
Electric Fields 20

In this chapter, we introduce the concept of an electric field associated with a variety

of charge distributions. We follow that by introducing the concept of an electric field

in terms of Faraday’s electric field lines. In addition, we study the motion of a charged

particle in a uniform electric field.

20.1 The Electric Field

Based on the electric force between charged objects, the concept of an electric field

was developed by Michael Faraday in the 19th century, and has proven to have

valuable uses as we shall see.

In this approach, an electric field is said to exist in the region of space around

any charged object. To visualize this assume an electrical force of repulsion
→
F

between two positive charges q (called source charge) and q◦ (called test charge),

see Fig. 20.1a.

Now, let the charge q◦ be removed from point P where it was formally located as

shown in Fig. 20.1b. The charge q is said to set up an electric field
→
E at P, and if q◦

is now placed at P, then a force
→
F is exerted on q◦ by the field rather than by q, see

Fig. 20.1c.

Since force is a vector quantity, the electric field is a vector whose properties are

determined from both the magnitude and the direction of an electric force. We define

the electric field vector
→
E as follows:
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Spotlight

The electric field vector
→
E at a point in space is defined as the electric

force
→
F acting on a positive test charge q◦ located at that point divided by

the magnitude of the test charge:

→
E =

→
F

q◦
(20.1)

Fig. 20.1 (a) A charge q

exerts a force
→
F on a test

charge q◦ at point P. (b) The

electric field
→
E established at

P due to the presence of q. (c)

The force
→
F = q◦

→
E exerted

by
→
E on the test charge q◦
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This equation can be rearranged as follows (see Fig. 20.1c):

→
F = q◦

→
E (20.2)

The SI unit of the electric field
→
E is newton per coulomb (N/C).

The direction of
→
E is the direction of the force on a positive test charge placed in

the field, see Fig. 20.2.

20.2 The Electric Field of a Point Charge

To find the magnitude and direction of an electric field, we consider a positive point

charge q as a source charge. A positive test charge q◦ is then placed at point P,
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a distance r away from q, see Fig. 20.3. From Coulomb’s law, the force exerted on

q◦ is:

→
F = k

q q◦
r2

→̂r (20.3)
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Fig. 20.2 (a) If the charge q is positive, then the force
→
F on the test charge q◦ (not shown in the figure)

at point P is directed away from q. Therefore, the electric field
→
E at P is directed away from q. (b) If the

charge q is negative, then the force
→
F on q◦ at point P is directed toward q. Therefore, the electric field

→
E at P is directed toward q

where →̂r is a unit vector directed from the source charge q to the test charge q◦ . This

force has the same direction as the unit vector →̂r .

Since the electric field at point P is defined from Eq. 20.1 as
→
E = →

F /q◦ , then

according to Fig. 20.3, the electric field created at P by q is an outward vector given by:

→
E = k

q

r2
→̂r (20.4)

+
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+
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Fig. 20.3 If the point charge q is positive, then both the force
→
F on the positive test charge q◦ and the

electric field
→
E at point P are directed away from q
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When the source charge q is negative, the force
→
F on q◦ and the electric field

→
E

at point P will be toward q, see Fig. 20.4.

Note that for both positive and negative charges, →̂r is a unit vector that is always

directed from the source charge q to the point P, see Figs. 20.3 and 20.4.

In all previous and coming discussions, the positive test charge q◦ must be very

small, so that it does not disturb the charge distribution of the source charge q.

Mathematically, this can be done by taking the limit of the ratio
→
F /q◦ when q◦

approaches zero. Thus:

→
E = lim

q◦→0

→
F

q◦
(20.5)
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Fig. 20.4 If the point charge q is negative, then both the force
→
F on the test positive charge q◦ and the

electric field
→
E at point P are directed toward q, but the unit vector →̂r remains pointed toward P

The electric field due to a group of point charges q1, q2, q3 . . . at point P can

be obtained by first using Eq. 20.4 to calculate the electric field of each individual

charge, such that:

→
En = k

qn

r2
n

→̂rn (n = 1, 2, 3, . . .) (20.6)

Then we calculate the vector sum
→
E of the electric fields of all the charges. This sum

is expressed as follows:

→
E = →

E1 + →
E2 + →

E3 + . . . = k
∑

n

qn

r2
n

→̂rn (n = 1, 2, 3, . . .) (20.7)
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where rn is the distance from the nth source charge qn to the point P and →̂rn is a unit

vector directed away from qn to P.

It is clear that Eq. 20.7 exhibits the application of the superposition principle to

electric fields.

Example 20.1

Four point charges q1 = q2 = Q and q3 = q4 = −Q, where Q = √
2 μC, are placed

at the four corners of a square of side a = 0.4 m, see Fig. 20.5a. Find the electric

field at the center P of the square.
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Fig. 20.5

Solution: The distance between each charge and the center P of the square is

a/
√

2. At point P, the point charges q1 and q3 produce two diagonal electric field

vectors
→
E1 and

→
E3, both directed toward q3, see Fig. 20.5b. Hence, their vector

sum
→
E13 = →

E1 + →
E3 points toward q3 and has the magnitude:

E13 = E1 + E3 = k
Q

(a/
√

2)2
+ k

Q

(a/
√

2)2
= 4k

Q

a2

At point P, the charges q2 and q4 produce two diagonal electric fields
→
E2 and

→
E4,

both directed toward q4, see Fig. 20.5b. Hence, their vector sum
→
E24 = →

E2 + →
E4

points toward q4 and has the magnitude:

E24 = E2 + E4 = k
Q

(a/
√

2)2
+ k

Q

(a/
√

2)2
= 4k

Q

a2

We now must combine the two electric field vectors
→
E13 and

→
E24 to form

the resultant electric field vector
→
E = →

E13 + →
E24 which is along the positive

x-direction and has the magnitude:
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E = E13 cos 45◦ + E24 cos 45◦ = 2 ×
(

4k
Q

a2 × 1√
2

)

= k
8Q√
2a2

= (9 × 109 N.m2/C2)
8(

√
2 × 10−6 m)√
2 (0.4 m)2

= 4.5 × 105 N/C

Example 20.2 (Electric Dipole)

Consider two point charges q1 = −24 nC and q2 = +24 nC that are 10 cm apart,

forming an electric dipole, see Fig. 20.6. Calculate the electric field due to the two

charges at points a, b, and c.

Fig. 20.6

a b

c

10 cm 10 cm

6 cm 2 cm4 cm

EbEa  

E c  

q1 q260°

2cE

1cE

Solution: At point a, the electric field vector due to the negative charge q1, is

directed toward the left, and its magnitude is:

E1a = k
|q1|
r2

1a

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.04 m)2 = 135 × 103 N/C

The electric field vector due to the positive charge q2 is also directed toward the

left, and its magnitude is:

E2a = k
|q2|
r2

2a

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.06 m)2 = 60 × 103 N/C

Then, the resultant electric field at point a is toward the left and its magnitude is:

Ea = E1a + E2a = 135 × 103 N/C + 60 × 103 N/C

= 195 × 103 N/C (Toward the left)
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At point b, the electric field vector due to the negative charge q1, is directed toward

the left, and its magnitude is:

E1b = k
|q1|
r2

1b

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.12 m)2 = 15 × 103 N/C

In addition, the electric field vector due to the positive charge q2 is directed toward

the right, and its magnitude is:

E2b = k
|q2|
r2

2b

= (9 × 109 N.m2/C2)
(24 × 10−9 C)

(0.02 m)2 = 540 × 103 N/C

Since E2b > E1b, the resultant electric field at point b is toward the right and its

magnitude is:

Eb = E2b − E1b = 540 × 103 N/C − 15 × 103 N/C

= 525 × 103 N/C (Toward the right)

At point c, the magnitudes of the electric field vectors
→
E1c and

→
E2c established

by q1 and q2 are the same because |q1| = |q2| = 24 nC and r1c = r2c = 10 cm.

Thus:

E2c = E1c = k
|q1|
r2

1c

= (9×109 N.m2/C2)
(24 × 10−9 C)

(0.1 m)2 = 21.6×103 N/C

The triangle formed from q1, q2, and point c in Fig. 20.6 is an equilateral

triangle of angle 60◦. Hence, from geometry, the vertical components of the

two vectors
→
E1c and

→
E2c cancel each other. The horizontal components are both

directed toward the left and add up to give the resultant electric field Ec at point c,

see the figure below.

2cE

1cE

60

60
1 2cos60 cos60c c cE E E c

°

°

° °

Thus: Ec = E1c cos 60◦ + E2c cos 60◦ = 2E1c cos 60◦

= 2(21.6 × 103 N/C)(0.5) = 21.6 × 103 N/C (Toward the left)
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20.3 The Electric Field of an Electric Dipole

Generally, the electric dipole introduced in Example 20.3 consists of a positive charge

q+ = +q and a negative charge q− = −q separated by a distance 2a, see Fig. 20.7.

In this figure, the dipole axis is taken to be along the x-axis and the origin of the

xy plane is taken to be at the center of the dipole. Therefore, the coordinates of q+
and q− are (+a, 0) and (−a, 0), respectively.

0
x

P (x,y)

y

(a,0)(-a,0)

x + a

x - a

y

E

+-
-q

+q
r+

r+

r−

r−

E+

E−

Fig. 20.7 The electric field
→
E = →

E+ + →
E− at point P(x, y) due to an electric dipole located along the

x-axis. The dipole has a length 2a

Let us assume that a point P(x, y) exists in the xy-plane as shown in Fig. 20.7. We

will call the electric field produced by the positive charge
→
E+ and the electric field

produced by the negative charge
→
E−.

Using the superposition principle, the total electric field at P is:

→
E = →

E+ + →
E− = k

q+
r2+

→̂r+ + k
q−
r2−

→̂r− (20.8)

From the geometry of Fig. 20.7, we have r2+ = (x −a)2 +y2 and r2− = (x +a)2 +y2.

In addition, →̂r + is a unit vector directed outwards and away from the positive charge

q+ at (+a, 0). On the other hand, →̂r− is a unit vector directed outwards and away

from the negative charge q− at (−a, 0). Accordingly, Eq. 20.8 becomes:

→
E = k

[
q

(x − a)2 + y2
→̂r+ + −q

(x + a)2 + y2
→̂r−

]

(20.9)
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Therefore, the general electric field will take the following form:

→
E = kq

[ →̂r+
(x − a)2 + y2 −

→̂r−
(x + a)2 + y2

]

(20.10)

The Electric Field Along the Dipole Axis

Let us first assume a point P exists on the dipole axis, i.e. y = 0, and satisfies the

condition x < −a, as shown in Fig. 20.8a. In this case, →̂r+ = →̂r− = −→
i , where

→
i is

a unit vector along the x-axis.

x
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- q

- q + q
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+a a

+ a- a

+ q

x a< −

PE E

E E

Fig. 20.8 The electric field
→
E = →

E+ + →
E− at different points along the axis of a dipole that has a length 2a

When P has an x-coordinate that satisfies −a < x < + a as in Fig. 20.8b, then
→̂r + = −→

i and →̂r − = +→
i . When P satisfies x > + a as in Fig. 20.8c, then →̂r + =

→̂r − = +→
i . Substituting in Eq. 20.10, we get:

→
E =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−kq

[
1

(x − a)2 − 1

(x + a)2

] →
i x < −a (Toward the right)

−kq

[
1

(x − a)2 + 1

(x + a)2

] →
i −a < x < +a (Toward the left)

kq

[
1

(x − a)2 − 1

(x + a)2

] →
i x > +a (Toward the right)

(20.11)
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When x � a we can take out a factor of x2 from each denominator of the brackets

of the last formula for x > +a and then expand each of these terms by binomial

expansion. Therefore, we get:

→
E = kq

[
1

(x − a)2 − 1

(x + a)2

] →
i

= kq

x2

[(
1 − a

x

)−2 −
(

1 + a

x

)−2
] →

i

= kq

x2

[(

1 + 2a

x
− · · ·

)

−
(

1 − 2a

x
+ · · ·

)] →
i

� kq

x2

4a

x

→
i = 2 k (2a q)

x3

→
i x � a

(20.12)

For x � −a, we can find an identical expression but with |x| instead of x in the last

formula. The product of the positive charge q and the length of the dipole 2a is called

the magnitude of the electric dipole moment, p = 2a q. The direction of →p is taken

to be from the negative charge to the positive charge of the dipole, i.e. →p = p
→
i .

Using this definition, we have:

→
E =

⎧
⎪⎪⎨

⎪⎪⎩

2 k
→p
x3 x � a

2 k
→p
|x|3 x �−a

(
→p = 2 a q

→
i ) (20.13)

Thus, at far distances, the electric field along the x-axis is proportional to the electric

dipole moment →p and varies as 1/|x3|.

Electric Field Along the Perpendicular Bisector of a Dipole Axis

Let us assume that a point P lies on the y-axis, i.e. along the perpendicular bisector

of the line joining the dipole charges, see Fig. 20.9. Substitute x with 0 in Eq. 20.10

to get:

→
E = k q

a2 + y2

[→̂r + − →̂r −
]

(20.14)

From Fig. 20.9, we see that:

→̂r+ = − cos θ
→
i + sin θ

→
j ,

→̂r − = cos θ
→
i + sin θ

→
j , cos θ = a/

√
a2 + y2

(20.15)



20.3 The Electric Field of an Electric Dipole 669

Fig. 20.9 The electric field
→
E = →

E+ + →
E− at point P(0, y)

along the y-axis of an electric

dipole lying along the x-axis

with a length 2a

-q +q

0 x
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y

( a ,0 )( -a ,0 )
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+
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θ

θ

θθ
+-

E
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Substituting these relations in Eq. 20.14 we get:

→
E = −k

2a q

(a2 + y2)3/2

→
i = −k

→p
(a2 + y2)3/2 (

→p = 2a q
→
i ) (20.16)

When |y| � a, we can neglect a2 when we compare it with y2 in the denominator

bracket and write:

→
E =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− k
→p
y3 y � a

− k
→p
|y|3 y � −a

(
→p = 2 a q

→
i ) (20.17)

Thus, at far distances, the electric field along the perpendicular bisector of the line

joining the dipole charges is proportional to the electric dipole moment →p and varies

as 1/|y|3. Generally, this inverse cube dependence at a far distance is a characteristic

of a dipole.

Example 20.3 (The Dipole Field Along the Dipole Axis)

A proton and an electron separated by 2 × 10−10 m form an electric dipole, see

Fig. 20.10. Use exact and approximate formulae to calculate the electric field on

the x-axis at a distance 20 × 10−10 m to the right of the dipole’s center.
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- e +e
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E+E−
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Fig. 20.10

Solution: In this problem we have a = 10−10 m, q = e = 1.6 × 10−19 C, x =
20 × 10−10 m, ke = (9 × 109 N.m2/C2) (1.6 × 10−19 C)= 1.44 × 10−9 N.m2/C,

x − a = 19 × 10−10 m, and x + a = 21 × 10−10 m. Using the exact formula given

by Eq. 20.11 in the case of x > +a, we have:

E = ke

[
1

(x − a)2 − 1

(x + a)2

]

= (1.44 × 10−9 N.m2/C)

[
1

(19 × 10−10 m)2 − 1

(21 × 10−10 m)2

]

= (1.44 × 10−9 N.m2/C)[2.770 × 1017 m−2 − 2.268 × 1017m−2]
= 7.236 × 107 N/C

On the other hand, we have x � a and we can use the approximate formula given

by Eq. 20.13 as follows:

E = 2k
p

x3 = 2k
2a e

x3 = ke
4a

x3

= (1.44 × 10−9 N.m2/C)
(4 × 10−10 m)

(20 × 10−10 m)3

= 7.200 × 107 N/C

Clearly this calculation is a good approximation when x/a = 20.

20.4 Electric Field of a Continuous Charge Distribution

The electric field at point P due to a continuous charge distribution shown in Fig. 20.11

can be evaluated by:

(1) Dividing the charge distribution into small elements, each of charge �qn that is

located relative to point P by the position vector →rn = rn
→̂rn.
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(2) Using Eq. 20.4 to evaluate the electric field �
→
En due to the nth element as follows:

�
→
En = k

� qn

r2
n

→̂rn (20.18)

(3) Evaluating the order of the total electric field at P due to the charge distribution

by the vector sum of all the charge elements as follows:

→
E ≈ k

∑

n

� qn

r2
n

→̂rn (20.19)

(4) Evaluating the total electric field at P due to the continuous charge distribution

in the limit �qn → 0 as follows:

→
E = k lim

�qn→0

∑

n

�qn

r2
n

→̂rn = k
� dq

r2
→̂r (20.20)

where the integration is done over the entire charge distribution.

Fig. 20.11 The electric field
→
E at point P due to a

continuous charge distribution

is the vector sum of all the

fields �
→
En (n = 1, 2, · · · ) due

to the charge elements

�qn (n = 1, 2, · · · ) of the

charge distribution

nq nr

nEP

Now we consider cases were the total charge is uniformly distributed on a line,

on a surface, or throughout a volume. It is convenient to introduce the charge density

as follows:

(1) When the charge Q is uniformly distributed along a line of length L, the linear

charge density λ is defined as:

λ = Q

L
(20.21)

where λ has the units of coulomb per meter (C/m).

(2) When the charge Q is uniformly distributed on a surface of area A, the surface

charge density σ is defined as:
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σ = Q

A
(20.22)

where σ has the units of coulomb per square meter (C/m2).

(3) When the charge Q is uniformly distributed throughout a volume V, the volume

charge density ρ is defined as:

ρ = Q

V
(20.23)

where ρ has the units of coulomb per cubic meter (C/m3).

Accordingly, the charge dq of a small length dL, a small surface of area dA, or a

small volume dV is respectively given by:

dq = λ dL, dq = σ dA, dq = ρ dV (20.24)

20.4.1 The Electric Field Due to a Charged Rod

For a Point on the Extension of the Rod

Figure 20.12 shows a rod of length L with a uniform positive charge density λ

and total charge Q. In this figure, the rod lies along the x-axis and point P is taken to

be at the origin of this axis, located at a constant distance a from the left end. When

we consider a segment dx on the rod, the charge on this segment will be dq = λ dx.

x
0

y

La

P

E

dx

dq
+ + + + + + + + + + + +

x

Fig. 20.12 The electric field
→
E at point P due to a uniformly charged rod lying along the x-axis. The

magnitude of the field due to a segment of charge dq at a distance x from P is k dq/x2. The total field is

the vector sum of all the segments of the rod

The electric field d
→
E at P due to this segment is in the negative x direction and

has a magnitude given by:
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dE = k
dq

x2 = k
λ dx

x2 (20.25)

The total electric field at P due to all the segments of the rod is given by Eq. 20.20

after integrating from one end of the rod (x = a) to the other (x = a + L) as follows:

E =
�

dE =
a+L�
a

k
λ dx

x2 = kλ

a+L�
a

x−2dx = kλ
∣
∣− 1

x

∣
∣a+L
a

= kλ

{

− 1

a + L
+ 1

a

}

= kλL

a(a + L)

(20.26)

When we use the fact that the total charge is Q = λL, we have:

E = kQ

a(a + L)
(Toward the left) (20.27)

If P is a very far point from the rod, i.e. a � L, then L can be neglected in the

denominator of Eq. 20.27. Accordingly, we have E ≈ kQ/a2, which resembles the

magnitude of the electric field produced by a point charge.

For a Point on the Perpendicular Bisector of the Rod

A rod of length L has a uniform positive charge density λ and total charge Q. The

rod is placed along the x-axis as shown in Fig. 20.13. Assume that point P is on

the perpendicular bisector of the rod and is located at a constant distance a from the

origin of the x-axis. The charge on a segment dx on the rod will be dq = λ dx.

Fig. 20.13 A rod of length L

has a uniform positive charge

density λ and an electric field

d
→
E at point P due to a segment

of charge dq, where P is

located along the

perpendicular bisector of the

rod. From symmetry, the total

field will be along the y-axis

x
0

 a

L

P

dx

dq

+ + + + + + + + + + + +
θ θ ο

x

d E

xd E

yd E

r

 y
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The electric field d
→
E at P due to this segment has a magnitude:

dE = k
dq

r2 = k
λ dx

r2 (20.28)

This field has a vertical component dEy = dE sin θ along the y-axis and a horizontal

component dEx perpendicular to it, as shown in Fig. 20.13. An x-component at such

a location is canceled out by a similar but symmetric charge segment on the opposite

side of the rod. Thus:

Ex =
∑

dEx = 0 (20.29)

The total electric field at P due to all segments of the rod is given by two times

the integration of the y-component from the middle of the rod (x = 0) to one of the

ends (x = L/2). Thus:

E = 2
x=L/2�
x=0

dEy = 2
x=L/2�
x=0

dE sin θ = 2 k λ

x=L/2�
x=0

sin θ dx

r2 (20.30)

To perform the integration of this expression, we must relate the variables θ, x, and

r. One approach is to express θ and r in terms of x. From the geometry of Fig. 20.13,

we have:

r =
√

x2 + a2 and sin θ = a

r
= a√

x2 + a2
(20.31)

Therefore, Eq. 20.30 becomes:

E = 2 kλ a
L/2�
0

dx

(x2 + a2)3/2 (20.32)

From the table of integrals in Appendix B, we find that:

� dx

(x2 + a2)3/2 = x

a2
√

(x2 + a2)
(20.33)

Thus:

E = 2kλ a
L/2�
0

dx

(x2 + a2)3/2 = 2 kλ a

∣
∣
∣
∣

x

a2
√

x2 + a2

∣
∣
∣
∣

L/2

0

= 2kλ a

[
L/2

a2
√

(L/2)2 + a2
− 0

]

= kλ L

a
√

(L/2)2 + a2
(20.34)
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When we use the fact that the total charge is Q = λL, we have:

E = kQ

a
√

a2 + (L/2)2
or E = kλ L

a
√

a2 + (L/2)2
(20.35)

When P is a very far point from the rod, a � L, we can neglect (L/2)2 in the denom-

inator of Eq. 20.35. Thus, E ≈ kQ/a2. This is just the form of a point charge. For an

infinitely long rod we get:

E = lim
L→∞

2kλ

a
√

(2a/L)2 + 1
⇒ E = 2k

λ

a
(20.36)

Example 20.4

Figure 20.14 shows a non-conducting rod that has a uniform positive charge

density +λ and a total charge Q along its right half, and a uniform negative

charge density −λ and a total charge −Q along its left half. What is the direction

and magnitude of the net electric field at point P that shown in Fig. 20.14?

Fig. 20.14

x
0

L

P

y

a

+Q-Q

Solution: When we consider a segment dx on the right side of the rod, the charge

on this segment will be dq = λ dx, see Fig. 20.15.

The electric field d
→
E+ at P due to this segment is directed outwards and away

from the positive charge dq and has a magnitude:

dE+ = k
dq

r2 = k
λ dx

r2

A symmetric segment on the opposite side of the rod, but with a negative charge,

creates an electric field d
→
E− that is directed inwards and toward this segment and
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has the same magnitude as d
→
E+, i.e. dE+ = dE−. The resultant electric field d

→
E

from both symmetric segments will be a vector to the left, see Fig. 20.15, and its

magnitude will be given by:

dE = dE+ cos θ + dE+ cos θ = 2 dE+ cos θ

= 2 k
λ dx

r2

x

r
= k λ(x2 + a2)−3/2(2x)dx

Fig. 20.15

x
0

L

P

+

y

a
+Q-Q

θ

dqrr

x dx

dE+

dE −

θ

dE

The total electric field at P due to all segments of the rod is found by inte-

grating dE from x = 0 to only x = L/2,since the negative charge of the rod is

considered in evaluating dE. Thus:

E =
�

dE = k λ

x=L/2�
x=0

(x2 + a2)−3/2(2x dx)

To evaluate the integral in this equation, we transform it to the form�
un du = un+1/(n + 1), as we shall do in solving Eq. 20.53. Thus:

E = k λ

∣
∣
∣
∣
(u2 + a2)−1/2

−1/2

∣
∣
∣
∣

u=L/2

u=0
= k λ

[
−2

√
(L/2)2 + a2

− −2

a

]

= 2k λ

[
1

a
− 1

√
(L/2)2 + a2

]

When we use the fact that the magnitude of the charge Q is given by Q = λL/2,

we get:
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E = 4k Q

L

[
1

a
− 1

√
(L/2)2 + a2

]

When P is very far away from the rod, i.e. a � L, we can neglect (L/2)2 in

the denominator of this equation and hence get E ≈ 0. In this situation, the two

oppositely charged halves of the rod would appear to point P as if they were two

coinciding point charges and hence have a zero net charge.

Example 20.5

An infinite sheet of charge is lying on the xy-plane as shown in Fig. 20.16. A

positive charge is distributed uniformly over the plane of the sheet with a charge

per unit area σ. Calculate the electric field at a point P located a distance a from

the plane.

x

y

+

+

+

+

+

+

a

dx

x

P

zdE
xdE

dE

o
r

z

θ

+ +

Fig. 20.16
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Solution: Let us divide the plane into narrow strips parallel to the y-axis.

A strip of width dx can be considered as an infinitely long wire of charge per

unit length λ = σ dx. From Eq. 20.36, at point P, the strip sets up an electric field

d
→
E lying in the xz-plane of magnitude:

dE = 2k
λ

r
= 2k

σdx

r

This electric field vector can be resolved into two components d
→
Ex and d

→
Ez.

By symmetry the components d
→
Ex will sum to zero when we consider the entire

sheet of charge. Therefore, the resultant electric field at point P will be in the

z-direction, perpendicular to the sheet. From Fig. 20.16, we find the following:

dEz = dE sin θ
and hence:

E =
�

dEz = 2kσ

+∞�
−∞

sin θdx

r

To perform the integration of this expression, we must first relate the variables θ,

x, and r. One approach is to express θ and r in terms of x. From the geometry of

Fig. 20.16, we have:

r =
√

x2 + a2 and sin θ = a

r
= a√

x2 + a2

Then, from the table of integrals in Appendix B, we find that:

E = 2kσa
+∞�
−∞

dx

x2 + a2 = 2kσa

∣
∣
∣
∣
1

a
tan−1 x

a

∣
∣
∣
∣

+∞

−∞

= 2kσ
[
tan−1(∞) − tan−1(−∞)

] = 2kσ
[π

2
+ π

2

]

Thus:

E = 2πkσ = σ

2ε◦

This result is identical to the one we shall find in Sect. 20.4.4 for a charged

disk of infinite radius. We note that the distance a from the plane to the point P

does not appear in the final result of E. This means that the electric field set up at

any point by an infinite plane sheet of charge is independent of how far the point
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is from the plane. In other words, the electric field is uniform and normal to the

plane.

Also, the same result is obtained if the point P lies below the xy-plane. That

is, the field below the plan has the same magnitude as that above the plane but as

a vector it points in the opposite direction.

20.4.2 The Electric Field of a Uniformly Charged Arc

Assume that a rod has a uniformly distributed total positive charge Q. Also assume

that the rod is bent into a circular section of radius R and central angle φ rad. To find

the electric field at the center P of this arc, we place coordinate axes such that the

axis of symmetry of the arc lies along the y-axis and the origin is at the arc’s center,

see Fig. 20.17a. If we let λ represent the linear charge density of this arc which has

a length Rφ, then:

λ = Q

Rφ
(20.37)

For an arc element ds subtending an angle dθ at P, we have:

ds = R dθ (20.38)

Therefore, the charge dq on this arc element will be given by:

dq = λ ds = Q

Rφ
R dθ = Q

φ
dθ (20.39)

To find the electric field at point P, we first calculate the magnitude of the electric

field dE at P due to this element of charge dq, see Fig. 20.17b, as follows:

dE = k
dq

R2 = kQ

R2φ
dθ (20.40)

This field has a vertical component dEy = dE cos θ along the y-axis and a horizontal

component dEx along the negative x-axis, as shown in Fig. 20.17b. The x-component

created at P by any charge element dq is canceled by a symmetric charge element on

the opposite side of the arc. Thus, the perpendicular components of all of the charge

elements sum to zero. The vertical component will take the form:

dEy = dE cos θ = kQ

R2φ
cos θ dθ (20.41)
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Consequently, the total electric field at P due to all elements of the arc is given by

the integration of the y-component as follows:

E =
�

dEy = kQ

R2φ

+φ/2�
−φ/2

cos θ dθ = kQ

R2φ

∣
∣
∣sin θ

∣
∣
∣
+φ/2

−φ/2
= kQ

R2φ

[
sin

φ

2
− sin

(
− φ

2

)]

(20.42)

P

y

x

φ

(a)

R

Q

R

P

d E
yd E

y

d qθ

RQ

xdE

(b)

R

d s

s

x

dθ

Fig. 20.17 (a) A circular arc of radius R, central angle φ, and center P has a uniformly distributed

positive charge Q. (b) The figure shows the electric field d
→
E at P due to an arc element ds having a charge

dq. From symmetry, the horizontal components of all elements cancel out and the total field is along the

y-axis

Finally, the total electric field at P will be along the y-axis and will have a mag-

nitude given by:

E = kQ

R2

sin φ/2

φ/2
(20.43)

There are three special cases to Eq. 20.43:

(1) φ = 0 (Point charge)

When we apply the limiting case lim
φ →0

[sin(φ/2)/(φ/2)] = 1,we get:

E = kQ

R2 (20.44)
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(2) φ = π (Half a circle of radius R)

When we substitute with sin(π/2)/(π/2) = 2/π, we get:

E = 2kQ

πR2 (20.45)

(3) φ = 2π (A ring of radius R)

When we substitute with sin π = 0, we get:

E = 0 (20.46)

This is an expected result, since we shall see that Eq. 20.50 gives E = 0 when P

is at the center of the ring, i.e. when a = 0.

20.4.3 The Electric Field of a Uniformly Charged Ring

Assume that a ring of radius R has a uniformly distributed total positive charge Q,

see Fig. 20.18. Also, assume there is a point P that lies at a distance a from the center

of the ring along its central perpendicular axis, as shown in the same figure.

Fig. 20.18 A ring of radius R

having a uniformly distributed

positive charge Q. The figure

shows the electric field d
→
E at

an axial point P due to a

segment of charge dq. The

horizontal components will

cancel each other, and the total

field will be along the z-axis

P

d E
z

dq

θ

r

R

Q a

d E⊥

dEz

To find the electric field at P, we first calculate the magnitude of the electric field

dE at P due to this segment of charge dq as follows:
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dE = k
dq

r2 (20.47)

This field has a vertical component dEz = dE sin θ along the z-axis and a component

dE⊥ perpendicular to it, as shown in Fig. 20.18. The perpendicular component created

at P by any charge segment is canceled by a symmetric charge segment on the opposite

side of the ring. Thus, the perpendicular components of all of the charge segments

sum to zero. Using r = √
R2 + a2 and sin θ = a/r, the vertical component will take

the form:

dEz = dE sin θ = k
dq

r2

a

r
= ka dq

(R2 + a2)3/2 (20.48)

The total electric field at P due to all segments of the ring is given by the integration

of the z-component as follows:

E =
�

dEz =
� ka dq

(R2 + a2)3/2

= ka

(R2 + a2)3/2

�
dq

(20.49)

Since
�

dq represents the total charge Q over the entire ring, then the total electric

field at P will be given by:

E = kQa

(R2 + a2)3/2 (20.50)

This formula shows that the field is zero at the center of the ring, i.e., at a = 0.When

point P is very far from the ring, i.e., a � R, then we can neglect R2 in the denominator

of Eq. 20.50 and get E ≈ kQ/a2. This form resembles the one we got for a point

charge.

20.4.4 The Electric Field of a Uniformly Charged Disk

Assume that a disk of radius R has a uniform positive surface-charge density σ. Also,

assume that a point P lies at a distance a from the disk along its central perpendicular

axis, see Fig. 20.19.

To find the electric field at P, we divide the disk into concentric rings, then calculate

the electric field at P for each ring by using Eq. 20.50, and finally we can sum up the

contributions of all the rings.
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Fig. 20.19 A disk of radius R

has a uniform positive surface

charge density σ. The ring

shown has a radius r and radial

width dr. The total electric

field at an axial point P is

directed along this axis

r

dr

R

P

a

z

Charge per
unit area σ

E

Ring

Disk

Figure 20.19 shows one such ring, with radius r, radial width dr, and surface area

dA = 2πr dr. Since σ is the charge per unit area, then the charge dq on this ring is:

dq = σdA = 2π rσ dr (20.51)

Using this relation in Eq. 20.50, and replacing E with dE, R with r, and Q with

dq = 2π rσ dr, then we can calculate the field resulting from this ring as follows:

dE = ka

(r2 + a2)3/2 (2π rσ dr) = πkσa
2r dr

(r2 + a2)3/2 (20.52)

To find the total electric field, we integrate this expression with respect to the

variable r from r = 0 to r = R. This gives:

E =
�

dE = πkσa
R�
0

(r2 + a2)−3/2(2r dr) (20.53)

To solve this integral, we transform it to the form
�

undu = un+1/(n + 1) by setting

u = r2 + a2, and du = 2r dr. Thus, Eq. 20.53 becomes:

E = πkσa
R�
0

(r2 + a2)−3/2(2r)dr = πkσa
u=R2+a2�

u=a2

u−3/2du

= πkσa

∣
∣
∣
∣
u−1/2

−1/2

∣
∣
∣
∣

u=R2+ a2

u= a2
= πkσa

[
(R2 + a2)−1/2

−1/2
− a−1

−1/2

]
(20.54)



684 20 Electric Fields

Rearranging the terms, we find:

E = 2πkσ

[

1 − a√
R2 + a2

]

(20.55)

Using k = 1/4πε◦, where ε◦ is the permittivity of free space, it is sometimes prefer-

able to write this relation as:

E = σ

2ε◦

[

1 − a√
R2 + a2

]

(20.56)

We can calculate the field when point P is very close to the disk (the near-field

approximation) by assuming that R � a, or by assuming the disk to be an infinite

sheet when R → ∞ while keeping a finite. In both cases, the second term between

the two brackets of Eq. 20.56 approaches zero, and the equation is reduced to:

E = σ

2ε◦

⎧
⎪⎪⎨

⎪⎪⎩

(Points very close to the disk)

or

(Infinite sheet)

⎫
⎪⎪⎬

⎪⎪⎭
(20.57)

20.5 Electric Field Lines

The concept of electric field lines was introduced by Faraday as an approach to help

us visualize electric fields.

Spotlight

An electric field line is an imaginary line drawn in such a way that the direction

of its tangent at any point is the same as the direction of the electric field vector
→
E at that point, see Fig. 20.20.

Since the direction of an electric field generally varies from one point to another, the

electric field lines are usually drawn as curves, see Fig. 20.20.
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Fig. 20.20 The direction of

the electric field at any point is

the tangent to the electric field

line at this point

P

Q
Electric field

at point P

Electric field at
point Q

Electric field line

The relation between electric field lines and electric field vectors is as follows:

Spotlight

• The electric field vector
→
E is tangent to the electric field line at any point.

• The direction of the electric field line at any point is the same as the

direction of the electric field.

• The number of electric field lines per unit area, measured in the plane of

the lines, is proportional to the magnitude of
→
E . Thus, the electric field

lines are closer together when the electric field is strong, and far apart

when the field is weak.

The rules for drawing electric field lines are as follows:

Spotlight

• Electric field lines must emerge from a positive charge and end on a neg-

ative charge. For a system that has an excess of one type of charge, some

lines will emerge or end infinitely far away.

• The number of lines emerging from a positive charge or ending at a negative

charge is proportional to the magnitude of the charge.

• Electric field lines cannot cross each other.

The above rules are used in the six cases shown in Fig. 20.21.
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EE

N N

q
q−

qq q− q−

qq−

(b)(a)

(d)(c)

(f)(e)

Neutral point

Fig. 20.21 The figure shows the electric field lines of: (a) a positive point charge, (b) a negative point

charge, (c) two equal positive charges, (d) two equal negative charges, (e) an electric dipole, and (f) a side

view of an infinite sheet of charge

20.6 Motion of Charged Particles in a Uniform Electric Field

When a particle of charge q and mass m is in an external electric field of strength
→
E , a force q

→
E will be exerted on this particle. If q

→
E is the only acting force on the

particle, then according to Newton’s second law, 

→
F = m→a , the acceleration of the

particle will be given by:

→a = q
→
E /m (20.58)

If
→
E is uniform, then →a will be constant vector.
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Motion of a Charged Particle Along an Electric Field

Consider a particle of positive charge q and mass m in a uniform horizontal electric

field
→
E produced by two charged plates that are separated by a distance d as shown

in Fig. 20.22.

If the particle is released from rest at the positive plate and q
→
E is the only force

that acts on the particle, then the particle will move horizontally along the x-axis with

an acceleration →a = q
→
E /m. In such a case, we can apply the kinematics equations

(see Chap. 3) on the initial and final motion as follows:

• The particle’s time of flight t:

x = v◦ t + 1
2 a t2 ⇒ d = 0 + 1

2
qE

m
t2 ⇒ t =

√
2md

qE
(20.59)

• The speed of the particle v:

v = v◦ + a t ⇒ v = 0 + qE

m

√
2md

qE
⇒ v =

√
2qEd

m
(20.60)

• The kinetic energy of the particle K:

K = 1
2 mv2 ⇒ K = qEd (20.61)

The last result can also be obtained from the application of the work-energy theorem

W = �K because W = (qE)d and �K = Kf − Ki = K .

Example 20.6

In Fig. 20.22, assume that the charged particle is a proton of charge q =+e. The

proton is released from rest at the positive plate. In this case, each of the two

oppositely charged plates which are d = 2 cm apart has a charge per unit area of

σ = 5 μC/m2. (a) What is the magnitude of the electric field between the two

plates? (b) What is the speed of the proton as it strikes the second plate?

Solution: (a) The electric field arises from two infinite plates, Thus:

E = σ

2ε◦
+ σ

2ε◦
= σ

ε◦
= 5 × 10−6 C/m2

8.85 × 10−12 C/N.m2 = 5.65 × 105 N/C

http://dx.doi.org/10.1007/978-3-642-23026-4_3
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Fig. 20.22 A force q
→
E

exerted on a positive charge q

by a uniform electric field
→
E

established between two

oppositely charged plates

v

d

0t = t

0=° q Eq E

E

(b) We first find the proton’s acceleration from Newton’s second law:

a = F

m
= eE

m
= (1.6 × 10−19 C)(5.65 × 105 N/C)

1.67 × 10−27 kg
= 5.41 × 1013 m/s2

Then, using x = v◦ t + 1
2 a t2, we find that d = 1

2 a t2. Thus:

t =
√

2d

a
=

√
2(0.02 m)

5.41 × 1013 m/s2 = 2.72 × 10−8 s

Finally, we use v = v◦ + a t to find the speed of the proton as follows:

v = a t = (5.41 × 1013 m/s2)(2.72 × 10−8 s) = 1.47 × 106 m/s

Motion of a Charged Particle Perpendicular to an Electric Field

Consider an electron of charge q = −e and mass m being projected in a uniform

vertical electric field
→
E that is established in a region of length L by two oppositely

charged plates as shown in Fig. 20.23. If the initial speed v◦ of the electron at t = 0

is along the nagative x-axis, and if
→
E is along the y-axis, then the acceleration of the

electron will be constant along the positive y-axis (ignoring the gravitational force

and assuming vacuum conditions). That is:

ax = 0 ay = eE

m
(Upwards) (20.62)

When we apply the kinematics equations with vx◦ = v◦ and vy◦ = 0 while the electron

is in the region of the electric field, we find that:
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The components of the electron’s velocity at time t will be:

Along x vx = vx◦ = v◦
Along y vy = ay t = eE

m
t

(20.63)

The components of the electron’s position at time t will be:

Along x x = v◦t

Along y y = 1
2 ay t2 = eE

2m
t2

(20.64)

x

y

L D

h

1y

2y

α
E

° 1y D
e−

1t

0t =

-

-

-

Fig. 20.23 The effect of an upward force −e
→
E exerted on an electron projected horizontally with speed

v◦ into a downward uniform electric field
→
E

The electron will move a distance L horizontally and a distance y1 vertically before

leaving the region of the electric field, see Fig. 20.23. According to Eq. 20.64, the

time at this instant will be:

t1 = L

v◦
(20.65)

The vertical position y1 that corresponds to this time is:

y1 = eEL2

2mv2◦
(20.66)
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When the electron leaves the region of the electric field, with vx = v◦ and

vy = ayt1, the electric force vanishes and the electron continues to move in a straight

line with a constant velocity:

→
v = v◦

→
i + eEL

mv◦
→
j (20.67)

This velocity makes an angle α with the horizontal and so:

tan α = eEL/mv◦
v◦

= eEL

mv2◦
(20.68)

The extra vertical distance y2 that the electron will move before hitting the screen,

which is located at a horizontal distance D from the plates, is given by:

y2 = D tan α = D
eEL

mv2◦
(20.69)

Finally, the total vertical distance h that the electron will move is:

h = y1 + y2 = eEL

mv2◦

(
L

2
+ D

)

(20.70)

Example 20.7

In Fig. 20.23, assume that the horizontal length L of the plates is 5 cm, and assume

that the separation D between the plates and the screen is 50 cm. If the uniform

electric field has E = 250 N/C, and the electron’s initial speed v◦ is 2 × 106 m/s,

then; (a) What is the acceleration of the electron between the two plates? (b) Find

the time when the electron leaves the two plates. (c) Find the electron’s vertical

position before leaving the field region. (d) Find the electron’s vertical distance

before hitting the screen.

Solution: (a) Using the magnitude of the electronic charge e = 1.6 × 10−19 C and

the electronic mass m = 9.11 × 10−31 kg in Eq. 20.62, we get:

ax = 0 and ay = eE

m
= (1.6 × 10−19 C)(250 N/C)

9.11 × 10−31 kg
= 4.391 × 1013 m/s2
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(b) Using Eq. 20.65 for the horizontal motion, we get:

t1 = L

v◦
= 0.05 m

2 × 106 m/s
= 2.5 × 10−8 s

(c) Using Eq. 20.66 for the vertical motion, we get:

y1 = eEL2

2mv2◦
= (1.6 × 10−19 C)(250 N/C)(0.05 m)2

2(9.11 × 10−31 kg)(2 × 106 m/s)2 = 0.0137 m = 1.37 cm

Alternatively, we can use Eq. 20.64 to find y1 as follows:

y1 = 1
2 ay t2

1 = 1
2 (4.391 × 1013 m/s2)(2.5 × 10−8 s)2 = 0.0137 m = 1.37 cm

(d) We calculate y2 from Eq. 20.69 as follows:

y2 = D
eEL

mv2◦
= (0.5 m)(1.6 × 10−19 C)(250N/C)(0.05 m)

(9.11 × 10−31 kg)(2 × 106 m/s)2 = 0.274 m = 27.4 cm

Therefore, the total vertical distance moved by the electron is:

h = y1 + y2 = 0.0137 m + 0.274 m = 0.2877 m = 28.77 cm

20.7 Exercises

Section 20.2 Electric Field of a Point Charge

(1) Find the electric field of a 1 μC point charge at a distance of: (a) 1 cm, (b) 1 m,

and (c) 1 km.

(2) Find the value of a point charge if it has an electric field of 1 N/C at points:

(a) 1 cm away, (b) 1 m away, and (c) 1 km away.

(3) A vertical electric field is set up in space to compensate for the gravitational

force on a point charge. What is the required magnitude and direction of the

field when the point charge is: (a) an electron? (b) a proton? Comment on the

obtained values.

(4) An electron experiences a force of 8 × 10−14 N directed toward the front side

of a TV tube (the positive x-direction). (a) What is the magnitude and direction

of the electric field that produces this force? (b) What is the magnitude of the

acceleration of the electron?
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(5) A 4 μC point charge is placed at a point P(x = 0.2 m, y = 0.4 m). What is the

electric field
→
E due to this charge: (a) at the origin, (b) at x = 1 m and y = 1 m.

(6) Two point charges q1 =+9 μC and q2 = −4 μC are separated by a distance

L = 10 cm, see Fig. 20.24. Find the point at which the resultant electric field is

zero.

Fig. 20.24 See Exercise (6)

L

1q 2
q

+ -

(7) Three negative point charges are placed at the vertices of an isosceles trian-

gle as shown in Fig. 20.25. Given that a = 10 cm, q1 = q3 = −2 μC, and q2 =
−4 μC, find the magnitude and direction of the electric field at point P (which

is midway between q1 and q3).

Fig. 20.25 See Exercise (7)
1q

2q 3q
a

a P

(8) Four charges of equal magnitude are located at the four corners of a square

of side a = 0.1 m. Find the magnitude and direction of the electric field at

the center P of the square if: (a) all the charges are positive, i.e. qi = 5 μC,

where i = 1, 2, 3, 4, see top of Fig. 20.26. (b) the charges alternate in sign

around the perimeter of the square, i.e. q1 = q3 = 5 μC and q2 = q4 = −5 μC,

see middle of Fig. 20.26. (c) the anti-clockwise sequence of the charge signs

around the perimeter are plus, plus, minus, and minus, i.e. q1 = q2 = 5 μC and

q3 = q4 = −5 μC, see lower of Fig. 20.26.
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Fig. 20.26 See Exercise (8)
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2q 3q
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y
4q
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a

a

a

a

Section 20.3 Electric Field of an Electric Dipole

(9) Two point charges q1 = −6 μC and q2 = +6 μC are placed at two vertices of

an equilateral triangle, see Fig. 20.27. If a = 10 cm, find the electric field at the

third corner.

Fig. 20.27 See Exercise (9)

1q 2qa

aa

(10) A proton and an electron form an electric dipole and are separated by

a distance of 2a = 2 × 10−10 m, see Fig. 20.28. (a) Use exact formulas to

calculate the electric field along the x-axis at x = −10a, x = −2a, x = −a/2,
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x = +a/2, x = +2a, and x = +10a. (b) Show that at both points x = ±10a, the

approximate formula given by Eq. 20.13 has a very close percentage difference

from the exact value.

Fig. 20.28 See Exercise (10)
- e

+a- a
0

Electron Proton

x

1010 ma −=

y + e

(11) Rework the calculations of Exercise 10 but on the y-axis at y = −10 a,

y = −2 a, y = −a/2, y = +a/2, y = +2a, and y = +10a. In part (b), use

Eq. 20.17.

Section 20.4 Electric Field of a Continuous Charge Distribution

(12) A non-conductive rod of length L has a total negative charge −Q that is uni-

formly distributed along its length, see Fig. 20.29. (a) Find the linear charge

density of the rod. (b) Use the coordinates depicted in the figure to prove that the

electric field at point P, a distance a from the right end of the rod, has the same

form as the one given by Eq. 20.27. (c) When P is very far from the rod, i.e.

a � L, show that the electric field reduces to the electric field of a point charge

(i.e. the rod would look like a point charge). (d) If L = 15 cm, Q = 25 μC, and

a = 20 cm, find the value of the electric field at P.

x0

y

L a

PQ−

Fig. 20.29 See Exercise (12)

(13) A non-conductive rod lies along the x-axis with one of its ends located at x = a

and the other end located at ∞, see Fig. 20.30. Starting from the definition of

an electric field of a differential element on the rod, find the electric field at the
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origin if: (a) the rod carries a uniform positive linear charge density λ. (b) the

rod carries a positive varying linear charge density λ = λ◦a/x.

0

y

a
∞-x

λ

Fig. 20.30 See Exercise (13)

(14) A uniformly charged ring of radius 15 cm has a total charge of 50 μC. Find the

electric field on the central perpendicular axis of the ring at: (a) 0 cm, (b) 1 cm,

(c) 10 cm, and (d) 100 cm. (e) What do you observe about the values you just

calculated?

(15) A charged ring of radius R = 0.5 m has a gap d = 0.1 m, see Fig. 20.31.

Calculate the electric field at its center C if it carries a uniform charge q = 1 μC.

Fig. 20.31 See Exercise (15)

d = 0. 1m

R = 0. 5 m

q = 1 C

C

(16) Figure 20.32 shows a non-conductive semicircular arc of radius R that consists

of two quarters. The semicircle has a uniform positive total charge Q along its

right half, and a uniform negative total charge −Q along its left half. Find the

resultant electric field at the center of the semicircle.

Fig. 20.32 See Exercise (16)
P

RR

R

+Q-Q
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(17) Two non-conductive semicircular arcs, one of a uniform positive charge +Q

and the other of a uniform negative charge −Q, form a circle of radius R,

see Fig. 20.33. Find the resultant electric field at the center of the circle, and

compare it with the result of Exercise 16.

Fig. 20.33 See Exercise (17)

P

R

R

+Q-Q

(18) If you consider a uniformly charged ring of total charge Q and a fixed radius

R (as in Fig. 20.18), then the graph of Fig. 20.34 would map the electric field

along the axis of such a ring as a function of z/R. Show that the maximum

electric field is Emax = 2k Q/3
√

3R2 and occurs at z = R/
√

2.

Fig. 20.34 See Exercise (18)

0 2 4 6 8 10

maxEE

/z R

(19) An electron is constrained to move along the central axis of a ring of radius R

that has a uniform positive charge q, see Fig. 20.35. Show that when the position

x of the electron is much less than the radius R (x � R), the electrostatic force

exerted on the electron can cause it to oscillate through the center of the ring

with an angular frequency given by ω = √
kqe/mR3, where e and m are the

electronic charge and mass, respectively.

(20) Two non-conductive rings having the same radius R are arranged with their

central axes along a common horizontal line and separated by a distance of 4 R,

see Fig. 20.36. Ring 1 has a uniform positive charge q1, while ring 2 has a

uniform positive charge q2. Given that the net electric field is zero at point P,

which is at a distance R from ring 1 and on the common central axis of the

two rings, (a) find the ratio between the two charges. (b) If only the sign of q1
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is reversed, is it possible to have a point on the common axis where the net

electric field is zero? If so, where would it be?

Fig. 20.35 See Exercise (19)

R

-e

x

0

q

x-x

x R

F

Fig. 20.36 See Exercise (20)

RR

P

4 R
R

Ring 1 Ring 2

C1

1q 2q

C2

(21) A disk of radius R = 5 cm has a surface charge density σ = 6 μC/m2 on its

surface. Calculate the magnitude of the electric field at points on the central

axis of the disk located at: (a) 1 mm, (b) 1 cm, (c) 10 cm, and (d) 100 cm.

(22) A disk of radius R has a charge Q that is uniformly distributed over its surface

area. Show that Eq. 20.55 transforms to:

E = 2kQ

R2

[

1 − a√
R2 + a2

]

Show that when a � R, the electric field approaches that of a point charge

formula:

E ≈ k
Q

a2 (a � R)

You may use the binomial expansion (1 + δ)p ≈ 1 + pδ when δ � 1.

(23) Compare the obtained results of Exercise 21 to the near-field approximation

E = σ/2ε◦ as well as to the point charge approximation E = k(πR2σ)/a2, and

find which result(s) of Exercise 21 match the two approximations.



698 20 Electric Fields

(24) A disk of radius R has a surface charge density σ and an electric field of mag-

nitude E◦ = σ/2ε◦ at the center of its surface, see Fig. 20.37. At what distance

z along the central axis of the disk is the magnitude of the electric field E equal

to one-half of E◦?

Fig. 20.37 See Exercise (24)

R

z

Charge per  
unit area σ

2
E0

°

0

4
E

°

σ

σ

(25) Find the electric field between two oppositely-charged infinite sheets of charge,

each having the same charge magnitude and surface charge density σ, but

opposite signs, see Fig. 20.38.

Fig. 20.38 See Exercise (25)

E

+
+

+
+

Section 20.5 Electric Field Lines

(26) (a) A negatively charged disk has a uniform charge per unit area. Sketch the

electric field lines in the plane of the plane of the disk passing through its center.

(b) Redo part (a) taking the disk to be positively charged. (c) A negatively

charged rod has a uniform charge per unit length. Sketch the electric field

lines in the plane of the rod. (d) Three equal positive charges are placed at the

corners of an equilateral triangle. Sketch the electric field lines in the plane

of the charges. (e) An infinite linear rod has a uniform charge per unit length.

Sketch the electric field lines in the plane of the rod.
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Section 20.6 Motion of Charged Particles in a Uniform Electric Field

(27) An electron and a proton are released simultaneously from rest in a uniform

electric field of 105 N/C. Ignore the effect of the fields of the electron and proton

on each other. (a) Find the speed and kinetic energy of the electron 50 ns after

it has been released. (b) Repeat part (a) for the proton.

(28) Figure 20.39 shows two oppositely charged parallel plates that are separated

by a distance d = 1.5 cm. Each plate has a charge per unit area of magnitude

σ = 4 μC/m2. An electron is released from rest at t = 0 from the negative plate.

(a) Calculate the electric field between the two plates. (b) Ignoring the effect of

gravity, find the resultant force exerted on the electron? (c) Find the acceleration

of the electron. (d) How long does it take the electron to strike the positive plate?

(e) What is the speed and kinetic energy of the electron just before striking the

positive plate?

Fig. 20.39 See Exercise (28)

+
+

+
+

d

0tt
0°

E

- -

(29) In Exercise 28 assume that the electron is projected from the positive plate

toward the negative plate with an initial speed v◦ at time t = 0. The electron

travels the distance d = 1.5 cm between the two plates and stops temporarily

before hitting the negatively charged plate. (a) Find the magnitude and direction

of its acceleration. (b) Find the value of the electron’s initial speed. (c) Find the

time before the electron stops temporarily.

(30) Two oppositely charged horizontal plates are separated by a distance d = 1 cm

and each has a length L = 3 cm, see Fig. 20.40. The electric field between the

plates is uniform and has a magnitude E = 102 N/m. An electron is projected

between the plates with a horizontal initial speed of v◦ = 106 m/s as shown.

Assuming this experiment is conducted in a vacuum, where will the electron

strike the upper plate?

(31) Repeat Exercise 30 when a proton replaces the electron.
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Fig. 20.40 See Exercise (30)
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(32) To prevent the Electron in exercise 30 from striking the upper plate, its initial

horizontal speed is increased to v◦ = 2 × 106 m/s, see Fig. 20.41, and it then

strikes a screen at a distance D = 30 cm. (a) What is the acceleration of the

electron in the region between the two plates? (b) Find the time when the

electron leaves the two plates. (c) What is the vertical position of the electron

just before leaving the region between the two plates? (d) Find the electron’s

total vertical distance just before hitting the screen.

x

y

L D

h

1y

2y

E

+ + + + +

1y D
e

1t

0t/ 2d -

-

-

Fig. 20.41 See Exercise (32)

(33) Repeat Exercise 32 when a proton replaces the electron.
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