more precise what parts belong to a query and which choices we have in select-
ing the data that is returned as the query answer.

2.1 Graph Patterns

The basic selection criteria are specified in the WHERE clause, but before we describe
this in more detail, we first recall some basic notions from RDF.

Definition 1. We write I for the set of all International Resource Identifiers (IRIs), L for
the set of all RDF literals, and B for the set of all blank nodes. The set of RDF terms,
denoted T, is I ∪ L ∪ B.

142 B. Glimm

An RDF graph is a set of RDF triples of the form (subject, predicate, object) ∈
(I ∪ B) × I × T. We normally omit “RDF” in our terminology if no confusion is likely,
and we use Turtle syntax [4] for all examples. The vocabulary Voc(G) of a graph G is
the set of all terms that occur in G.

Queries are built using a countably infinite set V of query variables disjoint from T.
A variable v ∈ V is prefixed by the variable identifier ? or $. The outer-most graph
pattern in a query is called the query pattern.

The variable identifier is not part of the variable name, e.g., $x and ?x denotes the same
variable even if both prefixes are used within one query. The variable name itself can
contain numbers, letters, and various other admissible symbols [26].

We generally abbreviate IRIs using prefixes rdf, rdfs, owl, xsd, and foaf to refer to
the RDF, RDFS, OWL, XML Schema Datatypes, and FOAF namespaces, respectively.
We further use the prefix ex for an imaginary example namespace. Prefix declarations
for these namespaces are generally omitted in example data and queries.

The simplest form of a WHERE clause consists of a basic graph pattern (BGP), but
we can also construct more complex graph patterns by combining smaller patterns in
various ways that are described in detail within this section.

Basic Graph Patterns. As we have seen in the introductory section, basic graph pat-
terns are the basic building blocks for building a SPARQL query and we can define
these formally as follows:

Definition 2. A triple pattern is member of the set (T ∪ V) × (I ∪ V) × (T ∪ V), and a
basic graph pattern (BGP) is a set of triple patterns.

According to the above definition, variables can, thus, occur in place of a subject, pred-
icate, or an object. It is also worth pointing out, that the subject of a triple pattern can
be a literal although this is not allowed in RDF. This is meant to support (possible fu-
ture) extensions of RDF. At the moment queries with literals in the subject position can
simply not have an answer.

So far we have not seen the effect of blank nodes in BGPs. Since blank nodes do
not really refer to a particular resource in the graph, but only denote the existence of
something, we cannot expect that the blank node _:a in a BGP is mapped to exactly
the blank node _:a in the data as foaf:name in the query is mapped to foaf:name in the
queried graph. Instead, blank nodes act similar to variables with the difference that they
cannot be selected in the SELECT clause.

Example 4. Since we are not interested in the mappings for ?x in Example 1, we could achieve
the same result as with that query pattern:

{ _:a foaf:name ?name . _:a foaf:mbox ?mbox }
Note that we have deliberately used _:a, which is a blank node label that occurs in the data. The
blank node _:a in the BGP acts, however, as a variable and can be substituted any of the blank
nodes from the data. Thus, we get the same result with the above query pattern as in Example 1.

Using SPARQL with RDFS and OWL Entailment 143

As we have seen in Section 1, a WHERE clause that consists of a BGP requires that
the set of triple patterns that make up the BGP must all match. In the following, we
introduce more complex patters:

– Group Graph Patterns, where a set of graph patterns must all match,
– Optional Graph Patterns, where additional patterns may extend the solution,
– Alternative Graph Patterns, where two or more possible patterns are tried, and
– Patterns on Named Graphs, where patterns are matched against named graphs.

Group Graph Patterns. Group graph patterns combine patterns conjunctively, sim-
ilarly to BGPs that combine triple patterns conjunctively. In order to create a group,
SPARQL uses curly braces. Grouping by itself is not very useful unless if we only work
with basic graph patterns, but it becomes useful when we consider further constructors.
For example, we can combine two groups with the UNION keyword, which means that
solutions are obtained by matching one or the other group. Before we come to that, we
first introduce grouping in more detail.

Example 5. Using groups, patterns of the query from Example 1 can equivalently be written
as:

{ { ?x foaf:name ?name}
{ }
{ ?x foaf:mbox ?mbox } }

We now separated the BGP from Example 1 into three groups. The first and the third group now
consists of a single triple pattern. The second group is the empty group pattern, which matches
to any data. The inclusion or omission of the empty pattern has, therefore, no effect here. A
query with only the empty pattern returns always one solution in which any variable that is
selected is unbound. Omitting the braces around the two triple patterns as illustrated below:

{ ?x foaf:name ?name
{ }
?x foaf:mbox ?mbox }

leaves us with a group of three elements: a BGP of one triple pattern, an empty group, and again
a BGP of one triple pattern.

Alternative Patterns. Now that we can group patterns, we can combine groups with
other constructors, e.g., the UNION constructor for specifying alternative restrictions.
The UNION constructor is a binary operator, i.e., it is used as pattern UNION pattern.

Example 6. We assume that the default graph contains the data from Table 1 and that the
SPARQL query is:

SELECT ?mbox
WHERE { { ?x foaf:name ”BirteGlimm”. ?x foaf:mbox ?mbox }

UNION
{ ?x foaf:name ”S ebastianRudolph” . ?x foaf:mbox ?mbox }

}

144 B. Glimm

The result for this query consists of the two email addresses from the queried data. The first
email address matches the first BGP and the one for Sebastian Rudolph matches the second
BGP, and the results from both BGPs contribute to the final answer due to the UNION keyword.

It is worth noting that the UNION keyword is not denoting an exclusive or and that
SPARQL does not have a set semantics as, for example, SQL, so we can have duplicate
results in the answer.

Example 7. We illustrate the fact that UNION does not represent an exclusive or and that
SPARQL queries can have duplicate results by means of the following query again over the
data from Table 1:

SELECT ?name ?chatID
WHERE { ?x foaf:name ?name .

{ ?x foaf:icqChatID ?chatID } UNION
{ ?x foaf:aimChatID ?chatID } }

The results for the query are as follows:

?name ?chatID
"Birte Glimm" "bgl"
"Birte Glimm" "bgl"
"Pascal Hitzler" "phi"

where the first solution results from matching the first alternative and the latter two result from
matching the second alternative. The solutions for this query are in fact computed by building
the union (without duplicate elimination) from the results of evaluating two graph patters:

{ ?x foaf:name ?name. and { ?x foaf:name ?name.
{ ?x foaf:icqChatID ?chatID } } { ?x foaf:aimChatID ?chatID } }

In case we use multiple unions, e.g., of the form pattern UNION pattern UNION
pattern, this is equivalent to writing: { pattern UNION pattern } UNION pattern, i.e.,
the UNION operator is left-associative.

Optional Patterns. Apart from using the UNION keyword, we can declare some parts
as optional using the OPTIONAL keyword, i.e., we allow for only retrieving bindings
for these optional parts when these are available.

Example 8. We assume that the default graph contains the data from Table 1 and that the
SPARQL query is:

SELECT ?name ?mbox
WHERE { ?x foaf:name ?name

OPTIONAL { ?x foaf:mbox ?mbox } }
The result for this query now consists of one additional solution compared to the result for
Example 1 in which ?name is bound to "Pascal Hitzler" and ?mbox is unbound. We indicate
unbound values by simply leaving the entry in the results table empty:

Using SPARQL with RDFS and OWL Entailment 145

?name ?mbox
"Birte Glimm" "b.glimm@googlemail.com"
"Sebastian Rudolph" <mailto:rudolph@kit.edu>
"Pascal Hitzler"

The OPTIONAL operator is again binary, i.e., it is used pattern OPTIONAL pat-
tern. Although { OPTIONAL pattern } is syntactically valid, it just abbreviates { {}
OPTIONAL pattern }. Like UNION, OPTIONAL is left-associative, i.e., pattern OP-
TIONAL pattern OPTIONAL pattern is equivalent to: { pattern OPTIONAL pattern }
OPTIONAL pattern.

Mixing Optional and Alternative Patterns. We can, of course, also mix the use of
OPTIONAL and UNION. In this case, left-associativity still applies.

Example 9. The following query over the data from Table 1 gives three results given the left-
associativity of UNION and OPTIONAL:

SELECT ?name ?chatID ?mbox
WHERE { ?x foaf:name ?name .

{ ?x foaf:icqChatID ?chatID } UNION
{ ?x foaf:aimChatID ?chatID } OPTIONAL
{ ?x foaf:mbox ?mbox } }

?name ?chatID ?mbox
"Birte Glimm" "b.glimm" "b.glimm@googlemail.com"
"Birte Glimm" "b.glimm" "b.glimm@googlemail.com"
"Pascal Hitzler" "phi"

After matching the first triple pattern, the union is evaluated. Finally, the optional part is applied
to enrich the so far computed solutions. If we were to make the operator preference explicit, we
get the following equivalent pattern:

{ { ?x foaf:name ?name .
{ { ?x foaf:icqChatID ?chatID } UNION { ?x foaf:aimChatID ?chatID } }

}
OPTIONAL { ?x foaf:mbox ?mbox }

}

If we do not want the standard left-associate behavior of SPARQL, we have to use braces to
enforce a different grouping.

Filters. SPARQL filters restrict solutions to those for which the filter evaluates to true.
The FILTER keyword is followed by a Boolean filter function that evaluates to true or
false. Only if the filter function evaluates to true is the solution to be included in the
solution sequence.

146 B. Glimm

Example 10. In order to illustrate the use of a filters, we employ the isIRI filter function to filter
out results in which the foaf:mbox is not given as an IRI. We use again the data from Table 1
and the query:

SELECT ?name ?mbox
WHERE { ?x foaf:name ?name . ?x foaf:mbox ?mbox

FILTER isIRI(?mbox)
}

Since the isIRI function evaluates to false when ?mbox is bound to the plain literal
"b.glimm@googlemail.com", the match cannot be included in the solutions and we get just
one result:

?name ?mbox
"Sebastian Rudolph" <mailto:rudolph@kit.edu>

There are quite a range of filter functions, e.g., functions for comparing numerical
values or date, filtering strings according to a regular expression, test whether a binding
is a blank node, or whether a variable is bound at all. For more details, we refer to the
SPARQL Query specification [26].

Literals. The general syntax for literals in a SPARQL query is a string enclosed in
either double quotes (". . . ") or single quotes (’. . . ’) with either an optional language tag
(introduced by @) or an optional datatype IRI or prefixed name (introduced by ˆˆ).

For convenience, integers can be written without quotation marks and an explicit
datatype IRI. Such literals are interpreted as typed literals of datatype xsd:integer,
xsd:decimal if there is no ’.’ in the number; otherwise the number is interpreted as
xsd:decimal if no exponent is given and as xsd:double otherwise. Literals of type
xsd:boolean can also be written as true or false.

To facilitate writing literal values which themselves contain quotation marks or which
are long and contain newline characters, SPARQL provides an additional quoting con-
struct in which literals are enclosed in three single- or double-quotation marks.

Examples of literal syntax in SPARQL include:

– "chat" or 'chat'
– "chat"@fr with language tag "fr"
– "xyz"ˆˆ<http://example.org/ns/userDatatype>
– "abc"ˆˆappNS:appDataType
– '''The librarian said, "Perhaps you would enjoy 'War and Peace'." '''
– 1, which is the same as "1"ˆˆxsd:integer
– 1.3, which is the same as "1.3"ˆˆxsd:decimal
– 1.300, which is the same as "1.300"ˆˆxsd:decimal
– 1.0e6, which is the same as "1.0e6"ˆˆxsd:double
– true, which is the same as "true"ˆˆxsd:boolean
– false, which is the same as "false"ˆˆxsd:boolean

Using SPARQL with RDFS and OWL Entailment 147

2.2 Result Formats

SPARQL has four query forms. These query forms use the solutions from pattern
matching to form result sets or RDF graphs. The query forms are:

– SELECT returns all, or a subset of, the variables bound in a query pattern match.
– CONSTRUCT returns an RDF graph constructed by substituting variables in a set

of triple templates.
– ASK returns a boolean indicating whether a query pattern matches or not.
– DESCRIBE returns an RDF graph that describes the resources found.

The XML results format of SPARQL can be used to serialize the result set from a select
query or the boolean result of an ask query.

SELECT queries return variables and their bindings directly. The syntax SELECT *
is an abbreviation that selects all of the variables in a query that are in scope. The
definition of scope becomes relevant when making use of the SPARQL 1.1 sub-select
feature in which case only variables that are projected in the sub-query are visible in
the enclosing query.

CONSTRUCT queries return a single RDF graph. The result is an RDF graph formed
by taking the specified graph template and by instantiating it with each query solution
in the solution sequence. The triples obtained from each solution are combining into a
single RDF graph by set union.

If any such instantiation produces a triple containing an unbound variable or an il-
legal RDF construct, e.g., containing a literal in subject or predicate position, then that
triple is not included in the output RDF graph. The graph template can contain triples
with no variables (known as ground or explicit triples), and these also appear in the
output RDF graph returned by the CONSTRUCT query form.

A template can create an RDF graph containing blank nodes. The blank node labels
are scoped to the template for each solution. If the same label occurs twice in a template,
then there will be one blank node created for each query solution, but there will be
different blank nodes for triples generated by different query solutions.

Example 11. In order to see an example for construct and the effect of blank nodes in the
template, we se the following query over the data from Table 1:

CONSTRUCT { ?x rdf:type foaf:Person . ?x foaf:givenName _:x }
WHERE { ?x foaf:name ?name }

Evaluating the query pattern yields the following bindings:

?x ?name
_:a "Birte Glimm"
_:b "Sebastian Rudolph"
_:c "Pascal Hitzler"

Instantiating and building the set union of the template then results in:

148 B. Glimm

_:u rdf:type foaf:Person.
_:u foaf:givenName _:x1

_:v rdf:type foaf:Person.
_:v foaf:givenName _:x2

_:w rdf:type foaf:Person.
_:w foaf:givenName _:x3

Note that the variable binds to blank nodes in the data and there is not even a guarantee that in
the intermediate results the same blank node labels are used. In the constructed data a different
blank node label is created. Similarly, the blank node in the template just causes a different
blank node label to be created each time the template is instantiated.

ASK queries test whether or not a query pattern has a solution. No information is
returned about the possible query solutions, just whether or not a solution exists.

Example 12. The following queries illustrates the use of the ASK query form for the data from
Table 1:

ASK { ?x foaf:name "Birte Glimm" }
The result to this query is true or yes since there is a possible binding for ?x in the data.

DESCRIBE queries return a single RDF graph containing RDF data about resources.

Example 13. Possible examples for DESCRIBE are the following:

DESCRIBE foaf:Person or
DESCRIBE ?x WHERE { ?x foaf:name "Birte Glimm" }

The exact output is not prescribed by the SPARQL Query specification, i.e., results
depend on the SPARQL query processor and can vary between systems. The resulting
RDF graph can be complex and can, for example, mention other resources that are
somehow related to the given resource. For example, whether a property denotes an
inverse or an inverse functional property, or the name and mbox if the resource that is
to be described is from a FOAF file.

2.3 Solution Modifiers

Query patterns generate a multiset of solutions, each solution being a partial function
from variables to RDF terms. These solutions are then treated as a sequence (a solution
sequence), initially in no specific order; any sequence modifiers are then applied to
create another sequence. Finally, the sequence is used to generate one of the results of
a SPARQL query form. A solution sequence modifier is one of:

Using SPARQL with RDFS and OWL Entailment 149

– Order modifier to put the solutions in order
– Projection modifier to choose certain variables and eliminate others from the solu-

tions
– Distinct modifier to eliminate duplicate solutions
– Reduced modifier to permit elimination of some non-unique solutions
– Offset modifier to control where the solutions start from in the overall sequence of

solutions
– Limit modifier to restrict the number of solutions

ORDER BY is a keyword that establishes an order within a solution sequence. It is fol-
lowed by a sequence of order comparators, composed of an expression and an optional
order modifier (either ASC(·) or DESC(·)). Each ordering comparator is either ascend-
ing (indicated by the ASC(·) modifier or by no modifier) or descending (indicated by
the DESC(·) modifier).

Example 14. We illustrate the use ORDER BY with the following query over the data from
Table 1:

SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name

Since ascending is the default ordering, the query is equivalent to:

SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ASC(?name)

The results are now ordered according to the bindings for the variable ?name:

?name
"Birte Glimm"
"Pascal Hitzler"
"Sebastian Rudolph"

With the DESC(·) keyword we would get the exact opposite order.

The ascending order of two solutions with respect to an ordering comparator is es-
tablished by substituting the solution bindings into the expressions and comparing them
with the < operator, which is defined by the SPARQL Query specification for numer-
ics, simple literals, xsd:string, xsd:boolean, and xsd:dateTime. Descending order is the
reverse of the ascending order. Ordering never changes the cardinality of solutions.

Pairs of IRIs are ordered by comparing them as simple literals. SPARQL also fixes
an order between some kinds of RDF terms that would not otherwise be ordered (given
here from lowest in the order):

1. no value assigned to the variable or expression in this solution,
2. blank nodes,
3. IRIs,
4. RDF literals.

150 B. Glimm

A plain literal is lower than an RDF literal with type xsd:string of the same lexical form.
Note that SPARQL does not define a total ordering over all possible RDF terms; a few
examples of pairs of terms for which the relative order is undefined are:

– a simple literal and a literal with a language tag, e.g., "a" and "a"en_gb,
– two literals with language tags, e.g., "a"en_gb and "b"en_gb,
– a simple literal and an xsd:string, e.g., "a" and "a"ˆˆxsd:string,
– a simple literal and a literal with a supported data type, e.g., "a"and "1"ˆˆxsd:integer,
– two unsupported data types, e.g., "1"ˆˆmy:integer and "2"ˆˆmy:integer
– a supported data type and an unsupported data type, e.g., "1"ˆˆxsd:integer and
"2"ˆˆmy:integer.

The ORDER BY clause can also contain a LIMIT n and an OFFSET m condition to
limit the number of returned results to n and to start only with the mth result. Using
LIMIT and OFFSET to select different subsets of the query solutions will not be useful
unless the order is made predictable by using ORDER BY.

Using ORDER BY on a solution sequence for a CONSTRUCT or DESCRIBE query
has no direct effect because only SELECT returns a sequence of results. Used in com-
bination with LIMIT and OFFSET, ORDER BY can be used to return results gener-
ated from a different slice of the solution sequence. An ASK query does not include
ORDER BY, LIMIT or OFFSET.

Projection can be used to transform the solution sequence into one involving only a
subset of the variables. For each solution in the sequence, a new solution is formed
using a specified selection of the variables as specified in the SELECT clause.

We have used projection already any many previous examples, so do not give another
example here.

DISTINCT is a solution modifier that causes the elimination of duplicate solutions.
Specifically, each solution that binds the same variables to the same RDF terms as
another solution is eliminated from the solution set.

REDUCED is not as strong as DISTINCT because it permits duplicate elimination, but
does not enforce it. Thus, some duplicates might be eliminated, whereas other remain
in the solution sequence.

2.4 SPARQL Algebra Processing

So far we have mainly used examples to illustrate the effect of different SPARQL op-
erators. In this section, we precisely define how a the result for a SPARQL query is
computed, which requires transforming a query string into a SPARQL algebra object
that is then evaluated in order to compute the query result.

The first step towards obtaining an algebra object for a query string is parsing. In the
parsing process, we expanding abbreviations for IRIs and triple patterns, e.g., for triple
patterns that use Turtle’s comma or semicolon abbreviations.

Using SPARQL with RDFS and OWL Entailment 151

Table 2. SPARQL 1.0 grammar elements that make up a query pattern

GroupGraphPattern ::= ’{’ TriplesBlock?
((GraphPatternNotTriples | Filter) ’.’?
TriplesBlock?)*

’}’
GraphPatternNotTriples ::= OptionalGraphPattern | GroupOrUnionGraphPattern

| GraphGraphPattern
OptionalGraphPattern ::= ’OPTIONAL’ GroupGraphPattern
GraphGraphPattern ::= ’GRAPH’ VarOrIRIref GroupGraphPattern
GroupOrUnionGraphPattern ::= GroupGraphPattern (’UNION’ GroupGraphPattern)*
Filter ::= ’FILTER’ Constraint

Translating SPARQL Query Patterns to Algebra Expressions. Parsing of a SPARQL
query string involves expanding abbreviations for IRIs and triple patterns and the con-
struction of an abstract syntax tree that can then be transformed into a SPARQL algebra
expressions. The semantics of a query is then given based on the algebra expression.
After parsing, we have an abstract syntax tree that represents the expanded query string
and which is then converted into an algebra object.

Example 15. The algebra expression corresponding to the simple query

SELECT ?s WHERE { ?s :p ?o }

is Project(Bgp(?s <http://example.org#p> ?o), {?s}) if we assume that the empty prefix is de-
fined as <http://example.org#>. The algebra expression is evaluated inside out, i.e., we first
evaluate the pattern ?s <http://example.org#p> ?o given as parameter to the Bgp algebra ex-
pression; then a projection is performed so that only the values for the variable ?s remain.

We start by looking into the translation of a query pattern before we come to solu-
tion modifiers and other parts that are not related to the query pattern. We restrict our
explanation to SPARQL 1.0 elements; SPARQL 1.1 works quite similar, but due to the
much increased features the translation gets far more involved.

The translation is defined in terms of objects from the SPARQL grammar, i.e., one
has to understand which part of a query pattern has been produced by a certain gram-
mar object. The grammar defines a query pattern as a GroupGraphPattern and we
give the relevant grammar part in Table 2, where TriplesBlock denotes a basic graph
pattern, VarOrIRIref denotes a variable or an IRI, and Constraint represents a filter
expression.

We first define a function algbr that takes a query pattern and inductively translates
it into a SPARQL algebra expression. The algebra objects that we encounter in the
translation process are

– Bgp, for expressing that a BGP has to be evaluated, e.g., by performing subgraph
matching,

– Join, for joining results, e.g., from different groups,
– LeftJoin, for combining results with optional values,

152 B. Glimm

– Filter, for filtering results according to a filter expression,
– Union, for combining results from alternatives,
– Graph, for evaluating a query part on a named graph.

We further encounter the empty pattern, denoted Z, which is a basic graph pattern that
evaluates to an empty solution mapping, i.e., to a solution mapping that does not map
any variable to a value. Thus, the empty pattern can be joined with any other pattern
without any effect, i.e., Z is the identity for join.

Definition 3. We define the function algbr(P) as follows: If P is TriplesBlock, then

algbr(P) :=

⎧⎪⎪⎨⎪⎪⎩
Z if P is empty

Bgp(P) otherwise.

If P is GroupOrUnionGraphPatternwith elements e1, . . . , en, then

algbr(P) :=

⎧⎪⎪⎨⎪⎪⎩
algbr(e1) for n = 1 and

Union(algbr(e1), algbr(e2 UNION . . .UNION en)) otherwise.

If P is GraphGraphPattern of the form term GRAPH P′, then

algbr(P) :=Graph(term, algbr(P′)).

If P is GroupGraphPattern containing filter elements f1, . . . , fn and other elements
e1, . . . , em then

algbr(P) :=

⎧⎪⎪⎨⎪⎪⎩
Filter(f1&& . . .&&fn, translateGroup(e1, . . . , em)) if n > 0 and

translateGroup(e1, . . . , em) otherwise,

where translateGroup is described in Algorithm 1 and && is SPARQL’s conjunction
operator for filter expressions.

The resulting algebra objects can be simplified by exploiting the join identity prop-
erty of the empty pattern Z: we can replace Join(Z,A) by A and Join(A,Z) by A.

Example 16. For example, the simple query pattern
{ ?s ?p ?o } is translated to Join(Z, Bgp(?s ?p ?o))

since { ?s ?p ?o } is an instance of GroupGraphPattern (as every query pattern), which is
translated according to Algorithm 1 (line 10), where the triple pattern itself is translated as
TriplesBlock. According to the join identity simplification, the expression can be simplified
to Bgp(?s ?p ?o).

In order to see some examples of the translation, we go through several of the exam-
ple query patterns that we have encountered so far.

Using SPARQL with RDFS and OWL Entailment 153

Algorithm 1. Translation of non-filter elements in group graph patterns
Algorithm: translateGroup(e1, . . . , en)
Input: e1, . . . , en: the list of non-filter elements in a group pattern
Output: a SPARQL algebra expression A
1: A := Z {the empty pattern}
2: for i = 1, . . . , n do
3: if ei is of the form OPTIONAL pattern then
4: if algbr(pattern) is of the form Filter(F,A′) then
5: A := LeftJoin(A, A′,F)
6: else
7: A := LeftJoin(A, algbr(pattern), true)
8: end if
9: else

10: A := Join(A, algbr(ei))
11: end if
12: end for
13: return A

Example 1:
Query pattern: Join(Z,Bgp(?x foaf:name ?name. ?x foaf:mbox ?mbox)),
Simplification: Bgp(?x foaf:name ?name. ?x foaf:mbox ?mbox).

Example 2:
Query pattern: Join(Z,Graph(iri, Join(Z, Bgp(BGP1)))),
Simplification: Graph(iri,Bgp(BGP1)).
We use iri and BGP1 instead of the given graph IRI and BGP.

Example 3:
Query pattern: Join(Z,Bgp(?x foaf:name ?name. ?x foaf:nick ?nick)),
Simplification: Bgp(?x foaf:name ?name. ?x foaf:nick ?nick).
Note that the example was used to illustrate the effects of entailment regimes, but this does
not influence the conversion to algebra objects. The only effect is that the Bgp(·) algebra
objects are evaluated differently.

Example 5:
Query pattern: Join(Join(Join(Z, Bgp(TP1)),Z),Bgp(TP2)),
Simplification: Join(Bgp(?x foaf:name ?name),Bgp(?x foaf:mbox ?mbox)).
We abbreviate the two triples patterns with TP1 and TP2 , respectively. Although the query
from Example 5 yields the same results as the query from Example 1 on any data, its
algebra version is different due to the use of groups. We first used Algorithm 1 on the
three elements of the query pattern, which is a group graph pattern. Each element itself is
then translated as a GroupOrUnionGraphPattern using the case for single elements. A
query optimizer might further modify this algebra object so that it becomes the same as the
simplified version of the algebra expression for Example 1.

Example 6:
Query pattern: Join(Z,Union(Bgp(BGP1),Bgp(BGP2))),
Simplification: Union(Bgp(BGP1),Bgp(BGP2)).
We abbreviate the two BGPs from the union pattern with BGP1 and BGP2 , respectively.

Example 7:
Query pattern: Join(Join(Z, Bgp(tp1)),Union(Bgp(tp2),Bgp(tp3))),

154 B. Glimm

Simplification: Join(Bgp(tp1),Union(Bgp(tp2),Bgp(tp3))).
We abbreviate the three triple patterns from the example with tp1 to tp3, respectively.

Example 8:
Query pattern: LeftJoin(Join(Z, Bgp(tp1)),Bgp(tp2), true),
Simplification: LeftJoin(Bgp(tp1),Bgp(tp2), true).
The triple patterns from the example are abbreviated with tp1 and tp2, respectively.

Example 9:
Query pattern:
LeftJoin(Join(Join(Z, Bgp(tp1)),Union(Bgp(tp2),Bgp(tp3))),Bgp(tp4), true),
Simplification:
LeftJoin(Join(Bgp(tp1),Union(Bgp(tp2),Bgp(tp3))),Bgp(tp4), true).
We again abbreviate the triple patterns from the example with tp1 to tp4, respectively.

Example 10:
Query pattern: Filter(isIRI(?mbox), Join(Z, Bgp(bgp1))),
Simplification: Filter(isIRI(?mbox),Bgp(bgp1)).
For the translation of the query pattern we use the first case of translating group graph
patterns. We abbreviate the basic graph pattern from the example with bgp1 .

We omit the examples for NOT EXISTS, EXISTS, and MINUS since these are
SPARQL 1.1 features, for which we do not go into details in the algebra translation.

Evaluating Algebra Expressions for Query Patterns. In order to define the evalua-
tion of an algebra object for a query pattern, we first define the most basic operation,
i.e., the evaluation of a basic graph pattern.

Definition 4. Evaluating a SPARQL graph pattern results in a solution sequence that
lists possible bindings of query variables to RDF terms in the active graph. Such bind-
ings are represented by partial functions μ from V to T, called solution mappings. For
a solution mapping μ – and more generally for any (partial) function – the set of ele-
ments on which μ is defined is the domain dom(μ) of μ, and the set ran(μ) � {μ(x) | x ∈
dom(μ)} is the range of μ. For a graph pattern GP, we use μ(GP) to denote the pattern
obtained by applying μ to all elements of GP in dom(μ).

This convention is extended in the obvious way to filter expressions, and to all functions
that are defined on variables or terms.

The order of solution sequences is relevant for later processing steps in SPARQL, but
not for obtaining the solutions for a graph pattern. Thus, we obtain a solution multiset
when evaluating a basic graph pattern, or, more generally, any SPARQL graph patterns.

Definition 5. A multiset over an underlying set S is a total function M : S → IN+ ∪ {ω}
where IN+ are the positive natural numbers, and ω > n for all n ∈ IN+. The value M(s)
is the multiplicity of s ∈ S , and ω denotes a countably infinite number of occurrences.

Infinitely many occurrences of individual solution mappings are indeed possible when
considering SPARQL entailment regimes, although a major concern when defining ex-
tensions to basic graph pattern matching is how to avoid sources of infinite solutions.

We often represent a multiset M with underlying set S by the set {(s,M(s)) | s ∈ S }.
Accordingly, we may write (s, n) ∈ M if M(s) = n. Also, we assume that M(s) denotes

Using SPARQL with RDFS and OWL Entailment 155

Table 3. Evaluation of algebraic operators for query patterns in SPARQL over a dataset D, where
the multiplicity functions M,M1, and M2 are assumed to be those for the multisets �GP�D,G,
�GP1�D,G, and �GP2�D,G, v is a variable, and iri is an IRI

�Union(GP1 ,GP2)�D,G �
{
(μ, n) | n = M1(μ) + M2(μ) > 0

}

�Join(GP1 ,GP2)�D,G �
{(
μ, n
) | n = ∑(μ1,μ2)∈J(μ)

(
M1(μ1) ∗ M2(μ2)

)
> 0
}

where

J(μ) �
{
(μ1, μ2) | μ1, μ2 compatible and μ = μ1 ∪ μ2

}

�Filter(F,GP)�D,G �
{
(μ, n) | M(μ) = n > 0 and �μ(F)� = true

}

�LeftJoin(GP1 ,GP2, F)�D,G � �Filter(F, Join(GP1 ,GP2))�D,G ∪{(
μ1,M1(μ1)

) | for all μ2 with M2(μ2) > 0 : μ1 and μ2 are

incompatible or �(μ1 ∪ μ2)(F)� = false
}

�Graph(iri,GP)�D,G �

⎧⎪⎪⎨⎪⎪⎩
�GP�D,Giri

if iri is an IRI with (iri,Giri) ∈ D

{̇}̇ otherwise
�Graph(v,GP)�D,G � �Union(Join(Graph(irin ,GP), {̇μ : v �→ irin}̇),

Union(Join(Graph(irin−1 ,GP), {̇μ : v �→ irin−1 }̇),
Union(. . . ,

Join(Graph(iri1 ,GP), {̇μ : v �→ iri1 }̇)))�D,G

for iri1, . . . , irin the IRIs of the named graphs in D

0 whenever s � S . In some cases, it is also convenient to use a set-like notation where
repeated elements are allowed, e.g. writing {̇a, b, b}̇ for the multiset M with underlying
set {a, b}, M(a) = 1, and M(b) = 2.

To define the solution multiset for a BGP under the simple semantics, we still need to
consider the effect of blank nodes. Intuitively, these act like variables that are projected
out of a query result, and thus they may lead to duplicate solution mappings. This is
accounted for using RDF instance mappings as follows:

Definition 6. An RDF instance mapping is a partial function σ : B → T from blank
nodes to RDF terms. We extend σ to pattern graphs and filters as done for solution
mappings above. The solution multiset �BGP�D,G for a basic graph pattern BGP over
the dataset D with active graph G is the following multiset of solution mappings:

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for all 1 ≤ i ≤ n,
dom(σi) = B(BGP) and μ(σi(BGP)) is a subgraph of G}.

Note that the number n in the definition of �BGP�D,G is always finite.
The algebraic operators that are required for evaluating non-basic graph patterns cor-

respond to operations on multisets of solution mappings. This remains unchanged even
if we use an entailment regime different from SPARQL’s standard simple entailment. To
take infinite multiplicities into account, which can occur in some entailment regimes,
we assume ω + n = n + ω = ω for all n ≥ 0, ω ∗ n = n ∗ ω = ω for all n > 0 and
ω ∗ 0 = 0 ∗ ω = 0. We denote the truth value from evaluating a filter F by �F�.

156 B. Glimm

Definition 7. Two solution mappings μ1 and μ2 are compatible if μ1(v) = μ2(v) for all
v ∈ dom(μ1) ∩ dom(μ2). If this is the case, a solution mapping μ1 ∪ μ2 is defined by
setting (μ1 ∪ μ2)(v) � μ1(v) if v ∈ dom(μ1), and (μ1 ∪ μ2)(v) � μ2(v) otherwise.

The evaluation of a graph pattern over G, denoted � · �D,G, is defined as in Table 3,
where the multiplicity functions M / M1 / M2 are assumed to be those for the multisets
�GP�D,G / �GP1�D,G / �GP2�D,G.

Note that, for brevity, we join an algebra object with a multiset in the evaluation of
Graph(v,GP) with v a variable, which is strictly speaking not possible since both of the
joined elements should be algebra objects that are then evaluated in the join evaluation.

Translating and Evaluating SPARQL Queries. Apart from the query pattern itself,
the solution modifiers of a query are also translated into corresponding algebra objects.
The resulting algebra object together with a dataset for the query and a query form
defines a SPARQL abstract query.

Definition 8. Given a SPARQL query Q with query pattern P, we step by step construct
an algebra expression E as follows:

1. E := ToList(algbr(P)), where ToList turns a multiset into a sequence with the same
elements and cardinality. There is no implied ordering to the sequence; duplicates
need not be adjacent.

2. E := OrderBy(E, (c1, . . . , cn)) if the query string has an ORDER BY clause, where
c1, . . . , cn the order comparators in Q.

3. E := Project(E, vars) if the query form is SELECT, where vars is the set of vari-
ables mentioned in the SELECT clause or all named variables in the query if
SELECT * is used.1

4. E := Distinct(E) if the query form is SELECT and the query contains the DISTINCT
keyword.

5. E := Reduced(E) if the query form is SELECT and the query contains the
REDUCED keyword.

6. E := Slice(E, start, length) if the query contains OFFSET start or LIMIT length,
where start defaults to 0 and length defaults to (size(E) − start) with size(E) de-
noting the cardinality of E.

7. E := Construct(E, templ) if the query form is CONSTRUCT and templ is the
template of the query.

8. E := Describe(E,VarsRes) if the query form is DESCRIBE, where VarsRes is the
set of variables and resources mentioned in the DESCRIBE clause or all named
variables in the query if DESCRIBE * is used.

The algebra expression for Q, denoted algbr(Q), is E.
We define the RDF dataset for Q as follows: if Q contains a FROM or FROM NAMED

clause, then the RDF dataset D for Q is {G, (iri1,G1), . . . , (irin,Gn)} where the default

1 Note that for SPARQL 1.1, * only refers to variables that are in scope, e.g., if the query contains
a sub-query, then only variables that are selected in the sub-query are in scope for the enclosing
query.

Using SPARQL with RDFS and OWL Entailment 157

Table 4. Evaluation of algebraic operators for queries over a dataset D with default graph G

�ToList(E)�D,G � (μ1, . . . , μn) for {̇μ1, . . . , μn }̇ = �E�D,G

�OrderBy(E, (c1, . . . , cm))�D,G � (μ1, . . . , μn) such that (μ1, . . . , μn) satisfies (c1, . . . , cm)

and {̇μ1, . . . , μn }̇ = {̇μ | μ ∈ �E�D,G }̇
�Project(E, vars)�D,G � (μ′1, . . . , μ

′
n) with (μ1, . . . , μn) = �E�D,G, dom(μ′i) = vars ⊆ dom(μi),

and μ′i is compatible with μi for 1 ≤ i ≤ n

�Distinct(E)�D,G � (μ1, . . . , μm) with {̇μ1, . . . , μn }̇ = {̇μ | μ ∈ {μ | μ ∈ �E�D,G }̇
and (μ1, . . . , μm) preserves the order of �E�D,G

�Reduced(E)�D,G � (μ1, . . . , μm) with {̇μ1, . . . , μn }̇ ⊆ {̇μ | μ ∈ �E�D,G }̇,
{μ1, . . . , μm} = {μ | μ ∈ �E�D,G}
and (μ1, . . . , μm) preserves the order of �E�D,G

�Slice(E, start, length)�D,G � (μstart , . . . , μstart+length) for (μ1, . . . , μm) = �E�D,G

�Construct(E, templ)�D,G � {μi(templi) | {̇μ1, . . . , μn }̇ = �E�D,G, 1 ≤ i ≤ n, templi is graph

equivalent to templ, μi(templi) is valid RDF, and

B(templi) ∩⋃1≤ j≤n, j�i(B(templj) ∪ ran(mui)) = ∅}
�Describe(E, VarsRes)�D,G � {desc(μi(VarsRes)) | {̇μ1, . . . , μn }̇ = �E�D,G, 1 ≤ i ≤ n

where descr generates a system-dependent description

for the given resources

graph G is the RDF merge of the graphs referred to in the FROM clauses and each
pair (irii,Gi) results from a FROM NAMED clause with IRI irii where irii identifies a
resource that serializes the graph Gi; otherwise the dataset for Q is the dataset used by
the queried service.

The SPARQL abstract query for Q is a tuple (algbr(Q),D,F) where D is the RDF
dataset for Q, and F is the query form for Q.

We extend the evaluation of algebra expressions as defined in Table 4. To evaluate
(E,D,F), one first computes � E �D,G. If the query form is SELECT, CONSTRUCT, or
DESCRIBE, the query answer is � E �D,G, which is a solution sequence for SELECT
queries and a set of RDF triples otherwise. If the query form is ASK the query answer
is �(�E�D,G) > 0.

Note that in case of DESCRIBE queries, the concrete result is not normatively de-
fined and depends on the implementation.

Example 17. In order to see some examples of abstract queries, we go through several of the
examples again, in particular those with solution modifiers or query forms other than SELECT.

Example 1
Abstract Query: (Project(ToList(algbr(P)), {?name, ?mbox}), D, SELECT)
with P the query pattern from Example 1 and D the dataset of the SPARQL query processor.

Example 2
Abstract Query:

158 B. Glimm

(Project(ToList(algbr(P)), {?name, ?mbox}), {∅, (iri,Giri)}, SELECT)
with P the query pattern from Example 2, iri the IRI in the FROM NAMED clause, and Giri

the graph serialized by iri.
Example 11

Abstract Query: (Construct(ToList(algbr(P)), templ), D, CONSTRUCT)
with P the query pattern from Example :ex : construct,templ the template from the query,
and D the dataset of the SPARQL query processor.

Example 12
Abstract Query: (ToList(algbr(P)), D, ASK)
with P the query pattern from Example :ex : ask and D the dataset of the SPARQL query
processor.

Example 13
Abstract Query (a): (Describe(ToList(Z), {foaf:Person}), D, DESCRIBE)
Abstract Query (b): (Describe(ToList(algbr(P)), {?x}), D, DESCRIBE)
with P the query pattern from the second query in Example :ex : describe and D the dataset
of the SPARQL query processor.

Example 14
Abstract Query:
(Project(OrderBy(ToList(algbr(P)), (ASC(?name))), {?name}), D, SELECT)
with P the query pattern from Example :ex : order and D the dataset of the SPARQL query
processor.

2.5 SPARQL 1.1 Features

The W3C Data Access Working Group is currently in the process of specifying the
next version of SPARQL, which is named SPARQL 1.1. The new version adds several
features to the query language [13], which we briefly introduce in this section. We do not
provide an algebra translation for these features and only give examples of how these
features can be used. We further give a brief overview of the new parts in SPARQL 1.1
apart from the query language and the entailment regimes.

Aggregates. Aggregates allow for counting the number of answers, computing aver-
age, minimal, or maximal values from solutions by applying expressions ver groups of
solutions.

Example 18. One intuitive way of aggregates is counting, which we illustrate with the data
from Table 1 and the query:

SELECT (COUNT(?x) AS ?num)
WHERE { ?x foaf:name ?name }

We obtain one solution with binding 3 for ?num.

Example 19. In order to select variables to which no aggregate is applied, one has to group the
solutions accordingly. We illustrate this with the data from Table 5 and the query:

Using SPARQL with RDFS and OWL Entailment 159

Table 5. Triples used in the examples for the new features of SPARQL 1.1

:auth1 :writes :book1 .
:auth1 :writes :book2 .
:auth2 :writes :book3 .
:auth3 :writes :book4 .
:book1 :costs 9 .
:book2 :costs 5 .
:book3 :costs 11 .
:book4 :costs 2 .

SELECT ?auth (AVG(?price)AS?avgPrice)
WHERE { ?auth :writes ?book . ?book:costs ?price }
GROUP BY ?auth

Without grouping by author, we were not able to have ?auth in the SELECT clause. We obtain:

?auth ?avgPrice
:auth1 7
:auth2 11
:auth2 2

We can further extend the query with a HAVING clause to filter some of the aggregated values.
For example, adding

HAVING (AVG(?price) > 5)

results in the last solution being filtered out.

Subqueries. Subqueries provide a way to embed SPARQL queries within other queries,
normally to achieve results which cannot otherwise be achieved

Example 20. We use again the triples from Table 5. We use a subquery to answer the query
"Which author has a book that costs more than the most expensive book of :auth1?". For such
query, two queries have to be executed: the first query finds the most expensive book of :auth1
and the second finds those authors who have a book more expensive than that. Using subqueries
we can directly embed the first query into the second:

SELECT ?auth
WHERE { ?auth :writes ?book . ?book :costs ?price

{
SELECT (MAX(?price) AS ?max)
WHERE { :auth1 :writes ?book . ?book :costs ?price }

}
FILTER (?price > ?max)
}

Evaluating the inner query yields 9 as binding for ?max. Note that only ?max is projected and,
therefore, available to the outer query. The variable ?price from the inner query is not visible

160 B. Glimm

for the outer query (it is out of scope) and the variable ?price from the outer query unrelated to
it. The filter applies, as usual, to all elements in the group, which makes sure that the two triple
patterns and the subquery are evaluated and the results are joined before the filter is applied.

Negation comes in two styles, one is based on filtering out results that do not match a
given graph pattern using filers with the NOT EXISTS keyword, and the other way is
to directly remove solutions related to another pattern with MINUS.

Filtering of query solutions is done within a FILTER expression using NOT EXIST
and EXISTS.

Example 21. We illustrate the use of filtering combined with NOT EXISTS (EXISTS) using
the data from Table 1 and the query:

SELECT ?name
WHERE { ?x foaf:name ?name

FILTER NOT EXISTS { ?x foaf:mbox ?mbox }
}

Since only for ?x bound to "Pascal Hitzler" the NOT EXISTS filter evaluates to true, we get just
one solution:

?name
"Pascal Hitzler"

We can similarly test for the existence of a match for the pattern by using FILTER EXISTS
instead of FILTER NOT EXISTS, which would yield one solution with ?name once bound to
"Birte Glimm" and once to "Sebastian Rudolph".

A different form of negation is supported via the MINUS keyword, which takes the
form pattern MINUS pattern.

Example 22. We illustrate the use MINUS with the following query over the data from Table 1:

SELECT ?name ?mbox
WHERE { ?x foaf:name ?name . ?x foaf:mbox ?mbox

MINUS { ?x foaf:name "Birte Glimm" }
}

In this case, the left-hand side consists of the two triple patterns, which yield the two solutions:

?x ?name ?mbox
_:a "Birte Glimm" "b.glimm@googlemail.com"
_:b "Sebastian Rudolph" <mailto:rudolph@kit.edu>

The right-hand side of the MINUS operator yields one solution in which ?name and ?mbox are
unbound (since they do not occur in the pattern and are, therefore, not matched):

?x ?name ?mbox
_:a

Using SPARQL with RDFS and OWL Entailment 161

In order to compute the query result, we keep only solutions for the left-hand side pattern if they
are not “compatible” with the solutions for the right-hand side. Two mappings are compatible if
whenever they both map a variable, then they map it to the same value. We will refer to the two
solutions for the left-hand side pattern as l1 and l2, respectively, and to the solution for the right-
hand side pattern as r1. In our case, we have that l1 is compatible with r1 since the mappings
for ?x is the same and since ?name and ?mbox are unbound in r1, which does not contradict
the mapping for ?name and ?mbox in l1. Since l1 and r1 are compatible, l1 is removed from the
solutions. For l2 and r1, it is, however, clear that the mappings are not compatible since l2 maps
?x to _:b whereas r1 maps ?x to _:a. This means that l2 remains in the solutions for the whole
pattern, which gives the following overall result:

?name ?mbox
"Sebastian Rudolph" <mailto:rudolph@kit.edu>

SELECT Expressions can be used in the SELECT clause to combine variable bindings
already in the query solution, or defined earlier in the SELECT clause to produce a
binding in the query solution, e.g., SELECT ?net ((?net * 1.2) AS ?gross) will return
bindings for ?net and 120% of that value as binding for ?gross.

Property Paths allow for specifying a possible route through a graph between two
graph nodes through property path expressions that apply to the predicate of a triple.
A trivial case is a property path of length exactly 1, which is a triple pattern. Property
paths allow for more concise expression of some SPARQL basic graph patterns and
also add the ability to match arbitrary length paths. For example, the BGP

?x foaf:name "Birte Glimm" . ?x foaf:knows+/foaf:name ?name

The query starts from an element which is associated with the name Birte Glimm and
then follows a path of length one or more (+) along the property foaf:knows followed
by (/) a path of length one along the foaf:name property. Thus, the query finds the
names of all people that Birte knows directly or indirectly. The / operator can always be
eliminated, e.g., by rewriting the second triple into ?x foaf:knows + ?y . ?y foaf:name
?name. The arbitrary length paths, however, cannot be eliminated in this way and a
SPARQL query processor has to implement them natively in order to fully support
property paths.

Assignments can be used in addition to SELECT expressions in order to add bindings.
Whereas SELECT expressions are limited to the SELECT clause, on can use the BIND
keyword followed by an expression to add bindings already in the WHERE clause.
The BINDINGS keyword can further be used to provide a solution sequence that is
to be joined with the query results. It can used by an application to provide specific
requirements on query results and also by SPARQL query engine implementations that
provide federated query through the SERVICE keyword to send a more constrained
query to a remote query service.

162 B. Glimm

CONSTRUCT Short Forms allow for abbreviating CONSTRUCT queries provided
the template and the pattern are the same and the pattern is just a basic graph pattern
(i.e., no FILTERs and no complex graph patterns are allowed in the short form). The
keyword WHERE is required in the short form.

Furthermore, SPARQL 1.1 provides an expanded set of functions and operators.

SPARQL 1.1 Update [28] provides a way of modifying a graph store by inserting or
deleting triples from graphs. It provides the following facilities:

– Insert new triples into an RDF graph.
– Delete triples from an RDF graph.
– Perform a group of update operations as a single action.
– Create a new RDF graph in a graph store.
– Delete an RDF graph from a graph store.

The behavior of update queries in a system that uses entailment regimes is left open
in SPARQL 1.1. A straightforward way of implementing updates under entailment
regimes would be to interpret such queries under simple entailment semantics.

The SPARQL protocol has also been extended to allow for an exchange of update
requests between a client and a SPARQL endpoint [22].

Service Descriptions [30] have been added SPARQL 1.1 as a method for discovering
and vocabulary for describing SPARQL services made available via the SPARQL Pro-
tocol for RDF [11]. Such a description is intended to provide a mechanism by which a
client or end user can discover information about the SPARQL implementation/service
such as supported extension functions and details about the available dataset or the used
entailment regime.

Federation Extensions are currently under development as part of SPARQL 1.1 to ex-
press queries across distributed data sources. At the time of writing a first public work-
ing draft is available at http://www.w3.org/TR/sparql11-federated-query/.

JSON Result Format is so far a working group note available at http://www.w3.
org/TR/rdf-sparql-json-res/. The working group intends to bring this to recom-
mendation status, but at the time of writing no public working draft is available.

3 SPARQL Entailment Regimes

In the previous section, we have defined the syntax of SPARQL queries and how such
queries are evaluated with subgraph matching as means of evaluating basic graph pat-
terns. This form of basic graph pattern evaluation is also called simple entailment since
it can equally be defined in terms of the simple entailment relation between RDF graphs.
In order to use more elaborate entailment relations, which also allow for retrieving so-
lutions that implicitly follow from the queried graph, we now look at so-called entail-
ment regimes. An entailment regime specifies how an entailment relation such as RDF

http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/rdf-sparql-json-res/
http://www.w3.org/TR/rdf-sparql-json-res/

Using SPARQL with RDFS and OWL Entailment 163

Schema entailment can be used to redefine the evaluation of basic graph patterns from
a SPARQL query making use of SPARQL’s extension point for basic graph pattern
matching. In order to satisfy the conditions that SPARQL places on extensions to basic
graph pattern matching, an entailment regimes specifies conditions that limit the num-
ber of entailments that contribute solutions for a basic graph pattern. For example, only
a finite number of the infinitely many axiomatic triples can contribute solutions under
RDF Schema (RDFS) entailment. In this section, we introduce the RDFS entailment
regime and explain the design rationale behind the regime. In Section 4, we then show
how the OWL 2 Direct Semantics entailment relation can be used.

Each entailment regime is characterized by a set of properties:

Name: A name for the entailment regime, usually the same as the
entailment relation used to define the evaluation of a basic
graph pattern.

IRI: The IRI for the regime. This IRI can be used in the service
description for a SPARQL endpoint, which is an RDF graph
that describes the functionality and the features that it provides.

Legal Graphs: Describes which graphs are legal for the regime.
Legal Queries: Describes which queries are legal for the regime.
Illegal Handling: Describes what happens in case of an illegal graph or query.
Entailment: Specifies which entailment relation is used in the evaluation of

basic graph patterns.
Inconsistency: Defines what happens if the queried graph is inconsistent under

the used semantics.
Query Answers: Defines how a basic graph pattern is evaluated, i.e., what the

solutions are for a given graph and basic graph pattern of a
query.

Before we start describing a concrete entailment regime, we first analyze what condi-
tions an entailment regime has to satisfy. These conditions also motivate the choice of
the above properties that are defined for each entailment regime.

3.1 Conditions on Extensions of Basic Graph Pattern Matching

In order to extend SPARQL for an entailment relation E such as RDFS or OWL Di-
rect Semantics entailment, it suffices to modify the evaluation of BGPs accordingly,
while the remaining algebra operations can still be evaluated as in Definition 7. When
considering E-entailment, we thus define solution multisets �BGP�E

D,G.
The SPARQL Query 1.0 specification [26] already envisages the extension of the

BGP matching mechanism, and provides a set of conditions for such extensions that we
recall in Table 6. These conditions can be hard to interpret since their terminology is not
aligned well with the remaining specification. In the following, we discuss our reading
of these conditions, leading to a revised clarified version presented in Table 7.2

Condition (1) forces an entailment regime to specify a scoping graph based on which
query answers are computed instead of using the active graph directly. Since an en-
tailment regime’s definition of BGP matching is free to refer to such derived graph

2 The SPARQL 1.1 Query working draft has been updated to contain the revised conditions.

164 B. Glimm

Table 6. Conditions for extending BGP matching to E-entailment (quoted from [26])

1. The scoping graph SG, corresponding to any consistent active graph AG, is uniquely speci-
fied and is E-equivalent to AG.

2. For any basic graph pattern BGP and pattern solution mapping P, P(BGP) is well-formed
for E.

3. For any scoping graph SG and answer set {P1, . . . ,Pn} for a basic graph pattern BGP, and
where BGP1, . . . ,BGPn is a set of basic graph patterns all equivalent to BGP, none of which
share any blank nodes with any other or with SG

SG |=E (SG ∪ P1(BGP1) ∪ . . . ∪ Pn(BGPn)).
4. Each SPARQL extension must provide conditions on answer sets which guarantee that every

BGP and AG has a finite set of answers which is unique up to RDF graph equivalence.

Table 7. Clarified conditions for extending BGP matching to E-entailment

An entailment regime E must provide conditions on basic graph pattern evaluation such that
for any basic graph pattern BGP, any RDF graph G, and any evaluation �·�E

G that satisfies the
conditions, the multiset of graphs

{
(μ(BGP), n) | (μ, n) ∈ �BGP�E

G

}
is uniquely determined up to

RDF graph equivalence. An entailment regime must further satisfy the following conditions:

1. For any consistent active graph AG, the entailment regime E uniquely specifies a scoping
graph SG that is E-equivalent to AG.

2. A set of well-formed graphs for E is specified such that, for any basic graph pattern BGP,
scoping graph SG, and solution mapping μ in the underlying set of �BGP�E

SG, the graph
μ(BGP) is well-formed for E.

3. For any basic graph pattern BGP, and scoping graph SG, if {̇μ1, . . . , μn }̇ = �BGP�E
SG and

BGP1, . . . ,BGPn are basic graph patterns all equivalent to BGP but not sharing any blank
nodes with each other or with SG, then

SG |=E SG ∪
⋃

1≤i≤n

μn(BGPn).

4. Entailment regimes should provide conditions to prevent trivial infinite solution multisets.

structures anyway, the additional use of a scoping graph does not increase the freedom
of potential extensions. We assume, therefore, that the scoping graph is the active graph
in the remainder. If the active graph is E-inconsistent, entailment regimes specify the
intended behavior directly, e.g., by requiring that an error is reported.

Condition (2) refers to a “pattern solution mapping” though what is probably meant
is a pattern instance mapping P, defined in [26] as the combination of an RDF instance
mapping σ and a solution mapping μ where P(x) = μ(σ(x)). We assume, however, that
(2) is actually meant to refer to all solution mappings in �BGP�E

D,G. Indeed, even for
simple entailment where well-formedness only requires P(BGP) to be an RDF graph,
condition (2) would be violated when using all pattern instance mappings. To see this,
consider a basic graph pattern

{ _:a :b :c }.

Clearly, there is a pattern instance mapping P with P(_:a) = "1"ˆˆxsd:int, but P(BGP) =
{"1"ˆˆxsd:int :b :c} is not an RDF graph. Similar problems occur when using all solution

Using SPARQL with RDFS and OWL Entailment 165

mappings. Hence we assume (2) to refer to elements of the computed solution multiset
�BGP�E

D,G. The notion of well-formedness in turn needs to be specified explicitly for
entailment regimes.

Condition (3) uses the term “answer set” to refer to the results computed for a BGP.
To match the rest of [26], this has to be interpreted as the solution multiset �BGP�E

D,G.
This also means mappings Pi are solution mappings (not pattern instance mappings as
their name suggests). The purpose of (3), as noted in [26], is to ensure that if blank node
names are returned as bindings for a variable, then the same blank node name occurs in
different solutions only if it corresponds to the same blank node in the graph.

Example 23. To illustrate the problem, consider the following graphs:

G : :a :b _:c. G1 : :a :b _:b1. G2 : :a :b _:b2. G3 : :a :b _:b1.
_:d :e :f. _:b2 :e :f. _:b1 :e :f. _:b1 :e :f.

Clearly, G simply entails G1 and G2, but not G3 where the two blank nodes are identified. Now
consider a basic graph pattern BGP

{ :a :b ?x. ?y :e :f }.
A solution multiset for BGP could comprise two mappings

μ1 : ?x �→ _:b1, ?y �→ _:b2 and
μ2 : ?x �→ _:b2, ?y �→ _:b1.

We then have μ1(BGP) = G1 and μ2(BGP) = G2, and both solutions are entailed. Condition (3)
requires, however, that G ∪ μ1(BGP) ∪ μ2(BGP) is also entailed by G, and this is not the case
in our example since this union contains G3.

The reason is that our solutions have unintended co-references of blank nodes that
(3) does not allow. SPARQL’s basic subgraph matching semantics respects this condi-
tion by requiring solution mappings to refer to blank nodes that actually occur in the
active graph, so blank nodes are treated like (Skolem) constants.3 The revised condition
in Table 7 has further been modified to not implicitly require finite solution multisets
which may not be appropriate for all entailment regimes. In addition, we use RDF in-
stance mappings for renaming blank nodes instead of requiring renamed variants of the
BGP.

Finally, condition (4) requires that solution multisets are finite and uniquely deter-
mined up to RDF graph equivalence, again using the “answer set” terminology. Our
revised condition clarifies what it means for a solution multiset to be “unique up to
RDF graph equivalence.” We move the uniqueness requirement above all other condi-
tions, since (2) and (3) do not make sense if the solution multiset was not defined in
this sense. The rest of the condition was relaxed since entailment regimes may inher-
ently require infinite solution multisets, e.g., in the case of the Rule Interchange Format
RIF [17]. It is desirable that this only happens if there are infinite solutions that are “in-
teresting,” so the condition has been weakened to merely recommend the elimination of
infinitely many “trivial” solution mappings in solution multisets. The requirement thus

3 Yet, SPARQL allows blank nodes to be renamed when loading documents, so there is no
guarantee that blank node IDs used in input documents are preserved.

166 B. Glimm

is expressed in an informal way, leaving the details to the entailment regime. Within this
paper, we will make sure that the solution multisets are in fact finite (both regarding the
size of the underlying set, and regarding the multiplicity of individual elements).

3.2 Addressing the Extension Point Conditions

Before coming to OWL, we introduce the RDFS entailment regime since RDFS is
well-known and simpler than OWL while the regime still illustrates the main points
in which an entailment regime differs from SPARQL’s standard query evaluation. The
major problem for RDFS entailment is to avoid trivially infinite solution multisets as
suggested by Table 7 (4), where three principal sources of infinite query results have to
be addressed:

1. An RDF graph can be inconsistent under the RDFS semantics in which case it
RDFS-entails all (infinitely many) conceivable triples.

2. The RDFS semantics requires all models to satisfy an infinite number of axiomatic
triples even when considering an empty graph.

3. Every non-empty graph entails infinitely many triples obtained by using arbitrary
blank nodes in triples.

We now discuss each of these problems, and derive a concrete definition for BGP match-
ing in the proposed entailment regime at the end of this section.

Treatment of Inconsistencies. SPARQL does not require entailment regimes to yield a
particular query result in cases where the active graph is inconsistent. As stated in [26],
“[the] effect of a query on an inconsistent graph [. . .] must be specified by the partic-
ular SPARQL extension.” One could simply require that implementations of the RDFS
entailment report an error when given an inconsistent active graph. However, a closer
look reveals that inconsistencies are extremely rare in RDFS, so that the requirement of
checking consistency before answering queries would impose an unnecessary burden
on implementations.

Indeed, graphs can only be RDFS-inconsistent due to improper use of the datatype
rdf:XMLLiteral.

Example 24. A typical example for this is the following graph:

:a :b "<"ˆˆrdf:XMLLiteral. :b rdfs:range rdfs:Literal.

The literal in the first triple is ill-typed as it does not denote a value of rdf:XMLLiteral. This does
not cause an inconsistency yet but forces "<"ˆˆrdf:XMLLiteral to be interpreted as a resource
that is not in the extension of rdfs:Literal, which in turn cannot be the case in any model that
satisfies the second triple.

Ill-typed literals are the only possible cause of inconsistency in RDFS and as such
not a frequent problem.4 Moreover, inconsistencies of this type are inherently “local” as

4 Implementations may support additional datatypes that can lead to similar problems. Such
extensions go beyond the RDFS semantics we consider here, yet inconsistencies remain rare
even in these cases.

Using SPARQL with RDFS and OWL Entailment 167

they are based on individual ill-typed literals that could easily be ignored if not related
to a given query.

It has thus been decided in the SPARQL working group that systems only have to
report an error if they actually detect an inconsistency. Until this happens, queries can
be answered as if all literals were well-typed. Our exact formalization corresponds to a
behavior where tools simply assume that all strings are well-typed for rdf:XMLLiteral,
and hence does not put additional burden on implementers.

Treatment of Axiomatic Triples. Every RDFS model is required to satisfy an infinite
number of axiomatic triples. The reason is that the RDF vocabulary for encoding lists
includes property names rdf:_i for all i ≥ 1, with several (RDFS) axiomatic triples for
each rdf:_i. For instance, we find a triple rdf:_i rdf:type rdf:Property for all i ∈ IN. Thus,
the query ?x rdf:type rdf:Property could have infinitely many results. We consider such
results trivial in the sense of Table 7 (4), and thus we want avoid them in the RDFS
entailment regime.

We therefore propose that axiomatic triples with a subject of the form rdf:_i are only
taken into account if the subject’s IRI explicitly occurs in the active graph. This ensures
that only finitely many axiomatic triples are considered, since there is only a finite
number of axiomatic triples whose subjects do not have the form rdf:_i. To conveniently
formalize this, Definition 10 below still refers to the standard RDFS entailment, but
restricts the range of solution mappings to a finite vocabulary, which consists of terms
from the queried graph and from terms of the RDFS vocabulary apart from those of the
form rdf:_i.

Treatment of Blank Nodes. Even if condition (3) in Table 7 holds, solution multisets
could include infinitely many results that only differ in the identifiers for blank nodes.
Simple entailment avoids this problem by restricting results to blank nodes that occur
in the active graph. For entailment regimes, however, one must take entailed triples into
account. This already leads to triples with different blank nodes, as illustrated in the
graphs G1 and G2 in Example 23.

Restricting the range of solution mappings to blank nodes in the active graph would
ensure finiteness but is not a satisfactory solution.

Example 25. To see why restricting the range of solution mappings to blank nodes in the active
graph is not a satisfactory, consider the graph

G : :a :b :c. :d :e _:f.

The query pattern BGP = { :a :b ?x } yields only one solution mapping μ : ?x �→ :c under
simple entailment. Yet, the mapping μ′ : ?x �→ _:f uses only blank nodes from G, and satisfies
G |= μ′(BGP) even under simple semantics.

This shows that the latter two conditions are not sufficiently specific for handling
blank nodes in entailment regimes. A more adequate approach is the use of Skolemiza-
tion:

Definition 9. Let the prefix skol refer to a namespace IRI that does not occur as the
prefix of any IRI in the active graph or query. The Skolemization sk(_:b) of a blank

168 B. Glimm

node _:b is defined as sk(_:b) � skol:b. We extend sk(·) to graphs and filters just like
other (partial) functions on RDF terms.

Intuitively, Skolemization changes blank nodes into resource identifiers that are not
affected by entailment. Clearly, we do not want Skolemized blank nodes to occur in
query results, but it is useful to restrict to solution mappings μ for which sk(G) |=
sk(μ(BGP)). In Example 25 above, this condition is indeed satisfied by μ but not by μ′.

In order to illustrate the effect, we use an RDF graph that does not make use of any
special RDFS terms, i.e., simple entailment would result in the same solutions. Let G,
sk(G), and BGP be as follows:

G : :a :b :c. sk(G) : :a :b :c. BGP : ?x :b _:d
_:a :b _:c. skol:a :b skol:c.

Here the Skolem function sk maps _:a to skol:a and _:c to skol:c for skol defined as
some imaginary prefix not used anywhere in G or BGP. We can now return only those
solutions μ for which applying the Skolem function to blank nodes in the range of μ
and some RDF instance mapping σ yields ground triples that are entailed by sk(G).
For example, all the mappings below yield entailed triples, but only the first two satisfy
the stated requirement because applying sk to _:a and _:c yields a ground triple that is
entailed by sk(G):

μ1 : ?x �→ :a σ1 : _:d �→ :c
μ2 : ?x �→ _:a σ2 : _:d �→ _:c
μ3 : ?x �→ _:b1 σ3 : _:d �→ _:b2

3.3 The RDFS Entailment Regime

The set of well-formed graphs for the RDFS entailment regime is simply the set of all
RDF graphs. BGP matching for RDFS is defined as follows.

Definition 10. Let G be an RDF graph, BGP a basic graph pattern, V(BGP) the set of
variables in BGP, B(BGP) the set of blank nodes in BGP, sk a Skolemization function
as in Definition 9 such that ran(sk)∩ (Voc(G)∪Voc(BGP)) = ∅. Let Voc(RDFS) be the
RDFS vocabulary and Voc−(RDFS) = Voc(RDFS) \ {rdf:_i | i ∈ IN}.

We write |=RDFS for the RDFS entailment relation and define the evaluation of BGP
over G under RDFS entailment, �BGP�RDFS

D,G , as the solution multiset

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number of distinct RDF instance
mappings such that, for each 1 ≤ i ≤ n,

(i) dom(sigmai) = B(BGP),
(ii) μ(σi(BGP)) are well-formed RDF triples,

(iii) sk(μ(σi(BGP))) are ground RDF triples,
(iv) sk(G) |=RDFS sk(μ(σi(BGP))), and
(v) ran(μ) ⊆ Voc(G) ∪ Voc−(RDFS)}.

Other types of graph patterns are evaluated as in Definition 7. If the active graph is
RDFS-inconsistent, implementations may compute solution multisets based on the as-
sumption that all literals of type rdf:XMLLiteral are well-typed, so that no inconsistency

Using SPARQL with RDFS and OWL Entailment 169

occurs. When the inconsistency is detected, implementations should report an error. We
summarize the RDFS entailment regime in Table 8.

Condition (i) ensures that only RDF instance mappings that map all and only the
blank nodes of BGP can increase the multiplicity of a solution mapping. Condition (ii)
ensures that the instantiated triples are well-formed, e.g., variables tat occur in the sub-
ject position cannot be mapped to a literal by a solution mapping. Similarly, variables
in the predicate position cannot be mapped to blank nodes. Condition (iii) then ensures
that all blank nodes are indeed Skolemized by sk, resulting in ground RDF triples.
Condition (iv) and (v) ensure that blank nodes and the axiomatic triples are handled as
described in the previous section, therefore, avoiding infinitely many answers.

The definition might look quite complicated, but has the advantage that we can
simply swap in another entailment relation and vocabulary to get another entailment
regime. For example, when we use the simple entailment relation in place of the RDFS
entailment relation and the empty set instead of Voc(RDFS) (as there are no special
terms for simple interpretations), then we get exactly the behavior of subgraph match-
ing (aka simple entailment) described in Definition 6. Furthermore, we can also swap
the RDFS entailment relation for RDF or the OWL RDF-Based Semantics entailment
relation and get a valid entailment regime. The OWL Direct Semantics needs some
minor tweaks as the Direct Semantics is not defined in terms of triples, but based on
Description Logics.

Example 26. In order to see why the range of a solution mapping can also use terms from
Voc(RDFS), we consider the data from Table 1 and the query:

SELECT ?name
WHERE { ?x foaf:name ?name . ?x rdf:type foaf:Person }

Under RDFS entailment, the queried graph entails

_:a foaf:name "Birte Glimm"
_:a rdf:type foaf:Person

Thus, μ1 : ?name �→ "Birte Glimm" is a solution. Note, however, that rdf:type is not part of the
vocabulary of the graph, and the solution is only part of the result since we include the RDFS
vocabulary. Overall, we get the following three solutions:

?name
"Birte Glimm"
"Sebastian Rudolph"
"Pascal Hitzler"

Furthermore, in order to implement the regime, we can simply materialize all RDFS
inferences and use subgraph matching on the extended graph. We illustrate this with the
next example.

Example 27. In order to get an idea of how we can implement the RDFS entailment regime
via materialization, we consider again the data from Table 1 and the query from the previous
example.

170 B. Glimm

Table 8. The RDFS entailment regime

Name RDFS
IRI http://www.w3.org/ns/entailment/RDFS
Legal Graphs Any legal RDF graph
Legal Queries Any legal SPARQL query
Illegal Handling In case the query is illegal (syntax errors), the system must raise a

MalformedQuery fault. In case the queried graph is illegal (syntax errors),
the system must raise a QueryRequestRefused fault.

Entailment RDFS Entailment
Inconsistency The scoping graph is graph-equivalent to the active graph even if the active

graph is RDFS-inconsistent. If the active graph is RDFS-inconsistent, an
implementation may raise a QueryRequestRefused fault or issue a warning
and it should generate such a fault or warning if, in the course of processing,
it determines that the data or query is not compatible with the request. In the
presence of an inconsistency the conditions on solutions still guarantee that
answers are finite.

Query Answers Basic Graph Patterns are evaluated as in Definition 10

In order to materialize all RDFS inferences, we add triples that are RDFS entailed and obtain
a graph G′, which contains (among other triples):

_:a rdf:type foaf:Person
_:b rdf:type foaf:Person
_:c rdf:type foaf:Person

due to the triple foaf:name rdfs:domain foaf:Person combined with the three triples with the
predicate foaf:name. Furthermore, we would add

_:a foaf:nick foaf:b.glimm
_:c foaf:nick foaf:phi

due to the fact that foaf:icqChatID is a subproperty of foaf:nick. Furthermore, the full material-
ization would also contain triples such as t rdf:type rdfs:Resource, for each term t in subject or
object position plus other triples (cf. [14], [15]).

For evaluation the query, we do not have to make the Skolemization explicit, instead, we
can just consider the blank nodes in G′ as constants. However, if a blank node occurs in the
query that occurs also in the graph, we have to keep in mind that the blank node from the query
cannot only map to that very blank node in the graph, but it still acts like a variable. Thus, if _:x
in our query were _:a, it could still match to _:b in G′. Hence, we get the same three solution
by performing subgraph matching on G′ as in the previous example.

Since computing the required partial RDFS closure (partial, since we do not require
all axiomatic triples) can be done in polynomial time [15] and BGP evaluation then
amounts to subgraph matching over the partial closure, it follows that the complexity of
the evaluation problem under the RDFS regime is the same as for standard SPARQL.
For set semantics instead of multiset semantics this is known to be PSPACE-complete
[24].

Using SPARQL with RDFS and OWL Entailment 171

4 The OWL Entailment Regimes

In contrast to the RDFS semantics, a graph does no longer admit a unique canonical
model that can be used to compute answers under the RDF-Based Semantics (RBS)
and Direct Semantics (DS) of OWL, i.e., we can no longer imagine queries to act on
a unique “completed” version of the active graph. This affects reasoning algorithms,
but has only little effect on our definitions. The main new challenges for OWL are
its expressive datatype constructs that may lead to infinite answers, and the fact that
the OWL DS is defined in terms of OWL objects to which a given RDF graph and
query must first be translated. The problems discussed for RDF(S) also require slightly
different solutions for OWL:

1. Inconsistent input ontologies are required to be rejected with an error.
2. The axiomatic triples of RDFS are used only by the RBS and can again be handled

by suitably restricting solutions to terms from a finite vocabulary.
3. The problem of blank nodes occurs for both semantics and can again be addressed

by Skolemization, but for DS the blank nodes that are used to encode OWL objects
must not be Skolemized.

The main difference to RDFS is the stricter first item which no longer permits deferred
inconsistency detection. Inconsistencies in RDFS were easy to ignore since they always
related to single literals. Neither OWL semantics suggests such simple reasoning under
inconsistencies. Although proposals exists for addressing this, they disagree on the in-
ferred entailments and tend to require complex computations. On the other hand, typical
OWL reasoning algorithms are model building procedures which detect inconsistencies
as part of their normal operation. Hence, reporting errors in this case can usually be
done without additional effort.

4.1 Mapping from RDF Graphs to OWL Structural Objects

For the OWL 2 Direct Semantics entailment regime, semantic conditions are defined
with respect to ontology structures (i.e., instances of the Ontology class as defined in
the OWL 2 structural specification [21]). Given an RDF graph G, the ontology structure
for G, denoted OG, is obtained by mapping the queried RDF graph into an OWL 2
ontology [23]. This mapping is only defined for OWL 2 DL ontologies, i.e., ontologies
that satisfy certain syntactic conditions.

In this section, we use both Turtle and OWL’s functional-style syntax (FSS) that is
used in the OWL 2 structural specification [21]. We further provide a Description Logic
(DL) syntax version for those with a background in DLs.

For many triples that use as predicate a special term from the RDFS vocabulary, the
mapping to OWL structural objects is straightforward.

Example 28. For example a subclass statement in RDFS has a straightforward representation
in OWL’s FSS:

Turtle: foaf:Person rdfs:subClassOf foaf:Agent .

FSS: SubClassOf(foaf:Person foaf:Agent)

DL: Person Agent

172 B. Glimm

Note that DLs have no notion of IRIs, namespaces, or prefix declaration and we just write the
short name without any prefix in the DL syntax. It is also characteristic that several terms of
the specialized RDFS and OWL vocabulary in the Turtle syntax are translated to constructors
in the FSS, e.g., rdfs:subClassOf is mapped into a SubClassOf constructor.

Similarly, the translation of domains and ranges is relatively straightforward.

Example 29. For example, the following domain and range statements translate straightfor-
wardly to the FSS, but the DL syntax is slightly more involved:

Turtle: foaf:knows rdfs:range foaf:Person .
foaf:knows rdfs:domain foaf:Person .

FSS: ObjectPropertyRange(foaf:knows foaf:Person)
ObjectPropertyDomain(foaf:knows foaf:Person)

DL: � ∀ knows Person
∃ knows.� Person

First, it can be noted that in the FSS the term rdfs:range becomes ObjectPropertyRange. The
counterpart to ObjectPropertyRange is DataPropertyRange range, which is used for proper-
ties that relate individuals (such as instances of the class foaf:Person) to concrete data val-
ues. For example, the property foaf:name relates an individual to a string, i.e., an element
from xsd:String. Since OWL supports very expressive reasoning with datatypes, which requires
different algorithms from reasoning with abstract (non-datatype) elements, every property in
OWL DL must be typed. Thus, we would have that foaf:knows is of type owl:ObjectProperty
whereas foaf:name is of type owl:DataProperty.

In the DL syntax, there is no direct constructor for domains and ranges. The above statements
are, however, logically equivalent. The first axiom uses on the left-hand side the special symbol
�, which corresponds to owl:Thing and is always true. Thus, the axiom can be read as “It is
always implied that all (∀) knows-successors of an element are instances of the class Person,”
which is exactly what a range axiom specifies. The second axiom can be read as “If an element
has some (∃) knows-successor, then it is an instance of the class Person.”

Elements of an OWL 2 DL Ontology. Now that we have seen some examples of
the mapping from RDF triples to OWL axioms, we introduce the basic elements in an
OWL 2 DL ontology. An OWL 2 DL ontology consists of an ontology header and a
set of axioms. The ontology header specifies the IRI of the ontology and which other
ontologies are imported by it.

Example 30. The following set of RDF triples constitute a valid OWL 2 DL ontology.

Turtle: @prefix foaf:<http://xmlns.com/foaf/0.1/> .
<http://example.org/ont1> rdf:type owl:Ontology .
<http://example.org/ont1> owl:imports <http://example.org/ont2> .

FSS: Prefix(foaf:= <http://xmlns.com/foaf/0.1/>)
Ontology(<http://example.org/ont1>
Import(<http://example.org/ont2>)

)

Using SPARQL with RDFS and OWL Entailment 173

The ontology header has no representation in Description Logic syntax and it has no
direct influence on the logical consequences of the ontology other than through imports,
which instruct an OWL parser to additionally include the triples that are obtained from
parsing the imported ontology.

The axioms in an ontology are used to describe a domain of interest, e.g., in the pre-
vious section we described people, their names, email addresses and chat IDs making
use of terms from the FOAF (Friend of a Friend) ontology. Within the axioms, we dis-
tinguish between logical and non-logical axioms. As the ontology header, non-logical
axioms carry no semantics, i.e., they do not influence the consequences of an ontology,
and include:

– Annotations,
– Entity Declarations

With ontology annotations, one can describe properties of the ontology, e.g., who cre-
ated it, which version of the ontology this is and other things. Similarly, one can anno-
tate other axioms, e.g., with a comment or with provenance information, and one can
even annotate annotations themselves. Entity declarations specify the types of terms.
For example, we have learned above that foaf:knows is an object property whereas
foaf:name is a data property. In addition to object and data properties, OWL also pro-
vides recognizes annotation properties, e.g., rdfs:label or rdfs:comment are built-in an-
notation properties, but one can define additional custom ones too. Similarly one can
declare classes and custom datatypes (ones that are not defined in the OWL 2 datatype
map) and named individuals. Such declarations are required to allow for an unambigu-
ous parsing process.

Example 31. We can extend the ontology from Example 30 with the following annotations and
declaration. Since the axioms are non-logical, the extended ontology still only entails tautolog-
ical statements under the Direct Semantics.

Turtle: <http://example.org/ont1> owl:priorVersion <http://example.org/ont0> .
foaf:knows rdf:type owl:ObjectProperty .
<http://example.org/ont1> rdfs:label "An example" .

FSS: Annotation(owl:priorVersion <http://example.org/ont0>)
Annotation(rdfs:label "An example")
Declaration(ObjectProperty(foaf:knows))

The first annotation gives the IRI of a previous version for the current ontology and the second
annotation just provides a label for the ontology. The declaration axiom specifies foaf:knows as
an object property.

In the remainder we frequently omit type declarations. Unless otherwise specified,
examples assume that properties are object properties and that terms refer to classes
rather than data ranges.

Complex Classes and Axioms. So far we always had a straightforward correspon-
dence between one triple and one OWL axiom. A FSS axiom can, however, correspond
to several RDF triples, and the RDF triples might contain auxiliary blank nodes that are

174 B. Glimm

not part of the corresponding OWL objects and are not visible in the corresponding FSS
axiom. This is usually the case if we want to represent complex OWL classes in RDF
triples. In most cases, we can “hide” the blank nodes and obtain a slightly more read-
able Turtle format by making use of Turtles’s abbreviations: [. . .] implicitly introduces
a blank node, “;” can be used if the following triple has the same subject, which is them
omitted, “,” acts as “;” but for the case where triples share subject and object, the (. . .)
constructor abbreviates lists of terms, and a abbreviates rdf:type.

Example 32. The first class assertion uses just a class name, which requires a single RDF triple,
but the second assertion uses a complex class, which requires several RDF triples with auxiliary
blank nodes.

Turtle: :Peter rdf:type :Person .
:Peter rdf:type _:x .
_:x rdf:type owl:Restriction .
_:x owl:onProperty :hasFather .
_:x owl:someValuesFrom :Person .

Turtle (abbr.): :Peter a :Person .
:Peter a [a owl:Restriction ;

owl:onProperty :hasFather ;
owl:someValuesFrom :Person] .

FSS: ClassAssertion(:Person :Peter)
ClassAssertion(ObjectSomeValuesFrom(:hasFather :Person) :Peter)

DL: Person(Peter)
(∃ hasFather.Person)(Peter)

The first axiom just states that the individual :Peter is an instance of the class :Person. The
second axiom states that :Peter belongs to the class of things that have a :hasFather-successor
which is an instance of the class :Person.

Example 33. Disjunctions and conjunctions in the FSS similarly require several triples in RDF:

Turtle: :Birte rdf:type _:x .
_:x rdf:type owl:Class .
_:x owl:unionOf _:l1 .
_:l1 rdf:first :Vegetarian .
_:l1 rdf:next _:l2 .
_:l2 rdf:first :Vegan .
_:l2 rdf:rest rdf:nil .

Turtle (abbr.): :Birte a [a owl:Class ; owl:unionOf (:Vegetarian :Vegan)] .

FSS: ClassAssertion(ObjectUnionOf(:Vegetarian :Vegan) :Birte)
DL: Birte Vegetarian � Vegan

The typing as owl:Class is required since owl:unionOf can equally be used to build the union
of two datatypes or data ranges (i.e., complex datatypes that are already obtained by combining
datatypes). Axiom states that the individual :Birte is a vegan or a vegetarian, i.e., an instance of
the class ObjectUnionOf(:Vegan :Vegetarian).

Using SPARQL with RDFS and OWL Entailment 175

Blank Nodes and Anonymous Individuals. Although in the above examples it was
always the case that the blank nodes disappeared in the FSS, this is not always the case.
The FSS may still contain blank nodes, but these correspond to OWL individuals that
have no explicit names and are called anonymous individuals.

Example 34. The following axiom uses anonymous individuals:

Turtle: :Peter :hasBrother _:y .
FSS: ObjectPropertyAssertion(:hasBrother :Peter _:y)

The meaning of the axiom is exactly the same as the meaning of the second axiom from Exam-
ple 32, i.e., we say that :Peter is related to some element with the property :hasBrother. Note
that in DL notation there is no counterpart to anonymous individuals and one always has to
use existential quantifiers (∃) as in the first version of this axiom. For RDF graphs that can be
mapped into OWL 2 DL ontologies, it is, however, guaranteed that an according DL version
always exists.

While parsing an input document (containing RDF triples) into an OWL ontology,
it can be necessary to rename blank nodes/anonymous individuals and there is no guar-
antee that the blank node identifier _:y from the above triple is used as an identifier for
Peter’s brother in the ontology structure. Thus, the latter axiom from Example 34 could
also be parsed as the OWL axiom

ObjectPropertyAssertion(:hasBrother :Peter _:somethingelse)

4.2 Introduction to the OWL Direct Semantics for SPARQL

Having introduced the basic ideas of how we get from an RDF graph to an ontology
that can be interpreted under OWL’s Direct Semantics, we now turn our attention to the
issue of deciding what is a consequence of an OWL ontology and how we can query
for such consequences with SPARQL.

OWL Entailment. OWL reasoners are tools that decide OWL entailment. In order to
decide whether an RDF graph G entails an RF graph G′ under OWL 2 Direct Semantic
entailment, we can proceed as follows:

1. We compute the imports closure clos(G) of G by enriching G with directly and in-
directly imported triples and then we transform clos(G) into OG using the mapping
process as defined in the OWL 2 Mapping to RDF Graphs specification. If the map-
ping fails, then G is not well-formed and, thus, cannot be used under the OWL 2
Direct Semantics.

2. We proceed similarly for G′, obtaining OG′ .
3. We check whether OG |= OG′ , where |= denotes the OWL Direct Semantics entail-

ment relation. Most commonly OWL reasoners do this by searching for a counter-
model, i.e., a model I that satisfies OG and the negation of OG′ . A problem is that
not all axioms can be negated in OWL. Thus, it is usually required to reformulate
the reasoning problem and deal with each axiom in OG′ separately.

176 B. Glimm

Table 9. RDF data for Example 35

(1) <http://example.org/myOntology> a owl:Ontology

(2) :eats a owl:ObjectProperty
(3) :contains a owl:ObjectProperty
(4) :Vegetarian a owl:Class
(5) :Vegan a owl:Class
(6) :MilkProduct a owl:Class

(7) :Birte a [a owl:Class ; owl:unionOf (:Vegetarian :Vegan)] .
(8) :Birte :eats :Yoghurt .
(9) :Yoghurt :contains :Milk .

(10) :Milk a :MilkProduct .
(11) [a owl:Restriction ; owl:onProperty :contains ; owl:someValuesFrom :MilkProduct]

rdfs:subClassOf :MilkProduct .
(12) :Vegan rdfs:subClassOf

[a owl:Restriction ; owl:onProperty :eats ; owl:allValuesFrom
[a owl:Class ; owl:complementOf :MilkProduct]

]

We illustrate some of the problems that have to be addressed in an OWL DS entailment
regime in Example 35 below.

Example 35. We consider the query:

SELECT ?ind
WHERE { ?ind rdf:type :Vegetarian }

We assume that the default (and, hence, the active graph for the query) contains the triples from
Table 9. Since the Direct Semantics is defined in terms of OWL structural objects, we first
have to map the triples from Table 9 into OWL objects. The result of the mapping is shown in
Table 10. Triple (1) results in the ontology header (1’). This triple does not contribute anything
towards the logical consequences of the ontology, but is required to satisfy the constraints of
OWL 2 DL. Similarly, Triples (2) to (6) result in the non-logical axioms (2’) to (6’), which
declare terms as classes or object properties. Such declarations are required to allow for an
unambiguous parsing process. The remaining triples lead to logical axioms: Triple (7) is the
same as in Example 33 and states that the individual :Birte is a vegan or a vegetarian.

Note that in the FSS version of (7’) we have ObjectUnionOf whereas in the RDF triples,
we just have unionOf. This is because the FSS makes it explicit whether the element is a class
or a data range. In case of a data range DataUnionOf would be used. In order to be able to
decide what applies, the declarations are used, e.g., from (4) and (5) (in FSS (4’) and (5’),
respectively), we know that :Vegetarian and :Vegan are classes. Triple (8) translates into an
assertion saying that the individual :Birte :eats the individual :Yoghurt. In order to see whether
this is a data or an object property assertion in the FSS, we can again use the declarations.
Axiom (9’) is obtained similarly. From (11), we obtain a more complicated axiom that states: if
an element has a :contains relationship with something that is an instance of :MilkProduct, then
this element is itself an instance of :MilkProduct. Finally, (12) translates into a statement that
says that instances of the class :Vegan can only be related with the property :eats to something
that is not an instance of :MilkProduct. For those more familiar with Description Logic syntax,

Using SPARQL with RDFS and OWL Entailment 177

Table 10. FSS version of the triples for Example 35

(1’) Ontology(<http://example.org/myOntology>
(2’) Declaration(ObjectProperty(:eats))
(3’) Declaration(ObjectProperty(:contains))
(4’) Declaration(Class(:Vegetarian))
(5’) Declaration(Class(:Vegan))
(6’) Declaration(Class(:MilkProduct))

(7’) ClassAssertion(ObjectUnionOf(:Vegetarian :Vegan) :Birte)
(8’) ObjectPropertyAssertion(:eats :Birte :Yoghurt)
(9’) ObjectPropertyAssertion(:contains :Yoghurt :Milk)

(10’) ClassAssertion(:MilkProduct :Milk)
(11’) SubClassOf(ObjectSomeValuesFrom(:contains :MilkProduct) :MilkProduct)
(12’) SubClassOf(:Vegan ObjectAllValuesFrom(:eats ObjectComplementOf(:MilkProduct)))

)

Table 11 shows the logical axioms into Description Logic syntax with (7∗), (11∗), and (12∗)
terminological (TBox) axioms and (8∗), (9∗), and (10∗) assertional (ABox) axioms.

In order to find the answers for the query under OWL DS entailment, we also need a version
of the BGP that can be interpreted according to the OWL structural specification. One way
of doing this would be to replace the variables with terms from the ontology, then map the
resulting triples to OWL axioms, and check entailment. This would, however, require frequent
parsing/mapping attempts that frequently will fail because we substituted a variable with a value
that violates the OWL 2 DL constraints, e.g., when we replace the variable ?ind with a class
name, e.g., :Vegan, we obtain a triple that cannot be mapped since :Vegan rdf:type :Vegetarian
is not allowed in OWL 2 DL, i.e., rdf:type cannot be used to relate two classes. Since we know
that :Vegetarian is a class from (4), we know that ?ind has to be instantiated with individual
names. In order to avoid a parsing attempt for each possible assignment of variables, the choice
has been made to extend OWL’s structural specification to allow for variables in place of atomic
objects such as individuals, classes, properties, or literals. We can then simply map a BGP into
axioms from the extended specification. This yields:

ClassAssertion(:Vegetarian?ind)

For this axiom it is clear that ?ind occurs in an individual position and, therefore, has to be
replaced with individual names from the queried ontology. For this example, we only have to
substitute ?ind with :Birte. We could also use dedicated reasoner methods to retrieve instances
of the class :Vegetarian without iterating over all individual names to obtain the query result:

?ind
:Birte

Note that the class used in the query pattern could equally be a class expression such as

ObjectUnionOf(:Vegetarian :Vegan ObjectAllValuesFrom(:eats:MilkProduct)),

although that last disjunct is somehow far-fetched as a class of things that only eat milk products.
Assume further that we extend the ontology with:

(13) ClassAssertion(ObjectUnionOf(:Vegetarian :Vegan) :Ian)
(14) SubclassOf(:Vegetarian :HasSpecialMealRequest)
(15) SubclassOf(:Vegan :HasSpecialMealRequest)

178 B. Glimm

Table 11. Description Logic version of the logical axioms for Example 35

(7∗) (Vegetarian � Vegan)(Birte)
(8∗) eats(Birte,Yoghurt)
(9∗) contains(Yoghurt,Milk)

(10∗) MilkProduct(Milk)
(11∗) ∃contains.MilkProduct MilkProduct
(12∗) Vegan ∀eats.(¬MilkProduct)

Clearly :Ian belongs to the above stated disjunction, so should be returned as query answer
although membership in that class is not explicitly stated nor can we foresee all such classes
and extend the queried ontology accordingly. Furthermore, we might have to do case-based
reasoning. In this case, we can neither extend the ontology with a statement that :Ian belongs
to the class :Vegetarian nor with one that establishes that :Ian belongs to :Vegan. Nevertheless,
we know that :Ian belongs to the extension of the class :HasSpecialMealRequest .

4.3 Mapping BGPs to Extended OWL Objects

Note that in the above example, it was clear from the queried ontology that ?ind rdf:type
:Vegetarian corresponds to a class assertion with ?ind mapping to individual names
since :Vegetarian was declared as a class in OG. In some cases, however, the variables
in a BGP do no longer allow for an unambiguous mapping, which is addressed by
variable typing triples.

Variable Typing. In order to have an unambiguous correspondence between BGPs and
extended OWL objects, the Direct Semantics entailment regime requires for some cases
extra triples in a basic graph pattern that give typing information for the variables.

Example 36. In order to see why this is required, consider the following query:

SELECT ?s ?p ?o WHERE { ?s ?p ?o }

Without any restrictions this query could be a query for

– declarations, i.e., the BGP maps to a declaration such as Declaration(Class(?s)) where
?p binds to rdf:type, ?o to owl:Class, and bindings for ?s have to be computed or
Declaration(ObjectProperty(?s)) where ?p binds to rdf:type and ?o to owl:ObjectProperty,
or any other type of declaration,

– inverse object properties, i.e., the BGP maps to ObjectInverseOf(?o) where ?s maps to a
blank node and ?p to owl:inverseOf,

– subclasses, i.e., the BGP maps to SubClassOf(?s ?o) with rdfs:subClassOf as binding for
?p,

– equivalent classes, i.e., the BGP maps to EquivalentClasses(?s ?o) where ?p binds to
owl:equivalentClass,

– disjoint classes, i.e., the BGP maps to DisjointClasses(?s ?o) where ?p binds to
owl:disjointWith,

– . . .

Using SPARQL with RDFS and OWL Entailment 179

In order to answer the query without any typing constraints, all possible ways of
mapping the BGP into ontology structures have to be considered. Even if variables can
only occur in the position of function parameters of the functional-style syntax, the
BGP from the above query can still be mapped to ObjectPropertyAssertion(?p ?s ?o),
DataPropertyAssertion(?p ?s ?o), or AnnotationAssertion(?p ?s ?o) without variable
typing information.

The inclusion of type declarations from the queried ontology means that at least the
non-variable terms in the query can be disambiguated without additional typing infor-
mation in the query. Typically, variables have to be declared if they represent classes,
properties, or datatypes, whereas individual variables do not need declarations for an
unambiguous mapping process. This is similar to typing in ontologies, where typing of
individuals is optional, but typing for properties, classes, and non-OWL 2 datatypes is
mandatory.

Example 37. The BGP of the query

SELECT ?x WHERE { ?x :p ?y }

is parsed into (a) or (b) depending on whether :p is declared as an object or a data property in
the queried ontology

(a) ObjectPropertyAssertion(:p ?x ?y) (b) DataPropertyAssertion(:p ?x ?y)

If :p is changed into the variable ?p, we need an extra typing triple, e.g.,

Declaration(ObjectProperty(?p))

to allow for an unambiguous mapping process.

Definition 11. Let BGP be a basic graph pattern with ?x a variable occurring in BGP.
If BGP contains a triple

?x rdf:type TYPE,

where TYPE is one of

– owl:Class,
– owl:ObjectProperty,
– owl:DataProperty,
– owl:Datatype, or
– owl:NamedIndividual,

then ?x is declared to be of type TYPE.

From BGPs to Extended OWL Objects. We now formally define how BGPs are
mapped into OWL axioms extended to contain variables, i.e., the result of the mapping
yields rather axiom templates than axioms.

The BGP of the query is mapped into an OWL 2 DL ontology, extended to allow vari-
ables in place of class names, object property names, datatype property names, individ-
ual names, or literals. Table 12 shows how productions of the OWL 2 functional-style

180 B. Glimm

Table 12. Grammar extension for extended OWL objects

Class � IRI | Var ObjectProperty � IRI | Var DataProperty � IRI | Var
Individual � NamedIndividual | AnonymousIndividual | Var

Literal � typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage | Var

syntax grammar [21] are extended to allow variables as defined by the Var production
from the SPARQL grammar [26]. If BGP contains no ontology header, i.e., a triple of
the form x rdf:type owl:Ontology with x ∈ I ∪ B, we assume that BGP is extended with
_:o rdf:type owl:Ontology for _:o a blank node name not occurring in BGP or the active
graph before parsing BGP into extended OWL objects. Solution mappings in a query
result are applied to such extended ontologies to obtain a set of OWL DL axioms that
is compatible with the queried ontology and also entailed by it under DS.

Definition 12. An extended ontology OG
BGP is constructed for a basic graph pattern

BGP and graph G using the parsing process for RDF graphs as defined in [23] with
three modifications:

1. variable identifiers are allowed in place of IRIs and literals in all parsing steps,
2. an ontology header may be added to BGP if not given, and
3. the type declarations given in BGP are augmented with the declarations in G and

those obtained from graphs imported by G (denoted AllDecl(G) in [23]).

The complete parsing process is detailed in the latest entailment regimes working draft.5

A basic graph pattern BGP satisfies the typing constraints of the entailment regime if

– no variable is declared as being of more than one type,
– variables without a type declaration occur either only in individual positions or

only in literal positions, and
– it is possible to disambiguate all types of IRIs and variables when parsing BGP

into extended OWL objects taking the typing information from OG and from BGP
into account;

A basic graph pattern BGP is well-formed for the OWL DS entailment regime and a
graph G if OG

BGP can be obtained in this way and is an extended OWL DL ontology.
An RDF graph G is well-formed for the OWL DS entailment regime if is mapping to
structural OWL objects [23], resulting in an ontology OG, is defined.

SPARQL Syntax Extensions for BGPs. Considering the fact that each BGP has to
be mapped to structural OWL objects anyway in order to use the OWL DS, it seems
natural to directly allow for specifying BGPs in other OWL syntaxes, e.g., the FSS.
Such an extension has not been specified by the W3C as part of the entailment regimes
document, but it seems likely that implementations of the OWL DS regime might also
accept other syntaxes for the BGP.

5 http://www.w3.org/TR/2010/WD-sparql11-entailment-20100601/

http://www.w3.org/TR/2010/WD-sparql11-entailment-20100601/

Using SPARQL with RDFS and OWL Entailment 181

Table 13. A query with infinitely many entailed solutions

G : :Peter a [a owl:Restriction; BGP : :Peter a [a owl:Restriction;
owl:onProperty :dp; owl:onProperty :dp;
owl:allValuesFrom [a rdfs:Datatype; owl:allValuesFrom [a rdfs:Datatype;

owl:oneOf ("5"ˆˆxsd:integer)]] owl:datatypeComplementOf [
a rdfs:Datatype; owl:oneOf (?x)]]]

OG : ClassAssertion(DataAllValuesFrom(:dp DataOneOf("5"ˆˆxsd:integer)) :Peter)
OG

BGP : ClassAssertion(DataAllValuesFrom(:dp DataComplementOf(DataOneOf(?lit))) :Peter)

4.4 Infinite Entailments in Datatype Reasoning

Example 38. In order to see how datatype reasoning in OWL can cause infinite entailments,
consider the graph and query in Table 13. The graph G states that all data values to which
Peter is related via :dp are in the singleton set of the integer 5. The BGP asks for all data
values to which :Peter cannot be related with :dp. Without suitable restrictions, all (infinitely
many) integers other than 5 could be used in solution mappings for ?x. Moreover, it is currently
unknown how to compute all mappings for literal variables even for cases where there number
is finite – testing all literals is clearly not an option.6

We will again use the vocabulary of the queried graph to include only literals that are
explicitly mentioned in the input graph for the OWL entailment regimes. Like for the
IRIs rdf:_i, this may lead to unexpected behavior, since mentioning a literal in the in-
put may lead to new query results even for queries not directly related to this literal.
Yet, this problem seems so rare in practice that a more detailed analysis of the prob-
lematic datatype expressions is not worthwhile, even if it could further limit unintuitive
behavior.

4.5 The OWL 2 Direct Semantics Entailment Regime

We now define the evaluation of graph patterns. For the Direct Semantics, Skolemiza-
tion is applied to OG, which ensures that only blank nodes that represent anonymous
OWL individuals are Skolemized, not blank nodes used for encoding complex OWL
syntax in RDF.

Definition 13. Let G be an RDF graph that is well-formed for the OWL 2 DS entailment
regime, BGP a basic graph pattern that is well-formed for DS and G, V(OG

BGP) the set
of variables in OG

BGP, B(OG
BGP) the set of blank nodes in OG

BGP, sk a Skolemization
function for the blank nodes in OG

BGP as in Definition 9 such that ran(sk) ∩ (Voc(OG) ∪
Voc(OG

BGP)) = ∅.
We write |=DS for the OWL 2 Direct Semantics entailment relation and define the

evaluation of BGP over G under OWL 2 Direct Semantics entailment, �BGP�DS
D,G, as

the solution multiset
6 Hence one cannot call such solutions “trivial” in the sense of Table 7. Indeed, our restrictions

are motivated by pragmatic considerations, not by formal requirements of SPARQL.

182 B. Glimm

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number of distinct RDF instance
mappings such that, for each 1 ≤ i ≤ n,

(i) dom(sigmai) = B(BGP),
(ii) μ(σi(OG

BGP)) ∪ OG is an OWL 2 DL ontology,
(iii) sk(μ(σi(OG

BGP))) are ground RDF triples,
(iv) sk(OG) |=DS sk(μ(σi(OG

BGP))), and
(v) ran(μ) ⊆ Voc(OG)}.

If OG is inconsistent, queries must be rejected with an error.

Restrictions on Solutions. Since solutions can only bind to terms from a finite vo-
cabulary, clearly the solution multiset and each multiplicity is finite too. Although this
avoids infinite results as discussed in Section 4.4, reasoners may have to consider a large
number of literals as potential variable bindings and we expect that not all systems will
provide a complete implementation for queries with literal variables.

Note that for the OWL DS regime no vocabulary other than that of the graph itself is
required since there are no axiomatic triples and variables can only bind to built-in terms
that are also built-in entities. Built-in entities such as owl:Thing are, however, assumed
to be present in any ontology [21, Table 5], i.e., OG automatically includes declarations
for these built-in entities. Thus, we have omitted any OWL 2 specific vocabulary from
condition(v).

Compared to the RDFS regime, condition (ii) requires μ(σi(OG
BGP)) ∪ OG to be an

OWL 2 DL ontology. Thus, the axioms from the instantiated BGP together with the ax-
ioms from the queried ontology must satisfy the restrictions for OWL 2 DL ontologies.
These restrictions are in place to guarantee that the key reasoning tasks in OWL 2 with
Direct Semantics are decidable. For example, for owl:topDataProperty, the following
requirement has to be met in OWL 2 DL:

The owl:topDataProperty property occurs in a SubDataPropertyOf axiom only
in the position of the super-property.

The condition guarantees that these restrictions are equally applied to the query. Fur-
thermore, the condition prevents that the BGP uses a property in a number restriction
that is declared as transitive in the queried ontology since transitive properties cannot
occur in number restrictions in OWL 2 DL.

The complexity of standard reasoning problems in OWL are well-understood and
BGP evaluation can be implemented using the standard reasoning techniques. The com-
plexity of OWL reasoning usually outweighs that of the SPARQL algebra operations,
i.e., checking whether a solution mapping is a solution is complete for nondeterministic
double exponential time in OWL 2 DL.

Higher Order Queries. The Direct Semantics entailment regime allows for certain
(but not all) forms of higher order queries.

Using SPARQL with RDFS and OWL Entailment 183

Example 39. The BGP

?x rdfs:subClassOf ?y

can be used to query for pairs of sub- and super-classes. This means that variables can bind to
classes (representing sets of individuals) and not just to individuals or data values.

Queries in which variables are used in positions of a First-Order Logic quantifier,
will, however, be illegal since such queries cannot be mapped to OWL objects as
required.

Example 40. The following (illegal) query asks whether some or all brothers of Peter are per-
sons:

SELECT ?x
WHERE { :Peter a [

a owl:Restriction ;
owl:onProperty :hasBrother ;
?x :Person

]
}

In FSS the BGP of the query corresponds to the axiom:

ClassAssertion(?x(:hasBrother :Person) :Peter)

Here the variable occurs in the position of a quantifier (ObjectSomeValuesFrom or
ObjectAllValuesFrom, i.e., ∃ and ∀ in Description Logics) and not just in the position of OWL
entities such as class names or individual names.

4.6 The OWL 2 RDF-Based Semantics Entailment Regime

The OWL 2 RDF-Based Semantics is a direct extension of the RDFS semantics, which
means that it interprets RDF triples directly without the need of mapping an RDF graph
into structural objects. Compared to the Direct Semantics, the RDF-Based Semantics
treats classes as individuals that refer to elements of the domain. Each such element
is then associated with a subset of the domain, called the class extension. This means
that semantic conditions on class extensions are only applicable to those classes that are
actually represented by an element of the domain which can lead to less consequences
than expected. An example is given by the following graph and BGP:

G : :a rdf:type :C BGP : ?x rdf:type [rdf:type owl:Class ;
owl:unionOf (:C :D)]

G states that :a has type :C, while BGP asks for instances of the complex class denoting
the union of :C and :D. One might expect μ : ?x �→ :a to be a solution, but this is not the
case under the OWL 2 RDF-Based Semantics (see also [29, Sec. 7.1]). It is guaranteed
that the union of the class extensions for :C and :D exists as a subset of the domain; no

184 B. Glimm

statement in G implies, however, that this union is the class extension of any domain
element. Thus, μ(BGP) is not entailed by G.

The entailment holds, however, when the statement :E owl:unionOf (:C :D) is added
to G. In the OWL Direct Semantics, in contrast, classes denote sets and not domain
elements, so G entails μ(BGP) under DS where, formally, G must first be extended with
an ontology header to become well-formed for DS. Note that a similar situation occurs
for Example 38, but the problem of infinitely many answers occurs if the necessary
expressions are introduced.

Summing up, the RBS handles blank nodes just like RDFS, even in cases where they
are needed for encoding OWL class expressions. This allows us to use Skolemization
just like in the case of RDFS in the next definition. The expressive datatype reasoning
is again addressed as for the DS using the answer domain.

Definition 14. Let G be an RDF graph, BGP a basic graph pattern, V(BGP) the set of
variables in BGP, B(BGP) the set of blank nodes in BGP, sk a Skolemization function
as in Definition 9 such that ran(sk) ∩ (Voc(G) ∪ Voc(BGP)) = ∅. Let Voc(OWL2RB)
be the OWL 2 RDF-Based vocabulary and Voc−(OWL2RB) = Voc(OWL2RB) \ {rdf:_i |
i ∈ IN}.

We write |=RBS for the OWL 2 RDF-Based Semantics entailment relation and de-
fine the evaluation of BGP over G under OWL 2 RDF-Based Semantics entailment,
�BGP�RBS

D,G , as the solution multiset

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number of distinct RDF instance
mappings such that, for each 1 ≤ i ≤ n,

(i) dom(sigmai) = B(BGP),
(ii) μ(σi(BGP)) are well-formed RDF triples,

(iii) sk(μ(σi(BGP))) are ground RDF triples,
(iv) sk(G) |=RBS sk(μ(σi(BGP))), and
(v) ran(μ) ⊆ Voc(G) ∪ Voc−(OWL2RB)}.

4.7 OWL 2 Profiles

OWL 2 DL is decidable, but computationally hard and not scalable enough for many
applications. OWL Full is not even decidable and, consequently, not many implementa-
tions that support all of OWL Full are available. Thus, OWL 2 identifies subsets of OWL
2, called profiles, which are sufficiently expressive, but of lower complexity (tractable)
and tailored to specific reasoning services (see also Figure 1):

– Terminological/schema reasoning: OWL 2 EL
– Query Answering via database engines: OWL 2 QL
– Assertional/data reasoning with rule engines: OWL 2 RL

The OWL 2 QL and EL profiles further restrict the allowed inputs compared to
OWL 2 DL, but equally use the Direct Semantics. The OWL 2 RL profile, in princi-
ple, can be used with both semantics, but for the Direct Semantics the input RDF graph
has to satisfy some constrains. The RDF-Based semantics can be use with any RDF
graph but under the OWL 2 RL profile one derives only certain consequences.

Using SPARQL with RDFS and OWL Entailment 185

Fig. 1. An overview for the complexity of reasoning in OWL and its profiles

OWL 2 DL is the largest subset of RDF graphs for which the OWL 2 Direct Semantics
is defined. Systems that support OWL 2 DL can also handle ontologies that satisfy the
restrictions of the OWL 2 EL and QL profiles because these profiles are even more
restrictive.

The OWL 2 EL Profile is particularly useful in applications employing ontologies
that contain very large numbers of properties and/or classes. The profile captures the
expressive power used by many ontologies and is a subset of OWL 2 DL for which the
basic reasoning problems can be performed in time that is polynomial with respect to
the size of the ontology. Worth mentioning is that the class hierarchy (all subclass re-
lations between classes) can be computed in “one pass”, whereas OWL 2 DL reasoner
typically have to check each pair of classes separately. The one-pass classification ex-
ploits saturation-based techniques developed for EL Description Logics [2, 1, 7, 3, 7]
and can be extended to the Horn (non-disjunctive) fragment of OWL DL [16].

The OWL 2 QL Profile is aimed at applications that use very large volumes of
instance data, and where query answering is the most important reasoning task. In
OWL 2 QL, conjunctive query answering can be implemented using conventional rela-
tional database systems [9, 10, 25]. Using query rewriting techniques, sound and com-
plete conjunctive query answering can be performed in LogSpace with respect to the
size of the data (assertions) using standard database management systems. Recently de-
veloped techniques prevent an exponential blowup from query rewriting [18,27]. As in
OWL 2 EL, polynomial time algorithms can be used to implement the ontology consis-
tency and class expression subsumption reasoning problems.

Note that OWL 2 QL implementations most commonly will only support conjunctive
queries, i.e., queries where the BGP consists only of axioms of the following type:

186 B. Glimm

– ClassAssertion,
– ObjectPropertyAssertion, and
– DataPropertyAssertion.

With the additional restriction that variables can only occur in the position of individu-
als and literals (if datatype reasoning is supported). Future versions of SPARQL could
define further entailment regimes, e.g., one that defines a dedicated conjunctive query
regime. Since an implementations is, however, free to reject any unsupported query
anyway, the currently defined OWL regime can still be used.

The OWL 2 RL Profile defines a syntactic subset of OWL 2, which is amenable
to implementation using rule-based technologies. For RDF graphs that fall into this
syntactic subset, reasoning is sound and complete and both semantics of OWL can
be used yielding the same results. Outside of this syntactic fragment, the RDF-Based
Semantics can still be used, but reasoning can be incomplete. The main reasoning in the
RL profile are PTime-complete (ontology consistency, class expression satisfiability,
class expression subsumption, instance checking, and conjunctive query answering).
Reasoning can be implemented in a rule engine (with equality support) by materializing
schema inferences for facts.

4.8 Implementing the OWL 2 RL Profile via Rules

The OWL 2 RL specification provides a complete rule set that can be used to materialize
all OWL 2 RL inferences. Each RDF triple is encoded via a ternary predicate T(_, _, _).
A given set of rules is then applied to the ternary predicates.

Example 41. Subproperty reasoning is, for example, handled via the rule prp-spo1:

prp-spo1: T(?p1, rdfs:subPropertyOf, ?p2) ∧ T(?x, ?p1, ?y)→ T(?x, ?p2, ?y)

Given the first two triples below (as ternary predicates), we can derive the third one by applying
the above rule:

T(:hasSister, rdfs:subPropertyOf, :hasSibling)
T(:Peter, :hasSister, :Mary)

⇒ T(:Peter, :hasSibling, :Mary)

Functionality for properties is taken into account via the prp-fp rule:

prp-fp: T(?p, rdf:type, owl:FunctionalProperty) ∧ T(?x, ?p, ?y1) ∧ T(?x, ?p, ?y2)
→ T(?y1, owl:sameAs, ?y2)

Given the first three triples, we can then apply the rule to derive the forth triple:

T(:hasMother, rdf:type, owl:FunctionalProperty)
T(:John, :hasMother, :Anna)
T(:John, :hasMother, :Ann)

⇒ T(:Anna, owl:sameAs, :Ann)

Using SPARQL with RDFS and OWL Entailment 187

Table 14. Data used to illustrate subclass reasoning with complex class expressions in OWL RL

Turtle: (1a) :Person rdfs:subClassOf _:c
(1b) _:c rdf:type owl:Restriction
(1c) _:c owl:allValuesFrom :Person
(1d) _:c owl:onProperty :hasChild
(2) :Anna :hasChild :Mary
(3) :Anna rdf:type :Person

FSS: (1) SubClassOf(:Person ObjectAllValuesFrom(:hasChild :Person))
(2) ObjectPropertyAssertion(:hasChild :Anna :Mary)
(3) ClassAssertion(:Person :Anna)

DL: (1) Person ∀hasChild.Person
(2) hasChild(Anna, Mary)
(3) Person(Mary)

We illustrate how subclass reasoning with complex class expressions can be performed using
the data from Table 14.

cax-sco: T(?c1, rdfs:subClassOf, ?c2) ∧ T(?x, rdf:type, ?c1)→ T(?x, rdf:type, ?c2)
cls-avf: T(?x, owl:allValuesFrom, ?y) ∧ T(?x, owl:onProperty, ?p) ∧

T(?u, rdf:type, ?x) ∧ T(?u, ?p, ?v)→ T(?v, rdf:type, ?y)

The rule cax-sco can be applied to the ternary form of triple (1a) and (3) to derive the first of
the two triples below. Then, the ternary form of triples (1c), (1d), (4), and (2) can be used to
satisfy the body of the rule cls-avf binding ?x to _:c, ?y to :Person, ?p to :hasChild, ?u to
:Anna, and ?v to :Mary, to derive triple (5).

⇒ (4) :Anna rdf:type _:c
⇒ (5) :Mary rdf:type :Person

Note that triple (4) has no representation in FSS or DL notation and would not be derived by a
non-rule-based OWL reasoner that uses the Direct Semantics. The triple is rather an intermedi-
ate consequence with the purpose of deriving the class assertion (5).

After exhaustively applying the OWL RL rules [20] to a set of RDF triples, the
resulting extended graph contains triples that state the (atomic) types for all individ-
uals as well as the relationships between individuals. Schema reasoning is, however,
not performed by applying the OWL 2 RL rules, i.e., we do not have all triples :c1

rdfs:subClassOf :c2 for :c1 a subclass of :c2 under the Direct or RDF-Based semantics.
In order to evaluate BGP over an active graph G using the OWL 2 RL profile one

can proceed as follows:
1. Saturate G using the OWL 2 RL rule to obtain G′.
2. Evaluate BGP over G′ using sub-graph matching (i.e., via any standard SPARQL

implementation).

More optimized implementation than via the fixed OWL 2 RL rule set are possible [19].
It is further possible to implement the RL profile in any rule engine that supports the
RIF Core dialect [6, 8] either as fixed or ontology-specific rule set.

188 B. Glimm

5 Exercises

We provide a couple of exercises in this section that can be used to test the understand-
ing of several aspects that have been presented in the previous sections. Solutions to the
exercises are provided in the following section.

5.1 Mapping to the SPARQL Algebra

Exercise 1. Translate the following SPARQL query into an abstract query:

SELECT ?mbox
WHERE { ?x foaf:mbox ?mbox }

Exercise 2. Translate the following SPARQL query into an abstract query:

SELECT DISTINCT ?name
WHERE { ?x foaf:name ?name FILTER regex(?name, ”ian”) }

Exercise 3. Translate the following SPARQL query into an abstract query:

SELECT ?mbox
WHERE { { ?x foaf:name "Birte Glimm". ?x foaf:mbox ?mbox }

UNION
{ ?x foaf:name ?name . ?x foaf:mbox ?mbox

FILTER regex(?name, ”ian”) }
}

Exercise 4. Translate the following SPARQL query into an abstract query:

SELECT ?name ?id
WHERE { { ?x foaf:name ?name OPTIONAL { ?x foaf:icqChatID ?id } }

UNION { ?x foaf:name ?name . ?x foaf:mbox <mailto:rudolph@kit.edu> }
} ORDER BY ?name

5.2 Query Evaluation

For the query evaluation in this section we assume simple entailment, i.e., subgraph
matching.

Exercise 5. Illustrate the evaluation of the query from Exercise 3 including its intermediate
results assuming the default graph contains the triples from Table 1.

Using SPARQL with RDFS and OWL Entailment 189

Table 15. RDF triples for Exercise 7

@prefix :<http://example.org/> .
@prefix w3c:<http://www.w3.org/> .
@prefix iswc2010: <http://data.semanticweb.org/conference/iswc/2010/> .

(1) iswc2010:paper/280 rdf:type :ConferencePaper.
(2) iswc2010:paper/280 :authors _:l1.
(3) _:l1 rdf:type rdf:Seq.
(4) _:l1 rdf:_1 "Birte Glimm".
(5) _:l1 rdf:_2 "Markus Krötzsch".
(6) w3c:TR/rdf-sparql-query rdf:type :W3CStandard.
(7) w3c:TR/rdf-sparql-query :writtenBy _:l2.
(8) _:l2 rdf:type rdf:Seq.
(9) _:l2 rdf:_1 "Eric Prud’hommeaux".

(10) _:l2 rdf:_2 "Andy Seaborne".
(11) :ConferencePaper rdfs:subClassOf :Publication.
(12) :W3CStandard rdfs:subClassOf :Publication.
(13) :writtenBy rdfs:subPropertyOf :authors.

Exercise 6. Illustrate the evaluation of the query from Exercise 4 including its intermediate
results assuming the default graph contains the triples from Table 1.

5.3 RDFS Semantics Queries

In this section we assume RDFS entailment, i.e., we use the RDFS entailment regime.

Exercise 7. We assume a graph with the triples from Table 15 and the query:

SELECT ?auth ?pub
WHERE { ?pub rdf:type :Publication . ?pub :authors ?seq . ?seq ?ind ?auth }

List the query results under the RDFS entailment regime and argue, for each solution, why the
solution follows.

Exercise 8. You might have noticed that the query from Exercise 7 has two answers in which the
binding for ?auth is not an author name. How can we modify the query to query for solutions
in which ?auth binds to an author name?

Exercise 9. We again assume a graph with the triples from Table 15 and the query:

SELECT ?type
WHERE { iswc2010:paper/280 rdf:type ?type }

Which answers does the query have under RDFS entailment and why?

190 B. Glimm

Exercise 10. We again assume a graph with the triples from Table 15. Is the triple
iswc2010:paper/280 :authors _:x entailed under RDFS entailment? What is then the answer
to the following query?

ASK { iswc2010:paper/280 :authors _:x }

5.4 OWL Direct Semantics Queries

Exercise 11. We assume that the queried ontology contains the axioms from Table 9. Map the
following BGP into an extended OWL axiom, list the results of evaluating the BGP under OWL
Direct Semantics, and explain, for each solution, why the solution is entailed:

?mp rdf:type :MilkProduct

Exercise 12. Map the query pattern of the following query into extended OWL objects and
illustrate the evaluation of the query over the ontology from Table 9:

SELECT ?sup
WHERE { :MilkProduct rdfs:subClassOf ?sup. ?sup rdf:type owl:Class }

Exercise 13. We consider the ontology from Table 9. Why is the query

SELECT ?rel
WHERE { :Vegetarian ?rel :Vegan }

not a well-formed query under the OWL 2 Direct Semantics?

Exercise 14. What query can one use to retrieve a list of all classes tat occur in the ontology?

Exercise 15. A typical reasoning tasks in OWL is the classification of classes, i.e., the compu-
tation of all pairs 〈C,D〉 such that C is a direct sub-class of D or C is equivalent to D. Can a
SPARQL query be used to retrieve the subsumption hierarchy?

Exercise 16. Can the OWL Direct Semantics entailment regime be implemented via material-
ization, as sketched for the RDFS regime? If so, sketch what one would have to do. If not, why
is it no possible and would it possible for subsets of the language?

6 Solutions to the Exercises

In this section, we provide the solution for the exercises from the previous section.

Using SPARQL with RDFS and OWL Entailment 191

6.1 Mapping to the SPARQL Algebra

Solution 1. We start with the query pattern, which is, as every query pattern, a group graph
pattern here consisting of one element, which is a TriplesBlock. Since Definition 3 defines
the translation for GroupGraphPattern according to Algorithm 1 (we have no filter, but one
other element, which is the BGP), we get Join(Z, algbr(bgp)) with bgp the BGP of the query.
Going back to Definition 3 for the translation of the BGP, we can now use the first case for
TriplesBlock and we obtain Join(Z, Bgp(?x foaf:mbox ?mbox)). The object can be simplified
to just Bgp(?x foaf:mbox ?mbox).

Now that we have the algebra translation for the query pattern, which we denote with E, we
can obtain the algebra translation for the whole query and then the abstract query as described
in Definition 8. We first obtain ToList(E), then go on to Project(ToList(E), {?mbox}). Finally,
we obtain the abstract query (assuming D is the dataset):

(Project(ToList(E), {?mbox}),D,SELECT)

Solution 2. We start again with the query pattern, which is again a group graph pattern
this time consisting of an element (a TriplesBlock) with a filter. We translate accord-
ing to Algorithm 1 and then according to the case for GroupGraphPattern with one fil-
ter and one element. We have to apply TranslateGroup and obtain, as in the previous ex-
ercise, Join(Z, Bgp(?x foaf:name ?name)), which we simplify to Bgp(?x foaf:name ?name).
Together with the filter translation, this results in

Filter(regex(?name, ”ian”),Bgp(?x foaf:name ?name)).

Now that we have the algebra translation for the query pattern, which we denote with E, we
can obtain the algebra translation for the whole query according to Definition 8. After applying
ToList(E) and Project(ToList(E), {?name}) as above, we further translate the DISTINCT key-
word and obtain:

(Distinct(Project(ToList(Filter(regex(?name, ”ian”),Bgp(?x foaf:name ?name)))
{?mbox})),D,SELECT)

Solution 3. We start with the query pattern, which is, as every query pattern, a group graph
pattern consisting of one element, which is a GroupOrUnionGraphPattern of the form

GroupGraphPattern UNION GroupGraphPattern

as can be seen from the grammar in Table 2. Thus, we start with a translation according to Al-
gorithm 1 and then according to the case for GroupOrUnionGraphPattern from Definition 3
obtaining: Join(Z, Union(algbr(G1), algbr(G2))) with G1 andG2 denoting the first and the sec-
ond group of the union, respectively. For G1 we again use Algorithm 1 followed by the case for
TriplesBlock from Definition 3, leading to

Join(Z, Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox)).

Since G2 has a filter, we obtain

Filter(regex(?name, ”ian”),
Join(Z, Bgp(?x foaf:name ?name . ?x foaf:mbox ?mbox))).

192 B. Glimm

Putting all together, we get:

Join(Z, Union(Join(Z, Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox)),
Filter(regex(?name, ”ian”),

Join(Z, Bgp(?x foaf:name ?name . ?x foaf:mbox ?mbox)))))

which can be simplified to

Union(Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox),
Filter(regex(?name, ”ian”), Bgp(?x foaf:name ?name . ?x foaf:mbox ?mbox)))

Now that we have the algebra translation for the query pattern, which we denote with E, we can
obtain the algebra translation for the whole query and then the abstract query as described in
Definition 8:

(Project(ToList(E), {?mbox}),D,SELECT)

Solution 4. We again translate the query pattern first obtaining:

Union(LeftJoin(Join(Z, Bgp(?x foaf:name ?name)),Bgp(?x foaf:icqChatID ?id), true),
Bgp(?x foaf:name ?name . ?x foaf:mbox <mailto:rudolph@kit.edu>))

The expression can be simplified to:

Union(LeftJoin(Bgp(?x foaf:name ?name),Bgp(?x foaf:icqChatID ?id), true),
Bgp(?x foaf:name ?name . ?x foaf:mbox <mailto:rudolph@kit.edu>))

We refer to the simplified expression as E and obtain the abstract query:

(Project(OrderBy(ToList(E), (ASC(?name)), {?name, ?id}))

6.2 Query Evaluation

Solution 5. We evaluate the algebra expression inside out, starting with the BGPs. The evalua-
tion of Bgp(?x foaf:name "Birte Glimm" . ?x foaf:mbox ?mbox) yields Ω1 = {̇μ1 }̇ with

μ1 : ?x �→ _:a, ?mbox �→ "b.glimm@googlemail.com".

The evaluation of Bgp(?x foaf:name ?name . ?x foaf:mbox ?mbox) yields Ω2 = {̇μ2, μ3 }̇ with

μ2 : ?x �→ _:a, ?name �→ "Birte Glimm", ?mbox �→ "b.glimm@googlemail.com",
μ3 : ?x �→ _:b, ?name �→ "Sebastian Rudolph", ?mbox �→ <mailto:rudolph@kit.edu>.

We next evaluate Filter(regex(?name, ”ian”),Ω2) obtaining Ω′2 = {̇μ3 }̇. We can now evaluate
the union operator, which yields Ω = {̇μ1, μ3 }̇, which is then turned into a list by the ToList
operator. Applying the projection operator yields the final solution sequence: (μ′1, μ

′
3) with

μ′1 : ?mbox �→ "b.glimm@googlemail.com",
μ′3 : ?mbox �→ <mailto:rudolph@kit.edu>.

Solution 6. We again evaluate the algebra expression inside out, starting with the BGPs. The
evaluation of Bgp(?x foaf:name ?name) yields Ω1 = {̇μ1

1, μ
2
1, μ

3
1 }̇ with

Using SPARQL with RDFS and OWL Entailment 193

μ1
1 : ?x �→ _:a, ?name �→ "Birte Glimm",

μ2
1 : ?x �→ _:b, ?name �→ "Sebastian Rudolph",

μ3
1 : ?x �→ _:c, ?name �→ "Pascal Hitzler".

The evaluation of Bgp(?x foaf:icqChatID ?id) yields Ω2 = {̇μ1
2 }̇ with

μ1
2 : ?x �→ _:a, ?id �→ "b.glimm".

For Bgp(?x foaf:name ?name . ?x foaf:mbox <mailto:rudolph@kit.edu>) we obtain Ω3 = {̇μ1
3 }̇

with

μ1
3 : ?x �→ _:b, ?name �→ "Sebastian Rudolph".

In order to evaluate LeftJoin(Ω1,Ω2, true), we first compute Filter(true, Join(Ω1,Ω2)) which
yields Ω4 = {̇μ1

4 }̇ with

μ1
4 : ?x �→ _:a, ?name �→ "Birte Glimm", ?id �→ "b.glimm".

The mappings μ2
1 and μ3

1 cannot be joined with μ1
2 since they are not compatible. Due to the

incompatibility, both these mapping participate, however, in the union and are part of the so-
lution for LeftJoin(Ω1,Ω2, true) due to the second part of the LeftJoin definition. Evaluating
LeftJoin(Ω1,Ω2, true) yields Ω5 = {̇μ1

4 }̇ ∪ {̇μ2
1, μ

3
1 }̇ = {̇μ1

5, μ
2
5, μ

3
5 }̇ with

μ1
5 = μ

1
4 : ?x �→ _:a, ?name �→ "Birte Glimm", ?id �→ "b.glimm",

μ2
5 = μ

2
1 : ?x �→ _:b, ?name �→ "Sebastian Rudolph",

μ3
5 = μ

3
1 : ?x �→ _:c, ?name �→ "Pascal Hitzler".

We can now evaluate Union(Ω5,Ω3), which yields Ω6 = {̇μ1
6, μ

2
6, μ

3
6, μ

4
6 }̇ with

μ1
6 : ?x �→ _:a, ?name �→ "Birte Glimm", ?id �→ "b.glimm",

μ2
6 : ?x �→ _:b, ?name �→ "Sebastian Rudolph",

μ3
6 : ?x �→ _:c, ?name �→ "Pascal Hitzler",

μ4
6 : ?x �→ _:b, ?name �→ "Sebastian Rudolph"

The multiset Ω6 is then turned into a list by the ToList operator. Applying the OrderBy opera-
tor yields the list (μ1

6, μ
3
6, μ

2
6, μ

4
6). Finally, applying the projection operator yields: (μ1

7, μ
2
7, μ

3
7, μ

4
7)

with
μ1

7 : ?name �→ "Birte Glimm", ?id �→ "b.glimm",

μ2
7 : ?name �→ "Pascal Hitzler",

μ3
7 : ?name �→ "Sebastian Rudolph",

μ4
7 : ?name �→ "Sebastian Rudolph".

6.3 RDFS Semantics Queries

Solution 7. We first list triples that are entailed under RDF semantics that are contributing
solutions. The entailment follows from the RDFS entailment rules [14]. The relevant rule and
the triples to which the rule is applied are indicated in the left-hand side column.

rdfs9 + (1) + (11)→ (14) iswc2010:paper/280 rdf:type :Publication.
rdfs9 + (6) + (11)→ (15) w3c:TR/rdf-sparql-query rdf:type :Publication.
rdfs7 + (7) + (13)→ (15) w3c:TR/rdf-sparql-query :authors _:l2.

If we were to materialize all RDFS-entailed triples, there would be several additional triples, but
we focus here on the relevant ones. Although the above RDFS-entailed triples do not contain
freshly generated blank nodes, we want to point out that sometimes blank nodes have to be
introduced in the rule application process, but such freshly introduced blank nodes cannot be

194 B. Glimm

returned in a solution since they are not part of the answer domain. We obtain the following
solutions from evaluating the BGP:

?pub ?seq ?ind ?auth
μ1 : iswc2010:paper/280 _:l1 rdf:type rdf:Seq
μ2 : iswc2010:paper/280 _:l1 rdf:_1 "Birte Glimm"
μ3 : iswc2010:paper/280 _:l1 rdf:_2 "Markus Krötzsch"
μ4 : w3c:rdf-sparql-query _:l2 rdf:type rdf:Seq
μ5 : w3c:rdf-sparql-query _:l2 rdf:_1 "Andy Seaborne"
μ6 : w3c:rdf-sparql-query _:l2 rdf:_2 "Eric Prud’hommeaux"

Computing the projection is then straightforward.

Solution 8. One possibility would be to apply a filter to ?auth that only permits literals as
binding:

SELECT ?auth ?pub
WHERE { ?pub rdf:type :Publication . ?pub :authors ?seq . ?seq ?ind ?auth

FILTER isLiteral(?auth) }
Other solutions with different filters are equally possible.

Solution 9. We first list triples that are entailed under RDF semantics that are contributing
solutions. The entailment follows from the RDFS entailment rules [14]. The relevant rule and
the triples to which the rule is applied are indicated in the left-hand side column.

rdfs4a + (1)→ (14) iswc2010:paper/280 rdf:type rdfs:Resource.
rdfs9 + (1) + (11)→ (15) iswc2010:paper/280 rdf:type :Publication.

thus, the query has two answers. The first inference might be surprising, but under RDFS en-
tailment, we derive several such triples. If such triples are not desired, a filter can again be used
to filter them out.

Solution 10. The triple iswc2010:paper/280 :authors _:x is indeed entailed under RDFS se-
mantics since entailment treats black nodes as existential variables. According to triple (2),
iswc2010:paper/280 is related via the property :authors to some element, witnessed by the
blank node _:l1 in the data. Since the actual names of variables do not matter, i.e., the only
question to decide is whether there is some element such that iswc2010:paper/280 is related to
this element with the property :authors, which is the case.

Regarding the Boolean query (here we only have a blank node, no variable), we have two
possible outcomes: there is a solution sequence containing a mapping (μ) where μ has an
empty domain (it does not map any variable to anything) or there is only an empty solution
sequence (). In the first case, the query answer is yes (true), whereas in the second case the
query answer is no (false).

For the RDFS entailment regime, we work with a Skolem function that maps blank nodes
from the active graph to constants, i.e., to fresh terms that occur neither in the query nor in the
active graph. Let us assume that _:l1 is mapped to sk(l1). Since the query contains a blank node,

Using SPARQL with RDFS and OWL Entailment 195

we have to find an RDF instance mapping such that when we apply the mapping and then use
the same Skolem function, the triples are entailed and ground. Thus, let μ be the mapping with
an empty domain and σ : _:x �→ _:l1, then

μ(σ(iswc2010:paper/280 :authors _:x)) = iswc2010:paper/280 :authors sk(l1),

which is a ground triple that is entailed by sk(G) (even contained in sk(G)). Thus, the query
answer is true.

6.4 OWL Direct Semantics Queries

Solution 11. The BGP is mapped into

FSS: ClassAssertion(:MilkProduct ?mp) DL: MilkProduct(?mp)

using the declaration axiom (6). Evaluating the BGP yields two solutions:

μ1 : ?mp �→ :Yoghurt
μ2 : ?mp �→ :Milk

where μ2 is a direct consequence of Axiom (10) and μ1 follows from Axiom (9) and (11).

Solution 12. The BGP of the query pattern is mapped into SubClassOf(:MilkProduct ?sup)
(DL: MilkProduct ?sup). Evaluating the mapped BGP yields Ω = {̇μ1, μ2 }̇ with

μ1 : ?sup �→ :MilkProduct
μ2 : ?mp �→ owl:Thing.

The solution μ1 follows since each class is a subclass of itself under the DS (the subclass relation
is reflexive) and μ2 follows since owl:Thing is a superclass of every class. Applying ToList and
Project yields the solution sequence (μ1, μ2).

Solution 13. The first problem is that ?rel is not typed. This makes it difficult to map the query
pattern into an extended OWL object. Even worse, no matter what type we could add, the query
cannot be fixed. Two classes, such as :Vegetarian and :Vegan, can only be related with terms
from the special vocabulary, e.g., by saying that :Vegan is a subclass of :Vegetarian (in Turtle:
:Vegan rdfs:subClassOf :Vegetarian) or by saying that the two classes are disjoint (in Turtle:
:Vegetarian owl:disjointWith :Vegan). However, since terms of the special vocabulary do not
have any of the types that variables can take, the query pattern cannot be fixed.

Solution 14. The query

SELECT ?class
WHERE { ?class rdfs:subClassOf owl:Thing . ?class rdf:type owl:Class }

would retrieve all classes of the ontology since any class is a subclass of owl:Thing (in DL:
�) under OWL’s semantics. The typing triple is not necessary in this case since the parsing is
unambiguous given that owl:Thing assumed to be declared as a class in any ontology even if
such a declaration is not explicitly present.

196 B. Glimm

Solution 15. A SPARQL query cannot distinguish between direct and indirect subclasses. Thus,
a single query can, in general, not be used to retrieve all and only the required pairs. One would
also get the indirect subclasses and it would be difficult to filter them out, at least in a single
query.

Solution 16. If completeness is required, i.e., we want to return all solutions that are solutions,
then materialization cannot be used as a general implementation technique. One of the problems
are disjunctions, i.e., there is not just one canonical model of an OWL ontology that represents
all relevant possible states of the world. One could argue that we could just include facts that
hold in every model, e.g., if we have

:a rdf:type :C .
:b rdf:type [rdf:type owl:Class ; owl:unionOf (:D :E :F)].
:F rdfs:subClassOf owl:Nothing .

which is

C(a)
(D � E � F)(b)
F ⊥

in DL notation, then we could argue that we add

:b rdf:type [rdf:type owl:Class ; owl:unionOf (:D :E)]

which is

(D � E)(b)

in DL notation to obtain a “canonical” model (since :F is a subclass of owl:Nothing it cannot
have any instances). However, a BGP such as

?ind rdf:type [rdf:type owl:Class ; owl:unionOf (:C :D :F)]

would still have :a and :b as solutions (:a since it belongs to :C and :b as it belongs to the union
of :D and :E). It would be impossible to foresee all such queries and materialize the required
axioms in a finite ontology.

This is different for the OWL RL profile. The semantics of OWL 2 RL is defined such that
certain consequences have to be derived, e.g., one materializes only (named) classes to which
an individual belongs. The OWL 2 RL specification includes a set of rules that materialize all
such consequences. Under certain restrictions for the ontology, the OWL RL rules derive all
consequences that one would derive under the Direct Semantics. If the ontology violates the
restrictions, then one might miss some answers that a tool that implements OWL 2 with its
Direct Semantics could derive.

7 Links and Further Reading

The following list of references is not meant to be complete and is a subjective selection
by the author. References that are not listed can equally be relevant and students are
encouraged to look for references that most closely fit with their interests.

Using SPARQL with RDFS and OWL Entailment 197

A text book covering the topics relevant for this summer school is: Foundations of
Semantic Web Technologies Hitzler, P., Krötzsch, M., Rudolph, S. CRC Press 2009

7.1 Public SPARQL Endpoints

data.gov.uk . The UK Government makes over 5,400 datasets publicly available, from
all central government departments and a number of other public sector bodies and local
authorities. The site also includes links to SPARQL tutorials and examples:
http://data.gov.uk/sparql

DBPedia contains structured information from Wikipedia (> 100 million triples):
http://dbpedia.org/sparql, see http://www.dbpedia.com for further informa-
tion and documentation

DBTune provides access to music-related structured data with more than 14 billion
RDF triples. The interface also allows for selecting an entailment regime that is to be
used (RDF, RDFS, plus the non-standardized RDFSLite and p2r) :
http://dbtune.org/jamendo/store/user/query

CKAN is a platform to share, use, and find data that is publicly available
http://semantic.ckan.net/sparql/

Linked Movie Database . A semantic web database for movies, including a large num-
ber of interlinks to several datasets on the open data cloud and references to related
webpages
http://data.linkedmdb.org/ and http://data.linkedmdb.org/sparql

SPARQL Editor . Talis hosts a SPARQl Editor with Examples for Space Data http://
api.talis.com/stores/space/items/tutorial/spared.html

Semantic Web Dog Food contains data about authors and publications for several con-
ferences:
http://data.semanticweb.org/snorql

SPARQL Endpoint Status collects uptime information for SPARQL endpoints from
CKAN
http://labs.mondeca.com/sparqlEndpointsStatus/index.html

7.2 RDFS

Completeness, decidability and complexity of entailment for RDF Schema and a seman-
tic extension involving the OWL vocabulary ter Horst, H.J.: Journal of Web Semantics
3(2–3), 79–115 (2005).

http://data.gov.uk/sparql
http://dbpedia.org/sparql
http://www.dbpedia.com
http://dbtune.org/jamendo/store/user/query
http://semantic.ckan.net/sparql/
http://data.linkedmdb.org/
http://data.linkedmdb.org/sparql
http://api.talis.com/stores/space/items/tutorial/spared.html
http://api.talis.com/stores/space/items/tutorial/spared.html
http://data.semanticweb.org/snorql
http://labs.mondeca.com/sparqlEndpointsStatus/index.html

198 B. Glimm

7.3 OWL and OWL Reasoning

OWL 2 Web Ontology Language: Primer Hitzler, P., Krötzsch, M., Parsia, B., Patel-
Schneider, P.F., Rudolph, S. (eds.). W3C Recommendation (2009), available at http://
www.w3.org/TR/owl2-primer/

OWL 2: The next step for OWL Cuenca Grau, B. Horrocks, I., Motik, B., Parsia, B.,
Patel-Schneider, P., and Sattler, U.: Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):309–322, 2008.

From SHIQ and RDF to OWL: The Making of a Web Ontology Language Horrocks,
I., Patel-Schneider, P.F., van Harmelen, F.: Journal of Web Semantics 1(1), 7–26 (2003)

The Description Logic Handbook Baader, F., Calvanese, D., McGuinness, D.L., Nardi,
D., Patel-Schneider, P.F. Cambridge University Press (2003)

Hypertableau Reasoning for Description Logics Motik, B., Shearer, R., Horrocks, I.:
Journal of Artificial Intelligence Research 173(14), 1275–1309 (2009)

The even more irresistible SROIQ Horrocks,I., Kutz,O., Sattler,U.: Proceedings of
the 10th International Conference on the Principles of Knowledge Representation and
Reasoning (KR 2006). pp. 57–67 (2006)

RIQ and SROIQ are harder than SHOIQ Kazakov, Y.: Proceedings of the 11th In-
ternational Conference on the Principles of Knowledge Representation and Reasoning
(KR 2008). AAAI Press/The MIT Press (2008)

A Tableau Decision Procedure for SHOIQ Horrocks, I., Sattler, U.: Journal of Auto-
mated Reasoning 39(3), 249–276 (2007)

Reasoning in Description Logics using Resolution and Deductive Databases Motik,
B.: Ph.D. thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (2006)

A practical OWL-DL Reasoner Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A.,
Katz, Y.: Pelle. Journal of Web Semantics 5(2) (2007)

Reducing OWL Entailment to Description Logic Satisfiability Horrocks, I.,
Patel-Schneider, P.: Journal of Web Semantics 1(4), 345–357 (2004)

Rules and Ontologies for the Semantic Web Eiter, T., Ianni, G., Krennwallner, T.,
Polleres, A. Reasoning Web, Fourth International Summer School 2008 Springer, 2008.

Scalable Authoritative OWL Reasoning for the Web Hogan, A., Harth, A., Polleres, A.:
IJSWIS “Semantic Services, Interoperability and Web Applications: Emerging Con-
cepts”. Journal Summation Volume. To appear, 2011.

http://www.w3. org/TR/owl2- primer/
http://www.w3. org/TR/owl2- primer/

Using SPARQL with RDFS and OWL Entailment 199

Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes
Ianni, G., Krennwallner, K., Martello, A., Polleres, A.: Proceedings of the 8th Interna-
tional Semantic Web Conference (ISWC 2009), LNCS, Springer-Verlag 2009.

From SPARQL to Rules (and back) Polleres, A.: Proceedings of the 16th International
World Wide Web Conference, 2007.

Scalable Authoritative OWL Reasoning on a Billion Triples Hogan, A., Harth, A.,
Polleres, A.: Proceedings of Billion Triple Semantic Web Challenge Workshop at 7th
International Semantic Web Conference, 2008.

7.4 SPARQL

Semantics and complexity of SPARQL Pérez, J., Arenas, M., Gutierrez, C. ACM Trans-
actions on Database Systems 34(3), 1–45 (2009)

Search RDF data with SPARQL McCarthy, P.:
http://www.ibm.com/developerworks/xml/library/j-sparql/

SPARQL Tutorial – Jena/ARQ http://jena.sourceforge.net/ARQ/Tutorial/

SPARQL by Example – Cambridge Semantics http://www.cambridgesemantics.
com/2008/09/sparql-by-example/

Data Extraction & Exploration with SPARQL & the Talis platform http://www.
slideshare.net/ldodds/sparql-tutorial

Introducing SPARQL: Querying the Semantic Web Dodds, L.: http://www.xml.com/
pub/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.
html

7.5 SPARQL over OWL Ontologies

SPARQL Beyond Subgraph Matching Glimm, B., Krötzsch, M.: In: Proceedings of
the 9th International Semantic Web Conference (ISWC 2010). vol. 6496, pp. 241–256.
Springer-Verlag (2010)

SPARQL-DL: SPARQL Query for OWL-DL Sirin,E., Parsia,B.: Proceedings of the 3rd
OWL Experiences and Directions Workshop (OWLED 2007) (2007)

Optimizations for Answering Conjunctive ABox Queries Sirin, E., Parsia, B.: Proceed-
ings of the 2006 Description Logic Workshop (DL 2006) (2006)

http://www.ibm.com/developerworks/xml/library/j-sparql/
http://jena.sourceforge.net/ARQ/Tutorial/
http://www.cambridgesemantics.com/2008/09/sparql-by-example/
http://www.cambridgesemantics.com/2008/09/sparql-by-example/
http://www.slideshare.net/ldodds/sparql-tutorial
http://www.slideshare.net/ldodds/sparql-tutorial
http://www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.html
http://www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.html
http://www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.html

200 B. Glimm

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
pp. 325–330 (2003)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2005), vol. 19, pp. 364–369
(2005)

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In: Proceedings of the
2006 Description Logic Workshop (DL 2006). CEUR Workshop Proceedings (2006)

4. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team Submission
(January 14, 2008), http://www.w3.org/TeamSubmission/turtle/

5. Beckett, D., Broekstra, J. (eds.): SPARQL Query Results XML Format (January 15, 2008),
http://www.w3.org/TR/rdf-sparql-XMLres/

6. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.): RIF Core
Dialect. W3C Recommendation (2010), http://www.w3.org/TR/rif-core/

7. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions,
GCI axioms, and–what else? In: de Mantáras, R.L., Saitta, L. (eds.) Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI 2004), pp. 298–302. IOS Press, Am-
sterdam (2004)

8. de Bruijn, J. (ed.): RIF RDF and OWL Compatibility. W3C Recommendation (2010),
http://www.w3.org/TR/rif-rdf-owl/

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies, pp. 602–607 (2005)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family 39(3), pp. 385–429
(2007)

11. Charboneau, D., Feigenbaum, L. (eds.): SPARQL 1.1 Protocol for RDF. W3C Working Draft
(January 26, 2010), http://www.w3.org/TR/sparql11-protocol/

12. Glimm, B., Ogbuji, C. (eds.): SPARQL 1.1 Entailment Regimes. W3C Working Draft (Oc-
tober 14, 2010), http://www.w3.org/TR/sparql11-entailment/

13. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Working Draft (October
14, 2010), http://www.w3.org/TR/sparql11-query/

14. Hayes, P.: RDF semantics (2004), http://www.w3.org/TR/rdf-mt/
15. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema

and a semantic extension involving the OWL vocabulary. Journal of Web Semantics 3(2-3),
79–115 (2005)

16. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Proceedings of
the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 2040–
2045 (2009)

17. Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (2010), http://www.
w3.org/TR/rif-overview/

18. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite. In: Proceedings of the 12th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press,The MIT
Press (2010)

19. Krötzsch, M.: Efficient inferencing for OWL EL. In: Janhunen, T., Niemelä, I. (eds.) JELIA
2010. LNCS, vol. 6341, pp. 234–246. Springer, Heidelberg (2010)

20. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web
Ontology Language: Profiles. W3C Recommendation (2009), http://www.w3.org/TR/
owl2-profiles/

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-rdf-owl/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

Using SPARQL with RDFS and OWL Entailment 201

21. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C Recommendation (2009), http://
www.w3.org/TR/owl2-syntax/

22. Ogbuji, C. (ed.): SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs. W3C
Working Draft (October 14, 2010),
http://www.w3.org/TR/sparql11-http-rdf-update/

23. Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Map-
ping to RDF Graphs. W3C Recommendation (2009), http://www.w3.org/TR/
owl2-mapping-to-rdf/

24. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34(3), 1–45 (2009)

25. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2. In: Bern-
stein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K.
(eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer, Heidelberg (2009)

26. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-
mendation (January 15, 2008), http://www.w3.org/TR/rdf-sparql-query/

27. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Rosati,
R., Almatelli, A. (eds.) Proceedings of the 12th International Conference on the Principles of
Knowledge Representation and Reasoning (KR 2010). AAAI Press, The MIT Press (2010)

28. Schenk, S., Gearon, P., Passant, A. (eds.): SPARQL 1.1 Update. W3C Working Draft (Octo-
ber 14, 2010), http://www.w3.org/TR/sparql11-update/

29. Schneider, M. (ed.): OWL 2 Web Ontology Language: RDF-Based Semantics. W3C Recom-
mendation (2009), http://www.w3.org/TR/owl2-rdf-based-semantics/

30. Williams, G.T. (ed.): SPARQL 1.1 Service Description. W3C Working Draft (October 14,
2010), http://www.w3.org/TR/sparql11-service-description/

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/sparql11-service-description/

Database Foundations for Scalable RDF

Processing

Katja Hose1, Ralf Schenkel1,2, Martin Theobald1, and Gerhard Weikum1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany

Abstract. As more and more data is provided in RDF format, storing
huge amounts of RDF data and efficiently processing queries on such
data is becoming increasingly important. The first part of the lecture
will introduce state-of-the-art techniques for scalably storing and query-
ing RDF with relational systems, including alternatives for storing RDF,
efficient index structures, and query optimization techniques. As central-
ized RDF repositories have limitations in scalability and failure tolerance,
decentralized architectures have been proposed. The second part of the
lecture will highlight system architectures and strategies for distributed
RDF processing. We cover search engines as well as federated query pro-
cessing, highlight differences to classic federated database systems, and
discuss efficient techniques for distributed query processing in general
and for RDF data in particular. Moreover, for the last part of this chap-
ter, we argue that extracting knowledge from the Web is an excellent
showcase – and potentially one of the biggest challenges – for the scal-
able management of uncertain data we have seen so far. The third part of
the lecture is thus intended to provide a close-up on current approaches
and platforms to make reasoning (e.g., in the form of probabilistic infer-
ence) with uncertain RDF data scalable to billions of triples.

1 RDF in Centralized Relational Databases

The increasing availability and use of RDF-based information in the last decade
has led to an increasing need for systems that can store RDF and, more impor-
tantly, efficiencly evaluate complex queries over large bodies of RDF data. The
database community has developed a large number of systems to satisfy this
need, partly reusing and adapting well-established techniques from relational
databases [122]. The majority of these systems can be grouped into one of the
following three classes:

1. Triple stores that store RDF triples in a single relational table, usually with
additional indexes and statistics,

2. vertically partitioned tables that maintain one table for each property, and
3. Schema-specific solutions that store RDF in a number of property tables

where several properties are jointly represented.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 202–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Database Foundations for Scalable RDF Processing 203

<Katja,teaches,Databases>

<Katja,works_for,MPI Informatics>

<Katja,PhD_from,TU Ilmenau>

<Martin,teaches,Databases>

<Martin,works_for,MPI Informatics>

<Martin,PhD_from,Saarland University>

<Ralf,teaches,Information Retrieval>

<Ralf,PhD_from,Saarland University>

<Ralf,works_for,Saarland University>

<Saarland University,located_in,Germany>

<MPI Informatics,located_in,Germany>

Fig. 1. Running example for RDF data

In the following sections, we will describe each of these classes in detail, focus-
ing on two important aspects of these systems: storage and indexing, i.e., how
are RDF triples mapped to relational tables and which additional support struc-
tures are created; and query processing, i.e., how SPARQL queries are mapped
to SQL, which additional operators are introduced, and how efficient execution
plans for queries are determined. In addition to these purely relational solutions,
a number of specialized RDF systems has been proposed that built on non-
relational technologies, we will briefly discuss some of these systems. Note that
we will focus on SPARQL1 processing, which is not aware of underlying RDF/S
or OWL schema and cannot exploit any information about subclasses; this is
usually done in an additional layer on top.

We will explain especially the different storage variants with the running ex-
ample from Figure 1, some simple RDF facts from a university scenario. Here,
each line corresponds to a fact (triple, statement), with a subject (usually a re-
source), a property (or predicate), and an object (which can be a resource or
a constant). Even though resources are represented by URIs in RDF, we use
string constants here for simplicity. A collection of RDF facts can also be repre-
sented as a graph. Here, resources (and constants) are nodes, and for each fact
<s,p,o>, an edge from s to o is added with label p. Figure 2 shows the graph
representation for the RDF example from Figure 1.

1.1 Triple Stores

Triple stores keep RDF triples in a simple relational table with three or four
attributes. This very generic solution with low implementation overhead has
been very popular, and a large number of systems based on this principle are
available. Prominent examples include 3store [56] and Virtuoso [41] from the
Semantic Web community, and RDF-3X [101] and HexaStore [155] that were
developed by database groups.

Storage. RDF facts are mapped to a generic three-attribute table of the form
(subject,property,object), also know as triple table; for simplicity, we will ab-
breviate the attributes by S, P, and O. To save space (and to make access structures
1 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

204 K. Hose et al.

Fig. 2. Graph representation for the RDF example from Figure 1

subject property object

Katja teaches Databases

Katja works for MPI Informatics

Katja PhD from TU Ilmenau

Martin teaches Databases

Martin works for MPI Informatics

Martin PhD from Saarland University

Ralf teaches Information Retrieval

Ralf PhD from Saarland University

Ralf works for Saarland University

Ralf works for MPI Informatics

Saarland University locatedIn Germany

MPI Informatics located in Germany

Fig. 3. Triple store representation for the running example from Figure 1

more efficient), most systems convert resource identifiers, properties and constants
to numeric ids before storing them in the relation, for example by hashing. The
resulting map is usually stored in an additional table, sometimes separately for
resource ids and constants. If a system stores data from more than one source (or
more than one RDF graph), the relation is often extended by a fourth numeric
attribute, the graph id (abbreviated as G), that uniquely identifies the source of
a triple. In this case, the relation is also called a quadruple table.

Figure 3 shows the resulting three-attribute relation for the example from
Figure 1.

For efficient query processing, indexes on (a subset of) all combinations of
S, P, and OS are maintained. This allows to efficiently retrieve all matches for
a triple pattern of a SPARQL query. We will often refer to indexes with the
sequence of the abbreviations of the indexed attributes (such as SPO). Since each
index has approximately the size of the relation, the number of combinations for
which indexes are kept is usually limited, or indexes are stored in a compressed
way.

Database Foundations for Scalable RDF Processing 205

Virtuoso [40] comes with a space-optimized way of mapping resources, predi-
cates and constants to numeric ids (IRI ID). These strings are mapped to numeric
ids only if they are long (which means at least 9 bytes long), otherwise, they are
stored as text in the quadruple relation (this saves for short objects over a solu-
tion that maps everything to ids). It uses a standard quadruple table (G,S,P,O)
with a primary key index on all four attributes together. In addition, it uses
a bitmap index on (O,G,P,S): This index maintains, for each combination of
(O,G,P) in the data, a bit vector. Each subject is assigned a bit position, and
for a quadruple (g,s,p,o) in the data, the bit position for s is set to 1 in the bit
vector for (o,g,p). Virtuoso stores distinct values within a page only once and
eliminates common prefixes of strings. An additional compression of each page
with gzip yields a compression from 8K to 3K for most pages.

RDF-3X uses a standard triple table and does not explicitly support multi-
ple graphs. However, RDF-3X never actually materializes this table, but instead
keeps clustered B+ tree indexes on all six combinations of (S,P,O). Additionally,
RDF-3X includes aggregated indexes for each possible pair of (S,P,O) and each
order, resulting in six additional indexes. The index on (S,O), for example, stores
for each pair of subject and object that occurs in the data the number of triples
with this subject and this object, we’ll refer to this index as SO*. Such an index
allows to efficiently answer queries like select ?s ?o where {?s ?p ?o}. We
could process this by scanning the SOP index, but we don’t need the exact bind-
ings for ?p to generate the result, so we read many index entries that don’t add
new results. All we need is, for each binding of ?s and ?o, the number of triples
with this subject and this object, so that we can generate the right number of
results for this binding (including duplicates). The SO* index can help a lot here.
Finally, RDF-3X maintains aggregated indexes for each single attribute, again
plus triple counts.

To reduce space requirements of these indexes, RDF-3X stores the leaves of
the indexes in pages and compresses them. Since these leaves contain triples that
often share some attribute values and all attributes are numeric, it uses delta
encoding for compression. This, together with encoding strings into comparably
short numbers, helps to keep the overall size of the database comparable or
even slightly smaller than the size of the uncompressed RDF triples in textual
representation. The original RDF-3X paper [101] includes a discussion of space-
time tradeoffs for compression and shows that, for example, compression with
LZ77 generates more compact indexes, but requires significantly more time to
decompress.

Query Processing and Optimization. Query execution on a quadruple store
is done in two steps, converting the SPARQL query into an equivalent SQL query,
and creating and executing a query plan for this SQL query.

Step 1. The conversion of a SPARQL query to an equivalent SQL query on
the triple/quadruple table is a rather straight-forward process; we’ll explain it
now for triple tables. For each triple pattern in the SPARQL query, a copy of
the triple relation is added to the query. Whenever a common variable is used
in two patterns, a join between the corresponding relation instances is created

206 K. Hose et al.

on the attributes where the variable occurs. Any constants are directly mapped
to conditions on the corresponding relation’s attribute.

As an example, consider the SPARQL query

SELECT ?a ?b WHERE
{?a works_for ?u.
?b works_for ?u.
?a phd_from ?u. }

which selects people who work at the same place where they got their phd,
together with their coworkers. This is mapped to the SQL query

SELECT t1.s, t2.s FROM triple t1, triple t2, triple t3
WHERE t1.p=’works_for’
AND t2.p=’works_for’
AND t3.p=’phd_from’
AND t1.o=t2.o
AND t1.o=t3.o
AND t1.s=t3.s

Note that in a real system, the string constants would usually be mapped to
the numeric id space first. Further note that we can optimize away one join here
(t2.o=t3.o) since it is redundant.

Step 2. Now that we have a standard SQL query, it is tempting to simply
rely on the existing relational backends for optimizing and processing this query.
This is actually done in many systems, and even those systems which implement
their own backend system use the same operators used in relational databases.
Converting the SQL query into an equivalent abstract operator tree, for example
an expression in relational algebra, is again straight-foward.

Once this is done, the next step is creating an efficient physical execution plan,
i.e., decide how the abstract operators (joins, projection, selection) are mapped
to physical implementations in a way that the resulting execution is as cheap
(in terms of I/O and CPU usage) and as fast (in terms of processing times)
as possible. The choice of implementations is rather huge, for example a join
operator can be implemented with merge joins, hash joins, or nested loop joins.
Additionally, a number of specialized joins exist (such as outer joins and semi
joins) that can further improve efficiency. An important physical operator in
many systems are index lookups and scans which exploit the numerous indexes
that systems keep. Often, each triple pattern in the original SPARQL query
corresponds to an index scan in the corresponding index if that index is available,
for example, the triple pattern ?a works for ?b could be mapped on a scan of
the PSO index, if that exists. If the optimal index does not exist, scans of less
specific indexes can be used, but some information from that index must be
skipped. For example, if the system provides only an O index, a pattern ?a
works for MPI Informatics can be mapped to a scan of the O index, starting
at MPI Informatics and skipping all entries that do not match the predicate
constraint.

Database Foundations for Scalable RDF Processing 207

Finding the most efficient plan now includes considering possible variants of
physical plans (such as different join implementations, different join orders, etc.)
and selecting the most efficient plan. This, in turn, requires that the execution
cost for each plan is estimated. It turns out that off-the-shelf techniques imple-
mented in current relational databases, for example attribute-level histograms to
represent the distribution. These techniques were not built for dealing with a sin-
gle, large table. The main problem is that they ignore correllation of attributes,
since statistics are available only separately for each attribute. Estimates (for
example how many results a join will have, or how many results a selection
will have) are therefore often way off, which can lead to arbitrarily bad execu-
tion plans. Multi-dimensional histograms, on the other hand, could capture this
correllation, but can easily get too large for large-scale RDF data.

RDF-3X [101, 100] comes with specializes data structures for maintaining
statistics. It uses histograms that can handle any triple pattern and any join,
but assume independence of different patterns, and it comes with optimizations
for frequent join paths. To further speed up processing, it applies sideway infor-
mation passing between operators [100]. It also includes techniques to deal with
unselective queries which return a large fraction of the database.

Virtuoso [40] exploits the bit vectors in its indexes for simple joins, which can
be expressed as a conjunction of thse sparse bit vectors. As an example, consider
the SPARQL query

select ?a
where {?a works_for Saarland University.

?a works\for MPI Informatics.}

To execute this, it is sufficient to load the bit vectors for both triple patterns
and intersect them. For cost estimation, Virtuoso does not rely on per-attribute
histogram, but uses query-time sampling: If a triple pattern has constants for
p and o and the graph is fixed, it loads the first page of the bit vector for that
pattern from the index, and extrapolates selectivity from the selectivity of this
small sample.

Further solutions on the problem of selectivity estimation for graph queries
were proposed by [91, 90] outside the context of an RDF system; Stocker et
al. [135] consider the problem of query optimization with graph patterns.

1.2 Vertically Partitioned Tables

The vast majority of triple patterns in queries from real applications has fixed
properties. To exploit this fact for storing RDF, one table with two attributes,
one for storing subjects and one for storing objects, is created for each property
in the data; if quadruples are stored, a third attribute for the graphid is added.
An RDF triple is now stored in the table for its property. Like in the Triple table
solution, string literals are usually encoded as numeric ids. Figure 4 shows how
our example data from Figure 1 is represented with vertically partitioned tables.

Sinces tables have only two columns, this idea can be further pushed by not
storing them in a traditional relational system (a row store), but in a column

208 K. Hose et al.

teaches

subject object

Katja Databases

Martin Databases

Ralf Information Retrieval

works for

subject object

Katja MPI Informatics

Martin MPI Informatics

Ralf MPI Informatics

Ralf Saarland University

PhD from

subject object

Katja TU Ilmenau

Martin Saarland University

Ralf Saarland University

located in

subject object

Saarland University Germany

MPI Informatics Germany

Fig. 4. Representation of the running example from Figure 1 with vertically partitioned
tables

store. A column store does not store tables as collections of rows, but as collection
of columns, where each entry of a column comes with a unique ID that allows
to reconstruct the rows at query time. This has the great advantage that all
entries within a column have the same type and can therefore be compressed
very efficiently. The idea of using column stores for RDF was initially proposed by
Abadi et al. [2], Sidirourgos et al. [130] pointed out advantages and disadvantages
of this technique.

Regarding query processing, it is evident that triple patterns with a fixed
property can be evaluated very efficiently, by simply scanning the table for this
property (or, in a column store, accessing the columns of this table). Query
optimization can also be easier as per-table statistics can be maintained. On the
other hand, triple patterns with a property wildcard are very expensive since
they need to access all two-column tables and form the union of the results.

1.3 Property Tables

In many RDF data collections, a large number of subjects have the same or at
least are largely overlapping set of properties, and many of these properties will
be accessed together in queries (like in our example above that asked for people
that did their PhD at the same place where they are working now). Combin-
ing all properties of a subject in the same table makes processing such queries
much faster since there is no need for a join to combine the different properties.
Property tables do exactly this: Groups of subjects with similar properties are
represented by a single table where each attribute corresponds to a property. A
set of facts for one of these subjects is then stored as one row in that table, where
one column represents the subjects, and the other columns store objects for the
properties that correspond to that column, or NULL if no such property exists.
The most prominent example for this storage structure is Jena [158,23]. Chong
et al. [27] proposed property tables as external view (which can be material-
ized) to simplify access to triple stores. Levandoski et al [80] demonstrate that
property tables can outperform triple stores and vertically partitioned tables for
RDF data collections with regular structure, such as DBLP or DBPedia.

Database Foundations for Scalable RDF Processing 209

People

subject teaches PhD from

Katja Databases TU Ilmenau

Martin Databases Saarland University

Ralf Information Retrieval Saarland University

Institutions

subject located in

Martin Saarland University

Ralf Saarland University

Remainder

subject predicate object

Katja works for MPI Informatics

Martin works for MPI Informatics

Ralf works for Saarland University

Ralf works for MPI Informatics

Fig. 5. Representation of the running example from Figure 1 with property tables

This table layout comes with two problems to solve: First, there should not be
too many NULL values since they increase storage space, so storing the whole
set of facts in a single table is not a viable solution. Instead, the set of subjects
to store in one table can be determined by clustering subjects by the set of
their properties, or subjects of the same type can be stored in the same table if
schema information is available. Second, multi-valued properties, i.e., properties
that can have more than one object for the same subject, cannot be stored in
this way without breaking the relational paradigm. In our example, people can
work for more than one institution at the same time. To solve this, one can
either create multiple attributes for the same property, but this works only if
the maximal number of different objects for the same property and the same
subject is rather small. Alternatively, one can store facts with these properties
in a standard triple table.

Figure 5 shows the representation of the example from Figure 1 with property
tables. We grouped information about people in the People table and informa-
tion about Institutions in the Institutions table. As the works for property
can have multiple objects per subject, we store facts with this property in the
Remainder triple table.

1.4 Specialized Systems

Beyond the three classes of systems we presented so far, there are a number of
systems that don’t fit into these categories. We will shortly sketch these systems
here without giving much detail, and refer the reader to the referenced original
papers for more information.

Atre et al. [9] recently proposed to store RDF data in matrix form. Com-
pressed bit vectors help to make query processing efficient. Zhou and Wu [160]
propose to split RDF data into XML trees, rewrite SPARQL as XPath and
XQuery expressions, and implement an RDF system on top of an XML database.
Fletcher and Beck [42] propose to index not triples, but atoms, and introduce the
Three-Way Triple Tree, a disk-based index.

210 K. Hose et al.

A number of proposals aims at representing and indexing RDF as graphs.
Baolin and Bo [85] combine in their HPRD system a triple index with a path
index and a content index. Liu and Hu [84] propose to use a dedicated path
index to improve efficiency of RDF query processing. Grin [149] explicitly uses a
graph index for RDF processing. Matono et al. [92] propose to use a path index
based on suffix arrays. Bröcheler et al propose to use DOGMA, a disk-based
graph index, for RDF processing.

2 RDF in Distributed Setups

Managing and querying RDF data efficiently in a centralized setup is an impor-
tant issue. However, with the ever-growing amount of RDF data published on
the Web, we also have to pay attention to relationships between web-accessible
knowledge bases. Such relationships arise when knowledge bases store seman-
tically similar data that overlaps. For example, a source storing extracted in-
formation from Wikipedia (DBpedia [10]) and a source providing geographical
information about places (GeoNames2) might both provide information about
the same city, e.g., Berlin.

Such relationships are often expressed explicitly in the form of RDF links, i.e.,
subject and object URIs refer to different namespaces and therefore establish a
semantic connection between entities contained in different knowledge bases. Con-
sider again the above mentioned sources (DBpedia and GeoNames) [15], both pro-
vide information about the same entity (e.g. Berlin) but use different identifiers.
Thus, the following RDF triple links the respective URIs and expresses that both
sources refer to the same entity: (<http://dbpedia.org/resource/Berlin>,
<owl:sameAs>, http://sws.geonames.org/2950159/).

The exploitation of these relationships and links offers users the possibility to
obtain a wide variety of query answers that could not be computed considering
a single knowledge base but require the combination of knowledge provided by
multiple sources. Computing such query answers requires sophisticated reasoning
and query optimization techniques that also take the distribution into account.
An important issue in this context that needs to be considered is the interface
that is available to access a knowledge base [63]; some sources provide SPARQL
endpoints that can answer SPARQL queries, whereas other sources offer RDF
dumps – an RDF dump corresponds to a large RDF document containing the
RDF graph representing a source’s complete dataset.

The Linking Open Data initiative3 is trying to enforce the process of establish-
ing links between web-accessible RDF data sources – resulting in Linked Open
Data [15], a detailed introduction to Linked Data is provided in [11]. The Linked
Open Data cloud resembles the structure of the World Wide Web (web pages
connected via hyperlinks) and relies on the so-called Linked Data principles [14]:

– Use URIs as names for things.
– Use HTTP URIs so that people can look up those names.

2 http://www.geonames.org/ontology/
3 http://esw.w3.org/SweolG/TaskForces/CommunityProjects/LinkingOpenData

http://www.geonames.org/ontology/
http://esw.w3.org/SweolG/TaskForces/CommunityProjects/LinkingOpenData

Database Foundations for Scalable RDF Processing 211

– When someone looks up a URI, provide useful information, using the stan-
dards (RDF, SPARQL).

– Include links to other URIs, so that they can discover more things.

For a user there are several ways to access knowledge bases and exploit links
between them. A basic solution is browsing [148,38,57]: the user begins with one
data source and progressively traverses the Web by following RDF links to other
sources. Browsers allow users to navigate through the sources and are therefore
well-suited for non-experts. However, for complex information needs, formulating
queries in a structured query language and executing them on the RDF sources
is much more efficient. Thus, in the remainder of this section we will discuss
the main approaches for distributed query processing on RDF data sources – a
topic, which has also been considered in recent surveys [51, 63]. We begin with
an overview of search engines in Section 2.1 and proceed with approaches ad-
hering to the principles of data warehouses (Section 2.2) and federated systems
(Section 2.3). We proceed with approaches that discover new sources during
query processing (Section 2.4) and end with approaches applying the P2P
principle (Section 2.5).

2.1 Search Engines

Before discussing how traditional approaches known from distributed database
systems can be applied in the RDF and Linked Data context, let us discuss an
alternative to find linked data on the Web: search engines.

The main idea is to crawl RDF data from the Web and create a centralized
index based on the crawled data. The original data is not stored permanently
but dropped once the index is created. Since the data provided by the original
sources changes, indexes need to be recreated from time to time. In order to
answer a user query, all that needs to be done is to perform a lookup operation
on the index and to determine the set of relevant sources. In most cases user
queries consist of keywords that the search engine tries to find matching data
for. The so found results and relevant sources are output to the user with some
additional information about the results.

The literature proposes several central index search engines, some of them are
discussed in the following. We can distinguish local-copy approaches [58, 34, 26]
that collect local copies of the crawled data and index-only approaches [37,108]
that only hold local indexes for the data found on the Web. Another distinguish-
ing characteristic is what search engines find: RDF documents [37,108] or RDF
objects/entities [58, 34, 26].

Swoogle. One of the most popular search engines for the Semantic Web was
Swoogle [37]. It was designed as a system to automatically discover Semantic Web
documents, index their metadata, and answer queries about them. Using this
engine, users can find ontologies, documents, terms, and other data published
on the Web.

Swoogle uses an SQL database to store metadata about the documents,
i.e., information about encoding, language, statistics, ontology annotations, re-
lationships among documents (e.g., one ontology imports another one), etc.

212 K. Hose et al.

A crawler-based approach is used to discover RDF documents, metadata is ex-
tracted, and relationships between documents are computed. Swoogle uses two
kinds of crawlers: a Google crawler using the Google web service to find relevant
Semantic Web documents and a crawler based on Jena2 [157], which identifies
Semantic Web content in a document, analyzes the content, and discovers new
documents through semantic relations.

Discovered documents are indexed by an information retrieval system, which
can use either character N-Gram or URIrefs as keywords to find relevant docu-
ments and to compute the similarity among a set of documents. Swoogle com-
putes ranks for documents in a similar way as the PageRank [109] algorithm
used by Google.

Thus, a user can formulate a query using keywords and Swoogle will report
back a list of documents matching those keywords in a ranked order. Optionally,
a user might also define content-based constraints to a general SQL query on
the underlying database, e.g., the type of the document, the number of defined
classes, language, encoding, etc.

Semantic Web Search Engine (SWSE). In contrast to other search engines
(document-centric), which given a keyword look for relevant sources and doc-
uments, SWSE [58] is entity-centric, i.e., given a keyword it looks for relevant
entities.

SWSE uses a hybrid approach towards data integration: first, it uses
YARS2 [60] as an internal RDF store to manage the crawled data (data ware-
housing) and second, it applies virtual integration using wrappers for external
sources. In order to increase linkage between data from different sources, SWSE
applies entity consolidation. The goal is to identify URIs that actually refer to
the same real-world entity by finding matches analyzing values of inverse func-
tional properties. In addition, existing RDF entities are linked to Web documents
(e.g., HTML) using an inverted index over the text of documents and specific
properties such as foaf:name to identify entities.

YARS2 uses three different index types to index the data: (i) a keyword index
using Apache Lucene4 as an inverted index – this index maps terms occurring
in an RDF object of a triple to the subject, (ii) quad5 indexes in six different
orderings of triple components – distributed over a set of machines according to a
hash function, and (iii) join indexes to speed up queries containing combinations
of values or paths in the graph.

In the first step of searching, the user defines a keyword query. The result of
the search is a list of all entities matching the keyword together with a summary
description for the entities. The results are ranked by an algorithm similar to
PageRank combining ranks from the RDF graph with ranks from the data source
graph [65]. To refine the search and filter results, the user can specify a specific
type/class, e.g., person, document, etc. By choosing a specific result entity, the
user can obtain additional information. These additional pieces of information

4 http://lucene.apache.org/java/docs/fileformats.html
5 A quad is a triple extended by a fourth value indicating the origin.

http://lucene.apache.org/java/docs/fileformats.html

Database Foundations for Scalable RDF Processing 213

might originate from different sources. Users can then continue their exploration
by following semantic links that might also lead to documents related to the
queried entity.

WATSON. WATSON [34] is a tool and an infrastructure that automatically
collects, analyzes, and indexes ontologies and semantic data available online in
order to provide efficient access to this knowledge for Semantic Web users and
applications.

The first step, of course, is crawling. WATSON tries to discover locations of
semantic documents and collects them when found. The crawling process ex-
ploits well-known search engines and libraries, such as Swoogle and Google. The
retrieved ontologies are inspected for links to other ontologies, e.g., exploiting
owl:import, rdfs:seeAlso, dereferenceable URIs, etc.

Afterwards, the semantic content is validated, indexed, and metadata is gen-
erated. WATSON collects metadata such as the language, information about
contained entities (classes, properties, literals), etc. By exploiting semantic re-
lations (e.g. owl:import), implicit links between ontologies can be computed in
order to detect and remove duplicate information and so that storing redundant
information and presenting duplicated results to the user can be avoided.

WATSON supports queries based on keywords similar to Swoogle to retrieve
and access semantic content including a particular search phrase (multiple key-
words are supported). Keywords are matched against the local names, labels,
comments and/or literals occurring in ontologies. WATSON returns URIs of
matching entities, which can serve as an entry point for iterative search and
exploration.

Sindice. Sindice [108] crawls RDF documents (files and SPARQL endpoints)
from the Semantic Web and uses three indexes for resource URIs, Inverse Func-
tional Properties (IFPs)6, and keywords. Consequently, the user interface allows
users to search for documents based on keywords, URIs, or IFPs. To process the
query, the query only needs to be passed to the relevant index, results need to
be gathered, and the output (HTML page) needs to be created.

The indexes correspond to inverted indexes of occurrences in documents.
Thus, the URI index has one entry for each URI. The entry contains a list
of document URLs that mention the corresponding URI. The structure of the
keyword index is the same, the only difference is that it does not consider URIs
but tokens (extracted from literals in the documents), the IFP index uses the
uniquely identifying pair (property, value).

When looking for the URI of a specific entity (e.g. Berlin), Sindice provides
the user with several documents that mention the searched URI. For each result
some further information is given (human description, date of last update) to
enable users to choose the best suitable source. The results are ranked in order
of relevance, which is determined based on the TF/IDF relevance metric [43] in

6 http://www.w3.org/TR/owl-ref/#InverseFunctionalProperty-def: If a property
is declared to be inverse-functional, then the object of a property statement uniquely
determines the subject (some individual).

owl:import
http://www.w3.org/TR/owl-ref/#InverseFunctionalProperty-def:

214 K. Hose et al.

information retrieval, i.e., sources that share rare terms (URIs, IFPs, keywords)
are preferred. In addition, the ranking prefers sources whose URLs a similar to
queried URIs, i.e., containing the same hostnames.

Falcons. In contrast to other search engines, Falcons [26] is a keyword-based
search engine that focuses on finding linked objects instead of RDF documents
or ontologies. In this sense, it is similar to SWSE.

Just like other systems, Falcons crawls RDF documents, parses them using
Jena7, and follows URIs discovered in the documents for further crawling. To
store the RDF triples, Falcons creates quadruples and uses a quadruple store
(MySQL).

To provide detailed information about objects, the system constructs a virtual
document containing literals associated with the object, e.g., human-readable
names and descriptions (rdfs:label, rdfs:comment).

Falcons creates an inverted index based on the terms in the virtual documents
and uses this index later on for keyword-based search. A second inverted index
is built based on the objects’ classes – it is used to perform filtering based
on the objects’ classes/types. For a query containing both, keywords and class
restrictions, Falcons computes the intersection between the result sets returned
by both indexes.

Thus, given a keyword query, Falcons uses the index to find virtual documents
(and therefore objects) containing the keywords. Falcons supports class-based
(typing) query refinement by employing class-inclusion reasoning, which is the
main difference to SWSE, which does not allow such refinements and reasoning.
The so-found result objects are ranked by considering both their relevance to
the query (similarity between the virtual documents and the keyword query)
and their popularity (a measure based on the number of documents referring to
the object).

Each presented result object is accompanied with a snippet that shows asso-
ciated literals and linked objects matched with the query. – also shows detailed
RDF descriptions loaded from the quadruple store.

More systems. There are many more search engines such as OntoSearch2 [111],
which stores a copy of an ontology in a tractable description logic and supports
SPARQL as a query language to find, for instance, all the instances of a given
class or the relations occurring between two instances. Several other systems aim
at providing efficient access to ontologies and semantic data available online. For
example, OntoKhoj [112] is an ontology portal that crawls, classifies, ranks, and
searches ontologies. For ranking they use an algorithm similar to PageRank.
Oyster [110] is different in the sense that it focuses on ontology sharing: users
register ontologies and their metadata, which can afterwards accessed over a
peer-to-peer network of local registries. Finally let us mention OntoSelect [19] is
an ontology library that focuses on providing natural language based access to
ontologies.

7 http://jena.sourceforge.net

http://jena.sourceforge.net

Database Foundations for Scalable RDF Processing 215

2.2 Data Warehousing

So far, we have discussed several techniques to search for documents and entities
using search engines. However, the problem of answering queries based on data
provided by multiple sources has been known in the database community since
the 80s. Thus, from a database point of view the scenario we face with distributed
RDF processing is similar to data integration.

Figure 6 shows a categorization of data integration systems from a classical
database point of view. The same categorization can be applied to the problem
of processing Linked Data because, despite some differences, similar problems
have to be solved and similar techniques have already been applied by different
systems for Linked Data processing.

The first and most important characteristic that distinguishes data integration
systems is whether they copy the data into a central database, or storage system
respectively, or leave the data at the sources and only work with statistical
information about the sources, e.g., indexes. Approaches falling into the former
category are generally referred to as materialized data integration systems with
data warehouses as a typical implementation. Approaches of the second category
are referred to as virtual data integration systems as they only virtually integrate
the data without making copies.

The process of integrating data into a data warehouse is referred to as the
ETL process (Extract-Transform-Load). First, the data is extracted from the
sources, then it is transformed, and finally loaded into the data warehouse. This
workflow can also be applied in the Semantic Web context.

Extract. As many knowledge bases are available as dumps for download, it is
possible to download a collection of interesting linked datasets and import them
into a data warehouse. This warehouse resembles a centralized RDF storage
system that can be queried and optimized using the techniques discussed in
Section 1. If a data source is not available for download, the data can be crawled
by looking up URIs or accessing a SPARQL endpoint. As the data originates
from different sources, the system should keep track of provenance, e.g., by using
named graphs [22] or quads.

Transform. Data warehouses in the database world usually provide the data in
an aggregated format, e.g., in a data warehouse storing information about sales
we do not keep detailed information about all transactions (as provided by the
sources) but, for instance, the volume of sales per day (computing aggregated
values based on the data provided by the sources). For linked data, this roughly
corresponds to running additional analyses on the crawled data for duplicate
detection/removal or entity consolidation as applied, for instance, by WATSON
and SWSE.

Load. Finally, the transformed data is loaded into the data warehouse. In de-
pendence on aspects such as the update frequency of the sources and the size of
the imported datasets, it might be difficult to keep the data warehouse up-to-
date. In any case the data needs to be reloaded or recrawled so that the data

216 K. Hose et al.

warehouse can be updated accordingly. It is up to the user, or the user application
respectively, to decide if and to what extent out-of-date data is acceptable or
not.

Reconsidering the search engines we have already discussed above, we see that
some of these approaches actually fall into this category: the search engines using
a central repository to store a local copy of the RDF data they crawled from the
web, e.g., SWSE [58], WATSON [34], and Falcons [26].

In summary, the data warehouse approach has some advantages and disad-
vantes. The biggest advantage, of course, is that all information is available
locally, which allows for efficient query processing, optimization, and therefore
low query response times. On the other hand, there is no guarantee that the
data loaded into the data warehouse is up-to-date and we have to update it
from time to time. From the perspective of a single user or application, the data
warehouse contains a lot of data that is not queried and unnecessarily increases
storage space consumption. So, the data warehouse solution is only suitable if
we have a sufficiently high number of queries and diverse applications.

2.3 Federated Systems

As mentioned above, database literature proposes two main classes of data in-
tegration approaches (Figure 6): materialized and virtual data integration. In
contrast to materialized data integration approaches, virtual data integration
systems do not work with copies of the original data but only virtually integrate
the data. If we are only interested in answering unstructured queries based on
keywords, the search engine approach, as a variant of virtual integration sys-
tems, is an appropriate solution. We have already discussed several examples
of Semantic Web search engines in Section 2.1. Some of them are pure search
engines that only work with indexes and output pointers to relevant data at the
sources, whereas other Semantic Web search engines rather correspond to data
warehouses.

Fig. 6. Classification of data integration approaches

Database Foundations for Scalable RDF Processing 217

When we are interested in answering structured queries on the most recent
version of the data, we need to consider approaches that integrate sources in
a way that preserves the sources’ autonomy but at the same time allow for
evaluating queries based on the data of multiple sources: we distinguish between
mediator-based systems and federated systems.

Mediator-based systems. Classic mediator-based systems provide a service that
integrates data from a selection of independent sources. In such a scenario,
sources are often unaware that they are participating in an integration system.
A mediator provides a common interface to the user that is used to formulate
queries. Based on the global catalog (statistics about the data available at the
sources), the mediator takes care of rewriting and optimizing the query, i.e., the
mediator determines which sources are relevant with respect to the given query
and creates subqueries for the relevant sources. In case the sources manage their
local data using data models or query languages different from what the medi-
ator uses, so-called wrappers rewrite the subqueries in a way that makes them
“understandable” for the sources, e.g., SQL to XQuery. Wrappers also take care
of transforming the data that the sources produce as answers to the query into
the mediator’s model. In practice, the task of the mediator/wrapper architecture
is to overcome heterogeneity on several levels: data model, query language, etc.

Federated systems. The second variant of virtual integration systems from a
database point of view is federated systems. A federation is a consolidation of
multiple sources providing a common interface and therefore very similar to the
mediator-based approach. The main difference to mediator-based systems is that
sources are aware that they are part of the federation because they actively have
to support the data model and the query language that the federation agreed
upon. In addition, sources might of course support other query languages.

However, from a user’s point-of-view there is no difference between both ar-
chitectures as both provide transparent access to the data. Likewise, in general
the Semantic Web community does not distinguish between these two architec-
tures either so that both approaches are referred to as federated systems, virtual
integration, and/or federated query processing [51,54,63]. Thus, in the following
we adopt the notion of a federation from the Semantic Web community and
do not distinguish between federated and mediated architectures nor between
federators and mediators.

There are some peculiarities unique to the web of linked data that we need
to deal with in a distributed setup. Some sources, for instance, do not provide
a query interface that a federated architecture could be built upon, i.e., some
sources only provide information to dereferenceable HTTP URIs, some sources
are only available as dumps, and some sources provide access via SPARQL end-
points.

For the first two cases, we can crawl the data and load it into a central
repository (data warehouse) or multiple repositories that can be combined in a
federation – comparable to using wrappers for different data sources. If the data
is already available via SPARQL endpoints, we only need to register them in
the federation and their data can be accessed by the federation to answer future

218 K. Hose et al.

Fig. 7. Steps of distributed query processing

queries. In addition, if we adopt SPARQL as the common protocol and global
query language, then no wrappers are necessary for SPARQL endpoints because
they already support the global query language and data format.

Another interesting difference between classic federated database systems and
federated RDF systems is that for systems using the relational data model,
answering a query involves only a few joins between different datasets defined on
attributes of the relations. For RDF data, this is more complicated because the
triple format requires much more (self) joins. Moreover, some aspects of RDF,
e.g., explicit links (owl:sameAs), are also aspects that need to be considered
during query optimization and execution.

Query processing in distributed database systems roughly adheres to the steps
highlighted in Figure 7: query parsing, query transformation, data localization,
global query optimization, local query optimization, local query execution, and
post-processing. In the following we discuss each of these steps in detail; we
first describe each step with respect to classic distributed databases and then
compare it to distributed RDF systems.

Query parsing. After the query has been formulated by the user, it has to be
parsed, i.e., the query formulated in a declarative query language is represented
using an internal format that facilitates optimization. For example, a query for-
mulated in SQL is transformed into an algebra operator tree.

Likewise, SPARQL queries can be parsed into directed query graphs: SQGM
(SPARQL Query Graph Model) [62]. In any case, after parsing we have a graph
consisting of operators that need to be evaluated in order to answer the query
– a connection between operators indicates the data flow, i.e., the exchange of
intermediate results, between them.

Database Foundations for Scalable RDF Processing 219

Query transformation. In this step, simple and straightforward optimizations
are applied to the initial query that do not require any sophisticated consider-
ations but mostly rely on heuristics and straightforward checks. One aspect is
to perform a semantic analysis, e.g., to check whether relations and attributes
referred to in the query do actually exist in the schema. The schema informa-
tion necessary for this step are stored in the global catalog. In addition, query
predicates are transformed into a canonical format (normalization) to facilitate
further optimization, e.g., to identify contradicting query predicates that would
result in empty result sets. Moreover, simple algebraic rewriting is applied using
heuristics to eliminate bad query plans, e.g., replacing crossproducts followed
by selections with join operators, redundant predicates are removed, expressions
are simplified, unnesting of subqueries and views, etc.

Similar transformations can be done for SPARQL queries. For example, we
can check for contradictions of conditions in the query that would lead to an
empty result set. We can also apply some basic optimizations such as remov-
ing redundant predicates and simplifying expressions. In addition, we can also
check if the predicates referenced in the query do actually exist, i.e., if there
is any source providing corresponding triples. However, this is only useful for
distributed RDF systems that do not traverse links to discover new sources dur-
ing query processing. As discussed below, the information necessary to perform
these checks are part of the global catalog.

Data localization. In the classic data localization step, the optimizer replaces
references to global relations with references to the sources’ fragment relations
that contribute to the global relation. The optimizer simply needs to access the
global catalog and make use of reconstruction expressions: algebraic expressions
that, when executed, reconstruct the global relations by combining the sources’
fragments in an appropriate manner. In consideration of predicates and joins
contained in the query, a subset of fragments and therefore sources can be elim-
inated from the query because the data they provide cannot contribute to the
query result.

In case of Linked Data and systems for distributed RDF processing, this step
entails the identification of sources relevant to a given query. Whereas we have
reconstruction expressions for relational databases, it is more complicated for
RDF data because there are no strict rules and or restrictions on which source
uses which vocabulary. Thus, what an appropriate optimizer for distributed RDF
systems needs to do in this step is to go through the list of basic graph patterns
contained in the query and identify relevant sources. The information necessary
to perform this task are contained in the global catalg, which we will discuss in
detail below.

Global query optimization. In principle, the goal of this step is to find an efficient
query execution plan. In classic distributed systems, the optimizer can optimize
for total query execution time or for response time. The former is a measure for
the total research consumption in the network, i.e., it sums up the duration of
all operations necessary to answer the query over all nodes altogether. Response
time takes parallel execution into account and measures the time until the results

220 K. Hose et al.

are presented to the user. Optimizing response time can exploit all different
flavors of parallelization only when the mediator has some “control” over the
sources, i.e., considering direct interaction, communication, and data exchange
between any two nodes for optimization.

In federated RDF systems, however, sources are still more autonomous so
that some of the options available to classic optimizers cannot be considered,
e.g., we cannot decide on a query plan that requires one source to send an
intermediate result directly to another source that uses the received data to
compute a local join. Thus, techniques commonly referred to as data, query, or
hybrid shipping [76] are not applicable in the RDF context. Likewise, the option
of pipelining8 results between operators executed at different sources is hardly
applicable.

In general, however, it is efficient in terms of load at the mediator and commu-
nication costs when joins can directly be executed at the sources. The problem
is that with the restrictions mentioned above joins in distributed RDF systems
can only be executed in a completely decentralized fashion at a source s1 if there
is no additional data at any other source s2 that could produce additional re-
sults when joined with part of the data provided by s1. Thus, even though s2

can process the join locally it has to return, in addition to the join result, all
data that could be joined with other sources’ data. Hence, in most cases joins
have to be computed in a centralized fashion by the mediator [139, 51]. In that
case, the optimizer applies techniques for local query optimization as discussed
in Section 1.

Another option to process joins efficiently is to use a semijoin [76] algorithm
to compute a join between an intermediate result at the mediator and a data
source [51]. The mediator needs to compute a projection on the join variables
and extract all variable bindings present in the intermediate result. For all these
variable bindings, the mediator needs to query the remote data source with re-
spect to the join definition and retrieve the result, which consists of all triples
matching the join condition. So, the mediator retrieves all relevant data to per-
form the join locally. Unfortunately, SPARQL does not support the inclusion of
variable bindings in a query so that the only alternative is to include variable
bindings as filter expressions in a query, which for a large number of bindings
might blow up the size of the query message. The alternative of sending sepa-
rate messages for each binding [115] results in a high number of messages and
therefore increases network load and query execution costs.

A heuristic to minimize query execution costs is to minimize the size of inter-
mediate results. Hence, optimizers for federated RDF systems also try to find a
plan that minimizes the size of intermediate results. Theresfore, the optimizer
considers additional statistics about selectivities and cardinalities provided by
the global catalog (see below).

8 Result items (tuples) are propagated through a hierarchy of operators (e.g., joins)
so that when a tuple is output by an operator on a lower level, it immediately serves
as input to the upper operator – before all input tuples have been processed by the
lower operator.

Database Foundations for Scalable RDF Processing 221

Another standard technique for every optimizers is to apply heuristics to re-
order query operators in a way that intermediate results are small, i.e., pushing
highly selective operators downwards in the query graph so that they are exe-
cuted first. Considering RDF data, this means to push down value constraints
– ideally into subqueries executed at the sources to reduce the amount of ex-
changed data.

Another important and related issue for standard optimizers is join order op-
timization. The goal is to find the order of joins that minimizes execution costs.
This process heavily relies on statistics (global catalog) to estimate the size of
intermediate results. Obviously, it is beneficial to execute joins first that pro-
duce small outputs so that all other joins can be computed more efficiently. For
optimization in distributed RDF systems, join order optimization corresponds
to determining the order of evaluating basic graph patterns. To estimate the
size of intermediate results, the optimizer needs detailed statistics that allow for
cardinality estimation. Histograms are very common for relational distributed
systems and can also be useful in the context of federated RDF systems. A
simple heuristic that can be applied without detailed statistics is variable count-
ing [136], which estimates the selectivity of basic graph patterns in dependence
on the type and number of unbound components.

In consideration of all these different possibilities for query optimization, the
optimizer has to explore and evaluate a potentially high number of alternative
query plans that all compute the same result. For exploration, a common tech-
nique is the application of dynamic programming for plan enumeration, which
enables an exhaustive search of all query plans. In order to decide on the ben-
efit of each plan, the optimizer has to determine its costs using an appropriate
cost model [105, 51, 139]. For this purpose, the optimizer again needs statistics
about the data, selectivity, cardinality estimations about intermediate results.
In addition, it is worthwhile to consider network latencies as well.

The current standard for distributed RDF optimizers is to optimize a query
and to determine a query plan for each query individually at runtime. This
can be improved by adopting more techniques from classic distributed database
systems that pre-optimize (partial) execution plans for frequently issued queries
or subqueries contained in many queries, e.g., two-step-plans [76].

As a high number of sources provide potentially relevant data for a given
query, approximation by reducing the number of queried sources is an appro-
priate technique to reduce the overall execution costs. This can be achieved by
ranking sources based on triple and join pattern cardinality estimations and
prune all but the top-ranked sources from consideration [59].

Global catalog and indexes. As we have seen above, the global catalog plays
an important role for query optimization. It might contain information about
specific sources such as vocabulary, supported predicates, network latencies, etc.
In addition, for the distributed setup and especially for cardinality estimation,
the catalog has to contain statistics about the data, e.g., in the form of indexes.
In constrast to indexes that are applied in the context of centralized systems
(complete indexes), these indexes cannot provide the same level of details because

222 K. Hose et al.

of the amount of data from all sources altogether. Therefore indexes and statistics
about the data suitable for distributed optimization have to abstract the data in
a way that allows for index size compression. The goal is to find a suitable trade-
off between the level of detail and memory space consumption – the general rule
is the more detailed an index is, the more accurate are cardinality estimations
but the higher is the memory consumption.

A widely used approach for indexing is schema-level indexing, i.e., predicate
URIs and the types of instances. Whereas types and predicates that occur only
rarely represent good discriminators to detect relevant sources for a given query,
frequently used types and predicates that almost every source provides are only
of little use for optimization, e.g., rdfs:label. The disadvantage is that this
index cannot be used for basic graph patterns with variables in the predicate
position. An alternative to indexing predicates and types detached from the
structure of the overall RDF graph is indexing paths of predicates [139]. More-
over, when considering the RDF data of a source as a graph, it might also be
useful to index frequent subgraphs [51, 89, 146].

Another kind of indexes are inverted URI indexes. They index the data on
instance level by indexing all URIs occuring in a data source. This kind of index
allows the query processor to identify all sources which contain a given URI and
thus potentially contribute bindings for a triple pattern containing that URI.

There are also indexes indexing data on both instance-level and schema-
level [59]. They make use of data structures known from classic relational
database: histograms. As these data structures have originally been developed
to summarize informtion about numerical data, hash functions are applied to
all elements of a triple so that triples are transformed into numerical space.
One-dimensional histograms index each component (subject, predicate, object)
in separate. But when considering each of these three dimensions in separate,
the optimizer looses a great potential for optimization because the combination
of instances is much more selective and therefore more useful for query opti-
mization. Thus, multidimensional histograms are applied, i.e., three-dimensional
histograms. An alternative to histograms, other structures that efficiently sum-
marize multidimensional data can be applied, e.g., QTrees [59].

Local query optimization and execution. When the global optimizer has decided
for a specific query execution plan, subqueries are extracted and sent to the
sources for local execution. They apply the same optimization techniques as for
local queries, so that the received query is treated like a query issued directly
at the source. Consequently, it is optimized and executed using the techniques
discussed in Section 1.

Post-processing In this last step the partial results received from the sources are
combined into the final result. For simple distributed queries, the post-processing
might simply consist of a union operation. For more complex queries, however,
post-processing is much more complex and costly because all operations that
could not be executed at the sources have to be processed by the mediator after
retrieving the data from the sources. As discussed above, this is particularly true
for joins for which multiple sources provide relevant data. In addition, it might

Database Foundations for Scalable RDF Processing 223

be necessary to remove duplicates in the result set, which represents the very
last operation for post-processing.

To conclude the section about federated systems and federated RDF process-
ing, we discuss some systems that have been proposed in this context.

SemWIQ. The Semantic Web Integrator and Query Engine [79], SemWIQ
in short, uses an architecture based on the mediator/wrapper approach, i.e.,
wrappers are used to enable the participation of sources using other data models,
e.g. relational databases. All registered data sources must either be connected
by a SPARQL-capable wrapper or support the SPARQL protocol directly.

Queries are formulated in SPARQL, the parser computes a canonical query
plan, which is optimized by the federator/mediator. The optimization process
only considers very basic statistics, such as a list of classes and the number of
instances a data source provides for each class as well as a list of predicates
and their occurrences. For query optimization, the federator analyzes the query
and scans the catalog for relevant registered data sources. The resulting plan
is executed by sending subqueries to the sources (via wrappers or SPARQL
endpoints).

The system requires that every data item has an asserted type, i.e., for a
query it requires type information for each subject variable in order to be able
to retrieve instances. As a consequence, there are some restrictions with respect
to query formulation, e.g., all subjects must be variables and for each subject
variable its type must be explicitly or implicitly defined. The optimizer then
uses this information to look for registered data sources providing instances of
the queried types. More sophisticated optimization techniques, such as the push-
down of joins, have been proposed as future work.

DARQ. DARQ [115] (Distributed ARQ) is a federated system of SPARQL end-
points that allows distributed query processing on the set of registered endpoints.
It also adopts a mediator-based approach and assumes that sources that do not
support SPARQL themselves are connected to the federation using wrappers.

Data sources are described using service descriptions (represented in RDF).
These descriptions contain capabilities, i.e., constraints expressed with regular
SPARQL filter expressions. These constraints can express, for instance, that
a data source only stores data about specific types of resources. For sources
with limitations of access patterns, e.g., allowing lookups on personal data only
when the user can specify the name of the person of interest. DARQ supports
this by defining patterns in the service descriptions that must be included in
the query. To provide the query optimizer with statistics, service descriptions
contain the total number provided by a data source and optionally information
for each capability, e.g., the number of triples with a specific predicate and the
selectivities (bound subject/object) of a triple pattern with a specific predicate.

Queries are formulated in SPARQL, parsed, and handed to the query plan-
ning and optimization components. DARQ uses a cost-based query optimization
technique relying on the statistical information provided as service descriptions
and capabilities.

224 K. Hose et al.

A SPARQL query contains one or more filtered basic graph patterns (triple
patterns). DARQ performs query planning for each basic graph pattern in sep-
arate. By comparing the triple patterns of the query against the capabilities
of the service descriptions, the system can detect a set of relevant sources for
each pattern. As this matching procedure is based on predicates, DARQ only
supports queries with bound predicates.

After having determined the relevant sources, subqueries are created, one for
each basic graph pattern and data source matching. Thus, the system might
create multiple subqueries that are to be sent to the same data source. In that
case, the subqueries can be combined into one message.

Based on these subqueries the query optimizer considers limitations on access
patterns and tries to find a feasible and efficient query execution plan. For logical
query optimization, heuristics are used that try to simplify the query and reduce
intermediate result sizes, e.g., push value constraints into subqueries, which cor-
responds to pushing down selections in classic query optimization. In order to
decide for a specific implementation to process joins (nested loop join or bind
join), the optimizer estimates the result size of joins based on the statistics given
in the service descriptions. The optimizer chooses the implementation with the
least estimated transfer costs (computed based on the result estimates).

In the end, subqueries are executed at the sources and remaining operations
are executed by the federator.

Hermes. Hermes [147] is a system based on a federated architecture that has
a slightly different focus than other systems discussed so far. Queries are not
formulated using SPARQL. Instead, the user enters a keyword query and Hermes
tries to translate the keyword query into a structured query (SPARQL). The
query is decomposed into subqueries, which are executed at the sources.

In order to achieve this, a number of indexes are created: a keyword index
(indexing terms extracted from the labels of data graph elements), a structure
index (information about schema graphs, i.e., relations between classes derived
from the connections given in the data graph), and a mapping index (infor-
mation about mappings on data- and schema-level, pairwise mappings between
elements).

After having received the input keywords, relevant sources are determined
using the keyword index. The retrieved keyword elements are combined with
schema graphs received from the structure index to find substructures that con-
nect all keyword elements. A ranking function is used to rank the computed
query graphs so that the user can choose some of them for execution.

The selected query is decomposed into subqueries, each of which is answered
by a different data source. Optimization uses the same techniques as DARQ [115].
Before sending the subqueries to the sources, they are mapped to the query for-
mat supported by the receiving data source. After execution, the results received
from the sources are combined.

Other systems. Virtuoso [41], a native quad store, provides the option to
consider remote sources for query execution. The system dereferences URIs and
holds the retrieved data in a cache for future queries.

Database Foundations for Scalable RDF Processing 225

Dartgrid [25] is a system for SPARQL queries over multiple relational
databases. One of the main components is the semantic registration service which
maintains mappings from the schemas of registered data sources to the internal
ontology. An query interface based on forms and ontologies helps users to con-
struct semantic queries formulated in SPARQL. Queries are translated using the
mapping information into SQL queries that can be executed on the sources.

The networked graphs approach [126] allows users to reuse and integrate RDF
content from other sources. It allows users to define RDF graphs by extensionally
listing content and by using views on other graphs. These views can be used
to include parts of other graphs. Networked graphs are designed for distributed
settings and are exchangeable between sources. However, the paper focuses more
on semantics and reasoning than on aspects of query execution.

[139] presents an approach for querying distributed RDF data sources and in-
troduces index structures, a cost model, and an algorithm for query answering.
The approach supports distributed SeRQL path queries over multiple Sesame
RDF repositories using a special index structure to determine the relevant
sources for a query.

2.4 Discovering New Sources During Query Processing

In contrast to the classic understanding of federated databases, processing Linked
Data arises additional challenges that we have not discussed in detail above, e.g.,
by dereferencing URIs and considering the returned document as a new virtual
“data source” not all sources are known in advance and available for indexing.
Furthermore, approaches that index a static set of sources, i.e., all approaches
we have discussed so far, have to recreate their indexes from time to time in
order to reflect recent updates to the sources, which means that some of the
information provided by the index might be out-of-date.

Pure. Some strategies for query processing over Linked Data rely on the prin-
ciple of following links between sources [61]. An advantage in comparison to
federated architectures is that sources that are not accessible via SPARQL end-
points can be considered. Another advantage is that users can retain complete
control over the data they provide.

The query is executed without a previous query planning or optimization step.
First, the system retrieves data from the sources mentioned in the query. The
data is partially evaluated on the retrieved data so that relevant source URIs
and links can be identified. The system uses these URIs to retrieve more data.
It iteratively evaluates and discovers further data until all sources found to be
relevant have been processed.

The peculiarity of this approach is the intertwining of the two phases: query
evaluation and link traversal. Previous work [94,17] kept these two phases in sep-
arate by first retrieving the data and then evaluating the query on the retrieved
data.

Hybrid. It is also possible to combine federated query processing with
active discovery of unknown but potentially relevant sources [78]. The main

226 K. Hose et al.

assumption is that knowledge about some sources is available for query planning
and optimization. During query execution, sources are retrieved, new sources are
iteratively discovered, the query plan is reoptimized and partially executed until
all relevant sources have been processed.

2.5 Systems Based on the P2P Paradigm

As we have seen, distributed processing of RDF data can be realized by adopting
the federated database system architecture and developing efficient solutions for
problems that come along with the characteristics of Linked Data. But there is
another important class of distributed systems that Linked Data processing can
also benefit from: peer-to-peer (P2P) systems.

P2P systems are networks of autonomous peers that are connected through
logical links, which express that a pair of peers “know” each other, i.e., they can
exchange messages and data and are referred to as neighbors. A pair of peers
without a link do not know each other and can therefore only contact each other
if they find a path of links via intermediate peers that connects them.

In general, sources/peers in a P2P network have a higher degree of autonomy
in comparison to sources in distributed database systems. In pure P2P networks
there is no central component, i.e., no federator or mediator, that could be used
for query planning and optimization. Instead, the behavior of the whole system
is the consequence of local interactions between peers.

Whereas sources in the context of distributed databases are considered to be
rather stable and available, P2P systems assume a higher degree of dynamic
behavior, i.e., they assume that peers might join and leave the network at any
time. Even though a peer leaves the network, the system should still be able to
answer queries – even though the data provided by the peer that left the network
is (momentarily) unavailable. Moreover, each peer in the network might issue
queries and participate in answering queries. There are different classes of P2P
systems: centralized P2P, pure P2P, hybrid P2P, structured P2P.

Centralized P2P systems. For centralized P2P systems, like Napster9, there is a
central component providing a centralized index that is used to locate relevant
data to a given query. So, a user query issued at a peer is sent to the central
component, which uses the index to find peers providing the queried data. This
information is sent back to the querying peer, which then directly communicates
with other peers to access the queried data.

Pure/unstructured P2P systems. As the centralized server represents a bottle-
neck and a single point of failure, pure P2P system strictly avoid peers with
special roles. Instead, all peers are considered equal and query processing is re-
alized by flooding, i.e., a peer with a local user query forwards the query to all
its neighbors, they proceed the same so that the query finally reaches all the
peers in the network. The answers to the query are routed back to the query
initiator, which can then directly communicate with peers providing relevant
9 http://www.napster.com

http://www.napster.com

Database Foundations for Scalable RDF Processing 227

data. In analogy to structured P2P systems, which we will discuss below, pure
P2P systems are often referred to as unstructured P2P systems.

Hybrid P2P systems. The problem with flooding is that query processing con-
sumes much bandwidth and weak/slow peers represent the bottleneck. So, hybrid
P2P systems use super-peers to counteract this problem. Super-peers are strong
peers that form an unstructured P2P network. Weaker peers are connected to a
super-peer as leaf nodes and form a centralized P2P system.

Structured P2P systems. All the P2P system discussed so far assume that the
data shared in the network remains at the peers that “own” them. However, in
structured P2P systems, a global rule is used to redistribute the data among
peers in the system. In most cases a hash function is used for this purpose so
that each peer is responsible for a specific hash range and therefore for all the
data with hash values in that range. Peers are arranged in a logical overlay
structure, e.g., a logical ring [137], that is used to organize the peer in way that
alleviates efficient lookup. For query processing peers use the globally known
rule according to which the data has been distributed in the first place, e.g.,
peers compute hash values for the queried data and use the overlay network to
locate peers responsible for overlapping hash ranges.

After having introduced the basic types of P2P systems, let us now discuss
some approaches that apply these concepts to the Semantic Web and RDF data.

Edutella. An early approach that combined the two paradigms RDF and P2P
is Edutella [98]. Edutella assumes that all resources maintained in the network
can be described with metadata in RDF format. All functionality in the Edutella
network is mediated through RDF statements and queries on them.

Peers participating in an Edutella network might use different schemas so
that Gnutella applies the mediator-wrapper approach based on a common data
model and a common query exchange format to overcome heterogeneity. A peer
that wants to participate in the network, registers at a so-called mediator peer.
Peers register the metadata schemas they support and in this way indicate which
queries they can answer. Queries are sent through the Edutella network to the
subset of peers that have registered with the corresponding schema. The resulting
RDF statements are sent back to the requesting peer. To broaden the search
space, mediators provide a service that translates queries over one schema into
queries over another schema.

Because of the mediators that mediate between clusters of peers support-
ing different schemas, the overall architecture can be considered a hybrid P2P
system.

GridVine. GridVine [5] uses P-Grid [4] to organize peers in a structured P2P
overlay network, which is used for communication and interaction between peers.
Data is indexed and stored in the standard way of structured P2P systems, i.e.,
each peer maintains a local database at the semantic layer to store the triples
whose keys are contained in the key range the peer is responsible for. GridVine
also supports sharing schemas by associating schemas with unique keys and
storing them in the overlay network.

228 K. Hose et al.

GridVine supports queries based on basic graph patterns and exploits pair-
wise mappings (OWL statements relating similar classes and properties) between
different schemas to overcome schema heterogeneity and evaluate queries against
schemas they were originally not formulated against. Mappings are also stored
in the network.

In order to locate peers providing relevant data for a given query, or a basic
graph pattern respectively, each triple is indexed and stored three times – once
for each component of the triple.

RDFPeers. RDFPeers [20] is similar to GridVine but uses a different semantic
overlay network for storing, indexing, and querying RDF data. To efficiently
answer multi-attribute and range queries, RDFPeers relies on a multi-attribute
addressable network (MAAN) [21], which extends Chord [137] – structured P2P.

Each triple is stored three times applying hash functions to subject, predi-
cate, and object. The system’s query processing capabilities are very similar to
the ones of GridVine. It supports triple pattern queries, disjunctive and range
queries, and conjunctive multi-predicate queries using RDQL.

QC and SBV. Another approach for evaluating conjunctive queries of triple
patterns over RDF data using structured overlay networks is proposed in [83].
It uses Chord [137] and also stores each triple three times (subject, predicate,
object).

This approach proposes two algorithms for query processing: query chain
(QC) and spread by value (SBV). The main idea of the query chain algorithm is
that intermediate results flow through the nodes of the chain. First, responsible
nodes are determined for each triple pattern contained in the query – exploiting
constants contained in the patterns and using the overlay structure to identify
relevant peers. The found responsible peers form a chain and exchange messages
to answer the query.

The spread by value algorithm constructs multiple chains for each query that
can be processed in parallel. Query processing starts at a node responsible for
the first query pattern, which uses values of matching triples to forward the
query to nodes providing data for these values.

Other approaches. YARS2 [60] uses the P2P paradigm (structured P2P) in
a different way than the approaches discussed so far. As mentioned above in
Section 2.1, it comes in combination with the search engine SWSE. YARS2
does not distribute the data in the structured overlay network but an index
structure. More specifically, YARS2 uses indexes in six different orderings of
triple components and distributes this index according to a hash function.

KAONp2p [55] also suggests a P2P-like architecture for query answering over
distributed ontologies. Queries are evaluated against resources, which are in-
tegrated using a virtual ontology that logically imports all relevant ontologies
distributed over the network.

Database Foundations for Scalable RDF Processing 229

3 Scalable Reasoning with Uncertain RDF Data

As we have seen in the previous chapter, state-of-the-art SPARQL engines for
RDF data (see, e.g., [3, 99]) primarily focus on conjunctive queries on top of a
relational encoding of RDF [1] data. They often employ a so-called “triple-store”
technique by indexing or slicing the data according to various permutations of
the basic subject-predicate-object (SPO) pattern. These engines generally follow
a deterministic data and query processing model and do not have a notion of
uncertain reasoning or probabilistic inference.

In this chapter, we aim to devise possible directions for scalable reasoning with
uncertain RDF knowledge bases, following ideas from probabilistic databases,
logic programming, and recent imperative programming platforms for inference
in probabilistic graphical models. We focus on RDF as our basic data model and
SPARQL as the default query language for RDF. Consequently, the forms of
uncertain reasoning we consider here focus on SQL-style queries in probabilistic
databases, Datalog-style reasoning using Horn clauses as rules, as well as some
probabilistic extensions to logic programming.

By default, an RDF graph itself is schemaless. RDFS [1] thus introduces
basic facilities for imposing schema information in terms of a class hierarchy.
Intuitively, entities that belong to the same instance of a class, i.e., entities of
the same RDF type, share common properties. In RDFS, instances of classes,
class memberships and class properties are transitively inherited to resources
in subclasses via the type, subClassOf and subPropertyOf relations, respectively.
More generally, rule-based reasoning using Datalog-style Horn clauses subsumes
type, subclassOf and subPropertyOf inferences in RDF/S and also captures some
of the constraints expressible in OWL [7] (e.g., the transitive or functional prop-
erties of predicates). Transitivity, for example, can very easily be expressed via
first-order predicate logic (specifically with rules in the form of Horn clauses),
which require a from of logical reasoning in order to check consistency or to com-
pute entailment. Considering relations as logical predicates and facts as literals,
we thus also briefly investigate the relationship to logic programming and its
probabilistic extensions in this chapter.

As a (more popular) counterpart to probabilistic logic programming, prob-
abilistic databases [32] investigate query processing techniques for structured
(SQL) queries over relational data with fixed schemata. While the general idea
of including probabilistic models into databases is not new and leads back to
more than 30 years of research (see, e.g., [24]), in particular recent works in
this context have provided us with a rich body of literature and have led to the
development of a plethora of systems, which all aim at the scalable management
of uncertain relational data. Ultimately, these approaches however need to face
the very same scalability and complexity issues as any approach dealing with
inference in probabilistic graphical models.

As this part of the lecture focuses on database-style infrastructures for the
management of uncertain RDF data, we do not go into details on probabilistic
extensions to OWL and its variants based on description logics (OWL-DL). For
probabilistic description logics [87] (PDL), we refer the reader to [138], which

230 K. Hose et al.

provides a very good overview of PDL and related approaches, which has found
wide-spread acceptance in the semantic web community. PDL generalizes the
description logic SHOIN (D) and can thus express, for example, functional rules.
Reasoners such as PRONTO10 can be used to decide consistency or to compute
entailment with probabilistic bounds.

3.1 Probabilistic Databases

Approaches for managing uncertainty in the context of probabilistic databases [8,
13,30,31,132] focus on relational data with fixed schemata, and they often employ
strong independence assumptions among data objects (the “base tuples”). SQL
is used as the default query language for running queries, defining views, or
triggering updates to the data.

Most probabilistic databases adopt the possible worlds [6] model as basis for
their data model and for defining the semantics of queries. Intuitively, every tu-
ple in a probabilistic database corresponds to a binary random variable which
may exist in the database with some probability. A probabilistic database thus
encodes a large number of possible instances of deterministic databases, where
each deterministic instance contains a different combination (i.e., possible world)
of tuples. Each such possible world has a probability between 0 and 1. The prob-
abilities of all worlds form a distribution and sum up to 1. The marginal proba-
bility of a tuple can be obtained by summing up the probabilities of all worlds
which contain that tuple, which leaves confidence computations in probabilistic
databases #P-complete [120, 30] in the general case. The semantics of queries
is then formally defined by running the query against each of these instances
individually, and by encoding the results obtained from each of the individual
instances back into the probabilistic database. While often the actual data com-
putation can be carried out directly along with the SQL operators, different
inference techniques for confidence computations may have to be implemented
as separate function calls (e.g., as stored procedures [96]).

In addition to this basic uncertainty model, the ULDB [13] data model (for
“Uncertainty and Lineage Database”) provides a lineage-based representation
formalism for probabilistic data, which has been shown to be closed and complete
for any combination of SQL-style relational operators and across arbitrary levels
of materialized views. Here, the lineage (aka. “history” in [132] or “repair-key”
operator in [8]) of a derived tuple (or an entire view) is captured as a Boolean
formula which recursively unrolls the logical dependencies from the derived tuple
back to the base tuples. The lineage of a derived tuple may never be cyclic, but it
may impose a DAG structure over the derivation of a tuple. Thus, being a form
of a directed (but acyclic) graphical model, probabilistic inference in ULDBs
remains #P-complete for general SQL queries.

On the other hand, considering restricted classes of SQL queries and corre-
sponding query plans, where exact confidence computations remain tractable,
has led to a notion of “safe plans” in [30]. Intuitively, an entire query plan is
safe, if all query operators take only independent subgoals as their input, which
10 http://pellet.owldl.com/pronto/

http://pellet.owldl.com/pronto/

Database Foundations for Scalable RDF Processing 231

guarantees a hierarchical derivation structure (i.e., tree-shaped lineage) of all
tuples involved in a query result. Following this idea on a more fine-grained
(i.e., on a per-tuple rather than a per-plan) level, [129] considers a class of
so-called “read-once” functions, where the Boolean lineage formula can be fac-
torized (in polynomial time) into a form, where every variable appears at most
once. Moreover, efficient top-k query processing [116, 134] and unified ranking
approaches [81] have investigated different semantics of ranking queries over
uncertain data. Recently, the modeling of correlated tuples [127] with the ex-
plicit usage of probabilistic graphical models such as Bayesian Nets [18,151] and
Markov Random Fields [128] has found increasing attention also in the database
community. In [70], the authors define a class of Markov networks, where query
evaluation with soft constraints can be done in polynomial time, while the case
with hard constraints is considered separately in [31]. Also in the context of
these graphical models, lineage remains the key for a closed representation for-
malism [71].

While most probabilistic database systems provide extensions to the DDL
(data definition language) part of the SQL standard to define dependencies at
the schema level, only fairly few works explicitly tackle the DML (data manip-
ulation language) part of SQL, including data modifications such as updates
or deletes [66, 125]. Most probabilistic database approaches focus on SELECT-
PROJECT-JOIN (SPJ) query patterns, where query processing bears a number
of interesting analogies to inference in probabilistic graphical models.

MystiQ. The MystiQ system [16,117,30] developed at the University of Wash-
ington provides support for a wide range of SQL queries over uncertain and
inconsistent data sources. On the DML part, MystiQ introduces the notion of
an approximate match operator between a query attribute and a data attribute,
which can be evaluated by data-type-specific built-in functions. On the DDL
part, MystiQ supports so-called predicate functions, which define how probabil-
ities should be generated for an approximate match on such an attribute. More-
over, in the spirit of functional dependencies in deterministic databases, MystiQ
allows for the specification of global constraints among attributes at the schema
level. Unlike classic functional dependencies, these constraints can be specified
to be either strict (e.g., a person may have only exactly one date-of-birth) or soft
(e.g., most people have different names). A violation of a constraint mutually
affects the confidences of all tuples involved in the conflict. In further works, the
authors present an efficient top-k algorithm (coined “multi-simulations”) for a
class of SELECT DISTINCT queries which exhibit a DNF structure as lineage.
Multi-simulation works by running multiple Monte Carlo simulations [73] in par-
allel until the lower confidence bounds of the top-k answers to the query have
sufficiently converged, in order to distinguish them from the upper confidence
bounds of the non-top-k answers.

Trio. Based on the ULDB data model, the Trio [96] system developed at Stan-
ford University provides an integrated approach for the management of data,
uncertainty, and lineage. Trio is implemented on top of a conventional database

232 K. Hose et al.

system (PostgreSQL) and employs an SQL-based rewriting layer for the Trio
query language (TriQL) into a series of relational queries and calls to stored
procedures. As core of its data model, Trio adopts the notion of X-tuples [123]
for mutually exclusive tuple alternatives, Boolean lineage formulas, maybe an-
notations (which indicate the possible absence of the tuple in the uncertain
database), and confidence values that may be attached to each tuple alterna-
tive. In Trio (and ULDBs), lineage enables for the complete decoupling of data
and confidence computations, which may yield significant efficiency benefits for
query processing. Later extensions to Trio have investigated in more detail how
to exploit lineage for probabilistic confidence computations [124] and data up-
dates [125].

MayBMS. The MayBMS [8,66] system initially developed at Saarland Univer-
sity and then at the Cornell database group is designed as a completely native
extension to PostgreSQL. Based on the encoding scheme of conditional tables (C-
tables) [67,123], the current MayBMS system employs a compact form of schema
decompositions (coined “U-relations”), which results in a succinct encoding of
an uncertain relation with independent attributes. Another focal point of the
MayBMS project includes the investigation of foundations for query languages
in probabilistic databases in analogy to relational algebra and SQL [75]. Ongo-
ing research issues in MayBMS include query optimization, an update language,
concurrency control and recovery, and the design of generic APIs for uncertain
data. MayBMS is the basis for the SPROUT system discussed in Section 4.

Orion. Inspired by large-scale sensor nets, the Orion [132,131] system developed
at Purdue University also investigates continuous probability density functions
(PDFs) in combination with SQL-style relational query processing techniques.
Originally inspired by the application of sensor networks, the current Orion
2.0 prototype has built-in support for a number of continuous (e.g., Gaussian,
Uniform) and discrete (e.g., Binomial, Poisson) distributions, which are treated
symbolically at query processing time. If the resulting distribution of an SQL-
style operation cannot be represented by a standard distribution anymore, Orion
switches to an approximate distribution using histograms and sampling. Further
features of Orion include the handling of correlations among attributes, which
are captured as explicit joint distributions among the correlated attributes, and
the handling of missing (i.e., incomplete) data, which is implemented by allowing
for partial PDFs whose confidence distributions may sum up to less than 1. Using
a form of query history, the Orion data model is closed under common relational
operations and consistent with the possible-worlds semantics.

PrDB. One of the most active current probabilistic database projects is the
PrDB [128] system developed at the University of Maryland. Unlike other prob-
abilistic database approaches, PrDB employs undirected probabilistic graphical
models, specifically Markov Random Fields, as basis for handling correlated base
tuples. The graphical model is stored directly in the underlying database system
in the form of factor tables, which capture correlations among tuples and serve
as input for the probabilistic inference algorithms. Due to the generality of this

Database Foundations for Scalable RDF Processing 233

data model, PrDB incorporates a large variety and optimizations for both ex-
act and approximate inference, including variable elimination [36], the reuse of
shared factors, and Gibbs sampling [47] in the general case. In addition, bisim-
ulation [72] is shown to significantly speed up inference for DAG-shaped queries
in this context. Also here, lineage, in the form of Boolean formulas that capture
the logical dependencies of derived data objects (tuples) back to the base tuples,
is the key for a closed and complete representation model. Moreover, the efficient
processing of lineage for probabilistic inference under this data model has been
studied in [71].

3.2 Logic Programming and Rule-Based Reasoning

The semantic web has led to the development of a plethora of rule-based and
description-logic-based reasoning engines, including reasoners like Sesame, Jena,
IRIS, Bossam, Prova, and many more11. Besides classical logic programming
frameworks based on Prolog and Datalog, these engines specifically focus on
different ontological reasoning concepts based on the RDF/S standards and the
DL (based on description logic), RL (supporting first-order Horn rules) and EL
(supporting rules with restricted existential quantifiers) fragments of OWL.

Besides the different grounding techniques and varying expressiveness of the
ontological concepts these reasoners support, an important semantic distinction
can be made in the way these engines handle negation. Negation-as-failure [28] is
the most common semantics for handling negation in rule antecedents (bodies),
which is also the default semantics used in most Prolog and Datalog engines.
Intuitively, a negated literal in the body of the rule is grounded if no proof
for the literal can be derived from the knowledge base. As a form of closed-
world assumption this semantics can lead to non-monotonic inferences when new
information (i.e., facts or rules) are entered into the knowledge base, such that
the negation of the literal no longer holds. To tackle this issue, the well-founded
negation and stable-model semantics have been proposed to handle negation in
rule antecedents. We refer the reader to [143, 45, 102] for details. However, care
is advisable when reasoning with recursive rules; already plain Datalog without
negation has been shown to be EXPTIME-complete for non-linear, recursive
programs (i.e., for predicates with more than one argument and rules with more
than one recursive predicate in their antecedents) and still PSPACE-complete
for linear, recursive programs, respectively [142].

To evaluate the performance of these engines, a number of benchmarks have
been defined, out of which the most prominent ones are probably [145] for
RDF/S, as well as the Lehigh University Benchmark (LUBM) [52] and the more
recent OpenRuleBench [82] initiative. In the following subsections, we provide
a brief overview of the top-performing engines evaluated in OpenRuleBench:
OntoBroker, XSB, Yap, and DLV.

OntoBroker12 is designed as a Java-based, object-oriented database system. It
has been originally developed at the AIFB Karlsruhe and meanwhile turned into
11 See http://www.w3.org/2007/OWL/wiki/Implementations for a current overview.
12 http://www.ontoprise.de/

http://www.w3.org/2007/OWL/wiki/Implementations
http://www.ontoprise.de/

234 K. Hose et al.

a commercial product. It follows a bottom-up, deductive grounding technique
and supports Magic-Sets-based rule rewriting [12], as well as a cost-based query
optimizer (similar to a relational database system)—a feature that many other
rule engines lack. OntoBroker supports the well-founded negation.

XSB13 is an open-source Prolog engine implemented in native C. In addition
to a top-down processing of Prolog or function-free Datalog programs, it can
also be used in a deductive (i.e., bottom-up) database fashion, using advanced
grounding techniques based on tabling (aka. “memoing”) [153]. Through tabling,
XSB is able to terminate even for cases when many Prolog engines (based on
top-down SLD resolution [77]) run into cycles. Unlike most Prolog engines, XSB
supports the well-founded negation and (via a plug-in) also the stable-model
semantics.

Yap14 is a highly optimized Prolog engine developed at the Center for Research
in Advanced Computing Systems and the University of Porto. Like XSB it sup-
ports advanced grounding techniques based on tabling, but (unlike XSB) it can
also create indices for faster data access on-the-fly, when it determines that a
particular index may speed up the access to a large amount of data. It how-
ever supports only negation-as-failure, but not the well-founded negation nor
the stable-model semantics.

DLV15 is a bottom-up rule system implemented in C++. It is unique in that
it allows for a form of disjunctive Datalog programming with disjunctive rule
consequents (heads). Moreover, it is the only system along theses lines which
supports the stable-model semantics. As additional feature, DLV has built-in
support for propositional reasoning over the grounded model using Max-SAT
solving and similar techniques. As most of these engines, it is a pure query
engine, i.e., it does not support incremental updates to the knowledge base.

3.3 Combining First-Order Logic and Probabilistic Inference

In the following, we assume a knowledge base to consist of a finite set of first-
order logical formulas and a finite set of (potentially typed) entities. We focus
only on reasoning techniques which work by grounding (i.e., by instantiating) the
first-order rules, and which again result in a finite set of propositional formulas.
This class of rules conforms to a subset of first-order logic that is generally
referred to as the Bernays-Schönfinkel-Ramsey class, which is decidable and can
be evaluated by grounding the first-order formulas. In some settings, we might
want to distinguish between soft rules, which may be violated and thus typically
have a confidence weight associated with them, and hard constraints, which may
not be violated. A wide variety of grounding techniques exist, each leading to a
different reasoning semantics and potentially different answers to queries. What
all grounding techniques have in common is that they bind the variables in the

13 http://xsb.sourceforge.net/
14 http://www.dcc.fc.up.pt/~vsc/Yap/
15 http://www.dbai.tuwien.ac.at/proj/dlv/

http://xsb.sourceforge.net/
http://www.dcc.fc.up.pt/~vsc/Yap/
http://www.dbai.tuwien.ac.at/proj/dlv/

Database Foundations for Scalable RDF Processing 235

rules with the entities contained in the knowledge base in order to obtain a
(grounded) set of propositional formulas. In the following, we will consider the
actual grounding procedure mostly as a black-box function.

We formally call a knowledge base inconsistent if the conjunction of all propo-
sitional statements that can be derived from it (e.g., via grounding the rules)
evaluates to false. Moreover, we call a knowledge base unsatisfiable if there exists
no truth assignment to variables such that the hard constraints are satisfied.

Propositional Reasoning. Classic (deterministic) approaches to handling in-
consistencies in a set of propositional formulas are based on the Boolean satisfi-
ability problem, generally known as SAT. Although the general SAT problem is
NP-complete, many real-world problems have actually been shown to be “easy”
to solve even for thousands of Boolean variables and many tens of thousands of
constraints. Moreover, in recent years the field of SAT solving has made great
progress in developing strategies, which allow for tackling also non-trivial in-
stances of the SAT problem very efficiently. Introducing soft rules, on the other
hand, leads to a weighted form of the satisfiability problem, generally known as
the maximum satisfiability problem (Max-SAT). Here the goal is to find a truth
assignment to variables which maximizes the aggregated weights (typically the
sum) of the formulas which are satisfied by this assignment. Finding the optimum
solution in Max-SAT solving however is also NP-complete. More specifically, the
maximum satisfiability problem over Horn clauses (coined Max-Horn-SAT) has
been studied in detail in [69]. In [48], the authors provide a 3/4 approxima-
tion algorithm for the weighted Max-SAT problem over Boolean formulas in
conjunctive normal form (CNF). None of these classic (deterministic) Max-SAT
solvers however considers a distinction between soft and hard constraints. Thus,
recently a family of stochastic Max-SAT solvers has been introduced with Walk-
SAT [154] and MaxWalkSAT [74], which apply different strategies in order to
explore multiple possible worlds to more accurately approximate the optimum
solution. A counterpart to Max-SAT solving from a probabilistic perspective is
Maximum-a-Posteriori estimation (or “MAP-inference”) [133], which selects the
most likely mode, i.e., the most likely assignments to variables, according to
their posteriori distribution. Recently, for example in the context of informa-
tion extraction, grounding a set of first-order formulas and post-processing the
propositional formulas by a Max-SAT solver has been applied successfully in the
SOFIE [141] and PROSPERA [97] projects, in order to automatically populate
the YAGO [140] knowledge base16.

Markov Logic Networks. Statistical relational learning (SRL) [46] has been
gaining an increasing momentum in the machine learning, database, and se-
mantic web communities, with Markov Logic Networks [118] probably being the
most generic approach for combining first-order logic and probabilistic graph-
ical models into a unified representation and reasoning framework. Intuitively,
Markov Logic works by grounding a set of first-order logical rules against a

16 http://www.mpi-inf.mpg.de/yago-naga/

http://www.mpi-inf.mpg.de/yago-naga/

236 K. Hose et al.

knowledge base, and by sampling states (“worlds”) over a Markov network that
represents the grounded (i.e., propositional) formulas. Inference in probabilistic
graphical models in general is #P-complete. Therefore, Markov Chain Monte
Carlo (MCMC) [47, 114, 133] denotes a family of efficient sampling algorithms
for probabilistic inference in these graphical models, with Gibbs sampling [47]
being one of the most widely used sampling technique, which is also employed
in Markov Logic.

Markov Logic however does not easily scale to very large knowledge bases.
Grounding a first-order Markov network works by binding all entities (constants)
to variables in first-order predicates that match the type signature of the pred-
icate. For binary predicates, this results in grounded networks which are often
nearly quadratic in the number of entities in the knowledge base. Scaling Markov
Logic to large knowledge bases with millions of entities (and hundreds of millions
of facts) thus remains all but straightforward. Recently, the Tuffy [103] engine
(see Section 4) has been addressing the issue of scaling up Markov Logic by
coupling Alchemy17 with a relational back-end, and by replacing the grounding
procedure of Alchemy with a more efficient bottom-up grounding technique.

MAP-Inference. More recently, stochastic ways of addressing inference over a
combination of deterministic (hard) and probabilistic (soft) dependencies has
been addressed also in the context of Markov Logic. Maximum-a-Posteriori
(MAP) inference [133] (based on the stochastic weighted Max-SAT solver
MaxWalkSAT [74]) and MC-SAT [114] (based on slice sampling [33]) are
two approximation algorithms for propositional and probabilistic inference in
Markov Logic, respectively. Using a log-linear model for generating the factors
of grounded formulas, MAP-inference can be shown to directly correspond to an
execution of MaxWalkSAT over a Markov Logic network [119].

MC-SAT. Hard constraints may introduce isolated regions of states which can-
not easily be overcome by a Gibbs sampler (i.e, by just flipping one variable at
a time). MC-SAT [113] thus introduces auxiliary variables which provide the
sampler with the ability a “jump” into another (otherwise disconnected) region
with some probability. Experimentally, MC-SAT has been shown to outperform
Gibbs sampling and simulated tempering by a significant margin, particularly
when deterministic dependencies are present. However, allowing arbitrary con-
straints as hard rules may lead to the formulation of unsatisfiable constraints,
which either renders the knowledge base inconsistent (if there is no solution at
all) or empty (if the only solution is to set all facts to false). Satisfiability checks,
which includes checking whether a derived fact is false in all the possible worlds
and thus has a probability of exactly 0, cannot be approximated and thus remain
an NP-hard problem.

Constrained Conditional Models. Another framework which combines
(first-order) logical constraints and probabilistic inference is given by Con-
strained Conditional Models [88] (CCMs). Intuitively, constraints between input
17 http://alchemy.cs.washington.edu/

http://alchemy.cs.washington.edu/

Database Foundations for Scalable RDF Processing 237

variables (observations) and output variables (labels) are encoded into linear
weight vectors, which can be solved by Integer Linear Programming. Working
with CCMs involves both learning weights for the model and efficient inference.
CCMs allow for encoding Markov Random Fields, Hidden Markov Models and
Conditional Random Fields [121]. They found strong applications in natural
language processing, including tasks like co-reference resolution, semantic role
labeling, and information extraction.

Probabilistic Datalog. Early probabilistic extensions to Datalog have been
studied already in [44] and have later been refined to a number OWL con-
cepts [104]. Although this approach already introduced a notion of lineage
(coined “intensional query semantics”), the probabilistic computations are re-
stricted to a class of rules which is guaranteed to provide independent subgoals
(similar to the notion of safe plans or read-once functions in [30, 129]), where
confidence computations can be propagated “upwards” the lineage tree using
the inclusion-exclusion principle (aka. “sieve formula”).

3.4 Programming Platforms for Probabilistic Inference

The “declarative-imperative” [64], a term coined in the context of the Berke-
ley Orders of Magnitude (BOOM) project18, brings two seemingly contracting
paradigms in data management to the point: how can we combine the power
of an imperative programming language with the convenience of a declarative
query language? In the following, we briefly highlight two imperative program-
ming platforms for probabilistic inference: FACTORIE and Infer.NET.

FACTORIE19 is a toolkit for deployable probabilistic modeling developed by
the machine learning group at the University of Massachusetts Amherst [93]. It
is based on the idea of using an imperative programming language (Scala) to
define templates which generate factors between random variables, an approach
coined imperatively defined factor graphs. Intuitively, when instantiated these
templates form a factor graph, where all factors that have been instantiated
from the same template also share the same parameters that were used to define
the template. For inference, FACTORIE provides a variety of techniques based
on MCMC, including Gibbs sampling. FACTORIE has been successfully applied
to various inference tasks in natural language processing and information inte-
gration. Recently, FACTORIE has also been coupled with a relational back-end
and thus potentially scales to probabilistic database settings with billions of
variables [156].

Infer.NET20 provided by Microsoft Research in Cambridge provides a rich pro-
gramming language for modeling Bayesian inference tasks in graphical models
and comes with an out-of-the-box selection of inference algorithms. It provides a

18 http://boom.cs.berkeley.edu/
19 http://code.google.com/p/factorie/
20 http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

http://boom.cs.berkeley.edu/
http://code.google.com/p/factorie/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

238 K. Hose et al.

built-in API for defining random variables (binary/multivariate-discrete or con-
tinuous), factors, message-passing operators, and other algebraic operators. It
has been used in many machine-learning settings, with tasks involving classi-
fication or clustering, and in a wide variety of domains, including information
retrieval, bio-informatics, epidemiology, vision, and many others.

3.5 Distributed Probabilistic Inference

Distribution bears the highest potential to scale-up rule-based reasoning and
probabilistic inference, but still is fairly unexplored in the context of uncertain
reasoning and probabilistic data management. Although distribution of course
cannot tackle the asymptotical runtime issues inherently involved in these algo-
rithms, it bears two key advantages:
• Storing a large data or knowledge base with billions of uncertain data

objects in a distributed environment immediately allows for an increased
main-memory locality of the data, which is a key for both efficient rule-
based reasoning and probabilistic inference, with a majority of fine-grained,
random-access-style data accesses.

• Running queries over a cluster of machines bears great potential for high-
performance parallel computations, but clearly also poses major algorithmic
challenges in terms of synchronizing these computations and the preservation
of approximation guarantees (e.g., convergence guarantees for the MCMC-
based sampling techniques).

MCDB. The MCDB [68, 159] project at IBM Almaden focuses on support-
ing Monte Carlo techniques for complex data analysis tasks directly within a
database system. MCDB is one of the few database approaches to probabilistic
data management that has specifically been adapted to Hadoop21, a massively
parallel, Map-Reduce-like [35] computing environment. MCDB focuses on ana-
lytical tasks over a broad range of user-defined stochastic models, e.g., risk anal-
ysis with complex analytical queries including grouping and aggregations [53].
Another, recent, application domain of MCDB is declarative information extrac-
tion [95].

Message Passing & Distributed Inference. Its iterative nature makes
the Map-Reduce paradigm not well suitable for inference tasks, which inher-
ently involve many fine-grained updates between states of objects that may
be distributed across a compute cluster. For probabilistic inference, two main
paradigms for distribution co-exist: the shared memory and the distributed mem-
ory model. In the shared-memory model, every processor has access to all the
memory in the cluster; while for the distributed memory model, every processor
only has a limited amount of local memory, and each processor can pass “mes-
sages” to other processors in the cluster. An alternative to the classic Message

21 http://hadoop.apache.org/

http://hadoop.apache.org/

Database Foundations for Scalable RDF Processing 239

Passing Interface22 (MPI) is the Internet Communications Engine23 (ICE). Both
are shipped as C++ libraries.

With the ResidualSplash [49] algorithm, the authors present a parallel belief
propagation algorithm under the shard memory model, which is shown to achieve
optimal runtime compared to a theoretical lower bound for parallel inference on
chain graphical models. In their later DBRSplash [50] algorithm, the authors
drop the shared memory model and consider parallel inference techniques in
generic probabilistic graphical models, which are captured as distributed factor
graphs. In this setting, a factor graph is distributed into a number of (disjoint
or slightly overlapping) partitions, such that the number of partitions matches
the number of processors available in the compute cluster. The objective of the
partitioning function is to minimize the communication cost among nodes while
ensuring load balance. Since computing an optimal partitioning under these
constraints is NP-hard, an efficient (linear-time) approximation algorithm is de-
vised as basis for the data partitioning. As for inference, a belief propagation
algorithm is employed, with a local priority queue for incoming update messages
at each processor. DBRSplash even reports a super-linear performance scale-up
compared to a centralized setting. Moreover, GraphLab24 [86] is a framework
for deploying parallel (provably correct) machine learning algorithms. Unlike
MapReduce, it focuses on more asynchronous communication protocols with dif-
ferent levels of sequential-consistency guarantees. In the full consistency model,
during the execution of a function f(v) on a vertex v, no other function is allowed
to read or write data to any node in the scope (neighborhood) S(v). In the edge
consistency model, no other function is allowed to read or write data to an edge
associated with v, while a function f(v) is executed. Finally, in the weakest form
of consistency model, the vertex consistency model, no other function is allowed
to read or write data to the vertex v itself, while a function f(v) is executed.

4 New Trends: BayesStore, SPROUT, Tuffy, URDF

SQL-style query processing over uncertain relational data or, respectively,
rule-based reasoning with uncertain RDF data is an emerging topic in the
database, knowledge management and semantic web communities. Recent trends
along these lines include moving away from strict relational data, lifting infer-
ence to higher-order constraints, and scaling-up inference for graphical models
which combine first-order logic and probabilistic graphical models (in partic-
ular Markov Logic). Extracting structured data from the Web is an excellent
showcase—and likely one of the biggest challenges—for the scalable management
of uncertain data we have seen so far. In the following, we thus briefly highlight
a few projects, each of which devises exciting directions that could help making
the management of uncertain RDF data scalable to billions of triples.
22 http://www.mcs.anl.gov/research/projects/mpich2/
23 http://www.zeroc.com/ice.html
24 http://www.graphlab.ml.cmu.edu/

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.zeroc.com/ice.html
http://www.graphlab.ml.cmu.edu/

240 K. Hose et al.

BayesStore. Based on a native extension to the PostgreSQL database system,
the BayesStore [151] project at Berkeley aims to bridge the gap between statis-
tical models induced by the data and the uncertainty model supported by the
probabilistic database. BayesStore supports statistical models, evidence data,
and inference algorithms directly as first-class citizens inside a database manage-
ment system (DBMS). It combines a probabilistic database system (PDBMS) for
relational data with a declarative first-order extension to Bayesian Nets, which
allows for capturing complex correlation patterns in the PDBMS in a compact
way. Using a combination of propositional and first-order factors, BayesStore
supports probabilistic inference for all common database operations, including
selection, projection, and joins. Recent extensions to BayesStore include the
investigation of probabilistic-declarative information extraction techniques by
using Conditional Random Fields (CRFs) for extraction and by implementing
the Viterbi algorithm for efficient inference in the CRF directly via SQL [150].

SPROUT. Using the MayBMS probabilistic database system (see Section 3.1)
as basis, the SPROUT (for “Scalable PROcessing on Uncertain Tables”) [106]
project at Oxford University aims at the scalable processing of queries over
uncertain data. A particular focus of the project lies on tractable classes of
queries for which exact probabilistic inference can be done in polynomial time.
Similarly to the notion of safe plans [30], a probabilistic query is tractable if it
has a hierarchical structure and (in the case of SPROUT) can be decomposed
into a binary decision diagram in polynomial time. [107], on the other hand,
investigates the decision diagrams for approximate inference for queries where
exact probabilistic inference is intractable.

Tuffy. Based on the observation that Markov Logic does not easily scale to
real-world datasets with millions of data objects, the Tuffy [103] at the Univer-
sity of Wisconsin-Madison investigates pushing Markov Logic Networks (MLNs)
directly into a relational database system (RDBMS). In contrast to the open-
world grounding strategy followed by the MLN implementation Alchemy, the
authors pursue a more efficient bottom-up, closed-world grounding strategy of
first-order rules through iterative SQL statements, which is fully supported by
the DBMS optimizer. Focusing on MAP-inference, Tuffy provides a partitioning
strategy for the search (inference) phase by splitting the grounded network into
a number of independent components, which allows for parallel inference and
an exponentially faster search compared to running the search on the global
problem. For a given classification benchmark, Tuffy (consuming only 15MB of
RAM) was reported to produce much better result quality within minutes than
Alchemy (using 2.8GB of RAM) even after days of running.

URDF. In probabilistic databases, SQL is employed as means for formulating
queries and for defining views. While SQL queries and schema-level constraints
generally yield “hard” Boolean constraints among tuples, they lack the notion
of “soft” dependencies among data items. The URDF [144] project developed
at the Max Planck Institute for Informatics specifically focuses on weighted
Horn clauses as soft rules and mutual-exclusion constraints as hard rules. Unlike

Database Foundations for Scalable RDF Processing 241

Markov Logic, URDF follows a Datalog-style, deductive grounding strategy for
soft rules in the form of Horn clauses, which typically results in a much smaller
grounded network size than for Markov Logic. While URDF originally employed
a Max-SAT solver, which had been tailored to a specific class of mutual-exclusion
hard rules, URDF currently also employs probabilistic models based on deductive
grounding and lineage. Moreover, URDF explores several directions for manag-
ing large amounts of web-extracted RDF data in a declarative way, including
temporal reasoning extensions [152, 39], as well as inductively learning soft in-
ference rules automatically from a given knowledge base. As exact inference for
this class of queries is intractable, URDF investigates various approximation
techniques based on MCMC (Gibbs sampling) for approximate inference.

References

1. RDF Primer & RDF Schema (W3C Rec.2004-02-10),
http://www.w3.org/TR/rdf-primer/, http://www.w3.org/TR/rdf-primer/

2. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically par-
titioned DBMS for Semantic Web data management. VLDB J. 18(2), 385–406
(2009)

3. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic
web data management using vertical partitioning. In: Koch, C., Gehrke, J.,
Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A., Florescu, D., Chan,
C.Y., Ganti, V., Kanne, C.-C., Klas, W., Neuhold, E.J. (eds.) VLDB, pp. 411–422.
ACM, New York (2007)

4. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. SIG-
MOD Rec 32, 29–33 (2003)

5. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Van Pelt, T.: GridVine: Building
Internet-Scale Semantic Overlay Networks. In: McIlraith, S.A., Plexousakis, D.,
van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 107–121. Springer,
Heidelberg (2004)

6. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of
sets of possible worlds. Theor. Comput. Sci. 78(1), 159–187 (1991)

7. Antoniou, G., van Harmelen, F.: A Semantic Web Primer (Cooperative Informa-
tion Systems). MIT Press, Cambridge (2004)

8. Antova, L., Koch, C., Olteanu, D.: MayBMS: Managing incomplete information
with probabilistic world-set decompositions. In: ICDE, pp. 1479–1480 (2007)

9. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix bit loaded: a scalable
lightweight join query processor for RDF data. In: Rappa, M., Jones, P., Freire,
J., Chakrabarti, S. (eds.) WWW, pp. 41–50. ACM, New York (2010)

10. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DB-
pedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mi-
zoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

11. Auer, S., Ngomo, A.-D.N., Lehmann, J.: Introduction to linked data. In: Polleres,
A., et al. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 203–250. Springer,
Heidelberg (2011)

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

242 K. Hose et al.

12. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Pro-
gram. 10(1/2/3/4), 255–299 (1991)

13. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with
uncertainty and lineage. In: VLDB, pp. 953–964 (2006)

14. Berners-Lee, T.: Linked Data - Design Issues (2006),
http://www.w3.org/DesignIssues/LinkedData.html

15. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. Int. J.
Semantic Web. Inf. Syst. 5(3), 1–22 (2009)

16. Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Ré, C., Suciu, D.: MystiQ: a
system for finding more answers by using probabilities. SIGMOD, 891–893 (2005)

17. Bouquet, P., Ghidini, C., Serafini, L.: Querying the Web of Data: A Formal
Approach. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS,
vol. 5926, pp. 291–305. Springer, Heidelberg (2009)

18. Bravo, H.C., Ramakrishnan, R.: Optimizing MPF queries: decision support and
probabilistic inference. SIGMOD, 701–712 (2007)

19. Buitelaar, P., Eigner, T., Declerck, T.: OntoSelect: A Dynamic Ontology Library
with Support for Ontology Selection. In: Proceedings of the Demo Session at the
International Semantic Web Conference (2004)

20. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In: Proceedings of the 13th International Con-
ference on World Wide Web, WWW 2004, pp. 650–657 (2004)

21. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. In: Proceedings of the 4th International
Workshop on Grid Computing, GRID 2003, p. 184 (2003)

22. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web
Semantics 3, 247–267 (2005)

23. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson,
K.: Jena: implementing the Semantic Web recommendations. In: Feldman, S.I.,
Uretsky, M., Najork, M., Wills, C.E. (eds.) WWW (Alternate Track Papers &
Posters), pp. 74–83. ACM, New York (2004)

24. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB, pp.
71–81. Morgan Kaufmann, San Francisco (1987)

25. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.:
Towards a Semantic Web of relational databases: A practical semantic toolkit
and an in-use case from traditional Chinese medicine. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 750–763. Springer, Heidelberg (2006)

26. Cheng, G., Qu, Y.: Searching Linked Objects with Falcons: Approach, Implemen-
tation and Evaluation. Int. J. Semantic Web Inf. Syst. 5(3), 49–70 (2009)

27. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF
querying scheme. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson,
P.-Å., Ooi, B.C. (eds.) VLDB, pp. 1216–1227. ACM, New York (2005)

28. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum
Press, New York (1978)

29. Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R. (eds.): Proceedings of SWDB
2003, The first International Workshop on Semantic Web and Databases, Co-
located with VLDB 2003, September 7-8. Humboldt-Universität, Berlin (2003)

30. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. In:
VLDB, pp. 864–875 (2004)

31. Dalvi, N., Suciu, D.: The dichotomy of conjunctive queries on probabilistic struc-
tures. In: PODS Conference, pp. 293–302 (2007)

http://www.w3.org/DesignIssues/LinkedData.html

Database Foundations for Scalable RDF Processing 243

32. Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt.
Commun. ACM 52(7), 86–94 (2009)

33. Damlen, P., Wakefield, J., Walker, S.: Gibbs sampling for Bayesian non-conjugate
and hierarchical models by using auxiliary variables. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology) 61(2), 331–344 (1999)

34. d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.:
Characterizing Knowledge on the Semantic Web with Watson. In: EON, pp. 1–10
(2007)

35. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

36. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artif. In-
tell. 113(1-2), 41–85 (1999)

37. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
CIKM 2004: Proceedings of the thirteenth ACM International Conference on In-
formation and Knowledge Management, pp. 652–659 (2004)

38. Ding, Y., Sun, Y., Chen, B., Borner, K., Ding, L., Wild, D., Wu, M., DiFranzo, D.,
Fuenzalida, A.G., Li, D., Milojevic, S., Chen, S., Sankaranarayanan, M., Toma, I.:
Semantic web portal: a platform for better browsing and visualizing semantic data.
In: Proceedings of the 6th International Conference on Active Media Technology,
AMT 2010, pp. 448–460 (2010)

39. Dylla, M., Sozio, M., Theobald, M.: Resolving temporal conflicts in inconsistent
rdf knowledge bases. In: BTW, pp. 474–493 (2011)

40. Erling, O., Mikhailov, I.: Towards web-scale rdf,
http://virtuoso.openlinksw.com/whitepapers/Web-Scale%20RDF.pdf

41. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Pellegrini, T.,
Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked
Media. SCI, vol. 221, pp. 7–24. Springer, Berlin (2009)

42. Fletcher, G.H.L., Beck, P.W.: Scalable indexing of RDF graphs for efficient join
processing. In: Cheung, D.W.-L., Song, I.-Y., Chu, W.W., Hu, X., Lin, J.J. (eds.)
CIKM, pp. 1513–1516. ACM, New York (2009)

43. Frakes, W.B., Baeza-Yates, R.A. (eds.): Information Retrieval: Data Structures
& Algorithms. Prentice-Hall, Englewood Cliffs (1992)

44. Fuhr, N.: Probabilistic Datalog - a logic for powerful retrieval methods. In: SIGIR,
pp. 282–290 (1995)

45. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

46. Getoor, L., Taskar, B.: An Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

47. Gilks, W., Richardson, S., Spiegelhalter, D.J.S.: Markov Chain Monte Carlo in
Practice. Chapman and Hall, Boca Raton (1996)

48. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

49. Gonzalez, J.E., Low, Y., Guestrin, C.: Residual splash for optimally parallelizing
belief propagation. In: Artificial Intelligence and Statistics (AISTATS), pp. 177–
184 (2009)

50. Gonzalez, J.E., Low, Y., Guestrin, C., O’Hallaron, D.: Distributed parallel infer-
ence on large factor graphs. In: Uncertainty in Artificial Intelligence (UAI), pp.
203–212 (2009)

51. Görlitz, O., Staab, S.: Federated Data Management and Query Optimization for
Linked Open Data, ch. 5, pp. 109–137. Springer, Heidelberg (2011)

http://virtuoso.openlinksw.com/whitepapers/Web-Scale%20RDF.pdf

244 K. Hose et al.

52. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. J. Web Sem. 3(2-3), 158–182 (2005)

53. Haas, P.J., Jermaine, C.M., Arumugam, S., Xu, F., Perez, L.L., Jampani, R.:
MCDB-R: Risk analysis in the database. PVLDB 3(1), 782–793 (2010)

54. Haase, P., Mathäß, T., Ziller, M.: An evaluation of approaches to federated query
processing over linked data. In: Proceedings of the 6th International Conference
on Semantic Systems, I-SEMANTICS 2010, pp. 5:1–5:9 (2010)

55. Haase, P., Wang, Y.: A decentralized infrastructure for query answering over
distributed ontologies. In: Proceedings of the 2007 ACM symposium on Applied
computing, SAC 2007, pp. 1351–1356 (2007)

56. Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: Volz, R., Decker,
S., Cruz, I.F. (eds.) PSSS. CEUR Workshop Proceedings, vol. 89 (2003)

57. Harth, A.: VisiNav: Visual web data search and navigation. In: Bhowmick, S.S.,
Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 214–228. Springer,
Heidelberg (2009)

58. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: SWSE:
Answers Before Links! In: Semantic Web Challenge (2007)

59. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., Umbrich, J.: Data
Summaries for On-Demand Queries over Linked Data. In: WWW 2010, pp. 411–
420 (2010)

60. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository for
querying graph structured data from the web. In: Aberer, K., Choi, K.-S., Noy,
N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

61. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

62. Hartig, O., Heese, R.: The SPARQL query graph model for query optimization.
In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp.
564–578. Springer, Heidelberg (2007)

63. Hartig, O., Langegger, A.: A Database Perspective on Consuming Linked Data
on the Web. Datenbank-Spektrum 10(2), 57–66 (2010)

64. Hellerstein, J.M.: The declarative imperative: experiences and conjectures in dis-
tributed logic. SIGMOD Record 39(1), 5–19 (2010)

65. Hogan, A., Harth, A., Decker, S.: ReConRank: A Scalable Ranking Method for
Semantic Web Data with Context. In: 2nd Workshop on Scalable Semantic Web
Knowledge Base Systems (2006)

66. Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: a probabilistic database
management system. SIGMOD, 1071–1074 (2009)

67. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

68. Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C.M., Haas, P.J.: MCDB:
a Monte Carlo approach to managing uncertain data. In: Wang, J.T.-L. (ed.)
SIGMOD, pp. 687–700. ACM, New York (2008)

69. Jaumard, B., Simeone, B.: On the complexity of the maximum satisfiability prob-
lem for Horn formulas. Information Processing Letters 26(1), 1–4 (1987)

70. Jha, A., Rastogi, V., Suciu, D.: Query evaluation with soft-key constraints. In:
PODS, pp. 119–128 (2008)

Database Foundations for Scalable RDF Processing 245

71. Kanagal, B., Deshpande, A.: Lineage processing over correlated probabilistic
databases. In: SIGMOD, pp. 675–686 (2010)

72. Kanellakis, P.C., Smolka, S.A.: CCS expressions finite state processes, and three
problems of equivalence. Inf. Comput. 86, 43–68 (1990)

73. Karp, R.M., Luby, M.: Monte-Carlo algorithms for enumeration and reliability
problems. In: FOCS, pp. 56–64 (1983)

74. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving prob-
lems with hard and soft constraints. In: The Satisfiability Problem: Theory and
Applications, pp. 573–586. American Mathematical Society, Providence (1996)

75. Koch, C.: A compositional query algebra for second-order logic and uncertain
databases. In: ICDT, pp. 127–140 (2009)

76. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32, 422–469 (2000)

77. Kowalski, R.A., Kuehner, D.: Linear resolution with selection function. Artif.
Intell. 2(3/4), 227–260 (1971)

78. Ladwig, G., Tran, T.: Linked Data Query Processing Strategies. In:
Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Hor-
rocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469.
Springer, Heidelberg (2010)

79. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual
data integration on the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Hei-
delberg (2008)

80. Levandoski, J.J., Mokbel, M.F.: RDF data-centric storage. In: ICWS, pp. 911–
918. IEEE Computer Society Press, Los Alamitos (2009)

81. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic
databases. In: PVLDB, vol. 2(1), pp. 502–513 (2009)

82. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: an analysis of the
performance of rule engines. In: WWW, pp. 601–610. ACM, New York (2009)

83. Liarou, E., Idreos, S., Koubarakis, M.: Evaluating Conjunctive Triple Pattern
Queries over Large Structured Overlay Networks. In: Cruz, I., Decker, S., Alle-
mang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 399–413. Springer, Heidelberg (2006)

84. Liu, B., Hu, B.: Path queries based RDF index. In: SKG, p. 91. IEEE Computer
Society Press, Los Alamitos (2005)

85. Baolin, L., Bo, H.: HPRD: A high performance RDF database. In: Li, K.,
Jesshope, C., Jin, H., Gaudiot, J.-L. (eds.) NPC 2007. LNCS, vol. 4672, pp. 364–
374. Springer, Heidelberg (2007)

86. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
GraphLab: A new parallel framework for machine learning. In: Conference on
Uncertainty in Artificial Intelligence (UAI), Catalina Island, California (2010)

87. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reason-
ing 45(2), 288–307 (2007)

88. Chang, N.R.M., Ratinov, L., Roth, D.: Learning and inference with constraints.
In: AAAI (2008)

89. Maduko, A., Anyanwu, K., Sheth, A.P., Schliekelman, P.: Graph summaries for
subgraph frequency estimation. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 508–523. Springer,
Heidelberg (2008)

246 K. Hose et al.

90. Maduko, A., Anyanwu, K., Sheth, A.P., Schliekelman, P.: Estimating the cardi-
nality of RDF graph patterns. In: Williamson, C.L., Zurko, M.E., Patel-Schneider,
P.F., Shenoy, P.J. (eds.) WWW, pp. 1233–1234. ACM, New York (2007)

91. Maduko, A., Anyanwu, K., Sheth, A.P., Schliekelman, P.: Graph summaries for
subgraph frequency estimation. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 508–523. Springer, Hei-
delberg (2008)

92. Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S.: An indexing scheme for
RDF and RDF schema based on suffix arrays. In: Cruz, et al [29], pp. 151–168

93. McCallum, A., Schultz, K., Singh, S.: FACTORIE: Probabilistic programming via
imperatively defined factor graphs. In: NIPS (2009)

94. Mendelzon, A.O., Milo, T.: Formal models of Web queries. In: Proceedings of
the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, PODS 1997, pp. 134–143 (1997)

95. Michelakis, E., Krishnamurthy, R., Haas, P.J., Vaithyanathan, S.: Uncertainty
management in rule-based information extraction systems. SIGMOD, 101–114
(2009)

96. Mutsuzaki, M., Theobald, M., de Keijzer, A., Widom, J., Agrawal, P., Benjelloun,
O., Sarma, A.D., Murthy, R., Sugihara, T.: Trio-One: Layering uncertainty and
lineage on a conventional DBMS (demo). In: CIDR, pp. 269–274 (2007)

97. Nakashole, N., Theobald, M., Weikum, G.: Scalable knowledge harvesting with
high precision and high recall. In: WSDM, pp. 227–236 (2011)

98. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: EDUTELLA: a P2P networking infrastructure based on RDF. In:
WWW 2002: Proceedings of the 11th International Conference on World Wide
Web, pp. 604–615. ACM Press, New York (2002)

99. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. In: PVLDB,
vol. 1(1), pp. 647–659 (2008)

100. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs.
In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) SIGMOD Con-
ference, pp. 627–640. ACM, New York (2009)

101. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of rdf
data. VLDB J 19(1), 91–113 (2010)

102. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and
well-founded semantics for normal logic programs. In: Logic Programming and
Nonmonotonic Reasoning, Springer, Heidelberg (1997)

103. Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: scaling up statistical inference
in Markov logic networks using an RDBMS. Technical report, University of
Wisconsin-Madison (2010)

104. Nottelmann, H., Fuhr, N.: Adding probabilities and rules to OWL lite sub-
sets based on probabilistic Datalog. Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 14(1), 17–41 (2006)

105. Obermeier, P., Nixon, L.: A Cost Model for Querying Distributed RDF-
Repositories with SPARQL. In: Workshop on Advancing Reasoning on the Web:
Scalability and Commonsense (2008)

106. Olteanu, D., Huang, J., Koch, C.: SPROUT: Lazy vs. eager query plans for tuple-
independent probabilistic databases. In: ICDE, pp. 640–651. IEEE, Los Alamitos
(2009)

107. Olteanu, D., Huang, J., Koch, C.: Approximate confidence computation in prob-
abilistic databases. In: ICDE, pp. 145–156 (2010)

Database Foundations for Scalable RDF Processing 247

108. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello,
G.: Sindice.com: a document-oriented lookup index for open linked data. Int. J.
Metadata Semant. Ontologies 3, 37–52 (2008)

109. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab (Novem-
ber 1999)

110. Palma, R., Haase, P.: Oyster - Sharing and Re-using Ontologies in a Peer-to-Peer
Community. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 1059–1062. Springer, Heidelberg (2005)

111. Pan, J.Z., Thomas, E., Sleeman, D.: Ontosearch2: Searching and querying web
ontologies. In: Proc. of the IADIS International Conference, pp. 211–218 (2006)

112. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: a semantic web portal for
ontology searching, ranking and classification. In: Proceedings of the 5th ACM
International Workshop on Web Information and Data Management, WIDM 2003,
pp. 58–61 (2003)

113. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de-
terministic dependencies. In: AAAI. AAAI Press, Menlo Park (2006)

114. Poon, H., Domingos, P., Sumner, M.: A general method for reducing the complex-
ity of relational inference and its application to MCMC. In: AAAI, pp. 1075–1080
(2008)

115. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

116. Re, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probabilistic data.
In: ICDE, pp. 886–895 (2007)

117. Re, C., Suciu, D.: Managing probabilistic data with mystiQ: The can-do, the
could-do, and the can’t-do. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS
(LNAI), vol. 5291, pp. 5–18. Springer, Heidelberg (2008)

118. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2)
(2006)

119. Riedel, S.: Cutting plane MAP inference for Markov Logic. In: International Work-
shop on Statistical Relational Learning, SRL (2009)

120. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82, 273–302
(1996)

121. Roth, D., Yih, W.: Integer linear programming inference for conditional random
fields. In: Proc. of the International Conference on Machine Learning (ICML),
pp. 737–744 (2005)

122. Sakr, S., Al-Naymat, G.: Relational processing of rdf queries: a survey. SIGMOD
Record 38(4), 23–28 (2009)

123. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Widom, J.: Working models for un-
certain data. In: ICDE, p. 7 (2006)

124. Sarma, A.D., Theobald, M., Widom, J.: Exploiting lineage for confidence compu-
tation in uncertain and probabilistic databases. In: ICDE, pp. 1023–1032 (2008)

125. Das Sarma, A., Theobald, M., Widom, J.: LIVE: A lineage-supported versioned
DBMS. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp.
416–433. Springer, Heidelberg (2010)

126. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the Web. In: Proceeding of
the 17th International Conference on World Wide Web, WWW 2008, pp. 585–594
(2008)

248 K. Hose et al.

127. Sen, P., Deshpande, A.: Representing and querying correlated tuples in proba-
bilistic databases. In: ICDE, pp. 596–605 (2007)

128. Sen, P., Deshpande, A., Getoor, L.: PrDB: managing and exploiting rich correla-
tions in probabilistic databases. VLDB J. 18(5), 1065–1090 (2009)

129. Sen, P., Deshpande, A., Getoor, L.: Read-once functions and query evaluation in
probabilistic databases. PVLDB 3(1), 1068–1079 (2010)

130. Sidirourgos, L., Goncalves, R., Kersten, M.L., Nes, N., Manegold, S.: Column-
store support for RDF data management: not all swans are white. PVLDB 1(2),
1553–1563 (2008)

131. Singh, S., Mayfield, C., Mittal, S., Prabhakar, S., Hambrusch, S.E., Shah, R.:
Orion 2.0: native support for uncertain data. SIGMOD, 1239–1242 (2008)

132. Singh, S., Mayfield, C., Shah, R., Prabhakar, S., Hambrusch, S.E., Neville, J.,
Cheng, R.: Database support for probabilistic attributes and tuples. In: ICDE,
pp. 1053–1061 (2008)

133. Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In:
AAAI (2006)

134. Soliman, M.A., Ilyas, I.F., Chang, K.C.: URank: formulation and efficient evalu-
ation of top-k queries in uncertain databases. SIGMOD, 1082–1084 (2007)

135. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: Huai, J., Chen, R.,
Hon, H.-W., Liu, Y., Ma, W.-Y., Tomkins, A., Zhang, X. (eds.) WWW, pp. 595–
604. ACM, New York (2008)

136. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: Proceeding of the 17th
International Conference on World Wide Web, WWW 2008, pp. 595–604 (2008)

137. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11, 17–32 (2003)

138. Straccia, U.: Managing Uncertainty and Vagueness in Description Logics, Logic
Programs and Description Logic Programs. In: Baroglio, C., Bonatti, P.A.,
Ma�luszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web.
LNCS, vol. 5224, pp. 54–103. Springer, Heidelberg (2008)

139. Stuckenschmidt, H., Vdovjak, R., Houben, G.-J., Broekstra, J.: Index structures
and algorithms for querying distributed RDF repositories. In: Proceedings of the
13th International Conference on World Wide Web, WWW 2004, pp. 631–639
(2004)

140. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW, pp. 697–706 (2007)

141. Suchanek, F.M., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for
information extraction. In: WWW, pp. 631–640 (2009)

142. Systeme, A.W., Gottlob, G., Voronkov, A., Dantsin, E., Dantsin, E., Eiter, T.,
Eiter, T.: Complexity and expressive power of logic programming (1999)

143. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive
queries in database and logic programming systems. Theory Pract. Log. Pro-
gram. 8, 129–165 (2008)

144. Theobald, M., Sozio, M., Suchanek, F., Nakashole, N.: URDF: Efficient reasoning
in uncertain RDF knowledge bases with soft and hard rules. Technical Report
MPII20105-002, Max Planck Institute Informatics, MPI-INF (2010)

Database Foundations for Scalable RDF Processing 249

145. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database rep-
resentations of RDF/S stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg
(2005)

146. Tran, T., Haase, P., Studer, R.: Semantic search – using graph-structured semantic
models for supporting the search process. In: Rudolph, S., Dau, F., Kuznetsov,
S.O. (eds.) ICCS 2009. LNCS, vol. 5662, pp. 48–65. Springer, Heidelberg (2009)

147. Tran, T., Wang, H., Haase, P.: Hermes: Data Web search on a pay-as-you-go
integration infrastructure. Web Semant. 7, 189–203 (2009)

148. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker,
S.: Sig.ma: live views on the web of data. In: Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, pp. 1301–1304 (2010)

149. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A graph based RDF index.
In: AAAI, pp. 1465–1470. AAAI Press, Menlo Park (2007)

150. Wang, D.Z., Michelakis, E., Franklin, M.J., Garofalakis, M.N., Hellerstein, J.M.:
Probabilistic declarative information extraction. In: ICDE, pp. 173–176 (2010)

151. Wang, D.Z., Michelakis, E., Garofalakis, M.N., Hellerstein, J.M.: BayesStore:
managing large, uncertain data repositories with probabilistic graphical models.
PVLDB 1(1), 340–351 (2008)

152. Wang, Y., Yahya, M., Theobald, M.: Time-aware reasoning in uncertain knowl-
edge bases. In: Workshop on Management of Uncertain Data, MUD (2010)

153. Warren, D.S.: Memoing for logic programs. Commun. ACM 35, 93–111 (1992)
154. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: Exploiting random

walk strategies. In: AAAI, pp. 670–676 (2004)
155. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for Semantic

Web data management. PVLDB 1(1), 1008–1019 (2008)
156. Wick, M.L., McCallum, A., Miklau, G.: Scalable probabilistic databases with

factor graphs and mcmc. PVLDB 3(1), 794–804 (2010)
157. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and Re-

trieval in Jena2. In: First International Workshop on Semantic Web and Databases
(SWDB 2003), pp. 131–150 (2003)

158. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and
retrieval in Jena2. In: Cruz, et al [29], pp. 131–150

159. Xu, F., Beyer, K.S., Ercegovac, V., Haas, P.J., Shekita, E.J.: E = MC3: managing
uncertain enterprise data in a cluster-computing environment. SIGMOD, 441–454
(2009)

160. Zhou, M., Wu, Y.: XML-based RDF data management for efficient query process-
ing. In: Dong, X.L., Naumann, F. (eds.) WebDB (2010)

Scalable OWL 2 Reasoning for Linked Data�

Aidan Hogan1, Jeff Z. Pan2, Axel Polleres1,3, and Yuan Ren2

1 Digital Enterprise Research Institute, National University of Ireland, Galway
{aidan.hogan,axel.polleres}@deri.org

2 Department of Computing Science, University of Aberdeen
{jeff.z.pan,y.ren}@abdn.ac.uk

3 Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria

Abstract. The goal of the Scalable OWL 2 Reasoning for Linked Data lecture is
twofold: first, to introduce scalable reasoning and querying techniques to Seman-
tic Web researchers as powerful tools to make use of Linked Data and large-scale
ontologies, and second, to present interesting research problems for the Semantic
Web that arise in dealing with TBox and ABox reasoning in OWL 2. The lecture
consists of three parts. The first part will begin with an introduction and moti-
vation for reasoning over Linked Data, including a survey of the use of RDFS
and OWL on the Web. The second part will present a scalable, distributed reason-
ing service for instance data, applying a custom subset of OWL 2 RL/RDF rules
(based on a tractable fragment of OWL 2). The third part will present recent work
on faithful approximate reasoning for OWL 2 DL. The lecture will include our
implementation of the mentioned techniques as well as their evaluations. These
notes provide complimentary reference material for the lecture, and follow the
three-part structure and content of the lecture.

1 Introduction

Over the past few years, various Web publishers have turned to RDF and Linked Data
principles as a means of disseminating information in a machine-interpretable way, re-
sulting in a burgeoning Web of Data which now includes interlinked content provided
by corporate bodies (e.g., BBC [53], BestBuy [35], New York Times1, Freebase2),
community-driven efforts (e.g., WIKIPEDIA/DBpedia3 [15]), social networking sites
(e.g., hi54, LiveJournal5), biomedical datasets (e.g., DrugBank6, Linked

� The work presented in this paper has been funded in part by Science Foundation Ireland under
Grant No. SFI/08/CE/I1380 (Lion-2), by an IRCSET Scholarship, by the EU MOST project,
and by the EPSRC LITRO project.

1 http://data.nytimes.com/; retr. 15/10/2010
2 http://www.freebase.com/; retr. 15/10/2010
3 http://dbpedia.org/; retr. 15/10/2010
4 http://api.hi5.com/; retr. 15/10/2010
5 http://livejournal.com; retr. 15/10/2010
6 http://www.drugbank.ca/; retr. 15/10/2010

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 250–325, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Scalable OWL 2 Reasoning for Linked Data 251

Clinical Trials7), governmental entities (e.g., data.gov.uk, data.gov), academia
(e.g., DBLP8, UniProt9), as well as some esoteric corpora (e.g., Poképédia10, Linked
Open Numbers11 [91]). See http://lod-cloud.net (retr. 15/10/2010) for Cyganiak
and Jentzsch’s Linked Open Data cloud diagram which illustrates the datasets com-
prising the current (and past) Web of Data. As such, there now exists a rich vein of
heterogeneous, structured and interlinked data on the Web. (Please see [2] in these pro-
ceedings for extensive introduction and general discussion relating to Linked Data and
the Web of Data; herein, we focus on reasoning issues.)

Linked Data’s successes are perhaps due to its bottom-up approach to bootstrapping
Semantic Web publishing, best epitomised by the Linked Data 5-star scheme which can
be summarised as follows:

� PUBLISH DATA ON THE WEB UNDER AN OPEN LICENSE

� � PUBLISH STRUCTURED DATA

� � � USE NON-PRIORIETARY FORMATS

� � � � USE URIS TO IDENTIFY THINGS

� � � � � LINK YOUR DATA TO OTHER DATA

—paraphrased from [10]

Here, each additional star is promoted as representing a tangible, incremental step to-
wards increasing the potential reusability and interoperability of the publishers’ data.12

As part of this bottom-up approach, Linked Data downplays higher levels of the tradi-
tional Semantic Web stack, viz., ontologies, logic, proof, trust and cryptography [34].
One may note that many of these layers relate to reasoning in one form or another,
where—as we will discuss in the next section—the reasoning research literature (and
arguably, the RDFS and OWL standards) have often focussed on scenarios and goals
orthogonal to the Linked Data use-case.

Still, the original challenges envisaged for the traditional Semantic Web are now be-
ing realised on the Web of Data: consumers wishing to process data offered by many
different publishers will encounter problems with respect to integrating and making
meaningful use of the resulting corpus. In fact, as we will see, Linked Data publishers
already use lightweight subsets of the RDFS and OWL standards to provide “mappings”
which help consumers overcome this problem of heterogeneity; thereafter, we argue
that many Linked Data consumers (will) often need some lightweight forms of rea-
soning when dealing with heterogeneous Linked Data sourced from different domains.
Looking further into the future, the demand for more and more expressive reasoning
services—which allow further machine automation of typical Web tasks—is bound to
grow.

7 http://linkedct.org/; retr. 15/10/2010
8 http://www4.wiwiss.fu-berlin.de/dblp/; retr. 15/10/2010
9 http://www.uniprot.org/; retr. 15/10/2010

10 http://www.pokepedia.net/; retr. 15/10/2010
11 http://km.aifb.kit.edu/projects/numbers/; retr. 15/10/2010
12 Please see http://lab.linkeddata.deri.ie/2010/star-scheme-by-
example/ (retr. 2011/01/22) for the rationale behind these stars. Note that although the final
star does not explicitly mention Linked Data or RDF, use of these technologies is implied.

http://lod-cloud.net

252 A. Hogan et al.

Along these lines, herein we give an overview of the state-of-the-art with respect to
Linked Data reasoning. In particular, we present the following discussion:

– we begin in § 2 by motivating reasoning in the context of Linked Data, presenting
some concrete use-cases, and discussing the use of the RDFS and OWL standards
on the Web of Data.

We then detail two complementary reasoning approaches which may be applicable in
such scenarios:

– in § 3, we look at SAOR: a lightweight, pragmatic rule-based materialisation en-
gine which applies a scalable subset of OWL 2 RL/RDF, is designed to operate
over a cluster of commodity hardware in a distributed setting with little or no co-
ordination between machines, and conservatively discards terminological knowl-
edge given by unverifiable sources;

– in § 4, we describe a system for performing approximative, but relatively expres-
sive TBox reasoning with respect to OWL 2 DL, where SROIQ ontologies are
simplified into EL++, and where the approximate representation is then classified
using scalable techniques which typically demonstrate high recall when compared
with the non-approximative classification.

The rule-based reasoning described in § 3 offers linear scalable with respect to asser-
tional (instance) data, but is rather inexpressive, especially when dealing with termino-
logical knowledge; this approach is well-suited to lightweight reasoning over the large
amounts of assertional knowledge which constitute the bulk of RDF data found on the
Web. Conversely, the approximative reasoning of § 4 offers expressive PTIME-complete
reasoning over terminological knowledge, but is still a memory-based approach; this
approach is well-suited to expressive reasoning over the smaller amounts of termino-
logical knowledge found on the Web.

In summary, we aim to provide the reader with insights into why Linked Data rea-
soning is useful, what the use-cases are, what the main challenges are, how RDFS and
OWL are being used on the Web, and what techniques can be used to realise reasoning
in such scenarios.

2 Linked Data: RDFS, OWL and Reasoning

We begin this section by highlighting three potential problems faced by consumers of
Linked Data; for each problem, we present a motivating example which helps illustrate
why we believe that Linked Data needs reasoning (§ 2.1). Thereafter, we discuss what
kind of reasoning is possible over Linked Data where we look at the use of RDFS and
OWL on the Web of Data (§ 2.2). Finally, we give a brief overview of how Linked
Data reasoning can be realised (§ 2.3) before moving onto the concrete proposals for
reasoning systems in the later sections.

Note that throughout this section, we present examples and analyses extracted from a
real-world Linked Data corpus of 1.118 billion quadruples (965 million unique triples)
extracted from 3.985 million RDF/XML documents through an open-domain crawl

Scalable OWL 2 Reasoning for Linked Data 253

conducted in May 2010. The corpus consists of data from 783 different pay-level do-
mains (direct subdomains of top-level domains, such as dbpedia.org), and thus
represents a domain-agnostic sample of the Web of Data. We refer the reader to [39,
§ 4] for more details on this dataset.

2.1 Why Does Linked Data Need Reasoning?

We begin by introducing three potential problems faced by consumers of Linked Data
which can be addressed through reasoning techniques:

1. heterogeneity in terminology;
2. heterogeneity in naming resources;
3. contradictions given by inconsistency.

Heterogeneity in terminology. To enable interoperability and subsequent data integra-
tion, Linked Data literature encourages reuse of URIs—particularly those referential to
classes and properties (schema-level terminology)—across data sources: in the ideal
case, a Linked Data consumer can perform a simple (RDF-)merge of datasets, where
consistent use of terminology ensures that resources are described uniformly and thus
can be accessed and queried uniformly. Although this ideal is achievable in part by com-
munity agreement and self-organising phenomena such as preferential attachment [6]—
whereby, for example, the most popular classes and properties would become the de-
facto consensus and thus more widely used—given the ad-hoc decentralised nature of
the Web, complete and appropriate agreement upon the broad spectrum of terminology
needed to fully realise the Web of Data is probably infeasible.

Instead, Linked Data publishers may use different but analogous terminology to de-
scribe their data: competing vocabularies may offer different levels of granularity or ex-
pressivity more suitable to a given publisher’s needs, may be popular at different times
or within different communities, etc. For example, one publisher may chose the prop-
erty foaf:maker whereas another publisher may chose the property dc:creator,
where both properties serve the same purpose. Publishers may not only choose different
vocabularies, but may also choose alternate terms within a given vocabulary to model
analogous information. For example, vocabularies may offer pairs of inverse proper-
ties—e.g., foaf:made/foaf:maker—which poses the publisher with two options
for stating the same information. Further still, Linked Data best-practices encourage
publisher to “cherry-pick” different vocabularies, choosing a heterogeneous “bag of
terms” to describe their data [14].

This becomes a significant obstacle for applications consuming a sufficiently hetero-
geneous corpus: for example, queries posed against the data must emulate the various
terminological permutations possible to achieve (more) complete answers. Here, we
take the motivating example of a simple query described in prose as:

What are the webpages related to ex:resource?

Knowing that the property foaf:page is commonly used in Linked Data to define the
relationship from resources to the documents somehow concerning them, we can for-
mulate a simple structured query in SPARQL [73]—the W3C standardised RDF query

254 A. Hogan et al.

language—as given in Listing 1. (Please see [24] in these proceedings for an introduc-
tion to SPARQL, and further discussion on combining RDFS and OWL entailment with
SPARQL.)

Listing 1. Simple query for all pages relating to ex:resource

SELECT ?page
WHERE {
ex:resource foaf:page ?page .

}

However, within Linked Data, there exist various other, more fine-grained properties
for relating a resource to specific types of pages—these properties are not only given
by FOAF, but also by remote vocabularies. Thus, to ensure more complete answers,
the SPARQL query must use disjunction (UNION clauses) to reflect the possible triples
which may answer the query; we give such an example in Listing 2 involving properties
we found in our one-billion-triple Linked Data corpus, where we additionally annotate
each pattern with the total number of triples found in our corpus for the respective
predicate; this gives a rough indicator of the relative likelihood of finding additional
answers with each additional pattern (prefix values are enumerated in Appendix B).

Not only is the resulting query much more cumbersome to formulate, but it also
requires a much more in-depth knowledge of the various vocabularies in the corpus.
In reality, people querying the data will often end up omitting many (if not all) of
the UNION clauses and simply accept partial results, perhaps only querying for those
properties they know about. Similar (albeit less convincing) examples can be shown for
classes. Considering that the highlighted example might only be one part of a much
larger query, the inherent difficulties in “adequately” querying a heterogeneous corpus
of Linked Data become clear.13

One possible solution to ease the burden on consumers (and one sometimes promoted
in the Linked Data community) is for publishers to provide some redundancy in their
data, and explicitly repeat the same information in whatever different ways they foresee
would be useful to consumers. Taking such a publishing pattern to its extremes, to
express that the person Tim Berners-Lee (whose known URI is timblfoaf:i) has
the homepage timblfoaf:hp, a publisher might explicitly state the following set of
triples:

timblfoaf:i foaf:homepage timblfoaf:hp ;
foaf:isPrimaryTopicOf timblfoaf:hp ;
foaf:page timblfoaf:hp .

timblfoaf:hp foaf:primaryTopic timblfoaf:i ;
foaf:topic timblfoaf:i .

13 Of course, this problem of heterogeneity is not purely specific to SPARQL querying, but like-
wise extends to many other consumer applications or techniques operating over a corpus of
Linked Data.

Scalable OWL 2 Reasoning for Linked Data 255

thus covering all possible ways in which the data could be queried or otherwise
consumed. However, clearly such a pattern would not be sustainable as the number
of publishers grows, as the amount of data grows, and as the variety of relevant vocab-
ularies and terms grows.

Thus, we propose that Linked Data needs some means of translating assertional data
between different terminology, allowing for consumers to enjoy the same answers for
the simple query in Listing 2 as if they had formulated and asked the extended query
given in Listing 1 (or, as if publishers had gone to the bother of publishing and main-
taining redundant data in all pertinent terminological combinations).

Of course, the Linked Data community are not oblivious to these problems. Vocabu-
lary maintainers commonly publish machine-interpretable RDFS and OWL definitions
of their local terms, as well as mappings to related terms in remote vocabularies. In fact,
since foaf:page is relatively well-known within the Linked Data community, all of
the properties appearing in the example extended query are (possibly indirectly) related
to foaf:page using RDFS and OWL connectives in their respective vocabularies:
all properties referenced in Listing 2 are chosen on the basis that they are directly or
indirectly related to foaf:page by rdfs:subPropertyOf or owl:inverse-
Of, where relations using these properties can be used to infer foaf:page answers
—note that we italicise patterns for properties which have an inverse (sub-)relation to
foaf:page in Listing 2. (We will look in more detail at the use of RDFS and OWL
within Linked Data later in § 2.2.)

Thus, given these ad-hoc mappings provided by the Linked Data publishers them-
selves, we have the necessary formal knowledge to be able to answer the former simple
query with all of the answers given by the latter elaborate query. In order to exploit this
knowledge and realise this goal in the general case, we require some form of reasoning.

Heterogeneity in naming resources. A similar problem is posed by the lack of agree-
ment on identifiers assigned to assertional resources. Complete agreement upon a sin-
gle URI for each possible resource of interest is unrealistic, and would require either
a centralised naming registry to corroborate name proposals, or agreement upon some
universal bijective naming scheme compatible with any arbitrary resource. Aside from
feasibility, having one agreed-upon URI to identify each resource may not even be de-
sirable, and would in fact contradict one of the core Linked Data principles: that URIs
should be made dereferenceable such that when a HTTP lookup is performed, use-
ful information should be returned (in RDF) [34]. A URI can only dereference to a
single document, and thus if there were a one-to-one relationship bewteen resources
and URIs, the description of individual resources would be in the control of individ-
ual publishers who mint the pertinent URI. Instead, Linked Data best-practices often
encourage minting novel, locally dereferenceable URIs for resources, even if legacy
compatible URIs are (somehow) known. Finally, many publishers (esp. older FOAF ex-
porters) may forego using URIs at all, instead using default blank-nodes to “identify”
resources.

Thus, we can expect resources to be identified using different naming schemes, or—
worse still—to be represented as blank-nodes. Thus, the total knowledge contribution
on that resource is fractured by the disparity in naming across sources. Consumers of

256 A. Hogan et al.

Listing 2. Extended query for all pages relating to ex:resource

SELECT ?page
WHERE {
{ ex:resource foaf:page ?page . } #4,923,026
UNION { ex:resource foaf:weblog ?page . } #10,061,003
UNION { ex:resource foaf:homepage ?page . } #9,522,912
UNION {?page foaf:topic ex:resource . } #6,163,769
UNION {?page foaf:primaryTopic ex:resource . } #3,689,888
UNION { ex:resource mo:musicbrainz ?page . } #399,543
UNION { ex:resource foaf:openid ?page . } #100,654
UNION { ex:resource foaf:isPrimaryTopicOf ?page . } #92,927
UNION { ex:resource mo:wikipedia ?page . } #55,228
UNION { ex:resource mo:myspace ?page . } #28,197
UNION { ex:resource po:microsite ?page . } #15,577
UNION { ex:resource mo:amazon_asin ?page . } #14,790
UNION { ex:resource mo:imdb ?page . } #9,886
UNION { ex:resource mo:fanpage ?page . } #5,135
UNION { ex:resource mo:biography ?page . } #4,609
UNION { ex:resource mo:discogs ?page . } #1,897
UNION { ex:resource rail:arrivals ?page . } #347
UNION { ex:resource rail:departures ?page . } #347
UNION { ex:resource mo:musicmoz ?page . } #227
UNION { ex:resource mo:discography ?page . } #195
UNION { ex:resource mo:review ?page . } #46
UNION { ex:resource mo:freedownload ?page . } #37
UNION { ex:resource mo:mailorder ?page . } #35
UNION { ex:resource mo:licence ?page . } #28
UNION { ex:resource mo:paiddownload ?page . } #13
UNION { ex:resource foaf:tipjar ?page . } #8
UNION { ex:resource doap:homepage ?page . } #1
UNION { ex:resource doap:old-homepage ?page . } #1
UNION { ex:resource mo:download ?page . } #0
UNION { ex:resource mo:event_homepage ?page . } #0
UNION { ex:resource mo:free_download ?page . } #0
UNION { ex:resource mo:homepage ?page . } #0
UNION { ex:resource mo:paid_download ?page . } #0
UNION { ex:resource mo:preview_download ?page . } #0
UNION { ex:resource mo:olga ?page . } #0
UNION { ex:resource mo:onlinecommunity ?page . } #0
UNION { ex:resource plink:addFriend ?page . } #0
UNION { ex:resource plink:atom ?page . } #0
UNION { ex:resource plink:content ?page . } #0
UNION { ex:resource plink:foaf ?page . } #0
UNION { ex:resource plink:profile ?page . } #0
UNION { ex:resource plink:rss ?page . } #0
UNION { ex:resource xfn:mePage ?page . } #0

}

Scalable OWL 2 Reasoning for Linked Data 257

such a corpus may struggle to achieve complete answer for their queries; again, consider
a simple example query:

What are the webpages related to Tim Berners-Lee?

Knowing that Tim uses the URI timblfoaf:i to refer to himself in his personal
FOAF profile document, and again knowing that the property foaf:page defines
the relationship from resources to the documents somehow concerning them, we can
formulate the SPARQL query given in Listing 3.

Listing 3. Simple query for pages relating to Tim Berners-Lee

SELECT ?page
WHERE {
timbl\-foaf:\-i foaf:page ?page .

}

However, other publishers use different URIs to identify Tim, where to get more
complete answers across these naming schemes, the SPARQL query must (as per the
previous example) use disjunctive UNION clauses for each known URI; we give an ex-
ample in Listing 4 using identifiers from a recent Linked Data corpus (see Appendix B
for prefix mappings), where we see disparate URIs not only across data publishers, but
also within the same namespace. Thus (again), the expanded query quickly becomes ex-
tremely cumbersome. Combined with the terminological permuations for foaf:page
exemplified earlier, this query again illustrates the difficulties posed to consumers of
Linked Data.

Again, one possible solution would be to encourage publishers to provide redundant
data for all commonly known URIs of the given resource, but as before, this again
becomes infeasible as Linked Data diversifies and expands.

Consequently, we propose that Linked Data needs some means of (i) resolving coref-
erent identifiers which signify the same thing; (ii) handling coreferent identifiers such
that consumers can access and process a heterogeneous corpus as if (more) complete
agreement on identifiers was present. Without this, the information about all resources
in the Linked Data corpus will be fractured across naming schemes, and a fundamental
goal of the Web of Data—to attenuate the traditional barriers between data publishers—
will be compromised.

Again, Linked Data publishers acknowledge and take steps to counter-act such prob-
lems and help consumers. Firstly, in [14, § 6], Bizer et al. state that owl:sameAs
should be used to interlink coreferent resources in remote datasets:

“It is common practice to use the owl:sameAs property for stating that an-
other data source also provides information about a specific non-information
resource.”

—[14, § 6]
Thus, the owl:sameAs property can be used to relate locally defined (and ideally
dereferenceable) identifiers to external legacy identifiers which signify the same thing.

258 A. Hogan et al.

Listing 4. Extended query for pages relating to Tim Berners-Lee (sic.)

SELECT ?page
WHERE {
UNION { timbl\-foaf:\-i foaf:page ?page . }
UNION { identicauser:45563 foaf:page ?page . }
UNION { dbpedia:Berners-Lee foaf:page ?page . }
UNION { dbpedia:Dr._Tim_Berners-Lee foaf:page ?page . }
UNION { dbpedia:Dr._Tim_Berners_Lee foaf:page ?page . }
UNION { dbpedia:Sir_Timothy_John_Berners-Lee foaf:page ?page . }
UNION { dbpedia:Tim-Berners_Lee foaf:page ?page . }
UNION { dbpedia:TimBL foaf:page ?page . }
UNION { dbpedia:Tim_Berners-Lee foaf:page ?page . }
UNION { dbpedia:Tim_Bernes-Lee foaf:page ?page . }
UNION { dbpedia:Tim_Bernes_Lee foaf:page ?page . }
UNION { dbpedia:Tim_Burners_Lee foaf:page ?page . }
UNION { dbpedia:Tim_berners-lee foaf:page ?page . }
UNION { dbpedia:Timbl foaf:page ?page . }
UNION { dbpedia:Timothy_Berners-Lee foaf:page ?page . }
UNION { dbpedia:Timothy_John_Berners-Lee foaf:page ?page . }
UNION { yagor:Tim_Berners-Lee foaf:page ?page . }
UNION { fb:en.tim_berners-lee foaf:page ?page . }
UNION { fb:guid.9202a8c04000641f800000000003b0a foaf:page ?page . }
UNION { swid:Tim_Berners-Lee foaf:page ?page . }
UNION { dblpperson:100007 foaf:page ?page . }
UNION { avtimbl:me foaf:page ?page . }
UNION { bmpersons:Tim+Berners-Lee foaf:page ?page . }
...

}

This approach offers two particular advantages: (i) publishers can define an ad-hoc
local naming scheme for their resources—thus reducing the initial inertia for Linked
Data publishing—and thereafter, incrementally provide mappings to external coreferent
identifiers as desirable; (ii) multiple dereferenceable identifiers can implicitly provide
alternative sources of information for a given resource, useful for discovery.

Furthermore, OWL provides the class owl:InverseFunctionalProperty:
properties contained within this class have values unique to a given resource—loosely,
these can be thought of as key values where two resources sharing identical values for
some such property are, by OWL semantics, coreferent. Along these lines, inverse-
functional properties can be used in conjunction with existing identification schemes—
such as ISBNs for books, EAN·UCC-13 or MPN for products, MAC addresses for
network-enabled devices, etc.—to bootstrap identity on the Web of Data within cer-
tain domains; such identification values can be encoded as simple datatype strings, thus
bypassing the requirement for bespoke agreement or mappings between URIs. Simi-
lar other constructs are available in OWL for resolving coreference, such as owl:-
FunctionalProperty, owl:maxCardinality, and owl:hasKey (the latter
was introduced in the updated OWL 2 standard). Note that these OWL constructs re-
quire agreement on terminology—for example, agreement on a given property term to
denote the ISBN attribute—without which, coreference cannot be established. (We will
look in more detail at such use of OWL later in § 2.2.)

Scalable OWL 2 Reasoning for Linked Data 259

As per the previous examples, all of the identifiers given by the extended query in
Listing 3 are linked (either directly or indirectly) by explicit owl:sameAs on the Web
of Data. Thus, we again have the necessary formal knowledge to be able to answer
the former simple query with all of the answers given by the latter elaborate query. In
order to exploit this knowledge and realise this goal in the general case, Linked Data
consumers again require some form of reasoning.

Contradictions given by inconsistency. A more speculative use-case for Linked Data
relates to the identification and treatment of noisy data in the corpus as symptomised
by inconsistency. Given that Linked Data and OWL operate under the Open World As-
sumption and without a Unique Name Assumption, OWL ontologies are not naturally
suited to specifying constraints, particular those which check for missing information—
e.g., that all Persons have at least one parent—or which verify that a property has not
been “overloaded” with too many values—e.g., that no Person has more than two
biological parents. In the former case, the Open World Assumption (OWA) states that
data should be assumed to be incomplete; in the latter case, the lack of a Unique Name
Assumption (UNA) means that if a Person has three parents, one or more such values
might (by default) be referring to the same real-world parent.

However, even with the OWA and without the UNA, OWL still provides some lim-
ited machinery for checking the validity of data, in the form of consistency checking.
Consistency checking ensures that there are no formal conflicts in the presented data.
With respect to Linked Data, the most prevalent forms of inconsistency stem from (i)
lexically-invalid (aka. ill-typed) datatype literals: e.g., "true"ˆ̂ <xsd:boolean>;
and (ii) disjoint classes, where the OWL property owl:disjointWith can be used
to relate two classes whose intersection is empty, and where it is inconsistent for a
resource to be a member of both. In fact, inconsistency often occurs as the result of
reasoning, where we provide a real-world example in Listing 5 caused as follows:

1. the FOAF vocabulary assigns the propertyfoaf:knows the domainfoaf:Per-
son, defines the property foaf:homepage to be inverse-functional, and states
that the classes foaf:Person and foaf:Organization are disjoint;

2. the W3C has a profile on the “identi.ca” micro-blogging platform, which uses
foaf:knows to assert follower/followee relationships: in these data, the W3C
is identified by the identicauser:48404URI, is said to “know” various other
users (such that it is entailed to be a foaf:Person), and is given the foaf:-
homepage <http://www.w3.org/>;

3. various sites state that the W3C is an foaf:Organization with the foaf:-
homepage <http://www.w3.org/>.

Thus, we see an example of inconsistency caused by merging and performing inference
over data collected from three different publishers. The entailment that the W3C is a
person can, of course, be considered noise, where (in this case) the problem causes an
inconsistency. Once inconsistencies are detected by way of reasoning, algorithms can
be devised to repair such problems; for example, the claim that the W3C is a person can
be removed since more sources claim it to be an organisation [39].

Repairing the inconsistencies present in a Linked Data corpus can thus improve the
quality of the data by resolving formal conflicts (perhaps) based on analyses of the

260 A. Hogan et al.

trustworthiness of the sources involved. However, we note that the granularity of consis-
tency checking offered by OWL means that only a small subset of the noise in a dataset
may be symptomised as inconsistency [39]. Note that OWL 2 has added numerous
more features which allow for performing consistency checks—e.g., owl:proper-
tyDisjointWith, owl:AsymmetricProperty, owl:IrreflexiveProp-
erty, etc.—but (as we will see in the next section) these features have yet to gain
significant adoption on the Web.

Listing 5. The W3C is inconsistent

http://xmlns.com/foaf/spec (FOAF Vocabulary)
foaf:Person owl:disjointWith foaf:Organization . #1
foaf:homepage a owl:InverseFunctionalProperty . #2
foaf:knows rdfs:domain foaf:Person . #3

http://identi.ca/w3c/foaf (W3C’s identi.ca profile)
identicauser:48404 foaf:knows ident\-ica\-user:\-45563 . #4
identicauser:48404 foaf:name "W3C" . #5
identicauser:48404 foaf:homepage <http://www.w3.org/> . #6

Entailed by #2/#3 & OWL 2 RL/RDF rule prp-dom
identicauser:48404 a foaf:Person . #7

http://data.semanticweb.org/organization/w3c/rdf (Sem. Web Dogfood Server)
sworg:w3c a foaf:Organization . #8
sworg:w3c foaf:name "W3C" . #9
sworg:w3c foaf:homepage <http://www.w3.org/> . #10

Entailed by #6/#10 & OWL 2 RL/RDF rule prp-ifp
identicauser:48404 owl:sameAs sworg:w3c . #11

Entailed by #7/#11 & OWL 2 RL/RDF rule eq-rep-s
sworg:w3c a foaf:Person . #12

Inconsistency entailed by #1/#8/#12 & OWL 2 RL/RDF rule cax-dw

2.2 What Reasoning Does Linked Data Need?

Having looked at some scenarios and motivating examples which help demonstrate why
Linked Data might need reasoning, we now briefly survey the use of RDFS and OWL in
our Linked Data corpus (see § 2) and thus present insights into the use of these standards
on the Web of Data.

We acknowledge that presenting raw counts of the use of RDFS and OWL primi-
tives in our corpus could be heavily influenced by a small number of documents which
publish large amounts of schema data, or a small number of domains which publish
many documents using these primitives [39]: in other words, a single (obscure) pub-
lisher could greatly influence such results. We thus also characterise such primitives
in terms of the perceived importance of all documents using them. Borrowing from
work presented in [32], we rank RDF documents in the corpus using the prominent
PageRank links-analysis technique [71]: PageRank calculates a variant of the Eigen-
vector centrality of nodes (e.g., documents) in a graph: given the intuition of directed
links as “positive votes”, the resulting scores help characterise the relative prominence

Scalable OWL 2 Reasoning for Linked Data 261

Table 1. Top ten ranked documents and other notable ranks

Document Rank

1 http://www.w3.org/1999/02/22-rdf-syntax-ns 0.112
2 http://www.w3.org/2000/01/rdf-schema 0.104
3 http://dublincore.org/2008/01/14/dcelements.rdf 0.089
4 http://www.w3.org/2002/07/owl 0.067
5 http://www.w3.org/2000/01/rdf-schema-more 0.045
6 http://dublincore.org/2008/01/14/dcterms.rdf 0.032
7 http://www.w3.org/2009/08/skos-reference/skos.rdf 0.028
8 http://www.w3.org/2003/g/data-view 0.014
9 http://xmlns.com/foaf/spec/ 0.014

10 http://www.w3.org/2000/01/combined-ns-translation.rdf.fr 0.010

73 http://www.w3.org/People/Berners-Lee/card 2.55E-4
116 http://www.w3.org/2006/03/wn/wn20/schemas/wnfull.rdfs 1.65E-4
120 http://www.w3.org/2006/time 1.60E-4
150 http://motools.sourceforge.net/timeline/timeline.rdf 1.25E-4
337 http://rdf.geospecies.org/ont/geospecies 5.24E-5

of particular nodes on the Web. For more information on this ranking scheme, we refer
the reader to [39]; here we focus on the results. Table 1 presents the top ten ranked doc-
uments, which are dominated by core meta-vocabularies, documents linked therefrom,
and other popular vocabularies; we also present the ranks of other notable documents
mentioned in this section.

Given these source-level ranks, we then rank RDFS and OWL primitives in our cor-
pus based on the summation of the ranks of documents featuring them. Note that we
focus on features of RDFS and OWL which are supported by OWL 2 RL/RDF.

Table 2 lists the results, where for each primitive, we list the sum of the ranks of
all documents in which it is used (

∑
RANK), its position based on that summation of

ranks (#), the value of the highest ranked document in which it is used (max RANK), the
relative rank position of that document out of the 3.985 million surveyed (max POS), as
well as the total number of quads (QUAD), the total number of unique triples (TRIPLE),
the total number of documents (DOC), and the total number of pay-level domains (DOM)
in which that primitive appeared. We additionally italicise primitives new to OWL 2.
Note again that Table 1 provides a legend for notable documents (POS>337).

From Table 2, we make the following high-level observations:

1. The top four primitives equate to the core of RDFS (aka. ρDF [68]).
2. Ten of the bottom twelve primitives are new to OWL 2; the exceptions are owl:-

differentFrom and owl:complementOfwhich are eleventh and ninth from
bottom resp. (the former is also expressible without blank-nodes). Our crawl was
conducted seven months after OWL 2 became a W3C Recommendation (Oct. 2009)
—by means of a quick scan of the max POS column of Table 2, we note that new
OWL 2 features had little penetration in the popular Web vocabularies in that in-
terim.

3. The most widespread primitive is owl:sameAs, used in 122 of the 783 domains
contributing to our corpus (15.6%) and 1.346 million of the 3.985 million

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://dublincore.org/2008/01/14/dcelements.rdf
http://www.w3.org/2002/07/owl
http://www.w3.org/2000/01/rdf-schema-more
http://dublincore.org/2008/01/14/dcterms.rdf
http://www.w3.org/2009/08/skos-reference/skos.rdf
http://www.w3.org/2003/g/data-view
http://xmlns.com/foaf/spec/
http://www.w3.org/2000/01/combined-ns-translation.rdf.fr
http://www.w3.org/People/Berners-Lee/card
http://www.w3.org/2006/03/wn/wn20/schemas/wnfull.rdfs
http://www.w3.org/2006/time
http://motools.sourceforge.net/timeline/timeline.rdf
http://rdf.geospecies.org/ont/geospecies

262 A. Hogan et al.

Table 2. Ranks of RDFS/OWL primitives supported by OWL 2 RL/RDF rules

PRIMITIVE
∑

RANK max RANK max POS QUAD TRIPLE DOC DOM

1 rdfs:subClassOf 4.15E-1 1.12E-1 1 334,589 307,170 60,368 63
2 rdfs:range 4.12E-1 1.12E-1 1 91,068 13,947 1,317 61
3 rdfs:domain 4.11E-1 1.12E-1 1 164,891 16,213 1,270 63
4 rdfs:subPropertyOf 2.16E-1 1.04E-1 2 12,898 9,160 504 52
5 owl:Class 1.38E-1 6.73E-2 4 217,334 173,542 42,986 54
6 owl:DatatypeProperty 1.34E-1 6.73E-2 4 82,866 4,484 9,464 41
7 owl:ObjectProperty 1.33E-1 6.73E-2 4 64,199 8,760 17,417 48
8 owl:sameAs 1.24E-1 2.55E-4 73 11,928,308 3,769,898 1,346,218 122
9 owl:FunctionalProperty 7.41E-2 2.82E-2 7 4,345 496 239 21

10 owl:disjointWith 5.92E-2 2.82E-2 7 1,860 917 145 16
11 owl:inverseOf 5.82E-2 2.82E-2 7 2,146 992 234 29
12 owl:unionOf 3.46E-2 2.82E-2 7 4,168 4,168 109 18
13 owl:SymmetricProperty 3.36E-2 2.82E-2 7 657 128 64 15
14 owl:equivalentClass 3.21E-2 1.41E-2 9 23,398 22,929 22,781 18
15 owl:TransitiveProperty 3.03E-2 2.82E-2 7 259 140 76 16
16 owl:InverseFunctionalProperty 2.96E-2 1.41E-2 9 966 62 118 17
17 owl:equivalentProperty 2.94E-2 1.41E-2 9 618 173 176 16
18 owl:someValuesFrom 1.79E-2 1.42E-2 8 465 465 48 6
19 owl:oneOf 3.36E-4 1.60E-4 120 121 121 19 9
20 owl:hasValue 2.86E-4 1.60E-4 120 14 13 6 3
21 owl:maxCardinality 2.81E-4 1.60E-4 120 297 297 18 9
22 owl:allValuesFrom 2.62E-4 1.65E-4 116 258 257 35 7
23 owl:intersectionOf 1.73E-4 1.25E-4 150 136 136 12 6
24 owl:AllDifferent 9.94E-5 5.24E-5 337 68 68 8 3
25 owl:differentFrom 4.11E-6 1.43E-7 439,559 337 335 98 4
26 owl:AllDisjointClasses 4.20E-7 6.17E-8 1,888,937 9 9 9 1
27 owl:complementOf 1.62E-7 9.10E-8 916,865 7 7 2 2
28 owl:IrreflexiveProperty 1.10E-7 5.94E-8 2,014,801 20 10 2 1
”” owl:AsymmetricProperty 1.10E-7 5.94E-8 2,014,801 18 9 2 1

30 owl:hasKey 4.99E-8 4.99E-8 2,818,089 1 1 1 1
31 owl:propertyChainAxiom 4.48E-8 4.48E-8 3,206,125 6 6 1 1
32 owl:maxQualifiedCardinality — — — — — — —
”” owl:propertyDisjointWith — — — — — — —
”” owl:sourceIndividual (NPAs) — — — — — — —
”” owl:AllDisjointProperties — — — — — — —

documents (33.7%)—owl:sameAs relations are typically asserted between
individuals, making them much more numerous than the terminological-focused
features. Relatedly, owl:FunctionalProperty and owl:InverseFunct-
ionalProperty—which can be used to infer owl:sameAs relations—were
used in various prominent vocabularies (e.g., SKOS and FOAF).

4. With regards to consistency checking, owl:disjointWith was the only such
feature with prominent use.

Another interesting side observation is that OWL features which require blank-nodes
to express in RDF (e.g., those requiring lists or blank-node subjects in the mapping
to RDF [26]) appear to have less adoption. The subset of OWL (1) without blank-
nodes—which has higher adoption—corresponds closely with various proposals to ex-
tend RDFS, including RDFS Plus [1] and RDFS 3.0 [7]. The highest ranked primitive
to buck this trend was owl:unionOf in twelfth position which requires use of RDF
lists.

Regarding the OWL primitives with no support in OWL 2 RL which we omitted
from the table, owl:cardinality would be the highest ranked (position 19 of
the current table); resp., owl:maxCardinality, owl:ReflexiveProperty,
owl:qualifiedCardinality and owl:minQualifiedCardinality also

Scalable OWL 2 Reasoning for Linked Data 263

saw sparse use, and would fill various positions below 25. The owl:hasSelf and
owl:disjointUnionOf primitives did not appear.

To wrap up, we acknowledge that such a survey of RDFS and OWL cannot give a uni-
versal or definitive indication of the most important RDFS/OWL features for the Web—
for example, based on our subjective experience, we would consider owl:sameAs as
more important than many of the primitives ranked above it. However, the results of-
fer useful insights with respect to trends of adoption on the Web, and what kind of
reasoning the RDFS and OWL provided by Linked Data enables.

2.3 How Can We Reason over Linked Data?

Reasoning over Linked Data—and over RDF Web data in general—is a relatively young
research topic, but one which is attracting more and more attention.

The traditional reasoning research literature has mostly focussed on issues relat-
ing to expressivity, tractability, soundness and completeness—particularly in closed
domains—with evaluation demonstrated over various curated, vetted ontologies [37].

However, the Linked Data use-case has an orthogonal set of requirements: in particu-
lar, the two biggest challenges faced in such a scenario are (i) scalability, where reason-
ing may be required over billions of facts; and (ii) robustness, where reasoning may be
required over noisy, impudent and/or inconsistent Web data. Conversely, (i) expressiv-
ity is often not such a problem for Linked Data where (as we will see) only lightweight
subsets of the RDFS and OWL standards are used to describe vocabularies; (ii) formal
tractability (i.e., polynomial complexity) often does not translate into scalability; (iii)
soundness is still an important goal of reasoning, but guarantees of soundness are not
critical since the base knowledge (sourced from the Web) cannot itself be guaranteed to
be sound; and (iv) guarantees of completeness are also often not critical given that the
base knowledge itself cannot be characterised as complete [37].

In terms of scalability, a lot of work has been done recently with respect to large-scale
rule-based reasoning, typically where inferences are materialised and written to stor-
age [20,40,93,89,88,62,42,54,13]. Various authors have suggested optimisations and
distribution schemes based on a separation of terminological knowledge from asser-
tional data during the inferencing process [93,89,88,42], enabling rule-based reasoning
over datasets comprising of hundreds of millions [93], billions [89,42], or hundreds of
billions [88] of triples. We discuss systems which provide scalable, distributed, rule-
based materialisation in § 3; in particular, we detail one such proposal called SAOR,
discussing related approaches later in the section.

However, despite the recent upsurge in research pertaining to scalable rule-based
reasoning, few authors have demonstrated reasoning over realistic Linked Data
[20,40,89,42,13], and even fewer have tackled issues of robustness or provenance of
data [20,40]. Two main approaches have been proposed based on analysis of the source
of data: (i) authoritative reasoning, which views the corpus as one big graph for reason-
ing, but only considers terminological data from sources which it deems can be trusted
based on the dereferenceability of terms involved [40,39]; and (ii) quarantined reason-
ing, which performs a large-number of smaller “per-document” closures, where for each
document under analysis, documents providing related terminology are imported with
reasoning performed over these closed “quarantined” subsets of documents. We discuss

264 A. Hogan et al.

authoritative reasoning in detail in § 3; we also briefly discuss quarantined reasoning
later in that section, where we refer the interested reader to [20] for further detail.

However, we note that all of these proposals for reasoning are rule-based, and thus
are limited in terms of their expressivity: although we have seen that Linked Data pri-
marily uses lightweight features of OWL, rule-based reasoning is also limited with
regards coverage for terminological reasoning [62]. Thus, an interesting direction for
a more “holistic” approach to reasoning is to use tableau-based systems for expressive
reasoning over the (typically smaller) terminological data, and rule-based systems for
lightweight reasoning over the (potentially massive) assertional data. Such an approach
has been recently proposed for the DLEJena system [62], where the Pellet DL reasoner
is leveraged for more complete T-Box reasoning, and the Jena rule-engine is leveraged
for more scalable A-Box reasoning. This hybrid approach is practically appealing in that
it exploits the complementary strengths of rule-based and tableau-based approaches.

However, scalability and efficiency are still a concern for tableau-based reasoners in
such scenarios, where although the terminological segment of a typical Linked Data
corpus will be relatively small, it may still be too large for many existing tableau-based
reasoners to cope with. One promising avenue of research to improve the scalability of
tableau-based reasoning is to apply approximative reasoning, where soundness and/or
completeness are traded for significant gains in terms of scalable and efficient execu-
tion; this is perhaps a more mid-to-long-term research direction with regards reasoning
over Linked Data, but one which could enable much more expressive reasoning in such
scenarios than the current rule-based proposals. Along these lines, in § 4 we present
a proposal for performing tractable OWL 2 DL reasoning using sound but (possibly)
incomplete approximations.

Finally, we note that the proposals presented hereafter mainly focus on the first use-
case for reasoning over Linked Data: handling heterogeneity in the terminology used
to describe assertional data. For discussion of proposals which target the latter two use-
cases—handling coreference and inconsistency—we refer the interested reader to [39].

3 Scalable, Incomplete, OWL 2 RL/RDF Rule-Based Reasoning

Herein, we detail our system for performing rule-based reasoning over large-scale
Linked Data corpora, which we call the Scalable Authoritative OWL Reasoner (SAOR)
[40,42,39]. Our use-case scenario is the Semantic Web Search Engine (SWSE) [41],14

which offers search and browsing over datasets consisting of approximately one billion
Linked Data triples crawled from the Web: we want to use reasoning to materialise in-
ferences and make them available in the SWSE results presented to users. In particular,
we will be designing and evaluating our approach for performing materialisation over
the heterogeneous∼billion triple Linked Data corpus introduced at the outset of § 2.

Thus, in this section we look at applying incomplete OWL 2 RL/RDF materialisation
in a manner sympathetic with our use-case, over static corpora of unverified Linked
Data collected from millions of sources, consisting of approximately one billion input
facts. In particular:

14 Prototype available at http://swse.deri.org/

Scalable OWL 2 Reasoning for Linked Data 265

– we begin by discussing the requirements of our system for performing Linked
Data/Web reasoning and high-level design decisions (§ 3.2);

– we continue by discussing a separation of terminological data during reasoning,
providing soundness and conditional completeness results (§ 3.3);

– we subsequently detail the generic optimisations that a separation of terminological
data allows (§ 3.4);

– we then look at identifying a subset of OWL 2 RL/RDF rules suitable for scalable
materialisation, and discuss our method for performing distributed authoritative
reasoning over our Linked Data corpus (§ 3.5);

– finally, we provide an overview of related work (§ 3.7) and give general discussion
(§ 3.8).

3.1 Preliminaries

Before we continue, we briefly give some necessary preliminaries relating to (i) RDF,
(ii) Linked Data principles, and (iii) rules.

RDF. We briefly give some necessary notation relating to RDF constants and RDF
triples; see [33].

RDF Constant. Given the set of URI references U, the set of blank nodes B, and the set
of literals L, the set of RDF constants is denoted by C := U∪B∪L. We interpret blank-
nodes as skolem constants signifying particular individuals, as opposed to existential
variables as prescribed by the RDF Semantics [33]; also, we rewrite blank-node labels
when merging documents to ensure uniqueness of labels across those documents [33].
Finally, note that we may use ‘a’ as a shortcut for rdf:type, following convention in
Turtle [8].

RDF Triple. A triple t := (s, p, o) ∈ (U ∪ B)× U× C is called an RDF triple, where s
is called subject, p predicate, and o object. A triple t := (s, p, o) ∈ G, G := C×C×C is
called a generalised triple [27], which allows any RDF constant in any triple position:
henceforth, we assume generalised triples unless explicitly stated otherwise. We call a
finite set of triples G ⊂ G a graph.

RDF Variable/RDF Triple Pattern. We denote the set of all RDF variables as V; we
call a generic member of the set V∪C an RDF term. Again, we denote RDF variables as
alphanumeric strings with a ‘?’ prefix. We call a triple of RDF terms—where variables
are allowed in any position—an RDF triple pattern.

Variable Substitution We call a mapping from the set of variables to the set of constants
θ : V → C a variable substitution; we denote the set of all such substitutions by Θ.

Linked Data Principles and Provenance. In order to cope with the unique challenges
of handling diverse and unverified Web data, many of our components and algorithms
require inclusion of a notion of provenance: consideration of the source of RDF data
found on the Web. Thus, herein we provide some formal preliminaries for the Linked
Data principles, and HTTP mechanisms for retrieving RDF data. (Please see [2] in
these proceedings for extensive introduction and discussion relating to Linked Data
and the Web of Data.)

266 A. Hogan et al.

Linked Data Principles. Herein, we will refer to the four best practices of Linked Data
as follows [10]:

– (LDP1) use URIs as names for things;
– (LDP2) use HTTP URIs so those names can be dereferenced;
– (LDP3) return useful information upon dereferencing of those URIs; and
– (LDP4) include links using externally dereferenceable URIs.

Data Source. We define the http-download function get : U → 2G as the mapping
from a URI to an RDF graph it provides by means of a given HTTP lookup [22] which
directly returns status code 200 OK and data in a suitable RDF format, or to the empty
set in the case of failure; this function also performs a rewriting of blank-node labels
(based on the input URI) to ensure uniqueness when merging RDF graphs [33]. We
define the set of data sources S ⊂ U as the set of URIs S := {s ∈ U | get(s) �= ∅}.

RDF Triple in Context/RDF Quadruple. An ordered pair (t, c) with a triple t :=
(s, p, o), and with a context c ∈ S and t ∈ get(c) is called a triple in context c. We
may also refer to (s, p, o, c) as an RDF quadruple or quad q with context c.

HTTP Redirects/Dereferencing. A URI may provide a HTTP redirect to another URI
using a 30x response code [22]; we denote this function as redir : U → U which may
map a URI to itself in the case of failure (e.g., where no redirect exists). We denote
the fixpoint of redir as redirs, denoting traversal of a number of redirects (a limit may
be set on this traversal to avoid cycles and artificially long redirect paths). We define
dereferencing as the function deref := get ◦ redirs which maps a URI to an RDF graph
retrieved with status code 200 OK after following redirects, or which maps a URI to
the empty set in the case of failure.

Atoms and Rules. In this section, we briefly introduce some notation as familiar partic-
ularly from the field of Logic Programming [57], which eventually gives us our notion
of a rule. As such, much of the notation in this section serves as a generalisation of the
RDF notation already presented; we will discuss this relation as pertinent.

Atom An atomic formula or atom is a formula of the form p(e1, . . . , en), where all
such e1, . . . , en are terms (like Datalog, function symbols are disallowed) and where p
is a predicate of arity n—we denote the set of all such atoms by Atoms. As such, this
notation can be thought of as generalising that of RDF triples, where we use a standard
RDF ternary predicate T to represent RDF triples in the form T (s, p, o)—for example,
T(Fred, age, 56)—where we will typically leave T implicit.

Note that a term ei can also be a variable, and thus RDF triple patterns can also be
represented directly as atoms. Atoms not containing variables are called ground atoms
or simply facts, denoted as the set Facts (a generalisation of G); a finite set of facts
I is called a (Herbrand) interpretation (a generalisation of a graph). Letting A and B
be two atoms, we say that A subsumes B—denoted A � B—if there exists a substitu-
tion θ ∈ Θ of variables such that Aθ = B (applying θ to the variables of A yields B);

Scalable OWL 2 Reasoning for Linked Data 267

we may also say that B is an instance of A; if B is ground, we say that it is a ground
instance. Similarly, if we have a substitution θ ∈ Θ such that Aθ = Bθ, we say that θ
is a unifier of A and B; we denote by mgu(A, B) the most general unifier of A and B
which provides the “minimal” variable substitution (up to variable renaming) required
to unify A and B.

Rule. A rule R is given as follows:

H ← B1, . . . , Bn(n ≥ 0) , (1)

where H, B1, . . . , Bn are atoms, H is called the head (conclusion/consequent) and
B1, . . . , Bn the body (premise/antecedent). We use Head(R) to denote the head H of
R and Body(R) to denote the body B1, . . . , Bn of R.15 The variables of our rules are
range restricted, also known as safe [87]: like Datalog, the variables appearing in the
head of each rule must also appear in the body, which means that a substitution which
grounds the body must also ground the head. We denote the set of all such rules by
Rules. A rule with an empty body is considered a fact; a rule with a non-empty body is
called a proper-rule. We call a finite set of such rules a program P .

Like before, a ground rule is one without variables. We denote with Ground(R) the
set of ground instantiations of a rule R and with Ground(P) the ground instantiations of
all rules occurring in a program P . Again, an RDF rule is a specialisation of the above
rule, where atoms strictly have the ternary predicate T and contain RDF terms; an RDF
program is one containing RDF rules, etc.

Note that we may find it convenient to represent rules as having multiple atoms in
the head, such as:

H1, . . . , Hm(m ≥ 1)← B1, . . . , Bn(n ≥ 0) ,

where we imply a conjunction between the head atoms, such that this can be equiva-
lently represented as the set of rules:

{Hi ← B1, . . . , Bn | (1 ≤ i ≤ m)} .

Immediate Consequence Operator. We give the immediate consequence operator TP

of a program P under interpretation I as:16

TP : 2Facts → 2Facts

I "→
{
Head(R)θ | R ∈ P ∧ ∃I ′ ⊆ I s.t. θ = mgu

(
Body(R), I ′

)}

Intuitively, the immediate consequence operator maps from a set of facts I to the set of
facts it directly entails with respect to the program P—note that TP (I) will retain the
facts in P since facts are rules with empty bodies and thus unify with any interpretation,
and note that TP is monotonic—the addition of facts and rules to a program can only
lead to the same or additional consequences. We may refer to the application of a single
rule T{R} as a rule application.

15 Such a rule can be represented as a definite Horn clause.
16 Note that in our Herbrand semantics, an interpretation I can be thought of as simply a set of

facts.

268 A. Hogan et al.

Since our rules are a syntactic subset of Datalog, TP has a least fixpoint—denoted
lfp(TP)—which can be calculated in a bottom-up fashion, starting from the empty inter-
pretation Δ and applying iteratively TP [94] (here, convention assumes that P contains
the set of input facts as well as proper rules). Define the iterations of TP as follows:
TP ↑ 0 = Δ; for all ordinals α, TP ↑ (α + 1) = TP (TP ↑ α); since our rules are
Datalog, there exists an α such that lfp(TP) = TP ↑ α for α < ω, where ω denotes the
least infinite ordinal—i.e., the immediate consequence operator will reach a fixpoint in
countable steps [87]. Thus, TP is also continuous. We call lfp(TP) the least model, or
the closure of P , which is given the more succinct notation lm(P).

3.2 Linked Data Reasoning: Overview

Performing reasoning over large amounts of arbitrary RDF data sourced from the Web
implies unique challenges which have not been significantly addressed by the literature.
Given that we will be dealing with a corpus in the order of a billion triples collected
from millions of unvetted sources, we must acknowledge two primary challenges:

– scalability: the reasoning approach must scale to billion(s) of statements;
– robustness: the reasoning approach should be tolerant to noisy, impudent and in-

consistent data.

These requirements heavily influence the design choices of our reasoning approach,
where in particular we (must) opt for performing reasoning which is incomplete with
respect to OWL semantics.

Incomplete Reasoning: Rationale. As alluded to in § 2.3, current standard RDF-
S/OWL reasoning approaches are not naturally suited to meet the aforementioned chal-
lenges.

Firstly, standard RDFS entails infinite triples, although implementations commonly
support a decidable (finite) subset [83,67,68,93]. In any case, RDFS does not support
reasoning over OWL axioms commonly provided by Linked Data vocabularies.

With respect to OWL, reasoning with respect to OWL (2) Full is known to be unde-
cidable. Reasoning with standard dialects such as OWL (2) DL or OWL Lite have more
than exponential worst-case complexity, and are typically implemented using tableau-
based algorithms which have yet to demonstrate scalability for reasoning over asser-
tional data which would be propitious to our scenario: certain reasoning tasks may
require satisfiability checking which touch upon a large proportion of the individuals in
the knowledgebase, and may have to operate over a large, branching search space [4].
Similarly, although certain optimisation techniques may make the performance of such
tableau-reasoning sufficient for certain reasonable inputs and use-cases, guarantees of
such reasonability do not extend to a Web corpus like ours. Reasoning with respect to
the new OWL 2 profiles—viz., OWL 2 EL/QL/RL—have polynomial runtime, which
although an improvement, may still be prohibitively expensive for reasoning over the
assertional data of a corpus such as ours.

Aside from complexity considerations, most OWL documents on the Web are in
any case OWL Full: “syntactic” assumptions made in DL-based profiles are violated by

Scalable OWL 2 Reasoning for Linked Data 269

even very commonly used ontologies. For example, the FOAF vocabulary knowingly
falls into OWL Full since, e.g., foaf:name is defined as a sub-property of the core
RDFS property rdfs:label, and foaf:mbox sha1sum is defined as a member
of both owl:InverseFunctionalProperty and owl:DatatypeProperty:
such axioms are disallowed by OWL (2) DL (and by extension, disallowed by the sub-
dialects and profiles).

Finally, OWL semantics prescribe that anything can be entailed from an inconsis-
tency, following the principle of explosion in classical logics. This is not only true of
OWL (2) Full semantics, but also of those sub-languages rooted in Description Logics,
where reasoners check entailment by reduction to satisfiability—if the original graph
is inconsistent, it is already in itself unsatisfiable, and the entailment check will return
true for any arbitrary graph. Given that consistency cannot be expected on the Web,
we wish to avoid the arbitrary entailment of all possible triples from our knowledge-
base. Along these lines, a number of paraconsistent reasoning approaches have been
defined in the literature (see, e.g., [46,60,96,61,56]) typically relying upon four-valued
logic [9]—however, again, these approaches have yet to demonstrate the sort of perfor-
mance required for our scenario.

Thus, due to the prohibitive computational complexity involved, complete reason-
ing with respect to the standardised RDFS/OWL (sub-)languages is infeasible for our
scenario, esp. given the volume of assertional data involved. We instead argue that com-
pleteness (with respect to the language) is not a requirement for our use-case, particu-
larly given that the corpus itself represents incomplete knowledge (cf. [21,37]).

Moving forward, we opt for sound but incomplete support of OWL Full semantics
such that entailment is axiomatised by a set of rules which are applicable to arbitrary
RDF graphs (no syntactic restrictions) and which do not rely on satisfiability checking
(are so not bound by the principle of explosion).

Rule-based Reasoning. Predating OWL 2—and in particular the provision of the
OWL 2 RL/RDF ruleset—numerous rule-based entailment regimes were proposed in
the literature to provide a partial axiomatisation of OWL’s semantics. These regimes
included Description Logic Programs (DLP) [29,63], pD* [82,83], RDFS-Plus [1], etc.
Recognising the evident demand for rule-based support of OWL, in 2009, the W3C
OWL Working Group standardised the OWL 2 RL profile and accompanying OWL 2
RL/RDF ruleset [27].The OWL 2 RL profile is a syntactic subset of OWL 2 which is
implementable through translation to the Direct Semantics (DL-based semantics) or the
RDF-Based Semantics (OWL 2 Full semantics). As such, the OWL 2 RL/RDF ruleset
comprises a partial-axiomatisation of the OWL 2 RDF-Based Semantics which is appli-
cable for arbitrary RDF graphs, and thus is is compatible with RDF Semantics [33]. We
thus select OWL 2 RL/RDF as the most comprehensive, standard means of supporting
RDFS and OWL entailment using rules, which largely subsumes the entailment pos-
sible through RDFS, DLP, pD*, RDFS-Plus, etc. For reference, we provide the OWL
2 RL/RDF ruleset in Appendix A, highlighting various characteristics which we will
discuss as appropriate. (Please also see [36] in these proceedings for discussion on the
combination of rules and ontologies.)

270 A. Hogan et al.

Forward Chaining. We opt to perform forward-chaining materialisation of inferred
data with respect to (a subset of) OWL 2 RL/RDF rules—i.e., we aim to make explicit
the implicit data inferable through these rules (as opposed to, e.g., rewriting/extending
queries and posing them against the original data in situ).

A materialisation approach offers two particular benefits:

– pre-runtime execution: materialisation can be conducted off-line (or, more
accurately while loading data) avoiding the run-time expense of query-specific
backward-chaining techniques which may adversely affect query response times;

– consumer independent: the inferred data provided by materialisation can subse-
quently be consumed in the same manner as explicit data, without the need for
integrating a reasoning component into the runtime engine.

Note that in the spirit of one size does not fit all, forward-chaining materialisation is
not a “magic-bullet”: backward-chaining may be more propitious to support inferences
where the amount of data involved is prohibitively expensive to materialise and index,
and where these inferred data are infrequently required by the consumer application.
Herein, we focus on materialisation, but grant that the inherent trade-off between of-
fline forward-chaining and runtime backward-chaining warrants further investigation
in another scope.

Alongside scalability and robustness, we identify two further requirements for our
materialisation approach:

– efficiency: the reasoning algorithm must not only be able to process large-amounts
of data, but should do so in as little computation time as possible;

– terseness: to reduce the burden on the consumer system—e.g., with respect to in-
dexing or query-processing—we wish to keep a succinct volume of materialised
data and aim instead for “reasonable” completeness.

Both of these additional requirements are intuitive, but also non-trivial, and so will
provide important input for our design decisions.

OWL 2 RL/RDF Scalability Full materialisation with respect to the entire set of OWL
2 RL/RDF rules is infeasible for our use-case. First, a subset of OWL 2 RL/RDF rules
are expressed informally—i.e., they are not formalised by means of Horn clauses—and
may introduce new terms as a consequence of the rule, which in turn affects decidability
(i.e., the achievability of a finite fixpoint). For example, OWL 2 RL/RDF rule dt-eq is
specified as:

∀lt1, lt2 ∈ L with the same data value, infer (lt1, owl : sameAs, lt2) .

Note that this rule does not constrainlt1 or lt2 to be part of any graph or interpretation
under analysis. Similarly, rule dt-diff entails pairwise owl:differentFrom rela-
tions between all literals with different data values, and rule dt-type2 entails an explicit
membership triple for each literal to its datatype. These rules applied to, e.g., the value
set of decimal-expressible real numbers (denotable by the datatype xsd:decimal)
entail infinite triples.17

17 Typically, materialisation engines support non-standard versions of these rules using heuristics
such as canonicalisation of datatype literals, or only applying the rules over literals that appear
in the ruleset or in the data under analysis.

Scalable OWL 2 Reasoning for Linked Data 271

Aside from these datatype rules, the worst-case complexity of applying OWL 2
RL/RDF rules is cubic with respect to the known set of constants (a.k.a. the Herbrand
universe); for example, consider the following two triples:

(owl:sameAs, owl:sameAs, rdf:type)
(owl:sameAs, rdfs:domain, bad:Hub)

Adding these two triples to any arbitrary RDF graph will lead to the inference of all pos-
sible (generalised) triples by the OWL 2 RL/RDF rules: i.e., the inference of C×C×C
(a.k.a. the Herbrand base), where C ⊂ C is the set of RDF constants (§ 3.1) mentioned
in the OWL 2 RL/RDF ruleset and the graph (a.k.a. the Herbrand universe). The pro-
cess involves the OWL 2 RL/RDF “equality rules” (eq-*) and the rule for supporting
rdfs:domain (prp-dom), which lead to the inference of |C|3 triples, as such emulat-
ing the explosive nature of inconsistency without actually requiring any inconsistency—
we leave the details of the inferencing as an exercise for the reader (available in [39]).

This simple example raises concerns with respect to all of our defined requirements:
materialising the required entailments for a large graph will be neither scalable nor
efficient; even assuming that materialisation were possible, the result would not be terse
(or be of any use at all to the consumer system); given that a single remote publisher
can arbitrarily make such assertions in any location they like, such reasoning is clearly
not robust.

Even for reasonable inputs, the result size and expense of OWL 2 RL/RDF materi-
alisation can be prohibitive for our scenario. For example, chains of transitive relations
of length n mandate quadratic (n2−n

2) materialisation. Large equivalence classes (sets
of individuals who are pairwise related by owl:sameAs) similarly mandate the mate-
rialisation of n2 pairwise symmetric, reflexive and transitive owl:sameAs relations.
Given our input sizes and the distinct possibility of such phenomena in our corpus,
such quadratic materialisation quickly infringes upon our requirements for scalability,
efficiency and arguably terseness.

Moreover, certain rules can materialise inferences which hold for every term in
the graph—we call these inferences tautological. For example, the OWL 2 RL/RDF
rule eq-ref materialises a reflexive owl:sameAs statement for every known term, re-
flecting the fact that everything is the same as itself. Thus, we omit such tautological
rules (eq-ref for OWL 2 RL/RDF), viewing them as contrary to our requirement for
terseness.

As such, the OWL 2 RL/RDF ruleset—and application thereof—requires significant
tailoring to meet our requirements; we begin with our first non-standard optimisation in
the following section.

3.3 Distinguishing Terminological Data

As previously described, RDFS/OWL allow for disseminating terminological data—
loosely schema-level data—which provide definitions of classes and properties. Given
a sufficiently large corpora collected from the Web, the percentage of terminological
data is relatively small when compared to the volume of assertional data: typically—
and as we will see in § 3.6—terminological data represent less than one percent of such

272 A. Hogan et al.

a corpus [40,42]. Assuming that the proportion of terminological data is quite small—
and given that these data are among the most commonly accessed during reasoning—we
formulate an approach around the assumption that such data can be efficiently handled
and processed independently of the main bulk of assertional data. First, we provide
some preliminaries relating to our notion of terminological data.

Meta-class. We consider a meta-class as a class specifically of classes or properties;
i.e., the members of a meta-class are themselves either classes or properties. Herein,
we restrict our notion of meta-classes to the set defined in RDF(S) and OWL spec-
ifications, where examples include rdf:Property, rdfs:Class, owl:Class,
owl:FunctionalProperty,owl:Restriction,owl:DatatypeProperty,
etc.; note that rdfs:Resource, rdfs:Literal, e.g., are not considered meta-
classes.

Meta-property. A meta-property is one which has a meta-class as its domain; again,
we restrict our notion of meta-properties to the set defined in RDF(S) and OWL specifi-
cations, where examples include rdfs:domain, rdfs:subClassOf, owl:has-
Key, owl:inverseOf, owl:oneOf, owl:onProperty, owl:unionOf, etc.;
note that rdf:type, owl:sameAs, rdfs:label, e.g., do not have a meta-class as
domain and so are not considered meta-properties.

Terminological triple. We define the set of terminological triples as the union of the
following sets of triples:

1. triples with rdf:type as predicate and a meta-class as object;
2. triples with a meta-property as predicate;
3. triples forming a valid RDF list whose head is the object of a meta-property (e.g.,

a list used for owl:unionOf, owl:intersectionOf, etc.);

Our approach for separating terminological data is related to the area of partial evalua-
tion and program specialisation of Logic Programs [55,58,49]: we take a generic (meta)
program—such as RDFS, pD*, OWL 2 RL/RDF, etc.—and partially evaluate this pro-
gram with respect to terminological knowledge. The result of this partial evaluation is
a set of terminological inferences and a residual program which can be applied over
the assertional data; this specialised assertional program is then primed using further
optimisation before application over the bulk of assertional data.

Towards this goal, we begin by formalising the notion of a T-split rule which distin-
guishes between terminological and assertional atoms (T-atoms/A-atoms).

Definition 1 (T-split rule). A T-split rule R is given as follows:

H ← A1, . . . , An, T1, . . . , Tm (n, m ≥ 0) , (2)

where the Ti, 0 ≤ i ≤ m atoms in the body (T-atoms) are all those that can only have
terminological ground instances, whereas the Ai, 1 ≤ i ≤ n atoms (A-atoms), can have
arbitrary ground instances. We use TBody(R) and ABody(R) to respectively denote
the set of T-atoms and the set of A-atoms in the body of R.

Scalable OWL 2 Reasoning for Linked Data 273

Henceforth, we assume rules are T-split such that T-atoms and A-atoms can be refer-
enced using the functions TBody and ABody when necessary.

Example 1. Let REX denote the following rule:

(?x, a, ?c2)← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

When writing T-split rules, we denote TBody(REX) by underlining: the underlined
T-atom can only be bound by a triple with the meta-property rdfs:subClassOf as
RDF predicate, and thus can only be bound by a terminological triple. The second atom
in the body can be bound by assertional or terminological triples, and so is considered
an A-atom. ♦

The notion of a T-split program—containing T-split rules and ground T-atoms and A-
atoms—follows naturally. Distinguishing terminological atoms in rules enables us to
define a form of stratified program execution, whereby a terminological fixpoint is
reached first, and then the assertional data is reasoned over; we call this the T-split
least fixpoint. Before we formalise this alternative fixpoint procedure, we must first de-
scribe our notion of a T-ground rule, where the variables appearing in T-atoms of a rule
are grounded separately by terminological data:

Definition 2 (T-ground rule). A T-ground rule is a set of rule instances for the T-split
rule R given by grounding TBody(R) and the variables it contains across the rest
of the rule. We denote the set of such rules for a program P and a set of facts I as
GroundT (P, I), defined as:

GroundT (P, I) :={Head(R)θ←ABody(R)θ | R ∈ P, ∃I ′ ⊆ I s.t. θ = mgu(TBody(R), I ′)}

The result is a set of rules whose T-atoms are grounded by the terminological data in I .

Example 2. Consider the T-split rule REX as before:

(?x, a, ?c2)← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

Now let

IEX := { (foaf:Person, rdfs:subClassOf, foaf:Agent),
(foaf:Agent, rdfs:subClassOf, dc:Agent) }

Here,

GroundT ({REX}, IEX) = { (?x, a, foaf:Agent)← (?x, a, ?foaf:Person);
(?x, a, dc:Agent)← (?x, a, ?foaf:Agent) }.

♦

We can now formalise our notion of the T-split least fixpoint, where a terminological
least model is determined, T-atoms of rules are grounded against this least model, and
the remaining (proper) assertional rules are applied against the bulk of assertional data
in the corpus. (In the following, we recall from § 3.1 the notions of the immediate
consequence operator TP , the least fixpoint lfp(TP), and the least model lm(P) for a
program P .)

274 A. Hogan et al.

Definition 3 (T-split least fixpoint). The T-split least fixpoint for a program P is bro-
ken up into two parts: (i) the terminological least fixpoint, and (ii) the assertional least
fixpoint. Let PF := {R ∈ P | Body(R) = ∅} be the set of facts in P ,18 let PT∅ :=
{R ∈ P | TBody(R) �= ∅, ABody(R) = ∅}, let P ∅A := {R ∈ P | TBody(R) =
∅, ABody(R) �= ∅}, and let PTA := {R ∈ P | TBody(R) �= ∅, ABody(R) �= ∅}. Note
that P = PF ∪ PT∅ ∪ P ∅A ∪ PTA. Now, let

TP := PF ∪ PT∅

denote the initial (terminological) program containing ground facts and T-atom only
rules, and let lm(TP) denote the least model for the terminological program. Let

PA+ := GroundT (PTA, lm(TP))

denote the set of (proper) rules achieved by grounding rules in PTA with the termino-
logical atoms in lm(TP): Now, let

AP := lm(TP) ∪ P ∅A ∪ PA+

denote the second (assertional) program containing all available facts and proper as-
sertional rules. Finally, we can give the least model of the T-split program P as lm(AP)
for AP derived from P as above—we more generally denote this by lmT (P).

An important question thereafter is how the standard fixpoint of the program lm(P)
relates to the T-split fixpoint lmT (P). Firstly, we show that the latter is sound with
respect to the former:

Theorem 1 (T-split soundness). For any program P , it holds that lmT (P) ⊆ lm(P).

Proof available in [39].

Thus, for any given program containing rules and facts (as we define them), the T-split
least fixpoint is necessarily a subset of the standard least fixpoint. Next, we look at
characterising the completeness of the former with respect to the latter; beforehand, we
need to define our notion of a T-Box:

Definition 4 (T-Box). We define the T-Box of an interpretation I with respect to a
program P as the subset of facts in I that are an instance of a T-atom of a rule in P :

TBox(P, I) := {F ∈ I|∃R ∈ P, ∃T ∈ TBody(R) s.t. T � F} .

(Here we recall the � notation of an instance [§ 3.1] whereby A�B iff ∃θ s.t. Aθ = B.)
Thus, our T-Box is precisely the set of terminological triples in a given interpretation
(i.e., graph) that can be bound by a terminological atom of a rule in the program.

We now give a conditional proposition of completeness which states that if no new
T-Box facts are produced during the execution of the assertional program, the T-split
least model is equal to the standard least model.

18 Of course, P F can refer to axiomatic facts and/or the initial facts given by an input knowledge-
base.

Scalable OWL 2 Reasoning for Linked Data 275

Theorem 2 (T-split conditional completeness). For any program P , its terminologi-
cal program TP and its assertional program AP , if it holds that TBox(P, lm(TP)) =
TBox(P, lm(AP)), then it holds that lm(P) = lmT (P).

Corollary 1 (Rephrased condition for T-split completeness). For any program P ,
if a rule with non-empty ABody does not infer a terminological fact, then lm(P) =
lmT (P).

Proofs available in [39].

So one may wonder when this condition of completeness is broken—i.e., when do rules
with assertional atoms infer terminological facts? Analysis of how this can happen must
be applied per rule-set, but for OWL 2 RL/RDF, we conjecture that such a scenario can
only occur through (i) so called non-standard use of the set of RDFS/OWL meta-classes
and meta-properties required by the rules, or, (ii) by the semantics of replacement for
owl:sameAs (supported by OWL 2 RL/RDF rules eq-rep-*).19

We first discuss the effects of non-standard use for T-split reasoning over OWL 2
RL/RDF, starting with a definition.

Definition 5 (Non-standard triples). With respect to a set of meta-properties MP
and meta-classes MC, a non-standard triple is a terminological triple (T-fact wrt.
MP/MC) where additionally:

– a meta-class in MC appears in a position other than as the value of rdf:type;
or

– a property in MP ∪ {rdf:type,rdf:first,rdf:rest} appears outside of
the RDF predicate position.

We call the set MP ∪MC ∪ {rdf:type,rdf:first,rdf:rest} the restricted
vocabulary. (Note that restricting the use of rdf:first and rdf:rest would be
superfluous for RDFS and pD* which do not support terminological axioms containing
RDF lists.)

Now, before we formalise a proposition about the incompleteness caused by such
usage, we provide an intuitive example thereof:

Example 3. As an example of incompleteness caused by non-standard use of the meta-
property owl:InverseFunctionalProperty, consider:

1a. (ex:KeyProperty, rdfs:subClassOf, owl:InverseFunctionalProperty)
2a. (ex:isbn13, a, ex:KeyProperty)
3a. (ex:The Road, ex:isbn13, "978-0307265432")
4a. (ex:Road%2C The, ex:isbn13, "978-0307265432")

where triple (1a) is considered non-standard use. The static T-Box in the terminologi-
cal program will include the first triple, and, through the assertional rule cax-sco and
triples (1a) and (2a) will infer:

19 We note that the phrase “non-standard use” has appeared elsewhere in the literature with the
same intuition, but with slightly different formulation and intention; e.g., see [18].

276 A. Hogan et al.

5a. (ex:isbn13, a, owl:InverseFunctionalProperty)

but this T-fact will not be considered by the pre-ground T-atoms of the rules in the
assertional program. Thus, the inferences:

6a. (ex:The Road, owl:sameAs, ex:Road%2C The)
7a. (ex:Road%2C The, owl:sameAs, ex:The Road)

which should hold through rule prp-ifp and triples (3a), (4a) and (5a) will not be made.
A similar example follows for non-standard use of meta-classes; e.g.:

1b. (ex:inSubFamily, rdfs:subClassOf, rdfs:subClassOf)
2b. (ex:Bos, ex:inSubFamily, ex:Bovinae)
3b. (ex:Daisy, a, ex:Bos)

which through the assertional rule prp-spo1 and triples (1b) and (2b) will infer:

4b. (ex:Bos, rdfs:subClassOf, ex:Bovinae) ,

but not:

5b. (ex:Daisy, a, ex:Bovinae)

since triple (4b) is not included in the terminological program. ♦

Theorem 3 (Conditional completeness for standard use). Let O2R′ denote the set
of (T-split) OWL 2 RL/RDF rules excluding eq-rep-s, eq-rep-p and eq-rep-o; let I
be any interpretation not containing any non-standard use of the restricted vocabulary
which contains (i) meta-classes or meta-properties appearing in the T-atoms of O2R′,
and (ii) rdf:type, rdf:first, rdf:list; and let P := O2R′ ∪ I; then, it holds
that lm(P) = lmT (P).

Sketch of proof involving inspection of OWL 2 RL/RDF rules available in [39].

Briefly, we note that [93] have given a similar result for RDFS by inspection of the rules,
and that pD* inference relies on non-standard axiomatic triples whereby the above re-
sults do not translate naturally.

With respect to rules eq-rep-* (which we have thus far omitted), new terminolog-
ical triples can be inferred from rules with non-empty ABody through the semantics
of owl:sameAs, breaking the condition for completeness from Theorem 2. However,
with respect to the T-split inferencing procedure, we conjecture that incompleteness
can only be caused if owl:sameAs affects some constant in the TBody of an OWL
2 RL/RDF rule; we refer the interested reader to [39] for some examples and fur-
ther discussion. In any case, note that (i) in our intended use-case, we do not apply
rules eq-rep-* in our inferencing procedure due to scalability concerns—this will
be discussed further in § 3.5; and (ii) we believe that in practice, T-split incompleteness
through such owl:sameAs relations would only occur for rare corner cases. (For more

Scalable OWL 2 Reasoning for Linked Data 277

detailed work looking at scalable “equality reasoning” for Linked Data, please see [39,
§ 7].)

Conceding the possibility of incompleteness—in particular in the presence of non-
standard triples or owl:sameAs relations affecting certain terminological constants—
we proceed by describing our implementation of the T-split program execution, how it
enables unique optimisations, and how it can be used to derive a subset of OWL 2
RL/RDF rules which are linear with respect to assertional knowledge.

Implementing T-split Inferencing. Given that the T-Box remains static during the
application of the assertional program, our T-split algorithm enables a partial-indexing
approach to reasoning, whereby only a subset of assertional triples—in particular those
required by rules with multiple A-atoms in the body—need be indexed. Thus, the T-split
closure can be achieved by means of two triple-by-triple scans of the corpus:

1. the first scan identifies and separates out the T-Box and applies the terminolog-
ical program:
(a) during the scan, any triples that are instances of a T-atom of a rule are indexed

in memory;
(b) after the scan, rules with only T-atoms in the body are applied over the in-

memory T-Box until the terminological least model is reached, and rules with
T-atoms and A-atoms in the body have their T-atoms grounded by these data;

(c) novel inferences in the terminological least model are written to an on-disk file
(these will later be considered as part of the inferred output, and as input to the
assertional program);

2. the second scan applies the assertional program over the main corpus and the
terminological inferences;
(a) each triple is individually checked to see if it unifies with an atom in an asser-

tional rule body;
i. if it unifies with a single-atom rule body, the inference is immediately ap-

plied;
ii. if it unifies with a multi-atom rule body, the triple is indexed and the in-

dex is checked to determine whether the other atoms of the rule can be
instantiated by previous triples—if so, the inference is applied;

(b) inferred triples are immediately put back into step (2a), with an in-memory
cache avoiding cycles and (partially) filtering duplicates.

The terminological program is applied using standard semi-naı̈ve evaluation techniques,
whereby only instances of rule bodies involving novel data will fire, ensuring that
derivations are not needlessly and endlessly repeated (see, e.g., [87]).

We give a more formal break-down of the application of the assertional program in
Algorithm 3.1. For our purposes, the A-Box input is the set of axiomatic statements in
the rule fragment, the set of novel terminological inferences, and the entire corpus; i.e.,
we consider terminological data as also being assertional in a unidirectional form of
punning [25].

278 A. Hogan et al.

Algorithm 3.1. Reason over the A-Box
Require: ABOX: A /* {t0 . . . tm} */
Require: ASSERTIONAL PROGRAM: AP /* {R0 . . . Rn}, TBody(Ri) = ∅ */
1: Index := {} /* triple index */
2: LRU := {} /* fixed-size, least recently used cache */
3: for all t ∈ A do
4: G0 := {}, G1 := {t}, i := 1
5: while Gi �= Gi−1 do
6: for all tδ ∈ Gi \ Gi−1 do
7: if tδ /∈ LRU then /* if tδ ∈ LRU, make tδ most recent entry */
8: add tδ to LRU /* remove eldest entry if necessary */
9: output(tδ)

10: for all R ∈ AP do
11: if |Body(R)| = 1 then
12: if ∃θ s.t. {tδ} = Body(R)θ then
13: Gi+1 := Gi+1 ∪ Head(R)θ
14: end if
15: else
16: if ∃θ s.t. tδ ∈ Body(R)θ then
17: card = |Index|
18: Index := Index ∪ {tδ}
19: if card �= |Index| then
20: for all θ s.t. Body(Rθ) ⊆ Index, tδ ∈ Body(Rθ) do
21: Gi+1 := Gi+1 ∪ Head(Rθ)
22: end for
23: end if
24: end if
25: end if
26: end for
27: end if
28: end for
29: i++

30: Gi+1 := copy(Gi) /* copy inferences to new set to avoid cycles */
31: end while
32: end for
33: return output /* on-disk inferences */

First note that duplicate inference steps may be applied for rules with only one atom
in the body (Lines 11–14): one of the main optimisations of our approach is that it
minimises the amount of data that we need to index, where we only wish to store triples
which may be necessary for later inference, and where triples only grounding single
atom rule bodies need not be indexed. To provide partial duplicate removal, we instead
use a Least-Recently-Used (LRU) cache over a sliding window of recently encountered
triples (Lines 7 & 8)—outside of this window, we may not know whether a triple has
been encountered before or not, and may repeat inferencing steps.

Scalable OWL 2 Reasoning for Linked Data 279

Thus, in this partial-indexing approach, we need only index those triples which are
matched by a rule with a multi-atom body (Lines 15–25). For indexed triples, aside
from the LRU cache, we can additionally check to see if that triple has been indexed
before (Line 19) and we can apply a semi-naı̈ve check to ensure that we only materialise
inferences which involve the current triple (Line 20). We note that as the assertional
index is required to store more data, the two-scan approach becomes more inefficient
than the “full-indexing” approach; in particular, a rule with a body atom containing all
variable terms will require indexing of all data, negating the benefits of the approach;
e.g., if the rule OWL 2 RL/RDF rule eq-rep-s:

(?s′, ?p, ?o)← (?s, owl:sameAs, ?s′),(?s, ?p, ?o)

is included in the assertional program, the entire corpus of assertional data must be
indexed (in this case according to subject) because of the latter “open” atom. We em-
phasise that our partial-indexing performs well if the assertional index remains small
and performs best if every proper rule in the assertional program has only one A-atom
in the body—in the latter case, no assertional indexing is required. We will use this
observation to identify a subset of T-split OWL 2 RL/RDF rules which are linear with
respect to the assertional knowledge in § 3.5, but first we look at some generic optimi-
sations for the assertional program.

3.4 Optimising the Assertional Program

Note that in Algorithm 3.1 Line 10, all rules are checked for all triples to see if an
inference should take place. Given that (i) the assertional program will be applied over
a corpus containing in the order of a billion triples; (ii) the process of grounding the T-
atoms of T-split rules may lead to a large volume of assertional rules given a sufficiently
complex terminology; we deem it worthwhile to investigate some means of optimising
the execution of the assertional program. Herein, we discuss such optimisations and
provide initial evaluation thereof—note that since our assertional program contains only
assertional atoms, we herein omit the T-split notation where Body(R) always refers to
a purely assertional body.

Merging Equivalent T-ground Rules. Applying the T-grounding of rules to derive
purely assertional rules may generate “equivalent rules”: rules which can be unified by
an bijective variable rewriting. Similarly, there may exist T-ground rules with “equiv-
alent bodies” which can be merged into one rule. To formalise these notions, we first
define the bijective variable rewriting function used to determine equivalence of atoms.

Definition 6 (Variable rewriting). A bijective variable rewriting function is an auto-
morphism on the set of variables, given simply as:

ν : V "→ V

As such, this function is a specific form of variable substitution, where two atoms which
are unifiable by such a rewriting are considered equivalent:

280 A. Hogan et al.

Definition 7 (Equivalent atoms). Two atoms are equivalent (denoted A1 ��A2 reflect-
ing the fact that both atoms are instances of each other) iff they are unifiable by a
bijective variable rewriting:20

A1 ��A2 ⇔ ∃ν s.t. A1ν = A2

Equivalence of a set of atoms follows naturally. Two rules are body-equivalent (R1 ��b

R2) iff their bodies are equivalent:

R1 ��b R2 ⇔ Body(R1) ��Body(R2)⇔ ∃ν s.t. Body(R1)ν = Body(R2)

Two rules are considered fully-equivalent if their bodies and heads are unifiable by the
same variable rewriting:

R1 ��r R2 ⇔ ∃ν s.t.
(
Body(R1)ν = Body(R2) ∧ Head(R1)ν = Head(R2)

)
Note that fully-equivalent rules are considered redundant, and all but one can be re-
moved without affecting the computation of the least model. Using these equivalence
relations, we can now define our rule-merge function (again recall from § 3.1 our inter-
pretation of multi-atom heads as being conjunctive, and a convenient representation of
the equivalent set of rules):

Definition 8 (Rule merging). Given an equivalence class of rules [R]��b—a set of
rules between which ��b holds—select a canonical rule R ∈ [R]��b; we can now de-
scribe the rule-merge of the equivalence class as

merge([R]��b) := Head[R]��b
← Body(R)

where

Head[R]��b
:=

⋃
Ri∈[R]��b

Head(Ri)νi s.t. Body(Ri)νi = Body(R)

Now take a program P and let:

P/��b := {[R]��b | R ∈ P}

denote the quotient set of P given by ��b: the set of all equivalent classes [R]��b wrt.
the equivalence relation ��b in P . We can generalise the rule merge function for a set
of rules as

merge : 2Rules → 2Rules

P "→
⋃

[R]��b∈P/��b

merge([R]��b)

20 Note that in the unification, only the variables in the left atom are rewritten and not both;
otherwise two atoms such as (?a, foaf:knows, ?b) and (?b, foaf:knows, ?c) would
not be equivalent: they could not be aligned by any (necessarily injective) rewriting function
ν.

Scalable OWL 2 Reasoning for Linked Data 281

Example 4. Take three T-ground rules:

(?x, a, foaf:Person)← (?x, foaf:img, ?y)
(?s, foaf:depicts, ?o)← (?s, foaf:img, ?o)
(?a, foaf:depicts, ?b)← (?a, foaf:img, ?b)

The second rule can be merged with the first using ν1 = {?s/?x, ?o/?y}, which gives:

(?x, a, foaf:Person),(?x, foaf:depicts, ?y)← (?x, foaf:img, ?y)

The third rule can be merged with the above rule using ν1 = {?a/?x, ?b/?y} to give:

(?x, a, foaf:Person),(?x, foaf:depicts, ?y)← (?x, foaf:img, ?y)

...the same rule. This demonstrates that the merge function removes redundant fully-
equivalent rules. ♦

Merging the rules thus removes redundant rules, and reduces the total number of rule
applications required for each triple without affecting the final least model:

Proposition 1. For any program P , lm(P) = lm(merge(P)).

Sketch of proof available in [39].

Rule Index. We have reduced the amount of rules in the assertional program through
merging; however, given a sufficiently complex T-Box, we may still have a prohibitive
number of rules for efficient recursive application. We now look at the use of a rule index
which maps a fact to rules containing a body atom for which that fact is an instance,
thus enabling the efficient identification and application of only relevant rules for a
given triple.

Definition 9 (Rule lookup). Given a fact F and program P , the rule lookup function
returns all rules in the program containing a body atom for which F is an instance:

lookup : Facts× 2Rules → 2Rules

(F, P) "→
{
R ∈ P | ∃Bi ∈ Body(R) s.t. Bi � F

}

Now, instead of attempting to apply all rules, for each triple we can perform the above
lookup function and return only triples from the assertional program which could po-
tentially lead to a successful rule application.

Example 5. Given a triple:

t :=(ex:me, a, foaf:Person)

and a simple example ruleset:

P := {(?x, a, foaf:Person)← (?x, foaf:img, ?y),
(?x, a, foaf:Agent)← (?x, a, foaf:Person),

(?y, a, rdfs:Class)← (?x, a, ?y)}

282 A. Hogan et al.

lookup(t, P) returns a set containing the latter two rules. ♦

With respect to implementing this lookup function, we require a rule index. A triple pat-
tern has 23 = 8 possible forms: (?, ?, ?), (s, ?, ?), (?, p, ?), (?, ?, o), (s, p, ?), (?, p, o),
(s, ?, o), (s, p, o). Thus, we require eight indices for indexing body patterns, and eight
lookups to perform lookup(t, P) and find all relevant rules for a triple. We use seven
in-memory hashtables storing the constants of the rule antecedent patterns as key, and
a set of rules containing such a pattern as value; e.g., {(?x, a, foaf:Person)} is
put into the (?, p, o) index with (a,foaf:Person) as key. Rules containing (?, ?, ?)
patterns without constants are stored in a set, as they are relevant to all triples—they are
returned for all lookups.

We further optimise the rule index by linking dependencies between rules, such that
once one rule fires, we can determine which rules should fire next without requiring an
additional lookup. This is related to the notion of a rule graph in Logic Programming
(see, e.g., [74]):

Definition 10 (Rule graph). A rule graph is defined as a directed graph:

Γ := (P, ↪→)

such that:21

Ri ↪→ Rj ⇔ ∃B ∈ Body(Rj), ∃H ∈ Head(Ri) s.t. B � H

where Ri ↪→ Rj is read as “Rj follows Ri”.

By building and encoding such a rule graph into our index, we can “wire” the recursive
application of rules for the assertional program. However, from the merge function (or
otherwise) there may exist rules with large sets of head atoms. We therefore extend the
notion of the rule graph to a directed labelled graph with the inclusion of a labelling
function

Definition 11 (Rule-graph labelling). Let Λ denote a labelling function as follows:

Λ : Rules× Rules→ 2Atoms

(Ri, Rj) "→
{

H ∈ Head(Ri) | ∃B ∈ Body(Rj) s.t. B � H
}

A labelled rule graph is thereafter defined as a directed labelled graph:

Γ Λ := (P, ↪→, Λ)

Each edge in the rule graph is labelled with Λ(Ri, Rj), denoting the set of atoms in
the head of Ri that, when grounded, would be matched by atoms in the body of Rj .

Example 6. Take the two rules:

21 Here, we recall from § 3.1 the ‘�’ notation for an instance.

Scalable OWL 2 Reasoning for Linked Data 283

Ri. (y, a, foaf:Image),(?x, a, foaf:Person) ← (?x, foaf:img, ?y)
Rj . (s, a, foaf:Agent) ← (?s, a, foaf:Person)

We say that Ri
λ
↪→ Rj , where λ = Λ(Ri, Rj) = {(?x, a, foaf:Person)}. ♦

In practice, our rule index stores sets of elements of a linked list, where each element
contains a rule and links to rules which are relevant for the atoms in that rule’s head.
Thus, for each input triple, we can retrieve all relevant rules for all eight possible pat-
terns, apply those rules, and if successful, follow the respective labelled links to recur-
sively find relevant rules without re-accessing the index until the next input triple.

Rule Saturation. We briefly describe the final optimisation technique we investigated,
but which later evaluation demonstrated to be mostly disadvantageous: rule saturation.
We say that a subset of dependencies in the rule graph are strong dependencies, where
the successful application of one rule will always lead to the successful application
of another. Now, we can saturate rules with single-atom bodies by pre-computing the
recursive rule application of its dependencies; we give the gist with an example:

Example 7. Take rules

Ri. (?x, a, foaf:Person),(?y, a, foaf:Image) ← (?x, foaf:img, ?y)
Rj . (?s, a, foaf:Agent) ← (?s, a, foaf:Person)
Rk . (?y, a, rdfs:Class) ← (?x, a, ?y)

We can see that Ri ↪→ Rj , Ri ↪→ Rk, Rj ↪→ Rk as before. Now, we can remove the
links from Ri to Rj and Rk by saturating Ri to:

R′
i. (?x, a, foaf:Person),(?y, a, foaf:Image),(?x, a, foaf:Agent),

(foaf:Person, a, rdfs:Class),(foaf:Image, a, rdfs:Class),
(foaf:Agent, a, rdfs:Class) ← (?x, foaf:img, ?y)

and, analogously, we can remove the links from Rj to Rk by saturating Rj to:

R′
j . (?s, a, foaf:Agent),(foaf:Agent, a, rdfs:Class) ← (?s, a, foaf:Person)

Thus, the index now stores R′
i, R

′
j , Rk, but without the links between them. ♦

However, as we will see in § 3.4, our empirical analysis found rule saturation to be
mostly disadvantageous: although it decreases the number of necessary rule applica-
tions, as a side-effect, saturated rules can immediately produce a large batch of dupli-
cates which would otherwise have halted a traversal of the rule graph early on. Using
the above example, consider encountering the following sequence of input triples:

1. (ex:Fred, a, foaf:Person)
2. (ex:Fred, foaf:img, ex:FredsPic)

284 A. Hogan et al.

The first triple will fire rule R′
j and Rk; the second triple will subsequently fire rule R′

i,
and in so doing, will produce a superset of inferences already given by its predecessor.
Without saturation, the second triple would fire Ri, identify (ex:Fred, a, foaf:-
Person) as a duplicate, and instead only fire Rk for (ex:FredsPic, a, foaf:Im-
age).

Preliminary Performance Evaluation. We now perform some (relatively) small-scale
experiments to empirically (in)validate our optimisations for the assertional program
execution. Experiments are run on a 2.2GHz Opteron x86-64, 4GB main memory,
160GB SATA hard-disks, running Java 1.6.0 12 on Debian 5.0.4.

We applied reasoning for RDFS (minus the infinite rdf: n axiomatic triples [33]),
pD* and OWL 2 RL/RDF over LUBM(10) [30], consisting of about 1.27 million as-
sertional triples and 295 terminological triples.22 For each rule profile, we applied the
following configurations:

1. N: no partial evaluation: T-Box atoms are bound at runtime from an in-memory
triple-store;

2. NI: no partial evaluation with linked (meta-)rule index;
3. P: partial-evaluation: generating and applying an assertional program;
4. PI: partial evaluation with linked rule index;
5. PIM: partial evaluation with linked rule index and rule merging;
6. PIMS: partial evaluation with linked rule index, rule merging and rule satura-

tion.

Table 3 enumerates the results for each profile, with a breakdown of (i) the number
of inferences made, (ii) the total number of assertional rules generated, (iii) the total
number of merged rules; and for each of the six configurations; (iv) the time taken,
(v) the total number of attempted rule applications—i.e., the total number of times a
triple is checked to see if it grounds a body atom of a rule to produce inferences—
and the percent of rule applications which generated inferences, and (vi) the number of
duplicate triples filtered out by the LRU cache (Lines 7 & 8, Algorithm 3.1).

In all approaches, applying the non-optimised partially evaluated (assertional) pro-
gram takes the longest: although the partially evaluated rules are more efficient to apply,
this approach requires an order of magnitude more rule applications than directly ap-
plying the meta-program, and so applying the unoptimised residual assertional program
takes approximately 2× to 4× longer than the baseline.

With respect to rule indexing, the technique has little effect when applying the meta-
program directly—many of the rules contain open patterns in the body. Although the
number of rule applications diminishes somewhat, the expense of maintaining and ac-
cessing the rule index actually worsens performance by between 10% and 20%. How-
ever, with the partially evaluated rules, more variables are bound in the body of the
rules, and thus triple patterns offer more selectivity and, on average, the index returns
fewer rules. We see that for PI and for each profile respectively, the rule index sees a
78%, 69% and 72% reduction in the equivalent runtime (P) without the rule index; the

22 Note that we exclude lg/gl rules for RDFS/pD* since we allow generalised triples [27]. We
also restrict OWL 2 RL/RDF datatype reasoning to apply only to literals in the program.

Scalable OWL 2 Reasoning for Linked Data 285

Table 3. Details of reasoning for LUBM(10)—containing 1.27M assertional triples and 295 ter-
minological triples—given different reasoning configurations (the most favourable result for each
row is highlighted in bold)

RDFS
inferred 0.748 million

T-ground rules 149
after merge 87

config. N NI P PI PIM PIMS

time (s) 99 117 404 89 81 69
rule apps (m) 16.5 15.5 308 11.3 9.9 7.8

% success 43.4 46.5 2.4 64.2 62.6 52.3
cache hits (m) 10.8 10.8 8.2 8.2 8.2 8.1

pD*
inferred 1.328 million

T-ground rules 175
after merge 108

config. N NI P PI PIM PIMS

time (s) 365 391 734 227 221 225
rule apps (m) 62.5 50 468 22.9 21.1 13.9

% success 18.8 23.4 2.6 51.5 48.7 61.3
cache hits (m) 19.1 19.1 15.1 15.1 14.9 38.7

OWL 2 RL/RDF
inferred 1.597 million

T-ground rules 378
after merge 119

config. N NI P PI PIM PIMS

time (s) 858 940 1,690 474 443 465
rule apps (m) 149 110 1,115 81.8 78.6 75.6

% success 4.2 5.6 0.8 10.5 6.8 15
cache hits (m) 16.5 16.5 13.1 13 12.7 34.4

reduction in rule applications (73%, 80%, 86% reduction resp.) is significant enough to
more than offset the expense of maintaining and using the index. With respect to the
baseline (N), PI makes a 10%, 38% and 45% saving respectively; notably, for RDFS,
the gain in performance over the baseline is less pronounced, where, relative to the more
complex rulesets, the number of rule applications is not signficantly reduced by partial
evaluation and indexing.

Merging rules provided a modest saving across all rulesets, with PIM giving a 9%,
3% and 6.5% saving in runtime and a 12%, 8% and 4% saving in rule applications over
PI respectively for each profile. Note that although OWL 2 RL/RDF initially creates
more residual rules than pD* due to expanded T-Box level reasoning, these are merged
to a number just above pD*: OWL 2 RL supports intersection-of inferencing used by
LUBM and not in pD*. LUBM does not contain OWL 2 constructs, but redundant
meta-rules are factored out during the partial evaluation phase.

286 A. Hogan et al.

Finally, we look at the effect of saturation and approach PIMS. For RDFS, we en-
countered a 15% reduction in runtime over PIM, with a 21% reduction in rule applica-
tions required. However, for pD* we encountered a 2% increase in runtime over that
of PIM despite a 34% reduction in rule applications: as previously alluded to, the cache
was burdened with 2.6× more duplicates, negating the benefits of fewer rule applica-
tions. Similarly, for OWL 2 RL/RDF, we encountered a 4% increase in runtime over
that of PIM despite a 4% reduction in rule applications: again, the cache encountered
2.7× more duplicates.

The purpose of this evaluation is to give a granular analysis and empirical justifica-
tion for our optimisations for different rule-based profiles: one might consider different
scenarios (such as a terminology-heavy corpus) within which our optimisations may
not work. However, we will later demonstrate these optimisations—with the exception
of rule saturation—to be propitious for our scenario of reasoning over Linked Data.

It is worth noting that—aside from reading input and writing output—we performed
the above experiments almost entirely in-memory. Given the presence of (pure) asser-
tional rules which have multi-atom bodies where one such atom is “open” (all terms are
variables)—viz., pD* rule rdfp11 and OWL 2 RL/RDF rules eq-rep-*—we currently
must naı̈vely store all data in memory, and cannot scale much beyond LUBM(10).23

3.5 Towards Linked Data Reasoning

With the notions of a T-split program, partial evaluation and assertional program opti-
misations in hand, we now reunite with our original use-case of Linked Data reasoning,
for which we move our focus from clean corpora in the order of a million statements
to our corpus in the order of a billion statements collected from almost four million
sources—we will thus describe some trade-offs we make in order to shift up (at least)
these three orders of magnitude in scale, and to be tolerant to noise and impudent data
present in the corpus. More specifically, we:

1. first describe, motivate and characterise the scalable subset of OWL 2 RL/RDF that
we implement based partially on the discussion in the previous section;

2. introduce and describe authoritative reasoning, whereby we include cautious con-
sideration of the source of terminology into the reasoning process;

3. outline our distribution strategy for reasoning;
4. evaluate our methods by applying reasoning over our Linked Data evaulation cor-

pus of 1.12 billion quadruples crawled from 4 million RDF/XML documents.

“A-linear” OWL 2 RL/RDF. Again, for a generic set of RDF rules (which do not cre-
ate new terms in the head), the worst case complexity is cubic—in § 3.2 we have already
demonstrated a simple example which instigates cubic reasoning for OWL 2 RL/RDF
rules, and discussed how, for many reasonable inputs, rule application is quadratic.

23 We could consider storing data in an on-disk index with in-memory caching; however, given
the morphology and volume of the assertional data, and the frequency of lookups required,
we believe that the cache hit rate would be low, and that the naı̈ve performance of the on-
disk index would suffer heavily from hard-disk latency, becoming a severe bottleneck for the
reasoner.

Scalable OWL 2 Reasoning for Linked Data 287

Given our use-case, we want to define a profile of rules which will provide linear com-
plexity with respect to the assertional data in the corpus: what we call “A-linearity”.

In fact, in the field of Logic Programming (and in particular Datalog) the notion of
a linear program refers to one which contains rules with no more than one recursive
atom in the body—a recursive atom being one which cannot be instantiated from an
inference (e.g., see [17]).24 For Datalog, recursiveness is typically defined on the level
of predicates using the notion of intensional predicates, which represent facts that can
(only) be inferred by the program, and extensional predicates, which represent facts in
the original data; atoms with intensional predicates are non-recursive [17]. Since we
deal with a single ternary predicate, such a predicate-level distinction does not apply,
but the general notion of recursiveness does. This has a notable relationship to our dis-
tinction of terminological knowledge—which we deem to be recursive only within itself
(assuming standard use of the meta-vocabulary and “well-behaved equality” involving
owl:sameAs)—and assertional knowledge which is recursive.

Based on these observations, we identify an A-linear subset of OWL 2 RL/RDF
rules which contain only one recursive/assertional atom in the body, and apply only
these rules. Taking this subset as our “meta-program”, after applying our T-grounding
of meta-rules during partial evaluation, the result will be a set of facts and proper rules
with only one assertional atom in the body. The resulting linear assertional program
can then be applied without any need to index the assertional data (other than for the
LRU duplicates soft-cache); also, since we do not need to compute assertional joins—
i.e., to find the most general unifier of multiple A-atoms in the data—we can employ a
straightforward distribution strategy for applying the program.

Definition 12 (A-linear program). Let P be any T-split (a.k.a. meta) program. We
denote the A-linear program of P by P∝A defined as follows:

P∝A := {R ∈ P : |ABody(R)| ≤ 1}

(Note that by the above definition, P∝A also includes the pure-terminological rules and
the facts of P.)

Thus, the proper rules of the assertional program AP∝A generated from an A-linear
meta-program P∝A will only contain one atom in the head. For convenience, we denote
the A-linear subset of OWL 2 RL/RDF byO2R∝A, which consists of rules in Tables 15–
17 (Appendix A).

Thereafter, the assertional program demonstrates two important characteristics with
respect to scalability: (i) the assertional program can be independently applied over
subsets of the assertional data, where a subsequent union of the resultant least models
will represent the least model achievable by application of the program over the data in
whole; (ii) the volume of materialised data and the computational expense of applying
the assertional program are linear with respect to the assertional data.

24 There is no relation between a linear program in our case, and the field of Linear Program-
ming [90].

288 A. Hogan et al.

Proposition 2 (Assertional partitionability). Let I be any interpretation, and {I1, . . . ,
In} be any set of interpretations such that:

I =
n⋃

i=1

Ii

Now, for any meta-program P , its A-linear subset P∝A, and the assertional program
AP∝A derived therefrom, it holds that:

lm(AP∝A ∪ I) =
n⋃

i=1

lm(AP∝A ∪ Ii)

Proof. (Sketch) Follows naturally from the fact that rules in AP∝A (i) are monotonic
and (ii) only contain single-atom bodies. ��

Thus, deriving the least model of the assertional program can be performed over any
partition of an interpretation; the set union of the resultant least models is equivalent to
the least model of the unpartitioned interpretation. Aside from providing a straightfor-
ward distribution strategy, this result allows us to derive an upper-bound on the cardi-
nality of the least model of an assertional program.

Proposition 3 (A-Linear least model size). Let AP ∝A denote any A-linear asser-
tional program composed of RDF proper rules and RDF facts composed of ternary-
arity atoms with the ternary predicate T . Further, let I∝A denote the set of facts in
the program and PR∝A denote the set of proper rules in the program (here, AP∝A =
I∝A ∪ PR∝A). Also, let the function Const denote the Herbrand universe of a set of
atoms (the set of RDF constants therein), and let τ denote the cardinality of the Her-
brand universe of the heads of all rules in PR∝A (the set of RDF constants in the heads
of the proper T-ground rules of AP∝A) as follows:

τ =
∣∣∣Const

(⋃
R∈PR∝A

Head(R)
)∣∣∣

Finally, let α denote the cardinality of the set of facts:

α = |I∝A|

Then it holds that:

|lm(AP ∝A)| ≤ τ3 + α(9τ2 + 27τ + 27)

Proof given in [39].
Note that τ is given by the terminology (more accurately the T-Box) of the data and

the terms in the heads of the original meta-program. Considering τ as a constant, we
arrive at the maximum size of the least model as c + cα: i.e., the least model is linear
with respect to the assertional data. In terms of rule applications, the number of rules
is again a function of the terminology and meta-program, and the maximum number of
rule applications is the product of the number of rules (considered a constant) and the

Scalable OWL 2 Reasoning for Linked Data 289

maximum size of the least model. Thus, the number of rule applications remains linear
with respect to the assertional data. This is a tenuous result with respect to scalability,
and constitutes a refactoring of the cubic complexity to separate out a static terminology.
Thereafter, assuming the terminology to be small, the constant c will be small and the
least model will be terse; however, for a sufficiently complex terminology, obviously
the τ3 and ατ2 factors begin to dominate—for a terminology heavy program, the worst-
case complexity again approaches τ3. Thus, applying an A-linear subset of a program
is again not a “magic bullet” for scalability, although it should demonstrate scalable
behaviour for small terminologies (i.e., where τ is small) and/or other reasonable inputs.

Moving forward, we select an A-linear subset of the OWL 2 RL/RDF ruleset for
application over our ruleset. This subset is enumerated in Appendix A, with rule tables
categorised by terminological and assertional arity of rule bodies. Again, we also make
some other amendments to the ruleset:

1. we omit datatype rules which lead to the inference of (near-)infinite triples;
2. we omit inconsistency checking rules;
3. for reasons of terseness, we omit rules which infer ‘tautologies’—statements that

hold for every term in the graph, such as reflexive owl:sameAs statements (we
also filter these from the output).

Authoritative Reasoning. In preliminary evaluation of our Linked Data reasoning [40],
we encountered a puzzling deluge of inferences: We found that remote documents
sometimes cross-define terms resident in popular vocabularies, changing the inferences
authoritatively mandated for those terms. For example, we found one document25 which
defines owl:Thing to be an element (i.e., a subclass) of 55 union class descriptions—
thus, materialisation wrt. OWL 2 RL/RDF rule cls-uni [27, Table 6] over any mem-
ber of owl:Thing would infer 55 additional memberships for these obscure union
classes. We found another document26 which defines nine properties as the domain of
rdf:type—again, anything defined to be a member of any class would be inferred
to be a member of these nine properties by rules prp-dom. Even aside from “cross-
defining” core RDF(S)/OWL terms, popular vocabularies such as FOAF were also af-
fected (we will see more in the evaluation presented in § 3.6).

In order to curtail the possible side-effects of open Web data publishing (as also
exemplified by the two triples which cause cubic reasoning in § 3.2), we include the
source of data in inferencing. Our methods are based on the view that a publisher in-
stantiating a vocabulary’s term (class/property) thereby accepts the inferencing man-
dated by that vocabulary (and recursively referenced vocabularies) for that term. Thus,
once a publisher instantiates a term from a vocabulary, only that vocabulary and its
references should influence what inferences are possible through that instantiation. As
such, we ignore unvetted terminology at the potential cost of discounting serendipitous
mappings provided by independent parties, since we currently have no means of distin-
guishing “good” third-party contributions from “bad” third-party contributions. We call
this more conservative form of reasoning authoritative reasoning, which only considers

25 http://lsdis.cs.uga.edu/ oldham/ontology/wsag/wsag.owl; retr. early
2010, offline 2011/01/13.

26 http://www.eiao.net/rdf/1.0; retr. 2011/01/13.

290 A. Hogan et al.

authoritatively published terminological data, and which we now describe. (Please also
see [84] in these proceedings for discussion on trust models for the Web.)

Firstly, we must define the relationship between a class/property term and a vocab-
ulary, and give the notion of term-level authority. We view a term as an RDF constant,
and a vocabulary as a Web document: from § 3.1, we recall the get mapping from a URI
(a Web location) to an RDF graph it may provide by means of a given HTTP lookup,
and the redirs mapping for traversing the HTTP redirects given for a URI.

Definition 13 (Authoritative sources for terms). Letting B(G) denote the set of blank-
nodes appearing in the graph G, we denote a mapping from a source URI to the set of
terms it speaks authoritatively for as follows:27

auth : S → 2C

s "→ {c ∈ U | redirs(c) = s} ∪ B(get(s))

Thus, a Web source is authoritative for URIs which dereference to it and the blank
nodes it contains; for example, the FOAF vocabulary is authoritative for terms in its
namespace since it follows best-practices and makes its class/property URIs dereference
to an RDF/XML document defining the terms. Note that we consider all documents to
be non-authoritative for all literals.

To negate the effects of non-authoritative terminological axioms on reasoning over
Web data, we add an extra condition to the T-grounding of a rule (see Definition 2):
in particular, we only require amendment to rules where both TBody(R) �= ∅ and
ABody(R) �= ∅.

Definition 14 (Authoritative T-ground rule instance). Let TAVars(R) ⊂ V denote
the set of variables appearing in both TBody(R) and ABody(R), let G denote a graph,
and let s denote the source of that graph. Now, we define the set of authoritative T-
ground rule instances for a program P in the graph G as:

̂GroundT (P, G, s) :={
GroundT

θ ({R}, G) | R ∈ P T∅∪P ∅A ∨
(
R ∈ P TA ∧∃v ∈ TAVars(R) s.t. θ(v) ∈ auth(s)

)}
where GroundT

θ is the T-grounding (as per Definition 2) using the the most general
unifier θ, and where we recall the PTA, PT∅, P ∅A conventions from Definition 3.

The additional condition for authoritativeness states that if ABody(R) �= ∅ and TBody
(R) �= ∅, then the unifier θ must substitute at least one variable appearing in both
ABody(R) and TBody(R) for an authoritative term (wrt. source s)—i.e., source s must
speak authoritatively for a term that necessarily appears in each instance of ABody(R),
and cannot create rule instances which could apply over arbitrary assertional data not
mentioning any of its terms. We now formalise this notion:

Theorem 4 (Authoritative reasoning guarantee). Let Const denote a function which
returns the Herbrand universe of a set of rules (including facts): i.e., a function which

27 Even predating Linked Data, dereferencable vocabulary terms were encouraged; cf.
http://www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/;
retr. 2011/01/13.

Scalable OWL 2 Reasoning for Linked Data 291

returns the set of RDF constants appearing in a program P or a graph G. Next, let G′

be any graph, let s′ be the source of graph G′ such that get(s′) = G′, and let P be any
(T-split) program and G be any graph such that

Const(P ∪G) ∩ auth(s′) = ∅ ;

i.e., neither P nor G contain any terms for which s′ speaks authoritatively. Finally, let
P ′ be the set of partially evaluated rules derived from G with respect to P , where:

P ′ := {R ∈ ̂GroundT (P, G′, s′)|Body(R) �= ∅}

Now, it holds that lm(P ∪G) = lm(P ∪ P ′ ∪G).

Corollary 2. Given the same assumption(s) as Theorem 4, it also holds that lmT (P ∪
G) = lmT (P ∪ P ′ ∪G).

Proofs available in [39].

Example 8. Take the T-split rule REX as before:

(?x, a, ?c2)← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

and let GEX be the graph from source s:

GEX := { (foaf:Person, rdfs:subClassOf, foaf:Agent),
(foaf:Agent, rdfs:subClassOf, dc:Agent) }

Here, TAVars(REX) = {?c1}. Now, for each substitution θ, there must exist v ∈
TAVars(REX) such that s speaks authoritatively for θ(v). In this case, s must speak
authoritatively for the ?c1 substitution foaf:Person for the rule:

(?x, a, foaf:Agent)← (?x, a, foaf:Person)

to be an authoritatively T-ground rule instance, and speak authoritatively for the ?c1
substitution foaf:Agent for:

(?x, a, dc:Agent)← (?x, a, foaf:Agent)

to be authoritative. In other words, for these T-ground rules to be authoritative, GEX

must be served by the document referenced by the FOAF terms—i.e., the FOAF vocab-
ulary. Note that this authoritatively ground rule contains the term foaf:Agent in the
body, and thus can only generate inferences over graphs containing this term (for which
s is authoritative). ♦

For reference, we highlight variables in TAVars(R) with boldface in the rule tables of
Appendix A (only applies to rules with A-atoms and T-atoms in the body).

It is worth noting that for rules where ABody(R) and TBody(R) are both non-empty,
authoritative instantiation of the rule will only consider unifiers for TBody(R) which
come from one source: however, in practice for OWL 2 RL/RDF this is not so restric-
tive: although TBody(R) may contain multiple atoms, in such rules TBody(R) usu-
ally refers to an atomic axiom which requires multiple triples to represent—indeed, the
OWL 2 Structural Specification [64] enforces usage of blank-nodes and cardinalities on
such constructs to ensure that the constituent triples of the multi-triple axiom appear in
one source. To take an example, for the T-atoms:

292 A. Hogan et al.

(?x, owl:hasValue, ?y)
(?x, owl:onProperty, ?p)

we would expect ?x to be ground by a blank-node skolem and thus expect the instance
to come from one graph. Although it should be noted that such restrictions do not carry
over for OWL 2 Full—which is applicable for arbitrary RDF graphs—it still seems
reasonable for us to restrict those OWL 2 Full terminological axioms which require
multiple triples to express to be given entirely within one Web document (here, perhaps
even making our reasoning more robust). In any case, as we say in § 2.2, such features
of OWL are not so commonly adopted for Linked Data.

Note finally that terminological inferences—produced by rules with only T-atoms—
are never considered authoritative. Thus, by applying authoritative reasoning, we do
not T-ground rules from such facts. For OWL 2 RL/RDF, this only has a “minor” ef-
fect on the least model computation since OWL 2 RL/RDF (intentionally) contains
redundant rules [27], which allow for deriving the same inferences on a purely asser-
tional level. Along these lines, in Appendix A, Table 22, we list all of the T-atom only
rules; assuming that the inferences given by each rule are not considered terminologi-
cal, we show how the omissions are covered by the recursive application of other asser-
tional rules. We note that we may miss some inferences possible through inference of
rdfs:subClassOf relations between owl:someValuesFrom restriction classes,
and also between owl:allValuesFrom restriction classes, since we do not support
the respective assertional rules cls-svf1 and cls-avf.

Distributed Reasoning. As previously mentioned, Proposition 2 lends itself to a
straightforward distribution strategy for applying our A-linear OWL 2 RL/RDF sub-
set. We briefly discuss our distribution strategy, where we use one master machine to
compute and coordinate “global knowledge” and use several slave machines to per-
form tasks in parallel over the bulk of the corpus. We assume that all machines are in a
shared-nothing configuration [79]; we also assume that the corpus is evenly split over
the slave machines in preparation for reasoning (in our setting, this is the direct result of
our distributed crawler), and that the slave machines have roughly even specifications.
For more information about our distribution architecture, we refer the interested reader
to [39, § 3.6].

As a first step for the distributed reasoning, we extract the T-Box data from each
machine, use the master machine to execute the terminological program and create the
residual assertional program, and then distribute this assertional program (the proper
rules) to each slave machine and let it apply the program independently (and in parallel)
over its local segment of the corpus. This process is summarised as follows:

1. parallel: identify and separate out the T-Box from the main corpus in parallel on
the slave machines;

2. local: the master machine then
(a) gathers and merges the T-Box segments from the slave machines;
(b) generates axiomatic triples from the meta-program and applies T-atom only

rules over the T-Box;
(c) authoritatively grounds the T-atoms in rules with one A-atom, thus generating

the A-linear assertional program;

Scalable OWL 2 Reasoning for Linked Data 293

(d) optimises the assertional program by merging rules and building a linked rule
index;

3. parallel: send the assertional linked rule index to all slave machines and reason
over the main corpus in parallel on each machine.

The results of the above three-step operation are: (a) axiomatic triples and terminologi-
cal inferences resident on the master machine; and (b) assertional inferences split over
the slave machines. Note further that the output of this process may contain (both local
and global) duplicates.

3.6 Linked Data Reasoning Evaluation

We now give evaluation of applying our subset of OWL 2 RL/RDF over the 1.12b
quads (947m unique triples) of Linked Data crawled in the previous section. Note that
we also require information about redirects encountered in the crawl to reconstruct
the redirs function required for authoritative reasoning (see Definition 13) and that we
output a flat file of G-Zipped triples. All of our evaluation is based on nine machines
(1 master/8 slaves) connected by Gigabit ethernet28, each with uniform specifications;
viz.: 2.2GHz Opteron x86-64, 4GB main memory, 160GB SATA hard-disks, running
Java 1.6.0 12 on Debian 5.0.4. Please note that much of the evaluation presented in
these notes assumes that the slave machines have roughly equal specifications in order
to ensure that tasks finish in roughly the same time, assuming even data distribution.

Survey of Terminology. In [39], we presented an analysis—similar to that presented
in § 2.3—of the use of RDFS and OWL in the terminology given by our corpus, but
specifically with respect to the ruleset we apply. We refer [39] for the details, but in
summary we found that our A-linear rules support 99.3% of the total T-ground rules
generated from the terminology in the Linked Data corpus, and authoritative reason-
ing with respect to these rules supports 81.7% of the total; excluding one document
from the ontologydesignpatterns.org domain which publishes 61,887 non-
authoritative axioms, the latter percentage increases to 95.1%. Our authoritative A-
linear rules fully support (with respect to OWL 2 RL/RDF rules) 90.6% of the doc-
uments containing unique terminology, and partially support 99% of these documents.
The summation of the ranks of documents fully supported by our A-linear rules was
77% of the total, and the analagous percentage for documents supported by authorita-
tive reasoning over these rules was 70.3% of the total. We found that the top-ranked
document serving non-authoritative axioms was FOAF (#7), which recently added an
owl:equivalentClass assertion between foaf:Agent and dct:Agent, and
an owl:equivalentProperty assertion between foaf:maker and dct:cr-
eator (in effect, our authoritative reasoning algorithm would treat axioms these as
uni-directions sub-class/-property mappings from FOAF to DC).

Authoritative Reasoning. In [39], we also compared the effects of authoritative vs.
non-authoritative reasoning for our corpus. We refer [39] for the details, but in summary

28 We observe, e.g., a max FTP transfer rate of 38MB/sec between machines.

294 A. Hogan et al.

we found that for the instance data of the top five most popular classes and properties,
non-authoritative inference sizes are on average 55.46× larger than the authoritative
equivalent. Much of this is attributable to noise in and around core RDF(S)/OWL terms,
in particular rdf:type, owl:Thing and rdfs:Resource;29 without these core
terms, non-authoritative inferencing creates 12.74× more inferences than the authori-
tative equivalent.

We present a selected example for the most popular class in our data: foaf:Per-
son. Excluding the top-level concepts rdfs:Resource and owl:Thing, and the
inferences possible therefrom, each rdf:type triple with foaf:Person as value
leads to (at least) five authoritative inferences and twenty-six additional non-
authoritative inferences (all class memberships). Of the latter twenty-six, fourteen are
anonymous classes. Table 4 enumerates the five authoritatively-inferred class member-
ships and the remaining twelve non-authoritatively inferred named class memberships;
also given are the occurrences of the class as a value for rdf:type in the raw data.
Although we cannot claim that all of the additional classes inferred non-authoritatively
are noise—although classes such as b2r2008:Controlled vocabularies ap-
pear to be—we can see that they are infrequently used and arguably obscure. Although
some of the inferences we omit may of course be serendipitous—e.g., perhaps po:-
Person—again we currently cannot distinguish such cases from noise or blatant spam;
for reasons of robustness and terseness, we conservatively omit such inferences.

Single-machine Reasoning. We first applied authoritative reasoning on one machine:
reasoning over the dataset described inferred 1.58 billion raw triples, which were fil-
tered to 1.14 billion triples removing non-RDF generalised triples and tautological state-
ments (see § 3.2)—post-processing revealed that 962 million (∼61%) were unique and
had not been asserted (roughly a 1:1 inferred:asserted ratio). The first step—extracting
1.1 million T-Box triples from the dataset—took 8.2 h.

Subsequently, Table 5 gives the results for reasoning on one machine for each ap-
proach outlined in § 3.4. T-Box level processing—e.g., applying terminological rules,
partially evaluation, rule indexing, etc.—took roughly the same time (∼9 min) for each
approach. During the partial evaluation of the meta-program, 301 thousand assertional
rules were created with 2.23 million links; these were subsequently merged down to
216 thousand (71.8%) with 1.15 million (51.6%) links. After saturation, each rule has
an average of 6 atoms in the head and all links are successfully removed; however, the
saturation causes the same problems with extra duplicate triples as before, and so the
fastest approach is PIM, which takes ∼15% of the time for the baseline N algorithm.
Note that with 301 thousand assertional rules and without indexing, applying all rules
to all statements—roughly 750 trillion rule applications—would take approximately 19
years. In Figure 1, we also show the linear performance of the fastest approach: PIM

(we would expect all methods to be similarly linear).

29 We note that much of the noise is attributable to 107 terms from the opencalais.com
domain; cf.
http://d.opencalais.com/1/type/em/r/PersonAttributes.rdf (retr.
2011/01/22) and http://groups.google.com/group/pedantic-web/browse
thread/thread/5e5bd42a9226a419 (retr. 2011/01/22).

Scalable OWL 2 Reasoning for Linked Data 295

Table 4. Breakdown of non-authoritative and authoritative inferences for foaf:Person, with
number of appearances as a value for rdf:type in the raw data

Class (Raw) Count

Authoritative
foaf:Agent 8,165,989
wgs84:SpatialThing 64,411
contact:Person 1,704
dct:Agent 35
contact:SocialEntity 1

Non-Authoritative (additional)
po:Person 852
wn:Person 1
aifb:Kategorie-3AAIFB 0
b2r2008:Controlled vocabularies 0
foaf:Friend of a friend 0
frbr:Person 0
frbr:ResponsibleEntity 0
pres:Person 0
po:Category 0
sc:Agent Generic 0
sc:Person 0
wn:Agent-3 0

Distributed Reasoning. We also apply reasoning over 1, 2, 4 and 8 slave machines
using the distribution strategy outlined in § 3.5; Table 6 gives the performance. Note
that the most expensive aspects of the reasoning process—extracting the T-Box from
the dataset and executing the assertional program—can be executed in parallel by the
slave machines without coordination. The only communication required between the
machines is during the aggregation of the T-Box and the subsequent partial evaluation
and creation of the shared assertional-rule index: this takes ∼10 min, and becomes the
lower bound for time taken for distributed evaluation with arbitrary machine count.

In summary, taking our best performance, we apply reasoning over 1.12 billion
Linked Data triples in 3.35 h using 9 machines (1 master/8 slaves), deriving 1.58 billion
inferred triples, of which 962 million are novel and unique.

3.7 Related Work

Herein, we discuss related works specifically in the field of scalable and distributed
reasoning as well as works in the area of robust Web reasoning.

Scalable/Distributed Reasoning. From the perspective of scalable RDF(S)/OWL rea-
soning, one of the earliest engines to demonstrate reasoning over datasets in the order
of a billion triples was the commercial system BigOWLIM [13], which is based on a
scalable and custom-built database management system over which a rule-based ma-
terialisation layer is implemented, supporting fragments such as RDFS and pD*, and

296 A. Hogan et al.

Table 5. Performance for reasoning over
1.1 billion statements on one machine for
all approaches

T-Box (min) A-Box (hr)

N 8.9 118.4
NI 8.9 121.3
P 8.9 171609a

PI 8.9 22.1
PIM 8.9 17.7
PIMS 8.9 19.5

a Estimated as a linear product from one
day of reasoning.

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 0 200 400 600 800 1000

st

at
em

en
ts

time (min)

input
output

Fig. 1. Detailed throughput performance for
application of assertional program using the
fastest approach: PIM

Table 6. Distributed reasoning in minutes using PIM for 1, 2, 4 & 8 slave machines

Machines Extract T-Box Build T-Box Reason A-Box Total

1 492 8.9 1062 1565
2 240 10.2 465 719
4 131 10.4 239 383
8 67 9.8 121 201

more recently OWL 2 RL/RDF. Most recent results claim to be able to load 12 billion
statements of the LUBM synthetic benchmark, and 20.5 billion statements statements
inferrable by pD* rules on a machine with 2x Xeon 5430 (2.5GHz, quad-core), and
64GB (FB-DDR2) of RAM.30 We note that this system has been employed for rela-
tively high-profile applications, including use as the content management system for a
live BBC World Cup site.31 BigOWLIM features distribution, but only as a replication
strategy for fault-tolerance and supporting higher query load.

A number of scalable and distributed reasoners adopt a similar approach to SAOR.
Weaver and Hendler [93] discuss a similar approach for distributed materialisation

with respect to RDFS—they also describe a separation of terminological (what they
call ontological) data from assertional data. Thereafter, they identify that all RDFS
rules have only one assertional atom and, like us, use this as the basis for a scalable
distribution strategy: they flood the ontological data and split the assertional data over
their machines. They demonstrate the completeness of their approach—arriving to a
similar conclusion to us—but by inspection of the RDFS fragment. Inferencing is done
over an in-memory RDF store. They evaluate their approach over a LUBM-generated
synthetic corpus of 345.5 million triples using a maximum of 128 machines (each with

30 http://www.ontotext.com/owlim/benchmarking/lubm.html;
retr. 2011/01/22

31 http://www.readwriteweb.com/archives/bbc world cup website
semantic technology.php; retr. 2012/01/22

Scalable OWL 2 Reasoning for Linked Data 297

two dual-core 2.6 GHz AMD Opteron processors and 16 GB memory); with this setup,
reasoning in memory takes just under 5 minutes, producing 650 million triples.

Similarly following our earlier work on SAOR, Urbani et al. [89] use MapReduce [19]
for distributed RDFS materialisation over 850m Linked Data triples. They also con-
sider a separation of terminological (what they call schema) data from assertional data
as a core optimisation of their approach, and—likewise with [93]—identify that RDFS
rules only contain one assertional atom. As a pre-processing step, they sort their data
by subject to reduce duplication of inferences. Based on inspection of the rules, they
also identify an ordering (stratification) of RDFS rules which (again assuming standard
usage of the RDFS meta-vocabulary) allows for completeness of results without full
recursion—unlike us, they do reasoning on a per-rule basis as opposed to our per-triple
basis. Unlike us, they also use a 8-byte dictionary encoding of terms. Using 32 ma-
chines (each with 4 cores and 4 GB of memory) they infer 30 billion triples from 865
million triples in less than one hour; however, they do not materialise or decode the
output—a potentially expensive process. Note that they do not include any notion of
authority (although they mention that in future, they may include such analysis): they
attempted to apply pD* on 35 million Web triples and stopped after creating 3.8 billion
inferences in 12 h, lending strength to our arguments for authoritative reasoning.

In more recent work, (approximately) the same authors [88] revisit the topic of ma-
terialisation with respect to pD*. They again use a separation of terminological data
from assertional data, but since pD* contains rules with multiple assertional atoms,
they define bespoke MapReduce procedures to handle each such rule, some of which
are similar in principle to those presented in [40] (and later on) such as canonicalisation
of terms related by owl:sameAs. They demonstrate their methods over three datasets;
(i) 1.51 billion triples of UniProt data, generating 2.03 billion inferences in 6.1 h using
32 machines; (ii) 0.9 billion triples of LDSR data, generating 0.94 billion inferences in
3.52 h using 32 machines; (iii) 102.5 billion triples of LUBM, generating 47.6 billion
inferences in 45.7 h using 64 machines. The latter experiment is two orders of mag-
nitude above our current experiments, and features rules which require A-Box joins;
however, the authors do not look at open Web data, stating that:

“[...] reasoning over arbitrary triples retrieved from the Web would result in
useless and unrealistic derivations.”

—[88]

They do, however, mention the possibility of including our authoritative reasoning al-
gorithm in their approach, in order to prevent such adverse affects.

In very recent work, [54] have presented an (Oracle) RDBMS-based OWL 2 RL/RDF
materialisation approach. They again use some similar optimisations to the scalable
reasoning literature, including parallelisation, canonicalisation of owl:sameAs infer-
ences, and also partial evaluation of rules based on highly selective patterns—from dis-
cussion in the paper, these selective patterns seem to correlate with the terminological
patterns of the rule. They also discuss many low-level engineering optimisations and Or-
acle tweaks to boost performance. Unlike the approaches mentioned thus far, [54] tackle
the issue of updates, proposing variants of semi-naı̈ve evaluation to avoid rederiva-
tions. The authors evaluate their work for a number of different datasets and hardware

298 A. Hogan et al.

configurations; the largest scale experiment they present consists of applying OWL 2
RL/RDF materialisation over 13 billion triples of LUBM using 8 nodes (Intel Xeon
2.53 GHz CPU, 72GB memory each) in just under 2 hours.

Web Reasoning. As previously mentioned, [89] discuss reasoning over 850m Linked
Data triples—however, they only do so over RDFS and do not consider any issues
relating to provenance.

Kiryakov et al. [52] apply reasoning over 0.9 billion Linked Data triples using the
aforementioned BigOWLIM reasoner; however, this dataset is manually selected as a
merge of a number of smaller, known datasets as opposed to an arbitrary corpus—they
do not consider any general notions of provenance or Web tolerance. (Again, Urbani et
al. [88] also apply reasoning over the LDSR dataset.)

Related to the idea of authoritative reasoning is the notion of “conservative exten-
sions” described in the Description Logics literature (see, e.g., [23,59,48]). However,
the notion of a “conservative extension” was defined with a slightly different objective
in mind: according to the notion of deductively conservative extensions, a dataset Ga

is only considered malicious towards Gb if it causes additional inferences with respect
to the intersection of the signature—loosely, the set of classes and properties defined in
the dataset’s namespace—of the original Gb with the newly inferred statements. Thus,
for example, defining ex:moniker as a super-property of foaf:name outside of
the FOAF spec would be “disallowed” by our authoritative reasoning: however, this
would still be a conservative extension since no new inferences using FOAF terms can
be created.

Work presented by [16] use a notion of an authoritative description which aligns
very much with our notion of authority. They use their notion of authority to do reason-
ing over class hierarchies, but only include custom support of rdfs:subClassOf
and owl:equivalentClass, as opposed to our general framework for authorita-
tive reasoning over arbitrary T-split rules.

A viable alternative approach—which looks more generally at provenance for Web
reasoning—is that of “quarantined reasoning”, described by Delbru et al.[20] and em-
ployed by Sindice [69]. The core intuition is to consider applying reasoning on a per-
document basis, taking each Web document and its recursive (implicit and explicit)
imports and applying reasoning over the union of these documents. The reasoned cor-
pus is then generated as the merge of these per-document closures. Their evaluation
was performed in parallel using three machines (quad-core 2.33GHz CPU with 8GB
memory each); they reported loading, on average, 40 documents per second.

3.8 Critical Discussion and Future Directions

Herein, we have demonstrated that materialisation with respect to a carefully selected—
but still inclusive—subset of OWL 2 RL/RDF rules is currently feasible over large cor-
pora (in the order of a billion triples) of arbitrary RDF data collected from the Web;
in order to avoid creating a massive bulk of inferences and to protect popular vocab-
ularies from third-party interference, we include analyses of the source of termino-
logical data into our reasoning, conservatively ignoring third-party contributions and
only considering first-party definitions and alignments. Referring back to our motivat-
ing foaf:page example in the introduction, we can now get the same answers for the

Scalable OWL 2 Reasoning for Linked Data 299

simple query if posed over the union of the input and inferred data as for the extended
query posed over only the input data.

We do however identify some shortcomings of our approach. Firstly, the scalability
of our approach is predicated on the assumption that the terminological fragment of the
corpus remain relatively small and simple—as we have seen in § 3.6, this holds true
for our current Linked Data corpus. The further from this assumption we get, the closer
we get to quadratic (and possibly cubic) materialisation on a terminological level, and
a high τ “multiplier” for the assertional program. Thus, the future feasibility of our
approach for the Web (in its current form) depends on the assumption that assertional
data dwarves terminological data. We note that almost all highly-scalable approaches in
the literature currently rely on a similar premise to some extent, especially for partial-
evaluation and distribution strategies.

Secondly, we adopt a very conservative authoritative approach to reasoning which
may miss some interesting inferences given by independently published mappings: al-
though we still allow one vocabulary to map its local terms to those of an external
vocabulary, we thus depend on each vocabulary to provide all useful mappings in the
dereferenced document. In future work, it would be worthwhile to investigate identi-
fying “trusted” third-party mappings in the wild, perhaps based on links-analysis or
observed adoption.

Thirdly, thus far we have not considered rules with more than one A-atom—rules
which could, of course, lead to useful inferences for our query-answering use-case.
Many such rules—for example supporting property-chains, transitivity or equality—
can naı̈vely lead to quadratic inferencing with respect to many reasonable corpora of
assertional data. As previously discussed, a backward-chaining or hybrid approach may
often make more sense in cases where materialisation produces too many inferences;
in fact, we discuss such an approach for equality reasoning in [39]. Note however that
not all multiple A-atom rules can produce quadratic inferencing with respect to asser-
tional data: some rules (such as cls-int1, cls-svf1) are what we call A-guarded, whereby
(loosely) the head of the rule contains only one variable not ground by partial evalua-
tion with respect to the terminology, and thus we posit that such rules also abide by our
maximum least-model size for A-linear programs (these are highlighted in Table 20).
Despite this, such rules would not fit neatly into our distribution framework (would
not be conveniently partitionable), where assertional data must then be coordinated be-
tween machines to ensure correct computation of joins (such as in [88]); similarly, some
variable portion of assertional data must also be indexed to compute these joins.

Finally, despite our authoritative analysis, reasoning may still introduce significant
noise and produce unwanted or unintended consequences; in particular, publishers of
assertional data are sometimes unaware of the precise semantics of the vocabulary terms
they use. An interesting avenue to explore would be non-standard reasoning approaches
(e.g., using statistical models or inductive reasoning) as an alternative or complement
to the standard approaches presented herein. (Please see [80] in these proceedings for
discussion on combining probabalistic and logical reasoning for Web data; see [11]
in these proceedings for an introduction to scalable non-standard reasoning for the
Semantic Web; also, see [31] in these proceedings for discussion on building models
for the Web of Data).

300 A. Hogan et al.

Along similar lines, in [39], we looked at a use-case for annotated reasoning whereby
we rank triples in the input data (based on a PageRank analysis of the sources of data)
and propagate these ranks to inferences through the annotated reasoning framework.
Thereafter, we perform a granular repair of inconsistencies, with the core approach
being to removing the weakest triple causing the underlying inconsistency. We refer the
interested reader to [39] for more detail.

4 Scalable Approximative OWL 2 DL Reasoning

Ontologies have been so phenomenally successful, as a machine-understandable com-
pilation of human knowledge, that OWL2 (the second version of OWL) is recently
standardised by W3C. As more and more large ontologies become available [70], there
is a pressing need for efficient and robust reasoning services. Such reasoning services
will help us gain insight of the semantic relations among vocabularis of ontologies and
facilitate further processings such as the materialisation that we introduced in § 3.1.

Expressive Description Logics (DLs) [5] have high worst case computational com-
plexity. For example, TBox (terminological box) reasoning in the DL SROIQ [44],
the adjacent logic of OWL2-DL, is N2EXPTIME-complete [50]. Mainstream reasoners
for expressive DLs provide reasoning services, such as classification (computing sub-
sumption relations among all the named concepts), based on tableau [45] and hyper-
tableau [65] algorithms. Such model constructing algorithms classify an ontology, in
general, by iterating all necessary pairs of concepts, and trying to construct a model of
the ontology that violates the subsumption relation between them [51]. On the other
hand, light-weight DLs can have very efficient reasoning algorithms. For example,
TBox reasoning in EL++ [3], the logic underpinning of an OWL2 tractable profile
OWL2-EL, is PTIME-complete. However, they only provide limited expressive power.

This brings a new challenge: can users use OWL2-DL to build their ontologies and
still enjoy the efficient reasoning as in tractable profiles? For example, the Foundational
Model of Anatomy ontology (FMA) , which is built inALCOIF , beyond any tractable
DLs, can hardly be classified by any mainstream DL reasoners [66]. Given the current
efforts of ontology construction, it might not take long before many other FMA-like (or
even larger and more complicated) ontologies appear and go beyond the capability of
existing DL reasoners.

Approximation [81,28,38,92,72] has been identified as a potential way to reduce the
complexity of ontology reasoning. However, many of these approximation approaches
still rely on the reasoners of the more expressive DLs. For example, [28] replaces cer-
tain parts of a concept expression with� or⊥ to obtain a simpler expression that can be
classified more easily with a tableau reasoner. [72] requires the use of reasoners of the
more expressive DLs to pre-compute the entailments to achieve efficient online perfor-
mance. Furthermore, most of the above approaches are on ABox reasoning and query
answering. To the best of our knowledge, the only approach on TBox reasoning is [28],
which presents an overview of approximation approaches (including language weaken-
ing, knowledge compilation and approximate deduction), as well as investigating and
reporting negative results of the approximate deduction approach – a problematic side
effect of using their approximate deduction approach is that the collapsing of concept
expressions leading to many unnecessary approximation steps.

Scalable OWL 2 Reasoning for Linked Data 301

In this section, we propose to combine the idea of language weakening and approx-
imate deduction [28] into soundness preserving approximation for ontology TBox rea-
soning.

1. After an informative discussion of the technical challenges (§ 4.1), we propose a
syntactic language weakening approach (§ 4.3, § 4.4 and § 4.5) to approximating
an arbitrary SROIQ TBox with a corresponding EL++ TBox and additional data
structures maintaining the complementary information and cardinality information.
It is shown that the proposed approximation is in linear time (Lemma 1, 2 and 3).

2. We present soundness-guaranteed approximate deduction rules to classify the ap-
proximated TBox (§ 4.4 and § 4.5). In contrast to the twisted trade-off between
tractability and expressiveness, our approach compromises the completeness of
reasoning to yield large portion of logical consequences in polynomial time while
imposing no restrictions on expressivity of the language used in source ontologies
and preserve correctness of results (§ 4.6).

3. We present our implementation and preliminary evaluations (§ 4.7). Evaluation
against a set of real world ontologies [70] suggested that, a naive implementation of
our approach can (i) outperform existing OWL2-DL reasoners such as Pellet and
FaCT++, and (ii) provide rather complete results with high recall (over 95% for
EL++

C and over 99% for EL++
CQ , where EL++

C and EL++
CQ are two more and more

fine-grained approximation).

Proofs of all propositions, lemmas and theorems can be found in tech report available
at http://www.box.net/shared/nm913g22ie.

4.1 Technical Motivations

In order to motivate our investigation on syntactic approximation of SROIQ ontolo-
gies to EL++ ontologies, this section first briefly introduces SROIQ and EL++ and
then illustrates the technical challenges in their TBox reasoning and approximation.

In SROIQ, concept C, D can be inductively composed with the following con-
structs:

� | ⊥ | A | C �D | ∃R.C | {a} | ¬C | ≥ nR.C | ∃R.Self

where � is the top concept, ⊥ the bottom concept, A atomic concept, n an integer
number, a an individual, ∃R.Self the self-restriction and R a role that can be either an
atomic role r or the inverse of another role (R−). Conventionally, C �D, ∀R.C and ≤
nR.C are used to abbreviate¬(¬C�¬D),¬∃R.¬C and¬ ≥ (n+1)R.C, respectively.
{a1, a2, . . . , an} can be regarded as abbreviation of {a1}� {a2}� · · · � {an}. Without
loss of generality, in what follows, we assume all the concepts to be in their negation
normal forms (NNF)32 and use ~C to denote the NNF of ¬C. We also call�,⊥, A, {a}
basic concepts because they are not composed by other concepts or roles. Given a TBox
T , we use CNT (RNT) to denote the set of basic concepts (atomic roles) in T . The EL
family is dedicated for large TBox reasoning and has been widely applied in some
largest ontologies, e.g. SNOMED [78]. EL++ supports

32 An SROIQ concept is in NNF iff negation is applied only to atomic concepts, nominals or
Self-restriction. NNF of a given concept can be computed in linear time[43].

http://www.box.net/shared/nm913g22ie

302 A. Hogan et al.

� | ⊥ | A | C �D | ∃r.C | {a}.

Both SROIQ and EL++ support concept inclusions (CIs, e.g. C � D) and role
inclusions (RIs, e.g. r � s, r1 ◦ · · · ◦ rn � s). SROIQ supports also other axioms
such asymmetric of roles. If C � D and D � C, we write C ≡ D. If C is non-
atomic, C � D is a general concept inclusion (GCI). For more details about syntax and
semantics of DLs, we refer the readers to [76] in these proceedings and [5].

A TBox is a set of concept and role axioms. TBox reasoning services include con-
cept subsumption checking, concept satisfiability checking (to check if a given concept
is instantiatable) and classification (to compute the concept hierarchy). For example,
given the following TBox T1 (in ALC), we can infer Koala � Herbivore.

Example 9. An example TBox T1.

– α1 : Koala � ∀eat.(∃partof.Eucalypt)
– α2 : Eucalypt � Plant
– α3 : Plant � ∃partof.P lant � V egeFood
– α4 : ∀eat.V egeFood � Herbivore

The tableau algorithm [45] constructs a tableau (as a witness of a model of the TBox
T1) as a graph in which each node x represents an individual and is labelled with
a set of concepts it must satisfy, each edge 〈x, y〉 represents a pair of individuals
satisfying a role that labels the edge. Subsumption checking C � D can be reduced
to unsatisfiability checking C � ¬D � ⊥. To test this, a tableau is initialised with a
single node labelled with C � ¬D, and is then expanded by repeatedly applying the
completion rules [45].

One of the major difficulties for tableau algorithms is the high degree of non-
determinism introduced by GCIs. For each GCI C � D in the ontology, the algo-
rithm generates a meta-constraint ¬C �D for each node of the tableau. The algorithm
first extends a node with ¬C. If it finds a clash, it backtracks and extends the node with
D. If there are n GCIs, this expands to 2n combinations for each node of the tableau.
This significantly enlarges the search space.

Some techniques have been developed to deal with GCIs. Absorption [86] can re-
duce, e.g. a GCI A�C � D, where A is a named concept, into non-GCI A � ¬C �D;
however, it is only applicable for GCIs whose LHS is a conjunction with a named
concept as conjunct or whose RHS is a negated named concept or a disjunction with
a negated named concept as disjunct. (Extended) Role Absorption [85, Sec.4.1] can
absorb GCIs of form ∃r.C � D (C � ∀r.D) into domain (range) constrains. For ex-
ample α3 can be decomposed into ∃partof.P lant � V egeFood and thus absorbed as
Domain(partof, V egeFood � ¬∃partof.P lant). But its applicability is still limited
and it still contains a disjunction in the domain. Binary Absorption [47] tries to rewrite
GCIs into form A1 � A2 � C where A1 and A2 are named concepts. To sum up, the
above absorptions can only be applied to a limited patterns of GCIs; e.g., α4 can not be
dealt with by any absorption optimisation.

Scalable OWL 2 Reasoning for Linked Data 303

Table 7. EL++ completion rules (no datatypes)

R1
If A ∈ S(X), A � B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R2
If A1, A2, . . . , An ∈ S(X),
A1 	 A2 	 · · · 	 An � B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R3
If A ∈ S(X), A � ∃r.B ∈ T and (X, B) /∈ R(r)
then R(r) := R(r) ∪ {(X, B)}

R4
If (X, A) ∈ R(r) A′ ∈ S(A), ∃r.A′ � B ∈ T
and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R5
If (X, A) ∈ R(r), ⊥ ∈ S(A) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R6
If {a} ∈ S(X) ∩ S(A), X �R A and S(A) �⊆ S(X)
then S(X) := S(X) ∪ S(A)

R7
If (X, A) ∈ R(r), r � s ∈ T and (X, A) �∈ R(s)
then R(s) := R(s) ∪ {(X, A)}

R8
If (X, A) ∈ R(r1), (A, B) ∈ R(r2), r1 ◦ r2 � r3 ∈ T ,
and (X, B) �∈ R(r3)
then R(r3) := R(r3) ∪ {(X, B)}

Reasoning with EL++ is more efficient. [3] presents a set of completion rules
(Table 7) 33 to compute, given a normalised EL++ TBox T , for each A ∈ CNT , a
subsumer set S(A) ⊆ CNT ∪ {⊥} in which for each B ∈ S(A), T |= A � B, and for
each r ∈ RNT , a relation set R(r) ⊆ CNT × CNT in which for each (A, B) ∈ R(r),
T |= A � ∃r.B.

Reasoning with rules R1-R8 is tractable. However, these rules can not handle T1

because the ontology is in a language beyond the EL++.
Groot et al. [28] attempt to speed up concept unsatisfiability checking via approxi-

mation. Given a concept C, it constructs a sequence of C�
i such that C � · · · � C�

1 �
C�

0 , and a sequence of C⊥
i such that C⊥

0 � C⊥
1 � . . . C by replacing all existential

restrictions (∃R.D) after i universal quantifiers (∀) inside C with � and⊥ respectively.
Then C is unsatisfiable (satisfiable) if some C�

i (C⊥
i) is unsatisfiable (satisfiable). In

case C�
i (C⊥

i) is usually simpler than C, its (un)satisfiability checking should also be
easier. For example, a concept C ≡ ¬Herbivore�∀eat.(V egeFood�∃partof.P lant)
can be approximated to C�

1 ≡ ¬Herbivore�∀eat.(V egeFood��) ≡ ¬Herbivore�
∀eat.V egeFood, which is unsatisfiable in T1. Thus C is unsatisfiable. However, this
approach has several limitations when applied to TBox reasoning:

1. It only approximates the tested concept, but not the ontology, thus the unsatisfia-
bility checking still requires reasoners for the original language of the ontology. In
other words, it does not reduce the complexity of reasoning.

2. Similar to the Tableau algorithms, to classify an ontology, one has to reduce concept
subsumption C � D to unsatisfiability of C �¬D for each necessary pair of C, D.

33 In R6 X �R A iff there exists C1, . . . , Ck ∈ CNT s.t. C1 = X or C1 = {b}, (Cj , Cj+1) ∈
R(rj) for some rj ∈ RNT (1 ≤ j ≤ k) and Ck = A.

304 A. Hogan et al.

3. When the test concept subsumption contains no existential restriction, such as
Koala � Herbivore, this approach can not help. Hence, it does not help for clas-
sification (subsumption checking among named concepts).

Due to the above reasons, this approximation technology is not suitable for TBox Rea-
soning, especially computing the atomic concept hierarchies.

To sum up, tableau algorithms have difficulties to handle complex structured axioms;
tractable DL algorithms can not support more expressive languages; while traditional
approximation approach lacks usability in TBox reasoning. In what follows, we present
our approach which is motivated and inspired by these works, and show that it over-
comes these difficulties with evaluations.

4.2 Approach Overview and Preliminary

Different from Groot et al.’s approximation approach, we approximate both the ontol-
ogy and the tested concept (if needed) by replacing concept sub-expressions (role ex-
pressions) that are not in the target DL, e.g. EL++, with atomic concepts (atomic roles)
and rewrite axioms accordingly (§ 4.3). Then, additional data structures and comple-
tion rules (§ 4.4 and § 4.5) are used to maintain and restore some semantic relations
among basic concepts, respectively. We show that all these approachs are tractable and
soundness-guaranteed (§ 4.6).

In approximation, we only consider concepts corresponding to the particular TBox
in question. We use the notion term to refer to these “interesting” concept expressions.
More precisely, a term is:

1. a concept expression on the LHS or RHS of any CI, or
2. the singleton of any individual in the ontology, or
3. the syntactic sub-expression of a term, or
4. the complement of a term.

In order to represent all these terms and role expressions that will be used in EL++

reasoning, we first assign names to them.

Definition 15. (Name Assignment) Given S a set of concept expressions, E a set
of role expressions, a name assignment fn is a function as for each C ∈ S (R ∈
E), fn(C) = C (fn(R) = R) if C is a basic concept (R is atomic), otherwise
fn(C) (fn(R)) is a fresh name.

As an example, name assignments of some terms in Example 9 are illustrated in
Table 8.

From § 4.1 we can see that there is an expressivity gap between SROIQ and EL++,
especially in concept constructs. In the rest of this section, we present 3 stages of ap-
proximation to (partially) bridge this gap.

4.3 EL++ Approximation

A naive EL++ approximation is to approximate an arbitrary TBox into an EL++ TBox.

Scalable OWL 2 Reasoning for Linked Data 305

Table 8. Name Assignment

Term Name

∀eat.∃partof.Eucalypt C1

∃eat.∀partof.¬Eucalypt nC1

∀partof.¬Eucalypt C2

∃partof.Eucalypt nC2

P lant � ∃partof.P lant C3

¬P lant 	 ∀partof.¬P lant nC3

∀partof.¬P lant C4

∃partof.P lant nC4

∀eat.V egeFood C5

∃eat.¬V egeFood nC5

¬P lant nP lant
¬V egeFood nV egeFood

Definition 16. (EL++ Transformation) Given a TBox T and a name assignment fn,
its EL++ transformation Afn,EL++(T) is a set of axiom T constructed as follows:

1. T is initialised as ∅.
2. for each C � D (C ≡ D) in T , T = T ∪{fn(C) � fn(D)} (T = T ∪{fn(C) ≡

fn(D)}).
3. for each EL++ role axiom β ∈ T , add β[R/fn(R)] into T .
4. for each term C in T ,

(a) if C is the form C1�· · ·�Cn, then T = T∪{fn(C) ≡ fn(C1)�· · ·�fn(Cn)},
(b) if C is the form ∃R.D, then T = T ∪ {fn(C) ≡ ∃fn(R).fn(D)},
(c) otherwise T = T ∪ {fn(C) � �}.

In the above definition, Step 2 rewrites all the concept axioms; Step 3 rewrites all the
EL++ role axioms; Step 4 rewrites all the EL++ terms. We call this procedure an EL++

approximation.

Lemma 1. For a TBox T and a name assignment fn, let Afn,EL++(T) = T . Then
T is an EL++ TBox and |T | ≤ nT + |T | where nT is the number of terms in T and
|T | (|T |) is the number of axioms in T (T) .

According to Table 8, we can transform the TBox T1 into TKoala as follows:

Example 10. TKoala contains axioms generated by Step 2 and 4, the most important
ones include:

– α1→Koala � C1, nC1 ≡ ∃eat.C2, nC2 ≡ ∃partof.Eucalypt;
– α2 is preserved;
– α3→C3 � V egeFood, nC3 ≡ nP lant � C4, nC4 ≡ ∃partof.P lant;
– α4→C5 � Herbivore, nC5 ≡ ∃eat.nV egeFood.

306 A. Hogan et al.

4.4 Complement-Enriched EL++
C Approximation

In Example 10, reasoning can be performed directly with the completion rules R1-R8
presented in Table 7. However, TKoala �|= Koala � Herbivore because the relations
between a term and its complement, e.g. C1 and nC1, can not be directly represented
in EL++. To solve this problem, we maintain such relations in a separate complement
table (CT), and apply additional completion rules in reasoning.

Approximate Complement. We first extend the naive EL++ approximation with a
complement table (CT).

Definition 17. (EL++
C Transformation) Given a TBox T and a name assignment fn,

its complement-enriched EL++
C transformation Afn,EL++

C
(T) is a pair (T, CT) con-

structed as follows:

1. T = Afn,EL++(T) (Ref. Def. 16).
2. CT is initialised as ∅.
3. for each term C in T , CT = CT ∪ {(fn(C), fn(~C))}.

We call this procedure an EL++
C approximation. The following proposition shows the

structure of the approximation results:

Proposition 4. (EL++
C Approximation) For a TBox T , let Afn,EL++

C
(T) = (T, CT),

we have:

1. T is an EL++ TBox
2. for each A ∈ CNT , there exists (A, B) ∈ CT
3. if (A, B) ∈ CT then A, B ∈ CNT and (B, A) ∈ CT

This indicates that, by Def.17, a TBox can be syntactically transformed into an EL++

TBox with a table maintaining complementary relations for all names in the EL++

TBox.

Example 11. The EL++
C approximation of T1 in Example 9 is (TKoala, CTKoala),

where TKoala is the same as in Example 10, and CTKoala contains pairs such as
(C1, nC1), (C2, nC2), (C3, nC3), (C4, nC4), (C5, nC5), (Plant, nP lant), (V egeFood,
nV egeFood), etc.

Lemma 2. For any TBox T and (T, CT) its EL++
C approximation, if T contains nT

terms, then |T | ≤ nT + |T | and |CT | = nT , where |T |(|T |) is the number of axioms
in T (T) and |CT | is the number of pairs in CT .

Completion Rules for Complement. Given an EL++
C transformation (T, CT), we

normalise axioms of form C � D1 � · · · � Dn into C � D1, . . . , C � Dn, and
recursively normalise role chain r1◦· · ·◦rn � s with n > 2 into r1◦· · ·◦rn−1 � u and
u � s. This procedure can be done in linear time. In the following, we assume T to be
always normalised. For convenience, we use a complement function fc : CNT "→ CNT

as: for each A ∈ CNT , fc(A) = B such that (A, B) ∈ CT .

Scalable OWL 2 Reasoning for Linked Data 307

Table 9. Complement completion rules

R9
If A, B ∈ S(X), A = fc(B) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R10
If A ∈ S(B) and fc(B) /∈ S(fc(A))
then S(fc(A)) := S(fc(A)) ∪ {fc(B)}

R11
If A1 	 · · · 	 Ai 	 · · · 	 An � ⊥, A1, . . . , Ai−1,
Ai+1, . . . , An ∈ S(X) and fc(Ai) /∈ S(X)
then S(X) := S(X) ∪ {fc(Ai)}

To utilise the complementary relations in CT , we propose additional completion
rules (Table 9) to EL++.

R9 realises axiom A�~A � ⊥. R10 asserts the reverse subsumption between con-
cepts to supplement the absence of negation, i.e. A � B →~A �~B. R11 builds up
the relations between conjuncts of a conjunction, e.g. A �B � ⊥ implies A �~B.

Now we can infer Koala � Herbivore (Example 11) as follows:

– α2→nC2 � nC4→R10C4 � C2→nC3 � C2

– C3 � V egeFood→R10nV egeFood � nC3

– nV egeFood � nC3, nC3 � C2→nV egeFood � C2→nC5 � nC1→R10C1 �
C5→Koala � Herbivore

where the inferences with→R10 are enabled by R10.

4.5 Cardinality-Enriched EL++
CQ Approximation

In Def.17 we presented an extension of the naive approximation which approximates
non-EL+ concept expressions, particularly concepts constructed by ¬, � and ∀, by the
definition of their complements. With the completion rules in Tab.9, more entablements
can be computed.

It is a natural question to ask, is that possible to approximate even more non-EL++

construct, e.g. cardinality, into EL++? In this subsection, we further extend the EL++
C

transformation to yield more complete reasoning results for ontology containing cardi-
nalities.

Approximating Cardinality. In EL++
C approximation, a concept constructed by ≥ or

≤ can only be represented as a fresh name. In this way, subsumption X � ⊥ can not
be entailed in T4 in the following Example 12.

Example 12. T4 = {X �≥ 4r.A, X �≤ 2s.B, A � B, r � s}.
X � ⊥ should be entailed.

This subsumption requires to maintain the relations between the filler concepts (e.g. A
and B), the role (r) and the cardinality values (e.g 4 and 2). We maintain such relations
in a (cardinality table) (QT) whose elements are tuples (A, r, n), where A is a basic
concept denoting a filler name, r is the atomic role denoting the role name and n is the
cardinality value.

308 A. Hogan et al.

Definition 18. (Cardinality-enriched EL++
CQ Transformation) Given a TBox T , a name

assignment fn, let Afn,EL++
C

(T) = (T ′, CT ′), its cardinality-enriched EL++
CQ trans-

formation Afn,EL++
CQ

(T) is a tuple (T, CT, QT) constructed as follows:

1. T is initialised as T ′.
2. CT = CT ′.
3. QT is initialised as ∅.
4. for each term C that is the form ≥ nR.D in T ,

(a) if n = 0, T = T ∪ {� � fn(C)}
(b) if n = 1, T = T ∪ {fn(C) ≡ ∃fn(R).fn(D)}
(c) otherwise, T = T ∪ {fn(C) ≡ fn(D)fn(R),n}, and QT = QT ∪ {(fn(C),

fn(R), n)}.
5. for each pair of names A and r, if there exist (A, r, i1), (A, r, i2), . . . , (A, r, in) ∈

QT with i1 < i2 < · · · < in, T = T∪{Ar,in � Ar,in−1 , . . . , Ar,i2 � Ar,i1 , Ar,i1 �
∃r.A}

In step 4, fn(D)fn(R),n is a fresh name. For example, nV egeFoodeat,3 for ≥ 3eat.¬
V egeFood. Obviously, this is unique for a given tuple of D, R and n. Similarly, ≤
nR.D will be approximated via the approximation of its complement ≥ (n + 1)R.D.
In step 5, for each pair of name assignment A, r in T , a subsumption chain is added
into T because≥ inr.A � · · · �≥ i2r.A �≥ i1r.A � ∃r.A.

We call this procedure an EL++
CQ approximation. The following proposition shows

the structure of the results:

Proposition 5. (EL++
CQ Approximation)

For a TBox T , a name assignment fn, let Afn,EL++
CQ

(T) = (T, CT, QT), we have T

an EL++ TBox.

This indicates that, by Def.18 a TBox can be syntactically transformed into a tuple of
an EL++ TBox, a complement table and a cardinality table.

Now, in Example 12, T4 can be approximated into T4 ⊇ {X,� Y1, Y1 ≡ Ar,4, X �
Y2, nY2 ≡ Bs,3, A � B, r � s} with fn(≥ 4r.A) = Y1, fn(≤ 2s.B) = Y2 and
fn(≥ 3s.B) = nY2, CT4 ⊇ {(Y1, nY1), (Y2, nY2)}, QT4 ⊇ {(A, r, 4), (B, s, 3)}.

Lemma 3. For any TBox T , let (T, CT, QT) its EL++
CQ transformation, if T contains

nT terms, then |CNT | ≤ 2 × nT , |T | ≤ 3 × nT + |T |, |CT | = nT and |QT | ≤ nT ,
where CNT is the number of basic concepts in T , |T |(|T |) the number of axioms in
T (T), |CT | the number of pairs in CT and |QT | the number of tuples in QT .

Completion rules. We further extend Tab.9 with Table 10.
R12, in which r �∗ s if r = s or r � s ∈ T , realises inference A � B, R � S, i ≥

j →≥ iR.A �≥ jS.B. R13 is the extension of R4 and R14-16 are extensions of R8.
Now we can entail X � ⊥ in Example 12 as follows:

1. A � B, r � s→R12A
r,4 � Bs,3,

2. Ar,4 � Bs,3, X � Y1, Y1 ≡ Ar,4, nY2 ≡ Bs,3→X � nY2

3. X � nY2, X � Y2, (Y2, nY2) ∈ CT→R9X � ⊥

Scalable OWL 2 Reasoning for Linked Data 309

Table 10. Cardinality completion rule

R12
If B ∈ S(A), (A, r, i), (B, s, j) ∈ QT , r �∗ s,
i ≥ j and Bj �∈ S(Ai)
then S(Ar,i) := S(Ar,i) ∪ {Bs,j}

R13
If Ar,i ∈ S(X), A′ ∈ S(A), ∃r.A′ � B ∈ T
and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R14
If Ar1,i ∈ S(X), (A, B) ∈ R(r2), r1 ◦ r2 � r3 ∈ T ,
and (X, B) �∈ R(r3)
then R(r3) := R(r3) ∪ {(X, B)}

R15
If (X, A) ∈ R(r1), Br2,i ∈ S(A), r1 ◦ r2 � r3 ∈ T ,
and (X, B) �∈ R(r3)
then R(r3) := R(r3) ∪ {(X, B)}

R16
If Ar1,i ∈ S(X), Br2,j ∈ S(A), r1 ◦ r2 � r3 ∈ T ,
and (X, B) �∈ R(r3)
then R(r3) := R(r3) ∪ {(X, B)}

4.6 Reasoning Properties

In this subsection, we analyze the reasoning complexity of our approximation and rea-
soning approach.

Theorem 5. (Complexity) For any EL++
CQ transformation (T, CT, QT) (T normalised),

TBox reasoning by completion rules R1-R16 will terminate in polynomial time w.r.t.
|CNT |+|RNT |.

Similarly, reasoning on the EL++ and EL++
C approximations are also tractable.

Note that, from lemma 1, 2 and 3, the approximation is always linear. To sum up, the
approximation-reasoning approach is tractable.

With the approximation and corresponding rules, we can compute concept subsump-
tion in an SROIQ TBox. The quality of the approximate reasoning is described by the
following theorem:

Theorem 6. (Concept Subsumption Checking) Given a TBox T , its vocabulary VT
and Afn,EL++

CQ
= (T, CT, QT), for any two concepts C and D constructed from VT ,

if Afn,EL++
CQ

({C � �, D � �}) = (T ′, CT ′, QT ′), then T |= C � D if fn(D) ∈
S(fn(C)) can be computed by rules R1-R16 on (T ∪ T ′, CT ∪ CT ′, QT ∪QT ′).

The theorem indicates that our EL++
CQ approximate reasoning approach is soundness-

preserving. This conclusion holds similarly on EL++ and EL++
C approximate reason-

ing.
Particularly, when C, D are terms in T , T |= C � D if fn(D) ∈ S(fn(C)) can be

derived from (T, CT, QT).
As in classical reasoning, unsatisfiability checking of a concept C can be reduced

to entailment checking of C � ⊥; ontology inconsistency checking can be reduced to
entailment checking of � � ⊥ or {a} � ⊥. By applying ABox internaliation, ABox
reasoning can be reduced to TBox reasoning, e.g. a : A if A ∈ S({a}) can be computed.

310 A. Hogan et al.

For more optimised approach on ABox reasoning with syntactic approximation, we
refer readers to [75].

More extension patterns can be exploit to improve the completeness of the approxi-
mate reasoning while keep it tractable. Our framework is flexible and extendible.

Our extra completion rules process each axiom and term in T individually. This helps
keeping the reasoning tractable but some information can be lost:

Example 13. T5 = {A � ¬B � C, A �B � C, D � ∃r.�, ∃r.C � E, ∃r.¬A � E}

Obviously, we have T5 |= A � C and thus D � E.
We approximate T5 into ({X1 ≡ A � nB, X1 � C, X2 ≡ A � B, X2 � C, X3 ≡

∃r.nA, X3 � E, . . . }, {(B, nB), . . . }). Our approach will reach B � A � C and
nB�A � C. Because B and nB are not subsumers of A thus we can’t infer C ∈ S(A).
Even if we can compute it, in order to further infer D � F . A new axiom ∃r.(C�¬A) ≡
∃r.C � ∃r.¬A has to be added into T and approximated for incremental reasoning.

Although we do not guarantee completeness, we will see in next section it has high
recall for many test ontologies.

4.7 Evaluation

We implemented 3 versions of our approach, namely the EL++, EL++
C , EL++

CQ approx-
imation and reasoning systems, in the TrOWL tractable reasoning infrastructure 34. To
evaluate their performance in practice, we compared with mainstream reasoners Pellet
2.0.0, FaCT++ 1.3.0.1 and HermiT 1.1. All experiments were conducted in an envi-
ronment of Windows XP SP3 with 2.66 GHz CPU and 1G RAM allocated to JVM
1.6.0.07.

Following [66], we examined the most difficult ontologies in the HermiT bench-
mark [70]. To focus on TBox reasoning, we removed the ABox axioms with care35

from these ontologies. Most of the remaining TBoxes can be classified easily by all
the reasoners and completely by our EL++

C system. We evaluate the hard ones, results
shown in Table 11 and 12. We mainly conducted the evaluations on EL++

C system. To
show the effects of complement-enriched approximate reasoning, we present also the
EL++ recall. For those TBoxes that the EL++

C provides incomplete classification, we
further classified them with the EL++

CQ system.
Each reasoner was given 10 min to classify each ontology. We queried for sub-

sumption relations between named concepts (including owl:Thing and owl:Nothing)
and counted the numbers. Recall of our systems is computed against others to measure
the completeness. Thus the time shown in our evaluation includes classification time,
subsumption retrieval and counting time. Time unit is second.

Results illustrated in Table 12 show that with extension of the approximation, higher
and higher recall can be achieved. EL++ is naive and quite incomplete on some on-
tologies. EL++

C approximation can significantly improve the recall on some ontologies
(such as Cyc and Tambis Full). With further extension to EL++

C approximation, all

34 http://trowl.eu
35 ABox axioms involving individuals appearing in the TBox were internalised, e.g. a : C into
{a} � C, a �= b into {a} 	 {b} � ⊥, etc.. The others are removed.

Scalable OWL 2 Reasoning for Linked Data 311

Table 11. Results of main stream reasoners

Ontology O |O| FaCT++ HermiT Pellet

Biological Process 32289 3.656 5.343 10.063
Cellular Component 47348 5.872 8.077 16.966
GO 32289 18.563 6.047 16.39
Cyc 11727 25.531 16.853 142.889
FMA Constitutional 123564 e/o e/o e/o
Tambis Full 606 0.375 1.063 1.343
Wine 454 0.578 0.875 1.359
DLP 1216 0.219 61.948 98.024

Table 12. Results of our systems

Ontology
EL++ EL++

C EL++
CQ

recall time recall time recall

Biological Process 93.1% 1.11 100% - -
Cellular Component 91.9% 1.359 100% - -
GO 93.1% 4.203 100% - -
Cyc 1.2% 1.672 100% - -
FMA Constitutional N/A 10.062 N/A 50.89 N/A
Tambis Full 7.2% 0.11 99.3% 0.203 100%
Wine 95.8% 0.078 96.8% 0.156 99.4%
DLP 100% 0.125 100% - -

the recalls are over 99% (except FMA). Comparison with results illustrated in Table
11 shows that the efficiency of our systems is in general better than all other reason-
ers. Even the slowest EL++

CQ system is faster than all main stream reasoners. Also, our
systems are the only reasoners that can return result on the FMA ontology.

We were also interested in the scalability of our approach. Based on Table 11 we
chose 3 easiest ontologies and enlarged them by duplicating all the concept names (but
keep the role names). Duplications were distinguished by a subscript. Consequently, all
the concept axioms were duplicated. We classified these ontologies using our EL++

C
system, which has a nice balance between efficiency and completeness (Ref. Table 12).
It performed quite stable when the quantity of data increased (Table 13). Due to the
interactions between duplications through role axioms, our system even gained some
recall on Wine.

Due to the lack of OWL2-DL benchmarks, we turned to ontologies generated from
realistic use cases. In [95] an approach of using DL to model relation-based access
control (relBAC) has been presented. In this paper, a rather expressive DLALCQIBO
has been employed to encode various access control schemata. For evaluation purpose,
we generated 100 TBoxes containing the following patterns:

1. “User in U are allowed to access (with P) at most n objects in O”: U �≤ nP.O

2. “Users in U have access to at least m objects in O with P”: U �≥ nP.O

3. “User u is of user type U”: {u} � U

312 A. Hogan et al.

Table 13. Comparison on duplicated TBox

Size FaCT++ HermiT Pellet EL++
C Recall

Tambis Full
5× 9.125 37.922 24.25 0.719 99.3%
10× 40.577 292.481 205.192 1.985 99.3%
20× e/o t/o t/o 5.671 N/A
30× e/o t/o t/o 11.624 N/A

Wine
5× 13.784 56.853 86.662 0.641 97.7%
10× 33.01 t/o t/o 2.188 97.9%
20× 243.496 t/o t/o 10.077 98.0%
30× t/o t/o t/o 27.529 N/A

DLP
5× t/o e/o e/o 3.39 N/A
10× t/o e/o e/o 20.827 N/A
20× t/o e/o e/o 142.305 N/A
30× t/o e/o e/o 450.6 N/A

where U is a type of users, P a permission type, O a object type while u a individual
user. Each of these 100 ontologies contains 20 user types, 20 object types, 10 permission
types, 750 individuals and 20 access control model axioms (axioms of type 1 and 2).
Hierarchies among users types (object types) are randomly generated. The numbers in
cardinality restrictions are randomly selected. The combinations of user individual, user
type class, permission type class and object type class are also random. Obviously, these
TBoxes are in DL ALHOQ.

Different from previous evaluations, the TBoxes generated here can be inconsistent.
For example, when a particular user belongs to two types U1 and U2 with U1 �≤
mP.O1 and U2 �≥ nP.O2 where m < n and O2 � O1, inconsistency occurs. Thus,
in this evaluation, we are particularly interested in whether the inconsistency can be
detected instead of the number of subsumptions.

We classified these TBoxes using FaCT++, EL++
C and EL++

CQ systems. Each reasoner
was given 10 minutes. FaCT++ finished 98 of them, failing the other 2. EL++

C classified
all the TBoxes but failed to find any inconsistency, because it does not support cardinal-
ity at all. EL++

CQ classified all the TBoxes efficiently and reported all the inconsistencies
correctly. The average and maximal time of FaCT++ and EL++

CQ and the precisions of
the 98 ontologies are illustrated in Table 14. Time unit is second. Notice that in FaCT++,
reasoning is immediately terminated when any inconsistency is detected, which means
the reasoning time of inconsistent TBox is shorter. While our EL++

CQ continues to find
all the inconsistency. Therefore we separate the results of consistent and inconsistent
TBoxes.

The results show that, EL++
CQ system can classify all the ontologies very efficiently

and the presicion is 100%. Also, the average and maximal time is quite stable no matter
the ontology is consistent or not. While FaCT++ has difficulty in dealing with con-
sistent TBox containning many cardinality restrictions (Max. time is about 10 seconds

Scalable OWL 2 Reasoning for Linked Data 313

Table 14. Comparison on relBAC TBox

Consistency
FaCT++ EL++

CQ
Ave. Max. Ave. Max. presicion

Consistent 1.226 9,984 0.021 0.047 100%
Inconsistent 0.248 2.297 0.022 0.047 100%

and failed on two other TBoxes). For those inconsistent ones, even though FaCT++
terminates earlier, EL++

CQ system can still outperform it.

4.8 Discussion

Approximate reasoning has been an important topic for ontology (KR) and AI research.
On the one hand, expressive Description Logics (such as those underpin the standard
Semantic Web ontology languages) have high worst case computational complexity.
Hence, approximate reasoning is an attractive way to provide scalable and efficient rea-
soning services [72]. On the other hand, it has been argued that [28] while logic has
always aimed at modelling idealised forms of reasoning under idealised circumstances,
this is not what is required under the practical circumstances in knowledge-based sys-
tems. Instead, we also need to consider (i) reasoning under time-pressure, (ii) reasoning
with other limited resources besides time and (iii) reasoning that is not perfect but in-
stead good enough for given tasks under given circumstances.

In this section, we address a long-lasting open problem; i.e, effective and efficient
approximate TBox reasoning. With their negative results, Groot et al. concluded that
traditional approximation method by Cadoli and Schaerf [77] is not suited for ontology
reasoning, and that new approximate strategy are needed. In this paper, we propose to
combine the ideas of language weakening and approximate deduction to provide sound-
ness preserving TBox reasoning for expressive Description Logics. We apply our idea
to approximate OWL2-DL ontologies to EL++ ones, preliminary evaluation results
showed that our approach performs effectively and efficiently on real world ontologies.

In the approximate deduction step, instead of simplifying a model constructing al-
gorithm (such as tableau algorithm), we enrich the existing EL++ reasoning algorithm
with some deterministic completion rules (for complement and cardinality). EL++ re-
tain tractability by imposing strict syntactic restriction. However these restrictions are
not always necessary. For example, if we rewrite each axiom C � D of an EL++

ontology into ¬D � ¬C, the language appears to be ALC, but the complexity does
not essentially change. Our approximation can naturally cover these situations. As our
evaluation shows, it helps increase the recall.

This piece of work is also related to Horn SHIQ, which has an even more com-
plicated set of syntactic restrictions, which can not be satisfied by our Koala example
(more precisely, axioms α4). In [51], structure transformation is applied in a similar
manner as our approximation to facilitate reasoning. However structure transformation
still preserves the syntactic structure of the axioms, while our approximation actually
changed the structures and hence ontology such as the Koala example can be classified
with a more efficient algorithm.

314 A. Hogan et al.

5 Conclusion

In these lecture nodes, we focused on the investigation of Scalable OWL 2 Reasoning
for Linked Data. Along these lines, we briefly introduced Linked Data and its relation-
ship with ontologies and then presented two scalable approaches for OWL 2 RL and
OWL 2 DL, respectively. The first approach utilises a rule-based engine to materialise
inferences for a scalable subset of OWL 2 RL/RDF, enabling distributed processing
over a cluster of commodity hardware that is demonstrated to be feasible for a bil-
lion triples of open-domain Linked Data—the first approach is designed to handle large
amounts of assertional data. The second approach deals with much more complex ontol-
ogy languages—as such, the second approach is designed to handle expressive reason-
ing over terminological data. It approximates reasoning in OWL 2 DL into a tractable
profile OWL 2 EL and substantially reduces reasoning complexity from 2NEXPTIME-
complete to PTIME-complete. At the same time, the reasoning is soundness-guaranteed,
and demonstrated to give high recall in practice.

Although both of these two approaches are theoretically incomplete, for many appli-
cation scenarios incompleteness is not the end of the world, where it may enable many
practical advantages, in particular relating to scalability and performance. Instead of
fixating on what we might lose by not fully supporting a complete approach, we should
instead focus on the more important issue with respect to what we can gain through an
incomplete approach—especially in scenarios such as Linked Data, where messiness
and scale are major challenges.

Similar sentiments—playing down the importance of completeness for reasoning
engines operating over Web data—have been presented in the literature. Firstly, we
have Fensel et al. [21] who state that:

“The Web is open, with no defined boundaries. Therefore, completeness is a
rather strange requirement for an inference procedure in this context. Given
that collecting all relevant information on the Web is neither possible nor often
even desirable (usually, you want to read the first 10 Google hits but don’t have
the time for the remaining two million), requesting complete reasoning on top
of such already heavily incomplete facts seems meaningless.”

—[21]
Again, the emphasis here is on incremental improvements of query-answering results
through incomplete reasoning, as opposed to requiring completeness over Web data,
which is in any case published under an Open World Assumption and which is largely
incomplete with respect to its universal domain. Similar arguments for incomplete
reasoning—in scenarios such as that faced when reasoning over Linked Data—are laid
out by Hitzler and van Harmelen [37] who state:

“[...] we would advocate [viewing] the formal semantics of a system (in what-
ever form it is specified) as a “gold standard”, that need not necessarily be
obtained in a system (or even be obtainable). What is required from systems is
not a proof that they satisfy this gold standard, but rather a precise description
of the extent to which they satisfy this gold standard.”

—[37]

Scalable OWL 2 Reasoning for Linked Data 315

In [37], the authors generally discuss the benefits of using Information Retrieval in-
spired precision and recall measures (as used for our OWL 2 RL reasoning approach)
for reasoning systems, as opposed to forcing completeness on them as an immutable
requirement.

According to the evaluation results presented herein, our two incomplete approaches
can perform reasoning at a level of scale and performance which would likely not be
feasible for a complete reasoner. In general, this makes them useful compensations
for complete reasoners, and even promising alternatives in scenarios where scalability,
noise, time pressure and incomplete knowledge are pressing concerns—i.e., scenarios
such as Linked Data.

References

1. Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist: Effective Modeling
in RDFS and OWL. Morgan Kaufmann, San Francisco (2008)

2. Auer, S., Ngomo, A.-C.N., Lehmann, J.: Introduction to Linked Data. In: Polleres, A., et al.
(eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 251–327. Springer, Heidelberg (2011)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Proceedings IJCAI (2005)
4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The De-

scription Logic Handbook: Theory, Implementation and Application. Cambridge University
Press, Cambridge (2002)

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, Cambridge (2003)

6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512
(1999)

7. Beckett, D.: RDFS 3.0. In: W3C Workshop on RDF Next Steps, Stanford, Palo Alto, CA,
USA (June 2010)

8. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team Submission
(January 2008), http://www.w3.org/TeamSubmission/turtle/

9. Belnap, N.: A Useful Four-Valued Logic. Modern Uses of Multiple-Valued Logic, 5–37
(1977)

10. Berners-Lee, T.: Linked Data. W3C Design Issues (July 2006), http://www.w3.org/

DesignIssues/LinkedData.html (retrieved October 27, 2010)
11. Bernstein, A.: Scalable non-standard reasoning on the Semantic Web. In: Polleres, A., et al.

(eds.) Reasoning Web 2011. LNCS, vol. 6848, Springer, Heidelberg (2011)
12. Birbeck, M., McCarron, S.: CURIE Syntax 1.0 – A syntax for expressing Compact URIs.

W3C Recommendation (January 2009), http://www.w3.org/TR/curie/
13. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A

family of scalable semantic repositories. Semantic Web Journal (in press, 2011), http://
www.semantic-web-journal.net/sites/default/files/swj97_0.pdf

14. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web, linkeddata.
org Tutorial (July 2008), http://linkeddata.org/docs/how-to-publish

15. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia - A crystallization point for the Web of Data. J. Web Sem. 7(3), 154–165 (2009)

16. Cheng, G., Ge, W., Wu, H., Qu, Y.: Searching Semantic Web Objects Based on Class Hier-
archies. In: Proceedings of Linked Data on the Web Workshop (2008)

17. Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable Optimization Prob-
lems for Database Logic Programs (Preliminary Report). In: STOC, pp. 477–490 (1988)

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/curie/
http://www.semantic-web-journal.net/sites/default/files/swj97_0.pdf
http://www.semantic-web-journal.net/sites/default/files/swj97_0.pdf
linkeddata.org
linkeddata.org
http://linkeddata.org/docs/how-to-publish

316 A. Hogan et al.

18. de Bruijn, J., Heymans, S.: Logical foundations of (e)RDF(S): Complexity and reasoning.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 86–99. Springer, Heidelberg (2007)

19. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI, pp. 137–150 (2004)

20. Delbru, R., Polleres, A., Tummarello, G., Decker, S.: Context Dependent Reasoning for Se-
mantic Documents in Sindice. In: Proc. of 4th SSWS Workshop (2008)

21. Fensel, D., van Harmelen, F.: Unifying Reasoning and Search to Web Scale. IEEE Internet
Computing 11(2), 94–95 (2007)

22. Fielding, R.T., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P.J., Berners-Lee, T.:
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (June 1999), http://www.ietf.org/
rfc/rfc2616.txt

23. Ghilardi, S., Lutz, C., Wolter, F.: Did i damage my ontology? a case for conservative exten-
sions in description logics. In: Proceedings of the Tenth International Conference on Princi-
ples of Knowledge Representation and Reasoning, pp. 187–197 (2006)

24. Glimm, B.: Using SPARQL with RDFS and OWL entailment. In: Polleres, A., et al. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 251–327. Springer, Heidelberg (2011)

25. Golbreich, C., Wallace, E.K.: OWL 2 Web Ontology Language: New Features and Rationale.
W3C Recommendation (October 2009), http://www.w3.org/TR/owl2-new-features/

26. Grau, B.C., Horrocks, I., Parsia, B., Ruttenberg, A., Schneider, M.: OWL 2 Web Ontology
Language: Mapping to RDF Graphs. W3C Recommendation (October 2009), http://www.
w3.org/TR/owl2-mapping-to-rdf/

27. Grau, B.C., Motik, B., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language: Pro-
files. W3C Recommendation (October 2009), http://www.w3.org/TR/owl2-profiles/

28. Groot, P., Stuckenschmidt, H., Wache, H.: Approximating description logic classification
for semantic web reasoning. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 318–332. Springer, Heidelberg (2005)

29. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic
Programs with Description Logic. In: 13th International Conference on World Wide Web
(2004)

30. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Sem. 3(2-3), 158–182 (2005)

31. Gutierrez, C.: Models for the Web of Data. In: Polleres, A., et al. (eds.) Reasoning Web 2011.
LNCS, vol. 6848, pp. 251–327. Springer, Heidelberg (2011)

32. Harth, A., Kinsella, S., Decker, S.: Using Naming Authority to Rank Data and Ontologies
for Web Search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 277–292. Springer,
Heidelberg (2009)

33. Hayes, P.: RDF Semantics. W3C Recommendation (February 2004), http://www.w3.org/
TR/rdf-mt/

34. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space, 1st edn. Syn-
thesis Lectures on the Semantic Web: Theory and Technology, vol. 1. Morgan & Claypool,
San Francisco (2011), http://linkeddatabook.com/editions/1.0/

35. Hepp, M.: Product Variety, Consumer Preferences, and Web Technology: Can the Web of
Data Reduce Price Competition and Increase Customer Satisfaction? In: Di Noia, T., Bucca-
furri, F. (eds.) EC-Web 2009. LNCS, vol. 5692, pp. 144–144. Springer, Heidelberg (2009)

36. Hitzler, P.: OWL and Rules. In: Polleres, A., et al. (eds.) Reasoning Web 2011. LNCS,
vol. 6848, pp. 251–327. Springer, Heidelberg (2011)

37. Hitzler, P., van Harmelen, F.: A Reasonable Semantic Web. Semantic Web Journal – Interop-
erability, Usability, Applicability 1(1) (2010)

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/owl2-new-features/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://linkeddatabook.com/editions/1.0/

Scalable OWL 2 Reasoning for Linked Data 317

38. Hitzler, P., Vrandečić, D.: Resolution-based approximate reasoning for OWL DL. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 383–397.
Springer, Heidelberg (2005)

39. Hogan, A.: Exploiting RDFS and OWL for Integrating Heterogeneous, Large-Scale, Linked
Data Corpora. PhD thesis, Digital Enterprise Research Institute, National University of Ire-
land, Galway (2011), http://aidanhogan.com/docs/thesis/

40. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning for the Web. Int.
J. Semantic Web Inf. Syst. 5(2) (2009)

41. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching and
Browsing Linked Data with SWSE: the Semantic Web Search Engine. Technical Report
DERI-TR-2010-07-23, Digital Enterprise Research Institute, Galway (2010), http://www.
deri.ie/fileadmin/documents/DERI-TR-2010-07-23.pdf

42. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: Template Rule Optimisations for Dis-
tributed Reasoning over 1 Billion Linked Data Triples. In: Patel-Schneider, P.F., Pan, Y.,
Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I.
LNCS, vol. 6496, pp. 337–353. Springer, Heidelberg (2010)

43. Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption Algorithms for Concept Descrip-
tion Languages. In: ECA 1990, pp. 348–353. Pitman Publishing (1990)

44. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: KR 2006 (2006)
45. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Very Expressive Description

Logics. Logic Journal of the IGPL 8, 2000 (2000)
46. Huang, Z., van Harmelen, F.: Using Semantic Distances for Reasoning with Inconsistent

Ontologies. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 178–194. Springer, Heidelberg
(2008)

47. Er, K.: Hudek and Grant Weddell. Binary Absorption in Tableaux-Based Reasoning for De-
scription Logics. In: Proc. DL 2006 (2006)

48. Jiménez-Ruiz, E., Grau, B.C., Sattler, U., Schneider, T., Llavori, R.B.: Safe and economic
re-use of ontologies: A logic-based methodology and tool support. In: Proceedings of the
21st International Workshop on Description Logics, DL 2008 (May 2008)

49. Jones, N.D., Gomard, C.K., Sestoft, P., Andersen, L.O., Mogensen, T.: Partial Evaluation and
Automatic Program Generation. Prentice Hall International, Englewood Cliffs (1993)

50. Kazakov, Y.: SRIQ and SROIQ are Harder than SHOIQ. In: DL 2008 (2008)
51. Y. Kazakov Consequence-Driven Reasoning for Horn SHIQ Ontologies. In: IJCAI 2009

(2009)
52. Kiryakov, A., Ognyanoff, D., Velkov, R., Tashev, Z., Peikov, I.: LDSR: a Reason-able View

to the Web of Linked Data. In: Semantic Web Challenge, ISWC 2009 (2009)
53. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., Lee,

R.: Media Meets Semantic Web – How the BBC Uses DBpedia and Linked Data to Make
Connections. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp.
723–737. Springer, Heidelberg (2009)

54. Kolovski, V., Wu, Z., Eadon, G.: Optimizing Enterprise-Scale OWL 2 RL Reasoning in a
Relational Database System. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 436–
452. Springer, Heidelberg (2010)

55. Komorowski, H.J.: Partial Evaluation as a Means for Inferencing Data Structures in an Ap-
plicative Language: A Theory and Implementation in the Case of Prolog. In: POPL, pp.
255–267 (1982)

http://aidanhogan.com/docs/thesis/
http://www.deri.ie/fileadmin/documents/DERI-TR-2010-07-23.pdf
http://www.deri.ie/fileadmin/documents/DERI-TR-2010-07-23.pdf

318 A. Hogan et al.

56. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-Tolerant Seman-
tics for Description Logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333,
pp. 103–117. Springer, Heidelberg (2010)

57. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
58. Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. J. Log. Pro-

gram. 11(3&4), 217–242 (1991)
59. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics. In:

IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence,
pp. 453–458 (2007)

60. Ma, Y., Hitzler, P.: Paraconsistent Reasoning for OWL 2. In: Polleres, A., Swift, T. (eds.)
RR 2009. LNCS, vol. 5837, pp. 197–211. Springer, Heidelberg (2009)

61. Maier, F.: Extending Paraconsistent SROIQ. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR 2010. LNCS, vol. 6333, pp. 118–132. Springer, Heidelberg (2010)

62. Meditskos, G., Bassiliades, N.: DLEJena: A practical forward-chaining OWL 2 RL reasoner
combining Jena and Pellet. J. Web Sem. 8(1), 89–94 (2010)

63. Motik, B.: Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB, Karlsruhe,
Germany (2004)

64. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language Structural Spec-
ification and Functional-Style Syntax. W3C Recommendation (October 2009), http://www.
w3.org/TR/owl2-syntax/

65. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using hyper-
tableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 67–83. Springer,
Heidelberg (2007)

66. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Sub-
mitted to a Journal (2008)

67. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg
(2007)

68. Muñoz, S., Pérez, J., Gutierrez, C.: Simple and Efficient Minimal RDFS. J. Web Sem. 7(3),
220–234 (2009)

69. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: a document-oriented lookup index for open linked data. IJMSO 3(1), 37–52
(2008)

70. Oxford-Benchmark. Oxford Benchmark (2009), http://hermit-reasoner.com/2009/

JAIR_benchmarks/

71. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing
Order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)

72. Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontologies. In: AAAI 2007, pp. 1434–1439
(2007)

73. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommen-
dation (January 2008), http://www.w3.org/TR/rdf-sparql-query/

74. Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Rule Ordering in Bottom-Up Fixpoint Eval-
uation of Logic Programs. In: Proc. of 16th VLDB, pp. 359–371 (1990)

75. Ren, Y., Pan, J.Z., Zhao, Y.: Towards soundness preserving approximation for abox reasoning
of owl2. In: Description Logics Workshop 2010, DL 2010 (2010)

76. Rudolph, S.: Foundations of Description Logics. In: Polleres, A., et al. (eds.) Reasoning Web
2011. LNCS, vol. 6848, pp. 251–327. Springer, Heidelberg (2011)

77. Schaerf, M., Cadoli, M.: Tractable Reasoning via Approximation. Artificial Intelligence 74,
249–310 (1995)

78. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calculation of
subsumption: Experience with SNOMED-RT. JAMIA (2000)

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://hermit-reasoner.com/2009/JAIR_benchmarks/
http://hermit-reasoner.com/2009/JAIR_benchmarks/
http://www.w3.org/TR/rdf-sparql-query/

Scalable OWL 2 Reasoning for Linked Data 319

79. Stonebraker, M.: The Case for Shared Nothing. IEEE Database Eng. Bull. 9(1), 4–9 (1986)
80. Stuckenschmidt, H., Niepert, M.: Combining Probabilistic and Logical Reasoning for Web

Data Processing. In: Polleres, A., et al. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp.
251–327. Springer, Heidelberg (2011)

81. Stuckenschmidt, H., van Harmelen, F.: Approximating Terminological Queries. In: An-
dreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI),
vol. 2522, Springer, Heidelberg (2002)

82. ter Horst, H.J.: Combining RDF and Part of OWL with Rules: Semantics, Decidability, Com-
plexity. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 668–684. Springer, Heidelberg (2005)

83. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. Journal of Web Semantics 3, 79–
115 (2005)

84. Trček, D.: Trust management methodologies for the Web. In: Polleres, A., et al. (eds.) Rea-
soning Web 2011. LNCS, vol. 6848, pp. 251–327. Springer, Heidelberg (2011)

85. Tsarkov, D., Horrocks, I.: Efficient Reasoning with Range and Domain Constraints. In: DL
2004 (2004)

86. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing Terminological Reasoning for
Expressive Description Logics. J. Autom. Reason. 39(3), 277–316 (2007)

87. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer Science Press
(1989)

88. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with
webPIE: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS,
vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

89. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning using
mapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg
(2009)

90. Vanderbei, R.J.: Linear Programming: Foundations and Extensions, 3rd edn. Springer, Hei-
delberg (2008)

91. Vrandečı́c, D., Krötzsch, M., Rudolph, S., Lösch, U.: Leveraging Non-Lexical Knowledge
for the Linked Open Data Web. Review of Fool’s day Transactions (RAFT) 5, 18–27 (2010)

92. Wache, H., Groot, P., Stuckenschmidt, H.: Scalable instance retrieval for the semantic web
by approximation. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan,
Z., Sheng, Q.Z. (eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 245–254. Springer,
Heidelberg (2005)

93. Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure for hundreds
of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer,
Heidelberg (2009)

94. Yardeni, E., Shapiro, E.Y.: A Type System for Logic Programs. J. Log. Program 10(1/2/3/4),
125–153 (1991)

95. Zhang, R., Artale, A., Giunchiglia, F., Crispo, B.: Using description logics in relation based
access control. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Description Logics.
CEUR Workshop Proceedings, vol. 477 (2009), CEUR-WS.org

96. Zhang, X., Xiao, G., Lin, Z.: A tableau algorithm for handling inconsistency in OWL. In:
Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi,
R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 399–413.
Springer, Heidelberg (2009)

CEUR-WS.org

320 A. Hogan et al.

A OWL 2 RL/RDF Rules

Herein, we list the rule tables categorising supported OWL 2 RL/RDF rules [27] ac-
cording to terminological and assertional arity of atoms in the body. Note that herein we
(ab)use Turtle syntax [8] and highlight authoritative variable positions (TAVars(R)—
see § 3.5) in bold.

A.1 “A-Linear” OWL 2 RL/RDF Rules

Table 15. OWL 2 RL/RDF rules with empty body (axiomatic triples)

Body(R) = ∅
ID Head Notes
prp-ap ?p a owl:AnnotationProperty For each built-in annotation property
cls-thing owl:Thing a owl:Class . -
cls-nothing owl:Nothing a owl:Class . -
dt-type1 ?dt a rdfs:Datatype . For each built-in datatype
dt-type2a ?l a ?dt . For all ?l in the value-space of datatype ?dt
dt-eqa ?l1 owl:sameAs ?l2 . For all ?l1 and ?l2 with the same data value
dt-diffa ?l1 owl:differentFrom ?l2 . For all ?l1 and ?l2 with different data values

a These rules mandate (naı̈vely) infinite materialised inferences, and so we exclude them.

Table 16. OWL 2 RL/RDF rules containing only T-atoms in the body

TBody(R)
= ∅, ABody(R) = ∅
ID Body Head

terminological
cls-oo ?c owl:oneOf (?x1 ...?xn) . ?x1...?xn a ?c .

scm-cls ?c a owl:Class .
?c rdfs:subClassOf ?c , owl:Thing ;

owl:equivalentClass ?c .
owl:Nothing rdfs:subClassOf ?c .

scm-sco ?c1 rdfs:subClassOf ?c2 . ?c2 rdfs:subClassOf ?c3 . ?c1 rdfs:subClassOf ?c3 .

scm-eqc1 ?c1 owl:equivalentClass ?c2 .
?c1 rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?c1 .

scm-eqc2 ?c1 rdfs:subClassOf ?c2 . ?c2 rdfs:subClassOf ?c1 . ?c1 owl:equivalentClass ?c2 .

scm-op ?p a owl:ObjectProperty .
?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-dp ?p a owl:DatatypeProperty .
?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-spo ?p1 rdfs:subPropertyOf ?p2 . ?p2 rdfs:subPropertyOf ?p3 . ?p1 rdfs:subPropertyOf ?p3 .

scm-eqp1 ?p1 owl:equivalentProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .
?p2 rdfs:subPropertyOf ?p1 .

scm-eqp2 ?p1 rdfs:subPropertyOf ?p2 . ?p2 rdfs:subPropertyOf ?p1 . ?p1 owl:equivalentProperty ?p2 .
scm-dom1 ?p rdfs:domain ?c1 . ?c1 rdfs:subClassOf ?c2 . ?p rdfs:domain ?c2 .
scm-dom2 ?p2 rdfs:domain ?c . ?p1 rdfs:subPropertyOf ?p2 . ?p1 rdfs:domain ?c .
scm-rng1 ?p rdfs:range ?c1 . ?c1 rdfs:subClassOf ?c2 . ?p rdfs:range ?c2 .
scm-rng2 ?p2 rdfs:range ?c . ?p1 rdfs:subPropertyOf ?p2 . ?p1 rdfs:range ?c .

scm-hv
?c1 owl:hasValue ?i ; owl:onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 owl:hasValue ?i ; owl:onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

Scalable OWL 2 Reasoning for Linked Data 321

Table 16. (Continued)

scm-svf1
?c1 owl:someValuesFrom ?y1 ; owl:onProperty ?p .

?c1 rdfs:subClassOf ?c2 .?c2 owl:someValuesFrom ?y2 ; owl:onProperty ?p .
?y1 rdfs:subClassOf ?y2 .

scm-svf2
?c1 owl:someValuesFrom ?y ; owl:onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 owl:someValuesFrom ?y ; owl:onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-avf1
?c1 owl:allValuesFrom ?y1 ; owl:onProperty ?p .

?c1 rdfs:subClassOf ?c2 .?c2 owl:allValuesFrom ?y2 ; owl:onProperty ?p .
?y1 rdfs:subClassOf ?y2 .

scm-avf2
?c1 owl:allValuesFrom ?y ; owl:onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 owl:allValuesFrom ?y ; owl:onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-int ?c owl:intersectionOf (?c1 ...?cn) . ?c rdfs:subClassOf ?c1...?cn .
scm-uni ?c owl:unionOf (?c1...?cn) . ?c1...?cn rdfs:subClassOf ?c .

Table 17. OWL 2 RL/RDF rules containing some T-atoms and precisely one A-atom in the body

ABody(R) �= ∅,TBody(R) = ∅
ID Body Headassertional
eq-refa ?s ?p ?o . ?s owl::sameAs ?s . ?p owl::sameAs ?p . ?o owl::sameAs ?o .
eq-sym ?x owl::sameAs ?y . ?y owl::sameAs ?x .

a We typically omit this rule which adds unnecessary bulk to the materialised inferences, and
could be more easily supported by backward-chaining.

Table 18. OWL 2 RL/RDF rules with no T-atoms, but one A-atom in the body

TBody(R)
= ∅ and |ABody(R)| = 1

ID Body Head
terminological assertional

prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp1 ?p1 owl:equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp2 ?p1 owl:equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .
prp-inv1 ?p1 owl:inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .
prp-inv2 ?p1 owl:inverseOf ?p2 . ?x ?p2 ?y . ?y ?p1 ?x .
cls-int2 ?c owl:intersectionOf (?c1 ... ?cn) . ?x a ?c . ?x a ?c1, ..., ?cn .
cls-uni ?c owl:unionOf (?c1 ...?ci...?cn) . ?x a ?ci ?x a ?c .
cls-svf2 ?x owl:someValuesFrom owl:Thing ; owl:onProperty ?p . ?u ?p ?v . ?u a ?x .
cls-hv1 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u a ?x . ?u ?p ?y .
cls-hv2 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u ?p ?y . ?u a ?x
cax-sco ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc1 ?c1 owl:equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc2 ?c1 owl:equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .

322 A. Hogan et al.

A.2 Unsupported OWL 2 RL/RDF Rules

Table 19. OWL 2 RL/RDF rules containing no T-atoms, but multiple A-atoms in the body—all
relate to supporting the positive semantics of owl:sameAs, and all give quadratic materialisa-
tion

|ABody(R)| > 1, TBody(R) = ∅
ID

Body
Head

assertional
eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .
eq-rep-s ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .
eq-rep-p ?p owl:sameAs ?p′ . ?s ?p ?o . ?s ?p′ ?o .
eq-rep-o ?o owl:sameAs ?o′ . ?s ?p ?o . ?s ?p ?o′ .

Table 20. OWL 2 RL/RDF rules containing some T-atoms and multiple A-atoms in the body

TBody(R)
= ∅ and |ABody(R)| > 1

ID Body Head
terminological assertional

linear materialisation w.r.t. assertional data
cls-int1 ?c owl:intersectionOf (?c1 ... ?cn) . ?y a?c1 , ... , ?cn . ?y a?c .
cls-svf1 ?x owl:someValuesFrom ?y ; owl:onProperty ?p . ?u ?p ?v . ?v a?y . ?u a?x .
cls-avf ?x owl:allValuesFrom ?y ; owl:onProperty ?p . ?u ?p ?v ; a?x . ?v a?y .

quadratic materialisation w.r.t. assertional data
prp-fp ?p a owl:FunctionalProperty . ?x ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .

prp-ifp ?p a owl:InverseFunctionalProperty .
?x1 ?p ?y .

?x1 owl:sameAs ?x2 .
?x2 ?p ?y .

prp-key ?c owl:hasKey (?p1 ... ?pn)
?x ?p1 ?z1 ; ... ; ?pn ?zn , a ?c .

?x owl:sameAs ?y .
?y ?p1 ?z1 ; ... ; ?pn ?zn , a ?c .

cls-maxc2 ?x owl:maxCardinality 1 ; owl:onProperty ?p . ?u a ?x ; ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .

cls-maxqc3 ?x owl:maxQualifiedCardinality 1 . ?u a ?x ; ?p ?y1 , ?y2 .
?y1 owl:sameAs ?y2?x owl:onProperty ?p ; owl:onClass ?c . ?y1 a ?c . ?y2 a ?c .

cls-maxqc4 ?x owl:maxQualifiedCardinality 1 .
?u a ?x ; ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2owl:onProperty ?p ; owl:onClass owl:Thing .

prp-trp ?p a owl:TransitiveProperty . ?x ?p ?y . ?y ?p ?z . ?x ?p ?z

prp-spo2 ?p owl:propertyChainAxiom (?p1 ... ?pn) .
?u1 ?p1 ?u2 .

?u1 ?p ?un+1 .?u2 ?p2 ?u3 .
... ?un ?pn ?un+1 .

Scalable OWL 2 Reasoning for Linked Data 323

Table 21. OWL 2 RL/RDF “constraint” rules

Head(R) = ⊥
ID

Body
terminological assertional

eq-diff1 -
?x owl:sameAs ?y .
?x owl:differentFrom ?y .

eq-diff2 -
?x a owl:AllDifferent ;
owl:members (?z1...?zn) .
?zi owl:sameAs ?zj . (i
=j)

eq-diff3 -
?x a owl:AllDifferent ;
owl:distinctMembers (?z1 ...?zn) .
?zi owl:sameAs ?zj . (i
=j)

prp-irp ?p a owl:IrreflexiveProperty . ?x ?p ?x .
prp-asyp ?p a owl:AsymmetricProperty ?x ?p ?y . ?y ?p ?x .
prp-pdw ?p1 owl:propertyDisjointWith ?p2 . ?x ?p1 ?y ; ?p2 ?y .
prp-adp ?x a owl:AllDisjointProperties ; owl:members (?p1 ...?pn) . ?u ?pi ?y ; ?pj ?y . (i
=j)

prp-npa1 -

?x owl:sourceIndividual ?i1 .
?x owl:assertionProperty ?p .
?x owl:targetIndividual ?i2 .
?i1 ?p ?i2 .

prp-npa2 -

?x owl:sourceIndividual ?i .
?x owl:assertionProperty ?p .
?x owl:targetValue ?lt .
?i ?p ?lt .

cls-nothing2 - ?x a owl:Nothing .
cls-com ?c1 owl:complementOf ?c2 . ?x a ?c1 , ?c2 .
cls-maxc1 ?x owl:maxCardinality 0 ; owl:onProperty ?p . ?u a ?x ; ?p ?y .

cls-maxqc1 ?x owl:maxQualifiedCardinality 0 ;
?u a ?x ; ?p ?y . ?y a ?c .

owl:onProperty ?p ; owl:onClass ?c .

cls-maxqc2 ?x owl:maxQualifiedCardinality 0 ;
?u a ?x ; ?p ?y .

owl:onProperty ?p ; owl:onClass owl:Thing .
cax-dw ?c1 owl:disjointWith ?c2 . ?x a ?c1 , ?c2 .
cax-adc ?x a owl:AllDisjointClasses ; owl:members (?c1...?cn) . ?z a ?ci , ?cj . (i
=j)
dt-not-type - ?lt a ?dt . (s.t. ?lt is an ill-typed literal)

324 A. Hogan et al.

Table 22. Enumeration of the coverage of inferences in case of the omission of rules in Table 16
wrt. inferencing over assertional knowledge by recursive application of rules in Table 17: un-
derlined rules are not supported, and thus we would encounter incompleteness wrt. assertional
inference (would not affect a full OWL 2 RL/RDF reasoner which includes the underlined rules).

ID partially covered by recursive rule(s)
scm-cls incomplete for owl:Thing membership inferencesa

scm-sco cax-sco
scm-eqc1 cax-eqc1, cax-eqc2
scm-eqc2 cax-sco
scm-op no unique assertional inferences
scm-dp no unique assertional inferences
scm-spo prp-spo1
scm-eqp1 prp-eqp1, prp-eqp2
scm-eqp2 prp-spo1
scm-dom1 prp-dom, cax-sco
scm-dom2 prp-dom, prp-spo1
scm-rng1 prp-rng, cax-sco
scm-rng2 prp-rng, prp-spo1
scm-hv prp-rng, prp-spo1
scm-svf1 incomplete: cls-svf1, cax-sco
scm-svf2 incomplete: cls-svf1, prp-spo1
scm-avf1 incomplete: cls-avf, cax-sco
scm-avf2 incomplete: cls-avf, prp-spo1
scm-int cls-int2
scm-uni cls-uni

a In our scenario, are not concerned—we filter out such statements and rules such as cls-svf2
and cls-maxqc2 encode direct support for owl:Thing.

Scalable OWL 2 Reasoning for Linked Data 325

B CURIE Prefixes Used

Herein, we enumerate the CURIE prefixes [12] used throughout these notes to abbrevi-
ate URIs.

Table 23. Prefixes used

Prefix URI
aifb: http://www.aifb.kit.edu/id/
avtimbl: http://www.advogato.org/person/timbl/foaf.rdf#
bmpersons: http://www4.wiwiss.fu-berlin.de/bookmashup/persons/
b2r2008: http://bio2rdf.org/bio2rdf-2008.owl#
contact: http://www.w3.org/2000/10/swap/pim/contact#
dblpperson: http://www4.wiwiss.fu-berlin.de/dblp/resource/person/
dbpedia: http://dbpedia.org/resource/
dc: http://purl.org/dc/elements/1.1/
dct: http://purl.org/dc/terms/
doap: http://usefulinc.com/ns/doap#
ex*: arbitrary example namespace
fb: http://rdf.freebase.com/ns/
foaf: http://xmlns.com/foaf/0.1/
frbr: http://purl.org/vocab/frbr/core#
geonames: http://www.geonames.org/ontology#
identicauser: http://identi.ca/user/
mo: http://purl.org/ontology/mo/
opiumfield: http://rdf.opiumfield.com/lastfm/spec#
owl: http://www.w3.org/2002/07/owl#
po: http://purl.org/ontology/po/
plink: http://buzzword.org.uk/rdf/personal-link-types#
pres: http://www.w3.org/2004/08/Presentations.owl#
rail: http://ontologi.es/rail/vocab#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
skos: http://www.w3.org/2004/02/skos/core#
swid: http://semanticweb.org/id/
sworg: http://data.semanticweb.org/organization/
timblfoaf: http://www.w3.org/People/Berners-Lee/card#
wgs84: http://www.w3.org/2003/01/geo/wgs84_pos#
wn: http://xmlns.com/wordnet/1.6/
xfn: http://vocab.sindice.com/xfn#
yagor: http://www.mpii.de/yago/resource/

http://www.aifb.kit.edu/id/
http://www.advogato.org/person/timbl/foaf.rdf#
http://www4.wiwiss.fu-berlin.de/bookmashup/persons/
http://bio2rdf.org/bio2rdf-2008.owl#
http://www.w3.org/2000/10/swap/pim/contact#
http://www4.wiwiss.fu-berlin.de/dblp/resource/person/
http://dbpedia.org/resource/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://usefulinc.com/ns/doap#
http://rdf.freebase.com/ns/
http://xmlns.com/foaf/0.1/
http://purl.org/vocab/frbr/core#
http://www.geonames.org/ontology#
http://identi.ca/user/
http://purl.org/ontology/mo/
http://rdf.opiumfield.com/lastfm/spec#
http://www.w3.org/2002/07/owl#
http://purl.org/ontology/po/
http://buzzword.org.uk/rdf/personal-link-types#
http://www.w3.org/2004/08/Presentations.owl#
http://ontologi.es/rail/vocab#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2004/02/skos/core#
http://semanticweb.org/id/
http://data.semanticweb.org/organization/
http://www.w3.org/People/Berners-Lee/card#
http://www.w3.org/2003/01/geo/wgs84_pos#
http://xmlns.com/wordnet/1.6/
http://vocab.sindice.com/xfn#
http://www.mpii.de/yago/resource/

Rules and Logic Programming for the Web

Adrian Paschke

Freie Universität Berlin
AG Corporate Semantic Web

Königin-Luise-Str. 24/26, 14195 Berlin, Germany
paschke@inf.fu-berlin.de

http://www.corporate-semantic-web.de/

Abstract. This lecture script gives an introduction to rule based knowl-
edge representation on Web. It reviews the logical foundations of logic
programming and derivation rule languages and describes existing Web
rule standard languages such as RuleML, the W3C Rule Interchange
Format (RIF), and the Web rule engine Prova.

1 Introduction to Rule Based Knowledge Representation

Knowledge representation (KR) focuses on methods for describing the world in
terms of high-level, abstracted models which can be used to build intelligent
applications, i.e., it provides methods to find implicit consequences of explicitly
represented knowledge. Approaches can be roughly divided into logic based for-
malisms, usually a variant of first-order predicate calculus and non-logic based
formalisms such as graphical semantic networks, object frames or (early) pro-
duction rule systems. Non-logic based approaches, which are often based on ad
hoc data structures and graphical representations, typically lack a precise formal
semantics which makes it hard to verify the correctness of drawn consequences.
On the other hand, logic based approaches use the powerful and general seman-
tics of first-order logic (FOL) (typically a decidable subset of FOL) which allows
a precise characterization of the meaning of a world by expressing it as a knowl-
edge base (KB) of statements in a language which has a truth theory. While
the syntax may differ, the semantics of FOL KBs is often given in a Tarski-style
semantics.

Rule based systems have been investigated comprehensively in the realms of
declarative programming and expert systems over the last decades. Using (infer-
ence) rules has several advantages: reasoning with rules is based on a semantics
of formal logic, usually a variation of first order predicate logic, and it is rela-
tively easy for the end user to write rules. The basic idea is that users employ
rules to express what they want, the responsibility to interpret this and to decide
on how to do it is delegated to an interpreter (e.g., an inference engine or a just
in-time rule compiler). Traditionally, rule based systems have been supported by
two types of inferencing algorithms: forward chaining and backward chaining.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 326–381, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.corporate-semantic-web.de/

Rules and Logic Programming for the Web 327

1.1 Forward Chaining Rule Systems

Forward chaining is one of the two main methods of reasoning when using ”if-
then” style inference rules in artificial intelligence. Forward chaining is data-
driven. The inference engine makes inferences based on rules from given data. It
starts with the available data and uses inference rules to extract more data until
an optimal goal is reached. An inference engine using forward chaining searches
the inference rules until it finds one where the if clause is known to be true.
When found it can conclude, or infer, the then clause, resulting in the addition
of new information to its KB. The most common form of forward chaining is
the Rete algorithm. In a nutshell, this algorithm keeps the derivation structure
in memory and propagates changes in the fact and rule base. There are many
forward chaining implementations in the area of deductive databases and many
well-known forward-reasoning engines for production rules (”if condition then
action” rules) such as IBM ILOG’s commercial rule system or popular open
source solutions such as Drools, CLIPS or Jess which are based on variants of
the Rete algorithm.

1.2 Backward Chaining Rule Systems

The other main reasoning method for if-then rules is backward chaining which is
typically used in logic programming, where the rules are called derivation rules.
Backward chaining starts with a list of goals (hypothesis) and works backwards
to see if there are data available that will support any of these goals. Accordingly,
backward chaining is goal-driven. An inference engine using backward chaining
would search the inference rules until it finds one which has a then clause that
matches a desired goal. If the if clause of that inference rule is not known to be
true, then it is added to the list of goals. The common deductive computational
model of logic programming uses backward-reasoning (goal-driven) resolution to
instantiate the program clauses via goals and uses unification to determine the
program clauses to be selected and the variables to be substituted by terms.
The unification algorithm supports backtracking usually according to depth-
first recursive backward chaining, but forward chaining bottom-up approaches
are also possible.

1.3 Discussion Backward Chaining vs. Forward Chaining in the
Web Context

Forward chaining, e.g. based on the Rete algorithm in production rules, can be
very effective, e.g., if you just want to find out what new facts are true or when
you have a small set of initial facts and when there tends to be lots of different
rules which allow you to draw the same conclusion. However, in the context of
reasoning on top of Web content backward chaining often qualifies to be the
better choice:

– In forward-reasoning additional software must propagate changes to the
memory based fact base which leads to a lot of redundancy and difficul-
ties, e.g., a Web content database normally does not propagate changes and

328 A. Paschke

for dynamic real-time access the fact base and the Web database must be
synchronized.

– In Web applications often large set of initial facts are provided which are
likely to change. Using forward chaining, lots of rules would be eligible to
fire in any cycle and a lot of irrelevant conclusions are drawn. In backward-
reasoning the knowledge base can be temporarily populated with the needed
facts from external Web systems to answer a particular goal at query time
which can be discarded from the memory afterwards. Forward-reasoning on
the Web works best only for closed scopes, e.g., firing rules when certain
events occur.

– Open-distributed environments such as the Web are usually based on a pull-
model and most implementations of push-architectures (the push model re-
lates to active event processing) are basically pull-concepts, i.e., the push
functionality is simulated by frequently issuing queries, e.g., a mail client
which queries the mailbox every second for new mails. Therefore, a goal-
driven backward-reasoning system perfectly fits to those architectures.

– Forward-reasoning production rules have an operational semantics but no
clear logical semantics and a restricted expressiveness, e.g. no recursion, only
inflationary negation etc.

The further paper is structured as follows: Section 2 describes logical foundations
of logic programming, rules and reasoning. Section 3 introduces standard Web
rule languages on the platform independent interchange level and the platform
specific execution level. In particular, the W3C Rule Interchange Format (RIF),
RuleML and the Prova rule language (ISO Prolog like syntax) are detailed in this
section. Finally, the conclusion summarizes the current state-of-art and future
trends.

2 Logic Foundations

This section reviews general background knowledge about logic and logic pro-
gramming and its use for rule based knowledge representation and reasoning.

2.1 First-Order Logic

This subsection recalls the definition of a first order logic (FOL) language and clas-
sical FOL models (structures) under Tarski semantics adopted from [62, 63, 46].
Both are interrelated concepts and play a central role in logic and form a general
basis that allows to cover a wide range of logical formalisms for rule based reason-
ing and knowledge representation.

Syntax. This subsection defines the syntax of a first order language according
to [62, 63, 46].

Definition 1. (Signature) S is a signature if S is a four-tuple 〈P , F , arity, c〉
where:

Rules and Logic Programming for the Web 329

1. P is a finite sequence of predicate symbols 〈P1, .., Pn〉.
2. F is a finite sequence of function symbols 〈F1, .., Fm〉
3. For each Pi respectively each Fj , arity(Pi) resp. arity(Fj) is a non-zero

natural number denoting the arity of Pi resp. Fi.
4. c = 〈c1, .., co〉 is a finite or infinite sequence of constant symbols.

A signature is called function-free if F = ∅.

Definition 2. (Alphabet) An alphabet Σ consists of the following class of
symbols:

1. A signature S = 〈P , F , arity, c〉.
2. A collection of variables V which will be denoted by identifiers starting with

a capital letter like U ,V ,X
3. Logical connectives / operators: ¬. (negation), ∧ (conjunction), ∨ (disjunc-

tion), → (implication), ≡ (syntactical equivalent), = (equivalence), ⊥ (bot-
tom),
 (top).

4. Quantifier: ∀ (forall), ∃ (exists).
5. Parentheses and punctation symbols: (,) and ,.

Definition 3. (Terms) A term is defined inductively as follows:

1. A variable is a term.
2. A constant in c is a term.
3. If f is a function symbol with arity n and t1, .., tn are terms, then f(t1, .., tn)

is a (complex) term.

Function symbols are written in prefix notation whereby a function always pre-
cedes its terms. However, usually terms are also composed of both prefix and
infixed symbols, e.g., (f(2) − f(1)/f(1)). There are standard ways of dealing
with these issues.

Definition 4. (Atom) Let p be a predicate symbol with arity n ∈ ℵ. Let t1, .., tn
be terms, then p(t1, .., tn) is an atomic formula of terms. A ground atom is an
atomic formula without variables.

Definition 5. (Well-formed Formula) A (well-formed) formula is defined as
follows:

1. An atom is a formula.
2. If H and G are formulas then

- ¬H is a formula (negation)
- (H ∧ G) is a formula (conjunction)
- (H ∨ G) is a formula (disjunction)
- (H → G) is a formula (implication)
- (H ≡ G) is a formula (equivalence)

3. If H is a formula and X is a variable, then (∀XH) and (∃XH) are formulas.

The following precedences are defined:

330 A. Paschke

1. ¬, ∀, ∃
2. ∧, ∨
3. →, ≡

Definition 6. (First-Order Language) A FOL language is defined over an
alphabet Σ where the signature S may vary from language to language. It consists
of the set of all formulas that can be constructed according to the definitions of
well-founded formulas using the symbols of Σ. A FOL language is called function-
free if the signature is function-free.

Thus, a language in addition to a signature also contains the logical symbols and
a list of variables. The notion ”first-order” refers to the fact that quantification
is over individuals rather than classes (or functions).

Definition 7. (Scope of Variables) Let X be a variable and H be a formula.
The scope of ∀X in ∀XH and of ∃X in ∃XH is H. Combinations of ∀X and
∃X bind every occurrence of X in their scope. Any occurrences of variables that
are not bound are called free.

Definition 8. (Open and Closed Formula) A formula is open if it has free
variables. A formula is closed if it has no free variables.

Definition 9. (Literal) A literal L is an atom or the negation of an atom.

Definition 10. (Complement) Let L be a literal. The complement −L of L is
defined as follows:

−L :=
{
¬A if L ≡ A
A if L ≡ ¬A

where A is an atom.

Definition 11. (Theory) A FOL theory Φ or FOL knowledge base is a set of
formulas in a FOL language Σ: Φ ⊆ Σ. The signature S of Φ is obtained from
all the constant, function and predicate symbols which occur in Φ.

Every finite FOL knowledge base (FOL KB) is equivalent to the conjunction of
its elements, i.e., it might be equivalently written as a conjunction of formulas.

Interpretations and Models. This subsection is concerned with attributing
meaning (or truth values) to sentences (well-formed formulas) in a FOL language.
The definitions follow [62,63,46]. Informally, the sentences are mapped to some
statements about a chosen domain through a process known as interpretation.
An interpretation which gives the value true to a sentence is said to satisfy
the sentence. Such an interpretation is called a model for the sentence and an
interpretation which does not satisfy a sentence is called a counter-model.

Definition 12. (Interpretation / Structure) Let S = 〈P , F , arity, c〉 be a
signature. I is called an interpretation (or a structure) for S if I = 〈|M |, P I

,
F

I
, cI〉 consists of:

Rules and Logic Programming for the Web 331

1. a non-empty set |M | called the universe of I or the domain of the interpre-
tation. The members of |M | are called individuals of I.

2. P
I

= 〈P I
1 , .., P I

k 〉 associates with each predicate Pi in S of arity n = arity(Pi)
an n-ary relation P I

i on |M |, i.e., P I
i ⊆ |M |n, where |M |n denotes the

collection of all n-tuples from |M |.
3. F

I
= 〈F I

1 , .., F I
l 〉 is an interpretation for each function symbol Fj of arity

m, where F I
j is an m-place function F

I

j : |M |m → |M |, i.e., F I
j is defined

on the set of m-tuples of individuals |M |m with values in |M |.
4. cI = 〈cI |c = constant〉 is an interpretation for the constants of S: c ∈ S,

where cI is an individual of M : cI ∈ |M |.

Definition 13. (Assignment)

1. Variable Assignment: Let Σ be a FOL language with X its set of variables,
and I an interpretation for Σ. An assignment is a function σ from X into
the universe of Σ.

2. Term Assignment: Let I be an interpretation of a FOL language Σ with
domain |M | and variable assignment σ. The term assignment wrt σ of the
term in Σ is defined as:
- Each variable is given its assignment according to σ.
- Each constant is given its assignment according to I.
- If t′1, .., t

′
n are the term assignments of t1, .., tn and f ′ is the assignment

of the function symbols f with arity n, then f ′(t′1, .., t
′
n) ∈ |M | is the term

assignment of f(t1, .., tn).

That is, given an assignment σ, any variable term of the language that is in the
domain of σ is given a constant value in |M |.

Definition 14. (Truth Values) Let I be an interpretation of a FOL language
Σ with domain |M | and σ be a variable assignment. A formula F ∈ Σ can be
given a truth value ”false” or ”true” as follows:

1. If the formula is an atom p(t1, .., tn) then the truth value is obtained by
calculating the value of p′(t′1, .., t

′
n) where p′ is the mapping assigned to p by

I and t′1, .., t
′
n are the term assignments of t1, ..tn wrt I and X.

2. The truth values of the following formulas is given by the following table:
F G ¬F F ∧ G F ∨ G F → G F = G

true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

3. If ∃XF , then the truth value of the formula is true if there exists c ∈ |M |
such that the formula F has truth value ”true” wrt I and σ(X/c); otherwise
it is false.

4. If the formula has the form ∀XF , then the truth value of the formula is true
if, for all c ∈ |M | F is ”true” wrt I and σ(X/c); otherwise, its truth value
is false.

332 A. Paschke

The satisfaction relation |= goes back to A. Tarski and is a major achievement
in logic.

Definition 15. (Satisfaction) If F is a formula and σ is an assignment to the
interpretation I of a FOL language Σ, then the relation I |= F [σ] means that
F is true in I when there is a substitute for each free variable X of F with the
value of σ(X). The inductive requirements of ”|=” are:

1. For any atomic formula of the form p(t1, ..tn)[σ] iff 〈tσ1 , .., tσn〉 ∈ pI .
2. I |= ¬F [σ] iff it is not the case that I |= F [σ]
3. I |= (F ∧ G)[σ] iff both I |= F [σ] and I |= G[σ]. Similarly, for the other

statements.
4. I |= ∃XF [σ] iff there exists some assignment σ′ such that

- for every variable Y different from X σ′(Y) = σ(Y)
- σ′(X) is defined and I |= F [σ′]

5. I |= ∀XF [σ] iff for any assignment σ′, if σ′(X) is defined and σ′ is equal to
σ on each variable different from X, then I |= F [σ′]

Accordingly, a formula F is satisfied by an interpretation I (F is true in I:
I |= F) iff I |=σ F for all variable assignments σ. F is valid iff I |= F for every
interpretation I.

Definition 16. (Model) Let I be an interpretation of a FOL language Σ. Then
I is a model of a closed formula F , if F is true wrt I. Further, I is a model of
a set F of closed formulas, if I is a model of each formula of F . I is a model of
an FOL KB Φ iff I |= F for every formula F ∈ Φ: I |= Φ.

Definition 17. (Logical Consequence, Entailment, Logical Implication)
A formula F ∈ Σ is a logical consequence of a FOL KB Φ written as Φ |= F ,
i.e., Φ entails F iff for all models I ∈ Σ for which I |= Φ also I |= F . For a
fixed FOL language (and signature) Σ let Φ and Ψ be two sets of sentences (two
KBs), then Φ → Ψ means that for every interpretation I of Σ, if I is a model
for Φ then it is also a model for Ψ .

Φ → Ψ is also meaningful when Φ and Ψ are sets of formulas with variables,
i.e., for every interpretation I of Σ and every assignment σ in I, if I[σ] satisfies
every formula in Φ then it also satisfies every formula in Ψ .

2.2 Logic Programming

Full first-order logic is not suitable as a declarative programming language, e.g.
due to the following reasons:

– unrestricted FOL is in general undecidable
– the results are not always unique
– finding (most general) unifier and solving formula is highly complex
– large search domains, which must be restricted using complex control struc-

tures
– danger of implementation incompleteness

Rules and Logic Programming for the Web 333

Hence, logic programming is based on a subset of FOL which deals with a spe-
cific class of well-formed formulas, so called statement clauses which consist of
an antecedent part and a consequent. The declarative meaning for such clauses
is that the consequent part is true, if the antecedents are true. The procedural
meaning is, that the consequent is proven by reducing it to a set of sub-goals
given by the antecedent part. The most common form of logic programming is
based on Horn Logic where clauses in normal form only have one positive literal
which is the consequent. Such programs are called definite LPs or Horn LPs.
The semantics of definite Logic Programs (LPs) is based on minimal Herbrand
models. Although definite LPs are expressive enough to model many problems
the formulation is often neither easy nor elegant. Hence, extensions to definite
LPs like different forms of negations have been proposed. This subsection intro-
duces relevant terms, concepts, syntax and semantics of different classes of logic
programs (LPs) derived from [62,63, 46].

Syntax of Logic Programs

Definition 18. (Clause) A clause is a formula such as ∀X(L1∨ ..∨Lm) where
each Li is a literal and X = {X1, .., Xn} are all the variables occurring in L1 ∨
.. ∨ Lm.

Different classes of clauses are distinguished: propositional clauses, Datalog
clauses, definite Horn clauses, normal clauses, extended clauses, positive clauses,
positive-disjunctive clauses, disjunctive clauses, and extended disjunctive clauses.
Associated with each type of clause is a class of logic programs: propositional LP,
Datalog LP, definite LP, stratified LP, normal LP (aka general LP), extended LP,
disjunctive LP and combinations of classes, with an increasing expressiveness as
illustrated in figure 1 for several classes of LPs. Each class can be propositional
(without terms), Datalog (without functions) or with terms and variables.

These LPs are defined as follows:

Definition 19. (Logic Programs and Rules) Given a FOL language Σ,
a (disjunctive extended) logic program P consists of logical rules (or program
clause) of the form

A1, .., Ak ← B1, .., Bm, not C1, .., not Cn

or equivalently
∀X(A1 ∨ .. ∨ Ak ← B1 ∧ .. ∧ Bm ∧ not C1 ∧ .. ∧ not Cn)

which is a convenient notation for a FOL clause where all variables Xi ∈ X
occurring in the literals Ai, Bj, Ck are universally quantified ∀X1..∀Xs, the
commas in the antecedent denote conjunction and the commas in the consequent
denote disjunction, and not denotes negation by default, rather than classical
negation. For short a rule is denoted in set notation as:

A ← B ∧ not C
where A = A1 ∨ ..∨Ak, B = B1 ∧ ..∧Bm, C = C1 ∨ ..∨Cn. Note that C is a

disjunction and according to De Morgan’s law not C is taken to be a conjunction.

334 A. Paschke

Fig. 1. Classes of LPs

The A is called the rule head which consists of the set of head literals and B and
C is called the rule body which consists of the set of body literals. Note that this
set notation is legitime because the conjunction is commutative.

A clause is called:

– a fact if m = n = 0, i.e., A ← ∅
– a query (or goal) if k = 0, i.e., ← B ∧ C. A query or goal is called atomic

if it consists of a single literal B1, i.e., m = 1 and n = 0.
– a propositional rule if the arity of all predicates is 0, i.e., all literals are

propositional ones. If all rules in a program P are propositional the P is
called a propositional LP.

– a Datalog rule if it contains no functions, i.e., is function-free and no pred-
icate symbol of the input schema appears in the rule head. A Datalog LP
(aka deductive database) is a function-free LP.

– a definite or positive rule (or Horn clause) if all literals are atoms, n = 0 and
k = 1, i.e., it neither contains negation nor disjunction. The corresponding
LP is called positive or definite LP (or Horn Program).

– positive-disjunctive rule if all literals are atoms and n = 0, i.e., it does not
contain negation. The corresponding LP is called positive-disjunctive LP.

– normal rule if all literals are atoms and k = 1, i.e., it does not contain
disjunction. The corresponding program is called a normal LP.

– extended rule if Ai, Bi and Ci are literals, i.e., are atoms or explicitly negated
atoms . The corresponding programm is called an extended LP.

– disjunctive rule if k > 1, i.e., it does contain a disjunction. The correspond-
ing program is called a disjunctive LP.

– range-restricted if all variable symbols occurring in the head also occur in
the positive body.

– ground if no variables occur in it.

Rules and Logic Programming for the Web 335

Semantics of Logic Programs. Proof-theoretically the semantics of a logic
program P is defined as a set of literals that is (syntactically) derivable from
P using a particular derivation mechanism such as SLDNF resolution. Model-
theoretically, a semantics for a logic program P is concerned with attributing
meaning (truth values) to clauses (rules). The properties of soundness and com-
pleteness establish a relation between the notions of syntactic (�) and semantic
(|=) entailment in logic programming. This subsection reviews several approaches
to define proof-theoretic and model-theoretic semantics for different types of logic
programs.

Substitution and Unification. At first, the concepts of substitution and uni-
fication from [62, 52] are introduced which are at the heart of proof-theoretic
semantics of non-ground LPs.

Definition 20. (Substitution) A substitution θ in a language Σ is a finite set
of the form {X1/t1, .., Xn/tn}, where each Xi is a variable in Σ, each ti is a
term in Σ distinct from Xi and the variables X1, .., Xn are pairwise distinct.
Each element Xi/ti is called a binding for Xi. θ is called a ground substitution
if the ti are all ground terms. θ is called a variable-pure substitution if the ti are
all variables.

Definition 21. (Expression) An expression E is either a term, a literal or a
conjunction or disjunction of literals.

Definition 22. (Instance) Let θ = {X1/t1, .., Xn/tn} be a substitution and E
be an expression then Eθ is the instance of E by θ is the expression obtained
from E by simultaneously replacing each occurrence of the variable Xi in E by
the term ti for i = 1, .., n. if Eθ is ground then Eθ is called a ground instance
of E.

Definition 23. (Variant) Let E and D be expressions. E and D are variants
if there exists substitutions θ and σ such that E = Dθ and D = Eσ.

Definition 24. (Renaming Substitution) Let E be an expression and X be
the set of variables occurring in E. A renaming substitution for E is a variable-
pure substitution {X1/Y1, .., Xn/Yn} such that {X1, .., Xn} ⊆ X, the Yi are
pairwise distinct and (X \ {X1, .., Xn}) ∩ {Y1, .., Yn} = ∅.

Definition 25. (Composition) Let θ = {X1/s1, .., Xm/sm} and
σ = {Y1/t1, .., Yn/tn} be substitutions. The composition θσ of θ and σ is the
substitution obtained from the set

{X1/s1σ, .., Xm/smσ, Y1/t1, .., Yn/tn}
by deleting any binding Xi/siσ for which Xi = siσ and deleting any binding
Yj/tj for which Yj ∈ {X1, .., Xm}.

Definition 26. (Most General Unifier (MGU)) Let E be a finite set of ex-
pressions. A substitution θ is called a unifier for E if Eθ is a singleton. An
unifier for E is called most general unifier (MGU) for E if for each unifier σ
of E there exists a substitution γ such that σ = θγ. E is called unifiable if there
exists a unifier for E.

336 A. Paschke

Note that a MGU for a set of expressions is unique modulo renaming if there
exists a MGU at all.

Minimal Herbrand Model. For the model-theoretic semantics first the minimal
or least Herbrand model semantics is introduced which is considered as the
natural interpretation of a definite LP. Then the minimal Herbrand semantics is
extended for other more expressive subclasses of LPs and further (declarative)
semantics are introduced together with their proof-theoretic counterparts for
logic programming.

Definition 27. (Herbrand Universe) The Herbrand universe of a program P
defined over the alphabet Σ, denoted UP , is the set of all ground terms which can
be formed out of the constants and function symbols of the signature S of Σ.

Definition 28. (Herbrand Base) The Herbrand base of a program P , denoted
BP , is the set of all ground atomic literals which can be formed by using the pred-
icate symbols in the signature S of Σ with the ground terms in UP as arguments.

Definition 29. (Herbrand Instantiation aka Grounding) The Herbrand
instantiation ground(P) of P consists of all ground instances of all rules in P
wrt the Herbrand universe UP which can be obtained as follows: The ground
instantiation of a rule r is the collection of all formulas r[X1/t1, .., Xn/tn] with
X1, .., Xn denoting the variables which occur in r and t1, .., tn ranging over all
terms in UP .

Definition 30. (Herbrand Interpretation) The Herbrand interpretation
IHerb of P is a consistent subset of BP . The interpretation is given as follows:

1. The domain of the interpretation is the Herbrand universe UP .
2. Constants are assigned themselves in UP .
3. If f is a function in P with arity n then the mapping f ′ : Un

P �→ UP assigned
to f is defined by f ′(t1, ..tn) := f(t1, .., tn).

Note that since the assignment to constant and function symbols is fixed for Her-
brand interpretations, it is possible to identify a Herbrand interpretation with a
subset of the Herbrand base. For any Herbrand interpretation, the corresponding
subset of the Herbrand base is the set of all ground atoms which are true wrt
the interpretation.

Definition 31. (Herbrand Model) Let P be a positive / definite program. A
Herbrand interpretation IHerb of P is a model of P , denoted as MHerb, iff for
every rule H ← B1, .., Bn ∈ ground(P) the following holds: If B1, .., Bn ∈ IHerb

then H ∈ IHerb.

The Herbrand model MHerb satisfies the unique name assumption, i.e., for any
two distinct ground terms in BP , their interpretations are distinct as well.

Definition 32. (Unique Name Assumption and Domain Closure As-
sumption) Let Σ be a given language. The unique name assumption (UNA)

Rules and Logic Programming for the Web 337

restricts the model MHerb, where syntactically different ground terms t1, t2 are
interpreted as non-identical elements: tM

Herb

1 �= tM
Herb

2 .
The domain closure assumption (DCA) is a restriction to those models MHerb

where for any element a in MHerb there is a term t that represents this element:
a = tM

Herb

.

Model-theoretically the intended meaning of a LP is that a formula should be
true if it is a logical consequence of the program, i.e., it is true in all models of
the program. For definite LPs this intention leads to a semantics that coincides
with the intuition because of the model intersection property.

Definition 33. (Model Intersection Property) Let M
Herb

be the set of all
Herbrand models of a program P .The intersection of all Herbrand models⋂

M
Herb

(P) of a definite LP P is also a Herbrand model of P .

Note that since every definite LP P has BP as an Herbrand model, the set of
all Herbrand models for P is always non-empty:

⋂
M

Herb
(P) �= ∅.

Definition 34. (Minimal Herbrand Model) Let P be a definite LP then the
minimal or least Herbrand model MHerb

P of P is the intersection of all Herbrand
models for P .

The constructive computational characterization of the minimal Herbrand model
of a definite LP P is based on the least fixpoint of the immediate consequence
operator of P . A detailed description of the theory of lattices and fixpoints can
be found in [62, 52]. Here the relevant definitions are recalled.

Definition 35. (Immediate Consequence Operator) Let P be a definite LP.
Let IHerb ⊆ BP be a set of atoms. The set of immediate consequences of IHerb

wrt P is defined as follows:
TP (IHerb) := {A — there is A ← B ∈ ground(P) with B ⊆ IHerb}.

Definition 36. (Monotonic Mapping) Let T : P (U) → P (U) be a mapping
then T is monotonic if T (X) ⊆ T (Y), whenever X ⊆ Y .

Definition 37. (Ordinal Power of T) Let T : P (U) → P (U) be a monotonic
mapping then:
T ↑ 0 = ∅
T ↑ a = T (T ↑ (a − 1)) if a is a successor ordinal
T ↑ a =

⋃
(T ↑ b|b < a) if a is a limit ordinal

Definition 38. (Fixpoint of operators) An operator T is a function T :
P (U) → P (U), where P (U) denotes the powerset of a countable set U . A set
X ⊆ U is called a fixpoint of the operator T : P (U) → P (U) iff T (X) = X

Definition 39. (Least Fixpoint) Let T : P (U) → P (U) be a mapping. An
element e ∈ P (U) is called a least fixpoint lfp(T) iff e is a fixpoint of T and for
all fixpoints f of T it is that e ⊆ f .

338 A. Paschke

According to the Fixpoint Theorem of Knaster and Tarski (see [56] for more de-
tails) each monotonic operator T has a least fixpoint lfp(T), which is the least
upper bound of the sequence T 0 = ∅, T i+1 = T (T i) for i ≥ 0. It appears that for
each set P of clauses lfp(T) coincides with the unique least Herbrand model of P ,
where a model MHerb is smaller than a model NHerb, if MHerb ⊂ NHerb [43].

Definition 40. (Fixpoints of Monotonic Mappings) Let T be a monotonic
mapping. Then T has a least fixpoint lfp(T). For every ordinal a, T ↑ a ⊆
lfp(T). Moreover, there exists an ordinal b such that c ≥ b implies T ↑ c =
lfp(T).

If the operator TP is not only monotonic but also continuous1, then a least
fixpoint of TP is always reached not later than at the first upper ordinal (see [62]).
By Kleene’s theorem (see [37]) lfp = T ↑ ω.

Theorem 1. (Fixpoint Characterization of the Minimal Herbrand
Model) Let P be a definite LP then MHerb

P = lfp(TP) = TP ↑ ω.

In summary, the semantics of LPs is now defined as follows:

Definition 41. (Herbrand Semantics of Logic Programs) Let the ground-
ing of a clause r in a language Σ be denoted as ground(r, Σ) where ground(r, Σ)
is the set of all clauses obtained from r by all possible substitutions of elements
of UΣ for the variables in r. For any definite LP P

ground(P, Σ) =
⋃

r∈P ground(r, Σ)
The operator TP : 2BP → 2BP associates with P is defined by TP = Tground(P),

where ground(P) denotes ground(P, Σ(P)), and accordingly:
SEMHerb(P) = MHerb

ground(P).

Generating ground(P) is often a very complex task, since, even in case of
function-free languages, it is in general exponential in the size of P . Moreover,
it is not always necessary to compute MHerb

ground(P) in order to determine whether
P |= A for some particular atom A. In practice, various proof-theoretic strategies
of deriving atoms from a LP have been proposed. These strategies are based on
variants of Robinson’s famous Resolution Principle [87]. The major variant is
SLD-resolution [57].

SLD Resolution. In a nutshell, in SLD a goal is a conjunction of atoms. A
substitution θ is a function that maps variables to terms. Asking a query Q?,
where Q? may contain variables, to a program P means asking for all possible
substitutions θ of the variables in Q? such that Qθ follows from P , i.e., θ is the
answer to Q. In other words, SLD resolution repeatedly transforms the initial
goal by applying the resolution rule to an atom Qi from the query/goal and
a rule from P , unifying Qi with the head H of the rule, i.e., it tries to find a
substitution θ such that Hθ = Qiθ. The typical selection rule is to choose always
the first atom in the query. This step is repeated until all goals are resolved and
the empty goal is obtained.
1 In the sense of a Scott-continuous function, which is one that preserves all directed

suprema.

Rules and Logic Programming for the Web 339

Example 1. (Linear resolution computation step)

¬Q1, ..,¬Qn ¬A1, ..,¬Am, H
|

θ = unify(Q1,¬H)

Remark: The common deductive computational model of logic programming uses
backward-reasoning (goal-driven) resolution to instantiate the program clauses
via goals and uses unification to determine the program clauses to be selected
and the variables to be substituted by terms. In logic programming unification is
used to derive specific information out of general rules which assert general infor-
mation about a problem. The rules are instantiated via goals, leading to specific
instances of these rules. A goal G? initiates a refutation attempt unifying the
goal G? with the head of an appropriate rule H ← B leading to an instance of the
rule (H ← B)′ if there exists a substitution θ = {V1/t1, .., Vn/tn} which assigns
terms ti to variables Vi such that (H ← B)′ = (H ← B)θ. Applying a substi-
tution θ to a term, atom or rule (program clause) yields the instantiated term,
atom or clause. For example, the rule son(X, Y) : −parent(Y, X), male(X). and
a goal son(adrian, Y)? leads to the more specialized instance son(adrian, Y) :
−parent(Y, adrian), male(adrian). The instance body Bθ is the goal reduction
(sub goal) for further derivation leading to more specific instances. Repeating
this process leads to an instance order (H ← B) ≥ (H ← B)′ ≥ whereas ≥ de-
notes the relation ”more general as”. The unification algorithm finds the greatest
lower bounds (glb) of terms under this instance order ≥, i.e. if θ is a most general
unifier (MGU) for a set of terms T then Tθ is the glb of T .

For a more precise account see [5,62] and [59] for resolution on normal clauses.
The task to find substitutions θ such that Qθ is derivable from the program P as
well as MHerb

P is closely related to SLD. The following properties are equivalent:

Theorem 2. (Soundness and Completeness of SLD)

– P |= ∀Qθ, i.e ∀Qθ is true in all models of P ,
– MHerb

P |= ∀Qθ,
– SLD computes an answer τ that subsumes θ wrt Q, i.e., ∃σ : Qτσ = Qθ.

Since SLD resolution is a top-down approach which starts with the query, the
main feature of it is, that it automatically ensures, that it only considers those
rules that are relevant for the query to be answered (see also section 1.3 for a
discussion of backward vs. forward reasoning). Rules that are not at all related
are simply not considered in the course of the proof. Note that there are also
several bottom up approaches for computing the least Herbrand model MHerb

P

from below. However, the bottom-up approach has two serious shortcomings:

1. The ”goal-orientedness” from top-down approaches is lost, i.e the whole
MHerb

P has to be computed even for those facts that have nothing to do
with the query.

2. In any step facts that are already computed before are recomputed again.

340 A. Paschke

Partial solutions have been proposed, e.g., semi-naive bottom-up evaluation [98,
26] or Magic Sets techniques [13]. However, as discussed in section 1 top-down
semantics are more appropriate in Web knowledge representation and the focus
is on backward-reasoning logic programming techniques.

Theory of Logic Programming with Negation. Definite LPs are typi-
cally not expressive enough for general knowledge representation on the Web
which is used to represent e.g. decision logics and situational logics. They e.g.,
exclude negative information and (non-monotonic) default statements such as
normally a implies c, unless something abnormal holds. Such statements and
the computation of default negation where the main motivation for alterna-
tive formulations of non-monotonic reasoning by circumscription [66], default
reasoning [84] or autoepistemic reasoning [65]. Independently of these work in
non-monotonic reasoning the proof-theory for negation-as-finite-failure (NAF),
the well-known SLDNF resolution (SLD+NAF), originated from SLD resolution.
In short, negation-as-finite-failure can be characterized as: A (default) negated
literal ∼ L succeeds, if L finitely fails. See [62, 5] for the formal definition of
SLDNF resolution and NAF. The implementation is often given as a cut-fail
test2:

not([P|Args]) :-
derive([P|Args]), % derive P(Args)
!, % cut
fail(). % fail

not([P|Args]). % positive answer

The corresponding model-theoretic semantics is defined by Clark’s completion
(COMP) [33] whose idea was to interpret ”←” in rules as ”↔” in the classical
sense.

Definition 42. (Clark’s Completion COMP) Clark’s completion semantics
COMP for a program P is given by the set of all classical models M(comp(P))
of the completion theory comp(P).

See Clark’s Equational Theory for more details [33]. COMP gives two rules for
inferring negative information:

– Infer ¬A iff BP \ M(comp(P)) |= ¬A
– Infer ¬A iff M(comp(P)) |= ¬A

But, (two-valued) COMP is incomplete and does not characterize the transitive
closure correctly. In [80] various problems with loops in COMP were discussed.
Therefore, Fitting [44] introduced a three-valued formulation comp3(P) of the

2 The basic idea behind this implementation is to make a closed world assumption
(i.e. all knowledge is completely known to the inference interpreter) and positively
proof the existence of the negated goal literal, which would refute the negation.

Rules and Logic Programming for the Web 341

two-valued COMP. It was shown by Kunen [58] that SLDNF is sound and com-
plete wrt COMP3 for propositional LPs and correct but not complete in the
predicate logic case [93].

SLDNF resolution suffers from problems with loops and floundering and its
implementation is only a simple test, i.e., no variable bindings are produced.
See [94] for a discussion of unsolvable problems related to SLDNF. Much work
has been done to define restriction properties (on the dependency graph whose
vertices are the predicate symbols from a program P) for which SLDNF is com-
plete. The important ones are briefly reviewed here:

– stratified: no predicate depends negatively on itself
– strict: there are no dependencies that are both even and odd
– allowedness: at least every variable occurring in a clause must occur in at

least one positive literal of the body
– call-consistent: no predicate depends oddly on itself.
– hierarchical: no form of recursion is allowed

Stratified LPs for which the rules do not have recursion through negation have
been defined by [7]. The predicates of stratified LPs can be placed into strata
so that one can compute over the strata. The model-theoretic semantics, the
supported Herbrand model M supp

P , is defined by declaring M supp
P as the intended

model among all minimal Herbrand models of comp(P) which could be obtained
by iterating over the strata. Przymusinski [77] showed that the selected model
was the so-called perfect model. The semantics of definite and stratified LPs lead
to the unique minimal model semantics which is generally accepted to be the
semantics for these classes of LPs.

However, this is not the case for more expressive LPs. Here are several possible
ways to determine the semantics and various approaches based on extensions
of the 2-valued classical logic to three-valued logics have been proposed, e.g.,
Fitting [44] or Kunen [58] semantics which are based on Kleene’s strong three-
valued logics, or the well founded semantics (WFS) [101] which is an extension
of the perfect model semantics. Another approach is based on the tradition of
non-monotonic reasoning in which the definition of entailment is based on the
notion of beliefs. The stable model semantics (STABLE) [47] is based on this
approach. For a discussion of the relationships between non-monotonic theories
and logic programming see [67]. In the following, the (declarative) semantics and
theory of more expressive types of LPs will be reviewed. Different semantics have
been defined in the past. Table 1 gives an incomplete overview.

In the following, the prominent semantics will be described, namely well-
founded semantics (WFS) and stable model semantics (STABLE) for normal
LPs with its extension answer set semantics (ASS) for extended LPs.

Stable Model Semantics. The Gelfond-Lifschitz transformation PM [47] of a
normal LP P wrt to its interpretation I is obtained from the ground instance
ground(P) of P as follows:

342 A. Paschke

Table 1. Semantics for LP Classes (adapted from [36])

Class Semantics Ref.

Definite LPs Least Herbrand model: Mp [7]
Stratified LPs Supported Herbrand model: Msupp

p [7]
Normal LPs Clark’s Completion: COMP [33]

3-valued Completion: COMP3 [58,44]
Well-founded Semantics: WFS [101]

WFS+ and WFS
′

[34]
WFSC [91]
Strong Well-founded Semantics: WFSE [27]
Stable Model Semantics: STABLE [47]
Generalized WFS: GWFS [10]
STABLE+ [35]
STABLEC [91]

STABLErel [34]
Pereira’s O − SEM [74]
Partial Model Semantics: PARTIAL [90]
Regular Semantics: REG − SEM [102]
Preferred Semantics: PREFERRED [39]

Extended LPs Extended Well-founded Semantics: WFSS [54]
Answer Set Semantics: ASS [48,49]
Extended Well-founded Semantics: WFSX [73]

General Dis-
junctive

Disjunctive WFS: DWFS [21]

Generalized Disjunctive WFS: GDWFS [11]
Disjunctive Stable: DSTABLE [82]

Stratified Dis-
junctive

Perfect model PERFECT [77]

Weakly Perfect: WPERFECT [75]
Generalized Closed World Assumption: GCWA

Positive Dis-
junctive

Weak generalized closed world assumption:
WGCWA

[83]

Definition 43. (Gelfond-Lifschitz transform) Let P be a program and M ⊆
BP . The Gelfond-Lifschitz transform PM of P (aka reduct of P) wrt M is defined
by PM = rM |r ∈ ground(P). It is obtained from ground(P) by:

1. Replace in every ground rule A ← B ∧ notC ∈ ground(P) the negative body
by its truth value wrt M .

2. Deleting each rule r in P with B−(r) ∩ M �= ∅ where B− denotes the set of
negated atoms in the body of the rule r.

Based on PM the concepts of stable models [47] and partial stable models [82]
have been defined:

Definition 44. (Stable Model) An interpretation I of a normal LP P is a
stable model MStable of P if I is a minimal model of PM :

SEMStable(P) =
⋂

MStable∈SEMStable(P)(M
Stable ∪ neg(BP \ MStable))

Rules and Logic Programming for the Web 343

Definition 45. (Partial Stable Model) A partial Herbrand interpretation is
called a partial stable model of P if it is a partial minimal model of PM .

It can be shown that stable models are always partial models and that every
stratified LP P has a unique stable model where stratified and stable semantics
coincide.

Answer Set Semantics. Gelfond and Lifschitz [48,49] have extended the concept
of stable models to extended and disjunctive LPs based on the notion of answer
sets. The proposed answer-set semantics is defined as follows:

Definition 46. (Answer Set Semantics) Let P be an extended (disjunctive)
LP. P is transformed to a (explicit) negation-free program P ′ by replacing all
negative literals ¬A by positive literals A′ over new predicate symbols. Every
stable model MStable of P ′ defines an answer set of P , which is a set of literals:

L = A ∈ BP |MStable(A) = t ∪ ¬A ∈ ¬BP |MStable(A′) = t
If L does not contain complementary pairs A,¬A of literals, then the answer

set is L else it is BP ∪ ¬BP is the set of all ground literals.

Associated with SEMStable are two entailment relations:

Definition 47. (Cautious Entailment) An extended LP P cautiously entails
a ground atomic formula a iff a ∈ I for every answer set MStable of P .

Definition 48. (Brave Entailment) An extended program P bravely entails
a ground atomic formula a iff a ∈ I for some answer set MStable of P .

Well-founded Semantics. There exists several definitions to well-founded seman-
tics (WFS), e.g., [101, 45, 12, 81]. Van Gelder, Ross and Schilpf [101] were the
first to extend the work of Apt et al. [7] to the class of normal logic programs.
The well-founded semantics (WFS) of Gelder et al. is a three-valued logic: true,
false and unknown. WFS is an extension of the perfect model semantics, in con-
trast to Fitting and Jacob’s semantics which is based on Kleene’s strong three
valued logic. For instance, WFS (as well as perfect model semantics) assigns the
truth value ”false” to a clause p ← p while Fitting and Jacob assign ”unknown”.
Following the definition from [101] WFS is defined as follows.

Definition 49. (Partial Interpretation) Let P be a normal LP. A partial
interpretation I is a set of ground literals such that for no atom A both A and not
A are contained in I, i.e., pos(I) ∩ neg(I) = ∅ and whose atoms are contained
in BP of P , i.e., pos(I) ∪ neg(I) ⊆ BP . I is a total interpretation, if I is a
partial interpretation and for every atom A ∈ BP it contains A or not A, i.e.,
pos(I) ∪ neg(I) = BP .

Definition 50. (Unfounded Set) Let P be a normal LP. Let I be a partial
interpretation. Let α ⊆ BP be a set of ground atoms. α is an unfounded set of
P wrt I, if for every atom A ∈ α and every ground rule instance A ← β ∈
ground(P) at least one of the following conditions holds:

344 A. Paschke

1. at least one body literal L ∈ β is false in I.
2. at least one positive body literal B ∈ β is contained in α.

Definition 51. (Greatest Unfounded Set) Let P be a normal LP. Let I be
a partial interpretation. The greatest unfounded set of P wrt I is the union of
all unfounded sets of P wrt I.

Definition 52. (Pos. and Neg. Immediate Consequences) For a ground
normal LP P and a partial interpretation I ⊆ BP the following monotonic
transformation operators are defined:

– TP (I) := A ∈ BP |∃(A ← β) ∈ ground(P) : β ⊆ I
– UP (I) := the greatest unfounded set of P wrt I
– WP (I) := TP (I) ∪ ∼ UP (I)

Lemma 1. TP , UP and WP are monotonic operators.

Theorem 3. Let P be a normal LP. For every countable ordinal α, WP ↑ α is
a partial model of P .

Definition 53. (Well-founded Model) The least fixpoint of WP is the well-
founded (partial) model of P denoted W ∗

P . The least fixpoint can be computed as
follows, lfp(WP) = W∞

P (∅)3. If lfp(WP) ⊆ BP is a total interpretation of P
then lfp(WP) is a well-founded model. An atom A ∈ BP is well-founded (resp.
unfounded) wrt P iff A (resp. ¬A) is in lfp(WP).

WFS is defined for the grounding of an arbitrary normal LP: ground(P), i.e.,
it defines a mapping SEMWFS, which assigns to every normal LP P a set
SEMWFS(P) of (partial) models of P such that SEMWFS(P) =
SEMWFS(ground(P)) (i.e., SEMWFS is instantiation invariant).

Definition 54. (Well-founded Semantics) The Well-founded semantics
(WFS) assigns to every normal LP P the well-founded partial model W ∗

P

of P :
SEMWFS(P) := {W ∗

P }.

Remark: In the (van Gelder)-Definition of the well-founded semantics, WP is not
a function on the set of all three-valued interpretations, i.e. it is not well-defined.
Indeed, there are three-valued interpretations I such that WP (I) is not three-
valued (it becomes four-valued). However, this is not a serious problem because
the iterates WP ↑ α are provably still always all three-valued. [52]

Definition 55. (Entailment) A normal LP P entails a ground atom a under
WFS, denoted by P |= a, if it is true in SEMWFS(P).

WFS can be considered an approximation of stable models, i.e., if a program
has stable models, then if an atom is true resp. false wrt the WFS then it is
true resp. false wrt STABLE. [81] Moreover, for weakly stratified LPs [76] WFS
coincides with STABLE. However, there are three important distinction between
STABLE and WFS:

Rules and Logic Programming for the Web 345

1. WFS is a three-valued semantics, whereas STABLE is two-valued.
2. every normal LP has exactly one WFS model, whereas every normal LP has

zero or more stable models.
3. Irrelevant clauses (tautologies) lead to the non-existence of stable models,

e.g., p ← ¬p has no stable model.

While the alternating fixpoint on normal logic programs only captures the nega-
tion of positive existential closure such as e.g. transitive closure, it does not
capture the negation of positive universal closure. As shown by van Gelder [101]
the constructive characterization of the well-founded semantics for normal logic
programs in terms of alternating fixpoint partial models can be further extended
towards an alternating fixpoint semantics for general logic programs. There have
been also several proposals for extending WFS by classical negation leading to a
well-founded semantics for extended LPs - see e.g., [39,40,9,61,73,24]. Decidable
and semi-decidable fragments of the WFS have been discussed in [32].

Procedural Semantics for Normal and Extended LPs. Existing procedural se-
mantics for the computation of the well-founded model can be divided into
two groups: (1) bottom-up approaches such as the alternating fixpoint approach
[99,100,64], the magic set approach [89,55,68,95] and transformation based (aka
residual program) approaches [25, 41, 22, 23] and (2) top down approaches such
as non-tabling based approaches such as Global SLS resolution [78,88] or tabling
based approaches such as extensions to OLDT resolution [96], e.g., WELL [14],
XOLDTNF [29] or the approach of Bol and Degerstedt [16], SLT resolution [92]
or the well-known SLG resolution [28] (another prominent extension of OLDT).
There are also some proof procedures for well-founded semantics for extended
logic programs (WFSX) such as [97] or SLX resolution [3].

The well-known 2-valued top-down SLDNF (classical LP Prolog) resolution
[33], a resolution based method derived from SLD resolution [57, 8], as a proce-
dural semantics for LPs has many advantages. Due to its linear derivations it can
be implemented using efficient stack based memory structures, it supports very
useful sequential operators such as cut, denoted by !, or assert/retract and the
negation-as-finite failure test is computationally quite efficient. Nevertheless, it
is a too weak procedural semantics for unrestricted LPs with negations. It does
not support goal memoization and suffers from well-known problems such as
redundant computations of identical calls, non-terminating loops or floundering.
It is not complete for LPs with negation or infinite functions. Moreover, it can
not answer free variables in negative subgoals since the negation as finite failure
rules is only a simple test. For more information on SLDNF resolution I refer
to [62, 6]. For typical unsolvable problems related to SLDNF see e.g. [94].

SLG resolution [30, 28] is the most prominent tabling based top-down method
for computing the well-founded semantics for normal LPs and it has been show
in [31] how SLG can be used for query evaluation of general logic programs un-
der WFS alternating fixpoint semantics. SLG resolution overcomes infinite loops
and redundant computations by tabling. The basic idea of tabling, as implemented
e.g., in ODLT resolution [96], is to answer calls (goals)with the memorized answers
from earlier identical goals which are stored in a table. However, SLG

346 A. Paschke

resolution is a non-linear approach. SLG is based on program transformations us-
ing six basic transformation rules, instead of the tree based approach of SLDNF.
It distinguishes between solution nodes, which derive child nodes using the clauses
from the program and look-up nodes, which produce child nodes using the mem-
orized answers in the tables. Since all variant subgoals derive answers from the
same solution node, SLG resolution essentially generates a search graph instead
of a search tree and jumps back and forth between lookup and solution nodes, i.e.,
it is non-linear. Special delaying literals are used for temporarily undefined nega-
tive literals and a dependency graph is maintained to identify negative loops. Calls
to look-up nodes will be suspended until all answers are collected in the table, in
contrast to the linear SLD style where a new goal is always generated by linearly
extending the latest goal. It is up to this non-linearity of SLG that tabled calls are
not allowed to occur in the scope of sequential operators such as cut.

Global-SLS resolution [78, 79, 88] for WFS is a procedural semantics which di-
rectly extends SLDNF resolution and hence preserves the linearity property of
SLDNF. In contrast to SLDNF-trees, SLS-trees treat infinite derivations as failed
and recursions through negation as undefined. However, it assumes a positivistic
computation rule that selects all positive literals before negative ones and inherits
the problem of redundant computations from SLDNF. Moreover, a query fails if
the SLS-trees for the goal either end at a failure leave or are infinite, which makes
Global-SLS computationally ineffective [88]. To avoid redundant computations in
SLS, a tabling approach called tabulated SLS resolution [15] was proposed. But
the approach, like SLG, is based on non-linear tabling.

SLX resolution [3] is a procedural semantics for extended LPs which is sound
and complete wrt WFSX semantics. As in SLS resolution it uses a failure rule
to solve the problems of infinite positive recursions and distinguishes two kinds of
derivations for proving verity (SLX-T tree) and proving non-falsity (SLX-TU tree)
in the well-founded model in order to fail or succeed literals involved in recursion
through negation. Thus, SLX does not consider a temporal undefined status as
the other top-down approaches for WFS do, but implements the following deriva-
tions: if a goal L is to be undefined wrt WFS it must be failed, if it occurs in a
SLX-T derivation and refuted if it occurs in a SLX-TU derivation. To fulfill the
coherence requirement of WFSX a default negated literal ∼ L is removed from a
goal if there is no SLX-TU refutation for L or if there is one SLX-T refutation for
∼ L. In short, SLX is very close to SLDNF resolution. As already pointed out by
the authors [3,4] it is only theoretically complete, does not guarantee termination
since it lacks loop detection mechanisms, is in general not efficient and makes re-
dundant computations since tabling is not supported. Its implementation is given
as a meta program in Prolog.

SLE resolution (Linear resolution with Selection function for Extended WFS)
extends linear SLDNF with goal memoization based on linear tabling and loop
cutting. In short, it resolves infinite loops and redundant computations by tabling
without violating the linearity property of SLD style resolutions. SLE resolution
is based on four truth values: t (true), f (false), u (undefined) and u′ (temporar-
ily undefined) with t = ¬f , ¬f = t, ¬u = u and ¬u′ = u and a truth ordering

Rules and Logic Programming for the Web 347

¬f > t > u > u′. u′ will be used if the truth value of a subgoal is temporarily un-
decided. SLE resolution follows SLDNF, where derivation trees are constructed by
resolution. For more information on the notion of trees for describing the search
space of top-down proof procedures see e.g. [62]. In SLE a node in a tree is de-
fined by Ni : Gi, where Ni is the node name and Gi is the first goal labelling the
node. Tables are used to store intermediate results. In contrast to SLG resolution,
there is no distinction between lookup and solution nodes in SLE. The algorithm,
always, first tries to answer the call (goal) with the memorized answers in the ta-
bles. If there are no answers available in a table the call is resolved against program
clauses which are selected in the same top-down order as in SLDNF. This avoids
redundant computations. To preserve the order the answers stored in a table are
used in a FIFO (first-in-first-out) style, i.e., the first memorized answer is first
used to answer the call. In case of loops the two main issues in top-down procedu-
ral semantics for WFS are solutions to infinite positive recursions (positive loops)
and infinite recursion through negation by default (negative loops).

3 Web Rule Languages

Web rule languages have been developed for the declarative representation of,
e.g., privacy policies, business rules, and Semantic Web rules. Rules are central to
knowledge representation for the Semantic Web and are often considered as being
side by side with ontologies, e.g. in W3C’s hierarchical Semantic Web architecture
(2007 version shown in Figure 2).

There are different types of rules which can be used on the Web such as

– Derivation rules are sentences of knowledge that are derived from other knowl-
edge by an inference or mathematical calculation.

– Reaction rules are behavioral rules which react on occurred events or changed
conditions by executing actions.

– Integrity rules (or constraints) are assertions which express conditions that
must be always satisfied.

– Deontic rules describe rights and obligations of roles in the context of evolving
states (situations triggered by events/actions) and state transitions.

– Transformation rules - specify term rewriting, which can be considered as
derivation rules of logics with (oriented) equality

– Facts might describe various kinds of information such as events (event/action
messages, event occurences), (object-oriented) object instances, class individ-
uals (of ontology classes), norms, constraints, states (fluents), conditions of
various forms, actions, data (e.g., relational, XML), etc., which might be qual-
ified, e.g., by priorities, temporally, etc.

Rules can influence the operational and decision processes of Web systems.

– Derivation rules (deduction rules): establish / derive new information from
existing Web data that is used, e.g. in a decision process.

– Reaction rules that establish when certain activities should take place:

348 A. Paschke

Fig. 2. Semantic Web Layer Cake [adapted from (W3C, 2007)]

• Condition-Action rules (production rules)
• Event-Condition-Action (ECA) rules + variants (e.g. ECAP)
• Messaging reaction rules (event message reaction rules)

Rules can also act as constraints on the Web systems structure, behavior and in-
formation.

– Structural constraints (e.g. deontic assignments).
– Integrity constraints and state constraints
– Process and flow constraints.

Web rule markup languages provide the required expressiveness enabling machine-
interpretation, automated processing and translation into other such Web
languages, some of which also being the execution syntaxes of rule engines. One
of these languages may act as a lingua franca to interchange rules and integrate
with other markup languages, in particular with Web languages based on XML and
with Semantic Web languages (e.g. RDF Schema, OWL and OWL 2) for ontologies
based on RDF or directly on XML. Web rule languages may also be used for publi-
cation purposes on the Web and for the serialization of external data sources, e.g.
of native online XML databases or RDF stores. Recently, there have been several
efforts aiming at rule interchange and building a general, practical, and deployable
rule markup standard for the (Semantic) Web. These include several important
general standardization or standards-proposing efforts including RuleML (www.

www.ruleml.org

Rules and Logic Programming for the Web 349

ruleml.org), the W3C member submission SWRL (www.w3.org/Submission/
SWRL/), the W3C recommendation RIF (www.w3.org/2005/rules/), and others.

A complete specification of Web rule languages consists of a formalization of
their syntax, semantics and, often left implicit, pragmatics. The syntax of Web
rule markup languages always includes the concrete syntax of (XML) markup,
perhaps indirectly through other languages such as via RDF/XML. Often, there
is another more or less concrete syntax such as a compact shorthand or presen-
tation syntax, which may be parsed into the XML markup. While a presentation
syntax can already disregard certain details, an abstract syntax systematically re-
places character sequences with abstract constructors, often in a (UML) diagram
form or as an abstract syntax tree (AST). Together with different token dictio-
naries, it can be used to generate corresponding concrete syntaxes. The semantics
is formalized in a model-theoretic, proof-theoretic, or procedural manner, some-
times in more than one. When rules and speech-act-like performatives, such as
queries and answers, are transmitted between different systems, their pragmatic
interpretation, including their pragmatic context, becomes relevant, e.g. in order
to explain the effects of performatives - such as the assertion or retraction of facts
- on the internal knowledge base [72].

A general distinction of three rule modeling layers can be adopted from OMG’s
model driven architecture (MDA) engineering approach
(http://www.omg.org/mda/):

– A platform specific model (PSM) which encodes the rule statements in the
language of a specific execution environment

– A platform independent model (PIM) which represents the rules in a common
(standardized) interchange format, a rule markup language

– A computational independent model (CIM) with rules represented in a natu-
ral or visual language

The CIM level comprises visual and verbal rendering and rule modeling, e.g. via
graphical representation or a controlled natural language syntax for rules, mainly
intended for human consumption. Graphical representations such as UML dia-
grams or template-driven/controlled languages can also be used as presentation
languages.

The PIM level should enable platform-independent machine interpretation, pro-
cessing, interchange and translation into multiple PSM execution syntaxes of con-
crete rule engines. Hence, the concrete XML (or RDF/XML based) syntax of a
Web rule language such as RuleML, SWRL or RIF resides on this level, whereas
the abstract syntax is on the borderline between the PIM and CIM levels.

The PSM level is the result of translating/mapping PIM rule (interchange) lan-
guages into execution syntaxes, such as ISO Prolog, POSL, Prova
(http://prova.ws/), which can be directly used in a specific execution environ-
ment such as a rule engine. A general distinction can be made between a compiled
language approach, where the rules are statically translated into byte code (at
compile time) versus interpreted scripting languages, which are dynamically in-
terpreted (at run-time). While the compiled approach has obvious efficiency ben-
efits, the interpreted approach is more dynamic and facilitates, e.g., updates at

www.ruleml.org
www.w3.org/Submission/SWRL/
www.w3.org/Submission/SWRL/
www.w3.org/2005/rules/
http://www.omg.org/mda/
http://prova.ws/

350 A. Paschke

run-time. Often, Semantic Web Rule Languages are directly executable by their
respective rule engines; hence reside on the PSM level. As an intermediate step
between the concrete PSM level and the PIM level an abstract representation is
often introduced, such as N3, which provides an abstract rule syntax based on the
RDF syntax.

The correct execution of an interchanged PIM-level rule set serialized in a rule
markup language depends on the semantics of both the rule program and the
platform-specific rule inference engine (IE). To address this issue, the IE and the
interchanged rule set must reveal their intended/implemented semantics. This
may be solved via explicit annotations based on a common vocabulary, e.g. an
(Semantic Web) ontology which classifies the semantics. Annotations describing
the semantics of an interchanged rule set could even be used to find appropriate
IEs on the Web to correctly and efficiently interpret and execute the rule pro-
gram; for example, (1) by configuring the rule engine for a particular semantics
in case it supports different ones, (2) by executing an applicable variant of sev-
eral interchanged semantic alternatives of the rule program, or (3) by automatic
transformation approaches which transform the interchanged rule program into a
rule program with an applicable semantics.

In the following two subsections languages on the PIM and PSM level will be
described.

3.1 Platform Independent Web Rule Languages

In the following, three prominent platform independent Web Rule languages are
introduced.

RuleML
The Rule Markup Language (RuleML, www.ruleml.org) is a markup language
developed to express a family of Web rules in XML for deduction, rewriting, and
reaction, as well as further inferential, transformational, and behavioral tasks. It
is defined by the Rule Markup Initiative (www.ruleml.org), an open network of
individuals and groups from both industry and academia that was formed to de-
velop a canonical Web language for rules using XML markup and transformations
from and to other rule standards/systems. It develops a modular, hierarchical
specification for different types of rules comprising facts, queries, derivation rules,
integrity constraints (consistency-maintenance rules), production rules, and re-
action rules (Reaction RuleML, http://reaction.ruleml.org), as well as tools
and transformations from and to other rule standards/systems. Datalog RuleML
is defined over both data constants and individual constants with an optional at-
tribute for IRI (URI) webizing. Atomic formulas have n arguments, which can
be positional terms or, in Object-Oriented Datalog, slots (F-logic-like key→term
pairs); OO Datalog also adds optional types and RDF-like oids/anchors, via IRIs
(Boley, 2003). Inheriting all of these Datalog features, Hornlog RuleML adds po-
sitional or slotted functional expressions as terms. In Hornlog with equality, such
uninterpreted (constructor-like) functions are complemented by interpreted
(equation-defined) functions. This derivation rule branch is extended upward

www.ruleml.org
www.ruleml.org
http://reaction.ruleml.org

Rules and Logic Programming for the Web 351

towards First Order Logic, has subbranches with Negation-As-Failure, strong-
Negation, or combined languages, and is parameterized by ’pluggable’ built-ins.

SWRL
The Semantic Web Rule Language (SWRL, www.w3.org/Submission/SWRL/) is
defined as a language combining sublanguages of the OWL Web Ontology Lan-
guage (OWL DL and Lite) with those of the Rule Markup Language (Unary/
Binary Datalog). The specification was submitted to W3C in May 2004 by the
National Research Council of Canada, Network Inference (since acquired by web-
Methods), and Stanford University in association with the Joint US/EU ad hoc
Agent Markup Language Committee. Compared to Description Logic Programs
(DLP) [50], a slightly earlier proposal for integrating description logic and Horn
rule formalisms by an overlapping authoring team, SWRL takes the opposite in-
tegration approach: DLP can be seen as the intersection of description logic and
Horn logic; SWRL, as roughly their union. For DLP, the resulting rather inexpres-
sive language corresponds to a peculiar looking description logic imitating special
rules. It is hard to see the DLP restrictions, which stem from Lloyd-Topor trans-
formations, being either natural or satisfying. On the other hand, SWRL retains
the full power of OWL DL, but adds rules at the price of undecidability and a
lack of complete implementations, although the SWRL Tab of Protege has become
quite popular (http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab). Rules
in SWRL are of the form of an implication between an antecedent (body) conjunc-
tion and a consequent (head) conjunction, where description logic expressions can
occur on both sides. The intended interpretation is as in classical first-order logic:
whenever the conditions specified in the antecedent hold, then the conditions spec-
ified in the consequent must also hold.

SWRL [53] is a homogeneous approach combining rules with ontoligies with
relatively high complexity bounds for the ontology reasoning part (due to the fact
that standard rule engines are not optimized for DL reasoning). In general, the
works on combining rules and ontologies can be basically classified into two basic
approaches: homogeneous and heterogeneous integrations. Starting from the early
Krypthon language [20] among the heterogeneous approaches, which hybridly use
DL reasoning techniques and tools in combination with rule languages and rule
engines are e.g., CARIN [60], Life [2], Al-log [38], non-monotonic dl-programs [42]
and r-hybrid KBs [85]. Among the homogeneous approaches which combine the
rule component and the DL component in one homogeneous framework sharing
the combined language symbols are e.g., DLP [50], KAON2 [69] or SWRL [53].
Both integration approaches have pros and cons and different integration strate-
gies such as reductions or fixpoint iterations are applied with different restrictions
to ensure decidability. These restrictions reach from the intersection of DLs and
Horn rules [50] to leaving full syntactic freedom for the DL component, but re-
stricting the rules to DL-safe rules [69], where DL variables must also occur in a
non DL-atom in the rule body, or role-safe rules [60], where at least one variable
in a binary DL-query in the body of a hybrid rule must also appear in a non-DL
atom in the body of the rule which never appears in the consequent of any rule in
the program or to tree-shaped rules [51]. Furthermore, they can be distinguished

www.w3.org/Submission/SWRL/
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab

352 A. Paschke

according to their information flow which might be uni-directional or bi-directional.
For instance, in homogeneous approaches bi-directional information flows between
the rules and the ontology part are naturally supported and new DL constructs
introduced in the rule heads can be directly used in the integrated ontology in-
ferences, e.g., with the restriction that the variables also appear in the rule body
(safeness condition). However, in these approaches the DL reasoning is typically
solved completely by the rule engine and benefits of existing optimized DL reason-
ers using, e.g. variants of tableau based algorithms, are lost. On the other hand,
heterogenous approaches, benefit from the hybrid use of both reasoning concepts
exploiting the advantages of both (using LP reasoning and tableaux based DL rea-
soning), but bi-directional information flow and fresh DL constructs in rule heads
are much more difficult to implement. A more complete survey and discussion of
the combination of rules and ontologies is given in chapter ”OWL and Rules” of
this lecture book. [1]

W3C RIF
The W3C Rule Interchange Format (RIF) Working Group [86] is an effort, influ-
enced by RuleML, to define a standard Rule Interchange Format for facilitating
the exchange of rule sets among different systems and to facilitate the development
of intelligent rule based applications for the Semantic Web. For these purposes,
RIF Use Cases and Requirements (RIF-UCR) have been developed. The RIF ar-
chitecture is conceived as a family of languages, called dialects. A RIF dialect is a
rule based language with an XML syntax and a well-defined semantics.

The W3C RIF recommendation defines the Basic Logic Dialect (RIF-BLD),
which corresponds to a definite Horn rule language with equality. RIF-BLD has a
number of syntactic extensions with respect to ’regular’ Horn rules, including in-
ternationalized resource identifiers (IRIs) as identifiers for concepts, F-logic-like
frames and slots, and a standard system of built-ins drawn from Datatypes and
Built-Ins (RIF-DTB). RIF Core (RIF-Core) in the intersection of RIF-BLD and
the Production Rule Dialect (RIF-PRD) influenced by OMG’s PRR, which can
then be further extended or supplemented by reaction rules. The connection to
other W3C Semantic Web languages is established via RDF and OWL Compati-
bility (RIF-SWC). Moreover, RIF-BLD is a general Web language in that it sup-
ports the use of IRIs (Internationalized Resource Identifiers) and XML Schema
data types. The RIF Working Group has also defined the Framework for Logic
Dialects (RIF-FLD). RIF-FLD uses a uniform notion of terms for both expres-
sions and atoms in a higher order logic (HiLog)-like manner.

In the following, the syntax and semantics of the basic logic dialect of RIF will
be summarized.

Definition 56. (Alphabet): The alphabet of the non-normative presentation lan-
guage of RIF-BLD, which maps to the normative XML syntax of RIF, consists of

– a countably infinite set of constant symbols Const
– a countably infinite set of variable symbols V ar
– a countably infinite set of argument/slot names, Arg
– connective symbols And, Or, and : −

Rules and Logic Programming for the Web 353

– quantifiers Forall and Exists
– the symbols →, External, =, #, ##, Import, Prefix, and Base
– the symbols Group and Document
– the auxiliary symbols (,), [,], <, >, and ∧∧.

Constants in RIF are written as literal∧∧symbolspace, where literal is a sequence
of Unicode characters and symbolspace is an identifier for a symbol space consist-
ing of an identifier and a lexical space. Symbol spaces supported in RIF are

– identifiers of Web entities, where the lexical space consists of strings that
syntactically are internationalized resource identifiers (IRIs), e.g.,
http://www.w3.org/2007/rif#iri

– datatypes supported by RIF, e.g.
http://www.w3.org/2001/XMLSchema#integer

– rif:local which is used for function and predicate symbols that are local to a
rule document.

Slot/argument names Arg and variables V ar are unicode strings. Variables start
with the symbol ?, e.g. ?x. The symbol → is used in terms that have named ar-
guments and in frame formulas. Equality in RIF is denoted by =. The symbols
#, and ## are used in formulas that define class membership and subclass rela-
tionships. The symbol External defines an external atomic formula or a function
term defined by a RIF built-in. The symbol Document is used to specify RIF-BLD
documents. The symbol Import is used for importing documents, and the symbol
Group is used to organize RIF-BLD formulas into rule sets.

Using the above alphabet the language of RIF-BLD is constructed as a set of
formulas. The main building blocks that are used to construct formulas are terms.
RIF-BLD defines several kinds of terms: constants and variables, positional
(as in normal logic programs) and named-argument (slotted) terms (as in F-
Logic), and additionally equality, membership, subclass, frame, and exter-
nal terms.

Positional terms of the form p(v1...vn) and unpositional named arguments p(s1

→ v1...sn → vn), where p is a (webized) predicate symbol, are atomic formula.
Equality, subclass, membership, and frame terms are atomic formulas, too.
External(ϕ), where ϕ is an atomic formula, is an externally defined atomic for-
mula.

The condition language of RIF-BLD constructs condition formula from atomic
formula using Conjunction: And(ϕ1...ϕn) to build a conjunctive formula, Dis-
junction: Or(ϕ1 ...ϕn), to build disjunctive formula, and Existentials:
Exists?V1...?Vn(ϕ) to build existential formula.

Condition formulas are used inside the premises of rules in the RIF rule lan-
guage dialects (RIF Core, RIF BLD and RIF PRD). In RIF-BLD definite horn
rules are defined as rule implications: ψ : −ϕ which are universally quanti-
fied Forall ?V1...?Vn(ψ : −ϕ). A set of rules is grouped in a group formula:
Group(ϕ1...ϕn), where ϕi is either a universal fact, variable-free rule implication,
variable-free atomic formula, or another group formula. Finally, RIF-BLD docu-
ment formula are expressions of the form: Document(directive1...directivenΠ),

http://www.w3.org/2007/rif#iri
http://www.w3.org/2001/XMLSchema#integer

354 A. Paschke

where Π is an optional group formula (the knowledge base of the RIF document)
and the optional directives are

– import directive of the form Import(iri) or Import(iriprofile), where iri in-
dicates the location of another RIF document to be imported plus and op-
tional profile for import.

– base directives of the form Base(iri) defining syntactic shortcuts for expand-
ing relative IRIs into full IRIs

– prefix directive of the form Prefix(pv) defining a syntactic shortcut to enable
a compact URI representation for rif : iri constants.

Additionally, RIF-BLD allows every term and formula to be optionally preceded
by an annotation of the form (∗ id ϕ ∗), where id is a rif : iri constant and ϕ is
a formula.

The non-normative presentation syntax corresponds to the normative XML
syntax of RIF-BLD which uses the element and attribute names listed below:

– And: conjunction
– Or: disjunction
– Exists: quantified formula for existentials, containing declare and formula

roles
– declare: declare role, containing a Var
– formula: formula role, containing a FORMULA
– Atom: atom formula, positional or with named arguments
– External: external call, containing a content role
– content: content role, containing an Atom, for predicates, or Expr, for func-

tions
– Member: prefix version of member formula #
– Subclass: prefix version of subclass formula ##
– Frame: Frame formula
– object: Member/Frame role, containing a TERM or an object description
– op: Atom/Expr role for predicates/functions as operations
– args: Atom/Expr positional arguments role, with fixed ’ordered’ attribute,

containing n TERMs
– instance: Member instance role
– class: Member class role
– super: Subclass super-class role
– sub: Subclass sub-class role
– slot: prefix version of Name/TERM→TERM pair as an Atom/Expr or Frame

slot role, with fixed ’ordered’ attribute
– Equal: prefix version of term equation ’=’
– Expr: expression formula, positional or with named arguments
– left: Equal left-hand side role
– right: Equal right-hand side role
– Const: individual, function, or predicate symbol, with optional ’type’ attribute
– Name: name of named argument
– Var: serialized version of logic ’?’ variable

Rules and Logic Programming for the Web 355

– id: identifier role, containing IRICONST
– meta: meta role, containing metadata as a Frame or Frame conjunction
– Document: document, containing optional directive and payload roles
– directive: directive role, containing Import
– payload: payload role, containing Group
– Import: importation, containing location and optional profile
– location: location role, containing IRICONST
– profile: profile role, containing PROFILE
– Group: nested collection of sentences
– sentence: sentence role, containing RULE or Group
– Forall: quantified formula for ’Forall’, containing declare and formula roles
– Implies: prefix version of logic ’:-’ implication, containing if and then roles
– if : antecedent role, containing FORMULA
– then: consequent role, containing ATOMIC or conjunction of ATOMICs

Like RuleML, the XML syntax of RIF divides all XML tags into class descriptors
starting with upper case letters, called type tags, and property descriptors starting
with lower case letters, called role tags. [17]

The semantics of RIF-BLD is an adaptation of the standard semantics for Horn
clauses. It is specified using general models.

Definition 57. (Semantic Structure) A semantic structure, I, is a tuple of
the form ¡TV , DTS, D, Dind, Dfunc, IC , IV , IF , Iframe, INF , Isub, Iisa, I=,
Iexternal, Itruth¿, where D is a non-empty set of elements called the domain of
I, and Dind, Dfunc are nonempty subsets of D. Dind is used to interpret the ele-
ments of Const that play the role of individuals and Dfunc is used to interpret the
constants that play the role of function symbols. DTS denotes a set of identifiers
for primitive datatypes as defined in RIF-DTB. IC maps Const to D. IV maps
V ar to Dind. IF maps D to functions D∗ind → D with D∗ind being a set of all
finite sequences over the domain Dind. INF maps D to the set of total functions
SetOfFiniteSets(ArgNames× Dind) → D, where ArgNames are named argu-
ments. Iframe maps Dind to total functions of the form SetOfFiniteBags(Dind×
Dind) → D. Isub is a mapping of the form Dind ×Dind → D. Iisa is a mapping of
the form Dind ×Dind → D. I= is a mapping of the form Dind ×Dind → D. Itruth

is a mapping of the form D → TV . Finally, Iexternal is a mapping of symbols into
Const described as external to fixed n-ary functions.

RIF-BLD also defines a generic mapping from terms to D as follows:

– I(k) = IC(k), if k is a symbol in Const
– I(?v) = IV (?v), if ?v is a variable in V ar
– I(f(t1...tn)) = IF (I(f))(I(t1), ..., I(tn))
– I(f(s1 → v1...sn → vn)) = INF (I(f))(< s1, I(v1) >, ..., < sn, I(vn) >)
– I(o[a1 → v1...ak → vk]) = Iframe(I(o))(< I(a1), I(v1) >, ..., < I(an), I(vn) >)

Note, that in RIF I(o[a → b a → b]) = I(o[a → b]).
– I(c1##c2) = Isub(I(c1), I(c2))
– I(o#c) = Iisa(I(o), I(c))

356 A. Paschke

– I(x = y) = I=(I(x), I(y))
– I(External(p(s1...sn))) = Iexternal(p)(I(s1), ..., I(sn)).

The truth value of (non-document) formulas in RIF BLD is determined from the
semantic structures by the following truth valuation.

Definition 58. (Truth Valuation)The truth valuation TV alI is defined as
follows:

– Positional atomic formulas: TV alI(r(t1...tn)) = Itruth(I(r(t1...tn)))
– Atomic formulas with named arguments: TV alI(p(s1 → v1...sk → vk)) =

Itruth(I(p(s1 → v1...sk → vk)))
– Equality: TV alI(x = y) = Itruth(I(x = y)) with Itruth(I(x = y)) = t if

I(x) = I(y) and that Itruth(I(x = y)) = f otherwise
– Subclass: TV alI(sc##cl) = Itruth(I(sc##cl))
– Membership: TV alI(o#cl) = Itruth(I(o#cl))
– Frame: TV alI(o[a1 → v1...ak → vk]) = Itruth(I(o[a1 → v1...ak → vk]))
– Externally defined atomic formula: TV alI(External(t)) = Itruth(Iexternal(t))
– Conjunction: TV alI(And(c1...cn)) = t if and only if TV alI(c1) = ... =

TV alI(cn) = t. Otherwise, TV alI(And(c1...cn)) = f .
– Disjunction: TV alI(Or(c1...cn)) = f if and only if TV alI(c1) = ... =

TV alI(cn) = f . Otherwise, TV alI(Or(c1...cn)) = t.
– Quantification:

• TV alI(Exists?v1...?vn(ϕ)) = t if and only if for some TV alI∗(ϕ) = t
• TV alI(Forall?v1...?vn(ϕ)) = t if and only if TV alI∗(ϕ) = t, where I∗ is

a semantic structure with the special mapping I∗V which coincides with IV

on all variables except, possibly, on ?v1, ..., ?vn.
– Rule implication:

• TV alI(conclusion:-condition) = t, if either TV alI(conclusion) = t or
TV alI(condition) = f .

• TV alI(conclusion:-condition) = f otherwise.
– Groups of rules: If Π is a group formula of the form Group(ϕ1...ϕn) then

• TV alI(Π) = t if and only if TV alI(ϕ1) = t, ..., TV alI(ϕn) = t.
• TV alI(Π) = f otherwise.

Since RIF allows to import other documents which can have rif : local constants,
semantic multi-structures are introduced for the interpretation of documents. Se-
mantic multi-structures are essentially similar to regular semantic structures, as
defined above, but, in addition, they allow to interpret rif : local symbols that
belong to different documents differently.

The following logical entailment defines what it means for a set of RIF-BLD
rules to entail another RIF-BLD formula, in particular entailment of RIF condi-
tion formulas.

Definition 59. (Models) A multi-structure I is a model of a formula, ϕ, written
as I |= ϕ, iff TV alI(ϕ) = t.

Rules and Logic Programming for the Web 357

Definition 60. (Logical Entailment) Let ϕ and ψ be formulas, then ϕ entails ψ,
written as ϕ |= ψ, if and only if for every multi-structure I for which both TV alI(ϕ)
and TV alI(ψ) are defined, I |= ϕ implies I |= ψ.

For a more detailed account of RIF and RIF BLD we refer to the W3C recommen-
dation [86] and [19].

The following subsection 3.3 exemplifies how platform independent rule lan-
guages such as RuleML and RIF are mapped into platform specific rule languages
such as Prova.

3.2 Prova - A Platform Specific Web Rule Language

Prova (http://www.prova.ws/) is both a (Semantic) Web rule language and a
highly expressive distributed (Semantic) Web rule engine which supports complex
reaction rule based workflows, rule based complex event processing, distributed
inference services, rule interchange, rule based decision logic, dynamic access to
external data sources, Web Services, and Java APIs. Prova follows the spirit and
design principles of the W3C Semantic Web initiative and combines declarative
rules, ontologies and inference with dynamic object-oriented programming and
access to external data sources via query languages such as SQL, SPARQL, and
XQuery. One of the key advantages of Prova is its separation of logic, data ac-
cess, and computation as well as its tight integration of Java, Semantic Web tech-
nologies and enterprise service-oriented computing and complex event processing
technologies.

Semantically Prova provides the expressiveness of serial Horn logic with a lin-
ear resolution for extended logic programs (SLE resolution) and with several extra
logical features which will be described in the following subsequent subsections.
Syntactically Prova builds on top of the ISO Prolog syntax (ISO Prolog ISO/IEC
13211-1:1995), but it extends it syntactically and semantically. The following dia-
gram 3 gives an overview on the Prova 3 language structure and its main language
elements.

The basic syntactic structures of the Prova language are rules (head :- body),
facts (rule heads with no body), and goals (rules with no head). Prova supports
atomic terms (constants and variables) and complex terms (functions internally
represented as lists). Constants in Prova can be simple strings starting with lower
case letters (e.g. const) or text in single or double quotes (e.g. ”Constant 1”),
numeric data (e.g. 12, -300L), as well as fully qualified static or instance fields
in Java objects (e.g. java.lang.Double(1.3)) or (Description Logic) individuals of
ontology concepts (e.g. 10∧∧math:Percentage). Variables start with upper case
letters (e.g. X). They can be typed (e.g. Integer.X) and assume the type of the
assigned constant (e.g. X = 1). Like in Prolog anonymous variables begin with
underscore (). Special global variables and constants have names starting with
’$’ (e.g. $Counter). Complex terms in Prova are functions which can be equally
represented as generic lists, where the first head element is the function opera-
tor and the list tail are its arguments, e.g. f(X, Y) can be equally represented as
[f, X, Y] or [f |R] (which binds the list tail to the variable R). Prova supports
positional literals as in Prolog, e.g. p(arg1, ..., argn) as well as unpositional

http://www.prova.ws/

358 A. Paschke

Fig. 3. Main Prova 3 Language Elements

slotted literals, as in slotted and object-oriented logics such as F-Logic, e.g.
p(slot1− > arg1, ..., slotn− > argn). In the following subsection we show how RIF
and RuleML syntacticallymaps to Prova.Provadistinguishes between for all quan-
tified solve goals and existential eval goals. For solve goals, for all successful infer-
ence all assignments for the variables in the goal predicate satisfying the query are
handed back. For eval goals, the engine executes an exhaustive existential search of
the rules and facts until no more backtracking is possible. Additionally, the built-
in meta-predicate derive allows to define (sub) goals dynamically with the pred-
icate symbol unknown until run-time, e.g. p(F) : −derive([F |Args]). where the
variable F is assigned the function name at runtime.

3.3 Mapping from RIF to RuleML and Prova

This section by means of examples shows how RIF can be mapped into RuleML
and Prova (Prolog). These examples largely correspond to the partial mappings
defined for Datalog RuleML and the RIF-Core subset of RIF BLD [18]. While RIF
only supports neutral constants (Const), RuleML supports specialized constant

Rules and Logic Programming for the Web 359

RIF RuleML Prova
<Const type="&xs;string">
ABC

</Const>

<Data xsi:type="xs:string">
ABC

</Data>
"ABC"

<Var>x</Var> <Var>x</Var> X
<Expr>

<op>
<Const type="&rif;iri">

&func;f
</Const>

</op>
<args ordered="yes">

<Var>X</Var>
</args>

</Expr>

<Expr>
<Fun iri="func:f"

per="value"/>
<Var>X</Var>

</Expr>

func:f(X)

<Atom>
<op>
<Const type="&rif;iri">
&cpt;discount

</Const>
</op>
<args ordered="yes">
<Var>cust</Var>
<Var>prod</Var>
<Var>val</Var>

</args>
</Atom>

<Atom>
<Rel iri="cpt:discount"/>
<Var>cust</Var>
<Var>prod</Var>
<Var>val</Var>

</Atom>

cpt:discount(Cust,Prod,Val)

<Equal>
<left>

<Var>X</Var>
</left>
<right>

<Var>Y</Var>
</right>

</Equal>

<Equal oriented="yes">
<Var>X</Var>
<Var>Y</Var>

</Equal>

X=Y

<Member>
<instance>
<Const type="&rif;iri">

&ppl;Adrian
</Const>

</instance>
<class>
<Const type="&rif;iri">

&ppl;Person
</Const>

</class>
</Member>

<Ind iri="ppl:Adrian"
type="ppl:Person"/>

ppl:Adrian^^ppl:Person

<External>
<content>
<Expr>
<op>
<Const type="&rif;iri">

&rifb;numeric-add
</Const>

</op>
<args ordered="yes">
<Const type="&xs;integer">

1
</Const>
<Const type="&xs;integer">

1
</Const>

</args>
</Expr>
</content>

</External>

<Expr>
<Fun iri="rifb:numeric-add"

per="value"/>
<Data xsi:type="xs:integer">

1
</Data>
<Data xsi:type="xs:integer">

1
</Data>
</Expr>

1+1

<Atom>
<op>
<Const type="&rif;iri">
&ex;gold

</Const>
</op>
<slot>
<Name>customer</Name>
<Var>Customer</Var>

</slot>
</Atom>

<Atom>
<Rel iri="ex:gold"/>
<slot>
<Ind>customer</Ind>
<Var>Customer</Var>

</slot
</Atom>

ex:gold({customer->Customer})

360 A. Paschke

terms which distinguish data constants (Data) from individuals/instances object
constants (Ind). RIF does not support a multi-sorted logic with type definitions as
in RuleML (@type attribute). The special member built-in in RIF (Member) can
be used to define instances of classes which can be interpreted as an explicit type
definition. External functions (built-ins) in RIF are restricted to the predefined
RIF datatypes and built-ins (DTB) library which can be reused in RuleML to-
gether with other external built-in libraries (e.g. from SWRL, XPath etc.). Unpo-
sitional named arguments as well as positional arguments are supported by both
RIF and RuleML and can be mapped into positional terms in Prova like in Prolog
standard logic programs or into unpositional slotted terms.

In the following some of the extra logical extensions of Prova will be introduced.

3.4 Access to External Data, Type Systems and Procedural
Attachments

Prova follows the spirit and design of the W3C Semantic Web initiative and com-
bines declarative rules, ontologies and inference with dynamic object-oriented pro-
gramming and access to external data sources and type systems. Therefore, Prova
assumes not just a single universe of discourse, but several domains, so called sorts
(types) which are interpreted in a multi-sorted logic. The extension of the signa-
ture and the typed variables of the language alphabet with sorts (aka types) is
defined as follows.

Definition 61. (Multi-sorted Signature) The multi-sorted signature S of
Prova is defined as a tuple 〈T , P , F , arity, c, sort〉 where:

1. P is a finite sequence of predicate symbols 〈P1, .., Pn〉.
2. F is a finite sequence of function symbols 〈F1, .., Fm〉
3. For each Pi respectively each Fj, arity(Pi) resp. arity(Fj) is a non-zero natural

number denoting the arity of Pi resp. Fi.
4. c = 〈c1, .., co〉 is a finite or infinite sequence of constant symbols,
5. and, T = {T1, .., Tn} is a set of sort/type symbols called sorts.

The function sort associates with each predicate, function or constant its sorts:

– if c is a constant, then sort(c) returns the type T of c.
– if p is a predicate of arity k, then sort(p) is a k-tuple of sorts sort(p) = (T1, ..,

Tk) where each term ti of p is of some type Tj, i.e., ti : Tj.
– if f is a function of arity k, then sort(f) is a k + 1-tuple of sorts sort(f) =

(T1, .., Tk, Tk+1) where (T1, .., Tk) defines the sorts of the domain of f and Tk+1

defines the sorts of the range of f

Prova supports the following three basic types of sorts

1. primitive sorts are given as a fixed set of primitive data types such as integer,
string, etc.

Rules and Logic Programming for the Web 361

2. function sorts are complex sorts constructed from primitive sorts T1×...×Tn →
Tn+1 and other complex sorts defined in the external type alphabet

3. Boolean sorts are a (predicate) statement of the form T1 × ... × Tn

Definition 62. (Multi-sorted Logic) Prova’s multi-sorted logic associates
which each term, predicate and function a particular sort:

1. Any constant or variable t is a term and its sort T is given by sort(t)
2. Let f(t1, .., tn) be a function then it is a term of sort Tn+1 if sort(f) =

〈T1, .., Tn, Tn+1〉, i.e., f takes argument of sort T1, .., Tn and returns arguments
in sort Tn+1.

The intuitive meaning is that a predicate or function holds only if each of its terms
is of the respective sort given by sort.

The alphabet of the Prova language builds on top of the standard ISO Prolog
syntax standard, but further extends it. For typing each variable Xj in the multi-
sorted alphabet of the Prova language is associated with a specific sort sort(Xj) =
Ti, written as Xj : Ti, where Xj is a variable and Ti is a type sort associated with
the variable. That is, the extended Prova language considers external sort/type
alphabets. The combined signatures of the Prova rule language and the external
type languages form the basis for combined hybrid knowledge bases and the inte-
gration of external type systems into the rule system.

Definition 63. (Type alphabet) An external type alphabet T is a finite set of
monomorphic sort/type symbols built over the distinct set of terminological class
concepts of a (external type) language.

Definition 64. (Combined Signature) A combined signature S is the union of
all its constituent finite signatures: S = 〈S1 ∪ .. ∪ Sn〉

The type systems considered in Prova are order-sorted (i.e., with sub-type rela-
tions):

Definition 65. (Order-sorted Type System) A finite order-sorted type system
TS comes with a partial order ≤, i.e., TS under ≤ has a greatest lower bound
glb(T1, T2) for any two types T1 and T2 having a lower bound at all. Since TS is
finite also a least upper bound lub(T1, T2) exists for any two types T1 and T2 having
an upper bound at all.

Definition 66. (Combined Knowledge Base) The combined knowledge base
of a typed Prova KB = 〈Φ, Ψ〉 consists of a finite set of (order-sorted) type systems
/ type knowledge bases Ψ = {Ψ1 ∩ .. ∩ Ψn} and a typed Prova KB Φ.

The combined signature is the union of all constituent signatures, i.e., each inter-
pretation of a Prova rule program has the set of ground terms of the combined
signature as its fixed universe.

362 A. Paschke

Definition 67. (Extended Herbrand Base) Let KB = 〈Φ, Ψ〉 be a typed com-
bined Prova KB P . The extended Herbrand base of P , denoted B(P), is the set of all
ground literals which can be formed by using the predicate/function symbols in the
combined signature with the ground typed terms in the combined universe U(P),
which is the set of all ground typed terms which can be formed out of the constants,
type and function symbols of the combined signature.

The grounding of the combined KB is computed wrt the composite signature.

Definition 68. (Grounding) Let P be a typed (combined) Prova KB and c its set
of constant symbols in the combined signature. The grounding ground(P) consists
of all ground instances of all rules in P w.r.t to the combined multi-sorted signature
which can be obtained as follows:

– The ground instantiation of a rule r is the collection of all formulas r[X1 :
T1/t1, .., Xn : Tn/tn] with X1, .., Xn denoting the variables and T1, .., Tn the
types of the variables (which must not necessarily be disjoint) which occur in r
and t1, .., tn ranging over all constants in c wrt to their types.

– For every explicit query/goal Q[X1 : T1, .., Xm : Tm] to the type system, being
either a fact with one or more free typed variables X1 : T1, .., Xm : Tm or a
special built-in Prova query literal rdf(...) with variables as arguments in the
triple-like query, the grounding ground(Q) is an instantiation of all variables
with constants (individuals) in c according to their types.

Using equalities Prova assumes a notion of default inequality for the combined set
of individuals/constants which leads to a default unique name assumption:

Definition 69. (Default Unique Name Assumption) Two ground terms are
assumed to be unequal, unless equality between the terms can be derived.

The interpretation I of a typed Prova program P then is a subset of the extended
Herbrand base B(P).

Definition 70. (Multi-sorted Interpretation) Let KB = 〈Φ, Ψ〉 be a com-
bined KB and c its set of constant symbols. An interpretation I for a multi-sorted
combined signature S consists of

1. a universe |M | = T I
1 ∪T I

2 ∪ ..∪T I
n , which is the union of the types (sorts), and

2. the predicates, function symbols and constansts/individuals c in the combined
signature, which are interpreted in accordance with their types.

The assignment function σ from the set of variable X of P into the combined uni-
verse U(P) must respect the sorts/types of the variables (in order-sorted type sys-
tems also subtypes). That is, if Xi is a variable of type T , then σ(X) ∈ T I. In
general, if φ is a typed predicate or function in Φ and σ an assignment to the in-
terpretation I, then I |= φ[σ], i.e., φ is true in I when each variable X of φ is
substituted by the values σ(X) wrt to its type. Since the assignment to constant
and function symbols is fixed and the domain of discourse corresponds one-to-one
with the constants c in the combined signature U(P), it is possible to identify an
interpretation I with a subset of the extended Herbrand base: I ⊆ B(P).

Rules and Logic Programming for the Web 363

The assignment function in Prova is given as a query from the rule component to
the type system, so that there is a separation between the inferences in a type sys-
tem and the rule component. Moreover, explicit queries to a type system (Java or
Semantic Web) defined in the body of a rule, e.g., procedural attachments, built-
ins or ontology queries (special rdf query or free DL-typed facts) are based on this
hybrid query mechanism.

Definition 71. (Semantic Multi-Structure Model) Let KB = 〈Φ, Ψ〉 be a
combined KB of a typed Prova program P .
An interpretation I is a model of an untyped ground atom A ∈ KB or I satisfies
A, denoted I |= A iff A ∈ I.
I is a model for a ground typed atom A : T ∈ KB, or I satisfies A : T , denoted
I |= A : T , iff A : T ∈ I and for every typed term ti : Tj in A the type query
Tj = sort(ti), denoting the type check ”is ti of type Ti”, is entailed in KB, i.e.,
KB |= Ti = sort(ti) (note, in an order sorted type system subtypes are considered,
i.e., ti is of the same or a subtype of Tj).
I is an interpretation of an ground explicit query/goal Q to the type system Ψ if
Ψ |= Q.
I is a model of a ground rule r : H ← B iff I |= H(r) whenever I |= B(r). I
is a model a typed program P (resp. a combined knowledge base KB), denoted by
I |= P , if I |= r for all r ∈ ground(P).

Informally, a typed Prova knowledge base consists of rules with logic programming
literals which have typed terms and a set of external (order-sorted) type systems
in which the types (sorts) are defined over their type alphabets. An external type
system might possibly define a complete knowledge base with types/sorts (Java
classes or T-Box in DL) and individuals associated with these types (Java object
instances of the classes or A-box in DL). Restricted built-in predicates and pro-
cedural attachment predicates or functions which construct or return individuals
of a certain type (boolean or object-valued) are also considered to be part of the
external type system(s), i.e., part of the external signature. The combined signa-
ture is then the union of the two (or more) signatures, i.e., the combination of the
signature of the rule component and the signatures of the external type systems
/ knowledge bases combining their type alphabets, their functions and predicates
and their individuals.

The operational semantics of typed Prova is implemented as hybrid polymor-
phic order-sorted unification. [71] In contrast to other hybrid (DL-typing) ap-
proaches which apply additional constraint literals as type guards in the rule body
and leave the usual machinery of resolution and unification unchanged, the oper-
ational semantics for prescriptive types in Prova’s typed logic is implemented by
an order-sorted unification. Here the specific computations that are performed in
the typed language are intimately related to the types attached to the atomic term
symbols. The order-sorted unification yields the term of the two sorts (types) in
the given sort hierarchy. This ensures that type checks apply directly during typed
unification of terms at runtime enabling ad-hoc polymorphism of variables leading
e.g., to different optimized rule variants and early constrained search trees. Thus,

364 A. Paschke

the order-sorted mechanism provides higher level of abstraction, providing more
compact and complete solutions and avoiding possibly expensive backtracking.

Prova provides support for two external order-sorted type systems, namely Java
class hierarchies and ontological type systems (e.g. OWL or RDFS ontologies) re-
spectively Description Logic knowledge bases.

Description Logic Type Systems / Ontologies. An external type systems
supported by Prova are Semantic Web ontologies (Description Logic KBs) repre-
sented e.g. in RDFS or OWL. That is, the combined signature SDL consisting of
the finite signature S of the rule component and the finite signature(s) Si of the
ontology language(s).

The type alphabet TS is a finite set of monomorphic type symbols built over
the distinct set of terminological atomic concepts T in a Semantic Web ontology
language ΣDL, i.e., defined by the atomic classes in the T-Box model.

Note, that restricting types to atomic concepts is not a real restriction, because
for any complex concept such as (T1�T2) or (T1�T2) one may introduce an atomic
concept T3 in the T-Box and use T3 as atomic type instead of the complex con-
cept. This approach is also reasonable from a practical point of view since dynamic
type checking must be computationally efficient in order to be usable in an order-
sorted typed logic with possible very large rule derivation trees and many typed
unification steps, i.e., fast type checks are crucial during typed term unification.
We assume that the type alphabet is fixed (but arbitrary), i.e., no new terminolog-
ical concepts can be introduced in the T-Box by the rules at runtime. This ensure
completeness of the domain and enables static type checking on the used DL-types
in Prova programs at compile time (during parsing the Prova script).

The set of constants/individuals c is built over the set of individual names in
ΣDL, but Prova do not fix the constant names and allow arbitrary fresh constants
(individuals) (under default UNA) to be introduced in the head of rules and facts
of the rule base. However, new individuals which are introduced in rules or facts
apply locally within the scope of the rules in which they are defined, i.e., within
a local reasoning chain; in contrast to the individuals defined in the A-box model
of the type system which apply globally as individuals of a class. DL-typed terms
in Prova are defined as follows:

Definition 72. (DL-typed Terms) A DL-type is a terminological concept/class
defined in the DL-type system (T-Box model). A typed DL-typed Prova term is de-
noted by the relation t∧∧T where t is the term and T is the DL-type of term.

The type ontologies are typically provided as Web ontologies (RDFS or OWL)
where types and individuals are represented as resources having an webized URI.
Namespaces can be used to avoid name conflicts and namespace abbreviations
facilitate are more readable language.

% A customer gets 10 percent discount, if the customer is a gold customer

discount(X^^business:Customer, 10^^math:Percentage) :-
gold(X^^business:Customer).

% fact with free typed variable acts as instance query on the ontology A-box
gold(X^^business:Customer).

Rules and Logic Programming for the Web 365

Free DL-typed variables are allowed in facts. They act as free instance queries
on the ontology layer, i.e., they query all individuals of the given type and bind
them to the typed variable.

Java Type System, Procedural Attachments and Built-Ins. For external
Java type systems, the combined multi-sorted signature SJava uses the fully qual-
ified order-sorted Java class hierarchy as type symbols. In order to type a variable
with a Java type the fully qualified name of the Java class to which the variable
should belong must be specified as a prefix separated from the variable by a dot
”.”.

java.lang.Integer.X variable X is of type Integer
java.util.Calendar.T variable T is of type Calendar
java.sql.Types.STRUCT.S variable S is of SQL type Struct

To sense the environment and trigger actions, query data from external sources
such as databases, call external procedural code such as Enterprise Java Beans,
and receive / send messages from / to other agents or external services, Prova
provides a set of built-in functions and additionally can dynamically instantiate
any Java object and call its API methods at runtime.

Java objects, as instances of Java classes, can be dynamically constructed by
calling their constructors or static methods using extra logical procedural attach-
ments. The returned objects, might then be used as individuals/constants that
are bound by an equality relation (denoting typed unification equality) to appro-
priate variables, i.e., the variables must be of the same type or of a super type of
the Java object.

A procedural attachment is a function that is implemented by an external
procedure (i.e., a Java method). They are used in Prova to dynamically call exter-
nal procedural methods during runtime, i.e., they enable the (re)use of procedu-
ral code and allow dynamic access to external data sources and tools using their
programming interfaces (APIs). They are a crucial extension to traditional logic
programming, combining the benefits of object-oriented languages (Java) with
declarative rule based programming, e.g., in order to externalize mathematical
computations such as aggregations to highly optimized procedural code in Java
or use query languages such as SQL by JDBC to select and aggregate facts from
external data sources.

Definition 73. (Procedural Attachments) A procedural attachment is a func-
tion or predicate whose implementation is given by an external procedure. Two
types of procedural attachments are distinguished:

– Boolean-valued attachments (or predicate attachments) which call
methods which return a Boolean value, i.e., which are of Boolean sort (type).

– Object-valued attachments (or functional attachments) which are
treated as functions that take arguments and return one or more objects, i.e.,
which are of a function sort.

Functional Java attachments have a left-hand side with which the results (the
returned object(s)) of the call are unified by a unification equality relation =,

366 A. Paschke

e.g., C = java.util.Calendar.getInstance(). If the left-hand side is a free (unas-
signed) variable the latter stores the result of the invocation. If the left-hand side
is a bound variable or a list pattern the unification can succeed or fail accord-
ing to the typed unification and consequently the call itself can succeed or fail.
List structures are used on the left-hand side to allow matching of sets of con-
structed/returned objects to specified list patterns. A predicate attachment is
assumed to be a test in such a way that the call succeeds only if a true Boolean vari-
able is returned. Static, instance and constructor calls are supported in both predi-
cate and functional attachments depending on their return type. Constructor calls
follow the Java syntax with the fully qualified name of the class and the construc-
tor arguments, e.g., X = java.lang.Long(123). Static method calls require fully
qualified class names to appear before the name of the static method followed by
arguments, e.g., Z = java.lang.Math.min(X, Y). Instance methods are mapped
to concrete classes dynamically based on the type of the variable, i.e., the method
of a previously bound Java object is called. They require a variable before the
name of an instance method followed by the arguments, e.g., S = X.toString().

add(java.lang.Integer.In1,java.lang.Integer.In2,Result):-
Result = java.lang.Integer.In1 + java.lang.Integer.In2.

The first rule takes two Integer variables In1 and In2 as input and returns
the result which is bound to the untyped variable Result. Accordingly, a query
add(1, 1, Result)? succeeds with an Integer object 2 bound to the Result variable,
while a query add(”abc”, ”def”, Result)? will fail.

It is important to note, that Java objects can be bound to variables and their
methods can be dynamically used as procedural attachment functions anywhere
during the reasoning process, i.e., in other rules. This enables a tight and highly ex-
pressive integration of external object oriented functions into declarative agent’s
rules’ execution.

Definition 74. (Built-in Predicates or Functions) Built-in predicates or
functions (built-ins) are special restricted procedural attachment predicate resp.
function symbols in the Prova language for concrete domains, e.g., integers or
strings, that may occur in the body of a rules.

Examples are +, =, assert, bound, free etc. For instance, Prova provides a rich
library of built-ins for query languages such as SQL, SPARQL, and XQuery:

File Input / Output
..., fopen(File,Reader), ...

XML (DOM)
document(DomTree,DocumentReader) :- XML(DocumenReader),...

SQL
... ,sql_select(DB,cla,[pdb_id,"1alx"],[px,Domain]).

RDF
...,rdf(http://...,"rdfs",Subject,"rdf_type","gene1_Gene"),...

XQuery
..., XQuery = ’for $name in StatisticsURL//Author[0]/@name/text()

return $name’, xquery_select(XQuery,name(ExpertName)),...
SPARQL

...,sparql_select(SparqlQuery,...

Rules and Logic Programming for the Web 367

The following rule uses a SPARQL query built-in to access an RDF Friend-of-
a-Friend (FOAF) profile published on the Web. The selected data is assigned to
variables which can be used within an agent’s rule logic, e.g. to expose the agent’s
contact data.

exampleSPARQLQuery(URL,Type) :-
QueryString = ’ PREFIX foaf:

PREFIX rdf:
SELECT ?contributor ?url ?type
FROM
WHERE {

?contributor foaf:name "Bob DuCharme" .
?contributor foaf:weblog ?url .
?contributor rdf:type ?type . } ’,

sparql_select(QueryString,url(URL),type(Type)).

Note, that the structures in Java type systems are usually not considered as in-
terpretations in the strict model-theoretic definition, but are composite structures
involving several different structures whose elements have a certain inner com-
position. However, transformations of composite structures into their flat model
theoretic presentations is in the majority of cases possible. From a practical point
of view, it is convenient to neglect the inner composition of the elements of the
universe of a structure. These elements are just considered as ”abstract” points
devoid of any inherent meaning. This structural mapping between objects from
their interpretations in the Java universe to their interpretation in the rule system
ignoring finer-grained differences that might arise from the respective definitions
is given by the following isomorphism.

Definition 75. (Isomorphism) Let I1, I2 be two interpretations of the combined
signature S = {T1, .., Tn}, then f∼= : |M1| → |M2| is an isomorphism of I1 and I2

if f∼= is a one-to-one mapping from the universe |M1| of I1 onto the universe |M2|
of I2 such that:

1. For every type Ti, t ∈ T I1
i , iff f∼=(t) ∈ T I2

i

2. For every constant c, f∼=(cI1) ∼= cI2

3. For every n-ary predicate symbol p with n-tuple t1, .., tn ∈ |M1|, 〈t1, .., tn〉 ∈ pI1

iff 〈f∼=(t1), .., f∼=(tn)〉 ∈ pI2

4. For every n-ary function symbol f with n-tuple t1, .., tn,∈ |M1|,
f∼=(f I1(t1, .., tn)) ∼= f I2(f∼=(t1), .., f∼=(tn))

For instance, in Prova an isomorphism between Boolean Java objects and their
model-theoretic truth value is defined, which makes it possible to treat boolean-
valued procedural attachments as conditional body literals in rules and establish a
model-theoretic interpreation as defined above between the Java type system and
the model-theoretic semantics of the typed logic of the rule component. Other ex-
amples are String objects which are treated as standard constants in rules, i.e., the
Java String object maps with the untyped theory of logic programming. Primitive
datatype values, from the ontology resp. XML domain (XSD datatypes) can be
mapped similarly.

368 A. Paschke

3.5 Modularization, Scopes and Guards

To capture the distributed, open structure of Web based rule bases and enable
scoped queries on explicitly closed parts of open and distributed knowledge, Prova
supports principles of information hiding and modularization, which makes it
easier to maintain and manage (distributed) rule sets.

Metadata Based Modularization and Module Imports/Updates. Prova
has a flexible approach towards modularization of the knowledge base which al-
lows constructing metadata based views on the knowledge base, so called scopes.
Therefore, Prova extends the rule language to a labelled logic programming rule
language (LLP) with metadata annotations such as rule labels, module (rule sets
in rule bases) labels and arbitrary other (Semantic Web) annotations (e.g., Dublin
Core author, date etc). These metadata annotations are used to manage the rules
and facts in the knowledge base.

In analogy to the multi-sorted extension for types, the meta-data extension of
the Prova language is defined over a combined signature S which is the union of
the signature of the rule language and the signatures of the used metadata vocab-
ularies (e.g. Dublin Core).

Definition 76. (Combined Signature with Metadata Annotations) The
combined metadata annotated signature S is defined as a tuple 〈T , P , F , arity, c,
sort, meta〉 where P is the union of the predicate symbols define in the signature of
the core Prova rule language and the metadata predicate symbols (denoting meta-
data key properties) defined in the signature(s) of the metadata vocabularie(s) and
c is the union of constant symbols defined in the rule signature and in the metadata
signature(s) (denoting metadata values). meta is a special unary function which
returns the assigned metadata.

To explicitly annotate clauses in a Prova program P with an additional set of
metadata labels a general 1-ary built-in function @ is introduced in the Prova lan-
guage.

Definition 77. (MetadataAnnotationLabels) The special 1-ary built-in func-
tion @ is a partial injective labelling function that assigns a set of metadata anno-
tations m (property-value pairs) to a clause cl in P , e.g.

@(L1, .., Ln) H : −B
where Li are a finite set of unary positive literals (positive metadata literals)

which denote an arbitrary metadata property(value) pair, e.g., @label(rule1).

The implicit form @(L1), .., @(Ln) H : −B of the metadata function expresses
that @(H : −B) = L1, .., Ln. The explicit @() annotation is optional, i.e., a Prova
program P without metadata annotated clauses coincides with a standard unla-
belled logic program.

Clauses in Prova are treated as objects in KB having an unique object id (oid)
which might be user-defined, i.e., explicitly defined by a metadata annotation
@label(oid) H : −B or system-defined i.e., all rules are automatically ”labelled”

Rules and Logic Programming for the Web 369

with an auto-incremented oid (an increasing natural number) provided by the sys-
tem at compile time. Rules and facts might be bundled to clause sets, so called
modules, which also have an object id, the module oid. By default the module oid
is the URI or full document name of the Prova script which contains the mod-
ule. But the module oid might also be user-defined @src(moduleoid). All clauses
(rules and facts) defined in a module are automatically annotated with the module
oid @src(moduleoid) H : −B. The oids are used to manage the knowledge in the
(distributed) knowledge base, e.g., to import a rule set from an URI which is then
used as the module oid or remove a module from the KB by its oid. Beside oids
arbitrary other semantic annotations such as Dublin Core data might be specified
in the @ annotation function.

@label(r1) @dc:author("Adrian") @dc:date(2006-11-12)
p(X):-q(X).

@label(f1)
q(1).

The example shows a rule with rule label r1 and two additional Dublin Core
annotations dc : author(”Adrian”) and dc : date(2006− 11− 12) and a fact with
fact label f1. Since there is no explicitly user-defined module oid in the meta-data
labels, the default module oid for both clauses is the URI or document name of the
Prova script in which they are defined, e.g. @src(”http : //prova.ws/example1.
prova”).

In Prova it is possible to consult (import/load) distributed rulebases from local
files, a Web address, or from incoming messages transporting a rulebase. Further-
more, Prova supports update built-ins such as assert and retract.

%load from a local file
:- eval(consult("organization2009.prova")).
% import from a Web address
:- eval(consult("http://ruleml.org/organization2010.prova")).

The imported rulebases are managed as modules in the knowledge base, which
are uniquely identified by their source object id src(moduleOID). Since multiple
nested imports are possible, modules might be nested, i.e. a module denoting a
rule base (e.g. a Prova script) might consist of several nested submodules (e.g.
sets of rules and facts).

Similar to imports of external type systems and built-ins (procedural attach-
ments) which query and compute external data, the semantics for modules in
Prova is defined over the combined knowledge base of the modules, an extended
state based Herbrand Base and semantic multi-structures.

Definition 78. (Combined Knowledge Base) The combined knowledge base
of a modular Prova KB = 〈Φ, Ψ〉 consists of a finite set of modules Ψ = {Ψ1 ∩ ..∩
Ψn} and an initial primary Prova KB Φ.

Prova supports knowledge updates which import modules (consult) and add or
remove clauses (assert, retract). Each update leads to a new knowledge state of
the combined KB.

370 A. Paschke

Definition 79. (Knowledge State) A knowledge state represents the combined
knowledge base KBk at this particular state, where k ∈ ℵ.

Note that according to the modularized logic in Prova a state, i.e., a combined
knowledge base KBk, might consist of nested submodules, each having an unique
ID (the module oid). Intuitively, a state represents the union of all clauses stored
in all modules in the combined knowledge base.

An update is then a transition which adds or removes facts and/or rules and
changes the knowledge base. That is, the KB transits from the initial state KB1

to a new state KB2. We define the following notion of positive (assert) and nega-
tive(retract) transition:

Definition 80. (Positive Update Transition) A positive update transition, or
simply positive update, to a knowledge state KBk is defined as a finite set Upos

oid :=
{rN : H : −B, factM : A} with A an atom denoting a fact, H : −B a rule,
N = 0, .., n and M = 0, ..m and oid being the update oid which is also used as
module oid to manage the knowledge as a new module in the KB. Applying Upos

oid to
KBk leads to the extended state KBk+1 = {KBk∪Upos

oid }. Applying several positive
updates as an increasing finite sequence Upos

oidj
with j = 0, .., k and Upos

oid0
:= ∅ to

KB0 leads to a state KBk = {KB0 ∪ Upos
oid0

∪ Upos
oid1

∪ ... ∪ Upos
oidk

}.

That is a state KBk is decomposable in the previous knowledge state k − 1 plus
the update: KBk = {KBk−1 ∪Upos

k }. We define KB0 = {∅ ∪Upos
oid0

} and Upos
oid0

=
{KB : the set of rules and facts defined in the program P}, i.e., importing the
initial Prova program P from a Prova script document is the first update leading
to the knowledge state KB1.

Likewise, We define a negative update transition as follows:

Definition 81. (Negative Update Transition) A negative update transition,
or for short a negative update, to a knowledge state KBk is a finite set Uneg

oid :=
{rN : H : −B, factM : A} with A ∈ KBk, H : −B ∈ P , N = 0, .., n and
M = 0, ..m, which is removed from KBk, leading to the reduced program KBk+1 =
{KBk \ Uneg

oid }.

Applying arbitrary sequences of positive and negative updates leads to a sequence
of KB states KB0, .., KBk where each state KBi is defined by either KBi =
KBi−1 ∪ Upos

oidi
or KBi = KBi−1 \ Uneg

oidi
. In other words, KBi, i.e., the set of all

clauses in the KB at a particular knowledge state i, is decomposable in the previ-
ous knowledge state plus/minus an update, whereas the previous state consists of
the state i−2 plus/minus an update and so on. Hence, each particular knowledge
state can be decomposed in the initial state KB0 and a sequence of updates. Al-
though an update might insert more than one rule or fact, i.e., insert or remove a
complete module, it nevertheless is treated as an elementary update, a so called
bulk update, which transits the current knowledge state to the next state in an
elementary transition: 〈KBi, U

pos/neg
oid , KBk+1〉. Intuitively, one might think of it

as a complex atomic update action which performs all knowledge inserts resp. re-
moves simultaneously.

Rules and Logic Programming for the Web 371

Elementary updates have both a truth value, i.e. they may succeed or fail, and a
side effect on the knowledge base leading to the transition of the knowledge state.
The extended Herbrand Base is defined on the notion of knowledge states and
transitions from one state to another.

Definition 82. (Extended State based Herbrand Base) Let P be the com-
bined KB at a particular knowledge state KBk. The extended Herbrand base of P ,
denoted B(P), is the set of all ground literals which can be formed by using the pred-
icate/function symbols in the combined signature with the ground typed terms in
the combined universe U(P), which is the set of all ground typed terms which can
be formed out of the constants, type and function symbols of the combined signature
of KBk.

Definition 83. (Modular semantic multi-structure) A modular multi-
structure I is model of a modular program P (resp. the knowledge state KBk of
the combined knowledge base KB), denoted by I |= P , if I |= c for all clauses
c ∈ ground(P), where I |= c is a usual multi-sorted model for providing the inter-
pretation of Prova clauses.

Accordingly, all queries to a Prova program apply on the extended resp.
reduced transition knowledge state of the program, i.e., the truth valuation of a
goal G depends on its model at the current knowledge state KBk, denoted by
TV alKBk|=G(G).

Based on this modular knowledge state transition semantics and the metadata
based control of the knowledge state updates which are treated as modules in the
combined KB, Prova provides supports for transactional updates, where failing
sequences of knowledge updates can be rolled back by removing the associated
modules from the combined Prova KB. In the non-transactional style updates
in (serial) Prova rules are not rolled-back to the original state if the derivation
fails and the system backtracks. Typically this ”weak” non-transactional seman-
tics is intended when external Prova script are imported (consult) or new rule sets
are added (assert) as modules. That is, independently, of whether the particular
derivation in which the update is performed fails from some reason the update
transition to the next knowledge state subsists and is not rolled back in case of
failures.

Scoped Reasoning. The metadata annotation of rules/facts and rule sets (mod-
ules) enables scoped (meta) reasoning with the semantic annotations. The meta-
data can act as an explicit scope for constructive queries (creating a view) on the
knowledge base. For instance, the metadata annotations might be used to con-
strain the level of generality of a scoped goal literal to a particular module, i.e., to
consider only the set of rules and facts which belong to the specified module.

Definition 84. (Scoped Literal) A scoped literal is of the form @C L where L is
a positive or negative literal and @C is the scope definition which is a set of one or
more metadata constraints. Scoped literals are only allowed in the body of a rule.

372 A. Paschke

Informally, the semantics of scoped literals allows to explicitly close the domain
of discourse to certain parts of the KB.

Definition 85. (Metadata based Scope) Let KB be a combined KB consisting
of a set of submodules KB = {KB1∪ ..∪KBk}. The scope KB′ of a scoped literal
@C L is the set of clauses KB′ = {m′

1cl1, .., m
′
ncln} ∈ KB, where for all clauses

cli(m′
i) ∈ KB′ its set of metadata annotations m′

i satisfy the scope constraints C
of the scoped literal L, i.e., m′

i |= C.

Accordingly, a scope (aka constructiv view) is constructed by one or more meta-
data constraints, e.g., the module oid @src(URI/Filename) or Dublin Core val-
ues @dc : author(...).

Definition 86. (Closure) Let KB be a combined KB. The closure of KB, de-
noted Cl(KB), is defined by KB plus all modules KBk which are in the scope of
any scoped literal in KB.

A scoped literal @C L is closed if each rule in KB which unifies with the literal
L is also closed, i.e., its body literals are closed in Cl(KB).

Intuitively, this means that the closure of a Prova program depends on the scopes
of the literals in the bodies of its rules. Obviously, if one of the subsequently used
goal literals in a proof attempt is open, i.e., without a scope, the closure expands
to the open KB.

Definition 87. (Scoped Semantics) Given a scoped KB
′
, where all literals are

scoped with closure Cl(KB
′
), the truth value of a scoped literal @C L depends on the

partial model of the clauses of KB
′
wrt the scope definition C, i.e., I

partialC
(KB

′
)

|= L.

Syntactically the scope definitions use the syntax of Prova metadata annotations.

@label(rule1) r1(X):-q(X).
@label(rule2) r2(X):-q(X).
@label(rule3) p1(X):-

@label(rule1) r1(X). % scoped goal literal
q(1).

:-solve(p1(Y)).

The example shows three metadata annotated rules. They query p1(Y) will re-
turn only one solution with Y = 1, since the subgoal r1(X) of rule3 applies only
in the scope of the rule with label rule1, but not on rule1 and rule2, which would
be the case if there would be no scope constraint defined for the subgoal.

Prova allows variables in the scope definitions which are bound to the annotated
metadata values. The following example shows the definition of a scope, that con-
straints the application of the subgoal r2(X) on the rule with label rule3 and on
the module with source name AgentRole1.prova.
% get module label
r1(X,Y):-

@src(Y) @label(rule3)
r2(X).

:-solve(r1(X,"AgentRole1.prova")).

Rules and Logic Programming for the Web 373

Guards. In addition to scopes Prova supports literal guards which act as addi-
tional pre-condition constraints.

Guards in Prova are syntactically specified in the Prova rule language using
brackets after the goal literal. The model-theoretic semantics of guards is like for
goal literals, however in the proof-theoretic semantics guards act like pre-conditions
before the proofs of the standard goal literals starts.

For instance, the following rule makes decisions on the basis of rules which
haven been authored by different persons and only applies those rules from trusted
authors.

%simplified decision rules of an agent
@author(dev22) r2(X):-q(X).
@author(dev32) r2(X):-s(X).
q(2).
s(-2).

% for simplicity this is a fact, but could be also a complex rule
% which computes the trust value from the reputation value of dev22
trusted(dev22).

% Author dev22 is trusted but dev32 is not, so one solution is found: X=2
p1(X):-
@author(A)
r2(X) [trusted(A)].

% for all query
:-solve(p1(X1)).

This example uses metadata annotations on rules for the head literals r2/1 and
a scopes on the literal r2(X) in the body of the rule for p1(X). Since variable A in
@author(A) is initially free, it gets instantiated from the matching target rule(s).
Once A is instantiated to the target rule’s @author annotation’s value (dev22,
for the first r2 rule), the body of the target rule is dynamically non-destructively
modified to include all the literals in the additional guard trusted(A) before the
body start, after which the processing continues. Since trusted(dev22) is true but
trusted(dev32) is not, only the first rule for predicate r2 is used and so one solution
X1 = 2 is returned by solve(p1(X1)).

3.6 Prova Serial Horn Rules for Messaging

For communication between distributed rule agents Prova supports special built-
ins for asynchronously sending and receiving event messages within serial Horn
rules. The main language constructs of messaging reaction rules are: sendMsg
predicates to send messages, reaction rcvMsg rules which react to inbound mes-
sages, and rcvMsg or rcvMult inline reactions in the body of messaging reaction
rules to receive one or more context-dependent multiple inbound event messages:

sendMsg(XID,Protocol,Agent,Performative,Payload |Context)
rcvMsg(XID,Protocol,From,Performative,Paylod|Context)
rcvMult(XID,Protocol,From,Performative,Paylod|Context)

Here, XID is the conversation identifier (conversation-id) of the conversation
to which the message will belong. Protocol defines the communication protocol.

374 A. Paschke

Agent denotes the target party of the message. Performative describes the
pragmatic envelope for the message content. A standard nomenclature of per-
formatives is, e.g., the FIPA Agents Communication Language (ACL). Payload
represents the message content sent in the message envelope. It can be a specific
query or answer or a complex interchanged rule base (set of rules and facts). For
instance, the following rule snippet shows how a query is sent to an agent via an
Enterprise Service Bus (esb) and then an answer is received from this agent.

...
sendMsg(Sub_CID,esb,Agent,acl:query-ref, Query),
rcvMsg(Sub_CID,esb,Agent,acl:inform-ref, Answer),
...

Interchanged messages besides the conversation’s metadata and payload also
carry the pragmatic context of the conversation such as communicative situations
/ acts, mentalistic notions, organizational and individual norms, purposes or in-
dividual goals and values. The payload of incoming event messages is interpreted
with respect to the local conversation state, which is denoted by the conversation
id, and the pragmatic context, which is given by a pragmatic performative. For
instance, a standard nomenclature of pragmatic performatives, which can be inte-
grated as external (semantic) vocabulary/ontology, is e.g., defined by the Knowl-
edge Query Manipulation Language (KQML) (Finin et al. 1993), by the FIPA
Agent Communication Language (ACL), which gives several speech act theory
based communicative acts, or by the Standard Deontic Logic (SDL) with its nor-
mative concepts for obligations, permissions, and prohibitions. Depending on the
pragmatic context, the message payload is used, e.g. to update the internal knowl-
edge of the agent (e.g., add new facts or rulebases), add new tasks (goals), or detect
a complex event pattern (from the internal event instance sequence). For instance,
the following example shows a reaction rule that sends a complete rule base, which
is loaded from a local File to an agent service Remote using JMS as transport
protocol.

Example 2

% Upload a rule base read from File to the host
% at address Remote via JMS
upload_mobile_code(Remote,File) :-

% Opening a file returns an instance
% of java.io.BufferedReader in Reader
fopen(File,Reader),
Writer = java.io.StringWriter(),
copy(Reader,Writer),
Text = Writer.toString(),
% variable SB will encapsulate the whole content of File
SB = StringBuffer(Text),
% send the complete rule base to the receiver agent "Remote"
sendMsg(XID,jms,Remote,acl:inform,consult(SB)).

The corresponding receiving reaction rule of the remote agent is:

% wait for incoming messages with pragmatic context $acl:inform$
rcvMsg(XID,jms,Sender,acl:inform,[Predicate|Args]):-

% derive the message payload, i.e. consult the received rule set to the internal KB
derive([Predicate|Args]).

Rules and Logic Programming for the Web 375

This rule receives incoming JMS based messages with the pragmatic context
acl : inform and derives the message content, i.e. consults the received rule base
to the local knowledge base of the remote agent. It is important to note that via
the conversation id several reaction rule reasoning processes might run in parallel,
local to their conversation flows. Inactive reactions (conversation partitions) are
removed from the system, e.g. by timeouts. Self-activations by sending a message
to the receiver ”self” are possible. With the pragmatic performatives it is possible
to implement different coordination and negotiation protocols. For instance, if an
agent does not understand the semantics of the interchanged message payload, it
can inform the sender about this, using, e.g., the acl : not − understood perfor-
mative, so that the sender can additionally send the semantic information, e.g. a
pointer to the ontology that defines the concepts of the payload, and the receiving
agent can import this ontology to its internal knowledge base.

By using messaging reaction rules a Prova rule engine can be deployed as a
distributed rule inference service, e.g. in the Rule Responder agent architecture
[72], or e.g. as an OSGI component enabling massive parallelization of Prova agent
nodes in grid/cloud environments and (smart) devices (e.g. RFID networks)which
communicate via event messages.

4 Conclusion

Rule based systems have been investigated comprehensively in the realms of
declarative logic programming and expert systems in the past decades. Logic
programming has been a very popular paradigm and one of the most successful
representatives of declarative programming in general. It is based on solid and
well-understood theoretical concepts and has been proven to be very useful for
rapid prototyping and describing problems on a high abstraction level. In recent
years rule based technologies have experienced a remarkable come back namely in
two areas: business rules processing, and reasoning in the context of the (Seman-
tic) Web. The first trend is caused by the need to accelerate the slow and expensive
software development life cycle. The vision of treating application logic as declar-
ative business rules is particularly interesting for businesses with rapidly changing
business logic. The second trend is related to the Semantic Web initiative of the
W3C. The vision is that intelligent Semantic Web agents with their rule-based de-
cision and reaction logic are capable of processing the cross referenced, machine
processable knowledge on the Web in a platform independent manner. They are
able to infer new knowledge and make intelligent, possibly pro-active and self-
autonomous decisions and reactions. Emerging standards for rules operating in
the context of the Semantic Web include RuleML (and SWRL) and the new W3C
RIF recommendation.

A general rule markup language such as RuleML or RIF covers many different
rule types and rule families. Their syntax builds on well establish Web data rep-
resentation standards such as XML, RDF, URIs/IRIs etc. Some of the language
families such as classical production rules historically only define an operational
semantics, while other rule families such as logical rules are based on a model-
theoretic and/or proof-theoretic semantics. An open research question is whether

376 A. Paschke

there exists a unifying semantic framework for all different rule types. Work in this
direction is pursued, e.g. in the RIF Framework for Logic Dialects (RIF FLD) and
in Reaction RuleML for reaction rule and complex event processing semantics.
However, since there is no general consensus on one particular semantics for all
expressive rule languages, an exclusive commitment to one particular semantics
for a Web rule language should be avoided (even in well-researched fields such as
logic programming several semantics such as well-founded semantics and answer
set semantics are competing). Nevertheless, for certain subfamilies a preferred se-
mantics can still be given and semantic mappings between rule families be defined.

Another crucial extension to the classical theory of rule-based logic program-
ming in modern Web rule engines such as Prova is that they include practical
language constructs which might not (yet) have a standard formal semantics based
on classical model-theoretic logic. For instance, procedural calls to external (ob-
ject) functions, operational systems, data sources and terminological descriptions,
are often vital to deal with practical real-world settings of distributed Web appli-
cations. Recent research, e.g. in Prova, is done on adopting such practical language
constructs without a standard formal semantics but with a non-standard extra
logical one which allows for a hybrid knowledge representation. Further examples
of useful practical constructs are the annotation of rules and rule sets with ad-
ditional metadata such as rule qualifications, rule names, module names, Dublin
Core annotations, etc., which eases, e.g., the modularization of rules into rule sets
(bundling of rules), the creation of constructive views over internal and external
knowledge (scoped reasoning), as well as the publication and interchange of rules
/ rule sets on the Web (rule messaging). Advanced rule qualifications such as va-
lidity periods or rule priorities might for example safeguard dynamic updates (e.g.
the incorporation of interchanged rules into the existing rule base), where conflicts
are resolved by rule prioritizations. Although these extra logical features have no
direct formalization in first order logic, the benefits for a practical rule-based Web
system, which needs to cope with large problem sizes and which needs to effi-
ciently interoperate with existing systems and data sources on the Web, prevail.
The hybrid KR design which allows the integration of external vocabulary types,
methods and data into rule execution combines the benefits of declarative and im-
perativ (object-oriented) programming and helps to overcome typical problems
of declarative programming, e.g., wrt to computational efficiency of certain tasks.
While there is a risk that these concessions to non-standard semantics might en-
danger the benefits of formal semantics for the overall rule language, they turn
out to be a crucial means to avoid limitations of standard rule representations.
The rule component will rarely run in isolation, but interact with various exter-
nal components, hence call for functionalities such as efficient object-oriented,
relational/SQL-style, and RDF data retrieval and aggregation methods that are
common in modern Web information systems.

Another domain of research is the engineering and maintenance of large rule-
based applications, where the rules are serialized and managed in a distributed
manner, and are interchanged across domain boundaries. This calls for support
of verification, validation and integrity testing (V&V&I), e.g., by test cases that

Rules and Logic Programming for the Web 377

are written in the same rule markup language and are stored and interchanged
together with the rule program [70].

Acknowledgements. This work has been partially supported by the “Inno
Profile-Corporate Semantic Web” project funded by the German Federal Ministry
of Education and Research (BMBF) and the BMBF Innovation Initiative for the
New German Länder - Entrepreneurial Regions.

References

1. Krisnadhi, F.M.A.A., Hitzler, P.: Owl and rules. In: 7th International Summer
School 2011 - Tutorial Lectures. LNCS, Springer, Heidelberg (2011)

2. Ait-Kaci, H., Podelski, A.: Towards the meaning of life. In: Ma�luszyński, J., Wirs-
ing, M. (eds.) PLILP 1991. LNCS, vol. 528, pp. 255–274. Springer, Heidelberg
(1991)

3. Alferes, J., Damasio, C., Pereira, L.M.: Slx: a top-down derivation procedure for
programs with explicit negation. In: Bruynooghe, M. (ed.) International Logic Pro-
gramming Symp., pp. 424–439 (1994)

4. Alferes, J.J., Damasio, C., Pereira, L.M.: A logic programming system for non-
monotonic reasoning. J. of Automated Reasoning 14(1), 93–147 (1995)

5. Apt, K.: Logic programming. In: Leeuwen, J.v. (ed.) Handbook of Theoretical
Computer Science, vol. B, ch. 10, pp. 493–574. Elsevier, Amsterdam (1990)

6. Apt, K., Blair, H.: Logic Programming and Negation: A Survey. J. of Logic Pro-
gramming 19(20), 9–71 (1994)

7. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases, pp. 89–148. Morgan Kauf-
mann, San Francisco (1988)

8. Apt, K., Emden, M.H.: Contributions to the theory of logic programming. J. of
ACM 29(3), 841–862 (1982)

9. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. of
Logic Programming 19, 20, 73–148 (1994)

10. Baral, C., Lobo, J., Minker, J.: Generalized well-founded semantics for logic pro-
grams. In: Stickel, M.E. (ed.) International Conference on Automated Deduction.
Springer, Heidelberg (1990)

11. Baral, C., Lobo, J., Minker, J.: Generalized disjunctive well-founded semantics for
logic programs. Annals of Math and Artificial Intelligence 11(5), 89–132 (1992)

12. Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic
programming and non-monotonic reasoning. In: Int. Workshop of Logic Program-
ming and Non-Monotonic Reasoning, pp. 69–86. MIT Press, Cambridge (1991)

13. Beeri, C., Ramakrishnan, R.: On the power of magic. The Journal of Logic Pro-
gramming 10, 255–299 (1991)

14. Bidoit, N., Legay, P.: Well!: An evaluation procedure for all logic programs. In: Int.
Conf. on Database Theory, pp. 335–348 (1990)

15. Bol, R.: Tabulated resolution for the well-founded semantics. Journal of Logic Pro-
gramming 34(2), 67–109 (1998)

16. Bol, R., Degerstedt, L.: Tabulated resolution for well founded semantics. In: Intl.
Logic Programming Symposium (1993)

378 A. Paschke

17. Boley, H.: Object-oriented ruleML: User-level roles, URI-grounded clauses, and
order-sorted terms. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS,
vol. 2876, pp. 1–16. Springer, Heidelberg (2003)

18. Boley, H.: RIF RuleML Rosetta Ring: Round-Tripping the Dlex Subset of Datalog
RuleML and RIF-Core. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML
2009. LNCS, vol. 5858, pp. 29–42. Springer, Heidelberg (2009), http://dx.doi.
org/10.1007/978-3-642-04985-9

19. Boley, H., Kifer, M.: A guide to the basic logic dialect for rule interchange on the
web. IEEE Trans. on Knowl. and Data Eng. 22, 1593–1608 (2010)

20. Brachman, R.J., Gilbert, P.V., Levesque, H.J.: An essential hybrid reasoning sys-
tem: Knowledge and symbol level accounts for krypton. In: Int. Conf. on Artificial
Inelligence (1985)

21. Brass, S., Dix, J.: Characterizations of the disjunctive wellfounded semantics: Con-
fluent calculi and iterated gcwa. Journal of Automated Reasoning (1997)

22. Brass, S., Dix, J.: Characterizations of the disjunctive well-founded semantics.
Journal of Logic Programming 34(2), 67–109 (1998)

23. Brass, S., Dix, J., Zukowski, U.: Transformation based bottom-up computation of
the well-founded model. Theory and Practice of Logic Programming 1(5), 497–538
(2001)

24. Brewka, G.: Well-founded semantics for extended logic programs with dynamic
preferences. Journal of Artificial Intelligence Research 4, 19–36 (1996)

25. Bry, F.: Negation in logic programming: A formalization in constructive logic. In:
Karagiannis, D. (ed.) IS/KI 1990 and KI-WS 1990. LNCS, vol. 474, pp. 30–46.
Springer, Heidelberg (1991)

26. Bry, F.: Query evaluation in recursive databases: bottom-up and top-down recon-
ciled. Data and Knowlege Engineering 5, 289–312 (1990)

27. Chen, J., Kundu, S.: The strong semantics for logic programs. In: Proceedings of
the 6th Int. Symp. on Methodologies for Intelligent Systems, Charlotte, NC (1991)

28. Chen, W., Swift, T., Warren, D.S.: Efficient top-down computation of queries un-
der the well-founded semantics. J. of Logic Programming 24(3), 161–199 (1995)

29. Chen, W., Warren, D.S.: A goal-oriented approach to computing well-founded se-
mantics. In: Intl. Conf. and Symposium on Logic Programming (1992)

30. Chen, W., Warren, D.S.: Query evaluation under the well-founded semantics. In:
Proceedings of Symp. on the Principles of Database Systems (1993)

31. Chen, W.: Query evaluation in deductive databases with alternating fixpoint se-
mantics. ACM Transactions on Database Systems 20, 239–287 (1995)

32. Cherchago, N., Hitzler, P., Hölldobler, S.: Decidability under the well-founded
semantics. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS,
vol. 4524, pp. 269–278. Springer, Heidelberg (2007)

33. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data-
Bases, New York, pp. 293–322 (1978)

34. Dix, J.: A framework for representing and characterizing semantics of logic pro-
grams. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Third International Conference (KR
1992), pp. 591–602. Morgan Kaufmann, San Mateo (1992)

35. Dix, J.: A classification-theory of semantics of normal logic programs: Ii. weak
properties. Fundamenta Informaticae XXII(3), 257–288 (1995)

36. Dix, J.: Semantics of logic programs: Their intuitions and formal properties. an
overview. In: Fuhrmann, A., Rott, H. (eds.) Essays on Logic in Philosophy and
Artificial Intelligence, pp. 241–327. DeGruyter, Berlag-New York (1995)

http://dx.doi.org/10.1007/978-3-642-04985-9
http://dx.doi.org/10.1007/978-3-642-04985-9

Rules and Logic Programming for the Web 379

37. Doets, K.: From Logic to Logic Programming. MIT Press, Camebridge (1994)
38. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: A hybrid system with data-

log and concept languages. In: Ardizzone, E., Sorbello, F., Gaglio, S. (eds.) AI*IA
1991. LNCS (LNAI), vol. 549, pp. 88–97. Springer, Heidelberg (1991)

39. Dung, P.M.: Negation as hypotheses: An abductive foundation for logic program-
ming. In: 8th Int. Conf. on Logic Programming, MIT Press, Cambridge (1991)

40. Dung, P.M.: An argumentation semantics for logic programming with explicit
negation. In: 10th Logic Programming Conf., MIT Press, Cambridge (1993)

41. Dung, P.M., Kanchansut, K.: A natural semantics of logic programs with negation.
In: 9th Conf. on Foundations of Software Technology and Theoretical Computer
Science, pp. 70–80 (1989)

42. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. In: KR 2004 (2004)

43. Emden, M.H., Kowalski, R.: The semantics of predicate logic as a programming
language. JACM 23, 733–742 (1976)

44. Fitting, M.: A kripke-kleene semantics of logic programs. Journal of Logic Pro-
gramming 4, 295–312 (1985)

45. Fitting, M.: Well-founded semantics, generalized. In: Int. Symposium of Logic Pro-
gramming, pp. 71–84. MIT Press, San Diego (1990)

46. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, Heidelberg (1996)

47. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) 5th Conference on Logic Programming, pp. 1070–
1080 (1988)

48. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: ICLP 1990,
pp. 579–597. MIT Press, Cambridge (1990)

49. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

50. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: International World Wide Web
Conference, ACM, New York (2003)

51. Heymans, S., Van Nieuwenborgh, D., Hadavandi, E.: Nonmonotonic ontological
and rule-based reasoning with extended conceptual logic programs. In: Gómez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer,
Heidelberg (2005)

52. Hitzler, P., Seda, A.K.: Mathematical Aspects of Logic Programming Semantics.
Studies in Informatics. Chapman and Hall/CRC Press (2010)

53. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl:
A semantic web rule language combining owl and ruleml (2004), http://www.w3.
org/submission/swrl/ (accessed January 2006)

54. Hu, Y., Yuan, L.Y.: Extended well-founded model semantics for general logic pro-
grams. in koichi furukawa, editor, In: Int. Conf. on Logic Programming, Paris, pp.
412–425 (1991)

55. Kemp, D.B., Srivastava, D., Stuckey, P.J.: Bottom-up evaluation and query opti-
mization of well-founded models. Theor. Comput. Sci. 146, 145–184 (1995)

56. Khamsi, M.A., Misane, D.: Fixed point theorems in logic programming. Ann.
Math. Artif. Intell. 21(2-4), 231–243 (1997)

57. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artifical In-
telligence 2, 227–260 (1971)

58. Kunen, K.: Negation in logic programming. Journal of Logic Programming 4, 289–
308 (1987)

http://www.w3.org/submission/swrl/
http://www.w3.org/submission/swrl/

380 A. Paschke

59. Leitsch, A.: The Resolution Calculus. Springer, Heidelberg (1997)
60. Levy, A., Rousset, M.-C.: A representation language combining horn rules and

description logics. In: European Conference on Artificial Intelligence, ECAI 1996
(1996)

61. Lifschitz, V.: Foundations of declarative logic programming. Principles of Knowl-
edge Representation. CSLI publishers (1996)

62. Lloyd, J.W.: Foundations of logic programming, 2nd extended edn. Springer, New
York (1987)

63. Lobo, J., Minker, J., Rajasekar, A.: Foundations of disjunctive logic programming.
MIT Press, Cambridge (1992)

64. Lonc, Z., Truszcynski, M.: On the problem of computing the well-founded seman-
tics. Theory and Practice of Logic Programming 1(5), 591–609 (2001)

65. Marek, V.W.: Autoepistemic logic. Journal of the ACM 38(3), 588–619 (1991)
66. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Journal of

Artificial Intelligence 13(1-2), 27–39 (1980)
67. Minker, J.: An overview of nonmonotonic reasoning and logic programming. Jour-

nal of Logic Programming 17(2-4), 95–126 (1993)
68. Morishita, S.: An extension of van gelder’s alternating fixpoint to magic programs.

Journal of Computer and System Sciences 52, 506–521 (1996)
69. Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. Journal

of Web Semantics 3(1), 41–60 (2005)
70. Paschke, A.: Verification, validation, integrity of rule based policies and con-

tracts in the semantic web. In: 2nd International Semantic Web Policy Workshop
(SWPW 2006), Athens, GA, USA, November 5-9 (2006)

71. Paschke, A.: A typed hybrid description logic programming language with poly-
morphic order-sorted dl-typed unification for semantic web type systems. CoRR,
abs/cs/0610006 (2006)

72. Paschke, A., Boley, H., Kozlenkov, A., Craig, B.L.: Rule responder: Ruleml-based
agents for distributed collaboration on the pragmatic web. In: ICPW, pp. 17–28
(2007)

73. Pereira, L.M., Alferes, J.J.: Well founded semantics for logic programs with explicit
negation. Proceedings of ECAI 1992 (1992)

74. Pereira, L.M., Alferes, J.J., Aparicio, J.N.: Adding closed world assumptions to
well founded semantics. In: Fifth Generation Computer Systems, pp. 562–569
(1992)

75. Przymusinska, H., Przymusinski, T.C.: Weakly perfect semantics for logic pro-
grams. In: 5th International Conference and Symposium on Logic Programming,
pp. 1106–1121 (1988)

76. Przymusinska, H., Przymusinski, T.C.: Weakly stratified logic programs. Funda-
menta Informaticae 13, 51–65 (1990)

77. Przymusinski, T.C.: Perfect model semantics. In: 5th Int. Conf. and Symp. on Logic
Pro- gramming, pp. 1081–1096. MIT Press, Cambridge (1988)

78. Przymusinski, T.C.: Every logic program has a natural stratification and an it-
erated fixed point model. Proceedings of ACM Symp. on Principles of Database
Systems, 11–21 (1989)

79. Przymusinski, T.C.: On the declarative and procedural semantics of logic pro-
grams. Journal of Automated Reasonig 5, 167–205 (1989)

80. Przymusinski, T.C.: Non-monotonic reasoning vs. logic programming: A new per-
spective. In: Partridge, D., Wilks, Y. (eds.) The Foundations of Artifical Intelli-
gence - A Sourcebook, Cambridge University Press, London (1990)

Rules and Logic Programming for the Web 381

81. Przymusinski, T.C.: The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae 13, 445–463 (1990)

82. Przymusinski, T.C.: Stable semantics for disjunctive programs. New Generation
Computing 9, 401–424 (1991)

83. Rajasekar, A., Lobo, J., Minker, J.: Weak generalized closed world assumption.
Journal of Automated Reasonig 5(3), 293–307 (1989)

84. Reiter, R.: A logic for default reasoning. Journal of Artificial Intelligence 13, 81–
132 (1980)

85. Riccardo, R.: On the decidability and complexity of integrating ontologies and
rules. Journal of Web Semantics 3(1) (2005)

86. RIF. W3c rif: Rule interchange formant (2010), http://www.w3.org/2005/rules/
(accessed october 2010)

87. Robinson, J.: A machine-oriented logic based on the resolution-principle.
JACM 12(1), 23–41 (1965)

88. Ross, K.: A procedural semantics for well-founded negation in logic programs.
Journal of Logic Programming 13(1), 1–22 (1992)

89. Ross, K.: Modular stratification and magic sets for datalog programs with nega-
tion. Journal of the ACM 41(6), 1216–1266 (1994)

90. Sacca, D., Zaniolo, C.: Partial models and three-valued models in logic programs
with negation. In: Workshop of Logic Programming and Non-Monotonic Reason-
ing, Washington D.C, pp. 87–104. MIT Press, Cambridge (1991)

91. Schlipf, J.: Formalizing a logic for logic programming. Annals of Mathematics and
Artificial Intelligence, 5, 279–302 (1992)

92. Shen, Y.-D., Yuan, L.-Y., You, J.-H.: Slt-resolution for the well-founded semantics.
Journal of Automated Reasoning 28(1), 53–97 (2002)

93. Shepherdson, J.C.: Negation in logic programming. In: Minker, J. (ed.) Founda-
tions of Deductive Databases, pp. 19–88. Morgan Kaufmann, San Francisco (1988)

94. Shepherdson, J.C.: Unsolvable problems for sldnf resolution. J. of Logic Program-
ming, 19–22 (1991)

95. Stuckey, P.J., Sudarsham, S.: Well-founded ordered search: Goal-directed bottom-
up evaluation of well-founded models. The Journal of Logic Programming 32(3),
171–205 (1997)

96. Tamaki, H., Sato, T.: Old resolution with tabulation. In: 3rd Int. Conf. on Logic
Programming, London, pp. 84–98 (1986)

97. Teusink, F.: A proof procedure for extended logic programs. In: ILPS 1993. MIT
Press, Cambridge (1993)

98. Ullman, J.D.: Principles of Database and Knowlegebase Systems, vol. 2. Computer
Science Press, Rockville (1989)

99. Van Gelder, A.: The alternating fixpoint of logic programs with negation. In: 8th
ACM SIGACT-SIGMOND-SIGART Symposium on Principles of Database Sys-
tems, pp. 1–10 (1989)

100. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences 47(1), 185–221 (1993)

101. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. JACM 38(3), 620–650 (1991)

102. You, L.H., Yuan, L.Y.: Three-valued formalization of logic programming: is it
needed. In: Proceedings of 9th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 172–182. ACM Press, New York (1990)

http://www.w3.org/2005/rules/

OWL and Rules

Adila Krisnadhi, Frederick Maier, and Pascal Hitzler

Kno.e.sis Center, Wright State University, Dayton, Ohio

Abstract. The relationship between the Web Ontology Language OWL
and rule-based formalisms has been the subject of many discussions and
research investigations, some of them controversial. From the many at-
tempts to reconcile the two paradigms, we present some of the newest
developments. More precisely, we show which kind of rules can be mod-
eled in the current version of OWL, and we show how OWL can be
extended to incorporate rules. We finally give references to a large body
of work on rules and OWL.

1 Introduction

Since research into the Semantic Web began, there have been different paradigms
for modeling ontologies. Two prominent approaches discussed at the very begin-
ning are description logics [4] and rules, the latter in the wider sense of logic
programming (e.g., in the form of F-Logic [41]). While both of these approaches
are based on classical logic, they are sufficiently different that naive attempts to
combine them were unsuccessful.

The Web Ontology Language OWL [33,61], which is now a W3C standard,
was the primary DL-based formalism that resulted from these discussions [34,84].
Nevertheless, rule-based formalisms [76] proved successful, including in commer-
cial applications, and they continued to be pursued after the development of
OWL. This eventually led to the development of the W3C Recommendation
RIF (Rule Interchange Format) [5,6].

The modeling split between description logics and rules has naturally led
to a considerable number of efforts to understand the relationships between
the two paradigms and to establish workable combinations of them. Some of
the resulting formalisms and systems have proved to be successful (we give a
partial list in Section 5). However, a formalism that successfully combines the two
paradigms into a single ontology language—while at the same time remaining
conceptually true to both of them and remaining computationally viable—has
not been developed.

In this paper, we focus on new results in developing such a language. Speci-
fically, we discuss adding what are called nominal schemas (first described in
[51]) to description logics. The resulting language is entirely in the spirit of
description logics (a point which we discuss in more detail in Section 4), and yet
it allows basic rule patterns to be captured. This paper can be understood as
a continuation of [30], in the sense that it discusses (in the same spirit) recent
work on combining rules and ontologies.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 382–415, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

OWL and Rules 383

After providing necessary terminology and technical preliminaries in Section
2, Sections 3 and 4 present material first described in [53] and [51], respectively.
Specifically, Section 3 investigates the kinds of rules that are already expressible
in the current OWL standard, and Section 4 shows how OWL can be extended
to incorporate a significantly wider class of rules. In Section 5, we give pointers
to other work combining rules and OWL. Section 6 concludes with some open
issues for future research.

2 Preliminaries

For notation and terminology, and in particular for the definition of SROIQ,
we follow the chapter by Sebastian Rudolph contained in this volume [84]. For
a textbook introduction, see [34]; whereas for a comprehensive treatment of
description logics, see [4]. We use description logic notation throughout. Recall
that the description logic SROIQ corresponds roughly to the OWL 2 DL profile
of the Web Ontology Language [33,75]. Henceforth, by OWL we will understand
OWL 2 DL. Some of the results discussed in this paper will also be closely related
to the three tractable profiles of OWL 2 DL, namely OWL 2 EL, OWL 2 RL,
and OWL 2 QL [64].

The description logic SREL, also known as EL+, encompasses1 the following
concept (class) and role (property) constructs:

– concept conjunction
– existential quantification
– Self
– role chains
– the universal role

The description logic SROEL furthermore allows nominals. It essentially corres-
ponds to OWL 2 EL [64]. The logic SROIEL further allows the use of inverse
roles.

Given a first-order logic signature, a Horn clause is a formula of the form
(∀x1) . . . (∀xn)(B1 ∧ · · · ∧ Bk → A), where each xi is a variable occurring in the
formula and A and each Bi are atomic formulas, also called atoms. It is usual to
omit the quantifiers and abbreviate the formula as

B1 ∧ · · · ∧ Bk → A,

commonly known as a rule. Given such a rule, A is called the head of the rule,
while B1 ∧ · · · ∧Bk is called the body, and each Bi is referred to as a body atom.

A function-free Horn clause is called a Datalog rule, and we will see many
examples below. The Rule Interchange Format of the W3C [42] encompasses
the RIF Core Dialect [5], which is essentially Datalog. In our discussion on

1 Some additional role characteristics are usually also included, but this is not impor-
tant for our discussion.

384 A. Krisnadhi, F. Maier, and P. Hitzler

integrating OWL and rules, we will mainly be concerned with Datalog using
only unary and binary predicate symbols.

Semantically, we understand Datalog to be interpreted under the standard
first-order predicate logic semantics. In some cases, we will refer to the Herbrand
semantics, and will do so explicitly in each case.

3 Rules in OWL

In this section, we explore the question of which rules can be expressed in the
current version of OWL. Results are adapted mainly from [53].

3.1 DLP and OWL 2 RL

It is rather obvious that certain DL axioms can be translated naively into rules:

A � B becomes A(x) → B(x)
R � S becomes R(x, y) → S(x, y)

DL axioms which involve only existential quantification and conjunction, and
do so only on the left hand side of the concept inclusion, can also be translated
easily:

A � ∃R.∃S.B � C becomes A(x) ∧ R(x, y) ∧ S(y, z) ∧ B(z) → C(x)

However, for existential quantifiers on the right hand side of concept inclusion,
there is no such translation.2

Things become a bit trickier if we look at other DL concept constructors.
Universal quantification occurring on the right hand side can be translated, but
only when it is not on the left hand side.

A � ∀R.B becomes A(x) ∧ R(x, y) → B(y)

This is so because the axiom A � ∀R.B is equivalent to ∃R−.A � B. Note, how-
ever, that the latter axiom requires an inverse role, whereas the former doesn’t.
Similarly, concept negation can be dealt with when occurring on the right hand
side if it occurs together with disjunction, because an axiom like A � ¬B � C
can be rewritten to A � B � C, i.e.

A � ¬B � C becomes A(x) ∧ B(x) → C(x).

Cardinality restrictions can be translated as long as they can be rewritten, e.g.,
expressions such as ≥1R.A would become ∃R.A, which can be handled if occur-
ring on a left hand side. If we are allowed to use an equality symbol with the
rules, then we can also express, e.g., functionality:

 � ≤1R.
 becomes R(x, y) ∧ R(x, z) → y = z.

2 Unless we allow Skolemization which, however, does not result in a semantically
equivalent expression, only in an equisatisfiable one.

OWL and Rules 385

Nominals can also be dealt with. They usually translate into the use of con-
stants, and in some cases we also need equality:

A � ∃R.{b} � C becomes A(x) ∧ R(x, b) → C(x).
{a} ≡ {b} becomes → a = b.

If we allow truth value predicates t and f on the rules side, then we can also
express some axioms involving
 and ⊥:

A � B � ⊥ becomes A(x) ∧ B(x) → f.

Rules like the latter are usually called integrity constraints.
In some cases, DL axioms can be translated but result in more than one rule.

This occurs, e.g., with disjunction on the left and with conjunction on the right
hand side:

A � B ∧ C becomes A(x) → B(x) and A(x) → C(x)
A � B → C becomes A(x) → C(x) and B(x) → C(x)

If we look at this purely on the DL side, then the reason for this is that the
first axiom indeed can be expressed as the two axioms A � B and A � C,
and likewise the second axiom can be expressed as the two axioms A � C and
B � C.

Armed with these observations, one is tempted to define a DL consisting only
of axioms which can be translated into rules, e.g. as follows: A DL axiom α can
be translated into rules if, after translating α into a first-order predicate logic
expression α′, and after normalizing this expression into a set of clauses M ,
each formula in M is a Horn clause (i.e., a rule). It needs to be noted, though,
that this definition is dependent on the exact translation and normalization algo-
rithm used: Is it allowed to use Skolemization? Is it allowed to use sophisticated
algorithms which may, for example, eliminate tautological axioms which are not
directly expressible as rules?3

If we stick to a naive translation and normalization,4 then the above obser-
vations are in fact the key idea behind the early language DLP [28], where the
authors define a fragment of the DL SHOIQ (and thus for the 2004 version of
OWL [61]) in this vein. DLP is discussed more in Section 5.3.

A naively adapted version of DLP, in fact, resulted in the OWL 2 profile OWL
2 RL [64].5 In particular, in OWL 2 RL we can also deal with role chain axioms,
3 We could also consider the whole DL knowledge base as input to this process, and

algorithms which do a sophisticated compilation of the knowledge base. Indeed, such
investigations have been carried out in a rather successful way, see e.g. [62], and also
the notion of Horn DLs resulting from this [52].

4 It is difficult to exactly define “naive”—but essentially we mean a kind of direct
translation of each axiom into equivalent rules, in the spirit of the examples we have
given. How exactly the notion “naive” is understood, in fact, does not matter much
for our discussion. See [55] for a more conceptually inspired approach to defining
rule fragments of DLs.

5 OWL 2 RL extends a naive adaptation of the DLP language by some additional
features, such as keys, which are not relevant to our discussion.

386 A. Krisnadhi, F. Maier, and P. Hitzler

which were not present in the 2004 version of OWL, and thus not part of the
original DLP language:

R ◦ S � T becomes R(x, y) ∧ S(y, z) → T (x, z)

However, the Self construct from OWL 2 DL did not make it into OWL 2
RL, although it in fact mediates another rather strong relationship to rules. We
explore this in the following.

3.2 Rolification

Consider the sentence “All elephants are bigger than all mice.” [85], which is
easily expressed by the rule

Elephant(x) ∧ Mouse(y) → biggerThan(x, y). (1)

It is indeed possible to translate this rule into OWL 2—however this involves a
transformation which we call rolification:6 The rolification of a concept A is a
(new) role RA defined by the axiom A ≡ ∃RA.Self. Armed with rolification, we
can now express rule (1) by the axiom

RElephant ◦ U ◦ RMouse � biggerThan,

where U is the universal role, together with the two axioms for the rolifications
of the concepts Elephant and Mouse,

Elephant ≡ ∃RElephant.Self and Mouse ≡ ∃RMouse.Self.

Note that this transformation is not exactly an equivalence transformation, since
we introduce new role names. However, it is very akin to the technique of folding
in logic programming, and the models of the rule stand in direct correspondence
with the models of the resulting set of DL axioms, in the sense of a conservative
extension7.

The rolification technique now makes it possible to translate further rules into
DL syntax, in particular such rules where the rule head is a binary predicate:

A(x) ∧ R(x, y) → S(x, y) becomes RA ◦ R � S

A(y) ∧ R(x, y) → S(x, y) becomes R ◦ RA � S

A(x) ∧ B(y) ∧ R(x, y) → S(x, y) becomes RA ◦ R ◦ RB � S

A natural use of this form of axiom would be in specifying when a role restricts
to a subrole, e.g., to state something like

Woman(x) ∧ marriedTo(x, y) ∧ Man(y) → hasHusband(x, y),
6 It is also called man-man-ification, because one of the early examples involved a

concept called Man [87].
7 That is, for every model I of the rule, there exists a model of the DL axioms which

can be obtained from I by modifying the interpretation of the predicate symbols
not appearing in the rule; in this case, the new roles RElephant and RMouse. See [60]
for further discussion about this definition.

OWL and Rules 387

which translates to

RWoman ◦ marriedTo ◦ RMan � hasHusband

However this has to be done with caution, because it would be natural for an
axiom like

hasHusband � marriedTo

to appear in the same knowledge base. This, however, is not allowed since it
would violate regularity conditions on the RBox (see [84]).

To give another example for the rolification technique, consider the rule

worksAt(x, y) ∧ University(y) ∧ supervises(x, z)∧PhDStudent(z)
→ professorOf(x, z),

which can be expressed as

R∃worksAt.University ◦ supervises ◦ RPhDStudent � professorOf.

3.3 Description Logic Rules

Given the previous examples, it becomes natural to ask about sufficient condi-
tions on rules for a possible translation into DL expressions using the rolification
technique. Such conditions gave rise to the notion of Description Logic Rules (DL
Rules) as introduced in [53]. The key intuition behind DL Rules is that bodies of
such rules must be tree-shaped in a sense which we will now formally define. An
example for a body which is not tree-shaped is R(x, y) ∧ S(y, z) ∧ T (x, z)—just
consider each pair of variables connected by a role as an edge in a directed graph
with the variables as vertices: for this example, the graph is not a tree, hence
the body is not tree-shaped.

To formally define DL Rules, we have to fix the description logic. From our
examples above we can see that the following expressive features are desirable:
conjunction, existential quantification, role chains, Self, and the universal role.
These are available in the polynomial-time DL SREL (a.k.a. EL+). To also deal
with constants, we require nominals, which are available in the polynomial DL
SROEL (a.k.a. EL++) which contains SREL and is contained in OWL 2 EL.
We have also seen above that inverse roles can be helpful, however they are not
available in OWL 2 EL. They are available in SROIEL which is contained in
OWL 2 DL.

Given a rule with body B, we construct a directed graph as follows: First
rename individuals (i.e., constants) such that each individual occurs only once—
a body such as R(a, x)∧S(x, a) becomes R(a1, x)∧S(x, a2). Denote the resulting
new body by B′. The vertices of the graph are then the variables and individuals
occurring in B′, and there is a directed edge between t and u if and only if there
is an atom R(t, u) in B′.

To illustrate this, consider the rule

C(x) ∧ R(x, a) ∧ S(x, y) ∧ D(y) ∧ T (y, a) → P (x, y).

The resulting graph is a1 x ���� y �� a2 .

388 A. Krisnadhi, F. Maier, and P. Hitzler

Definition 1. We call a rule with head H tree-shaped (respectively, acyclic), if
the following conditions hold.

– Each of the maximally connected components of the corresponding graph is
in fact a tree (respectively, an acyclic graph)—or in other words, if it is a
forest, i.e., a set of trees (respectively, a set of acyclic graphs).

– If H consists of an atom A(t) or R(t, u), then t is a root in the tree (respec-
tively, in the acyclic graph).

To give some examples, the rule R(x, a) ∧ S(y, a) → C(x) is tree-shaped, while
the rule R(x, z) ∧ S(y, z) → T (x, y) is acyclic but not tree-shaped. The first
rule translates to R∃R.{a} ◦ U ◦ R∃S.{a} � RC while the second translates to
R ◦ S− � T . Note the use of the inverse role in the second example, which
cannot be avoided—this is typically the case for rules which are acyclic but not
tree-shaped.

We now have the following results, which are slight adaptations from results
in [53].

Theorem 1. The following hold.

– Every tree-shaped rule can be expressed in SROEL.
– Every acyclic rule can be expressed in SROIEL.

Description Logic Rules as defined in [50,53] now generalize Definition 1 by
allowing unary predicates in rule atoms which are in fact concept expressions
from the underlying DL. It is shown that, if this is done for SROIQ (resulting in
SROIQ Rules), then there is a polynomial transformation of such rules back
into SROIQ. If it is done for SROEL or for OWL 2 RL, then the resulting
language is polynomial. It is furthermore shown that SROEL can be captured
completely by tree-shaped rules with the extension that rule heads may be of
the form ∃R.A, for a role R and an atomic concept A.

A word of caution: Not every set of acyclic rules results in a set of axioms
constituting a SROIQ knowledge base. This is due to the fact that not every
set of SROIQ axioms is a SROIQ knowledge base: Restrictions on the use of
non-simple roles must be adhered to, and the set of role chain axioms must be
regular (see [84]).

We close this part with a rule that is not acyclic:

hasReviewAssignment(v, x) ∧ hasAuthor(x, y) ∧ atVenue(x, z)
∧ hasSubmittedPaper(v, u) ∧ hasAuthor(u, y) ∧ atVenue(u, z) (2)

→ hasConflictingAssignedPaper(v, x)

The corresponding graph is the following.
x

���
��

��
��

����������������

v

��

��

y z

u

���������

����������������

OWL and Rules 389

Note, however, that if y and z were constants, then the rule would be tree-
shaped and could be expressed in SROEL as

R∃hasSubmittedPaper.(∃hasAuthor.{y}
∃atVenue.{z}) ◦ hasReviewAssignment
◦ R∃hasAuthor.{y}
∃atVenue.{z}

� hasConflictingAssignedPaper.

4 Rules Plus OWL

Theorem 1 allows us to identify rules expressible as DL axioms in a rather
natural way. This, however, is only one step towards reconciling the rule-based
and DL-based paradigms, as there are clearly additional (and desirable) things
that are expressible in rules but which do not fit the format of Theorem 1. In this
section, we discuss using nominal schemas [51] to significantly widen the class
of rules expressible in a DL language. We believe nominal schemas provide one
of the more seamless methods of integrating rule-based and DL-based ontology
languages to date. But before we arrive at that, we will provide some relevant
historical background.

4.1 DL-safe Rules, DL-safe Variables and ELP

Although DLs and rule languages are decidable fragments of first-order logic, it
is well known that an unrestricted combination of both leads to undecidability.
Intuitively, this is because many DLs rely on the so-called tree model property
to retain decidability, and this property is lost when rules come into play [74].8

Another related source of problems, which may similarly lead to undecidability
or complexity blow-up, is the fact that DL knowledge bases typically entail the
existence of anonymous individuals within a possibly infinite domain. This makes
things difficult in the presence of rules, which generally apply to all individuals
in the domain [54]. Therefore, a crucial step when one wants to combine the
rule-based paradigm and the DL-based paradigm in one ontology is to come up
with some safety criterion to ensure decidability or certain complexity bounds
for reasoning over the combined language.

A prominent example of such a safety criterion is the notion of DL-safe rules
[74] (see Sections 5.1 and 5.2). These restrict the applicability of rules in the
combined knowledge base to named individuals, i.e., to individuals explicitly
mentioned in the knowledge base. This guarantees decidability because there
can only be a finite number of named individuals in the knowledge base.

More relevant to the current discussion is that DL-safe rules can be added to
SROEL without losing tractability, under the restriction that there is a global
8 A DL is said to have the tree model property when every satisfiable formula in it has

a model which is of a tree-shape, where tree-shapedness is understood in a similar
way as discussed in Section 3.3. Note that there are decidable DLs in which this
property is not satisfied. In such DLs, decidability can be recovered by applying
sophisticated strategies in the reasoning algorithm, e.g., blocking, see [4].

390 A. Krisnadhi, F. Maier, and P. Hitzler

bound on the number of variables which can occur in each rule. The resulting
language, called ELP, is a tractable ontology language based on the DL rules
framework (discussed in Section 3.3) that generalizes DL-safe rules by building
this safety criteria directly into the semantics of variables [54]. Syntactically, an
ELP rule base is a set of rules with function-free, unary and binary atoms whose
predicate symbols are formed from SROEL concept and role expressions.

We assume, in the signature of ELP, that the set of individuals is finite and
contains only those named individuals occurring in the knowledge base. In ad-
dition, the DL-safety criteria is built into the semantics of variables as follows:
from the set of variables that is a part of ELP’s signature, we specify a fixed sub-
set that contains precisely those variables which can only be assigned to named
individuals. Let us revisit the following example (2) from page 388:

hasReviewAssignment(v, x) ∧ hasAuthor(x, y) ∧ atVenue(x, z)
∧ hasSubmittedPaper(v, u) ∧ hasAuthor(u, y) ∧ atVenue(u, z) (3)

→ hasConflictingAssignedPaper(v, x)

This rule is in ELP if the variables y and z are DL-safe variables. The intuition
behind DL-safe variables is so that we can regain a tree-shape for the rule when
these safe variables are replaced with named individuals from the knowledge
base.

The tree-shapedness notion for ELP rules is based on Definition 1 with the
following exceptions:

– there can be more than one tree edge (must be of the same direction) between
two vertices; this corresponds to role conjunctions; if there is more than one
tree edge between two vertices, those edges must correspond to simple roles
only;

– atoms of the form R(x, x) are ignored when defining a path in the tree, i.e.,
local reflexivity is allowed; (R must be simple).

A rule base in ELP contains those rules whose atoms use SROEL concepts and
role expressions and satisfy the tree-shapedness notion above, and which may
in addition contain rules of the form R(x, y) → C(y) that satisfy: for each such
rule, if the rule base contains a rule B → H with R(t, z) ∈ H , then C(z) ∈ B.

The following theorem from [54] gives the tractability result for ELP.

Theorem 2. Satisfiability of any ELP rule base can be decided in time polyno-
mial in the size of the rule base.

The above result from ELP is an important milestone in the effort to reconcile
DL-based and rule-based paradigms in ontology languages. Not only because of
the tractability of reasoning, but also because of the fact that it subsumes both
SROEL (i.e., OWL 2 EL) and DLP (i.e., most of OWL 2 RL) in the following
sense [54].

Theorem 3. Given any ground atom α of the form C(a) or R(a, b), a DLP rule
base R, and a SROEL knowledge base K, there exists an ELP rule base R′ such

OWL and Rules 391

that if R |= α or K |= α then R′ |= α, and if R′ |= α then R ∪K |= α, and R′

can be computed in linear time.

In fact, the expressivity of ELP exceeds that of SROEL because it admits con-
junctions of simple roles and limited range restrictions (expressed using rules).
Note however, that ELP is clearly still a hybrid language because it uses both
rule-based and DL-based syntax. This hybrid nature of ELP makes it rather
complicated to integrate with OWL 2 DL standard which is roughly based on
the DL paradigm. This becomes one of the motivations for the development of
nominal schemas which is discussed in the sequel.

4.2 Nominal Schemas: Intuitive Idea

The notion of DL-safe variables in the previous section gives an insight on how to
integrate rule-based and DL-based paradigms in a DL framework and how such
integration can then be adapted quite easily into the currentOWL syntax. The key
observation is obtained from the fact that a DL-safe variable essentially represents
all possible groundings to named individuals in the knowledge base. What we need
is a way to specify this explicitly within DL syntax. This was realized in a new DL
construct called nominal schemas, which syntactically resemble nominals [51]. In
this paper, we consider the following DL languages: SROIQV(Bs,×) that is an
extension of SROIQ (which roughly corresponds to OWL 2 DL) with Boolean
operators on roles, concept products, and nominal schemas; and SROELV(�,×)
that is an extension of SROEL (which roughly corresponds to OWL 2 EL) with
role conjunction, concept products and nominal schemas. For the latter, we will
mainly speak about the tractable fragments SROELV(�,×), n ≥ 0, which can be
obtained from SROELV(�,×) by restricting the number of occurrences of certain
nominal schemas that will be introduced later.

To understand why nominal schemas allow a seamless integration of rules
within DL-based syntax, note that in ELP, variables can essentially be catego-
rized into two types: DL-safe variables which must be bound only to named
individuals, and non-DL-safe variables which may represent anonymous indi-
viduals in the domain of the knowledge base. Thus, if we want to use a DL-
based syntax, we can just hide the anonymous individuals inside the concept and
role expressions and then deal with DL-safe variables separately. This is where
nominal schemas are used.

One characteristic feature of rules that is brought into DL axioms by nominal
schemas is variable bindings. Consider the following rule

hasChild(x, y) ∧ hasChild(x, z) ∧ classmate(y, z) → C(x)

which defines a concept C of parents with at least children which are classmates
(consider the role classmate to be irreflexive). This rule is not tree-shaped as it
induces two paths from x to z. Moreover, the variable z which occurs in different
atoms must be bound to the same individual. This cannot be simulated in DLs
unless we are equipped with nominal schemas as follows:

∃hasChild.{z} � ∃hasChild.∃classmate.{z} � C

392 A. Krisnadhi, F. Maier, and P. Hitzler

The following example—see (2) on page 388 and (3) on page 390— is expressed
in SROELVn(�,×). It states that somebody has a conflicting review assignment
(paper x) if this person has a paper submitted at the same event which is co-
authored by one of the authors of paper x.

∃hasReviewAssignment.(({x} � ∃hasAuthor.{y}) � ({x} � ∃atVenue.{z}))
� ∃hasSubmittedPaper.(∃hasAuthor.{y} � ∃atVenue.{z}) (4)
� ∃hasConflictingAssignedPaper.{x}

The last example does not induce tree-shaped structures, the fact of which
is quite clear if we rewrite it as a rule. There, the tree-shaped structure can be
recovered when x is ground as a named individual. This particular insight is
exploited to show the tractability of reasoning for SROELVn(�,×).

Formally, this is done by introducing the notion of safe environment.9

Definition 2. An occurrence of nominal schema {x} in a concept C is safe
if C contains a sub-concept of the form {v} � ∃R.D for some nominal schema
or nominal {v} such that {x} is the only nominal schema that occurs (possibly
more than once) in D. In this case, {v} � ∃R.D is a safe environment for this
occurrence of {x}, sometimes written as S(v, x).

The virtue of safe environments lies in the fact that, algorithmically, safe occur-
rences of nominal schemas can essentially be handled separately from the axiom
in which they occur, thus avoiding a combinatorial explosion through grounding,
provided that there is a global bound on the number of occurrences of those safe
nominal schemas in each axiom [51]—we will return to this issue in the proof
sketch, and subsequent examples, of Theorem 5 below. The following definition
captures this idea, and it will be explained in more detail further below.

Definition 3. Let n ≥ 0 be an integer. A SROELV(�,×) knowledge base KB
is a SROELVn(�,×) knowledge base if in each of its axioms C � D, there are
at most n nominal schemas appearing more than once in non-safe form, and all
remaining nominal schemas appear only in C.

Note the dependency of the definition on the positive integer n, which is a global
bound on the number of nominal schemas which can occur (more than once in
non-safe form) in any axiom. Without this global bound we would not be able
to retain tractability of reasoning.

Returning to our example axiom (4) above, we see that it indeed lies in
SROELV1(�,×).

4.3 Nominal Schemas: Formal Definitions and Results

We now formally introduce syntax and semantics of nominal schema. As in-
dicated in section 4.2, we introduce two new languages: SROIQV(Bs,×) and
9 Definition 2 is slightly more general than the one presented in [51], leading to a

slightly more general polynomial language.

OWL and Rules 393

SROELVn(�,×). We will start with the former and then introduce the latter
as its sublanguage. Let the set of individual names NI , the set of concept names
NC , and the set of role names NR form the signature of the DL SROIQ as
defined in [84]. The signature of SROIQV(Bs,×) is then formed from NI , NC ,
NR, and additionally the set of variables NV . We also assume that these sets
are finite and pairwise disjoint. As already seen from the earlier examples, we
use lower case letters x, y, z, . . . to denote variables. Furthermore, the set of role
names NR is partitioned into disjoint sets Ns

R of simple role names and Nn
R of

non-simple role names. Note that this partition is fixed from the signature, i.e.,
is not defined based on syntactic properties, e.g., how it occurs in the TBox or
ABox, etc. This simplifies the presentation.

The set of SROIQV(Bs,×) roles R is the union of two (non-disjoint) sets:
the set of simple roles Rs and the set of non-simple roles Rn where Rs consists
of (defined inductively):

– all simple role names;
– inverses of simple role names, i.e., R− for every simple role name R;
– the universal role U ;
– ¬R, R � S and R � S where R, S are simple roles in Rs;
– the concept products A × B where A, B are concept names;

and Rn consists of (defined inductively):

– all non-simple role names;
– inverses of non-simple role names, i.e., R− for every non-simple role name

R;
– the universal role U ;
– the concept products A × B where A, B are concept names.

The set of SROIQV(Bs,×) concepts C consists of (defined inductively):

– the top concept
 and the bottom concept ⊥;
– every concept name A ∈ NC ;
– {a} for every individual name a ∈ NI ;
– {v} for every variable v ∈ NV ;
– ¬C, C � D and C � D where C, D are concepts;
– ∃R.C and ∀R.C where R is a role;
– ∃R.Self, ≤kR.C and ≥kR.C where R is a simple role, k any non-negative

integer and C concept.

Concepts {a} with a ∈ NI are called nominals and concepts {v} with v ∈ NV

are called nominal schemas. Essentially, concepts and roles for SROIQV(Bs,×)
are SROIQ concepts and roles extended with concept product (indicated with
×), nominal schema (indicated with the letter V) and Boolean role constructors
(indicated with the letter Bs).

A SROIQV(Bs,×) knowledge base consist of RBox, TBox and ABox axioms
with syntax defined as usual. The regularity condition for SROIQ knowledge
bases also applies for SROIQV(Bs,×) knowledge bases.

394 A. Krisnadhi, F. Maier, and P. Hitzler

The semantics of SROIQV(Bs,×), like that of SROIQ, is based on interpre-
tations I = (ΔI , ·I) with ΔI the domain of I and ·I the interpretation mapping.
But we need an additional component for interpretation of variables. This is re-
alized by associating a variable assignment Z : NV → ΔI for the interpretation
I. The assignment Z is such that for each v ∈ NV , Z(v) = aI for some a ∈ NI .
Another interpretation mapping ·I,Z is then defined that reflects both I and Z.
The base definition of ·I,Z starts from concept names, role names, individual
names and variables as follows:

AI,Z = AI ⊆ ΔI RI,Z = RI ⊆ ΔI × ΔI

aI,Z = aI ∈ ΔI xI,Z = Z(x) ∈ ΔI

Extending ·I,Z for complex concepts and roles is straightforward and very similar
to the way ·I is extended to them in SROIQ. The following are for complex
concepts:

I,Z = ΔI ⊥I,Z = ∅ {t}I,Z = {tI,Z} for t ∈ NI ∪ NV

(∃R.C)I,Z = {δ | there is ε with 〈δ, ε〉 ∈ RI,Z and ε ∈ CI,Z}
(∀R.C)I,Z = {δ | for all ε with 〈δ, ε〉 ∈ RI,Z , we have ε ∈ CI,Z}

(∃R.Self)I,Z = {δ | 〈δ, δ〉 ∈ RI,Z}
(¬C)I,Z = ΔI \ CI,Z

(C � D)I,Z = CI,Z ∩ DI,Z (C � D)I,Z = CI,Z ∪ DI,Z

(≤kR.C)I,Z = {δ | #{〈δ, ε〉 ∈ RI,Z | ε ∈ CI,Z} ≤ k}
(≥kR.C)I,Z = {δ | #{〈δ, ε〉 ∈ RI,Z | ε ∈ CI,Z} ≥ k}

For roles, the following holds:

UI,Z = ΔI × ΔI

(R−)I,Z = {〈δ, ε〉 | 〈ε, δ〉 ∈ RI,Z}
(A × B)I,Z = {〈δ, ε〉 | δ ∈ AI,Z and ε ∈ BI,Z}

(¬R)I,Z = (ΔI × ΔI) \ RI,Z

(R � S)I,Z = RI,Z ∩ SI,Z (R � S)I,Z = RI,Z ∪ SI,Z

Let I be an interpretation and Z a variable assignment for I. For a
SROIQV(Bs,×) axiom α, we say, I and Z satisfy α (written I,Z |= α) if
the following holds for the corresponding form of α:

I,Z |= A(t) iff tI,Z ∈ AI,Z

I,Z |= R(t, u) iff (tI,Z , uI,Z) ∈ RI,Z

I,Z |= C � D iff CI,Z ⊆ DI,Z

I,Z |= R � S iff RI,Z ⊆ SI,Z

I,Z |= R1 ◦ . . . ◦ Rn � S iff RI,Z
1 ◦ . . . ◦ RI,Z

n ⊆ SI,Z

where ‘◦’ denotes the usual composition of binary relations

OWL and Rules 395

I satisfies α, written I |= α, if I,Z |= α for every variable assignment Z for I.
I satisfies a SROIQV(Bs,×) knowledge base KB, written I |= KB, if I |= α
for every α ∈ KB. In this case, we say KB is satisfiable (has a model). KB
entails an axiom α, written KB |= α, if all models of KB are also models of α.

It is known that reasoning in SROIQ(Bs) is N2ExpTime-complete — thus,
of the same complexity as SROIQ — where this logic is an extension of SROIQ
with Boolean role operators (and concept products too, since concept products
can be simulated using role negations) [83]. Reasoning in SROIQV(Bs,×) can
thus be done by grounding the nominal schemas first, i.e., substituting each
nominal schema with finitely many named individuals it may represent, resulting
in a knowledge base in SROIQ(Bs), and then proceeded with the reasoning
algorithm for SROIQ(Bs). If each axiom contains m different nominal schemas,
and there are a total of n axioms in the knowledge base, then this naive grounding
will generate n · |NI |m new axioms, i.e., a number exponential in the size of the
input knowledge base if there is no global bound on m. However, as stated in
the following theorem, adding nominal schema does not actually increase the
complexity [51].

Theorem 4. The problem of deciding satisfiability of a SROIQV(Bs,×) know-
ledge base is N2ExpTime-complete.

Another problem of obvious interest is to identify a fragment of the language
SROIQV(Bs,×) that admits nominal schemas as one of its constructors, but is
still tractable in reasoning.

As mentioned in Section 4.2, the idea of nominal schemas is inspired from the
use of DL-safe variables in ELP which is a tractable extension of SROEL. So,
obvious candidates to look at are extensions of SROEL with nominal schemas.
In [51], the DLs SROELVn(�,×) were presented as such candidates. These DLs
are extensions of SROEL(�,×) which are defined for each integer n ≥ 0. The
number n that is a part of the language definition provides a global bound that
restricts the number of “unsafe” occurrences of nominal schemas in an axiom.

Recall that occurrences of nominal schemas in an axiom provides variable
bindings which are a characteristic feature of rules, but not of DL axioms. In
general, such bindings may represent complex dependencies that are difficult to
simplify. The naive way to process nominal schemas is by grounding them all to
every possible replacement with named individuals in the knowledge base. This
obviously leads to intractability as this naive grounding introduces exponential
blow-up in the size of the knowledge base.

To achieve tractability, a better reduction on the number of nominal schemas
is needed. Fortunately, by borrowing insight from ELP, we understood that there
are special cases in which nominal schemas on the left-hand side of TBox axioms
can be eliminated or separated using independent axioms. The idea from ELP is
that when the dependencies expressed in a rule body are tree-shaped, the rule can
be reduced to a small set of normalized rules, each of which contains a limited
number of variables. This idea was then exploited to obtain the tractability
results of ELP [54].

396 A. Krisnadhi, F. Maier, and P. Hitzler

Elevating this idea to SROELVn(�,×), we view variables in rules as either
“hidden” in the concept expression or as occurring explicitly as nominal schemas.
Note that in [54], tree-shapedness only refers to variables and not constants
which correspond to nominals in our case here. Thus, nominals can be used
to disconnect a dependency structure in a concept. For example, consider the
concept

A � ∃R.{z} � ∃S.(B � ∃T.{z})

which corresponds to the rule body

A(x) ∧ R(x, z) ∧ S(x, y) ∧ B(y) ∧ T (y, z).

The tree-shapedness of the rule is recovered when y is actually a constant. In
the corresponding concept, this means a nominal in the place of the concept B.
When this is the case, the nominal schema {z} within the last conjunct of the
example concept occurs in a safe environment, which is the safety criteria that
we need. The formal Definition 2 generalizes this to the case where y, as in the
example above, is a nominal schema instead of a nominal.

We now give a formal definition of the DL SROELV(�,×) — and thus, of
SROELVn(�,×) for every n ≥ 0. We define a SROELV(�,×) concept as a
SROIQV(Bs,×) concept that may contain
, ⊥, conjunctions, existential re-
strictions, self restrictions, nominals and nominal schemas, but that does not
contain disjunctions, negations, universal restrictions, and number restrictions.
A SROELV(�,×) role is a SROIQV(Bs,×) role (simple or non-simple) which
may contain role conjunction (for simple roles) and the universal role, but no
inverse roles, role disjunction or role negation. TBox, RBox and ABox axioms
for SROELV(�,×) are TBox, RBox, and ABox axioms in SROIQV(Bs,×) that
use only SROELV(�,×) concepts and roles. Furthermore, every SROELV(�,×)
knowledge base satisfies the following restriction.

Definition 4. Let KB be a knowledge base and R a role name. Let ran(R)
be the set of all concept names B for which there is a set {R � R1, R1 �
R2, . . . , Rn−1 � Rn, Rn � A × B} ⊆ KB with n > 0 and R0 = R. We impose
that every SROELV(�,×) knowledge base must satisfy admissibility range re-
strictions for every role inclusion axiom in it as follows: R1◦ . . .◦Rn � S implies
ran(S) ⊆ ran(Rn) and R1 � R2 � S implies ran(S) ⊆ ran(R1) ∪ ran(R2).

This admissibility criteria is from SROEL(�,×), as defined in [49].
Finally, SROELVn(�,×) concepts and roles are SROELV(�,×) concepts

and roles. Also, SROELVn(�,×) knowledge bases are SROELV(�,×) know-
ledge bases that satisfies Definition 3. For SROELVn(�,×), we have obtain the
following result for every integer n ≥ 0.

Theorem 5. If KB is a SROELVn(�,×) knowledge base of size s, satisfiability
of KB can be decided in time proportional to sn. If n is constant, then the problem
is P-complete.

OWL and Rules 397

A full proof of this theorem can be found in [51]. We explain the key idea of the
proof by means of our running example (4). Note that a naive grounding, as ex-
plained above, would result in |NI |3 new axioms (without nominal schemas, but
with nominals). To decrease this figure without loss of completeness or sound-
ness, we take advantage of safe environments—the rationale behind this being
that safe environments can be handled separately from the rest of the axiom, as
follows.10

We first replace, in the axiom, the safe environments by a single nominal,
and we do this replacement for every nominal in the knowledge base. That is,
we obtain |NI | new axioms as follows, where ai ranges over all elements of NI .
Note the we also replaced the remaining occurrence of the nominal schema {x}
accordingly.11

∃hasReviewAssignment.({ai} � {ai})
� ∃hasSubmittedPaper.(∃hasAuthor.{y} � ∃atVenue.{z})
� ∃hasConflictingAssignedPaper.{ai}

Next, we replace the remaining occurrences of {y} and {z} (note that there
can be at most one for each of these nominal schemas, per definition of the la-
nguage SROELVn(�,×)) by new concept names Oy and Oz (when subsequently
converting other axioms, new concept names need to be used).

∃hasReviewAssignment.({ai} � {ai})
� ∃hasSubmittedPaper.(∃hasAuthor.Oy � ∃atVenue.Oz)
� ∃hasConflictingAssignedPaper.{ai}

We furthermore conjoin the expressions ∃U.Oy and ∃U.Oz to the left-hand side
of the axiom, where U is the universal role.

(∃U.Oy) � (∃U.Oz) � ∃hasReviewAssignment.({ai} � {ai})
� ∃hasSubmittedPaper.(∃hasAuthor.Oy � ∃atVenue.Oz)
� ∃hasConflictingAssignedPaper.{ai}

Note that this results in NI new axioms. Finally, add to the knowledge base the
following axioms, which are constructed from the safe environments and from
the elements ai of NI already used:

∃U.({ai} � ∃hasAuthor.{aj}) � ∃U.({aj} � Oy) (5)
∃U.({ai} � ∃atVenue.{aj}) � ∃U.({aj} � Oz) (6)

Note that this results in 2 · |NI |2 new axioms, for a total of |NI | + 2 · |NI |2 new
axioms, which for large |N|I is considerably smaller than the number |NI |3 of new

10 This obviously needs a proof, see [51].
11 In this specific case, we could also simplify (({ai}) 	 ({ai})) to {ai}, but this is

coincidental in our example.

398 A. Krisnadhi, F. Maier, and P. Hitzler

axioms obtained from the naive grounding—and the effect is more drastic for ax-
ioms with more nominal schemas. Note, in particular, that the number of new
axioms is of the order of magnitude of |NI |max{2,n}, where n is the global bound
from the definition of SROELVn(�,×)—in particular the number is polynomi-
ally bounded for fixed n.

The key idea behind the transformation just described is, that the axioms (5)
and (6) constrain the possible values for Oy and Oz, and that this suffices for
the reasoning process, since the concrete values obtained as elements of these
concepts are not required for further processing.

4.4 Embedding Datalog under Nominal Schemas

An important feature of nominal schemas is that they can express arbitrary
Datalog rules with unary and binary predicates which are interpreted as DL-safe,
i.e., the predicates (and their variables) only apply to named individuals. Here,
the DL-safe (Datalog) rules use a first-order logic semantics adapted using DL-
safe variables—which as such is akin to a Herbrand semantics reading—which is
compatible with the semantics of SROIQV(Bs,×). Moreover, there is an easy
syntactic transformation from DL-safe rules into SROIQV(Bs,×) axioms which
are semantically equivalent to the original DL-safe rules. The transformation can
be done as follows:

– Each unary atom A(x) is translated into ∃U.({x} � A).
– Each binary atom R(x, y) is translated into ∃U.({x} � ∃R.{y}).
– Let B → H be a DL-safe rule, dl(H) be the translation of the head atom H ,

and dl(Bi) be the translation of the atom Bi for each atom Bi in the body
B. Then B → H is translated into

�
{dl(Bi) | Bi in B} � dl(H)

– Finally, the translation of a set of DL-safe rules RB is the set of axioms, each
of which is the translation of an original rule from RB.

This translation clearly yields a set of axioms the size of which is linear in the
size of the original rule base. Each such axiom, however, when naively grounded,
results in |NI |n new axioms without nominal schemas, where n is the number
of variables occurring in the originating rule. This number is exponential in n,
however with a global bound on n (as we have for SROELVn(�,×)), it is still
polynomial in the size of the knowledge base.

By way of an example, consider the rule

R(x, y) ∧ A(y) ∧ S(z, y) ∧ T (x, z) → P (z, x),

which after the transformation defined above becomes the axiom

∃U.({x} � ∃R.{y})
� ∃U.({y} � A)
� ∃U.({z} � ∃S.{y})
� ∃U.({x} � ∃T.{z})
� ∃U.({z} � ∃P.{x}).

OWL and Rules 399

4.5 Relation to OWL Profiles

Recall that OWL 2 standards have three tractable profiles for which reasoning
is possible in (sub)polynomial time: OWL 2 EL, OWL 2 RL and OWL 2 QL
[64]. All of them include support for datatypes and concrete data values that we
omit from discussion. No technical problem will occur due to this omission as
datatype literals can be treated in a similar way as individuals.

First, OWL 2 EL is contained in SROEL(�,×) [49]. Since SROEL(�,×) is
a sublanguage of SROELVn(�,×) for each n, our approach here then subsumes
the OWL 2 EL profile without datatypes.

Next, OWL 2 RL is an extension of DLP [28] and essentially based on a Horn
Description Logic (see section 5.3 for discussion about DLP and Horn DL).
It does neither permit disjunctive information nor existential quantification,It
supports a very limited form of existential quantification, namely in such a way
that it can be rewritten into a formula without existential quantification. but it
includes inverse roles and unrestricted range restrictions which are disallowed in
OWL 2 EL. In general, axioms of OWL 2 RL can be reduced to normal forms
given below.

A � C A � B � C R � T

A � ∀R.C A � ≤1R.C R ◦ S � T

A � {a} {a} � C R− � T

All normal forms of axioms above are clearly expressible in SROELVn(�,×),
save for three: A � ∀R.C, A � ≤1R.C and R− � S. But this is also not a
problem because these three normal forms of axiom can be encoded using DL-
safe rules which can then be translated into legal SROELVn(�,×) axioms in
the sequel.

The normal form A � ∀R.C can be encoded as the rule A(x)∧R(x, y) → C(y)
which, in SROELVn(�,×), becomes

∃U.({x} � A) � ∃U.({x} � ∃R.{y}) � ∃U.({y} � C) (7)

Meanwhile, R− � S can be encoded as the rule R(x, y) → S(y, x) which can be
translated into SROELVn(�,×) as

∃U.({x} � ∃R.{y}) � ∃U.({y} � ∃S.{x}) (8)

For A � ≤1R.C, we need an auxiliary “DL-safe equality” role R≈ which is
encoded using the axiom

{x} � ∃R≈{y} � ∃U.({x} � {y})

We can thus encode A � ≤1R.C by the rule A(x)∧R(x, y1)∧C(y1)∧R(x, y2)∧
C(y2) → R≈(y1, y2) which can be translated into SROELV3(�,×) as

∃U.({x} � A) � ∃U.({x} � ∃R.{y1}) � ∃U.({y1} � C)
� ∃U.({x} � ∃R.{y2}) � ∃U.({y2} � C) (9)
� ∃U.({y1} � ∃R≈{y2})

400 A. Krisnadhi, F. Maier, and P. Hitzler

Note that Equations (7), (8) and (9) are all legal axioms in SROELV3(�,×).
Thus, OWL 2 RL is subsumed by SROELVn(�,×). Note however, that the
translation of OWL 2 RL into SROELV3(�,×) is done under DL-safe restric-
tion. This implies that some TBox entailments are lost because the translated
axioms are not semantically equivalent to the original ontology. On the other
hand, if we were to allow unrestricted combination of OWL 2 EL and OWL 2
RL, we would lose tractability as reasoning becomes 2ExpTime-complete. ABox
entailments, the main inference task for OWL 2 RL, are still preserved, however.

Finally, OWL 2 QL is based on DL-LiteR [8] in which inverse roles and limited
forms of existential quantification are allowed, but complex RIAs are not allowed.
Similar to OWL 2 RL, OWL 2 QL can be approximated using DL-safe rules, and
hence by SROELVn(�,×). In particular, inverse roles R− can be approximated
by DL-safe rules Rinv(x, y) → R(y, x) and R(x, y) → Rinv(y, x); and axioms of
the form T � ∃R−.C can be expressed as R �
 × C. However, due to the use
of DL-safe rules in the translation, some conclusions are lost as in the case of
OWL 2 RL. Note, that the common usage of OWL 2 QL is for ontology-based
querying large-scale datasets and this is possible since OWL 2 QL has a low
data complexity which enables efficient query rewriting. This is obviously not
supported in SROELVn(�,×), although, on the other hand, it provides some
features not available in OWL 2 QL, e.g., role transitivity.

5 Pointers to Further Literature

Below we discuss several other formalisms which integrate, in some fashion or
other, description logics and rules. We note that there are a great many ways to
achieve integration, and there are indeed multiple ways to view integration itself.
Particularly, one may distinguish between syntactic integration—e.g., whether a
common vocabulary is used to create rules and other sorts of assertions, and to
what extent rules are syntactically isolated from other components or otherwise
restricted—and semantic integration, that is whether a common semantics is
used for rules and other components or whether multiple, distinct semantics are
used (and then combined in some fashion). For instance, in SWRL, rules are
syntactically distinct from DL axioms—there’s an ontology, and there’s also a
rule base—but a uniform model theoretic semantics is used for each. In contrast,
in AL-log, a knowledge base consists of a DL ontology and a separate Datalog
program, but additionally, the semantics for each is distinct—an interpretation
of a knowledge base consists of two interpretations, one for the DL ontology
and another for the program. There are also formalisms where no syntactic
distinction is made. That is, a common language is used (and expressions are
interpreted according to a common semantics). DLP and the nominal schema
formalism described in Section 4.2 fall into this category.

Along both the syntactic and semantic dimensions, there are degrees of
integration—or at least considerable variation in how integration is achieved.
In some cases, the syntactic and semantic separation between the sub-systems is
extreme. For example, in dl-programs, a logic program is extended with atoms

OWL and Rules 401

for interacting with an external description logic ontology, and an answer set se-
mantics is provided for the program. But this method of interacting with a logic
program is easily generalizable to other sorts of systems (i.e., non-DL systems).
This is what is done in HEX-programs (which extend dl-programs).

The below list is not exhaustive, but it does describe several formalisms that
are significant, either because they have been historically significant and influ-
enced the field, or else because they indicate current research trends.

5.1 SWRL

One of the earliest formalisms combining OWL and rules is the Semantic Web
Rule Language SWRL [36,37,38] (called ORL in [36]). Syntactically, SWRL ex-
tends the syntax of OWL DL and OWL Lite (circa 2004) with additional con-
structs to form Horn-style rule axioms. A SWRL knowledge base consists of a
set of rules and OWL axioms. Semantically, the model theoretic semantics of
OWL is extended to cover rules—the notable addition being the specification of
variable bindings associated with interpretations.

Using an informal human readable syntax, each SWRL rule has the form
B → H (as in Section 2), where B and H are possibly empty conjunctions
of atoms. The atoms have one of the forms C(x), P (x, y), sameAs(x, y), or
differentFrom(x, y), where x and y are variables or individuals, P is an OWL
property (role), and C is a possibly complex OWL class (concept) description.
Atoms involving datatypes and data values are also allowed, as are “built-in”
atoms (for, e.g., arithmetic). We don’t discuss them here, however.

Complex class descriptions in rules can be replaced with a new class name A,
and the two class descriptions can be declared equivalent in the OWL ontology.
Similarly, sameAs and differentFrom (when it appears in the consequent of rules)
can be eliminated [37].

Variables in SWRL are typed: those ranging over individuals are distinct from
those ranging over data-values. Variables must also be safe, in the sense that
every variable in the consequent of a rule must also appear in the antecedent.
Even with this restriction, however, the satisfiability problem for SWRL know-
ledge bases is known to be undecidable [37].

5.2 DL-Safe Rules

The composition of rules and OWL DL12 axioms can be made decidable by
forcing each rule to be DL-safe [66,73,74]. As noted above, the atoms appearing
in rules may be restricted to simple unary and binary predicates (complex class
descriptions can be eliminated from rules). DL-safety separates the predicates
into two classes: 1) those that are names of atomic classes and roles and which are
used in non-rule axioms; and 2) predicates that are not so used. Atoms making
use of class and role names are called DL-atoms. A rule is DL-safe if every
12 The papers [73,74] deal specifically with the description logic SHOIN (D), on which

OWL DL was based; in [66] the logic used is SHIQ(D).

402 A. Krisnadhi, F. Maier, and P. Hitzler

variable of the rule appears in a non-DL atom in the rule body. The combined
knowledge base is DL-safe if every rule is. DL-safety ensures that each variable
of the rule can be bound to only individuals explicitly named in the ontology.

A rule can be made DL-safe by adding, for each variable x appearing in the
rule, a special non-DL atom O(x) to the body, and by simultaneously adding an
assertion O(a), for each individual name a, to the knowledge base. DL-safety can
also be enforced by requiring each variable assignment to bind every variable to
named elements in the universe of discourse. We followed the latter perspective
in Section 4.1.

5.3 DLP

SWRL and DL-Safe rules do not restrict the syntax of the underlying formalisms,
and DL-safety is used to ensure the decidability of the combination of rules
and DL axioms. In contrast, description logic programs (DLP) [28,88] ensure
decidability by restricting the formalisms to the fragment that can be expressed
in def-Horn (equality- and function-free definite Horn logic) [28]. In [28], def-LP,
the logic programming analog of def-Horn is also specified. The two differ in that
the consequences of a def-LP program are restricted to ground atoms; no such
restriction is applied to def-Horn. The atomic consequences of the program are
precisely those found in the program’s least Herbrand model (which is guaranteed
to exist).

Description Horn Logic is defined via a set of transformation rules to def-
Horn. Specifically, the rules transform a set of DL axioms into a set of logically
equivalent def-Horn rules (see Section 3.1). However, since many DL axioms yield
non-Horn expressions upon transformation, certain restrictions must be made.
For example, neither existential restrictions nor concept unions are permitted on
the right-hand side of an inclusion axiom; universal restrictions are not allowed
on the left-hand side. A Description Horn Logic ontology is simply a DL ontology
whose transformation is in def-Horn. A DLP ontology is the same ontology
interpreted according to the least Herbrand model semantics.

5.4 AL-log

In SWRL, the DL axioms and rules are syntactically distinct. Nevertheless, a
uniform model theoretic semantics is provided for the combination. Similarly, a
single semantics is used for DLP. In other approaches, rules and DL systems are
allowed to interact, but they are kept as distinct components (both syntactically
and semantically).

In AL-log [11,12], a knowledge base 〈O,P〉 is composed of an ALC ontolo-
gy O (the structural subsystem, itself composed of an ABox and Tbox) and a
Datalog program P (the relational subsystem). The Datalog program consists of
constrained clauses: each clause γ is accompanied by zero or more constraints
C1(t1),. . . , Cn(tn), where each Ci is an ALC concept description and each ti is
constant or variable. The constraints are intended to restrict the values of vari-
ables to instances of concepts. In a valid knowledge base, the following conditions

OWL and Rules 403

must also be met: 1) the Datalog predicates of P are disjoint from the set of
concept and role names in O; 2) the constants of P coincide with the individual
names of O, and each constant of P appears in O; and 3) for each constrained
clause γ& C1(t1), . . ., Cn(tn), if ti is a variable, then ti appears in γ.

The semantics of 〈O,P〉 is given by providing interpretations for both O and
P . Let I be an interpretation of O and H a Herbrand interpretation of P (the
constraints are ignored). 〈I,H〉 is a model of 〈O,P〉 if and only if I is a model
of O, and for each ground instantiation of γ& C1(t1),. . . , Cn(tn), either there
is a Ci(ti) that is not satisfied by I or else γ is satisfied by H. Entailment is
defined in the usual fashion, save that if a1, . . ., an is a set of ground atoms and
C1(t1), . . ., Cm(tm) a set of ground constraints, 〈O,P〉 |= a1, . . ., an& C1(t1),
. . ., Cm(tm) if and only if every model of 〈O,P〉 is a model of each ai and Ci(ti).
These constitute the possible answers to queries, the latter themselves being
a set of atoms together with a set of constraints. In [11,12], it is shown that
query-answering for AL-log is decidable. A query answering procedure—based
on resolution—is also provided.

5.5 CARIN

CARIN [56,57], a family of combined DL-rule languages, is similar to AL-log in
the sense that it couples a description logic ontology to a function-free Horn-
logic rule base. Unlike AL-log, however, concept and role names are allowed to
appear as predicates in rule bodies.

In [56,57], ALCNR is the underlying description logic used, and the problem
dealt with is existential entailment. Two sorts of programs are examined—-those
with recursive rules, and those without. Without recursion, reasoning is decida-
ble, and a sound and complete inference procedure exists. For programs with
recursive rules, however, reasoning problems in CARIN-ALCNR are generally
undecidable. Certain restrictions restore decidability, e.g. if the system employs
role safe rules (where at least one variable of every role atom appears in a
predicate that is neither in the consequent of a rule nor a concept or role name).

CARIN makes use of a classical semantics (with the unique name assumption).
A single interpretation is given for both the DL ontology and rule base, and it
constitutes a model of the combined knowledge base if it simultaneously satisfies
both components.

5.6 DL+log

DL+log [78,79,80,81,82] integrates description logic ontologies with disjunctive
logic programs. A DL+log knowledge base is a tuple 〈O,P〉, where O is a DL
ontology and P is a logic program with rules of the form

p1(X1) ∨ . . . ∨ pn(Xn) ←r1(Y1) ∧ . . . ∧ rm(Ym) ∧
s1(Z1) ∧ . . . ∧ sk(Zk) ∧
not u1(W1) ∧ . . . ∧ not uh(Wh)

404 A. Krisnadhi, F. Maier, and P. Hitzler

where Xi, Yi, etc., are tuples of variables and constants. Each si(Zi) is a DL-
atom (as in DL Safe rules), and every ri(Yi) and uj(Wj) is a non-DL atom. The
rules must be safe (every rule variable must appear in a positive literal of the
body). Furthermore, every variable of the head must appear in one of the ri

atoms. This latter condition is called weak safeness. A further condition of P is
that it contains all constants of O.

DL+ log specifies two semantics. In the first-order semantics, the DL onto-
logy is translated into FOL, and rules are interpreted as material implications.
Negation is interpreted as classical negation. The standard names assumption is
made: each interpretation is over a single countably infinite universe, each con-
stant names the same element in each interpretation, and two distinct constants
name distinct elements of the universe. In the nonmonotonic semantics, rules are
interpreted according to a stable model semantics. Without negation, the two
semantics yield the same results for the satisfiability problem: a knowledge base
is satisfiable in one if and only if it is satisfiable in the other. In general, satisfia-
bility for DL+log KBs is decidable, provided the problem of query containment
for Boolean conjunctive queries and Boolean unions of conjunctive queries is
decidable in the DL used.

5.7 Horn-SHIQ
Horn-SHIQ [39,52,66] is a fragment of SHIQ in which the ability to express
disjunction has been eliminated. The definition is somewhat complicated, but
Horn-SHIQ knowledge bases can in general be translated into first-order Horn
clauses, and every general concept inclusion axiom can be normalized into one
of the below forms, where each Ai is a concept name, R and S are roles (with S
simple), and m ≥ 1 [15].

Ai � Aj � Ak Ai � ∀R.Aj Ai � ≥mS.Aj

∃R.Ai � Aj Ai � ∃R.Aj Ai � ≤1S.Aj

The loss of disjunction brings with it lower data-complexity. For instance,
while checking satisfiability of SHIQ knowledge bases (where the ABox asser-
tions C(a) and ¬C(a) are allowed only if C is atomic) is NP-complete relative
to the size of the ABox, the problem is P-complete for similarly restricted Horn-
SHIQ knowledge bases [39].

In [15], an algorithm for conjunctive query answering in Horn-SHIQ is pro-
vided. It is shown there that the entailment problem for conjunctive queries is
ExpTime-complete (combined complexity). P-completeness holds for data com-
plexity. In [40], an ExpTime algorithm for classifying Horn-SHIQ ontologies,
similar in spirit to the completion based algorithm for EL++, is given.

5.8 Hybrid MKNF

Hybrid MKNF knowledge bases [65,70,71,72] combine description logics with
disjunctive logic programs interpreted according to Lifschitz’s logic of minimal

OWL and Rules 405

knowledge and negation as failure (MKNF) [58]. Formally, a Hybrid MKNF
knowledge base K = 〈O,P〉 consists of a DL ontology O together with a dis-
junctive logic program P , where P is composed of DL-safe rules of the form

KH1 ∨ . . . ∨ KHn ← KB1, . . . ,KBm,not C1, . . . ,not Cl.

Each Hi, Bj , and Ck is a function free atomic formula or else a binary formula
using predicate ≈. The symbols K and not are modal operators. Roughly, KA
is read as “A is known to hold,” and notA as “A can be false” [65].

The semantics of a Hybrid MKNF knowledge base K is given by translating
it to a formula π(P) ∧ Kπ(O) of MKNF. π(P) is just the conjunction of rules
of P , each rule read as a material implication. π(O) is the formula obtained by
translating O into function-free first order logic with equality. The underlying
DL must be one where such a translation is possible. The result is interpreted
according to MKNF, though interpretations are restricted to Herbrand interpre-
tations, and the standard names assumption is made.

It is noted in [70] that Hybrid MKNF generalizes several of the formalisms
already discussed here, including CARIN, AL-log, SWRL, and DL-Safe rules.
Its semantics also extends both classical DL semantics and the MKNF semantics
of the rules. That is, if P is empty, then K’s consequences are the same as O’s
classical consequences. Similarly, if O is empty, then the consequences reduce
to those of P specified by MKNF (which, as noted in [58], correspond to those
determined by the stable model semantics [23,24]).

In [70,71], an algorithm for entailment checking is given, and data complexity
analyses are given for knowledge bases using programs of various kinds. Without
the DL-safety requirement, the satisfiability problem for Hybrid MKNF becomes
undecidable.

In a separate series of papers [1,2,25,43,45,46,47], a well-founded semantics
(WFS) for Hybrid MKNF knowledge bases is discussed (the rules must be nor-
mal, meaning ¬ does not appear). The advantage here over the semantics defined
above is that it is sound relative to the original semantics but of a strictly lower
complexity. Interpretations are again restricted to Herbrand interpretations, but
a third truth value u is added (with the ordering f < u < t), applicable to
formulas involving modal atoms only. As above, the semantics extends both the
classical DL semantics and the traditional WFS of the rules. An alternating fix-
point procedure is defined in [44] for non-disjunctive Hybrid MKNF knowledge
bases, yielding what they call the well-founded partition.

The semantics is modified in [43,47] to ensure coherence: i.e., if ¬P holds, then
so does not P . This arguably yields more intuitively correct results and allows
one to pinpoint inconsistencies. A fixpoint procedure is again defined, and the
data complexity of computing the well-founded partition is given as P C , where
C is the data-complexity of solving the ground atom entailment problem for the
underlying description logic.

A top-down method for querying Hybrid MKNF under the WFS, avoiding
the computation of the full well-founded partition, is described in [1,2]. The
method—SLG(O) resolution—alters SLG resolution [9] so that queries to an

406 A. Krisnadhi, F. Maier, and P. Hitzler

ontology reasoner can be made. That is, the ontology reasoner is used as an
oracle. If certain restrictions are met by the oracle, then the SLG(O) method
remains tractable. A prototype reasoner (CDF-Rules), based on SLG(O) and
constructed in part using XSB Prolog, is described in [25].

5.9 dl-programs

Hybrid MKNF, like MKNF, is nonmonotonic. Another such formalism is dl-
programs [14,16,17,18,21], which again combines description logic ontologies with
extended logic programs (i.e., programs using both ¬ and not, the latter be-
ing default negation). The essential idea of a dl-program is that logic program
rules can contain queries to a description logic ontology. Information flow is
bidirectional—data is provided as input to the query, and answers to the queries
affect what may be inferred using the rules (which are interpreted according
to the answer-set semantics [24]). The two components are thus distinct in the
framework and yet interact in a complex way. The DLs discussed in [14] are
SHIF(D) and SHOIN (D), but the framework could be used with other DLs.

A dl-query is either a concept inclusion axiom or its negation, or else a positive
or negative concept or role assertion—e.g., C(t), ¬R(t1, t2), where C is a concept
description, R a role, and ti a term. A dl-atom, which can appear in the body
of a rule but not the head, is a structure of the form DL[S1 op1 p1, . . ., Sm opm

pm; Q](t), where each Si is a role or concept, each opi is in the set {",∪- },13 and
each pi is a predicate from the program. Each expression Si opi pi is interpreted
relative to a Herbrand interpretation I. Si " pi indicates that when answering
the query, atoms in the extension of predicate pi—as specified by I—should be
included in the ontology as instances of Si. Si ∪- pi indicates that such atoms
should be included as instances of ¬Si.

The usual notion of satisfaction by a Herbrand interpretation is extended to
apply to dl-atoms, and given this, Herbrand models for positive dl-programs
(those lacking not) are defined. Positive programs, provided they have any mo-
dels at all, have unique minimal Herbrand models which can be computed via a
fixpoint procedure. Canonical models for stratified programs are also defined.

The minimal models of positive programs are used to define the answer sets
of arbitrary dl-programs. Given a combined knowledge base K = 〈O,P〉, the
strong reduct of program P relative to I and ontology O, written sPI

O, is the
set of ground rules obtained by 1) deleting from the grounding of P all rules
with an atom not A in the body such that A is satisfied by I; and 2) deleting
all remaining such atoms. The reduct is a positive dl-program. If its minimal
model exists, then it is a strong answer set of K. Without dl-atoms, every strong
answer set of K is just an answer set of P . Weak answer-sets, in which the
reduct eliminates all dl-atoms and default negation atoms from programs, are
also defined. Each weak answer set is a model of the dl-program.

If SHIF(D) ontologies are used, the problem of deciding whether an unre-
stricted dl-program has an answer set (strong or weak) is NExpTime-complete.
13 A further operator, ∩- , is also discussed, but it introduces another source of non-

monotonicity even in programs without default negation. In [18], it is not discussed.

OWL and Rules 407

It is ExpTime-complete for positive and stratified programs. For SHOIN (D),
the problem of deciding whether a positive dl-program has a strong or weak
answer set is NExpTime-complete. For stratified programs, it’s NPNExpTime-
complete for weak answer sets and PNExpTime-complete for strong answer sets.
For unrestricted programs, it’s NPNExpTime-complete for both.

In [16], well-founded semantics for dl-programs are defined.14 The definition
proceeds by first defining unfounded sets and then the operators TKB, UKB,
and WKB , similar to the original account of the WFS for normal logic programs
[22]. An alternating fixpoint procedure for computing the well-founded model is
also given, and it is shown that the semantics for dl-programs extends the WFS
for normal logic programs, and also that it approximates the strong answer set
semantics: every well-founded atom in the well-founded model is true in every
strong answer set, and every unfounded atom is false in every strong answer set.
For dl-programs based on SHIF(D), determining whether a literal l is in the
well-founded model is ExpTime-complete. For SHOIN (D), the corresponding
problem is PExpTime-complete.

Observe that dl-queries essentially provide an interface between a logic pro-
gram and a distinct DL ontology. This basic framework permits the use of ex-
ternal data sources other than DLs. This is the basic idea behind HEX-programs
(higher order logic programs with external atoms) [19,20,86]. Disjunctions are
allowed in the heads of rules, and instead of dl-atoms, programs make use of ex-
ternal atoms of the form &[Y0(Y1, . . . , Yn)](X1, . . . , Xm), where g is an external
predicate (not used save in such atoms) and [Y0(Y1, . . . , Yn)] and (X1, . . . , Xm)
are input and output lists of terms, respectively. A solver for HEX-programs,
dlvhex, has been implemented (by extending the answer-set solver dlv15).

5.10 Disjunctive dl-programs

Another formalism [59] also goes by the name “dl-programs”, but it is unrelated
to the formalism described above. In [59], a knowledge base 〈O,P〉 is again
formed by combining a (disjunctive) logic program P with a DL ontology O,
but in this case the logic program is a more typical disjunctive logic program
(i.e., there are no dl-atoms). Only one form of negation, default negation, is
allowed. Constants of the program are a subset of the individuals in the DL
ontology, but no other special restrictions are made on the vocabulary used.

A uniform semantics is used. The basic idea is to interpret P using Herbrand
interpretations that also satisfy O. That is, a Herbrand interpretation I of a
program P is any subset of the Herbrand base HB of the program. I is a model
of O if and only if O ∪ I ∪ {¬a|HB − I} is satisfiable. I is a model of 〈O,P〉 if
I models both P and O. I is an answer set of 〈O,P〉 if it is a minimal model of
〈O,PI〉, where PI is the reduct of P with respect to I.

The semantics described above extends the answer set semantics for disjunc-
tive logic programs: If O is empty, then the answer sets for 〈O,P〉 are the answer
14 The programs are normal in the sense that negative literals ¬a are not allowed.

Furthermore, the semantics is only defined for dl-programs not involving ∩- .
15 http://www.dbai.tuwien.ac.at/proj/dlv/

http://www.dbai.tuwien.ac.at/proj/dlv/

408 A. Krisnadhi, F. Maier, and P. Hitzler

sets for P . If instead P is empty, a ground atom a is true in every answer set
of 〈O,P〉 if and only if it is true in all first-order models of O. It is shown
in [59] that, if O is in SHIF(D) or SHOIN (D), then deciding whether the
combined knowledge base has an answer-set is NEXPNP-complete. Determining
whether a ground atom a is true in all (some) answer-sets of the knowledge
base is co − NEXPNP-complete (NEXPNP-complete). Reasoning algorithms for
deciding the existence of answer-sets are also identified, as is a class of stratified
knowledge bases (based on DL-Lite). For such knowledge bases, the problems of
deciding whether an answer set exists (which must be unique, if it exists), and
whether a given ground atom is true in it, have polynomial data-complexity.

5.11 Quantified Equilibrium Logic for Hybrid Knowledge Bases

In [10], it is shown how a variation of the Quantified Equilibrium Logic (QEL)
[77] can be used as a semantics for hybrid knowledge bases, one which encom-
passes other semantics proposed in the literature. Here, a hybrid knowledge base
is defined to be a combination 〈O,P〉 of first order theory O and a disjunctive
logic program P . P may contain first order literals a and ¬a. Both components
are function-free and are defined using the same constants. P ’s predicates are
a superset of O’s. The stable closure of a hybrid knowledge base is defined (es-
sentially by taking the union of O and P and adding (∀X)(p(X) ∨ ¬p(X) for
each predicate of O), and equilibrium models are then defined for the stable clo-
sure. It is shown that by varying restrictions on the domain of discourse, these
models correspond to models of the hybrid knowledge base according to frame-
works proposed by Rosati, including DL+log (discussed above), and according
to guarded-hybrid (g-hybrid) knowledge bases [29].

5.12 Description Graphs

Description graphs [63,67,68,69] extend DLs with first-order rules and graphs
allowing the representation of structured objects (such as the bones of a hand)
not otherwise expressible in a DL. The graphs can be arranged into a hierarchy
(which may be used to describe an object at differing levels of granularity).

In the framework, an n-ary description graph G is a directed graph of n
vertices, with each vertex labeled with a set of atomic concepts or their negations,
and each edge labeled with a set of atomic roles or their negations. Some subset
of the atomic concepts is selected as constituting the main concepts of the graph
(roughly, they indicate what the graph is about). A graph specialization axiom
G � G′ indicates that each vertex of G is one of G′. A graph alignment axiom
G1[v1, . . . , vn] ↔ G2[u1, . . . , un] is a 1-1 mapping of some subset of vertices of
two graphs. A graph box (GBox) G is a finite collection of description graphs,
specialization axioms, and alignment axioms. A graph assertion is an expression
of the form G(a1, . . . , an), where G is an n-ary description graph and each ai is
an individual.

The bodies of rules consist of conjunctions of atomic concept atoms C(t),
atomic role atoms R(t1, t2), but also graph atoms G(t1, . . . , tk), where each ti

OWL and Rules 409

is an individual or a variable and G is a description graph. Rule heads are
disjunctions of such atoms (the head may also contain equality atoms t1 ≈ t2).
Each rule must be connected : for any variables x and y in the rule, there is a
sequence x1, . . . , xn of variables such that x1 = x and xn = y and for each i < n,
xi and xi+1 appear in the same body atom.

A graph extended knowledge base is a tuple K = (T ,P ,G,A), where T is a
TBox, P is a finite set of connected graph rules, G is a GBox, and A is an
ABox possibly containing graph assertions. In an interpretation I, each n-ary
graph G is read as an n-ary relation over ΔI . An assertion G(a1, . . . , an) is
satisfied by I if and only if (aI

1 , . . . , aI
n) ∈ GI . The semantics is such that in

any model of K, no two distinct instances of a description graph share vertices,
and the vertices are ensured to participate in the concepts and role relations
indicated in the graph. G � G′ holds if each instance of G′ is an instance of G,
and G1[v1, . . . , vn] ↔ G2[u1, . . . , un] holds if, whenever instances of G1 and G2

share vertices ui and vi, then they share all other vertex pairs in the axiom.
Under many circumstances, the satisfiability problem for graph extended

knowledge bases is undecidable—for example, if T is empty, P is Horn, and
no specialization or alignment axioms are used. Decidability can be regained in
this example by requiring the hierarchy of graph descriptions to be “acyclic” (see
[63]). In other cases, however, additional restrictions are required. In [63], it is
shown that the satisfiability problem for an acyclic K is NExpTime-complete,
provided K is weakly separated and T is in SHOQ+. Alternatively, it is NEx-
pTime-complete if K is strongly separated and T is in SHIQ+. Here, weak
separation means that the roles of T and P are disjoint. Strong separation ad-
ditionally requires the roles of T to be disjoint with those of G.

6 Conclusions

We have reported on the considerable body of work on OWL and Rules, describ-
ing integration proposals that sometimes differ substantially in terms of their
underlying approach and rationale. Some approaches have been more popular
than others. In some cases, it appears to be a matter of subjective judgement
regarding which provide the best underpinnings for a “unified logic” in the sense
of the W3C Semantic Web Stack.16 And it’s likely additional alternatives will
be proposed in the future. that we will see a few more alternative proposals in
the near future.

Further theoretical investigations will certainly shed more light on the issue.
Concerning the proposed formalism in Section 4, for example, it would be help-
ful to investigate possibilities for incorporating nonmonotonic negation or other
closed world features [3,7,13,26,27,47,48,65,71] which commonly occur in logic-
programming-based rule approaches.17 For example, we have recently proposed
an intuitively appealing approach for extending description logics with local
closed world features which retains decidability if added to the description logics
16 http://www.w3.org/2007/03/layerCake.png
17 See, e.g., [35,76].

http://www.w3.org/2007/03/layerCake.png

410 A. Krisnadhi, F. Maier, and P. Hitzler

with nominal schemas discussed herein [48]. Even more importantly, however,
efficient algorithms and implementations need to be developed.

In the end, usability aspects will also play a decisive role, and it is here where
the development of Semantic Web applications involving deep reasoning are often
found to be lacking [31,32]. The Semantic Web requires usable tools, interfaces,
design patterns, and best-practice guidelines which would allow developers to
use ontologies and underlying reasoning paradigms without having to become
expert logicians. We’re still a long way away from that goal.

Acknowledgements. This work was supported by the National Science Foun-
dation under award 1017225 III: Small: TROn—Tractable Reasoning with On-
tologies. Adila Krisnadhi acknowledges support by a Fulbright Indonesia Presi-
dential Scholarship PhD Grant 2010.

References

1. Alferes, J.J., Knorr, M., Swift, T.: Queries to Hybrid MKNF Knowledge Bases
through Oracular Tabling. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 1–16. Springer, Heidelberg (2009)

2. Alferes, J.J., Knorr, M., Swift, T.: Query-driven Procedures for Hybrid MKNF
Knowledge Bases. CoRR abs/1007.3515 (2010),
http://arxiv.org/abs/1007.3515

3. Baader, F., Hollunder, B.: Embedding defaults into terminological representation
systems. J. Automated Reasoning 14, 149–180 (1995)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2007)

5. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds,
D. (eds.): RIF Core Dialect. W3C Recommendation (June 22, 2010),
http://www.w3.org/TR/rif-core/

6. Boley, H., Kifer, M. (eds.): RIF Basic Logic Dialect. W3C Recommendation (June
22, 2010), http://www.w3.org/TR/rif-bld/

7. Bonatti, P., Lutz, C., Wolter, F.: Expressive Non-Monotonic Description Logics
Based on Circumscription. In: Proc. of 10th Intern. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR 2006), pp. 400–410. AAAI Press, Menlo
Park (2006)

8. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385–429 (2007)

9. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43, 20–74 (1996)

10. De Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic
and hybrid rules. In: Marchiori, M., Pan, J.Z., de Marie, C.S. (eds.) RR 2007.
LNCS, vol. 4524, pp. 58–72. Springer, Heidelberg (2007)

11. Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: A hybrid system with datalog and
concept languages. In: Ardizzone, E., Sorbello, F., Gaglio, S. (eds.) AI*IA 1991.
LNCS, vol. 549, pp. 88–97. Springer, Heidelberg (1991)

http://arxiv.org/abs/1007.3515
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-bld/

OWL and Rules 411

12. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating
datalog and description logics. J. Intell. Inf. Syst. 10, 227–252 (1998),
doi:10.1023/A:1008687430626

13. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Logic 3(2), 177–225 (2002)

14. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. In: Proc. of the 9th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR
2004). AAAI Press, Menlo Park (2004)

15. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query answering in the description
logic horn-SHIQ. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008.
LNCS (LNAI), vol. 5293, pp. 166–179. Springer, Heidelberg (2008)

16. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for
description logic programs in the semantic web. ACM Trans. Comput. Log. 12(2),
article 11 (2011)

17. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artif. In-
tell. 172, 1495–1539 (2008)

18. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with
rules and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler,
U. (eds.) Reasoning Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg
(2006)

19. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A prover for semantic-
web reasoning under the answer-set semantics. In: 2006 IEEE / WIC / ACM Inter-
national Conference on Web Intelligence (WI 2006), Hong Kong, China, December
18-22, pp. 1073–1074. IEEE Computer Society, Los Alamitos (2006)

20. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declar-
ative rules with external evaluations for semantic-web reasoning. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Hei-
delberg (2006)

21. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics
for description logic programs in the semantic web. In: Antoniou, G., Boley, H.
(eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

22. Gelder, A.V., Ross, K., Schlipf, J.S.: Unfounded sets and well-founded seman-
tics for general logic programs. In: PODS 1988: Proceedings of the seventh
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pp. 221–230. ACM Press, New York (1988)

23. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference
on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

24. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

25. Gomes, A.S., Alferes, J.J., Swift, T.: Implementing Query Answering for Hybrid
MKNF Knowledge Bases. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS,
vol. 5937, pp. 25–39. Springer, Heidelberg (2010)

26. Grimm, S., Hitzler, P.: Semantic Matchmaking of Web Resources with Local
Closed-World Reasoning. International Journal of Electronic Commerce 12(2)
89–126 (2008)

27. Grimm, S., Hitzler, P.: A preferential tableaux calculus for circumscriptive ALCO.
In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 40–54. Springer,
Heidelberg (2009)

412 A. Krisnadhi, F. Maier, and P. Hitzler

28. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logic. In: Proceedings of WWW 2003,
Budapest, Hungary, pp. 48–57 (May 2003)

29. Heymans, S., Predoiu, L., Feier, C., de Bruijn, J., Nieuwenborgh, D.V.: G-hybrid
knowledge bases. In: Proc. of ICLP 2006 Workshop on Applications of Logic Pro-
gramming in the Semantic Web and Semantic Web Services (ALPSWS 2006) (2006)

30. Hitzler, P., Parsia, B.: Ontologies and rules. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, 2nd edn., pp. 111–132. Springer, Heidelberg (2009)

31. Hitzler, P.: Towards reasoning pragmatics. In: Janowicz, K., Raubal, M., Levashkin,
S. (eds.) GeoS 2009. LNCS, vol. 5892, pp. 9–25. Springer, Heidelberg (2009)

32. Hitzler, P., van Harmelen, F.: A reasonable semantic web. Semantic Web 1(1–2),
39–44 (2010)

33. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation (October 27,
2009), http://www.w3.org/TR/owl2-primer/

34. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

35. Hitzler, P., Seda, A.K.: Mathematical Aspects of Logic Programming Semantics.
CRC Press, Boca Raton (2010)

36. Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In:
Proceedings of the 13th international conference on World Wide Web, WWW
2004, pp. 723–731. ACM, New York (2004)

37. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A pro-
posal and prototype implementation. J. of Web Semant. 3, 23–40 (2005)

38. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission (May 21, 2004), http://www.w3.org/Submission/SWRL/

39. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proceedings of the 19th international joint conference on Ar-
tificial intelligence, pp. 466–471. Morgan Kaufmann Publishers Inc., San Francisco
(2005)

40. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Pro-
ceedings of the 21st international jont conference on Artifical intelligence, pp. 2040–
2045. Morgan Kaufmann Publishers Inc., San Francisco (2009)

41. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42(4), 741–843 (1995)

42. Kifer, M.: Rule interchange format: The framework. In: Calvanese, D., Lausen, G.
(eds.) RR 2008. LNCS, vol. 5341, pp. 1–11. Springer, Heidelberg (2008)

43. Knorr, M., Alferes, J., Hitzler, P.: Local closed-world reasoning with description
logics under the well-founded semantics. Artificial Intelligence 175(9-10), 1528–1554
(2011)

44. Knorr, M., Alferes, J., Hitzler, P.: A well-founded semantics for hybrid MKNF
knowledge bases. In: Calvanese, D., Franconi, E., Haarslev, V., Lembo, D., Motik,
B., Turhan, A.-Y., Tessaris, S. (eds.) Proceedings of the 2007 International Work-
shop on Description Logics (DL 2007), Brixen-Bressanone, Italy. CEUR Workshop
Proceedings, vol. 250 (June 2007)

45. Knorr, M., Alferes, J.J.: Querying in EL+ with nonmonotonic rules. In: Proceeding
of the 2010 conference on ECAI 2010: 19th European Conference on Artificial
Intelligence, pp. 1079–1080. IOS Press, Amsterdam (2010)

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/Submission/SWRL/

OWL and Rules 413

46. Knorr, M., Alferes, J.J., Hitzler, P.: A well-founded semantics for hybrid MKNF
knowledge bases. In: Description Logics. CEUR Workshop Proceedings, vol. 250,
Description Logics. CEUR Workshop Proceedings (2007), CEUR-WS.org

47. Knorr, M., Alferes, J.J., Hitzler, P.: A coherent well-founded model for hybrid
MKNF knowledge bases. In: Proceeding of the 2008 conference on ECAI 2008: 18th
European Conference on Artificial Intelligence, pp. 99–103. IOS Press, Amsterdam
(2008)

48. Krisnadhi, A., Sengupta, K., Hitzler, P.: Local closed world semantics: Keep it
simple, stupid! Tech. rep., Kno.e.sis Center, Wright State University, Dayton, Ohio
(2011), http://www.pascal-hitzler.de/

49. Krötzsch, M.: Efficient inferencing for OWL EL. In: Janhunen, T., Niemelä, I.
(eds.) JELIA 2010. LNCS, vol. 6341, pp. 234–246. Springer, Heidelberg (2010)

50. Krötzsch, M.: Description Logic Rules, Studies on the Semantic Web, vol. 008. IOS
Press/AKA (2010)

51. Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL:
Nominal schemas for integrating rules and ontologies. In: Sadagopan, S., Ramam-
ritham, K., Kumar, A., Ravindra, M., Bertino, E., Kumar, R. (eds.) Proceedings
of the 20th International World Wide Web Conference, WWW 2011, Hyderabad,
India, pp. 645–654. ACM, New York (2011)

52. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for Horn descrip-
tion logics. In: Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, Vancouver, British Columbia, Canada, July 22-26, pp. 452–457. AAAI
Press, Menlo Park (2007)

53. Krötzsch, M., Rudolph, S., Hitzler, P.: Description Logic Rules. In: Ghallab, M.,
Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) Proceeding of the 18th
European Conference on Artificial Intelligence, Patras, Greece, July 21-25, vol. 178,
pp. 80–84. IOS Press, Amsterdam (2008)

54. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In: Sheth,
A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg (2008)

55. Krötzsch, M., Rudolph, S., Schmitt, P.H.: On the semantic relationship between
datalog and description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 88–102. Springer, Heidelberg (2010)

56. Levy,A.Y., Rousset, M.C.: CARIN:A representation language combining Horn rules
and description logics. In: Wahlster, W. (ed.) Proceedings of 12th European Confer-
ence on Artificial Intelligence, Budapest, Hungary, August 11-16, pp. 323–327. John
Wiley and Sons, Chichester (1996)

57. Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in
CARIN. Artif. Intell. 104, 165–209 (1998)

58. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings
of the 12th International Joint Conference on Artificial Intelligence, vol. 1,
pp. 381–386. Morgan Kaufmann Publishers Inc., San Francisco (1991)

59. Lukasiewicz, T.: A novel combination of answer set programming with description
logics for the semantic web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 384–398. Springer, Heidelberg (2007)

60. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI 2007, pp. 453–459. AAAI Press, Menlo Park (2007)

61. McGuinness, D., van Harmelen, F. (eds.): OWL Web Ontology Language Overview.
W3C Recommendation (10 February 2004),
http://www.w3.org/TR/owl-features/

CEUR-WS.org
http://www.pascal-hitzler.de/
http://www.w3.org/TR/owl-features/

414 A. Krisnadhi, F. Maier, and P. Hitzler

62. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Universität Karlsruhe (TH), Germany (2006)

63. Motik, B., Cuenca Grau, B., Horrocks, I., Sattler, U.: Representing ontologies us-
ing description logics, description graphs, and rules. Artificial Intelligence 173(14),
1275–1309 (2009)

64. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles. W3C Recommendation (October 27,
2009), http://www.w3.org/TR/owl2-profiles/

65. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming
Live Together Happily Ever After? In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 501–514. Springer, Heidelberg (2006)

66. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Universität Karlsruhe (TH), Germany (2006)

67. Motik, B., Grau, B.C., Horrocks, I., Sattler, U.: Representing Structured Objects
using Description Graphs. In: Brewka, G., Lang, J. (eds.) Proc. of the 11th Int.
Joint Conf. on Principles of Knowledge Representation and Reasoning (KR 2008),
August 16–19, pp. 296–306. AAAI Press, Sydney (2008)

68. Motik, B., Grau, B.C., Horrocks, I., Sattler, U.: Modeling Ontologies Using OWL,
Description Graphs, and Rules. In: Ruttenberg, A., Sattler, U., Dolbear, C. (eds.)
Proc. of the 5th Int. Workshop on OWL: Experiences and Directions (OWLED
2008 EU), Karlsruhe, Germany, October 26–27 (2008)

69. Motik, B., Grau, B.C., Sattler, U.: Structured Objects in OWL: Representation
and Reasoning. In: Huai, J., Chen, R., Hon, H.W., Liu, Y., Ma, W.Y., Tomkins,
A., Zhang, X. (eds.) Proc. of the 17th Int. World Wide Web Conference (WWW
2008), April 21–25, pp. 555–564. ACM Press, Beijing (2008)

70. Motik, B., Rosati, R.: Closing semantic web ontologies. Tech. rep., University of
Manchester, UK (2006)

71. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: Veloso, M.M. (ed.) IJCAI 2007: Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
pp. 477–482 (2007)

72. Motik, B., Rosati, R.: Reconciling Description Logics and Rules. Journal of the
ACM 57(5), 1–62 (2010)

73. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 549–563. Springer, Heidelberg (2004)

74. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal
of Web Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–
60 (2005)

75. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-overview/

76. Paschke, A.: Rules and Logic Programming for the Web. In: Polleres, A., et al.
(eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 384–417. Springer, Heidelberg
(2011)

77. Pearce, D., Valverde, A.: Quantified equilibrium logic and the first order logic of
here-and-there. Tech. rep., Univ. Rey Juan Carlos (2006)

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-overview/

OWL and Rules 415

78. Rosati, R.: Towards expressive KR systems integrating datalog and description
logics: preliminary report. In: Lambrix, P., Borgida, A., Lenzerini, M., Möller,
R., Patel-Schneider, P.F. (eds.) Description Logics. CEUR Workshop Proceedings,
vol. 22 (1999), CEUR-WS.org

79. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
J. of Web Semant. 3, 61–73 (2005)

80. Rosati, R.: Semantic and computational advantages of the safe integration of on-
tologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703,
pp. 50–64. Springer, Heidelberg (2005)

81. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International
Conference on Principles of Knowledge Representation and Reasoning, Lake Dis-
trict of the United Kingdom, June 2-5, pp. 68–78. AAAI Press, Menlo Park (2006)

82. Rosati, R.: Integrating ontologies and rules: Semantic and computational issues.
In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning
Web 2006. LNCS, vol. 4126, pp. 128–151. Springer, Heidelberg (2006)

83. Rudolph, S., Krötzsch, M., Hitzler, P.: Cheap boolean role constructors for de-
scription logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 362–374. Springer, Heidelberg (2008)

84. Rudolph, S.: Foundations of description logics. In: Polleres, A., et al. (eds.) Rea-
soning Web 2011. LNCS, vol. 6848, pp. 384–417. Springer, Heidelberg (2011)

85. Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are bigger than all mice. In:
Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of the 21st International Work-
shop on Description Logics (DL 2008) CEUR Workshop Proceedings, Dresden,
Germany, May 13-16, vol. 353 (2008)

86. Schindlauer, R.: Answer-Set Programming for the Semantic Web. Ph.D. thesis,
Vienna University of Technology, Austria (2006)

87. Tsarkov, D., Sattler, U., Stevens, R.: A solution for the Man-Man problem in
the Family History Knowledge Base. In: Hoekstra, R., Patel-Schneider, P.F. (eds.)
Proceedings of the 5th International Workshop on OWL: Experiences and Direc-
tions (OWLED 2009) CEUR Workshop Proceedings, Chantilly, VA, United States,
October 23-24, vol. 529 (2009)

88. Volz, R.: Web Ontology Reasoning With Logic Databases. Ph.D. thesis, Universität
Fridericiana zu Karlsruhe (TH), Germany (2004)

CEUR-WS.org

Modeling the Web of Data

(Introductory Overview)

Claudio Gutierrez

Department of Computer Science,
Universidad de Chile, Chile
cgutierr@dcc.uchile.cl

Abstract, scope and disclaimer. These notes are meant as a companion to
a lecture on the topic at the Reasoning Web Summer School 2011. The goal of
this work is to present diverse and known material on modeling the Web from
a data perspective, to help students to get a first overview of the subject.

Methodologically, the objective is to give pointers to the relevant topics
and literature, and to present the main trends and development of a new area.
The idea is to organize the existing material without claiming completeness.
In many parts the notes have a speculative character, oriented more towards
suggesting links and generating discussion on different points of view, rather
than establishing a consolidated view of the subject.

The historical accounts and references are given with the sole objective of
aiding in the contextualization of some milestones, and should not be consid-
ered as signaling intellectual priorities.

Introduction

From the point of view of information, the most naive –and probably also the
most understandable– model of the Web is that of an infinite library. The idea
is not new: in 1939 Jorge Luis Borges published the story The Total Library1,
where he writes:

“Everything would be in its blind volumes. Everything: the detailed his-
tory of the future, Aeschylus’ The Egyptians, the exact number of times
that the waters of the Ganges have reflected the flight of a falcon, the
secret and true nature of Rome, the encyclopedia Novalis would have
constructed, my dreams and half-dreams at dawn on August 14, 1934,
the proof of Pierre Fermat’s theorem, the unwritten chapters of Edwin
Drood, those same chapters translated into the language spoken by the
Garamantes, the paradoxes Berkeley invented concerning Time but didn’t
publish, Urizen’s books of iron, the premature epiphanies of Stephen
Daedalus, which would be meaningless before a cycle of a thousand years,
the Gnostic Gospel of Basilides, the song the sirens sang, the complete
catalog of the Library, the proof of the inaccuracy of that catalog. Every-
thing: but for every sensible line or accurate fact there would be millions

1 J. L. Borges, La Biblioteca Total, Sur No. 59, August 1939. Trans. by Eliot Wein-
berger. In Selected Non-Fictions (Penguin: 1999).

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 416–444, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Modeling the Web of Data 417

of meaningless cacophonies, verbal farragoes, and babblings. Everything:
but all the generations of mankind could pass before the dizzying shelves-
shelves that obliterate the day and on which chaos lies-ever reward them
with a tolerable page.”

The view of a universal space of information as the (infinite) generalization
of a library is an extremely useful one. It includes almost all facets we would
like to incorporate when abstracting and modeling such an artifact. There is
one crucial slant, though: the library is composed of books, let us say in Web
terms, of documents. Documents (books) are artifacts produced by humans to be
consumed by humans. If one replaces data in the place of books, we essentially
have an abstract model of the “Web of Data”. But this is not a minor change,
bringing with it complex challenges.

Modeling the Web of data is a relevant goal. The big excitement about current
levels of production, availability and use of data indicates that we are witnessing
a fundamental change in information practices. The tide of data was observed
a few years ago by cutting-edge technology analysts. In his widely read 2005
article that sparked the notion of Web 2.0 [66], O’Reilly wrote that “data is the
next Intel Inside.” On a more academic level, the Claremont Report on Database
Research [6] centered its analysis on the challenges that this phenomena is posing,
stating that ubiquity of “Big Data” will shake up the field [of databases]. Szalay
and Gray pointing to the fact in 2006, that the amount of scientific data is
doubling every year, spoke of an “exponential world” [30] and Bell et al. [18]
called it “Data Deluge”. They state that, compared to volumes generated only a
decade ago, some areas of science are facing hundred- to thousandfold increases
in data volumes from satellites, telescopes, high-throughput instruments, sensor
networks, accelerators, and supercomputers.

The phenomena is not exclusive of the scientific fields. A similar trend can be
found in almost all areas. Social networks are generating not only high volumes
of data, but complex networks of data which call for a new stage in data manage-
ment. New technologies have also impacted government policies. Transparency
laws and wide-range archiving and publishing initiatives are posing similar chal-
lenges to the public sector [25]. Managing, curating and archiving of digital data
is becoming a discipline per se. Today some people are even talking about “data
science” [46].

It is no surprise that this phenomena has put data at the center of comput-
ing discipline itself, both, at the level of systems, architecture and communica-
tions (see “petascale computational systems” [17]), new database architectures
at web-scale [65,60], and at the programming and modeling levels. In these new
developments the Web, as the natural common platform for handling such data,
plays a central role.

Data management at Web scale. With the advance of computing power in the
last decade, the perspective on the Web is gradually shifting from a document
centric-view to a data centric-view. Originally conceived as a global hypertext
model, today the granularity of the information on the Web has reached the level

418 C. Gutierrez

of atomic data. For example, the project Linked Data [44,20] views the Web as
a huge collection of data and links.

How to manage data at Web scale? Since the very origins of the Web, the
database community has addressed this challenge. In the late nineties the efforts
to integrate the new Web phenomena and database technology provoked a heated
discussion. Is the Web a database? Could the classical database techniques be
of any use in this new environment?

Two main lines of thought were developed. The first one conceived the Web as
a collection of documents plus hyperlinks, and extended the ideas and technolo-
gies of hypertext and followed the lines of semi-structured data and information
retrieval techniques [21,2,5]. This was consistent with the view that “sites” and
Web pages were the central objects of interest. This, combined with the need to
model documents and the exchange and integration of information, made this
conception dominant. The research centered on semi-structured data and query
languages, which with the advent of XML, dominated the scene for the decade
of 2000 [5].

A different perspective called for modeling the Web as a database and devel-
oped the so called Web-query languages [55]. The systematic exploration of the
idea of modeling the Web as a huge repository of structured data using database
techniques did not succeed, likely because the amount of structured data on the
Web did not yet reach a critical level. Such ideas were too futuristic for the time,
though recent developments as the one mentioned at the beginning, show that
the need has reemerged.

In the meantime, several areas of research have addressed, with variable em-
phasis and focus, the problems of data on the Web. Among them, projects like
Semantic Web, Linked data, Open data, put the the topic in the main discussion
forums. From a database point of view, areas such as distributed, semi-structured
and graph databases, and particular topics like incomplete information, cost
models, etc., have addressed similar problems on a smaller scale. There are also
other areas such as information system, multimedia, etc., that touch on problems
of data on the Web, but their exhaustive enumeration would be too long to fit
here.

Notes Outline. These notes present an overview of the work done in modeling
data on the Web and discusses requirements needed to convert the current Web
of documents in a Web of Data. The organization is as follows: in section 1 we
study the principles of the Web as devised by their founders and the evolution of
the Web. In section 2, we present basic tools and projects that have helped build
the Web of Data. In section 3, we review data representations on the Web and
data models of the Web. In section 4 we bring forward a group of requirements
and themes that should be addressed in a model of the Web of Data. In section
5, we briefly review the work in related areas which touch on the problems,
concerns and techniques faced in our “field”. Finally in section 6, we round up
our trip through this new area.

Modeling the Web of Data 419

1 The Web

Tim Berners-Lee (TBL from now on), the creator of the Web, states that its
“major goal was to be a shared information space through which people and
machines could communicate” [11]. Let us read between the lines. He meant a
“global” information space, a kind of gigantic, infinite, blackboard to write and
read: “The most important thing about the Web is that it is universal”[12]. But
this is not enough: another key consideration is that it should be “shared”. By
whom? Not by a company, not by a government, not by a particular organization:
shared by all people around the world.

The problem he was addressing what that of people working at CERN, lo-
cated around the world, in different research labs and academic places. This was
a heterogeneous group, managing and exchanging heterogeneous type of infor-
mation (addresses and phone lists, research notes, official documentation, etc.),
via a heterogeneous infrastructure of terminals, servers, supercomputers, etc.,
with diverse operating systems, software and file formats. As Roy Fielding [27]
sated, the challenge was to build a system that would provide a universally con-
sistent interface to this structured information, available on as many platforms
as possible, and incrementally deployable as new people and organizations joined
the project.

1.1 The Classical Web

In 2001, in his Japan Lecture [12], TBL defined the Web as follows:

“The concept of the Web integrated many disparate information
systems, by forming an abstract imaginary space in which the dif-
ferences between them did not exist. The Web had to include all
information of any sort on any system. The only common idea
needed to tie it all together was the Universal Resource Identi-
fier(URI) identifying a document. From that cascaded a series
of designs of protocols (such as HTTP) and data formats (such
as HTML) which allowed computers to exchange information,
mapping their own local formats into standards which provided
global interoperability.”

The architecture of the Web is based on three basic pillars:

1. URI (Universal Resource Identifiers), a set of global identifiers which can be
created and managed in a distributed form.

2. HTTP (Hyper Text Transfer Protocol): a protocol for exchanging data on
the Web whose basic functions are putting data in, and getting data from,
this abstract space.

3. HTML (Hyper Text Markup Language): a language for representing infor-
mation and displaying (visualizing) it to humans.

420 C. Gutierrez

Fig. 1. The first proposal of the Web by TBL. Note the underlying ideas: heterogenous
data, heterogeneous users, lack of hierarchies, networking, mainly documents. (Picture
taken from TBL, Information Management: A Proposal).

Of these three, the global identifiers are the keystone. TBL highlights this point
saying that “the Web still was designed to only fundamentally rely on one spec-
ification: the Universal Resource Identifier.” The particular form of the transfer
protocol and of the language, are temporal solutions with the technology and
knowledge available at the time.

If one would like to generalize, the Web can be thought of as supported by
three basic specifications:

1. Global Identifiers.
2. A protocol to exchange data.
3. A language to represent data.

TBL’s general requirements. In the Japan lecture, TBL stated the following
principles/requirements that should guide the development of this architecture
(the text closely follows his wording):

1. Device independence. The same information should be accessible from many
devices. The size of the screens, the means of input and output information
should be independent of the hardware.

Modeling the Web of Data 421

2. Software Independence. The Web should support diverse programs and soft-
ware. The decentralization of software development was and always will be
crucial to the unimpeded growth of the Web. It also prevents the Web itself
from coming under the control of a given company or government through
control of the software.

3. Internationalization. The Web should not depend on one country or culture.
Internationalization should take into account not only the language, but also
the direction in which text moves across the page, hyphenation conventions,
and even cultural assumptions about the way people work and address each
other, and the forms of organization they make.

4. Multimedia. Multimedia is at the heart of modern digital objects. Images,
music, video have to be essential part of the design of the Web.

5. Accessibility. Just as people differ in the language, characters and cultures
to which they belong, so they differ in terms of their capacities, regarding
vision, hearing, motor or cognition. The universality includes making the
Web a place which people can use irrespective of disabilities.

6. Rhyme and Reason. There is another axis along which information varies:
its purpose and usage. At one end of the axis is the poem, at the other,
the database table. Most information on the Web now contains both ele-
ments. The Web technology must allow information intended for a human
to be effectively presented, and also allow machine processable data to be
conveyed.

7. Quality. Quality notions are very subjective, and change with time, and all
of them should be allowed in the Web. To support this, the technology must
allow powerful filtering tools which, combining opinions and information
about information from many sources, are completely under the control of
the user.

8. Independence of Scale. Although the Web is a global phenomenon, personal,
family and group information systems are part of it too. The Web must
support all of those, allowing privacy of personal information to be nego-
tiated, and groups to feel safe in controlling access to their spaces. Only
in such a balanced environment can we develop a sufficiently complex and
many-layered fractal structure which will respect the rights of every human
being.

Requirements for the Protocols. Roy Fielding, one of the authors of the HTTP
protocol,

In his doctoral thesis, Roy Fielding, one of the authors of the HTTP protocol,
explored in depth the architecture of the Web [27]. He identified the following
requirements (the text follows his wording):

1. Low Entry-barrier. Since participation in the creation and structuring of
information was voluntary, a low entry-barrier was necessary to enable sufficient
adoption. This applied to all users of the Web architecture: readers, authors,
and application developers.

2. Extensibility. While simplicity makes it possible to deploy an initial imple-
mentation of a distributed system, extensibility allows us to avoid getting stuck

422 C. Gutierrez

forever with the limitations of what was deployed. Even if it were possible to
build a software system that perfectly matches the requirements of its users,
those requirements will change over time just as society changes over time. A
system intending to be as long-lived as the Web must be prepared for change.

3. Distributed Hypermedia. Hypermedia is defined by the presence of applica-
tion control information embedded within, or as a layer above, the presentation
of information. Distributed hypermedia allows the presentation and control in-
formation to be stored at remote locations.

The usability of hypermedia interaction is highly sensitive to user-perceived
latency: the time between selecting a link and the rendering of a usable result.
Since the Web’s information sources are distributed across the global Internet,
the architecture needs to minimize network interactions (round-trips within the
data transfer protocols).

4. Internet-scale. The Web is intended to be an Internet-scale distributed
hypermedia system, which means considerably more than just geographical dis-
persion. The Internet is about interconnecting information networks across mul-
tiple organizational boundaries. Suppliers of information services must be able to
cope with the demands of anarchic scalability and the independent deployment
of software components.

a) Anarchic Scalability. Most software systems are created with the implicit as-
sumption that the entire system is under the control of one entity, or at least
that all entities participating within a system are acting towards a common
goal and not at cross-purposes. Such an assumption cannot be safely made
when the system runs openly on the Internet. Anarchic scalability refers
to the need for architectural elements to continue operating when they are
subjected to an unanticipated load, or when given malformed or maliciously
constructed data, since they may be communicating with elements outside
their organizational control.

b) Independent Deployment. Existing architectural elements need to be de-
signed with the expectation that later architectural features will be added.
Likewise, older implementations need to be easily identified so that legacy
behavior can be encapsulated without adversely impacting newer architec-
tural elements. The architecture as a whole must be designed to ease the
deployment of architectural elements in a partial, iterative fashion, since it
is not possible to force deployment in an orderly manner.

Based on these principles, he proposed a style of software architecture for dis-
tributed hypermedia systems called REST (Representational State Transfer).
These are the constraints defined for it:

1. Client-server. Separation of concerns is the principle behind the client-server
constraints. Clients are separated from servers by a uniform interface. This
separation of concerns means that, for example, clients are not concerned
with data storage, which remains internal to each server, so that the porta-
bility of client code is improved. Servers are not concerned with the user
interface or user state, so that servers can be simpler and more scalable.

Modeling the Web of Data 423

Servers and clients may also be replaced and developed independently, as
long as the interface is not altered.

2. Stateless. Each request from client to server must contain all of the infor-
mation necessary to understand the request, and cannot take advantage of
any stored context on the server. Session state is therefore kept entirely on
the client. This constraint induces the properties of visibility, reliability, and
scalability.

3. Cacheable. Cache constraints require that the data within a response to a
request be implicitly or explicitly labeled as cacheable or non-cacheable. If
a response is cacheable, then a client cache is given the right to reuse that
response data for later, equivalent requests.

4. Uniform interface. The central feature that distinguishes the REST archi-
tectural style from other network-based styles is its emphasis on a uniform
interface between components.

5. Layered system. The layered system style allows an architecture to be com-
posed of hierarchical layers by constraining component behavior such that
each component cannot ”see” beyond the immediate layer with which they
are interacting.

What about the language requirements? Paradoxically, one of the reasons for the
success of the Web was the weaknesses of its language HTML: loose structure
(allowing the display badly-formed pages) and only oriented to visualization
(by humans). The next generation language, XML, improved on both aspects:
(1) strict enforcement of structure and constraints (allowing semi-structured
querying); and (2) flexible to code different objects languages (for visualization,
exchange, domain specific, etc.) Nevertheless, one fundamental bias remained: it
was designed with a document-style organization in mind.

Today we know that, although documents are important part of our global
data, there is plenty of data that has no document-style organization: table
data, raw data, sensor data, streams, images, etc. What is a “good” language
for a global exchange of data? We would like to advance some basic general
requirements for it:

1. Include codification for data, metadata and knowledge.
2. Be flexible enough to describe most types of data.
3. Be minimalist and efficient (regarding user needs and evaluation complexity).
4. Scale in a non-centralized form.

We will come back to the language theme repeatedly, because it is one of the
cornerstones of the Web of Data.

1.2 The Semantic Web

A review of the Web would be incomplete without covering the Semantic Web.
Indeed, the original project included as an ideal target a Web where all contents
shared global semantics.

424 C. Gutierrez

There are two driving forces behind the development of the Semantic Web:
first, the fact that if data and information scale to meta-human levels, the only
possibility to access, organize and manage such data is via machines; Second,
the problem of meaning of information: what is the meaning of each piece of
information on the Web? This has to do fundamentally with the semantics and
meaning of concepts (even in the same language).

The first problem is an old one and is at the root of the discipline of databases
on one hand, and of information retrieval on the other. One deals with structured
data and the task of the organization of data –via logic– to allow semi-automatic
querying and management of it. The other deals with unstructured data and
documents, and relies on statistical methods to approximate the user needs.

The basic assumptions of classic database models (closed world, known goals,
well defined users, etc.) do not scale at planetary level. The statistical approach
has shown to be more suited to scale, but at the cost of trading logical precision
by approximate results.

The Semantic Web aims to partially solve this problem based on the sim-
ple idea of organizing information at planetary level. The Semantic Web is the
Web of machine-processable data, writes TBL, and this amounts to standardize
meanings. Is this program viable? Naive approaches in this direction, like the
Esperanto language, have failed miserably. Optimistically one could think that
there were basic design failures in that project: centralized approach, lack (or
high cost) of extensibility, not machine processable, complex semantics, little
participation of (prospective) users in their enrichment.

The Semantic Web program devised two humble goals in order to overcome
these problems:

1. Develop languages for describing metadata, sufficiently flexible, distributively
extensible, machine-processable. (Note how this fits smoothly with the re-
quirements for a global language for the Web discussed in a previous section).
Two families of languages have been developed:
(a) Resource Description Framework, RDF [42]. A basic language, in the

style of semantic networks and graph data specifications, based on uni-
versal identifiers. Basic tools for interconnecting (linking) data, plus a
lightweight machinery for coding basic meanings.

(b) The Web Ontology Language, OWL [50]. A version of logic languages
adapted to cope with the Web requirements. Composed of basic logic
operators plus a mechanism for defining meaning in a distributed fashion.

2. Develop an infrastructure for it. Among the most important building blocks
for the Semantic Web are protocols, query languages, specifications and ap-
plications for accessing, consulting, publishing and exchanging data.

Goal (1) has been a successful program. As time went on, two more or less
defined communities have been developing this area (see Figure 2; Information
Retrieval will not be discussed here):

The logic and knowledge representation community. It is oriented towards
developing high level and expressive languages for describing information on

Modeling the Web of Data 425

Fig. 2. The technical fields involved in data aspects of the Semantic Web Tower: In-
formation Retrieval, Databases and Knowledge Representation

the Web. One could summarize its accomplishments saying that it has achieved
the internationalization and global extensibility of logic languages, particularly
via OWL. At the same time, it is important to understand its limitations: this
approach does succeed in describing data at a massive scale. In fact, the most
basic tools have a computational complexity far exceeding the needs of big-scale
data management.

The database community. It is centered on the development of RDF and its
query language SPARQL. In the next section we will expand on these languages.

Goal (2) has been partially successful. On the positive aspects, there is a solid
community behind the specifications and increasing interest by different stake-
holders (e.g. governments, scientific communities). On the other hand, the area is
still looking for applications that show the full potentialities of these approaches
(an issue that deserves a careful analysis, beyond the scope of these notes).

2 Towards the Web of Data

Roughly speaking, the Web of data can be defined as follows:

The Web of data is the global collection of data produced by the
systematic and decentralized exposure and publication of (raw)
data using Web protocols.

From this point of view, one of the main question arising is how to identify
the changes produced to data management when incorporating (raw) data to
the classical Web model reviewed .

426 C. Gutierrez

In this section we will address the most visible initiatives aimed either, at
enhancing and overcoming the Web of documents, or at addressing new chal-
lenges to information management posed by the new developments of data at
Web scale. First, we will summarize the challenges posed by the “data deluge”
on data management. Then, we will review the data level of the role and per-
spectives of RDF in this new setting. Finally we will discuss the contributions
of two important projects, Linked Data and Open data to the goals of the Web
of Data.

2.1 The Data Deluge Structure

The data deluge described in the introduction consists of different types of data
and data sources. Today there is a widespread feeling that this is beginning of
a chaotic new era. I think it is important to realize that this tsunami of data is
going to stabilize; that we should not act like the people shaken by the first big
waves, but try to get a comprehensive picture of the process that is opening.

Any modeling of data on the Web should begin with a clear picture of the
sources of such data. First of all, one has to consider the traditional publishing
sources (editorials, writers, in general: sources that surely will remain, although
in different formats) and scientific data that is gradually changing because of
the increasing capacity and will to record and store. An important additional
source of data are sensors, either capturing data directly from non-human natural
processes (metereology, radioastronomy, animal behavior, etc.) or directed at
humans (surveillance, logs of computer applications, medical, etc.)

Determining what types of data are more relevant is of paramount importance.
The resources are finite, and hence naturally the most relevant data is the one
that will constitute the main source of the sea of data.[48]

A characterization of the data itself (independent of its source) is another
challenge. Classical methodologies and results about it (e.g. those of librarians)
dealt essentially with human-produced data in natural language. Photography
and video are still datasets that for most of us have hold little meaning outside
of the human annotations (in natural language) attached to them. Clearly this
is going to change.

2.2 RDF as Infrastructure

It should not be a surprise that the notion of Web of data has a close relationship
with the Semantic Web. The most influential semantic technologies, the RDF
model and the SPARQL query language, have given new impetus to the devel-
opment of the idea of Web of data. Here we will briefly explain the strengths of
RDF and the coming challenges. (For RDF and SPARQL, consult [10].)

RDF was designed to facilitate automatic processing of information on the
Web via metadata. The 1999 Recommendation stated it clearly: “RDF is in-
tended for situations in which this information needs to be processed by appli-
cations, rather than only displayed to people”. Thus, it is at the core of its goal
the incorporation of machine readable information to the Web. But the design

Modeling the Web of Data 427

of RDF had another rather unexpected outcome: its graph nature (due to its
triple structure) allows for representation of any type of data, and hence opens
the door for converting the Web of documents into a Web of Data.

The power of RDF resides in the combination of two ideas: (1) a flexible model
able to represent plain data as well as metadata in a uniform manner, pushing
the idea of objects of information where data and metadata (schema) have the
same status; (2) a graph structure that represents naturally, interconnections
and relationships between data. In fact this latter feature is the one that led to
the development of the Linked Data initiative.

These two ideas crystallize at the structural level of RDF in two main blocks
of the RDF language: its (graph) data structure and its vocabulary.

Data structure. RDF triples can be considered from a logical point of view as
statements. But at the same time, they naturally represent a graph structure.
Hence its expressive power: the structure really represents a linked network of
statements.

This graph can be considered as relational data (a set of triples is a table
with three columns). This viewpoint has the advantage of dealing with a well
understood object; thus, allows the reuse of well studied and proven relational
technology to manage such data.

It is important to understand the implications of the fact that RDF is a graph
model: we face an object of study still not well understood, but with enormous
potential to represent and model information [9].

Vocabulary. RDF was designed to be flexible and extensive regarding vocabulary,
allowing to give meanings to the relationships indicated by its graph structure.
It has a few pre-defined (built-in) keywords with a light semantics (see [35]).
The compromise here is the usual: the computational complexity of processing
such data increases with the expressive power of its vocabulary semantics. Today
one can roughly separate the vocabulary in three groups: (a) Having light (or
no) semantics (essentially type, subClassOf, subPropertyOf, etc.); (b) RDF
Schema plus some light extensions; (c) OWL, the Web ontology language. For
linking and describing raw data, (a) seems to be enough.

A Remark concerning Blank Nodes. Blank nodes allow flexibility in structure
data and representation of incomplete information. For a global model of infor-
mation seems that these features are unavoidable. The problem, nevertheless, is
that data with such features increases the computational complexity of process-
ing and its semantics of querying is not simple [51].

2.3 Linked Data

Among the most successful world-wide projects addressing the problem of ubiq-
uitous data on the Web, Linked Data stands out [44,20]. This project originated
in the practice of linking data and TBL’s ideas on Web architecture [14], and
has become one of the main driving forces pushing the idea of exposing data on
the Web. As the authors of the project state [44]:

428 C. Gutierrez

Linked Data is about using the Web to connect related data that
wasn’t previously linked, or using the Web to lower the barriers
to linking data currently linked using other methods. More specif-
ically, Wikipedia defines Linked Data as ”a term used to describe
a recommended best practice for exposing, sharing, and connect-
ing pieces of data, information, and knowledge on the Semantic
Web using URIs and RDF”.

The idea is simple: thanks to the Web technologies, the possibility to produce,
publish and consume data (not only documents in the form of Web pages) has
become universally available. These processes are being done by different stake-
holders, with different goals, in different forms and formats, in different places.
Taking full advantage of this new scenario is a challenge. One of the main prob-
lems –the one addressed by the Linked Data project– is that this universe of
data is not interlinked meaningfully.

The relevance of the Linked Data project has been eloquently expressed
TBL [15] as follows:

Linked Data allows different things in different datasets of all kinds to be
connected. The added value of putting data on the Web is given by the way it
can be queried in combination with other data you might not even be aware
of. People will be connecting scientific data, community data, social web data,
enterprise data, and government data from other agencies and organizations,
and other countries, to ask all kinds of interesting questions not asked before.

Linked data is decentralized. Each agency can source its own data without a
big cumbersome centralized system. The data can be stitched together at the
edges, more as one builds a quilt than the way one builds a nuclear power station.

The Linked Open Data movement uses open royalty-free standards from W3C.
These do not bind governments nor agencies to any specific supplier.

A virtuous circle. There are many organizations and companies who will be
motivated by the presence of the data to provide all kinds of human access to this
data, for specific communities, to answer specific questions, often in connection
with other data from different sites.

The TBL’s “five-stars” test to measure the level of implementation of these
ideas demonstrates the strategic goal of the Linked Data project:

1. Make your stuff available on the web (whatever format).
2. Make it available as structured data (e.g. excel instead of image scan of a

table).
3. Use non-proprietary format (e.g. csv instead of excel).
4. Use URLs to identify things, so that people can point at your stuff.
5. Link your data to other people’s data to provide context.

The Linked Data project has rapidly earned solid support among developers and
governments (e.g. [25]), and is slightly gaining space in Academia [45]. The appli-
cations of database techniques to it, particularly the development of an infrastruc-
ture for querying and navigating such network, are just taking off [37,38]. There
is a recent book by Heath and Bizer [39] that covers the area systematically.

Modeling the Web of Data 429

2.4 Open Data

Open data is a movement towards facilitating both, the production and dissemi-
nation of data and information at global scale.2 In this regard, it is closely related
with the original goals of the Web project. Because of its relationship with the
issues arising in the “public versus private” sphere, it has become influential in
management of information in Government and big organizations. On the other
hand, regarding it as the data version of similar movements for software, we can
define it as follows:

Open data is a movement whose goal is to develop and spread
open standards for data.

The big question here is what does openness mean for data. We will follow
here the methodological approach of Jon Hoem in his study of openness in com-
munication [41], and adapt the discussion to data. There are several possible
dimensions from where one can consider openness. Three important ones are:
the content, the logical and the physical levels. For data, this means respectively:
semantics; datatypes and formats; and applications to access the data. For com-
munication Hoem isolates two other crucial parameters: control of production
and re-use; and control of distribution and consumption.

People working with public (government) data are among the ones that have
elaborated more on this subject. Early in 2007, eight principles for openness in
data were proposed [62]. Although they refer to “public data”, the principles offer
good insights into the requirements for open data: (1) Be Complete: All data
is made available. (Restrictions: valid privacy, security or privilege limitations);
(2) Be Unprocessed: Data is as collected at the source, with the highest possible
level of granularity, not in aggregate or modified forms; (3) Be Timely: Data is
made available as quickly as necessary to preserve the value of the data; (4) Be
Accessible: Data is available to the widest range of users for the widest range
of purposes; (5) Be Machine processable: Data is reasonably structured to allow
automated processing; (6) Be Non-discriminatory: Data is available to anyone,
with no requirement of registration; (7) Be Non-proprietary: Data is available
in a format over which no entity has exclusive control; (8) Be License-free: Data
is not subject to any copyright, patent, trademark or trade secret regulation.
Reasonable privacy, security and privilege restrictions may be allowed.

A more systematic set of parameters characterizing data can be obtained from
an analysis of the cycle of (digital) data. For our purposes, the following four
basic processes in that cycle give a good first approximation:

1. Production: producing data from the physical world; production of bits (writ-
ing, sensors, music, images, etc.)

2. Access: possibility of of getting (copying, locally storing) digital data.

2 Usually Open data refers to open “information”, understanding information as data
apt for direct human consumption. For the discussion in this section, the distinction
is not relevant.

430 C. Gutierrez

Table 1. Examples of data openness for images. We show openness allowed by current
socio-economic model and in brackets intrinsic openness of the application. (C=closed;
O=open; “Any”= both models are possible).

satellite medical surveillance historical leisure
Use Closed [O] Closed [C] Closed [C] Any Any

Re-use Closed [O] Closed [C] Closed [C] Any Any
Access Closed [O] Closed [C] Closed [C] Any Any
Prodn. Closed [C] Closed [C] Open [O] Closed [C] Any

3. Use: final (terminal) consumption of the data (can be thought of as “return-
ing” the bits to the physical world).

4. Re-use: producing data using other data (already produced).

Each of these processes can have restrictions (be closed) or be available to every-
one (be open). In Table 1 we show examples of the behavior of these parameters
for some types of images. Note that they permit us to discriminate between some
basic types of images. Note also how external factors like the socio-economic im-
pact the openness criteria in some cases (e.g. although the satellite images could
have open access, use and re-use in a future world, it is unrealistic to imagine
that everybody could produce them).

Table 2, on the other hand, indicates current policies on openness for their data
of some paradigmatic repositories and applications. Note how databases are closed
in all four criteria. For the new “data enterprises”, whose essential driving force –
and business model– is to get and process data of other people like Google, Yahoo!,
Facebook, Twitter, etc.; it is crucial to enforce and open model of production of
data while keeping a closed model for access, re-use and use.

These perspectives on data production and consumption necessitate new re-
quirements and pose new challenges to a Web model. The impulse to develop
“open” data models has disclosed a number of activities that were, either con-
sidered as “given”, or did not gain the prominence they have today. Among
them: open digital windows to existing data; availability of digital data; linkage
of data; building of an infrastructure for data.

Several new requirements emerge at this point: preparing data; cleaning data;
pre-processing (for publication) data; logical design of the internationalization
(vocabularies, models, etc.); and at the physical dimension, availability, service,
formats, etc.

3 Modeling Data on the Web

The Web can be viewed from multiple points of view. In this section we examine
ideas and abstract conceptualization of the Web. First we review the notion
of data model. Then we briefly present the ideas and viewpoints that people
have elaborated on regarding the “object” called Web. Then we study the most

Modeling the Web of Data 431

Table 2. Classical repositories and applications and their current policies on openness
criteria for the data they hold. (C=closed; O=open; “Any”= both models are possible.)
Web2 application signifies Web applications based on data-intensive processing: search
engines, social networks, etc.

library broadcasting database Web2 appl. Web page
Use Open Closed Closed Closed Open

Re-use Closed Closed Closed Closed Any
Access Closed Closed Closed Closed Open
Prodn. Open Closed Closed Open Open

widespread concept of the Web, that is, a collection of documents. Next, we look
at models and representations of data beyond documents. Finally, we describe
the most comprehensive attempts to model the Web as a whole.

3.1 Data Models and their Role

A data model is a set of concepts that can be used to describe the structure and
operations of a database for a given domain [57], where database is defined as a
collection of data with the following properties:

1. Represent some aspect of the real (or an imagined) world, the “domain” of
application.

2. Be logically coherent, i.e., the data has to have some common domain and
must have some purpose.

3. Directed at an intended group of users (known in advance), and usually
refined to preconceived applications.

The two last conditions define a clear difference of data found in classical data
management applications and data on the Web.

3.2 The Web as Information Artifact

One could generalize the notions of database given above, by defining a data
model (in general) as a set of concepts (a conceptual framework) that describes
at an abstract level an information system or artifact. Examples of information
systems are libraries, databases, tables, photo albums, etc. The Web also can be
viewed as an information artifact, and hence devising models of it is pertinent.

In fact, many researchers have described, characterized, and even modeled,
the Web for different purposes. The following list shows the most typical char-
acterizations of it:

1. The Web is an abstract (imaginary) space of information. (Berners-Lee, [13].)
2. The Web is not a database. (Mendelzon, [53].) The Web is a large, hetero-

geneous, distributed collection of documents connected by hypertext links.
(Mendelzon, Mihaila, Milo, 1996 [56].)

432 C. Gutierrez

3. The Web is one huge database. (Asilomar Report, 1998, [19].)
4. The Web is a vast collection of completely uncontrolled heterogeneous doc-

uments. (Brin and Page, 1998, [23].)
5. The Web is a huge heterogenous distributed database. (Konopnicki and

Shmueli, 1999 [59].)
6. The Web provides a simple and universal standard for the exchange of in-

formation. (Abiteboul, Buneman, Suciu, 2000, [5].)
7. The pages and hyperlinks of the Web may be viewed as nodes and edges in

a directed graph. (Kumar et al, 2000, [43].)

3.3 The Web of Documents

Perhaps the most clear expression of the most consolidated conception of the
Web is the one that the creators of Google, Sergey Brin and Lawrence Page, gave
in their well-known paper on Search Engines [23]: “The web is a vast collection
of completely uncontrolled heterogeneous documents”. Here the Web is defined
by contrasting it with the world of “well controlled documents”. This contrast
nicely parallels the one found in databases between the Web and the world of
closed and structured information.

In that paper, Brin and Page identify a core set of challenges to be addressed
when dealing with information at Web scale:

1. Documents have extreme internal variation, in language, vocabulary, format,
form of generation (human, machine).

2. External meta information. External meta-information was defined as infor-
mation that can be inferred about a document but is not contained within
it.

3. Things that are measured vary by many orders of magnitude.
4. Virtually no control over what people can put on the web; flexibility to

publish anything.
5. The contrasting interests between “the enormous influence of search engines”

and companies “deliberately manipulating search engines”, with the user
interests.

6. Metadata efforts have largely failed with search engines.

Let us extract the underlying view and characteristic that this influential design
had: heterogeneity in format and usage (items 1,4); the key idea that relation-
ships between documents (networked data) is of fundamental importance (item
2); the understanding that scalability is a breaking point with the previous world
of information management (item 3); and finally, the implicit assumption that
search engines are the basic data access tools at Web scale (items 5,6).

It is worth noting that multimedia and raw data do not play a special role in
this model. On the other hand, their solution –which will be the solution imple-
mented by an ample set of successful companies– is a centralized one. The user
plays the passive role of consulting information. Brin and Page are essentially
addressing the challenges of heterogeneity in content and massive access pro-
duced by the new scale. But overall, they are anchored in a Web of documents
and centralized services oriented directly to a human user.

Modeling the Web of Data 433

3.4 Models of Data on the Web

Documents are at the heart of the classical Web. Its original language for speci-
fying data was HTML, that although has facilities to represent data (via tables),
has as primarily goal the representation and visualization of documents.

As the Web became popular, the need for better formats to represent more
structured data was raised. Such a language had two basic requirements: (1)
to be able to represent documents, the most popular information object on the
Web (and in daily practice), and (2) to have some level of structuring, so to be
able to be queried much like the well known and successful relational technology
(SQL).

At the abstract level the answer was the notion of semistructured data. The
guiding motivations of semi-structured data were the paradigm shift in data
management produced by the advent of the Web and the new type of data [5,21].
The main characteristic of this new type of data was that it was neither raw nor
strictly typed: its structure is irregular, implicit, partial, with large, evolving
and sometimes ignored schemas, and the distinction between schema and data
is blurred [2]. Probably the most representative, abstract and minimalist model
is OEM [61]. Grahne and Lakshmanan [31] slightly extend the OEM model to
better capture the notion of data independence in these models.

As “real world” version of semistructured data emerged XML, that rapidly
became a standard for exchanging data (more precisely: documents) on the Web.
XML has another important feature: it unifies in one information object the data
and the metadata (traditionally split in classical databases). Despite its success,
XML is a verbose format not designed to codify raw data.

The data format, JSON, considered by its followers as being a “fat-free al-
ternative to XML”, is a lightweight data-interchange format, with the goal of
being “easy for humans to read and write and easy for machines to parse and
generate”. It has become popular to code data at Web scale by its flexibility and
minimality. It resembles the OEM model.

In parallel to XML, the Web Consortium developed a standard for represent-
ing metadata. It is the RDF universal model of triples for representing data,
metadata and knowledge on the Web. Its structure and flexibility to represent
any kind of data, and moreover, to link (to establish relationships between) differ-
ent datasets, the feature that has made RDF a prime candidate for representing
data on the Web, and a candidate for base data format for the Web of Data.

In summary, we have today a universal syntax, on the lines of a minimal semi-
structured model (XML, JSON, etc.) plus a model for describing and linking data
(RDF).

3.5 Data Models of the Web

The philosophy of the formalizations we have seen so far is to develop good data
models applicable at Web scale. Something more elaborated is to model the Web
itself as a whole. Indeed, jointly with the explosion of the Web of documents,
researchers have been trying to model the Web as a huge data system. We would
like to call the reader’s attention to two of the most interesting such attempts.

434 C. Gutierrez

Abiteboul & Vianu’s model. Abiteboul and Vianu [3,4] presented a model of
the Web which is more sophisticated than a graph. They assume that the char-
acteristics of the Web –departing from traditional notions of databases– are its
global nature and the loosely structured information it holds.

They model the Web as an infinite set of semistructured objects over the
relational schema {Obj(oid), Ref(source, label, destination), Val(oid, value) },
where oid is an identifier of objects (URIs), Ref specifies a finite set of labeled
arcs, and Val specifies the value of an object. (The reader can see how the
triple model emerges again here.) Intuitively objects are Web pages, the value is
the content of a page, and references are links. The model –departing from the
traditional database notions– enrich the notion of computable query. Considerer
the following simple query: list all links that point to my page. This query
is not computable because we do not have global information on links. The
formalization given is based in a slight generalization of the classical notion
of computability according to the new scenario. They introduce the notion of
Web machine, that essentially is a Turing machine dealing with possibly infinite
inputs and outputs. Based on this machine, the notion of query on the Web is
formalized.

The model explores only basic aspects of querying and computing on the
Web, leaving out, among others: communication costs; the notion of locality;
the essentially distributed nature of the Web; the fact that queries on the Web
are intrinsically concurrent processes; updates; and the fact that users often seem
to be satisfied with incomplete and imprecise answers.

Mendelzon & Milos’s model. Almost concurrently with Abiteboul and Vianu’s,
Mendelzon and Milo [53,54,55] introduced another model, assuming that the Web
is not a database (mainly due to the lack of concurrency control and limited data
access capabilities). The central difference with Abiteboul and Vianu’s model is
the infinite character of the Web. The Web is huge, but finite at any given
moment, state Mendelzon and Milo. Second, the infinity assumption blurs the
distinction between intractable and impossible. For example, the query “List
all pages reachable from my page”, in an infinite model is not computable, but
in Mendelzon and Milo’s is in principle computable, although intractable. The
formalization is done via a Turing machine with an oracle, which simulates the
navigational access from a set of URIs to the Web graph it spans. They present
results on computability of queries on the Web, and introduce a Web query
language, which is a generalization of the seminal WebSQL query language that
integrates data retrieval based in contents, structure and their topology [56].

Mendelzon and Milo’s model does not address heterogeneity of data, degrees
of autonomy among users, and lack of structure. Also it is restricted to the static
case, that is, it ignores updates.

The importance of these works is that they introduce the notion of a data
space with peculiarities that are just emerging: the practical impossibility of
accessing all data; the intrinsically distributed nature of updating and querying
data; heterogeneity of data; etc. This and other open issues reaffirm the need of
a model including all or most of these features.

Modeling the Web of Data 435

4 Requirements for the Web of Data

In this section we will explore several parameters that play relevant roles in the
data system underlying the Web. The general philosophical principles of the
Web as declared by TBL continue to be the basis of this new artifact. There is
no claim of completeness, nor theory behind them. They are presented with the
goal of sparking ideas and motivating the identification of relationships between
different views.

4.1 Architectural Views

The most comprehensive discussion of Web architectural principles is Fielding’s
thesis [27]. Departing from the classic Web, several ideas have been developed,
in different directions making them, strict sensu, incomparable.

In Table 3 we put together three influential such models, just to let the reader
grasp similarities and differences.

Table 3. A rough comparison of architectural styles. The Web of Data uses the existing
background of the Web, and should enhance it to support massive exchange querying
of data. The language for logical specification of data and metadata is the RDF model
(syntax is not relevant here). The access is semi-automatized via the SPARQL query
language.

Classic Web RESTful Web Web of Data
Access Tool Navig/Search Eng. Web Service SPARQL, endpoints

Language HTML XML, JSON RDF
Access Protocol HTTP HTTP 1.1 HTTP “++”
Data primitive URI URI URI

The definitive architecture of the Web of Data is yet to be designed, but
should include several facets besides the ones shown in Table 3. In particular,
enhancements of the current access/put protocol for data on the Web.

4.2 Static versus Dynamics

The classic models assume that the Web is an essentially static object. The
models of Abiteboul & Vianu and Mendelzon & Milo speak of a non-dynamic
Web. Also the models of the Web as a graph share the same implicit assumption.
By dynamics we mean not only the addition of new data, or deletion of old data,
but also modifications of it. It is useful to exemplify this difference: a library is
static, in the sense that it incorporates books, disposes books, but does not
create nor change them. The same happens today with image collections. On
the contrary, a database management system is essentially a dataset that is
constantly being modified by applications. Its essence is the volatile data that

436 C. Gutierrez

Table 4. Dynamics versus openness. A rough classification of some information arti-
facts and projects based on these dimensions. Where should projects like Linked Data
and Open Data be classified?

Static Dynamic
Data Govs Classic Web

open world Web of Data
Libraries Dataspaces

closed world Archives Databases
Desktops

is created and modified constantly. Table 4 shows a classification of information
artifacts when crossing the dynamics and the openness parameters.

A closely related issue, transactionality, is a notion inseparable from classical
data management and its dynamics. Gray defines a transaction as “a transfor-
mation of state which has the properties of atomicity (all or nothing), durability
(effects survive failures) and consistency (a correct transformation). The trans-
action concept is key to the structuring of data management applications.” [29]
Does this notion make sense at Web scale? Is it consistent with Web principles?

4.3 Data Access Methods

For the common user, access to data on the Web is accomplished either by
navigation or by filling in forms. These methods do not scale. For Web volumes
of data, semi-automatic and automatic methods are necessary. Figure 5 shows
the menu of most common access methods available today.

Table 5. The most popular current methods to access data on the Web. The Web of
Data currently points to structured and automatic retrieval of data.

human semi-automatic automatic
non-structured Navigation Search engine Statistical techniques

structured Forms Query language API, Web serv., Endpoints

As for query and transformation languages (prime methods when working
with massive data), Table 6 shows the most “popular” access languages dealing
with data on the Web.

4.4 Cost Models

Any model for the Web of Data has to include a corresponding cost model for
accessing and exchanging data, and even for data itself [48]. There is need for
common cost models to evaluate information on the Web [26]. Many of the models
proposed include cost models for accessing and exchanging data; nevertheless

Modeling the Web of Data 437

Table 6. Most popular semi-automatic data access approaches

Keyword SQL XQuery SPARQL

application text spreadsheets documents statements
abstract data strings tables Trees Graphs
data format nat. lang. SQL table XML RDF
technique statistics algebra/logic autom./logic algebra/patterns

there is yet not a common approach to compare them. The need to explore and
incorporate ideas from other areas (e.g. classical cost models, economic ones,
response time models, communication complexity models, etc.) As large data
companies have advanced in this area (see e.g. [52]), it is now important to
devise models for the open world.

4.5 Incomplete and Partial Information

The ability to deal with incomplete or partial information is one of the basic
requirements for a model of the Web of Data.

There are several database developments that partially address this issue. The
most natural one is the theory of incomplete information. A whole area of research
has spun off from this subject since the seminal work by Lipski [49]. This research
has been partially subsumed in the area of Probabilistic Databases [32,63]. The-
ories of incomplete information deal with unknown and uncertain information,
whereas probabilistic databases can be considered as numerical quantification of
the uncertainty. The models mainly follow the ideas of the possible-worlds ap-
proach. Even though the Web has other facets that escape these models, they are
valuable starting points.

The theories above deal essentially with the problem of how to code partial
information and query it. A different perspective presents itself when trying to
model the user of the Web, who can only get partial information from the network
of data that constitutes the Web. This approach overlaps with the problem of the
behavior of agents having bounded capacity and bounded information. Theories
like bounded rationality [58] are worth exploring here.

4.6 Organizing Data

As we learned, the RDF graph model is a good candidate for a universal format
for representing data and their relationships on the Web. Applications like social
networks, or projects like Linked data, are increasingly showing success in this
task. With these we are seeing the distributed construction of a huge network
of data. Although it is possible to find partial classifications of such data, they
resemble that of the imperial encyclopedia imagined by Borges where the ani-
mals were divided into categories as follows: (a) belonging to the emperor, (b)
embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g) stray dogs,

438 C. Gutierrez

(h) included in the present classification, (i) frenzied, (j) innumerable, (k) drawn
with a very fine camelhair brush, (l) etcetera, (m) having just broken the water
pitcher, (n) that from a long way off look like flies.3

A natural question arises: does the task of organizing the network of data
on the Web make sense? Note that the task is not impossible in principle and
that librarians succeeded in organizing data coded with human languages. The
experience of tagging and folksonomies is valuable, but sheds little light on the
problem of organization of structured data at Web scale. Most of the challenges
in this regard are still open, even at small scale (cf. the experience of graph data
models [9]).

There is more. The challenges posed by the growing amount of data known as
multimedia (images, videos, scans, etc.) is something that any model of the Web
of Data should address. Until today they have been treated as collections of black
boxes whose descriptions are done by tagging, with little and poor additional
metadata, and no relationships among their “contents”. Although this is not the
place to discuss this topic in depth, it is important to call attention to the crucial
role it will play in the Web of Data.

5 Other Relevant Related Areas

A discussion of models for the Web of Data would not be complete without
mentioning other areas of research which are closely related to this goal. In this
section we briefly address the most relevant of them.

5.1 Distributed Data Management

A distributed database is one that has a central control, but whose storage devices
are not all attached to a common central server, that is, they are stored in
multiple computers, in the same physical location or over a network of computers.

The notion of distribution (of tasks, of people, of data, etc.) is intrinsic to
the Web, hence there being several characteristics from this model that are
common to Web phenomena. The commonalities among distributed databases,
P2P systems and the Web can be established as shown in Table 7 [16]. Without
doubt, the P2P approach is the most interesting and fruitful source of ideas in
this regard.

Peer to Peer. P2P systems became popular with Napster, Gnutella and Bit
Torrent. The model of P2P has two characteristics which made it one of the
closest in spirit with the Web principles: (1) The sharing of computer resources by
direct exchange, rather than requiring the intermediation of a centralized server;
and (2) The ability to treat instability and variable connectivity as the norm,
automatically adapting to failures in both network connections of computers, as
well as to a transient population of nodes [8].
3 J. L. Borges, The Analytical Language of John Wilkins, Translation of Lilia Graciela

Vázquez.

Modeling the Web of Data 439

Table 7. A rough classification of some data systems according to their distributed
nature and the intrinsic quality of their services (cf. Bernstein et al. [16])

poor services good services
no central control Web Peer to Peer

central control Distributed DB

Gribble et al. [33] enumerate the following principles as general characteristics
of the P2P model:

1. No client/service necessary: each peer is a provider or a consumer. Everybody
more or less has the same role, with the same duties and rights.

2. No central control. In particular each agent decides to enter/be part of or
leave/abandon the network at his/her convenience.

3. Exchange of large, opaque and atomic objects, whose content is well de-
scribed by their name. Large-granularity requests for objects by identifier.

Valdurriez and Pacitti [70], studying data management in large-scale P2P sys-
tems, indicate the main requirements for such systems:

1. Autonomy. Peers should be able to join or leave the system at any time, and
control the data it stores.

2. Query Expressiveness. Allow users to describe data at the appropriate level
of detail.

3. Efficiency. Efficient use of system resources: bandwidth, computer power,
storage.

4. Quality of Service. Completeness of query results, data consistency, data
availability, query response time, etc.

5. Fault-tolerance. Efficiency and quality of services should be provided despite
the occurrence of peer’s failures. Given the nature of peers, the only solution
seems to rely on data replication.

6. Security. The main issue is access control (including enforcing intellectual
property rights of data contents).

Wide Distributed Systems. The project Mariposa [67] is an influential proposal
for developing architectures for distributed systems at large, that is, working over
wide networks. The main goal is to overcome the main underlying assumptions
on the area, that in their opinion, do not apply to wide-area networks (and
less to the Web): Static data allocation; Single administrative structure; and
Uniformity. The guiding principles of the new design are the following: Scalability
to a large number of cooperating sites; Data mobility; No global synchronization;
Total local autonomy; and Easily configurable policies.

Dataspaces. Dataspaces [36] is another abstraction for information management
that attempts to address the “data everywhere” problem. It focuses on sup-
porting basic functionalities of data management, such a keyword searching for

440 C. Gutierrez

loosely integrated data sources and relational-style querying for more integrated
ones. Currently the project has not included the publishing-of-data agenda.

5.2 Logic Approaches

Under the logical framework there have been some works that model aspects of
the Web. Let us show a few examples just to give a flavor of the possibilities and
scope of this approach.

Himmeröder et al. [47] propose to use F-logic to model knowledge on the Web,
particularly Web queries. The model, though, is just a graph of documents with
arcs representing hyperlinks, where they concentrate on a language to explore
the Web. From another perspective, Terzi et al. [68] present a constraint-based
logic approach to modeling Web data, introducing order and path constraints,
and proposing a declarative language over this model. The basic assumptions,
though, are the same as those of the semi-structured model.

More recently, Datalog, the classic logic query language, has been the ob-
ject of attention by the people working in distributed systems, and suggested as
model for the Web. We would like to call the attention to two interesting ongoing
projects in this direction. One is being developed by Joseph Hellerstein and his
group [40], and centers on “data-centric computation” motivated by the urgency
of parallelism at micro and macro scale. They develop an extension of Datalog
that, relying on the time parameter, addresses the fundamental issues of dis-
tribution. The other project is headed by Serge Abiteboul [71], which also uses
Datalog to specify the problems of distribution. As stated in their project, “the
goal is to develop a universally accepted formal framework for describing com-
plex and flexible interacting Web applications featuring notably data exchange,
sharing, integration, querying and updating”.

6 Concluding Remarks

The massive production and availability of data at world scale due to the techno-
logical advances of sensors, communication devices and processing capabilities,
is a phenomena that is challenging the classic views on data management.

The Web has become the premium infrastructure to support such data del-
uge. Designed originally as a worldwide interrelated collection of documents,
and oriented primarily to direct human visualization, today the Web is rapidly
incorporating the data dimension and evolving towards automatic handling of
such volumes of data.

The challenges for computer scientists are immense, as long as the new sce-
nario involves data management, knowledge management, information systems,
Web protocols, user interfaces, Web engineering, and several other disciplines
and techniques. To have a unified and consistent view of the data dimension at
Web scale one necessarily must have a model of such Web of Data. All indications
point to the fact that such a model should follow the original Web principles of
decentralization, distribution and collaborative development, and depart from

Modeling the Web of Data 441

small-scale and closed views of data and knowledge management that have been
deployed until today.

In these notes we tried to present an introductory overview of the themes and
techniques arising in such program for the development of a Web of Data.

Acknowledgments. Materials of this lecture have been taught to students at
Universidad de Chile, Chile; Universidad de la República, Uruguay; Biblioteca
del Congreso, Chile; to whom I thank for feedback and suggestions. Also thanks
to R. Angles, J. Fernández, D. Hernández, J. E. Muñoz plus anonymous referees
that helped with detailed comments to improve previous versions. Of course, the
responsibility for what is finally said here is mine.

References

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel query
language for semistructured data. International Journal on Digital Libraries 1(1)
(1997)

2. Abiteboul, S.: Querying semi-structured data. In: Afrati, F.N., Kolaitis, P.G. (eds.)
ICDT 1997. LNCS, vol. 1186, Springer, Heidelberg (1996)

3. Abiteboul, S., Vianu, V.: Queries and Computation on the Web. In: Afrati, F.N.,
Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, Springer, Heidelberg (1996)

4. Abiteboul, S., Vianu, V.: Queries and Computation on the Web. Theor. Comput.
Sci. 239(2) (2000)

5. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufmann, San Francisco (2000)

6. Agrawal, R., et al.: The Claremont Report on Database Research (2008),
http://db.cs.berkeley.edu/claremont/

7. Alex Sung, L.G., Ahmed, N., Blanco, R., Li, H., Ali Soliman, M., Hadaller, D.: A
Survey of Data Management in Peer-to-Peer Systems. In: Web Data Management
(2005)

8. Androutsellis-theotokis, S., Spinelis, D.: A Survey of Peer-to-Peer Content Distri-
bution Technologies. ACM Surveys 36(4) (December 2004)

9. Angles, R., Gutierrez, C.: Survey of Graph Database Models. ACM Computing
Surveys 40(1) (2008)

10. Arenas, M., Gutierrez, C., Perez, J.: Foundations of RDF Databases (Tutorial).
Reasoning Web Summer School (2009)

11. Berners-Lee, T.: WWW: Past, present, and future. IEEE Computer 29(10) (Octo-
ber 1996)

12. Berners-Lee, T.: Commemorative Lecture The World Wide Web - Past Present
and Future. Exploring Universality. Japan Prize Commemorative Lecture (2002),
http://www.w3.org/2002/04/Japan/Lecture.html

13. Berners-Lee, T.: Frequently asked questions, http://www.w3.org/People/

Berners-Lee/FAQ.html

14. Berners-Lee, T.: Design Issues/Linked Data, http://www.w3.org/DesignIssues/
LinkedData.html

15. Berners-Lee, T.: Linked Open Data. What is the idea?,
http://www.thenationaldialogue.org/ideas/linked-open-data

http://db.cs.berkeley.edu/claremont/
http://www.w3.org/2002/04/Japan/Lecture.html
http://www.w3.org/People/Berners-Lee/FAQ.html
http://www.w3.org/People/Berners-Lee/FAQ.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.thenationaldialogue.org/ideas/linked-open-data

442 C. Gutierrez

16. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini,
L., Zaihrayeu, I.: Data Management for Peer-to-Peer Computing: A Vision. In:
WebDB, Workshop on Databases and the Web (2002)

17. Bell, G., Gray, J., Szalay, A.: Petascale Computational Systems: Balanced Cyber-
Infrastructure in a Data-Centric World. Computer 39(1) (January 2006)

18. Bell, G., Hey, T., Szalay, A.: Beyond the Data Deluge. Science 323 (March 2009)
19. Ph. Bernstein, M., Brodie, S., Ceri, D., DeWitt, M., Franklin, H., Garcia-Molina,

J., Gray, J., Held, J., Hellerstein, H.V., Jagadish, M., Lesk, D., Maier, J., Naughton,
H., Pirahesh, M., Stonebraker, J.: The Asilomar report on database research. ACM
SIGMOD Record 27(4) (December 1998)

20. Ch. Bizer, T., Heath, T.: Linked Data - The Story So Far. International Journal
on Semantic Web and Information Systems 3 (2009)

21. Buneman, P.: Semistructured data. In: ACM PODS (1997)
22. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML)

1.0, W3C Recommendation 10 (February 1998),
http://www.w3.org/TR/1998/REC-xml-19980210

23. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
In: Computer Networks and ISDN Systems (1998)

24. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In: Proc. WWW 2004 (2004)

25. DATA.gov project, http://www.data.gov/
26. Erling, O., Mikhailov, I.: Towards Web Scale RDF.In: 4th International Workshop

on Scalable Semantic Web Knowledge Base Systems, SSWS 2008 (2008)
27. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine (2000),
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

28. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.
ACM Trans. Internet Technol. 2(2) (May 2002)

29. Gray, J.: The Transaction Concept, Virtues And Limitations. In: Proceedings of
7th VLDB, Cannes, France (1981)

30. Szalay, A., Gray, J.: Science in an Exponential World. Nature 440 (March 2006)
31. Grahne, G., Lakshmanan, L.V.S.: On the difference between navigating semi-

structured data and querying it. In: Connor, R.C.H., Mendelzon, A.O. (eds.) DBPL
1999. LNCS, vol. 1949, p. 271. Springer, Heidelberg (2000)

32. Green, T., Tannen, V.: Models for Incomplete and Probabilistic Information. In:
EDBT Workshops, Munich, Germany (March 2006)

33. Gribble, S., Halevy, A., Ives, Z., Rodrig, M., Suciu, D.: What Can Databases Do
for Peer-to-Peer? In: WebDB, Workshop on Databases and the Web (2001)

34. Guan, T., Saxton, L.: A complexity model for web queries. In: Fundamentals of
Information Systems. ch. 1. Kluwer, Dordrecht (1999)

35. Muoz, S., Prez, J., Gutierrez, C.: Simple and Efficient Minimal RDFS. J. Web Sem.
7(3) (2009)

36. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: PODS
(2006)

37. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

38. Hausenblas, M., Karnstedt, M.: Understanding Linked Open Data as a Web-Scale
Database. In: 1st Internat. Conf. on Advances in Databases (2010)

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.data.gov/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Modeling the Web of Data 443

39. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
In: Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan &
Claypool, San Francisco (2011), http://linkeddatabook.com/editions/1.0/

40. Hellerstein, J.M.: The Declarative Imperative. Experiences and Conjectures in Dis-
tributed Logic. SIGMOD Record 39(1) (March 2010)

41. Hoem, J.: Openness in Communicaton. First Monday 11(7) (July 3, 2006),
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/

viewArticle/1367/1286

42. Klyne, G., Carroll, J.: Resource Description Framework (RDF) Concepts and
Abstract Syntax. W3C Recommendation (2004), http://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/

43. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal,
E.: The Web as a Graph. In: Proc. PODS 2000 (2000)

44. LinkedData Project, http://www.linkeddata.org
45. Workshops and academics events on Linked Data, http://linkeddata.org/

calls-for-papers

46. Loukides, M.: What is data science?, http://radar.oreilly.com/2010/06/

what-is-data-science.html

47. Himmeröder, R., Lausen, G., Ludäscher, B., Schlepphorst, C.: On a Declarative Se-
mantics for Web Queries. In: Bry, F. (ed.) DOOD 1997. LNCS, vol. 1341, Springer,
Heidelberg (1997)

48. Lesk, M.: Encouraging Scientific Data Use. Posted on The Fourth Paradigm
on (February 7, 2011), http://blogs.nature.com/fourthparadigm/2011/02/07/
encouraging-scientific-data-use-michael

49. Lipski Jr., W.: On Databases with incomplete information. Journal of the ACM
(JACM) JACM Homepage archive 28(1) (January 1981)

50. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language
Overview. W3C Recommendation 10 February (2004), http://www.w3.org/TR/

owl-features/

51. Arenas, M., Consens, M., Mallea, A.: Revisiting Blank Nodes in RDF to Avoid the
Semantic Mismatch with SPARQL. In: W3C Workshop: RDF Next Steps, Palo
Alto, CA (2010)

52. Madhavan, J., Jeffery, S.R., Cohen, S., Dong, X., Ko, D., Yu, C., Halevy, A.: Web-
scale Data Integration: You Can Only Afford to Pay As You Go. In: Proc. of Third
Conference on Innovative Data System Research, CIDR 2007 (2007)

53. Mendelzon, A.O.: The Web is not a Database. In: Workshop on Web Information
and Data Management (1998)

54. Mendelzon, A.O., Milo, T.: Formal Models of Web Queries.In: Proc. PODS (1997)
55. Mendelzon, A.O., Milo, T.: Formal Models of Web Queries. Inf. Syst. 23(8) (1998)
56. Mendelzon, A.O., Mihaila, G.A., Milo, T.: Querying the World Wide Web. Intl.

Journal of Digit. Libr. 1 (1997)
57. Navathe, S.B.: Evolution of data modeling for databases. Communications of the

ACM 35(9) (September 1992)
58. Rubinstein, A.: Modeling Bounded Rationality. MIT Press, Cambridge (1998)
59. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P.,

Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183.
Springer, Heidelberg (1999)

60. No SQL, http://nosql-database.org/
61. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object exchange across het-

erogeneous information sources. In: 11th International Conference on Data Engi-
neering, ICDE (1995)

http://linkeddatabook.com/editions/1.0/
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/1367/1286
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/1367/1286
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.linkeddata.org
http://linkeddata.org/calls-for-papers
http://linkeddata.org/calls-for-papers
http://radar.oreilly.com/2010/06/what-is-data-science.html
http://radar.oreilly.com/2010/06/what-is-data-science.html
http://blogs.nature.com/fourthparadigm/2011/02/07/encouraging-scientific-data-use-michael
http://blogs.nature.com/fourthparadigm/2011/02/07/encouraging-scientific-data-use-michael
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://nosql-database.org/

444 C. Gutierrez

62. Seminar on Open Government data (Open Government Working Group), Decem-
ber 7-8 (2007), http://resource.org/8_principles.html

63. Suciu, D.: Probabilistic Databases, Database Theory Column. SIGMOD Record
(2008)

64. Spielmann, M., Tyszkiewicz, J., Van den Bussche, J.: Distributed computation of
web queries using automata. In: Proc. PODS (2002)

65. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland,
P.: The end of an architectural era (it’s time for a complete rewrite). In: Proc.
VLDB 2007 (2007)

66. O’Reilly, T.: What Is Web 2.0,
http://oreilly.com/web2/archive/what-is-web-20.html

67. Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin,
C., Yu, A.: Mariposa: a wide-area distributed database system. The VLDB Jour-
nal 5(1) (January 1996)

68. Terzi, E., Hacid, M.-S., Vakali, A., Hacid, S.: Modeling and Querying Web Data: A
Constraint-Based Logic Approach. Information Modeling for Internet Applications
book Contents (2003)

69. Horng, J.T., Tai, Y.Y.: Pattern-based approach to structural queries on the World
Wide Web. Proc. Natl. Sci, Counc. ROC(A) 24(1) (2000)

70. Valduriez, P., Pacitti, E.: Data management in large-scale P2P systems. In: Daydé,
M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds.) VECPAR 2004. LNCS,
vol. 3402, pp. 104–118. Springer, Heidelberg (2005)

71. Webdam Project. Foundations of Web Data Management,
http://webdam.inria.fr

http://resource.org/8_principles.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://webdam.inria.fr

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 445–459, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Trust Management Methodologies for the Web

Denis Trček

Faculty of Computer and Information Science, University of Ljubljana,
Tržaška c. 25, 1000 Ljubljana, Slovenia, EU

denis.trcek@fri.uni-lj.si

Abstract. Trust and its support with appropriate trust management methodologies
and technologies is becoming one crucial element for wider acceptance of web
services. In the computing society trust and related issues were addressed already
in the nineties of the former century, but the approaches from that period were
about security, more precisely security services and security mechanisms. These
approaches were followed by more advanced ones, where the first branch was
based on Bayesian statistics, the second branch was based on Dempster-Shafer
theory of evidence and its successors, most notably subjective logic, and the third
branch originated from game theory. It is, however, important to note that at the
core of trust there are cognition, assessment processes, and they are governed by
various factors. Consequently, trust management methodologies should take these
factors, which may ne rational, irrational, contextual, etc., into account. This
research contribution will therefore provide an extensive overview of existing
methodologies in the computer sciences field, followed by their evaluation in
terms of their advantages and disadvantages. Further, some latest experimental
results will be given that identify and evaluate some of those most important
factors mentioned above. Finally, we will present a new trust management
methodology called Qualitative Assessment Dynamics, QAD (aka Qualitative
Algebra) that complements existing methodologies mentioned above, and that is
aligned with the results of the latest experimental findings.

Keywords: web technologies, ergonomic methodologies, trust, trust management,
qualitative assessment dynamics, and simulation.

1 Introduction

Before focusing on current situation in the area of computerized trust management
research, it is very instructive to have a look at trust through the main epochs of
development of distributed computing (web computing is certainly a kind of
distributed computing).

In the mid-nineties e-business emerged and it changed the landscape of business
processes significantly. In this context trusting distributed computing was (and still is)
mainly about security of businesses (prevention of financial loss).

Nowadays, the Internet (as the most prominent implementation of distributed
computing paradigm) is mainly entering our private domain, so trusting distributed
web computing is largely related to users’ personal integrity and privacy.

446 D. Trček

In the near future, web computing will intensively integrate sensor networks with
the Internet, and trusting such sensor networks extended internet will add mainly
questions of safety.

Now focusing on trust, the following early methodologies and solutions should be
mentioned that are in fact about security (security services) and not about the core of
trust. Certainly, trust can be influenced by security, but there exist important
distinctions between these two terms. So the early trust related solutions are the
following ones:

• Trusted Computer System Evaluation Criteria, known as the Orange Book - this
standard was published by the US Department of Defense in 1985. Although it was
originally intended for military systems, it became accepted for security
classifications in the computer industry. And, as stated, although it was said to be
about trusted computer systems, it was actually about their security.

• Platform for Internet Content Selection (PICS), which was another standard that
was about access control, more precisely, web-sites filtering [1].

• PolicyMaker, which was a solution aimed at addressing trust management
problems in distributed services environments. By deploying digital certificates,
PolicyMaker bounded access rights to the owner of a public key. In turn, owner’s
identity was tied to this key by means of a certificate. Clearly, this was a PKI based
trust enabling implementation [2].

• Trust Establishment Module, which was based on a dedicated language and
implemented in Java. It was similar to PolicyMaker and enabled trusting
relationships between unknown entities by deploying public key certificates (so
this was another PKI deploying implementation) [3].

Many other early approaches are described in detail in a survey by Grandison and
Sloman [4], and the reader is referred to it for additional details.

As to more contemporary and current methodologies that are used for trust
management in information systems (ISs), and web environments in general, the
following solutions should be considered. The simplest ones, like eBay’s system, should
be mentioned first. eBay’s (reputation) system sums positive scores about an entity as
well as negative ones, and the difference of these two results presents reputation of a
particular entity. Similar approach, but a slightly more sophisticated one, and also
deployed by Amazon, uses averaging, so the final score is the average of all ratings.

These two basic trust management related approaches are now being upgraded by
various new, more sophisticated methodologies. This is not to say that they useless –
on the contrary. They certainly have their merit, but they are essentially reputation
systems. This is an important distinction, and the reasons will become clear through
the presentation of current trust management methodologies in the next section.

2 Some Most Important Methodologies

One of the basic research streams for trust management in web environments is based
on Bayesian statistics. This stream starts with the Bayes theorem, which states that the
posterior probability of a hypothesis H after observing datum D is given by | | , (1)

where p(H) is the prio
probability that D will be
probability of D. Similarly
by step generalized) as follo,
2.1 Naïve Trust Managem

Being the basis, Bayes th
implementations [5]. This
with trust in competence i
files types, files quality, an
by a Bayesian network (see

With this approach every
that it has interacted with.
certain aspect through assoc

Fig. 1. Bayesian network

The root of the network
interaction. Thus p(T=1) =
the percentage of unsatisfy
and n for number of all int
provider capability, so each

Table 1. The con

music

movie

document p

image

software p

Trust Management Methodologies for the Web

r probability of H before D is observed, p(D|H) is
observed when H is true, and p(D) is the unconditio

, for more data, Bayes theorem can be extended (and s
ows: , ,, , || . (

ment

eorem has served for so called naïve trust managem
methodology goes as follows. Suppose one is concer

in file providers on the web, where competences incl
nd files download speed. This problem can be represen
e Fig. 1).
y agent develops a Bayesian network for each file provi
Each leaf under the root presents provider’s capability

ciated conditional probability.

k for trust calculations related to file provider’s competences

k is assigned 1 for “satisfying”, and 0 for “unsatisfyi
m/n is the percentage of satisfying, and p(T=0) = (n-m

ying interactions, where m stands for number of satisfyi
teractions. The leaf nodes represent various aspects of
h leaf node has associated conditional probability table:

nditional probability table for a certain file provider

T = 1 T = 0

p(FT = music | T = 1) p(FT = music | T = 0)

p(FT = movie | T = 1) p(FT = movie | T = 0)

p(FT = document | T = 1) p(FT = document | T = 0)

p(FT = image | T = 1) p(FT = image | T = 0)

p(FT = software | T = 1) p(FT = software | T = 0)

447

the
onal
step

(2)

ment
rned
ude

nted

ider
y in

ing”
m)/n
ing,
file

)

448 D. Trček

In the above table | 1 means the probability that the involved
interaction is exchange of a music file given the interaction is satisfying. According to
definition, it can be obtained as , 1 / 1 . In this equation,
p(FT = music, T = 1) is the probability that interactions are satisfying and that files
involved are music files, while p(T = 1) is the probability of satisfying interaction. | 1 is computed as the number of satisfying interactions m1
when files involved are music files, divided by the total number of interactions, i.e.
m1/n. Similarly, values are computed for file quality (FQ), where this quality can be
“high”, “medium” or “low”, and for download speed (DS), which can be “fast”,
“medium”, or “slow”. This way conditional probability tables for DS and FQ are
obtained.

Having these conditional probability values for nodes in Bayesian networks, an
agent can calculate the probabilities about trustworthiness of a certain file provider in
various aspects by using Bayes rules. For example, an agent can obtain probability
that the file provider is trustworthy in providing music, p(T = 1 | FT = music), or the
file provider is trustworthy in providing music files with high quality, p(T = 1 | FT =
music, FQ = high). Agents update their corresponding Bayesian nets after each
interaction and in case of satisfaction m and n are increased, otherwise only n is
increased.

2.2 Theory of Evidence and Josang’s Logic / Algebra

Generalization of Bayes theorem leads to the Dempster – Shaffer Theory of evidence,
or ToE [6]. Its starting point is a set of possible (atomic) states, called a frame of
discernment Θ. Within Θ, exactly one state is assumed to be true at any time.

Based on Θ, basic probability assignment, or BPA (also called belief mass)
function is defined as : 2Θ 0,1 , (3)

where m{ } = 0, and ∑ 1⊆Θ . A belief mass mΘ(X) expresses the belief
assigned to the set X as a whole, and does not express any belief in subsets of X. Now
for a subset ⊆ Θ, the belief function bel(A) is defined as the sum of the beliefs
committed to the possibilities in A.

To illustrate ToE in a simple trust related scenario, let the frame of discernment be
given by Θ = {T, ¬T}, where “T” means that the target is trustworthy, while “¬T”
means the target is untrustworthy. A basic probability assignment for the above Θ has
to be such that m({T}) + m({¬T}) + m({T, ¬T}) = 1. Now for a subset , ⊆
Θ, the belief function bel(A) presents the sum of the beliefs committed to the
possibilities in A: bel(A) = m({T}) + m({¬T}) + m({T, ¬T}). For example, let m({T})
= 0.7, m({¬T}) = 0, and m({T, ¬T}) = 0.3. Now if A={T} then bel({T}) = m({T}) =
0.7, and if A={¬T} then bel({¬T}) = m({¬T}) = 0.

ToE serves as a basis for subjective logic and algebra, developed by Jøsang that is
also often used in computational trust management solutions [7]. This algebra
introduces many new operators for modeling trust like consensus and
recommendation. Trust ω is represented by a triplet (b, d, u), where b stands for belief
(belief function in ToE), d for disbelief and u for uncertainty, and where values b, d, u
are obtained from the closed interval [0, 1] as follows:

⊆1

Belief in a state has to b
state is true. Similarly, an o
that a state is not true. Let
part of power set of Θ with
that all other subsets that ar

Fig. 2. An

Belief in, for example, x5

x1 and x2. Disbelief in state
(i.e. all those that have an
x5, i.e. u(x5), is the sum of b

As mentioned, one ma
modeling operators that pr
conjunction, recommendati

Definition 1. Let
about two distinct binary
representing A’s opinion ab

where

Definition 2. Let A and B
about B’s recommendations
is B’s opinion about p expr
as the result of the recomme

where

Trust Management Methodologies for the Web

,⊆ ,
 , , ∈ 2Θ. (

be interpreted as an observer's total belief that a particu
observer's disbelief has to be interpreted as the total be
Θ = {x1, x2, x3, x4} be a frame of discernment, and let
certain assigned values m be as given in Fig. 2 (this me

re not presented in Fig. 2 are assigned m = 0):

example scenario for derivation of b, d, and u

5 in Fig.2, i.e. b(x5), is the sum of belief masses assigned
e x5 is the sum of the belief masses on the states x3 and
empty intersection with x5). Finally, the uncertainty ab

belief masses on set x6 and on set Θ.
ain contribution of subjective algebra are various tr
reserve sound mathematical basis of ToE. Examples
on and consensus are defined as follows. , , and , , be agent A’s opin
y statements p and q. Then the conjunction of a
bout both p and q being true is defined by , , , (

 , , and .

B be two agents where , , is A’s opin
s, and let p be a binary statement where , ,

ressed in a recommendation to A. Then A’s opinion abou
endation from B is defined by , , , (

 ,

449

(4)

ular
elief

the
eans

d to
d x4
bout

rust
for

nion
and

(5)

nion

ut p

(6)

450 D. Trček

Definition 3. Let
agents A and B about a bina

where
An application case of

scenario where agents B an
A (see Fig. 3).

Fig.

This situation requires
hand evidence, while dashe,

In the above equation kA
authenticity of kB, and
trustworthiness of B.

2.3 Yu’s and Singh’s ToE

An approach that is similar
{T, ¬T} and where evidence
 Ø 0,
In the above equations N s
interactions, negative

 , and . , , and , , be opinions held
ary statement p. Then the consensus opinion is defined b , , , (

 / , / , and / .

f subjective algebra follows. Assume an authenticat
nd C pass the recommendation received from D about E

3. PKI authentication structure example

the following calculations [8] (solid arrows denote f
ed ones denote second hand evidence): .

denotes A’s public key, denotes A’s opinion ab
 denotes A’s opinion (trust) about recommendat

E Based Methodology

and also based on ToE is given in [9] and [10], where Θ
e mass function m is obtained as follows: , / , Θ /

stands for total interactions, of which denotes posit
interactions, and °“inappreciable” interactions. T

d by
by
(7)

tion
E to

first

bout
tion

Θ =

(8)

tive
This

enables derivation of bel f
decides to trust another enti
cautiousness level.

2.4 Game Theoretic Meth

Another stream of approac
game consists of a set of
strategies available to the pl

One key concept in ga
because it represents actio
assuming that other agents
Alice makes her best decis
Bob makes his best decisio
the central idea of game th
Fig. 4.

Fig. 4. The prisoner

In prisoner’s dilemma tw
they both confess the crime
dark quadrant in Fig. 4). I
lower right dark quadrant i
not, the latter suspect gets s
upper right dark quadrant
shows that if suspects ratio
worse off as if they were i
therefore not betraying the o

The formal definition of
the game, A the set of stra
and ui player i’s utility func

where for ,

Trust Management Methodologies for the Web

function (mappings) as bel({T} and bel({¬T}). An en
ity iff bel({T}) - bel({¬T}) ≥ ρ, where ρ is its referred to

hodologies for Trust Management

ches is based on game theory [11], [12]. In this theor
players, a set of actions that are realizations of cert

layers, and a set of payoffs for each strategy.
ame theory is Naish equilibrium, NE. NE is import
on(s) that no other agent would prefer to deviate fro

also stick to it. For example, Alice and Bob are in NE
ion she can while taking into account Bob’s decision,

on while taking into account Alice's decision. To illustr
heory, the well-known prisoner’s dilemma is presented

s’ dilemma game (C stands for confesses, D for denies)

wo suspects are caught and offered the following choices
e, they both get sentenced for four years (see the upper
If they deny it, both are sentenced for two years (see
in Fig. 4). However, if one confesses while the other
six years of prison, while the confessing one is free (see
and lower left quadrant in Fig. 4). This scenario clea

onally follow maximization of their self-interests they
in case of cooperation (i.e., not confessing the crime
other suspect).
f NE is as follows [11], [12]: Let N be the set of player
tegy profiles, Ai the set of strategies available to playe

ction. Then a profile a ∈ A is a Nash equilibrium (NE) if : , (

 denotes the set of best responses of i to :

451

ntity
o as

ry a
tain

tant,
om,
E if
and
rate
d in

s: If
left
the
one
the

arly
are
and

s in
er i,
f

(9)

452 D. Trček

arg max , .
Now looking at the above game theoretic approach through trust perspective, one

can observe that it is actually addressing recommendations and not trust. Therefore
such approaches are about recommendation, and not trust management systems. In
[13] authors present such solution, called axiomatic approach, where they study
properties (termed axioms) that characterize particular aggregation rules, and analyze
whether particular desired properties can be simultaneously satisfied. This axiomatic
approach is tailored to personalized ranking systems with the following four basic
axioms:

1. An agent would be ranked at the top of his own personalized rank.
2. An agent preferred by more highly trusted agents, should be ranked higher than an

agent preferred by less trusted agents.
3. Under the perspective of any agent, the relative ranking of two other agents would

depend only on the pair wise comparisons between the rank of the agents that
prefer them.

4. An agent cannot gain trust by any agent’s perspective by manipulating its reported
trust preference.

The settings, within which the personalized ranking systems are searched for, are
the domains of graphs and linear orderings. More precisely, these two definitions are
the central ones for personalized ranking systems:

Definition 4. Let A be some set. A relation R ⊆ A × A is called an ordering on A if it
is reflexive, transitive, and complete. Let L(A) denote the set of orderings on A.

Definition 5. Let be the set of all directed graphs G = (V, E) such that for every
vertex v ∈ V, there exists a directed path in E from s to v. A personalized ranking
system F is a function that for every finite vertex set V and for every source s ∈ V
maps every graph G ∈ to an ordering , ∈ L(V).

In the above definitions, let be an ordering, then is the equality predicate of ,
and ≺ is the strict order induced by ; formally, a b if and only if a b and b a;
and a ≺ b if and only if a b but not b a.

Last but not least, not all game-theory based approaches are (almost) a synonym
for reputation systems. There exist game-theory based approaches that do address the
core of trust, and they are typically applied in multi-agent systems or MAS. Many
such examples can be found in [14].

To round up this section, let us mention that the above methodological approaches
are not the only ones that are used for trust management. For more extensive
overview of existing approaches with focus on web environments the reader is
referred to [15] and [16].

3 An Analysis of Existing Approaches

Having provided a rather extensive overview of existing trust management
methodologies that have domicile in computer sciences field, we should now analyze

 Trust Management Methodologies for the Web 453

them through trust perspective. The common shortcomings of Bayesian statistics
based approaches (naïve trust management), Theory of evidence and subjective
algebra are the following ones. First, agents are not (always) rational. Second,
assuming that agents are rational they may still have problems with the basic notion
of probability. Third, even if they do not have problems with the basic issues related
to probability, they will likely not understand sophisticated mathematics that is
required for ToE and subjective algebra. And finally, is trust really perceived by
agents as something that can be described with ω = (b, d, u)?

As to game theoretic approaches, game theory assumes rational agents, too.
Further, the second tenet of game theoretic approaches is that there exists some
preference. The third tenet is transitivity of preferences. But agents are not necessarily
rational, or may be rational in certain contexts, but not in other contexts, e.g. the
problem of irrationality in economic contexts has already been described in some
outstanding research [17]. Further, experiments that will be presented in this paper
indicate that for many people (or in many contexts) trust is not transitive. Moreover,
agents (people) may even not have preferences when it comes to trust. This all limits
application of the game theoretic approaches. There are other interesting cognitive
specifics when it comes to trust – on the basis of some preliminary tests (that are yet
to be experimentally proved on a wider scale) we anticipate that in certain contexts
transitive preferences may become circular.

Clearly, the above trust management methodologies have certain merit. However,
there exists a need for complementary methodologies, and that is where qualitative
assessment dynamics, QAD, comes in. But before proceeding further, it has probably
become clear to the reader that the so far presented issues are very much related to the
core question, which is: What, actually, is trust?

We therefore need appropriate definition of trust, which will be tight enough to
enable formal treatment and consequently, appropriate support with trust management
applications in computing environments. In the literature there exist many definitions
of trust, but one of the most authoritative ones is in the Merriam-Webster dictionary,
which states that trust is assured reliance on the character, ability, strength, or truth of
someone or something. This definition, although consistent, is not appropriate for our
purposes, and needs further refinement and focus on web environments. One of the
best candidates for our purpose is the definition given in the first half of the nineties
by D.J. Dennig: Trust is an assessment that is driven by experience, shared through a
network of people interactions and continually remade each time the system is used
[18]. Now we can formally define trust for supporting trust management in web
environments:

Definition 6. Trust is an assessment relation between agents A and B that can be
totally trusted, partially trusted, undecided, partially distrusted, and totally
distrusted; it is denoted by αA,B, which means agent's A assessment of agent B.

4 Qualitative Assessments Dynamics - QAD

Now that we have presented trust management methodologies, which are the most
important and widely cited ones in the computer sciences domain, the next basic
scientific question is: “How well do these methodologies reflect reality?” Or restated:

454 D. Trček

“How well are existing trust management methodologies aligned with users’ behavior
and mental processes when it comes to trust in computerized environments?”

To find answers to above questions we started a development of a questionnaire
battery in line with methodological principles for survey research in IT area in 2005
(our earlier research results can be found in [19] and [20]). The literature about these
principles of research in this field is extensive, and one good example is described in
[21]. It is specifically concerned with surveys for computerized applications; it is the
basis for our research methodology, which is intended to get the basic knowledge
about trust phenomenon for its management in computing (web) environments. These
are the related fundamental questions:

• What are the main demographics of our population / sample?
• What kind of metrics is preferred when it comes to trust – quantitative, probability

related assessments, or qualitative assessments?
• What is the most appropriate number of qualitative (ordinal) descriptions for users’

trust assessments?
• Do agents perceive trust as a reflexive, or symmetric, or transitive relation?
• What is the influence of a society on particular agent’s trust decisions?
• How is a certain trust assessment, when set for the first time, formed?
• How frequently is trust assessment changed because of no apparent reason?
• Would users allow computers to decide on their behalf when it comes to trust, or

do they want to be directly involved?

Our goal with the QAD is the following. Suppose that a complementary methodology
that we are aiming at should meet the requirements and expectations of such a number
of users that it would be the second player on the market. Now what does it mean to
be the second player? To determine this figure, one can look at market shares of most
commonly used IT solutions like operating systems, web browsers and search
engines. The market shares of the first three most important players in these areas are
given below (see http://marketshare.hitslink.com, data as of May 2010):

• Operating systems: 91.3% Windows, 5.26% MacOS, 1.1% Linux.
• Search engines: 84.8% Google, 6.19% Yahoo, 3.24% Bing.
• Web browsers: 59.75% Internet Explorer, 24.32% Firefox, 7.04% Chrome.

It follows that to become the second player in the field, the threshold can be set as low
as approx. 6% in case of operating systems, while in case of web browsers it has to be
set above approx. 25%. We will set it high enough to exceed all above thresholds - to
30%.

It is now possible to state the relevant hypotheses (H1 – H11) for computationally
supported trust management methodologies and solutions (these hypotheses serve to
find out if our assumptions about trust management formalism properties, operators
and operands, are aligned with reality or not):

• More than 30% of users would prefer direct trust management.
• More than 30% of users would prefer qualitative assessment of trust.
• More than 30% of users have problems with conforming to the basic definition of

probability when it comes to trust.

 Trust Management Methodologies for the Web 455

• More than 30% of users would choose five levels ordinal scale for trust
assessments.

• To more than 30% of users trust is not reflexive.
• To more than 30% of users trust is not symmetric.
• To more than 30% of users trust is not transitive.
• To more than 30% of users that belong to a certain group their trust assessment

may generally differ from the (aggregated) assessment of the group.
• More than 30% of users may occasionally change trust assessment on a non-

identifiable basis.
• To more than 30% of users that assess a certain group as a whole equals to their

assessment about the majority of the members of this group.
• In more than 30% of users trust may be initialized on a non-identifiable factors

basis.

Our research aimed at confirming / refuting the above hypotheses has an extensive
history of almost six years. In order to make a long story short, the latest results will
be briefly given. The last experiment took place in May 2010 over the web to a
sample of B.Sc. students’ population of computer and information sciences at
FAMNIT, University of Primorska. Invitation e-mails were sent through e-mail to all
109 B.Sc. students, and the response rate was 24.1 %. Due to the conditions
(anonymous participation, no benefits of whatever kind were offered, etc.) we can
assume negligible response and non-response bias. Therefore we treated respondents
as a random sample of the above population.

After getting and analyzing the results, we were able to confirm all hypotheses for
this population, except hypothesis H3 that had to be refuted. The results are as follows
(confidence interval is set to 95%, i.e. Z = 1.96): H1 = 0.77±0.16, H2 = 0.81±0.15, H3
= 0.42±0.19, H4 = 0.62±0.19, H5 = 0.69±0.18, H6 = 0.54±0.19, H7 = 0.69±0.18, H8
= 0.73±0.17, H9 = 0.62±0.19, H10 = 0.54±0.19, H11 = 0.58±0.19.

Taking the experimental results into account, we have developed QAD. It is
aligned with THE observation that significant number of users prefers direct
interaction with trust management system. Further, users prefer support of qualitative
assessments on an ordinal scale, where this ordinal scale has five (descriptive,
qualitative) levels. In addition, users do not perceive trust as being reflexive,
symmetric, or transitive relation. Also the existence of preferences should not be
assumed at all. Further, trust is driven by the community assessments, and agents
choose initial trust assessments randomly (the same often holds true for already
assigned trust values).

Definition 7. Propagated trust in agents comunities is given by a trust matrix Α ,
where elements αi,j denote assessment (trust relations) of i-th agent towards j-th
agent, and where their values are taken from the set Λ = {2, 1, 0, -1, -2, −}. These
values denote trusted, partially trusted, undecided, partially distrusted and distrusted
relationships. The last symbol, "−", denotes an undefined relation, meaning that an
agent is either not aware of existence of another agent, or does not want to disclose
its trust.
A general form of trust matrix Α of a certain society with n agents is defined as
follows:

456 D. Trček

Definition 8. In a trust matrix Α, columns represent society trust vector, which states
society assessments about particular agent k, i.e. Αn,k = (α1,k , α2,k ,…, αn,k), while
rows represent agent’s k trust vector, i.e. Αk,n = (αk,1 , αk,2 ,…, αk,n), where k = 1,
2,…, n. Further, excluding undefined relations from trust vector results in a society
assessment sub-vector, denoted by Αn1,k = (α1,k , α2,k ,…, αn1,k), where index “n1”
denotes number of non-undefined values in a society trust vector.

Based on the above definitions, it is possible to present an example society with trust
relations, qualitative weights and corresponding matrix:

Fig. 5. An example society graph and corresponding matrix

Definition 9. QAD operators belong to the set Ψ = {›, fl, ↑, ↓, k, ↔, É,h}, where
the symbols denote extreme optimistic assessment, extreme pessimistic assessment,
moderate optimistic assessment, moderate pessimistic assessment, centralistic
consensus seeker assessment, non-centralistic consensus-seeker assessment, self-
confident assessment and assessment-hoping. These operators are functions fj ∈Ψ,
such that : , , , , , , , … , , , … , , , , j = 1, 2,…, n, where “j”
denotes the j-th agent, superscript “-“ denotes pre-operation value, superscript “+”
post-operation value, and where mappings for particular operators are defined as
follows:

a) , :

• ›j:
, , , , , , … , , , … , ,,

1,2, . . . ,

• flj:

, , , , , , … , , , … , , , 1,2, . . . ,

• ↑j:

 , ,
, 1 ,

1 , ,

1

2
-2

-1

1

0

1

3 2
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−−

201

112

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Α

nnnn

n

n

,,,

,,,

,,,

ααα

ααα
ααα

21

22212

12111

• ↓j:

 , 1

• kj:

11

• ↔j:

11
• Éj: ,
• hj:

b) , :

5 Analyzing Agents B

A demonstration of the pr
behavior of a society that ca
of 100 agents, where all a
90% of them are initially
governed by extreme pess
randomly changes its ope
assessments and operators
society, each of them takin
has been obtained.

Fig. 6. S

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

totally
distruste

Trust Management Methodologies for the Web

, ,1 ,

1 ,

, ,
, ,

1 , 0

, ,
, ,

1 , 0

, 1,2, . . . , 2, 1, 0, 1, 2 , 1,2, . . . ,

 , 1,2, . . . ,

Behavior with QAD

resented apparatus follows. Suppose we want to anal
an be considered as one typical example society. It cons
agents are initially undecided about one another. Furth
governed by extreme optimistic operator, while 10%
simistic operator. Now in each step 10% of populat
erator (all possible values for newly assigned rand

are equally likely). Running 30 simulation runs on
ng 45 steps, the following histogram, presented in Fig

imulation results – histogram of trust values

ed
partially

distrusted
undecided partially

trusted
totally
trusted

457

,

0

0

lyze
sists
her,
are

tion
dom
this

g. 7,

458 D. Trček

It follows that in such community of agents, under given conditions, the resulting
distribution is (almost) bimodal. More precisely, 32% of agents become totally
distrusted, and 37% of them become totally trusted. Further, 9% becomes partially
distrusted, and 10% partially trusted, while for 11% of agents’ population other agents
remain undecided.

This is a very interesting result. Despite the fact that initially everyone was
undecided about others (assuming the distribution of operators and random changes
during the simulation), clear assessment patterns emerge. Further, these patterns seem
to tend towards extreme assessments, so a notable polarization within the society
becomes visible.

6 Conclusions

Trust has been an important topic for quite a long time in social sciences area.
However, with web expansion, and e-media solutions in general, our lives have
become more and more dependent on IT. This has triggered computer and
information sciences researchers to start investigating intensively this area as well.
This research has been further stimulated even by high ranking politicians like EU
Commissioner V. Reding claiming that lack of trust is critical for wider acceptance of
e-solutions, which in turn are critical for economic prosperity of the EU [22].

Certainly, the research in this area is important, not only for the web environments,
because it has visible wider implications. So we anticipate that in the near future this
research will be even more intensive, while at the same time the trust management
infrastructure will have to be developed [23] in order to support those trust
management methodologies that users will accept as the most appropriate one(s).
Based on our research and experimental findings we believe that one of them may be,
at least partially, Qualitative Assessment Dynamics.

Last but not least, it is worth to mention that QAD nicely complements other
research efforts in this area [24]. It seems that there will not exist “one-size fits all”
trust management solution when it comes to trust in web environments. Therefore
some of them will be most appropriate for one kind of uses, some of them for another
kind of uses. Moreover, it may even be the case that certain combinations of these
methodologies may turn out to be most useful for certain practical uses and
applications.

Acknowledgement. The Slovene Research Agency has financed this research
through research program P2-0359. Special thanks go also to both reviewers for their
helpful comments and suggestions.

References

[1] Miller, J., Resnick, P., Singer, D.: PICS Rating Services and Rating Systems. W3C
(1996), http://www.w3c.org/TR/REC-PICS-services

[2] Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Proceedings of
the 1996 IEEE Symposium on Security and Privacy, Oakland, pp. 164–173 (1996)

[3] Herzberg, A., et al.: Access Control Meets Public Key Infrastructure. In: Proc. of the
IEEE Conf. on Security and Privacy, Oakland, pp. 2–14 (2000)

 Trust Management Methodologies for the Web 459

[4] Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE
Communications Surveys 3(4), 2–13 (2000)

[5] Wang, Y., Vassileva, J.: Trust and Reputation Model in Peer-to-Peer Networks. In: Proc. Of
the 3rd Int. Conference on Peer-to-Peer Computing (P2P 2003), p. 150, Linkoping (2003)

[6] Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

[7] Jøsang, A.: A logic for uncertain probabilities. Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 9(3), 279–311 (2001)

[8] Jøsang, A.: An Algebra for Assessing Trust in Certification Chanis. In: Proceedings of
the Network and Distributed Systems Security Symposium, NDSS 1999, pp. 618–644.
The Interent Society, San Diego (1999)

[9] Yu, B., Singh, M.P.: Distributed Reputation Management for e-Commerce. In: Proc. of
the 1st AA-MAS Conference, Bologna (2002)

[10] Paul-Amaury, M., Morge, M., Toni, F.: Combining statistics and arguments to compute
trust. In: Proc. of the 9th Int. Conf. on Autonomous Agents and Multiagent Systems
(AA-MAS), Toronto, pp. 209–216 (2010)

[11] Tennenholtz, M.: Game-Theoretic Recommendations: Some Progress in an Uphill
Battle.In: Proc. of AAMAS 2008, Estoril , pp. 10 –16, (2008)

[12] Harish, M., Anandavelu, N., Anbalagan, N., Mahalakshmi, G.S., Geetha, T.V.: Design
and analysis of a game theoretic model for P2P trust management. In: Janowski, T.,
Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 110–115. Springer, Heidelberg
(2007)

[13] Altman, A., Tennenholtz, M.: An axiomatic approach to personalized ranking systems.
In: Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pp. 1187–1192. Morgan & Kaufmann, San Francisco (2007)

[14] Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models. Artificial
Intelligence Review 24(1), 33–60 (2005)

[15] Golbeck, J.: Trust on the World Wide Web: A survey. Foundation and Trends in Web
Science 1(2), 131–197 (2006)

[16] Artz, D., Gil, Y.: A survey of trust in computer science and the Semantic Web. Software
Engineering and the Semantic Web 5(2), 58–71 (2007)

[17] Kahneman, D., Slovic, P., Tversky, A. (eds.): Judgment Under Uncertainty, 22nd reprint.
Cambridge University Press, Cambridge (2006)

[18] Denning, D.: A new Paradigm for trusted systems. In: Proc. of ACM SIGSAC New
Security Paradigms Workshop, pp. 36–41. ACM, New York (1993)

[19] Trček, D.: A formal apparatus for modeling trust in computing environments.
Mathematical and Computer Modeling 49(1-2), 226–233 (2009)

[20] Trček, D.: Ergonomic trust management in pervasive computing environments -
qualitative assessment dynamics. In: Proceedings of the ICPCA 2010, pp. 1–7. IEEE
Press, Maribor (2010)

[21] Pfleeger, S.L., Kitchenham, B.A.: Principles of Survey Research, Parts 1-6. ACM
Software Engineering Notes 26-28 (2001-2003)

[22] Reding, V.: The need for a new impetus to the European ICT R & I Agenda. In: Int. High
Level Research Seminar on “Trust in the Net”, Vienna (2006)

[23] Kovač, D., Trček, D.: Qualitative trust modeling in SOA. Journal of Systems
Architecture 55(4), 255–263 (2009)

[24] Grabner-Kraeuter, S., Kaluscha, E.A.: Empirical Research in on-line trust: a review and
critical assessment. International Journal of Human Computer Studies 2003(58), 783–812
(2003)

Application and Evaluation of Inductive

Reasoning Methods for the Semantic Web and
Software Analysis�

Christoph Kiefer and Abraham Bernstein

Dynamic and Distributed Information Systems Group,
Department of Informatics, University of Zurich

Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
lastname@ifi.uzh.ch

http://www.ifi.uzh.ch/ddis

Abstract. Exploiting the complex structure of relational data enables
to build better models by taking into account the additional information
provided by the links between objects. We extend this idea to the Se-
mantic Web by introducing our novel SPARQL-ML approach to perform
data mining for Semantic Web data. Our approach is based on traditional
SPARQL and statistical relational learning methods, such as Relational
Probability Trees and Relational Bayesian Classifiers. We analyze our
approach thoroughly conducting four sets of experiments on synthetic
as well as real-world data sets. Our analytical results show that our ap-
proach can be used for almost any Semantic Web data set to perform
instance-based learning and classification. A comparison to kernel meth-
ods used in Support Vector Machines even shows that our approach is
superior in terms of classification accuracy.

Keywords: Inductive Reasoning, Semantic Web, Machine Learning,
SPARQL, Evaluation.

Please Note: This paper represents part of the summer school lecture. It con-
tains one critical, previously unpublished element: the description of inductive
reasoning as an important component for non-traditonal reasoning on the Se-
mantic Web. The lecture will also cover analogical reasoning [28,27,25], Markov
Logic Networks [38], and the use of modern distributed techniques to run graph
algorithms such as Signal/Collect [43], Pregel [31], or MapReduce [12] with
the Hadoop infrastructure (http://hadoop.apache.org/).
A. B.

1 Introduction

The vision of the Semantic Web is to interlink data from divers heterogeneous
sources using a semantic layer as “glue” technology. The result of this combination
� This paper is a significant extension and complete rewrite of [26], which won the

best paper award at ESWC2008.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 460–503, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ifi.uzh.ch/ddis
http://hadoop.apache.org/

Inductive Reasoning Methods for the Semantic Web 461

process constitutes the often cited Web of data that makes data accessible on the
traditional Web such that other applications can understand and reuse it more
easily [5,1].

The above-mentioned semantic glue basically comprises a rule-based meta-
data layer to expose the meaning of data in a machine-readable format. The term
rule-based refers to the logic-based foundations of the Semantic Web that uses
a number of description logic (DL) languages to represent the terminological
knowledge of a domain (i.e., a data source) in a structured and theoretically
sound way. Meta-data means self-describing, that is, the raw data is tagged
with additional information to express its meaning in the format of these DL
languages.

The most universal DL languages in the Semantic Web are the Resource De-
scription Framework (RDF)1 and the Web Ontology Language (OWL).2 These
languages/formats enable (i) to combine heterogeneous data under a common
representation scheme by the use of ontologies and (ii) to give the data some
well-defined, logic-based semantics, turning the otherwise meaningless data into
information typically stored in a knowledgebase (KB). Hence, ontologies serve
as a formal specification of the conceptualization of this knowledge in terms of
classes and relations among them [18].

1.1 Description Logic Reasoning

At this point, we are able to transfer the data that comes, for instance, from
traditional relational databases to Semantic Web knowledgebases by using on-
tologies to specify the structure of the knowledge and a set of description logic
languages to define the (logical) relations between these structure elements.

Typically, the information in a knowledgebase is stored as asserted (i.e.,
atomic) facts. Such a piece of information could, for example, be the propo-
sition “The type of service A is tourism”, or in triples notation [serviceA
type tourism].

Now suppose the knowledgebase additionally includes the information
[serviceB type serviceA] to express that service B is a specification of ser-
vice A (B might, for instance, deliver information about hotels in a given city).
One of the underpinnings of the Semantic Web and, therefore, a strength of any
such semantic architecture is the ability to reason from the data, that is, to de-
rive new knowledge (new facts) from base facts. In other words, the information
that is already known and stored in the knowledgebase is extended with the
information that can be logically deduced from the ground truth.

This situation is also depicted in Figure 1 that shows schematically by the
leftmost arrow the typical description logic reasoning process to infer additional,
derived triples from a set of asserted triples in a knowledgebase. To summa-
rize, the above service example is a simple application of classical deductive logic
where the rule of inference over the type (subclass) hierarchy makes the propo-
sition of B being of type tourism a valid conclusion.
1 http://www.w3.org/RDF/
2 http://www.w3.org/TR/owl-features/

http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/

462 C. Kiefer and A. Bernstein

KB: Asserted Triples

Extended KB: Asserted Triples + Derived Triples from (1)
+ Derived Triples from (2)

(= Virtual Triples)

Entailment

this paper

(1
) D

e
s
c
rip

tio
n

 L
o

g
ic

 R
e
a
s
o

n
in

g

(2
) In

d
u

c
tiv

e
 R

e
a
s
o

n
in

g

Fig. 1. The traditional Semantic Web infrastructure supports a logic-based access to
the Semantic Web. It offers a retrieval (or reasoning) approach of data based on facts
and classical deductive description logic reasoning (left arrow). Our novel reasoning
extension presented and evaluated in this paper, on the other hand, extends the tradi-
tional Semantic Web infrastructure with inductive reasoning that is realized by virtual
triple patterns and statistical induction techniques (right arrow).

1.2 What Is This Paper All About?

Metaphorically speaking, if this world would only be black and white, this is all
that we could expect from a classical deductive reasoning system as supported
by the current Semantic Web infrastructure. All the conclusions that could be
drawn given some well-defined semantics such as the ones that come with the
RDF/OWL languages will always be true if and only if the premises (i.e., as-
serted knowledge, ground truth) are true. Otherwise they will be false, without
any exception.

But the world is (fortunately!) not only black and white. The truth is, the
world does generally not fit into a fixed, predetermined logic system of zeros and
ones. Everyday life demonstrates again and again that we are performing some
kind of reasoning under uncertainty, which does not follow the strict rules of
formal logic.

Inductive Reasoning Methods for the Semantic Web 463

Consider, for example, a doctor having to provide a medical diagnosis for one
of his patients. Although he knows from his experiences and similar courses of
disease that this special therapy seems to be best, there is, however, some risk
involved, as such an inference is defeasible (i.e., can be called into question)—
medical advances may invalidate old conclusions. In other words, our actions are
almost always driven by our heart and spirit (i.e., by belief, experience, vague
assumptions) rather than by formal logical implication.

To account for this, especially to deal with uncertainty inherent in the phys-
ical world, different models of human reasoning are required. Philosophers and
logicians (among others) have, therefore, established new science fields in which
they investigate and discuss such new types of human reasoning [32]. One promi-
nent way to model human reasoning to some extend is inductive reasoning that
denotes the process of reasoning from sample-to-population (i.e., evidence-based
reasoning). In inductive reasoning, the premises are only believed to support the
conclusions but they cannot be (logically) entailed.

This paper transfers the idea of inductive reasoning to the Semantic Web and
Software Analysis. To this end, it extends the well-known RDF query language
SPARQL with our novel, non-deductive reasoning extension in order to enable
inductive reasoning.

Traditional RDF query languages such as SPARQL [37] or SeRQL [9] support
a logic-based access to the Semantic Web. They offer a retrieval approach of data
based on facts and classical deductive description logic reasoning. The extension
presented and evaluated in this paper, on the other hand, extends traditional
Semantic Web query answering with inductive reasoning facilities.

Inductive reasoning is realized by statistical induction techniques which are
applied to draw conclusions about an individual given some statistical quantities
such as probabilities, averages, or deviations from a previous examined popula-
tion. In other words, by the use of statistical induction techniques, additional
triples are derived based on some (precomputed) statistics about these data.

Example 1 (Statistical Induction). Suppose that from a set of 5 services, 3
are related to the tourism sector (i.e., have type tourism) and 2 to the medical
sector (see Figure 2). Given only this information, we could conclude that for
a new, not yet examined service F (one that is outside the original sample of
five services), there is a probability estimate of 0.6 (i.e., 3

5) that the service
is of type tourism. Because the probability estimate for type medical is only
0.4 (i.e., 2

5), we infer that F must also be located in the tourism sector. Such
inferences are also called quantitative probabilistic reasoning [32].

The inductive reasoning approach presented in this paper works similarly: it
involves a prediction/classification step performed by the SPARQL query engine
to predict, for instance, the membership of a data sample (individual/instance)
to a particular class with some prediction accuracy. For the classification task,
this approach employs algorithms from machine learning such as decision trees,
support vector machines (SVMs), and regression models [45].

464 C. Kiefer and A. Bernstein

[serviceA type tourism]

[serviceB type tourism]

[serviceC type tourism]

[serviceD type medical]

[serviceE type medical]︸ ︷︷ ︸
asserted information

& [serviceF type ???]︸ ︷︷ ︸
new/unseen data

=⇒︸︷︷︸
reasoning

[serviceF type tourism]︸ ︷︷ ︸
derived information

Fig. 2. Novel inductive reasoning process using statistical inference methods

1.3 Our Approach

To address these issues, specifically to implement our novel reasoning variant
by using SPARQL, this paper introduces the concept of virtual triple patterns
(VTPs). Figure 1 shows the relation between asserted, ‘ordinary’ derived (1),
and extraordinary derived triples (2). Ordinary triples are inferred using the
traditional description logic reasoning system of the Semantic Web by applying
the fundamental RDF/OWL inference rules. The extraordinary triples are the
result of applying our novel inductive reasoning methods to the Semantic Web.

Typically, a Semantic Web dataset is made of a large number of RDF triples
which model the relations among all data instances in terms of a so called
subject and object, and a predicate to link them up. As an example, con-
sider the triple pattern [serviceA hasName name] that relates service A to
its name by the hasName predicate. An RDF dataset can then be thought of as a
graph which is spanned by these triples. Query evaluation, can thus, essentially
be reduced to the task of matching a number of triple patterns (called graph
patterns) to an RDF graph.

VTPs, on the other hand, are triple patterns which are not matched against
an RDF graph. Instead, they perform pattern matching as the result of calling
some user-defined piece of code. VTPs can conceptually be thought of as ordinary
function calls which consist of the function name followed by a list of arguments
in parentheses, and which have a return value. VTPs are presented in details in
Section 3.

1.4 Importance to the Semantic Web and Software Analysis

Regarding inductive reasoning, a number of past researches have highlighted the
crucial element of statistics for the Semantic Web (e.g., [17] or [21]). Two promi-
nent tasks that can benefit from the use of statistics are Semantic Web service
classification and (semi-) automatic semantic data annotation. Therefore, the
support from tools that are able to work autonomously is needed to add the
required semantic annotations. Consequently, a big challenge for Semantic Web
research is not if, but how to extend the existing Semantic Web infrastructure
with statistical inferencing capabilities.

Inductive Reasoning Methods for the Semantic Web 465

In Software Analysis, researchers heavily deal with the analysis of software
source code and abstract software models. Software Analysis and its subdisci-
plines have grown tremendously, which can also be observed from the increasing
number of diverse papers submitted to the largest Software Analysis/Engineer-
ing conferences and workshops such ICSE3 and MSR4 in the past years. In order
to show the advantages of inductive reasoning for Software Analysis via virtual
triple patterns and Statistical Relational Learning methods, we have decided to
perform a bug prediction experiment where the goal is to predict whether or not
a piece of code is likely to have bugs or not. Roughly speaking, software bug
prediction (aka defect prediction) is about finding locations in source code that
are likely to be error-prone. We, thus, argue that the development and testing
of tools that are able to detect such defect locations are crucial to (i) increase
software quality and (ii) to reduce software development cost (among others).

To summarize, as we will show in this paper, the Semantic Web and Software
Analysis can substantially benefit from our novel inductive reasoning extension
to SPARQL. Our proposed, unified, SPARQL-based framework not only helps
to solve these important research tasks, but also helps to establish the semantic
glue mentioned at the very beginning of this work by (semi-) automatic semantic
annotation (through classification).

Specifically, the contributions can be summarized as follows: For our inductive
reasoning extension, we first present our SPARQL-ML approach to create and
work with statistical induction/data mining models in traditional SPARQL (see
Section 3). The major contribution of our proposed SPARQL-ML framework is,
therefore, the ability to support data mining tasks for knowledge discovery in the
Semantic Web .

Second, our presented SPARQL-ML framework is validated using not less
than four case studies ranging over three heavily researched Semantic Web tasks
and one Software Analysis task. For the Semantic Web, we perform two general
data classification tasks (Sections 4.1 and 4.2) and one specific semantic service
classification task (i.e., service annotation; see Section 4.3). For Software Anal-
ysis, we perform a bug prediction task using semantically annotated software
source code (Section 4.4).

By applying our approaches to these different tasks, we hope to show the ap-
proach’s generality, ease-of-use, extendability, and high degree of flexibility in
terms of customization to the actual task. Finally, we close the paper with a discus-
sion of the results in Section 5, and our conclusions and some insights into future
work in Section 6.

2 Related Work

This chapter briefly reviews the most important related work. We start with a
short summary of some important Semantic Web publications to set this work
3 International Conference on Software Engineering, http://www.icse-conferences.
org/

4 International Working Conference on Mining Software Repositories, http://msr.

uwaterloo.ca/

http://www.icse-conferences.org/
http://www.icse-conferences.org/
http://msr.uwaterloo.ca/
http://msr.uwaterloo.ca/

466 C. Kiefer and A. Bernstein

into perspective in Section 2.1. Specifically, we review a couple of studies that
influenced the history and development of SPARQL. Section 2.2 proceeds with
some related approaches to inductive reasoning. Section 2.3 proceeds with some
of the most important related works regarding the tasks we use to validate/e-
valuate our SPARQL-ML framework.

2.1 Semantic Web

In 1989, Alexander Borgida [8] presented his work about the CLASSIC language
that can be regarded as an early approach to the Semantic Web. CLASSIC is a
language for structural, partial descriptions of objects in a relational database
management system. It is worth to mention this work for several reasons: first,
CLASSIC allows the user to describe both the intensional structure of objects as
well as their extensional relations to other objects (which in RDF terminology
is achieved through data and object type properties); second, using CLASSIC it
is possible to describe objects only partially and to add more information about
it over time; third, CLASSIC can be used both as a data description as well
as data query language; and fourth, the CLASSIC system is able to infer new
knowledge about objects (i.e., it performs an early kind of reasoning by applying
a limited form of forward-chaining rules [39]).

12 years later, in 2001, Tim Berners-Lee [2] published his famous article about
his vision of a true Semantic Web as an extension of the current Web in which
data is given well-defined meaning through ontologies. This is an important
improvement to, for instance, XML that allows the user to structure the data
but does not say what the data in fact means. Such semantically enriched data
can then be meaningfully manipulated by autonomous computer programs also
referred to as agents.

Furthermore, one of the most important building blocks of the Semantic Web
are, as argued in [2], automated reasoning facilities, which denote the process of
deriving new information from existing, asserted information through classical
deductive description logic (DL) reasoning rules. Pure deductive DL reasoning
is, however, not sufficient for some tasks. On the contrary, as we will show in
this work, tasks such as semantic service classification can substantially benefit
from our novel, inductive reasoning facility.

Five years later, Shadbolt, Hall, and Berners-Lee [41] critically revisited some
of the statements made in [2]. Specifically, they emphasized on the need for
shared semantics which is badly needed for data integration—a task that is of
particular importance in the life sciences [30]. As explained in [41], most of the
motivation for a Semantic Web came from the tremendous amount of valuable
information stored in traditional relational databases. This information must be
exported into a system of URIs and, hence, given well-defined meaning. “The
data exposure revolution has, however, not yet happened”, which should increase
the amount of available RDF data to push the Semantic Web even further.

RDF Query Language SPARQL. In recent years, the RDF query language
SPARQL has gained increasing popularity in the Semantic Web. SPARQL stands

Inductive Reasoning Methods for the Semantic Web 467

for SPARQL Protocol and RDF Query Language and offers well-known constructs
from database technology, such as SELECT, FILTER, and ORDER BY. Furthermore,
the SPARQL specifications define a protocol for the communication between a
query issuer and a query processor. The SPARQL language has currently the sta-
tus of a W3C Recommendation and is extensively described in [37].

As the language was used more and more over time by different parties for
different applications, it became clear that it needed a more mathematical basis
in terms of an algebra, similar to relational algebra for relational databases
[10]. This was especially important as the need for optimization of SPARQL
queries also arose as people wanted to use ever growing RDF datasets for their
experiments. Among those who dealt with the development of an algebra for
SPARQL, it was Cyganiak [11] who described as one of the first how to transform
(a subset of) SPARQL into relational algebra that is, as argued by Cyganiak,
the language of choice when analyzing queries in terms of query planning and
optimization. Furthermore, he defined the semantics of the relational algebra
operators and discussed a translation into SQL, which is important to execute
the queries against traditional relational databases storing the RDF data.

One year after Cyganiak’s work was published, Pérez [35] conducted an ex-
tensive analysis of the semantics and complexity of SPARQL, focusing on the
algebraic operators JOIN, UNION, OPTIONAL, and FILTER. The semantics and com-
plexity of these operators are studied in great detail and insights into query op-
timization possibilities are presented. In particular, they introduced well-defined
graph patterns that can be transformed to patterns in normal form, which when
matched against the underlying RDF dataset results in improved query execu-
tion time. The presented theoretical framework in [35] is build around sets of
solution mappings which are created in the process of matching the query’s basic
graph patterns (BGP) to the underlying RDF graph.

It is important to say, that the study of Pérez et al. highly influenced the work
presented in this paper. Our proposed inductive reasoning extension to SPAR-
QL is based on virtual triple patterns (see Section 3.2) that are theoretically
defined in the algebraic notation of [35]. ARQ property functions5—the imple-
mentational foundations of virtual triple patterns—are, however, not addressed
in [35]. It is, therefore, one of the contributions of this work to reflect on the
semantics of such property functions, as our SPARQL-ML framework heavily
relies on them.

2.2 Inductive Reasoning

Our proposed inductive reasoning extension relies on statistics (i.e., machine
learning techniques) and elements from probability theory to reason from data.
In this section, we will briefly review some of the inductive reasoning (machine
learning) approaches from the Semantic Web literature which are relevant in the
context of this work. Specifically, as our novel reasoning extension heavily relies

5 http://jena.sourceforge.net/ARQ/library-propfunc.html

http://jena.sourceforge.net/ARQ/library-propfunc.html

468 C. Kiefer and A. Bernstein

on Statistical Relational Learning (SRL) algorithms, we shortly summarizes the
two SRL methods we use in this paper. The section closes with an overview of
some related works regarding the Semantic Web and Software Analysis tasks we
chose to evaluate our inductive reasoning extension.

Little work has been done so far on seamlessly integrating knowledge discovery
capabilities into SPARQL. Recently, Kochut and Janik [29] presented SPARQL-
eR, an extension of SPARQL to perform semantic association discovery in RDF
(i.e., finding complex relations between resources). One of the main benefits of
our inductive reasoning approach through SPARQL-ML is that we are able to
use a multitude of different, pluggable machine learning techniques to not only
perform semantic association discovery, but also prediction/classification and
clustering.

Getoor and Licamele [16] highlighted the importance of link mining for the
Semantic Web. They state that the links between resources form graphical pat-
terns which are helpful for many data mining task, but usually hard to capture
with traditional statistical learning approaches. With our SPARQL-ML frame-
work we, therefore, apply SRL algorithms that are able to exploit these patterns
to improve the performance of the pure statistical approaches (see Section 3.2).

Similarily, Gilardoni [17] argued that machine learning techniques are needed
to build a semantic layer on top of the traditional Web. Therefore, the support
from tools that are able to work autonomously is needed to add the required
semantic annotations. We show that our inductive reasoning extension to SPAR-
QL offers this support, and thus, facilitates the process of (semi-) automatic
semantic annotation (through classification).

We are aware of two other independent studies that focus on data mining tech-
niques for Semantic Web data using Progol—an Inductive Logic Programming
(ILP) system.6 In the first study, Edwards [14] conducted an empirical investi-
gation of the quality of various machine learning methods for RDF data classi-
fication, whereas in the second study, Hartmann [19] proposed the ARTEMIS
system that provides data mining techniques to discover common patterns or
properties in a given RDF dataset. Our work extends their suggestions in ex-
tending the Semantic Web infrastructure in general with machine learning ap-
proaches, enabling the exploration of the suitability of a large range of
machine learning techniques (as opposed to few ILP methods) to Semantic Web
tasks without the tedious rewriting of RDF datasets into logic programming
formalisms.

Last but not least, Bloehdorn and Sure [6] explored an approach to classify
ontological instances and properties using SVMs (i.e., kernel methods). They
presented a framework for designing such kernels that exploit the knowledge
represented by the underlying ontologies. Inspired by their results, we conducted
the same experiments using our proposed SPARQL-ML approach (see Section
4.3). Initial results show that we can outperform their results by a factor of
about 10%.

6 http://www.doc.ic.ac.uk/~shm/progol.html

http://www.doc.ic.ac.uk/~shm/progol.html

Inductive Reasoning Methods for the Semantic Web 469

Statistical Relational Learning Methods. Our SPARQL-ML framework
employs machine learning-based, statistical relational reasoning techniques to
create and work with data mining models in SPARQL (see Section 3). These tech-
niques are Relational Probability Trees (RPTs) and Relational Bayesian Classi-
fiers (RBCs) that model not only the intrinsic attributes of objects, but also the
extrinsic relations to other objects and, thus, should perform at least as accurate as
traditional, propositional learning techniques. Both algorithms enable to perform
inductive reasoning for the Semantic Web, in other words, they enable to induce
statistical models without prior propositionalization of the data (i.e., translation
to a single table) [13], which is a cumbersome and error-prone task.

RPTs [33] extend standard probability estimation trees (also called decision
trees) to a relational setting, in which data instances are heterogeneous and
interdependent. This procedure is explained in more details in Section 3.2.

The RBCs used to perform inductive reasoning through SPARQL-ML were
also proposed by Neville in [34]. An RBC is a modification of the traditional
Simple Bayesian Classifier (SBC) for relational data [45]. Please refer to Section
3.2 for more details about RBCs.

2.3 SPARQL-ML Evaluation/Validation Tasks

Sabou [40] stated that the Semantic Web can facilitate the discovery and inte-
gration of web services. The addition of ontologies, containing knowledge in the
domain of the service such as the types of input/output parameters, offers new
background information, which can be exploited by machine learning algorithms.
We evaluate this assumption in this work in the context of our semantic web
service classification experiment by comparing the results of data mining with
and without the enhancement of ontologies (see Section 4.2).

Furthermore related is the study of Heß [21], in which a machine learning
approach for semi-automatic classification of web services is described. Their
proposed application is able to determine the category of a WSDL web ser-
vice and to recommend it to the user for further annotation. They treated the
determination of a web service’s category as a text classification problem and
applied traditional data mining algorithms, such as Näıve Bayes and Support
Vector Machines [45]. Our conducted experiment is similar in that it employs
OWL-S service descriptions instead of WSDL descriptions. In contrast to [21],
we employ SRL algorithms such as RPTs and RBCs and additional background
information provided by ontologies to perform semantic service classification.
Regarding bug/defect prediction in source code, many approaches have been
proposed in the past to accomplish this task. In Fenton [15], an extensive survey
and critical review of the most promising learning algorithms for bug prediction
from the literature is presented. [15] proposed to use Bayesian Belief Networks
(BBNs) to overcome some of the many limitations of the reviewed bug predic-
tion algorithms. BBNs are based on applying Bayes’ rule that assumes that all
attributes of training and testing examples are independent of each other given
the value of the class variable (which is called conditional independence). It is
important to note that the RBCs validated in this case study is an extension of

470 C. Kiefer and A. Bernstein

the simple Bayesian classifier (that applies Bayes’s rule for classification) to a
relational data setting (see Section 3.2).

Bernstein [3] proposed an approach based on a non-linear model on temporal
features for predicting the number and location of bugs in source code. In their
experiments, six different models were trained using Weka’s J48 decision tree
learner. The data they used to evaluate their prediction models were collected
from six plug-ins of the Eclipse open source project.7

These data were then enhanced with temporal information extracted from
Eclipse’s concurrent versions system (CVS) and information from Bugzilla.8 Us-
ing this approach, they successfully showed that the use of a non-linear model
in combination with a set of temporal features is able to predict the number and
location of bugs with a very high accuracy.

In order to demonstrate the usefulness and applicability of inductive reasoning
on semantically annotated software source code, we perform the same experiment
using our proposed SPARQL-ML framework (see Section 4.4). As we will show
in the remainder of this paper, inductive reasoning techniques for this kind of
task and dataset provide a powerful means to quickly analyze source code.

3 Inductive Reasoning with SPARQL-ML

This chapter presents our novel inductive reasoning approach that intends to
complement the classical deductive description logic reasoning facilities of the
traditional Semantic Web. In a nutshell, inductive reasoning enables to draw
conclusions about an unseen object (not included in the original set of observed
samples) based on statistical induction/inferencing techniques. Basically, this
comprises (1) the learning of a statistical model mirroring the characteristics of
the observed samples and (2) the application of the model to the population. In
Semantic Web terminology, inductive reasoning denotes the process of deriving
new triples from the set of asserted triples based on the statistical observations
of a sufficiently large, representative set of resources.

To add inductive reasoning support to the current Semantic Web infrastruc-
ture, specifically to integrate it with SPARQL, we focus on a special class of sta-
tistical induction techniques called statistical relational learning (SRL) methods.
As we will show in our experiments, the large and continuously growing amount
of interlinked Semantic Web data is a perfect match for SRL methods due to
their focus on relations between objects in addition to features/attributes of ob-
jects of traditional, propositional learning techniques.

Our inductive reasoning extension to SPARQL is called SPARQL-ML (SPAR-
QL Machine Learning). SPARQL-ML supports the integration of traditional
Semantic Web techniques and machine learning-based, statistical inferencing to
create and work with data mining models in SPARQL. To that end, SPARQL-
ML introduces new keywords to the official SPARQL syntax to facilitate the
induction of models.
7 http://www.eclipse.org/
8 http://www.bugzilla.org/

http://www.eclipse.org/
http://www.bugzilla.org/

Inductive Reasoning Methods for the Semantic Web 471

D = {
(SP1 profile:name ‘‘CityLuxuryHotelInfoService’’),
(SP1 profile:desc ‘‘Often used service to get

information about luxury hotels.’’),
(SP1 profile:hasInput _CITY),
(SP1 profile:hasInput _COUNTRY),
(SP1 profile:hasOutput _LUXURYHOTEL),
(SP1 profile:hasCategory ‘‘travel’’),
(SP2 profile:name ‘‘CityCountryHotelInfoService’’),
(SP2 profile:desc ‘‘Accommodation and restaurant

information service.’’),
(SP2 profile:hasInput _CITY),
(SP2 profile:hasOutput _HOTEL),
(SP2 profile:hasCategory ‘‘travel’’),
(SP3 profile:name ‘‘CityCountryInfoService’’),
(SP3 profile:desc ‘‘Hotels and sports facilities

information service.’’),
(SP3 profile:hasInput _SPORT),
(SP3 profile:hasOutput _CAPITAL),
(SP3 profile:hasCategory ‘‘education’’) }

Fig. 3. Example dataset D that lists services A, B, and C in triple notation

For the prediction/classification of unseen objects in a dataset, SPARQL-ML
makesuse of our proposed virtual triple pattern approach [27] to call customized, ex-
ternal prediction functions implemented as ARQ property functions (Section 3.2).

The two SRL methods used in SPARQL-ML are Relational Probability Trees
(RPTs) and Relational Bayesian Classifiers (RBCs) proposed in [33] and [34], re-
spectively. The use of these methods enables to induce statistical models without
prior propositionalization (i.e., translation to a single table) [13]—a cumbersome
and error-prone task.

To ensure the extensibility of our inductive reasoning approach with other
learning methods, the SPARQL Mining Ontology (SMO) is proposed to en-
able the seamless integration of additional machine learning techniques (see
Section 3.3).

3.1 Preliminaries

In this chapter, the dataset D shown in Figure 3 will be used for all examples.
D describes three semantic services A, B, and C in triple notation (with profile
names SP1, SP2, and SP3 respectively). In triple notation, each characteristic of
the services is written as a simple triple of subject, predicate, and object, in that
order. Note that all the queries in the remainder of this chapter use the prefixes
shown in Listing 1.1.

3.2 Theoretical Foundations

The theory introduced in this chapter heavily relies on our virtual triple pattern
approach presented in [27] and Statistical Relational Learning learning methods.
This section, therefore, (i) briefly reviews the most important elements of the
semantics of SPARQL and virtual triples, and (ii), shortly summarizes Relational
Bayesian Classifiers (RBCs) and Relational Probability Trees (RPTs).

472 C. Kiefer and A. Bernstein

������ pf: <java:ch.uzh .ifi .ddis.pf >

������ grounding:

<http:// www .daml.org/services/owl -s/1.1/ Grounding.owl#>

������ owl : <http:// www .w3.org /2002/07/ owl #>

������ process:

<http:// www .daml.org/services/owl -s/1.1/ Process.owl#>

������ profile:

<http:// www .daml.org/services/owl -s/1.1/ Profile.owl#>

������ rdf :

<http:// www .w3.org /1999/02/22- rdf -syntax -ns#>

������ rdfs: <http:// www.w3.org /2000/01/ rdf -schema#>

������ service:

<http:// www .daml.org/services/owl -s/1.1/ Service.owl#>

������ sml : <java:ch.uzh.ifi.ddis.pf.sml >

������ smo : <http:// www .ifi .uzh.ch/ddis/sparql -ml/>

������ xsd : <http:// www .w3.org /2001/ XMLSchema#>

Listing 1.1. Query prefixes used in this paper

Semantics of SPARQL. To explain our virtual triple pattern approach, the
concept of SPARQL solution mappings is central. According to [37], a solution
mapping is defined as follows:
Definition 1 (Solution Mapping). A solution mapping μ(?v �→ t) maps a
query variable ?v ∈ V to an RDF term t where V is the infinite set of query
variables and t a member of the set union of literals, IRIs, and blank nodes called
RDF-T. The domain of μ, dom(μ), is the subset of V where μ is defined.

Example 2 (Solution Mappings). Matching the basic graph pattern { SP1

profile:name ?name } against dataset D will result in a simple solution map-
ping, i.e.,

μ(?name �→ “CityLuxuryHotelInfoService”).

The domain of μ is dom(μ) = { ?name } (i.e., μ is defined for precisely one
variable). Matching the graph pattern { SP1 ?predicate ?name } against D
will additionally find a mapping for variable ?predicate, i.e.,

μ(?predicate �→ profile:name,
?name �→ “CityLuxuryHotelInfoService”).

In this case, the domain of μ is dom(μ) = { ?predicate, ?name }.

In [35], it is stated that the evaluation of a graph pattern over a dataset results
in a (multi-) set of solution mappings Ω.

Example 3 (Set of Solution Mappings). The basic graph pattern {
?profile profile:name ?name } specifies both the subject and the object of
the triple pattern as variable. The graph matching algorithm will return a set of
solution mappings Ω including precisely three solution mappings when matching
the pattern against dataset D, i.e.,

Ω = { μ1(?profile �→ SP1,

?name �→ “CityLuxuryHotelInfoService”),

Inductive Reasoning Methods for the Semantic Web 473

1 ����	
 ? descLower �����

2 { SP1 profile:desc ?desc .

3 ?descLower pf:lower -case (?desc) .

4 }

Listing 1.2. SPARQL query with a single virtual triple pattern expression including
property function lower-case to convert the text argument to lower case.

μ2(?profile �→ SP2,

?name �→ “CityCountryHotelInfoService”),
μ3(?profile �→ SP3,

?name �→ “CityCountryInfoService”) }.

Virtual Triple Pattern Approach. Our proposed approach to enable induc-
tive reasoning via SPARQL exploits ARQ property functions (aka magic proper-
ties).9 The concept behind property functions is simple: whenever the predicate
of a triple pattern is prefixed with a special name, a call to a customized, exter-
nal prediction function (CPF) is made and arguments are passed to the function
(in this case by the object of the triple pattern). The passed object may be an
arbitrary list of query variables for which solution mappings were already found
during query execution. The property function determined by the property URI
computes a value and returns it to the subject variable of the triple pattern.

We call this the virtual triple pattern approach as such triple pattern ex-
pressions including property functions are not matched against the underlying
ontology graph, but against the only virtually existing class membership of the
resource specified in the pattern expression. More formally, a virtual triple pat-
tern expression vt is defined as a triple employing a particular kind of property
function reference by a property URI:

Definition 2 (Virtual Triple Pattern). A virtual triple pattern vt is a triple
of the form { ?v pf:funct ArgList } where pf:funct is a property func-
tion and ArgList a list of solution mapping arguments μ(?x1 �→ t1), μ(?x2 �→
t2), . . . , μ(?xn �→ tn). The value computed by pf:funct is bound to the subject
variable ?v.

Similarly to the definition of solution mappings, virtual solution mappings can
now be defined.

Definition 3 (Virtual Solution Mapping). A virtual solution mapping
μv(?v �→ t) maps a query variable ?v ∈ V to an RDF term t where V is the
infinite set of query variables and t an RDF literal not included in the queried
RDF graph. The domain of μv, dom(μv), is the subset of V where μv is defined.

The sets of virtual solution mappings μv are defined as ΩV GP and the sets of so-
lution mappings found by basic graph pattern matching as ΩBGP . Furthermore,
based on the description of basic graph patterns in [37], virtual graph patterns
V P are defined as sets of virtual triple patterns vt.
9 http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions

http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions

474 C. Kiefer and A. Bernstein

Example 4 (Virtual Solution Mapping). Consider the query shown in
Listing 1.2. Matching the first triple pattern on line 2 against dataset D re-
sults in the following set of solution mappings:

ΩBGP = { μ(?desc �→ “Often used service to get
information about luxury hotels.”) }.

The evaluation of the virtual triple pattern on line 3 results in a call to the
property function lower-case, which results in the set ΩV GP of a single virtual
solution mapping, i.e.,

ΩV GP = { μv(?descLower �→ “often used service to
get information about luxury hotels.”) }.

Statistical Relational Learning (SRL) Methods. SRL methods have been
shown to be very powerful as they model not only the intrinsic attributes of
objects, but also the extrinsic relations to other objects, thus, should perform at
least as accurate as traditional, propositional learning techniques (cf. [13], [33],
and [34]).

Note that in accordance with [33], we refer to such objects with links to intrin-
sic and extrinsic attributes as subgraphs : “The SRL algorithms take a collection
of subgraphs as input. Each subgraph contains a single target object to be clas-
sified; The objects and links in the subgraph form its relational neighborhood.”

Example 5 (Intrinsic vs. Extrinsic Attributes). Consider Figure 4 that
shows service A represented as relational subgraph. The subgraph on the left
contains the service profile of A, the links to its name, description, and category,
as well as the links to its in- and output concepts. These objects and links in
the subgraph are called intrinsic as they are directly associated with A.

The subgraph on the right basically models the same information about A
but is extended with extrinsic relations to other objects. In this example, these
relations are the subClassOf links to the super concepts of A’s asserted (i.e.,
direct) I/O concepts. Of course, these relations could again have other relations
to other objects resulting in an even larger relational neighborhood of A.

Relational Bayesian Classifiers (RBCs). An RBC is a modification of the
traditional Simple Bayesian Classifier (SBC) for relational data [34] (also called
Näıve Bayes Classifier). SBCs assume that the attributes of an instance C are
conditionally independent of each other given the class of the instance. Hence,
the probability of the class given an example instance can be computed as the
product of the probabilities of the example’s attributes A1, . . . , An given the
class, i.e.,

Inductive Reasoning Methods for the Semantic Web 475

Service A

Profile

Input Output

City LuxuryHotel

Input

Country

presents

hasInput hasOutput

parameterTypeparameterType

Service A

Profile

Input Output

City LuxuryHotel

Input

Country

UrbanArea

Destination

Geographical-Entity

Geographical-Region

Accommodation

Hotel

parameterTypeparameterType

presents

hasInput hasOutput

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

parameterType

hasInput

“Often used...”

CityLuxuryHotelInfoService

travel

name
desc

hasCategory

“Often used...”

CityLuxuryHotelInfoService

travel

name
desc

hasCategory

Fig. 4. Intrinsic vs. extrinsic attributes of the semantic service A. The subgraph on the
left contains A’s intrinsic relations to its attributes, whereas on the right the extrinsic
relations are shown. These extrinsic relations are the subClassOf links to the super
concepts of A’s asserted (i.e., direct) I/O concepts.

Pr(C = ci |A1, . . . , An)
= αPr(A1, . . . , An |C = ci)Pr(C = ci)

= αPr(C = ci) ×
n∏

i=1

Pr(Ai |C = ci).
(1)

Equation 1 is exactly Bayes’ rule of conditional probability where α is a scaling
factor dependent only on the attributes A1, . . . , An.

RBCs apply this independence assumption to relational data. The RBC algo-
rithm transforms the heterogeneous subgraphs in Figure 4 to homogenous sets
of attributes as shown in Tables 1 and 2. Each row in the tables stands for a sub-
graph (i.e., semantic service), each column represents one of its attributes, and
the cells contain the multisets (or distributions) of values of attributes. These
attributes include the service category as well as the asserted and inferred I/O
concept distributions of the semantic services.

Learning an RBC model then basically consists of estimating probabilities
for each attribute and/or attribute-value distribution. Such probability estima-
tion techniques include, but are not limited to, average-value and random-value
estimations (cf. [34]).

Relational Probability Trees (RPTs). RPTs extend standard probability
estimation trees (also called decision trees) to a relational setting, in which data
instances are heterogeneous and interdependent [33].10 Similar to RBCs, RPTs

10 Actually, when it comes to predicting numeric values, decision trees with averaged
numeric values at the leaf nodes are called regression trees.

476 C. Kiefer and A. Bernstein

Table 1. The relational subgraphs of the semantic services A, B, and C are decomposed
by attributes. The table lies the focus on the input concepts. Each column represents
one of the service’s attributes and the cells contain the multisets (or distributions) of
values of these attributes.

Service Category Inputs Input Super Concepts (ISCs)
A travel { travel.owl#City, portal.owl#Country } { Destination, Generic-Agent, Geo-

graphical-Entity, Geographical-Re-
gion, Location, support.owl#Thing,
Tangible-Thing, Temporal-Thing,
UrbanArea }

B travel { portal.owl#City, portal.owl#Country } { Generic-Agent, Geographical-
-Entity, Geographical-Region,
Location, Municipal-Unit, sup-
port.owl#Thing, Tangible-Thing,
Temporal-Thing }

C education { Sports } { Activity }

Table 2. The relational subgraphs of the semantic services A, B, and C are decomposed
by attributes (focus on output concepts)

Service Category Outputs Output Super Concepts (OSCs)
A travel { LuxuryHotel } { Accommodation, Hotel }
B travel { Hotel } { Accommodation }
C education { Capital } { Destination, travel.owl#City, Urban-

Area }

look beyond the intrinsic attributes of objects, for which a prediction should be
made; it also considers the effects of adjacent objects (extrinsic relations) on the
prediction task.

As is the case for RBCs, the RPT algorithm first transforms the relational
data (the semantic services represented as subgraphs) to multisets of attributes.
It then attempts to construct an RPT by searching over the space of possible
binary splits of the data based on the relational features, until further processing
no longer changes the class distributions significantly. The features for splitting
these (training) data are created by mapping the multisets of values into single-
value summaries with the help of aggregation functions. These functions are
for instance count, mode/average, degree, proportion, minimum, maximum, and
exists (see [33]).

Example 6 (RPT Classification). As an example, consider the RPT shown
in Figure 5 that predicts the value for a semantic service’s hasCategory

attribute. The value of this attribute should be one out of communication,
economy, education, food, medical, travel, and weapon. The root node in
the RPT starts by examining the super concepts of the service’s direct (i.e.,
asserted) output concepts in the current subgraph. If the proportion of all super
concepts being concept.owl#UntangibleObjects is greater than or equal to
0.0345, the left edge in the RPT is traversed. Assume no, the next test looks at
how many super concepts have type my ontology.owl#Liquid in the subgraph,
represented by count(link subClassOf.outputSuper = my ontology.owl#-

Liquid). Specifically, we test whether the subgraph contains at least one such

Inductive Reasoning Methods for the Semantic Web 477

N

Y

Y

Y

Y

N

N

N

prop(link_subClassOf.outputSuper =
http://127.0.0.1/concept.owl#UntangibleObjects)

>= 0.034482758620689655

count(link_subClassOf.outputSuper =
http://127.0.0.1/ontology/my_ontology.owl#Media)

>= 1

count(link_subClassOf.outputSuper =
http://127.0.0.1/ontology/my_ontology.owl#Liquid)

>= 1.0

count(link_subClassOf.outputSuper =
http://127.0.0.1/ontology/SUMO.owl#Giving)

>= 1.0

prop(link_subClassOf.inputSuper =
http://127.0.0.1/ontology/SUMO.owl#Entity)

>= 0.0625

count(link_subClassOf.outputSuper =
http://127.0.0.1/ontology/my_ontology.owl#Media)

>= 1.0

medical
communication
food
weapon
economy
travel
education

Y N NY

medical: 0.02
communication: 3.0
economy: 0.02
travel: 0.0
education: 0.0

medical: 0.66
communication: 0.1
economy: 39.72
travel: 0.1
education: 0.05

mode(link_parameterType.outputType) =
http://127.0.0.1/ontology/books.owl#Author

medical: 0.01
weapon: 25.0
education: 14.0

medical: 7.59
commuication: 1.03
food: 17.77
travel: 2.92
education: 3.92

medical: 0.38
communication: 23.03
economy: 0.41
travel: 0.06
education: 0.03

medical: 39.63
communication: 1.27
food: 5.23
economy: 10.86
travel: 102.34
education: 114.71

Y N

communication: 0.0
economy: 0.01
travel: 0.0
education: 2.0

prop(link_subClassOf.outputSuper =
http://127.0.0.1/ontology/

Mid-level-ontology.owl#PreparedFood)
>= 0.052631578947368418

medical: 0.01
communication: 0.0
food: 2.0
economy: 0.01
travel: 0.0
education: 0.0

medical: 3.69
communication: 0.57
economy: 152.96
travel: 0.57
education: 0.28

Y N

service categories

Fig. 5. Example RPT to predict the value for a semantic service’s hasCategory

attribute

super concept. If this is the case, we pass this test and traverse the left edge to
the leaf node.

The leaf nodes show the distribution of the training examples (that “reached
the leaf”) and the resulting class probabilities of the hasCategory target at-
tribute. In other words, the leaf nodes hold the probabilistic counts (out of all
services from the training set that reach this leaf node) for each potential clas-
sification of this service. We can observe that services that reach this leaf node
have much more likely category economy than any other category. Therefore,
this model would predict that this service (subgraph) has category economy.

3.3 Adding Inductive Reasoning Support to SPARQL via SRL
Methods

SPARQL-ML is an extension of SPARQL that extends the Semantic Web query
language with knowledge discovery capabilities. Our inductive reasoning exten-
sions add new syntax elements and semantics to the official SPARQL grammar
described in [37]. In a nutshell, SPARQL-ML facilitates the following two tasks
on any Semantic Web dataset: (1) induce a model based on training data using
the new CREATE MINING MODEL statement (Section 3.3); and (2), apply a model
to make predictions via two new ARQ property functions (Section 3.3). The
model created in the CREATE MINING MODEL step follows the definitions in our
SPARQL Mining Ontology (SMO) presented in Section 3.3.

478 C. Kiefer and A. Bernstein

Table 3. Extended SPARQL grammar for the CREATE MINING MODEL statement

[1] Query ::= Prologue(SelectQuery | ConstructQuery | DescribeQuery | AskQuery |
CreateQuery)

[100] CreateQuery ::= CREATE MINING MODEL’ SourceSelector ’{’ Var ’RESOURCE’ ’TARGET’ (
Var (’RESOURCE’ | ’DISCRETE’ | ’CONTINUOUS’) ’PREDICT’?)+ ’}’
DatasetClause* WhereClause SolutionModifier UsingClause

[102] UsingClause ::= ’USING’ SourceSelector BrackettedExpression

SPARQL-ML is implemented as an extension to ARQ—the SPARQL query
engine for Jena.11 The current version of SPARQL-ML supports, but is not
limited to Proximity12 and Weka13 as data mining modules.

Step 1: Learning a Model Syntax and Grammar. SPARQL-ML enables
to induce a classifier (model) on any Semantic Web training data using the
new CREATE MINING MODEL statement. The chosen syntax was inspired by the
Microsoft Data Mining Extension (DMX) that is an extension of SQL to create
and work with data mining models in Microsoft SQL Server Analysis Services
(SSAS) 2005.14 The extended SPARQL grammar is tabulated in Table 3. Listing
1.3 shows a particular example query to induce an RPT model for the prediction
of the category of a semantic service.

Our approach adds the CreateQuery symbol to the official SPARQL gram-
mar rule of Query [37]. The structure of CreateQuery resembles the one of
SelectQuery, but has complete different semantics: the CreateQuery expands
to Rule 100 adding the new keywords CREATE MINING MODEL to the grammar fol-
lowed by a SourceSelector to define the name of the trained model. In the body
of CreateQuery, the variables (attributes) to train the model are listed. Each
variable is specified with its content type, which is currently one of the following:
RESOURCE—variable holds an RDF resource (IRI or blank node), DISCRETE—
variable holds a discrete/nominal literal value, CONTINUOUS—variable holds a
continuous literal value, and PREDICT—tells the learning algorithm that this
feature should be predicted. The first attribute is additionally specified with the
TARGET keyword to denote the resource for which a feature should be predicted
(also see [33]).

After the usual DatasetClause, WhereClause, and SolutionModifier, we
introduced a new UsingClause. The UsingClause expands to Rule 102 that
adds the new keyword USING followed by a SourceSelector to define the name
and parameters of the learning algorithm.

Semantics. According to [35], a SPARQL query consists of three parts: the
pattern matching part, the solution modifiers, and the output. In that sense, the
semantics of the CREATE MINING MODEL queries is the construction of new triples

11 http://jena.sourceforge.net/
12 http://kdl.cs.umass.edu/proximity/index.html
13 http://www.cs.waikato.ac.nz/ml/weka/
14 http://technet.microsoft.com/en-us/library/ms132058.aspx

http://jena.sourceforge.net/
http://kdl.cs.umass.edu/proximity/index.html
http://www.cs.waikato.ac.nz/ml/weka/
http://technet.microsoft.com/en-us/library/ms132058.aspx

Inductive Reasoning Methods for the Semantic Web 479

1 	��
� ������ ����� <http:// www .ifi.uzh.ch/services >

2 { ?service ������	�
���

3 ?category ���	��
� �����	

4 { ’communication ’, ’economy’,

5 ’education ’, ’food’, ’medical’,

6 ’travel’, ’weapon’ }

7 ?profile ������	�

8 ?output ������	�

9 ?outputType ������	�

10 ?outputSuper ������	�

11 ?input ������	�

12 ?inputType ������	�

13 ?inputSuper ������	�

14 }

15 �����

16 { ?service service:presents ?profile ;

17 service:hasCategory ?category .

18

19 ��
����

20 { ?profile profile: hasOutput ?output .

21 ?output process: parameterType ? outputType .

22

23 ��
����

24 { ? outputType rdfs:subClassOf ? outputSuper . }

25 }

26

27 ��
����

28 { ?profile profile: hasInput ?input .

29 ?input process: parameterType ? inputType .

30

31 ��
����

32 { ? inputType rdfs: subClassOf ?inputSuper . }

33 }

34 }

35 ����� <http:// kdl.cs.umass.edu/proximity /rpt >

Listing 1.3. SPARQL-ML CREATE MINING MODEL query for semantic service classifi-
cation. The goal of this query is to induce an RPT model that predicts the value for
a service’s hasCategory attribute that should be one out of communication, economy,
education, food, medical, travel, and weapon as defined by the DISCRETE PREDICT

keywords on line 4–5.

describing the metadata of the trained model (i.e., SPARQL-ML introduces a new
output type). An example of such metadata for the model induced in Listing 1.3 is
shown in Listing 1.4, which follows the definitions of our SPARQL Mining Ontol-
ogy (SMO) in Figure 6. The ontology enables to permanently save the parameters
of a learned model, which is needed by the predict queries (see next section).

The ontology includes the model name, the used learning algorithm, all vari-
ables/features being used to train the classifier, as well as additional information,
such as where to find the generated model file. In Listing 1.4, lines 1–11 show
the constructed triples of a model with name services, while lines 13–28 show
the metadata for two particular features of the model.

Step 2: Making Predictions Via Virtual Triple Patterns. The second step
to perform inductive reasoning with SPARQL-ML is to apply the previously in-
duced model to draw conclusions about new samples from the population. After
the induction of the model with the CREATE MINING MODEL statement, SPARQL-
ML allows the user to make predictions via two new ARQ property functions. In
the following, these functions are called sml:predict and sml:mappedPredict.

Property functions are called whenever the predicate of a triple pattern is
prefixed with a special name (e.g., sml). In that case, a call to an external
function is made and arguments are passed to the function (by the object of

480 C. Kiefer and A. Bernstein

Model Algorithm

Feature

MiningApp

Param

ModelFile

hasFeature

hasModelFile hasMiningApp

usesAlgorithm

hasParam

CONTINUOUS

STRING

hasVarName

DISCRETE

RESOURCE

hasFeatureType

INTEGER

isPredict

STRING

STRING

hasModelName

hasDescrip�on

STRING

hasName

ANYTYPE

hasValue

STRING

hasAlgorithmName

STRING

hasDescrip�on

STRING STRING

hasAppNamehasDescrip�on

hasNominalValues

rdf:Bag

STRING

creator

STRING

rdf:li

Link

hasLink
linkFrom

STRING

linkName

linkTo

Fig. 6. SPARQL-ML Mining Ontology (SMO)

the triple pattern). For inductive reasoning, we are particularly interested in the
following form of virtual triple pattern expressions:

(pred prob)︸ ︷︷ ︸
subject

predictionFunction︸ ︷︷ ︸
predicate

(arg1 . . . argN)︸ ︷︷ ︸
object

In a nutshell, such pattern expressions define a list of arguments that are passed
to a customized prediction function (CPF) by the object of the pattern expres-
sion. In our case, the first argument in this list (arg1) is a URI reference to the
previously induced model that will be applied for making predictions. The rest
of the arguments describe the new resource for which a prediction should be
made.

Example 7 (SPARQL-ML Prediction Query). Consider the SPARQL-
ML query shown in Listing 1.5 that includes a single virtual triple pattern
expression on lines 22–27. The goal of the query is to predict the value of a
semantic service’s hasCategory attribute by applying the previously induced
model in Listing 1.3. The model is referenced by the model URI http:// www.
ifi.uzh. ch/ ddis/ services and passed as the first argument to the pre-
diction function. The rest of the arguments define the attributes/features of
the service that should be used for predicting its category. The result of the
prediction (one out of communication, economy, education, food, medical,
travel, or weapon), and its probability are finally bound on line 22 to the
variables ?prediction and ?probability respectively.

Syntax and Grammar. The extended SPARQL-ML grammar for the pre-
diction queries is shown in Table 4. To implement the virtual triple approach
in SPARQL-ML, a new symbol called PredictionBlockPattern is added to the
official SPARQL grammar rule of GraphPatternNotTriples [37]. The structure

http://www.ifi.uzh.ch/ddis/services
http://www.ifi.uzh.ch/ddis/services

Inductive Reasoning Methods for the Semantic Web 481

1 <http:// www.ifi.uzh.ch/ddis/services >

2 a smo:Model ;

3 smo:hasFeature

4 <http:// www.ifi.uzh.ch/ddis/services#output > ,

5 <http:// www.ifi.uzh.ch/ddis/services#category > ,

6 <http:// www.ifi.uzh.ch/ddis/services#input > ;

7 smo:hasModelFile

8 <http:// www.ifi.uzh.ch/ddis/models/services.xml > ;

9 smo:hasModelName "services" ;

10 smo:usesAlgorithm

11 <http:// kdl.cs.umass.edu/proximity /rpt > .

12

13 <http:// www.ifi.uzh.ch/ddis/services#category>

14 a smo:Feature ;

15 smo:hasFeatureType "DISCRETE" ;

16 smo:hasNominalValues

17 [a rdf:Bag ;

18 rdf:_1 "education" ;

19 rdf:_2 "travel"

20] ;

21 smo:hasVarName "category" ;

22 smo:isPredict "1" .

23

24 <http:// www.ifi.uzh.ch/ddis/services#service >

25 a smo:Feature ;

26 smo:hasFeatureType "RESOURCE" ;

27 smo:hasVarName "service" ;

28 smo:isRootVar "YES" .

Listing 1.4. Part of the metadata generated from inducing the RPT model as shown
in Listing 1.3.

Table 4. SPARQL-ML grammar rules for the PREDICTION statement

[22] GraphPatternNotTriples ::= OptionalGraphPattern | GroupOrUnionGraphPattern |
GraphGraphPattern | PredictionBlockPattern

[22.1] PredictionBlockPattern ::= ’PREDICTION’ ’{’ ((Var1 FunctionCall)+ Filter?)+ ’}’
[28] FunctionCall ::= IRIref ArgList

of PredictionBlockPattern resembles the one of OptionalGraphPattern but has
completely different semantics: instead of matching patterns in the RDF graph,
the triples in a PredictionBlockPattern act as virtual triple patterns that are
interpreted by the query processor. A PredictionBlockPattern expands to Rule
[22.1] that adds the new keyword PREDICTION to the grammar, which is followed
by a number of virtual triples and optional FILTER statements.

Semantics. The semantics of a PredictionBlockPattern is basically that of a pre-
diction join:15 (1) the CPF maps the variables in the basic graph patterns of the
query to the features in the specified model; (2) the CPF creates instances out of
the mappings according to the induced model; (3) the model is used to classify an
instance as defined in the CREATE MINING MODEL query; and (4), the values of the
prediction and its probability are bound to variables in the predict query.

More formally, in the notation of Pérez [35], the semantics of a Prediction-
BlockPattern can be defined as follows. In [35], Pérez discussed four different
SPARQL query types: join queries, union queries, optional queries, and filter
queries. In accordance to [35], prediction joins are, thus, introduced as a new
type of SPARQL queries for which the semantics is subsequently investigated in
the remainder of this section. The new type is specified as follows (displayed in
original SPARQL syntax on the left and algebraic syntax on the right):

15 http://msdn2.microsoft.com/en-us/library/ms132031.aspx

http://msdn2.microsoft.com/en-us/library/ms132031.aspx

482 C. Kiefer and A. Bernstein

1 ����	
 ���
��	
 ?service ?prediction ? probability

2 �����

3 { ?service service:presents ?profile .

4

5 ��
����

6 { ?profile profile: hasOutput ?output .

7 ?output process: parameterType ? outputType .

8

9 ��
����

10 { ? outputType rdfs:subClassOf ? outputSuper . }

11 }

12

13 ��
����

14 { ?profile profile: hasInput ?input .

15 ?input process: parameterType ? inputType .

16

17 ��
����

18 { ? inputType rdfs: subClassOf ?inputSuper . }

19 }

20

21 PREDICTION

22 { (?prediction ? probability)

23 sml:predict

24 (<http:// www.ifi.uzh.ch/ddis/services >

25 ?service ?profile ?output ? outputType

26 ?outputSuper ?input ? inputType

27 ?inputSuper) .

28 }

29 }

Listing 1.5. SPARQL-ML query to predict the the value of a service’s hasCategory

attribute

Definition 4 (Prediction Join Query). Prediction join queries involve ba-
sic graph patterns P and virtual graph patterns V P which trigger a call to a
customized prediction function, i.e.,

{ P PREDICTION { V P } } ⇐⇒ (P PREDJOIN V P).

Similarly to the definition of the join of ordinary sets of solution mappings, the
prediction join of sets ΩBGP and ΩV GP can now be defined:

Definition 5 (Prediction Join Operation). A prediction join ��p of basic
graph pattern expressions P and virtual graph pattern expressions V P extends
the sets ΩBGP from basic graph pattern matching with the sets of virtual solution
mappings ΩV GP from virtual graph pattern matching. The prediction join of
ΩBGP and ΩV GP is defined as:

ΩBGP ��p ΩV GP = { μ1 + μ2 |
μ1 ∈ ΩBGP , μ2 ∈ ΩV GP , μ1, μ2 are
compatible, and 1 ≤ card[ΩV GP](μ2) ≤ 2 }

Example 8 (Prediction Join Operation). Consider the query shown in
Listing 1.6 for the prediction of the value of the hasCategory attribute of a
semantic service (assume an appropriate induction model was induced in an
earlier step). Focusing only on service A, the evaluation of the basic triple
patterns results in the set of solution mappings Ω1, i.e.,

Ω1 = { μ11(?profile �→ SP1, ?input �→ CITY,

?ouput �→ LUXURYHOTEL}.

Inductive Reasoning Methods for the Semantic Web 483

1 ����	
 ? prediction ?probability

2 �����

3 { ?profile profile:hasInput ?input ;

4 profile:hasOutput ?ouput .

5

6 (?prediction ?probability)

7 sml:predict (<modelURI > ? profile

8 ?input ?output) .

9 }

Listing 1.6. SPARQL-ML query exemplifying a prediction join operation

The evaluation of the virtual triple pattern that specifies the property function
for making predictions returns a set of virtual solution mappings Ω2 that con-
tains the values of the prediction and its probability. Assume the prediction
model returns the following values, i.e.,

Ω2 = { μ21(?prediction �→ travel,
?probability �→ 0.99) }.

Finally, the prediction join operation merges Ω1 and Ω2 into the set of solution
mappings Ω3:

Ω3 = { μ31(?profile �→ SP1, ?input �→ CITY,

?ouput �→ LUXURYHOTEL,

?prediction �→ travel, ?probability �→ 0.99) }.

In [27], the semantics of virtual graph patterns were defined as an evaluation
function [[vt]] that takes a virtual triple pattern vt and returns a virtual solution
mapping μv. Adapting this equation to the inductive reasoning scenario in this
paper, the evaluation of a SPARQL-ML predict query over a dataset D can be
defined recursively as follows:

[[vt]] = { μv(?v1 �→ pre, ?v2 �→ pro) | (pre, pro)
= pf:funct (μ(?x1 �→ t1), . . . , μ(?xn �→ tn)) }
[[(P PREDJOIN V P)]]D = [[P]]D ��p [[V P]]

(2)

Again, the first part of Equation 2 takes a virtual triple pattern expression
and returns a set of virtual solution mappings ΩV GP . New solution mappings
are generated that assign the value of a prediction and its probability to query
variables (i.e., ?v1 and ?v2) (note that Equation 2 only shows the case were both
values are returned).

Pros and Cons. The following list summarizes the pros and cons of the virtual
triple pattern approach to perform inductive reasoning with our SPARQL-ML
framework.

484 C. Kiefer and A. Bernstein

+ A number of different prediction models can be used in the same query
(which is useful to compare their performance).

+ The integration of inductive reasoning support into SPARQL provides an
easy-to-use and flexible approach to quickly create and work with data min-
ing models in SPARQL.

+ The values of the predictions and its probabilities are assigned to query
variables, thus, can be reused in the query for filtering and ranking, or can
be returned for arbitrary further processing.

+ Solution modifiers such as ORDER BY and LIMIT are applicable to the calcu-
lated prediction (probability) values.

+ A very simple adaption of sml:predict allows us to also apply the in-
duced model on a dataset with a different ontology structure (i.e., sml:
mappedPredict).

− The virtual triple pattern expressions we use for prediction are somehow
‘overloaded’ (i.e., the property functions potentially have a long parameter
list). Furthermore, the functions may return a list of prediction-probability
values.

− The SPARQL grammar needs to be extended to account for the PREDICTION
statements (which requires an adaptation of the query engines).

− Queries using property functions depend on a query engine extension
currently only implemented in Jena ARQ and, hence, have limited inter-
operability.

4 Evaluation/Validation of SPARQL-ML

Our inductive reasoning method presented in Section 3 relies on statistical in-
duction to reason over Semantic Web data. We have implemented inductive rea-
soning as an extension to the RDF query language SPARQL. More specifically,
we use virtual triple patterns as key technology to integrate inductive reasoning
with the traditional Semantic Web infrastructure.

This section is devoted to the application and evaluation of this novel rea-
soning method for three Semantic Web and one Software Analysis task. These
tasks along with the datasets we used to evaluate them are listed in Table 5. In
the following, we will briefly give an overview of each of these tasks.

Business Project Success Experiment. In order to show the ease-of-use and
predictive capability of our inductive reasoning framework SPARQL-ML, we put
together a proof of concept setting with a small, artificially created dataset. To
that end, in our first experiment in Section 4.1, we show that using a synthetic
dataset, the combination of statistical inference with logical deduction produces
superior performance over statistical inference only.

Semantic Web Service Classification Experiment. The goal of our se-
mantic service classification experiment in Section 4.2 is to evaluate our novel
inductive reasoning extension to the task of performing automatic service clas-
sification. To that end, we perform a Semantic Web service category prediction

Inductive Reasoning Methods for the Semantic Web 485

Table 5. The four tasks and datasets we considered to evaluate/validate our novel
inductive reasoning extension

Evaluation/Validation Task Dataset(s)
Business Project Success Experiment synthetic business project dataset
Semantic Web Service Classification
Experiment

OWL-S TC v2.1

SVM-Benchmark Experiment SWRC/AIFB dataset
Bug Prediction Experiment Eclipse updateui, updatecore,

search, pdeui, pdebuild, and com-
pare plug-ins

experiment (i.e., automatically generate semantic annotation/metadata for se-
mantic services). As benchmarking dataset, we use a large OWL-S semantic
service retrieval test collection.

SVM-Benchmark Experiment. In our third experiment—the SVM-
benchmark experiment—we compare the prediction performance of our SPAR-
QL-ML approach to another state-of-the-art kernel-based Support Vector
Machine (SVM) [6] using a real-world data set.

Software Bug Prediction Experiment. Finally, in our bug prediction ex-
periment in Section 4.4, we aim to show some of the advantages of inductive
reasoning for Software Analysis. Specifically, we will use SPARQL-ML in combi-
nation with the EvoOnt software model to perform bug prediction. To that end,
the defect location experiment presented in [3] is repeated.

4.1 Business Project Success Experiment

Evaluation Methodology and Dataset. The synthetic business project
dataset consists of different business projects and the employees of an imagi-
nary company. The company has 40 employees each of which having one out
of 8 different occupations. Figure 7 shows part of the created ontology in more
detail. In our dataset, 13 employees belong to the superclass Manager, whereas
27 employees belong to the superclass Non-Manager.

We then created business projects and randomly assigned up to 6 employees to
each project. The resulting teams consist of 4 to 6 members. Finally, we randomly
defined each project to be successful or not, with a bias for projects being more
successful, if more than three team members are of type Manager. The resulting
dataset contains 400 projects with different teams. The prior probability of a
project being successful is 35%. We did a 50:50 split of the data and followed a
single holdout procedure, swapping the roles of the testing and training set and
averaged the results.

486 C. Kiefer and A. Bernstein

Person

Non-ManagerManager

DivisionMgrProduc�onMgrBoardMember SalesMgr SalesProduc�onAdministra�on Marke�ng

Fig. 7. Example business ontology

1 	��
� ������ ����� <http:// www .example.org/projects>

2 { ?project ������	�
���

3 ?success ���	��
� �����	
 {’Yes ’,’No’}

4 ?member ������	�

5 ?class ������	�

6 }

7 �����

8 { ?project ex:isSuccess ?success .

9 ?project ex:hasTeam ?member .

10 ?member rdf:type ?class .

11 }

12 ����� <http:// kdl.cs.umass.edu/proximity /rpt >

Listing 1.7. SPARQL-ML CREATE MINING MODEL query. The goal of this query is to
induce an RPT model that predicts the value for a project’s isSuccess attribute that
should be either Yes or No as defined by the DISCRETE PREDICT keywords on line 3.

Experimental Results. Listing 1.7 shows the CREATE MINING MODEL query
that we used in the model learning process. We tested different learning algo-
rithms with and without the support of inferencing. With the reasoner disabled,
the last triple pattern in the WHERE clause (line 10) matches only the direct type
of the received employee instance (i.e., if an employee is a ’direct’ instance of
class Manager). This is the typical situation in relational databases without the
support of inheritance. With inferencing enabled, the last triple pattern also
matches all inferred types, indicating if an employee is a Manager or not.

Given the bias in the artificial dataset, it is to be expected that the ability
to infer if a team member is a Manager or not is central to the success of the
induction procedure. Consequently, we would expect that models induced on
the inferred model should exhibit a superior performance. The results shown
in Figure 8 confirm our expectations. The Figure shows the results in terms of
prediction accuracy (ACC; in legend), Receiver Operating Characteristics (ROC;
graphed), and the area under the ROC-curve (AUC; also in legend). The ROC-
curve graphs the true positive rate (y-axis) against the false positive rate (x-
axis), where an ideal curve would go from the origin to the top left (0,1) corner,
before proceeding to the top right (1,1) one [36]. It has the advantage to show
the prediction quality of a classifier independent of the distribution (and, hence,
prior) of the underlying dataset. The area under the ROC-curve is, typically, used
as a summary number for the curve. Note that a random assignment whether
a project is successful or not is also shown as a line form the origin (0,0) to
(1,1). The learning algorithms shown are a Relational Probability Tree (RPT),
a Relational Bayes Classifier (RBC), both with and without inferencing, and, as
a baseline, a k-nearest neighbor learning algorithm (k-NN) with inferencing and
k = 9 using a maximum common subgraph isomorphism metric [44] to compute
the closeness to neighbors.

Inductive Reasoning Methods for the Semantic Web 487

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

RPT w/ inf: acc = 0.928, auc = 0.980
RPT w/o inf: acc = 0.783, auc = 0.835
RBC w/ inf: acc = 0.895, auc = 0.948

RBC w/o inf: acc = 0.873, auc = 0.934
k-NN w/ inf: acc = 0.730, auc = 0.806

random

Fig. 8. ROC-Curves of business project success prediction

As the Figure shows, the relational methods clearly dominate the baseline
k-NN approach. As expected, both RPT and RBC with inferencing outperform
the respective models without inferencing. It is interesting to note, however, that
RPTs seem to degrade more with the loss of inferencing than RBCs. Actually,
the lift of an RBC with inferencing over an RBC without inferencing is only
small. These results support our assumption that the combination of induction
and deduction should outperform pure induction. The major limitation of this
finding is the artificial nature of the dataset. We, therefore, decided to conduct
further experiments with the same goals using real-world datasets, which we
present in the following sections.

488 C. Kiefer and A. Bernstein

ServiceCategory
(kind of service)

Service

ServiceProfile

ServiceGrounding

ServiceModel

(what it d
oes)

(how to access it)

supports

(h
o
w

 it w
o
rks)

presents

d
escrib

ed
b
y

hasCategory

Fig. 9. Extended OWL-S upper ontology model. In addition to the service profile,
grounding, and model, an extra relation to the service category is added to the de-
scription of a service.

4.2 Semantic Web Service Classification Experiment

In this section, we proceed with the evaluation of SPARQL-ML on a real-world
dataset. Specifically, we show how SPARQL-ML can be used to automatically
classify Semantic Web services into their most appropriate service category. Ac-
cording to [22], a web service category describes the general kind of service that
is offered, such as “travel services” or “educational services”.

In a nutshell, our SPARQL-ML framework is used to classify/predict the
category of a semantic service, which is usually a string value, say, travel or
education. This value can then be used to tag (annotate) the semantic service.16

Evaluation Methodology and Dataset. For all our service classification
experiments we use the OWLS-TC v2.1 Semantic Web service retrieval test
collection.17 OWLS-TC contains 578 semantic service descriptions of seven dif-
ferent categories. These categories are economy, education, travel, medical,
communication, food, and weapon. The prior distribution of the services is
economy = 35.63%, education = 23.36%, travel = 18.34%, medical = 8.99%,
communication = 5.02%, food = 4.33%, and weapon = 4.33% (i.e., economy is
the category with the most services).

In order to predict a semantic service’s hasCategory attribute, we first had
to assert this information in the dataset (as it is originally not). In other words,
we had to extend the OWL-S service ontology model with an additional relation
to the service category. The extended OWL-S ontology is shown in Figure 9.

16 E.g., in Semantic Web terminology add a new triple to the service description holding
the value of the classification step. Note, however, that our focus clearly lies on service
classification rather than service annotation.

17 http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/

Inductive Reasoning Methods for the Semantic Web 489

Table 6. Detailed results for the Semantic Web service classification experiments. As
can be observed, the models induced on the (logically) inferred I/O concepts (w/ inf)
perform considerably better than the ones induced on only the asserted information
(w/o inf) across almost all measures and categories.

Category FP Rate Precision Recall F-measure
w/o inf w/ inf w/o inf w/ inf w/o inf w/ inf w/o inf w/ inf

communication 0.007 0.004 0.819 0.900 0.600 0.600 0.693 0.720
economy 0.081 0.018 0.810 0.964 0.644 0.889 0.718 0.925
education 0.538 0.090 0.311 0.716 0.904 0.869 0.463 0.786
food 0 0.002 0 0.960 0 0.800 0 0.873
medical 0.006 0.030 0 0.688 0 0.550 0 0.611
travel 0 0.069 1 0.744 0.245 0.873 0.394 0.803
weapon 0.002 0.002 0.917 0.964 0.367 0.900 0.524 0.931
average 0.091 0.031 0.551 0.848 0.394 0.783 0.399 0.807
t-test (paired, one-tailed) p=0.201 p=0.0534 p=0.00945 p=0.0038

Using these extended service descriptions, we are able to write CREATE MINING
MODEL queries that (i) define the instances to be use for model induction and (ii)
specify the learning algorithm and its parameters. Note that in all our experi-
ments we limited our investigations to the I/O concepts of services as we believe
that they are most informative for this task (cf. [20]).

Experimental Results. Listing 1.3 shows the CREATE MINING MODEL query
that we used in the model learning step. By using OPTIONAL patterns, we enable
the inclusion of services with no outputs or inputs. The additional OPTIONAL
pattern for the rdfs:subClassOf triple enables us to run the same query on the
asserted and the inferred data.

We ran the experiment once on the asserted and once on the (logically) in-
ferred model using the predict query shown in Listing 1.5. Furthermore, we
performed a 10-fold cross validation where 90% of the data was used to learn
a classification model and the remaining 10% to test the effectiveness of the
learned model, which is standard practice in machine learning (see [45]). For
our experiments, we induced a RPT to predict the service category of a service
based on its input and output concepts. We chose an RPT because in all our
experiments it turned out to perform superior than RBCs.

The averaged classification accuracy of the results of the 10 runs is 0.5102 on
the asserted and 0.8288 on the inferred model. Hence, the combination of logical
deduction with induction improves the accuracy by 0.3186 over pure induction.
The detailed results of our experiments are shown in Table 6 that further confirm
this result for all seven categories by listing the typical data mining measures
false positive rate (FP rate), precision, recall, and F-measure for all categories.
As the results of the t-test show, the differences for recall and F-measure are
(highly) significant. The results for precision just barely misses significance at
the 95% level.

When investigating the structure of the RPTs, the trees induced on the in-
ferred model clearly exploit inheritance relations using the transitive
rdfs:subClassOf property, indicating that the access to the newly derived triples
improves the determination of a service’s category. The SRL algorithms are

490 C. Kiefer and A. Bernstein

service

profile

input
output

outputType
inputType

service

profile

input
output

outputType
inputType

inputSuper outputSuper

with inferencingwithout inferencing

Fig. 10. Service subgraphs built for the Semantic Web service classification task, on
the left without inferencing and on the right with inferencing

able to exploit the richer relational neighborhood to improve their performance.
These observations further support our finding that a combination of deduction
and induction is useful for Semantic Web tasks and can be easily achieved with
SPARQL-ML.

4.3 SVM-Benchmark Experiment

Evaluation Methodology and Dataset. With our third set of experiments,
we aimed to show possible advantages of SPARQL-ML over another state-of-
the-art method. Specifically, we compared the off-the-shelf performance of a
simple xx-lines SPARQL-ML statement (see Listing 1.8) with a Support Vector
Machine (SVM) based approach proposed by Bloehdorn and Sure [7] following
exactly their evaluation procedure.18 In their work, they introduced a frame-
work for the design and evaluation of kernel methods that are used in Support
Vector Machines, such as SV M light [24]. The framework provides various ker-
nels for the comparison of classes as well as datatype and object properties of
instances. Moreover, it is possible to build customized, weighted combinations of
such kernels. Their evaluations include two tasks: (1) prediction of the affiliation
a person belongs to (person2affiliation), and (2) prediction of the affiliation

18 We would like to thank them for sharing the exact dataset used in their paper.

Inductive Reasoning Methods for the Semantic Web 491

Table 7. LOOCV results for the person2affiliation and publication2affiliation tasks

person2affiliation publication2affiliation

algorithm err prec rec F-measure algorithm err prec rec F-measure

sim-ctpp-pc, c=1 4.49 95.83 58.13 72.37 sim-cta-p, c=10 0.63 99.74 95.22 97.43
RBC w/o inf 9.43 79.41 77.94 78.51 RBC w/o inf 1.035 97.36 94.21 95.68
RBC w/ inf 9.39 80.90 75.46 77.73 RBC w/ inf 0.73 95.53 97.52 96.46

a publication is related to (publication2affiliation). As a dataset they used
the SWRC ontology—a collection of OWL annotations for persons, publications,
and projects, and their relations from the University of Karlsruhe.19

In order to understand the course of our experiment, we think a few words
about the experimental procedure described in [7] are necessary. For each of
the two tasks, Bloehdorn and Sure performed exactly four binary classification
experiments and averaged the results for each task. More precisely, consider the
person2affiliation task: for each of the four distinct research groups and 177
persons in the SWRC dataset, the authors conducted a two-class classification
experiment to predict whether a person belongs to a research group or not. The
same approach was chosen for the publication2affiliation task: for each of
the four research groups and 1232 publication instances in the dataset, a binary
classification experiment was performed in order to predict whether one of the
authors of the publication is affiliated with the group.

In order to perform the identical experiment as described in [7], we first had
to add the information about a person’s affiliation to the dataset via a couple of
belongsToGroupX (X = 1 . . . 4) datatype properties. This was necessary because
we wanted to predict the value of this property (either ‘Yes’ or ‘No’) using our
proposed SPARQL-ML SRL methods. An example CREATE MINING MODEL query
is shown in Listing 1.8, where the goal is to predict whether a person belongs to
the research group Group1. We ran this query exactly four times with different
belongsToGroupX properties, recorded the results, and averaged them.

Experimental Results. Table 7 summarizes the macro-averaged results that
were estimated via Leave-One-Out Cross-Validation (LOOCV). We applied both,
an RBC and an RPT learning algorithm to both tasks. The table also reports
the best-performing SVM results from Bloehdorn and Sure’s experiments. The
RBC clearly outperformed the RPT in both predictions, hence, we report only
on the results given by the RBC. For both tasks the performance of the inferred
model is not very different from the one induced on the asserted model. When
consulting Listing 1.8 (for person2affiliation) it is plausible to conclude that
the only inferred properties (types of persons and publications) do not help to
classify a person’s or a publication’s affiliation with an organizational unit.

For the person2affiliation task, Table 7 shows that our method clearly
outperforms the kernel-based approach in terms of recall, but has only marginally
better F-Measure improvement. This is because our method is clearly inferior in
terms of prediction error and precision. For the publication2affiliation task,

19 http://ontoware.org/projects/swrc/

http://ontoware.org/projects/swrc/

492 C. Kiefer and A. Bernstein

1 	��
� ������ ����� <http:// example.org/svm >

2 { ?person ������	�
���

3 ?value ���	��
� �����	
 {’Yes ’,’No’}

4 ?personType ������	�

5 ?project ������	�

6 ?topic ������	�

7 ?publication ������	�

8 ?publicationType ������	�

9 }

10 �����

11 { ?person swrc:affiliation ? affiliation ;

12 rdf:type ? personType ;

13 uzh: belongsToGroup1 ?value .

14

15 ��
����

16 { ?person swrc:worksAtProject ?project . }

17 ��
����

18 { ?topic swrc:isWorkedOnBy ?person . }

19 ��
����

20 { ?person swrc: publication ?publication .

21 ?publication rdf:type ?publicationType .

22 }

23 }

24 ����� <http:// kdl.cs.umass.edu/proximity /rbc >

Listing 1.8. CREATE MINING MODEL query for the person2affiliation task

Table 8. LOOCV results for the person2affiliation and publication2affiliation tasks

person2affiliation publication2affiliation

algorithm err prec rec F-measure algorithm err prec rec F-measure

sim-ctpp-pc, c=1 4.49 95.83 58.13 72.37 sim-cta-p, c=10 0.63 99.74 95.22 97.43
RBC w/o inf 3.53 87.09 80.52 83.68 RBC w/o inf 0.09 98.83 99.61 99.22
RBC w/ inf 3.67 85.72 80.18 82.86 RBC w/ inf 0.15 97.90 99.25 98.57

the results are even worse: turning the reasoner on improves, at least, the results
compared to no reasoner used, however, the results are still inferior compared
to the kernel-based approach by Bloehdorn and Sure across all performance
measures.

Because these results were not very promising, we asked ourselves how we
could achieve better prediction performance. We thought, why not perform a
real multi-class prediction experiment instead of four rather tedious individual
experiments and averaging the results. Luckily, with our SPARQL-ML approach
we are able to perform exactly this kind of prediction experiment. The corre-
sponding example query is shown in Listing 1.9 and the results in Table 8. Note
that this query can use the ontology as is, i.e., the dataset does not have to be
extended with additional relations (as was the case in Listing 1.8).

As Table 8 clearly shows, our multi-class prediction method outperforms the
kernel-based approach in terms of prediction error, recall, and F-Measure, while
having an only slightly lower precision. The slightly lower precision could be a
result of the limitation to just a few properties used by an off-the-shelf approach
without a single parameter setting, whereas the SVM approach is the result of
extensive testing and tuning of the kernel method’s properties and parameters.

We conclude from this experiment, that writing a SPARQL-ML query is a
simple task for everyone familiar with the data and the SPARQL-ML syntax.
Kernels, on the other hand, have the major disadvantage that the user has to
choose from various kernels, kernel modifiers, and parameters. This constitutes
a major problem for users not familiar with kernels and SVM algorithms.

Inductive Reasoning Methods for the Semantic Web 493

1 	��
� ������ ����� <http:// example.org/svm >

2 { ?person ������	�
���

3 ?affiliation ���	��
� �����	
 {’ID1 ’,’ID2 ’,’ID3 ’,’ID4 ’}

4 ?personType ������	�

5 ?project ������	�

6 ?topic ������	�

7 ?publication ������	�

8 ?publicationType ������	�

9 }

10 �����

11 { ?person swrc:affiliation ? affiliation ;

12 rdf:type ? personType .

13

14 ��
����

15 { ?person swrc:worksAtProject ?project . }

16 ��
����

17 { ?topic swrc:isWorkedOnBy ?person . }

18 ��
����

19 { ?person swrc: publication ?publication .

20 ?publication rdf:type ?publicationType .

21 }

22 }

23 ����� <http:// kdl.cs.umass.edu/proximity /rbc >

Listing 1.9. CREATE MINING MODEL query for the person2affiliation task

4.4 Bug Prediction Experiment

In our last experiment, we evaluate the applicability and usefulness of our novel
inductive reasoning framework SPARQL-ML for bug prediction. We, therefore,
evaluated the predictive power of our SPARQL-ML approach on several real-
world software projects modeled in the EvoOnt format (see [28]). To that end,
we will compare the off-the-shelf performance of SPARQL-ML with a tradi-
tional, propositional data mining approach proposed in [3] following exactly
their evaluation procedure. To achieve this goal, we use historical/evolutionary
information about the software projects in all our experiments. This information
is provided by a concurrent versions system (CVS) and a bug-tracking system
(i.e., Bugzilla).20

Evaluation Methodology and Datasets. The data used in this case study
was collected from six plug-ins of the Eclipse open source project in the overall
time span from January 3, 2001 to January 31, 2007.21 The plug-ins are compare,
pdebuild, pdeui, search, updatecore, and updateui, which are all available
at the CVS repository at dev.eclipse.org.

In a nutshell, the experimental procedure can be summarized as follows: first,
along with the data from CVS and Bugzilla, we exported each of the plug-ins
into our EvoOnt format; second, we created a small extension to EvoOnt to take
into account the 22 extra features from [3] that are used for model induction and
making predictions; and third, we wrote SPARQL-ML queries for the induction
of a mining model on the training set as well as for the prediction of bugs on the
test set. The queries in Listings 1.10 and 1.11 show an example of the CREATE
MINING MODEL and PREDICT statements we used for the model induction and
prediction tasks respectively.

20 http://www.bugzilla.org/
21 http://www.eclipse.org/

dev.eclipse.org
http://www.bugzilla.org/
http://www.eclipse.org/

494 C. Kiefer and A. Bernstein

Addressing the first step, exporting the information from CVS and Bugzilla
into our EvoOnt format, the information from the first releases up to the last
one released in January 2007 was considered. For the second step, the extension
of the EvoOnt model with the additional features for learning and predicting,
we exploited the fact that EvoOnt (and more generally, the OWL data format)
is easily extendable with additional classes and properties. We had to extend
EvoOnt with a total number of 22 additional features, which were all computed
in a preprocessing step and added to the OWL class File in EvoOnt’s Version
Ontology Model (VOM) via a set of new OWL datatype properties (e.g., vom:-
loc, vom:lineAddedIRLAdd, etc.). Furthermore, for each ontologized file of the
plug-ins, an additional vom:hasError property is added. The value of the prop-
erty is either ’Yes’ or ’No’ depending on wether the file was mentioned in a bug
report from Bugzilla.

In the experiments in [3], six different models were trained using Weka’s J48
decision tree learner. The first model does not take into account any temporal
features whilst the second to fifth model all use a variation of different tem-
poral and non-temporal features for model induction. Finally, the sixth model
is a summary model that uses only those features that turned out to be most
significant/discriminant in the other models.

For each set of discriminating features, we created a CREATE MINING MODEL
query to induce a model using either a Relational Probability Tree or a Relational
Bayesian Classifier as prediction algorithm. Listing 1.10 shows the corresponding
SPARQL-ML query for inducing a model using only the most significant features
from [3]. For model induction, all the files of the plug-ins that were released
before January 31, 2007 are considered (lines 16–17). Variable ?file is the target
variable that is linked to variable ?error for which a prediction should be made
(either ’Yes’ or ’No’) expressing if the file is likely to be error-prone or not (lines
2 and 3). Finally, the induced model is available for predictions via its model
URI <http://www.example.org/bugssignificant>.

To test the model, we applied the predict query shown in Listing 1.11. The
query first selects the source code files for which a revision was made before
January 31, 2007 (line 6), and second, applies the previously induced model
to classify a file as either buggy or non-buggy (lines 24–32).22 The result of
the prediction and its probability are finally bound on line 25 to the variables
?prediction and ?probability. 23

Experimental Results. The results of the bug prediction experiments are
summarize in Figures 11 and 12 that illustrate the performance of the temporal

22 Note that every file we considered has at least one revision (i.e., for when it was
created/checked into CVS).

23 Furthermore note that the prediction query in Listing 1.11 is only shown for illustra-
tion purposes. This kind of query is useful to predict if a new, unseen file is likely to
be buggy or not. However, as we use the same set of files for training and testing, we
currently run a variation of the scripts proposed in [23] (pages 102–108) to perform
cross-validation.

<http://www.example.org/bugssignificant>

Inductive Reasoning Methods for the Semantic Web 495

1 	��
� ������ ����� <http:// www .example.org/bugs >

2 { ?file ������	�
���

3 ?error ���	��
� �����	

4 {’YES ’,’NO’}

5 ?lineAddedIRLAdd 	��
������

6 ?lineDeletedIRLDel 	��
������

7 ?revision1Month 	��
������

8 ?defectAppearance1Month 	��
������

9 ?revision2Months 	��
������

10 ?reportedIssues3Months 	��
������

11 ?reportedIssues5Months 	��
������

12 }

13 �����

14 { ?file vom :hasRevision ?revision .

15 ?revision vom :creationTime ?creation .

16 ���
�� (xsd:dateTime (? creation)

17 <= "2007 -01 -31 T00 :00:00"^^xsd:dateTime)

18

19 ?file vom:hasError ?error .

20

21 ��
���� { ?file vom:lineAddedIRLAdd

22 ?lineAddedIRLAdd . }

23 ��
���� { ?file vom:lineDeletedIRLDel

24 ?lineDeletedIRLDel . }

25 ��
���� { ?file vom:revision1Month

26 ?revision1Month . }

27 ��
���� { ?file vom:defectAppearance1Month

28 ?defectAppearance1Month . }

29 ��
���� { ?file vom:revision2Months

30 ?revision2Months . }

31 ��
���� { ?file vom:reportedIssues3Months

32 ?reportedIssues3Months . }

33 ��
���� { ?file vom:reportedIssues5Months

34 ?reportedIssues5Months . }

35 }

36 ����� <http:// kdl.cs.umass.edu/proximity /rpt >

Listing 1.10. SPARQL-ML CREATE MINING MODEL query to induce a model using the
most significant code features from [3]

and non-temporal feature models using RPTs and RBCs. The results are again
presented in terms of prediction accuracy (acc; in legend), Receiver Operating
Characteristics (ROC; graphed), and the area under the ROC curve (auc; also
in legend).

Figures 11 and 12 show the performance of the best model from [3] as a
baseline (the black line with bullet points; acc = 0.992, auc = 0.925). This is the
model that was trained with only the most significant/discriminating features.
As can be seen, the best SRL model is the RBC model induced on the 3-months
features (auc = 0.977), closely followed by the RPT model on only the most
significant features from [3] (auc = 0.972). It can be observed, that with the
exception of the RPT model for the most significant features, all the RBC models
slightly outperform the RPT models in terms of area under the curve. Examining
accuracy, the RPT models, on the other hand, outperform the RBC models.

Furthermore, is is interesting to observe that all but the models trained on the
1-month features outperform the traditional, propositional learning approach of
[3] in terms of area under the curve. For both the RPT and RBC algorithm,
the 1-month model shows the worst performance compared with the baseline
as well as with the rest of the temporal/non-temporal feature models. This is
contrary to the findings of [3] where the 1-month model was second best in terms
of accuracy and at third position for auc.

496 C. Kiefer and A. Bernstein

1 ����	
 ���
��	
 ?file ? prediction ?probability

2 �����

3 { ?file vom :hasRevision ?revision .

4 ?revision vom :creationTime ?creation .

5

6 ���
�� (xsd:dateTime (?creation)

7 <= "2007 -01 -31 T00 :00:00"^^xsd:dateTime)

8

9 ��
���� { ?file vom:lineAddedIRLAdd

10 ?lineAddedIRLAdd . }

11 ��
���� { ?file vom:lineDeletedIRLDel

12 ?lineDeletedIRLDel . }

13 ��
���� { ?file vom:revision1Month

14 ?revision1Month . }

15 ��
���� { ?file vom:defectAppearance1Month

16 ?defectAppearance1Month . }

17 ��
���� { ?file vom:revision2Months

18 ?revision2Months . }

19 ��
���� { ?file vom:reportedIssues3Months

20 ?reportedIssues3Months . }

21 ��
���� { ?file vom:reportedIssues5Months

22 ?reportedIssues5Months . }

23

24 �����	

25 { (?prediction ? probability)

26 sml:predict

27 (<http:// www .example.org/bugs >

28 ?file ? lineAddedIRLAdd ? lineDeletedIRLDel

29 ?revision1Month ? defectAppearance1Month

30 ?revision2Months ?reportedIssues3Months

31 ?reportedIssues5Months) .

32 }

33 }

Listing 1.11. SPARQL-ML predict query to classify a source code file as either buggy
or non-buggy

The traditional model is, however, better in terms of prediction/classification
accuracy (acc = 0.992). Note that the use of accuracy as a measure for the quality
of the prediction is, however, misleading as it does not relate the prediction to the
prior probability of the classes (i.e., ’Yes’/’No’ for the value of vom:hasError).
As pointed out in [3], this is especially problematic in datasets which are heavily
skewed (i.e., that have a distribution of values far from being normal). As shown
by the authors, the bug prediction dataset is indeed heavily skewed with a total
number of 3691 non-buggy and 14 buggy classes. Hence, as mentioned earlier, the
ROC curves and the area under the curve are more meaningful measures as they
provide a prior-independent approach for comparing the quality of predictors.

Last but not least, note that the best performing RPT/RBC models (significant
features for RPT, 3-months features for RBC) also have the highest prediction/-
classification accuracy among the SRL models (acc = 0.985 and acc = 0.977).

5 Discussion and Limitations

We briefly discuss some of the limitations of our novel inductive reasoning ap-
proach. SPARQL-ML’s major drawback is the use of virtual triple patterns that
some might deem as conceptually problematic. However, in this work we regard
virtual triple patterns simply as part of the inferred knowledgebase; in other
words, the specification of a prediction function is akin to the specification of an
additional inferencing rule. Another limitation of the virtual triple pattern ap-
proach lies, of course, in the need for extending existing SPARQL query engines
with the necessary language statements.

Inductive Reasoning Methods for the Semantic Web 497

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no temp. features: acc = 0.961, auc = 0.933
1 month features: acc = 0.963, auc = 0.918

2 months features: acc = 0.976, auc = 0.929
3 months features: acc = 0.985, auc = 0.956
5 months features: acc = 0.961, auc = 0.933

significant features: acc = 0.985, auc = 0.972
[Bernstein et al., 2007a]: acc = 0.992, auc = 0.925

random

Fig. 11. ROC curves for all of the temporal and non-temporal models of the bug
prediction experiments using RPTs. The model induced on the most significant features
reported in [3] outperforms the baseline (black line) as well as all the other RPT models
in terms of area under the curve.

Regarding semantic service classification, the performance of the prediction/-
classification task might heavily depend on the expressiveness of the used on-
tologies. The Semantic Web services used in our experiments define their I/O
concepts using extensive (i.e., deep) ontologies (e.g., the portal.owl and travel.owl
ontologies), which enables to derive extensive, additional knowledge about the
I/Os. Using ontologies with flatter inheritance structures will, therefore, likely
result in inferior results. We note, however, that this performance loss is a limita-
tion of the used ontologies and not of the SRL algorithms themselves. Therefore,
we speculate that the loss could be eliminated by using more comprehensive
ontologies.

498 C. Kiefer and A. Bernstein

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no temp. features: acc = 0.929, auc = 0.939
1 month features: acc = 0.916, auc = 0.921

2 months features: acc = 0.925, auc = 0.936
3 months features: acc = 0.958, auc = 0.977
5 months features: acc = 0.945, auc = 0.939

significant features: acc = 0.951, auc = 0.940
[Bernstein et al., 2007a]: acc = 0.992, auc = 0.925

random

Fig. 12. ROC curves for all of the temporal and non-temporal models of the bug
prediction experiments using RBCs. The 3-months feature model outperforms all the
other models (including the baseline) in terms of area under curve.

Regarding our bug prediction experiments, we note as a technical limitation
that we are currently not able to perform cross-validation through the query
engine. Thus, if we want to use the same dataset for training and testing, we
currently have to use specialized scripts for making predictions and calculating
the performance measures.

6 Conclusions and Perspectives

In this paper, we have introduced our novel inductive reasoning extension to the
Semantic Web. This extension aims at complementing the classical deductive de-
scription logic reasoning facilities of the traditional Semantic Web infrastructure

Inductive Reasoning Methods for the Semantic Web 499

(i.e., it allows us to draw conclusions from the asserted facts in a knowledgebase
which are otherwise not deducible by the classical approaches). Our extension is
tightly integrated with the RDF query language SPARQL, providing access to
the newly derived knowledge through the query engine. To that end, our exten-
sion exploits SPARQL virtual triple patterns that perform pattern matching by
calling a customized, external piece of code, rather than matching triple patterns
against an RDF graph.

To evaluate/validate our novel extension, we performed four sets of experi-
ments using synthetic and real-world datasets. In our first case study, we fully
analyzed SPARQL-ML on a synthetic dataset to show its excellent prediction/-
classification quality in a proof-of-concept setting. Secondly, we have shown the
benefits of Statistical Relational Learning (SRL) algorithms (particularly Rela-
tional Probability Trees) to perform Semantic Web service classification using a
well-known Semantic Web benchmarking dataset.

By enabling/disabling ontological inference support in our experiments, we
came to the conclusion that the combination of statistical inference with logical
deduction produces superior performance over statistical inference only. These
findings support our assumption that the interlinked Semantic Web data is a
perfect match for SRL methods due to their focus on relations between objects
(extrinsic attributes) in addition to features/attributes of objects of traditional,
propositional learning techniques (intrinsic attributes).

In our third set of experiments, we have shown SPARQL-ML’s superiority
to another related, kernel-based approach used in Support Vector Machines.
Finally, in the bug prediction case study, we have demonstrated, that inductive
reasoning enabled by our SPARQL-ML framework allows us to easily perform
bug prediction on semantically annotated software source code. Our empirical
findings suggest that SPARQL-ML is indeed able to predict bugs with a very
good accuracy, which, ultimately makes SPARQL-ML a suitable tool to help
improve the quality of software systems.

6.1 Future Work

Reasoning. The focus of this paper is clearly on the application and evalua-
tion of our inductive reasoning extension to complement the classical deductive
reasoning approaches of the current Semantic Web infrastructure (see Figure
13). There exist, however, yet different types of (human) reasoning as described
in [32], which were not addressed in this paper. These types are, for instance,
non-monotonic reasoning and temporal reasoning. Generally speaking, in a non-
monotonic reasoning system, additional/new information not considered when
drawing the original conclusions can change the reasonableness of these conclu-
sions [32]. In other words, the original correct conclusions are probably no longer
valid and have to be revised. On the other hand, in a temporal reasoning sys-
tem, the goal is to draw conclusions about the resources in the knowledgebase
depending on some notion of time.

Without going into the details of either concepts, we think that it would
make perfect sense to allow for non-monotonic and temporal reasoning facilities

500 C. Kiefer and A. Bernstein

KB: Asserted Triples

Extended KB: Asserted Triples + Derived Triples from (1)
+ Derived Triples from (2)

(= Virtual Triples)
+ Derived Triples from other approaches

Entailment

this paper future work

(1
) D

e
s

c
rip

tio
n

 L
o

g
ic

 R
e

a
s

o
n

in
g

N
o

n
-M

o
n

o
to

n
ic

 R
e

a
s

o
n

in
g

T
e

m
p

o
ra

l R
e

a
s

o
n

in
g

o
th

e
r a

p
p

ro
a

c
h

e
s

(2
) In

d
u

c
tiv

e
 R

e
a

s
o

n
in

g

Fig. 13. Possible future reasoning extensions to the Semantic Web—non-monotonic
reasoning and temporal reasoning

through the SPARQL query engine. This would allow us to derive even more
additional knowledge from the asserted facts in a knowledgebase which can nei-
ther be derived by the classical deductive nor our presented inductive reasoning
facilities.

Optimization. Another possible path for future work is optimization. Besides
the work achieved for SPARQL basic graph pattern optimization through selec-
tivity estimation (which we presented in [42] and [4]), we did not yet consider
SPARQL-ML optimization techniques.

Generally speaking, we suggest having a closer look at virtual triple pat-
tern optimization. Optimization in this direction will probably be twofold: first,
the externally called functions need to be improved. For inductive reasoning,
this implies faster algorithms to make predictions. Second, and probably more
important, the query engine might need some modifications to perform query
evaluation including virtual triple patterns more efficiently. This is especially
important if our novel reasoning approach should be scalable and applicable to
datasets which are much larger than the ones used in this work (i.e., if it should
scale to the Web).

Algorithms, Datasets, and Tasks. We think that our approach’s applicability
to different validation tasks should be systematically investigated. An example

Inductive Reasoning Methods for the Semantic Web 501

of such a task that could substantially benefit from inductive reasoning is the
classification of semantically annotated, scientific publications (as presented in
the SwetoDBLP dataset).24

Moreover, future work should definitely evaluate the pros and cons of other
relational learning methods such as the ones proposed by NetKit25 or Alchemy.26

This would help to underline the usefulness of this kind of learning methods for
the Semantic Web.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpe-
dia: A Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mi-
zoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, Springer, Heidelberg (2007)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5) (May 2001)

3. Bernstein, A., Ekanayake, J., Pinzger, M.: Improving Defect Prediction Using Tem-
poral Features and Non-Linear Models. In: Proceedings of the 9th International
Workshop on Principles of Software Evolution (IWPSE), pp. 11–18. ACM Press,
New York (2007)

4. Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: A SPARQL Optimization Ap-
proach based on Triple Pattern Selectivity Estimation. Tech. Rep. IFI-2007.02,
Department of Informatics, University of Zurich (2007)

5. Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web.
In: Proceedings of the Demonstrations Track of the 4th European Semantic Web
Conference, ESWC (2007)

6. Bloehdorn, S., Sure, Y.: Kernel Methods for Mining Instance Data in Ontologies.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Gol-
beck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer,
Heidelberg (2007)

7. Bloehdorn, S., Sure, Y.: Kernel Methods for Mining Instance Data in Ontologies.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Gol-
beck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P.
(eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidel-
berg (2007)

8. Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: A Struc-
tural Data Model for Objects. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 58–67. ACM, New York (1989)

9. Broekstra, J., Kampman, A.: SeRQL: A Second Generation RDF Query Language.
In: Proceedings of the SWAD-Europe Workshop on Semantic Web Storage and
Retrieval (2003)

10. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM 13(6), 377–387 (1970)

24 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
25 http://www.research.rutgers.edu/~sofmac/NetKit.html
26 http://alchemy.cs.washington.edu/

http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
http://www.research.rutgers.edu/~sofmac/NetKit.html
http://alchemy.cs.washington.edu/

502 C. Kiefer and A. Bernstein

11. Cyganiak, R.: A relational algebra for SPARQL. Tech. Rep. HPL-2005-170,
Hewlett-Packard Laboratories, Bristol (2005)

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clus-
ters. Commun. ACM 51, 107–113 (2008), http://doi.acm.org/10.1145/1327452.
1327492

13. Džeroski, S.: Multi-Relational Data Mining: An Introduction. ACM SIGKDD Ex-
plorations Newsletter 5(1), 1–16 (2003)

14. Edwards, P., Grimnes, G.A., Preece, A.: An Empirical Investigation of Learning
from the Semantic Web. In: Proceedings of the Semantic Web Mining Workshop
(SWM) co-located with 13th European Conference on Machine Learning (ECML)
and the 6th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD), pp. 71–89 (2002)

15. Fenton, N.E., Neil, M.: A Critique of Software Defect Prediction Models. IEEE
Transactions on Software Engineering 25(5), 675–689 (1999)

16. Getoor, L., Licamele, L.: Link Mining for the Semantic Web. In: Dagstuhl Seminar
(2005)

17. Gilardoni, L., Biasuzzi, C., Ferraro, M., Fonti, R., Slavazza, P.: Machine Learning
for the Semantic Web: Putting the user into the cycle. In: Dagstuhl Seminar (2005)

18. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal Human-Computer Studies 43(5-6), 907–928 (1995)

19. Hartmann, J., Sure, Y.: A Knowledge Discovery Workbench for the Semantic Web.
In: International Workshop on Mining for and from the Semantic Web (MSW), pp.
62–67 (2004)

20. Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web
Services. In: Proceedings of the Workshop Towards Dynamic Business Integration
co-located with the 14th International World Wide Web Conference, WWW (2005)

21. Heß, A., Johnston, E., Kushmerick, N.: Machine Learning for Annotating Semantic
Web Services. In: Semantic Web Services: Papers from the 2004 AAAI Spring
Symposium Series. AAAI Press, Menlo Park (2004)

22. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

23. Jensen, D.: Proximity 4.3 Tutorial. Knowledge Discovery Laboratory, University of
Massachusetts Amherst (2007), tutorial, available at http://kdl.cs.umass.edu/

proximity/documentation.html
24. Joachims, T.: SVM light—Support Vector Machine (2004), software, available at

http://svmlight.joachims.org/
25. Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic Process Re-

trieval with iSPARQL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007.
LNCS, vol. 4519, pp. 609–623. Springer, Heidelberg (2007)

26. Kiefer, C., Bernstein, A., Locher, A.: Adding Data Mining Support to SPARQL
Via Statistical Relational Learning Methods (Best paper award!). In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 478–492. Springer, Heidelberg (2008)

27. Kiefer, C., Bernstein, A., Stocker, M.: The Fundamentals of iSPARQL: A Virtual
Triple Approach for Similarity-Based Semantic Web Tasks. In: Aberer, K., Choi,
K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P.,
Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007)

28. Kiefer, C., Bernstein, A., Tappolet, J.: Analyzing Software with iSPARQL. In:
Proceedings of the 3rd International Workshop on Semantic Web Enabled Software
Engineering, SWESE (2007)

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://kdl.cs.umass.edu/proximity/documentation.html
http://kdl.cs.umass.edu/proximity/documentation.html
http://svmlight.joachims.org/

Inductive Reasoning Methods for the Semantic Web 503

29. Kochut, K.J., Janik, M.: SPARQLeR: Extended Sparql for Semantic Association
Discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 145–159. Springer, Heidelberg (2007)

30. Lam, H.Y.K., Marenco, L., Clark, T., Gao, Y., Kinoshita, J., Shepherd, G., Miller,
P., Wu, E., Wong, G., Liu, N., Crasto, C., Morse, T., Stephens, S., Cheung, K.-H.:
AlzPharm: integration of neurodegeneration data using RDF. BMC Bioinformat-
ics 8(3) (2007)

31. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
the 2010 International Conference on Management of Data, SIGMOD 2010, pp.
135–146. ACM Press, New York (2010), http://doi.acm.org/10.1145/1807167.
1807184

32. Mohanan, K.P.: Types of Reasoning: Relativizing the Rational Force of Conclu-
sions. Academic Knowledge and Inquiry (2008), http://courses.nus.edu.sg/

course/ellkpmoh/critical/reason.pdf

33. Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning Relational Probability Trees.
In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 625–630. ACM, New York (2003)

34. Neville, J., Jensen, D., Gallagher, B.: Simple Estimators for Relational Bayesian
Classifiers. In: Proceedings of the 3rd IEEE International Conference on Data Mining
(ICDM), pp. 609–612. IEEE Computer Society Press, Washington, DC (2003)

35. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006)

36. Provost, F., Fawcett, T.: Robust Classification for Imprecise Environments. Ma-
chine Learning 42(3), 203–231 (2001)

37. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Tech. rep.,
W3C Recommendation, January 15 (2008),
http://www.w3.org/TR/rdf-sparql-query/

38. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136
(2006), http://portal.acm.org/citation.cfm?id=1113907.1113910

39. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (2003)

40. Sabou, M.: Learning Web Service Ontologies: Challenges, Achievements and Op-
portunities. In: Dagstuhl Seminar (2005)

41. Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE In-
telligent Systems 21(3), 96–101 (2006)

42. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Ba-
sic Graph Pattern Optimization Using Selectivity Estimation. In: Proceedings of
the 17th International World Wide Web Conference (WWW), pp. 595–604. ACM
Press, New York (2008)

43. Stutz, P., Bernstein, A., Cohen, W.: Signal/Collect: Graph Algorithms for the
(Semantic) Web. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 764–780. Springer, Heidelberg (2010)

44. Valiente, G.: Algorithms on Trees and Graphs. Springer, Heidelberg (2002)
45. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, San Francisco (2005)

http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://courses.nus.edu.sg/course/ellkpmoh/critical/reason.pdf
http://courses.nus.edu.sg/course/ellkpmoh/critical/reason.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://portal.acm.org/citation.cfm?id=1113907.1113910

Probabilistic-Logical Web Data Integration

Mathias Niepert, Jan Noessner, Christian Meilicke, and Heiner Stuckenschmidt

KR & KM Research Group,
University of Mannheim, B6 26, 68159 Mannheim, Germany

{mathias,jan,christian,heiner}@informatik.uni-mannheim.de

Abstract. The integration of both distributed schemas and data repos-
itories is a major challenge in data and knowledge management applica-
tions. Instances of this problem range from mapping database schemas
to object reconciliation in the linked open data cloud. We present a novel
approach to several important data integration problems that combines
logical and probabilistic reasoning. We first provide a brief overview of
some of the basic formalisms such as description logics and Markov logic
that are used in the framework. We then describe the representation of
the different integration problems in the probabilistic-logical framework
and discuss efficient inference algorithms. For each of the applications,
we conducted extensive experiments on standard data integration and
matching benchmarks to evaluate the efficiency and performance of the
approach. The positive results of the evaluation are quite promising and
the flexibility of the framework makes it easily adaptable to other real-
world data integration problems.

1 Introduction

The growing number of heterogeneous knowledge bases on the web has made data
integration systems a key technology for sharing and accumulating distributed
data and knowledge repositories. In this paper, we focus on (a) the problem of
aligning description logic ontologies and (b) the problem of object reconciliation
in open linked datasets1.

Ontology matching, or ontology alignment, is the problem of determining
correspondences between concepts, properties, and individuals of two or more
different formal ontologies [12]. The alignment of ontologies allows semantic ap-
plications to exchange and enrich the data expressed in the respective ontolo-
gies. An important results of the yearly ontology alignment evaluation initiative
(OAEI) [11,13] is that there is no single best approach to all existing matching
problems. The factors influencing the quality of alignments range from differences
in lexical similarity measures to variations in alignment extraction approaches.
This insight provides justification not only for the OAEI itself but also for the

1 The present chapter provides a more didactical exposition of the principles and
methods presented in a series of papers of the same authors published in several
conferences such as AAAI, UAI, and ESWC.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, pp. 504–533, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Probabilistic-Logical Web Data Integration 505

development of a framework that facilitates the comparison of different strate-
gies with a flexible and declarative formalism. We argue that Markov logic [39]
provides and excellent framework for ontology matching. Markov logic (ML) of-
fers several advantages over existing matching approaches. Its main strength is
rooted in the ability to combine soft and hard first-order formulas. This allows
the inclusion of both known logical and uncertain statements modeling potential
correspondences and structural properties of the ontologies. For instance, hard
formulas can help to reduce incoherence during the alignment process while soft
formulas can factor in lexical similarity values computed for each correspon-
dence. An additional advantage of ML is joint inference, that is, the inference
of two or more interdependent hidden predicates. Several results show that joint
inference is superior in accuracy when applied to a wide range of problems such
as ontology refinement [53] and multilingual semantic role labeling [32].

Identifying different representations of the same data item is called object
reconciliation. The problem of object reconciliation has been a topic of research
for more than 50 years. It is also known as record linkage [14], entity resolu-
tion [3], and instance matching [15]. While the majority of the existing methods
were developed for the task of matching database records, modern approaches
focus mostly on graph-based data representations such as the resource descrip-
tion framework (RDF). Using the proposed Markov logic based framework for
data integration, we leverage schema information to exclude logically inconsis-
tent correspondences between objects improving the overall accuracy of instance
alignments. In particular, we use logical reasoning and linear optimization tech-
niques to compute the overlap of derivable types of objects. This information
is combined with the classical similarity-based approach, resulting in a novel
approach to object reconciliation that is more accurate than state-of-the-art
alignment systems.

We demonstrate how description logic axioms are modeled within the frame-
work and show that alignment problems can be posed as linear optimization
problems. These problems can be efficiently solved with integer linear program-
ming methods also leveraging recent meta-algorithms such as cutting plane in-
ference and delayed column generation first proposed in the context of Markov
logic.

The chapter is organized as follows. First, we briefly introduce some basic
formalism such as description logics and Markov logic. Second, we define ontology
matching and object reconciliation and introduce detailed running examples
that we use throughout the chapter to facilitate a deeper understanding of the
ideas and methods. We also introduce the syntax and semantics of the ML
framework and show that it can represent numerous different matching scenarios.
We describe probabilistic reasoning in the framework of Markov logic and show
that a solution to a given matching problem can be obtained by solving the
maximum a-posteriori (MAP) problem of a ground Markov logic network using
integer linear programming. We then report the results of an empirical evaluation
of our method using some of the OAEI benchmark datasets.

506 M. Niepert et al.

2 Data Integration on the Web

The integration of distributed information sources is a key challenge in data
and knowledge management applications. Instances of this problem range from
mapping schemas of heterogeneous databases to object reconciliation in linked
open data repositories. In the following, we discuss two instances of the data in-
tegration problem: ontology matching and object reconciliation. Both problems
have been in the focus of the semantic web community in recent years. We inves-
tigate and assess the applicability and performance of our probabilistic-logical
approach to data integration using these two prominent problems. In order to
make the article comprehensive, however, we first briefly cover description logics
and ontologies as these logical concepts are needed in later parts of the document.

2.1 Ontologies and Description Logics

An Ontology usually groups objects of the world that have certain properties
in common (e.g. cities or countries) into concepts. A specification of the shared
properties that characterize a set of objects is called a concept definition. Con-
cepts can be arranged into a subclass–superclass relation in order to further
discriminate objects into subgroups (e.g. capitals or European countries). Con-
cepts can be defined in two ways, by enumeration of its members or by a concept
expression. The specific logical operators that can be used to formulate concept
expressions can vary between ontology languages.

Description logics are decidable fragments of first order logic that are de-
signed to describe concepts in terms of complex logical expressions2 The basic
modeling elements in description logics are concepts (classes of objects), roles
(binary relations between objects) and individuals (named objects). Based on
these modeling elements, description logics contain operators for specifying so-
called concept expressions that can be used to specify necessary and sufficient
conditions for membership in the concept they describe. These modeling ele-
ments are provided with a formal semantics in terms of an abstract domain
interpretation mapping I mapping each instance onto an element of an abstract
domain ΔI . Instances can be connected by binary relations defined as subsets
of ΔI × ΔI . Concepts are interpreted as a subset of the abstract domain Δ.
Intuitively, a concept is a set of instances that share certain properties. These
properties are defined in terms of concept expressions. Typical operators are
the Boolean operators as well as universal and existential quantification over
relations to instances in other concepts.

A description logic knowledge base consists of two parts. The A-box contains
information about objects, their type and relations between them, the so-called
T-Box consists of a set of axioms about concepts (potentially defined in terms of
complex concept expressions and relations. The first type of axioms can be used
to describe instances. In particular, axioms can be used to state that an instance

2 Details about the relation between description logics and first-order logic can be
found in [4] and [51].

Probabilistic-Logical Web Data Integration 507

Table 1. Axiom patterns for representing description logic ontologies

DL Axiom Semantics Intuition

A-Box

C(x) xI ∈ CI x is of type C

r(x, y) (xI , yI) ∈ rI x is related to y by r

T-Box

C � D CI ⊆ DI C is more specific than D

C 	 D � ⊥ CI ∩ DI = ∅ C and D are disjoint

r � s rI ⊆ sI r is more specific than s

r ≡ s− rI = {(x, y)|(y, x) ∈ sI} r is the inverse of s

∃r.� � C (xI , yI) ∈ rI ⇒ xI ∈ CI the domain of r is restricted to C

∃r−1.� � C (xI , yI) ∈ rI ⇒ yI ∈ CI the range of r is restricted to C

belongs to a concept or that two instances are in a certain relation. It is easy to
see, that these axioms can be used to capture case descriptions as labeled graphs.
The other types of axioms describe relations between concepts and instances. It
can be stated that one concept is a subconcept of the other (all its instances are
also instances of this other concept). Further, we can define a relation to be a
subrelation or the inverse of another relation. The formal semantics of concepts
and relations as defined by the interpretation into the abstract domain ΔI can
be used to automatically infer new axioms from existing definitions. Table 1 lists
a few examples of DL axioms, their semantics, and the intuition behind them.

Encoding ontologies in description logics is beneficial, because it enables infer-
ence engines to reason about ontological definitions. In this context, deciding sub-
sumption between two concept expressions, i.e. deciding whether one expression
is more general than the other one is one of the most important reasoning tasks as
it has been used to support various tasks including information integration [47],
product and service matching [27] and query answering over ontologies [2].

2.2 Ontology Matching

Ontology matching is the process of detecting links between entities in heteroge-
neous ontologies. Based on a definition by Euzenat and Shvaiko [12], we formally
introduce the notion of correspondence and alignment to refer to these links.

Definition 1 (Correspondence and Alignment). Given ontologies O1 and
O2, let q be a function that defines sets of matchable entities q (O1) and q (O2). A
correspondence between O1 and O2 is a triple 〈3, e1, e2〉 r such that e1 ∈ q (O1),
e2 ∈ q (O2), and r is a semantic relation. An alignment between O1 and O2 is a
set of correspondences between O1 and O2.

The generic form of Definition 1 captures a wide range of correspondences by
varying what is admissible as matchable element and semantic relation. In the

508 M. Niepert et al.

1

O2

Reviewer PaperReview Submission

hasWritten

Person Document

Author Paper Review

writtenBy

Agent Documents

O concept

property

subsumption

disjointness

a1 b1

c1 d1 e1

a2 b2

c2 d2 e2

p
1

p
2

Fig. 1. Example ontology fragments

context of ontology matching, we are only interested in equivalence correspon-
dences between concepts and properties. In the first step of the alignment process
most matching systems compute a-priori similarities between matching candi-
dates. These values are typically refined in later phases of the matching process.
The underlying assumption is that the degree of similarity is indicative of the
likelihood that two entities are equivalent. Given two matchable entities e1 and
e2 we write σ(e1, e2) to refer to this kind of a-priori similarity. Before presenting
the formal matching framework, we motivate the approach by a simple instance
of an ontology matching problem which we use as a running example.

Example 1. Figure 1 depicts fragments of two ontologies describing the domain
of scientific conferences. The following axioms are part of ontology O1 and O2,
respectively. If we apply a similarity measure σ based on the Levenshtein dis-
tance [26] there are four pairs of entities such that σ(e1, e2) > 0.5.

σ(Document, Documents) = 0.88 (1)
σ(Reviewer, Review) = 0.75 (2)

σ(hasWritten, writtenBy) = 0.7 (3)
σ(PaperReview, Review) = 0.54 (4)

The alignment consisting of these four correspondences contains two correct (1
& 4) and two incorrect (2 & 3) correspondences resulting in a precision of 50%.

Probabilistic-Logical Web Data Integration 509

Table 2. Discription logics axioms in the ontology of Figure 1

Ontology O1 Ontology O2

∃hasWritten � Reviewer ∃writtenBy � Paper

PaperReview � Document Review � Documents

Reviewer � Person Paper � Documents

Submission � Document Author � Agent

Document � ¬Person Paper � ¬Review

2.3 Object Reconciliation

The problem of object reconciliation has been a topic of research for more than
50 years. It is also known as the problem of record linkage [14], entity resolu-
tion [3], and instance matching [15]. While the majority of the existing methods
were developed for the task of matching database records, modern approaches fo-
cus mostly on graph-based data representations extended by additional schema
information. We discuss the problem of object reconciliation using the notion
of instance matching. This allows us to describe it within the well-established
ontology matching framework [12]. Ontology matching is the process of detect-
ing links between entities in different ontologies. These links are annotated by a
confidence value and a label describing the type of link. Such a link is referred
to as a correspondence and a set of such correspondences is referred to as an
alignment.

In the following we refer to an alignment that contains correspondences be-
tween concepts and properties as terminological alignment and to an alignment
that contains correspondences between individuals as instance alignment. Since
instance matching is the task of detecting pairs of instances that refer to the same
real world object [15], the semantic relation expressed by an instance correspon-
dence is that of identity. The confidence value of a correspondence quantifies
the degree of trust in the correctness of the statement. If a correspondence is
automatically generated by a matching system this value will be computed by
aggregating scores from multiple sources of evidence.

Example 2. An A-box is a set of membership statements of the following form:
C(a), P (a, b) where a,b are constants, C is a concept name and P is a property
name. Further, we extend the notion of an A-Box by also allowing membership
statements of the form ¬C(a) and ¬P (a, b) stating that object a is not a member
of Concept C and that the objects a and b are not in relation R, respectively.
We illustrate the problem of object reconciliation using the following example
A-Boxes and their corresponding graphs.

A-Boxes can be regarded as labeled directed multi-graphs, where object con-
stants are represented by nodes and binary relations between objects are rep-
resented by links labeled with the name of the corresponding relation. Object
reconciliation is the task of finding the ’right’ mapping between the nodes in dif-
ferent A-Box graphs. The basis for finding the right mapping between different

510 M. Niepert et al.

(a) Graph for A-Box A1

(b) Graph for A-Box A2

Fig. 2. Examples of A-Boxes

objects is typically based on a measure of similarity between the nodes that is
determined on the local or global structures in the corresponding graph. Typical
features for determining the similarity of two objects are:

– the similarity of their labels
– the similarity of the classes the objects belong to
– the similarity of relations and related objects

Based on these features, we would generate a priori similarities. For the example
we would receive high values for σ(a5, b4), σ(a1, b1), σ(a3, b3), σ(a3, b2), σ(a2, b5)
and σ(a4, b6). Besides the similarity between objects, in the case where the A-Box
is based on an ontology, the logical constraints from the ontologies should be taken
into account in the matching process. In particular, objects should not be maps
on each other if they have incompatible types. In the example this means that
assuming the underlying ontology contains a statement student⊥pupil declaring
the classes ’student’ and ’pupil’ as disjoint, the objects a3 and b3 should not be
mapped on each other, despite the high a priori similarity.

Probabilistic-Logical Web Data Integration 511

3 Probabilistic-Logical Languages and Ontologies

Data integration for heterogeneous knowledge bases typically involves both purely
logical and uncertain data. For instance, the description logic axioms of the on-
tologies are known to be true and, therefore, should be modeled as logical rules
– the alignment system should not alter the logical structure of the input on-
tologies. Conversely, matching systems usually rely on degrees of confidence that
have been derived through the application of lexical similarity, data mining, and
machine learning algorithms. The presence of both known logical rules and de-
grees of uncertainty requires formalism that allow the representation of both
deterministic and uncertain aspects of the problem. In the following, we intro-
duce such a probabilistic-logical framework based on Markov logic and show how
description logic ontologies are represented in the language. Moreover, we de-
scribe the application of an efficient probabilistic inference algorithm that uses
integer linear programming.

3.1 Markov Logic

Markov logic combines first-order logic and undirected probabilistic graphical
models [39]. A Markov logic network (MLN) is a set of first-order formulas with
weights. Intuitively, the more evidence we have that a formula is true the higher
the weight of this formula. To simplify the presentation of the technical parts we
do not include functions. In addition, we assume that all (ground) formulas of a
Markov logic network are in clausal form and use the terms formula and clause
interchangeably.

Syntax. A signature is a triple S = (O, H, C) with O a finite set of observable
predicate symbols, H a finite set of hidden predicate symbols, and C a finite set
of constants. A Markov logic network (MLN) is a set of pairs {(Fi, wi)} with each
Fi being a function-free first-order formula built using predicates from O∪H and
each wi ∈ R a real-valued weight associated with formula Fi. We can represent
hard constraints using large weights.

Semantics. Let M = (Fi, wi) be a Markov logic network with signature S =
(O, H, C). A grounding of a first-order formula F is generated by substituting
each occurrence of every variable in F with constants in C. Existentially quan-
tified formulas are substituted by the disjunctions of their groundings over the
finite set of constants. A formula that does not contain any variables is ground.
A formula that consists of a single predicate is an atom. Note that Markov logic
makes several assumptions such as (a) different constants refer to different ob-
jects and (b) the only objects in the domain are those representable using the
constants [39]. A set of ground atoms is a possible world. We say that a possible
world W satisfies a formula F , and write W |= F , if F is true in W . Let GC

F be
the set of all possible groundings of formula F with respect to C. We say that
W satisfies GC

F , and write W |= GC
F , if F satisfies every formula in GC

F . Let W

512 M. Niepert et al.

be the set of all possible worlds with respect to S. Then, the probability of a
possible world W is given by

p(W) =
1
Z

exp

⎛
⎜⎝ ∑

(Fi,wi)

∑
G∈GC

Fi
: W |=G

wi

⎞
⎟⎠ .

Here, Z is a normalization constant. The score sW of a possible world W is the
sum of the weights of the ground formulas implied by W

sW =
∑

(Fi,wi)

∑
G∈GC

Fi
: W |=G

wi. (5)

We will see later that, in the data integration context, possible worlds corre-
spond to possible alignments. Hence, the problem of deriving the most probably
alignment given the evidence can be interpreted as finding the possible world W
with highest score.

3.2 Representing Ontologies and Alignments in Markov Logic

Our approach for data integration based on logics and probability is now based
on the idea of representing description logic ontologies as Markov logic networks
and utilizing the weights to incorporate similarity scores into the integration
process [34]. The most obvious way to represent a description logic ontology in
Markov logic would be to directly use the first-order translation of the ontology.
For instance, the axiom C � D would be written as ∀x C(x) ⇒ D(x). In
other words, the representation would simply map between concepts and unary
predicates and roles and binary predicates. However, we take a different approach
by mapping axioms to predicates and use constants to represent the classes and
relations in the ontology. Some typical axioms with their respective predicates
are the following:

C � D �→ sub(c, d)
C � D � ⊥ �→ dis(c, d)
∃r.T � C �→ dom(r, c)
∃r−1.T � C �→ range(r, c)

This way of representing description logic ontologies has the advantage that
we can model some basic inference rules and directly use them in the probabilistic
reasoning process. For example, we can model the transitivity of the subsumption
relation as

sub(x, y) ∧ sub(y, z) ⇒ sub(x, z)

and the fact that two classes that subsume each other cannot be disjoint at the
same time

¬sub(x, y) ∨ ¬dis(x, y)

While the use of such axioms in a Markov logic network does not guarantee
consistency and coherence of the results, they often cover the vast majority of

Probabilistic-Logical Web Data Integration 513

Table 3. The description logic EL++ without nominals and concrete domains

Name Syntax Semantics

top � ΔI

bottom ⊥ ∅
conjunction C 	 D CI ∩ DI

existential ∃r.C
{x ∈ ΔI |∃y ∈ ΔI :

restriction (x, y) ∈ rI ∧ y ∈ CI}
GCI C � D CI ⊆ DI

RI r1 ◦ ... ◦ rk � r rI1 ◦ ... ◦ rIk ⊆ rI

conflicts that can exist in an ontology, especially in cases where the ontology is
rather simple and does not contain a complex axiomatization.

For certain description logics, it is possible to completely capture the model
using the kind of translation described above. In particular, if an ontology can
be reduced to a normal form with a limited number of axiom types, we can
provide a complete translation based on this normal form. An example for such
a description logic is EL++, a light weight description logic that supports poly-
nomial time reasoning. Table 3 shows the types of axioms an EL++ Model can
be reduced to.

We can completely translation any EL++ model into a Markov Logic repre-
sentation using the following translation rules:

C1 � D �→ sub(c1, d)
C1 � C2 � D �→ int(c1, c2, d)
C1 � ∃r.C2 �→ rsup(c1, r, c2)
∃r.C1 � D �→ rsub(c1, r, d)
r � s �→ psub(r, s)
r1 ◦ r2 � r3 �→ pcom(r1, r2, r3)

In principle, such a complete translation is possible whenever there is a normal
form representation of a description logic that reduces the original model to a
finite number of axiom types that can be captured by a respective predicate in
the Markov logic network.

Finally, being interested in data integration, we often treat correspondences
between elements from different models separately although in principle they
could be represented by ordinary DL axioms. In particular, we often use the
following translation of correspondences to weighted ground predicates of the
Markov logic network

(e1, e2, R, c) �→ 〈mapR(e1, e2), c〉

where c is a a-priori confidence values.

514 M. Niepert et al.

3.3 MAP Inference and Integer Linear Programming

If we want to determine the most probable state of a MLN, we need to compute
the set of ground atoms of the hidden predicates that maximizes the probability
given both the ground atoms of observable predicates and all ground formulas.
This is an instance of MAP (maximum a-posteriori) inference in the ground
Markov logic network. Let O be the set of all ground atoms of observable pred-
icates and H be the set of all ground atoms of hidden predicates both with
respect to C. We make the closed world assumption with respect to the observ-
able predicates. Assume that we are given a set O′ ⊆ O of ground atoms of
observable predicates. In order to find the most probable state of the MLN we
have to compute

argmax
H′⊆H

∑
(Fi,wi)

∑
G∈GC

Fi
: O′∪H′|=G

wi.

Every H′ ⊆ H is called a state. It is the set of active ground atoms of hidden
predicates. Markov logic is by definition a declarative language, separating the
formulation of a problem instance from the algorithm used for probabilistic in-
ference. MAP inference in Markov logic networks is essentially equivalent to the
weighted MAX-SAT problem and, therefore, NP-hard. Integer linear program-
ming (ILP) is an effective method for solving exact MAP inference in undirected
graphical models [41,50] and specifically in Markov logic networks [40]. ILP is
concerned with optimizing a linear objective function over a finite number of
integer variables, subject to a set of linear constraints over these variables [43].
We omit the formal details of the ILP representation of a MAP problem and
refer the reader to [40].

Example 3. Consider a small instance of the ontology alignment problem which
involves both soft and hard formulas. ML was successfully applied to ontology
matching problems in earlier work [34]. Let O1 and O2 be the two ontologies
in Figure 3 with the (a-priori computed) string similarities between the concept
labels given in Table 4. Let S = (O, H, C) be the signature of a MLN M with
O = {sub1, sub2, dis1, dis2}, H = {map}, and C = {a1, b1, c1, a2, b2}. Here, the
observable predicates model the subsumption and disjointness relationships be-
tween concepts C in the two ontologies and map is the hidden predicate modeling
the sought-after matching correspondences. We also assume that the predicates
are typed meaning that, for instance, valid groundings of map(x, y) are those
with x ∈ {a1, b1, c1} and y ∈ {a2, b2}. Furthermore, let us assume that the MLN
M includes the following formula with weight w = 10.0:

∀x, x′, y, y′ : dis1(x, x′) ∧ sub2(y, y′) ⇒ (¬map(x, y) ∨ ¬map(x′, y′))

The formula makes those alignments less likely that match concepts x with
y and x′ with y′ if x is disjoint with x′ in the first ontology and y′ subsumes
y in the second. We also include cardinality formulas with weight 10.0 forcing
alignments to be one-to-one and functional:

Probabilistic-Logical Web Data Integration 515

1 O2O concept

subsumption

disjointness

a1 b1

c1

a2

b2

Fig. 3. Small fragments of two ontologies

Table 4. A-priori similarities between concept labels

a1 b1 c1

a2 0.95 0.25 0.12

b2 0.55 0.91 0.64

∀x, y, z : map(x, y) ∧ map(x, z) ⇒ y = z

∀x, y, z : map(x, y) ∧ map(z, y) ⇒ x = z

In addition, we add the formulas map(x, y) with weight σ(x, y) for all x ∈
{a1, b1, c1, d1} and y ∈ {a2, b2} where σ(x, y) is the label similarity from Table 4.
The observed ground atoms are sub1(c1, a1), dis1(a1, b1), dis1(b1, a1), dis1(b1, c1),
dis1(c1, b1) for ontology O1 and sub2(b2, a2) for ontology O2. This results in the
following relevant ground formulas for the coherence reducing constraint where
each observable predicates has been substituted with its observed value:

¬map(a1, b2) ∨ ¬map(b1, a2) (6)
¬map(b1, b2) ∨ ¬map(a1, a2) (7)
¬map(b1, b2) ∨ ¬map(c1, a2) (8)
¬map(c1, b2) ∨ ¬map(b1, a2) (9)

For instance, the ground formulas (2) is encoded in an ILP by introducing a new
binary variable y which is added to the objective function with coefficient 10.0
and, in addition, by introducing the following linear constraints enforcing the
value of y to be equivalent to the truth value of the formula:

−xa,b − y ≤ −1
−xb,a − y ≤ −1

xa,b + xb,a + y ≤ 2

The binary ILP variables xa,b and xb,a correspond to ground atoms map(a1, b2)
and map(b1, a2), respectively. The ILP for our small example includes 19 vari-
ables (columns) and 39 linear constraints (12 from the coherence and 27 from the

516 M. Niepert et al.

cardinality formulas) which we omit due to space considerations. The prepro-
cessing step of grounding only those clauses that can evaluate to false given the
current state of observable variables is similar to the approach presented in [44].
The ILP optimizations used for the inference procedures are not the focus of this
article and we refer the reader to [40] and [33] for the details. However, in the
following section we will show a typical matching formalization in Markov logic,
the resulting ground formulas, and the corresponding integer linear program.

4 Markov Logic and Ontology Matching

We provide a formalization of the ontology matching problem within the
probabilistic-logical framework. The presented approach has several advantages
over existing methods such as ease of experimentation, incoherence mitigation
during the alignment process, and the incorporation of a-priori confidence val-
ues. We show empirically that the approach is efficient and more accurate than
existing matchers on an established ontology alignment benchmark dataset.

4.1 Problem Representation

Given two ontologies O1 and O2 and an initial a-priori similarity σ we apply the
following formalization. First, we introduce observable predicates O to model
the structure of O1 and O2 with respect to both concepts and properties. For
the sake of simplicity we use uppercase letters D, E, R to refer to individual
concepts and properties in the ontologies and lowercase letters d, e, r to refer
to the corresponding constants in C. In particular, we add ground atoms of
observable predicates to Fh for i ∈ {1, 2} according to the following rules:

Oi |= D � E �→ subi(d, e)
Oi |= D � ¬E �→ disi(d, e)

Oi |= ∃R.
 � D �→ subd
i (r, d)

Oi |= ∃R−1.
 � D �→ subr
i (r, d)

Oi |= ∃R.
 $ D �→ supd
i (r, d)

Oi |= ∃R−1.
 $ D �→ supr
i (r, d)

Oi |= ∃R.
 � ¬D �→ disd
i (r, d)

Oi |= ∃R−1.
 � ¬D �→ disr
i (r, d)

The knowledge encoded in the ontologies is assumed to be true. Hence, the
ground atoms of observable predicates are added to the set of hard constraints
Fh, making them hold in every computed alignment. The hidden predicates
mapc and mapp, on the other hand, model the sought-after concept and property
correspondences, respectively. Given the state of the observable predicates, we
are interested in determining the state of the hidden predicates that maximize
the a-posteriori probability of the corresponding possible world. The ground

Probabilistic-Logical Web Data Integration 517

atoms of these hidden predicates are assigned the weights specified by the a-
priori similarity σ. The higher this value for a correspondence the more likely
the correspondence is correct a-priori. Hence, the following ground formulas are
added to Fs, the set of soft formulas:

(mapc(c, d), σ(C, D)) if C and D are concepts
(mapp(p, r), σ(P, R)) if P and R are properties

Notice that the distinction between mc and mp is required since we use typed
predicates and distinguish between the concept and property type.

Cardinality Constraints. A method often applied in real-world scenarios is
the selection of a functional one-to-one alignment [7]. Within the ML framework,
we can include a set of hard cardinality constraints, restricting the alignment
to be functional and one-to-one. In the following we write x, y, z to refer to
variables ranging over the appropriately typed constants and omit the universal
quantifiers.

mapc(x, y) ∧ mapc(x, z) ⇒ y = z

mapc(x, y) ∧ mapc(z, y) ⇒ x = z

Analogously, the same formulas can be included with hidden predicates mapp,
restricting the property alignment to be one-to-one and functional.

Coherence Constraints. Incoherence occurs when axioms in ontologies lead
to logical contradictions. Clearly, it is desirable to avoid incoherence during the
alignment process. Some methods of incoherence removal for ontology align-
ments were introduced in [30]. All existing approaches, however, remove corre-
spondences after the computation of the alignment. Within the ML framework
we can incorporate incoherence reducing constraints during the alignment pro-
cess for the first time. This is accomplished by adding formulas of the following
type to Fh, the set of hard formulas.

dis1(x, x′) ∧ sub2(x, x′) ⇒ ¬(mapc(x, y) ∧ mapc(x′, y′))

disd
1(x, x′) ∧ subd

2(y, y′) ⇒ ¬(mapp(x, y) ∧ mapc(x′, y′))

The second formula, for example, has the following purpose. Given properties
X, Y and concepts X ′, Y ′. Suppose that O1 |= ∃X.
 � ¬X ′ and O2 |= ∃Y.
 �
Y ′. Now, if 〈X, Y,≡〉 and 〈X ′, Y ′,≡〉 were both part of an alignment the merged
ontology would entail both ∃X.
 � X ′ and ∃X.
 � ¬X ′ and, therefore, ∃X.
 �
⊥. The specified formula prevents this type of incoherence. It is known that such
constraints, if carefully chosen, can avoid a majority of possible incoherences [29].

Stability Constraints. Several existing approaches to schema and ontology
matching propagate alignment evidence derived from structural relationships
between concepts and properties. These methods leverage the fact that existing

518 M. Niepert et al.

evidence for the equivalence of concepts C and D also makes it more likely that,
for example, child concepts of C and child concepts of D are equivalent. One
such approach to evidence propagation is similarity flooding [31]. As a reciprocal
idea, the general notion of stability was introduced, expressing that an alignment
should not introduce new structural knowledge [28]. The soft formula below, for
instance, decreases the probability of alignments that map concepts X to Y and
X ′ to Y ′ if X ′ subsumes X but Y ′ does not subsume Y .

〈sub1(x, x′) ∧ ¬sub2(y, y′) ⇒ mapc(x, y) ∧ mapc(x′, y′), w1〉
〈subd

1(x, x′) ∧ ¬subd
2(y, y′) ⇒ mapp(x, y) ∧ mapc(x′, y′), w2〉

Here, w1 and w2 are negative real-valued weights, rendering alignments that
satisfy the formulas possible but less likely.

The presented list of cardinality, coherence, and stability constraints is by
no means meant to be exhaustive. Other constraints could, for example, model
known correct correspondences or generalize the one-to-one alignment to m-
to-n alignments. Moreover, a novel hidden predicate could be added modeling
correspondences between instances of the ontologies. To keep the discussion of
the approach simple, however, we leave these considerations to future research.

Example 4. We apply the previous formalization to Example 1. To keep it sim-
ple, we only use a-priori values, cardinality, and coherence constraints. Given the
two ontologies O1 and O2 in Figure 1, and the matching hypotheses (1) to (4)
from Example 1, the ground MLN would include the following relevant ground
formulas. We use the concept and property labels from Figure 1 and omit ground
atoms of observable predicates.

A-priori similarity

〈mapc(b1, b2), 0.88〉, 〈mapc(c1, e2), 0.75〉, 〈mapp(p1, p2), 0.7〉, 〈mapc(d1, e2), 0.54〉

Cardinality constraints

mapc(c1, e2) ∧ mapc(d1, e2) ⇒ c1 = d1 (10)

Coherence constraints

disd
1(p1, b1) ∧ subd

2(p2, b2) ⇒ ¬(mapp(p1, p2) ∧ mapc(b1, b2)) (11)
dis1(b1, c1) ∧ sub2(b2, e2) ⇒ ¬(mapc(b1, b2) ∧ mapc(c1, e2)) (12)

subd
1(p1, c1) ∧ disd

2(p2, e2) ⇒ ¬(mapp(p1, p2) ∧ mapc(c1, e2)) (13)

Let the binary ILP variables x1, x2, x3, and x4 model the ground atoms
mapc(b1, b2), mapc(c1, e2), mapp(p1, p2), and mapc(d1, e2), respectively. The set
of ground formulas is then encoded in the following integer linear program:

Maximize: 0.88x1 + 0.75x2 + 0.7x3 + 0.54x4

Probabilistic-Logical Web Data Integration 519

Subject to
x2 + x4 ≤ 1 (14)
x1 + x3 ≤ 1 (15)
x1 + x2 ≤ 1 (16)
x2 + x3 ≤ 1 (17)

The a-priori confidence values of the potential correspondences are factored
in as coefficients of the objective function. Here, the ILP constraint (9) cor-
responds to ground formula (5), and ILP constraints (10),(11), and (12) cor-
respond to the coherence ground formulas (6), (7), and (8), respectively. An
optimal solution to the ILP consists of the variables x1 and x4 corresponding to
the correct alignment {mc(b1, b2), mc(d1, e2)}. Compare this with the alignment
{mapc(b1, b2), mapc(c1, e2), mapp(p1, p2)} which would be the outcome without
coherence constraints.

4.2 Experiments

We use the Ontofarm dataset [49] as basis for our experiments. It is the evalu-
ation dataset for the OAEI conference track which consists of several ontologies
modeling the domain of scientific conferences [11]. The ontologies were designed
by different groups and, therefore, reflect different conceptualizations of the same
domain. Reference alignments for seven of these ontologies are made available by
the organizers. These 21 alignments contain correspondences between concepts
and properties including a reasonable number of non-trivial cases. For the a-
priori similarity σ we decided to use a standard lexical similarity measure. After
converting the concept and object property names to lowercase and removing
delimiters and stop-words, we applied a string similarity measure based on the
Levensthein distance. More sophisticated a-priori similarity measures could be
used but since we want to evaluate the benefits of the ML framework we strive
to avoid any bias related to custom-tailored similarity measures. We applied
the reasoner Pellet [45] to create the ground MLN formulation and used The-
Beast3 [40] to convert the MLN formulations to the corresponding ILP instances.
Finally, we applied the mixed integer programming solver SCIP4 to solve the ILP.
All experiments were conducted on a desktop PC with AMD Athlon Dual Core
Processor 5400B with 2.6GHz and 1GB RAM. The software as well as additional
experimental results are available at http://code.google.com/p/ml-match/.

The application of a threshold τ is a standard technique in ontology matching.
Correspondences that match entities with high similarity are accepted while
correspondences with a similarity less than τ are deemed incorrect. We evaluated
our approach with thresholds on the a-priori similarity measure σ ranging from
0.45 to 0.95. After applying the threshold τ we normalized the values to the
range [0.1, 1.0]. For each pair of ontologies we computed the F1-value, which is
the harmonic mean of precision and recall, and computed the mean of this value
over all 21 pairs of ontologies. We evaluated four different settings:
3 http://code.google.com/p/thebeast/
4 http://scip.zib.de/

520 M. Niepert et al.

– ca: The formulation includes only cardinality constraints.
– ca+co: The formulation includes only cardinality and coherence constraints.
– ca+co+sm: The formulation includes cardinality, coherence, and stability

constraint, and the weights of the stability constraints are determined man-
ually. Being able to set qualitative weights manually is crucial as training
data is often unavailable. The employed stability constraints consist of (1)
constraints that aim to guarantee the stability of the concept hierarchy, and
(2) constraints that deal with the relation between concepts and property
domain/range restrictions. We set the weights for the first group to −0.5 and
the weights for the second group to −0.25. This is based on the consider-
ation that subsumption axioms between concepts are specified by ontology
engineers more often than domain and range restriction of properties [10].
Thus, a pair of two correct correspondences will less often violate constraints
of the first type than constraints of the second type.

– ca+co+sl: The formulation also includes cardinality, coherence, and stabil-
ity constraint, but the weights of the stability constraints are learned with a
simple online learner using the perceptron rule. During learning we fixed the
a-priori weights and learned only the weights for the stability formulas. We
took 5 of the 7 ontologies and learned the weights on the 10 resulting pairs.
With these weights we computed the alignment and its F1-value for the re-
maining pair of ontologies. This was repeated for each of the 21 possible
combinations to determine the mean of the F1-values.

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

threshold

av
er

ag
e

F
1

m
ea

su
re

with cardinality, coherence, and stability constraints

only with cardinality and coherence constraints

only with cardinality constraints

AgreementMaker with optimal threshold

AgreementMaker with standard threshold

Fig. 4. F1-values for ca, ca+co, and ca+co+sm averaged over the 21 OAEI reference
alignments for thresholds ranging from 0.45 to 0.95. AgreementMaker was the best
performing system on the conference dataset of the latest ontology evaluation initiative
in 2009.

Probabilistic-Logical Web Data Integration 521

The lower the threshold the more complex the resulting ground MLN and the
more time is needed to solve the corresponding ILP. The average time needed
to compute one alignment was 61 seconds for τ = 0.45 and 0.5 seconds for
τ = 0.85. Figure 4 depicts the average F1-values for ca, ca+co, and ca+co+sm
compared to the average F1-values achieved by AgreementMaker [7], the best-
performing system in the OAEI conference track of 2009. These average F1-values
of AgreementMaker were obtained using two different thresholds. The first is the
default threshold of AgreementMaker and the second is the threshold at which
the average F1-value attains its maximum.

The inclusion of coherence constraints (ca+co) improves the average F1-
value of the alignments for low to moderate thresholds by up to 6% compared
to the ca setting. With increasing thresholds this effect becomes weaker and is
negligible for τ ≥ 0.9. This is the case because alignments generated with ca
for thresholds ≥ 0.9 contain only a small number of incorrect correspondences.
The addition of stability constraints (ca+co+sm) increases the quality of the
alignments again by up to 6% for low to moderate thresholds. In the optimal
configuration (ca+co+sl with τ = 0.85) we measured an average F1-value of
0.63 which is a 7% improvement compared to AgreementMaker’s 0.56. What is
more important to understand, however, is that our approach generates more
accurate results over a wide range of thresholds and is therefore more robust
to threshold estimation. This is advantageous since in most real-world matching
scenarios the estimation of appropriate thresholds is not possible. While the
ca setting generates F1-values > 0.57 for τ ≥ 0.75 the ca+co+sm setting
generates F1-values > 0.59 for τ ≥ 0.65. Even for τ = 0.45, usually considered
an inappropriate threshold choice, we measured an average F1-value of 0.51
and average precision and recall values of 0.48 and 0.60, respectively. Table 5
compares the average F1-values of the ML formulation (a) with manually set
weights for the stability constraints, (b) with learned weights for the stability
constraints, and (c) without any stability constraints. The values indicate that
using stability constraints improves alignment quality with both learned and
manually set weights.

Table 5. Average F1-values over the 21 OAEI reference alignments for manual weights
(ca+co+sm) vs. learned weights (ca+co+sl) vs. formulation without stability con-
straints (ca+co); thresholds range from 0.6 to 0.95.

threshold 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

ca+co+sm 0.56 0.59 0.60 0.61 0.62 0.63 0.62 0.62

ca+co+sl 0.57 0.58 0.58 0.61 0.61 0.61 0.63 0.62

ca+co 0.54 0.56 0.58 0.59 0.61 0.62 0.62 0.61

5 Markov Logic and Object Reconciliation

We are primarily concerned with the scenario where both A-Boxes are described
in terms of the same T-Box. The presented approach does not rely on specific

522 M. Niepert et al.

types of axioms or a set of predefined rules but on a well defined semantic simi-
larity measure. In particular, our approach is based on the measure proposed by
Stuckenschmidt [48]. This measure has originally been designed to quantify the
similarity between two ontologies that describe the same set of objects. We apply
a modified variant of this measure to evaluate the similarity of two A-Boxes de-
scribed in terms of the same T-Box. Furthermore, our method factors in a-priori
confidence values that quantify the degree of trust one has in the correctness of
the object correspondences based on lexical properties. The resulting similarity
measure is used to determine an instance alignment that induces the highest
agreement of object assertions in A1 and A2 with respect to T .

5.1 Problem Representation

The current instance matching configuration leverages terminological structure
and combines it with lexical similarity measures. The approach is presented in
more detail in [37]. The alignment system uses one T-Box T but two different
A-Boxes A1 ∈ O1 and A2 ∈ O2. In cases with two different T-Boxes the T-Box
matching approach is applied as a preprocessing step to merge the two aligned
T-Boxes first. The approach offers complete conflict elimination meaning that
the resulting alignment is always consistent for OWL DL ontologies. To enforce
consistency, we need to add constraints to model conflicts, that is, we have to
prevent an equivalence correspondence between two individuals if there exists
a positive class assertion for the first individual and a negative for the second
for the same class. These constraints are incorporated for both property and
concept assertions. Analogous to the concept and property alignment before,
we introduce the hidden predicate mapi representing instance correspondences.
Let C be a concept and P be a property of T-Box T . Further, let A ∈ A1 and
B ∈ A2 be individuals in the respective A-Boxes. Then, using a reasoner such
as Pellet, ground atoms are added to the set of hard constraints Fh according
to the following rules:

T ∪ A1 |= C(A) ∧ T ∪ A2 |= ¬C(B) �→ ¬mapi(a, b)
T ∪ A1 |= ¬C(A) ∧ T ∪ A2 |= C(B) �→ ¬mapi(a, b)
T ∪ A1 |= P (A, A′) ∧ T ∪ A2 |= ¬P (B, B′) �→ ¬mapi(a, b) ∨ ¬mapi(a′, b′)
T ∪ A1 |= ¬P (A, A′) ∧ T ∪ A2 |= P (B, B′) �→ ¬mapi(a, b) ∨ ¬mapi(a′, b′)

In addition to these formulas we included cardinality constraints analogous
to those used in the previous concept and property alignment problem. In the
instance matching formulation, the a-priori similarity σc and σp measures the
normalized overlap of concept and property assertions, respectively. For more
details on these measures, we refer the reader to [37]. The following formulas are
added to the set of soft formulas Fs:

〈mapi(a, b), σc(A, B)〉 if A and B are instances
〈mapi(a, b) ∧ mapi(c, d), σp(A, B, C, D)〉 if A, B, C, and D are instances

Probabilistic-Logical Web Data Integration 523

Algorithm 1. σ(entity1, entity2)
if entity1 and entity2 are either concepts or properties then

value ← 0
for all Values s1 of URI, labels, and OBOtoOWL constructs in entity1 do

for all Values s2 of URI, labels, and OBOtoOWL constructs in entity1 do
value ← Max(value, sim(s1, s2))

end for
end for
return value

end if
if entity1 and entity2 are individuals then

Map〈URI, double〉 similarities ← null
for all dataproperties dp1 of entity1 do

uri1 ← URI of dp1

for all dataproperties dp2 of entity2 do
if uri1 equals URI of dp2 then

value ← sim(valueofdp1, valueofdp2)
if uri1 is entailed in similarities then

update entry 〈uri1, old value〉 to 〈uri1, Minimum (old value+value, 1)〉
in similarities

else
add new entry pair 〈uri1, value〉 in similarities

end if
end if

end for
end for
return (sum of all values in similarities)/(length of similarities)

end if

5.2 Similarity Computation

Algorithm 1 was used for computing the a-priori similarity σ(entity1, entity2). In
the case of concept and property alignments, the a-priori similarity is computed
by taking the maximal similarity between the URIs, labels and OBO to OWL
constructs. In case of instance matching the algorithm goes through all data
properties and takes the average of the similarity scores.

5.3 Experiments

The IIMB benchmark is a semi-automatically generated benchmark for instance
matching. IIMB 2010 is created by extracting individuals from Freebase5, an
open knowledge base that contains information about 11 million real objects
including movies, books, TV shows, celebrities, locations, companies and more.
Data extraction has been performed using the query language JSON together
with the Freebase JAVA API6. From this large dataset, 29 concepts, 20 object
5 http://www.freebase.com/
6 http://code.google.com/p/freebase-java/

http://www.freebase.com/
http://code.google.com/p/freebase-java/

524 M. Niepert et al.

properties, 12 data properties and a fraction of their underlying data have been
chosen for the benchmark. The benchmark has been generated in a small version
consisting of 363 individuals and in a large version containing 1416 individuals,
respectively. Furthermore, the dataset consists of 80 different test cases divided
into 4 sets of 20 test cases each. These sets have been designed according to the
Semantic Web INstance Generation (SWING) approach presented in [16]. In the
following, we will explain the SWING approach and its different transformation
techniques resulting in the 80 different test cases in more detail.

Data acquisition techniques. SWING provides a set of techniques for the acqui-
sition of data from the repositories of linked data and their representation as a
reference OWL ABox. In SWING, we work on open repositories by addressing
two main problems featuring this kind of data sources. First, we support the eval-
uation designer in defining a subset of data by choosing both the data categories
of interest and the desired size of the benchmark. Second, in the data enrichment
activity, we add semantics to the data acquired. In particular, we adopt specific
ontology design patterns that drive the evaluation designer in defining a data
description scheme capable of supporting the simulation of a wide spectrum of
data heterogeneities. These techniques include

– adding super classes and super properties,
– converting attributes to class assertions,
– determining and adding new disjointness restrictions,
– enriching the ontology with additional inverse properties, and
– specifying additional domain and range restrictions.

Data transformation techniques. In the subsequent data transformation process
the TBox is unchanged, while the ABox is modified in several ways by generating
a set of new ABoxes, called test cases. Each test case is produced by transforming
the individual descriptions in the reference ABox in new individual descriptions
that are inserted in the test case at hand. The goal of transforming the original
individuals is twofold: on one hand, we provide a simulated situation where data
referred to the same objects are provided in different data sources; on the other
hand, we generate a number of datasets with a variable degree of data quality
and complexity.

The applied transformation techniques are categorized as followed:

– Data value transformation operations work on the concrete values of data
properties and their datatypes when available. The output is a new concrete
value. This category has been applied to the test cases 1-20 of the IIMB 2010
benchmark.

– Data structure transformation operations change the way data values are
connected to individuals in the original ontology graph and change the type
and number of properties associated with a given individual. They are im-
plemented in the transformations 21-40 of the IIMB 2010 benchmark.

– Data semantic transformation operations are based on the idea of changing
the way individuals are classified and described in the original ontology. This
category was utilized in test cases 41-60.

Probabilistic-Logical Web Data Integration 525

Table 6. Results for the OAEI IIMB track for the small (large) dataset

Transformations 0-20 21-40 41-60 61-80 overall

Precision 0.99 (0.98) 0.95 (0.94) 0.96 (0.99) 0.86 (0.86) 0.94 (0.95)
Recall 0.93 (0.87) 0.83 (0.79) 0.97 (0.99) 0.54 (0.53) 0.83 (0.80)
F1-value 0.96 (0.91) 0.88 (0.85) 0.97 (0.99) 0.65 (0.63) 0.87 (0.85)

– Combination This fourth set is obtained by combining together the three
kinds of transformations and constitute the last test cases 61-80 in IIMB.

Data evaluation techniques. Finally, in the data evaluation activity, we automat-
ically create a ground-truth in form of a reference alignment for each test case.
A reference alignment contains the correct correspondences (in some contexts
called “links”) between the individuals in the reference ABox and the corre-
sponding transformed individuals in the test case. These mappings are what an
instance matching application is expected to find between the original ABox and
the test case.

Results. The results of our approach on the IIMB 2010 benchmark are sum-
marized in Table 6. The first numbers are the results of the small IIMB dataset
containing 363 individuals, while the numbers in brackets represent our results
for the large IIMB benchmark consisting of 1416 individuals. When examining
the differences between the small and the large dataset, we notice that the values
are slightly better for the small dataset. The F1-values for the first category of
the large dataset decrease by 0.05 compared to the small one, for the second
category the disparity is 0.03, respectively. The third and forth category both
have 0.02 lower F1-values for the large dataset compared to the small one.

Since the large dataset is slightly more challenging, we report the results com-
pared to other matching systems over the large version. Figures 5 and 6 illustrate
the results for all of the participating matching systems at OAEI. Our object
reconciliation approach has been implemented in the combinatorial optimization
for data integration (CODI) system [36]. Besides our CODI matching applica-
tion, the systems ASMOV [22] and RiMOM [52] participated in this particular
track of the OAEI. ASMOV uses a weighted average of measurements of similar-
ity along different features of ontologies, and obtains a pre-alignment based on
these measurements. It then applies a process of semantic verification to reduce
the amount of semantic inconsistencies. RiMOM implements several different
matching strategies which are defined based on different ontological information.
For each individual matching task, RiMOM can automatically and dynamically
combine multiple strategies to generate a composed matching result.

Figure 5 compares the matching results with respect to precision, recall, and
F1-value. In the first category (data transformation) the ASMOV and the Ri-
MOM system having F1-values of 0.98 and 1.00 outperformed CODI’s F1-value
of 0.91. The reason for CODI’s worse performance in this category is due to
the näıve lexical similarity measures CODI applies as shown in Algorithm 1.

526 M. Niepert et al.

Fig. 5. Results for the large IIMB subtrack of the OAEI 2010

However, leveraging terminological structure for instance matching with Markov
logic, like described in Section 5, leads to a significant improvement of CODI
in the structure transformation category and the semantic transformation cat-
egory. Our results compared to the ones of the ASMOV system are 5 per-cent
higher in F1-value for the structure transformation category and 9 per-cent in
the semantic transformation category, respectively. The RiMOM system has 7
per-cent lower F1-values in both the structure and the transformation category.
In the last and most challenging category where all three transformation cate-
gories are combined, CODI achieved a F1-value of 0.63 outperforming RiMOM
(0.58) and ASMOV (0.48).

The precision and recall diagram in Figure 6 shows the aggregated values for
recall on the x-axis and precision on the y-axis. For recall values ranging from
0.0 up to 0.6 the CODI system has the highest precision values compared to
the ASMOV and RiMOM system. Only for recall values of 0.7 and higher, first
the precision values of RiMOM (for recall values between 0.7 and 0.9) and then
the precision values of ASMOV (for recall value 1.0) are higher.

Aggregated over all 80 test cases CODI reaches an F1-value of 0.87 which
is 5 per-cent higher than the result of ASMOV (F1-value of 0.82) and 3 per-
cent higher than RiMOM (F1-value of 0.84)7. In summary, it is evident that
utilizing the probabilistic-logical framework based on Markov logic for object
reconciliation outperforms state-of-the-art instance matching systems.

6 Related Work

There have been a number of approaches for extending description logics with
probabilistic information in the earlier days of description logics. Heinsohn [18]
was one of the first to propose a probabilistic notion of subsumption for the
logic ALC. Jaeger [21] investigated some general problems connected with the

7 We refer the reader to http://www.instancematching.org/oaei/imei2010/iimbl.

html for detailed results of every single test case and their aggregation.

http://www.instancematching.org/oaei/imei2010/iimbl.html
http://www.instancematching.org/oaei/imei2010/iimbl.html

Probabilistic-Logical Web Data Integration 527

Fig. 6. Precision/recall of tools participating in the IIMB subtrack

extension of T-Boxes and ABoxes with objective and subjective probabilities and
proposed a general method for reasoning with probabilistic information in terms
of probability intervals attached to description logic axioms. Recently, Giugno
and Lukasiewicz proposed a probabilistic extension of the logic SHOQ along the
lines sketched by Jaeger [17]. A major advantage of this approach is the inte-
grated treatment of probabilistic information about Conceptual and Instance
knowledge based on the use of nominals in terminological axioms that can be
used to model uncertain information about instances and relations. An alterna-
tive way of combining description logics with probabilistic information has been
proposed by Koller et al. [24]. In contrast to the approaches mentioned above,
the P-CLASSIC approach is not based on probability intervals. Instead it uses a
complete specification of the probability distribution in terms of a Bayesian net-
work which nodes correspond to concept expressions in the CLASSIC description
logic. Bayesian networks have also been used in connection with less expressive
logics such as TDL [55]. The approaches for encoding probabilities in concept
hierarchies using Bayesian networks described in the section preliminaries and
background can be seen as a simple special case of these approaches.

528 M. Niepert et al.

More recently proposals for combining the web ontology language OWL with
probabilistic information have been proposed. The first kind of approach im-
plements a loose coupling of the underlying semantics of OWL and probabilis-
tic models. In particular these approaches use OWL as a language for talking
about probabilistic models. An example of this approach is the work of Yang
and Calmet that propose a minimal OWL ontology for representing random
variables and dependencies between random variables with the corresponding
conditional probabilities [54]. This allows the user to write down probabilistic
models that correspond to Bayesian networks as instances of the OntoBayes
Ontology. The encoding of the model in OWL makes it possible to explicitly
link random variables to elements of an OWL ontology, a tighter integration on
the formal level, however, is missing. A similar approach is proposed by Costa
and Laskey. They propose the PR-OWL model which is an OWL ontology for
describing first order probabilistic models [5]. More specifically, the correspond-
ing ontology models Multi-Entity Bayesian networks [25] that define probability
distributions over first-order theories in a modular way. Similar to OntoBayes,
there is no formal integration of the two representation paradigms as OWL is
used for encoding the general structure of Multi-entity Bayesian networks on
the meta-level. The second kind of approaches actually aims at enriching OWL
ontologies with probabilistic information to support uncertain reasoning inside
OWL ontologies. These approaches are comparable with the work on probabilis-
tic extensions of description logics also presented in this section. A survey of the
existing work reveals, however, that approaches that directly address OWL as
an ontology language are less ambitious with respect to combining logical and
probabilistic semantics that the work in the DL area. An example is the work of
Holi and Hyvonnen [19] that describe a framework for representing uncertainty
in simple classification hierarchies using Bayesian networks. A slightly more ex-
pressive approach called BayesOWL is proposed by Ding and others [9]. They
also consider Boolean operators as well as disjointness and equivalence of OWL
classes and present an approach for constructing a Bayesian network from class
expressions over these constructs. An interesting feature of BayesOWL is some
existing work on learning and representing uncertain alignments between differ-
ent BayesOWL ontologies reported in [38]. An additional family of probabilistic
logics are log-linear description logics [35] which integrate lightweight description
logics and probabilistic log-linear models.

Probabilistic approaches to ontology matching based on undirected probabilis-
tic graphical models have recently produced competitive matching results [1].
There are numerous other non-probabilistic approaches to ontology matching
and to mention all of them would be beyond the scope of this article. We refer
the reader to the systems participating in the OAEI [13] which are described
in the respective papers. More prominent systems with a long history of OAEI
participation are Falcon [20], Aroma [8], ASMOV [23], and AgreementMaker [6].

The commonly applied methods for object reconciliation include structure
-based strategies as well as strategies to compute and aggregate value similarities.
Under the notion of instance matching, similarities between instance labels and

Probabilistic-Logical Web Data Integration 529

datatype properties are mostly used to compute confidence values for instance
correspondences. Examples of this are realized in the systems RiMOM [56] and
OKKAM [46]. Both systems particpated in the instance matching track of the
Ontology Alignment Evaluation in 2009. Additional refinements are related to
a distinction between different types of properties. The developers of RiMOM
manually distinguish between necessary and sufficient datatype properties. The
FBEM algorithm of the OKKAM project assigns higher weights to certain prop-
erties like names and IDs. In both cases, the employed methods focus on appropri-
ate techniques to interpret and aggregate similarity scores based on a comparison
of datatype property values. Another important source of evidence is the knowl-
edge encoded in the T-Box. RiMOM, for example, first generates a terminological
alignment between the T-Boxes T1 and T2 describing the A-Boxes A1 and A2, re-
spectively. This alignment is then used as a filter and only correspondences that
link instances of equivalent concepts are considered valid [56]. An object recon-
ciliation method applicable to our setting was proposed in [42] where the authors
combine logical with numerical methods. For logical reasons it is in some cases
possible to preclude that two instances refer to the same object while in other
cases the acceptance of one correspondence directly entails the acceptance of an-
other. The authors extend this approach by modeling some of these dependencies
into a similarity propagation framework. However, their approach requires a rich
schema and assumes that properties are defined to be functional and/or inverse
functional. Hence, the approach cannot be used effectively to exploit type infor-
mation based on a concept hierarchy and is therefore not applicable in many web
of data scenarios.

7 Conclusion

We introduced a declarative framework for web data integration based on Markov
logic capturing a wide range of matching strategies. Since these strategies are
expressed with a unified syntax and semantics we can isolate variations and
empirically evaluate their impact. While we focused only on a small subset of
possible alignment strategies the results are already quite promising. We have
also successfully learned weights for soft formulas within the framework. In cases
where training data is not available, weights set manually by experts still result
in improved alignment quality.

We have demonstrated that both ontology matching and object reconciliation
problems can be expressed in the framework. Due to the declarative nature of the
approach numerous algorithms can be applied to compute the final alignments.
Based on our experience, however, integer linear programming in combination
with cutting plane inference and delayed column generation strategies are espe-
cially suitable since they guarantee that the hard formulas are not violated. The
framework allows one to combine lexical a-priori similarities between matchable
entities with the terminological knowledge encoded in the ontology. We argued
that most state-of-the-art approaches for ontology and instance matching focus
solely on ways to compute lexical similarities. These approaches are sometimes

530 M. Niepert et al.

extended by a structural validation technique where class membership is used as
a matching filter. However, even though useful in some scenarios, these methods
are neither based on a well-defined theoretical framework nor generally applica-
ble without adjustment. Contrary to this, our approach is grounded in a coherent
theory and incorporates terminological knowledge during the matching process.
Our experiments show that the resulting method is flexible enough to cope with
difficult matching problems for which lexical similarity alone is not sufficient to
ensure high-quality alignments.

Acknowledgement. We thank Alfino Ferrara for providing us the IIMB bench-
mark and for the initiative at http://www.instancematching.org/.

References

1. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontol-
ogy matching. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1884–1889 (2009)

2. Bechhofer, S., Horrocks, I., Turi, D.: The OWL instance store: System description.
In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 177–181.
Springer, Heidelberg (2005)

3. Bhattacharya, I., Getoor, L.: Entity resolution in graphs. In: Mining Graph Data,
Wiley, Chichester (2006)

4. Borgida, A.: On the relative expressiveness of description logics and predicate log-
ics. Artificial Intelligence 82(1-2), 353–367 (1996)

5. Costa, P.C.G., Laskey, K.B.: Pr-owl: A framework for probabilistic ontologies. In:
Bennett, B., Fellbaum, C. (eds.) Proceedings of the International Conference on
Formal Ontology in Information Systems (FOIS). Frontiers in Artificial Intelligence
and Applications, pp. 237–249. IOS Press, Amsterdam (2006)

6. Cruz, I.F., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Antonelli, F.P., Keles,
U.C.: Using AgreementMaker to Align Ontologies for OAEI 2010. In: Proceedings
of the 5th Workshop on Ontology Matching (2010)

7. Cruz, I., Palandri, F., Antonelli, Stroe, C.: Efficient selection of mappings and
automatic quality-driven combination of matching methods. In: Proceedings of
the ISWC 2009 Workshop on Ontology Matching (2009)

8. David, J., Guillet, F., Briand, H.: Matching directories and OWL ontologies with
AROMA. In: Proceedings of the 15th Conference on Information and knowledge
management (2006)

9. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Bayesowl: Uncertainty modeling in se-
mantic web ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic
Web, Springer, Heidelberg (2006)

10. Ding, L., Finin, T.W.: Characterizing the semantic web on the web. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)

11. Euzenat, J., Hollink, A.F.L., Joslyn, C., Malaisé, V., Meilicke, C., Pane, A.N.J.,
Scharffe, F., Shvaiko, P., Spiliopoulos, V., Stuckenschmidt, H., Sváb-Zamazal, O.,
Svátek, V., dos Santos, C.T., Vouros, G.: Results of the ontology alignment eval-
uation initiative 2009. In: Proceedings of the ISWC 2009 workshop on Ontology
Matching (2009)

http://www.instancematching.org/

Probabilistic-Logical Web Data Integration 531

12. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
13. Euzenat, J., et al.: First Results of the Ontology Alignment Evaluation Initiative

2010. In: Proceedings of the 5th Workshop on Ontology Matching (2010)
14. Fellegi, I., Sunter, A.: A theory for record linkage. Journal of the American Statis-

tical Association 64(328), 1183–1210 (1969)
15. Ferrara, A., Lorusso, D., Montanelli, S., Varese, G.: Towards a Benchmark for

Instance Matching. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, Springer,
Heidelberg (2008)

16. Ferrara, A., Montanelli, S., Noessner, J., Stuckenschmidt, H.: Benchmarking
Matching Applications on the Semantic Web. In: The Semantic Web: Research
and Applications (2011)

17. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D)
for probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone, N.,
Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, p. 86. Springer, Heidelberg
(2002)

18. Heinsohn, J.: A hybrid approach for modeling uncertainty in terminological logics.
In: Kruse, R., Siegel, P. (eds.) ECSQAU 1991 and ECSQARU 1991. LNCS, vol. 548,
pp. 198–205. Springer, Heidelberg (1991)

19. Holi, M., Hyvönen, E.: Modeling uncertainty in semantic web taxonomies. In: Ma,
Z. (ed.) Soft Computing in Ontologies and Semantic Web, Springer, Heidelberg
(2006)

20. Hu, W., Chen, J., Cheng, G., Qu, Y.: ObjectCoref & Falcon-AO: Results for OAEI
2010. In: Proceedings of the 5th International Ontology Matching Workshop (2010)

21. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Doyle, J., Sande-
wall, E., Torasso, P. (eds.) Proceedings of the 4th International Conference on Prin-
ciples of Knowledge Representation and Reasoning, pp. 305–316. Morgan Kauf-
mann, San Francisco (1994)

22. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: ASMOV: Results for OAEI
2010. Ontology Matching, 126 (2010)

23. Jean-Marya, Y.R., Patrick Shironoshitaa, E., Kabuka, M.R.: Ontology matching
with semantic verification. Web Semantics 7(3) (2009)

24. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description
logic. In: Proceedings of the 14th AAAI Conference on Artificial Intelligence (AAAI
1997), pp. 390–397 (1997)

25. Laskey, K.B., Costa, P.C.G.: Of klingons and starships: Bayesian logic for the
23rd century. In: Proceedings of the 21st Conference in Uncertainty in Artificial
Intelligence, pp. 346–353. AUAI Press (2005)

26. Levenshtein, V.I.: Binary codes capable of correcting deletions and insertions and
reversals. In: Doklady Akademii Nauk SSSR, pp. 845–848 (1965)

27. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. International Journal of Electronic Commerce 8(4), 39 (2004)

28. Meilicke, C., Stuckenschmidt, H.: Analyzing mapping extraction approaches. In:
Proceedings of the Workshop on Ontology Matching, Busan, Korea (2007)

29. Meilicke, C., Stuckenschmidt, H.: An efficient method for computing alignment
diagnoses. In: Proceedings of the International Conference on Web Reasoning and
Rule Systems, Chantilly, Virginia, USA, pp. 182–196 (2009)

30. Meilicke, C., Tamilin, A., Stuckenschmidt, H.: Repairing ontology mappings. In:
Proceedings of the Conference on Artificial Intelligence, Vancouver, Canada, pp.
1408–1413 (2007)

532 M. Niepert et al.

31. Melnik, S., Garcia-Molina, H., Rahm., E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
ICDE, pp. 117–128 (2002)

32. Meza-Ruiz, I., Riedel, S.: Multilingual semantic role labelling with markov logic.
In: Proceedings of the Conference on Computational Natural Language Learning,
pp. 85–90 (2009)

33. Niepert, M.: A Delayed Column Generation Strategy for Exact k-Bounded MAP
Inference in Markov Logic Networks. In: Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (2010)

34. Niepert, M., Meilicke, C., Stuckenschmidt, H.: A Probabilistic-Logical Framework
for Ontology Matching. In: Proceedings of the 24th AAAI Conference on Artificial
Intelligence (2010)

35. Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-Linear Description Logics. In:
Proceedings of the International Joint Conference on Artificial Intelligence (2011)

36. Noessner, J., Niepert, M.: CODI: Combinatorial Optimization for Data
Integration–Results for OAEI 2010. In: Proceedings of the 5th Workshop on On-
tology Matching (2010)

37. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging Termino-
logical Structure for Object Reconciliation. In: The Semantic Web: Research and
Applications, pp. 334–348 (2010)

38. Pan, R., Ding, Z., Yu, Y., Peng, Y.: A bayesian network approach to ontology
mapping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 563–577. Springer, Heidelberg (2005)

39. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2)
(2006)

40. Riedel, S.: Improving the accuracy and efficiency of map inference for markov logic.
In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2008)

41. Roth, D., Yih, W.-t.: Integer linear programming inference for conditional random
fields. In: Proceedings of ICML, pp. 736–743 (2005)

42. Säıs, F., Pernelle, N., Rousset, M.-C.: Combining a logical and a numerical method
for data reconciliation. Journal on Data Semantics 12, 66–94 (2009)

43. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)

44. Shavlik, J., Natarajan, S.: Speeding up inference in markov logic networks by
preprocessing to reduce the size of the resulting grounded network. In: Proceedings
of the 21st International Joint Conference on Artifical intelligence, pp. 1951–1956
(2009)

45. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

46. Stoermer, H., Rassadko, N.: Results of OKKAM feature based entity matching
algorithm for instance matching contest of OAEI 2009. In: Proceedings of the
ISWC 2009 Workshop on Ontology Matching (2009)

47. Stuckenschmidt, H., van Harmelen, F.: Information Sharing on the Semantic Web.
Advanced Information and Knowledge Processing. Springer, Heidelberg (2005)

48. Stuckenschmidt, H.: A Semantic Similarity Measure for Ontology-Based Informa-
tion. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L.
(eds.) FQAS 2009. LNCS, vol. 5822, pp. 406–417. Springer, Heidelberg (2009)

49. Svab, O., Svatek, V., Berka, P., Rak, D., Tomasek, P.: Ontofarm: Towards an
experimental collection of parallel ontologies. In: Poster Track of ISWC, Galway,
Ireland (2005)

Probabilistic-Logical Web Data Integration 533

50. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured pre-
diction models: a large margin approach. In: Proceedings of ICML, pp. 896–903
(2005)

51. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using vampire to reason
with OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 471–485. Springer, Heidelberg (2004)

52. Wang, Z., Zhang, X., Hou, L., Zhao, Y., Li, J., Qi, Y., Tang, J.: RiMOM Results
for OAEI 2010. Ontology Matching, 195 (2010)

53. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:
Proceeding of the International World Wide Web Conference, pp. 635–644 (2008)

54. Yang, Y., Calmet, J.: Ontobayes: An ontology-driven uncertainty model. In: Pro-
ceedings of the International Conference on Computational Intelligence for Mod-
elling, Control and Automation and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce (CIMCA-IAWTIC 2005), pp. 457–463
(2005)

55. Yelland, P.M.: An alternative combination of bayesian networks and description
logics. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Proceedings of of the 7th
International Conference on Knowledge Representation (KR 2000), pp. 225–234.
Morgan Kaufman, San Francisco (2002)

56. Zhang, X., Zhong, Q., Shi, F., Li, J., Tang, J.: RiMOM results for OAEI 2009. In:
Proceedings of the ISWC 2009 workshop on ontology matching (2009)

An Introduction to Constraint Programming

and Combinatorial Optimisation

Barry O’Sullivan

Cork Constraint Computation Centre,
Department of Computer Science, University College Cork, Cork, Ireland

b.osullivan@4c.ucc.ie

Abstract. Computers play an increasingly important role in helping
individuals and industries make decisions. For example they can help in-
dividuals make decisions about which products to purchase or industries
make decisions about how best to manufacture these products. Con-
straint programming provides powerful support for decision-making; it
is able to search quickly through an enormous space of choices, and in-
fer the implications of those choices. This tutorial will teach attendees
how to develop models of combinatorial problems and solve them using
constraint programming, satisfiability and mixed integer programming
techniques. The tutorial will make use of Numberjack, an open-source
Python-based optimisation system developed at the Cork Constraint
Computation Centre. The focus of the tutorial will be on various network
design problems and optimisation challenges in the Web.

A. Polleres et al. (Eds.): Reasoning Web 2011, LNCS 6848, p. 534, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Author Index

Auer, Sören 1

Bernstein, Abraham 460

Glimm, Birte 137
Gutierrez, Claudio 416

Hitzler, Pascal 382
Hogan, Aidan 250
Hose, Katja 202

Kiefer, Christoph 460
Krisnadhi, Adila 382

Lehmann, Jens 1

Maier, Frederick 382
Meilicke, Christian 504

Ngonga Ngomo, Axel-Cyrille 1
Niepert, Mathias 504
Noessner, Jan 504

O’Sullivan, Barry 534

Pan, Jeff Z. 250
Paschke, Adrian 326
Polleres, Axel 250

Ren, Yuan 250
Rudolph, Sebastian 76

Schenkel, Ralf 202
Stuckenschmidt, Heiner 504

Theobald, Martin 202
Trček, Denis 445

Weikum, Gerhard 202

	Title
	Preface
	Organisation
	Table of Contents
	Introduction to Linked Data and Its Lifecycle on the Web
	Introduction
	The Linked Data Paradigm
	Resource Identification with IRIs
	De-referencability
	RDF Data Model
	RDF Serializations

	Extraction
	From Unstructured Sources
	The FOX Framework
	From Structured Sources

	Authoring with Semantic Wikis
	OntoWiki - A Semantic Data Wiki
	Generic and Domain-Specific Views
	Workflow
	Authoring
	Access Interfaces
	Exploration Interfaces
	Applications

	Automatic Linking
	Instance Matching
	Challenges
	Approaches to Instance Matching
	LIMES
	Conclusion

	Enrichment
	State of the Art and Types of Enrichment
	Class Expression Learning in DL-Learner
	Finding a Suitable Heuristic

	Pattern-Based Evolution
	Concepts
	Pattern Survey and Classification
	Implementation
	Other Evolution Approaches
	Conclusion

	Outlook and Future Challenges
	References

	Foundations of Description Logics
	Introduction
	Outlook
	DLs in the Context of Other Formalisms
	DL Modeling in a Nutshell
	The Semantic Web

	Syntax
	RBox
	TBox
	ABox

	Semantics
	Interpretations
	Satisfaction of Axioms
	Logical Consequence
	Excursus: Semantics via Embedding into FOL

	Description Logic Nomenclature
	Equivalences, Emulation, Normalization
	Concept Equivalences
	Knowledge Base Equivalences
	Emulation

	Modeling with DLs
	A Lot Can Be Done in ALC
	Looking Back: Inverse Roles
	Model Manipulation Part I: Filtration
	Up to Infinity: Cardinality Constraints
	Model Manipulation Part II: Unraveling
	Far Far Away: Transitivity
	Model Manipulation Part III: Disjoint Union
	Know Your Bounds: Nominal Concept and Universal Role
	Selfishness
	Open World vs. Closed World

	Reasoning Tasks and Their Reducibility
	Knowledge Base Satisfiability
	Axiom Entailment
	Concept Satisfiability
	Instance Retrieval
	Classification
	Conjunctive Query Answering
	Other Reasoning Tasks

	Algorithmic Approaches to DL Reasoning
	Tableau
	Automata
	Consequence-Based Reasoning
	Resolution

	Description Logics and OWL
	Translating DL KBs into OWL
	Expressing OWL Axioms in SROIQ

	Further Reading
	References

	Using SPARQL with RDFS and OWL Entailment
	Introduction
	SPARQL Query Examples
	RDF Datasets
	Blank Nodes in Queries and Query Results
	SPARQL Entailment Regimes
	SPARQL as a Protocol

	SPARQL Basics
	Graph Patterns
	Result Formats
	Solution Modifiers
	SPARQL Algebra Processing
	SPARQL 1.1 Features

	SPARQL Entailment Regimes
	Conditions on Extensions of Basic Graph Pattern Matching
	Addressing the Extension Point Conditions
	The RDFS Entailment Regime

	The OWL Entailment Regimes
	Mapping from RDF Graphs to OWL Structural Objects
	Introduction to the OWL Direct Semantics for SPARQL
	Mapping BGPs to Extended OWL Objects
	Infinite Entailments in Datatype Reasoning
	The OWL 2 Direct Semantics Entailment Regime
	The OWL 2 RDF-Based Semantics Entailment Regime
	OWL 2 Profiles
	Implementing the OWL 2 RL Profile via Rules

	Exercises
	Mapping to the SPARQL Algebra
	Query Evaluation
	RDFS Semantics Queries
	OWL Direct Semantics Queries

	Solutions to the Exercises
	Mapping to the SPARQL Algebra
	Query Evaluation
	RDFS Semantics Queries
	OWL Direct Semantics Queries

	Links and Further Reading
	Public SPARQL Endpoints
	RDFS
	OWL and OWL Reasoning
	SPARQL
	SPARQL over OWL Ontologies

	References

	Database Foundations for Scalable RDF Processing
	RDF in Centralized Relational Databases
	Triple Stores
	Vertically Partitioned Tables
	Property Tables
	Specialized Systems

	RDF in Distributed Setups
	Search Engines
	Data Warehousing
	Federated Systems
	Discovering New Sources During Query Processing
	Systems Based on the P2P Paradigm

	Scalable Reasoning with Uncertain RDF Data
	Probabilistic Databases
	Logic Programming and Rule-Based Reasoning
	Combining First-Order Logic and Probabilistic Inference
	Programming Platforms for Probabilistic Inference
	Distributed Probabilistic Inference

	New Trends: BayesStore, SPROUT, Tuffy, URDF
	References

	Scalable OWL 2 Reasoning for Linked Data
	Introduction
	Linked Data: RDFS, OWL and Reasoning
	Why Does Linked Data Need Reasoning?
	What Reasoning Does Linked Data Need?
	How Can We Reason over Linked Data?

	Scalable, Incomplete, OWL 2 RL/RDF Rule-Based Reasoning
	Preliminaries
	Linked Data Reasoning: Overview
	Distinguishing Terminological Data
	Optimising the Assertional Program
	Towards Linked Data Reasoning
	Linked Data Reasoning Evaluation
	Related Work
	Critical Discussion and Future Directions

	Scalable Approximative OWL 2 DL Reasoning
	Technical Motivations
	Approach Overview and Preliminary
	EL++ Approximation
	Complement-Enriched EL++C Approximation
	Cardinality-Enriched EL++CQ Approximation
	Reasoning Properties
	Evaluation
	Discussion

	Conclusion
	References

	Rules and Logic Programming for the Web
	Introduction to Rule Based Knowledge Representation
	Forward Chaining Rule Systems
	Backward Chaining Rule Systems
	Discussion Backward Chaining vs. Forward Chaining in the Web Context

	Logic Foundations
	First-Order Logic
	Logic Programming

	Web Rule Languages
	Platform Independent Web Rule Languages
	Prova - A Platform Specific Web Rule Language
	Mapping from RIF to RuleML and Prova
	Access to External Data, Type Systems and Procedural Attachments
	Modularization, Scopes and Guards
	Prova Serial Horn Rules for Messaging

	Conclusion
	References

	OWL and Rules
	Introduction
	Preliminaries
	Rules in OWL
	DLP and OWL 2 RL
	Rolification
	Description Logic Rules

	Rules Plus OWL
	DL-safe Rules, DL-safe Variables and ELP
	Nominal Schemas: Intuitive Idea
	Nominal Schemas: Formal Definitions and Results
	Embedding Datalog under Nominal Schemas
	Relation to OWL Profiles

	Pointers to Further Literature
	SWRL
	DL-Safe Rules
	DLP
	AL-log
	CARIN
	DL+log
	Horn-SHIQ
	Hybrid MKNF
	dl-programs
	Disjunctive dl-programs
	Quantified Equilibrium Logic for Hybrid Knowledge Bases
	Description Graphs

	Conclusions
	References

	Modeling the Web of Data (Introductory Overview)
	Introduction
	The Web
	The Classical Web
	The Semantic Web

	Towards the Web of Data
	The Data Deluge Structure
	RDF as Infrastructure
	Linked Data
	Open Data

	Modeling Data on the Web
	Data Models and their Role
	The Web as Information Artifact
	The Web of Documents
	Models of Data on the Web
	Data Models of the Web

	Requirements for the Web of Data
	Architectural Views
	Static versus Dynamics
	Data Access Methods
	Cost Models
	Incomplete and Partial Information
	Organizing Data

	Other Relevant Related Areas
	Distributed Data Management
	Logic Approaches

	Concluding Remarks
	References

	Trust Management Methodologies for the Web
	Introduction
	Some Most Important Methodologies
	Naïve Trust Management
	Theory of Evidence and Josang’s Logic / Algebra
	Yu’s and Singh’s ToE Based Methodology
	Game Theoretic Methodologies for Trust Management

	An Analysis of Existing Approaches
	Qualitative Assessments Dynamics - QAD
	Analyzing Agents Behaviour with QAD
	Conclusions
	References

	Application and Evaluation of Inductive Reasoning Methods for the Semantic Web and Software Analysis
	Introduction
	Description Logic Reasoning
	What Is This Paper All About?
	Our Approach
	Importance to the Semantic Web and Software Analysis

	Related Work
	Semantic Web
	Inductive Reasoning
	SPARQL-ML Evaluation/Validation Tasks

	Inductive Reasoning with SPARQL-ML
	Preliminaries
	Theoretical Foundations
	Adding Inductive Reasoning Support to SPARQL via SRL Methods

	Evaluation/Validation of SPARQL-ML
	Business Project Success Experiment
	Semantic Web Service Classification Experiment
	SVM-Benchmark Experiment
	Bug Prediction Experiment

	Discussion and Limitations
	Conclusions and Perspectives
	Future Work

	References

	Probabilistic-Logical Web Data Integration
	Introduction
	Data Integration on the Web
	Ontologies and Description Logics
	Ontology Matching
	Object Reconciliation

	Probabilistic-Logical Languages and Ontologies
	Markov Logic
	Representing Ontologies and Alignments in Markov Logic
	MAP Inference and Integer Linear Programming

	Markov Logic and Ontology Matching
	Problem Representation
	Experiments

	Markov Logic and Object Reconciliation
	Problem Representation
	Similarity Computation
	Experiments

	Related Work
	Conclusion
	References

	An Introduction to Constraint Programming and Combinatorial Optimisation
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

