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Preface

This volume contains the papers presented at MFCS 2011: 36th International
Symposium on Mathematical Foundations of Computer Science held during Au-
gust 22–26, 2011 in Warsaw. It contains 48 contributed papers, selected by the
Program Committee out of a total of 129 submissions. All submitted papers were
peer reviewed and evaluated on the basis of originality, quality, soundness and
significance. Each submission was reviewed by at least three Program Committee
members with the help of external experts. The committee decided to give the
Best Student Paper Award, sponsored by EATCS, to Remi Bonnet for the paper
“The Reachability Problem for Vector Addition Systems with one Zero-Test.”

The program also included six invited talks by:

– Alexandr Andoni, Microsoft Research Mountain View
– Jörg Flum, Albert-Ludwigs-Universität Freiburg
– Mai Gehrke, Radboud Universiteit Nijmegen
– Daniel Kirsten, Humboldt-Universität zu Berlin
– Prasad Raghavendra, Georgia Tech
– Paul Wollan, Sapienza University of Rome

As a special event, the Young Research Forum was organized in parallel with
MFCS. The aim of the forum is to provide a platform for young researchers
(excellent master students, PhD students, PostDocs) to present and discuss pre-
liminary results or ongoing work in the field of theoretical computer science.

MFCS 2011 was organized by the Polish Mathematical Society and the Fac-
ulty of Mathematics, Informatics and Mechanics of the University of Warsaw in
cooperation with the European Association for Theoretical Computer Science.
We acknowledge with gratitude the support of all these institutions and thank
the University of Warsaw for hosting the event. Special thanks are due to the
Organizing Committee: Wojciech Czerwiński, Szczepan Hummel, Krystyna Ja-
worska, Agnieszka Kozubek, Marcin Pilipczuk, Jakub Radoszewski and Hanna
Soko�lowska. We also acknowledge EasyChair, an easy-to-use and freely avail-
able system for managing the work of the Program Committee and preparing
conference proceedings.

June 2011 Filip Murlak
Piotr Sankowski
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Tomáš Brázdil Masaryk University, Czech Republic
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Nearest Neighbor Search in High-Dimensional

Spaces

Alexandr Andoni

Microsoft Research SVC

Nearest neighbor search in high-dimensional spaces is a ubiquitous problem in
searching and analyzing massive data sets. In this problem, the goal is to pre-
process a set of objects (such as images), so that later, given a new query object,
one can efficiently return the object most similar to the query. This problem
is of key importance in several areas, including machine learning, information
retrieval, image/video/music clustering, and others. For instance, it forms the
basis of a widely used classification method in machine learning: to label a new
object, just find a similar but already-labeled object. Nearest neighbor search
also serves as a primitive for other computational problems such as closest pair,
minimum spanning tree, or variants of clustering.

In this talk, I will survey the state-of-the-art for the nearest neighbor search.
I will give a flavor of the main algorithms and techniques involved, both some
classical and some more recent ones. Along the way, I will highlight the current
challenges in the area.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Invariantization of Listings

Jörg Flum

Albert-Ludwigs-Universität Freiburg

We consider a halting problem for nondeterministic Turing machines and show
via invariantization of listings the relationship of its complexity to

– the existence of almost optimal algorithms for the set of propositional tau-
tologies;

– the existence of hard sequences for all algorithms deciding a given problem;
– the existence of logics capturing polynomial time.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Duality and Recognition

Mai Gehrke

Radboud University Nijmegen, The Netherlands

Abstract. The fact that one can associate a finite monoid with universal
properties to each language recognised by an automaton is central to the
solution of many practical and theoretical problems in automata theory.
It is particularly useful, via the advanced theory initiated by Eilenberg
and Reiterman, in separating various complexity classes and, in some
cases it leads to decidability of such classes. In joint work with Jean-Éric
Pin and Serge Grigorieff we have shown that this theory may be seen as
a special case of Stone duality for Boolean algebras extended to a duality
between Boolean algebras with additional operations and Stone spaces
equipped with Kripke style relations. This is a duality which also plays a
fundamental role in other parts of the foundations of computer science,
including in modal logic and in domain theory. In this talk I will give
a general introduction to Stone duality and explain what this has to do
with the connection between regular languages and monoids.

1 Stone Duality

Stone type dualities is the fundamental tool for moving between linguistic spec-
ification and spatial dynamics or transitional unfolding. As such, it should come
as no surprise that it is a theory of central importance in the foundations of
computer science where one necessarily is dealing with syntactic specifications
and their effect on physical computing systems.

In 1936, M. H. Stone initiated duality theory by presenting what, in modern
terms, is a dual equivalence between the category of Boolean algebras and the
category of compact Hausdorff spaces having a basis of clopen sets, so-called
Boolean spaces [13]. The points of the space corresponding to a given Boolean
algebra are not in general elements of the algebra – just like states of a system
are not in general available as entities in a specification language but are of an
entirely different sort. In models of computation these two different sorts, spec-
ification expressions and states, are given a priori but in unrelated settings. Via
Stone duality, the points of the space may be obtained from the algebra as homo-
morphisms into the two-element Boolean algebra or equivalently as ultrafilters
of the algebra. In logical terms these are valuations or models of the Boolean
algebra. In computational terms they are possible states of the system. Each
element of the Boolean algebra corresponds to the set of all models in which it is
true, or all states in which it holds, and the topology of the space is generated by
these sets. A main insight of Stone is that one may recover the original algebra
as the Boolean algebra of clopen subsets of the resulting space.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 3–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



4 M. Gehrke

In Boole’s original conception, Boolean algebras were meant to capture the
arithmetic of propositions and he thought of propositions as ‘classes’ or sets
of entities modelling them. In this sense Stone’s theorem closes the circle by
showing that every Boolean algebra is indeed isomorphic to a field of sets with the
set theoretic operations of intersection, union, and complement as the Boolean
operations. Stone duality is thus, in part, a representation theorem showing
that the axioms of Boolean algebras exactly capture the fields of sets just like
Cayley’s theorem shows that the axioms of groups exactly capture the groups of
permutations.

However, the fact that, with the topology in play, we obtain mathematical
objects with their own and very separate theory and intuitions which fully cap-
ture the original Boolean algebras as well as their morphisms is the real power of
Stone duality. The duality (as opposed to equivalence) aspect turns more com-
plicated constructions such as quotients into simpler ones such as subobjects, it
turns additional connectives on the algebras into transition structure on state
spaces. This ability to translate faithfully between algebraic specification and
spacial dynamics has often proved itself to be a powerful theoretical tool as well
as a handle for making practical problems decidable. This principle was applied
first by Stone himself in functional analysis, followed by Grothendieck in alge-
braic geometry who represented rings in terms of sheaves over the dual spaces of
distributive lattices (i.e., ‘positive’ Boolean algebras) and has since, over and over
again, proved itself central in logic and its applications in computer science. One
may specifically mention Scott’s model of the λ-calculus, which is a dual space,
Esakia’s duality [4] for Heyting algebras and the corresponding frame semantics
for intuitionist logics, Goldblatt’s paper [8] identifying extended Stone duality
as the theory for completeness issues for Kripke semantics in modal logic, and
Abramsky’s path-breaking paper [1] linking program logic and domain theory.
Our work with Grigorieff and Pin [7,9,6], with Pippenger [10] as a precursor,
shows that the connection between regular languages and monoids also is a case
of Stone duality.

1.1 Duality for Finite Distributive Lattices

Lattices are partial orders with infima (meets) and suprema (joins) of finite sets,
but may also be seen as algebras (L,∧,∨, 0, 1) satisfying certain equations, see
[2] for the basics of lattice theory. A lattice is distributive provided the binary
meet (∧) and the binary join (∨) distribute over each other. Distributive lattices
corresponds to the negation-free reduct of classical propositional logic, and if in
a distributive lattice every element a has a complement (that is, an element b so
that a ∧ b = 0 and a ∨ b = 1) then the lattice is a Boolean algebra.

The restriction of Stone’s duality for distributive lattices to finite objects
yields a duality between finite posets and finite distributive lattices which re-
stricts further to a duality between finite sets and finite Boolean algebras. This
duality was a precursor to Stone’s duality and is due to Birkhoff. We begin with a
description of Birkhoff duality as the essential features are easiest to understand
in this setting. This duality is based on the fact that each element in a finite
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lattice is the join of all join irreducible elements below it and that all down-sets
of join irreducible elements yield distinct elements if the lattice is distributive.
The component facts are proved in [2, Lemma 5.11, page 117].

Definition 1. An element p in a bounded lattice D is join irreducible provided
p �= 0 and p = x ∨ y in D implies p = x or p = y. An element p in a bounded
lattice D is join prime provided p �= 0 and p � x ∨ y in D implies p � x or
p � y.

We denote by Dfin the category of finite bounded distributive lattices with
bounded lattice homomorphisms and by Pfin the category of finite posets with
order preserving maps. Birkhoff duality is given by two functors

J : Dfin → Pfin and H : Pfin → Dfin

that establish the dual equivalence of the two categories. The functor J sends
a finite bounded distributive lattice D, to the poset J(D) of join irreducible
elements of D with the order induced from D. For a finite poset P , the dual
lattice H(P ) is the lattice of all down-sets of P with meet and join given by
intersection and union. On the object level the dual equivalence of the categories
Dfin and Pfin is given by the isomorphisms: D ∼= H(J(D)), a �→ ↓a∩ J(D) and
P ∼= J(H(P )), p �→ ↓p, see [2, Chapter 5]. The following figure provides two
examples. Note that an element of a Boolean algebra is join irreducible if and
only if it is an atom, i.e., an element right above 0, and thus the dual of a Boolean
algebra is just a set.

0

D

p q

r

J(D)

∅

{p, q}
{p}

{p, q, r}

{q}

H(J(D))

0

B

a b c

J(B)

∅

{a} {b} {c}

{a, b}
{a, c}

{b, c}

{a, b, c}

H(J(B))

The fact that the above correspondence extends to a categorical duality is
what makes it so powerful. In order to specify the categorical duality we have
also to give the correspondence between the morphisms in the two categories.
This correspondence is essentially based on the notion of adjoint maps.

Definition 2. Let D and E be finite lattices. Let f : D → E and g : E → D be
functions satisfying for all d ∈ D and for all e ∈ E:

f(d) � e ⇐⇒ d � g(e).

Then g is called an upper adjoint of f and f is called a lower adjoint of g.

It is easy to see that adjoints are unique when they exist and that a map between
complete lattices has an upper adjoint if and only if it preserves arbitrary joins
and order dually for lower adjoints. If f has an upper adjoint, we will denote it
by f � and if g has a lower adjoint, we will denote it by g�. Note that a bounded
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lattice homomorphism between finite lattices h : D → E preserves arbitrary joins
and meets. So it has both an upper adjoint and a lower adjoint. The duality for
maps is based on the fact that a map f : E → D (such as h�) has an upper
adjoint which has an upper adjoint if and only if it sends join irreducible elements
to join irreducible elements.

Definition 3. Let D and E be finite distributive lattices, h : D → E a bounded
lattice homomorphism. The dual of h is

J(h) = h� � J(E),

that is, the restriction of the lower adjoint h� of h viewed as a map from J(E) to
J(D). For finite posets P and Q and f : P → Q an order preserving map, we define
H(f) = (f→)� where f→ : H(P ) → H(Q) is the forward image map, S �→ f [S].
Note that H(f) = (f→)� is then actually the inverse image map T �→ f−1(T )
because the inverse image map is the upper adjoint of the forward image map.

Using the uniqueness of upper and lower adjoints, it is easy to show that J and
H on morphisms in the two categories establish one-to-one correspondences as
needed for the duality.

In closing, we note that the functors J and H can be extended to a duality
between the category DL+ of down-set lattices with complete lattice homomor-
phisms and the category P of posets with order preserving maps by replacing
binary meets and joins by arbitrary ones in the definitions above. However, this
duality does not encompass distributive lattices in general (as can be seen, e.g.
from the example at the end of the next subsection).

1.2 Duality for Bounded Distributive lattices

The basic idea of the dualities is to represent a distributive lattice by its set of join
irreducible elements. However, for infinite lattices, there may not be enough of
these, and idealised elements, in the form of ideals or filters, must be considered.
Let D be a bounded distributive lattice. A subset I of D is an ideal provided it
is a down-set closed under finite joins. We denote by Idl(D) the set of all ideals
of D partially ordered by inclusion. The embedding D → Idl(D), a �→ ↓a is the
free

∨
-completion of the lattice D. In this sense one should think of an ideal

as standing for the element which would be the supremum of the ideal if the
supremum existed. A subset F of D is a filter provided it is an up-set closed
under finite meets. We denote by Filt(D) the partially ordered set of all filters of
D. Filters represent (possibly non-existing) infima and thus the order on filters
is given by reverse inclusion. The embedding D → Filt(D), a �→ ↑a is the free∧

-completion of the lattice D. An ideal or filter is proper provided it isn’t the
entire lattice. A proper ideal I is prime provided a∧b ∈ I implies a ∈ I or b ∈ I.
A proper filter F is prime provided a ∨ b ∈ F implies a ∈ F or b ∈ F .

Note that a filter is prime if and only if its complement is a (prime) ideal so
that prime filters and prime ideals come in complementary pairs. In particular
this means that the set of prime ideals with the inclusion order is isomorphic
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to the set of prime filters with the reverse inclusion order. For a bounded dis-
tributive lattice D we will denote this partially ordered set by XD or just X .
Since there are so many set theoretic levels, we will revert to lower case letters
x, y, z . . . for elements of X and to make clear when we talk about the corre-
sponding prime filter or the complementary ideal we will denote these by Fx

and Ix, respectively. In the case of a finite distributive lattice, filters and ideals
are all principal generated by their meet and their join, respectively. In this case,
the meets of prime filters are exactly the join prime elements of the lattice while
the joins of the prime ideals are exactly the meet prime elements of the lattice.
Thus these come in pairs p, κ(p) =

∧
{a ∈ D | p � a} which split the lattice in

two disjoint pieces, that is,

∀a ∈ D ( p � a ⇐⇒ a � κ(p) )

In a finite Boolean algebra, the meet of a prime filter is necessarily an atom
while a meet irreducible is a co-atom and κ(p) = ¬p in finite Boolean algebras.

In the infinite case prime filters play the role of the join irreducible elements,
and it is not hard to verify that the following map is a bounded lattice homo-
morphism

ηD : D → P(XD)
a �→ ηD(a) = {x ∈ XD | a ∈ Fx}

Using the Axiom of Choice one may in addition show that any distributive lattice
has enough prime filters in the sense that this map also is injective.

One may also show that the sets in the image of ηD are down-sets in the
reverse order of inclusion. However, for an infinite distributive lattice, it is
never the set of all such down-sets. Stone’s insight was to generate a topology
with the sets in the image of ηD. This works but yields a non-Hausdorff space
in the non-Boolean case. A slight variant of Stone duality was later developed
by Priestley and this is what we will use here. The (Priestley) dual space of
bounded distributive lattice D is the ordered topological space (XD,�, π) where
XD is the set of prime filters of D under reverse inclusion order and π is the
topology on XD generated by the subbasis

{ηD(a), (ηD(a))c | a ∈ D}.

The space (XD,�, π) is then compact and totally order disconnected, that is, for
x, y ∈ XD with x � y there is a clopen down-set U with y ∈ U and x �∈ U . The
dual of a homomorphism h : D → E is the restriction of the inverse image map
to prime filters, h−1 : XE → XD, and, for any homomorphism h : D → E, the
map h−1 : XE → XD is continuous and order preserving.

A Priestley space is an ordered topological space that is compact and to-
tally order disconnected and the morphisms of Priestley spaces are the or-
der preserving continuous maps. The dual of a Priestley space (X,�, π) is
the bounded distributive lattice ClopD(X,�, π) of all subsets of X that are
simultaneously clopen and are down-sets. For f : X → Y a morphism of
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Priestley spaces, the restriction of the inverse image map to clopen down-sets,
f−1 : ClopD(Y ) → ClopD(X), is a bounded lattice homomorphism and is the
dual of f under Priestley duality.

This accounts for Priestley duality. The point is that, for each distributive
lattice D, the lattice ClopD(XD,�, π) is isomorphic to D via the map ηD as
described above and these isomorphisms transform homomorphisms between
lattices into their double dual homomorphisms. Similarly, any Priestley space is
order isomorphic and homeomorphic to its double dual via the map which assigns
to any point its neighbourhood filter and the double duals of order preserving
continuous functions are naturally isomorphic to the original maps. This very
tight relationship between the two categories allows one to translate essentially
all structure, concepts, and problems back and forth between the two sides of
the duality.

Note that in the case where the lattice D is a Boolean algebra, that is, each
element a has a complement ¬a, then the order on prime filters (which are in this
case the same as the ultrafilters or the maximal proper filters) is trivial, and since
(ηD(a))c = ηD(¬a), the image of η is already closed under complementation. In
this case, the Priestley duality agrees with the original Stone duality and we
may refer to it as Stone duality rather than as Priestley duality.

We close this subsection with an example. Let D = 0 ⊕ (Nop × Nop) be the
first lattice in the figure below. Note that D has no join irreducible elements
whatsoever. The prime filters of D correspond to the hollow points in the lattice
D (by taking the intersection with D of their individual up-sets) and the prime
ideals of D are all principal down-sets given by the points as marked with κ’s.
The dual space XD consists of two chains with a common lower bound, the
image of ηD consists of the cofinite down-sets, and the topology is that of the
one point compactification of a discrete space where the limit point is the least
element. We recover D as the clopen down-sets.

1

0

D

1
κ(q1) κ(p1)

κ(q2) κ(p2)

0 = κ(r)

p3

p2

p1

q3

q2

q1

r

D XD

1.3 Duality for Additional Operations

Any further structure on either side of the duality may be translated as corre-
sponding structure on the other side. The translation of additional operations
on lattices and Boolean algebras to their dual spaces is particularly important.



Duality and Recognition 9

We give the simplest but prototypical example in the finite setting. Let B be a
finite Boolean algebra and f : B → B a unary join and 0 preserving operation
on B. This is usually called a normal modal (possibility) operator and it comes
about in many applications. In order to dualise such an operation in case B is
finite, we just need to know where the elements of J(B) get sent. That is,

Rf = {(x, y) ∈ XB ×XB | x � f(y)}

encodes f as a binary relation on the dual of B. This relation is not a function
unless f actually was a homomorphism on B. We illustrate this with an example.

Example 1. Consider the situation of the muddy children puzzle: there are n
children each of whom may or may not have a muddy forehead thus giving rise
to the Boolean algebra B whose atoms are the complete conjunctions over these
n statements. Each child can see the foreheads of the others but not his own and
we want to consider modal operators <i>, for each i from 1 to n, where <i>φ
means φ is possible according to child i.

The dual space of B is the set of the 2n atoms

(0, 0, 0)

R1

(1, 0, 0)

(1, 1, 0)

R2

R3

(1, 1, 1)

XB

of B which may be thought of as n tuples each
specifying which children have muddy foreheads
and which don’t. As explained above, the modal
operators, <i>, are given dually by relations Ri

where xRiy for x, y ∈ 2n if and only if x � <i>y.
Since the order in a Boolean algebra is the order
of implication and x implies <i>y precisely when
x and y differ at most in the ith coordinate, the
relational image of each point in 2n consists of
precisely two points. In the case of three children

for example, the dual space has 8 elements and the three relations each partition
the points in two element sets along each of the three dimensions. Thus R2

identifies points vertically above/below each other. This dual structure is quite
simple and it is indeed also what one usually works with when analysing the
associated dynamic epistemic puzzle [5].

For infinite lattices one first has to extend the operation to be dualised to the
filters or the ideals (depending on whether it preserves join or meet) in order to
have the operation defined on prime filters or ideals and thus on points of the dual
space. Despite this slight complication, we get here too, for an n-ary operation, an
(n + 1)-ary relation on the dual space. The dual relations will have appropriate
topological properties. For a unary modality these amount to R being point-
closed (R[x] = {y | xRy} is closed for each x) and pre-images of clopens are
clopen (R−1[U ] = {x | ∃y ∈ U with xRy} is clopen for each clopen U). One
can also describe the duals of morphisms of lattices with additional operations.
These are are often called bounded morphisms or p-morphisms. Altogether this
yields what is known as extended Stone or Priestley duality. The details for a
fairly large class of additional operations may be found in the first section of [8].
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2 Monoids and Recognition by Automata

The starting point of the algebraic approach to automata theory is the clas-
sical result that one can effectively assign a finite monoid to each finite state
automaton. We give a derivation of this basic result using extended duality.

An automaton is a structure A = (Q,A, δ, I, F ) where Q is a finite set whose
elements are called states, A is a finite alphabet for the automaton, and δ ⊆
Q×A×Q is the transition relation which specifies the transition behaviour of
the machine when it is fed a letter in a given state. The set I of initial states is
a subset of Q as is the set F of final states.

We denote by A∗ the free monoid over the alphabet A and any subset L ⊆ A∗

is called a language over A∗. The language recognised by A, denoted L(A), is
the subset of A∗ of all words a1 . . . an over the alphabet A such that there are
states q0, . . . , qn in Q with (qi−1, ai, qi) ∈ δ for each i with 1 � i � n and q0 ∈ I
and qn ∈ F .

Example 2. Let A = (Q,A, δ, I, F ) where Q = {1, 2}, A = {a, b}, and δ is as
specified in the picture. That is, (q, x, q′) ∈ δ if and only if there is an arrow
from q to q′ labelled by x. The initial and final states are I = {1} = F .

The language recognised by A consists of all those words that

1 2
a

b

may be read by starting in 1 and ending in state 1. That is,
L(A) = (ab)∗ where S∗ denotes the submonoid generated by
S ⊆ A∗ and u∗ = {u}∗ for a word u ∈ A∗.

There may be many different automata that produce a given language but
some languages recognised by automata require inherently more complex ma-
chines than others. A fundamental insight is that we can get at the essential
features of the machines recognising a given language in a purely algebraic way
from the language. As we shall see, we may think of the underlying transition
system of an automaton as a kind of state space, and the languages recognised
by it with various choices of initial and final states as a dual algebra of sets.
Then, given what we know about duality, it should come as no surprise that the
operations on languages dual to concatenation are given by adjunction.

Let A be a finite alphabet. The concatenation operation on A∗ gives rise to a
residuated or adjoint family of operations on the set of all languages over A∗ as
follows. Complex or lifted concatenation on P(A∗) is given by

KL = {uv | u ∈ K and v ∈ L}. (1)

The residuals of this operation are uniquely determined by the residuation or
adjunction laws:

∀K,L,M ∈ P(A∗) KM ⊆ L ⇐⇒ M ⊆ K\L
(2)

⇐⇒ K ⊆ L/M.

One easily sees from this that K\L = {u ∈ A∗ | ∀v ∈ K vu ∈ L}. In particular,
for K = {x} a singleton language x\L = {u ∈ A∗ | xu ∈ L}. The operations
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L �→ x\L are widely used in language theory and usually x\L is denoted by
x−1L and these operations are referred to as quotients.

One may now easily verify that the quotient operations on the left and the
right correspond to moving the initial and final states along words respectively.

Proposition 1. Let L = L(A) be a language recognised by an automaton A =
(Q,A, δ, I, F ). Then the languages x−1Ly−1 for x, y ∈ A∗ are recognised by
automata A′ = (Q,A, δ, I ′, F ′) obtained from A by altering only the sets of
initial and final states. Consequently, the set

{x−1Ly−1 | x, y ∈ A∗}
is finite.

Definition 4. Let A be a finite alphabet and L ⊆ A∗ a language over A. Let
B(L) be the Boolean subalgebra of P(A∗) generated by the set {x−1Ly−1 | x, y ∈
A∗}. We will call B(L) the quotienting ideal generated by L. More generally
a quotienting ideal of P(A∗) is a Boolean subalgebra which is closed under the
quotienting operations x−1( ) and ( )y−1 for all x, y ∈ A∗.

Using the fact that the quotienting operations x−1( ) preserve all the Boolean
operations and that S\( ) =

⋂
x∈S x−1( ) (and the same on the right), we can

then prove the following proposition.

Proposition 2. Let L be a language recognised by some automaton. Then B(L)
is closed under the operations S\( ) and ( )/S for all S ⊆ A∗. In particular,
B(L) is closed under the binary operations \ and /.

The stronger property that the Boolean subalgebra B(L) of P(A∗) has of being
closed under residuation with arbitrary denominators, we call being a residuation
ideal.

Example 3. For the language L of Example 2, it is clear that moving the final
and initial states around along transitions yields the four automata given below
corresponding to L, Lb−1, a−1L, and a−1Lb−1, respectively.

1 2
a

b

1 2
a

b

1 2
a

b

1 2
a

b
Thus B(L) is the Boolean subalgebra of P(A∗) generated by these four languages.
It is not hard to see that this is the Boolean algebra generated by the atoms 1,
(ab)+, a(ba)∗, b(ab)∗, (ba)+, and 0, where 1 = {ε} = L ∩ a−1Lb−1, and 0 is the
complement of the union of the four generating languages. Note that B(L) is not
closed under the lifted multiplication.

Theorem 1. Let L be a language recognised by an automaton, then the extended
dual of the Boolean algebra with additional operations (B(L), \, /) is the syntactic
monoid of L. In particular, it follows that the syntactic monoid of L is finite and
is effectively computable.
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Proof. It is not hard to see that the atoms of the Boolean algebra generated by
the finite collection C = {x−1Ly−1 | x, y ∈ A∗} are the equivalence classes of
the finite indexed equivalence relation

u ≈L v if and only if ∀x, y ∈ A∗ (u ∈ x−1Ly−1 ⇐⇒ v ∈ x−1Ly−1)
if and only if ∀x, y ∈ A∗ (xuy ∈ L ⇐⇒ xvy ∈ L)

and the set A∗/ ≈L= S(L) is in fact the set underlying the syntactic monoid of
L. It is a general fact that all the operations of a residuated family have the same
dual relation up to the order of the coordinates. So we focus on the operation \. It
turns joins in the first coordinate into meets and meets in the second coordinate
into meets. For this reason some swapping between join irreducible and meet
irreducible elements using κ is needed. For X,Y, Z ∈ A∗/ ≈L we have

R\(X,Y, Z) ⇐⇒ X\κ(Y ) ⊆ κ(Z)
⇐⇒ X\(Y c) ⊆ Zc

⇐⇒ Z �⊆ X\Y c

⇐⇒ XZ �⊆ Y c

⇐⇒ ∃x ∈ X, z ∈ Z with xz ∈ Y

⇐⇒ ∃x, z with X = [x]≈L , Z = [z]≈L , Y = [xz]≈L

so that R\ is the graph of the operation on the quotient. Thus the dual space
(XB(L), R\) is the quotient monoid (A∗/ ≈L, ·/ ≈L). ��

Example 4. Continuing with our running example L = (ab)∗, we have seen that
the Boolean algebra B(L) has six atoms, namely 1 = {ε}, (ab)+, a(ba)∗, b(ab)∗,
(ba)+, and 0 (the latter consisting of all words in A∗ containing two consecutive
identical letters). Note that the product of two languages in B(L) may intersect
several languages in B(L) (e.g., (ab)∗(ba)∗ intersects 1, (ab)+, (ba)+, and 0).
However, the product of any two of the atoms is entirely contained in a unique

other atom (while we didn’t quite prove
that above, it is a consequence of what
we proved). It should be clear that in this
example, the element 1 will be the neu-
tral element, 0 will be absorbing, and the
multiplication of the remaining four ele-
ments will be as given in the adjoining
table.

(ab)+ a(ba)∗ b(ab)∗ (ba)+

(ab)+ (ab)+ a(ba)∗ 0 0
a(ba)∗ 0 0 (ab)+ a(ba)∗

b(ab)∗ b(ab)∗ (ba)+ 0 0
(ba)+ 0 0 b(ab)∗ (ba)+

Duality theory is not just about objects but also about maps, and it is straight
forward to check that the dual of the inclusion map ι : B(L) → P(A∗) is the
quotient map ϕL : A∗ → A∗/ ≈L, where A∗/ ≈L= S(L) is the syntactic monoid
of L. The content of this fact is that the dual of ϕL, which is ϕ−1

L : P(S(L)) →
P(A∗), is naturally isomorphic to ι : B(L) → P(A∗):
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B(L) ι ��
��
∼=

��

P(A∗)
��
=

��
P(S(L))

ϕ−1
L �� P(A∗).

This in turn precisely means that B(L) = {ϕ−1
L (P ) | P ⊆ S(L)}.

3 Recognisable Subsets of an Algebra and Profinite
Completions

Let A be any algebra, ϕ : A → B a homomorphism into a finite algebra. A
subset L ⊆ A is said to be recognised by ϕ provided there is a subset P ⊆ B
with L = ϕ−1(P ). A subset L ⊆ A is said to be recognised by B provided there
is a homomorphism ϕ : A → B which recognises L. The last observation of
the previous section can then be phrased as saying that the residuation ideal
generated by a regular language L consists precisely of those languages that
are recognised by the quotient map ϕL onto the syntactic monoid of L and, in
particular, that every language recognised by an automaton also is recognised
by a finite monoid. It is not hard to see that the converse of the latter statement
also holds so that the languages recognised by finite automata precisely are the
languages recognised by finite monoids. This is then the starting point of the
algebraic theory of automata. The next, and most crucial step, is the link to
profinite completions.

In this section we describe the duality theoretic link between recognition and
profinite completion. The technical result is Theorem 2 at the end of the section.
This result is crucial for the applications in Section 4. For the reader who finds
the proof given here too abstract, a more pedestrian proof may be found in [6]
where this result in the case of monoids occurs as Theorem 3 and a different
proof is given.

Let A be an algebra. A subset L ⊆ A is said to be recognisable provided there
is a finite algebra B such that L is recognised by B. We denote the Boolean
algebra of all recognisable subsets of A by Rec(A). We have:

Rec(A) = {ϕ−1(P ) | ϕ : A → B ⊇ P with ϕ an onto morphism and B finite}

=
⋃

{ϕ−1(P(B)) | ϕ : A → B is an onto morphism and B is finite}

By placing this definition in a more category-theoretic context we will be able
to apply the dualities of Section 1. First note that the finite quotients of A are
in one-to-one correspondence with the set Conω(A) of all congruences θ of A of
finite index (i.e. for which the quotient algebra A/θ is finite). Also, Conω(A) is
ordered by reverse set inclusion and is directed in this order since the intersection
of two congruences of finite index is again a congruence of finite index. Thus we
obtain an inverse limit system, FA, indexed by Conω(A) as follows:
1. For each θ ∈ Conω(A) we have the finite algebra A/θ;
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2. Whenever θ ⊆ ψ we have a (unique) homomorphism A/θ → A/ψ which
commutes with the quotient maps qθ : A → A/θ and qψ : A → A/ψ.

The inverse limit system FA

C
D

B

A

The profinite completion of an algebra A, denoted Â, is by definition the inverse
limit, lim←−FA, of the system FA viewed as a system of topological algebras. Note
that A is not a topological algebra but the finite quotients are trivially so with
the discrete topology.

Applying the discrete duality of Section 1.1, we get the direct limit system
dual to FA:

The direct limit system GA

P(C)
P(D)

P(B)

P(A)

In Section 2, we saw that for a regular language L, the dual of the residuation
algebra (B(L), \, /) is the syntactic monoid of L. One can actually show that the
extended Stone dual of any finite algebra is the Boolean algebra with residuation
operations obtained by taking the powerset of the algebra with the residuals of
the liftings of the operations of the algebra (as illustrated for a binary operation
in (1) and (2) in Section 2). Further, the quotient maps in the system FA are
dual to the inverse image maps which provide embeddings between the finite
powerset algebras, and one can show that the fact that the maps in FA are
algebra homomorphisms corresponds to the fact that the maps in GA embed
the residuation algebras as quotienting ideals (in the case of a single binary
operation, see Definition 4). All in all, we obtain a direct limit system GA of
finite residuation ideals of P(A). It is well-known in algebra that a direct limit
of subalgebras of an algebra simply is the union of these subalgebras. Thus we
get

lim−→GA =
⋃

{ϕ−1(P(B)) | ϕ : A → B is an onto morphism and B is finite}

= Rec(A).

We have outlined the proof of the following theorem.

Theorem 2. Let A be an abstract algebra. Then Rec(A) is residuation ideal in
P(A) and the profinite completion, Â, of the algebra A is homeomorphic as a
topological algebra to the extended Stone dual of Rec(A) viewed as a Boolean
algebra with residuation operations.
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4 Eilenberg-Reiterman: Sub vs. Quotient Duality

In automata theory, deciding membership in a class of recognisable languages
and separating two such classes are central problems. Classes of interest arise by
restricting the class of automata allowed for recognition, or they arise via the
description of languages by regular expressions by putting some restriction on
the form of the expressions that are allowed. There is also, via Büchi’s logic on
words, a correspondence between recognisable languages and monadic second
order sentences of this logic. Thus natural subclasses arise as the classes of
languages corresponding to fragments of monadic second order logic.

The classical example is that of the star-free languages. These are the lan-
guages obtainable from the singleton languages by closure under the Boolean
connectives and the lifted concatenation product (but without using the Kleene
star). In terms of Büchi’s logic, these are precisely the languages that are models
of sentences of the first order fragment. While both of these descriptions of the
star-free languages are nice, neither allows one readily to decide whether or not
the language recognised by a given automaton is star-free or not. Schützenberger
[12] made a breakthrough in the mid-sixties by using syntactic monoids to give
an algebraic characterisation of the star-free languages which also provides a
decision procedure for the class: a regular languages is star-free if and only if
its syntactic monoid is aperiodic (for any element x in a finite monoid, there
are m and n so that xm+n = xm; aperiodicity means the n uniformly can
be taken to be equal to 1). This is clearly a decidable property of a finite
monoid.

Eilenberg [3] greatly contributed to the success of the algebraic theory by
isolating an essential feature of the above example: the finite aperiodic monoids
form a variety of finite algebras. That is, a class of finite algebras closed un-
der subalgebras, quotients, and finite Cartesian products. Further he showed
that such varieties are in one-to-one correspondence with certain classes of reg-
ular languages, which he called varieties of languages. Later, Reiterman proved
that profinite words (that is, elements of the profinite completion of A∗ for
A finite) can be viewed as |A|-ary term functions on any finite monoid, and
that each variety of finite monoids is given by a set of identities in profinite
words [11]. In conjunction we have: A class of regular languages is a variety of
languages if and only if it can be defined by a set of profinite identities. If a
variety of languages has a finite basis for its identities and the identities can be
checked effectively, then it follows that the class is decidable. This has become
a standard route to decidability, both for varieties of languages and for various
generalisations for which Eilenberg-Reiterman theorems have subsequently been
proved.

With Grigorieff and Pin, we gave a general and modular Eilenberg-Reiterman
theorem based on duality theory [7]. The idea is the following. Let C be a sub-
lattice of Rec(A∗), that is

C ↪−→ Rec(A∗).



16 M. Gehrke

Then, the Priestley dual XC is a quotient space of the dual space of Rec(A∗),
which we know to be Â∗:

Â∗ −� XC .

That is, C is fully described by describing XC , and XC is fully described by
describing, in the case of a Boolean subalgebra of Rec(A∗), the equivalence rela-
tion on Â∗ that yields the quotient XC . In the sublattice case, not only are some
points identified going from Â∗ to XC , but the order may also be strengthened.
Thus sublattices correspond to certain quasiorders, called Priestley quasiorders,
on Â∗. This may be seen as the underlying source of profinite identities.

Fundamental to this relationship between sublattices and quotients is the
following binary satisfaction relation between pairs (u, v) ∈ Â∗×Â∗ and elements
L ∈ Rec(A∗):

L satisfies (u, v) ⇐⇒
(
ηRec(A∗)(L) ∈ v ⇒ ηRec(A∗)(L) ∈ u

)
.

A language L satisfies (u, v) provided L lies in a sublattice of Rec(A∗) cor-
responding to a Priestley quotient of Â∗ in which u ends up being below v.
For this reason we write u → v for these profinite inequations instead of just
(u, v).

Theorem 3. The assignments

Σ �→ CΣ = {L ∈ Rec(A∗) | ∀u → v ∈ Σ (L satisfies u → v)}

for Σ ⊆ Â∗ × Â∗ and

K �→ ΣK = {u → v ∈ Â∗ × Â∗ | ∀L ∈ K (L satisfies u → v)}

for K ⊆ Rec(A∗) establish a Galois connection whose Galois closed sets are the
Priestley quasiorders on Â∗ and the bounded sublattices of Rec(A∗), respectively.

Thus, for any sublattice C of Rec(A∗), we have CΣC= C so that C is determined
by a set of inequations. Also, we may look for bases Σ ⊆ ΣC with CΣ = C.
In addition, if C is closed under the quotienting operations a−1( ) and ( )a−1

on languages then we know that the corresponding Priestley quotient is also
a monoid quotient, or equivalently, the corresponding Priestley quasiorder is a
monoid congruence. In this case, we know that, with each u → v in ΣC , the
inequation xuy → xvy is also in ΣC and we can abbreviate this whole family
of inequalities as u � v. Similarly, for Boolean sublattices u → v in ΣC implies
v → u in ΣC , and it can be shown that C being closed under inverse images for
various kinds of homomorphisms of A∗ corresponds to the set of inequations for
C being closed with respect to various kinds of substitutions. The ensuing family
of Eilenberg-Reiterman theorems thus obtained is summed up in the following
table.
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Closed under Equations Definition
∪,∩ u → v ϕ̂L(v) ∈ PL ⇒ ϕ̂L(u) ∈ PL

quotienting u � v for all x, y, xuy → xvy
complement u ↔ v u → v and v → u

quotienting and complement u = v for all x, y, xuy ↔ xvy
Closed under inverses of morphisms Interpretation of variables

all morphisms words
nonerasing morphisms nonempty words

length multiplying morphisms words of equal length
length preserving morphisms letters

In order to understand the interpretation of profinite words in finite monoid
quotients of A∗, it is important to realise that, by duality, any map ϕ : A∗ → F
has a unique extension ϕ̂ : Â∗ → F obtained as the Stone dual of the Boolean
algebra homomorphism ϕ−1 : P(F ) → Rec(A∗).

Example 5. The class of star-free languages is axiomatised by xω = xω+1 with
the interpretation of x ranging over all profinite words. The fact that the class
is closed under the quotient operations and the Boolean operations means that
L is star-free if and only if ϕ−1

L (P ) is star-free for each P ⊆ S(L), not just for
PL. Now, it can be shown that for u ∈ Â∗ we have ϕ̂L(uω) = e(ϕ̂L(u)) where
e : S(L) → S(L) is the map that sends any element m of S(L) to the unique
idempotent in the cyclic monoid generated by m. Also, since each element of
S(L) is ϕ̂L(u) for some u ∈ Â∗, we have L is star-free if and only if

∀ P ⊆ S(L) ∀m ∈ S(L) ( e(m) ∈ P ⇐⇒ e(m)m ∈ P ).

Since this has to hold in particular for singleton subsets P of S(L), a language
L is star-free if and only if S(L) satisfies the identity e(x) = e(x)x. Here we
get a genuine identity, that is, an equation scheme closed under substitution
because the class of star-free languages is closed under inverse images of arbitrary
morphisms between free finitely generated monoids. Finally we note that our
language L = (ab)∗ is star-free since the elements 1, 0, (ab)+, and (ba)+ are
idempotent and e(a(ba)∗) = e(b(ab)∗) = 0 is absorbent.

A regular language with zero is a regular language whose syntactic monoid
has a 0. It is not hard to see that the class of regular languages with zero is
closed under the quotient operations and the Boolean operations, but not under
inverse images of arbitrary morphisms. Regular languages with 0 are given by
the A-specific identities xρA = ρA = ρAx where ρA is an idempotent in the
minimal (closed) ideal of Â∗ and x can range over all elements of Â∗. As in the
case of star-freeness, the closure under the Boolean and the quotient operations
allows us to quantify over all the subsets P of S(L) and thus we must have

∀m ∈ S(L)
(
mϕ̂L(ρA) = ϕ̂L(ρA) = ϕ̂L(ρA)m

)
.

Since ϕ̂L(ρA) will necessarily belong to the minimum ideal of S(L), it is easy to
see that it will evaluate to 0 if and only if S(L) has a zero so that these profinite
equations precisely say that S(L) has a zero.
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For more details, see [9] where the various declensions of our theorem are
illustrated with various examples.
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Some Variants of the Star Height Problem�
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Abstract. Given a family of recognizable languages L1, . . . , Lm and rec-
ognizable languages K1 ⊆ K2, the relative inclusion star height problem
means to compute the minimal star height of some rational expression r
over L1, . . . , Lm satisfying K1 ⊆ L(r) ⊆ K2. We show that this problem
is of elementary complexity and give an analysis of its complexity.

1 Introduction

The star height problem was raised by L.C. Eggan in 1963 [10]: Is there an
algorithm which computes the star height of recognizable languages? Like L.C.

Eggan, we consider star height concerning rational expressions with union, con-
catenation, and iteration in contrast to extended star height which also allows
intersection and complement. For several years, the star height problem was con-
sidered as the most difficult problem in the theory of recognizable languages, and
it took 25 years until K. Hashiguchi showed the existence of such an algorithm
which is one of the most important results in the theory of recognizable lan-
guages [16]. His solution to the star height problem relies on distance automata
and yields an algorithm of non-elementary complexity, and it remained open to
deduce any upper complexity bound from K. Hashiguchi’s approach (cf. [23,
Annexe B]).

Recently, the author presented another approach to the star height problem
which relies on a generalization of distance automata, the distance desert au-
tomata. He showed that the star height of the language of a non-deterministic
automaton is computable in double exponential space which is the first upper
complexity bound to the star height problem [19, 21].

K. Hashiguchi also considered the relative star height problem: Given a
finite family of recognizable languages L1, . . . , Lm and some recognizable lan-
guage K, compute the minimal star height over all rational expressions r over
L1, . . . , Lm satisfying L(r) = K [16]. In 1991, he considered inclusion variants
of these problems, as the inclusion star height problem: Given two recognizable
languages K1 ⊆ K2, compute the minimal star height over all rational expres-
sions r satisfying K1 ⊆ L(r) ⊆ K2 [17]. Finally, K. Hashiguchi considered
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the relative inclusion star height problem which is a joint generalization of the
relative and the inclusion star height problem. In [17], K. Hashiguchi showed
the decidability of all these variants of the star height problem. The proofs in
[17] are complicated. Moreover, [17] is a continuation of the difficult series of
papers [14, 15, 16]. As for the star height problem, it remained open to deduce
upper complexity bounds from [17].

In the present paper, we utilize distance desert automata and develop tech-
niques from [19, 21] to give a concise decidability proof and an elementary upper
complexity bound to the relative inclusion star height problem: it is decidable
in triple exponential space.

2 Preliminaries

2.1 Notations, Rational Expressions, and Automata

We denote by P(M) the power set of some set M . We let N := {0, 1, 2, . . .}.
Let Σ be some finite alphabet. We denote the empty word by ε. We denote

by |w| the length of some word w ∈ Σ∗.
We denote the set of rational expressions over Σ by REX(Σ) and define it as

the least set of expressions which includes Σ, ε, ∅ and is closed such that for
r, s ∈ REX(Σ), the expressions rs, r ∪ s and r∗ belong to REX(Σ). We denote
the language of some rational expression r by L(r).

The star height of rational expressions is defined inductively: we set sh(∅) := 0,
sh(ε) := 0, and sh(a) := 0 for every a ∈ Σ. For r, s ∈ REX(Σ), we set sh(rs) =
sh(r ∪ s) := max{sh(r), sh(s)}, and sh(r∗) := sh(r) + 1.

For some language L ⊆ Σ∗, we define the star height of L by

sh(L) := min
{
sh(r)

∣∣L = L(r)
}
.

We recall some standard terminology in automata theory [5, 11, 25, 26, 28].
A (non-deterministic) automaton is a quadruple A = [Q,E, I, F ] where

1. Q is a finite set of states ,
2. E ⊆ Q×Σ ×Q is a set of transitions, and
3. I ⊆ Q, F ⊆ Q are sets called initial resp. accepting states.

Let k ≥ 1. A path π in A of length k is a sequence (q0, a1, q1) (q1, a2, q2) . . .
(qk−1, ak, qk) of transitions in E. We say that π starts at q0 and ends at qk. We
call the word a1 . . . ak the label of π. We denote |π| := k. As usual, we assume
for every q ∈ Q a path which starts and ends at q and is labeled with ε.

We call π successful if q0 ∈ I and qk ∈ F . For every 0 ≤ i ≤ j ≤ k, we
denote π(i, j) := (qi, ai, qi+1) . . . (qj−1, aj−1, qj) and call π(i, j) a factor of π.
For every p, q ∈ Q and every w ∈ Σ∗, we denote by p

w� q the set of all paths
with the label w which start at p and end at q.

We denote the language of A by L(A) and define it as the set of all words
in Σ∗ which are labels of successful paths. We call some L ⊆ Σ∗ recognizable,
if L is the language of some automaton. We denote by REC(Σ∗) the class of all
recognizable languages over Σ∗.
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We call an automaton A = [Q,E, I, F ] normalized if there are qI , qF ∈ Q such
that I = {qI}, {qF} ⊆ F ⊆ {qI , qF }, and E ⊆ (Q \ {qF })×Σ × (Q \ {qI}). It is
well known that each automaton can be transformed in an equivalent normalized
automaton by adding at most two states.

2.2 Distance Desert Automata

Distance desert automata were introduced by the author in [19, 21]. They include
K. Hashiguchi’s distance automata [13] and S. Bala’s and the author’s desert
automata [3, 4, 18, 20] as particular cases. In the recent years, several authors
developed more general automata models, e.g., R-, S- and B-automata. See [1,
2, 9, 8, 7] for recent developments.

Let h ≥ 0 and Vh := {∠0,�0,∠1,�1, . . . ,�h−1,∠h}. We define a mapping
Δ : V ∗

h → N. Let us give an intuitive explanation. We imagine a machine with
h + 1 counters which can store non-negative integers. The machine processes
words over Vh. Initially, the counters are set to zero. Whenever the machine
processes a symbol �i ∈ Vh for some i, it sets the counters 0, . . . , i to zero and
leaves the counters i + 1, . . . , h unchanged. Whenever the machine processes a
symbol ∠i ∈ Vh for some i, it sets the counters 0, . . . , i− 1 to zero, increments
counter i, and leaves the counters i + 1, . . . , h unchanged. For every π ∈ V ∗

h , we
set Δ(π) as the highest value of some counter when the machine processes π.

The explanation using counters is due to [8, 9], a different explanation is given
in [19, 21]. For a precise definition, let π ∈ V ∗

h . For every 0 ≤ g ≤ h, we consider
every factor π′ of π satisfying π′ ∈ {∠0,�0, . . . ,∠g}∗ = V ∗

g , count the number of
occurrences of ∠g, and choose the maximum of these values. For 0 ≤ g ≤ h and
π′ ∈ V ∗

h , let |π′|g be the number of occurrences of the letter ∠g in π′. Let

Δg(π) := max π′∈V ∗
g

π′ is a factor of π

|π′|g and Δ(π) := max0≤g≤h Δg(π).

An h-nested distance desert automaton (for short distance desert automaton)
is a tuple A = [Q,E, I, F, θ] where [Q,E, I, F ] is an automaton and θ : E → Vh.

Let A = [Q,E, I, F, θ] be an h-nested distance desert automaton. For every
transition e ∈ E, we say that e is marked by θ(e). We extend θ to a homomor-
phism θ : E∗ → V ∗

h . For w ∈ Σ∗, let

ΔA(w) := min
p∈ I, q ∈F, π ∈ p

w� q
Δ(θ(π)).

We have ΔA(w) = ∞ iff w /∈ L(A). Hence, ΔA is a mapping ΔA : Σ∗ → N∪{∞}.
If there is a bound d ∈ N such that ΔA(w) ≤ d for every w ∈ L(A), then we

say that A is limited by d or for short that A is limited. Let R ⊆ Σ∗. If there is
a bound d ∈ N such that ΔA(w) ≤ d for every w ∈ L(A) ∩R, then we say that
A is limited on R. We need the following result.

Theorem 1 ([19, 21, 22]). Given a distance desert automaton A and a non-
deterministic automaton A′, it is PSPACE-complete to decide whether A is lim-
ited on L(A′).

The particular case L(A′) = Σ∗ is shown in [19, 21], the general case is reduced
to the case L(A′) = Σ∗ by a product construction [22].
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3 Variants of the Star Height Problem

The star height problem was raised by L.C. Eggan in 1963 [10]: Given some
recognizable language K, compute the star height of K. Or equivalently, given
some recognizable language K and some integer h, decide whether sh(K) ≤ h.
For several years, in particular after R. McNaughton refuted some promising
ideas in 1967 [24], the star height problem was considered as the most diffi-
cult problem in the theory of recognizable languages, and it took 25 years until
K. Hashiguchi showed its decidability [16]. The complexity of Hashiguchi’s
algorithm is extremely large, and it remained open to deduce an upper complex-
ity bound (cf. [23, Annexe B]). However, the author showed the following result:

Theorem 2 ([19, 21]). Let h ∈ N and K be the language accepted by an n-state
non-deterministic automaton. It is decidable in 22O(n)

space whether sh(K) ≤ h.

An instance of the inclusion star height problem is a pair (K1,K2) of recognizable
languages K1 and K2 satisfying K1 ⊆ K2. The inclusion star height of (K1,K2)
is defined by

sh(K1,K2) := min
{
sh(r)

∣∣K1 ⊆ L(r) ⊆ K2

}
.

The case K1 = K2 is Eggan’s star height problem.
For the relative star height problem, one does not build up expressions from

letters but from a given family of recognizable languages L1, . . . , Lm. An instance
of the relative star height problem is a triple (K,m, σ) where

– K is a recognizable language,
– m ≥ 1, and σ : Γ → REC(Σ∗) where Γ = {b1, . . . , bm}.

The languages σ(b1), . . . , σ(bm) play the role of the family L1, . . . , Lm, above.
The mapping σ extends to a homomorphism σ :

(
P(Γ ∗),∪, ·

)
→
(
P(Σ∗),∪, ·

)
.

For r ∈ REX(Γ ), we denote σ(L(r)) by σ(r).
The relative star height of (K,m, σ) is defined by

sh(K,m, σ) := min
{
sh(r)

∣∣ r ∈ REX(Γ ), σ(r) = K
}

where the minimum of the empty set is defined as ∞. The reader should be aware
that a rational expression r satisfying σ(r) = K does not necessarily exist, e.g.,
it might be the case that K is finite but σ(b1), . . . , σ(bm) are infinite languages.

Assume m = |Σ|, Σ = {a1, . . . , am}, and σ(bi) = {ai} for i ∈ {1, . . . ,m}.
Clearly, we have sh(K) = sh(K,m, σ) for every K ∈ REC(Σ∗). Hence, Eggan’s
star height problem is a particular case of the relative star height problem.

The finite power problem (FPP) means to decide whether some given recog-
nizable language L has the finite power property, i.e., whether there exists some
integer k such that L∗ = ∪k

i=0L
i. It was raised by J.A. Brzozowski in 1966, and

it took more than 10 years until I. Simon and K. Hashiguchi independently
showed its decidability [27, 12].
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Let L ⊆ Σ∗ be a recognizable language and set m := 1 and σ(b1) := L. We
have sh(L∗,m, σ) ≤ 1 since σ(b∗1) = L∗. Moreover, sh(L∗,m, σ) = 0 iff L has
the finite power property [22]. Consequently, the FPP is a particular case of the
relative star height problem.

An instance of the relative inclusion star height problem is a quadruple (K1,K2,
m, σ) where

– K1, K2 are recognizable languages satisfying K1 ⊆ K2,
– m and σ are defined as for the relative star height problem.

The relative inclusion star height of (K1,K2,m, σ) is defined by

sh(K1,K2,m, σ) := min
{
sh(r)

∣∣ r ∈ REX(Γ ), K1 ⊆ σ(r) ⊆ K2

}
.

Given some instance (K1,K2,m, σ), we call some r ∈ REX(Γ ) a solution of
(K1,K2,m, σ) if sh(r) = sh(K1,K2,m, σ) and K1 ⊆ σ(r) ⊆ K2.

The following figure shows the relations between the five above problems. The
arrows go from particular to more general problems.

star height problem

inclusion
star height problem

relative
star height problem

relative inclusion
star height problem

finite power problem

In 1991, K. Hashiguchi showed that the relative inclusion star height prob-
lem is effectively computable [17]. Here, we show the first complexity bound:

Theorem 3 ([22]). Let (K1,K2,m, σ) be an instance of the relative inclusion
star height problem.

For i ∈ {1, 2}, let ni be the number of states of non-deterministic automata
recognizing Ki. Denote by nσ the total number of states of non-deterministic
automata recognizing σ(bi) for i ∈ {1, . . . , n}.

1. If (K1,K2,m, σ) has a solution, then sh(K1,K2,m, σ) ≤ 22n2 .
2. Given h ∈ N, sh(K1,K2,m, σ) ≤ h is decidable in

n1 · nσ · 2h·2O(n2)

space.
3. The relative inclusion star height sh(K1,K2,m, σ) is computable in

n1 · nσ · 222O(n2)

space.
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The integer m does not explicitly occur in the complexity bounds in (2) and (3).
However, m implicitly occurs in the factor nσ since nσ ≥ m.

4 The Proof of Theorem 3

In this section, we prove Theorem 3. We assume an instance (K1,K2,m, σ) of
the relative inclusion star height problem. To avoid some technical overhead, we
assume ε /∈ σ(bi) for i ∈ {1, . . . ,m}. Moreover, we assume ε /∈ K1, and hence,
ε /∈ K2. The general case is shown in [22] by a reduction to this particular
case.

We assume that every language σ(bi) is given by some non-deterministic au-
tomaton Bi. We denote the number of states of all these Bi by nσ.

For i ∈ {1, 2}, we assume non-deterministic automata Ai = [Qi, Ei, Ii, Fi]
satisfying L(Ai) = Ki and denote ni = |Qi|.

4.1 Limitedness and Substitutions

We show a certain closure property for mappings defined by nested distance
desert automata. Let h ≥ 1 and A = [Q,E, I, F, θ] be an h-nested distance
desert automaton over Γ .

We define a mapping Δ′ : Σ∗ → N ∪ {∞} by setting

Δ′(w) := min
{
ΔA(u)

∣∣u ∈ Γ ∗, w ∈ τ(u)
}

for every w ∈ Σ∗.

Proposition 1. We can effectively construct an (h + 1)-nested distance desert
automaton A′ over Σ with at most |Q| · (nσ −2m+1) states which computes Δ′.

The condition ε /∈ τ(bi) for i ∈ {1, . . . ,m} is necessary for Proposition 1 [22].

Proof (Sketch). At first, we deal with some preliminaries. We define a homomor-
phism lift � : V ∗

h → V ∗
h+1 by setting for every i ∈ {0, . . . , h + 1}, �(∠i) := ∠i+1

and for every i ∈ {0, . . . , h}, �(�i) := �i+1. It is easy to verify that for every
π ∈ V ∗

h , we have Δ(π) = Δ(�(π)).
To construct A′, we replace the transitions in A by copies of Bi. Let q ∈ Q

and i ∈ {1, . . . ,m} such that there exists at least one transition of the form
{q} × {bi} × Q in E. Let P be the states p ∈ Q which admit a transition
(q, bi, p) ∈ E. We create |P | copies of the accepting state of Bi. We insert the
new automaton B′

i into A and merge q and the initial state of B′
i and we merge

each state in P and one accepting state of B′
i.

The idea of the transition marks in A′ is the following: For every (p, bi, q) ∈ E

and every word w ∈ τ(bi) there is some path π ∈ p
w� q in A′ such that

θ(π) = �|w|−1
0 �

(
θ((p, bi, q))

)
.
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q

p1

p2

p3

bi,�2

bi,�4

bi,∠5

a

c
. . .

Bi

q

p1

p2

p3

a,�3

c,�3

a,�5

c,�5

a,∠6

c,∠6

. . .

B′
i

We proceed this insertion for every q ∈ Q, i ∈ {1, . . . ,m} provided that there
exists at least one transition of the form {q} × {bi} × Q in E. One can easily
verify that the constructed automaton computes Δ′. �

4.2 On the Existence of a Solution

As already mentioned, a solution of (K1,K2,m, σ) does not necessarily exist. In
this section, we show that the existence of a solution is decidable. Moreover, we
show that if there is some (not necessarily recognizable) language R ⊆ Γ ∗ such
that K1 ⊆ σ(R) ⊆ K2, then there exists a solution.

The language
L = {w ∈ Γ ∗ |σ(w) ⊆ K2},

which is by its definition the largest subset L ⊆ Γ ∗ satisfying σ(L) ⊆ K, plays
a central role.

Proposition 2. We can effectively construct a total, non-deterministic automa-
ton AL which recognizes Γ ∗ \ L.

Given an automaton A′
2 which recognizes Σ∗ \K2, the number of states of AL

is at most the number of states of A′
2.

Proof (Sketch). Let A′
2 = [Q′

2, E
′
2, I

′
2, F

′
2] be an automaton which recognizes

Σ∗ \ K2. The automaton A′
2 might be constructed by a determinization and

complementation of A2, but in general, we do not require A′
2 to be deterministic.

We define a new set of transitions EL. For every p, q ∈ Q′
2, b ∈ Γ , the triple

(p, b, q) belongs to EL iff there exists some word w ∈ σ(b) such that A′
2 admits

a path from p to q which is labeled with w. This condition is decidable in
polynomial time since it means to decide whether the language of [Q′

2, E
′
2, p, q]

and σ(b) are disjoint.
Clearly, AL = [Q′

2, EL, I
′
2, F

′
2] recognizes Γ ∗ \ L. �

By Proposition 2, we have also shown that L is recognizable. Now, the following
conditions are equivalent:
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1. There is some R ⊆ Γ ∗ satisfying K1 ⊆ σ(R) ⊆ K2.
2. The instance (K1,K2,m, σ) has a solution.
3. K1 ⊆ σ(L)

For (3) ⇒ (2), let r ∈ REX(Γ ) such that L(r) = L. For (2) ⇒ (1), set R = σ(r)
whereas r is a solution. For (1) ⇒ (3), note that σ(R) ⊆ K2 implies R ⊆ L by
the definition of L.

Since (3) is decidable, we can decide the existence of a solution.

Proof (Theorem 3(1)). As another consequence, we have sh(K1,K2,m, σ) ≤
sh(L) if (K1,K2,m, σ) has a solution. We can construct an automaton recogniz-
ing L by complementing the automaton from Proposition 2. Consequently, L is
recognized by an automaton having at most 22n2 states, i.e., we have

sh(K1,K2,m, σ) ≤ 22n2

if (K1,K2,m, σ) has a solution. �

4.3 String Expressions

We recall the notion of a string expression from R.S. Cohen [6].
Every word w ∈ Σ∗ is a single string expression of star height sh(w) = 0 and

degree dg(w) := |w|. Let n ≥ 1 and r1, . . . , rn be single string expressions. We
call r := r1 ∪ · · · ∪ rn a string expression of star height sh(r) = max{sh(ri) | 1 ≤
i ≤ n} and degree dg(r) := max{dg(ri) | 1 ≤ i ≤ n}. The empty set ∅ is a string
expression of star height sh(∅) = 0 and degree dg(∅) := 0.

Let n ≥ 2, a1, . . . , an ∈ Σ, and s1, . . . , sn−1 be string expressions. We call
the expression s := a1s

∗
1a2s

∗
2 . . . s∗n−1an a single string expression of star height

sh(s) = 1 + max{sh(si) | 1 ≤ i < n} and degree dg(s) := max
(
{n}∪ {dg(si) | 1 ≤

i < n}
)
.

The following lemma is due to R.S. Cohen [6].

Lemma 1 ([6, 19, 21]). Let L ⊆ Σ∗ be a recognizable language. There is a
string expression s such that we have L = L(s) and sh(s) = sh(L).

Lemma 2 ([19, 21]). Let L ⊆ Σ∗ be recognizable. We have sh(L) = sh(L\{ε}).

4.4 The Td,h(P, R)-Hierarchy

Let AL = [QL, EL, IL, FL] be the automaton recognizing Γ ∗\L by Proposition 2.
Let δL : P(QL) × Γ ∗ → P(QL) be defined by

δL(P,w) := {r ∈ QL |P w� r �= ∅}

for every P ⊆ QL, w ∈ Γ ∗. For every P,R ⊆ QL let

T (P,R) := {w ∈ Γ+ | δL(P,w) ⊆ R}.
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Consequently, T
(
IL, QL \ FL

)
= Γ+ \ L(AL) = L \ {ε}.

Let d ≥ 1 and P,R ⊆ QL. We define

Td,0(P,R) :=
{
w ∈ Γ+

∣∣ δL(P,w) ⊆ R, |w| ≤ d
}
.

We have

Td,0(P,R) =
⋃

1≤ c≤ d,

P0,...,Pc ⊆ QL,

P = P0, Pc ⊆R

T1,0

(
P0, P1

)
T1,0

(
P1, P2

)
. . . T1,0

(
Pc−1, Pc

)
.

It is easy to see that T (P,R) =
⋃

d≥1 Td,0(P,R).
Now, let h ∈ N, and assume by induction that for every P,R ⊆ QL, the

language Td,h(P,R) is already defined. We define

Td, h+1(P,R) :=
⋃

1≤ c≤ d,

P0,...,Pc ⊆QL,

P = P0, Pc ⊆ R

T1,0(P0, P1)
(
Td,h(P1, P1)

)∗
. . .

. . . T1,0(P1, P2)
(
Td,h(P2, P2)

)∗
. . . T1,0(Pc−1, Pc).

Let d ≥ 1, h ∈ N, and P,R ⊆ QL be arbitrary. We have ε /∈ Td,h(P,R).

Lemma 3. Let d ≥ 1, h ∈ N, and P,R ⊆ QL. We have(
Td,h(P, P )

)∗
T1,0(P, P )

(
Td,h(P, P )

)∗ ⊆
(
Td,h(P, P )

)∗
.

Proof. The assertion follows, because T1,0(P, P ) ⊆ Td,h(P, P ) and
(
Td,h(P, P )

)∗
is closed under concatenation. �
For every d′ ≥ d, h′ ≥ h, R′ ⊇ R, Td,h(P,R) ⊆ Td′,h′(P,R). For fixed P,R ⊆
QL, the sets Td,h(P,R) form a two-dimensional hierarchy. Whenever we use the
notion Td,h(P,R)-hierarchy, we regard P,R ⊆ QL and h ∈ N as fixed, i.e., it is
a one-dimensional hierarchy with respect to the parameter d ≥ 1.

By induction, we can easily construct a string expression r with L(r) =
Td,h(P,R) such that sh(r) ≤ h and dg(r) ≤ d, and hence, sh

(
Td,h(P,R)

)
≤ h.

However, we cannot assume that there is a string expression r with L(r) =
Td,h(P,R) such that sh(r) = h and dg(r) = d. In the inductive construction of r,
several sets T1,0(Pi−1, Pi) may be empty, and then, the star-height (resp. degree)
of r is possibly smaller than h (resp. d). Just consider the case Td,h(P,R) = {a}
but h > 1, d > 1.

Lemma 4. Let d ≥ 1, h ∈ N, and P,R ⊆ QL. We have Td,h(P,R) ⊆ T (P,R).

Proof (Sketch). The proof is done for some fixed d. The case h = 0 follows
directly from the definition, the case h > 0 is shown by induction on h. �
We have for every h ∈ N and P,R ⊆ QL:

T (P,R) =
⋃
d≥1

Td,0(P,R) ⊆
⋃
d≥1

Td,h(P,R) ⊆ T (P,R).
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4.5 The Collapse of the Td,h(P, R)-Hierarchy

We say that the Td,h(P,R)-hierarchy collapses for some h ∈ N if there is some
d ≥ 1 such that Td,h(P,R) = T (P,R). Below, we will observe that the Td,h(P,R)-
hierarchy collapses for some h iff h ≥ sh

(
T (P,R)

)
.

For the relative inclusion star height problem, we are rather interested in
σ
(
Td,h(IL, QL \ FL)

)
than in Td,h(P,R). In particular, it is interesting whether

for some given h ∈ N, there exists some d such that K1 ⊆ σ
(
Td,h(IL, QL \FL)

)
.

For this, the following lemma will be very useful.

Lemma 5. Let r be a string expression, d ≥ dg(r), and h ≥ sh(r). Let P,R ⊆
QL such that L(r) ⊆ T (P,R). We have L(r) ⊆ Td,h(P,R).

Proof. We assume L(r) �= ∅. By L(r) ⊆ T (P,R), we have ε /∈ L(r).
Assume sh(r) = 0. There are some k ≥ 1 and w1, . . . , wk ∈ Γ+ such that

r = w1 ∪ · · · ∪ wk and for every 1 ≤ i ≤ k, we have |wi| ≤ d, and moreover,
δ(P,wi) ⊆ R. By the definition of Td,0(P,R), we have wi ∈ Td,0(P,R), i.e.,
L(r) ⊆ Td,0(P,R) ⊆ Td,h(P,R).

Now, let sh(r) ≥ 1, and assume that the claim is true for every string expres-
sion r′ with sh(r′) < sh(r).

Clearly, it suffices to consider the case that r is a single string expression. Let
c ≥ 2 and a1, . . . , ac ∈ Γ and r1, . . . , rc−1 be string expressions of a star height
less that sh(r) such that r = a1r

∗
1a2r

∗
2 . . . r∗c−1ac. Let d ≥ dg(r) and h ≥ sh(r).

Let P,R ⊆ QL such that L(r) ⊆ T (P,R).
Let P0 := P , and for 1 ≤ i < c, let Pi := δ

(
Pi−1, aiL(r∗i )

)
. Finally, let Pc :=

δ(Pc−1, ac). To show L(r) ⊆ Td,h(P,R), we apply the definition of Td,h(P,R) with
P0, . . . , Pc. We defined P0 = P , and we can easily show Pc = δ

(
P0, L(r)

)
⊆ R.

Clearly, c ≤ d. To complete the proof, we show the following two assertions:

1. for every 1 ≤ i ≤ d′, we have ai ∈ T1,0(Pi−1, Pi), and
2. for every 1 ≤ i < d′, we have L(ri) ⊆ Td,h−1(Pi, Pi).

(1) Clearly, δ(Pi−1, ai) ⊆ δ
(
Pi−1, aiL(ri)∗

)
= Pi. Hence, ai ∈ T1,0(Pi−1, Pi)

follows from the definition of T1,0(Pi−1, Pi).
(2) We have sh(ri) < h and dg(ri) ≤ d. In order to apply the inductive

hypothesis, we still have to show δ(Pi, L(ri)) ⊆ Pi. We have aiL(ri)∗L(ri) ⊆
aiL(ri)∗. Thus, we obtain

δ(Pi, L(ri)) = δ
(
δ
(
Pi−1, aiL(ri)∗

)
, L(ri)

)
=

δ
(
Pi−1, aiL(ri)∗L(ri)

)
⊆ δ

(
Pi−1, aiL(ri)∗

)
= Pi. �

Let P,R ⊆ QL and h ≥ sh
(
T (P,R)

)
. By Lemma 1, there is a string expression

r such that L(r) = T (P,R) and h ≥ sh(r). Let d := dg(r). We have

T (P,R) = L(r)
Lemma 5

⊆ Td,h(P,R)
Lemma 4

⊆ T (P,R),

i.e., the Td,h(P,R)-hierarchy collapses for h.
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Conversely, let h ∈ N, P,R ⊆ QL and assume that the Td,h(P,R)-hierarchy
collapses for h. Let d ≥ 1 such that Td,h(P,R) = T (P,R). As already seen, we
can construct a string expression r such that L(r) = Td,h(P,R), sh(r) ≤ h, and
dg(r) ≤ d. Thus, h ≥ sh

(
T (P,R)

)
.

To sum up, the Td,h(P,R)-hierarchy collapses for h iff h ≥ sh
(
T (P,R)

)
.

Proposition 3. Let h ∈ N. There exists some d ≥ 1 such that
K1 ⊆ σ

(
Td,h(IL, QL \ FL)

)
iff sh(K1,K2,m, σ) ≤ h.

Proof. · · · ⇒ · · · Let r be a string expression such that L(r) = Td,h(IL, QL\FL),
sh(r) ≤ h, and dg(r) ≤ d. From L(r) ⊆ T (IL, QL \ FL) = L \ {ε}, it follows
σ(L(r)) ⊆ σ(L) ⊆ K2.

Moreover, K1 ⊆ σ(L(r)). Consequently, h ≥ sh(r) ≥ sh(K1,K2,m, σ).
· · · ⇐ · · · Let s be a solution of (K1,K2,m, σ), i.e., K1 ⊆ σ(L(s)) ⊆ K2. Our

aim is to apply Lemma 5 to show that L(s) is subsumed by the set Td,h(IL, QL\
FL) for some d ≥ 1. However, the empty word causes some trouble. Since ε /∈ K1,
we obtain

K1 ⊆ σ
(
L(s) \ {ε}

)
⊆ K2.

By Lemmas 1 and 2, we can transform s into a string expression r by preserving
the star height such that L(r) = L(s) \ {ε}. Thus,

K1 ⊆ σ(L(r)) ⊆ K2.

From L(r) ⊆ L(s) ⊆ L and ε /∈ L(r), it follows L(r) ⊆ L\{ε} = T (IL, QL \FL).
Let d := dg(r). Since h ≥ sh(r), we can apply Lemma 5 and get L(r) ⊆

Td,h(IL, QL \ FL), i.e.,

K1 ⊆ σ(L(r)) ⊆ σ
(
Td,h(IL, QL \ FL)

)
. �

4.6 A Reduction to Limitedness

In this section, we construct for given h ∈ N and P,R ⊆ QL a (h + 1)-nested
distance desert automaton Ah(P,R) over the alphabet Γ . This automaton asso-
ciates to each word w ∈ Γ+ the least integer d such that w ∈ Td+1, h(P,R). It
computes ∞ if such an integer d does not exist, i.e., if w /∈ T (P,R).

The automaton Ah(IL, QL \ FL) will be of particular interest. By apply-
ing Proposition 1, we transform Ah(IL, QL \ FL) to a distance desert automa-
ton which associates to each word w ∈ Σ∗ the least integer d such that w ∈
σ
(
Td+1,h(IL, QL \ FL)

)
.

In combination with Proposition 3 and the decidability of limitedness (Theo-
rem 1), this construction allows us to decide whether sh(K1,K2,m, σ) ≤ h.

Proposition 4. Let h ∈ N and P,R ⊆ QL. We can construct an (h + 1)-
nested distance desert automaton Ah(P,R) = [Q,E, qI , qF , θ] with the following
properties:

1. E ⊆ (Q \ {qF }) × Γ × (Q \ {qI}),

2. |Q| ≤ kh+1 + kh − 1
k − 1 + 1 where k = 2|QL|,
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3. for every (p, a, q) ∈ E, we have θ((p, a, q)) = �h if p = qI , and
θ((p, a, q)) ∈ {�0, . . . ,�h−1,∠0, . . . ,∠h} if p �= qI ,

4. for every w ∈ Γ ∗, ΔA(w) + 1 = min
{
d ≥ 1

∣∣w ∈ Td,h(P,R)
}

.

Proof (Sketch). We employ the mapping δL from the beginning of Section 4.4.
We proceed by induction on h. Let P,R ⊆ QL be arbitrary.

Let h = 0. At first, we construct an automaton which accepts every word w
with δ(P,w) ⊆ R. We use P(QL) as set of states. For every S, T ⊆ QL, b ∈ Γ ,
we set a transition (S, b, T ) iff δL(S, b) ⊆ T . The initial state is P , every non-
empty subset of R is an accepting state. We apply to this automaton a standard
construction to get an automaton [Q,E, qI , qF ] which satisfies (1) where Q =
P(QL) .∪ {q′I , q′F }. For every transition (qI , b, q) ∈ E, we set θ((qI , b, q)) = �0.
For every transition (p, b, q) ∈ E with p �= qI , we set θ((p, b, q)) = ∠0. This
completes the construction of A0(P,R) = [Q,E, qI , qF , θ].

Now, let h ∈ N. We assume that the claim is true for h and show the claim
for h + 1. At first, we construct an automaton A′ := [Q′, E′, qI , qF ]. Let Q′ :=
P(QL) .∪ {qI , qF }.

Let b ∈ Γ and S, T ⊆ QL be arbitrary. If S �= T and δ(S, b) ⊆ T , then we
put the transition (S, b, T ) into E′. If δ(P, b) ⊆ T , then we put the transition
(qI , b, T ) into E′. If δ(S, b) ⊆ R, then we put the transition (S, b, qF ) into E′.
Finally, if δL(P, b) ⊆ R, then we put the transition (qI , b, qF ) into E′. For every
word w which A′ accepts, we have w ∈ T (P,R).

We define θ′ : E′ → {�h+1,∠h+1}. For every transition (qI , b, q) ∈ E′, let
θ′((q′I , b, q)) = �h+1. For every transition (p, b, q) ∈ E′ with p �= qI , we set
θ′((p, b, q)) = ∠h+1.

We construct Ah+1(P,R). For every S ⊆ QL, we assume by induction an
automaton Ah(S, S) which satisfies (1, . . . , 4). We assume that the sets of states
of the automata Ah(S, S) are mutually disjoint. We construct Ah+1(P,R) =
[Q,E, qI , qF , θ] as a disjoint union of A′ and the automata Ah(S, S) for every
S ⊆ QL and unifying both the initial and accepting state of Ah(S, S) with
the state S in A′. Because we did not allow self loops in A′, the union of the
transitions is disjoint, and hence, θ arises in a natural way as union of θ′ and the
corresponding mappings of the automata Ah(S, S). If θ(t) ∈ {�h+1,∠h+1} for
some t ∈ E, then t stems from A′. Conversely, if θ(t) ∈ {�0, . . . ,�h,∠0, . . . ,∠h}
for some t ∈ E, then t stems from some automaton Ah(S, S).

Let π be some path in Ah+1(P,R) and assume that for every transition t in
π, we have θ(t) ∈ {�0, . . . ,�h,∠0, . . . ,∠h}. Then, the entire path π stems from
some automaton Ah(S, S), i.e., π cannot visit states in P(QL)\{S}. Conversely,
if π is a path in Ah+1(P,R), and two states S, T ⊆ QL with S �= T occur in π,
then π contains some transition t with θ(t) = ∠h+1.

Clearly, Ah+1(P,R) satisfies (1) and (3). It is just a technical calculation to
verify (2). To prove (4), we show the following two claims:

4a. Let d ≥ 1. For every w ∈ Td,h+1(P,R), there is a successful path π in
Ah+1(P,R) with the label w and Δ(θ(π)) + 1 ≤ d.

4b. Let π be a successful path in Ah+1(P,R) with the label w. We have w ∈
TΔ(θ(π))+1, h+1(P,R).
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Claim (4a) (resp. 4b) proves “. . . ≤ . . . ” (resp. “. . . ≥ . . . ”) in (4). Thus, (4)
is a conclusion from (4a) and (4b). For a proof of (4a) and (4b), the reader is
referred to [22]. �

Proposition 5. Let h ∈ N. We can construct an (h + 2)-nested distance desert
automaton A over Σ such that for every w ∈ Σ∗

ΔA(w) + 1 = min
{
d ≥ 1

∣∣w ∈ σ(Td,h(IL, QL \ FL))
}
.

In particular, A has at most(
kh+1 +

kh − 1
k − 1

+ 1
)

(nσ − 2m + 1)

states where k = 2|QL|.

Proof. The initial point of our construction is the automaton Ah(IL, QL \ FL)
from Proposition 4. We denote its mapping by ΔAh

.
We consider the following mapping Δ′ : Σ∗ → N ∪ {∞}

Δ′(w) := min
{
ΔAh

(u)
∣∣ u ∈ Γ ∗, w ∈ σ(u)

}
.

If Δ′(w) ∈ N, then there exists some u ∈ Γ ∗ such that w ∈ σ(u) and
ΔAh

(u) = Δ′(w). By Proposition 4(4), we have u ∈ TΔA(u)+1, h(IL, QL \ FL) ⊆
TΔ′(w)+1,h(IL, QL \ FL). Thus, w ∈ σ

(
TΔ′(w)+1, h(IL, QL \ FL)

)
.

Conversely, let d ≥ 1 and assume w ∈ σ
(
Td,h(IL, QL \ FL)

)
. There is some

u ∈ Td,h(IL, QL\FL) such that w ∈ σ(u). By Proposition 4(4), we have ΔAh
(u)+

1 ≤ d, and hence, Δ′(w) + 1 ≤ d.
To prove the proposition, we construct by Proposition 1 an (h + 2)-nested

distance desert automaton A which computes Δ′. The bound on the number of
states follows from Propositions 1 and 4(2). �

Finally, we can prove Theorem 3:

Proof (Theorem 3(2)(3)). (2) Given h ∈ N, we can construct A from Proposi-
tion 4. By Proposition 3, sh(K1,K2,m, σ) ≤ h iff K1 ⊆ σ(L) = L(A) and A is
limited on K1. The latter condition is decidable by Theorem 1.

As seen in Proposition 2, we have |QL| ≤ 2n2 . Thus, the number of states of
A lies in

nσ · 2h·2O(n2)
.

The factor n1 arises in the decision of K1 ⊆ L(A) and limitedness of A on K1.
(3) To compute sh(K1,K2,m, σ), we have do decide the existence of a solution

and to decide sh(K1,K2,m, σ) ≤ h for every 0 ≤ h ≤ 22n2 . �
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Generic Techniques to Round SDP Relaxations

Prasad Raghavendra

Georgia Tech

This talk will survey two general approaches to rounding solutions to SDP re-
laxations.

‘Squish and Solve’ Rounding:
This technique of rounding SDPs for constraint satisfaction problems generalizes
and unifies a large body of SDP-based algorithms for CSPs. More specifically, it
yields a a generic algorithm that for every CSP, achieves an approximation at
least as good as the best known algorithm in literature. The generic algorithm
is guaranteed to achieve an approximation ratio equal to the integrality gap of
an SDP relaxation known to be optimal under Unique Games Conjecture. This
is based on joint work with David Steurer.

Rounding Using Correlations:
Despite the numerous applications of semidefinite programming, in all but very
few cases, the algorithms rely on arguably the simplest SDP relaxation. Hence
the power of stronger semidefinite programming relaxations is not yet harnessed,
leaving open the possibility that fundamental optimization problems like Max-
Cut and Vertex Cover could be approximated better using SDPs. The dearth
of algorithms based on stronger SDP relaxations stems from the lack of general
techniques to round these relaxations.

In this work, we present a technique to round SDP hierarchies using the
underlying correlations between variables. To demonstrate the technique, we
present two applications of the technique, one to the problem of MaxBisection
and other to general 2-CSPs on random graphs. This is based on joint works
with David Steurer, Ning Tan and Boaz Barak.
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New Proofs in Graph Minors

Paul Wollan

Sapienza University of Rome

The theory of Graph Minors developed by Robertson and Seymour has had
wide reaching consequences in graph theory and theoretical computer science.
The main result of the theory, known as the graph minor structure theorem,
approximately describes the structure of graphs which do not contain a fixed
graph as a minor. The structure theorem is the central piece of many of the
algorithmic applications of graph minor theory. Unfortunately, the statement of
this structure theorem is quite complex and the only proof until now requires a
series of 16 technical papers.

In joint work with Ken-ichi Kawarabayashi and Robin Thomas, we have
worked to make these techniques more accessible to the wider community. In
this talk, I will discuss a new constructive proof which is much simpler than
the original proof. Additionally, the new proof also immediately gives a polyno-
mial time algorithm to find the decomposition and dramatically improves the
constants obtained in the theorem.
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The Least-Core of Threshold Network Flow

Games

Yoram Bachrach

Abstract. Network flow games model domains where a commodity can
flow through a network controlled by selfish agents. Threshold Network
Flow Games (TNFGs) are a form of such games where an agent coalition
wins if it manages to send a flow exceeding a certain threshold between a
source and a target vertex. Cooperative game theory predicts the agents’
actions in such settings with solutions such as the core, the set of stable
distributions of a coalition’s gains among its members. However, some
games have empty cores, so every distribution is inherently unstable.
When the core is empty, one must use a more relaxed notion of stability,
such as the least-core. We examine several problems regarding the least-
core in general and restricted TNFGs.

1 Introduction

Game theory analyzes interactions between selfish agents, with implications
ranging from auctions to electronic commerce. A key aspect of agent interac-
tion is cooperation. Cooperation between selfish agents requires careful planning
as a stable coalition can only be formed if the resulting gains are distributed in
appropriately. Game theory suggests possible distributions of the gains, formal-
ized in solution concepts such as the core [11], and least-core [14].

We consider Threshold Network Flow Games (TNFGs), which model situ-
ations where a commodity (goods, information or traffic) can flow through a
network where selfish agents control parts of the network. In TNFGs, agents
form coalitions to guarantee a certain bandwidth (or a required flow) from a
source to a target node. In our model, a principal offers a single unit of reward
if a coalition can send a certain minimal flow between the source and the target,
but is not willing to offer a higher reward for achieving a higher flow.

Our Contribution: We examine stable gain distributions in TNFGs. When the
TNFG’s core is empty , a less demanding solution, the ε-core, must be applied
to find a “less unstable” distribution. We show that computing the ε-core of
TNFGs is a hard, but provide polynomial algorithms for unit capacity networks
and bounded layer-graphs with bounded integer capacities.

1.1 Preliminaries

A transferable utility coalitional game is composed of a set of n agents, I =
{1, 2, . . . , n}, and a characteristic function mapping any subset (coalition) of the
agents to a rational value v : 2I → Q, indicating the total utility these agents

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 36–47, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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achieve together. We denote the set of all the agents except agent i as I−i =
I \{i}. A game is monotone if for all coalitions C′ ⊂ C we have v(C′) ≤ v(C). In
a simple game, v only gets values of 0 or 1 (v : 2I → {0, 1}). We say a coalition
C ⊂ I wins if v(C) = 1, and say it loses if v(C) = 0. In simple monotone games
we say i is a veto agent if she is present in all winning coalitions, so when v(C) = 1
we have i ∈ C. It is easy to see that in such games, i is a veto agent iff v(I) = 1
but v(I−i) = 0. The characteristic function only defines the gains a coalition
achieves, but does not say how they are to be distributed among the coalition’s
agents. An imputation (p1, . . . , pn) is a division of the gains of the grand coalition
I among the agents, where pi ∈ Q, such that

∑n
i=1 pi = v(I). We call pi the

payoff of agent i, and denote the payoff of a coalition C as p(C) =
∑

i∈C pi.
Cooperative Game theory allows choosing the appropriate imputation for the
game.

A basic requirement for a good imputation is individual rationality, stating
that for all agents i ∈ C, we have pi ≥ v({i})—otherwise, some agent is incen-
tivized to work alone. Similarly, we say a coalition B blocks the payoff vector
(p1, . . . , pn) if p(B) < v(B), since B’s members can split from the original coali-
tion, derive the gains of v(B) in the game, give each member i ∈ B its previous
gains pi—and still some utility remains, so each member can get more utility.
If a blocked payoff vector is chosen, the coalition is unstable. A prominent so-
lution focusing on stability is the core [11]. The core of a game is the set of all
imputations (p1, . . . , pn) that are not blocked by any coalition, so that for any
coalition C, we have: p(C) ≥ v(C). The core can be empty, so every imputation
is blocked by some coalition. In this case we must relax the core’s requirements
to get a solution. One model for this assumes that coalitions that only have a
small incentive to drop-off from the grand coalition would not do so. This solu-
tion, which slightly core’s inequalities is the ε-core [14]. The ε-core is the set of
all imputations (p1, . . . , pn) such that for any coalition C ⊆ I, p(C) ≥ v(C) − ε.

Given an imputation p, the excess of C is the difference between C’s value
and payoff: e(C) = v(C) − p(C). Under an ε-core imputation, the excess of any
coalition is at most ε. If ε is large enough, the ε-core is non-empty. A natural
question is finding the smallest ε such that the ε-core is non-empty, known as
the least-core. Given a game G we consider {ε|the ε-core of G is not empty}. It
is easy to see that this set is compact, and has a minimal element εmin. The
least-core of the game G is the εmin-core of G.

2 The Least-Core in TNFGs

Network domains give rise to natural game theoretic problems. A flow network
consists of a directed graph G = 〈V,E〉 with capacities on the edges c : E → Q+,
a distinguished source vertex s ∈ V and a sink vertex t ∈ V . A flow through
the network is a function f : E → Q+ which obeys the capacity constraints and
conserves the flow at each vertex (except for the source and sink), meaning that
the total flow entering a vertex must equal the total flow leaving that vertex.
The value of a flow f (denoted |f |) is the net amount flowing out of the source
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(and into the sink). A maximum flow is a valid flow f∗ whose magnitude |f∗| is
maximal of all possible flows, so for any valid flow f ′ we have |f∗| ≥ |f ′|.

A threshold network flow domain consists of a network flow graph G = 〈V,E〉,
with capacities on the edges c : E → Q, a source vertex s, a target vertex t, and
a set I of agents, where agent i controls the edge ei ∈ E, and flow threshold k.
A coalition C ⊆ I, controls the edges EC = {ei|i ∈ C}. Given a coalition C we
denote by GC = 〈V,EC〉 the induced graph where the only edges are the edges
that belong to the agents in C. We denote by fC the maximum flow between s
and t in GC . In a threshold network flow game (TNFG), a coalition C wins if
it can achieve a k-flow between s and t and loses otherwise. The characteristic
function of the game, v, is:

v(C) =

{
1 if fC ≥ k, so EC allows a flow of k from s to t;
0 otherwise;

TNFGs are simple games, since v can only get a value of 0 or 1. A Cardinal
Network Flow Game (CNFG) is defined in a similar manner, except the value
of a coalition is the maximum flow it can send from s to t. In CNFGs the
characteristic function is vCNFG(C) = fC .

We consider stable payoff distributions in TNFGs. Given a reward for allowing
a certain flow between the source and the target, the coalition must decide how
to distribute this reward to the agents who own the links. We wish to distribute
the gains in a way that minimizes the incentives of any subset of agents to split
off from the main coalition and form their own network. The appropriate game
theoretic solution for this is the core. TNFGs are simple and monotone games,
where the core is closely related to veto players. A folklore theorem (see [15])
states that in simple monotone games, if there are no veto agents then the core
is empty, and if there are veto agents then the core is the set of imputations
that distribute all the gains solely to the veto agents. Thus, computing the core
in such games simply requires returning a list of veto players in that game, and
checking if the core is non-empty simply requires testing if the game has any
veto players. Unfortunately, TNFGs rarely have veto agents. If there are two
disjoint edge subsets that allow a k-flow, the core is empty 1.

Computational problems in TNFGS: we now define several important prob-
lems regarding TNFGs: IMP-C, IMP-EC, IMP-LC, CNE, ECNE, LCV, ME.
The core, ε-core and the least-core are all solution concepts that may contain
more than one possible imputation (or even, an infinite number of imputa-
tions). One key question given a TNFG is testing whether a certain imputation
p = (p1, . . . , pn) is stable (i.e. whether it is in the core, ε-core or the least-core).
We denote these problems for the core, ε− core and least-core as IMP-C, IMP-
EC and IMP-LC. The core and ε-core may be empty, so another problem is
testing for their emptiness, which we denote as CNE (for core non-emptiness)

1 Consider a unit capacity graph, and a target flow of one unit. In this case, if there
are two or more edge disjoint paths from the source to the target, then the core is
empty.
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and ECNE (ε-core non-emptiness). Another problem is LCV (least-core value),
computing the εmin value of the least-core (i.e the minimal ε such that the ε-core
is non-empty). A solution for IMP-C and CNE in TNFGs was given in [5], using
a simple polynomial method for finding veto agents. Since the core in TNFGs
may be empty, we propose using the relaxed stability notions of the ε-core and
the least-core. We show the above problems are closely related to the problem
ME (maximal excees), where we are given a TNFG with characteristic function
v and an imputation p = (p1, . . . , pn) and are asked to compute the maximal
excess of any coalition: maxC⊆I v(C) − p(C). Both LCV and ME require out-
putting a rational value, but we consider the decision version of these problems,
where in the input we are given a rational number q and are asked whether the
solution to the LCV or ME problem is greater than the specified value.

We consider the relation between TNFGs and another class of games, Weighted
Voting Games (WVGs). We show that the problem of LCV is NP-hard in TN-
FGs, using a similar hardness result [8] for WVGs. WVGs are simple games with
n agents I = {1, 2, . . . , n}, where each agent i has a weight wi. Given a coalition
C ⊆ I, we denote w(C) =

∑
i∈C wi. The game has a threshold k, and a coalition

C wins if w(C) ≥ k, and loses otherwise. We use the fact that TNFGs can easily
express any WVG to obtain several negative results.

Theorem 1. LCV in TNFGs is NP-hard

Proof. Elkind et al. show [8] that LCV is NP-hard in WVGs. We reduce an
instance of LCV in a WVG to an instance of LCV in a TNFG. Given the
WVG instance with weights w1, . . . , wn, we construct a TNFG. The source s
is connected to the target t by n edges, so that edge ei = (s, t) has capac-
ity ci equal to the weight wi in the WVG. Any coalition C achieves a flow of∑

{i|ei∈E} ci =
∑

i∈C wi = w(C). The TNFG has the same threshold as the
WVG threshold. Under these thresholds, coalition C wins in the TNFG iff it
wins in the original WVG. The original and reduced instances define the same
game (have an identical characteristic function) and have the same least-core
value, so LCV in a TNFG is NP-hard as well.

We now provide a negative result for the ε-core, and then provide positive results
for restricted TNFGs. We begin with the IMP-EC problem where we are given
a TNFG, an imputation p = (p1, . . . , pn) and a value ε, and are asked whether
p is in the ε− core of the game.

Theorem 2. IMP-EC and ME are coNP-complete

Proof. IMP-EC is in coNP, as one can compute the excess of a given coalition
using any polynomial max-flow algorithm and test if it is higher than ε or not.
The results in [8] show that testing if an imputation is in the ε-core in WVGs is
NP-Hard. Using construction of Theorem 1, we express any WVG as a TNFG.
An imputation in the constructed TNFG is in the ε-core iff it is in the ε-core of
the original WVG. Finally, reducing IMP-EC to ME is trivial: by definition an
imputation is in the ε-core if the maximal excess is at most ε.
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ME is coNP-complete in general graphs, so we examine restricted cases. One
important restricted case is unit-capacity graphs, where all the edges have a
capacity of 1. Several results for cardinal network flow games (CNFGs) in unit-
capacity graphs are given in [13]. We provide positive results for threshold net-
work flow games (TNFGs). One result regarding CNFGs on unit-capacity graphs
is that they always have non-empty cores. However, is not the case in TNFGs,
as shown in the following example.

Fig. 1. Example of a unit capacity TNFG with empty core

Consider distributing a total reward of 1 among the edges in Figure 1. Under
any such imputation, either the path A = (s, a), (a, t) or the path B = (s, b), (b, t)
has a payoff of at most 0.5. Thus, the excess of at least one coalition CA or CB

must be at least 0.5, and for any ε > 0.5, the ε-core is empty, so the core is also
empty. Note that the 0.5-core is not empty, as the imputation giving each edge
0.25 has a excess of exactly 0.5 for the coalitions CA and CB, and any other
winning coalition has a lower excess.

We show that ME is solvable in polynomial time for unit-capacity graphs, and
use this to compute the least-core for unit-capacity TNFGs. We first examine
the relation between ME and the min-cost-flow problem [17], defined as follows.
We are given a network flow graph, a target flow value d and a cost function
a : E → Q, mapping each edge to the cost of sending a unit of flow through that
edge. Given a flow f(e) through edge e, the cost of the flow through the edge
is f(e) · a(e). We define the cost of a flow f as a(f) =

∑
e∈E f(e) · a(e). We are

asked to find a d-flow through the network, of minimal cost.
The Min-Cost Flow uses a pricing scheme where the cost of an edge is pro-

portional to the flow sent through the edge. We call this pricing scheme linear
pricing, as the cost of an edge increases linearly in the flow. A different pricing
scheme is requiring a payment for using an edge, so the cost of an edge is a(e)
if f(e) > 0, and the cost is 0 if f(e) = 0. We call this pricing scheme the All-Or-
Nothing scheme (AON pricing), as it either takes the full cost of an edge (for
edges e with flow f(e) > 0), or takes nothing at all (for edges e for which the
flow is f(e) = 0). The problem of Min-Cost Flow under AON-pricing is defined
as follows. We are given a network flow graph, a target flow value d and a cost
function a : E → Q, mapping each edge to the cost of sending any non-zero flow
through that edge. Given a flow f(e) through edge e, the AON-cost of the flow
through e is n(e) = a(e) if f(e) > 0 and n(e) = 0 if f(e) = 0. We define the
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AON-cost of a flow f as aAON (f) =
∑

e∈E n(e). We are asked to find a d-flow
through the network, f , of minimal AON-cost (i.e. to minimize aAON (f)).

Lemma 1. ME and AON-Min-Cost-Flow are equivalent problems when we set
the AON-Min-Cost-Flow edge costs to be the edge payoff in the ME imputation:
a(e) = pe for any edge e.

Proof. Consider a k-flow f sending flow only through edges Cf . The payoff
p(Cf ) under the imputation is exactly the AON-cost of f , aAON (f). ME finds
the minimal p(Cf ) where f is a k-flow, and AON-Min-Cost finds the minimal
aAON (f) where f is a k-flow, so their solution is the same.

Theorem 2 shows that ME is coNP-complete, so due to Lemma 1, AON-Min-
Cost-Flow is also coNP-complete. However, the similar Min-Cost Flow problem
(under linear pricing) is solvable in polynomial time [17]. We show that for
unit-capacity graphs, AON-Min-Cost is solvable in polynomial time. We use a
lemma from [17] used in the analysis of the Min-Cost Flow problem, regarding
augmenting min-cost flows 2. A min-cost flow is a flow f , such that for any other
flow f ′ such that |f | = |f ′| we have a(f ′) ≥ a(f), i.e. it is impossible to achieve
a flow of equal magnitude with a lower cost (under linear pricing).

Lemma 2. If f is a min-cost flow, then any flow obtained from f by augmenting
along a minimum-cost path is also a min-cost flow.

We show that in unit-capacity graphs, one of the optimal k-flows is an all-or-
nothing flow. An All-Or-Nothing Flow (AON Flow) is a flow f such that any
edge is used up to its maximal capacity, or completely unused, so for any edge
e we either have f(e) = c(e) or we have f(e) = 0.

Theorem 3. For any unit-capacity graph G and an achievable integer flow
threshold k, there is a min-cost k-flow f (under linear pricing) that is an AON-
flow, i.e. either fully uses an edge, sending the maximal possible flow of 1 unit,
or does not use the edge at all, sending a flow of 0 through it.

Proof. One possible way of finding a min-cost flow is starting with an empty flow,
and repeating the process of augmenting the flow through a min-cost augmenting
path until the target flow threshold of k is reached [17]. Due to Lemma 2, after
each augmentation we end up with a min-cost flow. The initial residual graph has
capacities of 1 on all the edges. Thus, the first augmenting path has a capacity
of one unit on all the edges along it. The first augmentation fully uses the edges
along a certain path. Thus, in the residual graph after the augmentation, all the
edges have either a capacity of 1, or -1 for the reverse direction. This, in turn,
means that the next augmenting path would also have a capacity of 1 all along
it. Thus the next augmentation either fully uses some edges, or completely stops

2 For a complete introduction to the min-cost network flow problem we refer the reader
to [17]. A min-cost augmenting path is simply a minimal cost s-t path in the residual
graph. We use the lemma to prove certain properties of min-cost flow solutions.
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using some previously unused edges. Thus, each augmentation is done through
a path of capacity one, and after each augmentation some edges are changed
from being unused to completely used, or from being fully used to completely
unused. Since the flow’s magnitude increases by one unit after each step, the
process terminates after k such steps, with a flow such that each edge is either
fully used or completely unused.

Lemma 3. In unit-capacity graphs, under the same cost function a(e), the AON-
cost of a flow f , aAON (F ), is bounded from below by the linear cost of a flow,
a(f), i.e a(f) ≤ aAON (f)

Proof. The graph is a unit-capacity graph, so for any edge f(e) ≤ 1. We note
that the cost of each edge only increases when we use AON-pricing. For used
edges the full cost is incurred even if the edge is only partially used, and
for unused edges both pricing schemes charge nothing: a(f) =

∑
e∈E a(e) ·

f(e) =
∑

e∈E|f(e)>0 a(e) · f(e) +
∑

e∈E|f(e)=0 a(e) · f(e) ≤
∑

e∈E|f(e)>0 a(e) ·
1 +

∑
e∈E|f(e)=0 a(e) · f(e) = aAON (f)

Lemma 4. In unit-capacity graphs, under the same cost function a(e), the cost
of an AON-flow is the same under linear-pricing and AON-pricing. In other
words, if f is a AON-flow, then a(f) = aAON (f).

Proof. Similarly to the analysis in Lemma 3 we decompose the flow to used
and unused edges, and note that the cost for each edge is the same under the
two pricing models. Under both models, an unused edge incurs no cost, and a
fully used edge incurs a cost of a(e), since for a AON-flow if f(e) > 0 then
f(e) = c(e) = 1. Thus the following holds: a(f) =

∑
e∈E a(e) · f(e)

=
∑

e∈E|f(e)>0 a(e) · f(e) +
∑

e∈E|f(e)=0 a(e) · f(e) =
∑

e∈E|f(e)>0 a(e) · 1 +∑
e∈E|f(e)=0 a(e) · 0 = aAON (f)

Theorem 4. In unit-capacity graphs, under a certain cost function a(e), a min-
cost k-flow (under linear pricing) is also a AON-min-cost k-flow.

Proof. Due to Theorem 3, a certain AON-flow f∗ is a min-cost k-flow, under
linear pricing. Thus, for any other k-flow f ′ we have a(f ′) ≥ a(f∗). Due to
Lemma 4, since f∗ is a AON-flow, then a(f∗) = aAON (f∗). Due to Lemma 3,
for any k-flow f we have aAON (f) ≥ a(f). Thus for any k-flow f , aAON (f) ≥
a(f) ≥ a(f∗) = aAON (f∗), so f∗ is a AON-min-cost k-flow.

Corollary 1. ME is in P for unit-capacity TNFGs.

Proof. Lemma 1 shows that ME and AON-Min-Cost-Flow are equivalent. Due
to Theorem 4 solving AON-Min-Cost simply requires solving Min-Cost Flow
(under the linear pricing model). Polynomial algorithms for solving Min-Cost-
Flow that rely on the all-or-nothing augmenting paths used in Theorem 3 are
given in [17]. Note that the proof in Theorem 3 is constructive, and allows finding
such a Min-Cost Flow which is also an AON-flow for unit capacity graphs, thus
solving the ME problem for such graphs.
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Theorem 5. ECNE is in P for unit-capacity TNFGs.

Proof. We consider an exponential-size program linear program (LP) for com-
puting an imputation in the ε-core. Consider all 2n possible coalitions over n
players, C1, . . . , C2n . The ε-core’s definition is a LP over the variables p1, . . . , pn,
with a constraint for each coalition:

Table 1. Exponential LP for the ε-core
Feasible (p1, . . . , pn) s.t.:
∀C : v(C1) −∑i∈C pi ≤ ε (Coalition constraints)∑n

i=1 pi = v(I) (Imputation constraint)

A violated constraint is a coalition Cj , such that v(Cj)−
∑

i∈Cj
pi > ε. TNFGs

are simple games, so any losing coalition Cj cannot yield a violated constraint,
as v(Cj) = 0. Thus the violated constrain is due to a winning coalition such
that p(Cj) < v(Cj)− ε = 1− ε. The algorithm of Corollary 1 returns a maximal
excess coalition C, where e(C) = v(C) −

∑
i∈C pi is maximal. If e(C) > ε,

we have a violating constraint: v(C) −
∑

i∈C2
pi > ε. If e(C) ≤ ε, then all

the constrains hold: e(C) is the maximal excess, so for any Cj �= C we have
d(Cj) = v(Cj) −

∑
i∈Cj

pi ≤ e(C) ≤ ε. Thus this algorithm can serve as a
separation oracle for the above LP, and we can solve it in polynomial time.
Thus, given ε we can, in polynomial time, compute an imputation in the ε-core
if one exists, or reply that no such imputation exists.

Corollary 2. LCV is in P for unit-capacity TNFGs.

Proof. Due to Theorem 5, for a given ε we can test if the ε-core is non-empty.
We can perform a binary search on the minimal value of ε such that the ε-core
is not empty. Since the maximal value of a coalition in TNFGs is 1, we search
for ε between 0 and 1. This finds the minimal ε such that the ε-core is not
empty, up to any given degree of accuracy. We can then use the algorithm from
Theorem 5 to return a least-core imputation. Alternatively, we can consider
program in Theorem 5’s proof as a program over the variables p1, . . . , pn, ε and
set the target function to be min ε (rather than being a feasibility program).

We propose a polynomial algorithm for computing the least-core of a TNFG
with non-unit capacities under restrictions on the graph’s structure. A graph
G = 〈V,E〉 is a layer graph with w layers if we can partition the vertices into
layers L0, L1, L2, . . . , Lw (where each Li is a subset of vertices Li ⊆ V and the
Li’s are disjoint so if i �= j then Li∩Lj = ∅) such that edges only occur between
vertices of consecutive layers. In other words, we require that if (u, v) ∈ E then
we have u ∈ Li and v ∈ Li+1 for some 0 ≤ i < w. A layer graph is h-bounded
if each layer Li has at most h vertices (so |Li| ≤ h for any 0 ≤ i ≤ w). For
flow networks we denote the source s as the first layer so L0 = {s} and the
target t as the last layer Lw = {t} (in layer graphs vertices other than s or t
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in the source/target layers do not influence the maximum flow). The bound h
only applies to the number of vertices in each layer so the number of layers is
unbounded. A flow network has c-bounded integer capacities if all edge capacities
are integers bounded from above by c, so for any e ∈ E, c(e) ∈ {0, 1, 2, . . . , c}.

In Lemma 1 we noted that solving ME is equivalent to AON-Min-Cost-Flow,
where for any edge e we have a(e) = pe (edge costs are the payoffs in the ME
imputation). We show that AON-Min-Cost-Flow can be solved in polynomial
time in bounded layer-graphs with bounded integer capacities.

Theorem 6. AON-Min-Cost-Flow is in P for bounded layer-graphs with
bounded integer capacities.

Proof. Consider a layer-graph with w+1 layers L0, L1, . . . , Lw. Denote the source
s as L0 = {s}, the target as Lw = {t}, the bound on the number of vertices in
each layer as h and the maximal capacity as c. Denote by p(e) the AON-price
of an edge e in the AON-Min-Cost-Flow input. The maximal achievable flow
is at most b = h · c as there are at most h edges going out of s and each has
a capacity at most c. The border between any two layers forms an s − t-cut
in the graph, so the incoming flow into any vertex is at most b = h · c, the
bound on the flow leaving s. Given a layer Li ⊂ V of li vertices vi

1, v
i
2, . . . , v

i
li

we define an incoming flow configuration for that layer, representing the amount
of flow entering each vertex in that layer. An incoming flow configuration for
layer Li is a sequence (f1, f2, . . . , fli) of integers where 0 ≤ lj ≤ b. A layer has
at most h vertices and each has a possible incoming integer flow of 0 ≤ fj ≤ b,
so there are at most (b + 1)h = (h · c + 1)h possible flow configurations for any
layer Li. Denote the bound on the possible flow configurations for any layer as
q = (b + 1)h = (h · c + 1)h. Since h and c are constants, q is constant.

We provide an algorithm to compute the minimal cost to achieve a d-flow
to the target. It operates by iterating through the layers and computing the
minimal cost to achieve a specific flow configuration. We say an edge e = (u, v)
occurs before layer Li if u ∈ La and v ∈ Lb where a ≤ i and b ≤ i (since no
edges are allowed within a layer, this also means that a ≤ i− 1). We say a flow
configuration f = (f1, f2, . . . , fli) for Li is achievable with price p if there is a
subset of edges E′ that all occur before layer Li with total cost

∑
e∈E′ p(e) ≤ p

which allows simultaneously sending a flow of f1 to vi
1, f2 to vi

2 and so on through
a flow of fli to vi

li
using only the edges of E′.

Consider a flow configuration f i = (f i
1, f

i
2, . . . , f

i
li

) for Li, a flow configuration
f i+1 = (f i+1

1 , f i+1
2 , . . . , f i+1

li+1
) for layer Li+1 and an edge subset E′ that occur

between Li and Li+1. Suppose that p is the minimal price such that fi is
achievable for layer Li with price p. Given fi and E′ we may achieve various
flow configurations in Li+1: if each vertex in Li has an incoming flow as specified
in fi, we may route this flow through E′ to the vertices in Li+1 in several
ways. It is possible to check if f i+1 is achievable from f i through the edges E′

in polynomial time. To do this, we create a small flow network with a source
s connected to each of the vertices in L1 through edge with capacities as specified
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in fi (i.e. s is connected to vj ∈ Li through an edge of capacity f i
j), maintain

the edges E′ connecting Li and Li+1 with their current capacities and connect
each vertex in Li+1 to t with capacities as specified in f i+1 (i.e. vj ∈ Li+1 is
connected to t through an edge of capacity f i+1

j ). If this created network allows

a flow of
∑li+1

j=1 f i+1
j then given flow configuration f i for Li we can achieve the

flow configuration f i+1 for layer Li+1 by using only the edges E′ between Li and
Li+1. This check can be done in polynomial time using a max-flow algorithm.
The total cost of the edge subset E′ is p(E′) =

∑
e∈E′ pe, so if f i is achievable

with cost p then f i+1 is achievable with cost of at most p+p(E′) by simply adding
the edges E′ and routing the flow through them appropriately. We denote by
achievable− flow(f i

j , E
′, f i+1

k ) the algorithm that checks whether given a flow
configuration f i

j for layer i and an edge subset E′ (occurring between Li and
Li+1) we can achieve a flow configuration f i+1

k for layer Li+1.
For each layer Li, our algorithm maintains a bound pi

j for the minimal cost to
achieve any of the possible q flow configurations (for j ∈ {1, . . . , q}). We denote
the set of all flow configurations for layer i as Qi. Layer Lw contains the single
target vertex so Lw = {t} and a valid flow configurations for Lw is simply the
possible flow values to the target vertex. We denote the flow configuration where
a flow of d enters the target vertex as fd so we denote the cost of achieving a flow
of k is pw

fd
. Layer L0 contains the single source vertex so L0 = {s} so similarly

a valid flow configuration for L0 is simply the possible flow values to the target
vertex. We denote the cost of a flow configuration where s has an “incoming”
flow of x as p0

fx
. Since s is the source it may achieve an any “incoming” flow at

a zero cost. When iterating through layer Li our algorithm relaxes the bounds
by examining any possible edge subset E′ occurring between Li and Li+1. We
denote by qi

j the j’th flow configuration for the i′th layer in the graph. There
are at most q flow configurations for each layer, so 1 ≤ j ≤ q.

1. For i = 1 to w:
(a) For each qi

j ∈ Qi: pi
j = ∞

(b) For x = 0 to b = h · c: p0
fx

= 0
2. For i = 1 to w:

(a) For each qi
j ∈ Qi, each qi+1

k ∈ Qi+1 and each E′ ⊆ ELi :
i. If achievable− flow(qi

j , E
′, qi+1

k ): pi+1
k = min(pi+1

k , pi
j + p(E′))

3. return pw
fd

An induction through the layers shows that the algorithm correctly computes
pi

j for any layer i and configuration j for layer i. It returns pw
fd

, the minimal cost
for a d-flow to the t, i.e. the AON-Min-Cost-Flow solution. The update loop’s
runtime is w · |Qi| · |Qi+1| · 2|ELi

|. For any i the configuration number |Qi| is
bounded by the constant q. Also, |ELi | is the number of edges between Li and
Li+1, bounded by the constant h2. Thus the runtime is bounded by w · q2 · 2h2

or by g ·w where g is a constant, so this is a polynomial algorithm. The runtime
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is bounded by w · q2 · 2h2
where q = (b+ 1)h = (h · c+ 1)h, so it can be expressed

as O(f(h, c) · w) so this is a fixed parameter tractable (FPT) algorithm3.

The equivalence of ME and AON-Min-Cost-Flow obtains the following.

Corollary 3. ME is in P for TNFGs over bounded layer-graphs with bounded
integer capacities.

Theorem 7. ECNE and LCV are in P for TNFGs over bounded layer-graphs
with bounded integer capacities.

Proof. Similarly to Theorem 5, we use the ME algorithm of Corollary 3 as a
separation oracle for the ε-core LP, so ECNE can be solved in polynomial time.
Similarly to Theorem 2, we perform a binary search on the minimal value of ε
that makes the ε-core non-empty, so LCV is solvable in polynomial time.

3 Related Work and Conclusions

We examined computing the core,ε-core and the least-core in TNFGs. The core
was introduced in [11], and the ε-core and least-core relaxations for the case
where it is empty were presented in [14]. An early treatment of computational
aspects of such solutions was given in [7]. One restricted domain that has received
much attention is the weighted voting games (WVG) model of decision making.
Computing the least-core of WVGs was analyzed in [9].

We focused on solving TNFGs. The similar CNFG model was introduced
in [13], showing that unit capacity CNFGs have non-empty cores. Further core
related questions in CNFGs were studied in [10]. Other network task games,
such as network formation, connectivity and security were studied in [18,12,6,3].
Despite the superficial similarity between CNFGs and TNFGs, they have very
different computational and game theoretic properties. TNFGs were introduced
in [4], which considered the Banzhaf index. An extended version of that paper [5]
also considered computing the core of TNFGs. Further work [16] focused on
solving TNFGs using the core-related Cost of Stability introduced in [2,1] for
weighted voting games and general cooperative games.

We showed that, as opposed to CNFGs, in TNFGs the core can be non-empty
even if the graph has unit-capacities, and that for general graphs, even finding the
maximal excess of a coalition under an imputation (the ME problem) is coNP-
complete. We provided polynomial-time algorithms for computing the ε-core
and least-core for unit-capacity graphs and bounded layer-graphs with bounded
integer capacities. Some questions remain open. First, one might examine other
game theoretic solutions in TNFGs. Also, it would be interesting to examine
other restrictions that allow tractably computing the least-core.

3 Fixed parameter tractability with parameter α (α-FPT) means the running time is
f(α) · p(n) where f(α) may be any function (e.g. an exponential or even superexpo-
nential function), and p(n) is a polynomial function in the input length n.
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Abstract. Adhesive categories provide an abstract setting for the double-
pushout approach to rewriting, generalising classical approaches to graph
transformation. Fundamental results about parallelism and confluence,
including the local Church-Rosser theorem, can be proven in adhesive
categories, provided that one restricts to linear rules. We identify a class
of categories, including most adhesive categories used in rewriting, where
those same results can be proven in the presence of rules that are merely
left-linear, i.e., rules which can merge different parts of a rewritten ob-
ject. Such rules naturally emerge, e.g., when using graphical encodings
for modelling the operational semantics of process calculi.

Keywords: Adhesive and extensive categories, double-pushout rewrit-
ing, local Church-Rosser property, parallel and sequential independence.

Introduction

The strength of graph transformation formalisms in the specification of dis-
tributed and concurrent systems lies on the relative ease of use, due to their
visual nature. However, equally relevant is the fact that these formalisms often
come equipped with a rich theory of concurrency, including confluence properties
that can be pivotal in developing suitable verification techniques.

Focusing on the double pushout (dpo) approach to graph transformation,
parallel and sequential independence are central properties in the corresponding
concurrency theory. While the former is essentially a local confluence property,
the latter identifies suitable conditions for establishing whenever two rewrite
steps, even though performed in sequence, do not interfere with each other and
thus can be potentially applied in any order (as well as concurrently).

The local Church-Rosser theorem tightly connects parallel and sequential in-
dependence: two sequentially independent steps can be applied to the same start
graph, resulting in a pair of parallel independent steps; analogously, two parallel
independent steps can be sequentialised in any order. This allows for defining
concurrent rewrites as equivalence classes up to shift equivalence [2], identifying
(as for the better-known permutation equivalence of λ-calculus) those rewrite
sequences that differ for the scheduling of independent steps.
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Rewriting over adhesive categories (ACs) was proposed as an abstraction of
the dpo approach to graph transformation. Many well-known categories with
graph-like objects are adhesive. Moreover, since ACs subsume many properties of
e.g. hlr categories [5], several results about parallelism and confluence, including
the local Church-Rosser theorem, can be proven with no additional assumptions
if one restricts to linear rules, i.e., to spans of monos [16].

The restriction to linear rules is common in the dpo literature. It has been
folklore, though, that local Church-Rosser should “usually” hold for left-linear
rules, i.e. where only the left leg of the span is required to be injective. This has
been established within the concrete setting of a category of labelled directed
graphs [9, 13] and, in the context of HLR rewriting, sufficient axioms were ex-
hibited in [7]. Those axioms have not been shown to be preserved by common
operations such as functor category and slice and thus, to the best of our knowl-
edge, this result has not been proved for a class of categories that would include,
say, the category of hyper-graphs HGraph or of graphs with second order edges
(both presheaf categories, thus adhesive) where linear rules may not suffice.

Whenever distinct parts of the state are to be fused as a result of a transfor-
mation, it becomes necessary to use a non-injective morphism as the right-hand
side of the rule. A notable example is given by the encodings of process calculi
as graph transformation systems, where the exchange of channel names and the
creation of connections are modeled as node fusions [10]. In order to extend the
results about independence and parallelism to left-linear rules, adhesivity does
not appear to be enough. Roughly, while the distinguishing feature of ACs is
that pushouts along monos are well behaved, for non-linear rules some of the
pushouts involved in the technical lemmas are not necessarily of this kind.

Instead of looking for an axiomatic characterisation of the class of categories
in which the result could be proven, this paper takes a different approach. First
we show that the local Church-Rosser theorem for left-linear rules holds in any
AC C with a strict initial object (hence extensive [16, Lemma 4.1]), where monos
are coproduct injections and all pushouts exist and are stable under pullback,
an example being Set, but not, for example, Graph. Then, we note that the
technical results used in the proof of the theorem mention only pushouts and
pullbacks; hence whenever they hold in C, they hold in any functor category over
C as well as in any slice or coslice category over C. Since these operations can
be iterated, the result holds in a family of categories that contains most known
examples of ACs, such as, in particular, Graph and other graph-like categories.

An analogous result can be proven for quasi-adhesivity: a local Church-Rosser
theorem for rules where the left-leg is a regular mono holds in any quasi-adhesive
category C with a strict initial object (hence extensive [16, Lemma 6.3]), where
regular monos are coproduct injections and pushouts are stable under pullback.
Again, this extends to any category obtained from this class by iterating functor,
slice and coslice category constructions (although here the presence of equalisers
in the base category is needed [16, Lemma 6.6]). A notable example in the base
class is Inj, the category of injective functions in Set. By the closure properties,
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the category IGraph of graphs with interface (expressible as Inj•⇒•) can be
recast, thus subsuming the proposal for their rewriting [11].

The paper has the following structure. We first recall the basics of dpo rewrit-
ing in adhesive (and quasi-adhesive) categories and the local Church-Rosser the-
orem for linear rules. Then, we cut directly to our main contribution, providing
a class of categories where the local Church-Rosser theorem holds for left-linear
rules. Afterwards we provide an application of our results for the rewriting of
graphs with interface, used in graphical encodings of nominal calculi. We con-
clude summing up our contribution and laying the plans for future work.

1 Background

In this section we introduce the basics of the double-pushout (dpo) approach to
rewriting [2,4], including the notion of sequential and parallel independence. We
also introduce adhesive categories [16] as an abstract setting for dpo rewriting.

1.1 DPO Rewriting

Hereafter C denotes a fixed category.

Definition 1 (rule and direct derivation). A (dpo) rule on C is a span
p : L l← K

r→ R in C. The objects L, K, and R are called left-hand side, context
and right-hand side of the rule, respectively.

A match of p in an object G of C is an arrow mL : L → G. A direct derivation
p/m : G =⇒ H from G to H via rule p at the match mL is a diagram as depicted
in Fig. 1, where the two squares are pushouts in C and m = 〈mL,mK ,mR〉.

L

mL

��

K
l�� r ��

mK

��

R

mR

��
G D

l∗
��

r∗
�� H

Fig. 1. A direct derivation

The notion of sequential independence aims at
characterising direct derivations which, even if
performed in sequence, do not interfere with each
other and thus could be potentially applied in any
order (and concurrently).

Definition 2 (sequential independence). Let p1, p2 be rules and let
p1/m1 : G =⇒ H1, p2/m2 : H1 =⇒ H be direct derivations as in Fig. 2. They are
called sequential independent if there exist arrows i1 : R1 → D2 and i2 : L2 → D1

such that l∗2 ◦ i1 = mR1 and r∗1 ◦ i2 = mL2 .

A strictly related notion is parallel independence which is aimed at characterising
independent direct derivations starting from the same object.

Definition 3 (parallel independence). Let p1, p2 be rules and p1/m1 : G =⇒
H1, p2/m2 : G =⇒ H2 direct derivations as in Fig. 3. They are called parallel
independent if there exist arrows i1 : L1 → D2 and i2 : L2 → D1 such that
l∗2 ◦ i1 = mL1 and l∗1 ◦ i2 = mL2 .
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L1

mL1

��

K1
l1��

r1 ��

mK1

��

R1

mR1

��
�

���
��

i1

��

L2

mL2
��

�

�����

i2

��

K2
l2��

r2 ��

mK2

��

R2

mR2

��
G D1

l∗1
��

r∗
1

�� H1 D2
l∗2

��
r∗
2

�� H

Fig. 2. Sequential independence for p1/m1 : G =⇒ H1 and p2/m2 : H1 =⇒ H

R1

mR1

��

K1
r1��

l1 ��

mK1

��

L1

mL1

���

		
��

�
i1





L2

mL2
���

����
�

i2

��

K2
l2��

r2 ��

mK2

��

R2

mR2

��
H1 D1

r∗
1

��
l∗1

�� G D2
l∗2

��
r∗
2

�� H2

Fig. 3. Parallel independence for p1/m1 : G =⇒ H1 and p2/m2 : G =⇒ H2

The two notions are often connected by two properties, which are denoted under
the collective name of the local Church-Rosser theorem. The first one is clearly
the counterpart of standard local confluence.

Definition 4 (parallel confluence). Let p1, p2 be rules and p1/m1 : G =⇒
H1, p2/m2 : G =⇒ H2 parallel independent derivations as in Fig. 3. Then, the
derivations satisfy the parallel local confluence property if there exist a graph H
and derivations p2/m

∗
2 : H1 =⇒ H, with match r∗1 ◦ i2, and p1/m

∗
1 : H2 =⇒ H,

with match r∗2 ◦ i1, such that p1/m1 and p2/m
∗
2 as well as p2/m2 and p1/m

∗
1 are

sequential independent.

The second part moves instead from sequential independent derivations.

Definition 5 (sequential confluence). Let p1, p2 be rules and p1/m1 : G =⇒
H1, p2/m2 : H1 =⇒ H sequential independent derivations as in Fig. 2. Then, the
derivations satisfy the sequential local confluence property if there exist a graph
H2 and a derivation p2/m

∗
2 : G =⇒ H2, with match l∗1 ◦ i2, such that p1/m1 and

p2/m
∗
2 are parallel independent.

Sequential and parallel local confluence are the basis of the concurrency theory
of dpo rewriting. When they hold, concurrent derivations can be seen as equiva-
lence classes of concrete derivations up to shift equivalence [2], identifying (as for
the better-known permutation equivalence of λ-calculus) those derivations that
differ only for the scheduling of independent steps.

1.2 Rewriting in Adhesive Categories and Local Confluence

Most categories of graph-based objects satisfy both local confluence properties
when restricted to linear rules. A general setting where the theorem can be
proven is that of adhesive categories (ACs) [16].
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A

��������
�����

C
����� B

��������
D

(a)

A′

���������
�����

��

C′
�����

��

B′

���������

��

D′

��

A				
				 ��





C
��





B

									
D

(b)

Fig. 4. A pushout square (a) and a commutative cube (b)

Definition 6 (adhesive categories). A category C is called adhesive if

– it has pushouts along monos;
– it has pullbacks;
– pushouts along monos are Van Kampen (vk) squares.

Referring to Fig. 4, a vk square is a pushout like (a), such that for each
commuting cube as in (b) having (a) as bottom face and the back faces of which
are pullbacks, the front faces are pullbacks if and only if the top face is a pushout.

The prototypical AC is Set, the category of sets and total functions. Ex-
ploiting the closure properties of ACs, it is immediate to deduce that also
Graph = Set•⇒•, mentioned before, is adhesive. Likewise, the category of di-
rected hyper-graphs HGraph is a category of presheaves and thus adhesive. In
fact, HGraph = SetM where M is a category with objects N × N ∪ {•}, and
where, from any (m,n) there are m + n arrows into •.

Example 1. Figure 7 depicts a rule in the AC HGraph of hyper-graphs. The
left-hand side, context and right-hand side are separated by vertical lines. The
arrows from the context to the left- and right-hand side are represented by the
positions of the items and by the labels (ignoring for now {p} and the dotted
arrow). Graphically, nodes are circles and edges are boxes enclosing their label,
with either incoming or outgoing tentacles, connecting edges to their source and
target nodes, respectively. For the sake of readability, these tentacles are either
ordered clock-wise, or when necessary, they are labelled by numbers 0, 1 and 2.

Intuitively, in this graphical interpretation, the application of a rule first re-
moves all the items of G matched by L − l(K), leading to object D. Then the
items of R−r(K) are added to D, thus obtaining H . When the rule is not linear,
taking the second pushout can also cause some merging.

ACs subsume many properties of hlr categories [6], and this fact ensures the
validity of several results about parallelism and confluence. In particular, a local
Church-Rosser theorem for linear rules holds with no additional assumptions.

Definition 7 ((left-)linear rules in ACs). A rule p : L l← K
r→ R in an AC

is called left-linear if l is mono, and linear if both l and r are so.
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Actually, the first half of local confluence holds for left-linear rules [16, Theo-
rem 7.7], provided that the AC in question has enough pushouts.

Proposition 1 (parallel confluence in ACs). Let p1, p2 be left-linear rules
in an AC with all pushouts and p1/m1 : G =⇒ H1, p2/m2 : G =⇒ H2 paral-
lel independent derivations, as in Fig. 3. Then, they satisfy the parallel local
confluence property.

Instead, the restriction to linear rules is needed for the second half of the local
Church-Rosser theorem.

Proposition 2 (sequential confluence in ACs). Let p1, p2 be linear rules in
an AC and p1/m1 : G =⇒ H1, p2/m2 : H1 =⇒ H sequential independent deriva-
tions as in Fig. 2. Then, they satisfy the sequential local confluence property.

1.3 Quasi-adhesivity

A theory for rewriting can be developed also in the wider class of quasi-adhesive
categories (QACs). Recall that a mono is regular if it is obtained as an equalizer.

Definition 8 (quasi-adhesive categories). A category C is called quasi-
adhesive if

– it has pushouts along regular monos;
– it has pullbacks;
– pushouts along regular monos are vk squares.

Then, the two confluence properties can be established for derivations in QACs,
exactly as for those in ACs, by adapting the notion of (left-)linear rule.

Definition 9 ((left-)linear rules in QACs). A rule p : L
l← K

r→ R in a
QAC is called left-linear if l is regular mono, and linear if both l and r are so.

Even though every AC is a QAC, no confusion may arise: for ACs Definitions 7
and 9 denote the same class of rules since in ACs all monos are regular [15].

Example 2. A prototypical example of quasi-adhesive category is Inj: objects
are injective functions in Set and arrows are pairs of functions between the
corresponding sources and targets, making the diagram commute. An arrow is
mono when both components are mono; it is a regular mono when it is mono
and the resulting diagram is a pullback [15].

A relevant, graph-based example is the category of graphs with interface
IGraph, whose objects are injective graph morphisms. Such category can be
defined as Inj•⇒•, hence it is quasi-adhesive by the closure properties in [16],
since Inj is quasi-adhesive and has equalisers. Similarly, the category IHGraph
of hyper-graphs with interface can be defined as InjM, for M the category used
in Section 1.2 to present the category of hyper-graphs as a presheaf category.

Graphs with interface have been used in the modelling of process calculi,
the basic idea being that nodes in the interface represent the free names of the
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process itself [10]. They are also at the basis of the borrowed context approach
to the labelled semantics of graph transformation [8].

Consider again rule pπ in Fig. 7. Its three components can be seen as graphs
with interface. When the interface is discrete (i.e., it contains no edge, as it
happens for the examples in this paper), it is simply represented as a set. For
instance, the interface of the left-hand side is just {p} and the dotted arrow indi-
cates the image of p into the left-hand side graph. Regular monos in IHGraph
are easily proven to be the pairs of injective graph morphisms such that the
interface is reflected as well as preserved, hence rule pπ is left-linear.

2 Church-Rosser for Left-Linear Rules

The results about local confluence in (quasi-)adhesive categories cannot be
proven when we consider rules which are only left-linear. Still, the result has
been shown to hold in several concrete categories, most notably the category of
directed graphs Graph [13]. The aim here is to prove the result in an abstract
general setting, so that we can conclude that it holds in most of the categories
used in dpo rewriting. We will first consider a setting intended to treat the
adhesive case, and then generalise it to deal with QACs.

2.1 Adhesive Case

We first identify a class of ACs where Proposition 2 can be extended and shown
to hold for rules that are merely left-linear.

Definition 10 (class B). We denote by B the class of adhesive categories C
which satisfy the following properties

i) C has all pushouts;
ii) C has a strict initial object 0 (any arrow f : a → 0 is an isomorphism);

iii) its monos are coproduct injections (for any mono f : a 	 b, b is a coproduct
of a and some c, and f is the corresponding injection);

iv) all pushouts are stable under pullback (for any cube like the one in Fig. 4,
if the bottom face is a pushout and the lateral faces are pullbacks then the
top face is a pushout).

The category Set of sets and functions is clearly in B. Moreover, recall that any
AC satisfying strict initiality is also extensive [16, Lemma 4.1], thus all categories
in B are so. Notice that membership in B is actually very restrictive; for example
B does not include Graph, which has monos that are not coproduct injections,
nor the category of sets and partial functions which does not have a strict initial
object; both of which are examples of ACs. Indeed B is not in general closed
under coslice nor functor category constructions.

In order to prove the local Church-Rosser theorem for left-linear rules we need
just two technical lemmas. The first result concerns the validity of a decompo-
sition property which generalises the one holding in ACs [16, Lemma 4.6].
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Fig. 5. Diagrams for (a) mixed decomposition and (b) pushout decomposition

Definition 11 (mixed decomposition). We say that a category C satisfies
the mixed decomposition property if for any commuting diagram like the one
depicted in Fig. 5(a) (where w is mono), whenever (1)+(2) is a pushout and (2)
is a pullback, then (1) is a pushout.

Lemma 1 (mixed decomposition in B). Let C be a category in the class B
of Definition 10. Then, it satisfies the mixed decomposition property.

With respect to [16, Lemma 4.6], we dropped the requirement enforcing arrows
l, s, v and r to be monos. A similar result is proven in [14] for partial ACs, but
with the additional requirement that the outer pushout is hereditary. As for the
stricter case, the lemma above implies that all the squares of the diagram in
Fig. 5(a) are both pushouts and pullbacks.

Definition 12 (pushout decomposition in B). We say that a category C
satisfies the pushout decomposition property if for any commuting diagram like
the one depicted in Fig. 5(b) (where l, s and v are mono), whenever the regions
(1)+(2) and (2) are pushouts then (1) is a pushout.

Lemma 2 (pushout decomposition in B). Let C be a category in class B.
Then, it satisfies the pushout decomposition property.

The crucial observation is that Lemmas 1 and 2 mention only monos, pushouts
and pullbacks, and since all these are built “pointwise” for product, functor
category, slice and coslice, the lemmas hold in any category obtained from a
category in class B by iterating these operations.

Proposition 3. If mixed and pushout decompositions hold in a category C, then
they hold in C/C, C/C and CX for any C ∈ C and any small category X.

Finally, since most known ACs are constructed from Set by iterating the above
operations, the local Church-Rosser theorem for left-linear rules holds in all
these categories. Examples include the aforementioned Graph, HGraph and
their typed versions (slices) as well as the category of sets and partial functions.

Proposition 4 (sequential confluence for left-linear rules). Let C be any
category obtained from a category in class B by iterated application of the functor
category, slice and coslice constructions; let p1, p2 be left-linear rules over C, and
let p1/m1 : G =⇒ H1, p2/m2 : H1 =⇒ H be sequential independent derivations
as in Fig. 2. Then they satisfy the sequential local confluence property.
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2.2 Quasi-adhesive Case

The theory above can be easily generalised to quasi-adhesivity, roughly by re-
placing ACs with QACs and monos with regular monos.

Definition 13. Let QB be the class of quasi-adhesive categories C such that

i) C has all pushouts;
ii) C has a strict initial object;

iii) regular monos are coproduct injections;
iv) all pushouts are stable under pullback.

Then Proposition 4 holds replacing class B with QB, because Lemmas 1 and 2
can be reproved in a straightforward fashion.

It is not difficult to show that Inj is in QB using the facts that it is a quasi-
topos and quasi-adhesive [15]; the fact that regular monos are coproduct injec-
tions is an easy exercise. We thus obtain the local Church-Rosser theorem for it
and any functor category over it, hence in particular IHGraph, the category of
hyper-graphs with interface in which we work in the following section.

3 Graph Rewriting for the Concurrent Semantics of π

A recently developed area of application for graphs with interface is the visual
modelling of nominal calculi. Here we focus on the deterministic fragment of the
π-calculus and on its graphical semantics, along the lines of [11] (see Section 2
there for the syntax and operational semantics of the calculus). The results in
this paper are needed for formally describing the concurrency in the graphical
semantics, thus obtaining one of the few such semantics available for π-calculus.

The idea is quite simple: we work in the (quasi-adhesive) category of graphs
with interface IHGraph and each process is associated with a graph having a
discrete interface. The topology of the graph represents a (simplified) syntactic
tree of the process. The interface contains a node p, denoting the root of the
graph, and a set of nodes denoting free names in the process (this can be larger
than the actual set of free names of the process). As an example, the encoding of
the process (νa)(ba.aa | b(d).dc) can be found in Fig. 6. The interface contains the
root p and two other nodes representing the free names b and c (the different sorts
for processes and names are visually represented by • and ◦ nodes, respectively).
Each input or output prefix operator, like ba, corresponds to an edge labelled
by in or out, with one incoming tentacle and three (ordered) outgoing ones,
denoting the continuation (labelled by 0) and the channel names, respectively.
For the sake of readability, these outgoing tentacles are either ordered clock-wise,
or whenever necessary, they are labelled by numbers 0, 1 and 2.

The restriction operator (νa) is modelled by an edge ν connecting the root to
the restricted name a and by dropping the node a from the interface. Note the
lack of an edge for the parallel operator: parallelism is reduced to being linked
to the same node, as with the components ba.aa and b(d).dc of our process.
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Fig. 7. The rule pπ for synchronization

A single rule pπ (depicted in Fig. 7) suffices for simulating process reduction.
As explained before, a node may be the target of a dotted arrow, meaning that
the node is in the image of a node of the interface (the source of the arrow).
The nodes may be labeled by natural numbers, which are used for describing
the (interface preserving) span of arrows constituting the rule. E.g. the nodes
identified by 2 and 3 are merged by the rule.

The structural rules are taken care of by the matching mechanism: the em-
bedding of a graph into a larger one models the closure of reduction with respect
to contexts. The presence of the interface {p} guarantees that a reduction may
occur only on the top operators, i.e., never inside a prefix such as ba or b(d).
Graph isomorphism takes care of the closure with respect to structural congru-
ence. For example, the graph on the left of Fig. 8 is the encoding of the target
process of the reduction (νa)(ba.aa | b(d).dc) → (νa)(aa | ac).

The presence of the interface node p in the context graph of pπ implies that p
can be shared by concurrent reductions. This permits the simultaneous execution
of reductions involving top operators.

However, rule pπ is left-linear only: the left leg of the rule is a regular mono
(since it reflects the interface), while the right leg is not even mono. Hence, even
though category IHGraph is quasi-adhesive, the results previously available for
rewriting in QACs do not apply, and we need to resort to the theory in Section 2
to formally analyse the concurrency in the system.
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In order to make the example more illustrative, we add rule pν in Fig. 9. It
models the revelation of a restricted name (νa)P → P{b/a}, which is associated
to the free name b occurring in the process, while the corresponding restriction
operator is removed. As before, the rule is only left-linear.
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��• ◦

Fig. 9. The rule pν for revealing a restricted name

Rule pν can be applied to (νa)(aa | ac), resulting in the process bb | bc: its
graphical encoding is depicted on the right of Fig. 8. It is intuitively clear that
the two direct derivations represented by first applying the synchronization, and
then the revelation, are sequential independent, so they should be executable
simultaneously. In order to prove this formally, since the involved rules are left-
linear only, we need to resort to the quasi-adhesive variant of Proposition 4.

4 Conclusions

We have identified a class of categories where the local Church-Rosser theorem,
a fundamental result in the dpo approach to rewriting, holds also for left-linear
rules and arbitrary matches. This class includes most of the adhesive and quasi-
adhesive categories actually used as domain categories for rewriting.

There are many examples where left-linear rules arise naturally. One that
we consider relevant is related to the graphical encodings of nominal calculi:
changes to the physical or logical topology of a system determined by phenomena
like name passing or fusion or code mobility are naturally modelled by rules
whose right-hand sides are not monomorphisms. By our results these calculi can
be equipped with a concurrent semantics, as obtained by exploiting the local
Church-Rosser theorem (see e.g. [10, 12]).

A further advancement in the theory would be to consider situations where
the left-linearity of the rules does not guarantee the existence of the pushout
complement, as in the case of the (quasi-adhesive) category of term graphs [3]
and of the category of graphs with equivalences [1], possibly constraining the
match without necessarily requiring it to be a monomorphism.
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Abstract. Specification theories as a tool in the development process of
component-based software systems have recently attracted a considerable
attention. Current specification theories are however qualitative in nature
and hence fragile and unsuited for modern software systems. We propose
the first specification theory which allows to capture quantitative aspects
during the refinement and implementation process.

Keywords: reducing complexity of design, modal specifications, quan-
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1 Introduction

Rigorous design of modern computer systems faces the major challenge that the
systems are too complex to reason about [16]. Hence it is necessary to reason
at the level of specification rather than at the one of implementations. Such
specifications, which act as finite and concise abstractions for possibly infinite
sets of implementations, allow not only to decrease the complexity of the design,
but also permit to reason on subsystems independently.

Any reasonable specification theory is equipped with a satisfaction relation
to decide whether an implementation matches the requirements of a specifica-
tion, and a refinement relation that allows to compare specifications (hence sets
of implementations). Moreover, the theory needs a notion of logical composition
which allows to infer larger specifications as logical combinations of smaller ones.
Another important ingredient is a notion of structural composition that allows to
build overall specifications from subspecifications, mimicking at the implemen-
tation level e.g. the interaction of components in a distributed system. A partial
inverse of this operation is given by the notion of quotient which allows to syn-
thesize a subspecification from an overall specification and an implementation
which realizes a part of the overall specification.

Over the years, there have been a series of advances on specification the-
ories [2,14,5,13]. The predominant approaches are based on modal logics and
process algebras but have the drawback that they cannot naturally embed both
logical and structural composition within the same formalism. Moreover, such
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formalisms do not permit to reason from specification to implementation through
stepwise refinement.

In order to leverage those problems, the concept of modal transition sys-
tems was introduced [12]. In short, modal transition systems are labeled transi-
tion systems equipped with two types of transitions: must transitions which are
mandatory for any implementation, and may transitions which are optional for
implementations. It is well admitted that modal transition systems match all
the requirements of a reasonable specification theory (see e.g. [15] for motiva-
tions). Also, practical experience shows that the formalism is expressive enough
to handle complex industrial problems [6,17].

In a series of recent work [3,10], the modal transition system framework has
been extended in order to reason on quantitative aspects, hence providing a
new specification theory for more elaborated structures, with the objective to
better meet practical needs. In this quantitative setting however, the standard
Boolean satisfaction and refinement relations are too fragile. Indeed, either an
implementation satisfies a specification or it does not. This means that minor
and major modifications in the implementation cannot be distinguished, as both
of them may reverse the Boolean answer. As observed by de Alfaro et al. for the
logical framework of CTL [1], this view is obsolete; engineers need quantitative
notions on how modified implementations differ.

The main contribution of this paper is to mitigate the above problem by lift-
ing the satisfaction and refinement relations into the quantitative framework,
hence completing the quantitative approach to reason on modal transition sys-
tems. More precisely, and similarly to what has been proposed in the logical
framework, we introduce a notion of distance between both specifications and
implementations, which permits quantitative comparison. Given two implemen-
tations that do not necessarily satisfy a specification, we can decide through
quantitative reasoning which one is the better match for the specification’s re-
quirements.

To facilitate this reasoning, we develop a notion of modal distance between
specifications, which approximates the distances between their implementations.
This preserves the relation between modal refinement and satisfaction check-
ing in the Boolean setting. We show that computing distances between imple-
mentation sets is Exptime-hard, whereas modal distances are computable in
NP ∩ co-NP (which is higher than for Boolean modal refinement). Akin to dis-
counted games [19] we can reason on behaviors in a discounted manner, giving
more importance to differences that happen in the near future, while accumulat-
ing the amount by which the specifications fail to be compatible at each step. As
for the games, the semantics of the outcome is considered application specific.

Modifying the semantic outcome of satisfaction has strong impact on opera-
tions between specifications. As a second contribution of this paper, we propose
quantitative versions of structural composition and quotient which inherit the
good properties from the Boolean setting. We also propose a new notion of
relaxation, which is inherent to the quantitative framework and allows e.g. to
calibrate the quotient operator.
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However, there is no free lunch, and working with distances has a price: some
of the properties of logical conjunction and determinization are not preserved
in the quantitative setting. More precisely, conjunction is not the greatest lower
bound with respect to refinement distance as it is in the Boolean setting, and
deterministic overapproximation is too coarse. In fact we show that this is a
fundamental limitation of any reasonable quantitative specification formalism.

Structure of the paper. We start out by introducing our quantitative formalism
which has weighted transition systems as implementations and weighted modal
transition systems as specifications. In Section 3 we introduce the distances
we use for quantitative comparison of both implementations and specifications.
Section 4 is devoted to a formalization of the notion of relaxation which is of great
use in quantitative design. In the next section we see some inherent limitations
of the quantitative approach, and Section 6 finishes the paper by showing that
structural composition works as expected in the quantitative framework and
links relaxation to quotients.

2 Weighted Modal Transition Systems

In this section we present the formalism we use for implementations and specifi-
cations. As implementations we choose the model of weighted transition systems,
i.e. labeled transition systems with integer weights at transitions. Specifications
both have a modal dimension, specifying discrete behavior which must be im-
plemented and behavior which may be present in implementations, and a quan-
titative dimension, specifying intervals of weights on each transition which an
implementation must choose from.

Let � =
{

[x, y]
∣∣ x ∈ � ∪ {−∞}, y ∈ � ∪ {∞}, x ≤ y

}
be the set of closed

extended-integer intervals and let Σ be a finite set of actions. Our set of spec-
ification labels is Spec = (Σ × �) ∪ {⊥}, where the special symbol ⊥ models
inconsistency. The set of implementation labels is defined as Imp = Σ ×

{
[x, x]

∣∣
x ∈ �

}
≈ Σ × �. Hence a specification imposes labels and integer intervals

which constrain the possible weights of an implementation.
We define a partial order on � (representing inclusion of intervals) by [x, y] "

[x′, y′] if x′ ≤ x and y ≤ y′, and we extend this order to specification labels
by (a, I) " (a′, I ′) if a = a′ and I " I ′, and ⊥ " (a, I) for all (a, I) ∈ Spec.
The partial order on Spec is hence a refinement order; if k1 " k2, then no more
implementation labels are contained in k1 than in k2.

Specifications and implementations are defined as follows:

Definition 1. A weighted modal transition system (WMTS) is a four-tuple
(S, s0, 

�,−→) consisting of a set of states S with an initial state s0 ∈ S and
must and may transition relations −→ ⊆ 

� ⊆ S × Spec × S. A WMTS is an
implementation if −→ = 

� ⊆ S × Imp × S.

A WMTS is finite if S and 

� (and hence also −→) are finite sets, and it is deter-
ministic if it holds that for any s ∈ S and a ∈ Σ,

(
s, (a, I1), t1

)
,
(
s, (a, I2), t2

)
∈



� imply I1 = I2 and t1 = t2. Hence a deterministic specification allows at
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most one transition under each discrete action from every state. In the rest of
the paper we will write s k

� s′ for (s, k, s′) ∈ 

� and similarly for −→, and
we will always write S = (S, s0, 

�,−→) or Si = (Si, s

0
i , 

�i,−→i) for WMTS

and I = (I, i0,−→) for implementations. Note that an implementation is just a
usual integer-weighted transition system.

The implementation semantics of a specification is given through modal refine-
ment, as follows: A modal refinement of WMTS S1, S2 is a relation R ⊆ S1 ×S2

such that for any (s1, s2) ∈ R and any may transition s1
k1

�1 t1 in S1, there

exists s2
k2

�2 t2 in S2 for which k1 " k2 and (t1, t2) ∈ R, and for any must

transition s2
k2−→2 t2 in S2, there exists s1

k1−→1 t1 in S1 for which k1 " k2 and
(t1, t2) ∈ R. Hence in such a modal refinement, behavior which is required in
S2 is also required in S1, no more behavior is allowed in S1 than in S2, and
the quantitative requirements in S1 are refinements of the ones in S2. We write
S1 ≤m S2 if there is a modal refinement relation R for which (s0

1, s
0
2) ∈ R. The

implementation semantics of a specification can then be defined as the set of all
implementations which are also refinements:

Definition 2. The implementation semantics of a WMTS S is the set �S� =
{I | I ≤m S, I implementation}.

We say that a WMTS S is consistent if it has an implementation, i.e. if �S� �= ∅.
A useful over-approximation of consistency is local consistency: a WMTS S is
said to be locally consistent if s k−→ t implies k �= ⊥, i.e. if no ⊥-labeled must
transitions appear in S. Local consistency implies consistency, but the inverse
is not true; e.g. the WMTS s0

a,2−→ s1
a,9

� s2

⊥−→ s3 has an implementation
i0

a,2−→ i1. Local inconsistencies may be removed recursively as follows:

Definition 3. For a WMTS S, let pre : 2S → 2S be given by pre(B) = {s ∈
S | s k−→ t ∈ B for some k}, and let S⊥ = {s ∈ S | s ⊥−→ t for some t ∈ S}.
If s0 /∈ pre∗(S⊥), then the pruning ρ(S) = (Sρ, s

0, 

�ρ,−→ρ) is defined by
Sρ = S \ pre∗(S⊥), 

�ρ = 

� ∩

(
Sρ × (Spec \ {⊥}) × Sρ

)
and −→ρ = −→ ∩(

Sρ × (Spec \ {⊥}) × Sρ

)
.

Note that if ρ(S) exists, then it is locally consistent, and if ρ(S) does not exist
(s0 ∈ pre∗(S⊥)), then S is inconsistent. Also, ρ(S) ≤m S and �ρ(S)� = �S�.

3 Thorough and Modal Refinement Distances

For the quantitative specification formalism we have introduced in the last sec-
tion, the standard Boolean notions of satisfaction and refinement are too fragile.
To be able to reason not only whether a given quantitative implementation sat-
isfies a given quantitative specification, but also to what extent, we introduce a
notion of distance between both implementations and specifications.

We first define the distance between implementations ; for this we introduce a
distance on implementation labels by

dImp

(
(a1, x1), (a2, x2)

)
=
{

∞ if a1 �= a2,
|x1 − x2| if a1 = a2.

(1)
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i1 j1

k1

3

7 6

9

i2 j2
6

7

d(j1, j2) = 0
d(i1, j2) = ∞
d(j1, i2) = ∞
d(k1, j2) = ∞
d(k1, i2) = max{2 + .9 d(k1, i2), .9

0︷ ︸︸ ︷
d(j1, j2)}

d(i1, i2) = max{3 + .9 d(j1, j2)︸ ︷︷ ︸
0

, .9 d(k1, i2)}

Fig. 1. Two weighted transition systems with branching distance d(I1, I2) = 18

In the rest of the paper, let λ ∈ � with 0 < λ < 1 be a discounting factor.

Definition 4. Let I1, I2 be implementations (weighted transition systems). The
implementation distance d : I1 × I2 → �≥0 ∪ {∞} between the states of I1 and
I2 is the least fixed point of the equations

d(i1, i2) = max

⎧⎪⎪⎨⎪⎪⎩
sup

i1
k1−→1j1

inf
i2

k2−→2j2

dImp(k1, k2) + λd(j1, j2),

sup
i2

k2−→2j2

inf
i1

k1−→1j1

dImp(k1, k2) + λd(j1, j2).

We define d(I1, I2) = d(i01, i02).

Except for the symmetrizing max operation, this is precisely the accumulating
branching distance which is introduced in [18]; see also [8,9] for a thorough
introduction to linear and branching distances as we use them here. As the
equations in the definition define a contraction, they have indeed a unique least
fixed point; note that d(i1, i2) = ∞ is also a fixed point, cf. [11].

We remark that besides this accumulating distance, other interesting system
distances may be defined depending on the application at hand, but we con-
centrate here on this distance and leave a generalization to other distances for
future work.

Example 1. Consider the two implementations I1 and I2 in Figure 1 with a single
action (elided for simplicity) and with discounting factor λ = .9. The equations
in the illustration have already been simplified by removing all expressions that
evaluate to ∞. What remains to be done is to compute the least fixed point of
the equation d(k1, i2) = max

{
2 + .9 d(k1, i2), 0

}
which is d(k1, i2) = 20. Hence

d(i1, i2) = max{3, .9 · 20} = 18.

To lift implementation distance to specifications, we need first to consider the
distance between sets of implementations. Given implementation sets I1, I2, we
define

d(I1, I2) = sup
I1∈I1

inf
I2∈I2

d(I1, I2)

Note that in case I2 is finite, we have that for all ε ≥ 0, d(I1, I2) ≤ ε if and only
if for each implementation I1 ∈ I1 there exists I2 ∈ I2 for which d(I1, I2) ≤ ε,
hence this is a natural notion of distance. Especially, d(I1, I2) = 0 if and only
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if I1 is a subset of I2 up to bisimilarity. For infinite I2, we have the slightly
more complicated property that d(I1, I2) ≤ ε if and only if for all δ > 0 and any
I1 ∈ I1, there is I2 ∈ I2 for which d(I1, I2) ≤ ε + δ.

Note that in general, our distance on sets of implementations is asymmetric;
we may well have d(I1, I2) �= d(I2, I1). We lift this distance to specifications as
follows:

Definition 5. The thorough refinement distance between WMTS S1 and S2 is
defined as dt(S1, S2) = d

(
�S1�, �S2�

)
. We write S1 ≤ε

t S2 if dt(S1, S2) ≤ ε.

Indeed this permits us to measure incompatibility of specifications; intuitively, if
two specifications have thorough distance ε, then any implementation of the first
specification can be matched by an implementation of the second up to ε. Also
observe the special case where S1 = I1 is an implementation: then dt(I1, S2) =
infI2∈�S2� d(I1, I2), which measures how close I1 is to satisfy the specification S2.

To facilitate computation and comparison of refinement distance, we introduce
modal refinement distance as an overapproximation. We will show in Theorem 2
below that similarly to the Boolean setting [4], computation of thorough re-
finement distance is Exptime-hard, whereas modal refinement distance is com-
putable in NP ∩ co-NP. First we generalize the distance on implementation
labels from Equation (1) to specification labels so that for k, � ∈ Spec we define

dSpec(k, �) = sup
k′k,k′∈Imp

inf
�′�,�′∈Imp

dImp(k′, �′).

Note that dSpec is asymmetric, and that dSpec(k, �) = 0 if and only if k " �.
Also, dSpec(k, �) = dImp(k, �) for all k, � ∈ Imp. Using the .− operation defined on
integers by x1

.− x2 = max(x1 − x2, 0), we can express dSpec as follows:

dSpec

(
(a1, I1), (a2, I2)

)
= ∞ if a1 �= a2

dSpec

(
(a, [x1, y1]), (a, [x2, y2])

)
= max(x2

.− x1, y1
.− y2)

dSpec

(
⊥, (a, I2)

)
= 0 dSpec

(
(a, I1),⊥

)
= ∞

Definition 6. Let S1, S2 be WMTS. The modal refinement distance dm : S1 ×
S2 → �≥0 ∪ {∞} from states of S1 to states of S2 is the least fixed point of the
equations

dm(s1, s2) = max

⎧⎪⎪⎨⎪⎪⎩
sup

s1
k1���1t1

inf
s2

k2���2t2

dSpec(k1, k2) + λdm(t1, t2),

sup
s2

k2−→2t2

inf
s1

k1−→1t1

dSpec(k1, k2) + λdm(t1, t2).

We define dm(S1, S2) = dm(s0
1, s

0
2), and we write S1 ≤ε

m S2 if dm(S1, S2) ≤ ε.

The argument for existence and uniqueness of the least fixed point is exactly
the same as for implementation distance in Definition 4. Like thorough refine-
ment distance, modal refinement distance may be asymmetric.
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s1S1 t1
a, [0, 1]

s2S2

t2

t3

a, [0,
0]

a, [1, 1]

Fig. 2. Incompleteness of modal refinement distance

The next theorem shows that modal refinement distance indeed overapproxi-
mates thorough refinement distance, and that it is exact for deterministic WMTS.
Note that nothing general can be said about the precision of the overapproxima-
tion in the nondeterministic case; as an example observe the two specifications
in Figure 2 for which dt(S1, S2) = 0 but dm(S1, S2) = ∞.

The fact that modal refinement only equals thorough refinement for determin-
istic specifications is well-known from the theory of modal transition systems [12],
and the special case of S1 locally consistent and S2 deterministic is important,
as it can be argued [12] that indeed, deterministic specifications are sufficient
for applications.

Theorem 1. For WMTS S1, S2 we have dt(S1, S2) ≤ dm(S1, S2). If S1 is locally
consistent and S2 is deterministic, then dt(S1, S2) = dm(S1, S2).

The complexity results in the next theorem show that modal refinement distance
can serve as a useful approximation of thorough refinement distance.

Theorem 2. For finite WMTS S1, S2 and ε ≥ 0, it is Exptime-hard to decide
whether S1 ≤ε

t S2. The problem whether S1 ≤ε
m S2 is decidable in NP ∩ co-NP.

4 Relaxation

We introduce here a notion of relaxation which is specific to the quantitative
setting. Intuitively, relaxing a specification means to weaken the quantitative
constraints, while the discrete demands on which transitions may or must be
present in implementations are kept. A similar notion of strengthening may be
defined, but we do not use this here.

Definition 7. For WMTS S, S′ and ε ≥ 0, S′ is an ε-relaxation of S if S ≤m S′

and S′ ≤ε
m S.

Hence the quantitative constraints in S′ may be more permissive than the ones
in S, but no new discrete behavior may be introduced. Also note that any im-
plementation of S is also an implementation of S′, and no implementation of S′

is further than ε away from an implementation of S. The following proposition
relates specifications to relaxed specifications:

Proposition 1. If S′
1 and S′

2 are ε-relaxations of S1 and S2, respectively, then
dm(S1, S2) − ε ≤ dm(S1, S

′
2) ≤ dm(S1, S2) and dm(S1, S2) ≤ dm(S′

1, S2) ≤
dm(S1, S2) + ε.
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On the syntactic level, we can introduce the following widening operator which
relaxes all quantitative constraints in a systematic manner. We write I ± δ =
[x− δ, y + δ] for an interval I = [x, y] and δ ∈ �.

Definition 8. Given δ ∈ �, the δ-widening of a WMTS S is the WMTS S+δ

with transitions s a,I±δ

� t in S+δ for all s a,I

� t in S, and s a,I±δ−→ t in S+δ for all
s a,I−→ t in S.

Widening and relaxation are related as follows; note also that as widening is
a global operation whereas relaxation may be achieved entirely locally, not all
relaxations may be obtained as widenings.

Proposition 2. The δ-widening of any WMTS S is a (1 − λ)−1δ-relaxation.

There is also an implementation-level notion which corresponds to relaxation:

Definition 9. The ε-extended implementation semantics, for ε ≥ 0, of a WMTS
S is �S�+ε =

{
I
∣∣ I ≤ε

m S, I implementation
}

.

Proposition 3. If S′ is an ε-relaxation of S, then �S′� ⊆ �S�+ε.

It can be shown that there are WMTS S, S′ such that S′ is an ε-relaxation of
S but the inclusion �S′� ⊆ �S�+ε is strict.

5 Limitations of the Quantitative Approach

In this section we turn our attention towards some of the standard operators for
specification theories; determinization and logical conjunction. Quite surpris-
ingly, we show that in the quantitative setting, there are problems with these
notions which do not appear in the Boolean theory. More specifically, we show
that there is no determinization operator which always yields a smallest deter-
ministic overapproximation, and there is no conjunction operator which acts as
a greatest lower bound.

Theorem 3. There is no unary operator D on WMTS for which it holds that

(3.1) D(S) is deterministic for any WMTS S,
(3.2) S ≤m D(S) for any WMTS S,
(3.3) S ≤ε

m D implies D(S) ≤ε
m D for any WMTS S, any deterministic WMTS

D, and any ε ≥ 0.

In the standard Boolean setting, there is indeed a determinization operator which
satisfies properties similar to the above, and which is useful because it enables
checking thorough refinement, cf. Theorem 1. Likewise, the greatest-lower-bound
property of logical conjunction in the Boolean setting ensures that the set of
implementations of a conjunction of specifications is precisely the intersection of
the implementation sets of the two specifications.
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Theorem 4. There is no partial binary operator ∧ on WMTS for which it holds
that

(4.1) S1 ∧ S2 ≤m S1 and S1 ∧S2 ≤m S2 for all locally consistent WMTS S1, S2

for which S1 ∧ S2 is defined,
(4.2) for any locally consistent WMTS S and all deterministic and locally con-

sistent WMTS S1, S2 such that S ≤m S1 and S ≤m S2, S1 ∧S2 is defined
and S ≤m S1 ∧ S2,

(4.3) for any ε ≥ 0, there exist ε1 ≥ 0 and ε2 ≥ 0 such that for any locally
consistent WMTS S and all deterministic and locally consistent WMTS S1,
S2 for which S1∧S2 is defined, S ≤ε1

m S1 and S ≤ε2
m S2 imply S ≤ε

m S1∧S2.

The counterexamples used in the proofs of Theorems 3 and 4 are quite general
and apply to a large class of distances, rather than only to the accumulating
distance discussed in this paper. Hence it can be argued that what we have
exposed here is a fundamental limitation of any quantitative approach to modal
specifications.

6 Structural Composition and Quotient

In this section we show that in our quantitative setting, notions of structural
composition and quotient can be defined which obey the properties expected of
such operations. In particular, structural composition satisfies independent im-
plementability [2], hence the refinement distance between structural composites
can be bounded by the distances between their respective components.

First we define partial synchronization operators ⊕ and # on specification
labels which will be used for synchronizing transitions. We let (a1, I1) ⊕ (a2, I2)
and (a1, I1) # (a2, I2) be undefined if a1 �= a2, and otherwise(

a, [x1, y1]
)
⊕
(
a, [x2, y2]

)
=
(
a, [x1 + x2, y1 + y2]

)
,

(a, I1) ⊕⊥ = ⊥⊕ (a, I2) = ⊥;

(
a, [x1, y1]

)
#
(
a, [x2, y2]

)
=
{

⊥ if x1 − x2 > y1 − y2,(
a, [x1 − x2, y1 − y2]

)
if x1 − x2 ≤ y1 − y2,

(a, I1) #⊥ = ⊥# (a, I2) = ⊥.

Note that we use CSP-style synchronization, but other types of synchronization
can easily be defined. Also, defining ⊕ to add intervals (and # to subtract them)
is only one particular choice; depending on the application, one can also e.g. let
⊕ be intersection of intervals or some other operation. It is not difficult to see
that these alternative synchronization operators would lead to properties similar
to those we show here.

Definition 10. Let S1 and S2 be WMTS. The structural composition of S1 and
S2 is S1‖S2 =

(
S1×S2, (s0

1, s
0
2), Spec, 

�,−→

)
with transitions given as follows:

s1
k1

�1 t1 s2

k2

�2 t2, k1 ⊕ k2 defined

(s1, s2)
k1⊕k2

� (t1, t2)

s1
k1−→1 t1 s2

k2−→2 t2 k1 ⊕ k2 defined

(s1, s2)
k1⊕k2−→ (t1, t2)
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s1 t1
a, [0, 0]

(a) S1

s2 t2
a, [0, 1]

(b) S2

s3 t3
a, [0, 0]

(c) S3

(s2, s3) (t2, t3)
a, [0, 1]

(d) S2‖S3

(s1, s2)

(e) S1 �S2

Fig. 3. WMTS for which dm(S3, S1 � S2) 
= dm(S2‖S3, S1)

The quotient of S1 by S2 is S1 � S2 = ρ
(
S1 × S2 ∪ {u}, (s0

1, s
0
2), Spec, 

�,−→

)
with transitions given as follows:

s1
k1

�1 t1 s2

k2

�2 t2 k1 � k2 defined

(s1, s2)
k1�k2

� (t1, t2)

s1
k1−→1 t1 s2

k2−→2 t2 k1 � k2 defined

(s1, s2)
k1�k2−→ (t1, t2)

s1
k1−→1 t1 ∀s2

k2−→2 t2 : k1 � k2 undefined

(s1, s2)
⊥−→ (s1, s2)

k ∈ Spec ∀s2
k2

�2 t2 : k ⊕ k2 undefined

(s1, s2)
k

� u

k ∈ Spec

u
k

� u

Note that we ensure that the quotient S1 � S2 is locally consistent by re-
cursively removing ⊥-labeled must transitions using pruning, see Definition 3.
The following theorem shows that structural composition is well-behaved with
respect to modal refinement distance in the sense that the distance between
the composed systems is bounded by the distances of the individual systems.
Note also the special case in the theorem of S1 ≤m S2 and S3 ≤m S4 implying
S1‖S3 ≤m S2‖S4.

Theorem 5 (Independent implementability). For WMTS S1, S2, S3, S4

we have dm

(
S1‖S3, S2‖S4

)
≤ dm(S1, S2) + dm(S3, S4).

The following theorem expresses the fact that quotient is a partial inverse to
structural composition. Intuitively, the theorem shows that the quotient S1 �S2

is maximal among all WMTS S3 with respect to any distance S2‖S3 ≤ε
m S1;

note the special case of S3 ≤m S1 � S2 if and only if S2‖S3 ≤m S1.

Theorem 6 (Soundness and maximality of quotient). Let S1, S2 and S3

be locally consistent WMTS such that S2 is deterministic and S1 �S2 is defined.
If dm(S3, S1 � S2) < ∞, then dm(S3, S1 � S2) = dm(S2‖S3, S1).

The example depicted in Figure 3 shows that the condition dm(S3, S1 �S2) < ∞
in Theorem 6 is necessary. Here dm(S2‖S3, S1) = 1, but dm(S3, S1 � S2) = ∞
because of inconsistency between the transitions s1

a,[0,0]

� 1 t1 and s2
a,[0,1]

� 2 t2 for

which k1 # k2 is defined.
As a practical application, we notice that relaxation as defined in Section 4 can

be useful when computing quotients. The quotient construction in Definition 10
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introduces local inconsistencies (which afterwards are pruned) whenever there
is a pair of transitions s1

k1

�1 t1, s2
k2

�2 t2 (or s1

k1−→1 t1, s2
k2−→2 t2) for

which k1 # k2 = ⊥. Looking at the definition of #, we see that this is the case
if k1 = (a, [x1, y1]) and k2 = (a, [x2, y2]) are such that x1 − x2 > y1 − y2; hence
these local inconsistencies can be avoided by enlarging k1.

Enlarging quantitative constraints is exactly the intuition of relaxation, thus
in practical cases where we get a quotient S1 �S2 which is “too inconsistent”, we
may be able to solve this problem by constructing a suitable ε-relaxation S′

1 of
S1. Theorems 5 and 6 can then be used to ensure that also S′

1 �S2 is a relaxation
of S1 � S2.

7 Conclusion and Further Work

We have shown in this paper that within the quantitative specification framework
of weighted modal transition systems, refinement and implementation distances
provide a useful tool for robust compositional reasoning. Note that these dis-
tances permit us not only to reason about differences between implementations
and from implementations to specifications, but they also provide a means by
which we can compare specifications directly at the abstract level.

We have shown that for some of the ingredients of our specification theory,
namely structural composition and quotient, our formalism is a conservative
extension of the standard Boolean notions. We have also noted however, that for
determinization and logical conjunction, the properties of the Boolean notions
are not preserved, and that this is a fundamental limitation of any reasonable
quantitative specification theory. The precise practical implications of this for
the applicability of our quantitative specification framework are subject to future
work.

Acknowledgment. The authors wish to thank Jǐŕı Srba for fruitful discussions
during the preparation of this work.
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Abstract. We consider an extension of the well-known coupon collect-
ing (CC) problem. In our model we have a player who is allowed to
deterministically select one box per time step. The player plays against
a random sequence of box choices r1, r2, . . . In each step, the contents of
both boxes are merged.

The goal of the player is to collect all coupons in one box (the standard
model), or to have a copy of each coupon in all boxes. We consider three
information models, depending on the knowledge of the random choices
that the player has before he has to fix his deterministic choices: (i) full
prior knowledge of the whole random sequence; (ii) knowledge of the
random sequence up to the previous step (but not the current or any
subsequent step); (iii) all decisions must be made in advance without
any knowledge of the random sequence.

Our main results are lower and asymptotically matching constructive
upper bounds for all three models. We also show that network gossip-
ing (similar in spirit to all-in-all CC) is asymptotically no harder than
collecting coupons.

1 Introduction

The coupon collecting (henceforth referred to as CC ) problem is one of the most
well-studied mathematical models. It is defined as follows. We are given n boxes
and n distinguishable coupons, one coupon per box. The goal of the player is
to collect one of each of the coupons. In every step the player randomly picks
one box, with replacement, and obtains a copy of the corresponding coupon.
It is well known, and can be proven with elementary methods, that it takes
Θ(n log n) many steps in expectation for the player to obtain copies of all n
coupons, see e.g. [13]. The coupon collecting problem and variations thereof are
used as basic building block in the analysis of many algorithms. Much like balls
into bins games, it is an extremely useful and versatile process. In this paper we
consider a variant of the standard CC problem. In our model we have a player
who is allowed to deterministically select one box per time step. The player plays
against a random sequence of box choices r1, r2, . . . Throughout this paper, dt

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 72–83, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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denotes the player’s box choice in step t. If Ci
t denotes the contents of box i after

step t then Crt
t = Cdt

t := Crt
t−1∪Cdt

t−1. That is, the contents of both boxes will be
merged (under union). The goal of the player is to collect all coupons in one box
(we refer to this as CC[1]), or to have a copy of each coupon in every box, which
we will denote as CC[∗]. We consider three information models, depending on
the knowledge of the random choices that the player has before he has to fix his
deterministic choices.

In our main model the player must make all decisions in advance without any
knowledge of the random sequence. In the second model we allow knowledge
of the random sequence up to the previous step (but not the current or any
subsequent step). In the last model we allow the player full prior knowledge of
the whole random sequence. To give an example, to “simulate” the standard CC
problem the player would choose dt = 1 in every step. Then Box 1 would collect
all coupons (this is of course not what our protocol does).

Our main results are lower bounds and asymptotically matching constructive
upper bounds for all three models. The results for our main model can be trans-
lated into upper and lower bounds for gossiping in the well-studied oblivious
phone call model.

1.1 Previous Results

Results for the standard CC problem can be found in many textbooks (see [13]
as an example).

The random phone-call model was introduced by Demers et al. [6]. Karp et
al. [11] proved that it is possible to design a randomized procedure performing
O(n log logn) transmissions that accomplishes broadcasting in time O(log n),
with probability 1 − n−1. For more results about broadcasting in the oblivious
phone call model see [8,3,7,10].

In [12] the authors analyse a simple gossip-based protocols for the computa-
tions of sums, averages, random samples, quantiles, and other aggregate func-
tions. They show that their protocols converge exponentially fast to the true
answer when using uniform gossip. In [5] Chen and Pandurangan consider gossip-
based algorithms to aggregate information. For their lower bound in the random
phone-call model, they assume a scenario in which all nodes have to follow ex-
actly the same rules in each step. The decision if a node sends a message to
its communication partner does not depend on the partner’s address nor on the
knowledge acquired in the previous rounds. The authors show a lower bound
of Ω(n log n) on the message complexity of any gossiping algorithm, and this
bound holds regardless of the running time of the algorithm. Another recent
study of randomized gossiping can be found in the context of resilient infor-
mation exchange in [2]. The authors propose an algorithm with the optimal
O(n) message complexity that tolerates oblivious faults. Note, however, that the
model of communication adopted in [2] assumes that every process involved in
exchanging information is allowed to contact multiple processes at any round,
as well as to maintain open connections over multiple rounds.



74 P. Berenbrink et al.

In [4] the authors show that O(log n)-time gossiping based on exchange of
O(n log logn) messages cannot be obtained in the random phone-call model. For
more details on the relationship to gossiping (and [4]) see Section 1.3.

1.2 Model and Our Results

Let B = {1, . . . , n} denote the set of n boxes (types of coupons). Let T be an
arbitrary integer, let r1, . . . , rT denote the sequence of random choices of boxes,
and let d1, . . . , dT denote the sequence of deterministic choices of boxes. Step
i may be expressed as si = (ri, di). We assume that in any step i the contents
of boxes ri and di will be merged; if Ct

i denotes the contents of box i prior to
step t then Ct

rt
= Ct

dt
:= Ct−1

rt
∪ Ct−1

dt
. We call s1, s2, . . . , sT the step sequence.

We assume that initially, each box i contains one coupon denoted by ci, that is,
C0

i = {i}. For any coupon c, bc is the unique box which has a copy of the coupon
in the very beginning. The main model we consider is the following.
Oblivious: The player has to make all choices di, . . . , dT in advance, without
seeing any of the random choices r1, . . . , rT .

For reasons of completeness we also consider two more models that differ in
the knowledge of the random choices that the player is allowed to take into
account before the deterministic decisions are made.
Clairvoyant: The player knows all the random choices in advance and may
adjust d1, . . . , dT accordingly.
Adaptive: The player has to choose di before ri is revealed, but it may take
r1, . . . , ri−1 into account. This means that the player knows which coupons have
a copy in which box.

There are two natural questions to consider. How long does it take until at
least one box contains all coupons (CC[1]), and how long does it take until every
box contains all coupons (CC[∗])? Somewhat surprisingly, it turns out that, up
to constant factors, in all three models, CC[∗] is as easy CC[1]. More formally,
we show the following results. We remark that all our upper bounds are not
only existential but also constructive, in the sense that we also provide easily
constructed sequences of deterministic choices that achieve the upper bound.

For the oblivious model the player is not allowed to use any knowledge about
the random choices for constructing its deterministic sequence. One method for
the player might be to collect all coupons in one box (deterministic choice is
always the same, resulting in standard Coupon Collecting), or to initialize the
deterministic choices randomly. Both approaches will take Θ(n log n) steps. We
show the following result.

Theorem 1. In the oblivious model, CC[1] and CC[∗] can be solved in
O(n log logn) steps, with high probability.

Theorem 2. Consider the oblivious model. Let ε > 0 be a sufficiently small
constant and fix an arbitrary sequence of deterministic choices. With high prob-
ability, CC[1] and CC[∗] are not finished after εn log logn steps.
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The authors found themselves somewhat surprised by the results. The stan-
dard CC process can be accelerated – that is, the runtime can be reduced from
Θ(n log n) to Θ(n log logn) – by essentially having the player first build a proper
basis from which to reach the eventual goal; the original CC process is, of course,
utterly incapable of this strategy. This observation is strengthened in Lemma 7,
see Section 5 The lemma is essentially stating that whatever one’s strategy is,
there must exist many coupons with many copies each, supports this intuition.

Note that there is a trivial lower bound of n− 1 for CC[1] (and CC[∗]) which
proves the tightness of our results for the clairvoyant and adaptive models up to
constant factors.

Theorem 3. In the clairvoyant model, CC[1] can be solved in n− 1 steps and
CC[∗] can be solved in 2n− 2 steps with probability one.

Theorem 4. In the adaptive model, both CC[1] and CC[∗] can be solved in
O(n) steps with high probability1.

1.3 Relationship to Gossiping

The work in this paper was motivated by our research for lower bound for broad-
casting and gossiping on complete graphs in the random phone call model The
random phone call model is one of the simplest communication models for broad-
casting and gossiping. In this model, every node v calls a randomly chosen neigh-
bour w in every step to establish a communication channel with w. The channel
can be used for bi-directional communication, but only during that step. From
the point of view of v, the channel is an outgoing channel. For w it is an incom-
ing channel. Note that every node has only one outgoing channel per step but
it might have several incoming ones. It is assumed that the nodes can transmit
over several open channels in one step. In the case of gossiping it is also assumed
that the nodes can combine messages. The nodes can now chose which of the
channels are used for a transmission. At the end of the step all open channels are
closed. One of the classical papers in this area is [11] by Karp, Schindelhauer,
Shenker, and Vöcking, where the authors introduce the notion of address oblivi-
ous algorithms. In this model the decision if a processor sends a message over an
open channel must not depend on the identity of that neighbour. In particular,
the authors prove a lower bound on the message transmissions of Ω(n log logn)
regardless of the number of rounds taken by address-oblivious algorithm. Note
that our model is not address oblivious in the sense of [11], and that their lower
bound on broadcasting does not apply to our model. Moreover, the analysis of
[11] can not be used for our model. For a nice treatment on gossiping we refer
the reader to e.g. [5] and references therein.

In [4] the authors provide a lower bound for gossiping the phone call model.
The bound shows a Ω(n logn) message complexity for any O(log n)-time ran-
domized gossiping algorithm in the oblivious phone call model. For the sake of
1 By with high probability, we refer to an event that holds with probability at least

1 − n−c for some constant c > 0.
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the proof the authors assume that in every time step an arbitrary subset of the
nodes uses the opened channels. If a channel between v and w is used then v will
send all its coupons over to w and vice versa. Hence, v and w exchange all their
tokens. For this proof it is crucial that the runtime of the algorithm is O(log n),
meaning no node can participate in more than O(log n) exchange operations.

It is easy to see that Theorem 2 also proves a lower bound of cn log logn
messages for gossiping in the phone call model for an algorithm with arbitrary
runtime in the (our) oblivious model. The relationship between CC[∗] in the
oblivious model and gossiping can be described as follows. Every step of gossip-
ing algorithm A is modelled by several steps (ri, di) of our model. Let us consider
the first step of A and let us assume that A uses the outgoing channels opened
by the nodes v1

1 , . . . v
1
�1

(meaning v1, . . . v�1 exchange their messages with ran-
domly chosen nodes). Then the player will have the steps (r1

1 , v
1
1), . . . (r1

�1
, v1

�1
)

in the beginning of its step sequence. If A uses the outgoing channels opened
by the nodes v2

1 , . . . v
2
�2

in Step 2, the sequence (r2
1 , v

2
1), . . . (r2

�2
, v2

�1
, ) is appended

to the step sequence of the player, and so on. Hence, the deterministic choices of
the player model the processors which send messages, and the random choices
are used to model the random choices of these nodes. This means that a lower
bound on the number of steps it takes to collect all coupons translates directly
into a lower bound on the number of messages in the phone call model.

Note that the algorithm of our upper bound in Theorem 1 can also be trans-
lated into a gossiping algorithm with runtime O(n log logn) sending O(n log logn)
messages. In fact, Phase 1 of Algorithm I could also be realised in k log logn
steps of the phone call model (every node appears only once in the determin-
istic choices of n succeeding steps). But Phase 2 of the Algorithm still needs
kn log log n steps since all communications use Box 1 as deterministic choice.

The CC[∗] algorithm for the clairvoyant model and the adaptive model can
also be translated into a gossiping algorithm with runtime O(n), but the nodes
have to use global information (random choices of other nodes). The CC[∗]
algorithm for the clairvoyant model can also not be realized in the oblivious
model.

2 The Oblivious Model

In this section we consider the model where the player does not know any of
the random choices before he has to specify the deterministic choices d1, . . . , dt.
Hence, the player does not know the coupon distribution in the boxes.

2.1 Upper Bound

In this section we will prove Theorem 1. We first consider CC[1]. Algorithm
I (Fig. 1) works in two phases. After the first phase every coupon will have
O(log n) copies in random boxes. The second phase is responsible for moving a
copy of each coupon into box 1.

To analyze the algorithm we first show the following result; the proof is omit-
ted due to space limitations.
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Oblivious Algorithm I

Phase 1
For i ∈ {1, . . . , kn · log log(n)} do

play si = (ri, (i mod n) + 1)

Phase 2
For i ∈ {kn · log log(n) + 1, . . . ,

2kn · log log(n)} do
play si = (ri, 1)

Oblivious Algorithm II

Phase 1
For i = 1 to 2n do

play si = (ri, 1)

Phase 2
� = 2n + 1
For i = 1 to O(log log n) do

For j = 1 to n do
play s� = (r�, j)
� = � + 1

Clairvoyant Algorithm III

Choose box b /∈ R
� = 1
For i = 1 to n − 1 do

If (ri, i) ∈ R′

play si = (ri, b)
else

play si = (ri, u�)
� = � + 1

Clairvoyant Algorithm IV

For i = n to 2n − 2 do
If ri is empty

play si = (ri, b)
else

pick arbitrary empty box u
play si = (ri, u)

Adaptive Algorithm V

Phase i ∈ {0, . . . , 3 log log(n) − 1}
For j ∈ {0, . . . , 2i+5 · �i − 1} do play (rti+j , c

i
j mod �j

)

For j ∈ {2i+5 · �i, . . . , 2i+5 · �i + n
2i+1 } do play (rti+j , 1)

Phase i = 3 log log(n)
For j ∈ {0, . . . , n − 1} do play (rj+t3 log log(n) , 1)

Adaptive Algorithm VI

For � = 1 to 8n do
s� = (r�, b)

While CC[∗] not finished do
let b′ be a box that does not have all coupons
While b′ has not all coupons do

s� = (r�, b
′); � = � + 1

Fig. 1. Our algorithms

Lemma 1. Let k ≥ 3 be a constant. At the end of phase 1 every coupon is in
Ω(log n) many boxes with high probability.

Lemma 2. In the oblivious model, Algorithm I solves CC[1] in O(n log logn)
steps with high probability.

Proof. We have to show that there is a copy of every coupon in box 1 at the
end of Algorithm V. In Phase 2 of the algorithm the contents of kn log logn
randomly chosen boxes are s copied into Box 1. From Lemma 1 we know that
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a fixed coupon c is in � logn many boxes, w.h.p. Hence, the expected number
of times that c is in one of the kn · log(log(n)) boxes chosen in Phase 2 is at
least k · log(log(n)) · � logn. The result now follows from a simple application of
Chernoff bounds. ��

So far we have collected all coupons in Box 1. For CC[∗] it remains to be shown
how to distribute the coupons from Box 1 to all boxes.

Lemma 3. In the oblivious model, Algorithm II solves CC[∗] in O(n log logn)
steps with high probability.

Proof. Algorithm II (Fig. 1) executes a broadcast in the oblivious model. To
simplify the presentation we assume that the algorithm starts in step t = 1. If
Algorithm II is used directly after Algorithm I, we have to use st+i instead of si,
where t is the running time of Algorithm I. Phase 1 of our algorithm distributes
the coupons such that there are w.h.p. n/2 boxes having all coupons. Phase 2
is similar to the second phase of the broadcast algorithm from [11], where every
uninformed node tries to get the message (vial pull) from a randomly chosen
node. The following lemma follows from a slight adaptation of [11, Theorem 2.1]
(Phase 3). Notice that in [11] only uninformed nodes try to pull the message
whereas in our protocol (which may be considered a sequentialization) all nodes
play (are being simulated), hence the n as upper index in the j-loop in Algorithm
VI. ��

2.2 Lower Bound

In this section we prove Theorem 2, a lower bound on the runtime for the obliv-
ious model. Let Bt

i be the set of boxes that have coupon i at time step t. Note
that Bt

i can be expressed recursively via B0
i := {i} and

Bt
i :=

{
Bt−1

i if dt /∈ Bt−1
i and rt /∈ Bt−1

i

Bt−1
i ∪ {rt, dt} otherwise.

(1)

Note that, as soon as Bt
i ∩ Bt

j �= ∅, the distribution of Coupon i and coupon j is
no longer independent. For that reason the following lemma shows that after T
steps there exists coupons that have only O(log n)4c copies (for a constant c) in
disjoint box sets. The existence of at least two coupons which have fewer than
(logn)4c copies in disjoint boxes implies that coupon collection is not completed.
The disjointness also implies that CC[∗] is not completed.

Lemma 4. Let c = 1/400 and T = cn log logn. With probability at least 1 − 2 ·
exp(−n8/9) there is a set C′′ of coupons with the following properties.

1. |C′′| ≥ n8/9,
2. each of the coupons in C′′ has fewer than (log n)4c copies at the end of step

T , and
3. all the copies of coupons in C′′ are in disjoint sets of boxes.
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The outline of the proof is as follows. Our goal is to find coupons that are
in the set C′′. There are two possible ways to increase the number of copies
of a coupon i in step t. The random rt choice can hit a box with coupon i
and box dt does not have a copy of coupon i (random propagation), or dt is a
box with coupon i and box rt does not have a copy of coupon i (deterministic
propagation). In the beginning S is the set of coupons which are initially in a
box that does not appear in too many deterministic choices. This set of coupons
is called S (definition before Observation 5). Note that S can also be regarded as
a set of boxes. We then eliminate coupons from S which have too many copies in
S due to deterministic propagation (Lemma 7). This results in set C′. After that
we eliminate coupons in C′ that have a random propagation (Definition 3(2)), or
that have copies in boxes not in S due to a deterministic propagation. We also
eliminate coupons from S that have copies in the same boxes.

Proof. Divide the interval [0, T ] into 2c log log(n) consecutive rounds of length
n/2. Let us define S� as the set of boxes which are deterministically chosen
at most 4c log log(n) times within the time interval [� · n/2, (� + 1) · n/2). Let
S :=

⋂2c log log(n)
�=1 S�. Note that every box in S is chosen at most 8c log log(n)

times within any time interval [t, t + n/2) with 1 ≤ t ≤ T − n/2.

Observation 5. |S| ≥ 3
4 · n. (Proof omitted due to space limitations.)

Let us assume that for every coupon i ∈ S we have a set Zi ⊆ S of boxes and
only boxes from Zi are allowed to have a copy of coupon i (of course, i ∈ Zi, Zi

will be defined later). In the following, we focus on the deterministic propagation
of i within the set Zi. Our goal is to show that |Zi| = (logn)4c is sufficient. More
precisely, we consider the following process.

Definition 1. For 0 ≤ t ≤ T we define a set B̃t
i ⊂ Bt

i recursively as follows. Fix
any set Zi ⊆ S with i ∈ Zi. Initially we have B̃0

i := {i} and

B̃t
i :=

{
B̃t−1

i if dt /∈ B̃t−1
i or |B̃t−1

i | = (logn)4c

B̃t−1
i ∪ {rt} if dt ∈ B̃t−1

i ∧ rt ∈ Zi
. (2)

By comparing (2) and (1), one can see that indeed B̃t
i ⊆ Bt

i for all 1 ≤ i ≤ n

and time steps t ∈ N. Let Ti(x) be the first time step such that |B̃Ti(x)
i | = x.

We make the following important observation which follows directly from the
definition of B̃t

i .

Observation 6. The distribution of B̃Ti(x)
i \{i} uniform over all subsets of size

x− 1 of Zi \ {i}.

Notice that as soon as we fix a time step t we cannot assume that B̃t
i \ {i}

is a uniformly at random chosen subset of S of size |B̃t
i | − 1. To illustrate the

dependencies, consider the following example. s1 = (1, 2) and s2 = (2, 3) . At
the end of step 2, coupon 1 is in boxes 1, 2 and 3. Hence B̃2

1 = {1, 2, 3}. On the
other hand, |B̃2

1 | = 3, d1 = 1 and d2 = 2 implies r1 = 2.
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First we consider a slight modification of the process B̃i, called C̃i, where we
assume that all copies of coupon i are in randomly chosen boxes. We show that
for C̃i the probability that the number of copies of coupon i grows very fast is
relatively small (Lemma 5). Then we relate the growth probability of C̃i back to
the probability for B̃i (Lemma 6).

Definition 2. Consider a process C̃i that begins at an arbitrary step t′ ∈ [0, T ].
Fix any set Zi ⊆ S with i ∈ Zi. We assume that initially C̃t′

i := D with D being
a uniformly at random chosen subset of Zi with |D| = x − 1. For t ≥ t′ + 1
we have C̃t

i := C̃t−1
i if dt /∈ C̃t−1

i or |C̃t−1
i | = (logn)4c, and C̃t

i := C̃t−1
i ∪ {rt} if

dt ∈ C̃t−1
i ∧ rt ∈ Zi

The proofs of the following two lemmas are omitted to to space limitations.

Lemma 5. Fix any subset Zi ⊆ S with |Zi| ≥ (5/8)n and i ∈ Zi. Let x be an
arbitrary integer with 16c log log(n) ≤ x ≤ (logn)4c/15 and let D be a randomly
chosen subset of Zi s.t. i ∈ D and |D| = x. For any t′ ∈ [1, T −n/2] it holds that

Pr
[
|C̃t′+n/2

i | ≥ 15x
]
≤ 2 · exp

(
−x/(5 · (4c · log logn)2)

)
.

where the probability is both over the random choice of D and rt′+1, . . . , rt′+n/2.

Now we bound the behaviour of B̃i instead of C̃i.

Lemma 6. Fix any subset Zi ⊆ S with |Zi| ≥ (5/8)n and consider any coupon
i ∈ Zi. Let x be an arbitrary integer with 16c log log(n) ≤ x ≤ (logn)4c/15. Let
Ti(x) be the first time step with |B̃Ti(x)

i | = x. Then

1. Pr
[
|B̃Ti(x)+n/4

i | ≥ 15x
]
≤ (16c + 2) · log log(n) · 2 exp

(
− x

10·(4c log log n)2

)
.

2. Pr
[
|B̃βn/8

i | ≥ (log n)4c
]
≤ 1

2 .

where β := log15((log n)4c) − log15((log logn)3) = Θ(log logn).

The following lemma is similar to Lemma 4 but makes statements about B̃
instead of B. Finally, Lemma 8 shows that there are many coupons in C′ for
which B̃ and B are the same. The proof is omitted due to space limitations.

Lemma 7. With probability at least 1 − exp(−n9/10

8 ), there exists a set C′ ⊆ S
of coupons with |C′| = 1

4 · n9/10 with the following properties: (i) for all i ∈ C′,
|B̃T

i | ≤ (log n)4c, (ii) gor every i, j ∈ C′ with i �= j, the sets B̃T
i and B̃T

j are
disjoint.

Definition 3. Let Zi be defined as in the proof of Lemma 7. For coupon i, let
us call a time step t i-bad if (1) dt ∈ B̃t

i and rt /∈ Zi, or (2) dt /∈ B̃t
i and rt ∈ B̃t

i.
Otherwise the time step is called i-good. A coupon i is called good if there is no
time step t which is i-bad.
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If a coupon i is good, then Bt
i = B̃t

i for all time steps 0 ≤ t ≤ T . Our goal is
to calculate a lower bound on the probability that a not too small proportion
of the coupons in I of the previous lemma are good. The proof of the following
lemma is omitted due to space limitations. Lemma 8 also completes the proof of
Lemma 4 (and thereby Theorem 2).

Lemma 8. Consider a set C′ with the properties as defined in Lemma 7. Then
with probability at least 1 − exp(−n8/9) there is a subset C′′ ⊆ C′, |C′′| = n8/9,
such that every coupon in C′′ is good. ��

3 The Clairvoyant Model

In this section we consider the most powerful model in which all random choices
are revealed to the player in advance. To prove Theorem 3, we first consider
the time for CC[1]. We show that for any random sequence (r1, . . . , rn−1) there
exists a deterministic strategy (d1, . . . , dn−1) such that there is some box b having
all coupons. Let R =

⋃n−1
i=1 {ri} be the set of boxes appearing in the random

sequence and r = |R|. For the algorithm we also define R′ = {(ri, i) | 1 ≤ i <
n; ri ∈ R; ri /∈ {ri+1, . . . , rn−1}} to be the set of tuples (ri, i) such that step i is
the last step in which box ri is chosen randomly. The box b is chosen arbitrarily
s.t. b /∈ R. Recall that B = {1, . . . , n} denotes the set of all boxes. Denote by
U = B \ (R∪ {b}) the set of remaining boxes, and let (u1, u2, . . . , un−1−r) be an
arbitrary ordering of U . The algorithm may be found in Fig. 1.

Lemma 9. In the clairvoyant model, Algorithm III solves CC[1] in n− 1 steps.

Proof. The Algorithm III (Fig. 1) works as follows. In a step i in which ri ∈ R′

(the box appears for the last time in the random sequence) all coupons that are
in ri are copied into box b. In all other steps we chose a box for di which is never
chosen randomly (hence it is in U) and copy its contents into box ri. Since ri is
chosen again in a later step the coupons of di will be copied into b. There are
exactly n− 1− r such steps so that every box in U can be used. This way b will
have all coupons in the end (after n− 1 steps). ��

Given Lemma 9, we can assume that after step n − 1 there is a box b that
contains all coupons. Without loss of generality we assume that all boxes except
b contain no coupons. Then Algorithm IV (Fig. 1) distributes the coupons to all
boxes in n− 1 steps.

Lemma 10. In the clairvoyant model, Algorithm III and Algorithm IV together
solve CC[∗] in 2n− 2 steps.

Proof. Algorithm IV works as follows. Whenever ri is a box which does not
contain any coupons we set di = b such that ri receives all coupons. Otherwise
ri is a box that contains all coupons. Then we set di to a box that does not
contain any coupons and di contains all coupons, too. Using this strategy the
number of boxes that do not contain all coupons decreases by 1 in every step.
Hence, after step 2n− 2 each box contains all n coupons. ��



82 P. Berenbrink et al.

4 The Adaptive Model

Again, the proof of Theorem 4 is split into two parts, one for CC[1] and one
for CC[∗]. We first consider the time for CC[1]. Algorithm V (Fig. 1) collects
all coupons in box 1. We define �i as the number of coupons which are not in
box 1 at the beginning of phase i. Define ci

1, . . . , c
i
�i

to be the coupons which are
not in box 1 at the beginning of step i. Let ti be the first step of phase i and
assume t0 = 0. Algorithm V works as follows. The algorithm has 3 log log(n) + 1
many phases. Each but the last phase is split into two halves (first and second
For-loop). The first For-loop of Phase i (0 ≤ i < 3 log log(n) − 1) is responsible
for creating roughly 2i+2 copies (in random boxes) of each coupon that is not
in box 1 at the beginning of the phase. The second half of the phase decreases
the number of coupons not in box 1 by a factor of e−4. The last phase finally
ensures that box 1 will obtain all coupons.

Lemma 11. In the adaptive model, Algorithm V solves CC[1] in O(n) steps
with high probability.

Proof. The correctness of the algorithm follows from Lemmas 12 and 13 in this
section. The running time of the algorithm is

(∑3 log log(n)−1
i=0 2i+5 · �i + n

2i+1

)
+n.

From Lemma 12 we get that �i ≤ n/24i, and we can upper-bound the sum by∑3 log log(n)−1
i=0

(
2i+5 · n

24i + n
2i+1

)
=
∑3 log log(n)−1

i=0

(
n

23i−5 + n
2i+1

)
= O(n). ��

Lemma 12. Assume that at the beginning of phase i, 0 ≤ i ≤ 3 log log(n) − 1,
all but n/24i coupons have a copy in box 1. Then all but n/24(i+1) coupons have
a copy in box 1 at the end of phase i with a probability of at least 1 − n−2.

Lemma 13. Assume that at the beginning of Phase 3 log logn all but
n/212 log log n coupons have a copy in box 1 and that every coupon not in box 1 is
in at least (logn)3 boxes. Then all coupons have a copy in box 1 by the end of
phase 3 log logn with a probability of at least 1 − n−2.

The algorithm in Figure 1 distributes the coupons from box b (we can assume
that b contains all coupons) to all other boxes.

Lemma 14. In the adaptive model, Algorithm V and Algorithm VI solve CC[∗]
in O(n), steps with high probability.

Proof. The correctness of Algorithm IV is immediate, it only remains to analyse
the runtime of the algorithm. Let us first lower bound the number of boxes that
receive all coupons within the first 8n steps. The probability that fewer than
n/2 boxes receive all coupons within the first 8n steps is at most

(
n

n/2

)
·
(

1
2

)8n ≤
(2e)n/2 ·2−8n ≤ n−2. Given that at least n/2 boxes receive all coupons in the first
8n steps, the expected time for Algorithm IV to spend in the inner while loop is
majorised by a geometric random variable with success probability 1/2. Hence,
the total runtime is majorised by the sum of n/2 geometric random variables
with success probability 1/2. Using a Chernoff bound, it follows that O(n) steps
are sufficient with high probability. ��
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5 Number of Necessary Copies

The following lemma shows that, in order to solve the coupon collecting problem,
many coupons must have at least Ω(logn) copies in different boxes. The Lemma
is general in the sense that it does not assume any of the suggested models. The
proof is omitted due to space limitations.

Theorem 7. In order to provide one vertex with all coupons, at least n− n1/c

coupons must have copies in at least log(n)/c + 2 boxes.
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4. Berenbrink, P., Czyzowicz, J., Elsässer, R., Gasieniec, L.: Efficient information
exchange in the random phone-call model (2010) (manuscript)

5. Chen, J., Pandurangan, G.: Optimal Gossip-Based Aggregate Computation. To
appear in Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA (2010)

6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Mainte-
nance. In: Proc. 6th ACM Symposium on Principles of Distributed Computing,
PODC 1987, pp. 1–12 (1987)
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Abstract. In this paper we initiate the study of proof systems where
verification of proofs proceeds by NC0 circuits. We investigate the ques-
tion which languages admit proof systems in this very restricted model.
Formulated alternatively, we ask which languages can be enumerated by
NC0 functions. Our results show that the answer to this problem is not
determined by the complexity of the language. On the one hand, we con-
struct NC0 proof systems for a variety of languages ranging from regular
to NP-complete. On the other hand, we show by combinatorial meth-
ods that even easy regular languages such as Exact-OR do not admit
NC0 proof systems. We also present a general construction of NC0 proof
systems for regular languages with strongly connected NFA’s.

1 Introduction

The notion of a proof system for a language L was introduced by Cook and
Reckhow in their seminal paper [10] as a polynomial-time computable function
f that has as its range exactly all strings of L. In this setting, pre-images of
f are considered as proofs for elements x ∈ L. Finding such a proof might be
difficult, but verifying the validity of a proof can be done efficiently. In the last
decades, proof systems were deeply studied in the field of proof complexity and
a rich body of results is known regarding the complexity of proofs for concrete
proof systems (cf. [18] for a survey).

Recently, there has been great interest in understanding the power of proof
systems that use stronger computational resources to verify proofs. In this di-
rection, Pudlák [17] studies quantum proof systems, Cook and Kraj́ıček [9] in-
troduce proof systems that may use a limited amount of non-uniformity (see
also [7, 8]), and Hirsch and Itsykson [14, 15] consider proof systems that verify
proofs with the help of randomness. In this research, the original Cook-Reckhow
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framework is generalized and exciting results are obtained about the strength
and the limitations of theorem proving with respect to these powerful models.

In this work we take the opposite approach and ask for minimal resources
that suffice to verify proofs. Our starting point is the observation that every
polynomial-time computable proof system in the Cook-Reckhow model is ef-
ficiently simulated (i.e., p-simulated) by a proof system where verification of
proofs proceeds in AC0. This immediately leads to the question whether even
less powerful computational resources are sufficient. Our investigation focuses on
NC0 circuits—Boolean circuits of constant depth over NOT gates and bounded
fan-in AND and OR gates—which constitute one of the weakest computational
models in computational complexity. In a related approach, Goldwasser et al. [12]
recently studied proof verification by NC0 circuits in the context of interactive
proof systems.

The restrictions imposed by the NC0 model are so severe that a similar result
as the mentioned one for AC0 fails drastically. NC0-computable proof systems
are functions which shrink the input by at most a constant factor. Thus every
language with an NC0 proof system is computable in nonuniform nondeterminis-
tic linear time. We therefore concentrate on the question which languages admit
NC0 proof systems, i.e., which languages can be enumerated by families of NC0

circuits.
A related line of research studies NC0-computable functions in a cryptographic

context [4, 5, 11, 13, 16]. One of the main problems in this area is to construct
pseudorandom generators which are computed by NC0 circuits [4, 5, 11, 16]. This
question asks for NC0-computable functions for which the range is hard to distin-
guish from a uniform distribution. In contrast, we are looking here at the related,
but possibly easier problem to understand which sets can appear at all as the
range of NC0-computable functions. We note that Cryan and Miltersen [11] ex-
hibit an NC0 computable function whose range is NP-complete. Thus, there are
NP-complete languages that admit an NC0-proof system.

Our results, however, indicate that the answer to the question of the existence
of such a proof system does not correlate with the computational complexity of
the target language. In our first contribution, we construct NC0 proof systems for
a variety of natural problems, including regular, NC1-complete, and P-complete
languages. In addition, we exhibit a general construction for NC0 proof systems
which works for all regular languages that are accepted by a strongly connected
NFA. Our construction directly transforms this NFA into an NC0 proof system.

Secondly, we demonstrate that there even exist regular languages which do
not admit NC0 proof systems. This implies that lower bound techniques which
are used against restricted circuit classes (cf. [19, 20]) are not directly applicable
to show lower bounds for NC0 proof systems. The proof techniques we use are
combinatorial arguments tailored towards our specific problems.

This paper is organized as follows. We start in Sect. 2 by defining the concept
of NC0 proof systems and make some initial observations. In Sect. 3 we construct
NC0 proof systems for several languages of different type. This is followed by
Sect. 4 where we develop a lower bound technique for the depths of NC circuit
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enumerations of several easy languages including Exact-OR and some threshold
functions. In Sect. 5 we generalize some of the ideas for NC0 proof systems from
Sect. 3 to obtain proof systems for large classes of regular languages. Finally, we
conclude in Sect. 6 with some discussion and future perspectives.

2 Definitions

A function f : {0, 1}∗ −→ {0, 1} is said to admit an NC0 proof system if there
exists a family of Boolean circuits (see, e.g., [19])

(
Cn

)
n≥1

satisfying the following
conditions:

1. For all n ≥ 1, Cn : {0, 1}m(n) → {0, 1}n, where m : N −→ N.
2. For all n and for all words x ∈ {0, 1}m(n), Cn(x) ∈ f−1(1).
3. For all y ∈ f−1(1)∩{0, 1}n, there is a word x ∈ {0, 1}m(n) such that Cn(x) =

y; we say that x is a proof of the word y in the pre-image of 1 under f .
4. For some constants c, d, each Cn has size nc, depth d, and is built using

AND, OR, and NOT gates of bounded (constant) fan-in.

That is, the circuit family has as its range exactly the set f−1(1).
A function f : {0, 1}∗ −→ {0, 1} is said to admit an AC0 proof system if there

exists a family of Boolean circuits f−1(1) as above, with the only difference that
this time the circuits are allowed to use unbounded fan-in AND and OR gates.
(Note that here applies the non-standard size bound: we require the circuit size
to be polynomial in the output length, not input length.)

If the circuit family is uniform, then we say that the proof system is uniform.
Here, a uniform circuit family is a family whose direct connection language, i.e., a
language describing the structure (nodes, wires, gates types) of the circuits in the
family, is decidable. If the direct connection language is decidable in polynomial
time, then the family is said to be P-uniform. If the language is decidable in
logarithmic time, then the family is said to be DLOGTIME-uniform. (For more
formal definitions, we refer the reader to [19].)

We remark that all lower bounds we will present in the sequel of this pa-
per hold even for nonuniform proof systems, while all upper bounds will yield
DLOGTIME-uniform proof systems, unless explicitly stated otherwise.

For a language L ⊆ {0, 1}∗, we say that L admits an NC0 proof system, or
that L is enumerable in NC0, if its characteristic function χL admits such a proof
system. In other words, there is an NC0 circuit family which produces as output
all the strings in L and no other strings. As before, if C(x) = y, then we view x
as a proof that y ∈ L.

Since the circuit must always produce a string in L, we cannot construct such
proof systems if a language has “gaps”; if for some n, L∩ {0, 1}=n = ∅, then we
cannot define Cn. We therefore allow circuits that are “empty”; Cn is empty if
and only if L ∩ {0, 1}=n = ∅.

We observe that AC0 proof systems do exist for every NP-set. In fact, a more
general statement is true.
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Proposition 1 (Folklore). Every language in NP admits an AC0 proof system.
Every recursively enumerable language admits a constant-depth proof system.

As mentioned already in the introduction, Cryan and Miltersen [11] exhibit an
NP-complete language that admits even an NC0-proof system. But it is quite easy
to see that this is not the case for every NP-language. Indeed, as a consequence
of the last condition of the definition above, we see that m(n) ≤ 2dn ∈ O(n)
and the circuits Cn are also of size O(n); each bit of the output depends on
O(1) bits of the input proof. Thus if L has NC0 proof systems, then strings in
L have linear-sized proofs that are locally verifiable. This leads to the following
observation, which will be considerably strengthened in Sect. 4.

Proposition 2. There are non-trivial languages in NP that do not admit any
DLOGTIME-uniform NC0 proof system.

3 Languages with NC0 Proof Systems

In this section, we construct NC0 proof systems for a variety of languages.
We start with an NC1-complete language that admits an NC0 proof system.

The word problem for a finite monoid M with identity e is (membership in) the
language: {〈m1,m2, . . . ,mn〉 ∈ M∗ :

∏n
i=1 mi = e}. We assume here that for

some constant c depending only on M , each element of M is described by a bit
string of exactly c bits.

Proposition 3. The word problem for finite groups admits an NC0 proof system.

Proof. We describe the circuit Cn : {0, 1}cn−c → {0, 1}cn. (Since the word prob-
lem contains only words of lengths divisible by c, we produce circuits only for
such lengths.) Given the encoding of a sequence g1, . . . , gn−1, and assuming that
g0 = gn = e, Cn produces the sequence 〈h1, . . . , hn〉 where hi = g−1

i−1gi. ��

Corollary 1. The parity function admits an NC0 proof system.

In proving Proposition 3, we used all the three group axioms: associativity, ex-
istence of an identity and existence of inverses. We can relax some of these and
still get an NC0 proof system. E.g. the OR operation is associative and has an
identity, but all elements do not have an inverse. Yet we show that the language
LOR = {w = w1 . . . wn ∈ {0, 1}∗ :

∨n
i=1 wi = 1} has an NC0 proof system.

Proposition 4. The language LOR admits an NC0 proof system.

Proof. (Sketch) The circuit Cn : {0, 1}2n−1 → {0, 1}n takes as input bit strings
a = a1 . . . an and b = b1 . . . bn−1, and, assuming b0 = 0, bn = 1, outputs a
sequence w = w1 . . . wn where, for 1 ≤ i ≤ n,

wi =
{

ai if (bi−1 ∨ ai) = bi

1 otherwise. ��
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We next consider another NC1-complete problem viz. reachability in bounded
width directed acyclic graphs. This example illustrates a proof system, which,
for the lack of a better description, we refer to as “input altering proofs”.

A layered graph with vertices arranged in layers from 0, 1, . . . , L with exactly
W vertices per layer (numbered from 0, . . . ,W − 1) and edges between vertices
in layer i to i+1 for i ∈ {0, . . . , L−1} is a positive instance of reachability if and
only if there is a directed path from vertex 0 at layer 0 to vertex 0 at layer L. A
description of the graph consists of a layer by layer encoding of the edges as a
bit vector. In other words it consists of a string x = x0x1 . . . xL−1 ∈ ({0, 1}W 2

)L

where the xi is indexed by j, k ∈ {0, . . . , k− 1} and xi[j, k] = 1 if and only if the
j-th vertex on the i-th layer and the k-th vertex on the (i + 1)-th layer share
an edge. The language LBWDR consists of those strings x ∈ ({0, 1}W 2

)L which
describe a positive instance of reachability, for some W ∈ O(1). Then we have:

Proposition 5. LBWDR admits an NC0 proof system.

Proof. (Sketch) The proof encodes the graph G and a path P . The circuit out-
puts the union of the edges in G and in P . ��

The same idea can be used for addition and comparison. Consider the function
f+ : {0, 1}n×{0, 1}n×{0, 1}n+1 → {0, 1} such that f+(a, b, s) = 1 if and only if
A + B = S where a, b are the n-bit binary representations of the numbers A,B
and s is the (n + 1)-bit binary representation of S. Also consider the function
f≤ : {0, 1}n × {0, 1}n → {0, 1} where f≤(a, b) = 1 ⇐⇒ A ≤ B, where a, b are
the n-bit binary representations of numbers A,B.

Proposition 6. f+ and f≤ admit an NC0 proof system.

Proof. (Sketch) (f+:) The proof consists of the binary representations of A,B, S
and the sequence of carry bits generated in the addition. At any position, if the
carry bit is inconsistent with those of A,B, S, then the corresponding bits of A
and/or B are modified. (f≤:) The proof consists of four n-bit strings α, α′, γ, β,
with the intent that γ is the carry sequence for the sum of α, α′ which yields β.
Inconsistencies are locally corrected by altering α, β. ��

We now consider a P-complete language, Grid Circuit Value. An instance consists
of a planar circuit with vertices embedded in a square grid so that the circuit
wires lie only along the grid edges and are directed to go only due east or due
north. All possible wires are present. The gates can be arbitrary functions of the
two inputs and two outputs. All inputs are present on the outer face of the circuit
(i.e. on the southern and western boundaries). It is easy to see that the Grid
Circuit Value Problem is P-complete. Using the strategy of locally correcting
the input if the proof shows an inconsistency, we can show the following:

Proposition 7. The Grid Circuit Value Problem admits an NC0 proof system.

Remark 1. As mentioned earlier, Cryan and Miltersen [11] show that an NP-
complete language admits an NC0 proof system. The language is just an encoding
of 3-SAT: for each n, instances with n variables are encoded by an M = 8

(
n
3

)
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bit string, where each bit indicates whether the corresponding potential clause
is present in the instance. A proof consists of an assignment to the propositional
variables and a suggestion for a 3-CNF, which is modified by the proof system
in order to be satisfied by the given assignment.

Next, we describe some generic constructions and closures. They are easy to see,
but we state them explicitly for later use.

Lemma 1. Let w be any fixed string, and let L be any language. Then L admits
an NC0 system if and only if L · {w} does.

Lemma 2. If A,B ⊆ {0, 1}∗ admit NC0 proof systems, then so does A ∪B.

Proof. Use the proof systems CA, CB for A, B respectively, along with an extra
bit which decides whether to retain the output of CA or the output of CB . ��

Note that in the above proof, the depth of the circuit for A ∪ B is two more
than the maximum depth of the circuits for A and B. Since union is associative,
a union of k sets can be expressed as a binary tree of unions of depth &log k'.
Thus the union of k languages, each with an NC0 proof system of depth d, has
an NC0 proof system of depth d + 2&log2 k'. In particular, we get the following
nonuniform upper bounds.

Lemma 3. Let L ⊆ {0, 1}∗ have the property that there is a constant k such
that for each n, |L ∩ {0, 1}n| ≤ k. That is, at each length, at most k strings of
that length are in L. Then L admits a nonuniform NC0 proof system.

In certain cases, the complement of a language with an NC0 proof system also
has an NC0 proof system. For example:

Lemma 4. Let L ⊆ {0, 1}∗ have the property that there is a constant k such
that for each n, |L∩ {0, 1}n| ≥ 2n − k. That is, at each length, at most k strings
of that length are not in L. Then L admits a nonuniform NC0 proof system.

Proof. (Sketch) We first take the proof circuit for LOR and generalize it to
exclude a fixed string y instead of 0n. This can further be generalized to exclude
a constant k many strings from {0, 1}n giving the required circuit. ��

Theorem 1. Every language decidable in nonuniform NC0 has a nonuniform
NC0 proof system.

Proof. If the circuit C accepts a word w, then let D be the circuit extending
C, which outputs the input if C accepts and otherwise outputs w. Then D
enumerates the words accepted by C. ��

4 Lower Bounds

We now consider languages, which do not admit NC0 proof systems, some of them
even regular,. At first we focus on non-constant lower bounds for the depth
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required in order to enumerate these languages by circuits with binary gates.
Later on we take the opposite perspective and ask, given a constant depth bound
d, how large a fraction of a language can be enumerated by an NC0 proof system
of depth d. This fraction can turn out to be exponentially small. All our examples
in this section are characterized be some counting feature.

4.1 Lower Bounds on Depth

We begin with our main concrete example of a non-NC0-enumerable language.

Theorem 2. The function Exact-ORn on n bits, that evaluates to 1 if and only
if exactly one of the input bits is 1, does not admit NC0 proof systems.

Proof. (Sketch) Suppose there is such a proof system, namely an NC0-computable
function f : {0, 1}m −→ {0, 1}n. Let Ri ⊆ [m] be the proof bit positions
that have a path to the ith output bit. For each i, there is at least one set-
ting of the Ri bits that places a 1 in the ith bit of the output (producing
the output string ei). All extensions of this setting must produce ei. There-
fore |f−1(ei)| ≥ 2m−|Ri|. Let c = maxn

i=1 |Ri|; by assumption, c ∈ O(1). Then
for each i ∈ [n], |f−1(ei)| ≥ 2m−c. But the f−1(ei) partition {0, 1}m. Hence

2m =
n∑

i=1

|f−1(ei)| ≥
n∑

i=1

2m−c = n2m−c

Therefore c ≥ logn, so ∃i ∈ [n] : |Ri| ≥ logn, a contradiction. ��
Generalising this proof technique, we derive below a criterion which implies non-
constant lower bounds for the depth of an enumerating circuit family.

Theorem 3. Let L be a language and �, t : N → N functions such that for each
length n there are t(n) distinct settings to subsets of �(n) bits xi1 , . . . , xi�(n) such
that each of these partial configurations enforces a fixed value to each of the
remaining bits. Then the depth of each circuit family that enumerates L is at
least log log t(n) − log �(n).

Using this theorem, we can show that several functions are not enumerable in
constant depth.

Exact Counting. Consider the function Exact-Countn
k on n bits: it evaluates to 1

if and only if exactly k of the input bits are 1. For each length n there are exactly(
n
k

)
words in Exact-Countn

k . And whenever k bits of a word are set to value 1,
then all remaining bits are bound to take the value 0. So for Exact-Countn

k the
parameters t(n) and �(n) defined in the theorem above take the values

(
n
k

)
and

k, respectively, which yields a lower bound of

d(n) = log log
(
n

k

)
− log k ≥ log log

(
nk

kk

)
− log k = log(log n− log k)

on the depth of an enumerating circuit family. For k(n) sub-linear in n this gives
an unbounded function, so in this case Exact-Countn

k does not admit an NC0

proof system. Note that for a constant k this language is even regular.
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¬Thn
k+1 and dually Thn

n−k for sub-linear k. Let Thn
a be the function that evalu-

ates to 1, if and only if at least a of the n inputs are set to 1. The lower bounds
for these languages are derived precisely by the same argument given above for
Exact-Countn

k . So they also yield the same set of parameters.

0∗1∗ and iterations. First consider 0∗1∗, whose members consist of a (possibly
empty) block of 0’s followed by a (possibly empty) block of 1’s. The n+1 length-n
members of 0∗1∗ are in 1-1 correspondence to the members of Exact-Countn+1

1

via the NC0 mapping w1 . . . wn �−→ x1 . . . xn+1, where xi := wi−1 ⊕ wi, with
the convention that w0 := 0 and wn+1 := 1. Thus an NC0 proof system of
0∗1∗ would directly yield one for Exact-Countn+1

1 , which we have shown to be
impossible. The parameters from the theorem are �(n) = 2 (two consecutive bits
with different values or simply w1 = 1 or wn = 0) and t(n) = n+ 1. By the same
argument, for sub-linear k, the languages consisting of either exactly or up to k
alternating blocks of 0’s and 1’s do not admit NC0 proof systems.

Open problem: Majority. The Majority language consists of those words which
have at least as many 1’s as 0’s. Does Majority admit an NC0 proof system?

4.2 List Enumerations

Consider a circuit C : {0, 1}m −→ {0, 1}tn. On input x, C can be thought of as
producing a list L(x) of t strings of length n. (An alternative view is that we
allow t circuits, here merged into one, to enumerate words of length n.) We say
that C t-enumerates L or is a t-list proof system for L if

⋃
x L(x) = L. All along

what we have been considering is t = 1.
For instance, every sparse language admits a nonuniform NC0 polynomial-list

proof system, as every word can be generated by a sub-circuit with constant
output. So in particular, the regular languages Exact-Countn

k for constant k are
of this kind, though they do not have NC0 proof systems. We observe below that
any sub-language of Exact-Countn

1 enumerated by a single circuit is small, and
hence Exact-Countn

1 requires Ω(n)-lists. We will use this in Theorem 4 to prove
a lower bound for the list length of the language of all permutation matrices.

Lemma 5. Let L be a subset of Exact-Countnk that has an NC0 proof system
which is computed by a depth d circuit family. Then for each length n the set
L=n of length n members of L has at most 2k2d

elements.

Proof. This follows directly from Theorem 3, replacing t(n) by |L=n|. ��

A permutation matrix of order n is an n× n 0-1-matrix in which every row and
every column contains exactly one 1. Lemma 5 gives the following:

Theorem 4. If C is a depth d circuit that t-enumerates the set of all permuta-
tion matrices of order n, then t grows exponentially with n.

The same idea also works for proving lower bounds on the list length of enumer-
ations of matrices which encode all Hamiltonian cycles in a complete graph or
all paths from 1 to n in Kn.
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5 Proof Systems for Regular Languages

In this section, we describe some sufficient conditions under which regular lan-
guages have NC0 proof systems. The regular languages we consider may not
necessarily be over a binary alphabet, but we assume that a binary (letter-by-
letter) encoding is output.

Our first sufficient condition abstracts the strategy used to show that OR has
an NC0 proof system. This strategy exploits the fact that there is a DFA for OR,
where every useful state has a path to an “absorbing” final state.

Theorem 5. Let L be a regular language accepted by an NFA M = (Q,Σ, δ, F,
q0). Let F ′ ⊆ F denote the set of absorbing final states; that is, F ′ = {f ∈ F |
∀a ∈ Σ, δ(f, a) = f}. Suppose M satisfies the following condition:

For each q ∈ Q, if there is a path from q to some f ∈ F , then there is a
path from q to some f ′ ∈ F ′.

Then L has an NC0 proof system.

Proof. (Sketch.) The idea is to give a word x and the states of the NFA on some
accepting run of M on x. Instead of giving the entire state sequence, only the
states after every k steps are given. The NC0 circuit checks, for each “block” of
x, if the states before and after the block are consistent with x. If so, this part
of x is output as is; otherwise, it is replaced by a string of length ≤ k that takes
M from the state at the beginning of the block to an absorbing final state. ��
Observe that the OR and the Exact-OR are both star-free languages but the
complementations in the expression for OR are applied to the empty set, whereas
those in Exact-OR are applied to non-empty sets. Based on this, we formulate
and prove the following sufficient condition for a star-free regular language to
have an NC0 proof system.

Definition 1. Strict star-free expressions over an alphabet Σ are exactly the
expressions obtained as follows:

1. ε, a for each a ∈ Σ, Σ∗ = ∅̄ are strict star-free.
2. If r and s are strict star-free, so is r · s.
3. If r and s are strict star-free, so is r + s.

Theorem 6. Let r be a strict star-free expression describing a language L =
L(r). Then L admits an NC0 proof system.

Proof. (Sketch) Strict star-free expressions can be written as sums of star-free
sum-free terms. Use Theorem 5 for each such term, and finally use Lemma 2. ��
Theorem 5 essentially characterizes functions like OR. On the other hand, the
parity function, that has a NC0 proof system, cannot be recognized by any DFA
or NFA with an absorbing final state. The strategy used in constructing the
proof system for parity exploits the fact that the underlying graph of the DFA
for parity is strongly connected. In the following result, we abstract this property
and prove that strong connectivity in an NFA recogniser is indeed sufficient for
the language to admit an NC0 proof system.
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Theorem 7. Let L be accepted by NFA M = (Q,Σ, δ, F, q0). If the directed
graph underlying M is strongly connected, then L admits an NC0 proof system.

Proof. (Sketch.) We use the term “walk” to denote a path that is not necessarily
simple, and “closed walk” to denote a walk that begins and ends at the same
vertex. The idea behind the NC0 proof system we will construct here is as follows:
We take as input a sequence of blocks of symbols x1, x2, . . . , xk, each of length �
and as proof, we take the sequence of states q1, q2, . . . , qk that M reaches after
each of these blocks, on some accepting run. Now we make the circuit verify at
the end of each block whether that part of the proof is valid. If it is valid, then
we output the block as is. Otherwise, if some xi does not take M from qi−1 to
qi, then, we want to make our circuit output a string of length � that indeed
makes M go from qi−1 to qi. So we make our circuit output a string of symbols
which will first take M from qi−1 to q0, then from q0 to qi. To ensure that the
total length is indeed �, we sandwich in between a string of symbols that takes
M on a closed walk from q0 to q0. We thus need to formally prove that closed
walks of the required length always exist, and that this can be done in NC0.

Define the following set of non-negative integers:

L = { � | there is a closed walk through q0 of length exactly � }
Let g be the greatest common divisor of all the numbers in L. Though L is
infinite, it has a finite subset L′ whose gcd is g. Choose a set S ⊆ Q as follows:

S = { q ∈ Q | there is a walk from q0 to q whose length is 0 mod g }
Claim. For every p ∈ Q, ∃�p, rp ∈ {0, 1, . . . , g − 1} such that

1. the length of every path from q0 to p is ≡ �p (mod g);
2. the length of every path from p to q0 is ≡ rp (mod g).

Now onwards, ∀p ∈ Q, by �p and rp we mean the numbers as defined above.

Claim. For every p ∈ S, �p = rp = 0.

Claim. There is a constant c0 such that for every K ≥ c0, there is a closed walk
through q0 of length exactly Kg.

Let K = |Q|. Now set t = )K−1
g * and � = t · g. Then for every p ∈ S, there

is a path from q0 to p of length t′g on word α(p), and a path from p to q0 of
length t′′g on word β(p), where 0 ≤ t′, t′′ ≤ t. (α(p) and β(p) are not necessarily
unique. We can arbitrarily pick any such string.)

If for all accepting states f ∈ F , �f �≡ n (mod g), then L=n = ∅, and the
circuit Cn is empty. Otherwise, let r = n (mod g). There is at least one final
state f such that �f ≡ r (mod g). Thus there is at least one string of length
t′g + r, with 0 ≤ t′ ≤ t, that takes M from q0 to f . Putting these facts together,
we can construct a proof that can be corrected in NC0. ��
Corollary 2. For every p prime, the language MODp={ x | |x|1 ≡ 1 mod p }
admits an NC0 proof system.

All the proof systems for regular languages in Section 3 are obtained by applying
one of Theorems 5, 6, 7, in conjunction with a generic closure property.
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6 Conclusion

In this paper we initiated a systematic study of the power of NC0 proof systems.
We obtained a number of upper and lower bounds, some for specific languages,
some more generic. The main open question that arises from our investigation
is a combinatorial characterization of all languages that admit NC0 proof sys-
tems. Our generic results from Sect. 5 can be seen as a first step towards such
a characterization for regular languages. We believe that further progress essen-
tially depends on strengthening our lower bound techniques. In particular, we
ask whether Majority admits an NC0 proof system.

Agrawal’s results on constant-depth isomorphisms [1] provide a possible tool
to approach our main question: if we have an NC0 isomorphism between two
languages A and B, and B admits an NC0 proof system, then so does A. The
proofs for A are taken to be the proofs for B, then we simulate the proof system
for B, and to the obtained word in B we apply the inverse of the reduction and
enumerate an element from A.

In fact, our work seems to bear further interesting connections to recent exam-
inations on isomorphism of complete sets for the class NP. This work was started
in the nineties in a paper by Agrawal et al. [3] where it was shown that (1) every
language complete for NP under AC0 reductions is in fact already complete under
(non-uniform) NC0 reductions (this is called “gap theorem” in [3]), and (2) that
all languages complete for NP under AC0 reductions are (non-uniformly) AC0

isomorphic (that is, the reduction is an AC0 bijection). This was later improved
to uniform AC0 isomorphisms [1]. It follows from a result in [2] that this cannot
be improved to P-uniform NC0 isomorphisms. Using our results on proof systems,
we obtain a very simple direct proof:

Proposition 8. There are sets A and B that are NP-complete under NC0 re-
ductions but not NC0 isomorphic.

Proof. Let A be the NP-complete set from [11] that admits an NC0 proof system,
cf. Rem. 1. A is NP-complete under AC0-reductions, hence by the gap theorem,
under NC0-reductions.

Let B be the disjoint union of A and Exact-OR from Sect. 4. Then B is
complete for NP under NC0 reductions because A reduces to B in NC0.

If now A and B are NC0-isomorphic, then we obtain an NC0 proof system for
B and from this, an NC0 proof system for Exact-OR, a contradiction. ��

Motivated by their investigation into NC0 cryptography [4, 5], Applebaum et
al. [6] investigate cryptography with constant input locality. As a related question
we ask which languages can be proven by circuits that have the property that
every input bit influences only constantly many output bits.

Acknowledgments. We thank Sebastian Müller (Prague) for interesting and
helpful discussions on the topic of this paper.
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Abstract. The cover polynomials are bivariate graph polynomials that can be de-
fined as weighted sums over all path-cycle covers of a graph. In [3], a dichotomy
result for the cover polynomials was proven, establishing that their evaluation is
#P-hard everywhere but at a finite set of points, where evaluation is in FP. In
this paper, we show that almost the same dichotomy holds when restricting the
evaluation to planar graphs. We even provide hardness results for planar DAGs of
bounded degree. For particular subclasses of planar graphs of bounded degree and
for variants thereof, we also provide algorithms that allow for polynomial-time
evaluation of the cover polynomials at certain new points by utilizing Valiant’s
holographic framework.

1 Introduction

Graph polynomials map directed or undirected graphs to polynomials in one or more
variables, such that isomorphic graphs are mapped to the same polynomial. Probably
the most famous graph polynomials are the chromatic polynomial and its generaliza-
tion, the Tutte polynomial. By substituting values for the indeterminates, we can view
graph polynomials as parameterized graph invariants. For instance, the chromatic poly-
nomial χ evaluated at a natural number k ∈ IN counts the number of proper k-colorings
of a graph. Its bivariate generalization, the Tutte polynomialT , has many interpretations
from different fields of combinatorics. For example, T (G; 1, 1) is the number of span-
ning trees of a graph G, T (G; 1, 2) is the number of spanning subgraphs, T (G; 2, 0) is
the number of acyclic orientations of G and so on, see [18] for an overview.

While the Tutte polynomial has been established for undirected graphs, the cover
polynomial by Chung and Graham [9] and its geometric variant by D’Antona and Mu-
narini [11] are analogues for the directed case. Both graph polynomials satisfy similar
identities such as a contraction-deletion identity and a product rule. The cover polyno-
mial has connections to rook polynomials and drop polynomials and it “interpolates”
between the permanent and the determinant of a graph. Like many other graph polyno-
mials, the cover polynomial is of interest because it combines a variety of combinatorial
properties of a graph into one unifying framework.

1.1 Previous Results

For the chromatic polynomial χ, Linial [16] showed that the evaluation is #P-hard ex-
cept for the points 0, 1, and 2, at which the evaluation is in FP. Jaeger, Vertigan, and

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 96–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Welsh [15] generalized this by proving that the Tutte polynomial is #P-hard except
along one hyperbola and at nine special points. For both versions of the cover polyno-
mial, a similar dichotomy was achieved [3]: Evaluating the cover polynomial is #P-
hard except for three and two points, respectively, where the problem is computable in
polynomial time. Makowsky and Lotz [17] proved that the coloured Tutte polynomial
by Bollobás and Riordan [7] is complete for Valiant’s algebraic complexity class VNP,
and Goldberg and Jerrum [12] showed that the Tutte polynomial is inapproximable in
large regions of the plane, see [4] for a similar result for the cover polynomial. For
other graph polynomials, similar results have been achieved in the recent years, see e.g.
[1,5,6,14]. Makowsky [18] conjectures that this is a general phenomenon, i.e., that ev-
ery polynomial that is definable in monadic second order logic is #P-hard to evaluate
almost everwhere, provided it has at least one hard point. Even stronger, he conjectures
that the evaluation at any point can be reduced to the evaluation at (almost) any other
point. Many of the graph polynomials studied in the literature are definable in monadic
second order logic and satisfy this conjectured property.

On the positive side, the Tutte and the cover polynomials can be computed in time
exponential in the number of vertices for general graphs [2] and in linear time for graphs
of bounded tree-width [10].

It is an interesting question whether the problem becomes easier for restricted graph
classes, e.g., planar graphs. Vertigan [20] has obtained a dichotomy for the Tutte poly-
nomial for planar graphs and Goldberg and Jerrum [13] obtain some inapproximability
results similar to the ones in [12]. The matching polynomials are the only other graph
polynomials for which we are aware of hardness results for planar graphs, see e.g. [21].

1.2 Our Results

In this paper, we consider the complexity of evaluating the cover polynomial for planar
graphs. We show that the cover polynomial is #P-hard to evaluate almost everywhere
for planar graphs of bounded degree.1 For the geometric cover polynomial, we obtain
the same dichotomy as in [3] for general graphs. For the factorial cover polynomial, only
the points (n,−1) with n ∈ IN\{0, 1} remain unclassified. For the ease of presentation,
we present all our results over Q.

We complement the hardness results by providing positive results for slightly more
restricted graph classes via holographic algorithms. As these graphs can have unbounded
tree-width, the results of [10] do not apply. Our results are almost as tight as possible.
More precisely, we show that evaluating the cover polynomials is #P-hard almost ev-
erywhere for planar graphs with maximum indegree 2 and maximum outdegree 3. We
call such graphs 3-nice.

On the other hand, we show that some of the hard points for 3-nice graphs are easy
for (non-necessarily planar) graphs whose indegrees and outdegrees are bounded by 2.
For a few other points, we can only show hardness for 4-nice graphs. However, one
of them can be computed in polynomial time for graphs with outdegree 3 whose split
graph is planar (see Section 5 for a precise defintion).

1 In this paper, “#P-hardness” refers to “#P-hardness under poly-time Turing reductions”.
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The hardness results for nice graphs even hold for directed acyclic graphs (DAGs).
Furthermore, we introduce a novel horizontal reduction for the geometric cover poly-
nomial that increases the maximum degree only by 1, as opposed to the polynomial
factors incurred by the other reductions we are aware of.

Omitted proofs are given in the full version of this paper, which is available at arXiv.

1.3 The Cover Polynomials

Our results regard the factorial cover polynomial Cfac and the geometric cover polyno-
mial Cgeo, first defined in [9] and [11], respectively. To define these polynomials, we
can use the concept of path-cycle covers, as defined below:

Definition 1. Let G = (V,E) be a digraph. A set C ⊆ E is a path-cycle cover of G
if C is a vertex-disjoint union of directed paths and cycles such that every v ∈ V is
contained in a path or cycle.2 We denote the set of all path-cycle covers of G by PC[G].

For C ∈ PC[G], the numbers of paths and cycles of C are denoted by ρ(C) and
σ(C), respectively. C is a cycle cover if ρ(C) = 0, and a path cover if σ(C) = 0. C[G]
and P [G] denote the sets of cycle covers and path covers of G, respectively.

The cover polynomials of a graph can be defined as weighted sums over its path-cycle
covers, each such cover being weighted by a bivariate monomial. In the following, we
denote the falling factorial by xk := (x)(x − 1) . . . (x− k + 1).

Definition 2. Given a digraph G, define Cfac and Cgeo as follows:

Cfac(G;x, y) :=
∑

C∈PC[G]

xρ(C)yσ(C) Cgeo(G;x, y) :=
∑

C∈PC[G]

xρ(C)yσ(C).

On the y-axis, Cfac and Cgeo coincide, since 0ρ(C) = 0ρ(C) holds. We facilitate notation
by writing C(G; 0, y) := Cfac(G; 0, y) = Cgeo(G; 0, y).

Remark 1. Let cG(i, j) denote the number of path-cycle covers C ∈ PC[G] that satisfy
ρ(C) = i and σ(C) = j. With this notation, we can write:

Cfac(G;x, y) =
n∑

i=0

n∑
j=0

cG(i, j)xiyj Cgeo(G;x, y) =
n∑

i=0

n∑
j=0

cG(i, j)xiyj .

This implies that, for any digraph G with adjacency matrix A, we have the identities
Cfac(G; 1, 0) = #HamPaths(G) and C(G; 0, 1) = perm(A). We define the counting
problems Cfac(x, y) and Cgeo(x, y), each mapping an input digraph G to the value
Cfac(G;x, y) or Cgeo(G;x, y), respectively.3 Furthermore, we use the symbol C to

2 Trivial paths (consisting of a single isolated vertex) are permitted in this definition.
3 The symbols Cfac and Cgeo may either refer to the graph polynomials or to the associated

counting problems. We adopt the following standard notational conventions:

– Cfac(G) is the factorial cover polynomial of G.
– Cfac(G; x, y) is the value of Cfac(G), evaluated at the point (x, y).
– Cfac(x, y) is the weighted counting problem of computing Cfac(G; x, y) on input G.
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make statements about both Cfac and Cgeo: For example, when writing that C(x, y) is
#P-hard, we intend to express that both Cfac(x, y) and Cgeo(x, y) are #P-hard.

A dichotomy result for the complexity of both polynomials for general digraphs
has already been established in [3], where Cfac and Cgeo are shown to be #P-hard
everywhere except for the evaluations C(0, 0), C(0,−1) and Cfac(1,−1), which are
proven to be in FP. However, the constructions given in [3] are inherently non-planar
and increase the maximum degree of graphs by a polynomial factor.

In the present paper, the dichotomy result for Cgeo given in [3] is shown to hold also
when the input graphs are required to be planar. Furthermore, we prove that Cgeo is
#P-hard for planar graphs of bounded degree at all points that are not on the y-axis.
For Cfac, we obtain similar, but slightly weaker results. Our results are summarized in
two theorems, establishing hardness for planar graphs of unbounded degree first:

Theorem 1. Let x, y ∈ Q. If y /∈ {−1, 0}, then C(0, y) is #P-hard for planar graphs.
If (x, y) �= (0, 0) and y �= −1, then Cfac(x, y) is #P-hard for planar graphs.

In the next theorem, we consider more restricted graphs: We call a planar graph G
k-nice if all of its vertices feature indegree ≤ 2 and outdegree ≤ k. (The sum of all
indegrees and the sum of all outdegrees is of course the same.) Throughout this paper,
we denote by F := {−3,−2,−1, 0} the set of “bad” x-coordinates.

Theorem 2. Let x, y ∈ Q. For x /∈ IN0, Cfac(x, y) is #P-hard for 3-nice DAGs.
If x �= 0, Cgeo(x, y) is #P-hard for 4-nice DAGs.
If x /∈ F , Cgeo(x, y) is #P-hard even for 3-nice DAGs.

For Cgeo, the only points not covered by either of the two theorems are (0, 0) and
(0,−1). For Cfac, only the points (0, 0) and (n,−1) for n ∈ IN0 remain uncovered.
Recall that the problems C(0, 0), C(0,−1) and Cfac(1,−1) are all in FP.

yy

x x
0

-1

1

1 2-10

-1

1

1 2-1

Cfac Cgeo

Thm. 2 in FPThm. 1 unknown

. . .

Fig. 1. Plots of the hardness results for the cover polynomials Cfac and Cgeo on planar graphs.
Every point is annotated with the strongest theorem that proves its hardness.
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1.4 Matching Polynomials

Several results in this paper require #P-hardness of two matching-related graph poly-
nomials for planar graphs. The hardness results we use are proven in [8] and [21] using
Valiant’s holographic framework [19].

Definition 3. Let G = (V,E) be an undirected graph. Denote by M[G] the set of all
matchings of G. For M ∈ M[G], let usat(M) denote the set of unmatched vertices in
M . Define the univariate graph polynomial Match(G) as follows:

Match(G;x) =
∑

M∈M[G]

x|usat(M)|

Let G = (L ∪ R,E) be an undirected bipartite graph. For M ∈ M[G], let usatR(M)
denote the set of unmatched R-vertices in M . Define RMatch(G) as follows:

RMatch(G;x) =
∑

M∈M[G]

x|usatR(M)|

For bipartite graphs, there is a simple connection between Match and RMatch.

Lemma 1. For every bipartite undirected graph G = (L ∪R,E), it holds that

Match(G;x) = x|L|−|R|RMatch(G;x2)

Proof. Follows easily from the observation that, for every M ∈ M[G], we have the
identity |usat(M)| = |L| − |R| + 2 · |usatR(M)|. ��

We collect hardness results about Match and RMatch in the next lemma:

Lemma 2. For planar 3-regular graphs, Match(λ) is #P-hard at all λ ∈ C\{0}. For
planar bipartite (2, 3)-regular graphs, RMatch(λ) is #P-hard at all λ ∈ Q \ F .

Proof. The first claim follows from a subclaim in [8, Proof of Thm. 6.1]. The second
claim can be derived from [21], where RMatch is named #BP−λMatchings. ��

2 Horizontal Reductions

2.1 A Horizontal Reduction for Cfac

For a digraph G, let G(k) denote the graph obtained from G by adding k isolated ver-
tices. It was observed in [9] that Cfac(G(k);x, y) = xkCfac(G;x − k, y). This yields:

Lemma 3. Let x, y ∈ Q. If x ∈ Q \ IN0, we have Cfac(x′, y) ≤T
p Cfac(x, y) for all

x′ ∈ Q. If x ∈ IN0, we have Cfac(x′, y) ≤p Cfac(x, y) for all x′ ∈ IN0 with x′ ≤ x.

Note that adding isolated vertices preserves planarity and does not increase the maxi-
mum degree of a graph. Furthermore, given oracle access to Cfac(x, y) for x ∈ Q\ IN0,
we can actually interpolate the whole polynomial Cfac(G; ·, y).
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2.2 A New Horizontal Reduction for Cgeo

A horizontal reduction for Cgeo is given in [3]. The graph transformation used in this
reduction increases the maximum degree by a polynomial factor and transforms simple
graphs to multigraphs. We introduce a more conservative transformation:

Definition 4. Let l ∈ IN0. Denote by Ql = (V,E) the graph with V = {q1 . . . ql} and

E = {(qi, qi+1) | 1 ≤ i < l ∧ i odd} ∪ {(qi+1, qi) | 1 ≤ i < l ∧ i even}

Let G be a digraph. Denote by G∗l the graph obtained from G by attaching to each
v ∈ V (G) a fresh copy of Ql, identifying the vertices v and q1. We call the copy of Ql

at v the alternating path rooted at v and denote it by Qv.

Note that for all l ∈ IN0, the graph G∗l is (k + 1)-nice if G is k-nice. The construction
given in Def. 4 yields the following horizontal reduction for Cgeo:

Lemma 4. For all x, x′, y ∈ Q with x < 0 and x �= −4, Cgeo(x′, y) ≤T
p Cgeo(x, y).

Proof. The set PC[G∗l] admits a partition into classes ED, for D ∈ PC[G], that are
defined as follows: C ∈ ED ⇔ C[V (G)] = D. Every C ∈ ED can be written as
C = D ∪A, where D is the “inner” cover and A is a cover of the alternating paths.

Using this partition, we can rewrite Cgeo(G∗l;x, y) as a sum over D ∈ PC[G], where
each D is weighted by an expression ED that depends only on ED:

Cgeo(G∗l;x, y) =
∑

D∈PC[G]

∑
C∈ED

xρ(C)yσ(C)

︸ ︷︷ ︸
=:ED

To compute ED , we examine all valid covers of the alternating paths of G∗l that extend
D to some C ∈ ED . Let DI be the set of vertices with outdegree 1 in D, and DO be the
set of vertices with outdegree 0 in D. Note that |DO| = ρ(C), since every path in D
has a unique vertex of outdegree 0. Since alternating paths rooted at different vertices
can be covered independently of each other, it suffices to consider the possibilities to
cover Qv separately for each v ∈ V (G), distinguishing between v ∈ DI and v ∈ DO.

For v ∈ DI , the first edge of Qv must not be present in any C ∈ ED. For v ∈ DO,
the first edge of Qv may or may not be present in any C ∈ ED. Defining

Tl :=
∑

C∈PC[Ql], (q1,q2)/∈C

xρ(C) and Pl :=
∑

C∈PC[Ql], (q1,q2)∈C

xρ(C),

it can be shown that

Cgeo(G∗l;x, y) =
(

1
x
Tl

)n

· Cgeo

(
G;x

(
1 +

Pl

Tl

)
, y

)
In the full version, we prove that, for x < 0 with x �= −4, we have Tl �= 0 and
Pl

Tl
is strictly monotonically increasing in l. Thus, Cgeo(G∗1;x, y), . . . , Cgeo(G∗n;x, y)

are the values of n different points of Cgeo(G; ·, y). This allows us to interpolate the
polynomial Cgeo(G; ·, y), proving Cgeo(x′, y) ≤T

p Cgeo(x, y) for all x′ ∈ Q. ��
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3 Proof of Thm. 1

3.1 A Previous Approach

To understand a previous hardness result from [3], a generalization of the cover poly-
nomial, the so-called weighted cover polynomial, is needed:

Definition 5. Given an edge-weighted digraph G = (V,E,w), the weight of a cycle
cover C ∈ C[G] is defined as w(C) =

∏
e∈C w(e). Building upon this, the weighted

cover polynomial Cw is then defined as Cw(G; 0, y) =
∑

C∈C[G] w(C)yσ(C).

Obviously, we have C(0, y) ≤par Cw(0, y). On the other hand, if restricted to graphs
with a constant number of different weights, Cw(0, y) ≤T

p C(0, y) also holds, as proven
via polynomial interpolation and thickening of edges in [3].

In [3], hardness of the problem Cw(0, y) for y /∈ {−1, 0} is shown via vertical
reductions that use equality gadgets. An equality gadget E is a weighted digraph with
four special nodes u, v and u′, v′, as shown in Fig. 2. Given a graph G with edges
e = {a, b} and e′ = {a′, b′}, these edges can be replaced by a local copy of E by
identifying a, b, a′, b′ with u, v, u′, v′ each. This yields a new graph Ge=e′ , in which e
and e′ correspond to the paths highlighted in Fig. 2.

An important observation made in [3] is that in every C ∈ C[Ge=e′ ], the equality
gadget either is in one of the good states shown in Fig. 2 or C has a partner C− with
w(C) = −w(C−). This enforces that cycle covers that include only one of the high-
lighted paths corresponding to e or e′ cancel in the weighted cover polynomial. This
result will be stated more precisely later.

The hardness proof in [3] is then continued by observing #P-hardness of C(0, 1)
and proving C(0, 1) ≤T

p C(0, y) via vertical reductions (using equality gadgets). This
fails on the class of planar graphs since the vertical reductions do not preserve planarity.

3.2 Reducing Match to C(0, y)

In contrast to the method sketched before, our approach relies on the #P-hardness of
Match(λ) for planar graphs at all λ ∈ C \ {0}. We construct a planarity-preserving

u

v

u'

v'

− 1

u u'

v v'

u u'

v v'

GOOD1 GOOD2

−1

GOOD3

u u'

v v'

Fig. 2. (left) The equality gadget from [3]. The thick lines represent the paths that replace edges.
(right) The good states of the equality gadget.
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graph transformation T together with polynomial-time computable functions f and g
such that for all graphs G with n vertices and m edges, we have

Cw(T (G); 0, y) = g(y,m, n) · Match(G; f(y)).

Hardness of Match(λ) for planar graphs at all λ ∈ C \ {0} then allows us to con-
clude hardness of C(0, y) on planar graphs, provided that y satisfies f(y) �= 0 and that
g(y,m, n) �= 0. These conditions will be fulfilled for all y /∈ {−1, 0}.

Our construction consists of two graph transformations, namely G′ and T (G), of
which G′ can be considered as an intermediate step towards T (G):

Definition 6. Let G = (V,E) be an undirected graph. The digraph G′ = (V,E′)
is defined by attaching a self-loop to each v ∈ V and replacing every e ∈ E with
e = {u, v} by the edge pair →e = (u, v) and ←e = (v, u).

The graph T (G) is obtained from G′ by connecting every edge pair ←e ,→e to a fresh
copy of the equality gadget from Fig. 2.

Both G′ and T (G) are planar if G is planar, since the transformations only add self-
loops and perform local replacements of edges by planar gadgets.

We aim at isolating a particular set of cycle covers of G′, namely that of consistent
cycle covers Ccons[G′] ⊆ C[G′], as defined below. Consistent cycle covers are useful,
since there is a bijection between Ccons[G′] and M[G], as proven in Lemma 5.

Definition 7. Let G = (V,E) be undirected. We call C ∈ C[G′] consistent and write
C ∈ Ccons[G′] iff for all edge pairs ←e ,→e ∈ E(G′), we have ←e ∈ C ⇔ →e ∈ C.

In the next lemma, we construct a bijection B that translates matchings M ∈ M[G] to
consistent cycle covers B(M) ∈ Ccons[G′], and furthermore respects the structure of
M in that σ(B(M)) = |usat(M)| + |M |.

Lemma 5. Let G be an undirected graph. Define B : M[G] → Ccons[G′] as follows:
Given M ∈ M[G], attach a self-loop to every v ∈ usat(M) and replace every e ∈ M
by the edge pair ←e ,→e to obtain B(M). B is bijective and satisfies

∀M ∈ M[G] : σ(B(M)) = |M | + |usat(M)|. (1)

Next, we analyze the equality gadget to show a relation between Ccons[G′] and C[T (G)].
Similarly to the restriction of C[G′] to consistent cycle covers, we now restrict C[T (G)]
to the subset of so-called “good” cycle covers, which can be related to Ccons[G′].

Definition 8. Let H be a digraph containing an equality gadget E as an induced sub-
graph and let C ∈ C[H ]. We say that E is in a good state if C[E] is one of the graphs
GOOD1, GOOD2 or GOOD3 in Fig. 2. If all equality gadgets of C are in good states, we
call C good. The set of good cycle covers is denoted by Cgood[H ].

As shown in [3, Lemma 5], equality gadgets ensure that the contributions of “bad” cycle
covers cancel out in Cw. More precisely, their result states:

Cw(T (G); 0, y) =
∑

C∈C[T (G)]

w(C)yσ(C) =
∑

C∈Cgood [T (G)]

w(C)yσ(C). (2)
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Consider some C ∈ Cgood[T (G)]: For every edge pair ←e,→e , the corresponding equality
gadget is in a good state and thus enforces that either both ←e ,→e ∈ C (state GOOD3) or
both ←e ,→e /∈ C (states GOOD2 and GOOD3).4 This allows us to relate good cycle covers
in T (G) to consistent cycle covers in G′, and thus finally to matchings in G:

Definition 9. Let G be an undirected graph, let C ∈ Cgood[T (G)] and C′ ∈ Ccons[G′].
We say that C originates from C′ if C can be obtained from C′ as follows:

1. Start with C′.
2. For every edge pair ←e,→e in G′:

(a) If both ←e,→e ∈ C′, connect them by an equality gadget in state GOOD3.
(b) If both ←e,→e /∈ C′, connect them by an eq. gadget in GOOD1 or GOOD2.

Let M ∈ M[G]. We say that C originates from M if C originates from B(M).

The set Cgood[T (G)] can be partitioned into classes O[M ], for M ∈ M[G], such that
C ∈ O[M ] iff C originates from M : Given any good C, the M it originates from is
uniquely determined by the equality gadgets in state GOOD3. In Lemma 6, we explic-
itly compute the contribution of each such matching M to Cw(T (G)), thus rewriting
Cw(T (G)) in terms of Match(G). The proof can be found in the full version.

Lemma 6. For every graph G with n vertices and m edges, and every y ∈ Q:

Cw(T (G); 0, y) = g(y,m, n) · Match(G; f(y)) (3)

with g(y,m, n) = (−1)
n
2 y

n
2 +5m

(
1 + 1

y

)m−n
2

and f(y) =
√
−(y + 1).

Using Lemma 6, we are now finally able to complete the proof of Thm. 1:

Proof (of Theorem 1). Under the condition that g(y,m, n) �= 0, we can use (3) to
compute Match(G; f(y)) from Cw(T (G); 0, y). Thus, for y /∈ {−1, 0}, we get:

Match(f(y)) ≤p Cw(0, y) ≤T
p C(0, y),

where the last reduction follows from interpolation and edge thickening.
From Lemma 2, we know that Match(f(y)) is #P-hard on planar graphs at all

complex f(y) �= 0, which is equivalent to y �= −1. Since T preserves planarity, we
conclude that C(0, y) is also #P-hard for planar graphs, provided that the reduction
chain works (which it does for y /∈ {−1, 0}) and that Match(f(y)) is #P-hard (which
it is for y �= −1). Thus C(0, y) is #P-hard for planar graphs at all y /∈ {−1, 0}.

With Lemma 3, this result can be stretched along horizontal lines, yielding #P-
hardness of Cfac(x, y) at all x, y ∈ Q with y /∈ {−1, 0}. Finally, hardness of Cfac(x, 0)
for x �= 0 can be obtained with the horizontal reduction from Lemma 3, observing that
Cfac(G; 1, 0) = #HamPaths(G), which is #P-hard for planar graphs. ��

4 To avoid awkward notation, we denote by ←e , →e the highlighted paths in Fig. 2 that represent
the edges ←e , →e in the equality gadget.
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4 Proof of Thm. 2

In this section, we show Thm. 2, which claims that Cgeo(x, y) is #P-hard at x, y ∈ Q
with x �= 0 for 4-nice DAGs, and even #P-hard for 3-nice DAGs if x /∈ F . Concerning
Cfac, it is claimed that for x /∈ IN0, Cfac(x, y) is #P-hard for 3-nice DAGs.

Since every DAG D is acyclic, every C ∈ PC[D] is a path cover, yielding the fol-
lowing identity, which naturally also holds for Cfac when adapted accordingly:

Cgeo(D;x, y) =
∑

C∈PC[D]

xρ(C)yσ(C) =
∑

C∈P[D]

xρ(C). (4)

Thus, Thm. 2 shows that in fact already a weighted sum over path covers is #P-hard,
i.e., allowing cycles in the covers does not change the complexity of Cgeo(x, y).

We first prove a modified (and slightly weaker) version of Thm. 2:

Lemma 7. For x, y ∈ Q, x /∈ F , Cgeo(x, y) is #P-hard for 3-nice DAGs.

Proof. We aim at reducing RMatch(x) ≤p Cgeo(x, y). The former is #P-hard for
(2, 3)-regular bipartite planar graphs at x /∈ F , as stated in Lemma 2.

We start with a (2, 3)-regular planar bipartite graph G = (L ∪ R,E), orientate all
edges from L to R and call the resulting 3-nice DAG �G. By the general observation
made in (4), we obtain Cgeo(�G;x, y) =

∑
C∈P[�G] x

ρ(C).

We first prove that M[G] ∼ P [�G]: Let f : M[G] → P [�G] be the function that
directs the edges in every M ∈ M[G] from L to R. This function clearly is injective.
It is also surjective: Since �G is obtained by orienting all edges in G from L to R, each
path in �G has maximum length 1. Thus, every path cover C ∈ P [�G] is a vertex-disjoint
union of paths of maximum length 1, which in turn implies that C = f(M) for the
matching M obtained from C by ignoring all edge orientations.

Let M , C be such that f(M) = C. Obviously, we have ρ(C) = |M | + |usat(M)|,
which implies ρ(C) = n

2 + |usat(M)|
2 . This allows us to write

Cgeo(�G;x, y) =
∑

C∈P[�G]

xρ(C) =
√
x

n ∑
M∈M[G]

√
x
|usat(M)| =

√
x

n · Match(G;
√
x).

Next, we apply Lemma 1 to obtain the identity

Cgeo(�G;x, y) =
√
x

n · Match(G;
√
x) =

√
x

n ·
√
x
|L|−|R|︸ ︷︷ ︸

=x|L|

·RMatch(G;x). (5)

Note that (5) also holds for x < 0: As it holds for all x ≥ 0, it equates the polynomials
Cgeo(�G;x, y) and x|L| · RMatch(G;x) at infinitely many (and thus at all) points. ��

In Lemma 7, we cannot give hardness results for the set F on which RMatch is not
shown to be #P-hard. However, horizontal reductions allow us to stretch the hardness
results to points with x-coordinates from F :

Corollary 1. For x, y ∈ Q with x �= 0, Cgeo(x, y) is #P-hard for 4-nice DAGs. For
x, y ∈ Q with x /∈ IN0, Cfac(x, y) is #P-hard for 3-nice DAGs.
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5 Positive Results

In this section, we approach the hardness results from the opposite side by provid-
ing positive results. These results build upon a simple relation between Cgeo(G) and
RMatch(S(G)), where S(G) denotes the split graph obtained from a digraph G as
follows: Split each vertex v ∈ V (G) into the vertices vout and vin and transform each
e ∈ E(G) of the form e = (u, v) to the undirected edge {vout, vin} in E(S(G)). Note
that S(G) is bipartite. Some results are summarized in Table 1.

Lemma 8. Let G be a digraph and S(G) = (L∪R,E) be its split graph. The function
S is a bijection S : PC[G] → M[S(G)] with the property

∀C ∈ PC[G] : ρ(C) = |usatR(S(C))|. (6)

This especially implies that for all x ∈ Q, we have Cgeo(G;x, 1) = RMatch(S(G);x).

A first positive result that can be shown using Lemma 8 is the following:

Lemma 9. Let x ∈ Q and let G be a (non-necessarily planar) digraph of maximum in-
and outdegree 2. Then C(x, 1) ∈ FP.

Next, given a digraph G, we aim at computing C(G) by applying algorithms for planar
graphs to S(G). If S(G) is planar, we call G split-planar. It should be emphasized
that the class of split-planar graphs differs from that of planar graphs: The complete
digraph of order 3 (with self-loops) is planar, but not split-planar. Likewise, there exists
a split-planar orientation of K3,3. More details can be found in the full version of this
paper. It is easily checked that all hardness results proven in Thm. 2 carry over directly
to split-planar graphs. Lemma 8 yields a positive result for Cfac on split-planar graphs:

Lemma 10. Let k ∈ IN0. Then Cfac(G; k, 1) can be computed in time O(nk) for split-
planar graphs G of order n.

Finally, we use Lemma 8 together with a holographic algorithm first presented in [19]
to obtain the following positive result:

Lemma 11. Let k ∈ IN0 and let G = (V,E) be a split-planar digraph whose ver-
tices all have indegree ≤ 2 and outdegree equal to k. Then we can compute the value
Cgeo(G;−k, 1) in polynomial time.

Lemma 11 supports an alternative formulation, noted in a similar form in [19]: Let
k ∈ IN. If G = (V,E) is split-planar and all v ∈ V have indegree ≤ 2 and outdegree
equal to 0 or k+tv(k+1), for tv ∈ IN0, then we can compute Cgeo(G; 1, 1) mod (k+1)
in polynomial time. With k = 1, this implies that Cgeo(G; 1, 1) mod 2 for split-planar
G can be computed in poly-time if G has max. indegree 2 and only odd outdegrees.

Table 1. Positive results and corresponding hardness results in comparison

evaluation point is in FP if... is #P-hard if...
Cgeo(G; x, 1) at x ∈ Q in-, outdeg. of G are both ≤ 2 G 3- resp. 4-nice (Thm. 2)
Cfac(G; x, 1) at x ∈ Q (Lemma 9) G planar / 3-nice (Thm. 1, 2)
Cfac(G; k, 1) at k ∈ IN G is split-planar (Lemma 10) G planar (Thm. 1)

Cgeo(G;−3, 1)
G is split-pl. with indeg. ≤ 2
and outdeg. = 3 (Lemma 11)

G 4-nice (Thm. 2)
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Abstract. A large number of properties of a vector addition system—
for instance coverability, boundedness, or regularity—can be decided us-
ing its coverability graph, by looking for some characteristic pattern.
We propose to unify the known exponential-space upper bounds on the
complexity of such problems on vector addition systems, by seeing them
as instances of the model-checking problem for a suitable extension of
computation tree logic, which allows to check for the existence of these
patterns. This provides new insights into what constitutes a “coverability-
like” property.

Keywords: Vector Addition Systems, CTL, Coverability Properties,
Complexity.

1 Introduction

Vector addition systems (or equivalently Petri nets) are widely employed to
reason about concurrent computations. Many decidable problems for vector ad-
dition systems are known to be ExpSpace-hard thanks to a proof originally due
to Lipton [3]. Regarding complexity upper bounds, a key distinction arises be-
tween “reachability-like” problems on the one hand, for which no upper-bound
is currently known in spite of continuous research on the subject [17, 15, 16],
and “coverability-like” problems on the other hand, for which ExpSpace upper
bounds have been derived after the work of Rackoff [18]. The latter class of prob-
lems is known to encompass many questions for the analysis of vector addition
systems (prominently linear-time model-checking [10]), and related models of
concurrency [e.g. 9, 13].

We promote in this paper a characterization of “coverability-like” properties as
relying on the existence of some witness pattern in the coverability graph [14, 11]
of the system—this graph provides a finite abstraction of the system’s possible
behaviours. This stance is backed up by several results [see e.g. 20, 8, 4] that
rely on the same powerful technique: since the coverability graph is finite, the
existence of a witness can be checked, yielding the decidability of the property
at hand. As the coverability graph might have non primitive-recursive size [3],
this technique comes however at a very high price—at least at first sight.

We show in this paper that a fragment of existential computation tree logic
(ECTL) extended with Presburger constraints on paths enjoys a small model
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property when checked against runs in coverability graphs, and deduce an Ex-

pSpace complexity upper bound for properties expressed in this fragment. These
properties encompass many examples of properties testable in exponential space
we found in the literature. We further believe the resulting formulæ to be quite
natural and intuitive (they can express branching properties and the existence
of ω-markings directly), and illustrate this point with several examples.

On the technical side, the proof of this small model property is in the line
of similar results shown by Rackoff [18] for the coverability and the bounded-
ness problems, and extended by Yen [22], Atig and Habermehl [1], Demri [5] to
more complex properties. These extensions rely on rather terse, ad-hoc logical
formalisms, which are checked against the actual runs of the system—it is tempt-
ing to blame the complexity of Yen’s logical formalism for the issue found in his
proof by Atig and Habermehl. Thus a major contribution of the paper is the key
insight that what should be checked are runs in coverability graphs instead of ac-
tual runs, and that a reasonably standard logic based on CTL is perfectly usable
to this end. In more details, we define a notion of VAS coverability graphs that
will constitute the models of our logic (Sec. 2) and investigate their simulation
relations; we define an extension of CTL using Presburger constraints on paths
and atomic propositions testing for coverability (Sec. 3.1) before considering the
decidability of VAS model-checking for some of its fragments (Sec. 3.2); we then
consider a restricted fragment of eventually increasing formulæ and prove its
VAS model-checking problem to be ExpSpace-complete (Sec. 4).

Notations. Let Zω = Z�{ω} be the set of integers completed with a limit element
ω, which is larger than any finite z in Z and verifies ω+d = ω for all d in Z. When-
ever working on vectors in Zk

ω for some k, we implicitly employ component-wise
orderings. We consider throughout the paper rooted labeled transition systems
(LTS) S = 〈S,→, �, sinit〉 where, for some k ≥ 1, S is a set of states, � is a state
labeling function from S to Zk

ω , sinit is the initial state in S, and → is a labeled
transition relation included in S ×Zk × S. In our developments we ignore labels
and define the size |S| of a LTS S as the cardinality of →, and for a set of vec-
tors V ⊆ Zk

ω, ‖V‖ = maxv∈V,1≤j≤k,v(j)<ω(0, 	log2(|v(j)|) + 1
). An LTS is called
tree-shaped if any state has at most one predecessor by→, i.e. for all s, |{s′ ∈ S |
s′ → s}| ≤ 1, and path-shaped if furthermore it has at most one successor by→,
i.e. for all s, |{s′ ∈ S | s→ s′}| ≤ 1. The omitted proofs can be found in the long
version of this paper at http://hal.archives-ouvertes.fr/hal-00600077/.

2 Coverability Graphs

Let us first recall the definition of coverability graphs for vector addition systems
and how they can be used to decide various properties.

Vector Addition Systems. A k-dimensional vector addition system (k-VAS) is
a pair S = 〈V, x0〉 where V is a finite set of transitions in Zk and x0 an initial
marking in Nk [14]. Formally, we can define the reachability graph of such a

http://hal.archives-ouvertes.fr/hal-00600077/
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k-VAS as the (generally infinite) LTS R(S) = 〈Nk,→, id , x0〉 with states (also
called markings) in Nk, the identity id as state labeling function, and transitions
labels in V s.t. x

a−→ x′ iff x + a = x′ (note that it implies x + a ≥ 0). In some
proofs, we will consider generalized VAS, where x0 can be taken from Zk

ω. We
consider several parameters for VAS size, as do Rosier and Yen [19]: the size of
the binary encoding of the largest difference a vector from the transitions set
can induce ‖V‖, the cardinal of the transition relation |V|, and the dimension k.

Canonical Coverability Graph. Coverability graphs are finite abstractions of VAS
reachability graphs. In order to remain finite, they employ markings over the
complete space (N � {ω})k, noted Nk

ω. There are several possible definitions for
coverability graphs, all based on the original Karp and Miller coverability tree
construction [14]; here is one particular flavour, as found for instance in [20].

Given a LTS 〈S,→, �, sinit〉 and given some 1 ≤ j ≤ k, let us first define a
j-antecedent of a pair (s, a) in S × Zk as a state s′ satisfying

sinit →∗ s′
w−→ s ∧ �(s′) ≤ �(s) + a ∧ �(s′)(j) < (�(s) + a)(j) (1)

for some w in (Zk)∗. A j-antecedent witnesses the fact that, by repeating the
sequence of transitions wa from s′, we can obtain arbitrarily high values in coor-
dinate j—which will be represented symbolically by an ω value in the coverability
graph.

The coverability tree of a k-VAS S = 〈V, x0〉 is a tree-shaped LTS T (S) =
〈S,→, �, sinit〉 with state labels in Nk

ω and transition labels in V constructed by:

basis initially S = {sinit} with label �(sinit) = x0 and sinit is flagged as unpro-
cessed,

step for every unprocessed state s and every a in V
– if �(s) + a �≥ 0: do nothing, as a is not firable in �(s),
– otherwise, let s′ be a fresh state, update S to be S�{s′}, add a transition

s
a−→ s′, and set the label of s′ in Nk

ω to

�(s′)(j) def=

{
ω if ∃s′′ a j-antecedent of (s, a)
(�(s) + a)(j) otherwise

(2)

If there does not exist any state s′′ in S with �(s′) = �(s′′) and sinit →∗

s′′ →∗ s, flag s′ as unprocessed; s′ is otherwise a leaf of the tree.

The canonical coverability graph C(S) of a k-VAS S = 〈V, x0〉 is obtained by iden-
tifying identically-labeled states in T (S), i.e. it is the quotient C(S) = T (S)/≡
for the equivalence relation s ≡ s′ iff �(s) = �(s′) (see e.g. Fig. 1).

Examples of Coverability Properties. Coverability graphs allow to decide many
properties on a k-VAS S; for instance,

coverability given a marking x in Nk, whether a marking x′ ≥ x is reachable
in R(S)—simply check whether a state s with �(s) ≥ x is reachable in C(S);
for instance in Fig. 1 we see that 〈1, 5, 1〉 is coverable but 〈2, 1, 2〉 is not—,
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〈1, 0, 1〉

〈2, 1, 0〉 〈0, 0, 2〉

〈2, 0, 0〉 〈1, ω, 1〉

〈2, ω, 0〉 〈0, ω, 2〉

a
b

c
b a

b

c

a

b
c

b

c

a

Fig. 1. The canonical coverability graph for the VAS S = 〈{a, b, c}, 〈1, 0, 1〉〉 with
transitions a = 〈1, 1,−1〉, b = 〈−1, 0, 1〉, and c = 〈0,−1, 0〉

boundedness whether the set of reachable markings in R(S) is finite—this
occurs iff no ω value appears in the label of any state of C(S); for instance
in Fig. 1 the VAS is not bounded—,

place boundedness given a coordinate 1 ≤ j ≤ k, whether the set of values
x(j) for all reachable x in R(S) is finite—this occurs iff no ω value appears as
�(s)(j) for some state s of C(S); for instance in Fig. 1, the second coordinate
is unbounded but the other two are bounded,

language regularity whether the language, i.e. the set of labels w in V∗ of
transition sequences s0

w−→ s in R(S), is regular—this occurs if no state
s with a cycle s

a1···an−−−−→ s appears in C(S) s.t. there exists 1 ≤ j ≤ k,
�(s)(j) = ω and (

∑n
i=1 ai) (j) < 0 [20, Thm. 5]; for instance in Fig. 1 we

find one such cycle 〈1, ω, 1〉 c−→ 〈1, ω, 1〉, and indeed the language of this VAS
yields (ab)nc≤n when intersected with (ab)∗c∗, and is therefore non-regular.

All these properties are decidable in exponential space; see [18] for the first
two, and [5] for the last two. Observe that we were able to characterize each
property by the existence of some witness in the canonical coverability graph;
we shall see in Sec. 3 that we can easily express those properties in a modal
logic, and later in Sec. 4 that the exponential space upper bound applies to all
properties expressed in a fragment of this logic.

Partial Covers. In preparation of the technical developments of the following
sections, we define structures related to the coverability graph that will serve as
witnesses. The motivation is that later we will build small models for properties
by induction on the dimension, thus it will be convenient to consider partial
coverability graphs, which are “correct” only on the first j coordinates out of k.

Definition 2.1. A partial cover for a generalized k-VAS 〈V, x0〉 is an accessible
LTS 〈S,→, �, sinit〉 with transition labels in V s.t. �(sinit) = x0 and, if s a−→ s′, then
for all 1 ≤ j ≤ k, either �(s)(j) + a(j) = �(s′)(j), or �(s)(j) < ω, �(s′)(j) = ω,
and on every path sinit = s0

a1−→ · · · an−→ sn = s, there exists 0 ≤ i ≤ n s.t. si is
a j-antecedent of (s, a) (see (1)).
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Thus a partial cover does not enforce positive values on the state labels, but
guarantees transition labels to be compatible with state labels, and ω values
to be introduced only when legal, i.e. when at least one j-antecedent exists on
every path from the initial state. Partial covers can also be seen as LTS with j-
antecedency relations—in addition to the transition relation—from a state with a
newly introduced ω value to each of its j-antecedents. When constructing partial
covers we will need to preserve the existence of at least one such j-antecedent.

With the example of Fig. 1, the system reduced to the initial marking

〈1, 0, 1〉 (3)
is a partial cover, the following are two more (path-shaped) partial covers of the
same VAS:

〈1, 0, 1〉 a−→ 〈2, 1, 0〉 a−→ 〈3, 2,−1〉 (4)

〈1, 0, 1〉 a−→ 〈2, 1, 0〉 b−→ 〈1, ω, 1〉 c−→ 〈1, ω, 1〉 , (5)
and this last one is not a partial cover, as we cannot introduce an ω value at
this point:

〈1, 0, 1〉 a−→ 〈2, ω, 0〉 . (6)

Definition 2.2. Let 0 ≤ i ≤ k. A partial cover C = 〈S,→, �, sinit〉 is i-admissible
if for all 1 ≤ j ≤ i and for all s in S, 0 ≤ �(s)(j).

Note that in particular the initial marking x0 of a generalized k-VAS also needs
to satisfy x0(j) ≥ 0 for 1 ≤ j ≤ i in order for a i-admissible partial cover to
even exist. Both the canonical coverability graph and the reachability graph of
a k-VAS are k-admissible partial covers. Among the previous examples, (3) and
(5) are 3-admissible, (4) is 2-admissible but not 3-admissible. Considering our
examples of coverability properties, the LTS in (5) could be used as a witness
of coverability of 〈1, 5, 1〉, unboundedness in the second coordinate, and non
regularity of the language.

Covering Simulations. Among all the k-admissible partial covers of a k-VAS S
(Defs. 2.1 and 2.2), we find in particular its canonical coverability graph C(S).
All these k-admissible partial covers are in fact related to C(S):

Definition 2.3. Let k ≥ 1 and S1 = 〈S1,→1, �1, s1〉 and S2 = 〈S2,→2, �2, s2〉
be two LTS. A covering simulation between S1 and S2 is a relation R ⊆ S1 × S2

s.t.
1. s1 R s2,
2. if s R s′, then

(a) �1(s) ≤ �2(s′) and
(b) if s

a−→1 q for some a in Zk and q in S1 then there exists q′ in S2 with
s′

a−→2 q′ and q R q′.

We say that S2 simulates S1, noted S1 � S2, if there exists a covering simulation
R between S1 and S2.

Lemma 2.4. Let S = 〈V, x0〉 be a k-VAS and C a k-admissible partial cover of
S. Then C � C(S).
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3 CTL Logics for Coverability Graphs

We first propose a very general logic based on CTL for model-checking cover-
ability graphs (Sec. 3.1). Our purpose with this general logic is to motivate our
choice of CTL fragment for the following sections: indeed, the full logic will turn
out to be too powerful, and we will restrict ourselves to an existential fragment
with a decidable model checking problem (Sec. 3.2).

3.1 An Extension of CTL

We define an extension PrCTL≥(U) of CTL specifically designed to express
properties of VAS coverability graphs. It features

coverability constraints μ(j) ≥ c, where c is a constant in Nω, as atomic
formulæ, allowing to express that the label in the current state has value
greater or equal to c in its jth coordinate. These extend the usual coverability
constraints [see e.g. 6] by also allowing to express μ(j) = ω.

Presburger-refined temporal modalities Uψ using Presburger formulæ ψ
to constrain the allowed paths—this is similar to the regular modalities found
for instance in [2], but what is constrained here is the effect of a transition
sequence rather than its label.

Presburger Formulæ. We restrict our attention to quantifier-free Presburger
(QFP) formulæ, since one such formula can be obtained from any Presburger
formula at the expense of a worst-case triple exponential blowup [see e.g. 21,
Thm. 2.1]. More precisely, given an infinite countable set of variables X , a QFP
formula ψ is defined through

ψ ::= � | ¬ψ | ψ ∨ ψ | α, α ::= τ ≥ τ | τ ≡p τ, τ ::= 0 | 1 | x | τ + τ (7)

where x is a variable from X and p ≥ 2.1 Given a vector x of values in Zk and a
formula ψ with k free variables x1, . . . , xk, we write ψ(x) for the closed formula
with x(j) substituted for xj for each 1 ≤ j ≤ k. Given a closed Presburger
formula ψ, we write PA |= ψ if the formula is valid.

Syntax of PrCTL≥(U). Formally, fix some k in N; a k-formula of PrCTL≥(U) is
a term ϕ defined by the abstract syntax

ϕ ::= � | ¬ϕ | ϕ ∨ ϕ | E(ϕ Uψ ϕ) | μ(j) ≥ c

where ψ denotes a QFP formula with k free variables, 1 ≤ j ≤ k, and c is a
constant in Nω. Note that a k-formula is also a k′-formula for all k′ ≥ k. We
can simulate the classical “next” modalities X (see the proof of Thm. 3.1). The
classical, unrefined U modality can be defined by E(ϕ U ϕ′) def= E(ϕ U� ϕ′) using
the � formula of QFP. We also define as usual EFψϕ

def= E(� Uψ ϕ), and the
dualities ⊥ def= ¬�, ϕ ∧ ϕ′ def= ¬((¬ϕ) ∨ (¬ϕ′)), (μ(j) < c) def= ¬(μ(j) ≥ c), and
AGψϕ

def= ¬EFψ¬ϕ.
1 We include the divisibility relations, which are required for quantifier elimination,

with semantics x ≡p y iff ∃z.x + pz = y for all x, y in Z and p ≥ 2.
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Semantics of PrCTL≥(U). The models of PrCTL≥(U) formulæ are labeled tran-
sition systems 〈S,→, �, sinit〉. Given a state s in S, write Paths(s) for the set of
maximal paths π = s0

a1−→ s1
a2−→ · · · starting in s = s0 and where each ai is in

Zk and each si in S. The path is either infinite with length |π| = ω, or finite of
form π = s0

a1−→ · · · an−→ sn if sn has no successor and then |π| = n. If a1 · · · an

is a sequence in (Zk)∗ (with n = 0 for the empty sequence), then its effect is
Δa1 · · · an =

∑n
i=1 ai in Zk.

A state s in S satisfies a PrCTL≥(U) formula ϕ, written s |= ϕ, in the
following inductive cases:

s |= � always,
s |= ¬ϕ iff s �|= ϕ ,

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2 ,

s |= E(ϕ Uψ ϕ′) iff ∃π = s0
a1−→ s1

a2−→ · · · ∈ Paths(s), ∃n ≤ |π|,
PA |= ψ(Δa1 · · · an), sn |= ϕ′, and ∀m < n, sm |= ϕ,

s |= μ(j) ≥ c iff �(s)(j) ≥ c .

As usual, a LTS S satisfies ϕ, written S |= ϕ, if sinit |= ϕ. A k-VAS 〈V, x0〉
satisfies a PrCTL≥(U) k-formula ϕ, written 〈V, x0〉 |= ϕ, if there exists a k-
admissible partial cover C of 〈V, x0〉 such that C |= ϕ. We will see later (Thm. 3.2)
that for existential PrCTL≥(U) this boils down to model-checking the canonical
coverability graph.

Examples of Formulæ. Consider once more the coverability properties of Sec. 2:
the coverability problem for a marking x can be checked by model-checking the
following formula against C(S):

ϕcov,x
def= EF

k∧
j=1

μ(j) ≥ x(j) ; (8)

unboundedness by

ϕunb
def= EF

k∨
j=1

μ(j) ≥ ω ; (9)

place unboundedness in coordinate 1 ≤ j ≤ k by

ϕunb,j
def= EFμ(j) ≥ ω ; (10)

and non-regularity of the language by

ϕunreg
def= EF

∨
I ⊆ {1, . . . , k}

I �= ∅

∨
I⊆J⊆{1,...,k}

⎛⎝∧
j∈J

μ(j) ≥ ω ∧ EFψI,J�

⎞⎠ (11)

where
ψI,J(x1, . . . , xk) def=

∧
j∈I

xj < 0 ∧
∧
j �∈J

xj ≥ 0 . (12)
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We can check that the 3-admissible partial cover (5) satisfies all these formulæ
(setting x = 〈1, 5, 1〉 for (8)), thus our example VAS satisfies all these formulæ.

3.2 VAS Model Checking

We turn now to the VAS model checking problem: for a VAS S = 〈V, x0〉 and a
PrCTL≥ formula ϕ, does 〈V, x0〉 satisfy ϕ?

Undecidability of PrCTL≥(U). When considering how general PrCTL≥ is, its
model-checking problem is rather unsurprisingly undecidable, even if restricted
to EF modalities, i.e. for the PrCTL≥(F) fragment (the proof uses results by
Esparza [6]):

Proposition 3.1. The VAS model-checking problem for PrCTL≥(F) is unde-
cidable.

Decidability of PrECTL≥(U). The formulæ used in the proof of Thm. 3.1 employ
alternation in a crucial way in order to encode the VAS containment problem,
and a natural question is whether the existential fragment PrECTL≥(U), with
syntax

ϕ ::= � | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | E(ϕ Uψ ϕ) | μ(j) ≥ c ,

is decidable. This is the case: it suffices to check whether the canonical cov-
erability graph satisfies the formula, since by Thm. 2.4 it simulates any other
k-admissible partial cover. This is one of the benefits of considering CTL frag-
ments rather than ad-hoc logics: the standard toolkit of modal logic is readily
applicable, like the connection between simulations and existential CTL:

Proposition 3.2. The VAS model-checking problem for PrECTL≥(U) is decid-
able in nondeterministic polynomial time in |C(S)| and |ϕ|.

The decidability of VAS model-checking for PrECTL≥(U) is encouraging, but
our decision procedure relies on the construction of the canonical coverability
graph C(S). As the latter can have non primitive-recursive size [3, who attribute
the idea to Hack], this is not a very efficient algorithm: it yields an Ackerman-
nian upper bound [7, Sec. VII.C] on the complexity of VAS model-checking for
PrECTL≥(U). This is a ridiculously high upper bound, but we actually suspect
the VAS model-checking problem for PrECTL≥(U) to be Ackermann-complete.
On the one hand, Thm. 3.2 implies the PrECTL≥(U) problem to be in NPTime

for fixed VAS; on the other hand, small extensions within existential fragments
quickly lead to undecidability (e.g. when allowing μ(j) < c or Gψ).

The remainder of the paper is dedicated to a fragment of PrECTL≥(F) for
which we demonstrate a small model property and deduce decision procedures
working in exponential space. Although we use techniques adapted from Rackoff
and his successors, several points make these contributions stand out: the sim-
plicity of the logic, its ability to express branching properties directly, and its
intuitive semantics in terms of coverability graphs.
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4 Eventually Increasing Formulæ

Let us consider the PrECTL≥(F) fragment. We are going to introduce a semantic
restriction to PrECTL≥(F) formulæ, inspired by a similar restriction employed
by Atig and Habermehl [1] to fix Yen [22]’s proof.

4.1 The PrECTL≥(F) Fragment

Eventually Increasing Formulæ. We can restrict ourselves to finite tree-shaped
models for PrECTL≥(F) formulæ; such a model C has a root s and a number of
leaves s1, . . . , sn, each satisfying some coverability constraint (CC) subformula
γ, of form

γ ::= � | ⊥ | γ ∧ γ | γ ∨ γ | μ(j) ≥ c , (13)

where 1 ≤ j ≤ k and c is in Nω. We call this model increasing if �(si) ≥ �(s) for
all 1 ≤ i ≤ n. A formula ϕ of PrECTL≥(F) is increasing if all its tree-shaped
models are increasing. An eventually increasing formula is a formula of form
EFϕ for some increasing formula ϕ. We denote the set of (eventually) increasing
PrECTL≥(F) formulæ by (e)iPrECTL≥(F). All our example formulæ (8)–(11)
are eventually increasing.

Such a semantic restriction naturally leads to the question: is it decidable
whether a formula fits into the fragment? We first consider the related problem
of PrECTL≥(F) satisfiability: given a k-formula ϕ, does there exist a k-VAS
〈V, x0〉 s.t. 〈V, x0〉 |= ϕ? It turns out that this satisfiability problem reduces to
the satisfiability of its QFP subformulæ, which can be checked in NPTime:

Proposition 4.1. The satisfiability problem for PrECTL≥(F) is decidable in
NPTime.

Checking whether a formula is increasing is a bit more involved: we need to check
whether the various QFP subformulæ ensure every possible model is increasing,
which we do by constructing a (universal) Presburger formula:

Proposition 4.2. Let ϕ be a k-formula of PrECTL≥(F). Whether ϕ is a k-
formula of iPrECTL≥(F) is decidable in NPTime.

4.2 Small Model Properties

The proof of the small model property for eiPrECTL≥(F) formulæ follows the
general design of Rackoff’s proof: first a small model property on models with
bounded values (Thm. 4.3) using results on the existence of small solutions for
linear integer programming, and then a proof of existence of a small model in
general by induction on the dimension (Thm. 4.4).

Bounded Models. Define as usual with Rackoff’s approach an (i, r)-bounded LTS
as an i-admissible one where no finite value on the first i coordinates is larger
than r: for all s and every 1 ≤ j ≤ i, �(s)(j) ≥ r implies �(s)(j) = ω. If i ≤ k, the
i-projection of a formula ϕ is a formula ϕ|i where every μ(j) ≥ c term of ϕ with
j > i and c < ω has been replaced by �. Adapting the proof of [18, Lem. 4.5] to
our case, we obtain:
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Lemma 4.3 (Small Models for Bounded LTS). Let 〈V, x0〉 be a generalized
k-VAS with k > 1, ϕ be a PrECTL≥(F) formula, and 0 ≤ i ≤ k and r ≥ 0. If
there exists an (i, r)-bounded partial cover C of 〈V, x0〉 s.t. C |= ϕ|i , then there
exists a tree-shaped (i, r)-bounded partial cover C′ of 〈V, x0〉 with C′ |= ϕ|i and
|C′| ≤ (2‖V‖r)(k+|ϕ|)d

for some constant d (independent of V, x0, k, ϕ, i, and r).

General Models. We prove now a general small model property for eiPrECTL≥(F)
formulæ. It borrows several elements from earlier research, prominently [18,
Lem. 4.6 & 4.7], but also crucially the use of an increasing condition to allow
“replaying” a model at a leaf [1]. Given V ⊆ (Zω)k, a k-coverability formula ϕ,
and some 0 ≤ i < k, let

g(0) def= (2‖V‖ · |V|)(k+|ϕ|)d

g(i + 1) def=
(

2‖V‖ · (2‖V‖g(i) + |ϕ|)
)(k+|ϕ|)d

+ 1 + g(i)

where d is the constant of Thm. 4.3. We finally obtain our small model property:

Lemma 4.4 (Small Model Property). Let 〈V, x0〉 be a generalized k-VAS
and ϕ = EFϕ′ be a k-eventually increasing formula. Let ϕ|i be satisfiable. Then
there exists a tree-shaped i-admissible partial cover of 〈V, x0〉 that models ϕ|i and
of size ≤ g(i).

Lemma 4.4 results in a doubly exponential bound on the size of a k-admissible
model for an eventually increasing formula, from which an ExpSpace algorithm
can be designed, which is optimal considering the ExpSpace lower bound [3]:

Theorem 4.5 (Complexity of VAS model checking). The VAS model-
checking problem for eiPrECTL≥(F) formulæ is ExpSpace-complete.

Note that the different parameters on the size of the VAS and of the formula
influence this complexity differently: for fixed k the obtained algorithm works in
PSpace. A matching PSpace lower bound on the place coverability problem is
given by Rosier and Yen [19], Coro. 3.1 for fixed k ≥ 4.

Another interesting consequence of our bounds is that bounds for model check-
ing vector addition systems with states (VASS) are easy to derive; for instance
by encoding a k-VASS with state-space Q into a (k + 2	log2 |Q|
)-VAS: this is
not as tight as the (k + 3)-VAS encoding of Hopcroft and Pansiot [12], but al-
lows to test in which control state we are in an eiPrECTL≥(F) formula using
coverability constraints μ(j) ≥ 1. Thus the number |Q| of states only influences
polynomially the complexity of VASS model checking for eiPrECTL≥(F).

4.3 Related Work

The first attempt at unifying ExpSpace upper bounds on VAS problems was
proposed by Yen [22]. This provided ExpSpace upper bounds for many problems
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(boundedness, coverability, self-coverability, etc.; see Sec.4 in [22]). For instance,
we can consider the place boundedness problem: a path formula for it has to guess
nondeterministically a sequence π of introductions of ω-values leading to the
desired unboundedness of place j. Let Π be the set of repetition-free sequences
π over {1, . . . , k}\{j} and |Π | = n; write c(π) for the set of elements appearing
in π and π[i..k] for the factor of π between indices i and k (inclusive):

∃μ1, . . . , μ2n+2, ∃σ1, . . . , σ2n+2(μ0
σ1−→ μ1

σ2−→ · · · σ2n+2−−−−→ μ2n+2)

∧
∨

π∈Π

⎛⎝μ2n+1(j) < μ2n+2(j) ∧
∧

i�∈c(π)

μ2n+1(i) ≤ μ2n+2(i)

⎞⎠
∧

|π|∧
m=1

⎛⎝μ2m−1(π[m..m]) < μ2m(π[m..m]) ∧
∧

i�∈c(π[1..m])

μ2m−1(i) < μ2m(i)

⎞⎠ .

The first main conjunct under the scope of the choice of π checks that an ω-
value can appear in place j. The second main conjunct verifies the same for each
element of π in sequence.

The proof of [22] was flawed, and corrected by Atig and Habermehl [1] who
introduced the increasing restriction to Yen’s logic to characterize formulæ for
which the ExpSpace bound held. Nevertheless, this restriction meant that some
of the bounds claimed by Yen did not hold any longer, for instance for the
regularity problem, and the above formula for place unboundedness is another
instance of a non-increasing formula. Demri [5] finally proposed to relax the class
of models by considering “pseudo-runs” instead of actual runs, and provided a
formal framework (general unboundedness properties) to express properties on
such runs, allowing him to prove ExpSpace upper bounds for several open
problems like place boundedness, regularity, strong promptness, etc. This is the
most closely related approach.

We can express general unboundedness properties as PrECTL≥(F) formulæ,
but not as eventually increasing ones, because these properties only enforce lo-
cal increasing conditions instead of the global one we employed in this work. On
the other hand many aspects of eiPrECTL≥(F) formulæ are beyond the reach
of general unboundedness properties, since for instance we allow full Presburger
arithmetic, and can nest EFψ modalities directly (general unboundedness prop-
erties would intersperse plain EF modalities between any two Presburger-refined
modalities). This opens the question whether we could design a larger fragment
of PrECTL≥(F) with an ExpSpace-easy VAS model-checking problem and cap-
turing general unboundedness properties.

We believe eiPrECTL≥(F) formulæ to be much easier to write than general
unboundedness properties; for instance for place unboundedness, one would also
have to write explicitly all the different permutations on the order in which ω-
values can be introduced in a general unboundedness property, instead of the
straightforward formula (10).
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Abstract. In this paper, we present a new hardness amplification for
low-degree polynomials over prime fields, namely, we prove that if some
function is mildly hard to approximate by any low-degree polynomials
then the sum of independent copies of the function is very hard to ap-
proximate by them. This result generalizes the XOR lemma for low-degree
polynomials over the binary field given by Viola and Wigderson [22]. The
main technical contribution is the analysis of the Gowers norm over prime
fields. For the analysis, we discuss a generalized low-degree test, which we
call the Gowers test, for polynomials over prime fields, which is a natu-
ral generalization of that over the binary field given by Alon, Kaufman,
Krivelevich, Litsyn and Ron [2]. This Gowers test provides a new tech-
nique to analyze the Gowers norm over prime fields. Actually, the re-
jection probability of the Gowers test can be analyzed in the framework
of Kaufman and Sudan [17]. However, our analysis is self-contained and
quantitatively better. By using our argument, we also prove the hardness
of modulo functions for low-degree polynomials over prime fields.

1 Introduction

Hardness amplification [23] is a method for turning a function that is somewhat
hard to compute into one that is very hard to compute against a given class
of adversaries. The existence of many objects in average-case complexity and
cryptography, such as hard on average NP problems and one-way functions, rely
on unproven assumptions. In many cases, hardness amplification allows us to
prove that if weakly hard versions of such objects exist, then strongly hard ones
exist as well.

In settings where complexity lower bounds are known, applications of hard-
ness amplification are not so common. Nevertheless, the method can sometimes
be used to turn unconditional weak lower bounds into strong ones. Viola and
Wigderson [22] showed an XOR lemma that amplifies the hardness of functions
f : Fn

2 → F2 against low-degree polynomials over finite fields. There are many
examples of weakly hard functions for this class of adversaries. The result of
Viola and Wigderson allows us to turn these into functions of related complex-
ity that are very hard to approximate (in terms of approximation accuracy) by
polynomials of the same degree.
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Low-degree polynomials are fundamental objects in theoretical computer sci-
ence, with applications in error-correcting codes, circuit complexity, probabilis-
tically checkable proofs, and so on [18,20,3,9,8]. Applications often require the
use of polynomials over fields larger than F2. In some cases results about poly-
nomials over F2 can be easily extended to other finite fields, but in other cases
different ideas are required for binary and non-binary fields.

For example, the “quadraticity test” of Gowers was first analyzed at large
distances by Green and Tao [12] over non-binary fields. The extension over F2

by Samorodnitsky [19] required additional ideas. In the other direction, Alon,
Kaufman, Krivelevich, Litsyn and Ron [2] gave an analysis of a low-degree test
at small distances over F2. Kaufman and Ron [16] introduced substantial new
ideas to generalize this test to other fields.

In this work, we generalize the XOR lemma of Viola and Wigderson [22] to
arbitrary prime fields. Let Fq be a finite field of prime order q (identified with
{0, ..., q − 1}) and let δ(f, g) = Prx[f(x) �= g(x)] be the distance between f and
g. In particular, we define δd(f) = minp of degree d δ(f, p), that is the distance
between f and its nearest degree-d polynomial p : Fn

q → Fq. (See Section 2 for
precise definitions.) We then prove the following.

Theorem 1. Let q be any prime number, and f : Fn
q → Fq be any function such

that δd(f) ≥ q
(d+1)2d+1 . If

t ≥ q2 · (d + 1) · 22d+3

3
ln
{(

q − 1
q

)
ε−1

}
,

then
δd

(
f+t

)
≥ q − 1

q
− ε,

where f+t : (Fn
q )t → Fq is the sum over Fq of t independent copies of f .

Since δd(f) ≤ q−1
q for any function f (see Proposition 1), Theorem 1 allows us to

construct functions that are arbitrarily close to having optimal hardness against
degree-d polynomials over Fq, by choosing t = t(d, q, ε) sufficiently large.

Applying our argument, we obtain an explicit function that is very hard to
approximate by polynomials of degree d:

Theorem 2. Let d ≥ 0 be any integer, q be any prime and m be any integer
coprime to q, where m < q. Define MODm : Fn

q → Zm as MODm(x1, ..., xn) :=
x1+x2+· · ·+xn mod m, where + is the addition over Z. Then, for any degree-d
polynomial p,

δ(MODm, p mod m) >
m− 1
m

− m− 1
m

exp

(
− 1

m2q
·
(
q − 1
q

)d+1

· n

2d+2

)
.

Hardness of modulo functions for low-degree polynomials for different settings
of parameters has been studied in several works [1,6,13,7,22]. Directly applying
our hardness amplification to a function f(x) = x mod m, we would prove the
hardness of another modulo function, similarly to Theorem 2. However, q and d
are then forced to satisfy δd(f) ≥ q

(d+1)2d+1 .
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Our proof. We generalize the proof of Viola and Wigderson [22] over F2. Their
argument makes use of the Gowers d-norm ‖ · ‖Ud [10,11] (see Section 2 for
the definition). Starting from a function f : Fn

2 → F2 that is mildly far from
degree-d polynomials over F2, Viola and Wigderson reason as follows: (1) From
the low-degree tests analysis of Alon et al. [2], we know that if f is mildly far
from degree-d polynomials, then ‖(−1)f‖Ud+1 is bounded away from one. (2)
By the multiplicativity of the Gowers norm, ‖(−1)f+t‖Ud+1 = ‖(−1)f‖tUd+1 , so
‖(−1)f+t‖Ud+1 is close to zero for t sufficiently large. (3) For any polynomial p

of degree d, ‖(−1)f+t−p‖U1 ≤ (‖(−1)f‖2d+1

Ud+1)t, so ‖(−1)f+t−p‖U1 must be close
to zero as well. The last quantity simply measures the correlation between f+t

and p, so p must be far from all degree-d polynomials over F2.
Step (2) of this analysis extends easily to prime fields; step (3) requires some

additional but standard technical tools (see Lemma 2). However, step (1) relies
on the analysis of the low-degree test of Alon et al., which was designed specifi-
cally for the binary field. Our main technical contribution is the extension of the
analysis for this test (in fact, a slight variant of it) to arbitrary prime fields, de-
scribed in Section 3. We believe that our presentation of this test is also simpler
and more modular.

The test, which we call the Gowers test, works as follows: Given a function
f : Fn

q → Fq, choose a random set of points x, y1, . . . , yd+1 ∈ Fn
q , and query f at

all inputs of the form x+a1y1 + · · ·+ad+1yd+1, where (a1, . . . , ad+1) ranges over
{0, 1}d+1. If the evaluations are consistent with a degree-d polynomial accept,
otherwise reject.

Let us call the collection of queries {x+a1y1+· · ·+ad+1yd+1 : (a1, . . . , ad+1) ∈
{0, 1}d+1} a subcube of Fn

q . In the case q = 2, something special happens: With
high probability, a subcube of Fn

q coincides with a rank d + 1 affine subspace
of Fn

q . This fact plays a crucial property in the analysis of Bhattacharyya et
al. [4], who obtain tight lower bounds (within a constant factor) on the rejection
probability of the Gowers test over F2.

The low-degree test of Kaufman and Ron [16] over general fields also works by
choosing a random affine subspace of appropriate dimension and checking that
the restriction of f on this space is a polynomial of degree d. Their work suggests
that the proper way to generalize the Gowers test to larger fields is by viewing
it as a random subspace test, and not a random subcube test. However, we do
not see how the Kaufman-Ron test can be used to argue hardness amplification.
Unlike the Gowers test, their test does not seem to be naturally related to
the Gowers norm or any other measure on functions that is multiplicative and
bounds the correlation with degree-d polynomials, and so we cannot proceed
with steps (2) and (3) of the Viola-Wigderson argument. Jutla, Patthak, Rudra,
and Zuckerman [15] also proposed another low-degree test over prime fields,
which can be viewed as a kind of random subspace tests. From a similar reason,
we cannot apply their test to our analysis.

In Theorem 4 we show that if f is δ-far from a degree-d polynomial,
then the Gowers test performs 2d+1 queries and rejects f with probability
min{δ/q, 1/(d+ 1)2d+1}. The Gowers test has higher query complexity than the
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Kaufman-Ron test.1 However, its rejection probability is closely related to the
Gowers norm over Fq (see Lemma 3), and we can conclude the proof.

Our analysis of the Gowers test is a generalization of the linearity test analysis
of Blum, Luby, and Rubinfeld [5]. Given a function f : Fn

q → Fq that the test
accepts with high probability, they define a function g : Fn

q → Fq that is close to
f , and then they argue that g must be linear. The linearity of g is proved using
a self-reducibility argument, which relates evaluations of g at arbitrary inputs
to evaluations at random inputs, where the identity g(x) + g(y) = g(x+ y) holds
with high probability.

We proceed along the same lines: Given f , we define a function g that is
close to f , and then argue that g must be a degree-d polynomial. To argue the
second part, we use a self-reducibility argument that relates evaluations of g at
arbitrary subcubes to evaluations at random subcubes. The main technical tool
in the self-reduction argument is Claim 2, which to the best of our knowledge is
a new identity about discrete derivatives in finite fields.

Actually, the rejection probability of the Gowers test can be analyzed in the
framework of Kaufman and Sudan [17]. Their framework offers a unified analysis
for general testing of algebraic functions, including the Gowers test. However,
our analysis is self-contained and quantitatively better than their general one in
the case where a given function is far from polynomials, which we need for the
hardness amplification. Indeed, their analysis shows the rejection probability
is at least approximately 1/22d, but ours shows approximately 1/(d2d) if the
distance from degree-d polynomials is a constant.

The reason why we suppose prime fields in our results is that the characteri-
zation of polynomials used in the Gowers test makes sense only over prime fields
(Theorem 3). We need to discover a new characterization of polynomials over
non-prime fields connected to the Gowers norm for further generalization.

2 Preliminaries

Notions and notation. We begin with basic notions and notation. Let q be a
prime number. We denote by Fq, a finite field of prime order q, identified with
the set Zq := {0, ..., q − 1}. Let F+

q be a set of non-zero elements in Fq, namely,
Fq \ {0}. First, we define multivariate polynomials over Fq.

Definition 1 (polynomial). For an n-variate function f : Fn
q → Fq and an

integer d ≥ 0, if f can be written as

f(x) =
∑

α∈Fn
q ,
∑

n
i=1 αi≤d

Cα

n∏
j=1

x
αj

j ,

where each Cα ∈ Fq, then we call f a degree-d polynomial.
1 The Kaufman-Ron test makes q� queries, where � = �(d+1)/(q−q/p)� and q = pk for

a prime p and integer k. While the rejection probability was analyzed by themselves,
Haramaty, Shpilka, and Sudan [14] announced an optimal (up to constant factor)
rejection probability about min{Ω(δd(f)q�), Ω(1)} of the test very recently.
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For multivariate polynomials over prime fields Fq, the so-called directional
derivatives can be defined for well-known characterization of polynomials over
Fq.

Definition 2 (derivative). Let G,H be any additive groups. For a function
f : G → H and an element y ∈ G, a derivative of f on y, denoted by Δyf , is
defined as

Δyf(x) := f(x + y)− f(x).

A k-th derivative of f on vectors y1, . . . , yk ∈ G is recursively defined such that

Δy1,...,yk
f(x) := Δy1,...,yk−1 (Δyk

f(x)) .

The well-known characterization of degree-d polynomials over prime fields Fq

with (d + 1)-th derivatives is given by the following (folklore) theorem2.

Theorem 3 (characterization of polynomials). For a function f : Fn
q →

Fq, Δy1,...,yd+1f(x) = 0 for any x, y1, . . . , yd+1 ∈ Fn
q if and only if f is a degree-d

polynomial.

Note that this characterization does not hold over non-prime fields in general.
For functions f, g : G → H , the distance between f and g is defined as

δ(f, g) := Prx∈G [f(x) �= g(x)]. The distance between a function f and the set of
all the degree-d polynomials is defined as δd(f) := minp∈Pd,n

δ(f, p), where Pd,n

is the set of all degree-d n-variate polynomials. Note that the distance has an
upper bound.

Proposition 1. For any function f : G→ H and any integer d, δd(f) ≤ |H|−1
|H| .

Proof. Let c ∈ H be the value that occurs most often in f . Then, δd(f) ≤
δ(f, c) ≤ |H|−1

|H| . ��

Gowers uniformity. The Gowers norm is a measure for correlation between
functions and low-degree polynomials over finite fields. This measure was orig-
inally introduced by Gowers [10,11] to give an alternative proof of Szemerédi’s
theorem. We call it the Gowers uniformity here.3

Definition 3. For every function f : Fn
q → Fq and every integer k ≥ 0, the

degree-k Gowers uniformity Uk(f) is defined as

Uk(f) := E
x,y1,...,yk∈Fn

q

[
ω

Δy1,...,yk
f(x)

q

]
,

where ωq := exp(2πi/q) and E[·] is the expectation.

Remark 1. If k ≥ 1, the degree-k Gowers uniformity Uk(f) is a non-negative
real number, namely Uk(f) = |Uk(f)|.
2 A proof of Theorem 3 appears in, e.g., Terence Tao’s Weblog [21].
3 The Gowers norm ‖F‖Uk is defined as (Uk(f))1/2k

, where F (x) := ω
f(x)
q .
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The Gowers uniformity has important properties.

Proposition 2. For any function f : Fn
q → Fq, the following statements hold:

1. |Uk(f)| ≤
√

Uk+1(f) for any integer k ≥ 0
2. Ud+1(f − p) = Ud+1(f) for any degree-d polynomial p : Fn

q → Fq

3. Uk(f+t) = (Uk(f))t for any integers k ≥ 0 and t > 0,

where f+t :
(
Fn

q

)t → Fq is the sum of t independent copies of f defined as

f+t(x(1), . . . , x(t)) := f(x(1)) + f(x(2)) + · · ·+ f(x(t))

for an integer t > 0.

These properties can be proven by the almost same argument as of the Gowers
norm in [10,11], and so we omit the proofs.

3 Gowers Test

Next, we consider a low-degree test for polynomials, which we call the Gowers
test. The Gowers test is derived from the characterization of polynomials given
in Theorem 3.

Definition 4 (Gowers test). The degree-d Gowers test for a function f : Fn
q →

Fq, denoted by GTd(f), is the following procedure:

1. Pick x, y1, . . . , yd+1 ∈ Fn
q uniformly and independently at random;

2. Accept if and only if Δy1,...,yd+1f(x) = 0.

We denote by ρd(f), the rejection probability of GTd(f).

By Theorem 3, if f has degree at most d, GTd(f) accepts with probability 1.
Our question is how large the rejection probability is in the case when f is
not a degree-d polynomial. An answer to this question is given in the following
theorem, which estimates the rejection probability of GTd(f), that is ρd(f).

Theorem 4. Let f be any function Fn
q → Fq. Then

ρd(f) ≥ min
{
δd(f)

q
,

1
(d + 1)2d+1

}
.

Proof. This proof is obtained from the following technical main lemma:

Lemma 1. Let f : Fn
q → Fq and ε < 1

(d+1)2d+1 . If GTd(f) accepts with probabil-
ity 1− ε, then δd(f) ≤ qε.

If ρd(f) ≥ 1/(d+1)2d+1, we are done. So, assume that ρd(f) < 1/(d+1)2d+1. Let
ε := ρd(f). By Lemma 1, δd(f) ≤ qε = qρd(f). Then we obtain ρd(f) ≥ δd(f)/q.
Hence, the theorem follows. ��
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We prove the main technical lemma below.

Proof (Proof of Lemma 1). Our proof of this lemma is a generalization of the
linearity test analysis of Blum, Luby, and Rubinfeld [5], using ideas from the work
of Alon et al. [2] to higher degree polynomials over F2. Namely, we construct a
function g such that (1) g(x) = 0 for all but at most qε fraction of inputs x and
(2) g(x)− f(x) is a degree-d polynomial. We define

g(x) = the plurality value of Δy1,...,yd+1f(x), where y1, . . . , yd+1 ∈ Fn
q ,

where if the plurality value is not unique, we define g(x) as an arbitrary value
from the plurality ones. The property (1) is almost immediate: If g(x) �= 0, it
follows that Pry1,...,yd+1[Δy1,...,yd+1f(x) �= 0] ≥ 1/q, so if g(x) �= 0 for more than
a qε fraction of xs, it would follow that the Gowers test rejects with probability
more than (qε)/q = ε, a contradiction.

We now prove the property (2). We begin by showing that for all x, g(x) not
only agrees with the plurality value of Δy1,...,yd+1f(x), but in fact with a vast
majority:

Claim 1. For all x ∈ Fn
q , Pry1,...,yd+1[g(x) = Δy1,...,yd+1f(x)] ≥ 1− (d + 1)ε.

We will also make use of the following identity. For a ∈ {0, 1}d+1, let |a| =
a1 + · · ·+ ad+1 mod 2.

Claim 2. For all x, y1, . . . , yd+1, z1, . . . , zd+1 ∈ Fn
q ,

Δz1,...,zd+1f(x) =
∑

a∈{0,1}d+1

(−1)|a|Δy1−a1z1,...,yd+1−ad+1zd+1f

(
x +

d+1∑
i=1

aizi

)
.

The proofs of Claims 1 and 2 will be given in the full version. We are now in a
position to prove that g − f is a polynomial of degree d. By Claim 1, we have
that

Pr
y1,...,yd+1

[
g

(
x +

d+1∑
i=1

aizi

)
�= Δy1−a1z1,...,yd+1−ad+1zd+1f

(
x +

d+1∑
i=1

aizi

)]
≤ (d + 1)ε

for all x, z1, . . . , zd+1 ∈ Fn
q , and a ∈ {0, 1}d+1. Taking a union bound over all

a ∈ {0, 1}d+1 it follows that

Pr
y1,...,yd+1

[
∃a : g

(
x +

d+1∑
i=1

aizi

)
�= Δy1−a1z1,...,yd+1−ad+1zd+1f

(
x +

d+1∑
i=1

aizi

)]
≤ 2d+1 · (d + 1)ε < 1.

Therefore, there must exist values for y1, . . . , yd+1 such that

g

(
x +

d+1∑
i=1

aizi

)
= Δy1−a1z1,...,yd+1−ad+1zd+1f

(
x +

d+1∑
i=1

aizi

)
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for all x, z1, . . . , zd+1 in Fn
q and a ∈ {0, 1}d+1. But then

Δz1,...,zd+1g(x) =
∑

a∈{0,1}d+1

(−1)|a|g

(
x +

d+1∑
i=1

aizi

)

=
∑

a∈{0,1}d+1

(−1)|a|Δy1−a1z1,...,yd+1−ad+1zd+1f

(
x +

d+1∑
i=1

aizi

)
= Δz1,...,zd+1f(x)

by Claim 2, and so Δz1,...,zd+1(f − g)(x) = 0 for all x, z1, . . . , zd+1, namely, f − g
is a degree-d polynomial. ��

4 Hardness Amplification

Our goal is to construct a hard function for low-degree polynomials (in other
words, a function far from low-degree polynomials) from a mildly hard function
for low-degree polynomials (in other words, a function mildly far from low-degree
polynomials). Recall that, for a function f : Fn

q → Fq and an integer t > 0, a
function f+t : (Fn

q )t → Fq is defined as

f+t(x(1), . . . , x(t)) := f(x(1)) + f(x(2)) + · · ·+ f(x(t)).

We prove that f+t is very hard for low-degree polynomials if f is mildly hard
for low-degree polynomials. Recall that δd(f) ≤ q−1

q for any function f . Hence
our goal is to prove δd(f+t) ≥ q−1

q − ε for some small ε.

Theorem 5. Let f be any function such that δd(f) > q
(d+1)2d+1 and t > 0 be

any integer. Then

δd

(
f+t

)
>

q − 1
q
− q − 1

q
exp

(
− 3t

q2 · (d + 1) · 22d+3

)
.

Note that our main theorem (Theorem 1) in Section 1 immediately follows from
this theorem by choosing t appropriately.

Proof. We first state two lemmas, of which proofs will be shown in the full
version, on relations between the distance from degree-d polynomials and the
Gowers uniformity and between the Gowers uniformity and the rejection prob-
ability of the Gowers test.

Lemma 2 (distance to uniformity). For any function f : Fn
q → Fq and any

integer d,

δd(f) ≥ q − 1
q
− q − 1

q
E

a∈F
+
q

[
(Ud+1(af))1/2d+2]

.
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Lemma 3 (uniformity to test). For any function f : Fn
q → Fq and any

integer d ≥ 0,

Ud+1(f) < 1− 3
q2

ρd(f).

Recall that ρd(f) is the rejection probability of the Gowers test GTd(f).
Note that the distance δd(f) is lower bounded by q−1

q minus the term involved

with Ea∈F
+
q

[
(Ud+1(af))1/2d+2]

in Lemma 2. One can easily see that the expec-
tation is not required in the binary case, as in [22]. Hence, our analysis needs
some technical tricks for the general case.

We can prove Theorem 5 using these two lemmas, Proposition 2 and The-
orem 4. By Lemma 2 and the averaging principle, there is an α ∈ F+

q such
that

δd(f+t) ≥ q − 1
q
− q − 1

q

(
Ud+1(αf+t)

)1/2d+2

.

By the property of the Gowers uniformity (Proposition 2 (3)),(
Ud+1(αf+t)

)1/2d+2

= (Ud+1(αf))t/2d+2

.

Then, by Lemma 3,

(Ud+1(αf))t/2d+2

<

(
1− 3

q2
ρd(f)

)t/2d+2

< exp
(
− 3

q2
· t

2d+2
ρd(f)

)
.

Note that ρd(αf) = ρd(f), since for all x, y1, . . . , yd+1 ∈ Fq and all α ∈ F+
q ,

Δy1,...,yd+1(αf(x)) = 0 if and only if Δy1,...,yd+1f(x) = 0. Combining this with
Theorem 4 and the assumption that δd(f) > q

(d+1)2d+1 , we obtain

(
Ud+1(αf+t)

)1/2d+2

< exp
(
− 3

q2
· t

2d+2
· 1

(d + 1)2d+1

)
.

Therefore

δd

(
f+t

)
>

q − 1
q
− q − 1

q
exp

(
− 3t

q2 · (d + 1) · 22d+3

)
.

��

5 Hardness of MODm

MODm : Fn
q → Zm is defined as

MODm(x) := x1 + x2 + · · ·+ xn mod m,

where 1 < m < q and + is the addition over Z. In this section, we see the
distance between MODm and low-degree polynomials.
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Since the range of MODm is Zm, we define the distance δd between MODm

and degree-d polynomials as follows:

δd(MODm) := min
p∈Pd,n

Pr
x∈Fn

q

[MODm(x) �= (p(x) mod m)].

Namely, we identify a standard polynomial (from Fn
q to Fq) modulo m as a

polynomial from Fn
q to Zm here. Also, we modify the definition of the Gowers

uniformity Ud(f) for such functions f : Fn
q → Zm:

Ud(f) := E
x,y1,...,yd∈Fn

q

[
ω

Δy1,...,yd
f(x)

m

]
.

It is easy to see the same properties given in Proposition 2 hold for this definition
as before.

Theorem 6. Let d ≥ 0 be any integer, q be any prime, and m be any integer
coprime to q, where m < q. Then,

δd(MODm) >
m− 1
m

− m− 1
m

exp

(
− 1

m2q
·
(
q − 1
q

)d+1

· n

2d+2

)
.

Proof. By the same reasoning of Lemma 2 and the averaging argument, there is
an α ∈ F+

q such that

δd(MODm) ≥ m− 1
m

− m− 1
m

(Ud+1(αMODm))1/2d+2

.

Let f : Fq → Zm be a 1-variable function defined as f(x) = x mod m. Then, we
have Ud+1(αMODm)1/2d+2

= Ud+1(αf)n/2d+2
by the same reasoning of Propo-

sition 2 and Theorem 3. So, we now estimate an upper bound of Ud+1(αf) by
using the following claim.

Claim 3. For any function f , the following properties hold:

1. If yi = 0 for some i, then ω
Δy1,...,yd+1f
m ≡ 1.

2. If ωf
m is not a constant function and yi �= 0 for all i, then ω

Δy1,...,yd+1f
m is

not a constant function.

Proof. We first show the property 1. By the symmetry of derivatives, we can
suppose that yd+1 = 0 without loss of generality. Then, for any x,

Δy1,...,yd,yd+1f(x) = Δy1,...,yd
(f(x + 0)− f(x)) = 0.

Thus, ω
Δy1,...,yd+1f(x)
m = 1 for any x.

We next prove the property 2. We show the following statement: “If ωf
m is

not a constant, then ω
Δyf
m is not a constant function for every nonzero y ∈ F+

q .”
Repeatedly applying this statement, we obtain the property 2.
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We prove its contrapositive. Suppose ω
Δyf(x)
m is a constant function for some

nonzero y ∈ Fq. Then it must be that for every x ∈ Fq:

f((x + y) mod q)− f(x mod q) ≡ c mod m.

Plugging in x := x + y, x + 2y, . . . , x + (q − 1)y, we obtain

f((x + 2y) mod q)− f((x + y) mod q) ≡ c mod m,

f((x + 3y) mod q)− f((x + 2y) mod q) ≡ c mod m,

...
f((x + qy) mod q)− f((x + (q − 1)y) mod q) ≡ c mod m.

If we add these equations, on the left hand side we obtain zero, and on the right
hand side we obtain qc mod m, which equals zero only if c = 0. If c = 0, then
f is a constant function since we have Δyf(x) ≡ 0 mod m. ��

By this claim, we have for some nonzero 0 < α′ < m

E
x,y1,...,yd+1

[
ω

αΔx,y1,...,yd+1f(x)
m

]
≤ 1

qd+2

{(
qd+2 − (q − 1)d+1 · q

)
· 1 + (q − 1)d+1

∣∣∣(q − 1) · 1 + ωα′
m

∣∣∣}
< 1− 1

m2q

(
q − 1
q

)d+1

.

From this estimation, the theorem immediately follows. ��
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Abstract. We develop a general framework for the design of temporal
logics for concurrent recursive programs. A program execution is modeled
as a partial order with multiple nesting relations. To specify properties of
executions, we consider any temporal logic whose modalities are definable
in monadic second-order logic and that, in addition, allows PDL-like path
expressions. This captures, in a unifying framework, a wide range of logics
defined for ranked and unranked trees, nested words, and Mazurkiewicz
traces that have been studied separately. We show that satisfiability and
model checking are decidable in EXPTIME and 2EXPTIME, depending
on the precise path modalities.

1 Introduction

It is widely acknowledged that linear-time temporal logic (LTL) [18] is a yardstick
among the specification languages. It combines high expressiveness (equivalence
to first-order logic) with a reasonable complexity of decision problems such as
satisfiability and model checking. LTL has originally been considered for finite-
state sequential programs. As real programs are often concurrent or rely on
recursive procedures, LTL has been extended in two directions.

First, asynchronous finite-state programs (or Zielonka automata) [10] are a
formal model of shared-memory systems and properly generalize finite-state
sequential programs. Their executions are no longer sequential (i.e., totally or-
dered) but can be naturally modeled as graphs or partial orders. In the literature,
these structures are known as Mazurkiewicz traces. They look back on a long list
of now classic results that smoothly extend the purely sequential setting (e.g.,
expressive equivalence to first-order logic) [10,9].

Second, in an influential paper, Alur and Madhusudan extend the finite-state
sequential model to visibly pushdown automata (VPA) [3]. VPA are a flexible
model for recursive programs, where subroutines can be called and executed
while the current thread is suspended. The execution of a VPA is still totally
ordered. However, it comes with some extra information that relates a subroutine
call with the corresponding return position, which gives rise to the notion of
nested words [3]. Alur et al. recently defined versions of LTL towards this infinite-
state setting [2,1] that can be considered as canonical counterparts of the classical
logic introduced by Pnueli.
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To model programs that involve both recursion and concurrency, one needs
to mix both views. Most approaches to modeling concurrent recursive programs,
however, reduce concurrency to interleaving and neglect a behavioral semantics
that preserves independencies between program events [19,15,4]. A first model
for concurrent recursive programs with partial-order semantics was considered in
[5]. Executions of their concurrent VPA equip Mazurkiewicz traces with multiple
nesting relations. Temporal logics have not been considered, though, and there is
for now no canonical merge of the two existing approaches. It must be noted that
satisfiability is undecidable when considering multiple nesting relations, even
for simple logics. Yet, it becomes decidable if we restrict to system behaviors
that can be executed within a bounded number of phase switches, a notion
introduced in [15]. A phase switch consists of a transfer of control from one
process to another. This allows for the discovery of many errors, since they
typically manifest themselves after a few phase switches [19].

In this paper, we present linear-time temporal logics for concurrent recursive
programs. A temporal logic is parametrized by a finite set of modalities that are
definable in monadic second-order logic (cf. [12]). In addition, it provides path
expressions similar to those from PDL [11] or XPath [17], which are orthogonal
to the modalities. This general framework captures temporal logics considered
in [2,1,8] when we restrict to one process, and it captures those considered in
[9,12,13] when we go without recursion. Our decision procedures for the (bounded
phase) satisfiability problem are optimal in all these special cases, but provide a
unifying proof. They also apply to other structures such as ranked and unranked
trees. We then use our logics for model checking. To do so, we provide a system
model whose behavioral semantics preserves concurrency (unlike the models from
[19,4,15]). The complexity upper bounds from satisfiability are preserved.

Outline. In Section 2, we introduce graphs, trees, and nested traces as our
model of program executions. Section 3 provides a range of related temporal log-
ics. Sections 4 and 5 address satisfiability and model checking, resp. The full ver-
sion of this paper is available at: http://hal.archives-ouvertes.fr/hal-00591139/

2 Graphs, Nested Traces, and Trees

To model the behavior of distributed systems, we consider labeled graphs, each
representing one single execution. A node of a graph is an event that can be
observed during an execution. Its labeling reveals its type (e.g., procedure call,
return, or internal) or some processes that are involved in its execution. Edges
reflect causal dependencies: an edge (u, v) from node u to node v implies that u
happens before v. A labeling of (u, v) may provide information about the kind
of causality between u and v (e.g., successive events on some process).

Accordingly, we consider a signature, which is a pair S = (Σ,Γ ) consisting of a
finite set Σ of node labelings and a finite set Γ of edge labelings. Throughout the
paper, we assume |Σ| ≥ 1 and |Γ | ≥ 2. An S-graph is a structure G = (V, λ, ν)
where V is a non-empty set of countably many nodes, λ : V → 2Σ is the node-
labeling function, and ν : (V × V ) → 2Γ is the edge-labeling function, with the

http://hal.archives-ouvertes.fr/hal-00591139/
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intuitive understanding that there is an edge between u and v iff ν(u, v) �= ∅.
For σ ∈ Σ, Vσ := {u ∈ V | σ ∈ λ(u)} denotes the set of nodes that are labeled
with σ. Moreover, for γ ∈ Γ , Eγ := {(u, v) ∈ V × V | γ ∈ ν(u, v)} denotes the
set of edges with labeling γ. Then, E :=

⋃
γ∈Γ Eγ is the set of all the edges.

We require that the transitive closure E+ of E is a well-founded (strict) partial
order on V . We write ≺G or simply ≺ for E+, and we write �G or � for E∗.

Nested Traces. To model executions of concurrent recursive programs that
communicate via shared variables, we introduce graphs with multiple nesting re-
lations. We fix non-empty finite sets Proc and Act , and let Type = {call, ret, int}.
Then, Σ = Proc ∪ Act ∪ Type is the set of node labelings. Its component Type
indicates whether an event is a procedure call, a return, or an internal action. A
nesting edge connects a procedure call with the corresponding return, and will
be labeled by cr ∈ Γ . In addition, we use succp ∈ Γ to label those edges that
link successive events of process p ∈ Proc. Thus, Γ = {succp | p ∈ Proc}∪{cr}.
We obtain the signature S = (Σ,Γ ). Formally, a nested (Mazurkiewicz) trace
over Proc and Act is an S-graph G = (V, λ, ν) such that the following hold:

T1 V = Vcall � Vret � Vint =
⊎

a∈Act Va =
⋃

p∈Proc Vp

T2 for all processes p, q ∈ Proc with p �= q, we have Vp ∩ Vq ⊆ Vint

T3 for all p ∈ Proc, Esuccp
is the direct successor relation of a total order on Vp

T4 Ecr ⊆ (Vcall × Vret) ∩
⋃

p∈Proc(Vp × Vp)
T5 for all (u, v), (u′, v′) ∈ Ecr, we have u = u′ iff v = v′

T6 for all p ∈ Proc and u ∈ Vcall ∩ Vp and v′ ∈ Vret ∩ Vp, if u ≺ v′ then either
there exists v � v′ with (u, v) ∈ Ecr or there exists u′ � u with (u′, v′) ∈ Ecr

Intuitively, each event has exactly one type and one action and belongs to at
least one process (T1), synchronizing events are always internal (T2), along any
process the events are totally ordered (T3), a nesting edge is always between a
call and a return of the same process (T4), and cr-edges restricted to any process
are well nested (T5 and T6). Note that we may have unmatched calls or returns.

For u ∈ V , we let Proc(u) = λ(u) ∩ Proc. When |Proc| = 1, then a nested
trace is a nested word in the classical sense [3]. The set of nested traces over
Proc and Act is denoted by Traces(Proc,Act). Figure 1 depicts a nested trace
over Proc = {p, q} and Act = {c, r, sv}. Action c denotes a call, r a return, and
sv reveals some synchronization via a shared variable. Node labelings from Proc
are given by the gray-shaded regions, i.e., sv -events involve both p and q. Edge
labelings succp and succq are abbreviated by p and q, resp.

We introduce a restricted class of nested traces over Proc and Act . It is
parametrized by an (existential) upper bound k ≥ 1 on the number of phases
that a trace needs to be executed. In each phase, return events belong to one
dedicated process. Let us first introduce the notion of linearization. A lineariza-
tion of a nested trace G = (V, λ, ν) is any structure (V, λ,≤) such that ≤ is a
total order extending �. Fig. 2 depicts a linearization of the nested trace from
Fig. 1. We identify isomorphic structures so that a linearization can be consid-
ered as a word over 2Σ . Note that, for every word w ∈ (2Σ)∗, there is at most
one (up to isomorphism) nested trace G such that w is a linearization of G [10].
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Fig. 1. A nested trace over Proc = {p, q} and Act = {c, r, sv}
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Fig. 2. A 2-phase linearization

For k ≥ 1, a word w ∈ (2Σ)∗ is a k-phase word if it can be written as w1 · · ·wk

where, for all i ∈ {1, . . . , k}, there is p ∈ Proc such that for each letter a of wi we
have ret ∈ a implies p ∈ a. A nested trace is called a k-phase nested trace if at
least one of its linearizations is a k-phase word. The set of k-phase nested traces
over Proc and Act is denoted by Tracesk(Proc,Act). We denote by Link(G) the
set of linearizations of nested trace G that are k-phase words. In particular, G is
a k-phase nested trace iff Link(G) �= ∅. The nested trace from Fig. 1 is a 2-phase
trace: its linearization from Fig. 2 schedules returns of q before all returns of p.

Ranked Trees. Let S = (Σ,Γ ). An S-tree is an S-graph t = (V, λ, ν). We
require that there is a “root” u0 ∈ V such that for all u, v, v′ ∈ V and γ, γ′ ∈ Γ :

(i) (u0, u) ∈ E∗, and (v, u), (v′, u) ∈ E implies v = v′

(ii) (u, v), (u, v′) ∈ Eγ implies v = v′, and (u, v) ∈ Eγ ∩ Eγ′ implies γ = γ′

Note that Γ can be seen as a set of directions. Thus, Γ = {left, right} yields
binary trees. The set of all S-trees is denoted Trees(S).

Ordered Unranked Trees. Each node in an ordered unranked tree can have
a potentially unbounded number of children, and the children of any node are
totally ordered. Formally it is an S-graph t = (V, λ, ν) over S = (Σ,Γ ) where
Γ = {child, next}. Again, there is a “root” u0 ∈ V such that for all u, v, v′ ∈ V :

(i) (u0, u) ∈ E∗ and (u0, u) /∈ Enext

(ii) (v, u), (v′, u) ∈ Echild implies v = v′, and (v, u), (v′, u) ∈ Enext implies
v = v′

(iii) (u, v), (u, v′) ∈ Enext implies v = v′ and (u, v) ∈ Eγ ∩ Eγ′ implies γ = γ′
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(iv) (u, v) ∈ Echild implies that there exists v0 ∈ V such that (u, v0) ∈ Echild

and, (u, v′) ∈ Echild if and only if (v0, v
′) ∈ E∗

next.

The set of all ordered unranked trees over S is denoted o.u.Trees(S).

3 Temporal Logic

In this section, let S = (Σ,Γ ) be any signature. We study temporal logics whose
modalities are defined in the monadic second-order (MSO) logic over S-graphs,
which we recall in the following. We use x, y, . . . to denote first-order variables
which vary over nodes of the graphs, and X,Y, . . . to denote second-order vari-
ables which vary over sets of nodes. The syntax of MSO(S) is given by the gram-
mar ϕ ::= σ(x) | γ(x, y) | x = y | x ∈ X | ¬ϕ | ϕ∨ϕ | ∃xϕ | ∃Xϕ where σ ranges
over Σ, γ ranges over Γ , x and y are first-order variables, and X is a second-order
variable. We use ≺, the transitive closure of the relations induced by Γ , freely
as it can be expressed in MSO(S). For an S-graph G = (V, λ, ν) and a formula
ϕ(x1, . . . , xn, X1, . . . , Xm) with free variables in {x1, . . . , xn, X1, . . . , Xm}, we
write G |= ϕ(u1, . . . , un, U1, . . . , Um) if ϕ is evaluated to true when interpreting
the variables by u1, . . . , un ∈ V and U1, . . . , Um ⊆ V , respectively.

For m ∈ � = {0, 1, 2, . . .}, we call ϕ ∈ MSO(S) an m-ary modality if its free
variables consist of m set variables X1, . . . , Xm and one first-order variable x.

A temporal logic over S is given by a triple L = (M, arity, [[−]]) including a
finite set M of modality names, a mapping arity : M → �, and a mapping
[[−]] : M→ MSO(S) such that, for M ∈M with arity(M) = m, [[M ]] is an m-ary
modality. Its syntax, i.e., the set of formulas ϕ ∈ Form(L) is given by

ϕ ::= σ | ¬ϕ | ϕ ∨ ϕ | M(ϕ, . . . , ϕ︸ ︷︷ ︸
arity(M)

) | ∃π

π ::= ?ϕ | γ | γ−1 | π ∪ π | π ∩ π | π ◦ π | π∗

where σ ranges over Σ, M ranges over M, and γ ranges over Γ . We call ϕ a
node formula and π a path formula (or path expression). Their semantics wrt. an
S-graph G = (V, λ, ν) is defined inductively: for subformulas ϕ, we obtain a set
[[ϕ]]G ⊆ V , containing the nodes of G that satisfy ϕ. Accordingly, [[π]]G ⊆ V ×V
is the set of pairs of nodes linked with a path defined by π. Then, ∃π is the set
of nodes that admit a path following π. Formally, [[−]]G is given in Fig. 3 where
⊗ ∈ {∪,∩, ◦} (◦ denotes the product of two relations). We may write G, u |= ϕ
if u ∈ [[ϕ]]G and G, u, v |= π if (u, v) ∈ [[π]]G. We also use π+ := π ◦ π∗.

An intersection free temporal logic over S is defined as expected: path expres-
sions do not contain subformulas of the form π1∩π2. Moreover, a path-expression
free temporal logic does not contain formulas of the form ∃π.

Example 1. We consider the path-expression free temporal logic CTL over (Σ,Γ )
(interpreted over (Σ,Γ )-trees) [7]. The modalities are M = {EX,EG,EU} with
EX and EG being unary and EU being binary. Node formula EXϕ holds at a
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[[σ]]G := Vσ [[¬ϕ]]G := V \ [[ϕ]]G [[ϕ1 ∨ ϕ2]]G := [[ϕ1]]G ∪ [[ϕ2]]G

[[M(ϕ1, . . . , ϕm)]]G := {u ∈ V | G |= [[M ]](u, [[ϕ1]]G, . . . , [[ϕm]]G)}
[[∃π]]G := {u ∈ V | there is v ∈ V such that (u, v) ∈ [[π]]G}
[[?ϕ]]G := {(u, u) | u ∈ [[ϕ]]G} [[γ]]G := Eγ [[γ−1]]G := E−1

γ

[[π ⊗ τ ]]G := [[π]]G ⊗ [[τ ]]G [[π∗]]G := [[π]]∗G

Fig. 3. Semantics of temporal logic

node if there is a child satisfying ϕ. Thus, [[EX]](x,X) = ∃y (x ≺· y ∧ y ∈ X)
where x ≺· y :=

∨
γ∈Γ γ(x, y). Formula EGϕ means that there is an infinite path

starting from the current node where ϕ always holds. Formula ϕ EU ψ means
that there is a path starting from the current node satisfying ϕ until ψ :

[[EG]](x,X) = ∃Y (Y ⊆ X ∧ x ∈ Y ∧ ∀z (z ∈ Y → ∃z′ (z′ ∈ Y ∧ z ≺· z′)))
[[EU]](x,X1, X2) = ∃z (x � z ∧ z ∈ X2 ∧ ∀y (x � y ≺ z → y ∈ X1))

Example 2. Our approach captures various logics over unranked trees (see [17]
for an overview). E.g., the intersection free temporal logic L−0 with no modalities
over ordered unranked trees is precisely regular XPath [6].

Example 3. We give a property over nested traces using a path expression: ϕ =
¬∃(cr ∩ (?q ◦ (

⋃
γ∈Γ γ)+ ◦ ?(call ∧ p) ◦ (

⋃
γ∈Γ γ)+)) means that process p is not

allowed to call a new procedure when it is in the scope of an active procedure
call from q. The first call node along q in Fig. 1 does not satisfy this property.

Example 4. We present a path-expression free temporal logic over nested traces,
NTrLTL = (M, arity , [[−]]). The unary modalities are {Xcr,Ycr} ∪ {Xp,Yp | p ∈
Proc}. Intuitively, Xp ϕ means that ϕ holds at the next p-position and Xcr claims
that we are at a call position whose return position satisfies ϕ. The dual past
modalities are Yp and Ycr. The semantics of the future modalities is given by

[[Xp]](x,X) = ∃y (p(y) ∧ x ≺ y ∧ y ∈ X ∧ ∀z (p(z) ∧ x ≺ z → y � z))
[[Xcr]](x,X) = ∃y (cr(x, y) ∧ y ∈ X)

The binary modalities are {AU,AS,EUs,ESs}. Here, ϕ AU ψ means that in the
partial order G there is a future node satisfying ψ, and ϕ should hold on all nodes
in between: [[AU]](x,X1, X2) = ∃z (x � z ∧ z ∈ X2 ∧ ∀y (x � y ≺ z → z ∈ X1)).
Modality EUs refers to the summary path in G, which may freely use cr-edges.
Formally, the semantics [[EUs]](x,X1, X2) is defined as

∃z∃Y (z ∈ X2 ∧ Y ⊆ X1 ∧ ∀y (y ∈ Y ∨ y = z)→ (y = x ∨
∃y′ (y′ ∈ Y ∧ (cr(y′, y) ∨

∨
q∈Proc succq(y′, y)))))

The modalities AS,ESs are the past-time counterparts of AU,EUs. When we
drop AU,AS and assume |Proc| = 1, our logic is precisely NWTL defined in [1].
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4 Satisfiability: From Trees to Nested Traces

Consider any signature S = (Σ,Γ ) and temporal logic L over S. The following
decision problem is well known.

Problem 5. Tree-Sat(L):
Given ϕ ∈ Form(L), are there t ∈ Trees(S) and node u of t such that t, u |= ϕ ?

Theorem 6 ([14,16,11,20]). Let L0 be the temporal logic over S with M = ∅.
The problem Tree-Sat(L0) is 2EXPTIME-complete [14,16]. For the intersection
free fragment L−0 , the problem Tree-Sat(L−0 ) is EXPTIME-complete [11,20].

We will extend these results to logics L and L− including MSO modalities. For
this, we need the notion of an alternating 2-way tree automaton (A2A) over
S = (Σ,Γ ) of index r ∈ �, which is a tuple A = (Q, δ, q0,Acc) where Q is
a finite set of states, q0 ∈ Q is the initial state, Acc : Q → � is a parity
acceptance condition with r = max(Acc(Q)), and δ : Q×2Σ×2D → B+(D×Q)
is the transition function where D = Γ ∪ {stay, up} and B+(D × Q) is the
set of positive boolean formulas over D × Q. We only give an intuition of the
semantics of A2A and refer to [20,14] for details. An A2A walks in an S-tree
t = (V, λ, ν). A configuration is a set of “threads” (q, u) where q ∈ Q and u ∈ V
is the current node. For every thread (q, u), we have to choose some model
{(d1, q1), . . . , (dn, qn)} of δ(q, λ(u), D′) where D′ is the set of directions available
at u. Then, we replace (q, u) with n new threads (qi, ui) for 1 ≤ i ≤ n where ui is
obtained from u by following direction di (if di = stay, then ui = u). The parity
acceptance condition has to be applied to all infinite paths when we consider the
run as a tree, threads (qi, ui) being the children of (q, u). For u ∈ V , a run over
(t, u) is a run that starts in the single configuration (q0, u). The semantics [[A]]t
contains all nodes u of t such that there is an accepting run of A over (t, u).

Theorem 7 ([21]). Given an A2A A of index r with n states, one can check
in time exponential in n · r if there is a tree t such that [[A]]t �= ∅.

The main ingredient of the proof of Theorem 6 is the construction of an A2A
from a given formula, whose existence is given by the following lemma. Using
the lemma and Theorem 7, we can then extend Theorem 6 towards Theorem 9.

Lemma 8 ([14]). Consider the temporal logic L0 over S with M = ∅. For every
formula ϕ ∈ Form(L0), we can construct an A2A Bϕ over S of exponential size
such that, for all S-trees t, we have [[ϕ]]t = [[Bϕ]]t. Moreover, if ϕ ∈ Form(L−0 ) is
intersection free, then Bϕ is of polynomial size.

Theorem 9. For any temporal logic L, Tree-Sat(L) is 2EXPTIME-complete.
For the intersection free fragment L−, Tree-Sat(L−) is EXPTIME-complete.

Proof. The lower bounds follow from Theorem 6. We show the upper bounds.
Let ϕ be any L formula. Let Subf(ϕ) denote the set of subformulas of ϕ and let
top(ξ) denote the topmost symbol of ξ ∈ Subf(ϕ) which could be ∃ or a modality
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M ∈ M ∪ Σ ∪ {¬,∨}: below, we treat atomic propositions σ ∈ Σ, negation ¬,
and disjunction ∨ as modalities of arities 0, 1, and 2 resp.

For each modality M ∈ M ∪ Σ ∪ {¬,∨} of arity m, we define an MSO(S)
formula ψM with free variables X0, . . . , Xm by ψM (X0, X1, . . . , Xm) := ∀x (x ∈
X0 ←→ [[M ]](x,X1, . . . , Xm)). Let Sm = (Σ∪{X0, . . . , Xm}, Γ ) so that the node
labeling encodes the valuations of the free set variables as usual. By Rabin’s
theorem, there is a non-deterministic (N1A) tree automaton AM recognizing all
Sm-trees satisfying ψM . Note that AM for M ∈ Σ ∪ {¬,∨} has only one state.

Let ∃π(ξ1, . . . , ξm) ∈ Subf(ϕ) where ξ1, . . . , ξm are the node formulas checked
in path π. Replacing ξ1, . . . , ξm by set variables X1, . . . , Xm (or new predicates)
we will construct using Lemma 8 an A2A A∃π accepting all Sm-trees satisfy-
ing the “formula” ψ∃π(X0, X1, . . . , Xm) := ∀x (x ∈ X0 ←→ ∃π(X1, . . . , Xm)).
By Lemma 8, we can construct automata B1 and B2 for ∃π(X1, . . . , Xm) and
¬∃π(X1, . . . , Xm), resp., which are L0 formulas. Let ι1 and ι2 be the initial states
of B1 and B2. The automaton A∃π includes the disjoint union of B1 and B2 plus
a new initial state ι and, for σ ⊆ Σ ∪ {X0, . . . , Xm} and D′ ⊆ D, the transition
δ(ι, σ,D′) =

∧
γ∈Γ (γ, ι) ∧ (stay, θ) where θ = ι1 if X0 ∈ σ, and θ = ι2 other-

wise. By Lemma 8, the size of A∃π is exponential (resp. polynomial) in the size
of π(X1, . . . , Xm) (resp. if this path expression is intersection free).

The final automaton A runs over Sϕ-trees t where Sϕ = (Σ∪Subf(ϕ), Γ ), i.e.,
the node labeling includes the (guessed) truth values for Subf(ϕ). To check that
these guesses are correct, A runs an automaton Aξ for each ξ ∈ Subf(ϕ).

For each ξ0 = M(ξ1, . . . , ξm) ∈ Subf(ϕ) with M ∈M ∪Σ ∪ {¬,∨}, we define
an automaton Aξ0 over Sϕ-trees by taking a copy of AM which reads a label
σ ⊆ Σ ∪ Subf(ϕ) of t as if it was σ ∩ (Σ ∪ {ξ0, . . . , ξm}) with ξi further replaced
by Xi. Similarly, for each ξ0 = ∃π(ξ1, . . . , ξm) ∈ Subf(ϕ), we define an automaton
Aξ0 over Sϕ-trees by taking a copy of A∃π which reads a label σ ⊆ Σ ∪ Subf(ϕ)
of t as above.

Finally, A is the disjoint union of all Aξ for ξ ∈ Subf(ϕ) together with a
new initial state ι which starts all the automata Aξ with the initial transitions
δ(ι, σ,D′) =

∧
ξ∈Subf(ϕ)(stay, ιξ) for all D′ ⊆ D. We can check that an Sϕ-tree

t = (V, λ, ν) is accepted by A iff its projection t′ = (V, λ′, ν) on Σ is an S-tree
and for each node u ∈ V we have λ(u)\Σ = {ξ ∈ Subf(ϕ) | t′, u |= ξ}. Therefore,
satisfiability of ϕ over S-trees is reduced to emptiness of the conjunction of A
with a two state automaton checking that ϕ ∈ λ(u) for some node u of the tree.

The size of A is at most exponential (resp. polynomial) in the size of ϕ.
Indeed, each Aξ with top(ξ) �= ∃ is of constant size since the MSO modalities
are fixed and not part of the input. If ξ = ∃π(ξ1, . . . , ξm) then the size of Aξ is
exponential in |π(X1, . . . , Xm)| (note that ξi is replaced by Xi so that its size
does not influence the size of Aξ). Moreover, if π is intersection free then the
size of Aξ is polynomial in |π(X1, . . . , Xm)|. We deduce from Theorem 7 the
2EXPTIME upper bound for Tree-Sat(L) and the EXPTIME upper bound for
Tree-Sat(L−), the intersection free case. ��

From Ordered Unranked Trees to Binary Trees. We recall that an or-
dered unranked tree can be encoded as a binary tree by removing the edges
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(u, v) ∈ Echild whenever v is not a first-child. Note that Echild can be retrieved
from the binary encoding by the path expression child ◦ next∗. Hence any path
expression over ordered unranked trees can be converted to a path expression
over binary trees (with only a linear blowup in the size), and any MSO(S)-
formula over ordered unranked trees can be translated to an MSO(S)-formula
over binary trees. Thus, Theorem 9 holds for ordered unranked trees as well:

Problem 10. O-U-Tree-Sat(L):
Given ϕ ∈ Form(L), are there t ∈ o.u.Trees(S) and node u such that t, u |= ϕ ?

Theorem 11. O-U-Tree-Sat(L) is 2EXPTIME-complete. For the intersection
free fragment L−, the problem O-U-Tree-Sat(L−) is EXPTIME-complete.

The 2EXPTIME lower bound follows from [16]. The EXPTIME lower bound is
inherited from regular XPath [6] (cf. Example 2).

From Nested Traces to Trees. Now, we transform a temporal logic over
nested traces into a temporal logic over their tree encodings that “simulates” the
original logic. This allows us to solve the following problem, which is parametrized
by Proc, Act , k ≥ 1, and a temporal logic L over the induced signature:

Problem 12. Nested-Trace-Sat(L, k): Given ϕ ∈ Form(L), are there G ∈
Tracesk(Proc,Act) and node u such that G, u |= ϕ ?

Theorem 13. Nested-Trace-Sat(L, k) is in 2EXPTIME. For the intersection
free fragment L−, Nested-Trace-Sat(L− , k) is EXPTIME-complete.

The proof of Theorem 13 will be developed in the following. In order to exploit
Theorem 9, we interpret a k-phase nested trace G = (V, λ, ν) in a (binary)
S′-tree (where S′ := (Σ � {1, . . . , k}, {left, right})) using the encoding from
[15], extended to infinite trees. Actually, [15] does not consider nested traces but
k-phase words. Therefore, we will use linearizations of nested traces. Let w =
(V, λ,≤) ∈ Link(G). By �, we denote the direct successor relation of ≤. Suppose
that V = {u0, u1, u2, . . .} and that u0 � u1 � u2 � . . . is the corresponding total
order. For 0 ≤ i < |V |, we let phasew(ui) = min{j ∈ {1, . . . , k} | λ(u0) . . . λ(ui)
is a j-phase word}. Intuitively, this provides a “tight” factorization of w. We
associate with w the S′-tree twk = (V, λ′, ν′) where the node labeling is given by
λ′(ui) = λ(ui) ∪ {phasew(ui)} and the sets of edges are defined by E′

right = Ecr

and E′
left = � \ {(u, v) ∈ � | there is u′ such that (u′, v) ∈ Ecr}. That is,

the tree encoding is obtained from the linearization by adding the cr-edges as
right children and removing the superfluous linear edges to return nodes having
a matching call. Figure 4 depicts the tree tw2 for the linearization w that was
illustrated in Fig. 2. The edges removed from the linearization are shown in
dotted lines. The newly added edges are labelled right. All �-nodes are phase
1 and the ©-nodes are phase 2.

By Treesk(Proc,Act), we denote the set {twk | w ∈ Link(G) for some G ∈
Tracesk(Proc,Act)} of valid tree encodings. The following was proved in [15] for
finite structures, and extends easily to infinite structures.
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Fig. 4. The tree encoding of a 2-phase linearization

Lemma 14 ([15]). There is a formula TreeEnck ∈ MSO(S′) defining the set
Treesk(Proc,Act). Also, there is lessk(x, y) ∈ MSO(S′) such that for all k-phase
words w = (V, λ,≤) and all u, v ∈ V , we have u < v in w iff twk |= lessk(u, v).

Lemma 14 will be used to reduce nested-trace modalities to tree modalities in
the proof of Theorem 13. We also need to deal with path expressions:

Lemma 15. There exists a path expression succ≤k over S′ such that, for all k-
phase linearizations w = (V, λ,≤), we have [[succ≤k]]tw

k
= {(u, v) ∈ V 2 | u � v}.

Moreover, the length of succ≤k is exponential in k.

Proof (of Theorem 13). Let S = (Σ,Γ ) be the signature induced by Proc and
Act , and let L = (M, arity , [[−]]) be the considered temporal logic over nested
traces. For S′ = (Σ � {1, . . . , k}, {left, right}), we define a new temporal logic
L′ = (M′, arity ′, [[−]]′) over S′-trees and give an inductive, linear-time com-
putable translation T of formulas over L to “equivalent” formulas over L′. By
“equivalent”, we mean that for all G ∈ Tracesk(Proc,Act) and all k-phase lin-
earizations w of G, we have [[ϕ]]G = [[T (ϕ)]]tw

k
for each node formula ϕ over L

and [[π]]G = [[T (π)]]tw
k

for each path formula π over L.
We set M′ = M ∪ {Enc} where Enc is a new modality with arity ′(Enc) = 0

that characterizes valid tree encodings: the semantics [[Enc]]′ is given by the for-
mula TreeEnck from Lemma 14. We also change the semantics of the modalities
from M: for each M ∈M, the new semantics [[M ]]′ ∈ MSO(S′) is obtained from
[[M ]] ∈ MSO(S) by replacing each occurrence of cr(x, y) by right(x, y) and each
occurrence of succp(x, y) by p(x) ∧ lessk(x, y) ∧ p(y) ∧ ¬∃z (lessk(x, z) ∧ p(z) ∧
lessk(z, y)) where lessk is the formula from Lemma 14. Note that these transfor-
mations only depend on L and on k (which are not part of the input) and not
on the formula for which we want to check satisfiability.

The translation T from formulas over L to “equivalent” formulas over L′
is defined inductively for node formulas by T (σ) = σ, T (M(ϕ1, . . . , ϕm)) =
M(T (ϕ1), . . . , T (ϕm)), etc., and for path formulas by T (?ϕ) = ?T (ϕ), T (cr) =
right, T (cr−1) = right−1, T (succp) = ?p ◦ succ≤k ◦ (?¬p ◦ succ≤k)∗ ◦ ?p, and
T (succ−1

p ) = ?p ◦ succ−1
≤k ◦ (?¬p ◦ succ−1

≤k)∗ ◦ ?p. The other cases are straightfor-
ward. Here, succ≤k is defined in Lemma 15. Note that the transformation T (π)
of a path formula π is linear in |π| since k is not part of the input.
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Finally, a formula ϕ ∈ Form(L) is satisfiable over k-phase nested traces iff
the formula Enc∧ T (ϕ) ∈ Form(L′) is satisfiable over S′-trees. Using Theorem 9
we get the upper bounds stated in Theorem 13. To obtain the lower bound, one
can show that Nested-Trace-Sat(L− , k) is EXPTIME-hard. This is done by a
reduction from the EXPTIME-complete logic NWTL [1] to the temporal logic L−0
with no modalities and only one process. ��

Remark 16. If k is given as part of the input, the above method for modalities
does not work: the new semantics [[M ]]′ over trees depend on k and are no more
fixed and independent of the input. However, if we consider the fragment L0 with
no MSO modalities, we get a 3EXPTIME procedure even if k is part of the input
since the length of the path expression T (π) is linear in |π| and exponential in k.
Moreover, for the intersection free fragment L−0 , we get a 2EXPTIME procedure.

5 Model Checking

Our approach extends to model checking. We can define a model of concurrent
recursive programs, called concurrent recursive Kripke structures (CRK), that
generates nested traces. It is similar to the model from [5].

Definition 17. A concurrent recursive Kripke structure (CRK) over finite sets
Proc and Act is a tuple K = ((Sp)p∈Proc, Δ, ι). The Sp are disjoint finite sets of
local states (Sp containing the local states of process p). Given a set P ⊆ Proc, we
let SP :=

∏
p∈P Sp. The tuple ι ∈ SProc is a global initial state. Finally, Δ pro-

vides the transitions, which are divided into four sets: Δ = (Δcall, Δ
1
ret, Δ

2
ret, Δint)

where Δcall ⊆
⋃

p∈Proc(Sp × Act × Sp), Δ1
ret ⊆

⋃
p∈Proc(Sp × Act × Sp), Δ2

ret ⊆⋃
p∈Proc(Sp × Sp ×Act × Sp), and Δint ⊆

⋃
P⊆Proc(SP ×Act × SP ).

Let S =
⋃

P⊆Proc SP . For s ∈ S and p ∈ Proc, we let sp be the p-th component
of s (if it exists). A run of the CRK K is an S′-graph G = (V, λ, ν) where
S′ = (Σ �

⊎
p∈Proc Sp, Γ ) with Σ = Proc ∪Act ∪ Type and Γ = {cr} ∪ {succp |

p ∈ Proc}, and the following conditions hold:

– The graph G without the labelings from
⋃

p∈Proc Sp is a nested trace, i.e.,
nt(G) := (V, λ′, ν), with λ′(u) = λ(u) ∩ Σ, is contained in Traces(Proc,Act).

– Every node u is labeled with one, and only one, state from Sp for each
process p ∈ Proc(u). This state is denoted ρ(u)p. The label of a node u does
not contain any state from Sp if p /∈ Proc(u). That is, for all p ∈ Proc and
all u ∈ V , λ(u) ∩ Sp = {ρ(u)p} if p ∈ λ(u), and λ(u) ∩ Sp = ∅ otherwise.
This defines a mapping ρ : V → S by ρ(u) = (ρ(u)p)p∈Proc(u).

– Let us determine another mapping ρ− : V → S as follows: for u ∈ V , we
let ρ−(u) = (ρ−(u)p)p∈Proc(u) where ρ−(u)p = ρ(u′)p if (u′, u) ∈ Esuccp , and
ρ−(u)p = ιp if there is no u′ such that (u′, u) ∈ Esuccp

. The following hold,
for every u, u′ ∈ V and a ∈ Act :
• (ρ−(u), a, ρ(u)) ∈ Δcall if u ∈ Vcall ∩ Va

• (ρ−(u), a, ρ(u)) ∈ Δ1
ret if u ∈ Vret ∩Va and there is no v with (v, u) ∈ Ecr
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• (ρ(u′), ρ−(u), a, ρ(u)) ∈ Δ2
ret if u ∈ Vret ∩ Va and (u′, u) ∈ Ecr

• (ρ−(u), a, ρ(u)) ∈ Δint if u ∈ Vint ∩ Va

We are only interested in maximal runs. We say that a run G of a CRK K is
maximal if G is not a strict prefix of another run of K. The language L(K) of K
is the set {nt(G) | G is a maximal run of K}. By Lk(K), we denote its restriction
L(K) ∩ Tracesk(Proc,Act) to k-phase nested traces.

Let Proc and Act be non-empty finite sets inducing signature S, let k ≥ 1 and
L be a temporal logic over S. We consider the following decision problem.

Problem 18. Model-Checking(L, k): Given CRK K and ϕ ∈ Form(L), do we
have K |=k ϕ, i.e., for all G ∈ Lk(K), is there a node u of G such that G, u |= ϕ ?

Theorem 19. The problem Model-Checking(L, k) is in 2EXPTIME. For the
intersection free fragment L−, Model-Checking(L−, k) in EXPTIME.
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Abstract. We consider here a variation of Vector Addition Systems
where one counter can be tested for zero, extending the reachability proof
by Leroux for Vector Addition System to our model. This provides an
alternate, and hopefully simpler to understand, proof of the reachability
problem that was originally proved by Reinhardt.

1 Introduction

Context Petri Nets, Vector Addition Systems (VAS) and Vector Addition Sys-
tem with control states (VASS) are equivalent well known classes of counter
systems for which the reachability problem is decidable ([11], [7], [10]). If we add
to VAS the ability to test at least two counters for zero, one obtains a model
equivalent to Minsky machines, for which all nontrivial properties are undecid-
able. The study of VAS with a single zero-test transition (VAS0) began recently,
and already a reasonable number of results are known for this model. Reinhardt
[13] has shown that the reachability problem is decidable for VAS0 (as well as
for hierarchical zero-tests). Abdulla and Mayr have shown that the coverability
problem is decidable in [1] by using the backward procedure of Well Structured
Transition Systems [2]. The boundedness problem (whether the reachability set
is finite), the termination and the reversal-boundedness problem (whether the
counters can alternate infinitely often between the increasing and the decreasing
modes) are all decidable by using a forward procedure, a finite but non-complete
Karp and Miller tree provided by Finkel and Sangnier in [5]. The decidability
of the place-boundedness problem, and more generally the possibility to com-
pute a finite representation of the downward closure of the reachability set have
been shown by Bonnet, Finkel, Leroux and Zeitoun in [4] using the notion of
productive sequences.

The reachability problem. The decidability of reachability for VAS was origi-
nally solved by Mayr (1981, [11]) and Kosaraju (1982, [7]). Lambert later simpli-
fied these proofs (1992, [8]) while still using the same proof techniques. Recently,
Leroux gave another way to prove this problem, by using Presburger invariants
and productive sequences ([9], [10]).
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The history of the reachability problem for VAS0 is shorter. The only proofs
are the different versions of Reinhardt proof (original unpublished manuscript
in 1995 [12], then published in 2008 [13]), which is based on showing that any
expression representing a reachability problem can be put in a "normal form" for
which satisfiability is easy to solve. However, the definition of the normal form is
complex, and the proof of termination of the algorithm reducing any expression
to the normal form is difficult to understand. Since this publication, some new
results were found by reduction to reachability in VAS0, for example decidability
of minimal cost reachability in the Priced Timed Petri Nets of Abdulla and Mayr
[1], and the decidability of reachability in a restricted class of pushdown counter
automatas by Atig and Ganty [6].

Our contribution. We propose here an alternate proof of reachability in VAS0,
using the principles Leroux introduced in [10]. The similarity between our proof
with Leroux’ proof hopefully makes it easier to understand.

2 Preliminaries

Sets. N, Z, Q and Q≥0 refers respectively to the sets of non-negative integers,
integers, rationals and non-negative rationals. If X is a set, a vector of Xd

is written (x(1), ..., x(d)) with the vector containing only 0’s written 0d. We
define addition for X,Y ⊆ Qd by X + Y = {x + y | x ∈ X, y ∈ Y } and
multiplication for X ⊆ Qd, K ⊆ Q, K ∗X = {k ∗ x | x ∈ X, k ∈ K}. K ∗X will
be shortened as KX when possible. We also define k�X (k ∈ N) by 0�X = {0d}
and (k + 1) � X = X + (k � X) and we generalize this notation to K ⊆ N
by K � X =

⋃
k∈K(k � X). A function f from Nd (resp. Qd

≥0) to Nd′
(resp.

Qd
≥0) is linear if f(x + y) = f(x) + f(y) and for k ∈ N (resp. k ∈ Q≥0),

f(k ∗ x) = k ∗ f(x). We will allow ourselves to shorten the singleton {x} as x
when the risk of confusion is low. X ⊆ Qd is a vector space if QX ⊆ X and
X +X ⊆ X . Finally, we define Nd

0 = {0} × Nd−1.
A set P ⊆ Qd is periodic if P + P ⊆ P . A set X ⊆ Nd is a finitely generated

periodic set if there exists {x1, . . . , xn} ⊆ X , X = Nx1 + Nx2 + · · · + Nxn. A
semilinear set (also called Presburger set) is a finite union of sets bi +Xi where
bi ∈ Nd and Xi ⊆ Nd is a finitely generated periodic set.

Relations. A relation on X is a set R ⊆ X ×X . We will write x R y to mean
(x, y) ∈ R. Composition of relations on X is defined by R ◦ R′ = {(x, y) ∈
X × X | ∃z ∈ X, (x, z) ∈ R ∧ (z, y) ∈ R′}. We shorten R ◦ R′ as RR′ when
there is no ambiguousity. R∗ is the transitive closure of R. For R a relation on
X and X ′ ⊆ X , we define R(X ′) = {y ∈ X | ∃x ∈ X ′, (x, y) ∈ R}. A set
X ′ ⊆ X is a R-forward invariant if R(X ′) ⊆ X ′. We define R−1 by R−1 =
{(x, y) ∈ X × X | (y, x) ∈ R}. A set X ′ ⊆ X is a R-backward invariant if it
is a R−1-forward invariant. Similarly, for f a function from X to Y , we define
f(X ′) = {y ∈ Y | ∃x ∈ X ′, y = f(x)}.
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Words, Parikh Images. Given a set X , the set of words over X is written X∗.
A word w ∈ X∗ is written a1a2 . . . an with ai ∈ X or optionally

∏
1≤i≤n ai. A

language L is a subset of X∗. The concatenation of two words w1, w2 ∈ X∗ is
written w1w2 and we extend this notation to languages by LL′ = {uv | u ∈
L, v ∈ L′}. NX is the set of functions from X to N. For u ∈ X∗, the parikh image
|u| ∈ NX is defined by |u| (x) = ’number of x’s in u’.

Orders, Well-orders. An ordering � on a set X is a transitive, reflexive and
antisymmetric relation on X . The relation ≺ is defined by x ≺ y iff x � y and
x 
= y. An element x ∈ X is minimal if there exists no x′ ∈ X , x′ ≺ x. � is
a well-order on X if for all sequences (xi)i∈N with xi ∈ X , there exists i < j
with xi � xj . If X is well-ordered, then all subsets of X have a finite number of
minimal elements. Common well-orders are ≤ on N and � on X × Y when X is
well-ordered by ≤X , Y is well-ordered by �Y and (x, y) � (x′, y′) ⇐⇒ x �X

x′ ∧ y �Y y′. Hence, if X is well-ordered by �, Xd is also well-ordered by the
component-wise ordering, that we will also write �.

Word embedding, Higman lemma. If X is ordered by �, we define �emb (the word
embedding order) on X∗ by ai . . . an �emb b1 . . . bp if there exists a strictly in-
creasing function ϕ from {1, . . . , n} to {1, . . . , p} such that ∀i ∈ {1, . . . , n}, ai �
bϕ(i). If � is a well-order on X , then �emb is a well-order on X∗ (Higman’s
lemma).

3 Vector Addition Systems with One Zero-Test

3.1 Transition Systems

Definition 1. A Labelled Transition System (shortly: LTS)S is a tuple 〈X,A,→〉
where X is the set of states, A is a set of transition labels and →⊆ X × A×X
is the transition relation.

We write x a−→ x′ if (x, a, x′) ∈→, and we extend this notation to words of A∗ by
x

ε−→ x and x
uv−→ x′ if there exists x′′ ∈ X , x u−→ x′′

v−→ x′. If L ⊆ A∗, we define
x

L−→ y ⇐⇒ ∃u ∈ L, x
u−→ y and we shorten x

A∗
−−→ y as x ∗−→ y. A transition

sequence u ∈ A∗ is said fireable from x ∈ X if there exists y ∈ X such that
x

u−→ y.

3.2 Vector Addition Systems

Definition 2. A Vector Addition System (shortly: VAS) is a pair 〈A, δ〉 where
A is a set of transition labels and δ a function from A to Zd. d is called the
dimension of the VAS.

A Vector Addition System V = 〈A, δ〉 induces a transition system ts(V) =
〈Nd, A,→〉 where → is defined by:

x
a−→ y ⇐⇒ y = x + δ(a)

Reachability is already known to be decidable for VAS:
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Theorem 1. ([11], [7], [10]) If X and Y are Presburger sets and V a VAS, one
can decide whether {(x, y) ∈ X × Y | x ∗−→V y} is empty.

Definition 3. A Vector Addition System with one zero-test (shortly: VAS0) is
a tuple 〈Az , δ, az〉 where (Az , δ) is a VAS and az ∈ Az is the special zero-test
transition.

Vz = 〈Az , δ, az〉 induces a transition system ts(Vz) = 〈Nd, Az ,→〉 where → is
defined by:

x
a−→ y ⇐⇒ y = x + δ(a) a 
= az

x
az−→ y ⇐⇒

{
y = x + δ(az)
x(1) = 0

The function δ is extended to parikh images by, for v ∈ NAz , δ(v)=
∑

a∈Az

δ(v(a))

and to words by, for u ∈ A∗
z, δ(u) = δ(|u|). This means that x u−→ y =⇒ y =

x + δ(u).

A VAS0 is partially monotonic (the proof is by an easy induction):

Proposition 1. Let x, y ∈ Nd with x ≤ y and x(1) = y(1). Then, if a transition
sequence u ∈ A∗

z is fireable from x, u is fireable from y.

4 Proof Structure

Let us try to summarize the proof structure of [10], that we will mimic. The
main idea is that if a relation has some properties, one can find a witness of non-
reachability. These required properties are given by the notion of Petri set, which
itself relies on the notions of polytope sets and Lambert sets, that generalizes
linear and semilinear sets. After having given in section 4.1 the definitions of
polytope, Lambert and Petri sets, we will recall in section 4.2 some tools from
[10], and especially the result that if a relation is Petri, one can find a witness
of non-reachability which is a Presburger forward invariant.

Now, to prove that our reachability relation is Petri, we have to show that each
transition sequence (a run) can be associated a production relation, such that (1)
the runs ordered by inclusion of their production relations is well-ordered and (2)
these productions relations are polytope. With a few additionnal assumptions,
this means the reachability relation can be written as a finite sum and union of
productions relations (the relations associated to the minimal elements of the
previously defined well-order) and can be shown to be Petri. The main difference
between the proof presented in this paper and [10] is the definition of a new
production relation, done in section 5, that is adapted to the semantics of the
VAS0. The remaining of the paper will show that these production relations
enjoy the required properties, namely well-ordering in section 6 and that they
are polytope in section 7. This will allow us to conclude in section 8.
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Given the similarity between VAS and VAS0, we will reuse a lot of Leroux’
work. The later sections will focus on the changes between the two proofs, with
proofs that are either non-critical or mostly unchanged from Leroux’ paper avail-
able in the long version [3].

4.1 Polytope, Lambert and Petri Sets

A set C ⊆ Qd is conic if it is periodic and Q≥0C = C. A conic set is finitely
generated if there exists a finite set {c1, . . . , cn} ⊆ Q such that C = Q≥0c1 +
. . .+ Q≥0cn.

Definition 4. ([10], Definitions 4.1 and 4.6)
A periodic set P ⊆ Nd is polytope if the conic set Q≥0P is definable in

FO(Q,+,≤, 0, 1) (the first order logic on the specified symbols). A set L ⊆ Nd

is Lambert if it is a finite union of sets bi + Pi where bi ∈ Nd and Pi ⊆ Nd is a
polytope periodic set.

The stability of Lambert sets will be of importance in the sequel. We have
the following properties: (proofs of these statements are reasonably direct, and
available in [3]):

Proposition 2. Given L ⊆ Nd1 , L′ ⊆ Nd2 Lambert sets and k ∈ N:

1. For d1 = d2, L ∪ L′ is Lambert.
2. L× L′ is Lambert.
3. For d′1 < d1, {x ∈ Nd′

1 | ∃y ∈ Nd1−d′
1 , (x, y) ∈ L} is Lambert.

4. For d1 = d2, L + L′ is Lambert.
5. k � L is Lambert.
6. N � L is polytope (more generally Lambert).
7. If δ is a linear function, then δ(L) is Lambert.

Definition 5. ([10], Definition 4.7)
A set X ⊆ Nd is Petri if for all Presburger sets S, S ∩X is Lambert.

4.2 Important Results from Leroux

We recall in this section a few important results from [10].

For a set X ⊆ Qd, the closure of X , written X is defined by:

X = {l | ∀τ > 0, ∃x ∈ X, maxi(x − l)(i) < τ ∧maxi(l − x)(i) < τ}

We have this useful characterization of polytope sets, that we will use to show
that our production relation is polytope:

Theorem 2. ([10], Theorem 3.5)
A periodic set P ⊆ Nd is polytope if and only if the conic set (Q≥0P ) ∩ V is

finitely generated for every vector space V ⊆ Qd
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The second theorem needed is the one motivating Petri sets. A Petri relation
admits witnesses of non-reachability:

Theorem 3. ([10], Theorem 6.1)
Let R be a reflexive relation over Nd such that R∗ is Petri. Let X,Y ⊆ Nd be

two Presburger sets such that R∗ ∩ (X × Y ) is empty. There exists a partition
of Nd into a Presburger R-forward invariant that contains X and a Presburger
R-backward invariant that contains Y .

And finally, we will also need to use that the reachability relation of a VAS is
already known to be Petri:

Theorem 4. ([10], Theorem 9.1)
The reachability relation of a Vector Addition System is a Petri relation.

Since, given a VAS, we can add counters that increase each time a transition
is fired, we can extend this result to include the parikh image of transition
sequences:

Corollary 1. Let V = 〈A, δ〉 be a VAS. Then, {(x, v, y) ∈ Nd × NA × Nd |
∃u, x u−→V y ∧ |u| = v} is a Petri set.

5 Production Relations

For all the remaining sections, we will fix a VAS0 Vz = 〈Az , δ, az〉 of dimension
d. We consider the set A = Az\{az} and V = 〈A, δ|A〉 the restriction of Vz to its

non-az transitions. We have ∗−→ (or
A∗

z−−→) the transition relation of Vz and A∗
−−→

the transition relation of V .
A run μ of Vz is a sequence m0.a1.m1.a2 . . . an.mn alternating markings mi ∈

Nd and actions ai ∈ Az such that for all 1 ≤ i ≤ n, mi−1
ai−→ mi. m0 is called

the source of μ, written src(μ) and mn is called the target of μ, written tgt(μ).
A run ρ of Vz is also a run of V if az doesn’t appear in ρ.

We recall the definitions of the productions relations for a VAS of [10], adapted
to our case by restricting the relation to runs that don’t use the zero-test.

– For a marking m ∈ Nd, −−−→V,m ⊆ Nd × Nd is defined by:

x −−→
V,m

y ⇐⇒ ∃u ∈ A∗, m+ x
u−→ m + y

– For a run ρ = m0.a1.m1 . . . an.mn of V , −−→ρ is defined by:
−−→

ρ = −−−−−→
V,m0 ◦ −−−−−→V,m1 ◦ · · · −−−−−→V,mn

We also define the production relation −−−−→Vz,m ⊆ Nd×Nd of a marking m ∈ Nd
0

inside Vz by:

x −−−→
Vz,m

y ⇐⇒
{
∃u ∈ A∗

z , m+ x
u−→ m + y

x(1) = y(1) = 0
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To extend the definition of a production relation to a run μ of Vz, we consider
the decomposition of μ = ρ0.az .ρ1 . . . az .ρp such that forall 1 ≤ i ≤ p, ρi is a run
of V . In that case, we define the production relation of μ by:

−−→
μ = −−−→

ρ0 ◦ −−−−−−−−→Vz,tgt(ρ0) ◦ −−−→ρ1 ◦ · · · ◦ −−−−−−−−−→Vz,tgt(ρp−1) ◦ −−−→ρp

Proposition 3. For m ∈ Nd, m′ ∈ Nd
0 and μ a run of Vz (a run V being a

special case), −−−→V,m , −−−−−→Vz,m′ and −−→μ are periodic.

Proof: The result is easy for −−−→V,m and −−−−−→Vz,m′ . We conclude by the fact that
the composition of periodic relations is periodic. �

One can prove by a simple induction on the length of μ (available in [3]) the
following statement:

Proposition 4. For a run μ of Vz, we have:

(src(μ), tgt(μ)) +−−→
μ ⊆ ∗−→

6 Well-Orderings of Production Relations

For two runs μ, μ′, let us define � by:

μ � μ′ ⇐⇒ (src(μ′), tgt(μ′)) +−−→
μ′ ⊆ (src(μ), tgt(μ)) +−−→

μ

Our aim is to show that � is a well-order. To do that, we define the order �
on runs of Vz in the following way:

– For ρ = m0.a1.m1 . . . ap.mp and ρ′ = m′
0.a

′
1.m

′
1 . . . a

′
q.m

′
q runs of V (ai, a

′
i ∈

A), we have ρ � ρ′ if (same definition as in [10]):

• m0 ≤ m′
0 and mp ≤ m′

q

•
∏

1≤i≤p(ai,mi) ≤emb
∏

1≤i≤q(a′i,m
′
i)

with (a,m) ≤ (a′,m′) ⇐⇒ a = a′ ∧m ≤ m′

– For μ = ρ0.az.ρ1 . . . az.ρp and μ′ = ρ′0.az.ρ
′
1 . . . az.ρ

′
q runs of Vz (with ρi, ρ

′
i

runs of V), we have μ � μ′ if:

• ρ0 � ρ′0 and ρp � ρ′q

•
∏

1≤i≤p ρi �emb
∏

1≤i≤q ρ
′
i

Two applications of Higman’s lemma gives us the following result:

Proposition 5. The order � is well.

Now, we only need to prove the following:
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Proposition 6. For μ, μ′ runs of Vz, we have:

μ � μ′ =⇒ μ � μ′

Proof Sketch: The full proof is available in [3]. [10] already contains the result
for runs without the zero-test.

The idea is that our run can be decomposed in the following way, where ϕi,j

refers to "suppressed" sequences, and ρ′′i are greater than ρi for �.

∏
1≤k≤q

ρ′k = ρ′′0

⎛⎝ ∏
1≤j≤n0

ϕ0,j

⎞⎠ ρ′′1 · · ·

⎛⎝ ∏
1≤j≤np−1

ϕp−1,j

⎞⎠ ρ′′p

Now, the outline of the proof is to base ourselves on Leroux’ result for runs
without zero-tests, and to show that the productions of suppressed sequences
are included in −−−−−−−→Vz,tgt(ρi) where ρi is the part of the run before the suppressed
sequence. �
We can now combine propositions 5 and 6 to get:

Theorem 5. � is a well-order on runs of Vz.

7 Polytopie of the Production Relation

Showing the polytopie of −−→μ follows (again!) [10]. The main difference is that
while the production relations of Leroux were approximated by a finite automata
where the edges represented transitions of the system, our approximation will
have its edges representing runs of the VAS V .

First, we note that the relation −−→μ is a finite composition of relations −−−→V,m

(for m ∈ Nd) and −−−−→Vz,m (for m ∈ Nd
0). To show that −−→μ is polytope, we recall

two results from [10] regarding production relations:

Lemma 1. ([10], Lemma 8.2)
If R and R′ are two polytope periodic relations, then R ◦ R′ is a polytope

periodic relation.

Theorem 6. ([10], Theorem 8.1)
For m ∈ Nd, −−−→V,m is polytope.

These two results mean we only need to prove that −−−−→Vz,m is a polytope periodic
relation for m ∈ Nd

0.

Proposition 7. For m ∈ Nd
0,
−−−−→

Vz,m is polytope.

Proof: Theorem 2 shows that −−−−→Vz,m is polytope if and only if the following
conic space is finitely generated for every vector space V ⊆ Qd ×Qd:

(Q≥0
−−−−→
Vz,m ) ∩ V = Q≥0(−−−−→Vz ,m ∩ V )
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Let us define V0 = (Nd
0×Nd

0)∩V . We will re-use the idea of Leroux’ intrapro-
ductions, but by restricting them to Nd

0. LetQm,V = {y ∈ Nd
0 | ∃(x, z) ∈ (m,m)+

V0, x
∗−→ y

∗−→ z} and Im,V ⊆ {1, . . . , d} by i ∈ Im,V ⇐⇒ {q(i) | q ∈ Qm,V } is
infinite. Note that 1 
∈ Im,V , as for all q ∈ Qm,V , q(1) = 0. An intraproduction
for (m,V0) is a triple (r, x, s) such that x ∈ Nd

0 and (r, s) ∈ V0 with:

r −−−→
Vz,m

x −−−→
Vz,m

s

An intraproduction is total if x(i) > 0 for every i ∈ Im,V . The following
lemma can be proved exactly as Lemma 8.3 of [10] (a precise proof is available
in [3]):

Lemma 2. There exists a total intraproduction for (m,V0).

Now we define N∞ = N ∪ {∞}, ordered by x < ∞ for every x ∈ N. Given a
finite set I ⊆ {1, . . . , d} and a marking m ∈ Nd, we denote by mI the vector of
Nd

∞ defined by mI(i) = ∞ if i ∈ I and mI(i) = m(i) otherwise. We also define
the order ≤∞ by x ≤∞ y if for all i, y(i) = ∞ or x(i) = y(i) (equivalently there
exists I ⊆ {1, . . . , d}, xI = y). For a relation →, and (x, y) ∈ Nd

∞. We define
x→ x′ if there exists (m,m′) ∈ Nd, m ≤∞ x and m′ ≤∞ x′ with m→ m′.

Let Q = {qIm,V | q ∈ Qm,V } and G the complete directed graph with nodes
Q whose edges from q to q′ are labeled by (q, q′). For w ∈ (Q ×Q)∗, we define
TProd(w) ⊆ NAz by:

TProd(ε) = {0Az}

TProd((q, q′)) =

⎧⎨⎩|u| | ∃(x, x′) ∈ Nd
0 × Nd

0,

x ≤∞ q, x′ ≤∞ q′,
u ∈ azA

∗ ∪A∗,

x
u−→ x′

⎫⎬⎭
TProd(uv) = TProd(u) + TProd(v)

We define the periodic relation Rm,V on V0 by r Rm,V s if:

1. r(i) = s(i) = 0 for every i 
∈ Im,V

2. there exists a cycle labelled by w in G on the state mIm,V and v ∈ TProd(w)
such that r + δ(v) = s.

Lemma 3. The periodic relation Rm,V is polytope.

Proof: First, let’s show that TProd((q, q′)) is Lambert for every (q, q′) ∈ Q×Q.
We define X1 = {(x′, y) ∈ Nd

0 × Nd
0 | ∃x ≤∞ q, x

az−→ x′ ∧ y ≤∞ q′} and
X2 = {(x, y) ∈ Nd

0 × Nd
0 | x ≤∞ q ∧ y ≤∞ q′} which are Presburger sets.

Because, Y = {(x′, v, y) ∈ Nd × NA × Nd | ∃u ∈ A∗, x′
u−→ y ∧ |u| = v}

is a Petri set (corollary 1), Y1 = Y ∩ (X1 × NA × Nd) and Y2 = Y ∩ (X2 ×
NA ×Nd) are Lambert sets, and by projection (proposition 2), TProd((q, q′)) =(
|az|+ {u | ∃(x, y) ∈ Nd × Nd, (x, u, y) ∈ Y1}

)
∪ {u | ∃(x, y) ∈ Nd, (x, u, y) ∈

Y2} is Lambert.
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Let P ⊆ NQ×Q be the Parikh image of the language L made of words labelling
cycles in G on the state mIm,V . L is a language recognized by a finite automaton,
hence P is a Presburger set.

Now, let’s show that R′
m,V = {TProd(w) | w ∈ L} is a Lambert set. We have:

R′
m,V =

{ ∑
a∈Q×Q

v(a) � TProd(a) | v ∈ P

}

P is Presburger, hence there exists (di)1≤i≤p, (ei,j)1≤i≤p,1≤j≤ni with di, ei,j ∈
NQ×Q and P =

⋃
i di +ΣjNei,j . This gives:

R′
m,V =

⋃
1≤i≤p

⋃
v∈Np

∑
1≤j≤ni

∑
a∈Q×Q

(di + v(j) ∗ ei,j)(a) � TProd(a)

=
⋃
i

∑
a
di(a) � TProd(a) +

⋃
i

∑
j

⋃
k∈N

∑
a

(k ∗ ei,j)(a) � TProd(a)

=
⋃
i

∑
a
di(a) � TProd(a) +

⋃
i

∑
j

N �

(∑
a
ei,j(a) � TProd(a)

)
For all a ∈ Q×Q, we have seen that TProd(a) is Lambert. So because Lambert

sets are stable by addition, union and N�, (proposition 2), R′
m,V is Lambert.

We define VIm,V = {x ∈ Nd | ∀i 
∈ Im,V , x(i) = 0} and R′′
m,V = {(r, r+ δ(x)) |

r ∈ VIm,V ∧x ∈ R′
m,V } = {(r, r) | r ∈ VIm,V }+{0}d×δ(R′

m,V ). By proposition 2,
we have R′′

m,V built from R′
m,V by the image through a linear function and the

sum with a Presburger set, which means R′′
m,V is Lambert. But, R′′

m,V is periodic,
which means R′′

m,V = N�R′′
m,V is polytope. Finally, as proposition 2, gives us that

polytope sets are stable by intersection with vector spaces, Rm,V = R′′
m,V ∩ V is

polytope. �

We will now show that our graph G is an accurate representation of the reacha-
bility relation:

Lemma 4. Let w be the label of a path in G from m
Im,V

1 to m
Im,V

2 and v ∈
TProd(w). Then, there exists u ∈ A∗

z with |u| = v and (x, y) ∈ Nd
0 × Nd

0, x ≤∞
m

Im,V

1 and y ≤∞ m
Im,V

2 such that x u−→ y.

Proof: We show this by induction on the length of w. Let w = w0(q, q′) where w0

is a path fromm
Im,V

1 tomIm,V

3 and (q, q′) is an edge fromm
Im,V

3 tomIm,V

2 and v ∈
TProd(w0(q, q′)). This means there exists v1 ∈ TProd(w0), v2 ∈ TProd(q, q′)
such that v = v1 + v2. By induction hypothesis, there exists u1 ∈ Nd

0 × Nd
0,

x′0 ≤∞ m
Im,V

1 and y′0 ≤∞ m
Im,V

3 such that x′0
u1−→ y′0 and |u1| = v1.

By definition of TProd((q, q′)), as v2 ∈ TProd((q, q′)), there exists x′1 ≤
m

Im,V

3 , y′1 ≤∞ m
Im,V

2 and u2 ∈ azA
∗ ∪A∗ such that x′1

u2−→ y′1 and |u2| = v2. Let
z = max(y′0, x

′
1). We have z(1) = y′0(1) = x′1(1) = m3(1) = 0, which gives us:

x′0 + (z − y′0) u1−→ z
u2−→ y′1 + (z − x′1)
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As zIm,V = y′0
Im,V = x′1

Im,V = m
Im,V

3 , we have (z − y′0) ≤∞ 0Im,V and
(z − x′1) ≤∞ 0Im,V , which allows us to define x = x′0 + (z − y′0) ≤∞ m

Im,V

1 and
y = y′1 + (z − x′1) ≤∞ m

Im,V

2 . u = u1u2 completes the result. �

We now show a lemma for the other direction:

Lemma 5. Let (m1,m2) ∈ Qm,V × Qm,V with u ∈ A∗
z such that m1

u−→ m2.
There exists w ∈ (Q × Q)∗ label of a path from m

Im,V

1 to m
Im,V

2 such that
|u| ∈ TProd(w).

Proof: Let u = u1azu2 . . . azun with ui ∈ A∗. We define (xi)1≤i≤n, xi ∈ Nd
0 by:

m
u1−→ x1

azu2−−−→ x2
azu3−−−→ x3 · · ·

azun−−−→ xn = m2

We have for all i, xi ∈ Nd
0, which leads to |u1| ∈ TProd((mIm,V

1 , x
Im,V

1 ))
and for all i ∈ {1, . . . , n − 1}, |azun| ∈ TProd((xIm,V

i , x
Im,V

i+1 )). Hence, we can
define w = (mIm,V

1 , x
Im,V

1 )(xIm,V

1 , x
Im,V

2 ) . . . (xIm,V

n−1 ,m
Im,V

2 ) and we have |u| ∈
TProd(w). �

Thanks to lemmas 4 and 5, we can now prove the following lemma exactly in
the same way as Lemma 8.5 of [10] (full proof in [3])

Lemma 6. Q≥0Rm,V = Q≥0(−−−−→Vz,m ∩ V0)

By lemma 3, Rm,V is polytope, hence Q≥0Rm,V is finitely generated. We have
proven proposition 7. �

Finally, as −−→μ is a finite composition of elements of the form −−−→
V,m and −−−−→Vz,m ,

we have proven the following result:

Theorem 7. If μ is a run of Vz, then −−→μ is polytope.

8 Decidability of Reachability

We have now all the results necessary to show the following:

Theorem 8. ∗−→ is a Petri relation.

Proof Sketch: Similarly as in Theorem 9.1 of [10], one can show thanks to
proposition 4 and theorem 5 that for any (m,n) ∈ Nd ×Nd and P ⊆ Nd finitely
generated periodic set, there exists a finite set B of runs of Vz such that:

∗−→ ∩((m,n) + P ) =
⋃

μ∈B

(src(μ), tgt(μ)) + (−−→μ ∩ P )

Then, proposition 5 allows to conclude that ∗−→ is Petri. The full proof is available
in [3]. �

Because
(

azA∗∪A∗
−−−−−−→

)∗
=

A∗
z−−→, we can now apply theorem 3 and get:
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Proposition 8. If X and Y are two Presburger sets such that
A∗

z−−→ ∩(X×Y ) =

∅, then there exists a Presburger azA∗∪A∗
−−−−−−→-forward invariant X ′ with X ′∩Y = ∅.

Now that we have shown the existence of such an invariant, we only need to
show that we are able to test whether a given set is an invariant:

Proposition 9. Whether a Presburger set X is a azA∗∪A∗
−−−−−−→-forward invariant

is decidable.

Proof: X is a forward invariant for azA∗∪A∗
−−−−−−→ if and only if az−→ (X) ⊆ X

and A∗
−−→ (X) ⊆ X . Because az−→ (X) is a Presburger set, the first condition is

decidable as the inclusion of Presburger sets, and the second reduces to deciding
whether A∗

−−→ ∩ (X × Nd\X) is empty, which is an instance of the reachability
problem in a VAS (Theorem 1). �

By the propositions 8 and 9, reachability is co-semidecidable by enumerating
forward invariants, and as semidecidability is clear, we conclude:

Theorem 9. Reachability in VAS0 is decidable.
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helpful discussions and for pointing a critical mistake in a previous version and
to the anonymous referees for their comments.

References

1. Abdulla, P., Mayr, R.: Minimal cost reachability/coverability in priced timed
petri nets. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 348–363.
Springer, Heidelberg (2009)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS 1996, pp. 313–321 (1996)

3. Bonnet, R.: The reachability problem for vector addition systems with one zero-
test. Research Report LSV-11-11, Laboratoire Spécification et Vérification, ENS
Cachan, France, pages 19 (May 2011)

4. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Place-boundedness for vector ad-
dition systems with one zero-test. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS
2010, Leibniz International Proceedings in Informatics, Chennai, India, vol. 8, pp.
192–203. Leibniz-Zentrum für Informatik (December 2010)

5. Finkel, A., Sangnier, A.: Mixing coverability and reachability to analyze VASS with
one zero-test. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B.
(eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 394–406. Springer, Heidelberg (2010)

6. Ganty, P., Atig, M.F.: Approximating petri net reachability along context-free
traces. CoRR, abs/1105.1657 (2011)

7. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: STOC 1982, pp. 267–281. ACM, New York (1982)



The Reachability Problem for Vector Addition System with One Zero-Test 157

8. Lambert, J.L.: A structure to decide reachability in petri nets. Theoretical Com-
puter Science 99(1), 79 (1992)

9. Leroux, J.: The general vector addition system reachability problem by presburger
inductive invariants. In: Symposium on Logic in Computer Science, pp. 4–13 (2009)

10. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. SIGPLAN Not. 46, 307–316 (2011)

11. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: STOC
1981: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Com-
puting, pp. 238–246. ACM, New York (1981)

12. Reinhardt, K.: Reachability in Petri Nets with inhibitor arcs (1995),
http://www-ti.informatik.uni-tuebingen.de/~reinhard/abstracts.html
(unpublished)

13. Reinhardt, K.: Reachability in Petri Nets with inhibitor arcs. Electr. Notes Theor.
Comput. Sci. 223, 239–264 (2008)

http://www-ti.informatik.uni-tuebingen.de/~reinhard/abstracts.html


The Bounded Search Tree Algorithm for the

Closest String Problem Has Quadratic
Smoothed Complexity

Christina Boucher

Department of Computer Science and Engineering
University of California, San Diego

cboucher@eng.ucsd.edu

Abstract. Given a set S of n strings, each of length �, and a non-
negative value d, we define a center string as a string of length � that
has Hamming distance at most d from each string in S. The Closest

String problem aims to determine whether there exists a center string
for a given set of strings S and input parameters n, �, and d. When n is
relatively large with respect to � then the basic majority algorithm solves
the Closest String problem efficiently, and the problem can also be
solved efficiently when either n, � or d is reasonably small [12]. Hence,
the only case for which there is no known efficient algorithm is when n is
between log �/ log log � and log �. Using smoothed analysis, we prove that
such Closest String instances can be solved efficiently by the O(n� +
nd ·dd)-time algorithm by Gramm et al. [13]. In particular, we show that
for any given Closest String instance I , the expected running time of

this algorithm on a small perturbation of I is O
(
n� + nd · d2+o(1)

)
.

1 Introduction

Finding similar regions in multiple DNA, RNA, or protein sequences plays an
important role in many applications, including universal PCR primer design
[7,16,19,26], genetic probe design [16], antisense drug design [6,16], finding tran-
scription factor binding sites in genomic data [28], determining an unbiased
consensus of a protein family [4], and motif recognition [16,24,25]. The Closest

String problem formalizes this task of finding a common pattern in an input
set of strings and can be defined as follows:

Input: A set of n length-	 strings S = {s1, . . . , sn} over a finite alphabet Σ and
a nonnegative integer d.
Question: Find a string s of length 	, where the Hamming distance from s to
any string in si is at most d.

We refer to s as the center string and let d(x, y) be the Hamming distance be-
tween strings x and y. The optimization version of this problem tries to minimize
the parameter d.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 158–169, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The Closest String problem was first introduced and studied in the con-
text of bioinformatics by Lanctot et al. [16]. Frances and Litman [11] showed the
problem to be NP-complete even for the special case when the input contains
only binary strings, implying there is unlikely to be a polynomial-time algorithm
for solving this problem unless P = NP. Since its introduction, efficient approx-
imation algorithms and exact heuristics for the Closest String problem have
been thoroughly considered [9,10,13,16,17,21]. Most recently, Hufsky et al. [14]
introduced a data reduction techniques that allows instances that do not have a
solution and can be filtered out and incorporate this preprocessing step into the
algorithm of Gramm et al. [13].

One approach to investigating the computational intractability of the Clos-

est String problem is to consider its parameterized complexity, which aims
to classify computationally hard problems according to their inherent difficulty
with respect to a subset of the input parameters. If it is solvable by an algo-
rithm whose running time is polynomial in the input size and exponential in
parameters that typically remain small then it can still be considered tractable
in some practical sense. A problem ϕ is said to be fixed-parameter tractable with
respect to parameter k if there exists an algorithm that solves ϕ in f(k) · nO(1)

time, where f is a function of k that is independent of n [8]. Gramm et al. [13]
proved that Closest String is fixed-parameter tractable with respect to the
parameter d by giving a O(n	 + nd · dd)-time algorithm that is based on the
bounded search tree paradigm.

It has been previously shown that when the number of strings is significantly
large with respect to 	 (namely, whenever 2n > 	) then the basic majority algo-
rithm, which returns a string that contains the majority symbol at each position
with ties broken arbitrarily, works well in practice. Also, there exist efficient so-
lutions for the Closest String problem when either n, 	 or d are reasonably
small [12]. The only case for which there is no known efficient algorithm is when
n is between log 	/ log log 	 and log 	. Ma and Sun [21] state: “The instances with
d in this range seem to be the hardest instances of the closest string problem.
However, because the fixed-parameter algorithm has polynomial (although with
high degree) running time on these instances, a proof for the hardness of these
instances seem to be difficult too.”

We initiate the study of the smoothed complexity of a slightly modified ver-
sion of the algorithm by Gramm et al. [13], and demonstrate that more careful
analysis of the algorithm of Gramm et al. [13] reveals that it is efficient for
the “hardest” Closest String instances where n is between log 	/ log log 	 and
log 	. Our analysis gives an analytical reason as to why this algorithm performs
well in practice. We introduce a perturbation model for the Closest String

problem, and prove that the expected size of the search tree of the algorithm
of Gramm et al. [13] on these smoothed instances is at most d2+o(1), hence
resolving an open problem that was suggested by Gramm et al. [13], and Ma
and Sun [21].
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1.1 Related Work

Gramm et al. [13] proved that the Closest String problem is fixed-parameter
tractable when parameterized by n, and when parameterized by d. More recently,
Ma and Sun gave an O(n|Σ|O(d))-time algorithm, which is a fixed-parameter al-
gorithm in parameters d and Σ [21]. Chen et al. [5], Wang and Zhu [29], and
Zhao and Zhang [30] improved upon the fixed-parameter tractable result of Ma
and Sun [21]. Lokshtanov et al. [18] gave a lower bound for the time complexity
for the Closest String problem with respect to d. Another approach to inves-
tigate the tractability of this NP-complete problem is to consider how well the
Closest String problem can be approximated in polynomial-time. Lanctot et
al. [16] gave a polynomial time algorithm that achieves a 4

3 +o(1) approximation
guarantee. Li et al. [17], Andoni et al. [1] and Ma and Sun [21] each proved
PTAS results for this problem.

Smoothed analysis was introduced as an intermediate measure between worst-
case and average-case analysis and is used to explain the phenomena that many
algorithms with detrimental worst-case analysis efficiently find good solutions
in practice. It works by showing that the worst-case instances are fragile to
small change; slightly perturbing a worst-case instance destroys the property of
it being worst-case [27]. The smoothed complexity of other string and sequence
problems has been considered by Andoni and Krauthgamer [2], Banderier et
al. [3], Manthey and Reischuk [23], and Ma [20]. Andoni and Krauthgamer [2]
studied the smoothed complexity of sequence alignment by the use of a novel
model of edit distance; their results demonstrate the efficiency of several tools
used for sequence alignment, most notably PatternHunter [22]. Manthey and
Reischuk gave several results considering the smoothed analysis of binary search
trees [23]. Ma demonstrated that a simple greedy algorithm runs efficiently in
practice for Shortest Common Superstring [20], a problem that has appli-
cations to string compression and DNA sequence assembly.

1.2 Preliminaries

Let s be a string over the alphabet Σ. We denote the length of s as |s|, and
the jth letter of s as s[j]. Hence, s = s[1]s[2] . . . s[|s|]. It will be convenient to
consider a set of strings S = {s1, . . . , sn}, each of which has length 	, as a n× 	
matrix. Then we refer to the ith column as the vector ci = [s1(i), . . . , sn(i)]T in
the matrix representation of S.

We refer to a majority string for S as the length-	 string containing the letter
that occurs most often at each position; this string is not necessarily unique.
The following fact, which is easily proved, is used in Section 3.

Fact 1. Let I = (S, d) be a Closest String instance and smaj be any majority
string for S then d(s∗, smaj) ≤ 2d for any center string s∗ for S.

Given functions f and g of a natural number variable x, the notation f � g
(x→∞) is used to express that

lim
x→∞

f(x)
g(x)

= 1
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and f is an asymptotic estimation of g (for relatively large values of x). The
following asymptotic estimation is used in our analysis.

Fact 2. For fixed j > 0 the following asymptotic estimation exists:

2d∑
i=0

(
2i+ j

i

)(
	− 1
	

)i(1
	

)i+j

�
(

1
	− 1

)2d

.

Given a Closest String instance I = (S, d) that has at least one center string
we can assume, without loss of generality, that 0� is a center string; any instance
that has a center string can be transformed to an equivalent instance where 0�

is a center string [12]. Hence, for the remainder of this paper we assume that
any instance that has a center string, has 0� is a center string.

2 Bounded Search Tree Algorithm

The following algorithm, due to Gramm et al. [13], applies a well-known bounded
search tree paradigm to prove that the Closest String problem can be solved
in linear time when parameterized by d.

Bounded Search Tree Algorithm
Input: A Closest String instance I = (S, d), a candidate string s, and a param-
eter Δd.
Output: A center string s if it exists, and “not found” otherwise.
If Δd < 0, then return “Not found”
Choose i ∈ {1, . . . , n} such that d(s, si) > d.

P = {p|s[p] �= si[p]};
Choose any P ′ ⊆ P with |P ′| = d + 1.
For each position p ∈ P ′

Let s(p) = si(p)
sret = Bounded Search Tree Algorithm (s, Δd − 1)
If sret �= “not found ”, then return sret

Return “not found”

The parameter Δd is initialized to be equal to d. Since every recursive call
decreases Δd by one and the algorithm halts when Δd < 0, the search tree
has height at most d. At each recursive step if the candidate string s is not a
center string then it is augmented at one position as follows: a string si is chosen
uniformly at random from the set of strings that have distance greater than d
from s, and s is changed so that it is equal to si at one of the positions where s
and si disagree. This yields an upper bound of (d + 1)d on the search tree size.

Gramm et al. [13] initialize the candidate string s to be a string from S chosen
uniformly at random. We consider a slight modification where the candidate
string is initialized to be a majority string. As stated in Fact 1, any majority
string has distance at most 2d from the center string. The analysis of Gramm et
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al. [13] concerning the running time and correctness of the algorithm holds for
this modification, and yields a worst-case of O(n	+nd·d2d). Hence, the following
theorem is a trivial extension to the worst-case analysis by Gramm et al. [13]
and will be used in our smoothed analysis of Bounded Search Tree Algorithm.

Theorem 1. “Bounded Search Tree Algorithm” solves the Closest String

problem in O(n	+ nd · d2d)-time.

3 Smoothed Analysis

3.1 Pertubation of Closest String Instances

Our model applies to problems defined on strings. It is parameterized by a
probability p, where 0 ≤ p ≤ 1 and is defined as follows. Given a length-	
string s[1]s[2] . . . s[	], each element is selected (independently) with probability
p. Let x be the number of selected elements (on average x = p	). Replace each
of the x positions with a symbol chosen (uniformly at random) from the set of
|Σ| symbols from Σ. Given a Closest String instance I = (S, d), we obtain
a perturbed instance of I by perturbing each string in S with probability p > 0
as previously described. We denote a perturbed instance as I ′ = (S′, d′), where
d′ = d and S′ contains the perturbed strings of S.

This perturbation model has the effect of naturally adding noise to input. Note
that the pertubation model may have the affect of converting an instance that
has a center string to one that does not, however, this remains a valid model for
smoothed analysis. For example, the model used by Spielman and Teng allows
pertubation from a feasible linear program to a non-feasible linear program [27].

3.2 Good Columns and Simple Instances

In this subsection we classify the instances for which the Bounded Search Tree
Algorithm performs efficiently, and bound the probability that an instance has
this classification. This classification is used in our smoothed analysis.

Definition 1. Let I = (S, d) be a Closest String instance, and Smaj be the
set of majority strings for S. We define S as simple if any string in Smaj has
Hamming distance at most d from all strings in S.

Closest String instances that are simple have the property that Bounded
Search Tree Algorithm halts immediately with a center string. In the remainder
of this subsection we aim to bound the probability that an instance is simple. The
next definitions are used to simplify the discussion of the analysis that bounds
this probability.

Recall our assumption that any instance that contains a center string has 0�

as a center string. Given an instance I = (S, d) with a center string, we refer to a
column of S as good if it contains more zeros than nonzeros and thus, guarantees
that the majority symbol is equal to the center string at that position; all other
columns are bad.
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Lemma 1. Let I ′ = (S′, d′) be the perturbed instance of I = (S, d) with probability

p. Then the probability that I ′ is not simple is at least 1−
(

1− (q(1− q))n/2−1
)�

and at most 1−
(

1−
(

n
n/2+1

)
(q(1− q))n/2+1

)�

, where 0 ≤ q ≤ d
� (1− 2p) + p.

Proof. Let s′i ∈ S′, s∗ be a closest string for S, and q denote the probability that
s′i[j] = 0 for some 0 ≤ j ≤ 	. It follows that

q =
d(si, s

∗)
	

(1 − p) +
(

1− d(si, s
∗)

	

)
p =

d(si, s
∗)

	
(1− 2p) + p,

which is at most d
� (1− 2p) + p. We first calculate the probability that a column

is good when n is odd. Let Xi,j be a binary random variable that is equal to 1 if
si is equal to the value of the center string (i.e. equal to 0) at the jth position.
For a given column j we let the number of zeros be Xj =

∑
i Xi,j .

Pr[Xj ≥ �n/2�+ 1] = 1− Pr[Xj ≤ �n/2�]

= 1− (1 − q)n

�n/2�∑
i=0

(
n

i

)(
q

1− q

)i

We focus on bounding (1− q)n
∑�n/2�

i=0

(
n
i

)(
q

1−q

)i

. Note that
(
n
i

)
is unimodal,

peaking when i is equal to �n/2� when 0 ≤ i ≤ �n/2�. We have that:

S =
�n/2�∑
i=0

(
n

i

)(
q

1− q

)i

≥
(

n

�n/2� − 1

)(
q

1− q

)�n/2�−1

and similarly,

S =
�n/2�∑
i=0

(
n

i

)(
q

1− q

)i

≤
(

n

�n/2�

) �n/2�∑
i=0

(
q

1− q

)i

[unimodality]

≤
(

n

�n/2�

)(
q

1− q

)�n/2�
[geometric series]

The sum S is equal to the first term up to a small multiplicative error and
therefore, we obtain the following:

Pr[Xj > �n/2�] ≈ 1− q�n/2�(1− q)�n/2�
(

n

�n/2�

)
Therefore, we obtain the following bounds:

1−
(

n

n/2− 1

)
(q(1− q))n/2−1 ≤ Pr[Xj > �n/2�] ≤ 1− (q(1 − q))n/2+1

Using the previous inequality we can bound the probability that I ′ is not
simple by determining the probability that I ′ contains at least one bad column.
Thus, we get
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1−
(

1− (q(1− q))n/2+1
)�

≤ Pr[I ′ is not simple]

and

Pr[I ′ is not simple] ≤ 1−
(

1−
(

n

n/2− 1

)
(q(1 − q))n/2+1

)�

.

Similarly, these bounds exist for the case when n is even. �

3.3 Smoothed Height of the Bounded Search Tree

As previously discussed, there are O(dd) possible paths in a bounded search tree,
denoted as T , corresponding to the solutions traversed by the Bounded Search
Tree Algorithm. We now bound the size of T for perturbed instances.

Let Pi be the indicator variable describing whether the ith path in T results
in a center string, i.e. Pi = 1 if the ith path leads to a center string and Pi = 0
otherwise. The algorithm halts when Pi = 1. Let PP〉=∞ be the number of paths
considered until Pi = 1 and the algorithm halts.

Lemma 2. Let I ′ = (S′, d′) be a perturbed instance with probability 0 < p ≤ 1
2 .

If I ′ = (S′, d′) is not a simple instance, then for sufficiently large 	, constant
c > 0, and when n is between log 	/ log log 	 and log 	, we have:

Pr[P ≥ ddpc] ≤ 1
ddpc

.

Proof. If I ′ = (S′, d′) does not have a center string then Bounded Search Tree
Algorithm will always return false; otherwise, Pi = 1 with some probability.
It follows that the expected number of paths that need to be considered is
1/Pr[Pi = 1].

We now calculate Pr[Pi = 1]. If the candidate string s is not equal to 0� (i.e. a
center string) then there exists at least one position of s that can be augmented
so that d(s, 0�) decreases by one; the probability of this occurring is at least 1/	.
Let Yk ∈ {0, 1, . . . , d′} be the random variable that corresponds to the Hamming
distance between s and 0�, where k is the number of recursive iterations of
the algorithm. The process Y0, Y1, Y2, . . . is a Markov chain with a barrier at
state d′ and contains varying time and state dependent transfer probabilities.
This process is overly complicated and we instead analyze the following Markov
chain: Z0, Z1, . . ., where Zk is the random variable that is equal to the state
number after k recursive steps and there exists infinitely many states. Initially,
this Markov chain is started like the stochastic process above, i.e. Z0 = Y0. We
let Zk+1 = Yk − 1 if the process decreases the Hamming distance between s and
0� by one; otherwise Zk+1 = Yk+1. After the algorithm halts, we continue with
the same transfer probabilities. We can show by induction on k that Yk ≤ Zk

for all k and therefore, Pr[Pi = 1] is at least Pr[∃t ≤ d : Zt = 0].
We made the assumption that S′ contains only one center string, however, this

assumption is not needed – the random walk may find another center string while
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not in the terminating state but this possibility only increases the probability
that the algorithm terminates.

Given that the Markov chain starts in state k it can reach a halting state in at
least k steps by making transitions through the states k− 1, k− 2, . . ., 1, 0. The
probability of this happening is (1/	)k. We now incorporate the possibility that
several steps in the“wrong” direction are made in the analysis; “wrong” steps
refer to when the candidate string is altered so that the distance between the
candidate string and the center string increases. Suppose w steps in the Markov
chain are taken in wrong direction then k +w steps are needed in the “correct”
direction, and therefore, the halting state can be reached in 2w + k steps. Let
q(w, k) be the probability that Z2w+k = 0 such that the halting state is not
reached in any earlier set, under the condition that the Markov chain started in
state k. More formally,

q(w, k) = Pr[Z2w+k = 0 and Zα > 0 ∀ α < 2w + k | Z0 = k].

Clearly q(0, k) = (1/	)k, and in the general case q(w, k) is ((	− 1)/	)w(1/	)w+k

times the number of ways of arranging w wrong steps and w + k correct steps
such that the sequence starts in state k, ends in the halting state and does not
reach this state before the last step.

By applying the ballot theorem [15] we can deduce that there are
(
2w+k

w

)
w

2w+k
possible arrangements of these w wrong steps and w + k correct steps, and the
above probability is at least(

2w + k

w

)
w

2w + k

(
	− 1
	

)w 1
	w+k

.

This expression is not defined in the case w = k = 0, however, it is equal to 1 in
this case.

The probability that Pi = 1 at the ith path is dependent on the starting
position of the Markov chain, which is equal to the number of bad columns. Let
Xbad be the number of bad columns in S′, which is at most 2d (by Fact 1).
Hence, we get the following:

Pr[Pi = 1] ≥
2d∑

k=1

Pr[Xbad = k]

1
2 (i−k)∑
w=0

q(w, k)

≥ (Pr[Xbad ≤ 2d]− Pr[Xbad = 0])
2d∑

k=1

1
2 (i−k)∑
w=0

q(w, k)

≥Pr[I ′ is not simple]
2d∑

k=1

1
2 (i−k)∑
w=0

q(w, k)

≥
(

1−
(

1− (q(1 − q))n/2+1
)�
) 2d∑

k=1

1
2 (i−k)∑
w=0

q(w, k) [Lemma 1]
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We now aim to find a bound on q(w, k).

Pr[Pi = 1] ≥
(

1−
(

1− (q(1 − q))n/2+1
)�
) 1

2 (i−1)∑
w=0

2d∑
k=1

q(w, k)

�
(

1−
(

1− (q(1 − q))n/2+1
)�
) 1

2 (i−1)∑
w=0

(
1

1− 	

)2d+1

[Fact 2]

≥
(

1−
(

1− (q(1 − q))n/2+1
)�
) 1−

(
1

�−1

)id+1

1−
(

1
�−1

)2d+1

Hence, for sufficiently large 	 we have Pr[Pi = 1] = 1 −
(

1− (q(1− q))n/2+1
)�

and it follows that:

E[P ] =
1

1−
(

1− (q(1− q))n/2+1
)�

and by Markov inequality recall that for any c > 0

Pr[P ≥ ddcp] ≤ 1

ddcp

(
1−

(
1− (q(1− q))n/2+1

)�
)

≤ 1
ddcp

(
1− exp(−	/(q(1− q))n/2+1)

) .
Hence, Pr[P ≥ ddcp] is equal to 1

ddcp for significantly large 	 and when n is
between log 	/ log log 	 and log 	. �

The following is our main theorem which provides an upper bound on expected
number of paths that need to be considered before a center string is found. An
important aspect about this result is the small perturbation probability require
in comparison to the instance size; the expected number of positions to change
in each string is O(log 	).

Theorem 2. For some small ε > 0 and perturbation probability 0 ≤ p ≤ log 	/	,
the expected running time of “Bounded Search Tree Algorithm” on the perturbed
instances is O(n	 + nd · d2+ε) when n is between log 	/ log log 	 and log 	, and 	
is sufficiently large.

Proof. Let P ′ be the number of paths considered until a center string is found
for a perturbed instance. There are O(d2d) possible paths in the search tree
corresponding to Bounded Search Tree Algorithm. The size of the bounded search
tree is equal to zero for simple instances and therefore, we are only required to
consider instances that are not simple. For instances that are not simple but
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satisfy the conditions of Lemma 2, we use this lemma with p ≤ 2+ε
dc , where c > 0,

to bound the size of the search tree. Lemma 1, which describes the probability
that an instance is not simple, is also used in the following analysis.

E[P ] ≤ ddcp · Pr[I ′ is not simple] +
2d∑

i=dcp

di Pr[P ≥ di]

≤ d2+ε

(
1−

(
1−

(
n

n/2− 1

)
(q(q − 1))n/2−1

)�
)

+
2d∑

i=2+ε

di Pr[P ≥ di]

For sufficiently large 	 and when n is between log 	/ log log 	 and log 	, we get:

E[P ] ≤ d2+ε +
2d∑

i=2+ε

di Pr[P ≥ di]

Therefore, we have E[P ] ≤ d2+ε + d− 2 − ε. The expected size of the search
tree is at most o(1) +d2+ε. It follows form the analysis of Gramm et al. [13] that
demonstrated each recursive step takes time O(nd) and the preprocessing time
takes O(n	), that Bounded Search Tree Algorithm has expected running time of
O(n	 + nd · d2+ε). �

We note that we require 	 to be sufficiently large, however, this restriction is
not significant since we require 	 ≥ 10. As previously mentioned, the problem
can be solved efficiently when 	 is relatively small (i.e. 	 ≤ 10), even the trivial
algorithm that tries all |Σ|� can be used for these instances.
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problems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 198–
207. Springer, Heidelberg (2003)



168 C. Boucher

4. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing bias from consensus
strings. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 247–261.
Springer, Heidelberg (1997)

5. Chen, Z.-Z., Ma, B., Wang, L.: A three-string approach to the closest string prob-
lem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 449–458.
Springer, Heidelberg (2010)

6. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-
effects. SIAM Journal on Computing 32(4), 1073–1090 (2003)
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Abstract. In this paper we consider the computational complexity of
solving initial-value problems defined with analytic ordinary differential
equations (ODEs) over unbounded domains of Rn and Cn, under the
Computable Analysis setting. We show that the solution can be com-
puted in polynomial time over its maximal interval of definition, provided
it satisfies a very generous bound on its growth, and that the function
admits an analytic extension to the complex plane.

1 Introduction

We consider the following initial-value problem defined by an ODE{
ẋ(t) = f(x(t))
x(0) = x0

(1)

where f is defined on some (possibly unbounded) domain.
In this paper we show that if f : Rn → Rn admits an analytic extension

to Cn and x : R → Rn admits an analytic extension to C and both satisfy
a very generous assumption concerning their growth, the solution of (1) can be
computed in polynomial time from f and x0 over R. The notion of computability
we use is that of Ko [1]. Actually, our constructions also work when considering
solutions over C and assuming f : Cn → Cn analytic. Notice that, as it is well
known, Equation (1) covers the case of an ODE of type ẋ = f(t, x), as this latter
case can be reduced to (1) by using a new variable xn+1 satisfying x′n+1 = 1.

Motivation 1 & Digression: Analog models of computation. We obtained our re-
sults by trying to understand whether analog continuous-time models of compu-
tation do satisfy (some variant) of the Church-Turing thesis: since such systems
can usually be described by particular classes of ordinary differential equations
(ODEs), understanding whether these models can compute more than Turing
machines is equivalent to understanding whether ODEs can always be simulated
by Turing machines.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 170–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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For example, the most well known example of analog model of computation is
the General Purpose Analog Computer (GPAC) introduced by Claude Shannon
in [2] as the idealization of an analog computer, the Differential Analyzer [3].
Shannon worked as an operator early in his career on these machines.

As it can be proved [2,4] that any GPAC can be described by an ordinary dif-
ferential equation of the form of (1) with f componentwise polynomial, proving
that the GPAC does satisfy the Church-Turing thesis is equivalent to proving
that solutions of such an ODE are always computable. It has been proved only
recently that this holds [5], [6]. Hence, the GPAC does satisfy the Church-Turing
thesis. Notice that computability of solutions doesn’t hold for general f [7], since
uncomputability results can be obtained when the system is “ill behaved” (e.g.
non-unique solutions in [7]). These kind of phenomena does not appear in models
physically inspired by real machines like the GPAC.

Here, we are dealing with the next step. Do analog models like the GPAC
satisfy the effective (in the sense of computable complexity) version of Church
Turing thesis: all (sufficiently powerful) “reasonable” models of computation with
“reasonable” measure of time are polynomially equivalent. In other words, we
want to understand whether analog systems can provably (not) compute faster
than usual classical digital models like Turing machines.

Taking time variable t as a measure of time (which is the most natural mea-
sure), to prove that the GPAC cannot compute more than Turing machines
would require to prove that solutions of ODE (1) are always computable (in the
classical sense) in a time polynomial in t, for f (componentwise) polynomial.

We here don’t get exactly this result: for f componentwise polynomial, corre-
sponding to GPACs, y is clearly analytic. We have to suppose furthermore that
y admits an analytic extension to C. Although this case is stronger than when
y is real analytic (it is well known that analyticity on the complex plane implies
analyticity over the real line, but that the converse direction does not hold), we
believe that our results are interesting on their own and provide a promising
step towards the case of the real line.

Motivation 2: Recursive analysis. The results obtained in this paper turn out
to be new and not known in a recursive analysis or classical computability or
complexity perspective: see related work section.

Being able to compute efficiently solutions of general ordinary differential
equations is clearly of interest. Observe that all usual methods for numerical
integrations (including Euler’s method, Runge Kutta’s methods, . . . ) do not
provide the value of x(t) in a time polynomial in t, whereas our algorithm does for
analytic functions which satisfy our hypothesis. Actually, as all these numerical
methods falls in the general theory of n-order methods for some n, it is possible
to use this theory (developed for example in [8]) to prove that none of them
produces the value of x(t) in a time polynomial in t. This has already been
observed in [9] which claims to overcome this limitation for some classes of
functions by using methods of order n with n depending on t, but without a full
proof. We do not use this idea but prove that it is indeed possible to produce
x(t) in a time polynomial in t.
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2 Related Work and Discussions

Typically the ODE (1) is considered over a subset of Rn. It is well-known in
mathematics that its solution exists whenever f is continuous (Peano’s existence
theorem), and is unique whenever f is Lipschitz (Picard or Cauchy-Lipschitz’s
theorem).

Considering computability, it is well-known that solutions of (1) are com-
putable (in the sense of computable analysis) provided f is Lipschitz. To prove
this result one can basically implement an algorithm which simulates Picard’s
classical method of successive approximations used in the proof of the funda-
mental existence-uniqueness theorem for (1), which assumes the existence of a
Lipschitz condition (see e.g. [10]).

However, assuming f to be Lipschitz often restricts in practice f to be C1

and defined on a bounded domain, or to have, at most, linear growth on an
unbounded domain, which is not really a very satisfactory result.

To avoid the limitations pointed out above, in [5] the authors introduced
the idea of effectively locally Lipschitz functions (functions which are locally
Lipschitz and for which the local Lipschitz constants can be computed) and
showed that if f is effectively Lipschitz, then the solution of (1) is computable
over the maximal interval in which the solution is defined. Another related result
can be found in [11] where the author proves computability of solutions of (1) in
unbounded domains without requiring the use of Lipschitz constants. However
Ruohonen requires a very restrictive bound on the growth of f .

In general, if f is continuous, Peano’s existence theorem guarantees that at
least a solution exists for (1). The problem is that the condition that f is con-
tinuous does not guarantee a unique solution. In [6] the authors show that the
solution of (1) is computable in its maximal interval of definition if f is contin-
uous and the solution of (1) is unique.

But what about computational complexity? The procedure presented in [6]
relies on an exhaustive search and, as the authors mention (p. 11): “Of course,
the resulting algorithms are highly inefficient in practice”.

In the book [1] several interesting results are proved. For instance it is shown
(Theorem 7.3) that there are (continuous) polynomial-time computable func-
tions f such that (1) has a unique solution, but which can have arbitrarily high
complexity. However this result follows because we do not require that f satisfies
a Lipschitz condition. If f satisfies a Lipschitz condition and is polynomial-time
computable, then an analysis of Euler’s algorithm shows that, on a bounded do-
main, the solution for (1) is computable in polynomial space. It is also shown that
if f satisfies a weak form of the Lipschitz condition and is polynomial-time com-
putable, the solution to (1) is polynomial-time computable iff P = PSPACE
(again on a bounded domain). In [12] this result is extended and the author
shows that initial-value problems given by a polynomial-time computable, Lip-
schitz continuous function can have a polynomial-space complete solution.

So it seems that the solution to (1) cannot be computed in polynomial time for
Lipschitz functions in general. But what if we require more conditions on f? In
particular, if we require f to be analytic, what is the computational complexity
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of the solution? Will it be polynomial-time? This question cannot be answered
by analyzing classical methods for solving ODEs (e.g. Euler’s algorithm), since
they do not use the assumption of analyticity. Instead, other techniques which
explicitly use this assumption must be used.

Restricting to analytic functions is natural as this is indeed a natural class
of functions, and as it is sometimes observed that functions coming from our
physical world, are mostly analytic functions.

In [13], [14] the authors show that, locally, the solution is polynomial-time
computable if f is (complex) analytic. However, Müller’s construction relies on
the highly non-constructive Heine-Borel theorem. This makes this results less
convincing because although it guarantees the solution can be computed in
polynomial-time, it gives no algorithm to compute it. Also it gives no insight
on what happens on a broader domain, e.g. Cn.

In this paper we study computability of (1) when f is analytic. Instead of
taking analytic functions f defined over Rn, our results will be for analytic
functions with extensions to Cn (also known as holomorphic functions). The
reasons of taking Cn and not Rn are twofold.

First, Cn is a broader domain than Rn and it is natural to generalize the
results there. When the time variable is defined in the real line, existence and
uniqueness results for ODEs defined over Rn are translated in the same way for
ODEs on Cn [15], [16], as well as the results we prove here.

Second, some of our results rely on the use of the Cauchy integral formula,
which assumes analytic functions over Cn which is a stricter condition than being
real analytic (holomorphic functions, when restricted to Rn, always originate
analytic functions, but analytic functions over Rn may not have an holomorphic
extension defined on the whole complex set Cn). Therefore our results, in the
case of Rn, are not enough to capture the full class of analytic functions (over Rn)
but are still strong enough to capture ODEs defined with most of the “usual”
functions: ex, sin, cos, polynomials, etc. It would be interesting to know if these
results can be fully extended to analytic functions defined over Rn, but we have
not yet obtained any result on this topic. Rather, we see the complex case as a
preliminary approach for getting closer to the real case. Indeed, knowing that
f is complex analytic is a stronger condition than only knowing that f is real
analytic, which gives us more tools to work with, namely the Cauchy integral
formula.

Organization of the paper. The organization of the paper is as follows. Section 3
presents background material about Computable Analysis, which will be needed
in Section 4 to state the main result. We then proceed in the following sections
with its proof.

3 Computable Analysis

Computable Analysis is an extension of the classical theory of computation to
sets other than N due to Turing [17], Grzegorczyk [18], and Lacombe [19]. Sev-
eral equivalent approaches can be used (proof of equivalence can be found [20])
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for considering computability over Rn: using Type-2 machines [20], using ora-
cle Turing machines [1], or using modulus of continuity [21], [1], among other
approaches.

In this paper we will use the approach of Ko in [1], based on oracle Turing
machines. The idea underlying [1] to compute over Rn is to encode each element
x ∈ Rn as a Cauchy sequence of “simple rationals” with a known “simple” rate
of convergence. In [1] Ko uses sequences of dyadic rational numbers, i.e. rationals
of the type m

2n for some m ∈ Z and n ∈ N. Then a sequence of dyadic rational
numbers {dn/2n}n∈N

represents a real number x if |x − dn/2n| ≤ 2−n for all
n ∈ N. It is easy to represent points of Rk using dyadic sequences (use k sequences
of dyadic rationals, each coding a component of x). Since C � R2, this approach
can be used to compute with elements of C. Note that what defines a sequence
of dyadic rational numbers {dn/2n}n∈N

is the sequence {dn}N
, which is nothing

more than a function f : N → N defined by f(n) = dn. Therefore one can define
the notion of computable point of R: it is a point which can be coded by a
sequence {dn/2n}

N
such that the function f : N → N defined by f(n) = dn is

computable. By other words, a computable point is a point for which we can
compute an arbitrary rational approximation in finite time. Similarly one can
define computable points of Rk and Ck. Ko also deals with complexity: a point
x is polynomial-time computable if one can compute a dyadic rational which
approaches x with precision ≤ 2−n in time polynomial in n.

Having worked with computability of points of Rn and Cn, one can also define
computability of functions f : Rk → Rj and g : Ck → Cj . In essence, a function
f is computable if there is some oracle Turing machine that, using as oracles
functions which encode the argument x of f and as input a number n ∈ N,
it can compute in finite time a rational approaching f(x) with precision 2−n.
Similarly, if this rational approximation can be computed in time polynomial in
n, we say that f is polynomial-time computable. Precise details of this discussion
can be found in [1].

4 Main Result

Let f : Cd → Cd be an analytic function on Cd and t ∈ R, x0 ∈ Cd. We are
interested in computing the solution of the initial-value problem{

ẋ(t) = f(x(t))
x(t0) = x0.

(2)

It is well-known that if f is analytic then (2) has a unique solution which is
analytic on its maximum life interval. We are interested in obtaining sufficient
conditions that guarantee x(t) to be polynomial-time computable.

4.1 Necessary Condition: Poly-boundedness

We first observe an easy necessary condition: if x(t) is polynomial-time com-
putable, then x(t) cannot grow too fast, as a Turing machine cannot write more
than t symbols in time t. Formally, we introduce the following concept.
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Definition 1 (Poly-bounded function). A function f : Cd → Cd′
is poly-

bounded (or p-poly-bounded) iff there is a polynomial p such that

∀x ∈ Cd \ {0}, ‖f(x)‖ � 2p(log2‖x‖�). (3)

Without loss of generality, we can assume that p is an increasing function on
R+

0 (replace each coefficient in polynomial p by its absolute value if needed). We
then get the following theorem:

Theorem 1. If f : Cd → Cd′
is polynomial-time computable, then f is poly-

bounded.

4.2 Sufficient Condition: Our Main Result

Our main result can be formulated as follows:

Theorem 2 (Main result). Let x(t) be the solution of the initial-value problem
(2). Assume that

– f is analytic and polynomial-time computable on Cd;
– x0 is a polynomial-time computable vector of complex numbers
– t0 is a polynomial-time computable real number
– function x(t) admits an analytic extension to C and is poly-bounded over C

then the function x(t) is polynomial-time computable.

Actually, we can even say more – the transformation is effective, if one adds the
hypothesis that f is also poly-bounded.

Theorem 3 (Main result: Effective version). Fix a polynomial p. Keep the
same hypothesis of Theorem 2, but in addition, restrict to functions f that are
p-poly-bounded.

Then the transformation is effective and even polynomial-time computable:
the functional that maps f , x0, t0, and t to function x(t) is polynomial-time
computable.

Remark 1. From Theorem 1, even if f is not assumed poly-bounded, we know
it is p-poly-bounded for some p, as it is assumed polynomial-time computable.
However, the problem is that we cannot compute in general such polynomial p
from f , and hence we have to restrict Theorem 3 to functions f with given p.

The whole idea behind the proof of above theorem is to compute the solution of
(2) in polynomial time in some fixed neighborhood of x0, using Picard’s classical
method of successive approximations. From this solution we can compute the co-
efficients of its Taylor series expansion, which allow us to compute the solution on
its maximal interval of definition using the hypothesis of poly-boundedness. All
the construction can be done in polynomial time. A sketch of proof is presented
in the following two sections.
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4.3 Extension

Theorem 2 requires a strong condition on the solution: it needs to be analytic
over C. This can be too much of a requirement since even a simple function like

1
1+x2 doesn’t satisfy our hypothesis. However at the expense of a small trick one
can extend this result to functions having a finite number of poles over C.

Theorem 4. Keep the same hypothesis as in Theorem 2 except that x is assumed
analytic over U = Cd\{a1, . . . , an} where a1, . . . , an are poles of order k1, . . . , kn

of x. Assume that y(z) = x(z)
∏n

i=1(z−ai)ki is poly-bounded and that the ai are
polynomial-time computable. Then x is polynomial-time computable over U .

Proof (Sketch). The idea is that if x has a pole of order k on a then (z−a)kx(z)
has a removable singularity. By repeating this trick for every pole, one can build a
new function which is analytic over C. Furthermore this function is still a solution
of a IVP. To compute the initial function from the new one, it is sufficient to
divide by a polynomial, which doesn’t change the complexity.

5 On Analytic Functions

We first need to state some basic facts about analytic functions in order to be
convinced that the complexity of computing an analytic function is the same
as the complexity of computing the coefficients of its Taylor series. This is the
purpose of the current section.

5.1 From the Function to the Taylor Series

The following theorem is known.

Theorem 5 ([22], [23]). If f is complex analytic and polynomial-time com-
putable on a neighborhood of x0, where x0 is a polynomial-time computable
complex number, then the sequence of its Taylor series coefficients at x0 is
polynomial-time computable.

This holds for one and multi-dimensional functions. We will actually use the
following variant of the theorem, obtained by observing that if f is analytic
on Cd, then f is analytic on a neighborhood of x0 and if f is polynomial-time
computable on Cd, then f is polynomial-time computable on a neighborhood of
x0, and that the proof of [23] is rather effective.

Theorem 6. If f is analytic on Cd and polynomial-time computable on Cd,
then the sequence of coefficients {aα}α of its Taylor series at x0, where x0 is a
polynomial-time computable complex number, is polynomial-time computable.

Fix a polynomial p, and restrict to functions f p-poly-bounded: The functional
that maps f , x0, and α to the corresponding coefficient aα is polynomial-time
computable.
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5.2 From the Taylor Series to the Function

Theorem 6 is important because it allows us to go from the function to its
coefficients. But it is only interesting if we can have the converse, that is if we
can go from the coefficients to the function.

The next theorem gives sufficient conditions so that this can happen. A similar
theorem is already proved in [23] for the case of a polynomial-time computable
function on a compact set. However, since we consider functions defined on
unbounded sets over Cd, this requires a different proof.

Theorem 7. Suppose f : Cd → C is analytic and poly-bounded on Cd and that
the sequence {aα} of its Taylor series at x0, where x0 is a polynomial-time com-
putable complex number, is polynomial-time computable. Then f is polynomial-
time computable on Cd.

Even if we can’t pinpoint a polynomial p satisfying a poly-boundedness condition
for f , the mere knowledge that f is poly-bounded allows us to conclude that f
can be computed in polynomial time, by using the previous proof. In this case, we
do not know a precise polynomial bound on the time complexity for computing
f , but we do know that such bound exists.

6 Proof of Main Result

6.1 The Special Case of Integration

We first state a basic result for the case of integration: observe that integration
can be considered as a very specific case of our general theorem.

Theorem 8. If f is analytic, poly-bounded on C, polynomial-time computable,
and x0 is a polynomial-time computable complex number, then

g(x) =
∫

γx

f(z)dz where γx =
{

[0, 1] → C
t �→ (1− t)x0 + tx

is analytic, poly-bounded and polynomial-time computable on C.
Moreover, if one fixes a polynomial p and considers only functions f which are

p-poly-bounded, then the transformation is effective and even polynomial-time
computable: the functional that maps f , x0 and x to g(x) is polynomial-time
computable

We remark that the previous theorem implies that the transformation which
computes g(x) =

∫ x

0 f(z)dz for x ∈ R is also computable. Again, we can go
to the version where we don’t have explicit knowledge of the polynomial which
yields poly-boundedness for f .

6.2 On Lipschitz Constants

We will need a result about analytic functions (mainly derived from multi-
dimensional Cauchy integral formula) that are poly-bounded.
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Proposition 1. If f : Cd → Ce is analytic and p-poly-bounded then for each
R > 0 there is a K(R) > 0 such that

∀x, y, ‖x‖, ‖y‖ � R⇒ ‖f(x)− f(y)‖ � K(R)‖x− y‖

with
K(R) � 2q(log2R�)

where q(x) = p(2 + 4x) + Ad and Ad is a polynomial-time computable constant
in d.

6.3 Proof of Theorem 3

We can now present the proof of Theorem 3. Theorem 2 is clearly a corollary of
it, forgetting effectivity.

We can assume, without loss of generality, that t0 = 0 and x0 = 0. Consider
the following operator

W (u)(t) =
∫ t

0

f(u(ξ))dξ.

Because z is a solution of (2) we easily have

W (z)(t) =
∫ t

0

f(z(ξ))dξ = z(0) +
∫ t

0

ż(ξ)dξ = z(t)

Thus z is a fixed point of W . Now consider the following sequence of functions{
z0(t) = 0
zn+1 = W (zn).

Obviously z0 is analytic. Furthermore, one can easily show by induction (using
Theorem 8) that for all n ∈ N, zn is analytic and polynomial-time computable.
More importantly, one can compute effectively zn(t) in polynomial time in n.
Indeed, it is just the iteration of the constructive part of Theorem 8.

Now the crucial idea is that zn uniformly converges to z but only on a (really
small) compact set near 0. Using this result we will use Theorem 5 to extract
the coefficients of z and by using the hypothesis on the boundedness of z we will
obtain z.

First of all, we need a uniform bound of zn (in n). We already know, by
hypothesis, that

‖z(t)‖ � 2p(log2|t|�).

Now apply Proposition 1 to f . Let s be a polynomial such that f is s-poly-
bounded and let q be the polynomial of Corollary 1 such that

∀R > 0, ∀x, y ∈ Cd, ‖x‖, ‖y‖ � R⇒ ‖f(y)− f(x)‖ ≤ K(R)‖x− y‖ (4)

where K(R) = 2q(log2R�). Let M = 2p(0),R = 2M , T = 1
2K(R) so that

|t| � 1 ⇒ ‖z(t)‖ � M (5)



Solving Analytic Differential Equations 179

We will show by induction that

|t| � T ⇒ ‖zn(t)− z(t)‖ � 2−nM. (6)

This is trivial for n = 0 because z0(t) = 0 so if |t| � T then |t| � 1 (we assume,
without loss of generality, p(0) ≥ 0 which implies R ≥ 2, and q(0) ≥ 1, which
implies T � 1) and, by (5) ‖z0(t)− z(t)‖ = ‖z(t)‖ � M.

For n > 0, suppose that |x| � T . Then

‖zn+1(x)− z(x)‖ �
∫ 1

0

‖f(zn(tx)) − f(z(tx))‖xdt

But now recall that:

– ‖z(x)‖ � M � R = 2M by definition
– ‖zn(x)‖ � ‖z(x)‖+ ‖zn(x)− z(x)‖ � M + 2−nM � 2M = R

So we can apply (4) and obtain

‖zn+1(x)− z(x)‖ �
∫ 1

0

K(R)‖zn(tx)− z(tx)‖xdt

� 2−n−1M.

Now that we have (6), the problem is easy because we can uniformly ap-
proximate z on B(0, T ) with an arbitrary precision which is exponential on the
number of steps. To put it differently, we proved that z is polynomial-time com-
putable on B(0, T ). Notice that in B(0, T ) both z and zn are bounded by 2M ,
which can be computed in polynomial time from p. Hence z and zn are poly-
bounded by the same (constant) polynomial on B(0, T ) (the behavior outside
this interval is irrelevant for our considerations) and from Theorem 8, the same
polynomial time bound can be used to compute all the zn and z, thus avoiding
the potential problem of having increasing (polynomial) time with n (e.g. dou-
bling in each increment of n) which could yield to overall computing time more
than polynomial.

We can now use a mix of Theorem 5 and Theorem 6 to get the fact that we
can compute the Taylor series of z in 0 in polynomial time (indeed, we only
need to know how to compute z on a open ball around 0). And now, applying
Theorem 7, we know that z is polynomial-time computable because we know by
hypothesis that it is poly-bounded.

Furthermore, the whole process is polynomial-time computable because we
gave explicit bounds on everything and then it is just a matter of iterating a
function and applying two operations on Taylor series at the end.

7 Conclusion

In this paper we have studied the computational complexity of solving initial-
value problems involving analytic ordinary differential equations (ODEs). We
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gave special importance to solutions defined on unbounded domains, where the
traditional assumption of numerical analysis – Lipschitz condition for the func-
tion defining the ODE – is no longer valid, making the analysis of the system
non-trivial.

We have shown that if the solution has a bound on its growth – poly-boundedness
– then the solution of the initial-value problem can be computed in polynomial
time as long as f in (2) admits an analytic extension to Cd.

Although the poly-boundedness condition is very generous and encompasses
“usual” ODEs, it would be interesting to know if we can substitute the poly-
boundedness condition by a more natural one. Note that some kind of assumption
over the polynomial differential equations must be used, since their solutions can
be, for example, a function of the type

22···2x

(see e.g. [24]) which is not poly-bounded and hence not polynomial-time com-
putable by Corollary 1.

A topic for further work concerns the computational complexity of solving
partial differential equations. This is quite interesting since research from Mills
et al. suggest that from a complexity point of view, the EAC mentioned in
the introduction may beat the Turing machine. It would be a significative hall-
mark for the EAC if one could decide theoretically if the EAC may or may
not have super-Turing power for certain tasks, from a computational complexity
perspective. However this problem seems to be quite difficult due to the lack
of theoretical tools which might help us to settle the question. For instance,
despite huge efforts from the scientific community, no existence-uniqueness the-
orem is known for partial differential equations, even for certain subsets like
Navier-Stokes equations.
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Abstract. A matrix M over a fixed alphabet is k-anonymous if every
row in M has at least k − 1 identical copies in M . Making a matrix k-
anonymous by replacing a minimum number of entries with an additional
�-symbol (called “suppressing entries”) is known to be NP-hard. This task
arises in the context of privacy-preserving publishing. We propose and
analyze the computational complexity of an enhanced anonymization
model where the user of the k-anonymized data may additionally “guide”
the selection of the candidate matrix entries to be suppressed. The basic
idea is to express this by means of “pattern vectors” which are part of
the input. This can also be interpreted as a sort of clustering process.
It is motivated by the observation that the “value” of matrix entries
may significantly differ, and losing one (by suppression) may be more
harmful than losing the other, which again may very much depend on
the intended use of the anonymized data. We show that already very
basic special cases of our new model lead to NP-hard problems while
others allow for (fixed-parameter) tractability results.

1 Introduction

The notion of k-anonymity is a basic concept in privacy-preserving data pub-
lishing [9]. An n×m-matrix M—called “table” in database theory—over a fixed
alphabet is called k-anonymous if for every row r in M there are at least k − 1
further rows in M that are identical with r. The intuitive idea motivating this
notion is that if each row in M contains data about a distinct person, and if
M is k-anonymous, then it is hard to identify the data row corresponding to
some specific individual [14]. Clearly matrices are, in general, not k-anonymous
for any k ≥ 2. It is NP-hard to make a given matrix k-anonymous by sup-
pressing a minimum number of entries [2,11], that is, by replacing a minimum
number of matrix entries with the �-symbol. However, in the classical sce-
nario it remains unspecified whether certain entries are less harmful to suppress
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than others.1 Here, we present a simple combinatorial model that allows the
user of the anonymized data to specify, as part of the input, which row entries
(respectively, which combinations of row entries) may be suppressed in order to
achieve k-anonymity. Studying the computational complexity, we identify both
tractable and intractable cases of the underlying combinatorial problem which
allows for user-specified “anonymization patterns”.

Sweeney [13], who pioneered the notion of k-anonymity, pointed out that in the
context of k-anonymization it is desirable to guide the process of entry suppres-
sion. We convert this idea into a formal model where the end-user of anonymized
data specifies a number of pattern vectors from {�, �}m, where m is the number
of columns of the underlying matrix. A pattern vector v ∈ {�, �}m is associated
with a set of matrix rows fulfilling the following condition: If the ith pattern
vector entry is a �-symbol, then all rows associated with this pattern must have
identical symbols at this position; they may differ in other positions. The cor-
responding minimization problem, which we refer to as Pattern Clustering,
is to find a mapping of matrix rows to pattern vectors such that sanitizing2 the
rows according to their mapped pattern vectors makes the matrix k-anonymous
with a minimum number of suppressions. Refer to Section 2 for the formal model
and a simple example.

Related Work. Data anonymization is an active area of research with a consid-
erable amount of published work. See, for example, the recent survey by Fung et
al. [9]. Note that there are some weaknesses of the k-anonymity concept and it is
well-known that it does not always assure privacy [7,9]. Typically, k-anonymity
is most useful where there is a single release of data from a single publisher.
However, k-anonymity provides a basic, clear, and easy to handle mathemati-
cal concept of privacy and related topics. Our research perhaps is most closely
related to the recent work of Aggarwal et al. [1] who proposed a new model of
data anonymization based on clustering. While developing several polynomial-
time approximation algorithms, their modeling idea roughly is to cluster the
matrix rows and then to publish the “cluster centers”; importantly, it is required
that each cluster contains at least k rows, which corresponds to the k-anonymity
concept. The fundamental difference to our model is that we allow to prespec-
ify cluster centers by the user of anonymized data whereas in Aggarwal et al.’s
model the end-user of the anonymized data has no influence on selecting which
entries to suppress. Indeed, our Pattern Clustering model may be inter-
preted as a form of clustering via anonymization whereas Aggarwal et al. perform
anonymization via clustering.

Our Results. We formally define a simple model of user-specified data anonymiza-
tion based on the concepts of k-anonymity and pattern vectors. The central
1 For instance, suppose that M contains data about patients used in medical research,

where each row corresponds to a patient and each column is an attribute of the
patient. Then an attribute like blood pressure is—typically, but not always—more
useful to preserve than, say, hair color.

2 That is, suppressing all row positions where the corresponding pattern vector has a
�-symbol.
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Table 1. The computational complexity of Pattern Clustering with respect to
various parameters

k m n |Σ| s t p

NP-hard NP-hard FPT NP-hard XP FPT XP
for k = 1 for m = 4 for |Σ| = 2

(|Σ| = 2, s = ∞) (k = 1, s = ∞)

combinatorial problem is called Pattern Clustering and it is shown to be
NP-hard for every k ≥ 1 and matrix alphabet size |Σ| = 2. It is also shown to be
NP-hard for matrices containing only four columns. In contrast, Pattern Clus-
tering is fixed-parameter tractable (FPT) for the parameters n (the number of
matrix rows) and t (the number of different matrix rows). Moreover, it can be
solved in polynomial time for a constant number p of given pattern vectors (in
other words, Pattern Clustering is in the parameterized complexity class XP
for the parameter p). Membership in XP also holds for the parameter number s
of suppressions. See Table 1 for a list of our results with respect to single pa-
rameterizations. Clearly, several of our findings in Table 1 suggest investigations
in the spirit of multivariate algorithmics [8,12], that is, the study of combined
parameters. Here, the following results are known: Pattern Clustering is
fixed-parameter tractable for the combined parameters (m, |Σ|), and (s, p) (due
to upper bound arguments using t) whereas the parameterized complexity status
is open for the combined parameters (m, p) and (m, k).

Due to the lack of space some proofs and some further details are deferred to
a full version of this paper.

2 Preliminaries and Basic Model

As mentioned in the introductory section, the main motivation for our new
model is—in contrast to standard k-anonymization models—to let the end-user
influence the data sanitization process by selecting—to some extent—how matrix
entries may be suppressed. We now formally define a model that captures this
intuitive notion. To this end, it is helpful to interpret a matrix simply as a
multiset of rows, as we do in the next definition.

Definition 1. Let M ∈ Σn×m be a matrix over the finite alphabet Σ. Then
R(M) is the multiset of all the rows in M .

The heart of our pattern-guided anonymization model lies in a function that
“consistently” maps input matrix rows to some given pattern vectors. This is
described in the following definition, where we use v[i] and x[i] to refer to the
ith vector and row entry, respectively.

Definition 2. Let Σ be a finite alphabet and let M ∈ Σn×m and P ∈ {�, �}p×m

be two matrices. A function ϕ : R(M) → R(P ) is consistent if for all x, y ∈
R(M) with v := ϕ(x) = ϕ(y), and for all 1 ≤ i ≤ m: v[i] = � ⇒ x[i] = y[i].
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Our cost measure that shall be minimized is the number of suppressed matrix
entries. First, we define the cost of a pattern vector in the natural way.

Definition 3. The cost c(v) of vector v ∈ {�, �}m is the number of its �-symbols.

We now define the cost of a mapping.

Definition 4. Let M ∈ Σn×m and P ∈ {�, �}p×m be two matrices and let ϕ :
R(M) → R(P ) be a mapping from the rows of M to the pattern vectors of P . Let
#(v) := |{x : x ∈ R(M) ∧ ϕ(x) = v}|. Then, the cost of ϕ is

∑
v∈P c(v) ·#(v).

Next we define the concept of k-anonymity for functions.

Definition 5. A function f : A → B is k-anonymous if for each a ∈ A
with f(a) = b it holds that |{x : x ∈ A ∧ f(x) = b}| ≥ k.

Finally we are ready to define the central computational problem (formulated
in its decision version) of this work.

Pattern Clustering
Input: A matrix M ∈ Σn×m, a “pattern mask” P ∈ {�, �}p×m, and two

positive integers s and k.
Question: Is there a consistent and k-anonymous function ϕ mapping the rows

of M to the pattern vectors of P , with cost at most s?
Figure 1 provides a simple example to illustrate and further motivate our above
definition of Pattern Clustering.

We use the following notation in the rest of the paper. The mapping ϕ (see
Definition 4) plays a central role in the definition of Pattern Clustering. We
often talk about it implicitly when saying that a row is mapped to a pattern
vector. Moreover, we speak about assigning a �-symbol of a pattern vector v to
a symbol x which means that every row mapped to v has an x at the position
of the �-symbol.

3 Intractability Results

In this section, we show that Pattern Clustering is NP-complete even in
very restricted cases. The membership in NP is easy to see: Guessing a map-
ping ϕ of the rows from M to pattern vectors from P , it is easy to verify in
polynomial time that ϕ is consistent, k-anonymous, and has cost at most s. In
the following, we provide two polynomial-time many-one reductions: One from
CNF-Satisfiability to show NP-hardness for the unweighted variant (that
is, s = ∞) with k = 1 and |Σ| = 2; and a second reduction from Set Cover to
show NP-hardness for m = 4.

Before doing the reductions we show how to get rid of big alphabets. The
structural properties of Pattern Clustering allow us to replace any alphabet
with a binary alphabet, by encoding the alphabet in binary.3

3 As consequence of the binarization, the question whether Pattern Clustering is
fixed-parameter tractable with respect to the combined parameter (p, |Σ|) is equiv-
alent to the question whether Pattern Clustering is fixed-parameter tractable
with respect to p alone.
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name hair color disease age

Alice blond asthma 40-60
Bob blond asthma 40-60
Clara blond laziness 20-30
Doris brown laziness 20-30
Emil blond asthma 20-30
Frank brown laziness 20-30
George blond asthma 40-60

standard k-anonymity, k = 2, minimize s:
blond asthma 40-60
blond � 20-30
brown laziness 20-30

Alice, Bob, George
Emil, Clara
Doris, Frank

Pattern Clustering, k = 2, minimize s:
(�, �, �)
(�, �, �)
(�, �, �)

� asthma 40-60
� laziness 20-30
� asthma �

Alice, Bob
Clara, Doris, Frank
George, Emil

Fig. 1. Comparing Pattern Clustering with standard k-anonymization. Consider
an extract from a medical database (table on the left). For privacy reasons, one only
wants to publish k-anonymous data for k ≥ 2. Clearly, the first step is to remove
the identifier column “name”. Using standard k-anonymity, one may end up with the
database on the top right. Indeed, this is the 2-anonymous database with the fewest
suppressions, requiring only two suppressions. Unfortunately, researchers cannot use it
to deduce a correlation between age and disease, because the disease of Emil and Clara
is suppressed. In our new model, researchers may specify their particular interests by
providing the three shown pattern vectors—in this example they specify that they
do not care about hair color. Thus, using Pattern Clustering one may get the
database down right. It is one of the databases with fewest suppressions which, at the
same time, “respects the interests of the scientists”. In contrast to the result for classical
k-anonymity, the scientists can see that only young people have the disease “laziness”.

Lemma 1. Let I = (M,P, s, k) be an instance of Pattern Clustering with
M being a matrix over the alphabet Σ. Then there is an equivalent instance I ′ =
(M ′, P ′, s′, k) such that M ′ is a matrix over a binary alphabet Σ′ and the number
of columns m′ of M ′ is �log(|Σ|)� times the number of columns m of M .

Proof. Given the instance I = (M,P, s, k), construct I ′ = (M ′, P ′, s′, k) as fol-
lows. Assign to each symbol in Σ a unique integer from {0, 1, . . . , |Σ|− 1}. Each
column will be replaced with �log(|Σ|)� columns. The corresponding columns
are used to binary encode (filling up with zeros on the left) the identifier of the
original symbol. The pattern vectors are extended analogously: Each �- (respec-
tively �-) symbol is replaced by �log(|Σ|)� many consecutive �- (respectively
�-) symbols. The new cost-bound s′ is �log(|Σ|)� times the old cost-bound s. It
is not hard to see that the new instance is equivalent to the original one.  !

In both reductions to follow we need unique entries in the input matrix M . For
ease of notation we introduce the "-symbol with an unusual semantics. Each
occurrence of a"-symbol stands for a different unique symbol in the alphabet Σ.
One could informally state this as “" 
= "”.

Now we present our first NP-hardness result.

Theorem 1. Pattern Clustering is NP-complete, even if k = 1, |Σ| = 2,
and s = ∞.

Proof (Sketch). We provide a polynomial-time many-to-one reduction from the
NP-complete CNF-Satisfiability. In the following, let (X,C) be a CNF-
Satisfiability instance with X := {x1, . . . , xn} being the set of variables and
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matrix:
1 1 �
0 1 �
� 0 0
1 0 1
1 0 0
0 0 0

(x1 ∨ x2)
(¬x1 ∨ x2)
(¬x2 ∨ ¬x3)
(x1 ∨ ¬x2 ∨ x3)
(x1 ∨ ¬x2 ∨ ¬x3)
(¬x1 ∨ ¬x2 ∨ ¬x3)

pattern vectors:
(�, �, �)
(�, �, �)
(�, �, �)

Fig. 2. Example for the reduction from CNF-Satisfiability to Pattern Cluster-
ing. Given is the following formula: (x1∨x2)∧(¬x1∨x2)∧(¬x2∨x3)∧(x1∨¬x2∨x3)∧
(x1∨¬x2∨¬x3)∧(¬x1∨¬x2∨¬x3). Applying the reduction, we get a Pattern Clus-
tering instance as illustrated. Note that each row in the table represents n + 1 rows
differing only in the �-positions. It is quite easy to see that every solution, e.g. map-
ping 1 0 1 and 1 0 0 to (1, �, �), 1 1 � and 0 1 � to (�, 1, �), and � 0 0 and
0 0 0 to (�, �, 0), corresponds to the satisfying assignment x1 = 1, x2 = 1, x3 = 0.

C := {c1, . . . , cm} being the set of clauses. We construct an equivalent Pattern
Clustering instance (M,P, s, k) with k = 1 and s = ∞ as described in the
following (see Figure 2 for an example).

The columns of the input matrix M correspond to the variables. Blocks of
rows of M correspond to the clauses: For each clause we have n + 1 rows. The
alphabet Σ contains 1, 0, and the unique symbols ". Summarizing, M is an
m(n+ 1)× n matrix over an alphabet with at most m · (n + 1) · n symbols.

In the following we describe the rows of M . Recall that there are n + 1 rows
for each clause. Let ei,j [z] denote the entry in the zth column of the jth row for
the ith clause.

– If ci contains variable xz as a positive literal, then ∀1 ≤ j ≤ n+1 : ei,j [z] = 1.
– If ci contains variable xz as a negative literal, then ∀1 ≤ j ≤ n+1 : ei,j [z] = 0.
– Otherwise, ∀1 ≤ j ≤ n+ 1 : ei,j [z] = ".

For each variable xi ∈ X we have a pattern vector vi where all entries are �-
symbols aside from the entry in the ith position. The idea is that the assignment
of the �-symbol from the pattern vector vi corresponds to the assignment of the
variable xi.

The theorem now follows from Lemma 1.  !

After proving NP-completeness for constant values of k and |Σ|, we show that
Pattern Clustering is intractable even for a constant number of columns.

Theorem 2. Pattern Clustering is NP-complete, even for m = 4.

Proof (Sketch). We show the hardness by giving a polynomial-time many-one
reduction from the NP-hard Set Cover problem.

Set Cover
Input: A set family F = {F1, . . . , F|F|} over a universe U = {u1, . . . , u|U|},

and a positive integer h.
Question: Is there a set cover F ′ ⊆ F of size at most h such that

⋃
F∈F ′

F = U?
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We first describe the main idea of the reduction. Each element u ∈ U is
represented by |F| + 1 rows in M . All these |F| + 1 rows corresponding to one
element u can be mapped to one pattern vector v ∈ P . By setting k to |F|,
we allow at most one of these rows to be mapped to another, cheaper pattern
vector. The construction guarantees that if one or more rows are mapped to
any of these cheaper pattern vectors, then the elements represented by these
rows are contained together in at least one F ∈ F . If |U | rows (one row for
each element u ∈ U) can be mapped to h cheaper pattern vectors, then this
assignment denotes a set cover of size h in the given Set Cover-instance and
vice versa.

Next, we describe the construction in detail. Given an instance (F , U, h) of
Set Cover, we construct a Pattern Clustering-instance (M,P, s, k) as fol-
lows.

For each element ui ∈ U add a set RU
i = {rU

i,0, . . . , r
U
i,|F|} of |F| + 1 rows

to the input matrix M and one pattern vector vU
i = (�, �,�, �) to the pattern

mask P . We call vU
i an expensive pattern vector since its cost c(vU

i ) is three. Set
rU
i,0 := � � i � . If ui ∈ Fj , 1 ≤ j ≤ |F|, then set rU

i,j := j j i � , else set rU
i,j :=

� � i � . Further, let RF
i := {rU

i,j | ui ∈ Fj}. All rows of RU
i coincide in the

third column, and so they can all be mapped together to the pattern vector vU
i .

Intuitively, the first row rU
i,0 in RU

i is a dummy row that has to get mapped to
the expensive pattern vector vU

i . By setting k := |F|, we ensure that at least
|F| − 1 other rows of RU

i get mapped to the same expensive pattern vector.
Hence, at most one row of RU

i can be mapped to a cheaper pattern vector. The
construction ensures that this one row is an element of RF

i .
Now we specify the cheaper pattern vectors: Add h pattern vectors vF1 , . . . , vFh

of the form (�,�, �, �). We call these pattern vectors cheap as they need one
suppression less than the expensive pattern vectors. The idea is that each of
these pattern vectors vFi corresponds to one set in a set cover. Note that there
are |U | rows of RU

1 , . . . , R
U
|U| that can be mapped to the h cheap pattern vectors

(one row of each RU
i ). Since all the rows mapped to a pattern vector vFi have

to coincide in the first two columns, the only possible candidates are the rows
belonging to the sets RF

i . If there are |U | rows fulfilling these requirements, then
the h different assigned numbers in the pattern vectors vF1 , . . . , vFh denote the
set cover F ′ in the Set Cover-instance.

To ensure that at least k rows are mapped to each pattern vector from
{vF1 , . . . , vFh }, add for each Fi ∈ F a set RF

i = {rFi,1, . . . , rFi,|F|+1} of |F|+ 1 rows
with rFi,j := i i X X 4, 1 ≤ j ≤ |F| + 1, to the input matrix M . Since not all
these rows can be mapped to some pattern vector in {vF1 , . . . , vFh }, add a pat-
tern vector vX of the form (�, �,�,�) to the pattern mask P . The rows rFi,j can
be mapped to vX or to one of vF1 , . . . , vFh . Since all these pattern vectors are
cheap, the only constraint on the mapping of these rows is that each pattern
vector vX , vF1 , . . . , v

F
h contains at least k rows. We finish the construction by

setting s := 2 · |U |+ 3 · |U | · |F|+ 2 · (|F|+ 1) · |F|.  !
4 Here, we use X as a fixed symbol which is not used in M elsewhere.
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Dom et al. [6] showed that Set Cover parameterized by (h, |U |) does not admit
a problem kernel of size (|U |+h)O(1) unless an unexpected complexity-theoretic
collapse occurs, namely the polynomial-time hierarchy collapses to the third
level. Given a problem instance I with parameter x, a problem kernel is an
equivalent polynomial-time computable instance I ′ with parameter x′ ≤ x such
that the size of I ′ is upper-bounded by some function g only depending on x
[3,10]; g(x) is called the size of the problem kernel.

Bodlaender et al. [4] introduced a refined concept of parameterized reduction
(called polynomial time and parameter transformation) that allows to transfer
such hardness results to new problems. Indeed, the reduction above is such a
parameterized reduction. The parameters h and |U | are transformed to m and p
as follows: m = 4 and p = h + |U | + 1. Hence Pattern Clustering does not
admit a problem kernel of size (m + p)O(1).

Corollary 1. Pattern Clustering parameterized by (m, p) has no problem
kernel of polynomial size unless coNP ⊆ NP/poly.

4 Tractable Cases

In the previous section, we showed computational intractability for various spe-
cial cases of Pattern Clustering. Here, we complement these hardness results
by presenting some tractable cases. To this end, we consider several parame-
terizations of Pattern Clustering with respect to natural parameters and
reasonable combinations thereof. Since Pattern Clustering allows the user
to specify pattern vectors to influence the solution structure, the number of pat-
tern vectors p seems to be one of the most natural problem-specific parameters.
It is quite reasonable to assume that there are instances with a small amount
of pattern vectors, for instance, when the user wants a clustering with few but
huge clusters. We start with a general observation on the solution structure of
Pattern Clustering instances. To this end, we introduce the concept of row
types. A row type is a string from Σm. We say that a set of rows in the matrix
has a certain row type if they are identical. In this sense, the number t of dif-
ferent matrix rows is the number of row types. The following lemma says that
without loss of generality one may assume that at most t many pattern vectors
are used in the solution.

Lemma 2. Let (M,P, k, s) be a YES-instance of Pattern Clustering. If M
has t row types, then there exists a mapping ϕ, which is solution for (M,P, k, s),
whose codomain contains at most t elements.

We now take up the question of whether the problem is still intractable (in
form of NP-hardness) when p is a constant.

Parameters p and t. We describe a fixed-parameter algorithm for Pattern
Clustering with respect to the combined parameter (p, t). This algorithm can
be interpreted as an XP-algorithm for Pattern Clustering parameterized
by p, that is, it has polynomial running time for constant values of p.
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Theorem 3. Pattern Clustering can be solved in O(tmin(t,p) ·2p ·(min(t, p) ·
t ·m+ t3 log(t)) + n ·m) time.

Proof. As preprocessing we have to compute the input row types in O(n·m) time
(by constructing a trie on the rows [5]). Our algorithm works in three phases:

1. For each pattern vector v, determine whether it is used in the solution, that
is, whether v occurs in the codomain of the mapping.

2. For each pattern vector v that is used in the solution determine which input
row types may contain rows that are mapped to v in the solution by guessing
a representative element. In the following we call these input row types
preimage types of the pattern vector v.

3. For each pattern vector v that is used in the solution determine how many
rows from each preimage type are mapped to v in the solution.

Due to Lemma 2, Phase 1 can be realized by branching on all
∑min(t,p)

i=1

(
p
i

)
≤ 2p

possibilities.
Phase 2 is realized by guessing for each pattern vector a prototype, that is, a

row that is mapped to this vector in the solution. Clearly, knowing one preimage
of the mapping for each pattern vector is sufficient to compute which input row
types may contain rows that are mapped to the vector. Guessing the prototypes
and computing the preimage types can be done in O(tp ·m) time.

In Phase 3, we have the following situation. We have t input row types and p′ ≤
t pattern vectors that are used in the solution. In the following the set of input
row types is represented by Tin := {1, . . . , t} whereas the set of pattern vectors
is represented by Tout := {1, . . . , p′}. For each pair consisting of an input row
type R and a pattern vector v we already know whether rows from R may be
mapped to v in the solution. Let a : Tin×Tout → {0, 1} be a function expressing
this information. Furthermore, let ωi with i ∈ Tout denote the cost of the ith

pattern vector and let nj with j ∈ Tin denote the number of rows in the jth input
row type. A consistent and k-anonymous mapping that has cost at most s and
respects the preimage types (determined in Phase 2) corresponds to a solution
of the Row Assignment [5] problem which is defined as follows.

Row Assignment
Input: Nonnegative integers k, s, ω1, . . . , ωp′ and n1, . . . , nt with∑t

i=1 ni = n, and a function a : Tin × Tout → {0, 1}.
Question: Is there a function g : Tin × Tout → {0, . . . , n} such that

a(i, j) · n ≥ g(i, j) ∀i ∈ Tin, ∀j ∈ Tout (1)
t∑

i=1

g(i, j) ≥ k ∀j ∈ Tout (2)

p′∑
j=1

g(i, j) = ni ∀i ∈ Tin (3)
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t∑
i=1

p′∑
j=1

g(i, j) · ωj ≤ s (4)

The mapping is represented by the function g. Inequality (1) ensures that for
each pattern vector v only rows from its preimage types are mapped to v. In-
equality (2) ensures that the mapping is k-anonymous. Equation (3) ensures that
each row is mapped to one pattern vector. Inequality (4) ensures that the costs
of the mapping are at most s. Row Assignment can be solved in O(t3 · log(t))
time [5, Lemma 2] and computing the function a takes O(min(t, p) · t ·m) time.

 !
We showed fixed-parameter tractability for Pattern Clustering with respect
to the combined parameter (t, p) by an algorithm with polynomial running time
for constant values p. We leave it open whether there also exists an algorithm
where the degree of the polynomial is independent of p, that is, whether Pattern
Clustering is fixed-parameter tractable for parameter p. Next, we develop a
fixed-parameter algorithm for the parameter t. This is mainly a classification
result because its running time is impractical.
Corollary 2. Pattern Clustering is fixed-parameter tractable with respect
to the parameter t as well as with respect to the parameter n.

Proof (Sketch). When p ≤ t, we use the algorithm from Theorem 3 without any
modification. The corresponding running time isO(tt·2t·(p·t·m+t3 log(t))+n·m).
For the other case we show a refined realization of Phase 1 of the algorithm from
Theorem 3.

In Phase 1 we determine a set P ′ of pattern vectors that are used in the
solution, meaning that the codomain of the mapping function is P ′. Due to
Lemma 2 we know that w.l.o.g. |P ′| ≤ t. In Theorem 3 we simply tried all size-
at-most-t subsets of P . Here, we show that for guessing P ′ we only have to take
into account a relatively small subset P ∗ ⊆ P with |P ∗| ≤ g(t) with g being a
function which depends only on t.

Consider a pattern vector v of the unknown P ′. In Phase 2 of the algorithm, we
determine the preimage types, that is, the set of input row types that may contain
rows that are mapped to v in the solution. Assume that the preimage types for
all pattern vectors from P ′ are fixed. To determine which concrete pattern vector
corresponds to a set of preimage types, we only have to take into account the
t cheapest “compatible” pattern vectors, where compatible means that all rows
of these preimage types coincide at the �-symbol positions. By definition, there
exist at most 2t many different sets of preimage types. Thus, keeping for each set
of preimage types the t cheapest pattern vectors and removing the rest results
in a set P ∗ of size 2t · t.

Hence, when p > t, we realize Phase 1 by computing P ∗ as described above
and branch on all subsets P ′ ⊆ P ∗ of size at most t. This can be done in
O
(
2t·t

t

)
≤ O(2t2tt) time. As preprocessing we have to compute the input row

types in O(n · m) time. Altogether, we can solve Pattern Clustering in
O(tt · (2t2tt) · (t2 ·m+ t3 log(t)) +n ·m) time. Clearly, since t ≤ n, our result also
holds for the parameter n.  !
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Combined parameters. As a corollary of Theorem 3 we show fixed-parameter
tractability for some interesting combined parameters. All results rely on the
fact that one can bound the number t of input row types from above by a
function only depending on the respective combined parameter.

Corollary 3. Pattern Clustering is fixed-parameter tractable with respect
to the combined parameters (|Σ|,m) and (p, s).

Proof. As for the parameter (|Σ|,m), Σm is an upper bound for the number t
of input row types.

As for the parameter (p, s): in the following, we call rows that are mapped to
pattern vectors with at least one �-symbol costly rows and their corresponding
row types costly row types. Analogously, rows that are mapped to pattern vectors
without �-symbols are called costless rows and their row types costless row types.
Clearly, every input row type is costly or costless (or both). There are at most s
costly rows and, hence, at most s costly row types. Furthermore, the number of
pattern vectors without �-symbols is at most p. Since no two costless rows from
different input row types can be mapped to the same pattern vector, the number
of costless row types is also at most p. Hence, in a YES-instance the number t of
input row types is at most s + p.  !

Corollary 4. Pattern Clustering is in XP with respect to the parameter s.

Proof. Using the definitions of costly and costless from Corollary 3 we give a
simple algorithm that shows membership in XP. The first step is to guess,
from

∑s
i=0

(
n
i

)
possibilities, the rows which are costly. The second step is to

guess, from
∑s

i=0

(
p
i

)
possibilities, the pattern vectors (that contain �-symbols)

which are used in the solution. Then, guess the mapping between at most s
rows and at most s pattern vectors and check whether it is consistent and k-
anonymous. In the last step, the costless rows are greedily mapped to pattern
vectors without �-symbols.  !

5 Conclusion

We initiated the investigation of a new variant of k-anonymity for ensuring “user-
guided data privacy and clustering”. The corresponding NP-hard combinatorial
problem Pattern Clustering has a number of tractable and intractable spe-
cial cases; our results are listed in Table 1 in the introduction. Several open
questions remain. For example, the parameterized complexity of the problem for
the parameters “number s of suppressions” and the combined parameters (m, p)
and (m, k), where m is the number of columns and p is the number of pattern
vectors, are all open. A particularly interesting question is whether Pattern
Clustering for parameter p is fixed-parameter tractable or W[1]-hard. An
equally interesting open question is whether Pattern Clustering becomes
tractable for m = 2—note that we have shown it NP-hard for m = 4 and, based
on some preliminary results, conjecture it to be NP-hard for m = 3. Finally,
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it seems worth investigating Pattern Clustering also from the viewpoint of
polynomial-time approximation.

Summarizing, we believe that Pattern Clustering is a well-motivated com-
binatorial problem relevant for data anonymization and data clustering; it de-
serves further investigation.

Acknowledgements. We are grateful to the anonymous referees of the MFCS-
2011 for helping to improve this work by spotting some flaws and providing the
idea behind Corollary 4.
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Abstract. We prove that deciding language equivalence of deterministic real-
time one-counter automata is NL-complete, in stark contrast to the inclusion prob-
lem which is known to be undecidable. This yields a subclass of deterministic
pushdown automata for which the precise complexity of the equivalence problem
can be determined. Moreover, we show that deciding regularity is NL-complete
as well.

1 Introduction

In formal language theory two of the most fundamental decision problems are to decide
whether two languages are equivalent (language equivalence) or whether one language
is a subset of another (language inclusion). It is well-known that already deciding if a
context-free language is universal is undecidable.

In recent years, subclasses of context-free languages have been studied for which
equivalence or even inclusion becomes decidable.

The most prominent such subclass is the class of deterministic context-free languages
(however inclusion remains undecidable). A groundbreaking result by Sénizergues
states the decidability of language equivalence of deterministic pushdown automata
(DPDA) [20], see also [21]. In 2002 Stirling showed that DPDA language equivalence
is in fact primitive recursive [23]. Probably due to its intricacy this fundamental problem
has not attracted too much research in the past ten years. We emphasize that for DPDA
language equivalence there is still a remarkably huge complexity gap ranging from a
primitive recursive upper bound to P-hardness (which straightforwardly follows from
P-hardness of the emptiness problem). To the best of the authors’ knowledge, the same
phenomenon holds if the DPDA are restricted to be real-time [18], i.e. ε-transitions
are not present. However, for finite-turn DPDA a coNP upper bound is known [22].
For simple DPDA (which are single state and real-time DPDA) language equivalence is
decidable in polynomial time [9], whereas language inclusion is still undecidable [6].
For deterministic one-counter automata (DOCA), which are DPDA over a singleton
stack alphabet plus a bottom stack symbol, language equivalence was shown decidable
in time 2O(

√
n log n) [24]. By a simple analysis of the proof in [24] a PSPACE upper

bound can be derived for this problem.
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The goal of this paper is to make a step towards understanding (a special case
of) of the equivalence problem of DPDA better. We analyze a syntactic restriction of
DPDA, namely deterministic real-time one-counter automata (ROCA), which are real-
time DOCA. ROCA satisfy the following points: (i) the automaton model is simple, (ii)
it is powerful enough to capture relevant non-regular languages such as e.g. the set of
well-matched parenthesis or {anbn | n ≥ 0}, (iii) its language is not defined modulo
some predetermined stack behavior of the automata (i.e. as it is the case for visibly
pushdown automata [1] or more general approaches as in [4,17]), and (iv) tight com-
plexity bounds can be obtained for the equivalence problem. Although points (i) and
(ii) have a subjective touch, the authors are not aware of any subclass of the context-
free languages that satisfy all of the four mentioned points. We remark that for ROCA
language inclusion remains undecidable.

Contributions. The main result of this paper is that language equivalence of ROCA is
NL-complete, hence closing the gap from PSPACE [24] (which holds even for DOCA)
to NL (hardness for NL is inherited from the emptiness problem for deterministic finite
automata). As a second result we prove that deciding regularity of ROCA, i.e. deciding
if the language of a given ROCA is regular, is NL-complete as well. The previously best
known upper bound for this problem (as for DOCA) is a time bound of 2O(

√
n log n) [24]

(from which one can also derive a PSPACE upper bound).

Used techniques. For our NL upper bound for language equivalence of ROCA, we
prove that if two ROCA are inequivalent, then they can already be distinguished by a
word of polynomial length. To show this, we use an established approach that can be
summarized as the “belt technique” that has already been used in [14,12,11,3] in the
context of (bi)simulation equivalence checking of one-counter automata. More specifi-
cally, we use an approach from [11,3] that can be formulated as follows: There is a small
set INC of incompatible configurations which two configurations necessarily have to
have the same shortest distance to provided they are language equivalent — moreover,
in case two configurations both have the same finite distance to INC, they must either
both have small counter values or they lie in one of polynomially many so called belts.
To prove the existence of polynomially long distinguishing words, in case two ROCA
are not language equivalent, we carefully investigate how paths through such belts can
look like.

Related work. Deterministic one-counter automata (DOCA) were introduced by
Valiant and Paterson in [24], where the above-mentioned time upper bound for lan-
guage equivalence was proven. Polynomial time algorithms for language equivalence
and inclusion for strict subclasses of ROCA were provided in [7,8]. In [2,5] polyno-
mial time learning algorithms were presented for ROCA. Simulation and bisimulation
problems on one-counter automata were studied in [3,12,11,14,15,13].

Organization. Our paper is organized as follows. Section 2 contains definitions. Our
main result is stated in Section 3 and proven in Section 4. Regularity of ROCA is proven
NL-complete in Section 5. We conclude in Section 6.

Remark: In [2,19] it is stated that language equivalence of DOCA can be decided in
polynomial time. Unfortunately, the proofs provided in [2,19] were not exact enough to
be verified and raise several questions which are unanswered to date.
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2 Definitions

By Z we denote the integers and by N = {0, 1, . . .} we denote the naturals. For two
integers i, j ∈ Z we define the interval [i, j] = {i, i + 1, . . . , j} and [j] = [1, j]. The
sign function sgn : N → {0, 1} is defined as sgn(n) = 1 if n > 0 and sgn(n) = 0 if
n = 0, for each n ∈ N. For a word w over a finite alphabet Σ we denote by |w| the
length of w. By ε we denote the empty word. By Σ∗ we denote the set of finite words
over Σ, by Σ+ = Σ∗ \ {ε} the set of non-empty words, and for each 	 ≥ 0 we define
Σ≤� = {w ∈ Σ∗ : |w| ≤ 	}.
A deterministic and complete transition system is a tuple T = (S,Σ, { a−→| a ∈
Σ}, F ), where S is a set of states, Σ is a finite alphabet, for each a ∈ Σ we
have that

a−→⊆ S × S is a set of transitions, where for each s ∈ S there is pre-
cisely one t ∈ S such that s

a−→ t, and F ⊆ S is a set of final states. We ex-
tend

w−→ to words w ∈ Σ∗ inductively as expected,
ε−→= {(s, s) | s ∈ S} and

wa−→= {(s, t) | ∃u ∈ S : s w−→ u
a−→ t}, where w ∈ Σ∗ and a ∈ Σ. We also write

−→ for
⋃

a∈Σ
a−→. For each subset U ⊆ S we write s

w−→ U (resp. s −→∗ U ) if s
w−→ u

(resp. s −→∗ u) for some u ∈ U . For each state s ∈ S we define the language up to
length 	 of s as L�(s) = {w ∈ Σ≤� | s w−→ t, t ∈ F} and the language of s as
L(s) =

⋃
�∈N

L�(s). We write s ≡� t whenever L�(s) = L�(t) and s ≡ t whenever
L(s) = L(t). So note that we have s ≡0 t if and only if either s, t ∈ F or s, t 
∈ F . We
call a word w ∈ Σ∗ a (distinguishing) witness for states s and t if s

w−→ s′ and t
w−→ t′

with s′ 
≡0 t
′. A mininal witness is a witness of minimal length among all witnesses.

A deterministic real-time one-counter automaton (ROCA) is a tuple A =
(Q,Σ, δ, q0, F ), where Q is a finite set of control states, Σ is a finite alphabet,
δ : Q × Σ × {0, 1} → Q × {−1, 0, 1} is a transition function that satisfies
δ(Q × Σ × {0}) ⊆ Q × {0, 1} (i.e. no decrement is allowed when the counter is
zero), q0 ∈ Q is an initial control state, F ⊆ Q is a set of final control states. If the
initial state q0 of A is not relevant, we just write A = (Q,Σ, δ, F ). A configuration
of A is a pair (q, n) ∈ Q × N that we also abbreviate by q(n). Each ROCA A defines
a deterministic transition system T (A) = (Q × N, Σ, { a−→| a ∈ Σ}, F × N), where
q(n) a−→ q′(n + j) whenever δ(q, a, sgn(n)) = (q′, j). We define L(A) = L(q0(0)).
In this paper, we are mainly interested in the following decision problem.

LANGUAGE EQUIVALENCE OF ROCA

INPUT: Two ROCA A and A′.
QUESTION: L(A) = L(A′)?

Interestingly, inclusion between ROCA is undecidable. Valiant and Paterson were al-
ready aware of this without providing a proof [24].

Proposition 1 (Simple consequence of [16]). Given two ROCA A and A′, deciding
whether L(A) ⊆ L(A′) holds, is undecidable.

It is worth noting that it is also a consequence of [16] that language equivalence of
nondeterministic (real-time) one-counter automata is undecidable.
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3 NL-Completeness of Equivalence of ROCA

Instead of considering language equivalence of two ROCA, we can simply take their
disjoint union and ask whether two configurations of it are language equivalent. There-
fore let us fix for the rest of this and the next section some ROCA A = (Q,Σ, δ, F )
and two control states pinit, qinit ∈ Q for which we wish to decide if pinit(0) ≡ qinit(0).

Lemma 2. We have pinit(0) ≡ qinit(0) if and only if pinit(0) ≡� qinit(0), where 	 is
polynomially bounded in |Q|.

In Section 4 we prove Lemma 2. We now use it to derive NL-completeness of language
equivalence of ROCA.

Theorem 3. Language equivalence of ROCA is NL-complete.

Proof. The NL lower bound already holds for the emptiness problem for determinis-
tic finite automata. For the upper bound, we apply Lemma 2 and store in logarithmic
space a pair of configurations (the two counter values are stored in binary) for which
we check inequivalence in an on-the-fly fashion: We repeatedly guess a symbol a ∈ Σ
and update the pair of configurations by applying the transition function on both of
them synchronously. If the current pair is not ≡0-related, then the initial pair of con-
figurations is inequivalent and if such a guessing is not possible then the initial pair of
configurations has to be equivalent by Lemma 2. Hence inequivalence is NL. Since NL
is closed under complement [10] the theorem follows.  !

4 Polynomially Long Distinguishing Witnesses Suffice
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N
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Fig. 1. The 3D space

Before we prove
Lemma 2, we introduce
some notions that
allow us to get a better
visual intuition of what
minimal distinguishing
witnesses can look like.

For the rest of
the paper, it will
sometimes be more
convenient to identify
each pair of configura-
tions 〈p(m), q(n)〉 by
the point 〈m,n, (p, q)〉
in the 3D space
N×N× (Q×Q), where the first two dimensions represent the two counter values and
the third dimension Q × Q corresponds to the pair of control states. We will partition
the 3D space into an initial space, belt space and background space as exemplarily
depicted in Figure 1. The size of the initial space and the thickness and the number of
belts will be polynomially bounded in |Q|.
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We remark that the belt technique in the context of one-counter automata has already
successfully been used in [14,12,11,3]. Moreover, we remark that our concrete way of
partitioning the 3D space was already present in [11,3].

To each pair of configurations 〈p(m), q(n)〉 and each word w = a1 · · · a� ∈ Σ∗

we can assign a unique sequence Comp(p(m), q(n), w) = π0 · · ·π� of 3D points that
we call the computation, formally π0 = 〈m,n, (p, q)〉 and if πi = 〈mi, ni, (pi, qi)〉 for
each i ∈ [0, 	], then in the transition system T (A) we have pi−1(mi−1) ai−→ pi(mi) and
qi−1(ni−1) ai−→ qi(ni) for each i ∈ [1, 	]. Hence Comp(p(m), q(n), w) can be seen as
a path through the 3D space. The counter effect of π is defined as (m�−m0, n�−n0) ∈
Z× Z. A factor of π is a sequence πiπi+1 · · ·πj for some 0 ≤ i ≤ j ≤ 	.

The overall proof strategy for Lemma 2 will be to show that for every minimal (dis-
tinguishing) witness w for pinit(0) and qinit(0) the path Comp(pinit(0), qinit(0), w) has
the following property: It can stay in the initial space, it can be inside each belt space
but only polynomially many steps consecutively, but once it is in the background space
it terminates surely after polynomially many steps. This implies that the overall length
of Comp(pinit(0), qinit(0), w) is polynomially bounded.

In Section 4.1 we (re-)investigate an important set INC of configurations and discuss
in Section 4.2 that two configurations that have the same finite shortest distance to INC
necessarily must lie in the initial space or in the belt space. In Section 4.3 we finally
prove that any minimal witness has the above mentioned behavior in the 3D space, thus
implying Lemma 2. For the rest of this section, let k = |Q| denote the number of control
states of the ROCA A that we fixed for this section.

4.1 The Underlying DFA and Incompatible Configurations

We start with the observation what happens in the transition system T (A) if the counter
value is very big: It behaves for a long time just like a deterministic finite automaton
(DFA). We will call this DFA the underlying DFA of A. We can partition the set of
configurations of A into two sets: Those configurations that are not equivalent to all
states of the underlying finite system up to words of length at most k and the rest. By
analyzing the reachability to the former set, we establish the partition of the 3D space
in the next section.

We remark that below the notion underlying DFA, the set INC with its useful property
stated in Lemma 4 and the distance function dist were already present in [11,3].

The underlying DFA of A is F = (Q,Σ, { a−→| a ∈ Σ}, F ), where q
a−→ q′ if and

only if δ(q, a, 1) ∈ {q′} × {−1, 0, 1}.
Observe that on the one hand we write Q to denote the set of control states of A and

on the other hand we denote by Q the states of the DFA F . Recall that k = |Q|. For
each q ∈ Q we write Lk(q) to denote the language of F up to length at most k in case
q is the initial state. Also note that in F we have that ≡k coincides with ≡k−1.

Define the set INC as those configurations of T (A) that are incompatible (not k-
equivalent) to all states in F , formally

INC = {p(m) ∈ Q× N | ∀q ∈ Q : Lk(p(m)) 
= Lk(q)}.
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Remark 4. If p(m) ∈ INC, then m < k.

The main motivation to study the set INC is due to the following lemma.

Lemma 5. Assume p(m) 
−→∗ INC, and q(n) 
−→∗ INC. Then p(m) ≡ q(n) if and
only if p(m) ≡k q(n).

Proof. The “only if”-direction is trivial. For the “if”-direction, assume by contradiction
p(m) 
≡ q(n) but p(m) ≡k q(n). Let 	 be minimal such that p(m) 
≡� q(n). Note that
	 > k. Thus, there is some word u ∈ Σ�−k with p(m) u−→ p′(m′) and q(n) u−→ q′(n′)
where p′(m′) 
≡k q

′(n′) but p′(m′) ≡k−1 q
′(n′). Since by assumption p′(m′), q′(n′) 
∈

INC, there are s, t ∈ Q such that s ≡k p′(m′) and t ≡k q′(n′) and hence s ≡k−1 t.
Recall that in F we have that ≡k−1 coincides with ≡k and hence s ≡k t. Altogether
we obtain p′(m′) ≡k s ≡k t ≡k q

′(n′), contradicting p′(m′) 
≡k q
′(n′).  !

Next, let us define the distance to the set INC for each configuration p(m). We define

dist(p(m)) = min
{
|w| : p(m) w−→ INC

}
.

By convention we put min ∅ = ω. Note that p(m) ≡ q(n) implies dist(p(m)) =
dist(q(n)).

4.2 Partitioning the 3D Space into Initial Space, Belt Space and Background
Space

Let us formally define belts, see also [14,12,11,3]. Let α, β ≥ 1 be relatively prime.
The belt of thickness d and slope α

β consists of those pairs (m,n) ∈ N× N that satisfy
|α ·m− β · n| ≤ d. An example of a belt is depicted in Figure 2.

n

m

c · α

c · β

Fig. 2. A belt

Similarly as in [24] we say that two integers m and n
are (γ, d)-rationally related if there are α, β ∈ [1, γ] that
are relatively prime such that (m,n) is inside the belt of
thickness d and of slope α

β .
We call w = a1 · · · an ∈ A+ (n ≥ 1) a simple cy-

cle from p(m) if the corresponding unique computation
p0(m0) a1−→ p1(m1) · · · an−→ pn(mn) (i.e. p0(m0) =
p(m)) satisfies p0 = pn and pi 
= pj for all i, j ∈ [1, n]
with i 
= j. In case n0 > nm we call n0−nm the counter
loss of w from p(m).

The next lemma from [3] states that minimal words from configurations to INC can
be chosen in a certain normal form: One first executes a polynomially long prefix, then
repeatedly some most effective simple cycle (i.e. a simple cycle where the quotient of
counter loss and length is maximal), and finally some polynomially long suffix.

Lemma 6 (Lemma 10 in [3]). There is some polynomial poly0 such that if p(m) −→∗

INC then already for some word u = u1(u2)ru3 (with r ≥ 0) we have p(m) u−→ INC,
where (i) |u| = dist(p(m)), (ii) |u1u3| ≤ poly0(k), and (iii) |u2| ≤ k, and (iv) either
u2 = ε or u2 is a simple cycle of counter loss from [1, k].
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The following lemma from [3] allows us to partition the 3D space.

Lemma 7 (Points 3. and 4. of Lemma 11 in [3]). There are polynomials poly1 and
poly2 s.t. if max{m,n} > poly2(k) and dist(p(m)) = dist(q(n)) < ω, then (m,n)

(1) lies in a unique belt of thickness poly1(k) and slope α
β , where α, β ∈ [1, k2] and

(2) is not neighbor to any point (m′, n′) inside a different belt of thickness poly1(k)
and slope α′

β′ with α′, β′ ∈ [1, k2], i.e. min{|m−m′|, |n− n′|} ≥ 2.

We now partition N× N× (Q×Q) into the following three subspaces, cf. Figure 1:

– initial space: All points 〈m,n, (p, q)〉 such that m,n ≤ poly2(k).
– belt space: All points 〈m,n, (p, q)〉 outside the initial space such that m and n

are (k2, poly1(k))-rationally related: By Lemma 7 the belt in which (m,n) lies is
uniquely determined.

– background space: All remaining points.

4.3 Bounding the Minimal Witness

In this section we demonstrate the core of the proof of Lemma 2: any minimal witness
w for 〈pinit(0), qinit(0)〉 is polynomially bounded in k. For the rest of this section we will
assume that pinit(0) 
≡ qinit(0) and that w is a minimal witness for them.

Recall that k = |Q|. Our first lemma tells us once the minimal witness enters the
background space at some point 〈m,n, (p, q)〉 then its remaining suffix is bounded by
k · (max{m,n}+ 1) + poly0(k).

Lemma 8. For each point 〈m,n, (p, q)〉 in the background space we have p(m) ≡ q(n)
if and only if p(m) ≡� q(n), where 	 ≤ k · (max{m,n}+ 1) + poly0(k).

Proof. The “only if”-direction is trivial. For the “if”-direction assume p(m) 
≡
q(n). Since 〈m,n, (p, q)〉 is in the background space we cannot have dist(p(m)) =
dist(q(n)) < ω by Point (1) of Lemma 7. In case dist(p(n)) = dist(q(n)) = ω, then
already for 	 = k we have p(m) 
≡� q(n) by Lemma 5. So it remains to consider the
case dist(p(m)) < dist(q(n)) without loss of generality, in particular dist(p(m)) < ω.
Let u be a minimal word such that p(m) u−→ p′(m′) for some p′(m′) ∈ INC, note
that if q(n) u−→ q′(n′), then p′(m′) 
≡k q

′(n′). By applying Lemma 6, we can choose
u = u1(u2)ru3 for some r ≥ 0 such that (i) |u| = dist(p(m)), (ii) |u1u3| ≤ poly0(k),
(iii) |u2| ≤ k and (iv) either u2 = ε or u2 is a simple cycle of counter loss from [1, k].
This implies that already for 	 = |u|+k ≤ k ·m+poly0(k)+k we have p(m) 
≡� q(n).

 !
With this lemma one now observes that in case Comp(pinit(0), qinit(0), w) enters the
background space after polynomially many steps, then the whole computation is poly-
nomially bounded (the two counters are initialized with zero and by a polynomially
bounded computation we can only obtain polynomially large counter values).

Thus, it suffices to focus on the longest prefix w1 of w such that Comp(pinit(0),
qinit(0), w1) enters the background space for at most one point (i.e. if at all, then the last
one). Thus, Comp(pinit(0), qinit(0), w1) entirely stays inside the initial space or the belt
space (except for the last point possibly). For the rest of this section will show that the
length of w1 is polynomially bounded in k.
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First observe that if Comp(pinit(0), qinit(0), w1) does not leave the initial space, then
|w1| is trivially polynomially bounded since the size of the initial space is polynomially
bounded by definition. So for the rest of this section assume that Comp(p(0), q(0), w1)
enters at least one belt.

A
B
C

N

N

p
o
ly
2
(k

)

poly1(k)

Fig. 3. Possible belt visits

In the following, whenever we talk about a belt
we mean its points outside the 2D projection of
the initial space. Recall that we made the initial
space sufficiently large such that there are no in-
tersections between belts and one cannot switch
from one belt to another in one step (recall Point
(2) of Lemma 7). Let us fix a computation π. A
belt visit (with respect to some belt B) is a maxi-
mal factor of π whose points are all entirely in B.
It is clear that Comp(pinit(0), qinit(0), w1) can con-
tain at most polynomially many belt visits. The
following cases for belt visits can now be distin-
guished (a 2D projection of these cases is depicted
in Figure 3):

– Case A: The initial space is visited immedi-
ately after the belt visit.

– Case B: The belt visit ends in the belt.
– Case C: The background space is visited im-

mediately after the belt visit.

The goal of this section is to prove the following lemma.

Lemma 9. Every belt visit of Comp(pinit(0), qinit(0), w1) is polynomially bounded in k.

First, we need some more notation. Let α, β ∈ [1, k2] be relatively prime. We assume
α ≥ β, i.e. α

β ≥ 1. The case when α < β can be proven analogously.
Points 〈p(m), q(n)〉 and 〈p′(m′), q′(n′)〉 are α

β -related if p = p′, q = q′, and α ·
m − β · n = α · m′ − β · n′. Roughly speaking, they are α

β -related if their control
states coincide and they lie on a line with slope α

β . An α
β -repetition is a computation

π0π1 · · ·π� such that π0 and π� are α
β -related. Figure 4 shows an example of an α

β -
repetition that lies inside some belt (these are the α

β -repetitions we will be interested
in).

Before we handle the cases A, B, and C, let us fix a belt B with slope α
β . We will

make use of the following claim.
Claim*: There is a polynomial poly3 such that for each sequence of points
〈p0(m0), q0(n0)〉 · · · 〈ph(mh), qh(nh)〉 in B with h = poly3(k) and mi = mi−1 + 1
for each i ∈ [h], there are two indices 0 ≤ i < i′ ≤ h such that 〈pi(mi), qi(ni)〉 and
〈pi′(mi′), qi′ (ni′)〉 are α

β -related.

Proof. Define dj = α · mj − β · nj for each j ∈ [0, h]. Since the thickness of B is
poly1(k), there are at most polynomially many different values for dj . Hence (for suf-
ficiently large h) by the pigeonhole principle we can find two points 〈pi(mi), qi(mi)〉
and 〈pi′(mi′), qi′(ni′)〉 such that pi = pi′ , qi = qi′ , and di = di′ .  !
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Let us now analyze the possible belt visit cases A, B, and C. Note that cases B and
C can occur only in the last belt visit of Comp(pinit(0), qinit(0), w1). For the rest of
this section let us fix some B-belt visit π = π0π1 · · ·πz of Comp(pinit(0), qinit(0), w1),
where πi = 〈pi(mi), qi(ni)〉 for each i ∈ [0, z].

(q1, q1)
(q1, q2)
. . .

(qk, qk)

N

N

x1 x2

Fig. 4. α
β

-repetition inside a belt

Case A: The intuition behind this case
is the following: Consider a long belt
visit returning to the initial space. Then
we can find two α

β -repetitions that are
factors of π, one going up and one
going down with inverse counter ef-
fects. We can cut them out and obtain
a shorter computation.

Let us assume that the length of π
is sufficiently large such that there is
some point πh on π for the follow-
ing arguments to work. Define for each
suitable m ∈ N

L(m) = max{i | m = mi, i ∈ [0, h]} and R(m) = min{i | m = mi, i ∈ [h, z]}.

Recall that poly2(k) was the height and width of the initial space. By a similar pigeon-
hole argument as the proof of Claim* there are H and J (since mh is sufficiently large)
such that (i) poly2(k) < H < J < mh, (ii) Points πc and πc′ are α

β -related where
c = L(H) and c′ = L(J) and (iii) Points πd and πd′ are α

β -related where d = R(H)
and d′ = R(J). Note that the pair of counter effects from πc to πc′ and from πd′

to πd add up to (0, 0) componentwise. One can now split up the computation π into
π0

γ1−→ πc
γ2−→ πc′

γ3−→ πd′
γ4−→ πd

γ5−→ πz . Note that by construction we have
mi ≥ J for each i ∈ [c′, d′]. Since α ≥ β we can safely cut out the computations
πc

γ2−→ πc′ and πd′
γ4−→ πd and obtain the computation π0

γ1−→ πc
γ3−→ πd

γ5−→ πz . In
Comp(pinit(0), qinit(0), w1) we can replace π by this computation and can hence obtain
a shorter witness. However, this contradicts minimality of w.

Case B: Let us assume that the belt visit ends in the belt. Since we are considering
a computation of a witness we have pz(mz) 
≡0 qz(nz) for some mz, nz ≥ 1. Thus,
pz(m) 
≡0 qz(n) for each m,n ≥ 1. Let us assume π stays in the belt sufficiently long
for the following argument to work. By the pigeonhole principle there are i and j with
0 ≤ i < j ≤ z and j − i ≤ k2 such that pi = pj and qi = qj . We can assume that
mi, ni,mj , and nj are sufficiently large that we can cut out the computation between
πi and πj without reaching zero in the rest of the computation. We obtain a shorter
computation ending in a point with pair of control states (pz, qz), hence contradicting
minimality of w.

Case C: Let us assume that the first point after executing π lies in the background
space, say in some point 〈p̂(m̂), q̂(n̂)〉. In other words Comp(pinit(0), qinit(0), w1) ends
in 〈p̂(m̂), q̂(n̂)〉 and π is the last belt visit of Comp(pinit(0), qinit(0), w1).

First let us consider the case when there is a factor of π that goes “leftward” (and
hence necessarily “downward”) in the belt for too long. Formally we mean that there
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is some sufficiently large polynomial poly4 such that π contains a factor whose counter
effect (d1, d2) satisfies d1 ≤ −poly4(k) or d2 ≤ −poly4(k) and the following argument
can be realized: There is some point πh whose counter values are both sufficiently large
to which we can apply the same arguments as in Case A and thus obtain a shorter
computation, contradicting minimality of w.

Thus, we can assume that for every factor of π with the counter effect (d1, d2)
we have d1, d2 > −poly4(k). One can now prove the existence of some polynomial
poly5(k) for the following arguments to work. In case m̂ ≤ poly5(k), then n̂ is polyno-
mially bounded and hence π is polynomially bounded.

In case m̂ > poly5(k), we do not directly contradict minimality ofw but we show the
existence of some polynomially bounded computation π′ that distinguishes pinit(0) and
qinit(0). We distinguish the following subcases: C1: dist(p̂(m̂)) < ω, C2: dist(q̂(n̂)) <
ω and C3: dist(p̂(m̂)) = dist(q̂(n̂)) = ω.

C1: We note that from 〈p̂(m̂), q̂(n̂)〉 we do not care how π exactly looks like. However,
we will prove that one can obtain such a polynomially bounded π′ by repeatedly cutting
out (polynomially long) α

β -repetitions from π with the invariant that after each cutting-
out the resulting computation can be extended in one step to a background point whose
first configuration still has finite distance to INC.1

By assumption dist(p̂(m̂)) < ω, so let u be a minimal word such that p̂(m̂) u−→ INC.
By Lemma 6 and since m̂ is sufficiently large, we can choose u as u = u1(u2)ru3 for
some r ≥ 0, where |u1u3| ≤ poly0(k), |u2| ≤ k, and u2 is a simple cycle of counter

loss d ∈ [1, k]. This implies p̂(m̂− jd)
u1(u2)r−ju3−−−−−−−−→ INC for each j ∈ [r].

Define λ(m) = max{i | mi = m, i ∈ [0, z]} for each m ∈ [poly2(k) + 1, m̂− 1].
We note that λ(m + 1) − λ(m) is polynomially bounded for each m,m + 1 ∈
[poly2(k) + 1, m̂ − 1] since the negative counter effect of each factor of π is poly-
nomially bounded by assumption. Since m̂ assumed to be sufficiently large we can
apply Claim* on polynomially many disjoint factors (each of length poly3(k)) of
ϕ = πλ(poly2(k)+1) · · ·πλ(m̂−1) and find an α

β -repetition on each such factor. Each of
these disjoint factors of length poly3(k) of ϕ corresponds to a factor of π that also has
only polynomial length, and so do the α

β -repetitions of these factors. Among these α
β -

repetitions (interpreted as factors of π) we can pick out d all having the same counter
effect, say (f, g); in particular f

g = α
β . When cutting out precisely these d factors from

Comp(pinit(0), qinit(0), w) it enters the background space at point 〈p̂(m̂−df), q̂(n̂−dg)〉
for the first time. By p̂(m̂ − jd)

u1(u2)r−ju3−−−−−−−−→ INC for each j ∈ [r] we have that
p̂(m̂ − df) can reach INC. We can apply this cutting-out process repeatedly until the
first point that enters the background space, say 〈p̂(m̂ − Δ), q̂(n̂ − Δ′)〉, satisfies
m̂−Δ ≤ poly5(k).
C2: This case is symmetric to case C1.
C3: Since dist(p̂(m̂)) = dist(q̂(n̂)) = ω and p̂(m̂) 
≡ q̂(n̂) we know from Lemma
5 that already some u ∈ Σ≤k distinguishes p̂(m̂) and q̂(n̂). So as in Case B, if π is

1 We note that we have to require that after the cutting-out the first configuration of the earliest
point that is in the background space must still have finite distance to INC, for otherwise both
configurations could have infinite distance to INC and could be language equivalent.
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sufficiently long inside the belt, we can cut out a factor of repeated control state pairs
and obtain a shorter witness for pinit(0) and qinit(0), thus contradicting minimality of w.

5 Regularity is NL-Complete

Theorem 10. Regularity of ROCA, i.e. given a ROCA A deciding if L(A) is regular, is
NL-complete.

Proof. For the upper bound, let us fix a ROCA A = (Q,Σ, δ, q0, F ) with k = |Q|.
Recall the definition of the set INC and for each configuration p(m) its shortest distance
dist(p(m)) to INC. We make use of the following characterizations, in analogy to [3].
The following statements are equivalent: (1) L(q0(0)) is not regular, (2) for all d ∈ N
there is some configuration q(n) with q0(0) −→∗ q(n) −→∗ INC and d ≤ dist(q(n)) <
ω, (3) there exists some q ∈ Q such that q0(0) −→∗ q(2k) −→∗ INC.

For an NL upper bound note that, given a configuration q(n) where n is in unary,
deciding if q(n) ∈ INC can be done in NL, since q(n) ∈ INC if and only if for all r ∈ Q
there is some wr ∈ Σ≤k that distinguishes q(n) and the state r ofA’s underlying DFA.
Second, deciding condition (3) is in NL as well, since the length of such a witnessing
path is polynomially bounded. Hence deciding regularity of A is in NL.

For the lower bound, we give a logspace reduction from the emptiness problem for
DFA. One can compute in logspace from a given DFA F a ROCA A such that L(A) =
{an$w$bn | w ∈ L(F)}. Hence L(A) is regular (in particular empty) if and only if
L(F) = ∅.  !

6 Conclusion

In this paper we have shown that language equivalence and regularity of ROCA is NL-
complete. Using the idea of considering the reachability status of configurations to INC,
we can extend our result to prove that it is NL-complete to decide language equivalence
of a ROCA and a simple DOCA or to decide regularity of a simple DOCA. A simple
DOCA is a ROCA that allows spontaneous counter resets (ε-moves) from p(m) to q(0)
for some control state q but necessarily for all m ≥ 1: In such configurations p(m) with
m ≥ 1 one can only reset the counter and not read any symbols. We note that simple
DOCA and DOCA are equi-expressive but DOCA are exponentially more succinct. The
precise complexity of equivalence of DOCA is left for future work.

Acknowledgments. We thank Géraud Sénizergues and Etsuji Tomita for discussions.
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Abstract. We consider Markov Decision Processes (MDPs) with mean-payoff
parity and energy parity objectives. In system design, the parity objective is used
to encode ω-regular specifications, while the mean-payoff and energy objectives
can be used to model quantitative resource constraints. The energy condition re-
quires that the resource level never drops below 0, and the mean-payoff condi-
tion requires that the limit-average value of the resource consumption is within
a threshold. While these two (energy and mean-payoff) classical conditions are
equivalent for two-player games, we show that they differ for MDPs. We show
that the problem of deciding whether a state is almost-sure winning (i.e., winning
with probability 1) in energy parity MDPs is in NP ∩ coNP, while for mean-
payoff parity MDPs, the problem is solvable in polynomial time.

1 Introduction

Markov decision processes (MDPs) are a standard model for systems that exhibit both
stochastic and nondeterministic behaviour. The nondeterminism represents the freedom
of choice of control actions, while the probabilities describe the uncertainty in the re-
sponse of the system to control actions. The control problem for MDPs asks whether
there exists a strategy (or policy) to select control actions in order to achieve a given
goal with a certain probability. MDPs have been used in several areas such as planning,
probabilistic reactive programs, verification and synthesis of (concurrent) probabilistic
systems [12,22,1].

The control problem may specify a goal as a set of desired traces (such as ω-regular
specifications), or as a quantitative optimization objective for a payoff function de-
fined on the traces of the MDP. Typically, discounted-payoff and mean-payoff functions
have been studied [15]. Recently, the energy objectives (corresponding to total-payoff
functions) have been considered in the design of resource-constrained embedded sys-
tems [3,7,20] such as power-limited systems, as well as in queueing processes, and
gambling models (see also [4] and references therein). The energy objective requires
that the sum of the rewards be always nonnegative along a trace. Energy objective can
be expressed in the setting of boundaryless one-counter MDPs [4]. In the case of MDPs,
achieving energy objective with probability 1 is equivalent to achieving energy objec-
tive in the stronger setting of a two-player game where the probabilistic choices are
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replaced by adversarial choice. This is because if a trace ρ violates the energy condition
in the game, then a finite prefix of ρ would have a negative energy, and this finite pre-
fix has positive probability in the MDP. Note that in the case of two-player games, the
energy objective is equivalent to enforce nonnegative mean-payoff value [3,5].

In this paper, we consider MDPs equipped with the combination of a parity objective
(which is a canonical way to express the ω-regular conditions [21]), and a quantitative
objective specified as either mean-payoff or energy condition. Special cases of the par-
ity objective include reachability and fairness objectives such as Büchi and coBüchi
conditions. Such combination of quantitative and qualitative objectives is crucial in
the design of reactive systems with both resource constraints and functional require-
ments [6,11,3,2]. For example, Kucera and Straz̆ovský consider the combination of
PCTL with mean-payoff objectives for MDPs and present an EXPTIME algorithm [19].
In the case of energy parity condition, it can also be viewed as a natural extension of
boundaryless one-counter MDPs with fairness conditions.

Consider the MDP in Fig. 1, with the objective to visit the Büchi state q2 infinitely of-
ten, while maintaining the energy level (i.e., the sum of the transition weights) nonneg-
ative. A winning strategy from q0 would loop 20 times on q0 to accumulate energy and
then it can afford to reach the probabilistic state from which the Büchi state is reached
with probability 1/2 and cost 20. If the Büchi state is not reached immediately, then the
strategy needs to recharge 10 units of energy and try again. This strategy uses memory
and it is also winning with probability 1 for the nonnegative mean-payoff Büchi objec-
tive. In general however, the energy and mean-payoff parity objectives do not coincide
(see later the example in Fig. 2). In particular, the memory requirement for energy parity
objective is finite (at most exponential) while it may be infinite for mean-payoff parity.

We study the computational complexity of the problem of deciding if there exists a
strategy to achieve energy parity objective, or mean-payoff parity objective with proba-
bility 1 (i.e., almost-surely). We provide the following bounds for these problems.

1. For energy parity MDPs, we show that the problem is in NP ∩ coNP, and present
a pseudo-polynomial time algorithm. Since parity games polynomially reduce to
two-player energy games [18,3,5], and thus to energy MDPs, the problem for
almost-sure energy parity MDPs is at least as hard as solving two-player parity
games.

2. For mean-payoff parity MDPs, we show that the problem is solvable in polynomial
time (and thus PTIME-complete).

We refer to [12,16,9] for importance of the computation of almost-sure winning set re-
lated to robust solutions (independence of precise transition probabilities) and the more
general quantitative problem. The computation of the almost-sure winning set in MDPs
typically relies either on the end-component analysis, or analysis of attractors and
sub-MDPs. Our results for mean-payoff parity objectives rely on the end-component
analysis, but in a more refined way than the standard analysis, to obtain a polynomial-
time algorithm. Our proof combines techniques for mean-payoff and parity objectives to
produce infinite-memory strategy witnesses, which is necessary in general. We present
an algorithm that iterates successively over even priorities 2i and computes almost-sure
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Fig. 1. An energy Büchi MDP. The player-1 states are q0, q2, and the probabilistic state is q1.

winning end-components with the even priority 2i as the best priority. The problem
of positive mean-payoff objectives and parity objectives has been considered indepen-
dently in [17].

For energy parity MDPs the end-component based analysis towards polynomial-time
algorithm does not work since solving energy parity MDPs is at least as hard as solv-
ing two-player parity games. Instead, for energy parity MDPs, we present a quadratic
reduction to two-player energy Büchi games which are in NP ∩ coNP and solvable in
pseudo-polynomial time [7].

From our results, it follows that for energy parity MDPs, strategies with finite mem-
ory are sufficient (linear in the number of states times the value of the largest weight),
while infinite memory may be necessary for mean-payoff parity MDPs. The details of
the proofs can be found in [8], as well as the solution for disjunction of mean-payoff
parity and energy parity objectives. An interesting open question is to extend the results
of this paper from MDPs to two-player stochastic games.

2 Definitions

Probability distributions. A probability distribution over a finite set A is a function
κ : A→ [0, 1] such that

∑
a∈A κ(a) = 1. The support of κ is the set Supp(κ) = {a ∈

A | κ(a) > 0}. We denote by D(A) the set of probability distributions on A.

Markov Decision Processes. A Markov Decision Process (MDP) M = (Q,E, δ) con-
sists of a finite set Q of states partitioned into player-1 statesQ1 and probabilistic states
QP (i.e., Q = Q1 ∪QP and Q1 ∩QP = ∅), a set E ⊆ Q ×Q of edges such that for
all q ∈ Q, there exists (at least one) q′ ∈ Q such that (q, q′) ∈ E, and a probabilistic
transition function δ : QP → D(Q) such that for all q ∈ QP and q′ ∈ Q, we have
(q, q′) ∈ E iff δ(q)(q′) > 0. We often write δ(q, q′) for δ(q)(q′). For a state q ∈ Q, we
denote by E(q) = {q′ ∈ Q | (q, q′) ∈ E} the set of possible successors of q.

End-components and Markov chains. A set U ⊆ Q is δ-closed if for all q ∈ U ∩QP

we have Supp(δ(q)) ⊆ U . The sub-MDP induced by a δ-closed set U is M � U =
(U,E ∩ (U × U), δ). Note that M � U is an MDP if for all q ∈ U there exists q′ ∈ U
such that (q, q′) ∈ E. A Markov chain is a special case of MDP where Q1 = ∅. A
closed recurrent set for a Markov chain is a δ-closed set U ⊆ Q which is strongly
connected. End-components in MDPs play a role equivalent to closed recurrent sets in
Markov chains. Given an MDP M = (Q,E, δ) with partition (Q1, QP ), a set U ⊆ Q
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of states is an end-component if U is δ-closed and the sub-MDP M � U is strongly
connected [12,13]. We denote by E(M) the set of end-components of an MDP M .

Plays. An MDP can be viewed as the arena of a game played for infinitely many rounds
from a state q0 ∈ Q as follows. If the game is in a player-1 state q, then player 1 chooses
the successor state in the set E(q); otherwise the game is in a probabilistic state q, and
the successor is chosen according to the probability distribution δ(q). This game results
in a play from q0, i.e., an infinite path ρ = q0q1 . . . such that (qi, qi+1) ∈ E for all
i ≥ 0. The prefix of length n of ρ is denoted by ρ(n) = q0 . . . qn, the last state of ρ(n)
is Last(ρ(n)) = qn. We write Ω for the set of all plays.

Strategies. A strategy (for player 1) is a function σ : Q∗Q1 → D(Q) such that for
all ρ ∈ Q∗, q ∈ Q1, and q′ ∈ Q, if σ(ρ · q)(q′) > 0, then (q, q′) ∈ E. We de-
note by Σ the set of all strategies. An outcome of σ from q0 is a play q0q1 . . . where
qi+1 ∈ Supp(σ(q0 . . . qi)) for all i ≥ 0 such that qi ∈ Q1. Strategies that do not use ran-
domization are called pure. A player-1 strategy σ is pure if for all ρ ∈ Q∗ and q ∈ Q1,
there is a state q′ ∈ Q such that σ(ρ · q)(q′) = 1.

Outcomes and measures. Once a starting state q ∈ Q and a strategy σ ∈ Σ are fixed,
the outcome of the game is a random walk ωσ

q for which the probabilities of every event
A ⊆ Ω, which is a measurable set of plays, are uniquely defined [22]. For a state q ∈ Q
and an event A ⊆ Ω, we denote by Pσ

q (A) the probability that a play belongs to A if
the game starts from the state q and player 1 follows the strategy σ. For a measurable
function f : Ω → R we denote by Eσ

q [f ] the expectation of the function f under the
probability measure Pσ

q (·).

Finite-memory strategies. A strategy uses finite-memory if it can be encoded by a
deterministic transducer 〈Mem,m0, αu, αn〉 where Mem is a finite set (the memory of
the strategy), m0 ∈ Mem is the initial memory value, αu : Mem × Q → Mem is
an update function, and αn : Mem × Q1 → D(Q) is a next-move function. The size
of the strategy is the number |Mem| of memory values. If the game is in a player-1
state q, and m is the current memory value, then the strategy chooses the next state
q′ according to the probability distribution αn(m, q), and the memory is updated to
αu(m, q). Formally, 〈Mem,m0, αu, αn〉 defines the strategy σ such that σ(ρ · q) =
αn(α̂u(m0, ρ), q) for all ρ ∈ Q∗ and q ∈ Q1, where α̂u extends αu to sequences
of states as expected. A strategy is memoryless if |Mem| = 1. For a finite-memory
strategy σ, letMσ be the Markov chain obtained as the product ofM with the transducer
defining σ, where (〈m, q〉, 〈m′, q′〉) is an edge in Mσ if m′ = αu(m, q) and either
q ∈ Q1 and q′ ∈ Supp(αn(m, q)), or q ∈ QP and (q, q′) ∈ E.

Two-player games. A two-player game is a graph G = (Q,E) with the same assump-
tions as for MDP, except that the partition of Q is denoted (Q1, Q2) where Q2 is the set
of player-2 states. The notions of play, strategies (in particular strategies for player 2),
and outcome are analogous to the case of MDP [7].

Objectives. An objective for an MDP M (or game G) is a set φ ⊆ Ω of infinite
paths. Let p : Q → N be a priority function and w : E → Z be a weight function
where positive numbers represent rewards. We denote by W the largest weight (in ab-
solute value) according to w. The energy level of a prefix γ = q0q1 . . . qn of a play is
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EL(w, γ) =
∑n−1

i=0 w(qi, qi+1), and the mean-payoff value1 of a play ρ = q0q1 . . . is
MP(w, ρ) = lim infn→∞

1
n · EL(w, ρ(n)). In the sequel, when the weight function w

is clear from the context we omit it and simply write EL(γ) and MP(ρ). We denote by
Inf(ρ) the set of states that occur infinitely often in ρ, and we consider the following
objectives:

– Parity objectives. The parity objective Parity(p) = {ρ ∈ Ω | min{p(q) | q ∈
Inf(ρ)} is even } requires that the minimum priority visited infinitely often be even.
The special cases of Büchi and coBüchi objectives correspond to the case with two
priorities, p : Q→ {0, 1} and p : Q→ {1, 2} respectively.

– Energy objectives. Given an initial credit c0 ∈ N, the energy objective
PosEnergy(c0) = {ρ ∈ Ω | ∀n ≥ 0 : c0 + EL(ρ(n)) ≥ 0} requires that the
energy level be always positive.

– Mean-payoff objectives. Given a threshold ν ∈ Q, the mean-payoff objective
MeanPayoff≥ν = {ρ ∈ Ω | MP(ρ) ≥ ν} (resp. MeanPayoff>ν = {ρ ∈ Ω |
MP(ρ) > ν}) requires that the mean-payoff value be at least ν (resp. strictly greater
than ν).

– Combined objectives. The energy parity objective Parity(p) ∩ PosEnergy(c0) and
the mean-payoff parity objective Parity(p)∩MeanPayoff∼ν (for∼∈ {≥, >}) com-
bine the requirements of parity and energy (resp., mean-payoff) objectives.

Almost-sure winning strategies. For MDPs, we say that a player-1 strategy σ is
almost-sure winning in a state q for an objective φ if Pσ

q (φ) = 1. For two-player games,
we say that a player-1 strategy σ is winning in a state q for an objective φ if all outcomes
of σ starting in q belong to φ. For energy objectives with unspecified initial credit, we
also say that a strategy is (almost-sure) winning if it is (almost-sure) winning for some
finite initial credit.

Decision problems. We are interested in the following problems. Given an MDP M
with weight function w and priority function p, and a state q0,

– the energy parity problem asks whether there exists a finite initial credit c0 ∈ N
and an almost-sure winning strategy for the energy parity objective from q0 with
initial credit c0. We are also interested in computing the minimum initial credit
in q0 which is the least value of initial credit for which there exists an almost-sure
winning strategy for player 1 in q0. A strategy for player 1 is optimal in q0 if it is
winning from q0 with the minimum initial credit;

– the mean-payoff parity problem asks whether there exists an almost-sure winning
strategy for the mean-payoff parity objective with threshold 0 from q0. Note that it
is not restrictive to consider mean-payoff objectives with threshold 0 because for
∼∈ {≥, >}, we have MP(w, ρ) ∼ ν iff MP(w − ν, ρ) ∼ 0, where w − ν is the
weight function that assigns w(e)− ν to each edge e ∈ E.

The two-player game version of these problems is defined analogously [7]. It is
known that the initial credit problem for two-player energy games [6,3], as well as two-
player parity games [14] can be solved in NP ∩ coNP because memoryless strategies

1 The results of this paper hold for the definition of mean-payoff value using lim sup instead of
lim inf .
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Fig. 2. The gadget construction is wrong for mean-payoff parity MDPs. Player 1 is almost-sure
winning for mean-payoff Büchi in the MDP (on the left) but player 1 is losing in the two-player
game (on the right) because player 2 (box-player) can force a negative-energy cycle.

are sufficient to win. Moreover, parity games reduce in polynomial time to mean-payoff
games [18], which are log-space equivalent to energy games [3,5]. It is a long-standing
open question to know if a polynomial-time algorithm exists for these problems. Fi-
nally, energy parity games and mean-payoff parity games are solvable in NP ∩ coNP
although winning strategies may require exponential and infinite memory respectively,
even in one-player games (and thus also in MDPs) [11,7].

The decision problem for MDPs with parity objective, as well as with mean-payoff
objective, can be solved in polynomial time [15,12,9,13]. However, the problem is in
NP ∩ coNP for MDPs with energy objective because an MDP with energy objective
is equivalent to a two-player energy game (where the probabilistic states are controlled
by player 2). Indeed (1) a winning strategy in the game is trivially almost-sure winning
in the MDP, and (2) if an almost-sure winning strategy σ in the MDP was not winning
in the game, then for all initial credit c0 there would exist an outcome ρ of σ such that
c0 + EL(ρ(i)) < 0 for some position i ≥ 0. The prefix ρ(i) has a positive probability in
the MDP, in contradiction with the fact that σ is almost-sure winning. As a consequence,
solving MDP with energy objectives is at least as hard as solving parity games.

In this paper, we show that the decision problem for MDPs with energy parity ob-
jective is in NP ∩ coNP, which is the best conceivable upper bound unless parity games
can be solved in P. And for MDPs with mean-payoff parity objective, we show that the
decision problem can be solved in polynomial time. The problem for MDPs with mean-
payoff parity objectives under expectation semantics was considered in [10], whereas
our semantics (threshold semantics) is different (we require the set of paths that sat-
isfy the mean-payoff threshold has probability 1 rather than the expected value satisfy
threshold).

The MDP in Fig. 2 on the left, which is essentially a Markov chain, is an example
where the mean-payoff parity condition is satisfied almost-surely, while the energy par-
ity condition is not, no matter the value of the initial credit. For initial credit c0, the
energy will drop below 0 with positive probability, namely 1

2c0+1 .
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Fig. 3. Gadget for probabilistic states in energy Büchi MDP. Diamonds are probabilistic states,
circles are player 1 states, and boxes are player 2 states.

End-component lemma. We now present an important lemma about end-components
from [12,13] that we use in the proofs of our result. It states that for arbitrary strategies
(memoryless or not), with probability 1 the set of states visited infinitely often along a
play is an end-component. This lemma allows us to derive conclusions on the (infinite)
set of plays in an MDP by analyzing the (finite) set of end-components in the MDP.

Lemma 1. [12,13] Given an MDP M , for all states q ∈ Q and all strategies σ ∈ Σ,
we have Pσ

q ({ω | Inf(ω) ∈ E(M)}) = 1.

3 MDPs with Energy Parity Objectives

We show that energy parity MDPs can be solved in NP ∩ coNP, using a reduction to
two-player energy Büchi games. Our reduction also preserves the value of the minimum
initial credit. Therefore, we obtain a pseudo-polynomial algorithm for this problem,
which also computes the minimum initial credit. Moreover, we show that the memory
requirement for almost-sure winning strategies is at most 2·|Q|·W , which is essentially
optimal2.

We first establish the results for the special case of energy Büchi MDPs. We present
a reduction of the energy Büchi problem for MDPs to the energy Büchi problem for
two-player games. The result then follows from the fact that the latter problem is in
NP ∩ coNP and solvable in pseudo-polynomial time [7].

Given an MDP M , we can assume without loss of generality that every probabilis-
tic state has priority 1, and has two outgoing transitions with probability 1/2 each [23,
Section 6]. We construct a two-player game G by replacing every probabilistic state of
M by a gadget as in Fig. 3. The probabilistic states q of M are mapped to player-2
states in G with two successors (q, L) and (q,R). Intuitively, player 2 chooses (q, L) to
check whether player 1 can enforce the Büchi condition almost-surely. This is the case
if player 1 can reach a Büchi state (with priority 0) infinitely often when he controls

2 Example 1 in [7] shows that memory of size 2·(|Q| − 1)·W + 1 may be necessary.
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the probabilistic states (otherwise, no Büchi state is ever visited, and since (·, L) states
have priority 1, the Büchi condition is not realized in G). And player 2 chooses (q,R)
to check that the energy condition is satisfied. If player 2 can exhaust the energy level
in G, then the corresponding play prefix has positive probability in M . Note that (q,R)
has priority 0 and thus cannot be used by player 2 to spoil the Büchi condition.

Formally, given M = (Q,E, δ) with partition (Q1, QP ) of Q, we construct a game
G = (Q′, E′) with partition (Q′

1, Q
′
P ) where Q′

1 = Q1 ∪ (QP × {L}) and Q′
2 =

QP ∪ (QP × {R}), see also Fig. 3. The states in Q′ that are already in Q get the same
priority as in M , the states (·, L) have priority 1, and the states (·,R) have priority 0.
The set E′ contains the following edges:

– all edges (q, q′) ∈ E such that q ∈ Q1;
– edges (q, (q, d)), ((q, d), q′) for all q ∈ QP , d ∈ {L,R}, and q′ ∈ Supp(δ(q)).

The edges (q, q′) and ((q, d), q′) inE′ get the same weight as (q, q′) inM , and all edges
(q, (q, d)) get weight 0.

Lemma 2. Given an MDP M with energy Büchi objective, we can construct in linear
time a two-player game G with energy Büchi objective such that for all states q0 in M ,
there exists an almost-sure winning strategy from q0 in M if and only if there exists a
winning strategy from q0 in G (with the same initial credit).

Note that the reduction presented in the proof of Lemma 2 would not work for mean-
payoff Büchi MDPs. Consider the MDP on Fig. 2 for which the gadget-based reduction
to two-player games is shown on the right. The game is losing for player 1 both for
energy and mean-payoff parity, simply because player 2 can always choose to loop
through the box states, thus realizing a negative energy and mean-payoff value (no
matter the initial credit). However player 1 is almost-sure winning in the mean-payoff
parity MDP (on the left in Fig. 2).

While the reduction in the proof of Lemma 2 gives a game with n′ = |Q1| + 3 ·
|QP | states, the structure of the gadgets (see Fig. 3) is such that the energy level is
independent of which of the transitions (q, (q, L)) or (q, (q,R)) is taken. Since from the
result of [7, Lemma 8] and its proof, it follows that the memory updates in winning
strategies for energy Büchi games can be done according to the energy level of the
play prefix, it follows that the memory bound of 2 ·n ·W can be transfered to almost-
sure winning strategies in Energy Büchi MDPs, where n = |Win∩Q1| is the number of
player-1 almost-sure winning states. Also, the pseudo-polynomial algorithm for solving
two-player energy Büchi games can be used for MDPs, with the same O(|E| · |Q|5 ·W )
complexity [7, Table 1] .

Using Lemma 2, we solve energy parity MDPs by a reduction to energy Büchi
MDPs. The key idea of the reduction is that if player 1 has an almost-sure winning
strategy for the energy parity objective, then player 1 can choose an even priority 2i
and decide to satisfy the energy objective along with satisfying that priority 2i is visited
infinitely often, and priorities less than 2i are visited finitely often.

W.l.o.g. we assume that player-1 states and probabilistic states alternate, i.e. E(q) ⊆
Q1 for all q ∈ QP , and E(q) ⊆ QP for all q ∈ Q1. The reduction is then as follows.
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Given an MDP M = (Q,E, δ) with a priority function p : Q → N and a weight
function w : E → Z, we construct 〈M ′, p′, w′〉 as follows. M ′ is the MDP M =
(Q′, E′, δ′) where:

– Q′ = Q ∪ (Q × {0, 2, . . . , 2r}) ∪ {sink} where 2r is the largest even priority of
a state in Q. Intuitively, a state (q, i) ∈ Q′ corresponds to the state q of M from
which player 1 will ensure to visit priority i (which is even) infinitely often, and
never visit priority smaller than i;

– E′ containsE ∪{(sink, sink)} and the following edges. For each probabilistic state
q ∈ QP , for i = 0, 2, . . . , 2r,
• (a) if p(q′) ≥ i for all q′ ∈ E(q), then ((q, i), (q′, i)) ∈ E′ for all q′ ∈ E(q),
• (b) otherwise, ((q, i), sink) ∈ E′.

For each player 1 state q ∈ Q1, for each q′ ∈ E(q), for i = 0, 2, . . . , 2r,
• (a) (q, sink) ∈ E′ and ((q, i), sink) ∈ E′, and
• (b) if p(q′) ≥ i, then (q, (q′, i)) ∈ E′ and ((q, i), (q′, i)) ∈ E′.

The partition (Q′
1, Q

′
P ) of Q′ is defined by Q′

1 = Q1 ∪ (Q1 × {0, 2, . . . , 2r})∪ {sink}
and Q′

P = Q′ \ Q′
1. The weight of the edges (q, q′), (q, (q′, i)) and ((q, i), (q′, i))

according to w′ is the same as the weight of (q, q′) according to w. The states (q, i)
such that p(q) = i have priority 0 according to p′ (they are the Büchi states), and all the
other states in Q′ (including sink) have priority 1.

Lemma 3. Given an MDP M with energy parity objective, we can construct in
quadratic time an MDP M ′ with energy Büchi objective such that for all states q0
in M , there exists an almost-sure winning strategy from q0 in M if and only if there
exists an almost-sure winning strategy from q0 in M ′ (with the same initial credit).

From the proof of Lemma 3, it follows that the memory requirement is the same as for
energy Büchi MDPs. And if the weights are in {−1, 0, 1}, it follows that the energy
parity problem can be solved in polynomial time.

Theorem 1. For energy parity MDPs, (1) the decision problem of whether a given
state is almost-sure winning is in NP ∩ coNP, and there is a pseudo-polynomial time
algorithm in O(|E| ·d · |Q|5 ·W ) to solve it; and (2) memory of size 2·|Q|·W is sufficient
for almost-sure winning strategies.

4 MDPs with Mean-Payoff Parity Objectives

In this section we present a polynomial-time algorithm for solving MDPs with mean-
payoff parity objective. We first recall some useful properties of MDPs.

For an end-component U ∈ E(M), consider the memoryless strategy σU that plays
in every state s ∈ U ∩ Q1 all edges in E(s) ∩ U uniformly at random. Given the
strategy σU , the end-component U is a closed connected recurrent set in the Markov
chain obtained by fixing σU .

Lemma 4. Given an MDP M and an end-component U ∈ E(M), the strategy σU

ensures that for all states s ∈ U , we have PσU
s ({ω | Inf(ω) = U}) = 1.
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Expected mean-payoff value. Given an MDP M with a weight function w, the ex-
pected mean-payoff value, denoted ValMP(w), is the function that assigns to every
state the maximal expectation of the mean-payoff objective that can be guaranteed by
any strategy. Formally, for q ∈ Q we have ValMP(w)(q) = supσ∈Σ Eσ

q (MP(w)),
where MP(w) is the measurable function that assigns to a play ρ the long-run av-
erage MP(w, ρ) of the weights. By the classical results of MDPs with mean-payoff
objectives, it follows that there exists pure memoryless optimal strategies [15], i.e.,
there exists a pure memoryless optimal strategy σ∗ such that for all q ∈ Q we have
ValMP(w)(q) = Eσ∗

q (MP(w)).
It follows from Lemma 4 that the strategy σU ensures that from any starting state s,

any other state t is reached in finite time with probability 1. Therefore, the value for
mean-payoff parity objectives in MDPs can be obtained by computing values for end-
components and then playing a strategy to maximize the expectation to reach the values
of the end-components.

We now present the key lemma where we show that for an MDP that is an end-
component such that the minimum priority is even, the mean-payoff parity objective
Parity(p) ∩MeanPayoff≥ν is satisfied with probability 1 if the expected mean-payoff
value is at least ν at some state (the result also holds for strict inequality). In other
words, from the expected mean-payoff value of at least ν we ensure that both the mean-
payoff and parity objective is satisfied with probability 1 from all states. The proof of
the lemma considers two pure memoryless strategies: one for stochastic shortest path
and the other for optimal expected mean-payoff value, and combines them to obtain an
almost-sure winning strategy for the mean-payoff parity objective (details in [8]).

Lemma 5. Consider an MDP M with state space Q, a priority function p, and weight
function w such that (a) M is an end-component (i.e., Q is an end-component) and
(b) the smallest priority in Q is even. If there is a state q ∈ Q such that ValMP(w) ≥ ν
(resp. ValMP(w) > ν), then there exists a strategy σ∗ such that for all states q ∈ Q we
have Pσ∗

q (Parity(p)∩MeanPayoff≥ν) = 1 (resp. Pσ∗
q (Parity(p)∩MeanPayoff>ν) = 1).

Memory required by strategies. Lemma 5 shows that if the smallest priority in an end-
component is even, then considering the sub-game restricted to the end-component, the
mean-payoff parity objective is satisfied if and only if the mean-payoff objective is
satisfied. The strategy constructed in Lemma 5 requires infinite memory, and in the
case of loose inequality (i.e., MeanPayoff≥ν) infinite memory is required in general
(see [11] for an example on graphs), and if the inequality is strict (i.e., MeanPayoff>ν),
then finite memory strategies exist [17]. For the purpose of computation we show that
both strict and non-strict inequality can be solved in polynomial time. Since Lemma 5
holds for both strict and non-strict inequality, in sequel of this section we consider non-
strict inequality and all the results hold for strict inequality as well.

Winning end-component. Given an MDP M with a parity objective Parity(p)
and a mean-payoff objective MeanPayoff≥ν for a weight function w, we call an
end-component U winning if (a) min(p(U)) is even; and (b) there exists a state
with expected mean-payoff value at least ν in the sub-MDP induced by U , i.e.,
maxq∈U ValMP(w)(q) ≥ ν in the sub-MDP induced by U . We denote by W the set
of winning end-components, and let Win =

⋃
U∈W U be the union of the winning

end-components.
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Reduction to reachability of winning end-component. By Lemma 5 it follows that
in every winning end-component the mean-payoff parity objective is satisfied with
probability 1. Conversely, consider an end-component U that is not winning, then ei-
ther the smallest priority is odd, or the maximal expected mean-payoff value that can
be ensured for any state in U by staying in U is less than ν. Hence if only states in
U are visited infinitely often, then with probability 1 (i) either the parity objective is
not satisfied, or (ii) the mean-payoff objective is not satisfied. In other words, if an
end-component that is not winning is visited infinitely often, then the mean-payoff par-
ity objective is satisfied with probability 0. It follows that the value function for MDPs
with mean-payoff parity objective can be computed by computing the value function for
reachability to the set Win, i.e., formally, supσ∈Σ Pσ

q (Parity(p) ∩ MeanPayoff≥ν) =
supσ∈Σ Pσ

q (Reach(Win)), where Reach(Win) is the set of paths that reaches a state in
Win at least once. Since the value function in MDPs with reachability objectives can
be computed in polynomial time using linear programming [15], it suffices to present a
polynomial-time algorithm to compute Win in order to obtain a polynomial-time algo-
rithm for MDPs with mean-payoff parity objectives.

Computing winning end-components. The computation of the winning end-
components is done iteratively by computing winning end-components with smallest
priority 0, then winning end-components with smallest priority 2, and so on. The com-
putation of Win is as follows:

– For i ≥ 0, letW2i be the set of maximal end-componentsU with states with priority
at least 2i and that contain at least one state with priority 2i, i.e., U contains only
states with priority at least 2i, and contains at least one state with priority 2i. Let
W ′

2i ⊆ W2i be the set of maximal end-components U ∈ W2i such that there is a
state q ∈ U such that the expected mean-payoff value in the sub-MDP restricted to
U is at least ν. Let Win2i =

⋃
U∈W′

2i
U .

The set Win =
⋃�d/2�

i=0 Win2i is the union of the states of the winning end-components
(formal pseudo-code in [8]).

Complexity of computing winning end-components. The winning end-component
algorithm runs for O(d) iterations and in each iteration requires to compute a max-
imal end-component decomposition and compute mean-payoff values of at most n
end-components, where n is the number of states of the MDP. The maximal end-
component decomposition can be achieved in polynomial time [12,13,9]. The mean-
payoff value function of an MDP can also be computed in polynomial time using
linear programming [15]. It follows that the value function of an MDP with mean-
payoff parity objectives can be computed in polynomial time. The almost-sure win-
ning set is obtained by computing almost-sure reachability to Win in polynomial
time [12,13,9]. This polynomial-time complexity provides a tight upper bound for the
problem.

Theorem 2. The following assertions hold:
1. The set of almost-sure winning states for mean-payoff parity objectives can be com-

puted in polynomial time for MDPs.
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2. For mean-payoff parity objectives, almost-sure winning strategies require infinite
memory in general for non-strict inequality (i.e, for mean-payoff parity objectives
Parity(p)∩MeanPayoff≥ν) and finite-memory almost-sure winning strategies exist
for strict inequality (i.e., for Parity(p) ∩MeanPayoff>ν ).
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Abstract. Soft type assignment systems STA, STA+, and STAB characterise by
means of reduction of terms the computation in complexity classes PTIME, NP,
and PSPACE, respectively. All these systems are inspired by linear logic and in-
clude polymorphism similar to the one of System F. We show that the presence of
polymorphism gives undecidability of typechecking and type inference. We also
show that reductions in decidable monomorphic versions of these systems also
capture the same complexity classes in a way sufficient for the traditional com-
plexity theory. The reductions we propose show in addition that the monomorphic
systems to serve as a programming language require some metalanguage support
since the program which operates on data has form and type which depend on the
size of the input.

1 Introduction

One of the goals of Implicit Computational Complexity studies is the search of a pro-
gramming language which captures a particular complexity class, e.g. PTIME. The
research may lead not only to a different theoretical view on the class, but also to a
programming language with strong guarantees on time or memory consumption.

The relation of the computational complexity to type systems was studied already
in the Statman’s characterisation of nonelementary computation by reductions in the
simply typed lambda calculus [16] which was later simplified by [13] and, in the context
of the calculus with additional δ reduction rules, refined by Goerdt [7]. This was also
studied in the pure simply typed calculus for types with low functional orders [15,18].

The current paper has its roots in the study of complexity classes by means of lin-
ear logic started by Girard in Light Linear Logic (LLL) and Elementary Linear Logic
(ELL) [6] where polynomial and elementary time complexities respectively are consid-
ered and related to the computation via cut-elimination in proof nets. Polynomial time
is also characterised by Soft Linear Logic (SLL) of Lafont [10]. The line started by La-
font brought the starting point of the current paper, i.e. systems STA, STA+, and STAB

of Gaboardi et al [2,3,4] which, when appropriately tailored, capture the complexity
classes of PTIME, NP, and PSPACE, respectively. As we explain it below, all the sys-
tems capture the classes in a specific way which is not compatible with the traditional
reduction notion of the complexity theory. The papers provide for each Turing Machine
in PTIME (NP, PSPACE respectively) a term which when applied to an encoding of an
input gives the answer which encodes an answer of the original machine.
� This work was partly supported by the Polish government grant no N N206 355836.
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We focus in the current paper on the question of what can be said on the systems
STA, STA+, STAB when we apply the notion of problem reduction as used in the tra-
ditional complexity theory. We define a particular problem of computation by terms
and show that the PTIME- and NP-completeness can be obtained even in monomorphic
systems STA-mono, STA+-mono, respectively, which satisfy additional restrictions on
the functional order of redexes. In case of PSPACE, the additional constraint can be
lifted and we can obtain PSPACE-completeness in case of the monomorphic system
STAB-mono with the same restriction as in the case of the polymorphic one. This is
due to the presence of algebraic type of booleans. This observation leads us to a conclu-
sion that corresponding addition to STA-mono, STA+-mono leads to systems where the
additional constraint on the order of redexes can be lifted. It is known since the papers
[11,12] that well chosen algebraic constructs make possible a characterisation of the
polynomial complexity classes even in the standard simply typed lambda calculus. In
our paper we obtain a significantly more restricted set of constants that can give a sensi-
ble characterisation of the complexity classes. Still, there is a cost of this austere choice
of means, namely, our characterisation does not give a single term to simulate a Tur-
ing Machine. This elucidates from a different perspective the point already mentioned
in [14] that the polymorphism is needed in the systems that characterise complexity
classes to combine structurally similar definitions into a single term.

A big drawback of the polymorphic systems is that the typechecking and type infer-
ence problems are, as shown here, undecidable. This can be mitigated by a system with
a limited polymorphism. In particular the monomorphic version of STA, where there is
no polymorphism, enjoys decidable typechecking and type inference problems [5]. It
is now interesting to look for systems with amount of polymorphism sufficient to ob-
tain decidable type inference, but strong enough to combine necessary definitions into
programs which work for all inputs.

The paper is organised as follows. Section 2 presents the soft type assignment sys-
tems. In Section 3 we show that the polymorphic systems have undecidable typecheck-
ing and type inference problems. The characterisation of complexity classes by the
monomorphic systems is given in Section 4.

2 Presentation of Systems

The main focus of the paper is on a presentation of the distinction between the poly-
morphic systems STA, STA+, STAB and their monomorphic counterparts STA-mono,
STA+-mono, STAB-mono. Therefore we need to present all the systems. The types of
the systems are built using the same grammar:

Polymorphic types Monomorphic types
A ::= α | σ � A | ∀α.A A ::= α | σ � A (Linear Types)
σ ::= A | !σ σ ::= A | !σ (Bang Types)

The systems STAB and STAB-mono, in addition, use a fixed type variable B which is
a domain for boolean values 0 and 1. The quantifier ∀ is a binding operator and the
variable α in ∀α.A is bound. We identify types that differ only in the names of bound
type variables. The set of free type variables in A is written FTV(A). We can substitute
a free type variable α in a type A by a type B so that no free variable is captured
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during the operation. The operation is written A[B/α]. We write ∀.A to express a type
where all free type variables in A are bound by a series of quantifiers, e.g. ∀.α � β =
∀αβ.α � β. We also use the shorthandA i� B to mean the typeA � · · · � A � B

with i occurrences of A, so that A 1� B is A � B and A 0� B is B.
The terms of the systems are defined using the following grammars:

M ::= x | λx.M | M1M2 terms of STA,
M ::= x | λx.M | M1M2 | M1 + M2 terms of STA+,
M ::= x | λx.M | M1M2 | 0 | 1 | if M1 then M2 else M3 terms of STAB .

As usual, the λ operator is a binding operator and the variable x is bound in the term
λx.M . We consider terms up to α-conversion i.e. two terms which differ only in names
of the bound variables are considered to be the same. The set of free variables in a term
M is written FV(M). A capture avoiding substitution of a variable x by a term N in a
term M is denoted M [N/x].

The systems assign types to terms. They use contexts which are sets of pairs x : A to
assign types to free variables. We sometimes use

⊗l
j=k xj : τj for k ≤ l to denote the

context xk : τk, . . . , xl : τl. We write dom(Γ ) to denote the set of variables for which
the context Γ assigns the types, e.g. dom(x : A, y : B) = {x, y}. The type assignment
rules for all the systems are presented in Figure 1. The figure is divided into sections
containing different groups of rules marked with labels (F) for fundamental rules, (P)
for polymorphic rules, (N) for nondeterministic rules, and (B) for booleans rules with
additive if. The groups are combined together to create the following 6 systems:

STA : (F ) + (P ) STA-mono : (F )
STA+ : (F ) + (P ) + (N) STA+-mono : (F ) + (N)
STAB : (F ) + (P ) + (B) STAB-mono : (F ) + (B)

We sometimes write Γ %Z M : A, to denote a derivation in a suitable system Z . One
of the crucial characteristics of derivations is degree. A degree of a derivation is the
maximal number of the rules (sp) one can meet when traversing the derivation from the
root to the leaves. Inductively d(D) is for rules other than (sp) the maximum of d(D′)
over all D′ that derive the premises of the final judgement of D and d(D′) + 1 in case
the final rule is (sp) and D′ derives its premise.

These systems are also equipped with their computational semantics of β-reduction.
The reductions are defined as the syntactical closures of the base rules, which in all
systems include (λx.M)N →β M [N/x] and moreover contain:

for STA+, STA+-mono:

M1 + M2 →β M1

M1 + M2 →β M2

for STAB , STAB-mono:

if 0 then M1 else M2 →β M1

if 1 then M1 else M2 →β M2

(1)

2.1 Presentation of the Problem

The main theorems in papers [2,3,4] consider the problem of simulation of the respec-
tive complexity classes in the type systems in such a way that a computation of a Turing
Machine is simulated by a reduction of terms. From the point of view of the traditional
complexity theory the papers consider the following problem:
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The fundamental rules (F)

x : A  x : A
(Ax)

Γ  M : σ

Γ, x : A  M : σ
(w)

Γ, x : σ  M : A

Γ  λx.M : σ � A
(� I)

Γ  M : σ � A Δ  N : σ Γ#Δ

Γ, Δ  MN : A
(� E)

Γ, x1 : σ, . . . , xn : σ  M : τ

Γ, x : !σ  M [x/x1, . . . , x/xn] : τ
(m)

Γ  M : σ

!Γ  M : !σ
(sp)

The polymorphic rules (P)

Γ  M : A α �∈ FTV(Γ )

Γ  M : ∀α.A
(∀I)

Γ  M : ∀α.A

Γ  M : A[B/α]
(∀E)

The nondeterministic rule (N)

Γ  M : A Γ  N : A

Γ  M + N : A
(sum)

The additive boolean rules (B)

 0 : B
(B0I)  1 : B

(B1I)
Γ  M : B Γ  N0 : A Γ  N1 : A

Γ  if M then N0 else N1 : A
(BE)

Fig. 1. The systems STA (F+P), STA+ (F+P+N), STAB (F+P+B), and STA-mono (F), STA+-
mono (F+N), STAB-mono (F+B)

Definition 1 (reduction problem — naïve version). The naïve reduction problem for
the system STA (STA+, STAB) is, given a pair of terms M1,M2 typable in the system
STA (STA+, STAB respectively), can M1 be β-reduced to M2?

There is one subtlety about the problem. Namely, the problem is a correct decision prob-
lem only when there is a witness of the adjective typable. In many cases, the typability
is a non-trivial property and may be undecidable. Therefore, the input data to the prob-
lem must also include a witness of the typability of the subject terms. We assume that it
is a derivation of a type in the system for which the problem is considered. Even if we
add the derivationsD1,D2 we still have one more issue. The problem itself has the time
complexity |M1|O(d(D1)) in case of STA, STA+ (see [4, Theorem 15], [3, Lemma 5.7])
and space complexity in the same range (see [2, Theorem 2]). Therefore, the measures
are exponential provided that the grade is not fixed. In this view the papers rather prove
the completeness for the following problem.

Definition 2 (reduction problem with degree). The reduction problem for the degree
k in the system STA (STA+, STAB) is, given a pair of terms M1,M2 with their deriva-
tions D1,D2 respectively where d(D1), d(D2) ≤ k in the system STA (STA+, STAB

respectively), can M1 be β-reduced to M2?

The following result can be inferred from the papers on soft type assignment systems.
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Theorem 1. The reduction problem for the degree k, where k is sufficiently large, in
STA (STA+, STAB) is complete for PTIME (NP, PSPACE, respectively).

Proof. The problems are, as discussed, in the classes. They are complete for the classes
since one can evaluate the polynomials which bound the length of the tape and the
length of the computation as part of the reduction procedure. The other terms in the
proofs stay in a fixed degree.

3 Undecidability of Type Related Problems with Polymorphism

One of major requirements for a well designed functional programming language is the
ability to automatically check and infer types of the programs. This led to consideration
of the typechecking and type inference problems which are defined as follows.

Definition 3 (typechecking (TCP) and type inference problems (TIP)). The type-
checking problem is given a term M , a context Γ , and a type A, is there a derivation
of the judgement Γ %M : A?

The type inference problem is given a term M and a context Γ is there a type A and
a derivation of the judgement Γ %M : A?

The first problem is used when the whole typing information is supplied by a program-
mer while the second one when the final type should be computed by the programmer’s
environment. In this paper we present a proof that the problems of typechecking and
type inference are undecidable for all the type assignment systems STA, STA+, and
STAB . For this we adapt the argument presented by Wells [17]. The proof is based on a
reduction of the undecidable semiunification problem (SUP) [9]. The problem manipu-
lates expressions built of variables and a binary symbol. For the purposes of our paper
we assume that the variables are type variables and the binary symbol is �.

Definition 4 (semiunification problem (SUP)). The semiunification problem is, given
a pair of inequalities A1 ≤ B1, A2 ≤ B2, decide if there are substitutions S, S1, S2

such that the equalities S1(S(A1)) = S(B1), S2(S(A2)) = S(B2) hold.

The reduction of the semiunification problem can be made in a comprehensive way only
when we consider derivations of a special form. Here is a definition of this form.

Definition 5 (regular form). We say that a derivation for a judgement Γ % M : A is
in regular form when it obeys all the conditions

1. The rule (w) which introduces x : A to the context is used only right before (� I)
which abstracts the variable x. We say that such a derivation is (w)-sparing.

2. The rule (m) which introduces x : A to the context is used only right before (� I)
which abstracts the variable x or right before a series of (m) rules where one of
them substitutes x by certain y. We say that such a derivation is (m)-sparing.

3. For each use of the (∀E) rule the premise of the rule is not obtained using the (∀I)
rule. We say that such a derivation obeys (∀E) before (∀I) property.

The (∀E) before (∀I) property is called INST before GEN property in [17].
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Lemma 1 (regular form). Let X be any of STA, STA+, STAB. For each derivation D
of a judgement Γ %X M : A there is a derivationD′ of the same judgement which is in
regular form.
Proof. The proof is done by showing that a derivation can be stepwise modified to

obey the first condition, then the second one without loosing the first one and at last the
third one without loosing all the previous ones. In each case the proof is by induction
over the initial derivation.

Now, we can obtain our undecidability result.

Theorem 2 (undecidability of TCP for polymorphic types). The TCP for any of the
systems STA, STA+, STAB is undecidable.
Proof. We reduce the SUP to the TCP. Consider an instance E = {A1 ≤ B1, A2 ≤
B2} of the SUP. We encode it in the following instance of the TCP

b : ∀α.(!α � α) � β,
c : ∀.(B1 � γ1) � (γ2 � B2) � (A1 � A2) % b(λx.cxx) : β. (2)

We show now that this judgement is derivable in any of the systems STA, STA+, STAB

if and only if the instance E is solvable. We denote by Ac and Ab the types of b and c in
the context of the judgement. We can present the judgement as ΓSUP %MSUP : β.

(⇐) Suppose first that E is solvable. This means there are substitutions S, S1, S2

such that the equalities S1(S(A1)) = S(B1), S2(S(A2)) = S(B2) hold (*). It is
straightforward to derive judgements

x1 : ∀.S(A1) � S(A2)  x1 : S1(S(A1)) � S1(S(A2))
x2 : ∀.S(A1) � S(A2)  x2 : S2(S(A1)) � S2(S(B2))
c : ∀.(B1 � γ1) � (γ2 � B2) � (A1 � A2) 

c : (S(B1) � S1(S(A2))) � (S2(S(A1)) � S(B2)) � (S(A1) � S(A2))
b : ∀α.(!α � α) � β  b : (!(∀.S(A1) � S(A2)) � ∀.S(A1) � S(A2)) � β

Note that we instantiated in the derivation for c the variable γ1 with S1(S(A2)) and
the variable γ2 with S2(S(A1)) as well as all other variables in the type of c according
to the substitution S. We can now use (*) to match the types of x1 and x2 with the
subtypes of the type obtained for c. We can use the (m) rule, then abstract with (� I)
and apply b to obtain (2).

(⇒) The use of c defines the substitution S. The type of b forces the type of cxx to be
the same as the type of x, namely ∀δ1 . . . δk.S(A1) � S(A2) for some δ1 . . . δk. Now,
the two uses of x define the substitutions S1, S2 with domains δ1 . . . δk which must
make S1(S(A1)) equal to S(B1) in the first use of x and S2(S(A2)) equal to S(B2) in
the second use of x. Due to Lemma 1 we can restrict the derivations so that the substi-
tutions are gathered directly from consecutive (∀E) rules rhather than by a complicated
procedure which combines introductions and eliminations of ∀. Note that the expres-
sions A1, A2, B1, B2 do not contain ∀ and ! so we may assume S, S1, S2 do not use
these connectives either.

Observe that b(λx.cxx) can be typed only to β under the context presented above. This
immediately makes the construction above prove also the following theorem.

Theorem 3 (undecidability of TIP for polymorphic types). The TIP for any of the
systems STA, STA+, STAB is undecidable.
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4 Characterisation of Complexity in Monomorphic Systems

Unlike their polymorphic counterparts, the monomorphic systems have decidable type-
checking and type inference [5]. Yet they are expressive enough to characterise the
polynomial complexity classes. This characterisation, however, is based on a different
restriction than the one on the degree of the derivation. We define the order of a type
as ord(α) = 1 for a base type α, ord(!σ) = ord(σ), ord(σ � τ) = max(ord(σ) +
1, ord(τ)). The order of a redex (λx.M)N in a derivationD when the type of (λx.M)
in the derivation is τ equals to ord(τ). The order of the redex M1 +M2 of the type τ is
ord(τ) + 1. The order ord(M,D) of a term M with the derivationD is the maximal or-
der of redexes in the derivation. We can now present a version of the reduction problem
we deal with in the case of the systems STA, STA+.

Definition 6 (reduction problem with order). The reduction problem for the order
k in the system STA is, given a pair of terms M1,M2 with their derivations D1,D2

respectively where ord(M1,D1), ord(M2,D2) ≤ k in the system STA, can M1 be β-
reduced to M2?

The reduction problem for the existential order k in the system STA+ is as above
but M1 = C[M ′

1] where C[x] is a linear context of any order, i.e. C[x] is typable by a
derivation without (m) and (sp) rules for some Γ and M ′

1 is a term of STA of order k.

The paper [15] proves the following result concerning the problem of reduction for the
order 3 in the simply typed lambda calculus λ→.

Theorem 4 (the reduction problem of order 3 in λ→). The problem of reduction for
terms of order 3 in the simply typed lambda calculus is in PTIME.

We can make use of the theorem since the typability in STA-mono implies the typability
in λ→. We define the !-erasing as ‖α‖ = α where α is atomic, ‖σ � A‖ = ‖σ‖ →
‖A‖, and ‖!σ‖ = ‖σ‖. As usual, we extend ‖·‖ to contexts in such a way that ‖Γ‖ =
{x : ‖σ‖ | x : σ ∈ Γ}.

Proposition 5 (typability in STA and λ→) If Γ %STA-monoM : σ then ‖Γ‖ %λ→M :
‖σ‖. Moreover the order of the term M in the derivation in λ→ is the same as the order
of the term M in the derivation in STA.

The reductions for STA, STA+, and STAB involve encoding of some logical problems.
The first two are done in calculi with no boolean values, so we define them here.

Definition 7. Let Bool i be a type !iα � !iα � α, where α is a fixed type variable.
One can define boolean constants and connectives with the following STA-mono types:

tt = λx.λy.x : Bool i ff = λx.λy.y : Bool i

and = λb1.λb2.λx.λy.b1 (b2 x y) y or = λb1.λb2.λx.λy.b1 x (b2 x y)
: Bool i � !iBool j � Bool i+j+1 : Bool i � !iBool j � Bool i+j+1

not = λb.λx.λy.b y x : Bool i � Bool i

We obviously have Γ % λx.λy.t : Bool j whenever Γ % λx.λy.t : Bool i and j ≥ i.

Theorem 6 (PTIME Completeness of STA-mono). The problem of reduction with
order 3 in case of terms typable in STA-mono is complete for PTIME.
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Proof. The problem is in PTIME since the derivability in STA-mono implies the
derivability in λ→ in the same functional order by Proposition 5. The reduction in the
functional order 3 can be done in polynomial time by Theorem 4.

The problem is hard for PTIME since we can reduce in polynomial time the Circuit
Value Problem to the problem of reduction of terms typable in STA-mono.

We use a variant of CVP, the Topologically Ordered CVP (TopCVP, Problem A.1.2
in [8]). The instance of the problem may be given as a sequence of assignments
x1 := ei, . . . , xn := en where each ei is one of 0, 1, xj,¬xj , xj ∨ xk, xj ∧ xk where
j, k < i and j 
= k (where applicable). The additional restriction j 
= k in the last two
clauses is not fundamental and is compensated by assignments of the form xi := xj .
The result of the circuit is the value of the variable xn.

Given terms or, and and not we encode the problem instance as follows:

(λx1.(λx2. . . . (λxn.xn)�en� . . . )�e2�)�e1�

where �ei� are the straightforward translations of ei, defined as the right one of ff , tt ,
λx.λy.xj x y, not xj , or xj xk, and xj xk. It is easy to see that this term reduces to tt
or ff if and only if the input circuit evaluates to true or false respectively.

We now give a step by step definition of the translation together with a sketch of the
proof that the above term is typable with the type Bool2n−1.

Let êi be the translation of the assignments i + 1, . . . , n, defined inductively from n
down to 0 as ên = xn, êi−1 = (λxi.êi)�ei�. It is easy to see that ê0 is the translation of
the whole problem instance. Now, given Γ k

i =
⊗k

j=1 xj :!2
2n−i−1Bool2j−1, for each

i = 1 . . . n (for the left judgement below) and i = 0 . . . n (for the right one) we have:

Γ i−1
i % �ei� : Bool2i−1, Γ i

i % êi : Bool2n−1. (3)

All the left judgments can be shown directly. Note that variables used in ei have
index smaller than i and i ≤ n, so 22n−i − 1 ≥ 2i − 1 and the number of ! is sufficient.

To derive the right judgments, we proceed by simple induction from n down to 0.
In the end we get % ê0 : Bool2n−1 as expected.
It is possible to repeat the above proof in such a way that all judgments are pre-

ceded with m input variables (numbered with non-positive numbers−(m− 1) . . . 0 for
simplicity), arriving at the encoding of a circuit with input values:

% λx−(m−1). . . . λx0.ê0 : !2
2n−1Bool0

m� Bool2n−1. (4)

Our construction is therefore independent from the input data, but not from the size
of input data. Note that in the above proof, the number of needed ! is estimated very
roughly. Nevertheless, if precise account of ! is taken, their number in certain cases
remains exponential.

Even though the number of ! is high, the term can be reduced to a normal form in
linear number of β reductions for any boolean input. Indeed, each �ei� can be nor-
malized in constant time to either tt or ff and there are n redexes which translate the
assignments of the initial circuit.

We must remark that since the monomorphic binary boolean connectives are not linear,
the construction in the theorem above employs an exponential number of !. The bang
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type constructors are, however, introduced in blocks, i.e. many ! in a single sequence
of (sp) applications or (m) applications. Therefore, we can turn to a compressed repre-
sentation of derivations where n uses of (sp) one after another is replaced with a single
one which introduces !n and analogously for (m) which introduces ! to a single variable
in the context. This kind of compressed representation of derivations makes possible to
realise the constructions above in polynomial time.

Theorem 7 (NP Completeness of STA+-mono). The problem of reduction with exis-
tential order 3 in case of terms typable in STA+-mono is complete for NP.

Proof. The problem is in NP since we first evaluate the linear context with + which
takes the time proportional to the size of the context by [3, Theorem 5.12]. Then we
obtain a third order term which can be evaluated in polynomial time by the construction
in [15]. Note that since the context is linear it does not matter at which point + redexes
are executed.

The problem is hard for NP since we can reduce in polynomial time the CIRCUIT-
SAT problem to the problem of reduction of terms typable in STA+-mono. Indeed, it is
enough to use the translation of circuit from Theorem 6 and nondeterministically choose
the boolean value of some input variables. However, in order to do it in a consistent
way (i.e. each occurrence of a variable gets the same chosen value), one has to use
the following choice functions λf.f tt + fff of order 4 which take the λ-abstracted
CVP translation and nondeterministically choose between its instantiation with tt and
its instantiation with ff .

Theorem 8 (PSPACE Completeness of STAB-mono). The problem of reduction for
the degree 1 in case of the terms typable in STAB-mono is complete for PSPACE.

Proof. The problem is in PSPACE since STAB-mono is a subsystem of STAB where
the reduction problem above is in APTIME by [2, Theorem 2]. The problem is hard
for PSPACE since we can reduce in polynomial time the QBF problem to the prob-
lem of reduction of terms typable in STAB-mono: using built-in booleans, the boolean
connectives can be easily encoded as linear terms:

and(b1, b2) = if b1 then b2 else 1 or(b1, b2) = if b1 then 0 else b2

not(b) = if b then 1 else 0

and to encode quantifiers we use terms

forall = λp.if p 0 then p 1 else 1 exists = λp.if p 0 then 0 else p 1

applied to the λ abstracted formula. The resulting translated term can be typed without !
so it has degree 1.

There is a contrast between the result for PSPACE and PTIME (NP) as the construction
for PSPACE uses basically the same machinery, but the degree of the terms used in
the proof for PSPACE is constant while in the other ones changes with the size of the
input data. This is because the if-then-else construct is polymorphic. In fact we can
add this construct to the languages STA-mono and STA+-mono by similar means to the
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STAB-mono system: the type constant B, constants 0 and 1 together with typing rules
(B0I) and (B1I), the following multiplicative rule for if-then-else

Γ1  M : B Γ2  N0 : A Γ3  N1 : A
Γ1#Γ2 Γ1#Γ3 Γ2#Γ3

Γ1, Γ2, Γ3  if M then N0 else N1 : A
(B∗E) (5)

and δ-reduction rules

if 0 then M1 else M2 →δ M1 if 1 then M1 else M2 →δ M2 (6)

These systems use a significantly weaker set of additional algebraic types than the ones
used in [11]. Namely, we only use one algebraic type with finite number of inhabitants.
Such systems, called STA∗-mono and STA∗

+-mono below, have decidable typecheck-
ing and type-inference problems [5] and we obtain the following theorem similar in
flavour to the results obtained in [14].

Theorem 9 (Completeness of star systems). The reduction problem for terms typable
in STA∗-mono by a derivation of degree 1 is complete for PTIME. The reduction prob-
lem for terms typable in STA∗

+-mono by a derivation of degree 1 is complete for NP.
Proof. The problems are in PTIME and NP respectively, because one can translate

the terms to the polymorphic STA and STA+ (resp.): the type B can be translated into
the usual polymorphic encoding ∀α.α � α � α with constants λxy.x and λxy.y and
if M then N0 else N1 translated to M N0 N1. This translation does not affect the
degree of derivations.

The problems are hard for PTIME and NP respectively, but the proofs of Theorems 6
and 7 have to be adapted to get rid of explicit duplication of boolean variables: using the
polymorphic if-then-else one can implicitly duplicate boolean values using tuples.
Let us define some abbreviations:

Bn ≡ (B n� B) � B, tn ≡ λz.z t . . . t︸ ︷︷ ︸
n times

.

We clearly have tn : Bn whenever t = 0 or 1.
Let x1 := ei, . . . , xn := en be an instance of the CVP problem with output value xn.

Let ki be the number of occurrences of the variable xi in ei+1, . . . , en. We replace each
occurrence of xi in the translation of ei+1, . . . , en with “linear copies” of xi, named
x1

i , . . . , x
ki

i . We set kn = 1. We translate expressions ei in the following way:

ẽi = if �ei� then 0ki else 1ki

where �ei� is the right one of 0,1, xl
j , not(xl

j), or(xl
j , x

m
k ), and(xl

j , x
m
k ), and xl

j (and
optionally xm

k ) denotes a suitable linear copy of xj (and xk respectively). The transla-
tion of the CVP instance is defined as before, by backward induction for i = n down
to 0, where ê0 denotes the translation of the whole instance:

– ên = x1
n,

– êi−1 = (λx̃i.x̃i (λx1
i , . . . , x

ki

i .êi)) ẽi.

Now, for i = 1 . . . n, let Γi = ∅ or xl
j : B or xl

j : B, xm
k : B according to the form of ei,

we have
Γi % �ei� : B and Γi % ẽi : Bki . (7)
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We also have
Δi % êi : B (8)

for i = 0 . . . n, where Δi is defined by backward induction as follows

– Δn = x1
n : B,

– Δi−1 = Δi − {x1
i , . . . , x

ki

i } ∪ Γi.

Note that Δi = Γi+1 ∪ · · · ∪Γn ∪{x1
n : B}−{x1

j , . . . , x
kj

j | j > i}, the sets Δi and Γi

are disjoint, Δi ⊇ {x1
i , . . . , x

ki

i } and Δ0 = ∅. The proofs of (7) are trivial. The proof
of (8) can be done by a simple induction for i = n down to 0.

From the above, we conclude that % ê0 : B and it is obvious that ê0 reduces to 0 if
and only if the value of the initial CVP instance is true. In the whole proof we did not
use a single ! so the degree of the derivation is 0.

Using the tricks similar to proofs of theorems 6 and 7 one can separate data (ini-
tial values of several first variables) from the computation (the remaining assignments
performing boolean operations). Since the term is linear, in order to simulate nonde-
terminism, one does not have to use higher order choice functions, but one can simply
partially apply the function to a suitable number of nondeterministic terms 0+1.

5 Final Remarks

Conclusions. The study we presented here shows that a meaningful account of poly-
nomial complexity classes PTIME, NP, and PSPACE, can be obtained already in the
monomorphic versions of the systems STA, STA+, and STAB . The systems enjoy de-
cidable type inference problem which makes them to be a good theoretical basis for
very simple programming languages with respective complexity bounds. However, the
restriction to monomorphic systems makes part of the program construction to happen
on the metalanguage level, i.e. our simulations require different term for each length of
a machine tape. This raises an interesting open question which polymorphic systems
have decidable type inference and simulate PTIME, NP and PSPACE with no need of
metalanguage artifacts. Note that the paper [1] suggests that the addition of the com-
plexity annotations (! in our case) to terms typed in System F can be done automatically
in polynomial time. It is interesting to see if the hypothetical decidable polymorphic
systems which characterise the polynomial classes also have the polynomial overhead
compared to the systems with no ! connective.
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paper and to anonymous referees who helped greatly in shaping up the paper.
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Abstract. The complexity of any optimisation problem depends criti-
cally on the form of the objective function. Valued constraint satisfac-
tion problems are discrete optimisation problems where the function to
be minimised is given as a sum of cost functions defined on specified
subsets of variables. These cost functions are chosen from some fixed set
of available cost functions, known as a valued constraint language. We
show in this paper that when the costs are non-negative rational numbers
or infinite, then the complexity of a valued constraint problem is deter-
mined by certain algebraic properties of this valued constraint language,
which we call weighted polymorphisms. We define a Galois connection be-
tween valued constraint languages and sets of weighted polymorphisms
and show how the closed sets of this Galois connection can be charac-
terised. These results provide a new approach in the search for tractable
valued constraint languages.

1 Introduction

Classical constraint satisfaction is concerned with the feasibility of satisfying a
collection of constraints. The extension of this framework to include optimisation
is now also being investigated and a theory of so-called soft constraints is be-
ing developed. Several alternative mathematical frameworks for soft constraints
have been proposed in the literature, including the very general frameworks of
‘semi-ring based constraints’ and ‘valued constraints’ [6]. For simplicity, we shall
adopt the valued constraint framework here as it is sufficiently powerful to model
a wide range of optimisation problems [17]. In this framework, every tuple of val-
ues allowed by a constraint has an associated cost, and the goal is to find an
assignment with minimal total cost. The general constraint satisfaction prob-
lem (CSP) is NP-hard, and so is unlikely to have a polynomial-time algorithm.
However, there has been much success in finding tractable fragments of the CSP
by restricting the types of relation allowed in the constraints. A set of allowed
relations has been called a constraint language [26]. For some constraint lan-
guages the associated constraint satisfaction problems with constraints chosen
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from that language are solvable in polynomial-time, whilst for other constraint
languages this class of problems is NP-hard [27,26,23]; these are referred to as
tractable languages and NP-hard languages, respectively. Dichotomy theorems,
which classify each possible constraint language as either tractable or NP-hard,
have been established for languages over 2-element domains [32], 3-element do-
mains [10], for conservative languages [13,4], and maximal languages [11,9].

The general valued constraint satisfaction problem (VCSP) is also NP-hard,
but again we can try to identify tractable fragments by restricting the types of
allowed cost functions that can be used to define the valued constraints. A set of
allowed cost functions has been called a valued constraint language [17]. Much
less is known about the complexity of the optimisation problems associated with
different valued constraint languages, although some results have been obtained
for certain special cases. In particular, a complete characterisation of complexity
has been obtained for valued constraint languages over a 2-element domain with
real-valued or infinite costs [17]. This result generalises a number of earlier results
for particular optimisation problems such as Max-Sat [20] and Min-Ones [21].
One class of tractable cost functions that has been extensively studied is the
class of submodular cost functions [21,17,28,22,29,34].

In the classical CSP framework it has been shown that the complexity of any
constraint language over any finite domain is determined by certain algebraic
properties known as polymorphisms [27,26]. This result has reduced the problem
of the identification of tractable constraint languages to that of the identification
of suitable sets of polymorphisms. In other words, it has been shown to be enough
to study just those constraint languages which are characterised by having a
given set of polymorphisms. Using the algebraic approach, considerable progress
has now been made towards a complete characterisation of the complexity of
constraint languages over finite domains of arbitrary size [23,12,3,1,2,5].

In the VCSP framework it has been shown that a more general algebraic
property known as a multimorphism can be used to analyse the complexity of
certain valued constraint languages [14,17]. Multimorphisms have been used to
show that there are precisely eight maximal tractable valued constraint languages
over a 2-element domain with real-valued or infinite costs, and each of these is
characterised by having a particular form of multimorphism [17]. Furthermore,
it was shown that many known maximal tractable valued constraint languages
over larger finite domains are precisely characterised by a single multimorphism
and that key NP-hard examples have (essentially) no multimorphisms [17,16].

Cohen et al. [15] later generalised the notion of a multimorphism slightly, to
that of a fractional polymorphism. They showed that fractional polymorphisms,
together with the polymorphisms of the underlying feasibility relations, char-
acterise the complexity of any valued constraint language with non-negative
rational or infinite costs over any finite domain [15].

Contributions. In this paper, we extend the results of [15] by introducing a
new algebraic construct which we call a weighted polymorphism. We are able to
show, using the ideas of [15], that the weighted polymorphisms of a valued con-
straint language are sufficient on their own to determine the complexity of that
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language. In addition, we are now able to define a Galois connection between val-
ued constraint languages and sets of weighted polymorphisms, and characterise
the closed sets on both sides.

The Galois connection we establish here can be applied to the search for
tractable valued constraint languages in a very similar way to the application of
polymorphisms to the search for tractable constraint languages in the classical
CSP. First, we need only consider valued constraint languages characterised by
weighted polymorphisms. This greatly simplifies the search for a characterisa-
tion of all tractable valued constraint languages. Second, any tractable valued
constraint language with finite rational or infinite costs must have a non-trivial
weighted polymorphism. Hence the results of this paper provide a powerful new
set of tools in the search for a polynomial-time/NP-hard dichotomy for finite-
domain optimisation problems defined by valued constraints. In the conclusion
section we will mention recent results obtained using the Galois connection es-
tablished in this paper.

Despite the fact that the proof of the main result uses similar techniques
to [15], namely linear programming and Farkas Lemma, the main contribution
of this paper is significantly different: [15] has shown that fractional polymor-
phisms capture the complexity of valued constraint languages. Here, we prove
the same for weighted polymorphisms, but also establish a 1-to-1 correspon-
dence between valued constraint languages and particular sets of weighted poly-
morphisms, which we call weighted clones. This is crucial for using weighted
polymorphisms in searching for new tractable valued constraint languages. Our
results show that a linear program can be set up not only to answer the question
of whether a given cost function is expressible over a valued constraint language,
but also for the question of whether a given weighted operation belongs to a
weighted clone. (We do not elaborate on this application in much detail, but it
follows straightforwardly from the proofs of the main results.)

The structure of the paper is as follows. In Section 2 we describe the Val-
ued Constraint Satisfaction Problem and define the notion of expressibility. In
Sections 3 and 4 we introduce weighted relational clones (valued constraint lan-
guages closed under a certain notion of expressibility) and weighted clones re-
spectively, and state the main result: weighted relational clones are in 1-to-1
correspondence with weighted clones. In Section 5 we give a proof of the main
new theorem establishing the Galois connection. Finally, in Section 6, we men-
tion some recent results based on the results of this paper.

2 Valued Constraint Satisfaction Problems

We shall denote by Q+ the set of all non-negative rational numbers.1 We define
Q+ = Q+ ∪ {∞} with the standard addition operation extended so that for all
a ∈ Q+, a+∞ = ∞ and a∞ = ∞. Members of Q+ are called costs.

1 To avoid computational problems, we work with rational numbers rather than real
numbers. We could work with the algebraic reals, but the rationals are sufficiently
general to encode many standard optimisation problems; see, for example [17].
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A function φ from Dr to Q+ will be called a cost function on D of arity r.

Definition 1. An instance of the valued constraint satisfaction problem,
(VCSP), is a triple P = 〈V,D,C〉 where: V is a finite set of variables; D is
a set of possible values; C is a multi-set of constraints. Each element of C is
a pair c = 〈σ, φ〉 where σ is a tuple of variables called the scope of c, and φ is
a |σ|-ary cost function on D taking values in Q+. An assignment for P is a
mapping s : V → D. The cost of an assignment s, denoted CostP (s), is given
by the sum of the costs for the restrictions of s onto each constraint scope, that
is,

CostP (s) def=
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

A valued constraint language is any set Γ of cost functions from some fixed
set D. We define VCSP(Γ ) to be the set of all VCSP instances in which all cost
functions belong to Γ . A valued constraint language Γ is called tractable if,
for every finite subset Γf ⊆ Γ , there exists an algorithm solving any instance
P ∈ VCSP(Γf ) in polynomial time. Conversely, Γ is called NP-hard if there is
some finite subset Γf ⊆ Γ for which VCSP(Γf ) is NP-hard.

We now define a closure operator on cost functions, which adds to a set of
cost functions all other cost functions which can be expressed using that set, in
the sense defined below.

Definition 2. For any VCSP instanceP=〈V,D,C〉, and any list L=〈v1, . . . , vr〉
of variables of P, the projection of P onto L, denoted πL(P), is the r-ary cost
function defined as follows:

πL(P)(x1, . . . , xr) def= min
{s:V →D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}

CostP (s) .

We say that a cost function φ is expressible over a constraint language Γ if
there exists a VCSP instance P ∈ VCSP(Γ ) and a list L of variables of P such
that πL(P) = φ. We define Express(Γ ) to be the expressive power of Γ ; that
is, the set of all cost functions expressible over Γ .

Note that the list of variables L may contain repeated entries, and we define the
minimum over an empty set of costs to be ∞.

Example 1. Let P be the VCSP instance with a single variable v and no con-
straints, and let L = 〈v, v〉. Then, by Definition 2,

πL(P)(x, y) =
{

0 if x = y
∞ otherwise .

Hence for any valued constraint language Γ , over any set D, Express(Γ ) contains
this binary cost function, which will be called the equality cost function.
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The next result shows that expressibility preserves tractability.

Theorem 1 ([15]). A valued constraint language Γ is tractable if and only if
Express(Γ ) is tractable; similarly, Γ is NP-hard if and only if Express(Γ ) is
NP-hard.

This result shows that, when trying to identify tractable valued constraint lan-
guages, it is sufficient to consider only languages of the form Express(Γ ). In the
following sections, we will show that such languages can be characterised using
certain algebraic properties.

3 Weighted Relational Clones

Definition 3. We denote by ΦD the set of cost functions on D taking values
in Q+ and by Φ(r)

D the r-ary cost functions in ΦD.

Definition 4. Any cost function φ : Dr → Q+ has an associated cost function
which takes only the values 0 and ∞, known as its feasibility relation, denoted
Feas(φ), which is defined as follows:

Feas(φ)(x1, . . . , xr) def=
{

0 if φ(x1, . . . , xr) <∞
∞ otherwise .

We now define a closure operator on cost functions with rational costs, which
adds to a set of cost functions all other cost functions which can be obtained
from that set by a certain affine transformation.

Definition 5. We say φ, φ′ ∈ ΦD are cost-equivalent, denoted by φ ∼ φ′, if
there exist α, β ∈ Q with α > 0 such that φ = αφ′ + β . We denote by Γ∼ the
smallest set of cost functions containing Γ which is closed under cost-equivalence.

The next result shows that adding feasibility relations or cost-equivalent cost
functions does not increase the complexity of Γ .

Theorem 2 ([15]). For any valued constraint language Γ , we have:

1. Γ ∪ Feas(Γ ) is tractable if and only if Γ is tractable, and Γ ∪ Feas(Γ ) is
NP-hard if and only if Γ is NP-hard.

2. Γ∼ is tractable if and only if Γ is tractable, and Γ∼ is NP-hard if and only
if Γ is NP-hard.

The algebraic approach to complexity for the classical CSP uses standard alge-
braic notions of polymorphisms, clones and relational clones [12,7,24].

Here we introduce an algebraic theory for valued constraints based on the no-
tions of weighted polymorphisms, weighted clones and weighted relational clones,
defined below.

Definition 6. We say a set Γ ⊆ ΦD is a weighted relational clone if it con-
tains the equality cost function and is closed under cost-equivalence and feasibil-
ity; rearrangement of arguments; addition of cost functions; and minimisation
over arbitrary arguments. For each Γ ⊆ ΦD we define wRelClone(Γ ) to be the
smallest weighted relational clone containing Γ .
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It is a straightforward consequence of Definitions 2 and 6 that, for any valued
constraint language Γ ⊆ Φ, the set of cost functions that are cost equivalent to
the expressive power of Γ , together with all associated feasibility relations, is
given by the smallest weighted relational clone containing Γ , as the next result
indicates.

Proposition 1. For any Γ ⊆ ΦD, Express(Γ ∪ Feas(Γ ))∼ = wRelClone(Γ ).

Hence, by Theorem 1 and Theorem 2, the search for tractable valued constraint
languages taking values in Q+ corresponds to a search for suitable weighted
relational clones. As has been done in the crisp case [12], we will now proceed
to establish an alternative characterisation for weighted relational clones which
facilitates this search.

4 Weighted Clones

For any finite set D, a function f : Dk → D is called a k-ary operation on D.

Definition 7. We denote by OD the set of all finitary operations on D and by
O(k)

D the k-ary operations in OD.

Definition 8. The k-ary projections on D are the operations

e
(k)
i : Dk → D , (a1, . . . , ak) �→ ai .

Definition 9. We define a k-ary weighted operation on a set D to be a
partial function ω : O(k)

D → Q such that ω(f) < 0 only if f is a projection and∑
f∈dom(ω)

ω(f) = 0 .

The domain of ω, denoted dom(ω), is the subset of O(k)
D on which ω is defined.

We denote by ar(ω) = k the arity of ω.
We denote by WD the finitary weighted operations on D and by W(k)

D the
k-ary weighted operations on D.

Definition 10. We say that two k-ary weighted operations ω, μ ∈ W(k)
D are

weight-equivalent if dom(ω) = dom(μ) and there exists some fixed positive
rational c, such that ω(f) = cμ(f), for all f ∈ dom(ω).

Definition 11. For any ω1, ω2 ∈ W(k)
D , we define the sum of ω1 and ω2, denoted

ω1+ω2, to be the k-ary weighted operation ω with dom(ω) = dom(ω1)∪dom(ω2)
and

ω(f) =

⎧⎨⎩
ω1(f) + ω2(f) f ∈ dom(ω1) ∩ dom(ω2)
ω1(f) f ∈ dom(ω1)\dom(ω2)
ω2(f) f ∈ dom(ω2)\dom(ω1)

. (1)
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Definition 12. Let f ∈ O(k)
D and g1, . . . , gk ∈ O(l)

D . The superposition of f
and g1, . . . , gk is the l-ary operation f [g1, . . . , gk] : Dl → D , (x1, . . . , xl) �→
f(g1(x1, . . . , xl), . . . , gk(x1 . . . , xl)) .

Definition 13. For any ω ∈ W(k)
D and any g1, g2, . . . , gk ∈ O(l)

D , we define the
translation of ω by g1, . . . , gk, denoted ω[g1, . . . , gk], to be the partial function
ω[g1, . . . , gk] from O(l)

D to Q defined by

ω[g1, . . . , gk](f) def=
∑

f ′∈dom(ω)
f=f ′[g1,...,gk]

ω(f ′) . (2)

The domain of ω[g1, . . . , gk] is the set of l-ary operations {f ′[g1, g2, . . . , gk] | f ′ ∈
dom(ω)} .

Example 2. Let ω be the 4-ary weighted operation on D given by

ω(f) =
{
−1 if f is a projection
+1 if f ∈ {max(x1, x2),min(x1, x2),max(x3, x4),min(x3, x4)} ,

and let
〈g1, g2, g3, g4〉 =

〈
e
(3)
1 , e

(3)
2 , e

(3)
3 ,max(x1, x2)

〉
.

Then, by Definition 13 we have

ω[g1, g2, g3, g4](f)=

{−1 if f is a projection
+1 if f ∈{max(x1, x2, x3), min(x1, x2), min(x3, max(x1, x2))}
0 if f = max(x1, x2)

.

Note that ω[g1, g2, g3, g4] satisfies the conditions of Definition 9 and hence is a
weighted operation.

Example 3. Let ω be the same as in Example 2 but now consider

〈g′1, g′2, g′3, g′4〉 =
〈
e
(4)
1 ,max(x2, x3),min(x2, x3), e(4)4

〉
.

By Definition 13 we have

ω[g′1, g
′
2, g

′
3, g

′
4](f) =

⎧⎨⎩−1 if f ∈ {e(4)1 ,max(x2, x3),min(x2, x3), e(4)4 }

+1 if f ∈
{

max(x1, x2, x3),min(x1,max(x2, x3)),
max(min(x2, x3), x4),min(x2, x3, x4)

}
.

Note that ω[g′1, g′2, g′3, g′4] does not satisfy the conditions of Definition 9 because,
for example, ω[g′1, g

′
2, g

′
3, g

′
4](f) < 0 when f = max(x2, x3), which is not a pro-

jection. Hence ω[g′1, g
′
2, g

′
3, g

′
4] is not a weighted operation.

Definition 14. If the result of a translation is a weighted operation, then that
translation will be called a proper translation.
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Remark 1. For any ω ∈ W(k)
D , if g1, . . . , gk are projections, then it can be shown

that the function ω[g1, . . . , gk] satisfies the conditions of Definition 9, and hence
is a weighted operation. This means that a translation by any list of projections
is always a proper translation.

We are now ready to define weighted clones.

Definition 15. Let C be a clone of operations on D. We say a set W ⊆ WD is
a weighted clone with support C if it contains all zero-valued weighted oper-
ations whose domains are subsets of C and is closed under weight-equivalence,
addition, and proper translation by operations from C.

For each W ⊆ WD we define wClone(W ) to be the smallest weighted clone
containing W .

Remark 2. The support of wClone(W ) is the clone generated by the domains of
the elements of W . That is, the support of wClone(W ) is Clone(∪ω∈W dom(ω)).

Example 4. For any clone of operations, C, there exists a unique weighted clone
which consists of all weighted operations assigning weight 0 to each subset of C.

Definition 16. Let φ ∈ Φ(r)
D and let ω ∈ W(k)

D . We say that ω is a weighted
polymorphism of φ if, for any x1, x2, . . . , xk ∈ Dr such that φ(xi) < ∞ for
i = 1, . . . , k, we have ∑

f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk)) ≤ 0 . (3)

If ω is a weighted polymorphism of φ we say φ is improved by ω.

Note that, because a∞ = ∞ for any value a (including a = 0), if inequality
(3) holds we must have φ(f(x1, . . . , xk)) < ∞, for all f ∈ dom(ω), i.e., each
f ∈ dom(ω) is a polymorphism of φ.

Example 5. Consider the class of submodular set functions [31]. These are pre-
cisely the cost functions on {0, 1} satisfying

φ(min(x1, x2)) + φ(max(x1, x2))− φ(x) − φ(y) ≤ 0 .

In other words, the set of submodular functions are defined as the set of cost
functions on {0, 1} with the 2-ary weighted polymorphism

ω(f) =
{
−1 if f ∈ {e(2)1 , e

(2)
2 }

+1 if f ∈ {min(x1, x2),max(x1, x2)} .

Definition 17. For any Γ ⊆ ΦD, we denote by wPol(Γ ) the set of all finitary
weighted operations on D which are weighted polymorphisms of all cost function
φ ∈ Γ and by wPol(k)(Γ ) the k-ary weighted operations in wPol(Γ ).

Definition 18. For any W ⊆ WD, we denote by Imp(W ) the set of all cost
functions in ΦD that are improved by all weighted operations ω ∈ W and by
Imp(r)(W ) the r-ary cost functions in Imp(W ).
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It follows immediately from the definition of a Galois connection [8] that, for
any set D, the mappings wPol and Imp form a Galois connection between WD

and ΦD. A characterisation of this Galois connection for finite sets D is given
by the following two theorems:

Theorem 3. For any finite set D, and any finite Γ ⊆ ΦD,

Imp(wPol(Γ )) = wRelClone(Γ ).

Theorem 4. For any finite set D, and any finite W ⊆ WD,

wPol(Imp(W )) = wClone(W ).

As with any Galois connection [8], this means that there is a one-to-one cor-
respondence between weighted clones and weighted relational clones. Hence,
by Proposition 1, Theorem 1, and Theorem 2, the search for tractable valued
constraint languages taking values in Q+ corresponds to a search for suitable
weighted clones of operations.

5 Proof of Theorems 3 and 4

A similar result to Theorem 3 was obtained in [15, Theorem 4] using the re-
lated algebraic notion of fractional polymorphism. The proof given in [15] can
be adapted in a straightforward way, and we omit the details due to space con-
straints. We will sketch the proof of Theorem 4. First, we show in Proposition 2
that the weighted polymorphisms of a set of cost functions form a weighted
clone. The rest of the theorem then follows from Theorem 5, which states that
any weighted operation that improves all cost functions in Imp(W ) is an element
of the weighted clone wClone(W ). Due to space constraints we will not include
the proof of Theorem 5.

Proposition 2. Let D be a finite set.

1. For all Γ ⊂ ΦD, wPol(Γ ) is a weighted clone with support Pol(Γ ).
2. For all W ⊂ WD, wClone(W ) ⊆ wPol(Imp(W )).

Proof. Certainly wPol(Γ ) contains all zero-valued weighted operations with do-
mains contained in Pol(Γ ), since all of these satisfy the conditions set out in Def-
inition 16. Similarly, wPol(Γ ) is closed under addition and weight-equivalence,
since both of these operations preserve inequality (3). Hence, to show wPol(Γ )
is a weighted clone we only need to show wPol(Γ ) is closed under proper trans-
lations by members of Pol(Γ ).

Let ω ∈ wPol(k)(Γ ) and suppose ω′ = ω[g1, . . . , gk] is a proper translation of ω,
where g1, g2, . . . , gk ∈ Pol(l)(Γ ). We will now show that ω′ ∈ wPol(l)(Γ ). Suppose
φ is an r-ary cost function satisfying ω ∈ wPol({φ}), i.e., φ and ω satisfy (3)
for any x1, x2, . . . , xk ∈ Feas(φ). Given any x′1, x

′
2, . . . , x

′
l ∈ Feas(φ), set xi =

gi(x′1, x
′
2, . . . , x

′
l) for i = 1, 2, . . . , k. Then, if we set f ′ = f [g1, . . . , gk], we have
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f ′(x′1, x
′
2, . . . , x

′
l) = f(x1, x2, . . . , xk), for any f ∈ O(k)

D . Hence, by Definition 13,
we have∑

f ′∈dom(ω′)

ω′(f ′)φ(f ′(x′1, x
′
2, . . . , x

′
k) =

∑
f∈dom(ω)

ω(f)φ(f(x1, x2, . . . , xk) ≤ 0 .

For the second part, we observe that W ⊆ wPol(Imp(W )). Hence, wClone(W ) ⊆
wClone(wPol(Imp(W ))) = wPol(Imp(W )).  !

We will make use of the following lemma, which shows that a weighted sum of
arbitrary translations of any weighted operations ω1 and ω2 can be obtained by
translating ω1 and ω2 by projection operations, forming a weighted sum, and
then translating the result.

Lemma 1. For any weighted operations ω1 ∈ W(k)
D and ω2 ∈ W(l)

D and any
g1, . . . , gk ∈ O(m)

D and g′1, . . . , g
′
l ∈ O(m)

D ,

c1 ω1[g1, . . . , gk] + c2 ω2[g′1, . . . , g
′
l] = ω[g1, . . . , gk, g

′
1, . . . , g

′
l] , (4)

where ω = c1 ω1[e(k+l)
1 , . . . , e

(k+l)
k ] + c2 ω2[e(k+l)

k+1 , . . . , e
(k+l)
k+l ]

Proof. For any f ∈ dom(ω), the result of applying the right-hand side expression
in equation (4) to f is:

∑
f ′∈dom(ω)

f=f ′[g1,...,gk,g′
1,...,g′

l]

⎛⎜⎜⎜⎜⎝
∑

h′∈dom(ω1)

f ′=h′[e(k+l)
1 ,...,e

(k+l)
k ]

c1 ω1(h′) +
∑

h′∈dom(ω2)

f ′=h′[e(k+l)
k+1 ,...,e

(k+l)
k+l ]

c2 ω2(h′)

⎞⎟⎟⎟⎟⎠ .

Replacing each f ′ by the equivalent superposition of h′ with projections, we
obtain: ∑

h′∈dom(ω1)
f=h′[g1,...,gk]

c1 ω1(h′) +
∑

h′∈dom(ω2)
f=h′[g′

1,...,g′
l]

c2 ω2(h′) ,

which is the result of applying the left-hand-side of Equation 4 to f .  !

Theorem 5. For all finite W ⊂ WD, wPol(Imp(W )) ⊆ wClone(W ).

6 Conclusions

We have presented an algebraic theory of valued constraint languages analogous
to the theory of clones used to study the complexity of the classical constraint
satisfaction problem. We showed that the complexity of any valued constraint
language with rational costs is determined by certain algebraic properties of
the cost functions allowed in the language: the weighted polymorphisms. Com-
pared to the results in [15], not only have we captured the complexity of valued
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constraint languages, but we have also established a 1-to-1 connection between
valued constraint languages and sets of weighted polymorphisms.

In previous work [27,26] it has been shown that every tractable crisp constraint
language can be characterised by an associated clone of operations. This work
initiated the use of algebraic properties in the search for tractable constraint
languages, an area that has seen considerable activity in recent years; see, for
instance, [11,13,12,10,28,22,3,1,2,5]. The results in this paper show that a similar
result holds for the valued constraint satisfaction problem: every tractable valued
constraint language is characterised by an associated weighted clone.

We believe that our results here will provide a similar impetus for the inves-
tigation of tractable valued constraint satisfaction problems. In fact, we have
already commenced investigating minimal weighted clones in order to under-
stand maximal valued constraint languages [19]. Building on Rosenberg’s famous
classification of minimal clones, we have obtained a similar classification of min-
imal weighted clones [19]. Furthermore, using the results from this paper, we
have proved maximality of several known tractable valued constraint languages,
including an alternative proof of the characterisation of all maximal Boolean
valued constraint languages from [17]. Details on minimal weighted clones and
other applications of our results will be included in the full version of this paper.
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Abstract. The notion of orbit finite data monoid was recently intro-
duced by Bojańczyk as an algebraic object for defining recognizable lan-
guages of data words. Following Büchi’s approach, we introduce the new
logic ‘rigidly guarded MSO’ and show that the data languages definable
in this logic are exactly those recognizable by orbit finite data monoids.
We also establish, following this time the approach of Schützenberger,
McNaughton and Papert, that the first-order variant of this logic defines
exactly the languages recognizable by aperiodic orbit finite data monoids.
Finally, we give a variant of the logic that captures the larger class of
languages recognized by non-deterministic finite memory automata.

1 Introduction

Data languages are languages over an infinite alphabet – the letters of which are
called data values – which are closed under permutation of the data values. This
invariance under permutation makes any property concerning the data values,
other than equality, irrelevant. Some examples of data languages are:

• The sets of words containing exactly k distinct data values.

• The sets of words where the first and last data values are equal.

• The sets of words with no consecutive occurrences of the same data value.

• The sets of words where each data value occurs at most once. (�)

The intention behind data values in data words (or data trees, . . . ) is to model,
e.g. the id’s in a database, or the process or users numbers in the log of a system.
Those numbers are used as identifiers, and we are interested only in comparing
them by equality. The invariance under permutation of data languages captures
this intention. Data words can also be defined to have both a data value and a
letter from a finite alphabet at each position. This is more natural in practice,
and does not make any difference in the results to follow.

The paper aims at understanding better how the classical theory of regular
languages can be extended to data languages. The classical theory associates
regular languages to finite state automata or, equivalently, to finite monoids. For
instance, important properties of regular languages can be detected by exploiting
equivalences with properties of the monoid – see, e.g. Straubing’s book [14] or
Pin’s survey [11] for an overview of the approach.
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Recently, Bojańczyk introduced the notion of data monoids [3] as a framework
for algebraic characterizations of data languages. Bojańczyk focused on the lan-
guages of data words recognizable by orbit finite data monoids, an analog of finite
monoids for data languages. All the above examples but � are recognizable with
this definition. Our main objective is to understand better the expressive power
of the orbit finite data monoid model by comparing it with automaton-based
models and logical formalisms for data words.

In terms of logic, there is a natural way to define logics for data words. It
is sufficient for this to use a predicate x ∼ y meaning that the data values
at positions x and y are equal. In particular, one may think that the monadic
(second-order) logic with this new predicate is a good candidate to equivalently
specify recognizable languages, i.e., would play the role of monadic logic in the
standard theory of regular languages. However, this is not the case, as monadic
logic happens to be much too expressive. One inclusion indeed holds: every
language of data words recognized by an orbit finite monoid is definable in
monadic logic. However, the converse does not hold, as witnessed by the formula

∀ x, y. x 
= y → x � y, (��)

which defines the above (non-recognizable) language �. More generally, it has
been shown that monadic logic (indeed, even first-order logic with data equal-
ity) has an undecidable satisfiability problem and it can express properties not
implementable by automaton models, such as finite memory automata (FMA,
described below) [10]. We naturally aim at answering the following question:

Is there a natural variant of monadic logic which defines precisely the
data languages recognizable by orbit finite data monoids?

We answer this question positively, introducing rigidly guarded MSO (abbre-
viating monadic second-order logic with rigidly guarded data equality tests).
This logic allows testing equality of two data values only when the two po-
sitions are related in an injective way (we say rigid). That is, data equality
tests are allowed only in formulas of the form ϕ(x, y) ∧ x ∼ y, where ϕ is
rigid, i.e., defines a partial injection. For instance, it is easy to check whether
there are two consecutive positions sharing the same data value, e.g., by the
formula ∃ x, y. (x = y + 1) ∧ x ∼ y. The guard (x = y + 1) is rigid since x
uniquely determines y, and vice versa. However, it is impossible to describe the
language � in this logic. In particular, the above formula �� can be rewritten
as ¬∃ x, y. (x 
= y) ∧ x ∼ y, but this time the guard x 
= y is not rigid: for a
given x, there can be several y such that x 
= y. It may seem a priori that the
fact that rigidity is a semantic property is a severe drawback. This is not the
case since (i) rigidity can be enforced syntactically, and (ii) rigidity is decidable
for formulas in our logic.

To validate the robustness of our approach, we also answer to the following
question inspired from the seminal Schtzenberger-McNaughton-Papert result:

Does the rigidly guarded FO logic (i.e., the first-order fragment of rigidly
guarded MSO) correspond to aperiodic orbit finite data monoids?
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We answer this question positively as well. We finally consider data languages
recognizable by finite memory automata and we prove that a natural variant of
rigidly guarded MSO, called ∃backward-rigidly guarded MSO captures the class
of data languages recognized by non-deterministic finite memory automata.

Overall, we don’t claim that data languages recognizable by orbit finite data
monoids are the counterpart to the notion of regular languages in the standard
theory, since this model is rather expressively weak (see related work below).
However, in this restricted framework, we are able to recover several of the
major results which hold for usual regular languages.

Related work. This work is highly related to the well known theory of regular
languages. We refer by this to the key equivalence between monadic logic and
regular languages due to Büchi [5], and the Schützenberger-McNaughton-Papert
result that characterizes the subclass of first-order definable languages [13, 9].

The other branch of related work is the one concerned with languages of data
words. The first contribution in this direction is due to Kaminski and Francez
[7], who introduced finite memory automata (FMA for short). These automata
possess a fixed finite set of registers that can store data values. At each step such
an automaton can compare the current data value with the values stored in the
registers, and can decide to store this value in some register (forgetting the pre-
vious content of the register). This model of automaton, in its non-deterministic
form, has a decidable emptiness problem and an undecidable universality prob-
lem (decidability of the latter problem is recovered in the deterministic variant).

Recently, the deterministic model of FMA has been modified by requiring a
stricter policy in the use of registers [2]. This modification does not affect the
expressive power of the model, but, as opposed to the original model, the new
model can be efficiently minimized. In [1] partial results on relating automata to
logics are also given. The question of characterizing the first-order logic definable
language among the languages recognized by deterministic FMA is still open.

Many other automaton models for data languages have been studied in the
literature (see [12] for a survey). These include pebble automata [10] and data
automata [4], the latter introduced as a mean of capturing decidable logics over
data words. The algebraic theory for these models has not been developed, nor
is there an exact characterization of definability in logics for any of these models.

Contribution and structure of the paper. These are our contributions:

1. We show how infinite orbit finite data monoids can be finitely represented.

2. We introduce a new logic called “rigidly guarded MSO” – a natural weaken-
ing of MSO logic with data equality tests. Although the syntax of our logic
is based on a semantic property, one can decide whether a formula belongs
to the logic or not.

3. We show that satisfiability of rigidly guarded MSO formulas is decidable.

4. We show that rigidly guarded MSO is as expressive as orbit finite data
monoids, and that its first-order fragment corresponds precisely to aperiodic
orbit finite data monoids.
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5. We give a decidable variant of rigidly guarded MSO that captures the data
languages recognized by non-deterministic finite memory automata and has
a decidable satisfiability problem. We also provide a decidable logic for data
trees along the same lines.

Section 2 gives preliminaries on data languages and data monoids, and explains
how to define representations of data monoids with finitely many orbits. Section 3
introduces rigidly guarded MSO and its first-order fragment. Section 4 describes
the translation from rigidly guarded MSO (resp., FO) formulas to orbit finite
data monoids (resp., aperiodic orbit finite data monoids) recognizing the same
languages. Section 5 describes the converse translation, namely, from (aperiodic)
orbit finite data monoids to rigidly guarded MSO (resp., FO) formulas. Section
6 introduces a variant of rigidly guarded MSO that captures precisely the class
of languages recognized by non-deterministic finite memory automata. Finally,
Section 7 provides an assessment of the results and related open problems.

2 Data Monoids

In this paper, D will usually denote an infinite set of data values (e.g., d, e, f, . . .)
and A will denote a finite set of symbols (e.g., a, b, c, . . .). A data word over the
alphabet D × A is a finite sequence u = (d1, a1) . . . (dn, an) in (D × A)∗. The
domain of u, denoted Dom(u), is {1, . . . , n}.

Given a set C ⊆ D of data values, a (data) renaming on C is a permutation
on C that is the identity for all but finitely many values of C. We denote by
GC the set of all renamings on C. Renamings are naturally extended to tuples
of data values, data words, sets of data words, and so on. A data language over
D×A is a set of data words in (D×A)∗ that is closed under renamings in GD.

Recall that a monoid is an algebraic structure M = (M, ·) where · is an
associative product on M and M contains an identity 1M. A monoid is aperiodic
if for all elements s, there is n such that sn = sn+1. We say that the set GC of
renamings acts on a monoid M = (M, ·) if there is a function ˆ that maps every
renaming τ ∈ GC to an automorphism τ̂ on M. That is, for all renamings τ, π ∈
GC and all elements s, t ∈M , we have (i) τ̂ ◦ π = τ̂ ◦ π̂, (ii) τ̂id(s) = s, where τid
is the identity function on C, (iii) τ̂ (s) · τ̂ (t) = τ̂(s · t), and (iv) τ̂(1M) = 1M. For
example, consider the free monoid ((D×A)∗, ·) consisting of all finite words over
D ×A equipped with the operation of juxtaposition (the empty word ε playing
the role of the identity). The group GD of data renamings acts on the free monoid
when the action is defined by τ̂ ((d1, a1) . . . (dn, an)) = (τ(d1), a1) . . . (τ(dn), an).

We say that a renaming τ is a stabilizer of an element s of a monoid M acted
upon by GC , if τ̂(s) = s. A set C′ ⊆ D of data values supports an element s if
all renamings that are the identity on C′ are stabilizers of s. It is known that
the intersection of two sets that support s is a set that supports s as well [3, 6].
Hence we can define the memory of s, denoted mem(s), as the intersection of
all sets that support s. Note that there are finite monoids whose elements have
infinite memory (see [3] for an example). On the other hand, monoids that
are homomorphic images of the free monoid contains only elements with finite
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memory. As we are interested in homomorphic images of the free monoid, we
will consider monoids whose elements have finite memory (this property is called
finite support axiom and the resulting algebraic objects data monoids).

Definition 1. A data monoid M = (M, ·, ˆ) over C is a monoid (M, ·) that is
acted upon by GC , in which every element has finite memory.

Unless otherwise stated, data monoids are defined over the set D of data values.
The orbit of an element s of M = (M, ·, ˆ) is the set of all elements τ̂ (s) with

τ ∈ GD. Note that two orbits are either disjoint or equal. We say that M is orbit
finite if it contains finitely many orbits. It is easy to see that if two elements are
on the same orbit, then their memories have the same size. Hence an orbit finite
data monoid has a uniform bound on the size of the memories (this is not true
for arbitrary data monoids).

A morphism between two data monoids M = (M, ·, ˆ) and N = (N,), ˇ) is a
monoid morphism that commutes with the action of renamings.A data language
L ⊆ (D×A)∗ is recognized by a morphism h : (D×A)∗ → M if the membership
of a word u ∈ (D ×A)∗ in L is determined by the element h(u) of M, namely,
if L = h−1(h(L)). As L is closed under renamings, h(L) is a union of orbits.

Finite presentations of data monoids. Since orbit finite data monoids are
infinite objects, we need suitable representations that ease algorithmic manipu-
lation. The basic idea is to consider the restriction of an orbit finite data monoid
to a finite set of data values:

Definition 2. Given a data monoid M = (M, ·, ˆ) and C ⊆ D, we define the
restriction of M to C to be M|C =

(
M |C , · |C , ˆ|C

)
, where M |C consists of all

elements s ∈ M such that mem(s) ⊆ C, · |C is the restriction of · to M |C, and
ˆ|C is the restriction of ˆ to GC and M |C .

Note that s · t ∈ M |C and τ̂ (s) ∈ M |C for all s, t ∈ M |C and τ ∈ GC . Hence,
if C is finite, M|C is a finite data monoid.1 Hereafter, we denote by ‖M‖ the
maximum cardinality of the memories of the elements of an orbit finite data
monoid M.

Proposition 1. Let M, M′ be orbit finite data monoids such that ‖M‖ =
‖M′‖ and let C ⊆ D be of cardinality at least 2‖M‖. If M|C and M′|C are
isomorphic, then so are M and M′.

The above proposition shows that the restriction of an orbit finite data monoid
M over a sufficiently large finite set C uniquely determines M. A more careful
analysis shows that many operations on orbit finite data monoids (e.g., the
product of two such monoids, the quotient with respect to a congruence) can
be performed at the level of the finite restriction. This allows us to effectively
compute the results of algebraic operations on orbit finite data monoids.
1 One has to keep in mind that data monoids over finite sets do not satisfy the same

properties as those over infinite sets. For instance, the Memory Theorem, as stated
in [3], does not hold for data monoids over finite sets.
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Term-based presentations of data monoids. We have just shown how we
can represent an infinite data monoid by a finite one. It is also possible to give
a more explicit presentation of orbit finite data monoids using what we call a
term-based presentation system. Each element is a term of the form o(d1, . . . , dk)
in which o is an orbit name (belonging to some fixed set) of a fixed arity k, and
d1, . . . , dk are distinct values. Those terms are furthermore considered modulo an
equivalence relation, and equipped with a binary operation. Such a presentation
is valid if the binary operation is associative over the equivalence classes, and if
the data values respect the renaming policy required for data monoids. Under
those suitable assumptions, the equivalence classes of terms equipped with the
associative operation as product and the natural renaming operations form a
data monoid. Furthemore, if there are finitely many orbit names, then the rep-
resented data monoid is orbit finite. We also show that conversely, every orbit
finite data monoid can be represented by such a term-based representation, using
finitely many orbit names.

This kind of presentation ease algorithmic manipulations of the elements of the
data monoid, and are heavily used in the proofs. Some open questions are directly
related to this presentation such as: is it possible to get rid of the equivalence
relation for recognizing a language of data words?

3 Rigidly Guarded Logics

From now on, we abbreviate monadic second-order logic with data equality tests
by MSO. MSO formulas are built up from atoms of the form x < y, a(x),
x ∈ X , or x ∼ y, using boolean connectives and existential quantifications
over first-order variables (e.g., x, y, . . .) and monadic second-order variables (e.g.,
X,Y, . . .). The meaning of an atom x ∼ y is that the data values at the two
positions that correspond to the interpretation of the variables x and y must be
the same. The meaning of the other predicates is as usual.

Here we introduce a new logic called “rigidly guarded MSO”. We say that
a formula ϕ(x, y) with two free first-order variables x, y is rigid if for all data
words u ∈ (D × A)∗ and all positions x (resp., y) in u, there is at most one
position y (resp., x) in u such that u � ϕ(x, y). Rigidly guarded MSO is obtained
from MSO by enforcing the following restriction: every data equality test of the
form x ∼ y must be guarded by a rigid formula ϕ(x, y). Precisely, the formulas
of rigidly guarded MSO are build up using the following grammar:

ϕ := ∃ x. ϕ | ∃ Y . ϕ | x<y | a(x) | x ∈ Y | ¬ϕ | ϕ ∧ ϕ | ϕrigid(x, y) ∧ x∼y

where a ∈ A and ϕrigid(x, y) is a rigid formula that is generated by the same
grammar. Rigidly guarded FO is the first-order fragment of rigidly guarded MSO.

The notion of rigidity is a semantic property, and this may seem problem-
atic. However, we can enforce rigidity syntactically as follows. Instead of a
guard ϕrigid(x, y) in a formula, one uses the new guard

ϕ̃rigid(x, y) =def ϕrigid(x, y) ∧ ∀ x′, y′. ϕrigid(x′, y′) → (x = x′ ↔ y = y′) .
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It is easy to check that ϕ̃rigid is always rigid, and that furthermore, if ϕrigid

is rigid then it is equivalent to ϕ̃rigid. This trick allows us to enforce rigidity
syntactically. We will also see in Corollary 2 below that one can decide if a
formula respects the rigidity assumption in all its guards (the problem being
undecidable when data tests are not guarded).

We remark that in this logic, the similar constructions ϕrigid(x, y) ∧ x � y,
ϕrigid(x, y) → x ∼ y, and ϕrigid(x, y) → x � y can be derived. This is thanks to
the Boolean equivalences ϕ→ ϕ′ iff ϕ→ (ϕ ∧ ϕ′), ϕ ∧ ¬ϕ′ iff ¬(ϕ→ ϕ′), and
ϕ→ ¬ϕ′ iff ¬(ϕ ∧ ϕ′).

Example 1. Let us consider the language L≥k of all data words that contain at
least k different data values. If k = 1 we just need to check the non-emptiness
of the word by the sentence ∃ x. true. For k = 2 it is sufficient to test for the
existence of two distinct consecutive data values, using for instance the formula
∃ x, y. (x+ 1 = y) ∧ x � y. For k > 2, one can proceed by induction as follows.
One first observes that if a word has at least k distinct data values, then there is
a minimal factor witnessing this property, say [x, y]. A closer inspection reveals
that, in this case, [x+ 1, y − 1] is a maximal factor that uses exactly k − 2 data
values and thus belongs to the language L≥k−2 \ L≥k−1. By induction, the fact
that [x+1, y−1] is a maximal factor that belongs to L≥k−2\L≥k−1 is expressible
in rigidly guarded FO by a formula ϕ(x, y). Furthermore, this formula ϕ(x, y) is
rigid according to its semantic definition. We conclude that the language L≥k is
defined by the formula ∃ x, y. ϕ(x, y) ∧ x � y.

To simplify the notation, it is sometimes convenient to think of a first-order
variable x as a second-order variable X interpreted as a singleton set. Therefore,
by a slight abuse of notation, we shall often write variables in uppercase letters,
without explicitly saying whether these are first-order or second-order variables
(their correct types can be inferred from the atoms they appear in). As usual, we
write ϕ(X1, . . . , Xm) whenever we want to make explicit that the free variables
of ϕ are among X1, . . . , Xm. Moreover, given a formula ϕ(X1, . . . , Xm), a data
word u ∈ (D×A)∗, and some unary predicates U1, . . . , Um ⊆ Dom(u), we write
u � ϕ(U1, . . . , Um) whenever ϕ holds on u by interpreting the free variables
X1, . . . , Xm with the predicates U1, . . . , Um.

As usual, given a formula ϕ(X̄) with some free (first-order or monadic second-
order) variables X1, . . . , Xm, one can see it as defining the language

�ϕ� = {〈u, U1, . . . , Um〉 : u � ϕ(U1, . . . , Um)} ⊆ (D ×A×Bm)∗

where B denotes the binary alphabet {0, 1} and 〈u, U1, . . . , Um〉 is the word over
the alphabet D×A×Bm that has letter (d, a, b1, . . . , bm) at position i iff (d, a)
is the i-th letter of u, and for all j = 1 . . .m, bj is 1 if i ∈ Uj , and 0 otherwise.

4 From the Logic to Data Monoids

In this section, we show that every data language defined by a rigidly guarded
MSO sentence is recognized by an orbit finite data monoid. Our proof follows
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the classical technique for showing that MSO definable languages over standard
words can be recognized by monoids. Namely, we show that each construction
in the logic corresponds to a closure under some operation on recognizable lan-
guages: disjunction corresponds to union, negation corresponds to complement,
existential quantification corresponds to projection, etc.

The principle of the proof is to establish that, given a rigidly guarded MSO
formula ϕ(X̄), the language �ϕ� is recognized by an orbit finite data monoid.
Though this statement is true, it cannot be used – as it is the case in the standard
theory – as an induction hypothesis. The problem is that the operation that
corresponds to existential quantification (i.e. projection) transforms an orbit
finite data monoid into a data monoid which is not orbit finite, in general. That
is why our induction hypothesis is stronger, and states that �ϕ� is recognized by
an orbit finite data monoid via a projectable morphism, to be defined below (we
write s .= t whenever the elements s and t are in the same orbit):

Definition 3. Let h be a morphism from the free data monoid (D ×A×Bm)∗

to a data monoid M = (M, ·, ˆ). We say that h is projectable if for all data
words u ∈ (D × A)∗ and all tuples of predicates Ū = (U1, . . . , Um) and V̄ =
(V1, . . . , Vm),

h(〈u, Ū〉) .= h(〈u, V̄ 〉) implies h(〈u, Ū〉) = h(〈u, V̄ 〉) .

We now state the theorem, which is at the same time our induction hypothesis:

Theorem 1. For all rigidly guarded MSO formulas ϕ(X̄), the language �ϕ� is
effectively recognized by an orbit finite data monoid with a projectable morphism.

From the above theorem we obtain, in particular, the following key corollaries:

Corollary 1. Every data language definable in rigidly guarded MSO (resp.,
rigidly guarded FO) is recognizable by an orbit finite data monoid (resp., aperi-
odic orbit finite data monoid).

Note that the claim for the first-order case is deduced using the result that every
language recognized by an orbit finite data monoid and definable in FO (without
any rigidity assumption) is recognized by an aperiodic orbit finite data monoid
[3]. That is why Theorem 1 needs not to consider the first-order case.

Corollary 2. The satisfiability problem for rigidly guarded MSO logic is decid-
able. Moreover, one can decide whether a formula belongs to the rigidly guarded
MSO logic, and in this case whether the formula is rigid.

The proof of Theorem 1 is by structural induction on the rigidly guarded MSO
formulas: the translation of the atomic formulas x < y, a(x), x ∈ Y are easy
(at least towards non-aperiodic monoids) and the translations of the Boolean
connectives are as in the classical case.
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The translation of the existential closures uses a powerset construction on
orbit finite data monoids. Since data monoids are in general infinite objects, the
standard powerset construction would yield infinitely many orbits even if the
original data monoid has finitely many of them. In our case, the construction
remembers all possible elements of the original monoid, but since the morphism
is projectable, one never has to store more than one element per orbit. Indeed,
whenever another element in the same orbit is encountered, it has to be equal
to the one already present: this limitation allows us to preserve orbit finiteness.

The most technical part concerns the translation of the rigidly guarded data
tests ϕ(x, y) ∧ x ∼ y. The rigidity assumption on the guard ϕ(x, y) is cru-
cial for this result: if ϕ(x, y) were not rigid, then the data monoid recognizing
�ϕ(x, y) ∧ x ∼ y� would still be orbit finite, but the morphism would in gen-
eral not be projectable. The proof that �ϕ(x, y) ∧ x ∼ y� is recognized via a
projectable morphism requires a bit of analysis since rigidity is a semantic as-
sumption and hence one cannot directly deduce from it a property for the data
monoid. However, one can use the rigidity property for “normalizing” the data
monoid, allowing the construction to go through.

5 From Data Monoids to the Logic

Having shown that every language defined by a rigidly guarded MSO (resp., FO)
formula is recognized by an orbit finite data monoid (resp., by an aperiodic orbit
finite data monoid), we now show the converse.

Theorem 2. Given an orbit finite data monoid M, a morphism h from the
free data monoid to M, and an orbit o, one can compute a rigidly guarded
MSO sentence ϕ that defines the data language L = h−1(o). Moreover, if M is
aperiodic, then ϕ is a rigidly guarded FO sentence.

This is the most technical result of the paper. Note that in the classical theory of
regular languages, the analogous of Theorem 2 (at least the part involving only
MSO) is straightforward: indeed, a monoid can be used as an automaton, and it
is sufficient to write an MSO formula that guesses a run of such an automaton
and checks that it is valid and accepting. We cannot use such a proof for data
monoids: not only there is no equivalent automaton model, but furthermore, the
above approach is intrinsically not compatible with the notion of rigidity.

Our proof follows a structure similar to Schützenberger’s proof that languages
recognized by aperiodic monoids are definable by star-free expressions (i.e., in
FO logic). The proof relies on an induction on the structure of ideals of the data
monoid, the so called Green’s relations [11]. This requires specific study of this
theory for orbit finite data monoids. Such a study was initiated by Bojańczyk
[3], but we had to develop several new tools for our proof to go through (these
tools concern the size of H-classes and the analysis of the memory inside the J -
classes). As opposed to the classical case, the proof is significantly more involved
for MSO compared to FO.
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6 Logics for Finite Memory Automata

In this section, we try to see how guards as introduced above can help con-
structing decidable logics. We consider languages recognized by finite memory
automata (FMA) [7]. These extend finite state automata by a finite set of regis-
ters, storing values from an infinite alphabet D. Data words are processed from
left to right. At each step the automaton compares (up to equality) the current
input value with the values that are stored in its registers. Based on this infor-
mation, the automaton decides whether or not to store the input value in one of
its registers, updates its state, and moves one symbol to the right.

The deterministic variant of FMA can be viewed as the natural automaton
counterpart of orbit finite data monoids. However, deterministic FMA are more
expressive than orbit finite data monoids, as witnessed by the language

L =def {d1 . . . dn : n ∈ N, d1 = di for some 1 < i ≤ n}
which is recognizable by deterministic FMA, but not by orbit finite data monoids.
Moreover, unlike classical finite automata, non-deterministic FMA are even more
expressive than deterministic FMA, as witnessed by the language

L′ =def {d1 . . . dn : n ∈ N, di = dj for some 1 ≤ i < j ≤ n}.
It thus comes natural to look for logical characterizations of data languages
recognizable by deterministic (resp., non-deterministic) FMA.

A natural attempt at finding a logic for FMA consists in relaxing the notion
of rigidity. One could imagine using backward-rigid guards for data tests. These
are formulas ϕ(x, y) that determine the leftmost position min(x, y) from the
rightmost position max(x, y) (but possibly not the other way around). Formulas
of backward-rigidly guarded MSO are built up using the grammar:

ϕ := ∃ x. ϕ | ∃ Y . ϕ | x < y | a(x) | x ∈ Y | ¬ϕ | ϕ ∧ ϕ | ϕbackward(x, y) ∧ x∼y

where ϕbackward is a backward-rigid formula generated from the same grammar
(as usual, we can enforce backward-rigidity syntactically). For example the above
language L can be easily defined by the backward-rigidly guarded MSO sentence
∃ x, y. (x < y ∧ ∀ z. x ≤ z) ∧ x ∼ y. One can translate backward-rigidly guarded
MSO formulas to equivalent deterministic FMA, but not the other way around:

Proposition 2. Every language definable in backward-rigidly guarded MSO is
recognizable by deterministic FMA. There is a language recognized by a deter-
ministic FMA which cannot be defined in backward-rigidly guarded MSO.

We do not have a candidate logic that corresponds precisely to deterministic
FMA. However, we are able to characterize the larger class of languages rec-
ognized by non-deterministic FMA. The logic for this class is obtained from
backward-rigidly guarded MSO by allowing the guards to use additional second-
order variables (which however needs to be quantified existentially in the out-
ermost part of the formula). The logic, abbreviated ∃backward-rigidly guarded
MSO, consists of the formulas ∃ Z̄. ϕ, with ϕ is generated by the grammar
ϕ := ∃x. ϕ | ∃Y . ϕ | x<y | a(x) | x∈Y | ¬ϕ | ϕ ∧ ϕ | ϕ∃backward(x, y, Z̄) ∧ x∼y
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where ϕ∃backward is a formula from the same grammar that determines min(x, y)
from max(x, y) and Z̄, and where the quantifications are over variables different
from Z̄ (the variables Z̄ are quantified only in the outermost part of ∃ Z̄. ϕ).

Theorem 3. A language is definable in ∃backward-rigidly guarded MSO iff it is
recognizable by non-deterministic FMA.

As it happens for rigidly guarded MSO logic, one can derive from Theorem 3
the following decidability results:

Corollary 3. The satisfiability problem for ∃backward-rigidly guarded MSO is
decidable. Moreover, one can decide whether a formula belongs to the ∃backward-
rigidly guarded MSO, and in this case whether the formula is ∃backward-rigid.

It is also easy to generalize both Theorem 3 and Corollary 3 to data tree lan-
guages recognized by non-deterministic finite memory tree automata [8]. For this
we use a natural variant of ∃backward-rigidly guarded MSO on data trees. The
guarded tests in this case are of the form

ϕ∃ downward(x, y, Z̄) ∧ ϕ′
∃ downward(x, z, Z̄) ∧ y ∼ z

where ϕ∃ downward(x, y, Z̄) (resp. ϕ′
∃ downward(x, z, Z̄)) is a formula in the logic

that determines the position y (resp., z) from an ancestor x in the data tree
and the second-order variables Z̄. This logic happens to be equivalent with the
natural extension of non-deterministic FMA to trees.

Finally, it is natural to look for effective characterizations of data languages
that are both recognizable by non-deterministic FMA and definable in (unre-
stricted) FO. However, it is known that such characterization cannot be achieved:
in [1] it has been shown that the problem of determining whether a language
recognized by a non-deterministic FMA is definable in FO is undecidable. The
problem of characterizing FO within the class of languages recognizable by de-
terministic FMA is still open.

7 Conclusion and Future Work

We have shown that the algebraic notion of orbit finite data monoid corresponds
to a variant of the logic MSO which is – and this is of course subjective – natural.
It is natural in the sense that it only relies on a single and understandable
principle: guarding data equality tests by rigidly definable relations.

We believe that this notion of guard is interesting by itself. Of course, it is
not the first time that guards are used to recover some decidability properties
from a too expressive logic. What is more original in the present context is the
equivalence with the algebraic object, which shows that this approach is in some
sense maximal: it is not just a particular technique among others for having
decidability, but it is sufficient for completely capturing the expressiveness of
the very natural algebraic model.
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Another contribution of the present work is the development of the structural
understanding of orbit finite data monoids. By structural understanding, we
refer to Green’s relations. These relations form a major tool in most involved
proofs concerning finite monoids. The corresponding study of Green’s relations
for orbit finite data monoids was already a major argument in the proof of [3],
and it had to be developed even further in the present work.

Finally, we proved that a variant of the same logic captures the larger class
of data languages recognized by non-deterministic NFA.

We are only at the beginning of understanding the various notions of recog-
nizability for data languages. However, several interesting questions were raised
during our study. Some of them concern the fine structure of the logic:

The nesting level of guards seems to be a robust and relevant parameter
in our logic. Can we understand it algebraically? Can we decide it?

Other questions concern the more general model of FMA:

Can we characterize among the languages recognized by deterministic
FMA the ones recognizable by orbit finite data monoids? Can we give a
logic equivalent to deterministic FMA and characterize its FO fragment?

Acknowledgments. We would like to thank Michael Benedikt and Anca
Muscholl for the many helpful remarks on the paper.
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[5] Büchi, R.J.: Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 6(1-6), 66–92 (1960)

[6] Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Computing 13, 341–363 (2002)

[7] Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

[8] Kaminski, M., Tan, T.: Tree automata over infinite alphabets. In: Avron, A., Der-
showitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800,
pp. 386–423. Springer, Heidelberg (2008)

[9] McNaughton, R., Papert, S.: Counter-free Automata. M.I.T. Research Mono-
graph. Elsevier MIT Press (1971)



On the Use of Guards for Logics with Data 255

[10] Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Transactions on Computational Logic 5(3), 403–435 (2004)

[11] Pin, J.E.: Mathematical foundations of automata theory (2010),
http://www.liafa.jussieu.fr/~jep/MPRI/MPRI.html

[12] Schwentick, T.: Automata for XML - a survey. Journal of Computer and System
Sciences 73(3), 289–315 (2007)

[13] Schützenberger, M.P.: On finite monoids having only trivial subgroups. Informa-
tion and Control 8(2), 190–194 (1965)

[14] Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
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Abstract. A Boolean function f : Fn
2 → F2 is called an affine disperser

of dimension d, if f is not constant on any affine subspace of Fn
2 of di-

mension at least d. Recently Ben-Sasson and Kopparty gave an explicit
construction of an affine disperser for sublinear d. The main motiva-
tion for studying such functions comes from extracting randomness from
structured sources of imperfect randomness. In this paper, we show an-
other application: we give a very simple proof of a 3n−o(n) lower bound
on the circuit complexity (over the full binary basis) of affine dispersers
for sublinear dimension. The same lower bound 3n−o(n) (but for a com-
pletely different function) was given by Blum in 1984 and is still the best
known.

The main technique is to substitute variables by linear functions. This
way the function is restricted to an affine subspace of Fn

2 . An affine
disperser for sublinear dimension then guarantees that one can make
n − o(n) such substitutions before the function degenerates. It remains
to show that each such substitution eliminates at least 3 gates from a
circuit.

1 Introduction

Proving lower bounds on the circuit complexity of explicitly defined Boolean
functions is one of the most famous and difficult problems in theoretical computer
science. Already in 1949 Shannon [1] showed by a counting argument that almost
all Boolean functions have circuits of size Ω(2n/n) only. Still, we have no example
of an explicit function requiring super-linear circuit size. Moreover, only a few
proofs of linear lower bounds are known. We review some of them is Sect. 3. The
best lower bound 3n− o(n) for the basis B2 was proved by Blum in 1984 [2], the
current record lower bound 5n− o(n) for the basis U2 = B2 \ {⊕,≡} was given
in 2002 by Iwama, Lachish, Morizumi, and Raz [3].
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All bounds mentioned above are proved by the gate elimination method. The
main idea of this method is the following. One considers a Boolean function
on n variables from a certain class of functions and shows that for any circuit
computing this function setting some variables to constants yields a sub-function
of the same type and eliminates several gates. Usually, a gate is eliminated just
because one of its inputs becomes a constant. By induction, one concludes that
the original circuit must have many gates. Though this method is essentially
the only known method for proving non-trivial lower bounds for general circuit
complexity, as many authors note it is unlikely that it will allow to prove non-
linear bounds.

In this paper, we prove a 3n − O(d) lower bound on the circuit complexity
of a Boolean function f : Fn

2 → F2 that is not constant on any affine subspace
of Fn

2 of dimension at least d. Such functions are called affine dispersers for
dimension d. The proof of a lower bound is much simpler than the proof of the
currently strongest lower bound 3n− o(n) given by Blum in 1984 [2]. However,
it is not easy to construct explicitly an affine disperser for small d. Only recently
Ben-Sasson and Kopparty [4] presented a construction for sublinear d = o(n)
(namely, d = Θ(n4/5)).

The main idea of the proof is as follows. Consider an affine disperser f for
dimension d. We know that f is not constant on any affine subspace of Fn

2 of
dimension at least d. Hence for any I1, . . . , In−d ⊆ {1, . . . , n} and c1, . . . , cn−d ∈
F2, f is not constant on affine subspace

{x ∈ Fn
2 |
⊕
i∈Ik

xi = ck, for all 1 ≤ k ≤ n− d}

of dimension at least d. We consequently find substitutions of the form xik
=⊕

i∈Ik
xi ⊕ ck so that at least 3 gates are eliminated under each of them from

the current circuit. This way we eliminate at least 3n−O(d) gates.
To find a substitution under which at least 3 gates are eliminated we just

take the topologically first non-linear gate R (i.e., a gate that does not compute
a function of the form

⊕
i∈I xi ⊕ c, for I ⊆ {1, 2, . . . , n}, c ∈ F2) of a circuit.

Since it is the first such gate, both its inputs P and Q are linear functions. By
an appropriate substitution, we make P constant which also makes R constant.
This kills P , R and all the successors of R, i.e., at least 3 gates in total. In
the example given in Fig. 1, one can make a substitution x1 = x2 ⊕ 1. Then P
evaluates to 0, R also evaluates to 0 and T is also eliminated. The formal proof
is given in Section 4.

Similar ideas (substituting variables by linear functions) were used by Boyar
and Peralta [5] for proving lower bounds on the multiplicative complexity of
Boolean functions. The multiplicative complexity of a Boolean function is defined
as the smallest number of ∧ gates in a circuit over {∧,⊕, 1} computing this
function. As with the circuit complexity, it is known [6] that the multiplicative
complexity of almost all Boolean functions is about 2n/2, while the best known
lower bound for an explicit function is n− 1. As an easy consequence we obtain
a lower bound n− d− 1 on the multiplicative complexity of an affine disperser
for dimension d.
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x1 x2 x3 x4

≡P ⊕Q

∧R

T

Fig. 1. Substitution x1 = x2 ⊕ 1 eliminates at least 3 gates from this circuit

2 General Setting

By Bn we denote the set of all Boolean functions f : Fn
2 → F2. A circuit over a

basis Ω ⊆ B2 is a directed acyclic graph with nodes of in-degree 0 or 2. Nodes
of in-degree 0 are marked by variables from {x1, . . . , xn} and are called inputs.
Nodes of in-degree 2 are marked by functions from Ω and are called gates. There
is also a special output gate where the result is computed. The size of a circuit
is its number of gates. By CΩ(f) we denote the minimum size of a circuit over
Ω computing f . The two commonly studied bases are B2 and U2 = B2 \ {⊕,≡}.

We call a function f ∈ B2 degenerate if it does not depend essentially on some
of its variables, i.e., there is a variable xi such that the sub-functions f |xi=0 and
f |xi=1 are equal. It is easy to see that a gate computing a degenerate function
from B2 can be easily eliminated from a circuit without increasing its size (when
eliminating this gate one may need to change the functions computed at its
successors). The set B2 contains the following sixteen functions f(x, y):

– six degenerate functions: 0, 1, x, x⊕ 1, y, y ⊕ 1;
– eight functions of the form ((x⊕a)(y⊕b))⊕c, where a, b, c ∈ F2 (throughout

all the paper we write xy instead of x ∧ y); we call them ∧-type functions;
– two functions of the form x ⊕ y ⊕ a, where a ∈ F2; these are called ⊕-type

functions.

An example on simplifying a circuit is given in Fig. 2. We assign x2 the value
1. Then Q computes the constant 1, so P and hence also R compute x1⊕1. These
3 gates can be eliminated from the circuit. After that S computes (x1 ⊕ 1)⊕ x4,
i.e., x1 ≡ x4, while T computes (x1 ⊕ 1)S. The negation sign on the wire from
x1 to T is intended to reflect the fact that the binary function computed at T is
not just xy as in the picture, but (x⊕ 1)y.

Below we state several simple but important facts illustrated in this example.

– The substitution x2 = 1 trivializes the gate Q (i.e., makes it constant), so not
only Q is eliminated, but also all its successors. At the same time, P is not
trivialized, but becomes a degenerate function. This illustrates the difference
between ⊕- and ∧-type gates and explains why currently best lower bounds
for circuits over U2 are stronger than those for circuits over B2.
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x1 x2 x3

x4⊕P ∨Q

∧R ⊕S

∧T

x1 x4

≡S

∧T

¬

x2 = 1

Fig. 2. Example of simplifying a circuit under a substitution x2 = 1

– While simplifying a circuit under a substitution one may need to change the
functions computed at gates.

– The resulting circuit depends on neither x2 nor x3, though only x2 was
substituted.

3 Known Lower Bounds

Below we review some of the known lower bounds on circuit complexity and
in each case indicate a property of a Boolean function that is important for the
proof. We concentrate on the circuit size, while there are many other models such
as formulas, branching programs, monotone circuits, constant-depth circuits,
where functions with other interesting properties are needed. Note that apart
from the properties described below, each function for which one would like
to prove a lower bound by the gate elimination method must also satisfy the
following natural property: it must remain essentially the same after replacing a
variable by a constant.

– Bounds on CB2

• Schnorr [7] proved a 2n− c lower bound on CB2 for a function satisfying
the following property: for any two different input variables xi and xj ,
there are at least three different sub-functions among

f |xi=0,xj=0, f |xi=1,xj=0, f |xi=0,xj=1, f |xi=1,xj=1 .

This property is needed to argue that a top of a circuit cannot look like
this:

xi xj

That is, at least one of xi and xj must feed also some other gate (as
otherwise one would get at most two different subfunctions w.r.t. xi and
xj). One then assigns a constant to this variable and kills two gates. A
2n− c lower bound follows by induction.



260 E. Demenkov and A.S. Kulikov

There are many natural functions satisfying this property. E.g., MODn
m,r,

for m ≥ 3, defined as follows:

MODn
m,r(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ r (mod m) .

• Paul [8] proves a 2n − o(n) lower bound on CB2 for the storage access
function: for a ∈ Flog n

2 and x ∈ Fn
2 , f(a, x) = xā, where ā is the number

from {0, . . . , n− 1} whose binary representation is a, and xā is the cor-
responding bit of a. An important property of this function is that for
any input variable xi, when all the bits of a are already assigned, the
output of f either equals xi or does not depend on xi at all. This allows
to substitute xi not only by a constant, but by an arbitrary function.

• Stockmeyer [9] proved a 2.5n−c lower bound on CB2 for many symmetric
functions (in particular, for all MODn

m,r functions). He essentially uses
the fact that for symmetric functions substituting xi = h, xj = h⊕ 1 for
a function h is the same as just saying that xi ⊕ xj = 1.

• A function for which Blum [2] proved a 3n− o(n) lower bound on CB2

(a similar function was also used by Paul [8]) is defined as follows. Let
a, b, c ∈ Flog n

2 , x ∈ Fn
2 , p, q, r ∈ F2. Then

f(a, b, c, p, q, r, x) = q((xāxb̄) ∨ (pxb̄(xc̄ ⊕ r))) ∨ (1⊕ q)(xā ⊕ xb̄) .

For any xi and xj , one can get xi⊕xj as well as xixj from f by assigning
some of the remaining variables.

• Kojevnikov and Kulikov [10] proved a 7n/3 − c lower bound for func-
tions with high multiplicative complexity. Any circuit computing such a
function must have several ∧-type gates. This allows to assign different
weights to ⊕- and ∧-type gates when counting the number of gates that
are eliminated.

– Bounds on CU2

• Schnorr [7] proved a 3n− c lower bound on CU2 for the parity function.
A property that helps here is that an optimal circuit cannot contain a
variable of out-degree exactly 1. Indeed, if such a variable xi existed, one
could substitute all the other variables to trivialize the unique gate fed
by xi. This would make the function independent of xi, a contradiction.

• Zwick [11] proved a 4n−c lower bound for all MODn
m,r functions, m ≥ 3.

He noticed that any optimal circuit for such a function can contain only
a constant number of out-degree 1 variables. This allows to remove such
variables from the consideration by using a circuit complexity measure
equal to the number of gates minus the number of out-degree 1 variables.

• Iwama, Lachish, Morizumi, and Raz [3] used Zwick’s circuit complexity
measure to prove a lower bound 5n − o(n) on CU2 for strongly two-
dependent functions, i.e., functions satisfying the following property: for
any two variables all the four sub-functions resulting by fixing the values
of these variables are different. This property guarantees that a top of a
circuit cannot look like this:
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xi xj

∨ ∧
This case is the main bottleneck in Zwick’s proof. An explicit construc-
tion of a strongly two-dependent function was previously given by Sav-
icky and Zak [12]. In fact, this function is even k-mixed, for k = n−o(n):
for any subset of k variables, all the 2k sub-functions w.r.t. these k vari-
ables are different. Recently, Amano and Tarui [13] showed that this
property is not enough for proving stronger than 5n lower bounds on
CU2 by constructing a function of circuit complexity 5n + o(n) that is
k-mixed, for k = n− o(n).

4 A 3n − o(n) Lower Bound

In this section we consider only circuits over B2. Let μ(C) = s(C) +N(C), where
s(C) is the size (number of gates) of C and N(C) is the number of input variables
of C with out-degree at least 1.

Lemma 1. Let P be a gate of a circuit C that is a ⊕-type gate that depends
only on ⊕-type gates of out-degree 1 and variables. Then there is a variable xj

and a (possibly empty) subset of variables I ⊆ {1, . . . , n} \ {j} such that for any
constant c ∈ F2, the substitution xj =

⊕
i∈I xi ⊕ c makes the gate P constant

and reduces N(C) at least by 1.

Proof. Clearly P computes a function
⊕

i∈I xi ⊕ xj ⊕ c0 for some 1 ≤ j ≤ n,
I ⊆ {1, . . . n} \ {j}, c0 ∈ F2. We analyse the effect of reducing C under the
substitution xj =

⊕
i∈I xi ⊕ c, for c ∈ F2. Let S be the set of gates that P

depends on. Clearly S contains at least |I| − 1 gates (as
⊕

i∈I xi ⊕ c0 cannot
be computed by less than |I| − 1 gates). To simplify C under the substitution
xj =

⊕
i∈I xi ⊕ c, we eliminate the gate P (as it now computes the constant

c⊕ c0) and all its successors (as they now compute degenerate functions).
To reduce N(C) by 1, we need to replace xj by

⊕
i∈I xi ⊕ c. For this, we

eliminate all the gates from S (they were needed only for computing P ) and add
|I| − 1 gates computing

⊕
i∈I xi. We then use them instead of xj . Clearly, the

resulting circuit outputs the same as the initial circuit for all x ∈ Fn
2 such that

xj =
⊕

i∈I xi ⊕ c.  !

An example of such simplification is given in Fig. 3 (I = {2, 3, 4, 5}, j = 1).

Theorem 1. Let f : Fn
2 → F2 be an affine disperser for dimension d, A be an

affine subspace of Fn
2 of dimension D, and C be a circuit with n inputs such that

∀x ∈ A, C(x) = f(x). Then

μ(C) ≥ 4(D − d) .
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x1 x2

x3

x4 x5Q R ⊕

⊕ ⊕

⊕P

x2 x3

x4

x5

x1

Q R

⊕

⊕

⊕
x1 =

⊕5
i=2 xi

Fig. 3. Example of a linear substitution

Proof. We prove the inequality by induction on D. The base case D ≤ d is
trivial. Consider now the case D ≥ d + 1. Take a circuit C computing f on A
with the minimal possible μ(C). Assume wlog that C does not contain degenerate
gates (all such gates can be eliminated without increasing μ(C)). Note also that
C cannot compute a linear function. Indeed, if C computed a function of the form⊕

i∈I xi⊕c, then f would be constant on an affine space A′ = {x ∈ A:
⊕

i∈I xi =
c} of dimension at least D − 1 ≥ d. Thus, C contains at least one ∧-type gate.

In the following we find a substitution of the form
⊕

i∈I xi ⊕ c under which
C is reduced to C′ such that μ(C) ≥ μ(C′) + 4 and C(x) = C′(x) for all x ∈
A′ = {x ∈ A:

⊕
i∈I xi = c}. Since A′ has dimension at least D − 1, we conclude

by induction that μ(C) ≥ 4(D − 1 − d) + 4 = 4(D − d). Note that any gate
that becomes constant under such substitution cannot be an output gate, as
otherwise C would compute a linear function.

Consider a topological order on all the gates of C and let P be the first gate
in this order that is not a ⊕-type gate of out-degree 1. Since it depends only on
⊕-type gates and input variables, functions computed at both inputs of P are
of the form

⊕
i∈I1

xi⊕ c1 and
⊕

i∈I2
xi⊕ c2. Below we consider five cases, Fig. 4

shows all of them.

– Case 1. P is a ⊕-type gate of out-degree at least 2. Then it clearly computes
a function of the form

⊕
i∈I xi ⊕ c. By the lemma above, by making P

constant we reduce μ at least by 4.
– Case 2. P is an ∧-type gate.

• Case 2.1. One of the inputs of P is a gate Q. Then Q is a ⊕-type gate.
By making Q the constant (as in the lemma) which trivializes P we kill
P , Q, and all the successors of P . Also, N(C) is reduced at least by 1,
hence μ is reduced at least by 4.

• Case 2.2. Both inputs of P are variables xi and xj and at least one of
them (say, xi) have out-degree at least 2. By assigning xi the constant
which trivializes P we kill all the successors of xi and all the successors
of P . Clearly N(C) is reduced at least by 1. By considering two sub-cases
we show that s(C) is reduced at least by 3.
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⊕P

⊕Q

∧P

xi xj

∧P

xi xj

Q

∧P

xi xj

∧P

Case 1 Case 2.1 Case 2.2.1 Case 2.2.2 Case 2.3

Fig. 4. All cases of the proof

∗ Case 2.2.1. xi has a successor that is not fed by P . Then this
successor is eliminated as well as P and all the successors of P .

∗ Case 2.2.2. The only successor of P is the gate Q and it is also
fed by xi. Then clearly it becomes constant (as both its inputs are
constants) and so all its successors are also eliminated.

• Case 2.3. Both inputs of P are out-degree 1 variables xi and xj . By
assigning xi the constant which trivializes P , we eliminate P and all its
successors and reduce N(C) at least by 2. Hence μ is reduced at least
by 4.  !

Corollary 1. Any circuit over B2 computing an affine disperser for dimension
d has at least 3n− 4d gates.

Proof. Indeed, by Theorem 1, for any circuit C computing an affine disperser for
dimension d,

s(C) = μ(C)−N(C) ≥ 4(n− d)−N(C) ≥ 3n− 4d .  !

Thus, an affine disperser for sublinear dimension requires circuits of size at least
3n− o(n). It is also easy to see that by the same method one can prove a lower
bound n−o(n) on the multiplicative complexity of affine dispersers for sublinear
dimension. For this, we just make n− o(n) linear substitutions each time killing
the first ∧-type gate.

5 Further Directions

1. It would be interesting to improve the presented lower bound by a more
involved case analysis or to find another property of Boolean functions im-
plying a stronger than 3n lower bound.

2. Another interesting direction is to prove a non-trivial upper bound for an
affine disperser.
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3. An (apparently) easier problem is to close one of the following gaps (see [9],
[14], [11]):

2.5n− c ≤ CB2(MODn
3 ) ≤ 3n+ c,

4n− c ≤ CU2(MODn
4 ) ≤ 5n+ c .

Also it is still not known whether C(MODn
p ) is strictly greater thanC(MODn

q )
for primes p > q. Note however that any symmetric function can be com-
puted by a circuit (over B2) of size 4.5n+ o(n) [14].

4. It would also be interesting to find a Boolean function of multiplicative
complexity at least cn, for a constant c > 1.

Acknowledgements. We would like to thank Edward A. Hirsch and Arist
Kojevnikov as well as the anonymous referees for helpful comments and Arnab
Bhattacharyya for pointing us out the paper [4].
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Abstract. The problem of publishing personal data without giving up
privacy is becoming increasingly important. Different interesting formal-
izations have been recently proposed in this context, i.e. k-anonymity
[17,18] and l-diversity [12]. These approaches require that the rows in a
table are clustered in sets satisfying some constraint, in order to prevent
the identification of the individuals the rows belong to. In this paper we
focus on the l-diversity problem, where the possible attributes are distin-
guished in sensible attributes and quasi-identifier attributes. The goal is
to partition the set of rows, where for each set C of the partition it is
required that the number of rows having a specific value in the sensible
attribute is at most 1

l
|C|.

We investigate the approximation and parameterized complexity of
l-diversity. Concerning the approximation complexity, we prove the fol-
lowing results: (1) the problem is not approximable within factor c ln l,
for some constant c > 0, even if the input table consists of two columns;
(ii) the problem is APX-hard, even if l = 4 and the input table contains
exactly 3 columns; (iii) the problem admits an approximation algorithm
of factor m (where m + 1 is the number of columns in the input ta-
ble), when the sensitive attribute ranges over an alphabet of constant
size. Concerning the parameterized complexity, we prove the following
results: (i) the problem is W[1]-hard even if parameterized by the size of
the solution, l, and the size of the alphabet; (ii) the problem admits a
fixed-parameter algorithm when both the maximum number of different
values in a column and the number of columns are parameters.

1 Introduction

In recent years the topic of releasing personal data to the public without giving
up privacy has been widely investigated. In different contexts such as epidemic
analysis, it is fundamental to publish data avoiding the identification of the
individuals the data belong to. One of the approaches that have been proposed
in literature to deal with the problem, is the abstraction model [17]. In the
abstraction model, some of the data are suppressed or generalized in order to
preserve data integrity.

Two of the most relevant approaches based on the abstraction model are k-
anonymity[18] and l-diversity [12]. Given a table consisting of n rows and m
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columns, k-anonymity asks for a partition of the rows in sets, each of size at
least k. Then, some of the entries of the rows in the same set are suppressed, i.e.
substituted with the value ∗, so that all the rows in a set become identical. Hence
it is not possible to distinguish the rows inside a set, and this should prevent to
identify which row is related to an individual.

The complexity of the k-anonymity problem has been deeply investigated.
The problem is known to be NP-hard [13] and APX-hard [1], even when k = 3
and the rows are over a binary alphabet [4,6], while it admits a polynomial
time algorithm when k = 2 [4]. Several approximation algorithms have been
proposed for k-anonymity, where the approximation factors are functions of k.
Namely, an O(k log k)-approximation algorithm has been given in [13], an O(k)-
approximation algorithm has been given in [1] and an O(log k)-approximation
algorithm has been given in [15,9]. The parameterized complexity of k-anonymity
have been investigated, under several natural parameterizations [5,8].

A different model proposed to deal with some deficiencies of k-anonymity, is
l-diversity [12]. Given a table consisting of n input rows and m + 1 columns,
l-diversity distinguishes between the values contained in one column (referred
in the following as sensitive column) and the values contained in the remaining
columns (referred in the following as quasi-identifier columns) 1. A sensitive
attribute regards an individual’s privacy, as is the case of a disease, and must be
kept secret. Quasi-identifier attributes, like age or gender, can be combined with
other data to infer an individual’s identity, but they are not directly related to
an individual’s privacy.

The l-diversity problem requires that the rows in the input table are clustered
in sets satisfying the l-diverse property, that is for each set C of the partition, it is
required that the number of rows having a specific value σ in the sensible column
is at most a fraction 1

l |C|. As in the case of k-anonymity, some of the entries
of quasi-identifier columns are suppressed, so that all the rows in C become
identical in the quasi-identifier columns. Hence, it is hard to identify which row
is related to an individual (although an adversary may be able to identify rows
using background knowledge). In k-anonymity, it can happen that all the rows
in a set have the same value in a sensitive column, hence in some cases this value
may be related to an individual [12]. To avoid this drawback, l-diversity requires
that each set of the solution must be l-diverse.

A related problem that has been recently introduced, is clustering with diver-
sity [11]. This problem asks for a partions of the input rows in l-diverse clusters,
with the goal of minimizing the maximum radius of any cluster. Clustering with
diversity admits a 2-approximation algorithm [11], and it is known to be not
approximable within a factor less than 2, unless P = NP [11].

The l-diversity problem is known to be NP-hard [20], when l = 3, the sensitive
column is over a ternary alphabet and the quasi-identifier columns are over
a binary alphabet [4], while it is in P when l = 2 [20]. The only non-trivial

1 l-diversity can be generalized to contain multiple sensitive columns; however, in this
paper, following the approach of [20], we assume that there is exactly one sensitive
column in the input table.
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approximation algorithm for l-diversity is due to Xiao et al. [20] and achieves
an lm approximation factor.

In this paper, we investigate different aspects of the complexity of l-diversity
problem. First, we investigate the approximation complexity of the problem. We
show that l-diversity is not approximable within factor c ln l, for some constant
c > 0, even if the input matrix consists of two columns (a sensible column and a
quasi-identifier column). Furthermore, we show that the problem is APX-hard
even if l = 4 and the input table consists of exactly 3 columns (a sensible column
and two quasi-identifier columns). Finally, we give an approximation algorithm
of factor m, when the sensitive column ranges over an alphabet of constant size.

Then, we investigate the parameterized complexity of l-diversity. We show
that the problem is W[1]-hard, when parameterized by the size of the solution,
l, and the size of the alphabet, while it is fixed-parameter tractable when both
the maximum number of different values in a column and the number of columns
are parameters. Some of the proofs are omitted due to space limitation.

2 Preliminary Definitions

In this section we introduce some preliminary definitions that will be used in
the rest of the paper. Given a graph G = (V,E) and a vertex v ∈ V , we denote
by N(v) the set of vertices adjacent to v in G. A graph G = (V,E) is cubic
N(v) = 3 for each v ∈ V .

Given an alphabet Σ, a row r over Σ of length m is a vector of m ele-
ments taken from the set Σ. The j-th element of r is denoted by r[j]. The
l-diversity problem distinguishes between two kinds of attributes: sensitive and
quasi-identifier. In what follows we represent an instance R of l-diversity as a
table (or equivalently a set of rows) consisting of n rows and m + 1 columns.
A column can be either a q-column or a s-column, if it is referred to a quasi-
identifier attribute or a sensitive attribute respectively. An instance of l-diversity
contains exactly one s-column (in the following we assume that it is associated
with index 0) and m q-columns. We denote by Σs the alphabet associated with
the s-column (that is the rows in the s-column range over Σs), and by Σq the
alphabet of the q-columns. We define Σ = Σs ∪ Σs, and we denote by |Σmax|
the maximum number of different values in a column of R.

Given an instance R of l-diversity, and a row r ∈ R over Σ, a suppression of
the i-th entry in r, 1 ≤ i ≤ m, consists of replacing the value r[i] with the value
∗, with ∗ /∈ Σ. Notice that a suppression cannot occur in the s-column. Given a
partition Π = (P1, . . . , Pt) of R, we define the cost of a set Pi, denoted by c(Pi),
as |Pi||{j : 1 ≤ j ≤ m, ∃r1, r2 ∈ Pi, r1[j] 
= r2[j]}|, that is the number of entries
in q-columns of the rows in Pi that must be suppressed in order to make all such
rows identical. The cost of Π , denoted by c(Π), is defined as

∑
Pi∈Π c(Pi).

A resolution vector is a vector of length m over alphabet Σq ∪ {∗}. Given a
resolution vector v, Del(v) denotes the number of entries of v having value ∗. A
resolution vector v is called a full resolution vector if Del(v) = 0. Given a set of
rows P , we define the resolution vector associated with P , denoted by r(P ), as
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a resolution vector such that: (1) if ra[j] = α, with 1 ≤ j ≤ m and α ∈ Σq, for
each ra ∈ P , then r(P )[j] = α; (2) else r(P )[j] = ∗, with 1 ≤ j ≤ m. Given a row
r ∈ R and a resolution vector v, we say that r and v are compatible, if r[i] 
= v[i]
implies v[i] = ∗. Given a set of rows P and an integer l, P is l-diverse if, for each
value σ ∈ Σs, there are at most |P |

l rows in P having value σ in the s-column. A
partition Π = (P1, . . . , Pt) of R is l-diverse if each set Pi, 1 ≤ i ≤ t, is l-diverse.
We are now able to formally define the l-diversity problem:

Problem 1. l-diversity.
Input: a set R of rows over an alphabet Σ.
Output: an l-diverse partition Π = (P1, . . . , Pt) of R.
Goal: to minimize c(Π).

Given a solution Π = (P1, . . . , Pt) of l-diversity over instance R, let r ∈ Pj ;
then we say that Π induces Del(r(Pj)) suppressions in r. Let R be the set of rows
input of l-diversity, and let r1, r2 ∈ R. We define the Hamming distance between
r1 and r2, denoted as H(r1, r2), as the Hamming distance between r1 and r2
restricted to the q-columns, i.e. H(r1, r2) = |{i : 1 ≤ i ≤ m ∧ r1[i] 
= r2[i]}|.
Notice that, given a partition Π = (P1, . . . , Pt) of R, |Pi|maxr1,r2∈Pi{H(r1, r2)}
is a lower bound for c(Pi). An important property of l-diversity that can be
easily derived from Lemma 1 of [20], is the following.

Lemma 1. [20]. Given disjoint sets S1, S2, . . . , Sh of rows, if each Si, 1 ≤ i ≤ h

is l-diverse, then
⋃h

i=1 Si is l-diverse.

In [20] it is introduced a problem related to l-diversity, called Tuple Minimization
problem. The Tuple Minimization problem stems from a preprocessing phase
on the instance R of l-diversity. The preprocessing phase computes a partition
Π = (P1, P2, . . . , Pk, Z), called a sound partition, of R. A partition of R is sound
if each set Pj , 1 ≤ j ≤ k, is an l-diverse set of identical (in the q-columns)
rows, while Z = R \ (

⋃k
j=1 Pj). Notice that Z is the only set of Π that may

contain not identical (in the q-columns) rows and that may be not l-diverse.
The Tuple Minimization problem, given a set R of rows over an alphabet Σ,
and a sound partition Π = (P1, P2, . . . , Pk, Z) of R, asks for a sound partition
Π ′ = (P ′

1, . . . , P
′
t , Z

′) of R such that: (i) Z ′ ⊇ Z; (ii) for each j, with 1 ≤ j ≤ t,
P ′

j ⊆ Pi, for some i with 1 ≤ i ≤ k; (iii) Π ′ is l-diverse; (iv) |Z ′| is minimized.
Starting from a set of rows R input of l-diversity, it is easy to compute in

polynomial time a sound partition Π = (P1, P2, . . . , Pk, Z) of R (for details see
[20]). It is easy to see that given an approximation algorithm A of factor α for
Tuple Minimization, then A approximates within factor m · α the l-diversity
problem [20].

3 Approximation Complexity

In this section, we discuss the approximation complexity of the l-diversity prob-
lem. First we focus on the inapproximability of the l-diversity problem and of
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the Tuple Minimization problem. Then, we prove the APX-hardness for a re-
stricted case of l-diversity (when l = 4), and we give a factor m approximation
algorithm, when the size of Σs is bounded by a fixed constant.

3.1 Inapproximability of l-diversity and Tuple Minimization

In this section we investigate the approximation complexity of the l-diversity
problem and of Tuple Minimization problem. We show that both problems can-
not be approximated within factor c ln l unless P = NP , for some constant c > 0,
even if the input table consists of two columns.

In order to prove the result, we give a gap-preserving reduction from the
Minimum Set Cover problem (MIN SET COVER). We refer the reader to [19]
for details on gap-preserving reduction. Given a universe U = {u1, . . . , uh} and
a collection C of subsets S1, . . . Sp of the universe U , MIN SET COVER, asks
for a collection C′ ⊆ C of minimum size such that every element in U belongs to
at least one member of C′. MIN SET COVER is known to be not approximable
in polynomial time to within a factor of d lnh, for some constant d > 0 [2,16].

Let (U, C) be an instance of MIN SET COVER. Let us define the correspond-
ing instance R of l-diversity, where all the rows in R are over two columns, an
s-column (of index 0) and a q-column (of index 1). Define Σs = {λ1, . . . , λ2h} as
the alphabet associated with the s-column. Define Σq = {xi : 1 ≤ i ≤ h} ∪ {si :
1 ≤ i ≤ p} as the alphabet associated with the s-column.

Let us now define the rows in R:

– for each ui ∈ U , 1 ≤ i ≤ h, there is a row ru,i ∈ R, defined as follows:
- ru,i[0] = λi; - ru,i[1] = xi;

– for each Si ∈ U , there is a set Rs,i ⊆ R consisting of h + 1 rows, where
Rs,i = {rs,i,j : 1 ≤ j ≤ h+ 1}; each row rs,i,j ∈ Rs,i is defined as follows:
- rs,i,j [0] = λk, with 1 ≤ j ≤ |U | − |Si|, where uk is the j-th element of

U \ Si;
- rs,i,j [0] = λh+q, with |U | − |Si|+ 1 ≤ j ≤ h + 1 and q = j − (|U | − |Si|);
- rs,i,j [1] = si, with 1 ≤ j ≤ h+ 1.

Set l = h + 1 and define the set RU =
⋃

ui∈U ru,i. Notice that the set R =(⋃
Si∈C Rs,i

)
∪RU . By construction, each set Rs,i, 1 ≤ i ≤ p, is l-diverse, and it

is a (maximal) set of identical rows with respect to column 1, while RU is not
l-diverse.

Lemma 2. Let (C, U) be an instance of MIN SET COVER and let R be the
corresponding instance of l-diversity. Given a solution C∗ of MIN SET COVER
over instance (C, U), such that C∗ consists of d sets, there exists a solution of
l-diversity over instance R of cost at most d(h + 1) + h.

Lemma 3. Let (C, U) be an instance of MIN SET COVER and let R be the
corresponding instance of l-diversity. Given a solution Π of l-diversity over
instance R such that c(Π) ≤ h + d(h + 1), there exists a solution of MIN SET
COVER over instance (C, U) consisting of at most d sets.
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Proof. Assume that there is a solution Π of l-diversity over instance R such that
c(Π) ≤ h + d(h + 1). Notice that we can assume that there exists exactly one
set R′ ⊆ R, such that Π induces some suppressions in the rows of R′.

Let R′ be the only set of Π , where for each row of R′ the entry in the q-
column (of index 1) is suppressed. Notice that RU ⊆ R′, as each row ru,i ∈ RU ,
1 ≤ i ≤ h, is the only row of R with ru,i[1] = xi. Since RU is not l-diverse, we can
assume that RU ⊂ R′, and that there exists at least one row rs,i,j ∈ Rs,i ∩ R′,
1 ≤ j ≤ h+ 1, for some Rs,i, 1 ≤ i ≤ p.

Consider a set Rs,i such that there exists a row rs,i,j ∈ Rs,i, for some 1 ≤
j ≤ h + 1, with the property that rs,i,j ∈ Rs,i ∩ R′. We claim that Π induces
a suppression in each row rs,i,k ∈ Rs,i, 1 ≤ k ≤ h + 1. Indeed, notice that
Π induces a suppression in rs,i,j , since rs,i,j ∈ R′. Now, consider the rows in
Rs,i \ {rs,i,j}. Since |Rs,i \ {rs,i,j}| = l − 1, it follows that Rs,i \ {rs,i,j} is not
l-diverse. Furthermore, for each row r in R \ Rs,i, r[1] 
= si, while for each row
rs,i,k ∈ Rs,i, 1 ≤ k ≤ h+1, it holds rs,i,k[i] = si. Hence each row in Rs,i must be
clustered in Π with at least one row at Hamming distance 1 (for the q-column).
As a consequence we can assume that if R′ ∩Rs,i 
= ∅, then Rs,i ⊂ R′.

Now, we show that for each row ru,j ∈ RU , there exists at least one set Rs,i ⊂
R′, such that for each row rs,i,k ∈ Rs,i, 1 ≤ k ≤ h+ 1, it holds rs,i,k[0] 
= ru,j [0].
Assume that this is not the case. Then, for each Rs,i ⊂ R′, there exists at least
one row rs,i,k ∈ Rs,i, 1 ≤ k ≤ h + 1, such that rs,i,k[0] = ru,j [0]. It follows that
R′ is not l-diverse. Indeed, let ru,j [0] = λj . Assume that R′ contains z sets Rs,i,
with 1 ≤ i ≤ h + 1. Then there are z + 1 rows in R′ having value λj in the
s-column, while |R′| = lz + l − 1.

As a consequence, for each row in ru,j ∈ RU , 1 ≤ j ≤ h, there exists at least
one set Rs,i, 1 ≤ i ≤ p, in R′, such that for each row rs,i,k ∈ Rs,i, 1 ≤ k ≤ h+ 1,
it holds rs,i,k[0] 
= ru,j [0]. Then, define C′ = {Si : Rs,i ⊂ R′}. It follows that C′ is
a solution of MIN SET COVER, that is for each element uj ∈ U , there is a set
Si ∈ C′ that covers uj . Indeed, consider a row ru,j (associated with the element
uj ∈ U) and let Rs,i,j (associated with the set Si ∈ C′) be one of the set in R′

such that for each row rs,i,k ∈ Rs,i, it holds rs,i,k[0] 
= ru,j [0]. By construction
uj ∈ Si, hence

⋃
Sj∈C′ Sj = U .  !

Theorem 1. The l-diversity problem cannot be approximated with factor c ln l
unless P = NP, even if the input table consists of two columns.

Proof. The MIN SET COVER problem is known to be inapproximable within
factor d lnh, for some constant d > 0, where h = |U |. Given an instance
I = (C, U) of MIN SET COVER, let R be the corresponding instance of l-
diversity. We denote by OPTMINSETCOV ER (I) (OPTl-diversity(R) respectively)
the value of an optimal solution of MIN SET COVER (l-diversity respectively),
over instance I (R respectively). Let f : I → N be a function, we have proved in
Lemma 2 that it holds OPTMINSETCOV ER (I) ≤ f (I) ⇒ OPTl-diversity(R) ≤
f(I)(h + 1) + h and, by Lemma 3, OPTMINSETCOV ER(I) > d lnhf(I) ⇒
OPTl-diversity(R) > d lnhf(I)(h+ 1) + h, for some constant d > 0. It follows we
cannot approximate l-diversity within factor d ln h

2 , for some constant d, which
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implies, since in the reduction l = h+1, that l-diversity cannot be approximated
within factor c ln l, for some constant c > 0.  !

As a consequence of the previous theorem, the MIN TUPLE problem cannot be
approximated within factor c ln l, for some constant c > 0, unless P=NP.

3.2 APX-Hardness of l-diversity with l = 4 and m = 3

In this section we investigate the inapproximability of l-diversity when l is a
fixed constant, namely l = 4, and the set R of rows is over one s-column and
two q-columns. We denote this restriction by 4 − diversity(3). We prove that
4−diversity(3) is APX-hard, giving an L-reduction from Minimum Vertex Cover
on Cubic graphs (MVCC). We recall that, given a cubic graph G = (V,E),
with V = {v1, . . . , vh} and |E| = k, MVCC asks for a minimum cardinality set
V ′ ⊆ V , such that for each (vi, vj) ∈ E, at least one of vi, vj ∈ V ′. MVCC is
known to be APX-hard [3].

Given a cubic graph G = (V,E), we define an instance RG of 4−diversity(3),
consisting of a set RG of rows over three columns, one s-column (the column
of index 0) and two q-columns (columns of indices 1, 2). Now, let us define the
instance RG of 4− diversity(3).

For each vertex vi ∈ V , the instance RG has a set RG(vi) = {rx(vi), 1 ≤ x ≤
5}. The rows rx(vi), 1 ≤ x ≤ 5, are defined as follows:
- rx(vi)[0] = si,x; - rx(vi)[1] = rx(vi)[2] = pi.

For each edge {vi, vi} ∈ E (assume i < j), RG contains a set RG(ei,j) =
{rx(ei,j), 1 ≤ x ≤ 5}. The rows rx(ei,j), 1 ≤ x ≤ 5, are defined as follows:
- rx(ei,j)[0] = si,j,x, for 1 ≤ x ≤ 3;
- rx(ei,j)[0] = si,j , for 4 ≤ x ≤ 5;
- rx(ei,j)[1] = pi,j , for 1 ≤ x ≤ 3;

- rx(ei,j)[1] = pi, for x = 4;
- rx(ei,j)[1] = pj , for x = 5;
- rx(ei,j)[2] = pi,j , for 1 ≤ x ≤ 5.

Finally RG contains a set Z = {z1, z2, z3, z4} of four rows, where zi[0] = xi,
with 1 ≤ i ≤ 4, and zi[1] = zi[2] = qi, with 1 ≤ i ≤ 4. Now, in the next
lemmata we show the relation between a vertex cover of G and a solution of
4− diversity(3) on the corresponding instance RG.

Lemma 4. Let G = (V,E) be a cubic graph input of MVCC and let RG be the
corresponding instance of 4 − diversity(3). Then, starting from a cover V ′ of
G, we can compute in polynomial time a solution Π of 4 − diversity(3) over
instance RG such that c(Π) ≤ 6k + 2|V ′| − 2|V |.

Lemma 5. Let RG be an instance of 4− diversity(3) corresponding to a cubic
graph G = (V,E), input of MVCC. Then, starting from a solution Π of 4 −
diversity(3) such that c(Π) ≤ 6k + 2p − 2|V |, we can compute in polynomial
time a cover V ′ of G, such that |V ′| ≤ p.

Proof. (Sketch) Let us consider a solution Π of 4− diversity(3) over input RG.
By construction, we can assume that Π contains exactly one set (denoted as Sz),
such that Π induces two suppressions in each row of Sz. Notice that Z ⊆ Sz.
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We say that Π contains an I-set for RG(vi) if there exists a set X of Π
such that X contains one row of each of the sets RG(ei,j) (in this case r4(ei,j)),
RG(ei,h), RG(ei,k) andR(vi), and Π induces exactly one suppression for each row
in X (a suppression in the q-column of index 2). Now, starting from solution Π ,
we can compute in polynomial time a solution Π ′, such that: (i) c(Π ′) ≤ c(Π);
(ii) Π ′ induces 5 suppressions for the rows in RG(ei,j) if and only if Π ′ contains
an I-set for for RG(vi) or RG(vj); (iii) the set of vertices vi ∈ V , such that Π ′

induces an I-set for RG(vi), is an independent set of G.
For each set RG(vi) such that Π ′ does not include an I-set for RG(vi), we

can assume that RG(vi) is a set of Π ′, as in this case no suppression is induced
by Π ′ in rows of RG(vi). Furthermore, for each set RG(ei,j) such that Π ′ has
neither an I-set for RG(vi) nor RG(vj), then Π ′ induces at least 6 suppressions
for the rows in RG(ei,j). Hence, we can assume that RG(ei,j) \ {r5(ei,j)} is a set
of Π ′, while r5(ei,j) ∈ SZ , as in this case Π ′ induces exactly 6 suppressions in
the rows of RG(ei,j).

Now, consider a solution Π ′ of 4 − diversity(3) over instance RG. Let us
define a vertex cover V ′ of G as follows: for each set RG(vi), such that the
overall number of suppressions for the rows in RG(vi) is 1, let vi be in V \ V ′,
else vi is in the cover V ′ of G. It is easy to see that, if c(Π ′) = 6k + 2q − 2|V |,
there are exactly |V | − q sets RG(vi) such that Π ′ has an I-set for RG(vi). Since
the set of vertices vi corresponding to I-sets of Π ′ is an independent set of G, it
follows that |V ′| is a cover of G, and |V ′| = q ≤ p.  !
As a direct consequence of Lemmata 4 and 5, it follows that 4− diversity(3) is
APX-hard.

3.3 An Approximation Algorithm for Bounded |Σs|
In this section we present an approximation algorithm of factor m for the l-
diversity problem, when |Σs| is a fixed constant, of time complexity O(n2|Σs|+1).
Notice that the l-diversity is NP-hard when |Σs| is a fixed constant greater
or equal to 3 [4]. The approximation algorithm is obtained by showing that
Tuple Minimization can be solved optimally in polynomial time when |Σs| is a
fixed constant. An exact algorithm for the Tuple Minimization problem directly
implies a factor m approximation algorithm for the l-diversity problem. Let
us show that the Tuple Minimization problem can be solved in polynomial time
when Σs = {σ1, . . . , σq}, where q is a constant, by dynamic programming. Recall
that the input of Tuple Minimization consists of a set R of rows and a sound
partition P = (S1, S2, . . . , Sh, Z) of R, where each set Si, 1 ≤ i ≤ h, is l-
diverse and consists of identical rows (in the q-columns), while Z may not be
l-diverse. In order to compute a feasible solution for Tuple Minimization we have
to transfer some rows from the sets S1, S2, . . . , Sh to the set Z. Each transfer of
rows from a set Sx to the set Z results in a set St

x ⊆ Sx and a set Z ′ = Z∪(Sx\St
x)

(where one of St
x, (Sx \ St

x) can possibly be empty). A transfer from the sets
S1, . . . , Sj, 1 ≤ j ≤ h, to Z is feasible, if each St

x, 1 ≤ x ≤ h, is l-diverse.
Define S[t1, t2, . . . , tq; j] be equal to 1 if there exists a feasible transfer from

the sets S1, . . . , Sj , 1 ≤ j ≤ h, to Z, such that ti rows, 1 ≤ i ≤ q, having value
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σi in the s-column have been transferred, else S[t1, t2, . . . , tq; j] is equal to 0. Let
us present the recurrence to compute S[t1, t2, . . . , tq; j]:

S[t1, t2, . . . , tq; j] =
∨

t′1,t′2,...,t′q

S[t′′1 , t
′′
2 , . . . , t

′′
q ; j − 1]

such that St
j is obtained by moving t′i = ti − t′′i rows, 1 ≤ i ≤ q, having value

σi in the s-column from Sj to Z, and St
j is l-diverse. For the basic case, it holds

S[t1, t2, . . . , tz; 1] = 1 if St
1 is obtained by moving ti rows, 1 ≤ i ≤ q, having

value σi in the s-column from S1 to Z, and St
1 is l-diverse. Now, let us show that

the algorithm computes correctly an optimal solution for Tuple Minimization.

Lemma 6. There is a feasible transfer from S1, . . . , Sj to Z, such that for each
i ∈ {1, . . . , q}, ti rows of value σi in the s-column are transferred, if and only if
S[t1, t2, . . . , tq; j] = 1.

As a consequence of Lemma 6, it follows that Tuple Minimization can be solved
in time O(n2|Σs|+1).

4 Parameterized Complexity of l-diversity

In this section we consider the parameterized complexity of the l-diversity prob-
lem, under two natural parameterizations. First, we show that the l-diversity
problem is W[1]-hard when parameterized by the size w of the solution (i.e.
the number of suppressions in an optimal solution), by l, and by |Σ|. Then
we investigate the parameterized complexity of l-diversity, when the problem is
parameterized by m and by the maximum number |Σmax| of different values
in a column. We refer the reader to [14] for an introduction to parameterized
complexity.

4.1 W[1]-Hardness of l-diversity

In this section we consider the l-diversity problem parameterized by the size of
the solution, denoted by w, by l and by |Σ|, the size of the alphabet Σ. We
denote such a restriction by l-diversity(l, w, |Σ|). Given a set R of rows, the l-
diversity(l, w, |Σ|) problem asks for a solution of l-diversity that induces at most
w suppressions.

We show that l-diversity(l, w, |Σ|) is W[1]-hard, by giving a parameter pre-
serving reduction from the h-Clique problem. Given a graph G = (V,E), a
h-clique is a set V ′ ⊆ V , with |V ′| = h, such that each pair of vertices in V ′ is
connected by an edge of E. The h-Clique problem, given a graph G = (V,E)
and a parameter h, asks if there exists a h-clique in G. Notice that the vertices
of a h-clique are connected by exactly

(
h
2

)
edges.

Let us describe the reduction from h-Clique to l-diversity(l, w, |Σ|). Given a
graph G = (V,E), denote by mG and nG respectively |E| and |V |. Now, let us
describe the instance R of l-diversity(l, w, |Σ|) associated with G. Set l = 2h2
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and lz = 2h2−
(
h
2

)
. The rows in R are over the columns of indices 0, . . . , nG

(recall that the column of index 0 is the s-column). The rows in R have value
over the alphabet Σ = {0, 1} ∪ {fk : 1 ≤ k ≤ l + 1}. Hence |Σ| = l + 3. Each
q-column i, 1 ≤ i ≤ nG, is associated with the vertex vi of G. For each edge
{vi, vj} ∈ E, R contains a set S(i, j) = {ri,j,k : 1 ≤ k ≤ l+ 1} of rows defined as
follows: ri,j,k[0] = fk, for 1 ≤ k ≤ l + 1; ri,j,k[i] = ri,j,k[j] = 1, for 1 ≤ k ≤ l + 1;
ri,j,k[p] = 0, for p 
= i, j, 1 ≤ p ≤ nG, and 1 ≤ k ≤ l + 1.

Furthermore, R contains a set Z = {z1, . . . , zlz} of rows defined as follows:
zi[0] = fi, for 1 ≤ i ≤ lz; zi[k] = 0, for 1 ≤ i ≤ lz and 1 ≤ k ≤ nG. Notice that
|Z| = lz = l−

(
h
2

)
and that Z is the only set of R that is not l-diverse. Now, we

are able to prove the two main properties of the reduction.

Lemma 1. Let G = (V,E) be an instance of h-Clique, and let R be the corre-
sponding instance of l-diversity(l, w, |Σ|). Given V ′ ⊆ a h-clique of G, we can
compute in polynomial time a solution of l-diversity(l, w, |Σ|) over instance R
with at most hl = 2h3 suppressions.

Lemma 2. Let G = (V,E) be an instance of h-Clique, and let R be the
corresponding instance of l-diversity(l, w, |Σ|). Let Π be a solution of l-
diversity(l, w, |Σ|) over instance R with c(Π) ≤ hl = 2h3, then we can compute
in polynomial time a h-clique of G.

Proof. (Sketch.) Given a solution Π of l-diversity(l, w, |Σ|) over instance R, with
c(Π) ≤ hl = 2h3, it is possible to prove the following claim: there are at least

(
h
2

)
sets S(i, j), such that Π induces a suppression in some row of S(i, j), otherwise
Π is not l-diverse.

Assume now that Π is a solution of l-diversity such that Π induces some
suppressions in the rows of at least k =

(
h
2

)
sets S(i, j). Starting from a solution

Π with c(Π) ≤ lh, it is possible to compute in polynomial time a solution Π∗

such that c(Π∗) ≤ c(Π) and such that: (i) for each set S(i, j), Π∗ contains a set
S′(i, j) of at least l identical rows (in the q-columns); (ii) there is exactly one
row ri,j from each of

(
h
2

)
sets S(i, j), 1 ≤ i ≤ nG and 1 ≤ j ≤ mG, for which Π∗

induces some suppressions. Each row ri,j corresponds to the edge of G incident
into vertices vi and vj . It follows that the

(
h
2

)
rows corresponds to a set of

(
h
2

)
edges of G incident in a set V ′ of vertices, with |V ′| = h vertices. Hence V ′ is a
h-clique of G.  !

Theorem 3 is a consequence of Lemmata 1 and 2.

Theorem 3 l-diversity(l, w, |Σ|) is W[1]-hard.

4.2 Bounding |Σmax| and m

Since l-diversity is NP-hard when either the number |Σmax| of different values
in a column (see [4]) or m (see Section 3) is bounded by a fixed constant, a
natural question which may arise is whether the problem remains hard if it is
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parameterized by both these values. We denote by l-diversity(|Σmax|,m) the l-
diversity problem parameterized by |Σmax| and m. In this section, we show that
l-diversity(|Σmax|,m) admits a fixed-parameter algorithm.

Let R be a set of rows over Σ. A solution for l-diversity(|Σmax|,m) is a
partition Π = (P1, . . . , Pz) of R, where each set Pi must be l-diverse. Each
resolution vector r(Pi) is a vector over the alphabet Σ∗ = Σ ∪ {∗}. Notice that
the number of resolution vectors is at most (|Σmax| + 1)m. Let Res be the set
of possible resolution vectors. Recall that the cost associated with a resolution
vector v is equal to Del(v), that is the number of ∗ in r. For each resolution
vector in v ∈ Res, let r(v) be the number of rows in R compatible to v. Now,
define S as the set of full resolution vector (i.e. those resolution vectors that do
not contain suppressions) such that, for each s ∈ S, there is a row r compatible
with s. Notice that |S| ≤ |Σmax|m. Given s ∈ S, r(s) is the number of rows
in R compatible to s. Given the set of resolution vector Res, and the set R, l-
diversity(|Σmax|,m) asks for a solution with minimum number of suppressions.
A solution of l-diversity is obtained by computing an assignment of the rows
in R to the resolution vectors in Res, which is is represented as an assignment
of the rows identical to a vector s ∈ S to the vectors of Res. Each set of the
partition consists of the rows assigned to a specific resolution vector. Since in
a feasible solution each set must be l-diverse, the set of rows assigned to each
resolution vector must be an l-diverse set.

In order to compute the solution of minimum cost of l-diversity(|Σmax|,m),
we introduce an integer linear program (ILP). Let s ∈ S be a full resolution
vector, and v be a resolution vector of Res compatible with s. We define the
variable xs,v,λ as the number of rows equal to s having sensitive attribute λ,
which are assigned to the resolution vector v.

min
∑

s,v,λ Del(s)xs,v,λ

s.t.
∑

s,λ xs,v,λ ≥ l(
∑

s xs,v,λ′) for each v ∈ Res and for each λ′ ∈ Σs∑
v,λ xs,v,λ = r(s) for each s ∈ S

xs,v,λ ∈ Z+

(1)

The ILP has O((|Σmax| + 1)m+1) number of variables. By the result in [10], a
integer linear program with z variables can be solved with O(z9z/2L) arithmetic
operations in integers of O(z2zL) bits in size, where z represents the number
of variable in the ILP, while L is the number of bits in the input. Hence l-
diversity(|Σmax|,m) is fixed-parameter tractable.
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Abstract. Probabilistic automata are finite-state automata where the transitions
are chosen according to fixed probability distributions. We consider a seman-
tics where on an input word the automaton produces a sequence of probability
distributions over states. An infinite word is accepted if the produced sequence
is synchronizing, i.e. the sequence of the highest probability in the distribu-
tions tends to 1. We show that this semantics generalizes the classical notion
of synchronizing words for deterministic automata. We consider the emptiness
problem, which asks whether some word is accepted by a given probabilistic
automaton, and the universality problem, which asks whether all words are ac-
cepted. We provide reductions to establish the PSPACE-completeness of the two
problems.

1 Introduction

Probabilistic automata (PA) are finite-state automata where the transitions are chosen
according to fixed probability distributions. In the traditional semantics, a run of a prob-
abilistic automaton over an input word is a path (i.e., a sequence of states and transi-
tions), and the classical acceptance conditions over runs (such as in finite automata,
Büchi automata, etc.) are used to define the probability to accept a word as the measure
of its accepting runs [11,2]. Over finite and infinite words, several undecidability results
are known about probabilistic automata in the traditional semantics [10,1].

Recently, an alternative semantics for probabilistic automata has been proposed, with
applications in sensor networks, queuing theory, and dynamical systems [9,8,5]. In this
new semantics, a run over an input word is the sequence of probability distributions
produced by the automaton. For an example, consider the probabilistic automaton with
alphabet Σ = {a, b} on Fig. 1 and the sequence of probability distributions produced
by the input word a(aba)ω.

Previous works have considered qualitative conditions on this semantics. The space
of probability distributions (which is a subset of [0, 1]n) is partitioned into regions
defined by linear predicates, and classical acceptance conditions are used to define
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accepting sequences of regions. It is known that reachability of a region is undecidable
for linear predicates, and that it becomes decidable for a class of qualitative predicates
which essentially constrain only the support of the probability distributions [8].

In this paper, we consider a quantitative semantics which has decidable properties,
defined as follows [5]. A sequence X̄ = X0X1 . . . of probability distributions over a
set of states Q is synchronizing if in the long run, the probability mass tends to accu-
mulate in a single state. More precisely, we consider two definitions: the sequence X̄
is strongly synchronizing if lim infi→∞‖Xi‖ = 1 where ‖Xi‖ = maxq∈Q Xi(q) is
the highest probability in Xi; it is weakly synchronizing if lim supi→∞‖Xi‖ = 1. In-
tuitively, strongly synchronizing means that the probabilistic automaton behaves in the
long run like a deterministic system: eventually, at every step i (or at infinitely many
steps for weakly synchronizing) there is a state q̂i which accumulates almost all the
probability, and therefore the sequence q̂iq̂i+1 . . . is almost deterministic. Note that the
state q̂i needs not be the same at every step i. For instance, in the sequence in Fig. 1,
the maximal probability in a state tends to 1, but it alternates between the three states
q2, q3, and q4. We define the synchronizing languageL(A) of a probabilistic automaton
A as the set of words1 which induce a synchronizing sequence of probability distribu-
tions. In this paper, we consider the decision problems of emptiness and universality
for synchronizing language, i.e. deciding whether L(A) = ∅, and L(A) = D(Σ)ω

respectively.
Synchronizing words have applications in planning, control of discrete event sys-

tems, biocomputing, and robotics [3,15]. For deterministic finite automata (DFA),
a (finite) word w is synchronizing if reading w from any state of the automa-
ton always leads to the same state. Note that DFA are a special case of proba-
bilistic automata. A previous generalization of synchronizing words to probabilis-
tic automata was proposed by Kfoury, but the associated decision problem is un-
decidable [7]. By contrast, the results of this paper show that the definition of
strongly and weakly synchronizing words is a decidable generalization of synchro-
nized words for DFA. More precisely, we show that there exists a (finite) synchro-
nizing word for a DFA A if and only if there exists an (infinite) synchronizing word
for A viewed as a probabilistic automaton with uniform initial distribution over all
states.

We show that the emptiness and universality problems for synchronizing languages is
PSPACE-complete, for both strongly and weakly synchronizing semantics. For empti-
ness, the PSPACE upper bound follows from a reduction to the emptiness problem of an
exponential-size Büchi automaton. The construction relies on an extension of the clas-
sical subset construction. The PSPACE lower bound is obtained by a reduction from the
universality problem for nondeterministic finite automata.

For universality, the upper bound follows from a reduction to the emptiness prob-
lem of an exponential-size coBüchi automaton, and the lower bound is obtained by a
reduction from the emptiness problem of traditional probabilistic coBüchi automata in
positive semantics [4,14].

1 Words can be randomized, i.e. their letters can be probability distributions over the alphabet
Σ. We denote by D(Σ) the set of all probability distributions over Σ.
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Fig. 1. The word a(aba)ω is strongly synchronizing

The PSPACE-completeness bounds improve the results of [5] where it is shown that
the emptiness and universality problems for synchronizing languages are decidable2

using a characterization which yields doubly exponential algorithms.
Due to lack of space, the details of some proofs are omitted and can be found in [6].

2 Automata and Synchronizing Words

A probability distribution over a finite set S is a function d : S → [0, 1] such that∑
s∈S d(s) = 1. The support of d is the set Supp(d) = {s ∈ S | d(s) > 0}. We denote

by D(S) the set of all probability distributions over S.
Given a finite alphabet Σ, we denote by Σ∗ the set of all finite words over Σ, and

by Σω the set of all infinite words over Σ. The length of a word w is denoted by |w|
(where |w| = ∞ for infinite words). An infinite randomized word over Σ is a sequence
w = d0d1 . . . of probability distributions over Σ. We denote by D(Σ)ω the set of all
infinite randomized words over Σ. A word w ∈ Σω can be viewed as a randomized
word d0d1 . . . in which the support of all probability distributions di is a singleton. We
sometimes call w ∈ Σω a pure word to emphasize this.

Finite Automata. A nondeterministic finite automaton (NFA) A = 〈L, 	0, Σ, δ,F〉
consists of a finite set L of states, an initial state 	0 ∈ L, a finite alphabetΣ, a transition
relation δ : L × Σ → 2L, and an acceptance condition F which can be either finite,
Büchi, or coBüchi (and then F ⊆ L), or generalized Büchi (and then F ⊆ 2L).

2 Probabilistic automata are equivalent to Markov decision processes with blind strategies.
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Finite acceptance conditions define languages of finite words, other acceptance con-
ditions define languages of infinite words. Automata with Büchi, coBüchi, and gen-
eralized Büchi condition are called ω-automata. A run over a (finite or infinite) word
w = σ0σ1 . . . is a sequence ρ = r0r1 . . . such that r0 = 	0 and ri+1 ∈ δ(ri, σi) for all
0 ≤ i < |w|. A finite run r0 . . . rk is accepting if rk ∈ F , and an infinite run r0r1 . . . is
accepting for a Büchi condition if rj ∈ F for infinitely many j, for a coBüchi condition
if rj 
∈ F for finitely many j, for a generalized Büchi condition if for all s ∈ F , we
have rj ∈ s for infinitely many j.

The language of a (finite- or ω-) automaton is the set Lf(A) (resp., Lω(A)) of finite
(resp., infinite) words over which there exists an accepting run. The emptiness problem
for (finite- or ω-) automata is to decide, given an automaton A, whether Lf(A) = ∅
(resp., Lω(A) = ∅), and the universality problem is to decide whether Lf(A) = Σ∗

(resp., Lω(A) = Σω). For both finite and Büchi automata, the emptiness problem is
NLOGSPACE-complete, and the universality problem is PSPACE-complete [13,12].

A deterministic finite automaton (DFA) is a special case of NFA where the transition
relation is such that δ(	, σ) is a singleton for all 	 ∈ L and σ ∈ Σ, which can be viewed
as a function δ : L × Σ → L, and can be extended to a function δ : L × Σ∗ → L
defined inductively as follows: δ(	, ε) = 	 with ε the empty word and δ(	, σ · w) =
δ(δ(	, σ), w) for all w ∈ Σ∗. A synchronizing word for a DFA is a word w ∈ Σ∗

such that δ(	, w) = δ(	′, w) for all 	, 	′ ∈ L, i.e. such that from all states, a unique
state is reached after readingw. Synchronizing words have applications in several areas
from planning to robotics and system biology, and they gave rise to the famous Černý’s
conjecture [3,15].

Probabilistic Automata. A probabilistic automaton (PA) A = 〈Q,μ0, Σ, δ〉 consists
of a finite set Q of states, an initial probability distribution μ0 ∈ D(Q), a finite alphabet
Σ, and a probabilistic transition function δ : Q × Σ → D(Q). In a state q ∈ Q, the
probability to go to a state q′ ∈ Q after reading a letter σ ∈ Σ is δ(q, σ)(q′). Define
Post(q, σ) = Supp(δ(q, σ)), and for a set s ⊆ Q and Σ′ ⊆ Σ, let Post(s,Σ′) =⋃

q∈s

⋃
σ∈Σ′ Post(q, σ).

The outcome of an infinite randomized word w = d0d1 . . . is the infinite sequence
X0X1 . . . of probability distributions Xi ∈ D(Q) such that X0 = μ0 is the initial
distribution, and for all n > 0 and q ∈ Q,

Xn(q) =
∑

σ∈Σ

∑
q′∈Q Xn−1(q′) · dn−1(σ) · δ(q′, σ)(q)

The norm of a probability distribution X over Q is ‖X‖ = maxq∈Q X(q). We say
that w is a strongly synchronizing word if

lim inf
n→∞

‖Xn‖ = 1, (1)

and that it is a weakly synchronizing word if

lim sup
n→∞

‖Xn‖ = 1. (2)

Intuitively, a word is synchronizing if in the outcome the probability mass tends
to concentrate in a single state, either at every step from some point on (for strongly
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synchronizing), or at infinitely many steps (for weakly synchronizing). Note that equiv-
alently, the randomized word w is strongly synchronizing if the limit limn→∞‖Xn‖
exists and equals 1. We denote by LS(A) (resp., LW (A)) the set of strongly (resp.,
weakly) synchronizing words of A.

In this paper, we are interested in the emptiness problem for strongly (resp., weakly)
synchronizing languages which is to decide, given a probabilistic automatonA, whether
LS(A) = ∅ (resp., LW (A) = ∅), and in the universality problem which is to decide,
whether LS(A) = D(Σ)ω (resp., LW (A) = D(Σ)ω).

Synchronizing sequences of probability distributions have been first introduced for
Markov decision processes (MDP) [5]. A probabilistic automaton can be viewed as an
MDP where a word corresponds to a blind strategy (in the terminology of [5]) which
chooses letters (or actions) independently of the sequence of states visited by the au-
tomaton and it only depends on the number of rounds that have been played so far. It is
known that the problem of deciding the existence of a blind synchronizing strategy for
MDPs is decidable3 [5, Theorem 5]. In Section 3 we provide a solution in PSPACE to
this problem, as well as a matching PSPACE lower bound.

Remark 1. From the results of [5], it follows that if there exists a (strongly or weakly)
synchronizing word, then there exists a pure one.

A deterministic finite automaton is also a special case of probabilistic automaton where
the probabilistic transition function is such that Post(q, σ) is a singleton for all q ∈ Q
and σ ∈ Σ (and disregarding the initial distribution μ0). We show that the definition
of strongly (and weakly) synchronizing word generalizes to probabilistic automata the
notion of synchronizing words for DFA, in the following sense.

Theorem 1. Given a deterministic finite automaton A, the following statements are
equivalent:

1. There exists a (finite) synchronizing word for A.
2. There exists an (infinite) strongly (or weakly) synchronizing word for A (viewed as

a probabilistic automaton) with uniform initial distribution.

Proof. First, if w ∈ Σ∗ is a synchronizing word for the DFA A, there is a state q which
is reached from all states of A by readingw. This implies that X|w|(q) = 1 in the PA A
(no matter the initial distribution) and since the transition function ofA is deterministic,
any infinite word with prefix w is both strongly (and thus also weakly) synchronizing
for A.

Second, assume that w is a strongly (or weakly) synchronizing word for the PA A
with initial distribution μ0 such that μ0(q) = 1

m where m = |Q| is the number of states
of A. By Remark 1, we assume that w = σ0σ1 · · · ∈ Σω is pure. Let X0X1 . . . be
the outcome of w in A. Since the transitions in A are deterministic, all probabilities
Xi(q) for i ≥ 0 and q ∈ Q are multiples of 1

m , i.e. Xi(q) = c
m for some 0 ≤ c ≤ m.

Therefore, the fact that lim infn→∞ ‖Xn‖ = 1 (or lim supn→∞ ‖Xn‖ = 1) implies
that Xi(q) = 1 for some i ≥ 0 and q ∈ Q. Then, the finite word σ0σ1 . . . σi−1 is
synchronizing for A.  !

3 The results in [5] suggest a doubly exponential algorithm for solving this problem.
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Note that the problem of deciding whether there exists a synchronizing word for a
given DFA can be solved in polynomial time, while the emptiness problem for synchro-
nizing languages (for probabilistic automata) is PSPACE-complete (see Theorem 2).

End-Components. A set C ⊆ Q is closed if for every state q ∈ C, there exists σ ∈ Σ
such that Post(q, σ) ⊆ C. For each q ∈ C, let DC(q) = {σ ∈ Σ | Post(q, σ) ⊆ C}.
The graph induced byC isA � C = (C,E) whereE is the set of edges (q, q′) ∈ C×C
such that δ(q, σ)(q′) > 0 for some σ ∈ DC(q). An end-component is a closed set U
such that the graph A � C is strongly connected.

3 The Emptiness Problem is PSPACE-Complete

In this section, we present constructions to reduce the emptiness problem for synchro-
nizing languages of probabilistic automata to the emptiness problem for ω-automata,
with Büchi condition for strongly synchronizing language, and with generalized Büchi
condition for weakly synchronizing language. The constructions are exponential and
therefore provide a PSPACE upper bound for the problems. We also prove a matching
lower bound.

Lemma 1. The emptiness problem for strongly synchronizing language of probabilistic
automata is decidable in PSPACE.

We give the main idea of the proof of Lemma 1. The details can be found in [6].
Given a PA A = 〈Q,μ0, Σ, δ〉, we construct a Büchi automaton B =

〈L, 	0, Σ, δB,FB〉 such that LS(A) = ∅ iff L(B) = ∅. The automaton B is expo-
nential in the size of A, and thus the PSPACE bound follows from the NLOGSPACE-
completeness of the emptiness problem for Büchi automata.

The construction of B relies on the following intuition. A strongly synchronizing
word induces a sequence of probability distributions Xi in which the probability mass
tends to accumulate in a single state q̂i at step i. It can be shown that for all sufficiently
large i, there exists a deterministic transition from q̂i to q̂i+1, i.e. there exists σi ∈
Σ such that Post(q̂i, σi) = {q̂i+1}. The Büchi automaton B will guess the witness
sequence q̂iq̂i+1 . . . and check that the probability mass is ‘injected’ into this sequence.
The state of B keeps track of the support si = Supp(Xi) of the outcome sequence on
the input word, and at some point guesses that the witness sequence q̂iq̂i+1 . . . starts.
Then, using an obligation set oi ⊆ si, it checks that every state in si eventually ‘injects’
some probability mass in the witness sequence.

The construction of B = 〈L, 	0, Σ, δB,FB〉 is as follows:

– L = 2Q ∪ (2Q × 2Q ×Q) is the set of states. A state s ⊆ Q is the support of the
current probability distribution. A state (s, o, q̂) ∈ 2Q × 2Q × Q consists of the
support s, the obligation set o ⊆ s, and a state q̂ ∈ s of the witness sequence.

– 	0 = Supp(μ0) is the initial state.
– δB : L × Σ → 2L is defined as follows. For all s ∈ 2Q and σ ∈ Σ, let s′ =

Post(s, σ), and define δB(s, σ) = {s′} ∪ {(s′, s′, q̂) | q̂ ∈ s′}. For all (s, o, q̂) ∈
2Q × 2Q ×Q and σ ∈ Σ, let s′ = Post(s, σ). If Post(q̂, σ) is not a singleton, then
δB((s, o, q̂), σ) = ∅, otherwise let {q̂′} = Post(q̂, σ), and
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Fig. 2. Sketch of the reduction for PSPACE-hardness of the emptiness problem

• if o 
= ∅, then δB((s, o, q̂), σ) = {(s′, o′ \ {q̂′}, q̂′) | ∀q ∈ o : o′ ∩Post(q, σ) 
=
∅},

• if o = ∅, then δB((s, o, q̂), σ) = {(s′, s′, q̂′)}.
– FB = {(s, o, q̂) ∈ 2Q × 2Q ×Q | o = ∅} is the set of accepting states.

Lemma 2. The emptiness problem for weakly synchronizing language of probabilistic
automata is decidable in PSPACE.

The proof of Lemma 2 is by a reduction to the emptiness problem of an exponential-size
ω-automaton with generalized Büchi condition. It can be found in [6].

Lemma 3. The emptiness problem for strongly synchronizing language and for weakly
synchronizing language of probabilistic automata is PSPACE-hard.

Proof. We present a proof for strongly synchronizing words using a reduction from the
universality problem for nondeterministic finite automata. The proof and the reduction
for weakly synchronizing words is analogous.

Given a NFA N , we construct a PA A, such that L(N ) = Σ∗ iff LS(A) = ∅.
The reduction is illustrated in Fig. 2. The nondeterministic transitions of N become
probabilistic in A with uniform probability. The initial probability distribution assigns
probability 1

2 to the absorbing state qsync. Therefore, a synchronizing word needs to
inject all that probability into qsync. This can be done with the special symbol # from
the non-accepting states of the NFA. From the accepting states, the # symbol leads to
a sink state qend from which there is no way to synchronize the automaton.

Let N = 〈L, 	0, Σ, δN ,FN 〉 be a NFA, we construct the PA A = 〈Q,μ0, Σ
′, δ,F〉

as follows:

– Q = L ∪ {qsync, qend}.
– μ0(	0) = μ0(qsync) = 1

2 , and μ0(q) = 0 for all q ∈ Q \ {	0, qsync}.
– Σ′ = Σ ∪ {#}.
– δ : Q × Σ → D(Q) is the probabilistic transition function defined as follows.

For all σ ∈ Σ′, δ(qsync, σ)(qsync) = 1 and δ(qend, σ)(qend) = 1. For all q ∈ FN ,
δ(q,#)(qend) = 1, and for all q 
∈ FN , δ(q,#)(qsync) = 1. Finally, for all q, q′ ∈ L
and σ ∈ Σ, δ(q, σ)(q′) = 1

|δN (q,σ)| if q′ ∈ δN(q, σ), and δ(q, σ)(q′) = 0 otherwise.
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We show that L(N ) 
= Σ∗ iff LS(A) 
= ∅. First, assume that L(N ) 
= Σ∗. Let
w ∈ Σ∗ such that w 
∈ L(N ). Then all runs of N over w end in a non-accepting state,
and in A the state qsync is reached with probability 1 on the word w · #. Therefore,
w · (#)ω is a strongly synchronizing word for A and LS(A) 
= ∅.

Second, assume that LS(A) 
= ∅. Let w′ ∈ LS(A) be a strongly synchronizing
word for A, and let X0X1 . . . be the outcome of w′ in A. Since μ0(qsync) = 1

2 and
qsync is a sink state, we have Xk(qsync) ≥ 1

2 for all k ≥ 0 and since w′ is strongly
synchronizing, it implies that limk→∞Xk(qsync) = 1. Then w′ has to contain #, as
this is the only letter on a transition from a state in L to qsync. Let w ∈ Σ∗ be the
prefix of w′ before the first occurrence of #. We claim that w is not accepted by N .
By contradiction, if there is an accepting run r of N over w, then positive probability
is injected in qend by the finite word w ·# and stays there forever, in contradiction with
the fact that limk→∞Xk(qsync) = 1. Therefore w 
∈ L(N ) and L(N ) 
= Σ∗.  !

The following result follows from Lemma 1, Lemma 2, and Lemma 3.

Theorem 2. The emptiness problem for strongly synchronizing language and for
weakly synchronizing language of probabilistic automata is PSPACE-complete.

4 The Universality Problem is PSPACE-Complete

In this section, we present necessary and sufficient conditions for probabilistic automata
to have a universal strongly (resp., weakly) synchronizing language. We show that the
construction can be checked in PSPACE. Unlike for the emptiness problem, it is not suf-
ficient to consider only pure words for universality of strongly (resp., weakly) synchro-
nizing languages. For instance, all infinite pure words for the probabilistic automaton
in Fig. 3 are strongly (and weakly) synchronizing, but the uniformly randomized word
over {a, b} is not strongly (nor weakly) synchronizing. Formally, we say an infinite ran-
domized word is a uniformly randomized word over Σ denoted by wu, if di(σ) = 1

|Σ|
for all σ ∈ Σ and i ∈ N.

Lemma 4. There is a probabilistic automaton for which all pure words are strongly
synchronizing, but not all randomized words .

The reason is that there are two sets ({q1} and {q2}) for which the probability can not
go out. For a given PA A = 〈Q,μ0, Σ, δ,F〉, a maximal end-componentU ⊆ Q is ter-
minal, if Post(U,Σ) ⊆ U . It is easy to see that a terminal end-component keeps prob-
ability inside. To have a universal strongly/weakly synchronizing language, the PA A
needs to have only a unique terminal end-component. Otherwise, the uniformly ran-
domized word wu would reach all terminal end-components and would not be strongly
synchronizing. Though having only a terminal end-component is necessary, it is not
sufficient. For example, the infinite word (ab)ω 
∈ LS(A) for the PA A in Fig. 5 which
contains only one terminal end-component. The probabilistic automaton needs to en-
sure that for all randomized words, all of the probability mass tends to accumulate
in the unique terminal end-component. We express this property for a terminal end-
component as being absorbing. We say that a terminal end-componentU is absorbing,
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q0q1 q2
a b

a, b a, b

Fig. 3. Randomization is necessary

1/2 1/2a, b

a, b

Fig. 4. Randomization is not sufficient

if limn→∞
∑

q∈U Xn(q) = 1 for the outcome X0X1 . . . of all infinite randomized
words w ∈ D(Σ)ω. Fig. 6 shows an automaton where the unique end competent is
absorbing and the strongly synchronizing language is universal.

Lemma 5. For a given PA A, deciding whether a given terminal end-component U is
absorbing is decidable in PSPACE.

We give the main idea of the proof of Lemma 5. The details are provided in [6].
Given a terminal end-component U ⊆ Q of the PA A = 〈Q,μ0, Σ, δ,F〉, we

construct a coBüchi automaton C = 〈L, 	0, 2Σ , δC ,FC〉 such that U is absorbing iff
L(C) = ∅. The coBüchi automaton C is exponential in the size of A, and as a conse-
quence of NLOGSPACE-completeness of the emptiness problem for coBüchi automata,
the PSPACE bound follows.

The automaton C is constructed to guess an infinite wordw as a witness, to prove that
the terminal end-componentU is not absorbing. This word induces an infinite sequence
of supports s0s1s2 . . . produced by its outcome X0X1X2 . . . (i.e., si = Supp(Xi) for
all i ∈ N). At some point n, there is a subset s ⊆ sn form which U cannot be reached.
Therefore, the states of C keeps track of the support si = Supp(Xi) of the outcome,
and at some point guesses the set s and checks that U is never reached from states in s.
Then the acceptance condition requires that eventually all the reached states are outside
of the end-component U . Since, by Lemma 4, the pure words are not sufficient, the
alphabet of C is 2Σ . A word over this alphabet is a sequence of subsets of letters which
can be viewed as the sequence of supports of the distributions of a randomized word.

The construction of C = 〈L, 	0, 2Σ, δC ,FC〉 is as follows:

– L = 2Q × {0, 1}.
– 	0 = (Supp(μ0), 0) is the initial state.
– 2Σ \ {∅} is the alphabet.
– δC : L × 2Σ → 2L is the transition function defined as follows. For all s ⊆ Q and
Σ′ ⊆ Σ, let s′ = Post(s,Σ′) and define δC((s, 0)) = {(s′, 0)} ∪ {(s′′, 1) | s′′ 
=
∅∧s′′ ⊆ s′ \U} and define δC((s, 1)) = {(s′, 1)} if s′∩U = ∅, and δC((s, 1)) = ∅
otherwise.

– and FC = 2Q × {1} is the coBüchi acceptance condition.

Another necessary condition to have a universal strongly (resp., weakly) synchro-
nizing language for a probabilistic automaton is that the uniformly randomized word is
synchronizing as well. For instance, the automaton presented in Fig. 4 has an absorbing
end-component, but since the uniformly randomized word is not strongly synchroniz-
ing, the strongly synchronizing language is not universal.
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1/2 1/2a

b

b a
a, b

Fig. 5. Non-absorbing end-component

1/2 1/2

a b

1/2 1/2

a, b a, b

b a

a, b

Fig. 6. Absorbing end-component

Lemma 6. The universality problem for strongly synchronizing language and for
weakly synchronizing language of probabilistic automata is decidable in PSPACE.

We state the main idea of the proof of Lemma 6 for strongly synchronizing languages.
The detailed proof can be found in [6]. The proof for weakly synchronizing languages
follows an analogous discussion which is left to the reader.

We establish the following characterization. The synchronizing language of a given
PA A is universal iff (I) there is a (then necessarily unique) absorbing end-component
in A, and (II) the uniformly randomized word wu is strongly (resp., weakly) synchro-
nizing. The above arguments show that these conditions are necessary and we now
briefly explain why they are also sufficient. Since the uniformly randomized word wu

is strongly synchronizing, it can be shown that the unique terminal end-component U
of A consists of a simple cycle, in the sense that |Post(q,Σ)| = 1 for all states q ∈ U .
It follows that if word w is not strongly synchronizing, then two different states of U
would be reached after the same number of steps. But since all states reachable by w
are also reachable by wu, it would mean that wu is not strongly synchronizing, a con-
tradiction.

Condition (I) can be checked in PSPACE by Lemma 5, and Condition (II) reduces to
check that a Markov chain is synchronizing, which can be done in polynomial time by
steady state analysis. The PSPACE bound follows.

Lemma 7. The universality problem for strongly synchronizing language and for
weakly synchronizing language of probabilistic automata is PSPACE-hard.

Proof. We present a proof using a reduction from a PSPACE-complete problem
so called initial state problem. Given a nondeterministic finite automaton N =
〈Q, q0, Σ, δ,F〉 and a state q ∈ Q, we denote by Nq the automaton N in which the
initial state is q, i.e. Nq = 〈Q, q,Σ, δ,F〉. The initial state problem is to decide, given
N , whether the exists a state q ∈ Q and a word w ∈ Σω such that all runs r of Nq over
w avoid F , i.e. ri 
∈ F for all i ≥ 0. From the results of [4,14], it follows that the initial
state problem is PSPACE-complete. We present a polynomial-time reduction from the
the initial state problem to the universality problem, establishing the PSPACE hardness
of the universality problem.
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Given an NFA N = 〈L, 	0, Σ, δN ,FN 〉 with FN 
= ∅, we construct a PA A =
〈Q,μ0, Σ, δ〉 as follows:

– Q = L ∪ {qend}.
– μ0(	0) = 1, and μ0(q) = 0 for all q ∈ Q \ {	0}.
– δ : Q × Σ → D(Q) is the probabilistic transition function defined as follows.

For all q ∈ Q and σ ∈ Σ, if q 
∈ F , then δ(q, σ) is the uniform distribution
over δN (q, σ), and if q ∈ FN , δ(q, σ)(q′) = 1

2|δN (q,σ)| for all q′ ∈ δN (q, σ) and

δ(q, σ)(qend) = 1
2 .

We show that the answer to the initial state problem for N is YES if and only if A is
not universal. We assume w.l.o.g that all states in N are reachable. First, if the answer
to the initial state problem for N is YES, then let q̂ be an initial state and w ∈ Σω

be a word satisfying the problem. We construct a word that is not (strongly neither
weakly) synchronizing for A. First, consider the |Q|-times repetition of the uniform
distribution du over Σ. Then, with positive probability the state qend is reached, and
also with positive probability the state q̂ is reached, say after k steps. Let w′ ∈ Σω such
that w = v · w′ and |v| = |Q| − k. Note that from state q̂ the finite word v is played
with positive probability by the repetition of uniform distribution du. Therefore, on the
word (du)|Q| ·w′, with some positive probability the set qend is never reached, and thus
it is not synchronizing, and A is not universal. Second, if A is not universal, then the
terminal end-component {qend} is not absorbing and by the construction in Lemma 5,
there exists a state q̂ and a pure word w ∈ Σω such that all runs from q̂ on w avoid
qend, and therefore also avoid FN . Hence, the answer to the initial state problem forN
is YES.  !

The following result follows from Lemma 6, and Lemma 7.

Theorem 3. The universality problem for strongly synchronizing language and for
weakly synchronizing language of probabilistic automata is PSPACE-complete.

5 Discussion

The complexity results of this paper show that both the emptiness and the universal-
ity problems for synchronizing languages are PSPACE-complete. The results in this
paper apply also to a more general definition of synchronizing sequence of probabil-
ity distribution, where groups of equivalent states are clustered together. A labeling
function assigns a color to each group of equivalent states. The definition of synchro-
nizing sequences then corresponds to the requirement that the automaton essentially
behaves deterministically according to the sequence of colors produced in the long
run. A labeled probabilistic automaton is a PA A〈Q,μ0, Σ, δ〉 with a labeling func-
tion L : Q → Γ where Γ is a finite set of colors. The L-norm of a probability dis-
tribution X ∈ D(Q) is ‖X‖L = maxγ∈Γ

∑
q:L(q)=γ X(q), and a sequence X0X1 . . .

is strongly synchronizing (resp., weakly synchronizing) if lim infn→∞ ‖Xn‖L = 1,
(resp., lim supn→∞ ‖Xn‖L = 1). The constructions of ω-automata in Lemma 1 and
Lemma 2 can be adapted to show that the emptiness problem remains in PSPACE for
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labeled probabilistic automata. Roughly, the ω-automaton will guess the witness se-
quence γ̂iγ̂i+1 . . . of colors rather than a witness sequence of states. The solution of the
universality problem is adapted analogously.

References
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F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)



Characterizing EF over Infinite Trees and Modal Logic
on Transitive Graphs
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Abstract. We provide several effective equivalent characterizations of EF (the
modal logic of the descendant relation) on arbitrary trees. More specifically, we
prove that, for EF-bisimulation invariant properties of trees, being definable by an
EF formula, being a Borel set, and being definable in weak monadic second order
logic, all coincide. The proof builds upon a known algebraic characterization of
EF for the case of finitely branching trees due to Bojańczyk and Idziaszek. We
furthermore obtain characterizations of modal logic on transitive Kripke struc-
tures as a fragment of weak monadic second order logic and of the μ-calculus.

1 Introduction

Determining effective characterizations of logics on trees is an important problem in
theoretical computer science, motivated by the desire to better understand the expressive
power of logics such as first-order logic (FO) or the temporal logic CTL∗ on trees.

While for finite words this kind of problem is well-studied, the list of results for
trees is much more frugal. The situation has improved a little in the last years, thanks
to the successful use of forest algebras (see [9]). Notably, this formalism has been used
for obtaining decidable characterizations for the classes of tree languages definable in
EF + EX [8], EF + F−1 [4,15], BC-Σ1(<) [6,15], Δ2(≤) [7,15], in FO with the child
relation and in FO with counting quantifiers (modulo an integer) and the child relation
[1]. This approach has then been extended in the case of the temporal logic EF on
infinite but finitely branching trees by Bojańczyk and Idziaszek [5].

These results all demonstrate the importance of the algebraic approach to obtain-
ing decidable characterizations of logics. In the case of infinite trees, it is natural to
ask whether such logics also admit topological characterizations. Take for instance the
logic EF, the modal logic of the descendant relation, which is a fragment of the modal
μ-calculus. The formula μx.�x of the modal μ-calculus, which defines the class of
well-founded trees, is not equivalent to any EF-formula. This follows from results of
Bojańczyk and Idziaszek [5] since the syntactic ω-forest algebra of the class of finitely
branching trees satisfying μx.�x fails to satisfy one of the algebraic equations that
characterize the expressive power of EF on finitely branching trees. However, there is
another explanation for the fact that μx.�x is not equivalent to an EF-formula, which
involves topology: the class of (arbitrarily branching) well-founded trees is not Borel,
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while EF-formulae can only define tree languages that are Borel. This raises the ques-
tion whether EF, as a fragment of MSO, can be characterized by topological means.

In this work we give a positive answer to this question. We prove that a (not nec-
essarily finitely branching) tree language is EF-definable if and only if it is invariant
for EF-bisimilarity and Borel. Since EF is a fragment of weak monadic-second order
logic (WMSO) and all WMSO-definable tree languages are Borel, we obtain as a corol-
lary that EF is the EF-bisimulation invariant fragment of WMSO. All the proofs make
crucial use of the results in [5]. Secondly, these characterizations are effective: given
an MSO formula, one can effectively test whether it defines an EF-definable tree lan-
guage. Thirdly, these characterizations show that for EF-bisimilar invariant languages
WMSO is the Borel fragment of MSO. Since for all tree languages WMSO and MSO
are incomparable (cf. Remark 1 in Subsection 2.2), this cannot be true in general. It
is however an open question whether such a relative characterization of WMSO holds
when restricted to complete binary trees (cf. [13]).

Theorem 1. Let L be any MSO-definable tree language. The following are equivalent
and decidable:

(1) L is EF-definable,
(2) L is closed under EF-bisimulation and WMSO-definable,
(3) L is closed under EF-bisimulation and Borel,
(4) L is closed under EF-bisimulation, and for every L-idempotent context c, and for

every forest f , c(f) and (c + cf)∞ are L-equivalent.

Note that here, we consider the monadic second-order language with the child relation
and without a horizontal sibling-order relation.

The fourth condition, which is essentially the condition that was used in [5] to char-
acterize EF on finitely branching trees, involves some algebraic notions that we will
introduce in Section 2. Thm. 1 does not hold for finitely branching trees. This is be-
cause on finitely branching trees, well-foundedness is equivalent to finiteness, which is
Borel and closed under EF-bisimulation but not EF-definable.

From Thm. 1, we finally obtain the following effective characterizations of modal
logic on transitive Kripke models (with a suitable definition of what it means for a class
of pointed Kripke models to be Borel):

Theorem 2. For every μ-formula φ, the following are equivalent and decidable:

(1) φ is equivalent on transitive Kripke models to a modal formula,
(2) φ is equivalent on transitive Kripke models to a WMSO-formula,
(3) the class of pointed transitive Kripke models satisfying φ is Borel.

Theorem 3. For every WMSO-formula φ(x), the following are equivalent:

(1) φ(x) is equivalent on transitive Kripke models to a modal formula,
(2) φ(x) is bisimulation invariant on transitive Kripke models.

Since EF is a fragment of first-order logic (with the descendant relation), Thm. 1, 2
and 3 imply that EF is the EF-bisimulation invariant fragment of FO on trees and that
modal logic is the bisimulation invariant fragment of FO on transitive Kripke models.
Both were known (cf. [11, Thm. 4.12]).
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2 Preliminaries and Groundwork

2.1 The Beauty of Trees

Trees, forests, contexts. A colored directed graph g over a finite alphabet Σ, called a
Σ-colored directed graph, is given by a triple (Vg ,≺g, λg) such that the domain Vg is a
(possibly empty) set of nodes, ≺g⊆ Vg × Vg is a directed edge (or arrow) relation and
λg : Vg → Σ is a coloring function. A node x ∈ Vg is called a root if there is no node
y ∈ Vg such that y ≺g x. A path from a node x to a node y is a sequence (x1, . . . , xn)
of nodes such that x1 = x, xn = y and for every 0 < i < n, xi ≺g xi+1. We say that
a node x is reachable from a node y if there is a path from y to x. A pointed Σ-colored
directed graph is a pair (g, s) where g is a Σ-colored directed graph and s ∈ Vg .

Unordered trees (trees, for short) will be colored directed graphs with a unique root
(if the graph is not empty) and where every node is reachable along a unique path from
the root. Given two nodes x, y ∈ Vg , we say that y is a son of x and x is a parent of y
if x ≺g y. In general, if there is a path of length at least 2 from x to y, then x is called
an ancestor of y and y is called a descendant of x. A node that is not an ancestor of any
node of a tree is called a leaf. A tree t is said to be finitely branching if for every node
x, the set of sons of x is finite. The depth of a node x in a tree t is the length of the
path from the root of t to x. Given a tree t = (Vt,≺t, λt) and node x ∈ Vt, the subtree
rooted in x is the tree t.x = (Vt.x,≺t |Vt.x , λt|Vt.x) where Vt.x is the set of all reachable
nodes of Vt from x, ≺t |Vt.x =≺t ∩(Vt.x ×Vt.x) and λt|Vt.x = λt ∩ (Vt.x×Σ). A tree
is called regular if, up to isomorphism, it has only finitely many subtrees. The set of all
trees over a finite alphabet Σ is denoted by TΣ . A subset L ⊆ TΣ is called a Σ-tree
language, or simply a tree language.

A forest over a finite set Σ is a colored directed graph over a finite alphabet Σ with
possibly more than one root (and at least one if the domain is not empty) but such that
any node is reached by an unique path from a single root. Given a forest f , and a node
x of its domain, by f.xwe denote the subtree of f rooted in x. A context is a forest with
a hole. Formally, a context over Σ is a forest over Σ ∪ {�} where exactly one node is
labeled by “�”, and it is a leaf but not a root. As usual, we do not distinguish between
two isomorphic trees or forests.

Operations on forests and contexts. We define two types of operations on forests and
contexts: a (horizontal) concatenation operation, denoted by +, and a (vertical) compo-
sition operation, denoted by ·. Contrary to the concatenation operation, the composition
operation is not commutative.

Given a sequence of forests (fi : i ∈ α), with α ∈ ω ∪ {ω}, we want to concatenate
these forests. Note that each forest can contain infinitely many rooted subtrees, and the
length of the sequence itself, i.e., α, can be infinite. The concatenation of the forests fi

is defined as the forest
∑

i∈α fi obtained by taking the disjoint union of all forests fi.
Since we identify isomorphic forests, this operation is commutative and associative.

We allow also to concatenate a sequence of forests where one of them is a context.
Clearly the result of such a concatenation is a context.

Concerning vertical composition, we can compose a context c with a forest, resp. a
context, f , and obtain as a result a forest, resp. a context, c(f) simply by replacing the
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hole node of c by f . More formally, let c be the context (Vc,≺c, λc) and f be the forest
(Vf ,≺f , λf ). Without loss of generality, we can assume that Vc ∩ Vf = ∅. Let h ∈ Vc

be the unique node labelled by “�” and h0 ∈ Vc be its unique parent, and let ρf be the
set of roots of f . Then c(f) is the forest defined by ((Vc \ {h}) ∪ Vf ,≺′, λ′) where
• ≺′ |Vc\{h} =≺c |Vc\{h} and ≺′ |Vf

=≺f , and for all x ∈ ρf , h0 ≺′ x,
• λ′|Vc\{h} = λc|Vc\{h} and λ′|Vf

= λf .

For every pair of contexts c, c′ and every forest f , we have that c(c′(f)) = (c(c′))(f).
Note that, restricted to finitely (unordered) branching contexts and forests, the oper-

ations of concatenation and composition correspond to the ones in [5].

Myhill-Nerode equivalence. Given a tree language L, we want to define a notion of
equivalence with respect to L, analogous to the well known Myhill-Nerode equivalence
relation for finite words. Intuitively, two forests, or two contexts, are L-equivalent if
they “behave the same” with respect to L. The definition we use, which we will now
present, is essentially the one in [5] (cf. Remark 2).

The crucial notion here is that of a template. There are two kinds of templates, forest-
templates and context-templates. A forest-template for an alphabetΣ is a forest over the
alphabet Σ ∪ {�} in which one or more leafs (possibly infinitely many) are labeled �,
and no non-leaf node is labeled �. Similarly, a context-template for Σ is a forest over
the alphabet Σ ∪{�} in which one or more nodes (possibly infinitely many) are labeled
“�”. Intuitively, the occurrences of “�” in a forest-template are placeholders for forests,
and the occurrences of “�” in a context-template are placeholders for contexts.

In what follows, we will make use of the operation of replacing a subtree with an-
other forest. We will not give a formal definition of this operation. Just note that it can
be defined in a straightforward manner by using horizontal concatenation and a gener-
alization of the substitution operation used in defining vertical composition.

Thus, given a forest-template f over Σ ∪ {�} and a forest g over Σ, we denote by
f [� �→ g] the forest obtained by replacing every node labeled “�” in f with the forest g.
Similarly, given a context-template f over Σ ∪ {�} and a context c over Σ, we denote
by f [� �→ c] the forest obtained by replacing every subtree starting at a node labeled
“�” in f with the forest obtained by composing the context c with the (possibly empty)
forest given by all the subtrees rooted at a child of the considered node labeled “�”. In
the special case where f is the infinite unary tree labeled by “�”, then for every context
c, f [� �→ c] will be denoted also by c∞.

We call a forest-template guarded if no root is labelled by “�”. Analogously for
context-templates. Let L ⊆ TΣ be a tree language over an alphabet Σ. We say that two
contexts, c1, c2, over Σ are L-equivalent (denoted by c1 ≡L c2) if for every guarded
context-template t over alphabet Σ ∪ {�}, t[� �→ c1] ∈ L iff t[� �→ c2] ∈ L. Similarly,
two forests f1, f2 are L-equivalent (denoted by f1 ≡L f2) if for every guarded forest-
template t over Σ ∪ {�}, t[� �→ f1] ∈ L iff t[� �→ f2] ∈ L.

Note that since we are working with tree languages, we can safely ignore forests
t[� �→ f ] or t[� �→ c] that are not trees. Moreover, note that two trees (seen as forests)
can be L-equivalent while they do not agree on membership in L.

Proposition 1. L-equivalence is an equivalence relation (both on contexts and on
forests).
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There is a natural generalization of forest-templates and context-templates, where the
holes are marked. More precisely, multi-forest-templates and multi-context-templates
for an alphabet Σ are forests over an extended alphabet Σ ∪ {�1, . . . , �n}, satisfying
the same conditions as forest-templates and context-templates. Given a multi-forest-
template t overΣ∪{�1, . . . , �n} and forests f1, . . . , fn, the forest obtained by replacing
every node labeled “�i” in t with the forest fi, with i = 1, . . . , n is denoted by t[�1 �→
f1, . . . , �n �→ fn]. Similarly for multi-context-templates.

The next lemma for L-equivalence and multi-forest-templates will be very useful:

Lemma 1. Let L be any Σ-tree language and f any multi-forest-template over the ex-
tended alphabetΣ ∪{�1, . . . , �n}. Consider two finite sequences of Σ-forests (g1, . . . ,
gn) and (h1, . . . , hn) such that gi and hi are L-equivalent, for each i = 1, . . . , n. Then
f [�1 �→ g1, . . . , �n �→ gn] and f [�1 �→ h1, . . . , �n �→ hn] are also L-equivalent.

The previous lemma can analogously be shown to hold for multi-context templates.
From now on, when speaking about forest, templates we always mean guarded for-

est, analogously with context.

2.2 Monadic Second Order Logics

A colored directed graph g over an alphabet Σ can be viewed as a relational structure

Mg := 〈Vg,≺g, (P g
a : a ∈ Σ)〉

where P g
a are unary predicates with the interpretation P g

a = {v ∈ Vg : λg(v) = a}.
Colored directed graphs, and in particular forests, as relational structures can be de-
scribed in first- or second-order logics with the child relation (≺) plus unary predi-
cates. In this paper we are interested in monadic second-order logic (MSO) and in weak
monadic second-order logic (WMSO).

Let Var1 = {x, y, . . . } be a countable infinite set of first-order variables, and Var2 =
{X,Y, . . .} a countable infinite set of monadic second-order variables. Given a finite
alphabet Σ, the set of MSO-formulae over Σ is defined by the following grammar:

φ ::= x ≺ y | x = y | Pa(x) | X(x) | ¬φ | φ ∧ φ | ∃xφ | ∃Xφ

with a ∈ Σ, x ∈ Var1, X ∈ Var2. A formula with no free variables is called a sentence.
The semantics of MSO-formulae is given in terms of valuations. Let g be a col-

ored directed graph. We can identify a valuation val over g with a pair of functions
(val1, val2) where val1 : Var1 → Vg and val2 : Var2 → ℘(Vg) (we use ℘ to denote
powerset). Thus, a valuation for a (nonempty) colored directed graph g assigns to every
first-order variable an element from the domain and to each second order variable a
set of elements from the domain. A weak valuation is a valuation that assigns to each
monadic second-order variable a finite set, i.e., such that val2 : Var2 → ℘fin(Vg).

The meaning of a formula φ in a nonempty colored directed graph g relative to a
valuation val for g is then defined in a standard way, using arbitrary valuations or using
weak valuations. When we say that a formula is an MSO-formula, resp. a WMSO-
formula, we mean that the formula is interpreted using arbitrary, resp. weak valuations.
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Remark 1. The adjective “weak” is a bit misleading, since WMSO is in general not a
fragment of MSO. Indeed, the class of finitely branching trees is not definable in MSO
(because, as we will see, every MSO-formula that is satisfiable on trees is true of some
finitely branching tree) but is defined by the WMSO-formula ∀x∃X∀y(x ≺ y → Xy).
The class of well-founded trees is definable in MSO but not in WMSO, as will follow
from results we discuss below (in particular, from the fact that the class of well-founded
trees is not Borel). On finitely branching trees, WMSO is strictly less expressive than
MSO. This follows from the fact that on finitely branching trees “X is a finite set” is
expressed by the MSO-formula ∀Y (∀x(Y x→ Xx) ∧ ∀y(Y y → ∃z(Y z ∧ y ≺ z)) →
¬∃y(Y y)) (“X does not contain an infinite path”).

Given an MSO sentence φ over the alphabet Σ, the tree language defined by φ is the
set of non empty trees:

L(φ) = {t ∈ TΣ \ {∅} : φ is true in Mt}

Analogously for a WMSO-formula. We say that a tree languageL is (W)MSO-definable
if there is a (W)MSO-formula φ such that L = L(φ).

For n ≥ 1, we denote by ≡n the equivalence relation that holds between two struc-
tures if they cannot be distinguished by an MSO-sentence of quantifier depth n. It is
well known that, for each n ≥ 1, over a finite signature, there are only finitely many
≡n-classes of structures. It follows that every structure can be completely described
up to ≡n-equivalence by a single MSO-sentence of quantifier depth n. Furthermore,
the equivalence relation≡n can be characterized using a variant of Ehrenfeucht-Fraı̈ssé
games. These games are similar to the ones for first-order logic, except that there is a
second type of move, where Spoiler selects a set of elements in one of the two structures
and Duplicator responds with a corresponding set of elements in the other structure (in
order for Duplicator to win the game, the resulting bijection should not only be a par-
tial isomorphism with respect to the relations in the structures, but should also preserve
membership in the chosen sets). As in the first-order case, Duplicator has a winning
strategy in the n-round game (n ≥ 1) iff the two structures satisfy the same MSO-
formulae of quantifier depth at most n.

Proposition 2. If L is an MSO-definable tree language, then there are only finitely
many L-equivalence classes of forests and contexts. Moreover, every L-equivalence
class (of forests and of contexts) has a finitely branching and regular member.

Remark 2. It can be naturally asked what is the relation between the introduced no-
tion of L-equivalence and the one originally introduced by Bojańczyk and Idziaszek.
It follows by the previous Prop. 2 that if L-equivalence were defined using regular
forest-templates and regular context-templates only, the result would be the same as
L-equivalence the way we defined, assuming that L is a MSO definable tree language.
This means that our definition essentially coincides with the one used in [5].

We still need a slightly more fine-grained version of Prop. 2. Let c be a context and f a
forest. By a forest built from c and f , we will mean a forest g for which there exists a
forest s such that replacing each non-leaf node in s by a copy of c and replacing each
leaf-node of s by a copy of f yields g. We then say that s is the skeleton of g.
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Proposition 3. Let L be any MSO-definable tree language. Let c be a context, f a
forest and g a forest built from c and f whose skeleton satisfies some MSO-sentence ψ.
Then there is an L-equivalent forest g′ built from c and f , whose skeleton is regular,
finitely branching and satisfies ψ as well.

2.3 The Logic EF and EF-Bisimulation

Fix an alphabet Σ. The set of formulae of EF over Σ is defined by the grammar

φ ::= a | φ ∧ φ | ¬φ | EFφ (a ∈ Σ)

The semantics of EF over non empty Σ-trees (where the distinguished node is the root
of the tree) is defined inductively as usual by saying that every EF-formula a ∈ Σ is
true in trees with root label a and that an EF formula EFφ is true in trees that have a
proper subtree where φ is true. For any EF formula φ, the class of trees where φ is true
is denoted by L(φ). Given a tree language L, we say that L is EF-definable if there is
an EF-formula φ such that L = L(φ). The following is well-known (see, e.g., [3]):

Proposition 4. Every EF-definable tree language is also WMSO-definable (and, in
fact, definable in first-order logic with the descendant relation).

Following [5], we introduce a special bisimilarity game on forests, called the EF bisim-
ulation game. We first define the game in the case of trees. Let t0 and t1 be two trees.
The EF bisimulation game over t0 and t1 is played by two players: Bob and Anne. The
game proceeds in rounds. At the beginning of each round, the state in the game is a pair
of trees (t′0, t′1). A round is played as follows. First if the root labels a0, a1 of t′0, t

′
1 are

different, then Bob wins the whole game. Otherwise Bob selects one of the trees t′i, for
i = 0, 1, and its subtree si. Then Anne selects a subtree s1−i in the other tree t′1−i. The
round is finished, and a new round is played with the state updated to (s0, s1). If Anne
can survive for infinitely many rounds in the EF bisimulation game on t0 and t1, then
we say that the trees t0 and t1 are EF-bisimilar.

Note that clearly if two trees are bisimilar in the standard way, they also are EF-
bisimilar. The converse need not to be true. Consider for example the binary tree t on
the alphabet {a, b}where the only nodes labelled by a are the nodes 02k+1, with k > 0,
and the tree t′ on the alphabet {a, b} where the only nodes labelled by a are the nodes
02k, with k > 0. The two trees are EF-bisimilar but not bisimilar.

A tree languageL is called invariant under EF-bisimulation if it is impossible to find
two trees, t0 ∈ L and t1 /∈ L that are EF-bisimilar. From the previous remark on the
interrelation between standard bisimilarity and EF bisimilarity, if two tree languages
are EF-bisimilar they are also bisimilar, but the converse is in general not true.

This game is so designed that all tree languages defined by an EF formula are invari-
ant under EF-bisimulation. Formally, we have that:

Proposition 5 ([5]). Every EF-definable tree language is invariant under EF-
bisimulation.

The converse is false. A counter-example is the language of all well-founded trees over
a fixed finite alphabet. This language is invariant under EF-bisimulation but it cannot
be defined by an EF-formula, as follow from Thm. 1.
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We say that a context c is L-idempotent if the composition c(c) is L-equivalent to c.

Theorem 4. An MSO definable tree language L can be defined by an EF formula iff

(1) L is invariant under EF-bisimulation;
(2) for every L-idempotent context c and for every forest f , c(f) ≡L (c + c(f))∞

Moreover the previous two conditions are decidable.

Remark 3. This characterization of the logic EF was proved by Bojańczyk and Idzi-
aszek in [5] for the case of finitely branching trees. It follows from Prop. 2 that the
result holds for arbitrarily branching trees as well. Strictly speaking, the result in [5] is
different as it characterizes definability by EF-formulae that are Boolean combination
of formulae of the form EFφ. However, as explained in [5], this is not an essential re-
striction. More precisely, call an EF-formula ψ a EF-forest formula if ψ is a Boolean
combinations of formulae of the form EFφ. Then, one can prove that every EF-formula
φ is logically equivalent to

∧
a∈A(a → φa), where each φa is an EF-forest formula.

This means that a tree language L is EF-definable iff, for every a ∈ A, the language
La is definable by an EF-forest formula, where a tree t is said to be in La iff the tree
obtained from t by relabeling its root with a is in L. Thus, the equivalence relation ≡L

in the previous theorem is, strictly speaking, the finite intersection of all ≡La .

We extend the notion of EF-bisimilarity to forests by saying that two forests f1, f2 are
EF-bisimilar if the trees obtained from f1 and f2 by adding a “fresh” root, are EF-
bisimilar. More precisely, let f1 and f2 be two forests over Σ. Let t1 and t2 be any
pair of trees over Σ ∪ {a}, a /∈ Σ, such that: (i) each forest fi is obtained from the
corresponding tree ti by removing the root node and (ii) t1(ε) = t2(ε) = a. Then we
say that f1 and f2 are EF-bisimilar if the trees t1 and t2 are EF-bisimilar. Note that for
forests f1 and f2 consisting of a single tree t1 and t2 respectively, saying that f1 and f2

are EF-bisimilar is not the same as saying that t1 and t2 are EF-bisimilar.
The following lemma, relating EF-bisimilarity to L-equivalence, will come in handy

later on. Call two contexts EF-bisimilar, if they are bisimilar when viewed as forests
over an alphabet containing an additional label “�”.

Lemma 2. Let L be any EF-bisimulation-invariant tree language. Then every two EF-
bisimilar forests areL-equivalent and every two EF-bisimilar contexts areL-equivalent.

2.4 The Topological Complexity of Tree Languages

A topological space is a set X together with a collection τ of subsets of X (called the
open sets) containing the empty set and X itself, such that τ is closed under arbitrary
unions and finite intersections. Subsets of a topological space X can be classified ac-
cording to their topological complexity, where the open sets and their complements (the
closed sets) are considered to have the lowest complexity. In this context, the notion of a
Borel set naturally arises. The set Borel(X) of Borel sets of a topological space (X, τ)
is the smallest set that contains all open sets of X , and is closed under countable unions
and complementation. The Borel sets of a topological space can be further classified
into an infinite hierarchy, but this will be irrelevant for present purposes.
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The topology we will consider here on trees is the prefix topology, where the open
sets are, intuitively, those sets of trees for which membership of a tree is witnessed by
a finite-depth prefix of the tree. Thus, for example the set of trees containing a node
labeled a is an open set, but the complement is not.

Formally, for a Σ-tree t and a natural number n ≥ 1, the depth-n prefix of t, denoted
by t(n), is the Σ-tree obtained by restricting the domain of t to all the elements of Vt of
depth at most n. We say that two trees t, t′ are equivalent up to depth n if t(n) = t′(n).
We call a set X of trees open if for each t ∈ X there is a natural number n ≥ 1 such
that for all trees t′, if t and t′ are equivalent up to depth n then t′ ∈ X . The reader
may verify that this indeed yields a topological space. When we say that a set of trees
is Borel, we will mean that it is Borel with respect to this topology.

By induction on the structure of a formula, it is easy to verify that:

Proposition 6. Every WMSO-definable set of trees is Borel.

A tree is well-founded if it has no infinite branch. It is well-known that the tree language
of all well-founded trees is an example of a tree language that is not Borel.

Given two topological spaces X and Y , a function F : X → Y is continuous if for
every open set B ⊆ Y , F−1(B) ⊆ X is also open. If F : X → Y is a continuous
function, and A ⊆ X and B ⊆ Y are sets such that F−1(B) = A, then we write
A ≤W B, and we say that A continuously reduces to B. The relation ≤W is clearly a
pre-order. Intuitively, A ≤W B means that A is topologically no more complex than
B. In particular, we have the following well known fact:

Proposition 7. If X and Y are topological spaces A ⊆ X , B ⊆ Y are sets, such that
A ≤W B, then B ∈ Borel(Y ) implies A ∈ Borel(X).

Given a depth-n prefix t(n) over Σ, by t(n) · TΣ we denote the set of all trees over Σ
extending t(n). The next proposition, determining a sufficient condition for a function
in order to be continuous, will be very useful.

Proposition 8. Let Σ and Σ′ be two finite sets, and F be a function from TΣ into TΣ′ .
If for every depth-n prefix t(n) over Σ there exists a depth-n prefix t′(n) over Σ′ such
that F (t(n) · TΣ) ⊆ t′(n) · TΣ′ , then F is continuous.

3 Main Result

We now prove the equivalence of the given characterizations of the logic EF on trees.

Theorem 1. Let L be any MSO-definable tree language. The following are equivalent
and decidable:

(1) L is EF-definable,
(2) L is closed under EF-bisimulation and WMSO-definable,
(3) L is closed under EF-bisimulation and Borel,
(4) L is closed under EF-bisimulation, and for every L-idempotent context c, and for

every forest f , c(f) and (c + cf)∞ are L-equivalent.
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Proof. The proof proceeds in a round-robin fashion. Decidability follows from Thm. 4.
(1)⇒(2) follows by applying Prop. 5 and Prop. 4, (2)⇒(3) by Prop. 6, while (4)⇒(1)
is given by Thm. 4. The proof of (3)⇒(4) is by contraposition. Suppose there is an
idempotent context c and a forest t such that c(t) and (c+ c(t))∞ are not L-equivalent.
There are two cases:

(a) for some forest-template e, e[� �→ c(t)] ∈ L and e[� �→ (c + c(t))∞] 
∈ L,
(b) for some forest-template e, e[� �→ c(t)] 
∈ L and e[� �→ (c+ c(t))∞] ∈ L.

We will show that both these two possibilities imply that L is not Borel, by giving a
continuous reduction of the non-Borel set WF or its complement to L. Recall that WF
is the set of all well-founded trees over an alphabet consisting of a single letter a.

For any tree t′ over {a}, let t̂′ be the forest obtained as follows: if t′ is the empty
tree then t̂′ is ct, otherwise t̂′ is obtained by replacing every leaf node of t′ by the forest
ct, and replacing every non-leaf node by the context (c + ct). Finally, let F (t′) be the
tree e(t̂′), i.e., the result of replacing every � in e by t̂′. Because for every k, the first k
levels of t determines the first k levels of F (t), by Prop. 8 F is continuous.

Claim (i) if t′ ∈ WF, then t̂′ is L-equivalent to ct
Claim (ii) if t′ /∈ WF, then t̂′ is L-equivalent to (c+ ct)∞

This implies that L is not Borel. Indeed, suppose case (a) holds. From the above
claim, we obtain that t′ ∈ WF iff F (t′) ∈ L. This means that F−1(L) = WF, proving
that WF ≤W L. Analogously, if case (b) holds, from the previous claim we obtain that
t′ ∈ WF� iff F (t′) ∈ L, where WF� is the complement of WF. Thus F−1(L) = WF�

and therefore WF� ≤W L. It remains only to prove the above claim.
We first introduce some terminology. Clearly, t̂′ is a forest that is built from the

context c and the tree t. Let us denote the skeleton of t̂′ by s. Suppose that s is not well-
founded. If x is a node in the domain of s such that the subtree s.x is well-founded and
there is no ancestor y of x such that s.y is also well-founded, then we call the subforest
of t̂′ built up from c and t whose skeleton is s.x a maximal well-founded subforest of t̂′.

We first prove claim (i). Suppose that t′ ∈ WF. Then, clearly, s is well-founded. By
Prop. 3, t̂′ is L-equivalent to a finitely branching, regular forest t′′ built up from c and
t whose skeleton s′′ is well-founded (recall that well-foundedness is MSO-definable).
Since every infinite finitely branching tree has an infinite branch, we then know that the
skeleton s′′ is in fact finite. Let k be the length of the longest branch of s′′. It is easy
to see that s′′ is EF-bisimilar to a tree that has a single path whose labels (read from
the root to the leaf) form the word ck+1t. For convenience, we denote this tree itself by
ck+1t. Analogously, it is not hard to see that t′′ is EF-bisimilar to the forest built up from
c and t whose skeleton is ck+1t, i.e., the forest ck+1t. Since EF-bisimilarity implies L-
equivalence (Lemma 2), t̂′ is L-equivalent to ck+1t. And since c is an L-idempotent
context, we have that t̂′ is in fact L-equivalent to ct.

Next, we prove claim (ii). Suppose that t′ 
∈ WF. Clearly, s is non well-founded. By
Prop. 3, t̂′ is L-equivalent to a regular (finitely-branching) forest t′′ built up from c and
t whose skeleton s′′ is non well-founded (recall that non well-foundedness is MSO-
definable). Because t̂′′ is regular, there are only finitely many maximal well-founded
subforests of t̂′′ built up from c and t. Thus since we know that every well-founded
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forest built from c and t is L-equivalent to ct, we can take all maximal well-founded
subforests of t̂′′ built up from c and t and replace each of these subforests by ct. Here, we
use the substitution lemma (Lemma 1). Furthermore, because EF-bisimilarity implies
L-equivalence (Lemma 2), if the resulting forest contains several copies of ct next to
each other as siblings, they can be collapsed into one. This yields a new forest that can
be viewed as a forest built up from the context c+ct alone, whose skeleton has no leafs.
But any such forest is EF-bisimilar, hence L-equivalent, to the forest (c+ ct)∞.  !

4 Eliminating Recursion from μ-Formulae on Transitive
Structures

Recall that a Kripke model is a non-empty℘(Prop)-colored directed graph, where Prop
is some set of proposition letters, and that a pointed Kripke model is a Kripke model
with a distinguished state. We may assume that Prop is finite. Kripke models are more
general than trees: they can contain cycles, there is not necessarily a unique root, and a
node may satisfy any number of proposition letters.

We refer to [10] for the syntax and semantics of the modalμ-calculus. The class of all
pointed models of a μ-formula φ is denoted by ‖φ‖, whereas the class of all transitive
pointed models of φ is denoted by ‖φ‖tr. Notice that the logic EF can be seen as modal
logic interpreted on the transitive closure of trees.

On arbitrary Kripke models, modal logic corresponds to the bisimulation invariant
fragment of first-order logic [2], whereas the modal μ-calculus is the bisimulation in-
variant fragment of MSO [12]. This means that on arbitrary Kripke models, a μ-formula
is equivalent to a modal formula iff it is equivalent to a FO formula. Moreover, by a
result of Martin Otto [14], this is decidable. We prove an analogous effective character-
ization for transitive models:

Theorem 2. For every μ-formula φ, the following are equivalent and decidable:
(1) φ is equivalent on transitive Kripke models to a modal formula,
(2) φ is equivalent on transitive Kripke models to a WMSO-formula,
(3) the class of pointed transitive Kripke models satisfying φ is Borel.

For a μ-formula φ, let (φ)∗μ be the μ-formula obtained from φ by replacing every sub-
formula of the form �φ by μx.�(x ∨ φ) where x is a fresh variable. For a WMSO
formula φ, let (φ)∗WMSO be the WMSO formula obtained from φ by replacing each sub-
formula of the form x ≺ y by the WMSO formula that says that the node y is reachable
from x along ≺. It is easy to see that the following holds :

Lemma 3. For every pointed Kripke model (g, s)
(1) for every μ-formula φ, we have that (g, s) ∈ ‖(φ)∗μ‖ iff (gtr, s) ∈ ‖φ‖tr

(2) for every WMSO-formula φ, we have that (φ)∗WMSO is true in g iff φ is true in gtr

where by gtr we denote the transitive closure of g.

We now define what it means for a class of models to be “Borel”. Given a pointed
model (g, s), its set of tree companions is the set T (g, s) of pointed models (t, r) such
that (g, s) is bisimilar (in the usual sense) with (t, r), and the underlying directed graph
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of t is a tree with root r. For a set P of pointed models, T (P ) =
⋃

(g,s)∈P T (g, s). We
say that the set of pointed transitive models of a μ-formula φ is Borel iff T (‖(φ)∗μ‖),
viewed as a tree language over ℘(Prop), is Borel. We can finally proceed to show how
Thm. 2 follows from Thm. 1.

Proof of Theorem 2. The implication (1) ⇒ (2) is easily verified. Thus, if we verify that
(2) ⇒ (3) and (3) ⇒ (1) we are done. For the first implication we reason as follows.
Suppose that φ is equivalent on transitive Kripke models to a WMSO-formula γ. Then
by Lemma 3, (φ)∗μ is equivalent on ℘(Prop)-trees to the WMSO-formula (γ)∗WMSO.
By Prop. 6 we obtain that T (‖(φ)∗μ‖) is a Borel set. For the second implication, first
recall that for every EF-formula ϕ, there is a modal formula ψ such that for every tree
t over Prop, ϕ is true over t iff (t, r) ∈ ‖(ψ)∗μ‖, where r is the root of t. Suppose that
‖φ‖tr is Borel. By definition, this means that T (‖(φ)∗μ‖) is a Borel set. But on the one
hand we have that the set T (‖(φ)∗μ‖) is the set of tree models of the μ-formula (φ)∗μ,
meaning that it is MSO-definable. This set is clearly closed under EF-bisimulation. By
Theorem 1, T (‖(φ)∗μ‖) is EF-definable, meaning that, by applying Lemma 3, there is
modal formula ψ such that ‖ψ‖tr = ‖φ‖tr.  !

Theorem 3. For every WMSO-formula φ(x), the following are equivalent:

(1) φ(x) is equivalent on transitive Kripke models to a modal formula,
(2) φ(x) is bisimulation invariant on transitive Kripke models.

Proof. (1) ⇒ (2) is clear. In order to prove (2)⇒ (1), we reason as follows. Let φ(x) ∈
WMSO be bisimulation invariant on transitive models. Then ‖(φ(x))∗WMSO‖ is closed
under bisimulation. By [12], there is a μ-formula ψ equivalent to (φ(x))∗WMSO on all
models, meaning that φ(x) andψ are equivalent on transitive models. By applying Thm.
2 we conclude the proof.  !
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Abstract. This paper studies the problem of solving parity games on
graphs with bounded tree-width. Previous work by Obdržálek has pro-

duced an algorithm that uses nO(k2) time and nO(k2) space, where k is the
tree-width of the graph that the game is played on. This paper presents
an algorithm that uses nO(k log n) time and O(n + k log n) space. This is
the fastest known algorithm for parity games whose tree-width k satisfies
(in standard asymptotic notation) k ∈ ω(log n) and k ∈ o(

√
n/ log n).

1 Introduction

In this paper we study the problem of solving parity games on graphs with
bounded tree-width. A parity game is a two player game that is played on a finite
directed graph. Parity games have received much attention due to the fact that
they share a polynomial time equivalence with the μ-calculus model checking
problem [7,16], and with the non-emptiness problem for non-deterministic parity
tree automata [8]. The complexity of solving parity games is also interesting,
because it is one of the few non-cryptographic problems that lies in NP ∩ co-NP
(and even in UP ∩ co-UP [9]). This implies that they are highly unlikely to be
either NP-complete or co-NP-complete. However, despite much effort from the
community, no polynomial time algorithm has been found.

Problems that are not known to admit polynomial time algorithms for general
inputs are often studied from the perspective of parametrised complexity [5].
Here, the objective is to find a class of restricted inputs for which a polynomial
time algorithm can be devised, and tree-width has turned out to be one of
the most successful restrictions for this purpose. The tree-width of a graph is a
parameter that measures how close the graph is to being a tree, which originated
from the work of Robertson and Seymour on graph minors [14].

When we are given a guarantee that the input graph has tree-width bounded
by some constant k, we want to find algorithm whose running time can be
expressed as O(f(k) ·ng(k)). Since k is constant, this is a polynomial time upper
bound. A more restrictive notion is fixed parameter tractability, where we are
looking for an algorithm whose running time can be expressed as O(f(k) · nc),
where c is a constant that is independent of k. Many problems that are NP-hard
in general have been found to admit fixed parameter tractable algorithms when
the input is restricted to be a graph with bounded tree-width [4].
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Since parity games have no known polynomial time algorithm, it is natural
to ask whether the problem becomes easier when the game graph has bounded
tree-width. Although no fixed parameter tractable algorithm is known for parity
games, Obdržálek has found a polynomial time algorithm [13]. His algorithm
uses a dynamic programming technique that exploits the structure of a graph
with bounded tree-width. This yields an algorithm that solves a parity game on
a graph with tree-width k in nO(k2) time and nO(k2) space.

Our contribution. While Obdržálek’s algorithm uses dynamic programming,
which is a technique that is traditionally applied to graphs of bounded tree-
width, we approach the problem using the techniques that have been developed
for solving parity games. Our work builds upon the algorithm of Jurdziński, Pa-
terson, and Zwick, that solves parity games in sub-exponential time for arbitrary
graphs [10]. Their algorithm is a modification of McNaughton’s exponential-time
recursive algorithm for parity games [11]. They introduced the concept of a do-
minion, which is a structure that appears in parity games. They showed that
if McNaughton’s algorithm is equipped with a preprocessing procedure that re-
moves all small dominions, then the resulting algorithm runs in nO(

√
n) time.

This is currently the fastest algorithm for solving parity games on general graphs.
These techniques have since been adapted by Schewe to produce the best known
algorithm for parity games with a small number of distinct priorities [15].

Our algorithm applies these techniques to parity games on graphs of bounded
tree-width. Instead of using preprocessing to remove small dominions, our algo-
rithm uses the fact that the graph has bounded tree-width to break it into smaller
pieces, and then uses preprocessing to remove every dominion that is entirely con-
tained within each piece. We show that equipping McNaughton’s algorithm with
this preprocessing procedure produces an algorithm that runs in nO(k log n) time
for graphs with tree-width bounded by k. Therefore, our algorithm is asymp-
totically faster than Obdržálek’s algorithm whenever k ∈ ω(logn), where ω is
standard asymptotic notation. It is also asymptotically faster than the algorithm
of Jurdziński, Paterson, and Zwick whenever k ∈ o(

√
n/ logn).

The other advantage that our algorithm has over Obdržálek’s algorithm is the
amount of space that is uses. Each step in Obdržálek’s dynamic programming
creates a vast amount of information about the game that must be stored, which
leads to the nO(k2) space complexity of the algorithm. By contrast, our algorithm
always uses O(n2) space. This may make our algorithm more attractive even in
the cases where k /∈ ω(logn).

2 Parity Games

A parity game is defined by a tuple (V, V0, V1, E, pri), where V is a set of vertices
and E is a set of edges, which together form a finite directed graph. We assume
that every vertex has at least one outgoing edge. The sets V0 and V1 partition V
into vertices belonging to player Even and vertices belonging to player Odd,
respectively. The function pri : V → N assigns a priority to each vertex. We will
use MaxPri(G) = max{pri(v) : v ∈ V } to denote the largest priority in G.
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At the beginning of the game a token is placed on the starting vertex v0.
In each step, the owner of the vertex that holds the token must choose one
outgoing edge from that vertex and move the token along it. In this fashion,
the two players form an infinite path π = 〈v0, v1, v2, . . . 〉, where (vi, vi+1) ∈ E
for every i ∈ N. To determine the winner of the game, we consider the set of
priorities that occur infinitely often along the path. This is defined to be:

Inf(π) = {d ∈ N : For all j ∈ N there is an i > j such that pri(vi) = d}.

Player Even wins the game if the highest priority occurring infinitely often is
even, and player Odd wins the game otherwise. In other words, player Even wins
the game if and only if max(Inf(π)) is even.

A positional strategy for Even is a function that chooses one outgoing edge
for every vertex in V0. A strategy is denoted by σ : V0 → V , with the condition
that (v, σ(v)) ∈ E, for every Even vertex v. Positional strategies for player Odd
are defined analogously. The sets of positional strategies for Even and Odd are
denoted by Π0 and Π1, respectively. Given two positional strategies σ and τ ,
for Even and Odd respectively, and a starting vertex v0, there is a unique path
〈v0, v1, v2 . . . 〉, where vi+1 = σ(vi) if vi is owned by Even and vi+1 = τ(vi) if vi

is owned by Odd. This path is known as the play induced by the two strategies σ
and τ , and will be denoted by Play(v0, σ, τ).

An infinite path 〈v0, v1, . . . 〉 is said to be consistent with an Even strategy
σ ∈ Π0 if vi+1 = σ(vi) for every i such that vi ∈ V0. If σ ∈ Π0 is strategy for
Even, and v0 is a starting vertex then we define Paths(v0, σ) to be the function
that gives every path starting at v0 that is consistent with σ:

Paths0(v0, σ) = {〈v0, v1, . . . 〉 ∈ V ω : for all i ∈ N, if vi ∈ V0

then vi+1 = σ(vi), and if vi ∈ V1 then (vi, vi+1) ∈ E)}.

An Even strategy is called a winning strategy from a given starting vertex if
player Even can use the strategy to ensure a win when the game is started
at that vertex, no matter how player Odd plays in response. In other words, a
strategy σ ∈ Π0 is a winning strategy for player Even from the starting vertex v0
if max(Inf(π)) is even for every path π ∈ Paths0(v0, σ). The strategy σ is said to
be winning for a set of vertices W ⊆ V if it is winning for every vertex v ∈ W .
Winning strategies for player Odd are defined analogously.

A game is said to be positionally determined if one of the two players always
has a positional winning strategy. We now give a fundamental theorem, which
states that parity games are positionally determined.

Theorem 1 ([6,12]). In every parity game, the set of vertices V can be parti-
tioned into two sets (W0,W1), where Even has a positional winning strategy for
W0, and Odd has a positional winning strategy for W1.

The sets W0 and W1, whose existence is implied by Theorem 1, are called winning
sets, and our objective is to find an algorithm that computes this partition.
Occasionally, we will want to refer to winning sets from different games, and we
will use WG

i to refer to the winning set for player i in the game G.
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3 McNaughton’s Algorithm for Parity Games

In this section we describe the McNaughton’s algorithm for parity games. This
algorithm was first formulated by McNaughton [11], and was presented for parity
games by Zielonka [17]. We will also describe the improvements that have been
made to this algorithm by Jurdziński, Paterson, and Zwick. Our algorithm will
build upon the techniques that have been developed by these authors.

To begin, we must define the attractor of a set of vertices W . This is the set
of vertices from which one of the players can force the token to arrive at W ,
no matter how the opponent plays in response. We will give the definitions for
attractors of player Even. To define the attractor we use the Pre0 operator:

Pre0(W ) = {v ∈ V0 : There exists (v, u) ∈ E such that u ∈W} ∪
{v ∈ V1 : For all (v, u) ∈ E we have u ∈W}

This operator gives the set of vertices from which Even can force play into the
set W in exactly one step. To compute the attractor, we iteratively apply this
operator until a fixed point is reached:

W0 = W

Wi+1 = Pre0(Wi) ∪Wi

Since each set Wi ⊆Wi+1, we know that a fixed point must be reached after at
most |V | iterations. Therefore, we define the attractor for player Even of a set
of vertices W to be Attr0(W ) = W|V |. The corresponding function Attr1(W ),
which gives attractors for player Odd, can be defined analogously.

Algorithm 1. McNaughton(G)
Input: A parity game G = (V, V0, V1, E, pri)
Output: The partition of winning sets (W0, W1)

p := MaxPri(G); d := p mod 2
A := Attrd({v ∈ V : pri(v) = p})
if A = V then

(Wd, W1−d) := (V, ∅)
return (W0, W1)

end if
(W ′

0, W
′
1) := McNaughton(G � (V \ A))

if W ′
1−d = ∅ then

(Wd, W1−d) := (V, ∅)
else

D := Attr1−d(W ′
1−d)

(W ′′
0 , W ′′

1 ) := McNaughton(G � (V \ D))
(Wd, W1−d) := (W ′′

d , W ′′
1−d ∪ D)

end if
return (W0, W1)
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McNaughton’s algorithm is shown as Algorithm 1. Given a set of vertices
W ⊆ V such that for each v ∈ W there is an edge (v, u) with u ∈ W , we use
G � W to denote the sub-game induced by the set W . In other words, G � W
is the game obtained by removing every vertex in V \W from the game G, and
all edges that are incident to these vertices. The algorithm makes two recursive
calls on sub-games of size at most |V |− 1, which implies the following theorem.

Theorem 2 ([11,17]). If McNaughton’s algorithm is applied to a parity game
with n vertices, then it will compute the partition into winning sets in O(2n) time.

Jurdziński, Paterson, and Zwick introduced the concept of a dominion [10],
which is useful for analysing McNaughton’s algorithm. A set of vertices W is a
trap for player d if there is no edge (v, u) such that v ∈ Vd ∩W and u /∈ W ,
and if for every vertex v ∈ V1−d ∩W there is an edge (v, u) such that u ∈ W .
In other words, the set of vertices W is a trap for a player d if player 1− d has
a strategy to ensure that player d cannot leave W . A trap W for player d is a
dominion if player 1− d wins everywhere in the game G � W .

Definition 3 (Dominion ([10])). A set W ⊆ V is a dominion for player d
if W is a trap for player 1 − d, and player d has a winning strategy for every
vertex in the game G � W .

To see why dominions are useful for analysing McNaughton’s algorithm, we will
give two trivial facts about traps in parity games. Firstly, the complement (with
respect to the set V ) of an Even attractor is a trap for Even, and the complement
of an Odd attractor is a trap for Odd. Secondly, the set W0 is a trap for Odd
and the set W1 is a trap for Even. These two facts imply that the set W ′

1−d

computed by the first recursive call of the algorithm is a dominion.

Proposition 4. The set W ′
1−d is a dominion for player 1− d.

Jurdziński, Paterson, and Zwick used this idea to speed up McNaughton’s al-
gorithm. Before making the first recursive call, their algorithm performs a pre-
processing step that removes all player 1 − d dominions that are smaller than
some threshold. This guarantees that the size of the set W ′

1−d, which is returned
by the first recursive call, must be larger than this threshold. Since the set W ′

1−d

is removed from the game, this means that the second recursive call will be per-
formed on a significantly smaller game. By carefully balancing the amount of
time spent on pre-processing and the size of the dominions that are removed,
they obtained a bound of nO(

√
n) on the running time of their algorithm.

4 Tree Width

To define the tree-width of a parity game, we will use the tree-width of the
undirected graph that is obtained when the orientation of the edges in the game
is ignored. Therefore, we will use the following definition of a tree decomposition.
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Definition 5 (Tree Decomposition). For each game G, the pair (T,X),
where T = (I, F ) is an undirected tree and X = {Xi : i ∈ I} is a family
of subsets of V , is a tree decomposition of G if all of the following hold:

1.
⋃

i∈I Xi = V ,
2. for every (v, u) ∈ E there is an i ∈ I such that v ∈ Xi and u ∈ Xi, and
3. for every i, j ∈ I, if k ∈ I is on the unique path from i to j in T , then

Xi ∩Xj ⊆ Xk.

The width of a tree decomposition (T,X) is max{|Xi| − 1 : i ∈ I}, which is
the cardinality of the largest set contained in X minus 1. The tree-width of a
game G is the smallest width that is obtained by a tree decomposition of G.
We will discuss the computation of a tree decomposition for a parity game in
Section 6, and for the time being we will assume that a tree decomposition is
given along with the input to our algorithm.

We can now explain the properties of a tree decomposition that will be used in
our algorithm. Suppose that i ∈ I is some vertex in the tree decomposition. If we
remove i from the graph T , then we will produce a forest, and each of the trees in
this forest will have exactly one vertex that is adjacent to i in T . This allows us to
use the edges of i to identify each tree in the forest. For each edge (i, j) ∈ F , we
use T(i,j) to denote the tree rooted at j that appears when i is removed from T .
For each tree T(i,j), we define V(i,j) = {v ∈ V : v ∈ Xl for some l ∈ T(i,j)} to
be the set of vertices in G that is contained in T(i,j).

For our algorithm, the most important property of a tree decomposition is
that each set Xi is a separator in the graph G. This means that in order to move
from some vertex v ∈ V(i,j) to some vertex u ∈ V(i,l), where j 
= l, we must pass
through some vertex in Xi. In other words, if every vertex in Xi is removed from
the graph, then the sets V(i,j) will be disconnected from each other.

Proposition 6. Suppose that i ∈ I and let (i, j) and (i, l) be two edges in F
such that j 
= l. If v ∈ V(i,j) and u ∈ V(i,l), then every path from v to u must
pass through at least one vertex in Xi.

Our algorithm will use separators to break the graph into smaller pieces. In par-
ticular, it will find a separator that splits the graph into at least two pieces, where
each piece contains at most two-thirds of the vertices in the original graph. The
following proposition is a standard result for graphs of bounded tree width [14],
which shows that such a separator must always exist.

Proposition 7. Let G be a game with at least 3k+ 3 vertices, and let (T,X) be
a tree decomposition of G with width k. There is some i ∈ I such that |V(i,j)| ≤
2|V |/3 for all (i, j) ∈ F .

We define Split(G, (T,X)) to be a function that, given a game G with tree
decomposition (T,X), selects some vertex i ∈ I that satisfies the condition given
by Proposition 7. Obviously, this function can be computed in polynomial time.
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5 Our Algorithm

In this section, we will describe the approach that our algorithm takes in order
to solve a game G = (V, V0, V1, E, pri) with tree decomposition (T = (I, F ), X)
of width k, where i = Split(G, (T,X)) and d = MaxPri(G) mod 2. The key idea
behind our algorithm is to break the game into sub-games using the separator
Xi. Each sub-game will be preprocessed separately in order to remove every
player 1− d dominion that is entirely contained within the sub-game.

We begin by describing the preprocessing procedure that is used to remove
every dominion for player 1 − d that does not contain a vertex in Xi. For each
edge (i, j) ∈ F , we define a preprocessing game Gj on the vertices in V(i,j) ∪Xi.
The only difference between G � (V(i,j) ∪Xi) and Gj is that all of the vertices
in Xi are given to player d. Moreover, every vertex in Xi is given a self loop edge,
and its priority is changed to 0 if d is even, and 1 if d is odd. These changes
allow player d to win the game if the token arrives at a vertex in Xi.

Definition 8 (Preprocessing Game Gj). Let G = (V, V0, V1, E, pri) be a
game where d = MaxPri(G) mod 2, let (T,X) be a tree decomposition of G,
and let i = Split(G, (T,X)). For each edge (i, j) ∈ F we define the game Gj =
(V ′, V ′

0 , V
′
1 , E

′, pri′) as follows:

V ′ = V(i,j) ∪Xi

V ′
d = (V0 ∩ V ′) ∪Xi,

V ′
1−d = (V1 ∩ V ′) \Xi,

E′ = (E ∩ (V ′ × V ′)) ∪ {(v, v) : v ∈ Xi}

pri′(v) =

⎧⎪⎨⎪⎩
0 if d is even and v ∈ Xi,
1 if d is odd and v ∈ Xi,
pri(v) otherwise.

Note that the definition of a preprocessing game ensures that every vertex
must have at least one outgoing edge. This is because the fact that Xi is a
separator implies that the preprocessing game must include all outgoing edges
from the vertices in V(i,j), and every vertex in v ∈ Xi is given a self loop (v, v).
Moreover, since no new vertices are added, and the only new edges are self loops,
if (T,X) is a tree decomposition of width k for the original game, then (T,X)
is also a tree decomposition of width k for the preprocessing game.

The algorithm will call itself recursively in order to solve each preprocessing
game Gj . It will therefore compute a partition (WGj

0 ,W
Gj

1 ), which are the win-
ning sets for the two players in the game Gj . The first thing that we can prove
is that the winning set for player 1 − d in the preprocessing game Gj must be
contained in the winning set for player 1− d in the game G. Therefore, we can
remove the vertices in the set WGj

1−d from the game G and add them to the set
W1−d, which is the winning set for player 1− d in the game G.

Proposition 9. If d = MaxPri(G) mod 2, then we have W
Gj

1−d ⊆ WG
1−d for

every (i, j) ∈ F .
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Proof. We begin by arguing that WGj

1−d is a trap for player d in the game G. We
will prove this claim by contradiction. Suppose that there is an edge (v, u) with
v ∈ Vd ∩W

Gj

1−d and u ∈ V \WGj

1−d. We must have v ∈ Xi, because otherwise
the edge (v, u) would be contained in E′, and this would imply that WGj

1−d is
not a trap for player d in Gj . Since v ∈ Xi, we know that (v, v) ∈ E′ and that
pri′(v) = d mod 2. Therefore, player d has a winning strategy for the vertex v in
the game Gj , which contradicts the fact that v ∈ W

Gj

1−d.
Since W

Gj

1−d is a trap for player d in the game G, player 1 − d can use the
winning strategy for WGj

1−d to force a win from that set in the game G. This
proves the claim that WGj

1−d ⊆WG
1−d.  !

The next proposition gives the reason why this preprocessing procedure is useful.
It states that, after each of the sets WGj

1−d has been removed, every dominion for
player 1− d must use at least one vertex from the separator Xi.

Proposition 10. If d = MaxPri(G) mod 2 then for every player 1 − d domin-
ion D that is contained in V \

⋃
(i,j)∈F W

Gj

1−d we have D ∩Xi 
= ∅.

Proof. We will prove this claim by contradiction. Suppose that there is a player
1 − d dominion D that is contained in V \

⋃
(i,j)∈F W

Gj

1−d with the property
D∩Xi = ∅. If D is not entirely contained in some set V(i,j), then we will consider
the dominion D′ = D ∩ V(i,j) for some edge (i, j) ∈ F such that D ∩ V(i,j) 
= ∅.
The fact that Xi is a separator in G implies that D′ is also a dominion for player
1− d. Therefore, from now on, we can assume that D ⊆ V(i,j).

Since D is a player 1− d dominion, Definition 3 implies that player 1− d has
a winning strategy for every vertex in the sub-game G � D. Since D is a trap
for player d and D ∩Xi = ∅, this strategy allows player 1− d to win from every
vertex in D in the preprocessing game Gj . This implies that D ⊆ W

Gj

1−d, which
contradicts the fact that D ⊆ V \

⋃
(i,j)∈F W

Gj

1−d.  !

Recall that Proposition 4 implies that the set D returned by the first recursive
call of McNaughton’s algorithm must be a dominion for player 1−d. The property
given by Proposition 10 allows us to conclude that D must contain at least one
vertex in the separator Xi. Since the algorithm removes D from the game, we
know that at least one vertex will be removed from the separator Xi. If the graph
has tree width k, then repeating this procedure k + 1 times must remove every
vertex from the set Xi. Since Xi is a separator, this implies that the game will
have been split into at least two disjoint parts, which can be solved separately.

Algorithm 2 shows the algorithm Preprocess(G, i), which performs prepro-
cessing for the game G around the separator Xi. It returns the set W1−d, which
is the attractor for player 1 − d to the union of the winning sets WGj

1−d. Algo-
rithm 3 is identical to Algorithm 1, except that calls to McNaughton have been
replaced by calls to Solve.

Algorithm 4 shows the main algorithm. It has two special cases: when the
number of vertices is small the algorithm applies McNaughton’s algorithm, and
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Algorithm 2. Preprocess(G, (T,X), i)
Input: A parity game G = (V, V0, V1, E, pri), a tree decomposition (T = (I, F ),X),

and the index of a separator Xi

Output: Every player-(1 − d) dominion in G that is disjoint from Xi

p := MaxPri(G); d := p mod 2
for all (i, j) ∈ F do

(W
Gj

0 , W
Gj

1 ) := Solve(Gj , (T, X), Split(Gj , (T, X)))
end for
W1−d := Attr1−d(

⋃
(i,j)∈F W

Gj

1−d)
return W1−d

Algorithm 3. New-McNaughton(G, (T,X), i)
Input: A parity game G = (V, V0, V1, E, pri), a tree decomposition (T = (I, F ),X),

and the index of a separator Xi

Output: The partition of winning sets (W0, W1)
p := MaxPri(G); d := p mod 2
A := Attrd({v ∈ V : pri(v) = p})
if A = V then

(Wd, W1−d) := (V, ∅)
return (W0, W1)

end if
(W ′

0, W
′
1) := Solve(G � (V \ A), (T, X), i)

if W ′
1−d = ∅ then

(Wd, W1−d) := (V, ∅)
else

D := Attr1−d(W ′
1−d)

(W ′′
0 , W ′′

1 ) := Solve(G � (V \ D), (T, X), i)
(Wd, W1−d) := (W ′′

d , W ′′
1−d ∪ D)

end if
return (W0, W1)

when the separator Xi is empty the algorithm calls itself recursively to solve
each piece independently. If neither of the two special cases are applicable, then
the algorithm runs the preprocessing procedure on the game. Note that the pre-
processing procedure may remove every vertex v that has pri(v) = MaxPri(G),
which could cause the player d := MaxPri(G) mod 2 to change. If this were to
occur, then we would have to run preprocessing for the other player to ensure
that Proposition 10 can be applied. Therefore, the algorithm repeats the pre-
processing procedure until the player d does not change. Once preprocessing is
complete, the algorithm runs New-McNaughton on the remaining game.

We will use the notation T (n, l) to denote the running time of Algorithm 4
when the input graph G has n vertices, and when |Xi| = l. Since the best bound
for |Xi| that we have is |Xi| ≤ k, the running time of our algorithm is given by
T (n, k), where k is the width of the tree decomposition. However, we must still
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Algorithm 4. Solve(G, (T,X), i)
Input: A parity game G = (V, V0, V1, E, pri), a tree decomposition (T = (I, F ), X)

and the index of a separator Xi

Output: The partition of winning sets (W0, W1)
if |V | < 12k then

(W0, W1) := McNaughton(G)
else if Xi = ∅ then

for all (i, j) ∈ F do

(W
Gj

0 , W
Gj

1 ) := Solve(G � V(i,j), (T, X), Split(G � V(i,j), (T, X)))
end for
W0 :=

⋃
(i,j)∈F W

Gj

0 ; W1 :=
⋃

(i,j)∈F W
Gj

1

else
(W0, W1) := (∅, ∅)
repeat

p := MaxPri(G); d := p mod 2
W1−d := W1−d ∪ Preprocess(G, (T, X), i)
V := V \ W1−d

until MaxPri(G) mod 2 = d
(W ′

0, W
′
1) := New-McNaughton(G, (T, X), i)

return (W0 ∪ W ′
0, W1 ∪ W ′

1)
end if
return (W0, W1)

consider T (n, l) for l < k, because our algorithm reduces the size of |Xi| as it
progresses. We have the following recurrence for T (n, l):

T (n, l) ≤

⎧⎪⎨⎪⎩
n · T (2n/3, k) if l = 0,
212k if n ≤ 12k,
n2 · T (2n/3 + k, k) + T (n− 1, l) + T (n− 1, l− 1) + n2 otherwise.

The first case follows from the fact that the algorithm solves each piece of the
game independently when the separator Xi is empty. Proposition 7 implies that
each of these pieces can have size at most 2n/3, and no separator in the piece
can contain more than k vertices. The second case follows from the use of Mc-
Naughton’s algorithm to solve games that have fewer than 12k vertices. The
running time of McNaughton’s algorithm is given by Theorem 2.

The final case of the recurrence deals with the case where Xi is non-empty, and
where there are a large number of vertices. The term n2 ·T (2n/3+k, k) represents
the cost of preprocessing. The algorithm Solve, can invoke Preprocess at most
|V | times before calling New-McNaughton. This is because if MaxPri(G) mod 2 
=
d then at least one vertex must have been removed by the previous call to
Preprocess. The algorithm Preprocess itself solves at most n preprocessing
games, each of which has at most 2n/3 + k vertices and tree-width at most k.
The term T (n−1, l) comes from the first recursive call of New-McNaughton, where
the removal of an attractor is guaranteed to reduce the number of vertices by 1.
The term T (n − 1, l − 1) is for the second recursive call of New-McNaughton,
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where Proposition 10 guarantees that at least one vertex has been removed
from Xi. Finally, in each application of New-McNaughton must compute at least
one attractor, and an attractor can be computed in O(n2) time. Solving the
recurrance yields the following theorem.

Theorem 11. When given a parity game with a tree decomposition of width k,
Algorithm 4 will compute the partition into winning sets in time nO(k log n) and
O(n2) space.

6 Computing the Tree Decomposition

It has been shown that the problem of deciding whether a graph has tree-width
smaller than some bound k is NP-hard [2], which poses a significant problem for
our algorithm, since it requires a tree decomposition as an input. Bodlaender
has given an exact algorithm for computing tree decompositions [3]: If the tree-
width of the graph is bounded by some constant k, then his algorithm will run
in time O(n · f(k)). However, the constant hidden by the O(·) notation is in the
order 2k3

. Thus, the cost of computing a tree decomposition using this algorithm
dwarfs any potential advantage that our algorithm can offer over Obdržálek’s
algorithm, which must also compute a tree decomposition for the input graph.

As a solution to this problem, we propose that an approximate tree decompo-
sition should be computed instead. A paper by Amir gives a plethora of approx-
imation algorithms for this purpose [1]. One such algorithm takes an arbitrary
graph G and an integer k, and in O(23kn2k3/2) time provides either a tree de-
composition of width at most 4.5k for G, or reports that the tree-width of G is
larger than k.

Therefore, we can take the following approach to computing our tree decompo-
sition. Apply Amir’s algorithm with the input k set to 1. If a tree decomposition is
found then halt, otherwise increase k by 1 and repeat. Once k >

√
n/(4.5 logn·c),

where c is the constant hidden by the O(·) notation in Theorem 11, we stop at-
tempting to find a tree decomposition and apply the algorithm of Jurdziński,
Paterson, and Zwick. If the procedure produces a tree decomposition for some k,
then we apply either Obdržálek’s algorithm or our algorithm, depending on how
large k is.1

If the procedure halts at the value k, either because a tree decomposition has
been found or because k is to large, then the total amount of time spent comput-
ing the tree decomposition is

∑k
i=1 O(23kn2k3/2) ∈ O(23(k+1)n2k3). Thus, if the

input graph has treewidth k and Obdržálek’s algorithm is applied, then the run-
ning time will be O(23(k+1)n2k3)+nO((4.5k)2) ∈ nO(k2). If our algorithm is applied
then the total running time will be O(23(k+1)n2k3) + nO(4.5k log n) ∈ nO(k log n).

1 A more efficient technique would be to double k in each iteration and, once a tree
decomposition is found, to use binary search to find the smallest value of k for which
Amir’s algorithm produces a tree decomposition. However, using this approach does
not lead to better asymptotic running times for the algorithms.
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Since the final value of k <
√
n, if the algorithm of Jurdziński, Paterson, and

Zwick is applied then the total running time will be O(23(k+1)n2k3) + nO(
√

n) ∈
nO(

√
n).
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Abstract. In this paper we consider the problem of checking whether
a system of equations of real analytic functions is satisfiable, that is,
whether it has a solution. We prove that there is an algorithm (possibly
non-terminating) for this problem such that (1) whenever it terminates,
it computes a correct answer, and (2) it always terminates when the
input is robust. A system of equations of robust, if its satisfiability does
not change under small perturbations. As a basic tool for our algorithm
we use the notion of degree from the field of (differential) topology.

1 Introduction

It is well known that, while the theory of real numbers with addition and multi-
plication is decidable [23], any periodic function makes the problem undecidable,
since it allows encoding of the integers. Recently, several papers [7,17,18,5] have
argued, that in continuous domains (where we have notions of neighborhood,
perturbation etc.) such decidability results do not always have much practical
relevance. The reason is, that real-world manifestations of abstract mathemati-
cal objects in such domains will always be exposed to perturbations (imprecision
of production, engineering approximations, unpredictable influences of the en-
vironment etc.). Engineers take these perturbations into account by coming up
with robust designs, that is, designs that do not change essentially under such
perturbations. Hence, in this context, it is sufficient to come up with algorithms
that are able to decide such robust problem instances. They are allowed to run
forever in non-robust cases, but—since robustness may not be checkable—must
not return incorrect results, in whatever case. In a recent paper we called prob-
lems possessing such an algorithm quasi-decidable [19].

In this paper we show quasi-decidability of a certain fragment of the first-
order theory of the reals. We allow n equalities over n variables ranging over
closed intervals I1, . . . , In, and verify the existence of a solution of the equalities
in those intervals. The allowed function symbols include addition, multiplication,
exponentiation, and sine. More specifically, they have to be real analytic, and
for compact intervals I1, . . . , In, we need to be able to compute an interval J ⊇
f(I1, . . . , In) such that the over-approximation of J over f(I1, . . . , In) can be
made arbitrarily small.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 315–326, 2011.
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Verification of zeros of systems of equations is a major topic in the interval
computation community [15,20,11,8]. However, here people are usually not in-
terested in some form of completeness of their methods, but in usability within
numerical solvers for systems of equations or global optimization.

The main tool we use is the notion of the degree of a continuous func-
tion that comes from differential topology [9,13,16]. For continuous functions
f : [a, b] → R, the degree deg (f, [a, b], 0) is 0 iff f(a) and f(b) have the same
sign, otherwise the degree is either −1 or 1, depending on whether the sign
changes from negative to positive or the other way round. Hence, in this case,
the degree gives the information given by the intermediate value theorem plus
some directional information. For higher dimensional functions, the degree is an
integer whose value may be greater than 1, and that generalizes this information
to higher dimensions. However, the degree is defined only when the dimensions
of the domain and target space of f are equal.

If we can over-approximate the function f arbitrarily precisely on intervals,
then the degree is algorithmically computable. Our algorithm for proving sat-
isfiability of a function f consists of over-approximating the connected compo-
nents of the zero set of f by small neighborhoods Ui and checking, whether
deg (f, Ui, 0) are zero. If any of them is nonzero, then f(x) = 0 has a solution.
Otherwise we show that there exists an arbitrarily small perturbation f̃ of f
such that f̃(x) = 0 does not have a solution. However, such neighborhoods Ui

may not exist for a general continuous or even differentiable function. Therefore,
we restrict ourselves to analytic functions. The zero set of an analytic function
consists of a finite number of closed connected components and we may take
disjoint small neighborhoods of them.

Collins [4] presents a similar result to ours, formulated in the language of
computable analysis [24]. However, the paper unfortunately contains only very
rough sketch proofs, for which—from our point of view—it is not at all clear
how they can be completed into complete proofs.

Since this work applies results from a quite distant field—topology—to auto-
mated reasoning, it is not possible to keep the paper self-contained within a rea-
sonable number of pages. Still, we tried to keep the basic material self-contained
and to refer to topological results only later in the paper. The necessary topo-
logical pre-requisites can be found in standard textbooks [14, e.g.].

The work of Stefan Ratschan and Peter Franek was supported by MŠMT
project number OC10048 and by the institutional research plan AV0Z100300504.

2 Main Theorem

In the following, we define a box B in Rn to be the Cartesian product of n closed
intervals of finite positive length (a hyper-rectangle). More general, we define
a k-dimensional box (or k-box) in Rn to be a product of k closed intervals of
positive finite length and (n− k) constants.

On Rn, we denote the norm of a vector (x1, . . . , xn) by |x| and the norm of
a continuous function f : Ω → Rn by ||f || := sup{|f(x)|; x ∈ Ω}. Moreover, we
will denote the solution set {f(x) = 0 | x ∈ Ω} by {f = 0}.
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For a set Ω ⊂ Rn, Ω̄ will be its closure, Ω◦ its interior and ∂Ω = Ω̄\Ω◦

its boundary with respect to the Euclidean topology. If Ω is a k-box in Rn, we
will usually denote ∂Ω the boundary in the topology of Ω (i.e., union of the 2k
faces).

Definition 1. Let Ω ⊆ Rn. We call a function f : Ω → R interval-computable
iff there exists an algorithm I(f) that, for every box with rational endpoints such
that this box is a subset of Ω, computes a closed interval such that

– for every box B ⊆ Ω, I(f)(B) ⊇ {f(x) | x ∈ B}, and
– for every box S ⊆ Ω, for every ε > 0 there is a δ > 0 such that for every box
B with B ⊆ S, diam(B) < δ, for all y ∈ I(f)(B), there is an x ∈ B such
that |f(x)− y| ≤ ε.

We call a function f = (f1, . . . , fn) : Ω → Rn interval-computable iff each
fi is interval-computable. In this case, the algorithm I(f) returns a tuple of
intervals, one for each fi.

Usually such functions are written in terms of symbolic expressions containing
symbols denoting certain basic functions such as rational constants, addition,
multiplication, exponentiation, and sine. In that case, the first property above
follows from the fundamental theorem of interval arithmetic, and the second
property from Lipschitz continuity of interval arithmetic (e.g., Theorem 2.1.1
in Neumaier’s book [15]). However, in this paper we do not fix a certain no-
tation and will allow an arbitrary language for denoting interval computable
functions. We will use interval computable functions and expressions denoting
them interchangeably.

Checking satisfiability of a system of equations f1 = 0, . . . , fn = 0 in n vari-
ables amounts to checking whether the function given by f1, . . . , fn has a zero.
Since we aim at showing that this problem is quasi-decidable we have to define
some notion of robustness of zeros of such functions.

Definition 2. We say that a continuous function f : Ω → Rn has a robust zero
in Ω′ ⊂ Ω, iff there exists an ε > 0 such that for every continuous g : Ω′ → Rn,
||g|| ≤ ε implies that (f + g)(x) = 0 has a solution in Ω′.

We say that a continuous function f : Ω → Rn is robust iff it either has
a robust zero in Ω or there exists an ε > 0 such that for every continuous
g : Ω → Rn, ||g|| ≤ ε, (f + g)(x) = 0 does not have a solution in Ω.

The definition of robustness reflects the stability of the existence of a solution
with respect to small perturbations of the function. For example, the functions
f(x) = x2 + 1 and g(x) = x2− 1 defined on the interval [−1, 1] are robust, while
the function h(x) = x2, x ∈ [−1, 1] is not robust.

Using the notion of robustness, we can formulate the main theorem of the
paper:

Theorem 1. Let Ω be a (closed) box in Rn with rational endpoints, f : Ω → Rn

be interval-computable, analytic on Ω, f 
= 0 on ∂Ω. Then the existence of a zero
of f in Ω is quasi-decidable. That is, there exists a (possibly non-terminating)
algorithm that, for such f and Ω, computes a value Z in {T,F} such that
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– if Z = T then there exists an x ∈ Ω s.t. f(x) = 0,
– if Z = F then there does not exist an x ∈ Ω s.t. f(x) = 0, and
– the algorithm terminates for all robust inputs.

3 Algorithm

In this section we present the algorithm whose existence implies the main theo-
rem (i.e., quasi-decidability). The algorithm builds on the notion of degree from
the field of differential topology [9,13,16]. For a smooth function f : Ω → Rn

and p /∈ f(∂Ω), the degree of f with respect to Ω and a point p ∈ Rn is denoted
by deg (f,Ω, p). For further details on the degree see Section 4 below.

Let B be a box and let f : B → Rn be a function, nowhere zero on ∂B. We
propose the following algorithm for proving that f has a robust zero in B.

ε← 1
loop

divide B into a grid of boxes of maximal side-length ε
for each closed (n− 1)-dimensional face Ci of a box C in the grid

if 0 ∈ I(f)(Ci)
merge all boxes containing Ci

if there exist a grid element D for which deg (f,D, 0) 
= 0
return ”robust zero exists”

if for all grid elements D, 0 
∈ I(f)(D)
return ”no zero exists”

ε← ε/2

Due to the over-approximation property of interval arithmetic (first property
of Definition 1), if the algorithm detects non-existence of a zero, this is indeed
correct. This proves the second item of Theorem 1. Moreover, due to the fact
that a non-zero degree implies the existence of a zero (see next section), if the
algorithm detect existence of a zero, this is also correct. This proves the first
item of Theorem 1. The main remaining problem is the third item, that is, to
show that the algorithm will terminate (and hence detect zero existence/non-
existence) for all robust inputs.

4 Degree of a Continuous Function

In this section we describe some basic properties of the degree, and show, how
it can be computed. We have already mentioned in the introduction that in
the one-dimensional case, the degree captures the information provided by the
intermediate value theorem.

Let Ω ⊂ Rn be open and bounded, f : Ω̄ → Rn continuous and smooth
(i.e., infinitely often differentiable) in Ω, p /∈ f(∂Ω). For regular values p ∈ Rn

(i.e., values p such that for all y with f(y) = p, det f ′(y) 
= 0), a generalization of
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the directional information used in the one-dimensional case, is the sign of the
determinant det f ′(y). Adding up those signs results in the explicit definition [13]
of deg (f,Ω, p) by deg (f,Ω, p) :=

∑
y∈f−1(p) sign det f ′(y).

See standard textbooks for a generalization to non-regular values [13]. Here
we give an alternative, axiomatic definition, that can be shown to be unique. In
this approach deg (f,Ω, p) is the unique integer satisfying the following proper-
ties [6,16, e.g.]:

1. For the identity function I, deg (I,Ω, p) = 1 iff p ∈ Ω

2. If deg (f,Ω, p) 
= 0 then f(x) = p has a solution in Ω

3. If there is a continuous function (a “homotopy”) h : [0, 1] × Ω̄ → Rn such
that h(0) = f , h(1) = g and p /∈ h(t, ∂Ω) for all t, then deg (f,Ω, p) =
deg (g,Ω, p)

4. If Ω1∩Ω2 = ∅ and p /∈ f(∂Ω1∪∂Ω2), then deg (f,Ω1∪Ω2, p) = deg (f,Ω1, p)+
deg (f,Ω2, p)

5. deg (f,Ω, p), as a function of p, is constant on any connected component of
Rn\f(∂Ω).

This can be extended to the case where Ω has dimension n but is is embedded
into some higher-dimensional space (in topological terms, f is a differentiable
function between two compact oriented manifolds of the same dimensions). For
example, if f is a function from a segment c of a curve (i.e., a set of dimension
1) in Rk to another segment of a curve in Rk, and if f 
= 0 on the endpoints of
c, then deg (f, c, 0) is well defined.

The literature provides several articles [22,2,1, e.g.] that claim to provide an
algorithm that automatically computes the topological degree. However, they
either just contain informal recipes, or require real-number operations for which
it is not clear how to implement them on computers, or whose correctness relies
on unknown Lipschitz constants. In order to clarify the situation, we give an
algorithm here that is based on ideas readily available in the literature, but that
does not have those deficiencies.

The algorithm is based on a theorem that recursively reduces the computation
of the degree wrt. to a k-dimensional box to the computation of the degree wrt.
to a (k−1)-dimensional box. The theorem uses the notion of orientation that has
a specific meaning in differential topology [9,13,16]. In order to make the material
digestible to a more general audience, and in order to demonstrate algorithmic
implementability, we describe here an equivalent, but simpler formalization for
the special case of boxes (instead of general manifolds).

We define the orientation of a box in Rn to be a sign s ∈ {1,−1}. Let us
consider a k-dimensional box B with orientation s. Observe that we can obtain
faces of B by replacing one of the intervals constituting B by either its lower or
upper bound (the resulting face is a (k− 1)-dimensional box). Assume that this
interval is the r-th (non-constant) interval of B (so r ∈ {1, . . . , k}). Then, if the
face results from taking a lower bound, we define the induced orientation of the
face to be (−1)rs, if it results from taking an upper bound, the orientation is
(−1)r+1s.



320 P. Franek, S. Ratschan, and P. Zgliczynski

Let D be a finite union of oriented k-boxes. The orientation of a union of
oriented boxes is, for our purposes, just the information about the orientation of
each box in the union. The induced orientation of ∂D is the set ∂D, consisting
of k − 1-dimensional boxes with orientations induced from the boxes in D.

Theorem 2. Let B be an oriented finite union of n-dimensional boxes with
connected interior. Let f : B → Rn be continuous such that f 
= 0 on the
boundary of B. Let D1, . . . , Dk be disjoint subsets of the boundary of B such
that Di is a finite union of (n− 1)-dimensional boxes and the interior of Di in
∂B is connected. We denote the boundary of Di in the topology of ∂B by ∂Di.
The orientation of B induces an orientation of each Di, i ∈ {1, . . . , k}.

For r ∈ {1, . . . , k} we denote by fr the r-th component of f and f¬r :=
(f1, . . . , fr−1, fr+1, . . . , fn).

Now let r ∈ {1, . . . , n}, and s ∈ {−1, 1} such that

– for all i ∈ {1, . . . , k}, fr has constant sign s in Di,
–
⋃

i∈{1,...,k}Di contains all zeros of f¬r for which fr has sign s, and
– for all i ∈ {1, . . . , k}, 0 
∈ f¬r(∂Di).

Then
deg(f,B, 0) = (−1)r−1s

∑
i∈{1,...,k}

deg(f¬r, Di, 0).

Finally, for a one dimensional closed, connected union of oriented boxes D1

of B with left-most face l and right-most face r (according to orientation)

deg (f,D1, 0) =

⎧⎪⎨⎪⎩
1 if f(l) < 0 < f(r)
−1 if f(r) < 0 < f(l)
0 if f(l)f(r) > 0

Observe that one-dimensional boxes have two faces (that are points) with oppo-
site induced orientation. We define the left face to be the face with the opposite
induced orientation as the original box, and the right face to be the face with
the same induced orientation.

When starting the recursion in the above theorem with an n-dimensional box
in Rn of orientation 1, if in the base case D1 consists of more than one box, then
every left face of a box in D1 is either a boundary point, or the right face of
another box. This makes the notion of a left-most face l and right-most face r
of D1 well-defined.

The theorem follows directly from Kearfott [10, Theorem 2.2], which again is
a direct consequence of some results of Stenger [22].

Now the algorithm just recursively reduces the computation of the topological
degree in dimension n to lower dimension using the above theorem. In each
recursive step, for an arbitrary choice for r and s, it computes sets D1, . . . , Dk

fulfilling the necessary conditions. If f is analytic, {fr = 0} and {f¬r = 0} have
a finite number of connected components (see next Section) and the sets Di can
be found by computing an increasingly fine decomposition of the boundary of B
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into boxes, and checking the necessary conditions using interval arithmetic. Due
to the second property in Definition 1 this procedure will eventually approximate
f on the boundary of B arbitrarily closely, and hence it will eventually find such
a decomposition.

5 Zeros of Analytic Functions

A function f : Ω → Rn defined on an open set Ω is analytic, iff each of its
components f1, . . . , fn is an analytic function, that is, iff for each i ∈ {1, . . . , n},
for each point x0 ∈ Ω, there exists a neighborhood U of x0 and a sequence of
numbers {cj}j∈N0 such that fi =

∑
j∈N0

cj(x − x0)j on U . The set of analytic
functions is closed with respect to addition, multiplication, division by nonzero
function, composition and differentiation.

We will need the following statement later:

Theorem 3. For an analytic function f : Ω → Rn, 0 /∈ f(∂Ω), the set {f = 0}
consists of a finite number of connected components.

Proof. It follows from Lojasiewicz’s theorem [12] that the zero set of a real
valued analytic functions is locally a union of a finite number of manifolds of
various dimensions. So, the zero set of a real valued analytic function defined
on a compact set Ω̄ has a finite number of connected components and the set
{f = 0} coincides with the zero set of the real valued analytic function

∑
i f

2
i

on Ω̄.  !
An analogous statement for smooth (but not analytic) functions f does not hold.
One can easily construct a smooth function f : [0, 1] → R such that {f = 0} is
the Cantor set which is totally disconnected.

6 Degree and Robustness

In this section, we will clarify the connection between robust solution of a func-
tion f and the degree of f . First, we prove that if deg (f,Ω, 0) 
= 0, then f has a
robust zero in Ω. We will use the rest of the section to prove a partial converse
of this. We will show that if the degree is zero and the set of solution f = 0 is
connected, then f does not have a robust zero in Ω. This will be used as a main
ingredient in the proof of the main theorem, given in the next section.

Theorem 4. Let Ω ⊂ Rn be an open, and bounded set. Let f : Ω̄ → Rn be
continuous and smooth on Ω, 0 /∈ f(∂Ω) and let deg (f,Ω, 0) 
= 0. Then f has
a robust zero in Ω.

Proof. Let ε < minx∈∂Ω |f |. For any g such that ||g − f || < ε, we define a
homotopy h(t, x) = tf(x) + (1− t)g(x) between f and g. We see that for x ∈ ∂Ω
and t ∈ [0, 1],

|h(t, x)| = |tf(x) + (1 − t)g(x)| = |f(x) + (1 − t)(g(x)− f(x))| ≥ |f(x)| − ε > 0

so that h(t, x) 
= 0 for x ∈ ∂Ω. From Section 4, properties 2 and 3, we see that
g(x) = 0 has a solution.  !
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We will now consider the case when the degree is zero.

Lemma 1. Let B be homeomorphic to an n−dimensional ball, f : B → Rn

be continuous, nowhere zero on ∂B and let deg (f,B, 0) = 0. Then there exists
a continuous nowhere zero function g : B → Rn such that g = f on ∂B and
||g|| ≤ 2||f ||.

Proof. We may assume, without loss of generality, that B = {x ∈ Rn; |x| = 1}
and ∂B = Sn−1 is the (n − 1)-sphere. Let R : Rn\{0} → Sn−1 be defined
by R(x) := x/|x|. The degree deg (f,B, 0) = 0 is equal to the degree of the
function R ◦ f |Sn−1 : Sn−1 → Sn−1 The Hopf theorem [13, pp. 51]) states that
the degree classifies continuous self-functions of a sphere up to homotopy. So,
R◦f |Sn−1 is homotopy equivalent to a constant map. So, there exists a homotopy
F : [0, 1]×Sn−1 → Sn−1 such that F (1, x) = (R◦f)(x) and F (0, x) = c ∈ Sn−1.
Let r ∈ [0, 1] and x ∈ Sn−1. Define the function g : B → Rn by

g(rx) = F (r, x)(r|f(x)| + (1− r)||f ||).

This function is continuous, nowhere zero and well defined because g(0x) =
g(0) = c||f || is independent of x ∈ Sn−1. Clearly, g(x) = f(x) on Sn−1 and
|g(rx)| ≤ r|f(x)| + (1− r)||f || ≤ 2||f ||.  !

Further, we will need the following technical lemma:

Lemma 2. Let Ω ⊂ Rn be open and bounded, f : Ω̄ → Rn continuous and
smooth on Ω, 0 /∈ f(∂Ω). Then there exists a continuous function f̃ : Ω̄ → Rn,
smooth on Ω, with the following properties:

1. f̃ = f on ∂Ω,
2. 0 is a regular value of f̃ ,
3. ||f̃ || ≤ 2||f ||,
4. f̃ is homotopy equivalent to f due to 0a homotopy h(t) such that 0 /∈

h(t)(∂Ω).

Proof. Let U be an open neighborhood of ∂Ω in Ω̄ such that f 
= 0 on U and
min{|f(x)|; x ∈ Ū} = ε > 0. From Sard’s theorem ([13]), there exists a regular
value x0 of f with |x0| < ε/2. It follows that 0 is a regular value of the function
f(x)−x0. Consider a covering of ∂Ω by open sets {Uα; α ∈ Λ1} such that Uα ⊂ U
for all α ∈ Λ1. As ∂Ω is compact, we may assume that Λ1 is finite. Further, define
a covering of Ω by open sets {Uβ; β ∈ Λ2}. For Λ = Λ1 ∪Λ2, we have a covering
{Uα; α ∈ Λ} of the compact space Ω̄. Let {ρα; α ∈ Λ} be the subordinate
partition of unity consisting of continuous functions smooth in Ω and define
φ(x) :=

∑
α∈Λ1

ρα. Then φ is a smooth function supported in Ū such that φ = 1
on ∂Ω and φ = 0 on Ω̄\U . Define f̃(x) = f(x)− (1−φ(x))x0. Clearly, f̃ = f on
∂Ω. The function f̃ is nowhere zero on Ū , because |f̃(x)| ≥ |f(x)| − |x0| ≥ ε/2
on Ū . On Ω̄\Ū , f̃(x) = f(x) − x0. In particular, 0 is a regular value of f̃ and
||f̃ || ≤ ||f || + |x0| ≤ 2||f ||. Finally, a homotopy between f and f̃ may be given
by h(t) = f(x) + (1 − t)f̃(x).  !
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We have seen in Lemma 1 that if the degree of f on a ball is zero, then we
may define a nowhere zero function on the ball that coincides with f on the
boundary. We will now see that this is true not only for a ball, but for any
connected bounded and open set Ω ∈ Rn.

Lemma 3. Let Ω be a connected, open, bounded subset of Rn, f : Ω̄ → Rn

continuous and smooth on Ω, 0 /∈ f(∂Ω) and deg (f,Ω, 0) = 0. Then there
exists a continuous nowhere zero function g : Ω̄ → Rn such that g = f on ∂Ω
and ||g|| ≤ 4||f ||.

Proof. If the dimension n = 1, the function f is defined on an interval [a, b]
and the degree assumption implies that f(a) and f(b) have equal signs. So, we
may define g = f(a) + (x − a)(f(b) − f(a))/(b − a) and the lemma is proved.
Assume further that n ≥ 2. From lemma 2, we construct a continuous function
f̃ : Ω̄ → Rn smooth on Ω, f̃ = f on ∂Ω, ||f̃ || ≤ 2||f ||, having 0 as a regular
value, homotopy equivalent to f . In particular, deg (f̃ , Ω̄, 0) = 0.

The compactness of Ω̄ implies that f̃−1(0) is finite. Because deg (f̃ , Ω, 0) = 0,
we may enumerate the points in f̃−1(0) as {x1, . . . , x2m} so that f̃ is orientation-
preserving in the neighborhoods of x1, x2, . . . , xm and orientation-reversing in
the neighborhoods of xm+1, . . . x2m.

Choose m smooth, pairwise disjoint, non-self-intersecting curves ci in Ω con-
necting xi and xm+i. This is possible, because the dimension n ≥ 2 and the
complement of a smooth non-self-intersecting curve in an open connected set
Ω ⊂ Rn is still open and connected. For these smooth curves, there exist dis-
joint neighborhoods homeomorphic to balls B1, . . . , Bm (see e.g. [13, Product
neighborhood theorem]). Because deg (f̃ , Bi, 0) = 1 − 1 = 0, we may apply
lemma 1 to construct nowhere zero functions gi : B̄i → Rn such that gi = f̃ on
∂Bi and |gi(x)| ≤ 2||f̃ || ≤ 4||f ||. The resulting function g(x) defined by g = gi

on Bi and f̃ elsewhere is continuous and has the properties required.  !

We now prove a partial conversion of Theorem 4.

Theorem 5. Let Ω be open, connected, bounded, f : Ω̄ → Rn continuous and
smooth on Ω, 0 /∈ f(∂Ω). Let f have a robust zero in Ω and assume that the set
{f = 0} ⊂ Ω is connected. Then deg (f,Ω, 0) 
= 0.

Proof. Let ε > 0. Since {f = 0} is connected, is is contained in a single connected
component Ω′ of the open set {x; |f(x)| < ε}. Let deg (f,Ω, 0) = 0. Applying
lemma 2 to the set Ω′, we construct a continuous function f̃ : Ω̄′ → Rn smooth
on Ω′, homotopy equivalent to f : Ω̄′ → Rn, f̃ = f on ∂Ω′, having 0 as a
regular value and ||f̃ || ≤ 2||f|Ω̄′ || ≤ 2ε. Because the set {f = 0} is connected and
contained in Ω′, we obtain that deg (f,Ω, 0) = deg (f,Ω′, 0) = deg (f̃ , Ω′, 0) = 0.
Using lemma 3, we obtain a continuous function g : Ω̄′ → Rn such that g = f̃
on ∂Ω′, g 
= 0 on Ω̄′ and |g| ≤ 2|f̃ | ≤ 4ε on Ω̄′. Extending g to all Ω̄ by g = f
on Ω̄\Ω′, we obtain an everywhere nonzero continuous function g such that
||g − f || ≤ 5ε. This can be done for any ε and it follows that f has no robust
zero in Ω.  !
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7 Proof of the Main Theorem

As we have seen in Section 3, the algorithm presented there—if it terminates—
will always correctly detect the existence of a zero. The main remaining problem
for proving quasi-decidability, was termination of this algorithm for robust in-
puts. In the positive case of existence of a zero, we will actually prove that this
holds in both directions:

Theorem 6. Let B be a box in Rn, f : B → Rn be continuous in B and analytic
in the interior of B, f 
= 0 on ∂B. Assume that f has a zero in B. Then the
algorithm proposed in Section 3 terminates with the output “robust zero exists”
if and only if f has a robust zero in B.

Proof. First, if the algorithm terminates, then deg (f,D, 0) 
= 0, for some union
of boxes D ⊂ B and it follows from Theorem 4 that f has a robust zero in D.
So, f has a robust zero in B.

Suppose now that the function f has a robust zero in B. We know from
section 5 that for an analytic function f , there exists a finite number of connected
components of {f = 0}, so any two of them have positive distance. Let as denote
the component by Z1, . . . , Zm. Let U1, . . . Um be open connected neighborhoods
of Z1, . . . , Zm such that Ū1, . . . Ūm are disjoint. If deg (f, Ūi, 0) = 0, it follows
from Theorem 5 that for any ε > 0, there exists a continuous function gi : Ūi →
Rn such that gi is nowhere zero, ||gi − f|Ūi

|| ≤ ε and gi = f on ∂Ūi. Replacing
f by gi on Ūi, we would obtain a continuous nowhere zero function g : B → Rn,
||g− f || ≤ ε, contradicting the assumption that f has a robust zero in Ω. So, at
least for one i, deg (f, Ūi, 0) 
= 0. Because ∂Ūi is compact, it has positive distance
d > 0 from Zi. Let as assume that ε ≤ d/(

√
n). If we cover B with a grid of

boxes of side-length smaller then ε, any box that has nonempty intersection with
Zi is contained in Ui. Possibly merging the boxes whose boundaries intersect Zi

(if there are any), we obtain a set D ⊂ Ui such that the interior of D is a
neighborhood of Zi. Because the sets Ui are disjoint, the zero set of f in Ui is
just Zi. So, deg (f,D, 0) = deg (f, Ūi, 0) 
= 0 and the algorithm terminates.  !

In the case where the input f does not have a zero, termination for robust inputs
holds due to the second property of I(f) in Definition 1. The main theorem of
this paper follows as a corollary.

8 Possible Generalizations

We needed analyticity of f only to be sure that {f = 0} decomposes into a
finite number of connected components. If f has this property, (e.g. if {f = 0}
is discrete), the algorithm terminates for a robust input.

We will now discuss the generalization of the theorem to the case where the
number of variables is not equal to the number of equations. That is, we have the
situation where we have an n-dimensional box B in Rn, f : B → Rm analytic.
In the case were n < m (i.e. the number of variables is smaller then the number
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of equations) it follows from Sard’s theorem, that there exist regular values
y ∈ Rm arbitrarily close to 0. So, some neighborhood U of f−1(y) is mapped
homeomorphically to f(U) ∈ Rn. But an n-dimensional open set can not be
homeomorphic to an open set in Rm for m 
= n, so f(U) does not contain a
neighborhood of y. So, 0 ∈ Rm is not in the interior of the image of f and f
cannot have a robust zero in B.

On the other hand, for n > m (more variables then equations), the situation
is much more subtle. In some cases, we could fix some n − m input variables
in f to be constants a ∈ Rn−m and try to solve the equation f(a, x) = 0.
This is a function from a subset of Rm to Rm and if it has a robust zero in
{x ∈ Rm; (a, x) ∈ B}, so, clearly, f has a robust zero in B. The converse,
however, is not true. If f(a, x) does not have a robust zero for any fixed choice
of a ∈ Rn−m (a ranging from any subset of m − n from the total number of n
variables), f still may have a robust zero in B. This makes a straightforward
generalization of our result difficult.

The ideas presented in Section 6 may be easily generalized to arbitrary di-
mensions, if the condition of a nonzero degree is replaced by the condition ”the
map f/|f | from ∂Ω to the sphere Sm−1 can be extended to a map from Ω to
Sm−1”. This is the extension problem in computational homotopy theory. If Ω is
the unit ball in R2, ∂Ω = S1 and X is an arbitrary space, the question whether
or not f : ∂Ω → X , presented algorithmically, can be extended to f : Ω → X
is equivalent to the word problem and there is no algorithm to solve it [21]. The
question whether or not such an algorithm exists for X being the sphere and Ω
arbitrary, is—up to our knowledge—an open problem.

9 Conclusion

In the paper, we have proved that the problem of checking satisfiability of sys-
tems of equations of real analytic functions in a box is quasi-decidable in the
sense that there exists an algorithm that successfully can do this check in all
robust cases. Hence, problems that correspond to application domains where
perturbations in the form of modeling errors, manufacturing imprecision etc.
occur, are solvable in practice (provided enough computing power is available).

The generalization to the full first-order case is an open problem.
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states. The DFA M is total if δ is total. The transition function δ is extended
to δ : Q × Σ∗ → Q in the standard way. The language L(M) that is recognised
by the DFA M is L(M) = {w | δ(q0, w) ∈ F}.

Two DFAs M and N are equivalent (written as M ≡ N) if L(M) = L(N).
A DFA M is minimal if all equivalent DFAs are at least as large. One of the
classical DFA problems is the minimisation problem, which given a DFA M asks
for the (unique) minimal equivalent DFA. The asymptotically fastest DFA min-
imisation algorithm runs in time O(|Σ|n logn) and is due to Hopcroft [7,5],
where n = |Q|; its variant for partial DFAs is known to run in time O(|M | log n).

Recently, minimisation was also considered for hyper-equivalence [2], which
allows a finite difference in the languages. Two languages L and L′ are hyper-
equivalent if |L"L′| < ∞, where " denotes the symmetric difference of two
sets. The DFAs M and N are hyper-equivalent if their recognised languages
are. The DFA M is hyper-minimal if all hyper-equivalent DFAs are at least
as large. The algorithms for hyper-minimisation were gradually improved over
time to the currently best run-time O(|M | log2 n) [6,4], which can be reduced to
O(|M | logn) using a strong computational model (with randomisation or special
memory access). Since classical DFA minimisation linearly reduces to hyper-
minimisation [6], an algorithm that is faster than O(|M | log n) seems unlikely.
Moreover, according to the authors’ knowledge, randomisation does not help
Hopcroft’s [3] or any other DFA minimisation algorithm. Thus, the randomised
hyper-minimisation algorithm also seems to be hard to improve.

Already [2] introduces a stricter notion of hyper-equivalence. Two languages
L and L′ are k-similar if they only differ on words of length less than k. Anal-
ogously, DFAs are k-similar if their recognised languages are. A DFA M is
k-minimal if all k-similar DFAs are at least as large, and the k-minimisation
problem asks for a k-minimal DFA that is k-similar to the given DFA M . The
known algorithm [4] for k-minimisation of total DFAs runs in time O(|M | log2 n),
however it is quite complicated and fails for non-total DFAs.

In this contribution, we present a simpler k-minimisation algorithm for gen-
eral DFAs, which still runs in time O(|M | log2 n). This represents a significant
improvement compared to the complexity for the corresponding total DFA if
the transition table of M is sparse. Its running time can be reduced if we al-
low a stronger computational model. In addition, the new algorithm runs in
time O(|M | log n) for every DFA M that recognises a finite language. Finally,
the new algorithm can calculate (a compact representation of) a k-minimal DFA
for each possible k in a single run (in the aforementioned run-time). Outputting
all the resulting DFAs might take time Ω(n|M | log2 n).

Although k-minimisation can be efficiently performed, no uniform bound on
the number of introduced errors is provided. In the case of hyper-minimisation,
it is known [8] that the optimal (i.e., the DFA committing the least number of
errors) hyper-minimal DFA and the number of its errors m can be efficiently
computed. However, this approach does not generalise to k-minimisation. We
show the reason. Already the problem of calculating the number m of errors
of an optimal k-minimal automaton is NP-hard. Finally, for some applications
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it would be beneficial if we could balance the number m of errors against the
size |N |. Thus, we also consider the question whether given a DFA M and two
integers s and m there is a DFA N with at most s states that commits at most
m errors (i.e., |L(M)"L(N)| ≤ m). We show that this problem is also NP-hard.

2 Preliminaries

We usually use the two DFAs M = 〈Q,Σ, δ, q0, F 〉 and N = 〈P,Σ, μ, p0, F
′〉. We

also write δ(w) for δ(q0, w). The size of DFA M is denoted by |M | and is the
number of its non-empty transitions, i.e., entries of δ. The right-language LM (q)
of a state q ∈ Q is the language LM (q) = {w | δ(q, w) ∈ F} recognised by M
starting in state q. Minimisation of DFAs is based on calculating the equiva-
lence ≡ between states, which is defined by q ≡ p if and only if LM (q) = LN(p).
Similarly, the left language of q is the language δ−1(q) = {w | δ(w) = q} of words
leading to q in M . For two languages L and L′, we define their distance d(L,L′)
as

d(L,L′) = min {	 | L ∩Σ≥� = L′ ∩Σ≥�} ,

where min ∅ = ∞. Actually, d is an ultrametric. The distance d can be extended
to states: d(q, p) = d(LM (q), LN (p)) for q ∈ Q and p ∈ P . It satisfies the simple
recursive formula:

d(q, p) =

{
0 if q ≡ p,

1 + max {d(δ(q, a), μ(p, a)) | a ∈ Σ} otherwise.
(1)

The minimal DFAs considered in this paper are obtained mostly by state
merging. We say that the DFA N is the result of merging state q to state p
(assuming q 
= p) in M if N is obtained from M by changing all transitions
ending in q to transitions ending in p and deleting the state q. If q was the starting
state, then p is the new starting state. Formally, P = Q \ {q}, F ′ = F \ {q}, and

μ(r, a) =

{
p if δ(r, a) = q

δ(r, a) otherwise,
p0 =

{
p if q0 = q

q0 otherwise.

The process is illustrated in Fig. 1. Let in-levelM (q) be the length of a longest
word leading to q in M . If there is no such longest word, then in-levelM (q) = ∞.
Formally, we have in-levelM (q) = sup {|w| | w ∈ δ−1(q)} for every q ∈ Q.

3 Efficient k-minimisation

3.1 k-similarity and k-minimisation

Two languages L and L′ are k-similar if they only differ on words of length
smaller than k, and the two DFAs M and N are k-similar if their recognised
languages are. The DFA M is k-minimal if all k-similar DFAs are at least as
large. In this section, we present a general simple algorithm k-Minimise that
computes a k-minimal DFA that is k-similar to the input DFA M . Then we
present a data structure that allows a fast, yet simple implementation of it.
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Fig. 1. Merging state G into I

Definition 1. For two languages L and L′, we let L ∼k L
′ ⇐⇒ d(L,L′) ≤ k.

The hyper-equivalence relation [2] can now be defined as ∼ =
⋃

k ∼k. Next, we
extend k-similarity to states.

Definition 2. Two states q ∈ Q and p ∈ P are k-similar, denoted by q ∼k p, if

d(q, p) + min(k, in-levelM (q), in-levelN (p)) ≤ k .

While ∼k is an equivalence relation on languages, it is, in general, only a com-
patibility relation (i.e., reflexive and symmetric) on states. On states the hyper-
equivalence is not a direct generalisation of k-similarity. Instead, p ∼ q if and
only if LM (q) ∼ LN (p). We use the k-similarity relation to give a simple al-
gorithm k-Minimise(M), which constructs a k-minimal DFA (see Alg. 1). In
Sect. 3.2 we show how to implement it efficiently.

Theorem 3. k-Minimise returns a k-minimal DFA that is k-similar to M .

Proof (sketch). There are two things to show: (i) that the obtained DFA N
has the minimal number of states and (ii) that it is k-similar to M . The states
of N are pairwise k-inequivalent (when considered in M) and using an approach
similar to [4, Lemma 6] it naturally follows that each DFA that is k-similar
to M has at least this number of states. For part (ii) we show that after each
merge the current DFA N is k-similar to M . To this end, we first show that
in-levelN (p) ≤ in-levelM (p) using a little more general induction hypothesis.
Next, we estimate the distance between p regarded as a state in M and in N
follows: d(LM (p), LN (p)) ≤ k − in-levelM (p). The rest of the proof are simple
calculations using that d is an ultrametric.  !

3.2 Distance Forests

In this section we define distance forests, which capture the information of the
distance between states of a given minimal DFAM . We show that k-minimisation
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Alg. 1. k-Minimise(M) with minimal M
1: calculate ∼k on Q
2: N ← M
3: while q ∼k p for some q, p ∈ P and q �= p do
4: if in-levelM (q) ≥ in-levelM (p) then
5: swap q and p

6: N ← Merge(N, q, p)

can be performed in linear time, when a distance forest for M is supplied. We
start with a total DFA M because in this case the construction is fairly easy. In
Sect. 3.3 we show how to extend the construction to non-total DFAs.

Let F be a forest (i.e., set of trees) whose leaves are enumerated by Q and
whose edges are weighted by elements of IN. For convenience, we identify the leaf
vertices with their label. For every q ∈ Q, we let tree(q) ∈ F be the (unique) tree
that contains q. The level ‘level(v)’ of a vertex v in t ∈ F is the maximal weight
of all paths from v to a leaf, where the weights are added along a path. Finally,
given two vertices v1, v2 of the same tree t ∈ F , the lowest common ancestor of
v1 and v2 is the vertex lca(v1, v2).

Definition 4 (Distance forest). Let F be a forest whose leaves are enumerated
by Q. Then F is a distance forest for M if for every q, p ∈ Q we have

d(q, p) =

{
level(lca(q, p)) if tree(q) = tree(p),
∞ otherwise.

To construct a distance forest we use (1) to calculate the distance. Since M is
minimal, there are no states with distance 0. In phase 	, we merge all states
at distance exactly 	 into one state. Since we merged all states of distance at
most 	−1 in the previous phases, we only need to identify the states of distance 1
in the merged DFA. Thus we simply group the states according to their vectors
of transitions by letters from Σ = {a1, . . . , am}. To this end we store these
vectors in a dictionary, which we organise as a trie of depth m. The leaf of a
trie corresponding to a path (q1, . . . , qm) keeps a list of all states q such that
δ(q, ai) = qi for every 1 ≤ i ≤ m. For each node v in the trie we keep a linear
dictionary that maps a state q into a child of v. We demand that this linear
dictionary supports search, insertion, deletion, and enumeration of all elements.

Theorem 5. Given a total DFA M , we can build a distance forest for M using
O(|M | logn) linear-dictionary operations.

We now shortly discuss some possible implementations of the linear dictionary.
An implementation using balanced trees would have linear space consumption
and the essential operations would run in time O(log n). If we allow randomisa-
tion, then we can use dynamic hashing. It has a worst-case constant time look-up
and an amortised expected constant time for updates [9]. Since it is natural to
assume that logn is proportional to the size of a machine word, we can hash
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H I G M N J L

4

3

2

1

0

Fig. 2. A distance forest for the left DFA of Fig. 1. Single-node trees are omitted.

in constant time. We can obtain even better time bounds by turning to more
powerful models. In the RAM model, we can use exponential search trees [1],
whose time per operation is O( (log log n)2

log log log n ) in linear space. Finally, if we allow a
quadratic space consumption, which is still possible in sub-quadratic time, then
we can allocate (but not initialise) a table of size |M | × n. Standard methods
can be used to keep track of the actually used table entries, so that we obtain a
constant run-time for each operation, but at the expense of Θ(|M |n) space; i.e.,
quadratic memory consumption.

We can now use a distance forest to efficiently implement k-Minimise. For
each state q we locate its highest ancestor vq with level(vq) ≤ k − in-level(q).
Then q can be merged into any state that occurs in the subtree rooted in vq

(assuming it has a smaller in-level). This can be done using a depth-first traversal
on the trees of the distance forest. A more elaborate construction based on this
approach yields the following.

Theorem 6. Given a distance forest for M , we can compute the size of a
k-minimal DFA that is k-similar to M for all k in time O(|M |). For a fixed k,
we can also compute a k-minimal DFA in time O(|M |). Finally, we can run
the algorithm in time O(|M | logn) such that it has a k-minimal DFA stored in
memory in its k-th phase.

3.3 Finite Languages and Partial Transition Functions

The construction of a distance forest was based on a total transition function δ,
and the run-time was bounded by the size of δ. We now show a modification for
the non-total case. The main obstacle is the construction of a distance forest for
an acyclic DFA. The remaining changes are relatively straightforward.

Theorem 7. For every acyclic DFA M we can build a distance forest in time
O(|M | logn).

Proof (sketch). Since L(M) is finite, we have that m(p) = max {|w| |w ∈ LM (p)}
is a natural number for every state p. Let Qi = {p |m(p) = i} and Q<∞ =

⋃
iQi.

Every state has a finite right-language, and thus every distance forest consists of
a single tree. We iteratively construct the fragments of this tree by starting from
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⊥

Fig. 3. Illustration for the construction of the distance tree. The spine is depicted using
with a thicker line. Splitting one fragment into smaller recursive calls is shown.

a single leaf ⊥, which represents the empty language and “undefinedness” of the
transition function. Before we start to process Qt, we have already constructed
the distance tree for

⋃
i<t Qi. The constructed fragments are connected to a single

path, called the spine, which ends at the leaf ⊥ (see Fig. 3).
Let Qt = {p1, . . . , ps}, and let v ∈ Qt. Moreover, let f(v) be the vector of

states v = (δ(v, a))a∈Σ , where the coordinates are sorted by a fixed order on Σ.
Define the distance between those vectors as

d((pa)a∈Σ , (p′a)a∈Σ) = max {d(pi, p
′
i) + 1 | a ∈ Σ} ,

where we know that d(pi,⊥) = m(pi) and d(⊥, p′i) = m(p′i). Similarly to the dis-
tance, we can define the father f(v) of a vector v = (pa)a∈Σ as f(v) = (f(pa))a∈Σ .
Then

f�+1(v) = f�+1(v′) ⇐⇒ f�(v) = f�(v′).

We can now use a divide-and-conquer approach: First, for each vector we cal-
culate its 2k-th ancestor, where k = �log s/2�. Then all such vectors are sorted
according to their ancestors, in particular they are partitioned into blocks with
the same ancestors. After that we recurse onto those (bottom) blocks that have
more than two entries and onto the upper block, which consists of the different
2k-ancestors. The recursion ends for blocks containing at most two vectors, for
which we calculate the distance tree directly.  !

For every state q ∈ Q, its signature sig(q) is {a | LM (δ(q, a)) is infinite}. If
sig(q) 
= sig(p), then d(q, p) = ∞, which allows us to keep a separate dictio-
nary for each signature. Let us fix such a trie. To take into account also the
transitions by letters outside the signature, we introduce a fresh letter $, whose
transitions are represented in the trie as well. We organize them such that in
phase 	 the $-transitions for the states q and p are the same if and only if
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max {d(δ(q, a), δ(p, a)) | a /∈ sig(q)} ≤ 	 − 1. This is easily organised if the dis-
tance forest for all states with a finite right-language is supplied.

Theorem 8. Given a (non-total) DFA M we can build a distance forest for it
using O(|M | logn) linear-dictionary operations.

4 Hyper-equivalence and Hyper-minimisation

When considering minimisation with errors, it is natural that one would like
to impose a bound on the total number of errors introduced by minimisation.
In this section, we investigate whether given m, s ∈ IN and a DFA M we can
construct a DFA N such that:

1. N is hyper-equivalent to M ; i.e., N ∼M ,
2. N has at most s states, and
3. N commits at most m errors compared to M ; i.e., |L(N)"L(M)| ≤ m.

Let us call the general problem ‘error-bounded hyper-minimisation’. We show
that this problem is intractable (NP-hard).

To show NP-hardness of the problem we reduce the 3-colouring problem to
it. Roughly speaking, we construct the DFA M from a graph G = 〈V,E〉 as
follows. Each vertex v ∈ V is represented by a state v ∈ Q, and each edge e ∈ E
is represented by a symbol e ∈ Σ. We introduce additional states in a way such
that their isomorphic copies are present in any minimal DFA that is hyper-
equivalent to M . The additional states are needed to ensure that for every edge
e = {v1, v2} ∈ E the languages LM (δ(v1, e)) and LM (δ(v2, e)) differ. Now we
assume that m = |E| · (|V | − 2) and s = 14. We construct the DFA M such
that all vertices of V ⊆ Q are hyper-equivalent to each other and none is hyper-
equivalent to any other state. We can save |V | − 3 states by merging all states
of V into at most 3 states. These merges will cause at least |E| · (|V | − 2) errors.
Additionally, 3 states will become superfluous after the merges, so that we can
save |V | states. There are two cases:

– If the input graph G is 3-colourable by c : V → [3], then we can merge all
states of c−1(i) into a single state for every i ∈ [3]. Since c is proper, we
never merge states v1, v2 ∈ Q with {v1, v2} ∈ E, which avoids further errors.

– On the other hand, if G is not 3-colourable, then we merge at least two
states v1, v2 ∈ Q such that e = {v1, v2} ∈ E. This merge additionally intro-
duces 2 errors caused by the difference L(δ(v1, e))"L(δ(v2, e)).

Consequently, a DFA that (i) is hyper-equivalent to M , (ii) has at most s states,
and (iii) commits at most m errors exists if and only if G is 3-colourable. This
shows that error-bounded hyper-minimisation is NP-hard.

Definition 9. We construct a DFA M = 〈Q,Σ, δ,/, F 〉 as follows:

– Q = {/,⊥,∞,�,�} ∪ V ∪ {�j | � ∈ {�,�,�}, j ∈ [3]},
– Σ = {a, b} ∪ V ∪ E,
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v1 �1 �2 �3 �
/ ... ∞ �1 �2 �3

vn �1 �2 �3 �

v1

vn

e

e

e′

e′

Fig. 4. DFA M constructed in Sect. 4, where a-transitions are represented by unbroken
lines (unless noted otherwise), b-transitions by dashed lines, and e = {v1, vn} and
e′ = {v2, v3} with v1 < v2 < v3 < vn. The hyper-equivalence ∼ is indicated.

– F = {∞,�},
– for every v ∈ V , e = {v1, v2} ∈ E with v /∈ e and v1 < v2, � ∈ {�,�}

δ(/, v) = v δ(∞, a) = �1 δ(∞, b) = �1

δ(v, e) = �1 δ(v1, e) = �1 δ(v2, e) = �1

δ(�1, a) = �2 δ(�2, a) = �3 δ(�3, a) = � δ(�3, b) = �
δ(�1, a) = �2 δ(�2, a) = �3 δ(�3, a) = � δ(�3, b) = � δ(�, b) = ∞

– For all remaining cases, we set δ(q, σ) = ⊥.

Consequently, the DFA M has 14+ |V | states (see Fig. 4). Next, we show how to
collapse hyper-equivalent states using a proper 3-colouring c : V → [3] to obtain
only 14 states.

Definition 10. Let c : V → [3] be a proper 3-colouring for G. We construct the
DFA c(M) = 〈P,Σ, μ,/, F 〉 where

– P = {/,⊥,∞,�,�} ∪ [3] ∪ {�j | � ∈ {�,�}, j ∈ [3]},
– μ(p, σ) = δ(p, σ) for all p ∈ P \ {/, 1, 2, 3} and σ ∈ Σ, and
– for every v ∈ V , i ∈ [3], and e = {v1, v2} ∈ E with v1 < v2

μ(/, v) = c(v) μ(i, e) =

{�1 , if c(v2) 
= i

�1 , otherwise.

Lemma 11. There exists a DFA that has at most 14 states and commits at most
|E| · (|V | − 2) errors when compared to M if and only if G is 3-colourable.
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Corollary 12. ‘Error-bounded hyper-minimisation’ is NP-complete. More for-
mally, given a DFA M and two integers m, s ∈ poly(|M |), it is NP-complete to
decide whether there is a DFA N with at most s states and |L(M)"L(N)| ≤ m.

5 Error-Bounded k-minimisation

In Sect. 3 the number of errors between M and the constructed k-minimal DFA
was not calculated. In general, there is no unique k-minimal DFA for M and the
various k-minimal DFAs for M can differ in the number of errors that they com-
mit relative to M . Since several dependent merges are performed in the course
of k-minimisation, the number of errors between the original DFA M and the
resulting k-minimal DFA is not necessarily the sum of the errors introduced for
each merging step. This is due to the fact that errors made in one merge may
be cancelled out in a subsequent merge. It is natural to ask, whether it is never-
theless possible to efficiently construct an optimal k-minimal DFA for M (i.e.,
a k-minimal DFA with the least number of errors introduced). In the following
we show that the construction of an optimal k-minimal DFA for M is NP-hard.

The intractability is shown by a reduction from the 3-colouring problem
for a graph G = 〈V,E〉 in a similar, though much more refined, way as in
Sect. 4. We again construct a DFA M with one state v for every vertex v ∈ V
and one letter e for each edge e ∈ E. We introduce three additional states
{10, 20, 30} (besides others) to represent the 3 colours. For the following dis-
cussion, let N = 〈P,Σ, μ, p0, F

′〉 be a k-minimal DFA for M . Let us fix an
edge e = {v1, v2} ∈ E. The DFA M is constructed such that the languages
LM (δ(v1, e)) and LM (δ(v2, e)) have a large but finite symmetric difference; as
in the previous section, if a proper 3-colouring c : V → [3] exists the DFA N
can be obtained by merging each state v into c(v)0. In addition, for every edge
e = {v1, v2} ∈ E and vertex v ∈ e, we let μ(c(v)0, e) = δ(v, e). On the other
hand, if G admits no proper 3-colouring, then the DFA N is still obtained by
state merges performed on M . However, because G has no proper 3-colouring,
in the constructed DFA M there exist 2 states v1, v2 such that e = {v1, v2} ∈ E
and that both v1 and v2 are merged into the same state p ∈ P . Then the tran-
sition μ(p, e) cannot match both δ(v1, e) and δ(v2, e). In order to make such an
error costly, the left languages of v and v′ are designed to be large, but finite. In
contrast, we can easily change the transitions of states {10, 20, 30} by letters e
because the left-languages of the states {10, 20, 30} are small.

To keep the presentation simple, we will use two gadgets. The first one will
enable us to make sure that two states cannot be merged: k-similar states are
also hyper-equivalent, so we can simply avoid undesired merges by making states
hyper-inequivalent. Another gadget will be used to increase the in-level of certain
states to a desired value.

Lemma 13. For every congruence � ⊆ Q×Q on M , there exists a DFA N such
that (i) p1 
∼ p2 for every p1 ∈ P \Q and p2 ∈ P with p1 
= p2, and (ii) q1 
∼ q2
in N for all q1 
� q2.
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Fig. 5. Illustration of the DFA M of Section 5

In graphical illustrations, we use different shapes for q1 and q2 to indicate that
q1 
∼ q2, because of the gadget of Lemma 13. Note that states with the same
shape need not be k-similar.

Lemma 14. For every subset S ⊆ Q\{q0} of states and map min-level: S → IN,
there exists a DFA N = 〈Q ∪ I,Σ ∪Δ,μ, q0, F 〉 such that |μ−1(i)| = 1 for every
i ∈ I and in-levelN (s) = max(in-levelM (s),min-level(s)) for every s ∈ S.

We will indicate the level i below the state name in graphical illustrations. More-
over, we add a special feathered arrow to the state q, whenever the gadget is
used for the state q to increase its level.

We now present the construction. Let G = 〈V,E〉 be an undirected graph.
Select k, s ∈ IN such that s > log(|V |) + 2 and k > 4s. Moreover, let 	 = k − 2s.

Definition 15. We construct the DFA M = 〈Q,Σ, δ, 0, F 〉 as follows:

– Q = {⊥,�,�, 30} ∪ {ij | i ∈ [2], j ∈ [	]} ∪ V ∪ [0, s] ∪ {�i | 0 ≤ i ≤ s},
– Σ = {a, b} ∪ V ∪ E,
– F = {�s, 1�}, and
– for every v ∈ V , e = {v1, v2} ∈ E with v /∈ e and v1 < v2, i ∈ [s], and j ∈ [	]

δ(i− 1, a) = i δ(v1, e) = �0 δ(10, e) = � δ(1j−1, b) = 1j
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δ(i− 1, b) = i δ(v2, e) = � δ(20, e) = � δ(2j−1, b) = 2j

δ(�i−1, a) = �i δ(v, e) = � δ(30, e) = � δ(1�, b) = �s

δ(�i−1, b) = �i δ(v, a) = 11 δ(2�, b) = �s

δ(�, a) = �1 δ(s, v) = v

– For all remaining cases, we set δ(q, σ) = ⊥.

Finally, we show how to collapse k-similar states using a proper 3-colouring
c : V → [3]. We obtain the k-similar DFA c(M) = 〈P,Σ, μ, 0, F 〉 from M by
merging each state v into c(v)0. In addition, for every edge e = {v1, v2} ∈ E,
we let μ(c(v1)0, e) = δ(v1, e) and μ(c(v2)0, e) = δ(v2, e). Since the colouring c is
proper, we have that c(v1) 
= c(v2), which yields that μ is well-defined. For the
remaining i ∈ [3] \ {c(v1), c(v2)}, we let μ(i0, e) = �0. All equivalent states (i.e.,
⊥ and �) are merged. The gadgets that were added to M survive and are added
to c(M). Naturally, if a certain state does no longer exist, then all transitions
leading to or originating from it are deleted too. This applies for example to �.

Lemma 16. There exists a k-minimal DFA N for M with at most

22s−1 · |E| · (|V | − 2) + 3 · 2s−1 · |E|+ 2s+1 · |V |

errors if and only if the input graph G is 3-colourable.

Corollary 17. ‘Error-bounded k-minimisation’ is NP-complete.
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Abstract. The problems Contractibility and Induced Minor are
to test whether a graph G contains a graph H as a contraction or as
an induced minor, respectively. We show that these two problems can
be solved in |VG|f(|VH |) time if G is a chordal input graph and H is a
split graph or a tree. In contrast, we show that containment relations
extending Subgraph Isomorphism can be solved in linear time if G is
a chordal input graph and H is an arbitrary graph not part of the input.

1 Introduction

There are several natural and elementary algorithmic problems to test whether
the structure of some graph H shows up as a pattern within the structure of
another graph G. We focus on one such problem in particular, namely whether
one graph contains some other graph as a contraction. Before we give a survey
of existing work and present our results, we first state some basic terminology.

We consider undirected finite graphs that have no loops and no multiple edges.
We denote the vertex set and edge set of a graph G by VG and EG, respectively.
If no confusion is possible, we may omit the subscripts. We refer to Diestel [7] for
any undefined graph terminology. Let e = uv be an edge in a graph G. The edge
contraction of e removes u and v from G, and replaces them by a new vertex
adjacent to precisely those vertices to which u or v were adjacent. A graph H
is a minor of a graph G if H can be obtained from G by a sequence of vertex
deletions, edge deletions, and edge contractions. If only vertex deletions and
edge contractions are allowed, then H is an induced minor of G. If only edge
contractions are allowed, then H is a contraction of G. If only vertex deletions
and edge deletions are allowed, then H is a subgraph of G. The corresponding
decision problems are called Minor, Induced Minor, Contractibility, and
Subgraph Isomorphism, respectively.

Matoušek and Thomas [21] showed that Contractibility, Induced Mi-

nor and Minor are NP-complete even on ordered input pairs (G,H) where G
and H are trees of bounded diameter, or G and H are trees with at most one
� This work is supported by EPSRC (EP/G043434/1).
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vertex of degree more than 5. If H is a cycle on |VG| vertices, then Subgraph

Isomorphism is equivalent to asking whether G is Hamiltonian. This is an NP-
complete problem even when G is restricted to be chordal bipartite, as shown by
Müller [22]. It is therefore natural to fix the graph H in an ordered input pair
(G,H) and consider only the graph G to be part of the input. We indicate this
by adding “H-” to the names of the decision problems.

A celebrated result by Robertson and Seymour [24] states that H-Minor can
be solved in cubic time. It is straightforward that H-Subgraph can be solved in
polynomial time for any fixed graph H . The computational complexity classifi-
cations of the problems H-Induced Minor and H-Contractibility are still
open, although many partial results are known. Fellows, Kratochv́ıl, Midden-
dorf, and Pfeiffer [9] gave both polynomial-time solvable and NP-complete cases
for the H-Induced Minor problem. The smallest known NP-complete case is
a graph H on 68 vertices [9]. A number of polynomial-time solvable and NP-
complete cases for the H-Contractibility problem can be found in a series of
papers started by Brouwer and Veldman [5] and followed by Levin, Paulusma
and Woeginger [19,20] and van ’t Hof et al. [17]. The smallest NP-complete cases
are when H is a 4-vertex path or a 4-vertex cycle [5]. Because some of the open
cases for both problems are notoriously difficult, special graph classes have been
studied in the literature. Fellows, Kratochv́ıl, Middendorf, and Pfeiffer [9] showed
that for every fixed graph H , the H-Induced Minor problem can be solved in
polynomial time on planar graphs. Also the H-Contractibility problem can
be solved in polynomial time for every fixed H on this graph class [18].

A graph G is a split graph if G has a split partition, which is a partition
of its vertex set into a clique CG and an independent set IG. Split graphs
were introduced by Foldes and Hammer [10] in 1977 and have been extensively
studied since then; see e.g. the monographs of Brandstädt, Le and Spinrad [4],
or Golumbic [14]. Belmonte, Heggernes, and van ’t Hof [1] showed that Con-

tractibility is NP-complete for ordered input pairs (G,H) where G is a split
graph and H is a split graph of a special type, namely a threshold graph. They
also showed that for every fixed graph H , the H-Contractibility problem can
be solved in polynomial time for split graphs. As a matter of fact, H may be
assumed to be a split graph in this result, because split graphs are closed un-
der taking contractions. Golovach et al. [13] showed that Minor and Induced

Minor are NP-complete for ordered input pairs (G,H) where G and H are
split graphs. They also showed that Contractibility and Induced Minor

are W[1]-hard for such input pairs (G,H) when parameterized by |VH |. Hence,
it is unlikely that these two problems can be solved in |VG|O(1) time for such
input pairs (G,H) with the constant in the exponent independent of H . The
same authors [13] showed that H-Induced Minor is polynomial-time solvable
on split graphs for any fixed graph H . Because split graphs are closed under
taking induced minors, also in this result H may be assumed to be a split graph.

A graph is called chordal (or triangulated) if it contains no induced cycle on
at least four vertices; note that every split graph is chordal. Heggernes, van ’t
Hof, Lévěque, and Paul [16] showed that H-Contractibility can be solved



Contracting a Chordal Graph to a Split Graph or a Tree 341

in polynomial time for chordal graphs when H is an a fixed path by checking
whether the diameter of the chordal input graph is greater than or equal to the
length of the fixed path. We observe that testing whether a graph G contains a
fixed path H as an induced minor is equivalent to testing whether G contains
H as an induced subgraph. This means that H-Induced Minor is polynomial-
time solvable for general graphs if H is a fixed path; this problem is open if H
is a fixed tree.

Our Results. We extend the aforementioned results of Belmonte, Heggernes,
and van ’t Hof [1] and Golovach et al. [13] by showing that H-Contractibility

and H-Induced Minor can be solved in polynomial time on chordal graphs
for any fixed split graph H . We also show that H-Contractibility and H-
Induced Minor are polynomial-time solvable for chordal graphs when H is
any fixed tree. This extends the aforementioned result of Heggernes, van ’t Hof,
Lévěque, and Paul [16]. In contrast to the W[1]-hardness of Contractibility

and Induced Minor for split graphs [13], we show that the problems Subgraph

Isomorphism, Minor and the related problems Topological Minor and
Immersion, which we define later, can be solved in linear time if G is a chordal
graph and H is an arbitrary fixed graph not part of the input.

2 Preliminaries

Let G = (V,E) be a graph. A subset U ⊆ V is a clique if there is an edge in G
between any two vertices of U , and U is an independent set if there is no edge in
G between any two vertices of U . We write G[U ] to denote the subgraph of G
induced by U ⊆ V , i.e., the graph on vertex set U and an edge between any two
vertices whenever there is an edge between them in G. Two sets U,U ′ ⊆ V are
called adjacent if there exist vertices u ∈ U and u′ ∈ U ′ such that uu′ ∈ E. A
vertex v is a neighbor of u if uv ∈ E. The degree dG(u) of a vertex u is its number
of neighbors. A set U ⊂ V is a cut-set if G−U is disconnected; if U = {u}, then
u is called a cut-vertex. A vertex v ∈ V is called simplicial if its neighbors in G
form a clique.

For our proofs the following global structure is useful. Let G and H be
two graphs. An H-witness structure W is a vertex partition of G into |VH |
(nonempty) sets W (x) called H-witness bags, such that

(i) each W (x) induces a connected subgraph of G;
(ii) for all x, y ∈ VH with x �= y, bags W (x) and W (y) are adjacent in G if and

only if x and y are adjacent in H .

By contracting all bags to singletons we observe that H is a contraction of G
if and only if G has an H-witness structure such that conditions (i)-(ii) hold.
Because every vertex u ∈ VG is in at most one bag, we can define Wu = W (x) if
u is in W (x). We also use the shorthand notation W (X) =

⋃
x∈X W (x) for some

X ⊆ VH . We note that G may have more than one H-witness structure with
respect to the same containment relation. Let H be an induced subgraph of G.
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We say that G has a subgraph contraction to H if G has an H-witness structure
W such that x ∈W (x) for all x ∈ VH . We also say that a vertex u ∈ VG \ VH is
contracted to x ∈ VH if u ∈W (x).

A clique tree TG of a (connected) graph G is a tree that has as vertices the
maximal cliques of G and has edges such that each graph induced by those
cliques that contain a particular vertex of G is a subtree. We let KG denote the
set of all maximal cliques of G. The following three lemmas are well-known and
useful; from now on we implicitly assume that we can compute a clique tree of
a chordal graph in linear time whenever we need such a tree for our algorithms.

Lemma 1 ([12]). A connected graph is chordal if and only if it has a clique tree.

Lemma 2 ([23]). Let G = (V,E) be a chordal graph. Then
∑

K∈KG
|K| =

O(|V |+ |E|).

Lemma 3 ([3,11]). A clique tree of a connected chordal graph G = (V,E) can
be constructed in O(|V |+ |E|) time.

Let G = (V,E) be a chordal graph. We refer to a set K ∈ KG as a node of
TG. We define the notions root node, parent node, child node and leaf node of a
clique tree similar to the notions root, parent, child and leaf of a “normal” tree.
If the bag Kr ∈ KG is the root node of TG, then we say that T is rooted at Kr.
A descendant of a node K is a node K∗ such that K lies on the (unique) path
from K∗ to the root node Kr in TG; note that each node is its own descendant.
Every node K �= Kr of a clique tree TG has exactly one parent node K ′ in TG.
We say that a vertex v ∈ K is given to the parent node K ′ if v ∈ K ∩K ′, i.e.,
if v is both in the child node K and in the parent node K ′. We say that vertex
v ∈ K stays behind if v ∈ K \K ′, i.e., if v is in the child node K but not in the
parent node K ′. Bernstein and Goodman [2] showed that a tree T with vertex
set KG is a clique tree of G if and only if T is a maximum weight spanning tree
of the clique graph C(G) of G; this is the weighted graph that has as vertices
the maximal cliques of G and that has an edge K1K2 with weight |K1 ∩ K2|
whenever K1 ∩ K2 �= ∅. This leads to the following observation that we will
implicitly use in the proofs of our results.

Observation 1. Let G be a connected chordal graph with at least two maximal
cliques. Let TG be a clique tree of G rooted at Kr. At least one vertex of any
node K �= Kr of T is given to the parent node of K and at least one vertex stays
behind. Moreover, |K| ≥ 2 for all K ∈ KG.

3 Contracting to Split Graphs

Throughout this section, we assume that G denotes a chordal graph with set
of maximal cliques KG and that H denotes a split graph with a split partition
(CH , IH), where CH = {x1, . . . , xp} and IH = {y1, . . . , yq}. If G has an H-
witness structure, then we call the bags corresponding to the vertices in CH and
IH clique bags and independent bags, respectively.
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If q = 0, then G has H as a contraction if and only if G has H as a minor,
and we can use Robertson and Seymour’s theorem [24] to test this in polynomial
time. Hence, we assume that p ≥ 1 and q ≥ 1. Because H is connected, we may
assume without loss of generality that G is connected. We then do as follows. We
first show in Lemma 4 that G has an H-witness structure where every maximal
clique is distributed over the bags in a very restricted way, should G contain H as
a contraction. This enables us to branch in a specific way leading to a new set of
connected chordal graphs. This is Phase 1 of the algorithm. In Phase 2 we process
each of the obtained graphs by applying a dynamic programming procedure. We
start with the following observation, which follows from the definition of an
H-witness structure.

Observation 2. If G contains H as a contraction, then no clique of G has two
vertices belonging to two non-adjacent bags of some H-witness structure of G.

Lemma 4. If G contains H as a contraction, then G has an H-witness struc-
ture W such that for every maximal clique K of G exactly one of the following
statements hold:

(i) K ⊆W (CH), or
(ii) K ⊆W (yj) for some yj ∈ IH , or

(iii) there is a vertex u ∈ K with K \ {u} ⊆ W (CH) and u ∈ W (yj) for some
yj ∈ IH .

Moreover, for every yj ∈ IH , there exists at least one maximal clique K of G
that contains a vertex u with u ∈ W (yj) and K \ {u} ⊆W (CH).

Proof. Suppose that G contains H as a contraction. Let W be an H-witness
structure of G such that W (CH) is maximal. Let K be a maximal clique of
G. Suppose that (i) and (ii) do not hold. By Observation 2, we then find that
K contains three vertices u1, u2 and v, such that u1 and u2 belong to some
independent bag W (yj) and v belongs to W (CH).

Let U1 be the component of G[W (yj) \ {u2}] that contains u1, and let U2 be
the component of G[W (yj) \ {u1}] that contains u2. If U2 is adjacent to every
clique bag that is adjacent to U1, then we move U1 from W (yj) to the clique bag
that contains v. We do the same with U2 in the case that U1 is adjacent to every
clique bag that is adjacent to U2. In both cases, the maximality of W (CH) is
violated. Hence, there exists a clique bag W (xh) that is adjacent to U1 but not
to U2, and a clique bag W (xi) that is adjacent to U2 but not to U1. We let s be a
vertex in U1 that has a neighbor t in W (xh) and s′ be a vertex in U2 that has a
neighbor t′ in W (xi). Here, we choose s as close as possible to u1 and s′ as close
as possible to u2; note that s and s′ might be equal to u1 and u2, respectively.
Let P be a shortest path from s to s′ in G[W (yj)]. Note that P passes through
u1 and u2. By definition, s is the only vertex on P that has a neighbor, namely
t, in W (xh), and s′ is the only vertex on P that has a neighbor, namely t′, in
W (xi). In G[W (xh)∪W (xi)], we choose a shortest path Q from t to t′. Then the
paths P and Q together with the two edges st and s′t′ form an induced cycle in
G on at least four vertices. This is not possible, because G is chordal.
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To prove the second statement of Lemma 4, consider a vertex yj ∈ IH . Let
xi ∈ CH be a neighbor of yj . Then G must contain an edge tu with t ∈ W (xi)
and u ∈ W (yj). Let K be a maximal clique of G that contains t and u. Because
W satisfies the first statement of Lemma 4, we find that K \ {u} ⊆W (CH), as
desired. Hence, we have proven Lemma 4. 
�

We start our algorithm. In Phase 1 we choose a pair (Kj , uj) for each yj ∈ IH .
This gives us an ordered set S of q different pairs. We determine all possible
choices of sets S. If G contains H as a contraction, then G has an H-witness
structure W that satisfies Lemma 4. Then one of our chosen sets S will cor-
respond to a set of q pairs satisfying the second statement of Lemma 4. To
determine this, we consider every set S and each time we may modify G into
a new graph G′. If in the end we have not discarded a set S then we put the
corresponding graph G′ in G. This leads to Lemma 5; we omit its proof.

Lemma 5. We can obtain in polynomial time a set G of chordal graphs, such
that G contains H as a contraction if and only if there exists a graph G′ ∈ G that
has an H-witness structure W ′ with W ′(yj) = {uj(G′)} for j = 1, . . . , q, where
u1(G′), . . . , uq(G′) are q specified mutually non-adjacent vertices of G′ that are
not cut-vertices of G′.

Suppose that we have obtained a set G that satisfies Lemma 5. Because G has
polynomial size, we process each graph in it one by one. This is Phase 2 of our
algorithm. For simplicity, we will denote such a graph by G again and its set
of q specified vertices by u1, . . . , uq. Let G∗ be the graph obtained from G after
removing u1, . . . , uq. We make the following observation, which follows from the
property of G that the intersection of two intersecting maximal cliques contain
a vertex from VG \ {u1, . . . , uq} as the vertices u1, . . . , uq are no cut-vertices and
form an independent set in G.

Observation 3. The graph G∗ is a connected chordal graph.

What is left to decide is if and how the vertices of G∗ can be distributed over the
clique bags of a witness structureW of G with W (yj) = {uj} for j = 1, . . . , q. In
order to do this we follow a dynamic programming approach over a clique tree
of G. For this purpose we must first decide how to root this tree, and in order
to do that we need the following lemma.

Lemma 6. Let C be a cut-set of G∗. If G has an H-witness structure W with
W (yj) = {uj} for j = 1, . . . , q, then for all pairs of vertices v1, v2 ∈ VG∗ that
are in two different components of G∗ −C, there exists a vertex t ∈ C such that
Wv1 = Wt or Wv2 = Wt.

Proof. Suppose that there exist two vertices v1, v2 ∈ VG∗ that are in two different
components of G∗ − C such that there is no vertex t ∈ C with Wv1 = Wt or
Wv2 = Wt. Let Wv1 = W (xh) and Wv2 = W (xi). Then either G[W (xh)] is
disconnected if h = i, or W (xh) and W (xi) are not adjacent if h �= i. Both cases
are not possible. 
�
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Lemma 6 helps us to deduce a useful property for our dynamic programming;
we describe this property in Lemma 7.

Lemma 7. If G has an H-witness structure W with W (yj) = {uj} for j =
1, . . . , q, then there exists a node K∗

r such that TG∗ can be rooted at K∗
r with the

following property valid for every parent node K∗
p with child node K∗

c : for all
v ∈ K∗

c \K∗
p there exists a vertex t ∈ K∗

c ∩K∗
p with Wt = Wv.

Proof. Let K be a node of TG∗ . Suppose that the property in the statement of
Lemma 7 does not hold if K is to be the root. Then there is a node K1 that has
a child node K2 such that K2\K1 has a vertex v for which there does not exist a
vertex t ∈ K1∩K2 with Wt = Wv. We apply Lemma 6 for C = K1∩K2 and find
that for every vertex v′ in the component of G∗−C that contains K2 \K1 there
exists a vertex t′ ∈ K1 ∩ K2 with Wt′ = Wv′ . We now choose as new root the
node K2. If K2 satisfies the property in the statement of Lemma 7, then we are
done. Otherwise, there exists a node K3 with a child node K4 as before. However,
K4 cannot be in the component of G∗−C that contains the vertices of K1 \K2.
Hence, as G∗ is finite, repeatedly applying the same argument, eventually yields
a root node satisfying the statement of Lemma 7. 
�
From now we assume that TG∗ is rooted in a node K∗

r in such a way that the
property described in Lemma 7 holds if G contains H as a contraction. We may
do this, because we will consider if necessary all nodes of TG∗ to be the root
node, and consequently repeat the algorithm a number of times. This number
is polynomially bounded, because the total number of different nodes in TG∗

is polynomially bounded due to Lemma 2. Our next aim is to delete simplicial
vertices of G that are in VG∗ \K∗

r .

Lemma 8. Let v ∈ VG∗ \ K∗
r be a simplicial vertex of G. If G has an H-

witness structure for G with W (yj) = {uj} for j = 1, . . . , q where v ∈ W (xi) is
adjacent to some vertex of W (xj) for some xi, xj ∈ CH , then G has an H-witness
structure W ′ with

(i) W ′(z) = W (z) for z ∈ VH \ {xi, xj}, and
(ii) W ′(xi) = W (xi) \ {v}, and

(iii) W ′(xj) = W (xj) ∪ {v}.
Proof. Because v /∈ K∗

r , we find that W ′(xi) �= ∅ due to Lemma 7. Because v is
simplicial, W ′(xi) is connected. Because v is adjacent to a vertex from W (xj),
W ′(xj) is connected. Because v is a simplicial vertex of G, any neighbor of v in
{u1, . . . , uq} is adjacent to a vertex of W ′(xi) and to a vertex of W (xj). 
�
Lemma 8 implies that simplicial vertices in VG∗ \ K∗

r can be included in any
adjacent bag. This means that we can exclude them from the graph recursively,
and from now we assume that G has no simplicial vertices in VG∗ \K∗

r .
We now apply dynamic programming over TG∗ . Our algorithm returns Yes

if G has an H-witness structure W with W (yj) = {uj} for j = 1, . . . , q that
satisfies the property given in Lemma 7; It returns No otherwise. Due to space
restriction we exclude the correctness proof and a running time analysis of our
algorithm. This brings us to the main result of this section.
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Theorem 1. For any fixed split graph H, the H-Contractibility problem
can be solved in polynomial time for chordal graphs.

4 Contracting to Trees

Throughout this section, we assume that G denotes a chordal graph with set of
maximal cliques KG and that H denotes a tree with leaves {z1, . . . , zr}. We also
let TG denote a clique tree of G. Due to Theorem 1, we may assume that H is not
a split graph. Hence, H has at least four vertices. We will present an algorithm
that decides in |V (G)||O(|VH |) time whether G contains H as a contraction.

If G has an H-witness structure W then we call the bags W (zi) the leaf bags
of W . We define parent bag and child bag of W analogously. We start with the
following lemma.

Lemma 9. If G contains H as a contraction, then G has an H-witness structure
W with W (zi) = {ui}, i = 1, . . . , r for some set of vertices u1, . . . , ur.

Proof. Suppose that G contains H as a contraction. Let W be an H-witness
structure of G. Suppose that |W (zi)| ≥ 2 for some 1 ≤ i ≤ r. Let yi be the
parent of zi in H . We choose a vertex ui ∈ W (zi) that is not a cut-vertex of
G[W (zi)] and move all vertices in W (zi) \ {ui} to W (yi). This leads to a new
H-witness structure of G, in which the leaf bag corresponding to zi only contains
ui. If necessary, we apply this operation on every other leaf bag that contains
more than one vertex. 
�

We call the vertices u1, . . . , ur in Lemma 9 the leaf bag vertices of the witness
structure W and call W a simple witness structure. We can now show the fol-
lowing lemma, the proof of which has been omitted.

Lemma 10. We can obtain in polynomial time a set G of graphs, such that G
contains H as a contraction if and only if there exists a graph G′ ∈ G that has
a simple H-witness structure W ′ with as leaf bag vertices r specified vertices
u1(G′), . . . , ur(G′) that are of degree one in G′ and that together form the set of
all simplicial vertices of G′.

From now on suppose that we have obtained a set G that satisfies Lemma 10.
Because G has polynomial size, we can process each graph in it. Therefore, we
may without loss of generality assume that we have a connected chordal input
graph with a set of r specified vertices u1, . . . , ur that are of degree one and that
together form the set of all simplicial vertices of the graph. For simplicity, we
will denote this chordal input graph by G again.

If G allows an H-witness structure W , then we call a maximal clique K of
G a vertex clique of W if K contains vertices from exactly one witness bag
from W , and we call K an edge clique of W if K contains vertices from exactly
two (adjacent) witness bags fromW . For a vertex x ∈ VH , we call a vertex-clique
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an x-vertex-clique if it is a subset of W (x). For an edge xy ∈ EH , we call an
edge-clique an xy-edge-clique if it contains one or more vertices of W (x) and one
or more vertices of W (y).

We make two useful observations. The first observation holds, because H is a
tree. The second observation follows from Observation 4 and the property that
every bag of a witness structure is connected.

Observation 4. If G contains H as a contraction, then every maximal clique
of G is either a vertex clique or an edge clique in every H-witness structure of G.

Observation 5. If G contains H as a contraction, then for all xy ∈ EH the
xy-edge cliques in every H-witness structure of G are the nodes of a connected
subtree of TG.

We are now ready to show our last lemma. Recall that G contains exactly r
vertices u1, . . . , ur of degree 1 and that G contains no other simplicial vertices.

Lemma 11. There exists a polynomial-time algorithm that tests whether G has
an H-witness structure W such that W (yi) = {ui} for i = 1, . . . , r.

Proof. By Observation 4, all maximal cliques of G are either vertex-cliques or
edge-cliques for any H-witness structure (if it exists). By Observation 11, the
xy-edge cliques are in that case the nodes of a connected subtree Txy of TG.
We do as follows. For every xy ∈ EH , we guess the nodes of Txy. This leads
to a collection of |EH | subtrees that are to correspond to the subtrees Txy of
TG. Afterwards, we must perform a number of checks to see if such a family
of subtrees is a “good” guess, i.e., leads to an H-witness structure W with the
required properties.

Firstly, we must check if there is no node of TG that is contained in two
different subtrees. If so, then we discard our guessed family of subtrees. Otherwise
we continue as follows. Because we have chosen nodes to correspond to all edge-
cliques, all other nodes of TG must correspond to the vertex-cliques. We may
therefore contract these nodes to single vertices in G. Because single vertices
are not maximal cliques, this leads to a new graph G∗ with clique tree TG∗ , the
nodes of which are to correspond to the edge-cliques.

If there exist two maximal cliques K and K ′ of G∗ with K ∩ K ′ �= ∅ that
are nodes of two subtrees that are to correspond to subtrees Txy and Tx′y′ with
{x, y}∩{x′, y′} = ∅, then we discard our guessed family of subtrees; every vertex
in K ∩K ′ must go to W (x)∪W (y) and W (x′)∪W (y′) simultaneously and this
is not possible. Suppose that such a pair of maximal cliques does not exist. Then
for every intersecting pair of maximal cliques from two different guessed sub-
trees corresponding to subtrees Txy and Tx′y′ we have without loss of generality
x = x′. This means that the vertices in this intersection must go into W (x).
Because of this, we contract the edges in the intersection of two such cliques into
one vertex which we put in a new set Ax. In the end we must check for every
xy ∈ EH , if the vertices of subtree T ′

xy can be partitioned into two sets B1 and B2
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such that (i) Ax ⊆ B1, (ii) Ay ⊆ B2 and (iii) G[B1] and G[B2] are both con-
nected. If so, then we have our desired H-witness structure of G. Otherwise we
must consider some other family of guessed subtrees.

This algorithm runs in polynomial time for the following reasons. For every
xy ∈ EH , we actually only have to guess the nodes in TG that correspond to the
leaves of Txy. Because every leaf node of TG has a simplicial vertex, TG contains
exactly r leaf nodes. This means that the number of nodes we must guess for TG is
at most r, which is a constant because we assume that r is fixed. We can process
each set of guessed subtrees in polynomial time as well. In particular, we can check
if Ax and Ay can be made connected in a subtree TG by applying Robertson and
Seymour’s algorithm [24] for this problem, which is called the 2-Disjoint Con-

nected Subgraphs problem. Their algorithm runs in polynomial time as long
as the total number of specified vertices is bounded. This is the case in our setting,
because the number of leaves of every guessed subtree is bounded and the inter-
section with other subtrees Tx′y′ must always contain vertices from the leaves or
the root of the guessed subtrees. This completes the proof of Lemma 11. 
�

By Lemmas 10 and 11 we obtain the main result of this section.

Theorem 2. For any fixed tree H, the H-Contractibility problem can be
solved in polynomial time for chordal graphs.

5 Induced Minors and Extensions of Subgraphs

We let P1 �� G denote the graph obtained from a graph G after adding a new
vertex and making it adjacent to all vertices of G.

Lemma 12 ([17]). Let H and G be two graphs. Then G has H as an induced
minor if and only if P1 �� G is (P1 �� H)-contractible.

We observe that P1 �� G is a chordal graph if G is chordal. Similarly, P1 �� G is
a split graph if G is a split graph. Then, combining Lemma 12 with Theorem 1
yields the following result.

Theorem 3. For any fixed split graph H, the H-Induced Minor problem can
be solved in polynomial time for chordal graphs.

We also have the following result, which can be proven by using the same argu-
ments as the proof of Theorem 2 after making a minor modification: if there exist
two maximal cliques K and K ′ of the graph G∗ in the proof of Lemma 11 with
K ∩ K ′ �= ∅ that are nodes of two subtrees that are to correspond to subtrees
Txy and Tx′y′ with {x, y}∩{x′, y′} = ∅, then we remove these vertices instead of
discarding the family of guessed subtrees.

Theorem 4. For any fixed tree H, the H-Induced Minor problem can be
solved in polynomial time for chordal graphs.
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We conclude the paper with an observation that containment relations extending
Subgraph Isomorphism can be decided in linear time on a chordal input graph
G if the graph H is not considered to be part of the input. The H-Subgraph

Isomorphism problem most likely cannot be solved in |VG|O(1) time for a general
graph G when the constant in the exponent is independent of H , as shown
by Downey and Fellows [8]. Besides minors, we consider the following of such
containment relations. A graph G contains H as a topological minor if H can be
obtained from the input graph by deleting vertices and edges and contracting
edges incident with a vertex of degree 2. Given a (not necessarily induced) path
abc on three vertices, a lift is to remove the edges ab and bc and add the edge ac (if
is not already present in the graph). A graph G contains H as a immersion if H
can be obtained from G by vertex and edge deletions and lifts. The corresponding
decision problems are called Topological Minor and Immersion. For any
fixed graph H , both H-Topological Minor and H-Immersion have recently
been shown to be solvable in O(|V (G)|3) time by Grohe, Kawarabayashi, Marx
and Wollan [15].

Theorem 5. For any fixed graph H, the four problems H-Subgraph Isomor-

phism, H-Minor, H-Topological Minor, and H-Immersion can be solved
in O(|V |+ |E|) time for chordal graphs.

Proof. Let G be the input chordal graph. We construct a clique tree TG of
G in linear time due to Lemma 3. In the same time, we can find a largest
maximal clique in TG. We denote its size by c. If c ≥ |VH |, then any largest clique
contains H as a subgraph and thus as a minor, topological minor, and immersion.
Hence, G contains H as a subgraph, minor, topological minor, and immersion.
Otherwise, the size of all cliques in TG is at most c and TG is a tree-decomposition
of G of width c− 1. All four relations H-Subgraph Isomorphism, H-Minor,
H-Topological Minor, and H-Immersion can be decided in O(|V | + |E|)
time for graphs of bounded treewidth [6,15].
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Abstract. We study the recognition of R-trivial idempotent (R1) lan-
guages by various models of “decide-and-halt” quantum finite automata
(QFA) and probabilistic reversible automata (DH-PRA). We introduce
bistochastic QFA (MM-BQFA), a model which generalizes both Nayak’s
enhanced QFA and DH-PRA. We apply tools from algebraic automata
theory and systems of linear inequalities to give a complete character-
ization of R1 languages recognized by all these models. We also find
that “forbidden constructions” known so far do not include all of the
languages that cannot be recognized by measure-many QFA.

1 Introduction

Measure-many quantum finite automata (MM-QFA) were defined in 1997 [11]
and their language class characterization problem remains open still. The diffi-
culties arise because the language class is not closed under Boolean operations
like union and intersection [3]. The results by Brodsky and Pippenger [5] com-
bined with the non-closure property imply that the class of languages recognized
by MM-QFA is a proper subclass of the language variety corresponding to the
ER monoid variety. The same holds for DH-PRA and for EQFA [8,14]. In [1],
it is stated that MM-QFA recognize any regular language corresponding to the
monoid variety EJ. Since any syntactic monoid of a unary regular language be-
longs to EJ, the results in [1] imply that MM-QFA recognize any unary regular
language. In [4], a new proof of this result is given by explicitly constructing
MM-QFA recognizing unary languages. In the paper, we consider a sub-variety
of ER, the variety of R-trivial idempotent monoids R1 and determine which
R-trivial idempotent languages (R1 languages) are recognizable by MM-QFA
and other “decide-and-halt” models. Since R1 shares a lot of the characteris-
tic properties with ER, the obtained results may serve as an insight to solve
the general problem. The paper is structured as follows. Section 2 describes the
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algebraic tools - monoids, morphisms and varieties. Section 3 considers com-
pletely positive maps. We apply the result by Kuperberg to obtain Theorem 3.1,
which is essential to prove the limitations of QFA in terms of language recog-
nition. Sections 4 to 7 present the main results of the paper: (1) We introduce
MM-BQFA, a model which generalizes the earlier “decide-and-halt” automata
models (MM-QFA, DH-PRA, EQFA) and give some characteristics of the cor-
responding language class. We also obtain the class of languages recognized by
MO-BQFA; (2) We define how to construct a system of linear inequalities for
any R1 language and prove that if the system is not consistent the language
cannot be recognized by MM-BQFA (and MM-QFA, DH-PRA, EQFA); (3) We
construct DH-PRA (this presumes also EQFA and MM-BQFA) and MM-QFA
for any R1 language having a consistent system of inequalities. Thus, we obtain
that an R1 language is recognizable by “decide-and-halt” models if and only if
the corresponding system of linear inequalities is consistent; (4) We show that
“forbidden constructions” known from [3] do not give all of the languages that
cannot be recognized by MM-QFA.

2 Monoids and Varieties

Given an alphabet A, let A∗ be the set of words over alphabet A. Given a word
x, let |x| be the length of x. Introduce a partial order � on A∗, let x � y if and
only if there exists z ∈ A∗ such that xz = y. Let P(A) be the set of subsets
of A, including the empty set ∅. Note that there is a natural partial order on
P(A), i.e., the subset order. Given a word s ∈ A∗, let sω be the set of letters of
the word s. We say that u,v ∈ A∗ are equivalent with respect to ω, u ∼ω v, if
uω = vω (that is, u and v consist of the same set of letters). Let F(A) be the
set of all words over the alphabet A that do not contain any repeated letters.
The empty word ε is an element of F(A). Let τ be a function such that for every
s ∈ A∗, any repeated letters in s are deleted, leaving only the first occurrence.
Given u,v ∈ A∗, we say that u ∼τ v, if uτ = vτ . Introduce a partial order � on
F(A), let v1 � v2 if and only if there exists v ∈ F(A) such that v1v = v2. Note
that ∼ω and ∼τ are equivalence relations. The functions ω and τ are morphisms;
(uv)ω = uω ∪ vω and (uv)τ = uτ ·vτ . Moreover, ω (and τ) preserves the order
relation since u � v implies uω ⊆ vω (u � v implies uτ � vτ).

A general overview on varieties of finite semigroups, monoids as well as opera-
tions on them is given in [17]. Unless specified otherwise, the monoids discussed
in this section are assumed to be finite. An element e of a monoidM is called an
idempotent, if e2 = e. If x is an element of a monoid M, the unique idempotent
of the subsemigroup ofM generated by x [17] is denoted by xω . Given a regular
language L ⊆ A∗, words u,v ∈ A∗ are called syntactically congruent, u ∼L v,
if for all x,y ∈ A∗ xuy ∈ L if and only if xvy ∈ L. The set of equivalence
classes A∗/ ∼L is a monoid, called syntactic monoid of L and denoted M(L).
The morphism ϕ from A∗ to A∗/ ∼L is called syntactic morphism. Given a
monoid variety V, the corresponding language variety is denoted by V . The set
of languages over A recognized by monoids in V is denoted by A∗V.
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Varieties Definitions. In this paper, we refer to the following monoid varieties.
The definitions for G,J1 = [[x2 = x, xy = yx]],R1 = [[xyx = xy]],ER1,J,R
may be found in [9]. The definition for EJ is in [18]. Also, ER = [[(xωyω)ωxω =
(xωyω)ω ]], the variety considered in [6]. The respective language varieties cor-
responding to the monoid varieties above are denoted G (group languages), J1

(semilattice languages), R1 (R-trivial idempotent languages, or R1 languages),
ER1, J , R, EJ , ER. It is possible to check that J1 ⊂ J ⊂ EJ, R1 ⊂ R ⊂ ER,
R1 ⊂ ER1 ⊂ ER, J1 ⊂ R1, J ⊂ R and G ⊂ EJ ⊂ ER.

Semilattice Languages and Free Semilattices. A free semilattice over an al-
phabet A is defined as a monoid (P(A),∪), where ∪ is the ordinary set union. For
any alphabet A, the free semilattice P(A) satisfies the identities of J1, therefore
P(A) ∈ J1. Given a free semilattice P(A), one may represent it as a determin-
istic finite automaton (P(A), A, ∅, · ), where for every X ∈ P(A) and for every
a ∈ A, X · a = X ∪ {a}. It is implied by results in [17] that for any semilattice
language L over alphabet A, Lω is a set of final states, such that the automa-
ton recognizes the language. Therefore, in order to specify a particular language
L ∈ A∗J1, one may identify it by indicating a particular subset of P(A). A free
semilattice over {a, b, c} represented as a finite automaton is depicted in Figure 1
on the left side. The states of (P(A), A, ∅, · ) can be separated into several levels,
i.e., a state is at level k if it corresponds to an element in P(A) of cardinality k.

R1 languages and Free Left Regular Bands. A free left regular band over
an alphabet A is defined as a monoid (F(A), · ), where x·y = (xy)τ , i.e., con-
catenation followed by the application of τ . For any alphabet A, the free left
regular band F(A) satisfies the identities of R1, therefore F(A) ∈ R1. Given a
free left regular band F(A), one may represent it as a deterministic finite au-
tomaton (F(A), A, ε, ·F(A) ). A free left regular band over {a, b, c} represented as

{}

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

a b c

a,b a,c b,c

a,b,c

a b c

b
c

a c
a

b

c b a

ε

a b c

ab ba ac ca bc cb

abc bac acb cab bca cba

a b c

a,b a,b a,c a,c b,c b,c

a,b,c a,b,c a,b,c a,b,c a,b,c a,b,c

a b c

b c

a c

a b

c c b b a a

Fig. 1. Free semilattice and free left regular band over {a, b, c}
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a finite automaton is depicted in Figure 1 on the right side. It is implied by [19]
that for any R1 language L over alphabet A, Lτ is a set of final states, such that
the automaton recognizes the language. Therefore, in order to specify a partic-
ular language L ∈ A∗R1, one may identify it by indicating a particular subset
of F(A). For example, the semilattice language A∗aA∗ may also be denoted as
{a, ab,ba,ac, ca,abc,acb,bac,bca, cab, cba}. We can also see that P(A) is a
quotient of F(A). Indeed, let σ be a restriction of ω to F(A). The function σ is
a surjective morphism from F(A) to P(A) which preserves the order relation.

Free left regular bands and free semilattices are key elements to prove that a
quantum automaton may recognize a particular R1 language if and only if its
system of linear inequalities is consistent.

3 Completely Positive Maps

In this section, we establish some facts about completely positive (CP) maps with
certain properties, i.e., CP maps that describe the evolution of BQFA, defined
in the next section. A comprehensive account on quantum computation and CP
maps can be found in [16]. Following [16], we call a matrix M ∈ Cn×n positive, if
for any vector X ∈ Cn, X∗MX is real and nonnegative. For arbitrary matrices
M,N we may write M 	 N if M − N is positive. Let Is be the identity map
over Cs×s. Given Φ and Ψ , let Φ

⊗
Ψ be the tensor product of those linear maps.

A positive linear map Φ is called completely positive, if for any s 	 1, Φ
⊗

Is
is positive. Any CP map from Cn×n to Cm×m may be regarded as a linear
operator in Cn2×m2

. A CP map Φ is called sub-tracial iff for any positive M we
have Tr(Φ(M)) � Tr(M). A CP map Φ from Cn×n to Cm×m is called unital if
Φ(In) = Im. A CP map from Cn×n to Cm×m Φ is called sub-unital if Φ(In) �
Im. A composition of CP maps Φ0, ..., Φm from Cn×n to Cn×n is a CP map
Φ = Φ0 ◦ · · · ◦Φm such that for any M ∈ Cn×n Φ(M) = Φ0(Φ1(...(Φm(M))...). A
CP map Φ from Cn×n to Cn×n is called bistochastic, if it is both trace preserving
and unital, i.e., for any positive M , Tr(Φ(M)) = Tr(M) and Φ(In) = In. A CP
map Cn×n to Cn×n is called sub-bistochastic, if it is both sub-unital and sub-
tracial. A composition of two sub-bistochastic CP maps is a sub-bistochastic
CP map. We are interested about some properties of the asymptotic dynamics
resulting from iterative application of a CP sub-bistochastic map. A CP map Φ
from Cn×n to Cn×n is called idempotent if Φ◦Φ = Φ. It is said that a CP map Φ
from Cn×n to Cn×n generates a unique idempotent, denoted Φω, if there exists a
sequence of positive integers ns such that 1) exists the limit Φω = lims→∞ Φns ;
2) the CP map Φω is idempotent; 3) for any sequence of positive integers ms

such that the limit lims→∞ Φms exists and is idempotent, lims→∞ Φms = Φω .
By Kuperberg [12], for any CP sub-bistochastic map Φ from Cn×n to Cn×n, its
idempotent Φω exists, is unique and is a linear projection operator in Cn2×n2

.
That implies the subsequent theorem, which ultimately is the reason why certain
models of quantum finite automata cannot recognize all regular languages.
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Theorem 3.1. Let e1, ..., ek be idempotent CP sub-bistochastic maps from Cn×n

to Cn×n. Then for any i, 1 � i � k, (1) limn→∞(e1 ◦ ...◦ ek)n = (e1 ◦ ...◦ ek)ω =
(eπ(1) ◦ ... ◦ eπ(k))ω, where π is a permutation in {1, . . . , k}; (2) (e1 ◦ ... ◦ ek)ω =
ei ◦ (e1 ◦ ... ◦ ek)ω = (e1 ◦ ... ◦ ek)ω ◦ ei.

Any finite quantum system at a particular moment of time (i.e., its mixed state)
is described by a density matrix. By [16, Theorem 2.5], a matrix is a density
matrix if and only if it is positive and its trace is equal to 1. Informally, an n×n
density matrix describes a quantum system with n states. A completely positive
trace-preserving map describes an evolution of a quantum system as allowed by
quantum mechanics. It maps a density matrix to a density matrix.

4 Automata Models

For the formal definitions of other indicated automata models, the reader is re-
ferred to the following references. “Classical” models: Group Automata (GA, [21]),
Measure-Once Quantum Finite Automata (MO-QFA, [15,5]), “Classical” Proba-
bilistic Reversible Automata (C-PRA, [7,1]), Latvian Quantum Finite Automata
(LQFA, [1]). “Decide-and-halt” models: Reversible Finite Automata (RFA, [2,9]),
Measure-Many Quantum Finite Automata (MM-QFA, [11,5,3,1]), “Decide-and-
halt” Probabilistic Reversible Automata (DH-PRA, [7,8]), Enhanced Quantum
Finite Automata (EQFA, [14]). In case of classical acceptance, an automaton
reads an input word until the last letter, and then accepts or rejects the word
depending on whether the current state is final or non-final. In case of “decide-
and-halt” acceptance, the automaton reads the input word until it enters a halt-
ing state. The input is accepted or rejected depending on whether the halting
state is accepting or rejecting. Every word is appended with a special symbol,
an end-marker, to ensure that any word is either accepted or rejected. We define
MO and MM bistochastic QFA as a generalization of these models, which allows
to prove the limitations of language recognition for all the models within single
framework.

A bistochastic quantum finite automaton (BQFA) is a tuple (Q,A∪{#, $}, q0,
{Φa}), where Q is a finite set of states, A - a finite input alphabet, #, $ /∈ A -
initial and final end-markers, q0 - an initial state and for each a ∈ A ∪ {#, $}
Φa is a CP bistochastic transition map from C|Q|×|Q| to C|Q|×|Q|.

Regardless of which word acceptance model is used, each input word is en-
closed into end-markers #, $. At any step, the mixed state of a BQFA may be
described by a density matrix ρ. The computation starts in the state |q0〉〈q0|.

Operation of a measure-once BQFA and word acceptance is the same as de-
scribed for LQFA [1], only instead of sequences of unitary operations and or-
thogonal measurements we have arbitrary bistochastic CP maps. On input letter
a ∈ A, ρ is transformed into Φa(ρ).

Operation of a measure-many BQFA and word acceptance is the same as de-
scribed for EQFA [14], but arbitrary bistochastic CP maps are used. The set of
states Q is partitioned into three disjoint subsets Qnon, Qacc and Qrej - non-
halting, accepting and rejecting states, respectively. On input letter a ∈ A, ρ is
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transformed into ρ′ = Φa(ρ). After that, a measurement {Pnon, Pacc, Prej} is ap-
plied to ρ′, where for each i ∈ {non, acc, rej} Pi =

∑
q∈Qi

|q〉〈q|. To describe the
probability distribution S#u of a MM-BQFA A after reading some prefix #u, it
is convenient to use density matrices ρ scaled by p, 0 � p � 1. So the probability
distribution S#u of A is a triple (ρ, pacc, prej), where Tr(ρ) + pacc + prej = 1,
ρ/Tr(ρ) is the current mixed state and pacc, prej are respectively the probabil-
ities that A has accepted or rejected the input. So the scaled density matrix
ρ may be called a scaled mixed state. For any a ∈ A ∪ {#, $}, let Ψa(ρ) =
PnonΦa(ρ)Pnon. After reading the next input letter a, the probability distribu-
tion is S#ua = (Ψa(ρ), pacc + Tr(PaccΦa(ρ)Pacc), prej + Tr(PrejΦa(ρ)Prej)). For
any word a = a1 . . . ak, define Ψa = Ψak

◦ · · · ◦ Ψa1 . Hence ρ = Ψ#u(|q0〉〈q0|).
Note that Ψa is a CP sub-bistochastic map.

Language recognition is defined in the same way as in Rabin’s [20]. Suppose
that an automaton A is one of the models from the list above. By px,A (or px,
if no ambiguity arises) we denote the probability that an input x is accepted by
the automaton A. We consider only bounded error language recognition.

BQFA as a generalization of other models. Since unitary operations and or-
thogonal measurements are bistochastic operations, MO-BQFA is a generaliza-
tion of LQFA and MM-BQFA is a generalization of EQFA. Also, the Birkhoff
theorem [22, Theorem 4.21] implies that MO-BQFA and MM-BQFA are gener-
alizations of C-PRA and DH-PRA, respectively. On the other hand, BQFA are
a special case of one-way general QFA, which admit any CP trace-preserving
transition maps. One-way general QFA recognize with bounded error exactly
the regular languages [10,13]. So the recognition power of BQFA is also limited
to regular languages only.

Comparison of the language classes. Having a certain class of automata A, let
us denote by L(A) the respective class of languages. Thus L(GA) = L(MO-QFA)
= G, L(C-PRA) = L(LQFA) = L(MO-BQFA) = EJ , G � L(RFA) � ER1,
EJ � L(MM-QFA) ?= L(DH-PRA) ?= L(EQFA) ?= L(MM-BQFA) � ER. Re-
lations concerning BQFA depend on the theorem below. All the other relations
are known from the references given in the list of automata models above.

Theorem 4.1. L(MO-BQFA) = EJ and L(MM-BQFA)⊆ ER. L(MM-BQFA)
is closed under complement, inverse free monoid morphisms, and word quotient.

The proof relies on Theorem 3.1 and ideas in [1,5] used for LQFA and MM-QFA.
We find that L(MM-BQFA) shares a lot of properties with the language

classes of other “decide-and-halt” word acceptance models. In Section 7 it is
noted that MM-BQFA does not recognize any of the languages corresponding
to “forbidden constructions” from [3, Theorem 4.3]. As other “decide-and-halt”
models, L(MM-BQFA) � ER and L(MM-BQFA) is not closed under union and
intersection (Corollary 6.3).

5 Linear Inequalities

In this section, we define a system of linear inequalities that an R1 language
recognized by a MM-BQFA must satisfy. Let L be an R1 language and S - a
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MM-BQFA, both over alphabet A. Let {v0,v1, ...,vR} = F(A). Assume v0 = ε.
For any v in F(A), where v = a1...ak (ai are distinct letters of A), denote by v[i]
a prefix of v of length i, i.e. v[0] = ε and for all i, 1 � i � k, v[i] = a1...ai. Recall
that F(A) can be viewed as an automaton that recognizes an R1 language L,
provided Lτ is its set of final states (see Section 2).

Now define a linear system of inequalities L as follows: (1) For every v in
F(A), where v = a1...ak take the formal expression L(v) = x0 + xv[0]ω,a1 +
xv[1]ω,a2 + xv[2]ω,a3 + ...+ xv[k−1]ω,ak

+ yvω; (2) Introduce two another variables
p1 and p2. For any v ∈ F(A), if v ∈ Lτ , construct an inequality L(v) 	 p2,
otherwise construct an inequality L(v) � p1; (3) Append the system by an in-
equality p1 < p2.

Example 5.1. Consider an R1 language L = {ab,bac} over alphabet A =
{a, b, c}. Among others, the system L(L) has the following inequalities:

L(ab) = x0 + x{},a + x{a},b + y{a,b} 	 p2

L(bac) = x0 + x{},b + x{b},a + x{a,b},c + y{a,b,c} 	 p2

L(ba) = x0 + x{},b + x{b},a + y{a,b} � p1

L(abc) = x0 + x{},a + x{a},b + x{a,b},c + y{a,b,c} � p1

p1 < p2

Informally, an inequality L(v) represents the probability of accepting a specifi-
cally defined input word u, such that uτ = v = a1a2...ak. The variable x0 rep-
resents the probability to accept the input after reading the initial end-marker
#. The variable yvω represents the cumulative probability to stay in non-halting
states before reading the final end-marker $ and accept the input after reading
it. The variable xv[i−1]ω,ai

represents the cumulative probability to stay in non-
halting states after reading a (specifically defined) prefix u[i − 1] (of u) such
that u[i−1]τ = v[i−1] and to accept input after reading a (specifically defined)
prefix u[i] such that u[i]τ = v[i].

Theorem 5.2. Suppose L is an R1 language. If the linear system L is not
consistent, then L cannot be recognized by any MM-BQFA.

Proof. Let ml (l = 1, 2, ...) be a sequence of positive integers such that for all
letters a ∈ A liml→∞ Ψml

a = Ψω
a (existence is proved in the same way as the

Kuperberg’s result quoted in Section 3). Let μ be a function that assigns to any
word in A∗ the same word (of the same length) with letters sorted in alphabetical
order. Let κi, i ∈ N, a morphism from A∗ to A∗ such that for any a ∈ A aκi = ai.
Let ξ = ξl be an everywhere defined function from F(A) to A∗, such that εξ = ε
and for all v ∈ F(A), if |v| = 1 then vξ = vml and otherwise, if |v| 	 2 then
vξ = (vμκml

)l.
Let us define the function θ (which depends on the parameter l) as follows. For

any v = a1...ak let vθ = v[1]ξ...v[k]ξ = aml
1 ((aml

1 aml
2 )μ)l...((aml

1 aml
2 . . . aml

k )μ)l.
Let εθ = ε. Note that v[i]θ = (v[i− 1]θ)(v[i]ξ). In the discussion preceding this
theorem, the word u corresponding to v is vθ and the prefix u[i] corresponding
to v[i] is v[i]θ. Note that vθτ = v.
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Now take the set F(A)θ = {uk | uk = vkθ and 0 � k � R}. Let us take a
positive integer i and any two words u and u′ in F(A)θ, such that u[i− 1]ω =
u′[i − 1]ω. Let v = uτ and v′ = u′τ . If the parameter l is sufficiently large,
Theorem 3.1 implies that after reading u[i − 1] and u′[i − 1] the automaton
S has essentially the same scaled density matrices (which represent the non-
halting states). Suppose that v[i] = v′[i] = a1...ai. The automaton S finishes
reading the prefixes u[i] and u′[i] after reading the next symbols forming the
sub-word v[i]ξ. The cumulative probabilities to stay in non-halting states while
reading u[i− 1], u′[i− 1] and to accept input after reading v[i]ξ = v′[i]ξ will be
essentially the same. (They converge to the same value as l tends to infinity).
Hence those probabilities are reflected in the system of linear inequalities by the
same variable xv[i−1],ai

. Thus, if a MM-BQFA S recognizes an R1 language L,
then the linear system of inequalities L has to be consistent. 
�

If the linear system L(L) is not consistent, then L cannot be recognized by any
MM-QFA, DH-PRA or EQFA as well. The statement converse to Theorem 5.2
is provided in Section 6 (Theorem 6.2).

Consider the inequalities in the system L(L). The only possible coefficients of
variables in any linear inequality are −1, 0 and 1. Denote by Z = {x0, z1, ..., zs,
y1, ..., yt, p1, p2} the set of all the variables in the system L, where zi are variables
of the form xv[i−1]ω,ai

, and yi are variables of the form yvω.

Proposition 5.3. The system L is consistent if and only if it has a solution
where x0 = 0, yA = 0, 0 � p1, p2 � 1 and all the other variables z1, ..., zs, y1, ...,
yt−1 are assigned real values from 0 to 1/|A|.

6 Construction of DH-PRA and MM-QFA for R1

Languages

Preparation of a linear programming problem. Consider an R1 language L over
alphabet A. Construct the respective system of linear inequalities L. Obtain
a system L1 by supplementing L with additional inequalities that enforce the
constraints expressed in Proposition 5.3, according to which L is consistent if
and only if L1 is consistent. Obtain a system L′

1 by replacing in L1 the inequality
p1 < p2 by p1 � p2. The linear programming problem, denoted P, is to maximize
p2 − p1 according to the constraints expressed by L′

1. Since L′
1 is homogenous,

it always has a solution where p1 = p2. Since the solution polytope of L′
1 is

bounded, P always has an optimal solution. Obviously, if the optimal solution
yields p1 = p2, then L1 is not consistent and therefore, by Theorem 5.2, a DH-
PRA that recognizes L does not exist. Otherwise, if the optimal solution yields
p1 < p2, then L1 is consistent.

Automata derived from the free semilattice P(A). Assume L1 is consistent,
so we are able to obtain a solution of P where p1 < p2. Given any expression
Z of variables from L1, let P(Z) - the value which is assigned to Z by solving
P. First, we use the obtained solution to construct probabilistic automata Ai,
1 � i � |A|. Those automata are not probabilistic reversible. Similarly as in the
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“decide-and-halt” model, the constructed automata have accepting, rejecting
and non-halting states. Any input word is appended by the end-marker $. The
initial end-marker # is not used for those automata themselves. Any automaton
Ai is a tuple (Qi, A ∪ {$}, si, δi), where Qi is a set of states, si - an initial
state and δi - a transition function Q × A × Q −→ [0, 1], so δi(q, a, q′) is a
probability of transit from q to q′ on reading input letter a. Ai is constructed
as follows: (1) Take the deterministic automaton (P(A), A, ∅, · ), remove all the
states at level greater or equal to i. The remaining states are defined to be
non-halting. The state ∅ is initial, it is the only state of Ai at level 0. For any
a in A and state s at levels {0, . . . , i − 2}, δi(s, a, s· a) = 1. For any state s
at level i − 1 and any a in s, δi(s, a, s) = 1; (2) For any non-halting state s
at levels {0, . . . , i − 2}, add a rejecting state (s$)rej . Let δi(s, $, (s$)rej) = 1;
(3) For any state s at level i − 1, add |A| − |s| + 1 accepting states (sa)acc,
a ∈ (A \ s)∪{$}. Also add |A|− |s|+ 1 rejecting states (sa)rej , a ∈ (A \ s)∪{$};
(4) If a ∈ A \ s, any element s′a in (sσ−1)a defines the same variable xs,a in
the system of linear inequalities (σ is defined in Section 2). Let cs,a = B(xs,a).
Any element s′ in sσ−1 defines the same variable ys. Let ds = B(ys); (5) Define
missing transitions for the states at level i− 1. For any state s at level i− 1 and
any a in A \ s, let ts,a = δi(s, a, (sa)acc) = cs,a|A| and δi(s, a, (sa)rej) = 1− ts,a.
Let vs = δi(s, $, (s$)acc) = ds|A| and δi(s, $, (s$)rej) = 1 − vs; (6) The formally
needed transitions outgoing the halting states for now are left undefined.

Consider an automaton A (Figure 2), which with the same probability 1/|A|
executes any of the automataA1, ...,A|A| (i.e., it uses the initial end-marker # to
transit to initial states of any of those automata). By construction ofA1, ...,A|A|,
the automaton A accepts any word u ∈ A∗ with probability P(L(uτ)). Since
for any word u ∈ L, P(L(uτ)) 	 P(p2), and for any word w /∈ L, P(L(wτ)) �
P(p1), the automaton A recognizes the language L.

{}

acc acc acc acc

$,v{}

a,t{},a

b,t{},b

c,t{},c {}

{a} {b} {c}

acc acc acc acc acc acc acc acc acc

a b c

a b c

$,v{a}

b,t{a},b

c,t{a},c

$,v{b}

a,t{b},a

c,t{b},c

$,v{c}

a,t{c},a

b,t{c},b

{}

{a} {b} {c}

{a,b} {a,c} {b,c}

acc acc acc acc acc acc

a b c

a,b a,c b,c

a b c

b

c a c a

b

c,t{a,b}c

$,v{a,b}

b,t{a,c}b

$,v{a,c}

a,t{b,c}a

$,v{b,c}

#,1/3

#,1/3

#,1/3

Fig. 2. An automaton A over alphabet {a, b, c}, the rejecting states are not shown
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Construction of a DH-PRA. In order to construct a DH-PRA recognizing L, it
remains to demonstrate that any of the automata A1, ...,A|A| may be simulated
by some DH probabilistic reversible automata, that is, for any automaton Ai,
it is possible to construct a sequence of DH-PRA Si,n, where n 	 1, such that
pw,Si,n converges uniformly to pw,Ai on A∗ as n → ∞. An automaton Ai =
(Qi, A∪{$}, si, δi) is used to construct a DH-PRA Si,n = (Qi,n, A∪{$}, si, δi,n)
as described next. Initially Qi,n is empty. (1) For any non-halting state s at level
j, 0 � j � i − 1, supplement Si,n with non-halting states denoted sk, where
1 � k � nj; (2) For any non-halting state s at level j, 0 � j < i− 1, supplement
Si,n with rejecting states (s$)rej,k, where 1 � k � nj ; (3) For any non-halting
state s at level i − 1, accepting state (sa)acc and rejecting state (sa)rej , where
a ∈ (A \ s) ∪ {$}, supplement Si,n with accepting states (sa)acc,k and rejecting
states (sa)rej,k, where 1 � k � ni−1.

It remains to define the transitions. For any non-halting state s of Ai at level
j, 1 � j � i − 1, the states in {sk} are grouped into nj−1 disjoint subsets
with n states in each, so that any state in {sk} may be denoted as sl,m, where
1 � l � nj−1 and 1 � m � n. For any letter a in A, consider all pairs of
non-halting states s, t of Ai such that s �= t and δi(s, a, t) = 1. For any fixed
k and any l and m, 1 � l,m � n, define δi,n(sk, a, sk) = δi,n(sk, a, tk,m) =
δi,n(tk,m, a, sk) = δi,n(tk,l, a, tk,m) = 1/(n+1). For any non-halting state s of Ai

at level j, 0 � j < i−1, δi,n(sk, $, (s$)rej,k) = 1, δi,n((s$)rej,k, $, sk) = 1. For the
same (s$)rej,k and any other letter b in A∪{$}, define δi,n((s$)rej,k, b, (s$)rej,k) =
1. For any non-halting state s of Ai at level i − 1 and a ∈ (A \ s) ∪ {$}, the
transitions induced by a among sk, (sa)acc,k, (sa)rej,k are defined by the matrix⎛⎝ 0 0 1
r1 r2 0
r2 r1 0

⎞⎠, where r1 = δi(s, a, (sa)acc), r2 = δi(s, a, (sa)rej). The first, second

and third rows and columns are indexed by sk, (sa)acc,k, (sa)rej,k, respectively.
Note that r1 + r2 = 1. For the same (sa)acc,k, (sa)rej,k and any other letter b
in A∪ {$}, define δi,n((sa)acc,k, b, (sa)acc,k) = δi,n((sa)rej,k, b, (sa)rej,k) = 1. We
have defined all the non-zero transitions for Si,n. By construction, the transition
matrices induced by any letter a in A ∪ {$} are doubly stochastic.

Lemma 6.1. For any i, 1 � i � |A|, pw,Si,n converges uniformly to pw,Ai on
A∗ as n→∞.

Now it is possible to construct a DH-PRA S = (Q,A ∪ {#, $}, s, δ), which with
the same probability 1/|A| executes the automata S1,n, . . . ,S|A|,n. The set of
states Q is a disjoint union of Q1, ..., Q|A|. Take the initial state si of any Si,n as
the initial state s. For any a ∈ A∪{$} and q1, q2 ∈ Qi, δ(q1, a, q2) = δi(q1, a, q2).
For any initial states si and sj of Si,n and Sj,n, δ(si,#, sj) = 1/|A|. For any
other state q, δ(q,#, q) = 1. So the transition matrices of S induced by any
letter are doubly stochastic. By Lemma 6.1, S recognizes L if n is sufficiently
large. Hence we have established one of the main results of this section:

Theorem 6.2. Suppose L is an R1 language. If the linear system L is consis-
tent, then L can be recognized by a DH-PRA.
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Therefore, if the linear system L is consistent, then L can be recognized by a MM-
BQFA as well. Moreover, since all of the transition matrices of the constructed
DH-PRA are also unitary stochastic, by [7, Theorem 5.2] L can be recognized
by an EQFA.

Corollary 6.3. The class L(MM-BQFA) is not closed under union and inter-
section. Moreover, L(MM-BQFA) � ER.

Proof. See the language L = {ab,bac} in Example 5.1; the languages {ab} and
{bac} can be recognized since their systems are consistent, while the system
L(L) is inconsistent. 
�

The construction of MM-QFA for R1 languages has some peculiarities which
have to be addressed separately. Specifically, there exist semilattice languages
that MM-QFA do not recognize with probability 1− ε [2, Theorem 2] and there-
fore they can’t simulate with the same accepting probabilities the automata
A1, ...,A|A|. Nevertheless, since the matrices used in the construction of DH-
PRA are unitary stochastic, a modified construction is still possible.

Theorem 6.4. Suppose L is an R1 language. If the linear system L is consis-
tent, then L can be recognized by a MM-QFA.

In summary, Theorems 5.2, 6.2 and 6.4 imply that an R1 language L can be
recognized by MM-QFA if and only if the linear system L(L) is consistent. MM-
QFA, DH-PRA, EQFA and MM-BQFA recognize exactly the sameR1 languages.

7 “Forbidden Constructions”

In [3, Theorem 4.3], Ķikusts has proposed “forbidden constructions” for MM-
QFA; any regular language whose minimal deterministic finite automaton con-
tains any of these constructions cannot be recognized by MM-QFA. It is actually
implied by Theorem 3.1 that the same is true for MM-BQFA and other “decide-
and-halt” models from Section 4. Also, by Theorem 4.1 any language that is
recognized by a MM-BQFA is contained in ER. Therefore it is legitimate to
ask whether all the ER languages that do not contain any of the “forbidden
constructions” can be recognized by MM-BQFA. The answer to this question is
negative.

Theorem 7.1. There exists an ER language that does not contain any of the
“forbidden constructions” and still cannot be recognized by MM-BQFA.

Proof. It is sufficient to indicate a language in R1 which satisfies the required
properties and for which the system of linear inequalities is inconsistent. Such
a language is L = {aedbc, beca, beda, bedac, eacb, eacbd, eadbc, ebca}
over alphabet A = {a, b, c, d, e}. 
�
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8 Conclusion

In the paper we show which R1 languages can be recognized by “decide-and-
halt” quantum automata. It is expected that these results can be first generalized
to include any R-trivial language, and finally, any language in ER, thus obtain-
ing the solution of the language class problem for MM-QFA. To apply the same
approach for R-trivial languages, one would need to find convenient sets of finite
R-trivial and J -trivial monoids that generate the varieties R and J and a func-
tion resembling θ (in the proof of Theorem 5.2). That is a subject for further
research.
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Abstract. Modal logics are widely used in computer science. The com-
plexity of their satisfiability problems has been an active field of research
since the 1970s. We prove that even very “simple” modal logics can be
undecidable: We show that there is an undecidable unimodal logic that
can be obtained by restricting the allowed models with an equality-free
first-order formula in which only universal quantifiers appear.

Keywords: modal logic, satisfiability problems, decidability.

1 Introduction

Modal logics are widely used in many areas of computer science. See, for example,
[LR86, HMT88, FHJ02, Moo03, BG04, ABvdT10]. The complexity of modal
satisfiability problems has been an active field of research since Ladner’s work
in the 1970s [Lad77]. Early work focused on the complexity of single logics, but
more recent work has focused on handling the computability and complexity for
an infinite number of logics, see, e.g., [Fin85, DK98, AvBN98, HS08, HSS10].

Our ultimate goal is to classify the complexity of “all” modal logics. We
are particularly interested in elementary modal logics, i.e., modal logics whose
models are defined by a first-order formula, since modal logics used in practice
are often defined in this way. An important first step towards classifying the
complexity of all elementary modal logics is to determine which of them are
decidable. The goal of this paper is to find a “simplest” undecidable elementary
modal logic.

A particularly interesting simple class of elementary modal logics are the
universal elementary modal logics, in which the class of models is defined by a
universal first-order formula. Not only do many common modal logics belong
to this class, it is also a class that is on the borderline of being decidable. In
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particular, it is known that many universal Horn elementary unimodal logics
(i.e., logics whose frame classes can be described by a universal Horn formula
and that use a single modal operator) are in PSPACE, and it is conjectured
that all these logics are decidable [HS08]. On the other hand, it is known that
there is a universal elementary unimodal logic such that global satisfiability, i.e.,
satisfiability in all worlds in a model, is undecidable [Hem96].

To show undecidability for modal logics, we typically make models look like
a grid, and need a way to access all the worlds in the grid as well as the two
direct successors of a world. An early example of this is that 2-dimensional
temporal logic on N×N with modal operators©u and©r that access the direct
“up” and “right” successors of a world, and �u and �r that access all worlds
that are above or to the right of the current world is undecidable [Har83]. The
undecidability also holds if �u and �r are the only modal operators [Spa90].
Other examples of undecidable modal logics include logics of knowledge and
time [HV89, LR86, Spa90], logics allowing identification of worlds [BS93, GG93],
and most products of transitive modal logics [GKWZ05]. All these logics are
multimodal and certainly not universal. As will be explained in Section 5.1,
universal first-order formulas are not enough to enforce a grid-like structure.
Still, as mentioned above, there exists a first-order universal formula such that
global satisfiability for unimodal logics is undecidable [Hem96]. Section 4 will
explain the idea behind the construction from [Hem96] and why this construction
cannot be used to show that satisfiability for a universal elementary modal logic
is undecidable.

However, using a more complicated construction, we show that there exists
an undecidable universal elementary unimodal logic. This result holds even if we
are not allowed to use the equality predicate in the first-order universal formula
describing the models. And so we have indeed found a “simplest” undecidable
modal logic in the sense that the syntactical fragment of first-order logic used
to define the allowed frames is very limited. The complete proofs can be found
in the technical report [HS11].

2 Preliminaries

(Uni)modal logic extends propositional logic with a unary operator � (a dual
operator ♦ abbreviates ¬�¬). The modal depth md (ϕ) of a formula ϕ is the
maximal nesting degree of the �-operator in ϕ. A frame F is a directed graph
(W,R), where the vertices are called “worlds.” A model M = (W,R, π) consists
of a frame (W,R) and a function π assigning to each variable the set of worlds
in which x is true. We say that M is based on (W,R). For a class of frames F ,
a model is an F -model if it is based on a frame in F . We often write w ∈ M
instead of w ∈ W . For a world w ∈ M , we define when a formula φ is satisfied
at (or holds at) w in M (written M,w |= φ). If φ is a variable x, then M,w |= φ
if and only if w ∈ π(x). Boolean operators are treated as usual. For the modal
operator, M,w |= �φ iff M,w′ |= φ for all worlds w′ with (w,w′) ∈ R. A modal
formula is globally satisfied in M if it holds at every world of M .
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First-order formulas are a standard way to define classes of frames. The frame
language is the first-order language containing (in addition to Boolean opera-
tors) the binary relation R, interpreted as the edge relation in the graph, and
the equality relation =. The semantics are defined in the obvious way. For ex-
ample, the formula ϕ̂trans := ∀xyz(xRy∧yRz → xRz) is satisfied exactly by the
transitive frames. We use ˆ to denote first-order formulas, e.g., ψ̂ is a first-order
formula, while φ is a modal formula. A frame is a ψ̂-frame if it satisfies ψ̂, a
model M is a ψ̂-model (we write M |= ψ̂) if M is based on a ψ̂-frame. The basic
frame language is the frame language without equality. Following [HS08], K(ψ̂)
is the logic in which a modal formula φ is satisfiable iff there is a ψ̂-model M and
a world w ∈ M such that M,w |= φ. Such logics are called elementary modal
logics. For a first-order formula ψ̂, we study the following problem:

Problem: K(ψ̂)-SAT
Input: A modal formula φ
Question: Is there a ψ̂-model M and a world w ∈M with M,w |= φ?

For example, K(ϕ̂trans)-SAT is the satisfiability problem for the logic K4, i.e.,
the problem of deciding if a modal formula can be satisfied in a model based on
a transitive frame.

3 Main Result

We show that modal satisfiability is undecidable already for a formula over the
basic frame language in which every appearing variable is universally quantified:

Theorem 3.1. There exists a universal first-order formula ϕ̂final over the basic
frame language such that K(ϕ̂final)-SAT is coRE-complete.

Since satisfiability for elementary modal logics can be phrased as the negation
of a first-order implication (see, e.g., [BdRV01, Lemma 6.32]), the problem is in
coRE. It thus remains to construct ϕ̂final such that K(ϕ̂final)-SAT is coRE-hard.
As a direct corollary of the above theorem, we also obtain the following result:
The uniform satisfiability problem, where both the modal and the first-order
formula are given in the input, is coRE-complete.

4 Relation with Previous Work

The result from the literature closest to ours is [Hem96, Theorem 3.2], which
shows coRE-hardness of global modal satisfiability for the class of frames de-
fined by the following first-order universal formula (we omit quantification from
first-order formulas; in this paper first-order variables are always universally
quantified):

((xRy1 ∧ xRy2 ∧ xRy3)→ ((y1 = y2) ∨ (y1 = y3) ∨ (y2 = y3))) ∧⎛⎝ ∧
1≤i≤4

(xRyi ∧ yiRzi) →
∨

1≤i<j≤4

(zi = zj)

⎞⎠ .
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We strengthen the above result in several ways: We prove undecidability al-
ready for the (local) satisfiability problem, i.e., given a modal formula ϕ, decide
whether there is a model and some world in it that satisfies ϕ. Satisfiability is
often much easier than global satisfiability: In the above example from [Hem96],
satisfiability is in NP, while global satisfiability is undecidable. Intuitively, prov-
ing undecidability of the global satisfiability problem by encoding the grid is
easier than undecidability for the local problem due to the following: A key
property of the grid is that every world in a model has exactly two successors
reachable in one step, and three worlds reachable in two steps. Clearly, enforcing
the existence of successors is impossible using only universally quantified for-
mulas. With a modal formula however, requiring two direct successors can be
enforced easily using ♦u∧♦u. Requiring this formula to globally hold in a model
hence enforces the grid structure relatively easily. In the satisfiability problem
however, there is no way to require this formula to hold globally. This is the
main reason why the global satisfiability problem allows us to express “positive”
conditions (e.g., existence of two successors) more easily than the satisfiability
problem.

In our proof, we employ some techniques from [Hem96]. In particular, our
first step establishes undecidability of the global satisfiability problem over a
class of frames similar to the one defined by the above formula. However, this
step does much more than simply reproving the result from [Hem96]: The class
of frames we construct here is considerably less restrictive than the one defined
above. One reason for this is that with the more restricted basic frame language
we use, we cannot restrict our frames as strongly as with the above formula
from [Hem96]. More importantly however, we construct a class of frames that is
tailor-made for being able to prove our main result—hardness of satisfiability—
later. A key issue here is that of reflexivity: In contrast to the grid model, our
class includes reflexive frames—in fact, the reflexive frames are those which later
allow us to reduce the global satisfiability problem to the satisfiability problem.
In particular, directly reducing global satisfiability for the class of frames defined
by the formula above to satisfiability for a class of frames defined by a universal
first-order formula over the basic frame language does not appear to be easier
than our approach.

Technically, in addition to our first-order formulas being more complex than
those used in [Hem96], a main difference with [Hem96] is the use of what we
call the abstraction of a model: Essentially, our first-order formulas enforce the
relevant conditions of the grid not in a model M itself, but in a model M/∼
obtained from M by compressing cliques of worlds into a single world. Similar
techniques were used in [Spa90, Spa93, RZ01, GKWZ05].

5 Proof of the Main Result

5.1 Global Satisfiability in the Grid Model

We prove coRE-hardness by a reduction from the global grid satisfiability prob-
lem: The grid frame has world set N × N, and the accessibility relation
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R = {((i, j), (i + 1, j)), ((i, j), (i+ 1, j)) | i, j ∈ N}. A grid model is a model
based on the grid frame. The global grid satisfiability problem is the following:

Problem: Global-Grid-Sat
Input: A modal formula ψ
Question: Is there a grid-model M that globally satisfies ψ?

In [Hem96], the following theorem was proven:

Theorem 5.1. Global-Grid-Sat is coRE-hard, even restricted to inputs ψ with
md (ψ) ≤ 1.

Our proof forces models to be “essentially grid-like.” However, universal first-
order formulas are clearly not expressive enough to accomplish this: It is easy
to see that if F ′ is a subframe of a frame F (i.e., an induced subgraph), then
F ′ satisfies every universal first-order formula that F satisfies. In fact, universal
first-order formulas with equality can express exactly the “forbidden subgraph
properties.” Hence with equality, we can express grid features as “each world
has at most two direct successors,” using the formula (xRy1 ∧ xRy2 ∧ xRy3)→
((y1 = y2) ∨ (y1 = y3) ∨ (y2 = y3)). As mentioned in Section 4, this formula was
used in the proof of [Hem96, Theorem 3.2].

As mentioned above, requiring “positive” conditions, e.g., that every world
has direct successors with certain properties, is reasonably easy in the global
satisfiability setting, but considerably more difficult in the local setting. Further,
even the above property of having at most two distinct successors cannot be
expressed by a universal formula in the basic (equality-free) frame language:
It is easy to see that no such formula can distinguish the singleton with two
successors from the singleton with three successors. Hence, to simulate the grid,
we exploit the interplay between the first-order and the modal aspect of the
satisfiability problem. The main ingredients to our proof are the following:

1. To circumvent having to use the equality predicate, we use a first-order
formula similar to the one above, except that instead of requiring yi = yj ,
we demand that there is a symmetric edge between these worlds with the
first-order formula (yiRyj)∧(yjRyi). We then ensure that the relation x ∼ y
(“there is a symmetric edge between x and y”) is an equivalence relation.
We then “abstract” modal models to ∼-equivalence classes, which allows
us to “simulate” equality in the basic frame language. On the abstraction
we can then express all required “forbidden subgraph” properties, since as
mentioned above, these can be expressed using universal first-order formulas
with equality.

2. To ensure that this abstraction is sound, we use modal formulas to ensure
that the relation respects propositional assignments: For the relevant vari-
ables, ∼-equivalent worlds will have the same valuation. This allows us to
regard equivalence classes as single worlds in the abstracted model.

3. For the grid-structure, it remains to express the “positive” properties of the
grid, for example that every world indeed has two distinct successors. While
existence of successor worlds can be required with the modal operator ♦
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(which in this step of the proof we can use “globally” as we still only deal
with the global satisfiability problem), we need to ensure that there exist
∼-inequivalent successors—i.e., successors still present in the abstraction.

4. The main issue is to express the global nature of Global-Grid-Sat: The for-
mula ψ is required to globally hold in the grid, whereas modal satisfiability is
an existential property. To solve this, we force the existence of a “universal”
world wu that is connected to every other world. In wu, requiring ψ to hold
globally can be expressed with the (local) � operator. This part of the proof
crucially relies on features of the class of models considered in the first part.

5.2 Expressing the Grid: Universal First-Order Aspects

Following the strategy outlined above, we start by defining a set of universal first-
order formulas that force the “abstraction” of a model to obey some essential
grid properties. As mentioned above, we use x ∼ y to express that there is a
symmetric edge from x to y (the frame will always be clear from context). We
also use x ∼ y as an abbreviation for (xRy ∧ yRx) in formulas.

Definition 5.2. Let ϕ̂1-step be the universal first-order formula

(xRy1 ∧ xRy2 ∧ xRy3)→

⎛⎝ ∨
1≤i≤3

(x ∼ yi) ∨
∨

1≤i<j≤3

(yi ∼ yj)

⎞⎠ .

This expresses that in the grid, each world has only two distinct successors. When
reading ∼ as equality, the formula exactly captures this requirement. Similarly,
we enforce another important grid feature: While each world has two distinct
successors, say y1 and y2, and each of these again has two distinct successors,
say z1

1 , z1
2 , z2

1 and z2
2 , each world can reach only three distinct worlds in two

steps. Hence, two of the zi
j must coincide. This is expressed as follows:

Definition 5.3. Let ϕ̂2-step be the universal first-order formula⎛⎝ ∧
1≤i≤4

(xRyi ∧ yiRzi)

⎞⎠→
⎛⎝ ∨

1≤i≤4

((x ∼ yi) ∨ (yi ∼ zi)) ∨
∨

1≤i<j≤4

(zi ∼ zj)

⎞⎠ .

When reading ∼ as equality, this formula states that if z1, z2, z3, z4 are worlds
reachable from x via intermediate worlds yi (different from both x and zi), then
two of the zi coincide. The formulas introduced up to now closely mirror the
formulas in [Hem96]. The major differences and additions follow now.

Definition 5.4. Let ϕ̂∼
eq be the first-order formula(

(x ∼ y) ∧ yRz)→ xRz
)
∧
(
(x ∼ y) ∧ zRy)→ zRx

)
.

This formula ensures that ∼-equivalent worlds have the exact same in- and
outgoing edges, hence it forces∼ to be an equivalence relation in reflexive models.
The conjunction of the formulas above combines the first-order aspects of the
grid that we can force with universal formulas over the basic frame language:

Definition 5.5. Let ϕ̂grid := ϕ̂1-step ∧ ϕ̂2-step ∧ ϕ̂∼
eq.
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5.3 Properties of Abstracted Frames

We now formally define abstractions of frames, which as mentioned before are
obtained by compressing ∼-equivalence classes into a single world.

Definition 5.6. For a reflexive frame F = (W,R), where F |= ϕ̂∼
eq, we define

the abstraction of F , denoted with F/∼, to be the frame (W/∼,R/∼) , where W/∼
is the set of ∼-equivalence classes of W , and [w]R/∼[w′] if and only if wRw′.

The relation R/∼ above is well-defined, since if w ∼ w′ and ŵ ∼ ŵ′, then wRŵ
implies w′Rŵ, and this implies w′Rŵ′ (by ϕ̂∼

eq). The following lemma summarizes
the features of abstractions of frames satisfying ϕ̂grid.

Lemma 5.7. If F is a reflexive ϕ̂grid-frame, then F/∼ satisfies the following:

1. F/∼ is reflexive,
2. each world [w] in F/∼ has at most two direct successors different from [w],
3. for each world [w] in F/∼, there are at most three worlds that can be reached

on a path from [w] of length two that does not use any reflexive edge.

There are two main differences between the grid frame and the class of abstrac-
tions of ϕ̂grid-frames: First, worlds in abstractions of ϕ̂grid-frames corresponding
to more than one original world are always reflexive. Second, the class of ϕ̂grid-
frames (and thus the class of its abstractions) is subframe-closed. Essentially,
abstractions of ϕ̂grid-frames can be seen as subframes of the reflexive closure of
the grid frame. Note that reflexivity does not help to prove undecidability for
global satisfiability, but will make it easier to later move to the satisfiability
problem. As mentioned before, we cannot hope to enforce other grid properties
with universal first-order formulas. For the remaining properties, we therefore
use modal formulas and propositional variables.

5.4 Expressing the Grid: Modal Aspects

In the formula ϕ̂grid, we have expressed the universal first-order properties of
the grid frame. The second part of our abstraction process is the valuation
of the propositional variables. We use the interplay between modal formulas and
the frame properties ensured in the previous section to address the following
issues:

– We ensure that the abstraction is “modally sound.” The main issue is forcing
the relevant variables to have the same value in ∼-equivalent worlds. This
gives well-defined truth values for the abstraction, and ensures that truth of
modal formulas is invariant under abstraction.

– The abstractions constructed in the previous section are necessarily reflexive.
To simulate the (non-reflexive) grid, we replace the �ψ-operator with one
that only requires ψ to be true in the successors w′ �= w of a world w.

– We have to enforce the “positive” properties of the grid frame, i.e., that
every world in fact does have two distinct successors.



A Universally Defined Undecidable Unimodal Logic 371

Our abstraction does not take into account all variables, but only a subset
denoted with P—this will contain all variables appearing in the input formula
ψ for the Global-Grid-Sat problem that we will reduce from.

Definition 5.8. Let P be a set of propositional variables, and let M = (W,R, π)
be a reflexive ϕ̂∼

eq-model. We define the model M/∼ as

M/∼ := (W/∼,R/∼, π/∼) ,

where the assignment π/∼ makes a variable p ∈ P true in an equivalence class [w]
if and only if p is true in all elements of [w], and lets all propositional variables
not in P be false everywhere. We call M/∼ the abstraction of M .

We do not make P explicit, it will always be clear from the context. Later, we
only consider models where the truth value of variables in P does not depend
on the representative of a class [w]. We say that ∼ respects P in a model M if
w ∼ w′ implies that each variable p ∈ P is true in w iff it is true in w′. We often
omit M if clear from the context. This property implies that the abstraction is
indeed sound, i.e., preserves truth of all modal formulas—at least for reflexive
models that also satisfy the first-order formula ϕ̂∼

eq:

Lemma 5.9. Let P be a set of propositional variables, let M be a reflexive ϕ̂∼
eq-

model such that ∼ respects P in M . Then for all w ∈W, and all modal formulas
ψ with VAR(ψ) ⊆ P , M,w |= ψ if and only if M/∼, [w] |= ψ.

We therefore obtain the following: If M is a reflexive modal model that satisfies
ϕ̂grid and in which∼ respects P , then its abstraction is a subframe of the reflexive
closure of the grid that satisfies the same formulas ψ as M does (for formulas
ψ with VAR(ψ) ⊆ P ). Therefore, if we can enforce that ∼ respects P , we can
enforce the abstractions of our models to exhibit the “forbidden subgraph”-
features of the grid, without changing the set of satisfied modal formulas. To
enforce that ∼ respects P , we define the following:

Definition 5.10. For a finite set P of propositional variables, define ψP
resp as

ψP
resp =

∧7
d=0

∧
p∈P ((d8 = d)→

�((d8 = d) ∨ (d8 = (d + 2) mod 8) ∨ (d8 = (d + 3) mod 8))
∧ (p→ �((d8 = d)→ p))
∧ (p→ �((d8 = d)→ p)))

Here d8 is a variable over the natural numbers 0, . . . , 7. This obviously can be
represented by three propositional variables da

8 , db
8, and dc

8 as follows:

d8 = 0↔ (da
8 ∧ db

8 ∧ dc
8), d8 = 1↔ (da

8 ∧ db
8 ∧ dc

8), . . . , d8 = 7↔ (da
8 ∧ db

8 ∧ dc
8).

For a world w ∈ M , with d8(w) we denote the unique value d ∈ {0, . . . , 7}
such that M,w |= (d8 = d). For readability, we write d8 = d for d8 = d mod 8.
We now prove that the formula ψP

resp works as intended, if it is globally satisfied:
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Lemma 5.11. Let P be a finite set of propositional variables, let M be a reflex-
ive ϕ̂grid-model that globally satisfies ψP

resp. Then ∼ respects P ∪ {d8} in M .

From the above and Lemma 5.9 we obtain the following:

Corollary 5.12. Let M be a reflexive ϕ̂∼
eq-model such that M globally satisfies

ψP
resp. Then for all formulas ψ with VAR(ψ) ⊆ P ∪{d8}, and all worlds w ∈M ,

M,w |= ψ if and only if M/∼, [w] |= ψ. In particular, M/∼ globally satisfies ψP
resp.

Using d8 allows reasoning about direct successors of a world w that are not
∼-equivalent to w. We call these non-symmetric successors of w. Similarly, a
non-reflexive successor of w is a direct successor w′ �= w of w. We now force
∼-inequivalent worlds connected with a direct edge to have different d8-values:

Definition 5.13. ψsucc =
7∧

d=0

((d8 = d)→ ♦(d8 = d + 2) ∧ ♦(d8 = d + 3)) .

This expresses that a world w with d8(w) = d has direct successors with d8 = d+
2 and d8 = d+ 3. We later identify “+2”/“+3”-successors with “upper”/“right”
neighbors in the grid. If additionally the model globally satisfies ψP

resp, then from
neither of these successors, the world w is reachable in one step: From ψP

resp, it
follows that all direct successors of the two ones whose existence is forced by
ψsucc have d8-values from {d + 2, d+ 4, d+ 5, d+ 3, d + 5, d+ 6}, none of which
applies to w itself. More generally, every world w′ �= w reachable from w with at
most two steps has a different d8-value than w. In addition, the successors with
d8-values of d + 2 and d + 3 cannot be connected with a direct edge in models
satisfying ψP

resp. Hence, each world has two successors such that all of the three
involved worlds give rise to different equivalence classes in the abstraction.

It follows from the above that in ϕ̂grid-models globally satisfying the formula
ψP

resp, the formula
∧7

d=0((d8 = d) → �((d8 �= d) → ψ)) is true in a world w if
and only if ψ is true in all non-symmetric, non-reflexive successors of w.

5.5 coRE-hardness of Global Satisfiability

We now show coRE-hardness for the global satisfiability problem on reflexive
frames that satisfy ϕ̂grid. In itself, this result is not stronger than what was
already established in [Hem96], except for the fact that our formula only uses
the basic frame language, i.e., does not use equality. However, the real benefit
of this result will become apparent in the next section: The class that we define
here allows us to easily reduce global satisfiability to satisfiability.

In Lemma 5.11, we have seen that if we can ensure that the formula ψP
resp is

globally satisfied in a reflexive ϕ̂grid-model, then ∼ respects P and in this case
Lemma 5.9 tells us that our abstraction is sound, i.e., preserves truth values
of modal formulas. Since the formulas ψP

resp and ψsucc allow us to ensure that
∼ respects P and that every world has two distinct successors as in the grid
frame, we therefore can use the construction from the previous section to prove
coRE-hardness in the case that we are able to enforce ψP

resp ∧ ψsucc globally.
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Recall that Global-Grid-Sat remains coRE-hard when the input is restricted
to formulas ψ with md (ψ) ≤ 1. We therefore only consider such inputs for
Global-Grid-Sat from now on, and define our reduction as follows:

Definition 5.14. Let ψ be an input for Global-Grid-Sat with md (ψ) ≤ 1. Let
P = VAR(ψ), and let g(ψ) be defined inductively as follows:

– If ψ is a variable p, then g(ψ) = p,
– g(¬ψ) = ¬g(ψ),
– g(ψ ∧ ξ) = g(ψ) ∧ g(ξ),
– g(�ψ) =

∧7
d=0((d8 = d)→ �((d8 �= d)→ g(ψ))).

The reduction f is now defined as f(ψ) = g(ψ) ∧ ψP
resp ∧ ψsucc.

The only non-obvious part is the treatment of the �-operator. As argued above,
this choice of g(�ψ) requires ψ to be true in all non-reflexive, non-symmetric
successor worlds of the current one. This is crucial when we consider abstractions:
The non-symmetric successors of a world w in a model M directly correspond
to the non-reflexive successors of the class [w] in the model M/∼.

Theorem 5.15. Let ψ be an instance of Global-Grid-Sat with md (ψ) ≤ 1.
Then ψ is a positive instance of Global-Grid-Sat if and only if f(ψ) is globally
satisfiable on a reflexive ϕ̂grid-model.

Clearly, one can force the models to be reflexive with the universal clause xRx.
However, for later proving undecidability for satisfiability instead of global sat-
isfiability, it is crucial to leave open the possibility of non-reflexive worlds.

5.6 Removing Globalness

Above, we showed hardness for global satisfiability for reflexive ϕ̂grid frames. To
obtain the result for satisfiability, we now express this global quantification with
only the first-order frame language and the modal language.

To do so, we force the existence of a “universal” world wu that has an outgoing
edge to every other world. Since we cannot express this “existential” property
with a universal first-order formula, we proceed as follows: We require that from
every irreflexive world wu, there is an edge to every world w with any incoming
edge at all. This ensures that an irreflexive world wu is universal with respect
to the submodel rooted at wu. Additionally, we require that any world with an
incoming edge is reflexive. Hence if there is an irreflexive world wu, then every
world reachable from wu in any number of steps is connected to wu directly, and
every such world is reflexive. This is achieved with the following formula:

Definition 5.16. ϕ̂univ = (xRy → yRy) ∧ (¬(wuRwu)→ (xRy → wuRy)).

The existence of an irreflexive world wu can easily be enforced with the modal
formula u ∧ �u, where u is a new variable. We then enforce the formula ϕ̂grid

constructed in the previous section only on reflexive worlds, and can thus identify
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the “reflexive part” of a model with a model of the type as considered in the
previous section. In particular, we know that global satisfiability of a formula of
the form f(ψ) on the “reflexive part” of our models is coRE-hard, where f is the
function used in the reduction from Theorem 5.15. We then use the universal
world wu to express the global satisfiability problem with a single �-operator.

We therefore obtain the following theorem—the formula ϕ̂final mentioned in
the theorem is obtained from ϕ̂grid with the above-mentioned elements that
handle the “global” aspect of Global-Grid-Sat.

Theorem 5.17. There exists a universal first-order formula ϕ̂final over the basic
frame language such that K(ϕ̂final)-SAT is coRE-hard.

6 Conclusion

We have constructed an undecidable elementary unimodal logic that is
“simple” with respect to the logic needed to define it. An interesting open ques-
tion, suggested by an anonymous reviewer, is whether there exists an undecidable
unimodal transitive subframe logic. Due to [Fin85], such a logic is not finitely
axiomatizable.

Acknowledgment. We thank the anonymous reviewers for very helpful com-
ments on the paper, including the above-mentioned open question.

References

[ABvdT10] Aucher, G., Boella, G., van der Torre, L.: Privacy policies with modal
logic: The dynamic turn. In: Governatori, G., Sartor, G. (eds.) DEON
2010. LNCS, vol. 6181, pp. 196–213. Springer, Heidelberg (2010)
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Abstract. In the context of designing a scalable overlay network to sup-
port decentralized topic-based pub/sub communication, the Minimum
Topic-Connected Overlay problem (Min-TCO in short) has been inves-
tigated: Given a set of t topics, collection of n users together with the
lists of topics they are interested in, the aim is to connect these users to
a network by a minimum number of edges such that every graph induced
by users interested in a common topic is connected. It is known that Min-
TCO is NP-hard and approximable within O(log t) in polynomial time.

In this paper, we further investigate the problem and some of its
special instances. We give various hardness results for instances where
the number of users interested in a common topic is constant, and also for
the instances where the number of topics in which an user is interested in
is bounded by a constant. Furthermore, we close the gap of hardness of
Min-TCO by showing its LOGAPX -completeness. We also present a few
polynomial-time algorithms for very restricted instances of Min-TCO.

1 Introduction

Recently, the spreading of social networks and other services based on sharing
content allowed the development of many-to-many communication, often sup-
ported by these services. Publishers publish information through a logical chan-
nel that is consumed by subscribed users. This environment is often modeled by
publish/subscribe (pub/sub) systems that can be classified into two categories.
When the channels are associated with a collection of attributes and the mes-
sages are delivered to a subscriber only if their attributes match user-defined
constraints we speak about content-based pub/sub systems. Each channel in
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topic-based pub/sub systems is associated with a single topic and the messages
are distributed to the users via channels by his/her topic selection. There are
numerous implementations of pub/sub systems, for details see [1, 4–6, 18, 19, 21].

In our paper, we focus on the topic-based peer-to-peer pub/sub systems. In
such a system, subscribers interested in a particular topic have to be connected
without the use of intermediate agents (such as servers). Many aspects of such
a system can be studied (see [8, 16]). Minimizing the diameter of the overlay
network can minimize the overall time in which a message is distributed to all
the subscribers. When minimizing the (average) degree of nodes in the network,
the subscribers need to maintain a smaller number of connections. In this paper,
we study the minimization of the overall number of connections in the system.
A small number of connections may be necessary due to maintenance require-
ments or may be helpful since thus information aggregated into single messages
can be broadcasted to the network and thus amortize the head count of otherwise
small messages.

We study here the hardness of Minimum Topic-Connected Overlay (Min-TCO)
that was studied in different scenarios in [2, 8, 14, 15]. In Min-TCO we are given
a collection of users, a set of topics and a user-interest assignment, we want to
connect users in an overlay network G such that all users interested in a com-
mon topic are connected and the overall number of edges in G is minimal. The
hardness of the problem was studied in [8] and [2]. In [8], the inapproximability
by a constant was proved and a logarithmic-factor approximation algorithm was
presented. In [2], lower bound on the approximability of Min-TCO was improved
to Ω(log(n)), where n is the number of users.

Moreover, we focus here on the special instances of Min-TCO. We study the
case where for each topic there is a constant number d of users interested in it.
In [20], an O(d2)-approximation algorithm for such instances is presented. We
also consider the case where the number of topics in which any user is interested
is bounded by a constant. We believe that such restrictions on the instances have
wide practical applications such as when a publisher has a limited number of
slots for users or the user’s application limits the number of topics that he can
follow.

In the study of the general Min-TCO we extend the method presented in [8]
and design an approximation-preserving reduction from instances of the min-
imum hitting set problem to instances of Min-TCO. This reduction does not
only prove a similar lower bound as in [2], but also shows that Min-TCO is
LOGAPX -complete and thus, concerning approximability, equivalent with such
a famous problem as the minimum set cover. As our reduction is not blow-
ing up the number of users interested in a common topic, the reduction is also
an approximation-preserving reduction for the case when the number of users
interested in a common topic is limited to a constant. This shows that the re-
striction of Min-TCO to such special instances is APX -complete.

When the number of topics of Min-TCO is bounded from above by (1+ε(n))−1·
log logn, for ε(n) ≥ 3 log log log n

log log n−3 log log log n (n is the number of users), we present a
polynomial-time algorithm that computes the optimal solution.
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In the study of instances, where the number of topics any user is interested
in is restricted to a constant, we show that, if this number is at most 6, Min-
TCO cannot be approximated within a factor 694/693 in polynomial time unless
P = NP, even if any pair of two users is interested in at most three common
topics.

The paper is organized as follows. Section 2 is devoted to the preliminaries
and a summary of known results. The hardness results for instances of Min-TCO
where we limit the number of users interested in a common topic by a constant
are discussed in Section 3. The results related to the instances of Min-TCO, where
the number of topics that each user is interested in is constant, are presented in
Section 4. Section 5 contains a polynomial-time algorithm that solves Min-TCO
when the number of topics is small. The conclusion is provided in Section 6.

2 Preliminaries

In this section, we define basic notions used throughout the paper. We assume
that the reader is familiar with notions of graph theory. Let G = (V,E) be
an undirected graph, where V is the set of vertices and E is the set of edges. Let
V (G) and E(G) denote the set of vertices and the set of edges of G, respectively.
We denote by E[S] the set of edges of G in the subgraph induced by the vertices
from S ⊆ V , i. e., E[S] = {{u, v} ∈ E | u, v ∈ S}. The graph induced by S ⊆ V
is denoted as G[S] = (S,E[S]). By N [v] we denote the closed neighborhood of
vertex v, i. e., N [v] = {u ∈ V | {u, v} ∈ E}∪{v}. A graph G is called connected,
if for any u1, u� ∈ V , there exists a path (u1, u2, . . . , v�) such that {ui, ui+1} ∈ E,
for all 1 ≤ i < 	.

Let x be an instance of an optimization problem (in this paper, Min-TCO,
Min-VC or Min-HS), then by |x| we denote the size of this instance, i. e., the
number of vertices and topics of an instance of Min-TCO and the number of
elements and sets of an instance of Min-HS. For a set S, |S| denotes the size of
the set, i. e., the number of its elements.

The set of users or nodes of our network is denoted by U = {1, 2, . . . , n}.
The topics are T = {t1, t2, . . . , tm}. Each user subscribes to several topics. This
relation is expressed by the user interest function INT : U → 2T . The set of
all vertices of U interested in a topic t is denoted as Ut. For instance, if user
u ∈ U is interested in topics t1, t3 and t4, then we have INT(u) = {t1, t3, t4}
and u ∈ Ut1 , Ut3 , Ut4 . For a given set of users U , a set of topics T and an interest
function INT, we say that a graph G = (U,E) with E ⊆ {{u, v} | u, v ∈ U ∧u �=
v} is t-topic-connected for t ∈ T if the subgraph G[Ut] is connected. We call the
graph topic-connected if it is t-topic-connected for all topics t ∈ T . Note that
the topic-connectedness property implies that a message published for topic t
is transmitted to all users interested in this topic without using non-interested
users as intermediators.

The most general problem that we study in this paper is called Minimum
Topic Connected Overlay:

Problem 1. Min-TCO is the following optimization problem:
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Input: A set of users U , a set of topics T and user interest function INT : V →
2T .

Feasible solutions: Any set of edges E ⊆ {{u, v} | u, v ∈ U ∧ u �= v} such
that the graph (U,E) is topic-connected.

Costs: Size of E.
Goal: Minimization.

In this paper we study also some of its special instances. We restrict the
number of users that are interested in a common topic, i. e., the size of Ut,
to a constant. We also study the instances where each user is interested in a
constant number of topics. The definitions necessary for these special instances
are summarized in the beginning of the corresponding section.

We refer here to the famous minimum hitting set problem (Min-HS) and min-
imum set cover problem (Min-SC). In Min-HS, we are given a system of sets
S = {S1, . . . , Sm} on n elements X = {x1, . . . , xn} (i. e., Sj ⊆ X). A feasible
solution of this problem is a set H ⊆ X , such that Sj ∩ H �= ∅ for all j. Our
goal is to minimize the size of H . The Min-SC is the dual problem to Min-HS.
In this problem, we are given a system of sets S = {S1, . . . , Sm} on n elements
X = {x1, . . . , xn}, a feasible solution is a set S ⊆ S of sets such that for all i
there exists j such that xi ∈ Sj ∈ S and the goal is the minimization of the size
of S.

There are many modifications and subproblems of the hitting set problem that
are intensively studied. In our paper, we refer to the d-HS problem – a restriction
of Min-HS to instances where |Si| ≤ d for all i.

The Min-HS is equivalent to the Min-SC ([3]), thus all the properties of Min-
SC carry over to Min-HS. Following from these properties, we have LOGAPX -
completeness of Min-HS ([9]) and APX -completeness of d-HS ([17]). There is a
well known d-approximation algorithm for d-HS, it can be approximated with
ratio d − (d−1) ln ln n

ln n ([11]), it is NP-hard to approximate it within a factor
(d − 1 − ε) ([10]) and d-HS is not approximable within a factor better than d
unless the unique game conjecture fails ([13]).

We use the standard definitions from the complexity theory (for details see [12]):

– For NPO problems in the class PTAS, there exists an algorithm that, for
arbitrary ε > 0, produces a solution in polynomial time that is within a factor
(1 + ε) from optimal.

– The NPO problems in the class APX are approximable by some constant-
factor approximation algorithm in polynomial time.

– For NPO problems in the class LOGAPX , there exists a polynomial-time
logarithmic-factor approximation algorithm.

Thus
PTAS ⊆ APX ⊆ LOGAPX .

Definition 1. Let A and B be two NPO minimization problems. Let IA and
IB be the sets of the instances of A and B, respectively. Let SA(x) and SB(y) be
the sets of the feasible solutions and let costA(x) and costB(y) be polynomially
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computable measures of the instances x ∈ IA and y ∈ IB , respectively. We say
that A is AP-reducible to B, if there exist functions f and g and a constant
α > 0 such that:

1. For any x ∈ IA and any ε > 0, f(x, ε) ∈ IB .
2. For any x ∈ IA, for any ε > 0, and any y ∈ SB(f(x, ε)), g(x, y, ε) ∈ SA(x).
3. The functions f and g are computable in polynomial time with respect to the

sizes of instances x and y, for any fixed ε.
4. The time complexity of computing f and g is nonincreasing with ε for all

fixed instances of size |x| and |y|.
5. For any x ∈ IA, for any ε > 0, and for any y ∈ SB(f(x, ε))

costB(y)
min{costB(z) | z ∈ SB(f(x, ε))} ≤ 1 + ε implies

costA(g(x, y, ε))
min{costA(z) | z ∈ SA(x)} ≤ 1 + α · ε.

3 Hardness of Min-TCO When the Number of Users
Interested in a Common Topic Is a Constant

In this whole section, we denote by a triple (U, T, INT) an instance of Min-TCO.
We focus here on the case where the number of users that share a topic t, i. e.,
|Ut|, is bounded. It is easy to see that, if maxt∈T |Ut| ≤ 2, then Min-TCO can
be solved in linear time, because two users sharing a topic t should be directly
connected by an edge, which is the unique minimum solution.

Theorem 1. If maxt∈T |Ut| ≤ 2, then Min-TCO can be solved in linear time.

We extend the methods from [8] and design an AP-reduction from d-HS to
Min-TCO, where maxt∈T |Ut| ≤ d + 1. Due to this reduction and the already
published statements, we directly obtain lower bounds on the approximability
and APX -completeness of these restricted instances of Min-TCO.

Theorem 2. For arbitrary d ≥ 2, there exists an AP-reduction from d-HS to
Min-TCO, where maxt∈T |Ut| ≤ d + 1.

Proof. Let IHS = (X,S) be an instance of d-HS and let ε > 0 be arbitrary.
We omit the subscript in functions costd−HS and costMin−(d+1)−TCO as they are
unambiguous. For the instance IHS, we create an instance ITCO = (U, T, INT) of
Min-TCO with maxt∈T |Ut| ≤ d + 1 with |X |+ k users, where k = |X |2 ·

⌈
1+ε

ε

⌉
,

as follows (the function f in the definition of AP-reduction).

U = X ∪ {pi | pi /∈ X ∧ 1 ≤ i ≤ k},
T = {tiSj

| Sj ∈ S ∧ 1 ≤ i ≤ k},

INT(x) =

{
{tiSj

| x ∈ Sj ∧ Sj ∈ S ∧ 1 ≤ i ≤ k} for x ∈ X
{tiSj

| Sj ∈ S} for x = pi
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Observe that the instance contains k · |S| topics and its size is polynomial
in the size of IHS. The users interested in a topic tiSj

(Sj ∈ S) are exactly the
elements that are members of set Sj in d-HS plus a special user pi (1 ≤ i ≤ k).
Let SolTCO be a feasible solution of Min-TCO on instance ITCO. We partition
the solution into levels. Level i is a set Li of the edges of SolTCO that are incident
with the special user pi. In addition, we denote by L0 the set of edges of SolTCO

that are not incident with any special user. Therefore, SolTCO =
⋃k

i=0 Li and
Li ∩ Lj = ∅ (0 ≤ i < j ≤ k).

We claim that, for any Li (1 ≤ i ≤ k), the set of the non-special users incident
with edges of Li is a feasible solution of the instance IHS of d-HS. This is true
since, if a set Sj ∈ S is not hit, none of the edges {x, pi} (x ∈ Sj) is in Li.
But then the users interested in topic tiSj

are not interconnected as user pi is
disconnected.

Let j be chosen such that Lj is the smallest of all sets Li, for 1 ≤ i ≤ k.
We construct SolHS by picking all the non-special users that are incident to
some edge from Lj (the function g in the definition of AP-reduction). Denote
an optimal solution of d-HS and Min-TCO for IHS and ITCO by OptHS and
OptTCO, respectively.

If we knew OptHS, we would be able to construct a feasible solution of Min-
TCO on ITCO as follows. First, we pick the edges {x, pi}, x ∈ OptHS, for all
special users pi, and include them in the solution. This way, for any topic t ∈
INT(pi), we connect pi to some element of X that is interested in t, too. To
have a feasible solution, we could miss some edges between some elements of
X . So, we pick all the edges between elements from X . The feasible solution of
Min-TCO on ITCO that we obtain has roughly cost

k · cost(OptHS) + |X |2 ≥ cost(OptTCO).

On the other hand, if we replace all levels Li (1 ≤ i ≤ k) by level Lj in
SolTCO, we still have a feasible solution of Min-TCO on ITCO, with cost possibly
smaller. Thus

k · cost(SolHS) ≤ cost(SolTCO).

We use these two inequalities to bound the size of SolHS:

k · cost(SolHS) ≤ cost(SolTCO)
cost(OptTCO)

·
(
k · cost(OptHS) + |X |2

)
and thus

cost(SolHS)
cost(OptHS)

≤ cost(SolTCO)
cost(OptTCO)

·
(

1 +
|X |2
k

)
.

If cost(SolTCO)/cost(OptTCO) ≤ 1 + ε and α := 2, then we have

cost(SolHS)
cost(OptHS)

≤ (1 + ε) ·
(

1 +
|X |2
k

)
≤ (1 + ε) ·

(
1 +

ε

1 + ε

)
= 1 + 2ε.

It is easy to see that the five conditions of Definition 1 are satisfied and thus
we have an AP-reduction. 
�
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Corollary 1. Min-TCO with maxt∈T |Ut| ≤ d is APX -complete for arbitrary
d ≥ 3.

Proof. The APX -hardness follows from the APX -hardness of d-HS ([17]). Due
to [20], Min-TCO under the mentioned constraint is approximable by a factor in
O(d2) and thus it belongs to the class APX .

Corollary 2. For any δ > 0 and polynomial-time α-approximation algorithm
of Min-TCO with maxt∈T |Ut| ≤ d + 1, there exists a polynomial-time (α + δ)-
approximation algorithm of d-HS.

Proof. The approximation algorithm for d-HS would use Theorem 2 with k :=⌈
α·|X|2

δ

⌉
. 
�

Corollary 3. Min-TCO with maxt∈T |Ut| ≤ d (d ≥ 3) is NP-hard to approxi-
mate with a factor (d− 1− ε), for any ε > 0, and, if the unique game conjecture
holds, there is no polynomial-time (d− ε)-approximation algorithm for it.

Proof. Otherwise, the reduction described in the proof of Theorem 2 would im-
ply an approximation algorithm for d-HS with a ratio better than d − 1 and d
respectively. This would directly contradict theorems proven in [10] and [13]. 
�

The following corollary is an improvement of the already known results of [8]
where an O(log |T |)-approximation algorithm is presented, and of [2] where a
lower bound of Ω(log(n)) on the approximability is shown. We close the gap
by designing a reduction that can reduce any problem from class LOGAPX to
Min-TCO that preserves the approximation ratio up to a constant.

Corollary 4. Min-TCO is LOGAPX -complete.

Proof. Min-TCO is in the class LOGAPX since it admits a logarithmic approxi-
mation algorithm as presented in [8]. Our reduction from the proof of Theorem 2
is independent of d and thus an AP-reduction from LOGAPX -complete Min-HS
to Min-TCO. 
�

4 Hardness of Min-TCO When the Number of Connections
of a User Is Constant

It is natural to consider Min-TCO with bounded number of connections per user,
i. e., to bound maxu∈U |INT(u)|, since the number of topics in which one user is
interested in is usually not too large. We show that, sadly, Min-TCO is APX -hard
even if maxu∈U |INT(u)| ≤ 6. To show this, we design a reduction from minimum
vertex cover (Min-VC) to Min-TCO. The minimum vertex cover problem is just
a different name for d-HS with d = 2. For a better presentation, in this section,
we refer to Min-VC instead of 2-HS.

Given a graph G = (V ′, E′) and a positive integer k as an instance of Min-VC
where the goal is to decide whether the given graph has a solution of size at
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most k. We construct an instance of Min-TCO as follows. Let V = V (1)∪V (2) be
the set of vertices, where V (1) = {v(1) | v ∈ V ′} and V (2) = {v(2) | v ∈ V ′}. For
each edge e ∈ E′, we prepare three topics, t(0)e , t

(1)
e and t

(2)
e . The set of topics is

the union of all these topics, i. e., T =
⋃

e∈E′{t(0)e , t
(1)
e , t

(2)
e }. The user interest

function INT is defined as

INT(u(1)) =
⋃

e∈E′[N [u]]

{t(0)e , t(1)e }

INT(u(2)) =
⋃

e∈E′[N [u]]

{t(0)e , t(2)e }.

The following lemma shows the relation between the solutions of the two prob-
lems.

Lemma 1. The instance (V, T, INT) of Min-TCO defined as above has an opti-
mal solution of cost k + 2|E′| if and only if the instance (V ′, E′) of Min-VC has
an optimal solution of cost k.

Moreover, any feasible solution H of (V, T, INT) can be transformed into a
feasible solution of (V ′, E′) of cost at most |H | − 2|E′|.

We use the Min-VC on degree-bounded graphs, which isAPX -hard, to show lower
bounds for our restricted Min-TCO. By the above reduction and the lemma, we
prove the following theorem.

Theorem 3. Min-TCO with maxv∈U |INT(v)| ≤ 6 cannot be approximated
within a factor of 694/693 in polynomial time, unless P = NP, even if |INT(v)∩
INT(u)| ≤ 3 holds for every pair of different users u, v ∈ U .

Proof. We prove the statement by contradiction. Suppose that there exists an
approximation algorithm A for Min-TCO with the above stated restrictions that
has the ratio (1 + δ).

Let G = (V ′, E′) be an instance of Min-VC and let G be cubic and regular
(i. e., each vertex is incident with exactly three edges). We construct an instance
ITCO of Min-TCO as stated above and we apply our algorithm A to it to obtain a
feasible solution SolTCO. From such a solution, by Lemma 1, we create a feasible
solution of the original Min-VC instance SolVC. We denote by OptTCO and OptVC

the optimal solutions of ITCO and G, respectively.
Let d be a constant such that d · cost(OptVC) = 3|V ′|. Since G is cubic and

regular, cost(OptVC) ≥ |E′|/3 = |V ′|/2 and thus d ≤ 6.
Observe that, due to Lemma 1, cost(OptTCO) = cost(OptVC) + 2|E′| =

cost(OptVC) + d · cost(OptVC) and cost(SolTCO) ≥ cost(SolVC) + 2|E′| =
cost(SolVC)+d ·cost(OptVC). These two estimations give us the following bound

cost(SolVC) + d · cost(OptVC)
cost(OptVC) + d · cost(OptVC)

≤ cost(SolTCO)
cost(OptTCO)

≤ 1 + δ.
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The above inequality allows us to bound the ratio of our Min-VC solution
SolVC and the optimal solution OptVC:

cost(SolVC)
cost(OptVC)

≤ (1 + δ) · (d + 1)− d = 1 + δ(d + 1) ≤ 1 + 7δ.

For δ := 1
693 , we obtain a 100

99 -approximation algorithm for Min-VC on 3-
regular graphs which is directly in contradiction with theorem proven in [7]. 
�

Corollary 5. Min-TCO with maxv∈U |INT(v)| ≤ 6 is APX -hard.

Corollary 6. Min-TCO with |INT(v) ∩ INT(u)| ≤ 3, for all users u, v ∈ U , is
APX -hard.

This result is almost tight, the case when |INT(v) ∩ INT(u)| ≤ 2 is still open.
The following theorem shows that Min-TCO with |INT(v) ∩ INT(u)| ≤ 1, for
every pair of distinct users u, v ∈ U , can be solved in linear time.

Theorem 4. Min-TCO can be solved in linear time, if |INT(v) ∩ INT(u)| ≤ 1
holds for every pair of users u, v ∈ U , u �= v.

Proof. We execute the following simple algorithm. First set the solution E := ∅.
Then sequentially, for each topic t, choose its representative v∗ ∈ U (t ∈ INT(v∗))
and add edges {{v∗, u} | u ∈ Ut \ {v∗}} to the solution E. We show that, if
|INT(v) ∩ INT(u)| ≤ 1, for all distinct u, v ∈ U , then the solution E is optimal.

Observe that, in our case, any edge in any feasible solution is present because
of a unique topic. We cannot find an edge e = {u, v} of the solution that belongs
to the subgraphs for two different topics. (Otherwise |INT(v)∩ INT(u)| > 1 and
our assumption would be wrong for the two endpoints of the edge e.) Thus, any
solution consisting of spanning trees for every topic is feasible and optimal. Note
that its size is |T | · (|U | − 1). 
�

Corollary 7. Min-TCO with maxu∈U |INT(u)| ≤ 2 can be solved in linear time.

5 A Polynomial-Time Algorithm for Min-TCO with
Bounded Number of Topics

In this section, we present a simple brute-force algorithm that achieves a polyno-
mial running time when the number of topics is bounded by |T | ≤ log log |U | −
3 log log log |U |.

Theorem 5. The optimal solution of Min-TCO can be computed in polynomial
time if |T | ≤ (1+ε(|U |))−1 ·log log |U |, for a function ε(n) ≥ 3 log log log n

log log n−3 log log log n .

Proof. Let (U, T, INT) be an instance of Min-TCO such that |T | ≤ (1+ε(|U |))−1 ·
log log |U |. We shorten the notation by setting t = |T | and n = |U |.

First observe that, if u, v ∈ U and INT(u) ⊆ INT(v), instead of solving
instance (U, T, INT), we can solve Min-TCO on instance (U \ {u}, T, INT) and
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add to such solution the direct edge {u, v}. Note that u has to be incident with
at least one edge in any solution. Thus, the addition of the edge {u, v} cannot
increase the cost. Moreover, any other user that would be connected to u in
some solution can be also connected to v. Thus, we can remove u, solve the
smaller instance and then add u by a single edge. Such solution is feasible and
its size is unchanged. We say that vertex u is dominated by the vertex v if
INT(u) ⊆ INT(v).

Therefore, before applying our simple algorithm, we remove from the instance
all the users that are dominated by some other user. We denote the set of re-
maining users (i. e., those with incomparable sets of interesting topics) by M

and m = |M | ≤ 2t ≤ (logn)(1+ε(n))−1
.

Our simple algorithm exhaustively searches over all the possible solutions on
instance (M,T, INT) and then reconnects each of the removed users U \M by
a single edge. The transformation to set M and then connection of the removed
users is clearly polynomial. Thus, we only need to show that our exhaustive
search is polynomial.

Observe that the size of the optimal solution is at most t(n − 1) as merged
spanning trees, for all the topics, form a feasible solution. Our algorithm exhaus-
tively searches over all the possible solutions, i. e., it tries every possible set of
i edges for 1 ≤ i ≤ t(m− 1) and verifies the topic-connectivity requirements for
such sets of edges. The verification of each set can be done in polynomial time.
The number of sets it checks can be bounded as follows:

t(m−1)∑
i=1

((m
2

)
i

)
≤

tm∑
i=1

(
m2

i

)
≤ tm ·m2tm

≤ (log n)2·(1+ε(n))−2 log log n·(log n)(1+ε(n))−1

·O(log2 n)

To check a polynomial number of sets, it is sufficient to bound the first factor
by a polynomial, i. e., by at most nc for some c > 0:

(logn)2·(1+ε(n))−2·log log n·(log n)(1+ε(n))−1

≤ nc

2 · (1 + ε(n))−2 · log log2 n · (logn)(1+ε(n))−1
≤ c logn

2 · (1 + ε(n))−2 · log log2 n ≤ c(logn)
ε(n)

1+ε(n)

(log 2− 2 log(1 + ε(n))) + 2 log log logn ≤ ε(n)
1 + ε(n)

· log logn+ log c

If we find a function ε(n) that satisfies the following inequality 1, it would imply
that the inequalities above are satisfied. (Note that 2 log(1 + ε(n)) > 0 when n
tends to infinity.)

log 2 + 2 log log logn ≤ ε(n)
1 + ε(n)

· log logn (1)
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We are now able to estimate the function ε(n).

ε(n) ≥ log 2 + 2 log log logn
log logn− 2 log log log n− log 2

(2)

For a nicer presentation, we use ε(n) ≥ 3 log log log n
log log n−3 log log log n that also satisfies (2).


�

6 Conclusion

In this paper, we have closed the gap in the approximation hardness of Min-
TCO by showing its LOGAPX -completeness. We studied a subproblem of Min-
TCO where the number of users interested in a common topic is bounded by
a constant d. We showed that, if d ≤ 2, the restricted Min-TCO is in P and,
if d ≥ 3, it is APX -complete. The latter allows us to match lower bounds on
approximability of these specially instances that match any lower bound known
for any problem from class APX . Furthermore, we studied instances of Min-TCO
where the number of topics in which a single user is interested in is bounded by
a constant d. We presented a reduction that shows that such instances are APX -
hard for d = 6. In this reduction, any two users have at most three common
topics, thus the reduction shows also that latter restricted Min-TCO is APX -
hard. We also investigated Min-TCO with a bounded number of topics. Here we
presented a polynomial-time algorithm for |T | ≤ (1 + ε(|U |))−1 · log log |U | and
a function ε(n) ≥ 3 log log log n

log log n−3 log log log n .
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Abstract. Signed graphs are graphs with signed edges. They are com-
monly used to represent positive and negative relationships in social
networks. While balance theory and clusterizable graphs deal with signed
graphs, recent empirical studies have proved that they fail to reflect some
current practices in real social networks. In this paper we address the is-
sue of drawing signed graphs and capturing such social interactions. We
relax the previous assumptions to define a drawing as a model in which
every vertex has to be placed closer to its neighbors connected through
a positive edge than its neighbors connected through a negative edge
in the resulting space. Based on this definition, we address the problem
of deciding whether a given signed graph has a drawing in a given �-
dimensional Euclidean space. We focus on the 1-dimensional case, where
we provide a polynomial time algorithm that decides if a given complete
signed graph has a drawing, and provides it when applicable.

Keywords: Signed graphs, graph embedding, graph drawing, structural
balance.

1 Introduction

Social interactions may reflect a wide range of relations with respect to profes-
sional links, similar opinions, friendship. As anything related to feelings they may
well capture opposite social interaction, e.g., like/dislike, love/hate, friend/enemy.
Those social interactions are commonly referred as binary relations. Recent
studies on social networks have shown the real existence of binary relations
[1,3,12,15,13,16]. A natural abstraction of a network that involves binary rela-
tions is a graph with a sign assignment on their edges. Typically, vertices related
by a positive interaction (friend) are connected via a positive edge in the graph.
On the other hand, vertices socially interacting in a negative way (enemies), are
connected via a negative edge in the graph. Such an abstraction is commonly
known as signed graph.

To the best of our knowledge, the idea of signed graphs representing social
networks was introduced in the fifties by Cartwright and Harary in [4]. In that
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(a) (d)(c)(b)

Fig. 1. Signed triangles. This figure depicts every possible combination of positive
edges and negatives edges in a triangle. Dashed lines represent negative edges, while
continuous lines represent positive edges.

seminal work, the notion of balanced signed graph was introduced, and was used
to characterize forbidden patterns for social networks. Informally, a balanced
signed graph is a signed graph that respects the following social rules: my friend’s
friend is my friend, my friend’s enemy is my enemy, my enemy’s friend is my
enemy, and my enemy’s enemy is my friend. Formally, a balanced signed graph
was defined as a complete1 signed graph that does not contain as subgraphs2

neither triangle (b) nor triangle (d) as depicted in Fig. 1. A general definition
of balanced signed graphs says that a signed graph is balanced if all its cycles
are positive. Using that definition, in [7] it was proved that: “A signed graph
is balanced if and only if vertices can be separated into two mutually exclusive
subsets such that each positive edge joins two vertices of the same subset and
each negative edge joins vertices from different subsets.”

Even though, the definition of balanced signed graph intuitively makes sense to
characterize social networks, one only has to consider her own set of relationships
to find out that your friends are not always friends themseleves and this let us
think that real life can hardly be represented by balanced structures. Davis in
[5] gave a second characterization for social networks by introducing the notion
of clusterizable graph. A signed graph is clusterizable if it shows a clustering,
i.e., if there exists a partition of the vertices (may be in more than two subsets)
such that each positive edge connects two vertices of the same subset and each
negative edge connects vertices from different subsets. In the same work, it was
proved that “a given signed graph has a clustering if and only if it contains no
cycle having exactly one negative edge.” Therefore, similar to the definition of
balance for complete signed graphs, when a given signed graph is complete it has
a clustering if and only if it does not contain triangle (b) in Fig. 1 as subgraph.

Balanced signed graphs and clusterizable signed graphs have been used in
various studies about social networks [15,13]. Yet, the recent availability of huge
databases of social networks enabled empirical studies on real data to check if
social structures followed the balance definition [15,16]. Typically, those studies
have been carried out to check the presence or the absence of forbidden triangles
in social structures. The two common conclusions that can be extracted from
those studies are: (i) first, the triangle with only positive edges (triangle (a) in

1 A signed graph is complete if every pair of distinct vertices is connected by a unique
signed edge.

2 Through this work, the subgraph of a given signed graph G is a subgraph of G that
matches the sign assignment.
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Fig. 1) is the most likely triangle to be present in a social structure; (ii) also they
show that the four possible triangles (triangle (a-d) Fig.1) are always present in a
social structure. Consequently, we can arguably conclude that neither balanced
signed graphs nor clusterizable signed graphs fully represent social structures
and let us revisit the representation of social interactions.

Our contribution extends the notion of balanced and clusterizable signed
graphs. We relax the previous definition and consider that a social structure
should merely ensure that each vertex is able to have its friends closer than
its enemies. In other words, if a signed graph is embedded in a metric space,
each vertex should be placed in the resulting space closer to its neighbors con-
nected via a positive edge than to its neighbors connected via a negative edge. In
this paper, we tackle this issue introducing a formal definition of a valid graph
drawing for signed graphs in a Euclidean metric space. Then we address several
questions: (i) for a given signed graph and a given dimension, is such a valid
drawing possible? given signed graph, what is the minimal dimension in which
it can be drawn validly? (ii) in case such a drawing is possible, how can it be
achieved and at which complexity?

The rest of the paper is structured as follows: After formalizing the notion of
a valid drawing for signed graphs in Section 2 and placing them in perspective
with balanced graphs, we briefly describe our contribution. In Section 3, we
show examples of signed graphs without a valid drawing in dimension 1 and 2.
We also introduce the notion of minimal signed graph without a valid drawing.
That notion captures the idea of forbidden patterns in a social structure. We
then focus on dimension 1 in Section 4. We visit the related works in Section 5.
We finally close our work in Section 6 with a discussion about the problems this
work left open.

2 Problem Statement

In this section we present the context of this work, the required definitions and
notations and state the problem. We contextualize our definitions with respect to
balanced graph theory. Finally, we provide a brief overview of our contributions.

Definitions and notations: We use G = (V,E) to denote a graph where vertices
are denoted with pi, i ranges from 1 to n. A signed graph is defined as follows:

Definition 1. A signed graph is a graph G = (V,E) together with a sign as-
signment f : E → {−1,+1} to their edges.

Equivalently, a signed graph can be defined as a graph G together with a bi-
partition of the set of edges E. Using Definition 1, the set of edges E is par-
titioned in E+ = {e ∈ E : f(e) = +1} and E− = {e ∈ E : f(e) = −1},
such that E = E+

⋃
E− and E+

⋂
E− = ∅. In the rest of the work, we use

G = (V,E+
⋃
E−) to denote a signed graph composed by graph G, with E+

and E− as the bipartition of E. Given a signed graph G = (V,E+
⋃
E−), we

define positive and negative neighbors for each vertex in G. Let pi be a vertex in
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G, and Pi = {pj ∈ V : (pi, pj) ∈ E} be the set of neighbors of pi. Let us define
the set of positive neighbors for pi as follows: P+

i := {pj ∈ Pi : (pi, pj) ∈ E+}.
Equivalently, let us define the set of negative neighbors for pi as follows: P−

i :=
{pj ∈ Pi : (pi, pj) ∈ E−}. Therefore, P+

i can be considered as the set of pi’s
friends, while in the same case, vertices in P−

i would represent pi’s enemies.
Let us now define graph drawing. Let G = (V,E) be a graph, not necessarily

signed. D(G) = {ui ∈ R�}i∈{1,2,...,n} is a drawing of G in the 	-dimensional
Euclidean space R� when D(G) is an injection of V in R�.

Since this definition of graph drawing is not sufficient to capture signed graph
for there is no distinction between positive and negative edges, we introduce a
specific definition of valid graph drawing for signed graphs.

Definition 2. Let G = (V,E+
⋃
E−) be a signed graph, and D(G) be a drawing

of G in R�. We say that D(G) is a valid drawing of G if: ∀pi ∈ V ∀pj ∈
P+

i and ∀pk ∈ P−
i d(ui, uj) < d(ui, uk), where d(·, ·) denotes the Euclidean

distance between two elements in R�.

Definition 2 captures the fact that every vertex has to be placed closer to its
positive neighbors than to its negative neighbors. In the case that there exists a
valid drawing of a given signed graph G in R�, we say that G has a valid drawing
in R�, or simply, we say that G has a valid drawing in dimension 	. Otherwise,
we simply say that G is a signed graph without valid drawing in dimension 	. In
this paper, we are interested in a classification problem, aiming at determining
if a given signed graph has a valid drawing in a given R�. Particularly, we focus
in the 1-dimensional case.

Valid drawing versus balanced signed graphs: Balanced signed graphs and clus-
terizable signed graphs are closely related. Indeed, it is straightforward to observe
that if we denote the set of balanced signed graphs with B and the set of clus-
terizable graphs with C, then B is a proper subset of C. That comes from the
characterization of balanced signed graphs as clusterizable signed graphs with
at most two clusters.

On the other hand, if we denote with D� the set of signed graphs that have a
valid drawing in the 	-dimensional Euclidean space. Then, it is also straightfor-
ward to note the fact that D� is a subset of D�′ if 	 ≤ 	′. Hence, there is a chain
of set inclusions of the form D1 ⊂ D2 ⊂ D3 ⊂ · · · ⊂ D� ⊂ · · ·.

In order to place our definition of valid drawing in the context of balanced and
clusterizable signed graphs, we point out the fact that if a graph is clusterizable,
then it has a valid drawing in the Euclidean line. To demonstrate that fact, let
us draw a clusterizable signed graph in the following way: place every vertex of
a cluster within an interval of length d, then every positive edge will have length
at most d. Thereafter, place every pair of clusters at distance at least d′ from
each other, such that d′ > d. Therefore, every negative edge will have length
at least d′ > d and the drawing will be valid. Thus, we can complete the chain
of set inclusions adding clusterizable signed graphs and balanced signed graphs as
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follows: B ⊂ C ⊂ D1 ⊂ D2 ⊂ D3 ⊂ · · · ⊂ D� ⊂ · · ·. Establishing this connection
is important and helps us to put in context the D1 case, our main contribution
in this work.

Contributions: Our first contribution is precisely the definition of a valid drawing
that represents social structures. As far as we know, we are the first to formally
define the notion of valid drawing for signed graphs to express the intuitive
notion of everybody sits closer to its friends than enemies. Consequently, the
classification problem is considered in this setting for the first time as well.

First, we show that some graphs do not have a valid drawing. To this end,
we provide examples of signed graphs without valid drawing in the Euclidean
line and plane. Also, we introduce the concept of minimal signed graph without
a valid drawing in a given 	-dimensional Euclidean space. That definition helps
us to find forbidden patterns when we have to decide whether a given graph has
or not a valid drawing in a given dimension.

Thereafter, we focus on the specific issue of deciding whether a complete signed
graph has a valid drawing in the Euclidean line. We characterize the set of
complete signed graphs with a valid drawing in the line. We provide a polynomial
time algorithm that decides whether a given complete signed graph has or not
a valid drawing in the line. When a given complete signed graph has a valid
drawing in the line, we provide a polynomial time algorithm that constructs one
valid drawing for it.

3 Graphs without Valid Drawing

In this section we present examples of signed graphs without valid drawing in
dimension 1 and 2. Specifically, we present three signed graphs, (resp. two), for
which we prove they do not have a valid drawing in R, (resp. R2). We conclude
this section with the introduction of the concept of minimal signed graph without
valid drawing, and with a discussion about its consequences.

Signed graphs without valid drawing in the line: Let us start presenting the
counterexamples in increasing order with respect to the number of vertices.

Positive square: The first counterexample is a signed graph composed of
four vertices connected in a square of positive edges, while the diagonals are
assigned negative signs. Fig. 2(a) depicts the described signed graph, let us refer
to this signed graph as the positive square.

Positive star: The second counterexample is also a signed graph composed
of four vertices. In this case, there is a central vertex connected with positive
edges to the other three vertices. While, the three other vertices are connected
among them via a triangle of negative edges. Fig. 2(b) shows the described signed
graph. Let us call this second graph the positive star.

Positive triangle: The last counterexample is a signed graph with six ver-
tices, three of them are clustered with positive edges in a central triangle. Each
external vertex, those that are not in the central triangle, is matched via a posi-
tive edge with one corner of the triangle, and connected via a negative edge with
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(a) (c)(b)

Fig. 2. This figure shows signed graphs (a) the positive square, (b) the positive star,
(c) the positive triangle. Dashed lines represent negative edges and continuous lines
represent positive edges.

the other two corners of the triangle. Fig. 2(c) shows precisely the described
signed graph. Let us call this last graph the positive triangle.

Lemma 1. Let G be a signed graph. If G is either the positive square or the
positive star or the positive triangle, then G has not a valid drawing in the
Euclidean line R.

Signed graphs without valid drawing in the plane: In the plane we have found
two signed graphs without valid drawing.

Negative triangle: The negative triangle is a graph of five vertices, three
of them, forming a triangle, being connected by negative edges. The other two
vertices are connected by a negative edge. The other edges are positive. Fig. 3(a)
depicts the negative triangle.

Negative cluster: The negative cluster is a signed graph with seven vertices.
Six vertices out of the seven are connected in a cluster of negative edges. The
seventh vertex, called central vertex, is connected with positive edges with each
of the six vertices in the cluster. Fig. 3(b) depicts the negative cluster.

Lemma 2. Let G be a signed graph. If G is either the negative triangle or the
negative cluster, then G has not a valid drawing in the Euclidean plane R2.

Minimal graphs without valid drawing: An interesting remark about graphs with
valid drawing in a given dimension is the fact that the property of having a
valid drawing in a given dimension is heritable through subgraphs. This can be
stated as follows. Let G be a signed graph. Then, G has no valid drawing in
R� if and only if there exists a subgraph of G that has no valid drawing in R�.
Pushing previous remark to the extreme case when the only subgraph without
valid drawing is the same graph, then we obtain the definition of minimal graph
without valid drawing.

Definition 3. Let G be a signed graph without valid drawing in R�. We say that
G is minimal when every proper subgraph of G has a valid drawing in R�.

At this point, and using Definition 3, we state a complementary problem to the
one stated in Section 2. Let us denoteM� the set of all minimal graphs without
valid drawing in R�. The complementary problem consists in give a complete
characterization of M�. The interest of this problem arises in the search of
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(a) (b)

Fig. 3. This figure shows two signed graphs (a) the negative triangle and (b) the neg-
ative cluster. Dashed lines represent negative edges and continuous lines represent
positive edges.

forbidden patterns in signed graphs such that they have a valid drawing. Since,
the property of having a valid drawing is heritable through subrgaphs. Then, a
signed graph G has not a valid drawing in R� if and only if G does not contain
as subgraph any G′ in M�. Our contribution to the complementary problem
follows.

Theorem 1. Let G1 be the positive square signed graph and G2 be the positive
star signed graph, then {G1, G2} is a subset of M1.

Theorem 2. Let F1 be the negative triangle signed graph and F2 be the cluster
signed graph, then {F1, F2} is a subset of M2.

4 Drawing Signed Graphs in the Line

In this section we focus in the case 	 = 1. We prove that when the signed graph
G is complete, there exists a polynomial time algorithm that determines whether
it has a valid drawing in the line. Moreover, in the case that such a valid drawing
exists, we give a polynomial time algorithm that provides it.

We start by pointing out the fact that any drawing of a given signed graph G
in the Euclidean line implies an ordering on the set of vertices V . Let D(G) be a
drawing of G in the Euclidean line. Then, D(G) is a set of values {u1, u2, . . . , un}
in R, where ui determines the position in the line for vertex pi. The ordering in
which we are interested follows: we say that pi < pj ⇐⇒ ui < uj. W.l.o.g.,
we assume that u1 < u2 < · · · < un. Hence, the implicit ordering on the set of
vertices V given by D(G) is p1 < p2 < · · · < pn.

Given a signed graph G = (V,E+
⋃
E−), and an ordering on the set of vertices

V . We define pi’s adjacencies vector as follows: −→pi = (pi1, pi2, . . . , pin), where
pij = −1 for pj ∈ P−

i , pij = 1 for i = j, pij = 1 for pj ∈ P+
i and pij = 0 for

pipj /∈ E.

Lemma 3. Let G = (V,E+
⋃
E−) be a signed graph. Let p1 < p2 < · · · < pn be

an ordering on the set of vertices V given by a valid drawing of G in R. Then,
for all pi we have that: (i) if pij = −1 and pj < pi then pij′ is either equal to
−1 or 0, ∀ pj′ < pj, and (ii) if pij = −1 and pj > pi then pij′ is either equal
to −1 or 0, ∀ pj′ > pi.
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Proof. The proof is by contradiction. Let us assume that, even if the ordering
on the set of vertices V comes from a valid drawing of G in the line, the first
condition does not happen, i.e., there exists pj′ < pj < pi such that pij′ = 1
and pij = −1. Then, since the ordering comes from a valid drawing of G in the
line, we have that d(pi, pj′) > d(pi, pj), fact that creates a contradiction because
vertices pi and pj′ are connected by a positive edge, while vertices pi and pj

are connected by a negative edge. The proof is equivalent if we assume that the
second condition does not hold.

Let us denote pl−i
the closest smaller negative neighbor of vertex pi defined as

follows: pl−i
is the pi’s neighbor such that pl−i

< pi, pil−i
= −1 and pij is either

equal to 0 or 1 for all pl−i
< pj ≤ pi. Equivalently, let us denote pr−

i
the closest

bigger negative neighbor of vertex pi defined as follows: pr−
i

is the pi’s neighbor
such that pi < pr−

i
, pir−

i
= −1 and pij is equal to 0 or 1 for all pi ≤ pj < pr−

i
.

To complete this definitions, and to be consistent when those definitions are
applied to vertices p1 and pn, we include two artificial vertices p0 and p∞ such
that p0 < p1, pn < p∞, and pi0 = pi∞ = −1 for all vertex pi. Then, pl−1

= p0

and pr−
n

= p∞. We also define pl+i
(resp. pr+

i
) the farthest smaller (resp. bigger)

positive neighbor of vertex pi as the pi’s neighbor such that pl+i
< pi, pil+i

= 1
and pij is equal to −1 or 0 for all pj < pl+i

< pi (resp. pi < pr+
i

, pir+
i

= 1 and
pij is equal to −1 or 0 for all pi < pr+

i
< pj). We observe the fact that, in the

special case when an ordering on the set of vertices V satisfies condition (i) and
(ii), then pl−i

< pl+i
and pr+

i
< pr−

i
. That is an important characteristic in what

follows.

Lemma 4. Let G = (V,E+
⋃
E−) be a signed graph. If there exists an ordering

on the set of vertices V such that for all pi, it is true that:

(i) if pij = −1 and pj < pi then pij′ is either equal to −1 or 0, ∀ pj′ < pj, and
(ii) if pij = −1 and pj > pi then pij′ is either equal to −1 or 0, ∀ pj′ > pi.

then, there exists a valid drawing of G in the line.

Proof. Let G be a signed graph, and p1 < p2 < p3 < · · · < pn be an ordering on
the set of vertices V that satisfies condition (i) and (ii). The proof is constructive,
we assign real values to pi’s position ui, for every i. The construction maintains
the ordering, i.e., two vertices pi and pj in V are placed in the line at ui and uj

respectively, such that if pi < pj then ui < uj .
The fact that the construction follows the ordering and the fact that the order-

ing satisfies condition (i) and (ii) imply that for every vertex every smaller (resp.
bigger) positive neighbor is placed closer than every smaller (resp. bigger) neg-
ative neighbor. This conclusion comes directly from the fact that pl−i

is strictly
smaller than pl+i

and pr−
i

is strictly bigger than pr+
i

, then ui − ul−i
> ui − ul+i

and ur−
i
− ui > ur+

i
− ui.

Now, we give a construction that provides a drawing satisfying also for every
vertex that every smaller (resp. bigger) positive neighbor is placed closer than



396 A.-M. Kermarrec and C. Thraves

Algorithm 1. Construction of a valid drawing based on an ordering such
that conditions (i) and (ii) are satisfied for every vertex
1 initialization
2 Set u

l−1
= 0; Set condition(0) = u1 < u2 < u3 < · · · < un;

3 while i ≤ n do
4 Set ui such that it satisfies conditions condition(j) for 0 ≤ j ≤ i − 1;
5 Set i = i + 1;

6 RETURN {u1, u2, . . . , un};

every bigger (resp. smaller) negative neighbor. In order to satisfy this property,
it is required to assign positions ui such that ui−ul−i

> ur+
i
−ui and ur−

i
−ui >

ui − ul+i
, or equivalently each ui has to satisfy:

ur+
i

+ ul−i
< 2ui < ur−

i
+ ul+i

(1)

If values ui are assigned sequentially from 1 to n following condition (1), then
ui assignment imposes a condition on some uj for pj strictly bigger than pi.
We denote condition(i) the condition imposed by ui’s assignment. Hence the
construction is presented in Algorithm 1.

The proof finishes showing that the set of conditions condition(j) for 0 ≤
j ≤ i − 1 is satisfiable. We prove that last point by contradiction. Assume
there are two conditions that contradict each other, i.e., for some pj < pi such
that ur+

i
= ur−

j
, condition(i) implies ur+

i
< 2ui − ul−i

and condition(j) implies
2uj − ul+j

< ur−
i

, but the assignment produces 2ui − ul−i
< 2uj − ul+j

.
If we have 2ui−ul−i

< 2uj−ul+j
, then also we have 2ui−2uj < ul−i

−ul+j
. On the

other hand, assignment for ui and uj followed condition (1), hence 2ui − 2uj >
ur+

i
+ ul−i

− ur−
j
− ul+j

. Since ur+
i

= ur−
j

, the previous equation is equivalent
to 2ui − 2uj > ul−i

− ul+j
, which generates a contradiction. Then, the set of

conditions condition(j) for 0 ≤ j ≤ i−1 is satisfiable, and Algorithm 1 produces
a proper drawing in the Euclidean line. Therefore, the Lemma is proved.

Until this point, we have characterized the property of having a valid drawing
by the existence of an ordering on the set of vertices such that conditions (i) and
(ii) are satisfied for every vertex. Therefore, determining whether a given signed
graph G has a valid drawing in the Euclidean line is equivalent to determining
if G has an ordering on its set of vertices such that conditions (i) and (ii) are
satisfied for every vertex, in the following we focus on that task. In the sequel,
we work with complete signed graphs. We define G+ the positive graph of a
given signed graph G as the subgraph of G composed by its positive edges. The
positive graph of a given signed graph is not considered as a signed graph.

Lemma 5. Let G be a complete signed graph, and G+ be its positive graph. If
there exists an ordering on the set of vertices V such that conditions (i) and (ii)
are satisfied for every vertex, then G+ is chordal.
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Let us remind you that a chordal graph is a graph where every induced cycle on
four or more vertices has a chord. An ordering p1 < p2 < · · · < pn of vertices
is a perfect elimination ordering of graph G if the neighborhood of each vertex
pi forms a clique in the graph induced by vertices pi, . . . , pn. It is known that a
graph is chordal if and only if there exists perfect elimination ordering on its set
of vertices. (See e.g. [6]).

Lemma 6. Let G be a complete signed graph with more than four vertices and
with a valid drawing in the Euclidean line. Let G+ be G’s positive graph. When
G+ is connected, every perfect elimination ordering on the set of vertices makes
satisfiable conditions (i) and (ii) for every vertex.

In [6], the authors present an algorithm that decides whether a graph is chordal
and computes a perfect elimination ordering in case it exists in time O(n+m).
Therefore, using that algorithm and the previous results stated in this section,
we can decide if a given complete signed graph has a valid drawing and compute
such a drawing in polynomial time.

Theorem 3. Given a complete signed graph G, deciding whether it has a valid
drawing in the Euclidean line can be computed in polynomial time. Furthermore,
if G has a valid drawing in the Euclidean line, computing such a drawing can be
done in polynomial time.

5 Related Work

To the best of our knowledge, the notion of balance of a signed graph is in-
troduced by Harary in [7], where structural results are presented. Thereafter,
Cartwright and Harary applied structural balance theory to social structures,
and they compared it with Heidedr’s theory in [4]. Later, Davis relaxed the
definition of balanced signed graph in [5] to obtain clusterizable graphs, a more
general structure on signed graphs. The aforementioned works represent the the-
oretical basis of clustering and structural balance in signed graphs. On top of
that, we found several other works with interesting contributions to structural
balance theory. Just as an example of them, in [8] Harary and Kabell gave a
polynomial time algorithm that detects balance in signed graphs, whereas in
[9,10] the authors counted balanced signed graphs using either marked graphs
or Pólya enumeration theorem.

The clustering problem on signed graphs is studied by Bansal et al. in [2].
In that work, the authors considered an optimization problem where the set
of vertices of a signed graph has to be partitioned such that the number of
positive edges within clusters plus the number of negative edges between clusters
is maximized. Clusterizable signed graphs defined by Davis, for instance, achieve
the maximum of this value in the total number of edges. Bansal et al. proved
that finding the optimal clustering is NP-hard, and they gave approximation
algorithm that minimizes disagreements and that maximizes agreements.

As far as we know, the closest work to what we have proposed here is [11]
by Kunegis et al. In that work, the authors applied spectral analysis to provide
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heuristics for visualization of signed graphs, and link prediction. The visualiza-
tion proposed is equivalent to the visualization we propose. Nevertheless, their
work is only empirical and applied to 2D visualization, hence our contributions
complement their contributions.

Recently, signed graphs have been used to study social networks. Antal et al. in
[1] studied the dynamic of social networks. The authors studied the evolution of a
social network represented by a signed graph under the dynamic situation when a
link changes its sign if it is part of an imbalanced triangle. The authors proved the
convergence to a balanced state where no imbalanced triangles remain. Leskovec
et al. in [15] studied how binary relations affect the structure of on-line social
networks. The author connected their analysis with structural balance theory
and other structural theories on signed graphs. One of their conclusions says
that structural balance theory captures some common patterns but fails to do
so for some other fundamental observed phenomena. The structure of on-line
social networks is also studied in [16], where the authors study a complete, multi-
relational, large social network of a society consisting of the 300,000 players of a
massive multiplayer on-line game. The authors present an empirical verification
of the structural balance theory. Finally, prediction of signed links based on
balance and status theory is studied by Leskovec et al. in [14]. The authors
prove that signed links can be predicted with high accuracy in on-line social
networks such as Epinions, Slashdot and Wikipedia.

6 Open Problems

This work opens many interesting research directions and this is precisely one of
the strength of this piece of work. A number of general questions remain open
such as: Given a signed graph G, what is the smallest dimension in which it
has a valid drawing? Is it possible to find efficiently a valid drawing in such a
smallest dimension?

More specifically, in the special case of the Euclidean plane, is it possible to
decide in polynomial time whether a given signed graph has a valid drawing and
the compute a drawing? Is it easier when the given signed graph is complete as
well as it is in the case of the Euclidean line? One open question in the case of the
Euclidean line is whether there is a polynomial time algorithm that computes a
valid drawing in the Euclidean line when the given signed graph is not complete?
Similarly when the given signed graph is complete.

Extensions to the problem might go along different directions. For instance,
the metric space can be different, it might not be Euclidean. A more general
question is to study the impact of the metric space, for instance, on the forbidden
patterns. On the other hand, the value assignment to the edges can range in a
larger set of values rather than being binary. The last proposed extension is
interesting since it enables to match more closely recommendation systems with
ratings. In conclusion, even though in this work an important part of the problem
of drawing signed graphs is solved, still there are several open problems to study.
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Submodularity on a Tree:

Unifying L�-Convex and Bisubmodular
Functions

Vladimir Kolmogorov
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Abstract. We introduce a new class of functions that can be minimized
in polynomial time in the value oracle model. These are functions f sat-
isfying f(x) + f(y) ≥ f(x � y) + f(x � y) where the domain of each
variable xi corresponds to nodes of a rooted binary tree, and operations
�,� are defined with respect to this tree. Special cases include previously
studied L�-convex and bisubmodular functions, which can be obtained
with particular choices of trees. We present a polynomial-time algorithm
for minimizing functions in the new class. It combines Murota’s steepest
descent algorithm for L�-convex functions with bisubmodular minimiza-
tion algorithms.

Keywords: Submodularity, L�-convexity, bisubmodularity, Valued Con-
straint Satisfaction Problem (VCSP).

1 Introduction

Let f : D → R be a function of n variables x = (x1, . . . , xn) where xi ∈ Di;
thus D = D1 × . . . × Dn. We call elements of Di labels, and the argument of
f a labeling. Denote V = {1, . . . , n} to be the set of nodes. We will consider
functions f satisfying

f(x) + f(y) ≥ f(x 
 y) + f(x � y) ∀x,y ∈ D (1)

where binary operations 
,� : D × D → D (expressed component-wise via
operations 
,� : Di ×Di → Di) are defined below.

There are several known cases in which function f can be minimized in polyno-
mial time in the value oracle model. The following two cases will be of particular
relevance:

– L�-convex functions1: Di = {0, 1, . . . ,Ki} where Ki ≥ 0 is integer, a 
 b =
�a+b

2 �, a � b = �a+b
2 �. Property (1) is then called discrete midpoint convex-

ity [32].
– Bisubmodular functions: Di = {−1, 0,+1}, a � b = sign(a + b), a 
 b =
|ab|sign(a + b).

1 Pronounced as “L-natural convex”.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 400–411, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Submodularity on a Tree 401

0

1

0

-1 +1

0

1

K

1−K
1+K

K

K

K

(a) (b) (c) (d)

Fig. 1. Examples of trees. Roots are always at the bottom. (a) Illustration of
the definition of a�b, a�b, a∧b and a∨b. (b) A tree for L�-convex functions. (c) A tree
for bisubmodular functions. (d) A tree for which a weakly tree-submodular function
can be minimized efficiently (see section 4).

In this paper we introduce a new class of functions which includes the two
classes above as special cases. We assume that labels in each set Di are nodes of a
tree Ti with a designated root ri ∈ Di. Define a partial order � on Di as follows:
a � b if a is an ancestor of b, i.e. a lies on the path from b to ri (a, b ∈ Di). For
two labels a, b ∈ Di let P [a→ b] be the unique path from a to b in Ti, ρ(a, b) be
the number of edges in this path, and P [a→ b, d] for integer d ≥ 0 be the d-th
node of this path so that P [a→ b, 0] = a and P [a→ b, ρ(a, b)] = b. If d > ρ(a, b)
then we set by definition P [a→ b, d] = b.

With this notation, we can now define a
 b, a� b as the unique pair of labels
satisfying the following two conditions: (1) {a
b, a�b} = {P [a→ b, �d

2�],P [a→
b, �d

2�]} where d = ρ(a, b), and (2) a 
 b � a � b (Figure 1(a)). We call functions
f satisfying condition (1) with such choice of (D,
,�) strongly tree-submodular.
Clearly, if each Ti is a chain with nodes 0, 1, . . . ,K and 0 being the root (Fig-
ure 1(b)) then strong tree-submodularity is equivalent to L�-convexity. Further-
more, if each Ti is the tree shown in Figure 1(c) then strong tree-submodularity
is equivalent to bisubmodularity.

The main result of this paper is the following

Theorem 1. If each tree Ti is binary, i.e. each node has at most two children,
then a strongly tree-submodular function f can be minimized in time polynomial
in n and maxi |Di|.

Weak tree-submodularity. We will also study alternative operations on trees,
which we denote as ∧ and ∨. For labels a, b ∈ Di we define a∧ b as their highest
common ancestor, i.e. the unique node on the path P [a→ b] which is an ancestor
of both a and b. The label a∨b is defined as the unique label on the path P [a→ b]
such that the distance between a and a ∨ b is the same as the distance between
a ∧ b and b (Figure 1(a)).

We say that function f is weakly tree-submodular if it satisfies

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) ∀x,y ∈ D (2)
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We will show that strong tree-submodularity (1) implies weak tree-submodularity
(2), which justifies the terminology. If all trees are chains shown in Figure 1(b)
(Di = {0, 1, . . . ,K} with 0 being the root) then ∧ and ∨ correspond to the stan-
dard operations “meet” and ”join” (min and max) on an integer lattice. It is
well-known that in this case weakly tree-submodular functions can be minimized
in time polynomial in n and K [39,32]. In section 4 we give a slight generalization
of this result; namely, we allow trees shown in Figure 1(d).

1.1 Related Work

Studying operations 〈
,�〉 that give rise to tractable optimization problems
received a considerable attention in the literature. Some known examples of
such operations are reviewed below. For simplicity, we assume that domains Di

(and operations 〈
,�〉) are the same for all nodes: Di = D for some finite set D.

Submodular functions on lattices. The first example that we mention is the
case when D is a distributive lattice and 
,� are the meet and join operations
on this lattice. Functions that satisfy (1) for this choice of D and 
,� are called
submodular functions on D; it is well-known that they can be minimized in
strongly polynomial time [18,37,19].

Recently, researchers considered submodular functions on non-distributive lat-
tices. It is known that a lattice is non-distributive if it contains as a sublattice
either the pentagon N5 or the diamond M3. Krokhin and Larose [27] proved
tractability for the pentagon case, using nested applications of a submodular
minimization algorithm. The case of the diamond was considered by Kuivi-
nen [28], who proved pseudo-polynomiality of the problem. The case of general
non-distributive lattices is still open.

L�-convex functions. The concept of L�-convexity was introduced by Fujishige
and Murota [16] as a variant of L-convexity by Murota [30]. L�-convexity is
equivalent to the combination of submodularity and integral convexity [13] (see
[32] for details).

The fastest known algorithm for minimizing L�-convex functions is the steepest
descent algorithm of Murota [31,32,33]. Murota proved in [33] that algorithm’s
complexity is O(nmin{K,n logK} · SFM(n)) where K = maxi |Di| and SFM(n)
is the complexity of a submodular minimization algorithm for a function with
n variables. The analysis of Kolmogorov and Shioura [22] improved the bound
to O(min{K,n logK} · SFM(n)). In section 2 we review Murota’s algorithm (or
rather its version without scaling that has complexity O(K · SFM(n)).)

Note, the class of L�-convex functions is a subclass of submodular functions
on a totally ordered set D = {0, 1, . . . ,K}.

Bisubmodular functions. Bisubmodular functions were introduced by Chan-
drasekaran and Kabadi as rank functions of (poly-)pseudomatroids [7,21]. Inde-
pendently, Bouchet [3] introduced the concept of Δ-matroids which is equivalent
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to pseudomatroids. Bisubmodular functions and their generalizations have also
been considered by Qi [35], Nakamura [34], Bouchet and Cunningham [4] and
Fujishige [15].

It has been shown that some submodular minimization algorithms can be
generalized to bisubmodular functions. Qi [35] showed the applicability of the
ellipsoid method. Fujishige and Iwata [17] developed a weakly polynomial com-
binatorial algorithm for minimizing bisubmodular functions with complexity
O(n5EO logM) where EO is the number of calls to the evaluation oracle and
M is an upper bound on function values. McCormick and Fujishige [29] pre-
sented a strongly combinatorial version with complexity O(n7EO logn), as well
as a O(n9EO log2 n) fully combinatorial variant that does not use divisions. The
algorithms in [29] can also be applied for minimizing a bisubmodular function
over a signed ring family, i.e. a subset R ⊆ D closed under 
 and �.

Valued constraint satisfaction and multimorphisms. Our paper also fits
into the framework of Valued Constraint Satisfaction Problems (VCSPs) [11].
In this framework we are given a language Γ , i.e. a set of cost functions f :
Dm → R+ ∪ {+∞} where D is a fixed discrete domain and f is a function of
arity m (different functions f ∈ Γ may have different arities). A Γ -instance is
any function f : Dn → R+ ∪ {+∞} that can be expressed as a finite sum of
functions from Γ :

f(x1, . . . , xn) =
∑
t∈T

ft(xi(t,1), . . . , xi(t,mt))

where T is a finite set of terms, ft ∈ Γ is a function of arity mt, and i(t, k) are
indexes in {1, . . . , n}. A finite language Γ is called tractable if any Γ -instance
can be minimized in polynomial time, and NP-hard if this minimization problem
is NP-hard. These definitions are extended to infinite languages Γ as follows: Γ
is called tractable if any finite subset Γ ′ ⊂ Γ is tractable, and NP-hard if there
exists a finite subset Γ ′ ⊂ Γ which is NP-hard.

Classifying the complexity of different languages has been an active research
area. A major open question in this line of research is the Dichotomy Conjec-
ture of Feder and Vardi (formulated for the crisp case), which states that every
constraint language is either tractable or NP-hard [14]. So far such dichotomy
results have been obtained for some special cases, as described below.

A significant progress has been made in the crisp case, i.e. when Γ only
contains functions f : Dm → {0,+∞}. The problem is then called Constraint
Satisfaction (CSP). The dichotomy is known to hold for languages with a 2-
element domain (Schaefer [36]), languages with a 3-element domain (Bulatov [6]),
conservative languages2 (Bulatov [5]), and languages containing a single relation
without sources and sinks (Barto et al. [1]). All dichotomy theorems above have
the following form: if all functions in Γ satisfy a certain condition given by one
or more polymorphisms then the language is tractable, otherwise it is NP-hard.
2 A crisp language Γ is called conservative if it contains all unary cost functions

f : D → {0, +∞} [5]. A general-valued language is called conservative if it contains
all unary cost functions f : D → R+ [23,24,25].
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For general VCSPs the dichotomy has been shown to hold for Boolean lan-
guages, i.e. languages with a 2-element domain (Cohen et al. [11]), conservative
languages (Kolmogorov and Živný [23,24,25], who generalized previous results
by Deineko et al. [12] and Takhanov [38]), and {0, 1}-valued languages with a
4-element domain (Jonsson et al. [20]). In these examples tractable subclasses
are characterized by one or more multimorphisms, which are generalizations of
polymorphisms. A multimorphism of arity k over D is a tuple 〈OP1, . . . , OPk〉
where OPi is an operation Dk → D. Language Γ is said to admit multimorphism
〈OP1, . . . , OPk〉 if every function f ∈ Γ satisfies

f(x1) + . . . + f(xk) ≥ f(OP1(x1, . . . ,xk)) + . . .+ f(OPk(x1, . . . ,xk))

for all labelings x1, . . . ,xk with f(x1) < +∞, . . ., f(xk) < +∞. (The pair of
operations 〈
,�〉 used in (1) is an example of a binary multimorphism.) The
tractable classes mentioned above (for |D| > 2) are characterized by comple-
mentary pairs of STP and MJN multimorphisms [24] (that generalized sym-
metric tournament pair (STP) multimorphisms [10]), and 1-defect chain multi-
morphisms [20] (that generalized tractable weak-tree submodular functions in
section 4 originally introduced in [26]).

To make further progress on classifying complexity of VCSPs, it is important
to study which multimorphisms lead to tractable optimisation problems. Oper-
ations 〈
,�〉 and 〈∧,∨〉 introduced in this paper represent new classes of such
multimorphisms: to our knowledge, previously researchers have not considered
multimorphisms defined on trees.

Combining multimorphisms. Finally, we mention that some constructions,
namely Cartesian products and Malt’stev products, can be used for obtaining new
tractable classes of binary multimoprhisms from existing ones [27]. Note, Krokhin
and Larose [27] formulated these constructions only for lattice multimorphisms
〈
,�〉, but the proof in [27] actually applies to arbitrary binary multimorphisms
〈
,�〉.

2 Steepest Descent Algorithm

It is known that for L�-convex functions local optimality implies global opti-
mality [32]. We start by generalizing this result to strongly tree-submodular
functions. Let us define the following “local” neighborhoods of labeling x ∈ D:

NEIB(x) = {y ∈ D | ρ(x,y) ≤ 1}
INWARD(x) = {y ∈ NEIB(x) | y � x}

OUTWARD(x) = {y ∈ NEIB(x) | y � x}

where u � v means that ui � vi for all i ∈ V , and ρ(x,y) = maxi∈V ρ(xi, yi) is
the l∞-distance between x and y. Clearly, the restriction of f to INWARD(x) is
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a submodular function, and the restriction of f to OUTWARD(x) is bisubmodular
assuming that each tree Ti is binary3.

Proposition 1. Suppose that f(x)= min{f(y)|y∈INWARD(x)}= min{f(y)|y∈
OUTWARD(x)}. Then x is a global minimum of f .

Proof. First, let us prove that f(x) = min{f(y) | y ∈ NEIB(x)}. Let x∗ be a
minimizer of f in NEIB(x), and denote D∗ = {y ∈ D | yi ∈ D∗

i = {xi, x
∗
i }} ⊆

NEIB(x). We treat set D∗
i as a tree with root xi 
 x∗i . Clearly, the restriction

of f to D∗ is an L�-convex function under the induced operations 
, �. It is
known that for L�-convex functions optimality of x in sets {y ∈ D∗ |y � x} and
{y ∈ D∗ |y � x} suffices for optimality of x in D∗ [32, Theorem 7.14], therefore
f(x) ≤ f(x∗). This proves that f(x) = min{f(y) | y ∈ NEIB(x)}.

Let us now prove that x is optimal in D. Suppose not, then there exists
y ∈ D with f(y) < f(x). Among such labelings, let us choose y with the
minimum distance ρ(x,y). We must have y /∈ NEIB(x), so ρ(x,y) ≥ 2. Clearly,
ρ(x,x�y) ≤ ρ(x,y)−1 and ρ(x,x
y) ≤ ρ(x,y)−1. Strong tree-submodularity
and the fact that f(y) < f(x) imply that the cost of at least one of the labelings
x � y, x 
 y is smaller than f(x). This contradicts to the choice of y.

Suppose that each tree Ti is binary. The proposition shows that a greedy tech-
nique for computing a minimizer of f would work. We can start with an arbitrary
labeling x ∈ D, and then apply iteratively the following two steps in some order:

(1) Compute minimizer xin ∈ arg min{f(y) | y ∈ INWARD(x)} by invoking a
submodular minimization algorithm, replace x with xin if f(xin) < f(x).

(2) Compute minimizer xout ∈ arg min{f(y) | y ∈ OUTWARD(x)} by invoking a
bisubmodular minimization algorithm, replace x with xout if f(xout) < f(x).

The algorithm stops if neither step can decrease the cost. Clearly, it terminates
in a finite number of steps and produces an optimal solution. We will now discuss
how to obtain a polynomial number of steps. We denote K = maxi |Di|.

2.1 L�-Convex Case

For L�-convex functions the steepest descent algorithm described above was first
proposed by Murota [31,32,33], except that in step 2 a submodular minimization
algorithm was used. Murota’s algorithm actually computes both of xin and xout

for the same x and then chooses a better one by comparing costs f(xin) and
f(xout). A slight variation was proposed by Kolmogorov and Shioura [22], who
allowed an arbitrary order of steps. Kolmogorov and Shioura also established a
tight bound on the number of steps of the algorithm by proving the following
theorem.
3 If label xi has less than two children in Ti then variable’s domain after restriction

will be a strict subset of {−1, 0, +1}. Therefore, we may need to use a bisubmodular
minimization algorithm over a signed ring familiy R ⊆ {−1, 0, +1}n [29].
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Theorem 2 ([22]). Suppose that each tree Ti is a chain. For a labeling x ∈ D
define

ρ−(x)=min{ρ(x,y)|y∈OPT−[x]}, OPT−[x]=argmin{f(y)|y∈D,y � x} (3a)
ρ+(x)=min{ρ(x,y)|y∈OPT+[x]}, OPT+[x]=argmin{f(y)|y∈D,y � x} (3b)

(a) Applying step (1) or (2) to labeling x∈D does not increase ρ−(x) and ρ+(x).
(b) If ρ−(x) ≥ 1 then applying step (1) to x will decrease ρ−(x) by 1.
(c) If ρ+(x) ≥ 1 then applying step (2) to x will decrease ρ+(x) by 1.

In the beginning of the algorithm we have ρ−(x) ≤ K and ρ+(x) ≤ K, so the
theorem implies that after at most K calls to step (1) and K calls to step (2) we
get ρ−(x) = ρ+(x) = 0. The latter condition means that f(x) = min{f(y) | y ∈
INWARD(x)} = min{f(y) | y ∈ OUTWARD(x)}, and thus, by proposition 1, x is a
global minimum of f .

2.2 General Case

We now show that the bound O(K) on the number of steps is also achievable for
general strongly tree-submodular functions. We will establish it for the following
version of the steepest descent algorithm:

S0 Choose an arbitrary labeling x◦ ∈ D and set x := x◦.
S1 Compute minimizer xin ∈ arg min{f(y) | y ∈ INWARD(x)}. If f(xin) < f(x)

then set x := xin and repeat step S1, otherwise go to step S2.
S2 Compute minimizer xout ∈ arg min{f(y) | y ∈ OUTWARD(x)}. If f(xout) <

f(x) then set x := xout and repeat step S2, otherwise terminate.

Note, one could choose x◦i to be the root of tree Ti for each node i ∈ V , then
step S1 would be redundant.

Theorem 3. (a) Step S1 is performed at most K times. (b) Each step S2 pre-
serves the following property:

f(x) = min{f(y) | y ∈ INWARD(x)} (4)

(c) Step S2 is performed at most K times. (d) Labeling x produced upon termi-
nation of the algorithm is a minimizer of f .

Proof. For a labeling x ∈ D denote D−[x] = {y ∈ D | y � x}. We will treat
domain D−[x] as the collection of chains with roots ri and leaves xi. Let ρ−(x)
be the quantity defined in (3a). There holds

f(x) = min{f(y) | y ∈ INWARD(x)} ⇔ ρ−(x) = 0 (5)

Indeed, this equivalence can be obtained by applying proposition 1 to function
f restricted to D−[x].
(a) When analyzing the first stage of the algorithm, we can assume without
loss of generality that D = D−[x◦], i.e. each tree Ti is a chain with the root
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ri and the leaf x◦i . Indeed, removing the rest of the tree will not affect the
behaviour of steps S1. With such assumption, function f becomes L�-convex.
By theorem 2(b), steps S1 will terminate after at most K steps.
(b,c) Property (4) (or equivalently ρ−(x) = 0) clearly holds after termination
of steps S1. Let z be the labeling upon termination of steps S2. When analyzing
the second stage of the algorithm, we can assume without loss of generality
that D = D−[z], i.e. each tree Ti is a chain with the root ri and the leaf zi.
Indeed, removing the rest of the tree will not affect the behaviour of steps S2.
Furthermore, restricting f to D−[z] does not affect the definition of ρ−(x) for
x ∈ D−[z].

By theorem 2(a), steps S2 preserve ρ−(x) = 0; this proves part (b). Part (c)
follows from theorem 2(c).
(d) When steps S2 terminate, we have f(x) = min{f(y) | y ∈ OUTWARD(x)}.
Combining this fact with condition (4) and using proposition 1 gives that upon
algorithm’s termination x is a minimizer of f .

3 Translation Submodularity

In this section we derive an alternative definition of strongly tree-submodular
functions. As a corollary, we will obtain that strong tree submodularity (1)
implies weak tree submodularity (2).

Let us introduce another pair of operations on trees. Given labels a, b ∈ Di

and an integer d ≥ 0, we define

a ↑d b = P [a→ b, d] ∧ b a ↓d b = P [a→ b, ρ(a ↑d b, b)]

In words, a ↑d b is obtained as follows: (1) move from a towards b by d steps,
stopping if b is reached earlier; (2) keep moving until the current label becomes
an ancestor of b. a ↓d b is the label on the path P [a→ b] such that the distances
ρ(a, a ↓d b) and ρ(a ↑d b, b) are the same, as well as distances ρ(a, a ↑d b) and
ρ(a ↓d b, b). Note, binary operations ↑d, ↓d: Di × Di → Di (and corresponding
operations ↑d, ↓d: D × D → D) are in general non-commutative. One exception
is d = 0, in which case ↑d, ↓d reduce to the commutative operations defined in
the introduction: x ↑0 y = x ∧ y and x ↓0 y = x ∨ y.

For fixed labels a, b ∈ Di it will often be convenient to rename nodes in
P [a → b] to be consecutive integers so that a ∧ b = 0 and a ≤ 0 ≤ b. Then we
have a = −ρ(a, a ∧ b), b = ρ(a ∧ b, b) and

a ↑d b = max{0,min{a+ d, b}} a ↓d b = a+ b− (a ↑d b)

Theorem 4. (a) If f is strongly tree-submodular then for any x,y ∈ D and
integer d ≥ 0 there holds

f(x) + f(y) ≥ f(x ↑d y) + f(x ↓d y) (6)

(b) If (6) holds for any x,y ∈ D and d ≥ 0 then f is strongly tree-submodular.
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Note, this result is well-known for L�-convex functions [32, section 7.1], i.e. when
all trees are chains shown in Figure 1(b); inequality (6) was then written as
f(x) + f(y) ≥ f((x + d · 1) ∧ y) + f(x ∨ (y − d · 1)), and was called translation
submodularity. In fact, translation submodularity is one of the key properties
of L�-convex functions, and was heavily used, for example, in [22] for proving
theorem 2.

Setting d = 0 in theorem 4(a) gives

Corollary 1. A strongly tree-submodular function f is also weakly tree-
submodular, i.e. (1) implies (2).

A proof of theorem 6 is given in [26].

4 Weakly Tree-Submodular Functions

In this section we consider functions f that satisfy condition (2), but not neces-
sarily condition (1). It is well-known [39,32] that such functions can be minimized
efficiently if all trees Ti are chains rooted at an endpoint and maxi |Di| is poly-
nomially bounded. The algorithm utilizes Birkhoff’s representation theorem [2]
which says that there exists a ring family R such that there is an isomorphism
between sets D and R that preserves operations ∧ and ∨. (A subset R ⊆ {0, 1}m
is a ring family if it is closed under operations ∧ and ∨.) It is known that sub-
modular functions over a ring family can be minimized in polynomial time, which
implies the result. Note that the number of variables will be m = O(

∑
i |Di|).

Another case when f satisfying (2) can be minimized efficiently is when f is
bisubmodular, i.e. all trees are as shown in Figure 1(c). Indeed, in this case the
pairs of operations 〈
,�〉 and 〈∧,∨〉 coincide.

An interesting question is whether there exist other classes of weakly tree-
submodular functions that can be minimized efficiently. In this section we provide
one rather special example. We consider the tree shown in Figure 1(d). Each Ti

has nodes {0, 1, . . . ,K,K−1,K+1} such that 0 is the root, the parent of k for
k = 1, . . . ,K is k − 1, and the parent of K−1 and K+1 is K.

In order to minimize function f for such choice of trees, we create K + 1
variables yi0, yi1, . . . , yiK for each original variable xi ∈ Di. The domains of
these variables are as follows: D̃i0 = . . . = D̃iK−1 = {0, 1}, D̃iK = {−1, 0,+1}.
Each domain is treated as a tree with root 0 and other nodes being the children of
0; this defines operations ∧ and ∨ for domains D̃i0, . . . D̃iK−1, D̃iK . The domain
D̃ is set as the Cartesian product of individual domains over all nodes i ∈ V .
Note, a vector y ∈ D̃ has n(K + 1) components.

For a labeling x ∈ D let us define labeling y = ψ(x) ∈ D̃ as follows:

xi = k ∈ {0, 1, . . . ,K} ⇒ yi0 = . . . = yik−1 = 1, yik = . . . = yiK = 0
xi = K−1 ⇒ yi0 = . . . = yiK−1 = 1, yiK = −1
xi = K+1 ⇒ yi0 = . . . = yiK−1 = 1, yiK = +1
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It is easy to check that mapping ψ : D → D̃ is injective and preserves operations
∧ and ∨. Therefore, R = Im ψ is a signed ring family, i.e. a subset of D̃ closed
under operations ∧ and ∨. It is known [29] that bisubmodular functions over
ring families can be minimized in polynomial time, leading to

Proposition 2. Functions that are weakly tree-submodular with respect to trees
shown in Figure 1(d) can be minimized in time polynomial in n and maxi |Di|.

5 Conclusions and Discussion

We introduced two classes of functions (strongly tree-submodular and weakly
tree-submodular) that generalize several previously studied classes. For each
class, we gave new examples of trees for which the minimization problem is
tractable.

Our work leaves a natural open question: what is the complexity of the prob-
lem for more general trees? In particular, can we minimize efficiently strongly
tree-submodular functions if trees are non-binary, i.e. if some nodes have three
or more children? Note that the algorithm in section 2 and its analysis are still
valid, but it is not clear whether the minimization procedure in step S2 can be
implemented efficiently. Also, are there trees besides the one shown in Figure 1(d)
for which weakly tree-submodular functions can be minimized efficiently?

More generally, can one characterize for which operations 〈
,�〉 the minimiza-
tion problem is tractable? Currently known tractable examples are distributive
lattices, some non-distributive lattices [27,28], operations on trees introduced in
this paper, and combinations of the above operations obtained via Cartesian
product and Malt’sev product [27]. Are there tractable cases that cannot be
obtained via lattice and tree-based operations?
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Abstract. We study the streaming complexity of the membership prob-
lem of 1-turn-Dyck2 and Dyck2 when there are a few errors in the input
string.

1-turn-Dyck2 with errors: We prove that there exists a randomized
one-pass algorithm that given x checks whether there exists a string
x′ ∈ 1-turn-Dyck2 such that x is obtained by flipping at most k locations
of x′ using:
– O(k log n) space, O(k log n) randomness, and poly(k log n) time per

item and with error at most 1/nΩ(1).
– O(k1+ε + log n) space for every 0 ≤ ε ≤ 1, O(log n) randomness,

O((logO(1) n + kO(1))) time per item, with error at most 1/8.
Here, we also prove that any randomized one-pass algorithm that makes
error at most k/n requires at least Ω(k log(n/k)) space to accept strings
which are exactly k-away from strings in 1-turn-Dyck2 and to reject
strings which are exactly k + 2-away from strings in 1-turn-Dyck2. Since
1-turn-Dyck2 and the Hamming Distance problem are closely related we
also obtain new upper and lower bounds for this problem.

Dyck2 with errors: We prove that there exists a randomized one-pass
algorithm that given x checks whether there exists a string x′ ∈ Dyck2

such that x is obtained from x′ by changing (in some restricted manner)
at most k positions using:

– O(k log n +
√

n log n) space, O(k log n) randomness, poly(k log n)
time per element and with error at most 1/nΩ(1).

– O(k1+ε +
√

n log n) space for every 0 < ε ≤ 1, O(log n) randomness,
O((logO(1) n + kO(1))) time per element, with error at most 1/8.

1 Introduction

The data streaming model was introduced in the seminal work of Alon et al. [2].
This model naturally arises in situations where the input data is massive and
rereading the input bits is expensive. The main parameters that play a role in
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designing algorithms in such situations are: the space used by the algorithm, and
the number of passes made over the input. An algorithm is said to be an efficient
data streaming algorithm, if the space used by the algorithm is substantially
lesser than the length of the input (sublinear in the length of the input) and the
number of passes is independent of the length of the input. Many variants of
this basic model have been studied. (See for example [13] for a survey.)

The membership testing for well-paranthesized strings has been considered in
the past. We denote the set of words with balanced parentheses of l different
types by Dyckl. It is known that there is a O(log n) space deterministic algorithm
for testing membership in Dyckl. (In fact the problem is known to be in TC0 [5].)
The problem has been considered from property testing perspective (see for ex-
ample [1], [15]). Recently, the problem was considered in the streaming model by
Magnify et al. [12]. It was proved that there is a randomized one-pass streaming
algorithm that takes space O(

√
n logn) and tests membership in Dyckl. They

also gave an efficient O(log2 n) space algorithm which makes bidirectional pass
(one forward and one backward pass) on the input. They also proved a lower
bound of Ω(

√
n) for any randomized streaming algorithm that makes a single

unidirectional (only forward) pass. Chakrabarti et al. [7] and Jain et al. [10]
considered the lower bound problem for unidirectional multi-pass randomized
algorithms. In [7] it was proved that any T -pass (all passes made in the same
direction) randomized algorithm requires Ω(

√
n/T log logn) space. Whereas [10]

proved Ω(
√
n/T ) space lower bound for the same. In [4] membership testing for

other classes of languages was considered. In [3] it was proved that any random-
ized T pass algorithm (passes made in any direction) for testing membership in
a deterministic context-free language requires Ω(n/T ) space.

We consider a slightly general version of the membership testing problem for
Dyckl. Let Σl denote a set of l pairs of matching parentheses. We say that an
opening parenthesis is corrupted if it is replaced by another opening parenthesis.
Similarly, a closing parenthesis is corrupted if it is replaced by another closing
parenthesis. For a language L ∈ Σ∗

l , let Δ≤k(L) be defined as the set of words
over Σ∗

l obtained by corrupting at most k indices of any word in L. In this paper,
we consider the membership problem for Δ≤k(Dyckl) and Δ≤k(1-turn-Dyckl),
where 1-turn-Dyck2 = {wwR | w ∈ {(, [}n n ≥ 1} Here, w is the string ob-
tained from w by replacing an opening parenthesis by its corresponding closing
parenthesis and wR is the reverse of w.

Accepting strings with at most k errors is a well-studied problem in many
models of computation. In the streaming model, the problem has been studied
in the past (see for example Cao et al. [6]). But we believe that the problem
needs further investigation; this being the primary goal of this paper.

We observe that the membership testing problem for Δ≤k(Dyckl)
(Δ≤k(1-turn-Dyckl)) reduces to the membership testing problem of Δ≤k(Dyck2)
(Δ≤k(1-turn-Dyck2), respectively). We give a simple fingerprinting algorithm for
Δ≤k(1-turn-Dyck2) that uses O(k logn) bits of space and randomness. The space
requirements of this algorithm are nearly optimal (because of a communication
complexity lower bound of [9]) but the randomness requirements are not. We
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consider the question of derandomizing the above. The question of derandom-
izing streaming algorithms has been considered in the past (see for example
[8],[14],[16],[18]). We show that the algorithm can be modified to work with
just O(log n) bits of randomness, incurring a small penalty in the amount of
space used. We then consider similar questions for the more general problem
Δ≤k(Dyck2).

The following table summarizes our algorithmic results:

Problem Alg. Space Randomness Error Time (per element)

1-turn-Dyck2 1 O(k log n) O(k log n) 1/ poly(n) poly(k log n) 1

2 O(k1+ε + log n) 2 O(log n) 1/8 O((log n)O(1) + kO(1))

Dyck2 3 O(k log n +
√

n log n) O(k log n) 1/ poly(n) poly(k log n) 1

4 O(k1+ε +
√

n log n) 2 O(log n) 1/8 O((log n)O(1) + kO(1))

In all the algorithms in the table above, we assume that the length of the
input stream is known.

Using Algorithm 1, we can deduce the number of errors as well as their lo-
cations. Using a combination of the algorithm for membership testing of Dyck2

due to [12] (which we refer to as MMN algorithm) and Algorithm 1, it is easy to
get a membership testing algorithm for Δ≤k(Dyck2). However, such an algorithm
uses O(k

√
n logn) space. In order to achieve the claimed bound, we modify their

algorithm for testing membership in Dyck2 and use that in conjunction with Al-
gorithm 1. In our algorithm, we do not need to store the partial evaluations of
polynomials on the stack.

Algorithms 2 and 4 are inspired by the communication complexity protocols
of Yao [20] and Huang et al. [9]. A mere combination of their ideas, however, is
not enough to get the required bounds. The crucial observation here is that Yao’s
protocol can be derandomized by using a combination of small-bias distributions
and distributions that fool DNF formulae. As this requires very few random
bits, we get the desired derandomization. These algorithms are also better as
compared to Algorithm 1 and 3 in terms of their time complexity. For Algorithm
2, we first prove that it suffices to give an efficient algorithm for Hamn,k, where
Hamn,k(x, y) for x, y ∈ {0, 1}n is 1 if and only if the Hamming distance between
x and y is at most k.

Finally, we consider the question of optimality. We prove that any algo-
rithm that makes k/n error requires Ω(k log(n/k)) space to test membership
in Δ≤k(1-turn-Dyck2) by proving a lower bound on Hamn,k. The two problems
are related as follow: Let w ∈ Σ2n and let w = uv where u ∈ {(, [}n and
v ∈ {), ]}n. If ( and ) are both mapped to 0 and [ and ] are both mapped to 1 to
obtain x, y from u, v then it is easy to see that uv ∈ Δ≤k(1-turn-Dyck2) if and
only if Hamn,k(x, y) = 1.
1 In the case of Δ≤k(1-turn-Dyckl), this is the exact time per item. However, for

Δ≤k(Dyckl) it is the time per item on average. In the latter case, the algorithm
first reads a block and then uses O(poly(k log n)) time per element of the block.
Therefore, the time per block is O(poly(k log n)

√
n/ log n). Both algorithms use an

extra post-processing time of nk+O(1).
2 for all 0 < ε < 1



Streaming Algorithms for Recognizing Nearly Well-Parenthesized Expressions 415

The problem Hamn,k was considered in [20], [9], in simultaneous message
model. In [9], a lower bound (in fact, a quantum lower bound) of Ω(k) was proved
for the problem. Their lower bound holds even for constant error protocols. To
best of our knowledge no better lower bound is known for the problem. We
improve on their lower bound by a log(n/k) factor under the assumption that
the communication protocol is allowed to make small error. Our lower bound
can be stated as follows:

Theorem 1. Given two strings x, y ∈ {0, 1}n such that either the Hamming
distance between x, y is exactly k or exactly k + 2, any randomized one-pass
algorithm that makes error k/n requires space Ω(k log(n/k)) to decide which
one of the two cases is true for the given x, y pair.

For the lower bound, we use the result of Jayram et al. [17]. Intuitively, the
hardest case seems to be to distinguish between exactly k and exactly k + 2
errors. The main advantage of our lower bound proof is that it formalizes this
intuition. Moreover, as our algorithm in Section 3 shows, this bound is tight
up to a constant factor for n ≥ k2 (indeed, for n ≥ k1+ε for any ε > 0). This
bound is not tight in all situations though, for example when n $ k but the
error is constant. Also, it does not apply to multi-pass algorithms. However, this
is better than the earlier bounds [9] by a factor of log(n/k) for small error.

The rest of the paper is organized as follows: in the next section we give some
basic definitions which will be used later in the paper. In Section 3 we give the two
randomized one-pass algorithms for testing membership in Δ≤k(1-turn-Dyck2).
In 4 we discuss our results regarding testing membership in Δ≤k(Dyck2). Our
lower bound result is presented in Section 5. Due to lack of space, many proofs
are omitted from this extended abstract.

2 Definitions and Preliminaries

Definition 1. Given positive integers 	, n,m, and s, a function F :
{0, 1}s → [m]n is an 	-wise independent hash family if given any distinct
i1, i2, . . . , i� ∈ [n] and any (not necessarily distinct) j1, j2, . . . , j� ∈ [m], we have
Prr∈{0,1}s [F (r)(i1) = j1 ∧ F (r)(i2) = j2 ∧ · · · ∧ F (r)(i�) = j�] = 1

m� where F (r)
is interpreted as a function mapping [n] to [m] in the obvious way.

Lemma 1. [19] For any 	, n,m, there is an 	-wise independent hash family
F : {0, 1}s → [m]n, with s = O(	 log(n + m)) with the property that there is
a deterministic algorithm which, on input r ∈ {0, 1}s and i ∈ [n], computes
F (r)(i) in time poly(s) using space O(s).

3 Equivalence with Errors

In this section, we consider the problem of testing membership in
Δ≤k(1-turn-Dyckl). Magniez et al. [12], showed that it suffices to design efficient
streaming algorithms for testing membership in Dyck2 in order to get efficient
streaming algorithms for testing membership in Dyckl. Formally,



416 A. Krebs, N. Limaye, and S. Srinivasan

Lemma 2 ([12]). If there is a one-pass streaming algorithm for testing mem-
bership in Dyck2 that uses space s(n) for inputs of length n, then there is a
one-pass streaming algorithm for testing membership in Dyckl that uses space
O(s(n log l)) for inputs of length n.

We first prove a lemma similar to Lemma 2, to state that it suffices to design an
efficient streaming algorithm for Δ≤k(1-turn-Dyck2) (Δ≤k(1-turn-Dyck2)) in or-
der to get an efficient streaming algorithms for Δ≤k(1-turn-Dyckl) (respectively,
Δ≤k(Dyckl)).

Lemma 3. If there is a one-pass streaming algorithm for testing membership in
Δ≤2k(1-turn-Dyck2) (Δ≤2k(Dyck2)) that uses space s(n) for inputs of length n,
then there is a streaming algorithm for testing membership in Δ≤k(1-turn-Dyckl)
(Δ≤k(Dyckl)) that uses space O(s(nl)) for inputs of length n.

Let D≤k(1-turn-Dyck2) be the set of string obtained by changing at most k
symbols of words in 1-turn-Dyck2. Assuming that the length of the string is
known, the membership testing for D≤k(1-turn-Dyck2) (which is more general
than Δ≤k(1-turn-Dyck2)) can also be handled by the techniques introduced in
the paper. If the input string has opening parenthesis in the first half of the
string, then it is considered to be an error. It is easy to keep track of such errors.

We now note that Δ≤k(1-turn-Dyck2) on inputs of length n reduces to the
problem Hamn/2,k.

Lemma 4. There is a deterministic one-pass streaming algorithm that uses
space O(log n) and time O(n), which given as input a string w ∈ {(, [, ), ]}n,
outputs a pair of strings x, y ∈ {0, 1}n/2 and either accepts or rejects. If the algo-
rithm rejects, we have w �∈ Δ≤k(1-turn-Dyck2). Otherwise, we have Δ(x, yR) ≤ k
iff w ∈ Δ≤k(1-turn-Dyck2).

The above lemma shows that it suffices to come up with a streaming algorithm
for the Hamming distance problem to solve the problem Δ≤k(1-turn-Dyck2).
Once we have such an algorithm, we simply run the above reduction on an
input w ∈ {(, [, ), ]}n, and obtain strings x, yR, which we feed in as input to the
algorithm for Hamn/2,k (of course, if the reduction rejects, we reject the input).
Though Hamn,k is only a minor restatement of Δ≤k(1-turn-Dyck2), we prefer to
work with this problem because of its cleaner definition.

Theorem 2. For any k and any constant c > 0, there is a one-pass ran-
domized streaming algorithm which, when given as input strings (x, yR) ∈
{0, 1}n × {0, 1}n, that accepts with probability 1 if Δ(x, y) ≤ k and rejects with
probability 1−1/nc if Δ(x, y) > k. The algorithm also detects the locations where
x and y differ with probability at least 1−1/nc if Δ(x, y) ≤ k. The algorithm uses
O(k log n) space and O(k logn) randomness. The time required by the algorithm
is poly(k logn) per item plus nk+O(1) for post-processing.

Proof. The algorithm uses a fingerprinting strategy and is directly inspired by
the standard randomized communication complexity protocol for the Equality
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problem (see [11], for example). Fix a field F2� , where the exact value of 	 will
be determined later. We call a polynomial p(z) ∈ F2� [z] boolean if all of its
coefficients are 0 or 1. The weight of a boolean polynomial p will be the number
of non-zero coefficients of p.

We think of w ∈ {0, 1}n as defining a boolean polynomial pw(z) ∈ F2� [z] as
follows: pw(z) =

∑n
i=1 wiz

i−1, where wi denotes the ith bit of w. Note that the
polynomial qx,y(z) := px(z) + py(z) is a boolean polynomial of weight exactly
Δ(x, y). We check that Δ(x, y) ≤ k by evaluating qx,y(z) at a random α ∈ F2� .
More formally, the algorithm is:

– Pick α ∈ F2� uniformly at random.
– Check if qx,y(α) = p(α) for any boolean polynomial p of degree less than n and

weight at most k. If not, REJECT.
– If the above does hold for some boolean polynomial of weight at most k, ACCEPT

and pick any such polynomial p(z) =
∑

i piz
i. Let S = {i | pi �= 0} be the support

of p. Output S as the estimate of points where x and y differ.

Let us first establish the correctness of the above algorithm (assuming 	 is large
enough). Clearly, if Δ(x, y) ≤ k, then qx,y(z) is a polynomial of weight at most k
and the algorithm always accepts. The algorithm can only err if: (a) Δ(x, y) > k
or (b) Δ(x, y) ≤ k but the algorithm outputs the wrong set of indices as its
estimate of where x and y differ. In either case, there is a boolean polynomial
p(z) of degree less than n and weight at most k such that qx,y(z) �= p(z) but
qx,y(α) = p(α). For any fixed polynomial p(z), this happens with probability
at most n/2� by the Schwartz-Zippel Lemma. Since the number of polynomials
of weight at most k is at most nk, the probability that there exists any such
polynomial p is bounded by nk+1/2�. Choosing 	 = O(k logn), we can reduce
this error to 1/nc as claimed.

Computing qx,y(α) can easily be done in a one-pass fashion using space O(	) =
O(k log n) and time poly(k logn) per item. After reading the stream, we need to
cycle through the nk boolean polynomials p of weight at most k and compute the
values they take at input α ∈ F2� , which can also be done in spaceO(k logn+	) =
O(k log n) and time nk poly(k logn) = nk+O(1), as claimed above. This completes
the proof of the theorem. 
�

3.1 A Randomness-Efficient Streaming Algorithm for Hamming
Distance

Above, we showed that Hamn,k can be computed using space O(k logn) and
O(k log n) random bits. Are these parameters optimal? As we will show later in
Section 5, the bound on space is nearly optimal. However, we show in this section
that the number of random bits can be significantly reduced, if one is willing
to use a small amount of additional space. The ideas in this section go back to
the results of Yao [20] and Huang et al. [9], who designed efficient randomized
communication complexity protocols for the two-party problem of checking if
the Hamming Distance between x and y is at most k.

Let PHamn,k,l : {0, 1}n × {0, 1}n → {0, 1} be a partial function, defined as
follows: On input (x, yR) it evaluates to 0 if the hamming distance between x
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and y is greater than or equal to l, it evaluates to 1 if the distance is less than
or equal to k and is not defined on other inputs.

Theorem 3. For every constant 0 ≤ ε ≤ 1 there is a randomized one-pass
streaming algorithm that computes Hamn,k using O(k1+ε + logn) space and
O(log n) randomness and errs with probability bounded by 1/8. The time taken
by the algorithm is O((log n)O(1) + kO(1)) per item.

Proof Strategy: In order to prove the above theorem, we divide the problem
into two parts. Assuming there are at most 2k errors, we design an algorithm
that computes Hamn,k correctly with high probability. We call this the inner
algorithm. We design another randomized algorithm to compute PHamn,k,2k

with high probability. We call this algorithm the outer algorithm.
We output 1, that is we declare that the number of indices where x and y

differ is at most k, if and only if both the inner and the outer algorithms output
1. If x and y differ on more than 2k indices, then the outer algorithm will output
0 with high probability. The answer of the inner algorithm will not be reliable
in this case. Where as if they differ on more than k but less than 2k places then
the inner algorithm will output 0 with high probability. Let γ1, γ2 be errors in
inner and outer algorithms respectively. Then the overall error γ is bounded by
γ1+γ2. We prove that both γ1 and γ2 are bounded by γ/2 for a small constant γ.

Inner algorithm

Definition 2. Given, k, n ∈ N, we say that an element w ∈ ([k] × {0, 1})n is
an XOR representation of length n of a string a ∈ {0, 1}k if for each j ∈ [k], we
have aj =

⊕
i:wi=(j,ui)

ui.

We think of the XOR representation as streaming updates of a structure over F2.

Lemma 5. There is a randomized one-pass streaming algorithm which given
input x, yR ∈ {0, 1}n such that Δ(x, y) ≤ 2k computes an XOR represen-
tation of length n of a, b ∈ {0, 1}16k2/γ such that with probability 1 − γ/4,
Hamn,k(x, y) = Ham16k2/γ,k(a, b) The algorithm uses O(log n) bits of random-
ness, O(log n) space, and (log(n/γ))O(1) time per item.

Proof. The proof is simple. We pick a random hash function h from a pairwise
independent hash family of functions mapping [n] to [16k2/γ]. We think of h as
dividing the n indices of x and y into 16k2/γ buckets.

Given x, y such that Δ(x, y) ≤ 2k, call index i good if xi �= yi. Given two good
indices i �= j, the probability that h maps both of them to the same bucket is at
most γ/16k2. A simple union bound tells us that with probability 1 − γ/4, all
the good indices are mapped to different buckets.

After having picked h, the streaming algorithm computes the XOR represen-
tations of a, b defined as follows: for any j, aj is the XOR of the bits of x whose
indices are in the jth bucket; formally, aj =

⊕
i:h(i)=j xi; the string b is similarly

related to y. Clearly, if h maps the good indices to different buckets, then aj �= bj
iff the jth bucket contains a good index and hence Δ(a, b) = Δ(x, y). On reading
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the input bit xi, the algorithm computes the bucket j = h(i) and writes down
(j, xi) which in effect updates the jth bit of a. In a similar way, when scanning
y, the algorithm updates b.

The space and randomness requirements are easily analyzed. Picking a ran-
dom hash function h from a pairwise independent family as above requires
O(max{logn, log(k2/γ)}) = O(log(n/γ)) random bits by Lemma 1. The al-
gorithm needs to store these random bits only. Computing h(j) for any j
only requires space O(log n/γ). Finally, the processing time per element is
O(poly(log(n/γ)). 
�

We will use the above algorithm as a streaming reduction and solve the problem
using the algorithm of Lemma 6.

Lemma 6. For any n, k and every constant 0 < ε < 1 and γ ≥ 1
kO(1) , there is

a randomized one-pass streaming algorithm which, on inputs a, b ∈ {0, 1}16k2/γ

accepts iff Δ(a, b) ≤ k with error probability at most γ
4 . The algorithm uses

O(log k) bits of randomness, O(k1+ε+logn) space, and time per element is kO(1).
The algorithm expects its inputs a, b to be given in terms of XOR representations
of length n.

Proof Sketch. Fix a positive constant δ < ε. Let h : [16k2/γ] → [k1+δ] be a
function picked at random. Let j ∈ [k1+δ] be a fixed bucket. We have Pr[h(i) =
j] = 1

k1+δ .
Define a set I of indices as follows: if Δ(a, b) ≤ k, then let I be the indices

where a and b differ; otherwise, let I be any set of k + 1 indices where a and b
differ. Let u be the size of a subset U of I. We have Pr[h(U) = j] ≤ 1

(k1+δ)u . By

a union bound over U of size u, Pr[∃U : h(U) = j] ≤ (k+1
u )

(k1+δ)u ≤ (k+1)u

(k1+δ)u ≤ 1
kδu/2 .

Therefore, since there are at most k2 buckets, Pr[∃U ∃ a bucket j : h(U) = j] ≤
1/kδu/2−2.

We want this probability to be less than γ/8. Therefore we select u = O(1/δ+
log(1/γ)

log k ) = O(1), where the last equality uses γ ≥ 1
kO(1) and δ is a constant.

Note that the above argument works if we used a function from a u-wise
independent family of functions rather than a random function. This requires
only O(u log(k/γ)) = O(log k) bits of randomness and space O(log(k/γ)) by
Lemma 1. Hereafter, we assume that we have picked a hash function h from
this family so that each bucket j ∈ [k1+δ] contains at most u indices from I.
Let Ba

j and Bb
j be the buckets formed by hashing a and b respectively, where

1 ≤ j ≤ k1+δ.
Given boolean strings a′, b′ of the same length, define Δu(a′, b′) to be

min{Δ(a′, b′), u}. We will compute the function F (a, b) =
∑

j∈[k1+δ ]Δu(Ba
j , B

b
j)

and accept if the value computed is at most k. It can easily be seen, using the
properties of h, that this computes Ham16k2/γ,k(a, b).

Using the ideas of the algorithm of Theorem 2, it is easily seen that for each
j, there is a streaming algorithm that uses space and randomness O(log k) and
computes Δu(Ba

j , B
b
j ) with error at most γ/8k1+δ. Due to lack of space, we omit

the description of the algorithm and its proof.
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Taking a union bound over buckets, the error of this phase of the algorithm is
at most γ/8. The overall error of the algorithm is at most γ/4. The space used per
bucket and the number of random bits used is at most O(log k). Adding up over
all buckets, the space used is bounded byO(k1+δ log k), which is at most O(k1+ε).
The time taken by the algorithm to compute the values {qj(α) | j ∈ [k1+δ]} is
kO(1). Finally, checking if each qj(α) evaluates to the same value as a polynomial
of weight at most u takes time kO(u) = kO(1). 
�

Setting γ to be a small constant in the Lemmas 5 and 6, we see that the space
taken by the Inner algorithm overall is O(k1+ε+logn), the amount of randomness
used is O(log n) and the time taken per item is O((log n)O(1) + kO(1)).

Outer algorithm. The outer algorithm solves PHamn,k,2k, and this completes
the algorithm for the Hamn,k problem. We omit the description of the algorithm
and proof of the below lemma from this extended abstract.

Lemma 7. There is a randomized one-pass streaming algorithm that computes
PHamn,k,2k correctly with probability 1−γ/2 using O(log n log(1/γ)) bits of space
and randomness and time per item (log n)O(1) log(1/γ).

4 Accepting Dyck2 with Errors

In this section we consider the membership problem of Δ≤k(Dyck2). We assume
that disregarding the type of the brackets the string is well-matched. We only
consider the kind of errors where an opening(closing) parenthesis of one type is
replaced by an opening(closing, respectively) parenthesis of the other type. We
prove the following theorem:

Theorem 4. For any k there exists a constant c > 0, there is a randomized
one-pass algorithm such that, given a string w ∈ Σn, if w ∈ Δ≤k(Dyck2) then
with probability at least 1− 1/nc it accepts w and if w /∈ Δ≤k(Dyck2), then with
probability 1− 1/nc it rejects w. The algorithm uses O(k logn+

√
n logn) space

and takes poly(k logn) time per item and nk+O(1) time for post-processing.

It is easy to see that combining the ideas from [12] and from the previous section,
we can accept Δ≤k(Dyck2) using O(k

√
n logn) space. But for the bound stated

in Theorem 4, we need more work.
In [12] a one-pass randomized streaming algorithm was given for the mem-

bership testing of Dyck2. We refer to that as the MMN algorithm. We make one
change to the MMN algorithm. We use the stack only to store indices from the
set [n], and do not store the partial evaluations of a polynomial on the stack.

Divide the input into
√
n/ logn blocks of length

√
nlogn each. In each block,

check for balanced parentheses and if there are less than or equal to k − Err
mis-matches, then reduce the remaining string to a string (possibly empty) of
closing parentheses followed by a string (possibly empty) of opening parentheses.
Here, Err is a counter that maintains the number of mismatches found so far.
If Err exceeds k, then halt the algorithm and reject.
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Let x denote the reduced string obtained by matching parentheses within each
block. (Note that this can be done in a streaming fashion.)

Observation 1. Note that no two opening (or two closing) parentheses have the
same index. Also, an opening parenthesis has the same index as another closing
parenthesis if and only if they form a matching pair in the string obtained from
the input string by disregarding the type of the parentheses.

For example in the input (([])[]) the indices of the opening parentheses would
be (1(2[3])[4]) and the indices of the opening and closing parentheses would be
(1(2[3]3)2[4]4)1. If we reorder the input such that all opening parentheses are in
the first half with ascending index and the closing parentheses are in the second
half with descending input we get (1(2[3[4]4]3)2)1.

For every opening parenthesis the index is the number of open parentheses be-
fore. For the closing parentheses we keep a stack of intervals of open parentheses
that are still unmatched. Since we process the input in at most

√
n/ logn blocks

we need at most
√
n/ logn stack depth.

So we can compute the index of the parentheses, and now we show how to
use this to compute Δ≤k(Dyck2). Now assume that, at any stage i, we have the
index of the input symbol xi. Let the sign of the opening parentheses be +1 and
that of closing parentheses be −1. We think of the reduced string x ∈ {(, [, ), ]}∗
as a string over {0, 1}∗ by replacing every occurrence of ‘(’ and ‘)’ by a 0 and
every occurrence of ‘[’ and ‘]’ by a 1. We think of this string defining a Boolean
polynomial px(z) =

∑
i sign(xi)xiz

index of xi . Due to Observation 1, it is easy
to see that the weight of the polynomial px is at most k − Err if and only if
w ∈ Δ≤k(Dyck2). We now check whether w ∈ Δ≤k(Dyck2) by evaluating px at
a random α ∈ F2l . Assuming that we know how to compute index of xi at step
i, we can evaluate px as in the proof of Theorem 2.

Given below is the algorithm that uses the index finding procedure as de-
scribed above, and evaluates polynomial px at a random location to test mem-
bership of w in Δ≤k(Dyck2). In addition to th space required for computing
the indices, O(l) bits are required to store evaluation of px. But this does not
need to be stored multiple times on the stack. Therefore, the algorithm uses
O(l +

√
n logn) = O(k logn+

√
n logn) space.

The proof of correctness and the error analysis are similar to the proof of
Theorem 2. Thus we get Theorem 4.

Reducing the randomness. The ideas used in reducing randomness for
Δ≤k(1-turn-Dyck2) also work for reducing randomness in the membership test-
ing of Δ≤k(Dyck2). Here, instead of hashing the input positions, we hash the
indices using the random hash functions. For computing the indices, we use
the procedure described above. Instead of computing polynomials, we compute
hashes and follow the steps as in Sections 3.1, 3.2, and 3.3.

Theorem 5. For every constant 0 ≤ ε ≤ 1, there is randomized one-pass al-
gorithm that tests membership in Δ≤k(Dyck2) using O(k1+ε +

√
n logn) space,

O(log n) randomness, O(logO(1) n+ kO(1)) time and errs with probability 1/8.
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5 Lower Bound

We will show a lower bound for PHamn,k,k+2 by reducing the augmented indexing
problem INDa

U (see [17]) to it.
Let U ∪ {⊥} denote a large input domain, where ⊥/∈ U . Define the problem

INDa
U as follows: Alice and Bob receive inputs x = (x1, x2, . . . , xN ) ∈ UN and

y = (y1, y2, . . . , yN) ∈ (U ∪ {⊥})N , respectively. The inputs have the following
promise: There is some unique i ∈ [N ], such that yi ∈ U , and for j < i: xj = yj ,
and for j > i: yj =⊥. The problem INDa

U is defined only over such promise inputs
and INDa

U (x, y) = 1 if and only if xi = yi.
In [17, Corollary 3.1] they proved the following result:

Theorem 6 ([17]). Any randomized one-way communication protocol that
makes δ = 1/4|U| error requires Ω(N log 1/δ) bits of communication.

We use this result and prove a lower bound for PHamn,k,k+2.
Let |U| = n/k. Let fA : U → {0, 1}3n/k, and fB : (U ∪ {⊥}) → {0, 1} 3n

k be
encoding functions defined as follows: fA : ul '→ A1A2 . . . An/k, where Aj = 110
if j = l and 000 otherwise. fB : ul '→ B1B2 . . . Bn/k, where Bj = 011 if j = l

and 000 otherwise. fB(⊥) = 03n/k.
On promise inputs x, y ∈ Uk, let FA(x) and FB(y) be defined as

fA(x1)fA(x2) . . . fA(xk) and fB(y1)fB(y2) . . . fB(yk), respectively.
Under this encoding, it is easy to see that PHam3n,2k,2k+2(FA(x), FB(y)) = 1

if and only if INDa
U (x, y) = 1. Suppose i+1 is the first position where⊥ appears in

y. For each j < i we have xj = yj so the Hamming distance of fA(xj) and fB(yj)
is 2. Also for every position j > i we have yj = ⊥ and hence fB(yj) = 03n/k,
which results in a Hamming distance of 2 between fA(xj) and fB(yj). So the
Hamming distance between FA(x) and FB(y) is 2(k − 1) plus the Hamming
distance between fA(xi) and fB(yi), which is 2 iff xi = yi and 4 iff xi �= yi (since
xi, yi ∈ U). Therefore we get the following lower bound:

Theorem 7 (Theorem 1 restated). Any randomized one-way protocol that
makes at most k/n error and computes PHam3n,2k,2k+2, requires Ω(k log(n/k))
bits. In fact the lower bound holds for distinguishing between the case Δ(x, y) =
2k and Δ(x, y) = 2k + 2.

By Theorem 2 this bound is optimal when n ≥ k2 (and in fact when n ≥ k1+ε,
for constant ε > 0).
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Abstract. It has been shown that every tree automatic structure admits an in-
jective tree automatic presentation, but no good size or time bounds are known.
From an arbitrary tree automatic presentation, we construct an equivalent injec-
tive one in polynomial space that consequently has exponential size. Furthermore
we also prove an exponential lower bound for the size of injective tree automatic
presentations.

1 Introduction

Automatic structures allow us to represent relational structures using automata. This ap-
proach was introduced in [5,7] for word automata and later generalized to tree automata
in [1,2]. It gained increasing interest over the last years [9,10,8,16,14,15,6,12,13].

Roughly speaking, a structure is tree automatic if it is the quotient structure of a
structure, where the carrier set and the relations are given by tree automata, and a tree
regular congruence. If this congruence is the identity relation, the structure is called
injectively tree automatic. A presentation of a tree automatic structure is a tuple of tree
automata that describe the carrier set, the relations, and the congruence; it is injective if
the congruence is the identity.

It is known that every tree automatic structure admits an injective presentation [3].
That proof also shows that such an injective presentation can be computed effectively,
but no good complexity bounds can be derived. This paper presents a construction of an
(exponentially larger) injective presentation from an arbitrary presentation which can
be carried out in polynomial space. Furthermore we show that this exponential blowup
is unavoidable for some automatic structures.

The first order theory of tree automatic structures is decidable, but the complexity
is in general non-elementary. Better complexity bounds are known for tree automatic
structures of bounded degree [11]. Since these techniques only work for injective tree
automatic structures, our upper bound provides the first upper bound for the uniform
first-order theory of tree automatic structures of bounded degree.

2 Preliminaries

In this section we will collect some fundamental definitions and facts. Here the smallest
natural number is one. Let Σ be an alphabet, i.e., a finite and nonempty set. We denote
all finite words over Σ by Σ∗ and for some non-negative number n let Σ≤n be the set
of all words of length less than or equal to n.
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2.1 Trees

We will only consider binary trees in this article, the generalization to trees of bounded
rank is easily possible.

Let N ⊆ {1, 2}∗ be some set of positions. We call N prefix-closed if for all x, y ∈
{1, 2}∗ whenever x . y ∈ N holds also x ∈ N is true. Furthermore, the frontier of N is

the set Fr(N) def= (N . {1, 2}) \N . This set contains all positions directly below N .
A tree over Σ is a partial mapping t : {1, 2}∗ ��� Σ such that dom(t) is non-empty,

finite, prefix-closed, and x . 2 ∈ dom(t) implies x . 1 ∈ dom(t) for all x ∈ {1, 2}∗. Let

TΣ denote the set of all trees over Σ. The height of a tree is defined by height(t) def=
max{|x| : x ∈ dom(t)} + 1. A position x ∈ dom(t) is called a leaf position if
x . {1, 2} ∩ dom(t) = ∅. Let s, t ∈ TΣ and x ∈ dom(t). Then the subtree t � x of t
rooted at x and the tree t[x '→ s] obtained from t by replacing the subtree t � x rooted
at x by s are defined as usual. Furthermore f(t1, . . . , td) is the tree t with root-symbol
f and t � i = ti for 1 ≤ i ≤ d.

The convolution t = t1 ⊗ · · · ⊗ td of the trees t1, . . . , td ∈ TΣ is defined by

dom(t) def=
⋃

i=1,...,d

dom(ti) and

t(x) def= (f1, . . . , fd) where fi
def=

{
ti(x) if x ∈ dom(ti)
� otherwise.

Here � �∈ Σ is a new symbol. We write Σ� for Σ ∪ {�} such that the convolution t
becomes a tree over Σd

�.

2.2 Tree Automata

A (bottom-up) tree automaton over Σ is a tuple A = (Q, δ, F ) where Q is a finite set
of states and F ⊆ Q a set of final states. The relation δ ⊆ Q× Σ ×Q≤2 is called the
transition relation. We also write Q(A), F(A) and δ(A) for Q, F and, respectively, δ.

A run of A on some tree t ∈ TΣ is a tree ρ ∈ TQ such that dom(ρ) = dom(t) and
for all position x ∈ dom(t), we have

(ρ(x), t(x), ρ(x . 1), . . . , ρ(x . k)) ∈ δ ,

where 0 ≤ k ≤ 2 is the number of children of x. We write
t−→ q if there is a run ρ on the

tree t with ρ(ε) = q. We further write
t−→X for a set X ⊆ Q if there is a q ∈ X which

satisfies
t−→ q. This notation allows us to define the language of the tree automaton A as

L(A) = {t ∈ TΣ : t−→F} .

A tree automatonA = (Q, δ, F ) is stored by saving all tuples in δ and the final states F .
This requires space O(log |Q| + log |Σ|) for a single transition. Furthermore we as-
sume that every state occurs as the left side of a transition. Therefore |F | ≤ |Q| ≤ |δ|
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always holds. The space needed to store the automaton A is hence given by O
(
|δ| ·

(log |Q| + log |Σ|)
)
. Following these observations we define the size of A as |A| def=

|δ| · (log |Q|+ log |Σ|). The number of states |A|Q
def= |Q| is another size measure.

A tree automaton A over Σd
� is called d-dimensional tree automaton over Σ; it

recognises the relation

R(A) = {(t1, . . . , td) ∈ Td
Σ : t1 ⊗ · · · ⊗ td ∈ L(A)} .

Note that the size of A is given by |δ(A)| · (log |Q(A)|+ d · log |Σ|).

3 An Upper Bound

Consider an equivalence relation ∼ over TΣ . A complete system of representatives for
TΣ/∼ is a set L ⊆ TΣ such that [t]∼ ∩ L is a singleton set for all trees t ∈ TΣ . Here
[t]∼ ⊆ TΣ is the equivalence class of t with respect to ∼.

The aim of this section is to construct in polynomial space from a 2-dimensional tree
automaton recognizing an equivalence relation, a tree automaton which recognizes a
complete system of representatives for this equivalence relation:

Theorem 3.1. From a 2-dimensional tree automaton A∼ with R(A∼) an equivalence
relation, one can compute in polynomial space a tree automaton B with |B|Q =

2O(|A∼|Q) and |B| = |Σ|O(1) · 2O(|A∼|Q) which recognizes a complete system of rep-
resentatives for TΣ/R(A∼).

The existence of the tree automaton B from the above theorem was shown in [3] and
an analysis of Colcombet and Löding’s proof also shows that it is effective, although
of multi-exponential complexity. The new singly-exponential blowup is obtained by a
refinement of the proof by Colcombet and Löding.

3.1 Shadow

For the rest of this section we fix a 2-dimensional tree automaton A∼ over some al-

phabet Σ such that ∼ def= R(A∼) is an equivalence relation on TΣ . We first introduce
our notion of the shadow of an equivalence class. For a class c ∈ TΣ/∼ we define the
shadow of c as

S(c) def=
⋂
t∈c

dom(t) .

Using this definition, we can define descriptions of an equivalence class.

Definition 3.2. Let c ∈ TΣ/∼. A tree t ∈ c is a description of c if height(t � x) ≤
|A∼|Q holds for all x ∈ dom(t) ∩ Fr(S(c)). The set of all descriptions of c is denoted
by Desc(c).

Lemma 3.3. Let c ∈ TΣ/∼. Then 0 < |Desc(c)| <∞.
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Proof. From the very definition, we learn that there are only finitely many descriptions
of c. Let t ∈ c be some tree. We prove the existence of some description by induction
over

nt
def=
∣∣∣{x ∈ dom(t) ∩ Fr(S(c)) : height(t � x) > |A∼|Q}

∣∣∣ .
If nt = 0 then t is already a description of c. Now assume nt > 0. Hence there is
x ∈ dom(t) ∩ Fr(S(c)) such that height(t � x) > |A∼|Q. As x is not in the shadow
of c there exists a tree t0 ∈ c with x �∈ dom(t0). Let τ be a successful run of A∼
on t⊗ t0. We consider the tree automaton B = (Q(A∼), δ, {τ(x)}) with

δ
def= {(q, f, q1, . . . , qk) : (q, (f,�), q1, . . . , qk) ∈ δ(A∼)} .

Since x �∈ dom(t0) the tree t � x is in the language of B and τ � x is an accepting run
on it. From the pumping lemma [4, Corollary 1.2.3] it follows that there exists a tree
s ∈ L(B) such that height(s) ≤ |B|Q = |A∼|Q. Let σ be an accepting run of B on s.

Then σ(ε) = τ(x). We define trees t1
def= t[x '→ s] and τ1

def= τ [x '→ σ]. One can show
that τ1 is an accepting run of A∼ on t1 ⊗ t0. Therefore we obtain t1 ∼ t0 ∼ t and from
the definition of t1 we get nt1 = nt − 1. This concludes the inductive proof. 
�

In the next step, we construct from A∼ in polynomial space a tree automaton that ac-
cepts the set of all descriptions. As an intermediate result we associate the shadow S([t])
with a tree t ∈ TΣ . Thereto we encode a pair (t,N), where N ⊆ dom(t) is a set of

positions, as a tree over Σ0
def= Σ × {0, 1}. This tree is again denoted by (t,N). It is

defined as

dom
(
(t,N)

) def= dom(t) and (t,N)(x) def=
(
t(x),�N (x)

)
,

where �N is the characteristic function of N . This definition allows us to specify the
language LS as

LS
def= {(t,N) ∈ TΣ0 : N = S([t])} .

To show the regularity of LS, we prove that the following two languages are regular:

L1
S

def= {(t,N) ∈ TΣ0 : N ⊆ S([t])} and L2
S

def= {(t,N) ∈ TΣ0 : N ⊇ S([t])} .

Lemma 3.4. From a tree automatonA∼ with R(A∼) an equivalence relation, one can
compute in polynomial space a tree automaton recognizing L1

S with 2O(|A∼|Q) many
states.

Proof. Let t ∈ TΣ be a tree and N ⊆ {1, 2}∗ be some set. Then we have N ⊆ S([t])
iff N ⊆ dom(s) for all trees s ∈ TΣ with s ∼ t. Consider the relation

R
def= {

(
(t,N), s

)
∈ TΣ0 × TΣ : N �⊆ dom(s) and s ∼ t}

such that L1
S is the complement of the projection of R on the first component. A tree

automaton B for the projection of R whose number of states is linear in |A∼|Q can
easily be computed. The complementation of this automaton can be carried out in space
polynomial in |B| and therefore polynomial in |A∼|. 
�
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The other direction is more involved as the proof of the following lemma indicates.

Lemma 3.5. From a tree automaton A∼ with R(A∼) an equivalence relation, one
can compute in polynomial space a tree automaton recognizing the tree language L2

S

with 2O(|A∼|Q) many states.

Proof. Let A∼ = (Q, δ, F ). We will construct an automaton B with state set 2Q such
that for t ∈ TΣ , N ⊆ dom(t) and ρ ∈ T2Q with dom(t) = dom(ρ), the following are
equivalent:

1. ρ is an accepting run of B on (t,N)
2. – there are trees s1, . . . , sn ∈ [t] and accepting runs ρ1, . . . ρn of A∼ on si ⊗ t

such that ρ(x) = {ρ1(x), . . . , ρn(x)} for all x ∈ dom(t) and
– dom(t) \N ⊆

⋃
1≤i≤n dom(t) \ dom(si).

First, let ∅ denote the “empty tree” and Q∅ = {p ∈ Q | ∃s ∈ TΣ : ∅⊗s−−→ p}. A tuple
(M, (a, x),M1, . . . ,Mk) is a transition of B if and only if

– for all p ∈ M , there is bp ∈ Σ ∪ {�} and p̄ ∈
(∏

1≤i≤k Mi

)
× Q≤2−k

∅ such that
(p, (a, bp), p̄) ∈ δ,

– for all 1 ≤ i ≤ k and pi ∈Mi, there are b ∈ Σ ∪ {�}, pj ∈Mj for 1 ≤ j ≤ k and
j �= i, and p ∈M such that (p, (a, b), p1, . . . , pk) ∈ δ, and

– if x = 0, then there exists p ∈ M so that one can choose bp = � in the first
condition.

Finally a set of statesM ⊆ Q is accepting if and only ifM ⊆ F . Now let (t,N) ∈ TΣ0 .
Then

B accepts the pair (t,N) ∈ TΣ0

⇐⇒ there exist trees s1, . . . , sn ∈ [t] with dom(t)\N ⊆
⋃

1≤i≤n dom(t)\dom(si)
⇐⇒ dom(t) \N ⊆

⋃
s∼t dom(t) \ dom(s)

⇐⇒ N ⊆
⋂

s∼t dom(s) = S([t]). 
�

Now the regularity of the tree language LS is immediate from Lemmas 3.4 and 3.5:

Corollary 3.6. From a tree automaton A∼ with R(A∼) an equivalence relation, one
can compute in polynomial space a tree automaton recognizing the tree language LS

with 2O(|A∼|Q) many states.

3.2 Final Steps

In this section we finish the construction of an automaton which recognizes a complete
system of representatives for TΣ/∼. For this, fix some linear ordering ≤Σ on the finite
alphabet Σ. Let s and t be two distinct trees and let p be the lexicographically minimal
position where they differ (i.e., from the set (dom(s)\dom(t))∪ (dom(t)\dom(s))∪
{q ∈ dom(s) ∩ dom(t) : s(q) �= t(q)}). Then set s <T t provided p /∈ dom(t) or
p ∈ dom(s) ∩ dom(t) and s(p) <Σ t(p). Then the reflexive closure ≤T of <T is a
linear order that can be accepted by a 2-dimensional tree automaton.
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Lemma 3.7. From a tree automatonA∼ with R(A∼) an equivalence relation, one can
compute in polynomial space a tree automaton B with 2O(|A∼|Q) many states that ac-
cepts {min≤T Desc([t]) : t ∈ TΣ}.

Proof. First note that s ∈ Desc([t]) iff s ∼ t and dom(s) ⊆ S([t]).{1, 2}<|A∼|Q .
Hence t = min≤T Desc([t]) iff there exists N ⊆ {1, 2}∗ such that

(1) (t,N) ∈ LS,
(2) dom(t) ⊆ N · {1, 2}<|A∼|Q , and
(3) there is no tree s ∼ t with dom(s) ⊆ N · {1, 2}<|A∼|Q and s <T t.

Classical constructions allow us to build the tree automatonB using the tree automaton
from Corollary 3.6. 
�
Since, by Lemma 3.3, min≤T Desc([t]) exists for all trees t, the language from the
previous lemma is a complete system of representatives for TΣ/∼. Note that for a tree
automaton A the condition |A|Q = 2O(n) implies |A| = |Σ|O(1) · 2O(n). This is due to

|δ(A)| ≤ |Σ| · |Q(A)|O(1). Therefore Lemma 3.7 also proves Theorem 3.1.

3.3 Application to Tree Automatic Structures

In this part we introduce (injective) tree automatic structures and presentations. We
show that every tree automatic presentation can be transformed into an equivalent in-
jective tree automatic presentation of exponential size.

Before we can introduce tree automatic structures we need to define signatures and
structures. We call a finite set S of relation symbols together with their arities (mr)r∈S
a signature. A S-structure A is a tuple (U, (rA)r∈S) where U is an arbitrary set and
rA ⊆ Umr (r ∈ S) are relations. A congruence onA is an equivalence relation ∼ such
that

(u1, . . . , umr) ∈ rA ⇐⇒ (v1, . . . , vmr) ∈ rA

for every r ∈ S and u1 ∼ v1, . . . , umr ∼ vmr in U .
A tree automatic presentation (over S) is a tuple P = (Σ,A,A∼, (Ar)r∈S) such

that Σ is an alphabet, A is a tree automaton, Ar are mr-dimensional tree automata
with R(Ar) ⊆ L(A)mr and A∼ is a 2-dimensional tree automaton such that R(A∼) ⊆
L(A)2 is a congruence on (L(A), (R(Ar))r∈S). The S-structure defined by P is given
by

A(P) def= (L(A), (R(Ar))r∈S)/R(A∼) .

We say P is injective if R(A∼) is the identity relation on L(A). A structureA is called
(injective) tree automatic structure if there is an (injective) tree automatic presenta-
tion P such that A(P) ∼= A.

The size and number of states of P are the sums of the corresponding values for the
automata, i.e.,

|P| def= |A|+ |A∼|+
∑
r∈S
|Ar| and |P|Q

def= |A|Q + |A∼|Q +
∑
r∈S
|Ar|Q .

We will apply Theorem 3.1 to automatic structures to obtain the next theorem.
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Theorem 3.8. From a tree automatic presentation P over some alphabet Σ and M =
max{mr : r ∈ S}, one can compute in polynomial space an injective tree automatic
presentation I such that A(P) ∼= A(I), |I| = |Σ|O(M) · 2O(M·|P|Q) and |I|Q =
2O(M·|P|Q).

Proof. Let P = (Σ,A,A∼, (Ar)r∈S) and ∼ = R(A∼) ⊆ L(A)2. Let ∼′ be the least
equivalence relation on the whole set TΣ that contains∼, i.e.,

s ∼′ t ⇐⇒ s ∼ t or s = t

for all s, t ∈ TΣ . Clearly∼′ can be recognized by a tree automatonA∼′ with O(|A∼|Q)
many states. Now, we apply Theorem 3.1 to A∼′ and obtain a tree automaton B′ such
that L(B′) is a complete system of representatives for TΣ/∼′ and |B′|Q = 2O(|A∼|Q).
By standard constructions we compute an automatonB such that L(B) = L(B′)∩L(A)
and |B|Q = 2O(|P|Q). By definition the set L(A) is ∼-closed, and therefore∼′-closed.
Hence L(B) is a complete system of representatives for L(A)/∼. Finally, we construct for
every r ∈ S a tree automatonBr by intersecting every component of R(Ar) with L(B).
Then |Br|Q = O(|Ar|Q · |B|

mr

Q ). Let I = (B, (Br)r∈S). As ∼ is a congruence, I is
the wanted injective tree automatic presentation. 
�

One may want an estimate for the size of I which only depends on |P|. It is easy
to check that for any tree automaton A, we have |A|Q · log |A| = O(|A|). We may
also assume that a tree automatic presentation actually uses every letter of its alphabet.
Therefore we can assume |Σ| ≤ |A| ≤ |P|. In the proof of Theorem 3.8 we now have
log |B| = O(log |Σ|+ |A∼|/log |A∼|) = O(|P|/log |P|). Hereby we get

|I| = |B|+
∑
r∈S
|Br| =

∑
r∈S

2O(M·|P|/log |P|) · |Ar| = 2O(M·|P|/log |P|) .

This result allows us to answer an open question from [11] that asks for the com-
plexity of the uniform model checking of tree automatic structures of bounded degree.1

A structure A = (U, (rA)r∈S) has bounded degree if there exists a natural number d
such that any x ∈ U belongs to at most d tuples from

⋃
r∈S r

A. Then one obtains

Corollary 3.9. The set of pairs (P , ϕ) with P a tree automatic presentation of a struc-
ture of bounded degree and ϕ a first-order sentence such that A(P) |= ϕ is decidable
in 5-fold exponential time.

Proof. In the given time bound, P can be transformed into an equivalent injective pre-
sentation P ′ of exponential size. Then the result follows from [11, Cor. 3.8]. 
�

4 A Lower Bound

From Section 3 we know that we can construct both, a tree automaton recognizing
a complete system of representatives and an injective tree automatic presentation of

1 This answer is incorporated in the journal version of [11] that will appear in the Journal of
Symbolic Logic.



Size and Computation of Injective Tree Automatic Presentations 431

exponential size. In this section we show that there is also an exponential lower bound
in both cases. To show this, we construct a tree automatic structure and show that every
injective tree automatic presentation of this structure or tree automaton recognizing a
complete system of representatives for the carrier set is at least of exponential size.

4.1 State Complexity of Complementation Revisited

In this section, we will construct “small” automata An such that any automaton B
accepting a language of size m = |Σ∗ \ L(An)| is “large”. Choosing an appropriate
alphabet of size m, two states would suffice for the automaton B. Therefore, we will
not consider the number of states |B|Q, but the value |B|Q + log |Γ | where Γ is the
alphabet of B.

We now fix the alphabet Σ
def= {0, 1}. For some non-empty word w = x0 . . . xk−1

in Σ+ let val(w) =
∑

0≤i<k xi2i be the value of w as binary number, where the lowest
bit is at the first position. Vice versa let bink(n) be the unique wordw ∈ Σ∗ of length k
such that val(w) = n (if n ≥ 2k, then bink(n) is undefined). We now consider word
languages over Σ3 and we will view words in (Σ3)∗ as convolutions of three words
over Σ of equal length.2

Definition 4.1. Let n ∈ N. The language LW
n consists of all words w ∈ (Σ3)∗ that

satisfy

(i) |w| = k · n for some k > 0. Therefore w = (u1 ⊗ v1 ⊗ x1) · · · (uk ⊗ vk ⊗ xk) for
some ui, vi, xi ∈ Σn.

(ii) val(u1) = val(v1) = 0 and val(uk) = 2n − 1, i.e., u1 = v1 = 0n and uk = 1n.
(iii) val(ui) = val(vi) + 1 for all i ∈ {2, . . . , k}.
(iv) vi+1 = ui for all i ∈ {1, . . . , k − 1}.

Furthermore, the tree language LT
n consists of all trees t ∈ TΣ3 satisfying

(1) u . 1 ∈ dom(t) implies u . 2 ∈ dom(t), i.e., t is a complete binary tree and
(2) t(ε)t(x1)t(x1x2) · · · t(x1 · · ·x�) ∈ LW

n for all leaf positions x1 · · ·x� ∈ dom(t).

The languages we are really interested in are the complements of the sets LW
n and LT

n .
Therefore, we next show that these complements can be recognized by “small” au-
tomata.

Lemma 4.2. Let n ∈ N. There is a word automaton A and a tree automaton B such
that the following hold:

|A| = O(n · logn) |A|Q = O(n) L(A) = (Σ3)∗ \ LW
n

|B| = O(n · logn) |B|Q = O(n) L(B) = TΣ3 \ LT
n

Proof. The negations of the conditions (i) to (iii) can be checked by deterministic word
automata with O(n) many states and of size O(n · logn). The negation of condition (iv)

2 Convolutions of words are analogously defined to convolutions of trees.



432 D. Kuske and T. Weidner

is “there is a position j ∈ {1, . . . , |w| − n} such that the first component of wj

does not equal the second one of wj+n”. Certainly, this property can be checked by
a non-deterministic word automaton with the same size and number of states. There-
fore

(
Σ3
)∗ \ LW

n can be recognized by a word automaton with O(n) many states and
of size O(n · logn).

The complement of LT
n consists of all trees which contain a leaf position x such that

the word of the labels from the root to x is in (Σ3)∗\LW
n . Again, this can be checked by

a non-deterministic tree automaton with O(n) many states and of size O(n · log n). 
�
To show that no tree language of size

∣∣LT
n

∣∣ can be accepted by a “small” automaton,
we next estimate the size of the languages LW

n and LT
n . For these estimations, define

exp(0, n) def= n and exp(k + 1, n) def= 2exp(k,n) for n, k ∈ N0.

Lemma 4.3. Let n ∈ N be at least 2. Then exp(2, n) ≤
∣∣LW

n

∣∣ < ∞ and exp(3, n) ≤∣∣LT
n

∣∣ <∞.

Proof. Let w = (u1 ⊗ v1 ⊗ x1) · · · (uk ⊗ vk ⊗ xk) ∈ LW
n with ui, vi, xi ∈ Σn.

By induction it follows that val(ui) = i − 1 and val(vi) = max{i − 2, 0} for all
i ∈ {1, . . . , k}. By definition we have val(uk) = 2n − 1 and therefore k = 2n. Hence
the wordw is of length n ·2n and LW

n is finite. Vice versa every wordw ∈ (Σ3)∗ which
is defined as above is in the language LW

n . As we can still choose the xi arbitrary, there
are at least |Σ|n·2

n

≥ exp(2, n) many words in LW
n .

From the definition of LT
n and the observations forLW

n , we obtain thatLT
n consists of

full binary trees of height n · 2n. Since also here, the third components of the labelings
can be chosen freely, LT

n contains the set of Σ-labeled full binary trees of height n · 2n.
But this set contains (for n ≥ 2) exp(1, exp(1, n · 2n)− 1) ≥ exp(3, n) elements. 
�
Proposition 4.4. Let n ∈ N and B be a tree automaton over some alphabet Γ recog-
nizing a finite language of size at least exp(3, n). Then |B|Q + log(Γ ) ≥ 2n.

Proof. We first verify |L(B)| ≤ exp(2, |B|Q+log |Γ |) by contradiction: Assume L(B)
contains more than exp(2, |B|Q + log |Γ |) elements. Then L(B) contains at least one
tree of height greater than |B|Q. Hence, by the pumping lemma for regular tree lan-
guages [4, Corollary 1.2.3], L(B) is infinite, a contradiction.

Hence we have exp(3, n) ≤ |L(B)| ≤ exp(2, |B|Q + log |Γ |) and therefore, as
claimed, |B|Q + log |Γ | ≥ 2n. 
�

4.2 A Tree Automatic Structure

Let L ⊆ TΣ be some tree language. Our idea is to express the set complement TΣ \L,
or at least a set with the same cardinality, in terms of some injective tree automatic
presentation.

Definition 4.5. Let n ∈ N and let X and Y be new symbols not in Σ = {0, 1}3. The

tree automatic structure An
def= (U,R)/∼n is then given by

U
def= {X(t),Y(t) ∈ TΣ∪{X,Y} : t ∈ TΣ}

R
def= {

(
x(t), y(t)

)
∈ U2 : t ∈ TΣ , {x, y} = {X,Y}}, and

∼n
def= {

(
x(t), y(t)

)
∈ U2 : t ∈ TΣ , x, y ∈ {X,Y} and (t ∈ LT

n ⇒ x = y)} .
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Since the relation R is symmetric, we can think of the structures (U,R) and therefore
An as an undirected graph. Then (U,R) is the disjoint union of infinitely many disjoint
edges and An that of |LT

n | disjoint edges and infinitely many isolated nodes (with a
self-loop). Note that U and R can be accepted by a (2-dimensional) tree automaton
and do not depend on n. To also accept the relation ∼n, we modify the automaton B
from Lemma 4.2 in the obvious way. Hence ∼n can be accepted by a two-dimensional
automaton A∼n with |A∼n |Q = O(n) and |A∼n | = O(n · log n). This proves the next
lemma.

Lemma 4.6. There is C1 > 0 such that for all n ∈ N there is a tree automatic presen-
tation Pn of An with |Pn| ≤ C1 · n · logn and |Pn|Q ≤ C1 · n.

We now come to the lower bound for injective tree automatic presentations of An:

Lemma 4.7. There exist constants c, d ≥ 1 such that for any n ∈ N with n ≥ 2 and
any injective tree automatic presentation I of An, we have 2n ≤ c · |I|Q + log |Γ | and
2n ≤ d · |I|.

Proof. Let I = (Γ,B,BR) and consider the set

L = {t ∈ L(B) : (s, t) ∈ R(BR) for some s ∈ L(B) \ {t}} .

The relation {(s, t) ∈ T2
Γ : s �= t} can be accepted by a tree automaton with two states.

Running this automaton in parallel with BR, we get an automaton with 2 · |BR|Q states
that accepts the relation

{(s, t) ∈ R(BR) : s �= t} .

ThenL is the projection of this relation to the first component. Hence L can be accepted
by an automaton C with |C|Q ≤ c · |BR|Q. Note that L is the set of nodes of An

that are connected to some other node, hence |L| = 2 ·
∣∣LT

n

∣∣. From Lemma 4.3 and
Proposition 4.4, we therefore get |C|Q + log |Γ | ≥ 2n. Hence 2n ≤ |C|Q + log |Γ | ≤
c · |BR|Q + log |Γ | ≤ c · |I|Q + log |Γ |.

We can assume that every symbol from Γ actually appears in a tree in L(A) and
hence in some transition in δ(A) such that log |Γ | ≤ |Γ | ≤ |δ(A)| ≤ |A| ≤ |I|.
Similarly, we can assume |Q| ≤ |δ| for any automaton implying |I|Q ≤ |I|. Therefore
for the size of I we get 2n ≤ c · |I|Q + log |Γ | ≤ (c + 1) · |I|. 
�

Now we are able to prove the lower bounds for injective tree automatic presentations.

Theorem 4.8. There are C1, C2, C3 > 0 such that the following hold:

1. for every n ∈ N there exists a tree automatic presentation P such that |P|Q ≤
C1 · n, |P| ≤ C1 · n · log n, and for every injective tree automatic presentation I
of A(P) over some alphabet Γ it holds that |I|Q ≥ C2 · 2n − log |Γ |.

2. for every m ∈ N there exists a tree automatic presentation P such that |P| ≤
C1 ·m, and for every injective tree automatic presentation I of A(P) it holds that
|I| ≥ C2 · 2

m
log m .
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Proof. Let c and d be the constants from Lemma 4.7. Then the first claim follows
immediately from Lemmas 4.6 and 4.7 with C2 = 1/c.

Choose n = �m/log m�. Then |Pn| ≤ C1 · m
log m · log m

log m ≤ C1 ·m. Let I be some

injective tree automatic presentation ofA(Pn). Then |I| ≥ 1
d ·2n. Since n > m

log m −1,

we get |I| ≥ C3 · 2
m

log m with C3 = 1/d. 
�

4.3 Transfer to Word Automatic Structures

Word automatic structures have been introduced in [5,7]. Essentially they are defined as
tree automatic structures, but with word automata instead of tree automata. Every word
automatic presentation admits an injective word automatic presentation of exponential
size. This has already been shown in [7]. In this section we will transfer our lower bound
result for tree automatic structures to word automatic ones.

We use the languages LW
n from Definition 4.1 to replace the languages LT

n from the
tree automatic case. Let n ∈ N and again Σ = {0, 1}3, and let X,Y �∈ Σ be two

symbols. We define the structure AW
n byAW

n
def= (UW,RW)/∼W

n with

UW def= {w . X,w . Y : w ∈ Σ∗} ,

RW def= {(w . x,w . y) : w ∈ Σ∗, {x, y} = {X,Y}}, and

∼W
n

def= {(w . x,w . y) : w ∈ Σ∗, x, y ∈ {X,Y} and (w ∈ LW
n ⇒ x = y)} .

Now fix an injective word automatic presentation I = (Γ,B,BR) with word au-
tomata B and BR over Γ . By Lemma 4.3 and similar arguments as in Proposition 4.4,
and Lemma 4.7 we obtain c · |I|Q +log |Γ | ≥ 2n and d· |I| ≥ 2n for constants c, d > 0.
Together with corresponding arguments as before Lemma 4.6 and as in Theorem 4.8 we
obtain the following theorem.

Theorem 4.9. There are constants C1, C2, C3 > 0 such that for every n ∈ N with
n ≥ 2 there exists a word automatic structure P such that |P| ≤ C1 · n · logn and for
every injective word automatic presentation I of A(P) it holds that |I| ≥ C2 · 2

n
log n ,

and |I|Q ≥ C3 · 2n.

Remark 4.10. We define an injective tree automatic presentation of the word automatic
structure AW

n as follows. Let Σ = {0, 1} and let L comprise all trees t ∈ TΣ with
dom(t) = 0<n . 1 . {0, 1}<n implying | dom(t)| = n+n · (2n− 1) = n · 2n for t ∈ L.

Furthermore, define U
def= {x(t) : x ∈ {X,Y }, t ∈ TΣ , (t ∈ L ⇒ x = X)}. Finally,

let R = {(x(t), y(t)) ∈ U2 : x, y ∈ {X,Y }, (x = y ⇒ t ∈ L)}. Then AW
n
∼= (U,R)

and U and R can be accepted by tree automata with O(n) many states.

So the following open question remains: Does the exponential blowup also occur when
we move from an arbitrary word automatic presentation to an equivalent injective tree
automatic presentation?
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Abstract. We show that the set of all functions is equivalent to the set
of all symmetric functions (possibly over a larger domain) up to deter-
ministic time complexity. In particular, for any function f , there is an
equivalent symmetric function fsym such that f can be computed from
fsym and vice-versa (modulo an extra deterministic linear time compu-
tation). For f over finite fields, fsym is (necessarily) over an extension
field. This reduction is optimal in size of the extension field. For poly-
nomial functions, the degree of fsym is not optimal. We present another
reduction that has optimal degree “blowup” but is worse in the other
parameters.

1 Introduction

Symmetric polynomials have been central in both arithmetic complexity and
Boolean circuit complexity. All function families in ACC0 are known to reduce
to symmetric polynomials via small low-depth circuits. The Boolean majority
function and related symmetric functions on {0, 1}n are hard for low-depth cir-
cuit classes, but analogous functions over infinite fields have small constant-depth
arithmetic formulas [8]. The best known lower bounds of Ω(n logn) on arithmetic
circuit size apply to some simple symmetric functions such as xn

1 + · · ·+ xn
n [5].

Symmetric polynomials have a rich algebraic structure. It is therefore interesting
to ask whether they are easier to compute than general polynomials.

Our main results are reductions from a general function f ∈ F[x1, . . . , xn] of
degree d to symmetric function(s) fsym ∈ F′[y1, . . . , yN ] of some degree D. To
be more precise, we say f reduces to fsym if there exists an algorithm that on
any input a ∈ Fn computes f(a) by making some oracle calls to the function
fsym. (To make the reduction interesting, we would like the reduction algorithm
to have low “complexity” modulo the oracle calls.) The notion of fsym reducing
to f is defined similarly. In this work, we will aim to show that f and fsym are
equivalent, i.e. f reduces to fsym and vice-versa. Upper and lower bounds are
classified according to whether F is a finite or infinite field, whether one or more
queried functions fsym are involved, by the degree s of F′ as an extension of
F, and by D and N in relation to the given d and n. Once the best achievable
combinations of those parameters are determined, the issues become the running
� Supported by NSF CAREER grant CCF-0844796.

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 436–447, 2011.
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time of the reduction, whether it is computable by low-depth circuits or formulas
(with oracle gate(s) for the call(s) to fsym), and whether the entire computation
is randomized and/or correct only for a large portion of the input space Fn.

1.1 Symmetric Functions—Hard or Easy?

Here are some contexts in which symmetric functions are hard or powerful. Lu
[17] remarked that all of the early circuit lower bounds were proved for sym-
metric functions such as parity and congruence of Hamming weight modulo m
[10,21,18,19]. Grigoriev and Razborov [12] (see also [11]) proved exponential
lower bounds for depth-3 circuits computing certain symmetric functions over
finite fields. Beigel and Tarui [7] showed that every language in ACC0 can be
represented as a Boolean symmetric function in quasi-polynomially many argu-
ments, with each argument a conjunction of inputs xi or their negations.

In other contexts, symmetric functions are easy. Over GF(2) they depend on
only O(log n) bits of input information, and hence have linear-size, O(log n)-
depth Boolean circuits. Beame et al. [6] showed that every n-input Boolean
symmetric function can be computed by threshold circuits of linear size and
O(log logn) depth. The elementary symmetric polynomials, which form an alge-
bra basis for all symmetric polynomials, are easy over all fields, and surprisingly
easy in the rings of integers modulo certain composite numbers [13].

So are symmetric functions hard or easy? Or are there contexts in which
they have all levels of complexity? In this paper, we prove some results of this
last type. Thus we aim to transfer general issues of complexity entirely into
the domain of symmetric functions, where we can use their special algebraic
properties.

1.2 Our Results and Techniques

Given a polynomial f(x1, . . . , xn) over a field (or ring) F, the objective is to
find a symmetric polynomial fsym, possibly over a larger field F′ and/or in a
different number m of variables, such that f reduces to fsym, and importantly,
vice-versa. The reductions from f to fsym are substitutions, meaning we have
functions γ1, . . . , γn of possibly-new variables y = y1, . . . , ym such that

fsym(y) = f(γ1(y), . . . , γn(y)).

Because symmetric functions form an algebra, if γ1, . . . , γn are symmetric then
so is fsym. We presume that the γi are easy to compute; whereupon if f is easy
then so is fsym. Thus fsym reduces to f . The reverse reduction, to recover values
of f(x) from calls to fsym(y) for suitable y, is the more-problematic one. Next
we present a generic framework for such a reduction (Ef (· · · ) is some function
that computes some vectors based on the input and past history and Df is an
aggregating function):

1. On input x, compute y(1) = Ef (x).
2. Compute z1 = fsym(y(1)).
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3. For i = 2, . . . ,m, compute y(j) = Ef (x, z1, z2, . . . , zj−1) and zj = fsym(y(j)).
4. Output f(x) = Df (z1, . . . , zm).

We first make the observation that the reduction above becomes trivial if we
do not care about the complexity of the function Df . In particular, consider the
following instantiation of the general procedure above. Define fsym(u1, . . . , un) =∑n

i=1 ui, and for 1 � j � n define y(j) ∈ Fn to be the vector that is zero
in every position except position j, where it has the value xj . Note that by
our choices zj = xj for every 1 � j � n. Thus, if we pick Df to be f , then
trivially Df (z1, . . . , zn) = f(x). Of course this reduction is not interesting as the
complexity of the reduction is exactly the same as that of computing f , which
is undesirable.

Our first symmetrization makes z1 = f(x), so Df is the identity function
(and m = 1), but generally needs the encoding function Ef (x) to map into
an extension field. For 1 � j � m = n it takes γj to be the j-th elementary
symmetric polynomial

ej(x) =
∑

S⊆[n],|S|=j

∏
i∈S

xi, and defines fsym(x) = f(e1(x), . . . , en(x)).

Since the ej are easily computed [13], so is fsym.
To compute f(b) = f(b1, . . . , bn) by reduction to fsym, we find a = a1, . . . , an

such that for each j,

bj = ej(a1, . . . , an), so that f(b) = fsym(a).

It turns out that the values aj are found by splitting the univariate polynomial

φb(X) = Xn +
n∑

i=1

bi ·X i−1

into linear factors. This is guaranteed to be possible only in the splitting field F′ of
φb. In other words, the complexity of computing f from fsym via the reduction
above is the same as finding roots of a degree n polynomial over F′. Using
known randomized algorithms for computing roots of a univariate polynomial
(cf. [20]), the (time) complexity of the reduction is determined by the degree of
the extension field F′.

Now, the degree of F′ over F is known to equal the least common multiple of
the degrees of the irreducible factors of φb (see [9]). An easy calculation shows
that this degree cannot be more than nO(

√
n). However, this would be too ex-

pensive for lower bounds against low-level complexity classes.
Next, we sketch how we get around this predicament. We use the fact proved

in [9] that the degree of the splitting field of a random monic polynomial is
nO(log n) with high probability. We employ this under two relaxations: (i) If we
consider the average-case complexity of f , then it follows immediately that for
most inputs, f and fsym are equivalent under pseudo-polynomial time reductions.
(ii) Under certain restrictions on the degree of f and |F|, we can talk about
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worst-case complexity of f and fsym. In particular, we use well-known properties
of Reed-Muller codes that have been used numerous times in the local testing
algorithms and PCP constructions [3,2,1,15,14]. However, unlike the local testing
results which need to handle errors, in our application we only need to handle
erasures—roughly because we can efficiently determine the degree of F′ without
computing the vector a, which leads to slightly better bounds in the parameters
of the reduction.

The drawback of this reduction is that the degree of F′ is very large. For
comparison, we show by a counting argument that the degree of F′ need only be
O(logq n), which is super-exponentially better than the bound obtained above.
However, note that by construction deg(fsym) � n · deg(f)– we show this to be
tight with an additive constant factor from the optimal (again by a counting
argument).

Our second symmetrization is superior in that it gives linear-time equivalence
over any finite field Fq. It is inferior only in giving somewhat higher degree of
the resulting symmetric polynomial.

The intuition behind the second reduction is somewhat similar to the earlier
reduction that defined Df = f . In particular for every input value xi, we will
associate it with the pair (i, xi). The main idea in defining fsym from f is to
convert every input (i, xi) back to xi. Doing this while ensuring that fsym is
symmetric requires a bit of care.

We compare the two methods in the table below, giving the deterministic
reductions only. (We’ve shortened DTIME to DT to fit the table.)

f from fsym fsym from f s deg(fsym)

Elem. Sym. DT(nO(
√

n)qO(1)) DT(n log2 n) nO(
√

n) n · deg(f)
Direct DT(n) DT(n) �logq n�+ 1 snq2 · deg(f)
Lower Bds ? ? �logq n� − 3 n deg(f)

e2 (1-o(1))− 2n2/5

2 Preliminaries

We denote a field by F. For a prime power q, we denote the finite field with
q elements as Fq. A function f : Fn

q → Fq is equivalent to a polynomial over
Fq and we will use deg(f) to denote the degree of the corresponding polyno-
mial. To express the complexity of our reductions, we set up more notation.
For any function f : Fn → F: (i) C(f) denotes its time complexity (in the
RAM model); (ii) Cε(f) denotes the time complexity of computing f correctly
on all but an ε fraction of the inputs, where 0 < ε < 1; (iii) Over a field F,
DTIME(t(n)) denotes O(t(n)) deterministic operations over F;1 (iv) RTIME(t(n))
likewise denotes O(t(n)) (Las Vegas) randomized operations over F; while (v)
for any 0 � δ < 1/2, RTIMEδ(t(n)) denotes randomized Fr-operations when we
allow for an error probability of δ.

1 We use parentheses (· · · ) to emphasize that these time measures can be added in
time expressions, whereas DTIME[t(n)] with [· · · ] strictly denotes a class of functions.



440 R.J. Lipton, K.W. Regan, and A. Rudra

When moving from a general function (over a finite field F) to an equivalent
symmetric function, the latter must be over an extension field of F. We start
with two elementary counting lower bounds on the degree of the extension field
and on other parameters.

Theorem 1. Let q be a prime power and n 	 1 be an integer. If every f : Fn
q →

Fq is equivalent to a symmetric function fsym : (Fqs)n → Fqs , then

s 	 �logq n� − 3.

Recall that every function f : Fn
q → Fq is equivalent to a polynomial (over Fq) in

n variables and degree at most qn. Next, we will lower bound the degree blow-up
necessary in assigning every function to an equivalent symmetric function.

Theorem 2. If every function f : Fn
q → Fq of degree d is equivalent to some

symmetric function fsym : Fn
qs → Fqs of degree at most dsym such that s(d+ n−

1) � 2o(n), then we must have

dsym 	 dn

e2
· (1− o(1))− 2

5
· n(n + 2).

3 Results for the Elementary Symmetrization

We study the following particular substitution by the elementary symmetric
polynomials:

fsym(x) = f(e1(x), e2(x), . . . , em(x)).

We first note that fsym is almost as easy as f itself.

Proposition 3 For any function f : Fn
q → Fq,

C(fsym) � C(f) + DTIME
(
n(logn)2

)
.

Proof . Note that the result will follow if we can show how to compute
e1(a), . . . , en(a) in DTIME(n(log n)2). This follows from the well-known iden-
tity that

Xn +
n∑

i=1

ei(a) ·X i−1 =
n∏

i=1

(X + ai),

since the polynomial on the RHS can be multiplied out via divide-and-conquer
and FFT-based polynomial multiplication. �

We now consider the problem of showing the converse of Proposition 3, i.e. we
would like to bound the complexity of f in terms of the complexity of fsym. We
can show the following converses:
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Theorem 4. Let f : Fn
q → Fq be a function, then (for any 0 < δ < 1/2) the

following are true:

C(f) � C(fsym) + DTIME(nO(
√

n) · qO(1)). (1)

Cexp(−Ω(
√

log n))(f) � C(fsym) + RTIME(nO(log n) · logO(1) q), (2)

Cexp(−Ω(
√

log n))(f) � C(fsym) + DTIME(nO(log n) · qO(1)). (3)

Further, if q 	 Ω(deg(f)), then

C(f) � O(deg(f) log(
1
δ

) · C(fsym)) + RTIMEδ(nO(log n) · logO(1) q + qO(1)). (4)

Finally, if 1 � m � n and deg(f) � min(m(q − 1), O(q
√

logn/ log q)), then

C(f) � O(qm · log(
1
δ

) ·C(fsym)) + RTIMEδ(nO(log n) · logO(1) q + qO(1)), (5)

All of the results above start with the basic idea presented below.

3.1 The Basic Idea

Note that we can prove the converse of Proposition 3 if for every b = (b1, . . . , bn)
for which we want to compute f(b), we could compute a = (a1, . . . , an) such
that for every 1 � i � n, bi = ei(a) and evaluate fsym(a) (which by definition
would be f(b)). In other words, given the polynomial

φb(X) = Xn +
n∑

i=1

bi ·X i−1,

we want to completely factorize it into linear factors, i.e. compute a =
(a1, . . . , an) such that

n∏
i=1

(X + ai) = φb(X).

It is not very hard to see that such an a might not exist in Fn
q . Thus, we

will have to look into extension fields of Fq. In particular, the splitting field of
any polynomial over Fq is the smallest extension field over which the polynomial
factorizes completely into linear factors. The following result is well-known:

Proposition 5 (cf. [9]) Let h(X) be a univariate polynomial over Fq of degree
k. Let s denote the least common multiple of all the distinct degrees of irreducible
factors of h(X) (over Fq). Then the splitting field of h(X) is Fqs .

Given the above, the algorithm for computing a is direct:

Invert(b)

1. Compute the polynomial φb(X).
2. Compute the smallest s = s(b) such that Fqssplits φb(X).
3. Compute an irreducible polynomial of degree s over Fq.
4. Compute the roots of φb(X) over Fqs .
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The correctness of the algorithm follows from the discussion above. (The com-
putation of the irreducible polynomial in Step 3 is to form a representation of the
finite field Fqs .) To analyze its running time, we define some notation: split(b, q)
denotes the time required to compute the smallest s = s(b, q) such that Fqs is
the splitting field of φb(X), irr(k, q) is the time required to generate a degree k
irreducible polynomial over Fq and root(k, q) is the time required compute all
the roots of a degree k polynomial over Fq.

The above implies the following:

Lemma 1. For any b ∈ Fn
q , Invert(b) can be computed in time DTIME(n) +

split(b, q) + irr(s, q) + root(n, qs).

This would imply that if Invert(·) can be computed in time T (n), then one has
C(f) � C(fsym) + T (n). Unfortunately, the quantity s in Step 2 above can be
as large as nO(

√
n). This implies that T (n) = nO(

√
n), which leads to (1). To

get a better time complexity, we will use the fact that for random b ∈ Fn
q ,

s(b) is quasi-polynomial with high probability. This almost immediately implies
(2) and (3). The rest of the claims follow from the usual testing algorithms for
Reed-Muller codes (though in our case we only need to handle erasures).

3.2 Proof of Theorem 4

We first bound the time complexity of the Invert(·) algorithm. In particu-
lar, Lemma 1 and known deterministic bounds on irr(k, q) and root(k, q) and
the simple fact that split(b, q) ∈ DTIME(n3 log q) show that Invert(b) can
be computed in DTIME

(
nO(1) · s(b, q)O(1) · qO(1)

)
. Also by using randomized

bounds on irr(k, q) and root(k, q) one obtains that Invert(b) can be computed
in RTIME

(
nO(1) · s(b, q)O(1) · logO(1) q

)
.

The discussion above proves statement along with the fact that the degree of
the splitting field is at most nO(

√
n) implies (1).

We will need the following result that follows from [9]:

Corollary 1 (cf. [9]).

Pr
b∈Fn

q

[
log(s(b, q)) > log2 n

]
� exp

(
−Ω

(√
logn

))
.

Corollary 1 says that for all but an exp(−Ω(
√
n)) fraction of b ∈ Fn

q , we have
s(b, q) � 2log2 n = nlog n. This along with the discussion above proves (2) and
(3). (After Step 3 in Invert(·) if log s > log2 n then we halt and output “fail.”)

We now move to the proof of (4). Call c ∈ Fn
q good if s(c, q) � nlog n. (Oth-

erwise call it bad.) Note that by Step 2 of Invert(c), we will know if c is good
or bad. If it is good then we continue with the algorithm else we halt and
output “fail.” Recall that we want to compute f(b). Note that if b is good
then we can run Invert(b) in RTIME(nO(log n) logO(1) q) (and hence compute
fsym(Invert(b)) = f(b)). However, in the worst-case b might be bad. Thus, we
do the following: we pick a random line through b and evaluate the function f
restricted to the line on points other than b.
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In particular, consider the univariate polynomial Pb(X) = f(b + m ·X) for a
uniformly random m ∈ Fn

q . Consider any subset S ⊆ F∗
q with |S| = 3(deg(f)+1).

(Note that we will need q − 1 	 3(deg(f) + 1), which will be satisfied by the
condition on q 	 Ω(deg(f)). Now by Corollary 1 in expectation (over the choice
of m), at most exp(−Ω(

√
logn) · 3(deg(f) + 1) � (deg(f) + 1) points in the set

{b+α ·m|α ∈ S} are bad. (The inequality follows for large enough n.) Thus, by
Markov’s inequality, with probability at least 1/2 (over the choice of m) there are
at most 2(deg(f)+1) bad points in {b+αm|α ∈ S}. (Recall that we know when
a point is bad, and thus we can recognize when we have at most 2(deg(f) + 1)
bad points.) In other words, our algorithm will compute Pb(b + αm) correctly
for at least deg(f) + 1 points α ∈ S. It is well-known (e.g. via polynomial
interpolation) that we can compute Pb(X) in DTIME(deg(f)3) ∈ DTIME(q3) by
our assumption on q. Note that we can now read off f(b) = Pb(0). Note that the
procedure above has an error probability of at most 1/2. We can reduce this to
δ by running O(log(1/δ)) independent runs of this procedure and stop whenever
we compute f(b).

The proof of (5) is a generalization of the proof for (4) to the multivariate
case. In particular, given an integer 1 � x � n, we pick a random subspace of
Fn

q of dimension m by picking m basis vectors (say e1, . . .em) at random. Now
consider the set S = {b +

∑m
j=1 αj · ej |(α1, . . . , αm) ∈ Fm

q }. It is easy to see
that the function f restricted to S is an m-variate polynomial with the degree
at most deg(f) (here the scalars α1, . . . , αm are thought of as the variables). It
follows from the known distance properties of Reed-Muller codes (cf. [4]), we
can recover f(b) if at most q− deg(f)/q fraction of the points in S are bad. This
happens with probability at least a 1/2 (by Markov’s argument and Corollary 1)
if exp(−Ω(

√
logn)) is at most q− deg(f)/q/2. This inequality is implied by the

assumption that deg(f) � O(q
√

logn/ log q). Also we need deg(f) � (q − 1)m
to ensure that f projected down to S is still a well defined Reed-Muller code
(and in particular, we can apply the distance properties of Reed-Muller codes).
Finally, we run the procedure above independently O(log(1/δ)) times to bring
the error probability down to δ.

4 Results for the Second Symmetrization

4.1 Functions over Finite Fields

We state our main result for functions defined over finite fields:

Theorem 6. Let n 	 1 be an integer and q be a prime power. Define s =
1 + �logn�. Then for every function f : Fn

q → Fq, there exists a symmetric
function fsym : Fn

qs → Fq such that

C(fsym) � C(f) + DTIME(n), (6)

C(f) � C(fsym) + DTIME(n). (7)

Further, deg(fsym) � snq2 · deg(f).
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In the rest of the section, we will prove the theorem above. Before we describe
fsym, we first set up some simple notation (and assumptions). We will assume
that we have access to an irreducible polynomial of degree s over Fq that defines
Fqs .2 In particular, we will assume that every element α ∈ Fqs is represented as∑s−1

�=0 α� ·γ� for some root γ ∈ Fqs of the irreducible polynomial. Further, we will
assume that [n] is embedded into Fs−1

q . (Note that by definition of s, qs−1 	 n.)
From now on we will think of i ∈ [n] interchangeably as an integer in [n] and an
element in Fs−1

q . We first claim the existence of certain polynomials.

Lemma 2. There exist s explicit univariate polynomials πk : Fqs → Fq (0 �
k � s − 1) such that for any α = αs−1 · γs−1 + · · · + α0 ∈ Fqs , πk(α) = αk.
Further, deg(πk) = qs−1.

Proof . For any α =
∑s−1

i=0 αiγ
i ∈ Fqs , αqj

=
∑s−1

i=0 αi(γi)qj

for every 0 � j �
s− 1. Thus, we have

(α αq αq2 · · · αqs−1
)T = V · (α0 α1 α2 · · · αs−1)T ,

where V is the Vandermonde matrix with the 	th row being the first s powers of
γq�

(starting from the 0th power)—note that all the elements γq�

are distinct.
Thus, we have that αk is the inner product of the kth row of the inverse of the
Vandermonde matrix and (α αq αq2 · · · αqs−1

). The definition for πk(X)
then follows from the (known) expressions for entries of the inverse of the Van-
dermonde matrix (cf. [16]). �

Lemma 3. Fix j ∈ [n]. There exists an explicit n-variate symmetric polynomial
φj(X1, . . . , Xn) : (Fqs)n → Fq of degree at most sqs such that for any choice of
αi = αi

s−1 · γs−1 + · · ·+ αi
1 · γ + αi

0 ∈ Fqs (1 � i � n),

φj(α1, α2, . . . , αn) =
∑

i∈[n],(αi
s−1,αi

s−2,··· ,αi
1)=j

αi
0, (8)

where we consider (αi
s−1, α

i
s−2, · · · , αi

1) ∈ Fs−1
q .

Proof . For any j = (j1, . . . , js−1) ∈ Fs−1
q , consider the degree (s − 1)(q − 1)

polynomial Aj(Y1, . . . , Ys−1) over Fq:

Aj(Y1, . . . , Ys−1) =
s−1∏
�=1

∏
β∈Fq,β �=j�

(
Y� − β
j� − β

)
.

Note that Aj(i) = 1 if i = j else Aj(i) = 0 for every i ∈ Fs−1
q . Now consider the

polynomial

φj(X1, . . . , Xn) =
n∑

i=1

Aj(π1(Xi), . . . , πs−1(Xi)) · π0(Xi).

2 Otherwise in the reduction we can compute one in time DTIME(sO(1) · qO(1)).
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Now by the properties of Aj(·) mentioned above, in the RHS of the equation
above for φj(α1, . . . , αn), the only summands that will contribute are those i for
which (αi

s−1, α
i
s−2, · · · , αi

1) = j (this follows from Lemma 2). Further each such
summand contributes αi

0 to the sum (by Lemma 2). This proves (8). Further, it
follows from definition that φj is a symmetric polynomial. Finally, note that for
every i ∈ [n], Aj(π1(Xi), . . . , πs−1(Xi)) has degree (s− 1)(q− 1) · qs−1. Further,
as π0 has degree qs−1, deg(φj) = qs−1(s− 1)(q − 1) + qs−1 � sqs. �

We are now ready to define fsym : Fqs → Fq. For any a = (a1, . . . , an) ∈ Fn
qs ,

define
fsym(a) = f (φ1(a), φ2(a), . . . , φn(a)) .

Since each of φ1, . . . , φn are symmetric, so is fsym. Further, as each of φ1, . . . , φn

has degree at most sqs, deg(fsym) � sqs · deg(f) � snq2 · deg(f), where the last
inequality follows from the fact that our choice of s implies qs−1 � nq.

In what follows, we will assume that any α ∈ Fqs is presented to us as
(αs−1, . . . , α1, α0), where α = αs−1γ

s−1 + · · · + α1γ + α0. Note that this im-
plies that πk(α) (for 0 � k � s− 1) can be “computed” in constant time.3

We first prove (6). Given b ∈ Fn
qs , we will compute a ∈ Fn

q in DTIME(n)
such that fsym(b) = f(a). Note that this suffices to prove (6). Notice that by
definition of fsym, this is satisfied if aj = φj(b) for j ∈ [n]. Further note that
given β1, . . . , βs−1 ∈ Fq, one can compute Aj(β1, . . . , βs−1) in DTIME(s).4 This
along with the assumption that πk(α) can be computed in constant time for
any α ∈ Fqs , implies that φj(b) can be computed in DTIME(ns). This would
immediately imply a total of DTIME(n2s) for computing a. However, note that
as all the aj values are sums, we can compute a in one pass over b with space
O(n). Thus, we can compute a from b in DTIME(n), as desired.

Finally, we prove (7). We will show that given a ∈ Fn
q we can compute b ∈ Fn

qs

in DTIME(n) such that f(a) = fsym(b). Note that this will prove (7). Further,
notice that we will be done if we can show that for j ∈ [n], aj = φj(b). The
definition actually is pretty easy: for every i = (is−1, . . . , i1) ∈ [n], define bi =
is−1γ

s−1 + · · · + i1γ + ai. Now it can be checked that φj(b) = π0(bj) = aj , as
desired. Further, it is easy to check that one can compute b in DTIME(n).

4.2 Functions over Reals

We state our main result for F = R:

Theorem 7. Let n 	 1 be an integer. Then for every function f : Rn → R,
there exists a symmetric function fsym : Rn → R such that

C(fsym) � C(f) + DTIME(n), (9)

3 If not, by the proof of Lemma 2, one can compute both values in O(s2 log q) opera-
tions over Fqs .

4 Here we are also assuming that the map from [n] to the corresponding element in
Fs−1

q can be computed in constant time.
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C(f) � C(fsym) + DTIME(n). (10)

The proof is similar to the one for finite fields, so we only sketch the differences
here. Towards this end, we think of every element x ∈ R as a triple (��x�/n� , �x�
mod n, x− �x�) ∈ Z× Z× [0, 1). In particular, for any 1 � j � n, we define

φj((u1, v1, w1), (u2, v2, w2), . . . , (un, vn, wn)) =
n∑

i=1

δvi,j · (ui + wi),

where δ�,k = 1 if 	 = k and is zero otherwise. fsym is defined as before and the
reduction from fsym to f is also as before. The reduction from f to fsym is also
pretty much the same as before except we define bi = i+ n · �ai�+ ai − �ai�.

Acknowledgments. We thanks an anonymous reviewer for comments that
improved the presentation of the paper.
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Abstract. The compressed word problem for a finitely generated monoid M
asks whether two given compressed words over the generators of M represent the
same element of M . For string compression, straight-line programs, i.e., context-
free grammars that generate a single string, are used in this paper. It is shown
that the compressed word problem for a free inverse monoid of finite rank at least
two is complete for Πp

2 (second universal level of the polynomial time hierar-
chy). Moreover, it is shown that there exists a fixed finite idempotent presentation
(i.e., a finite set of relations involving idempotents of a free inverse monoid), for
which the corresponding quotient monoid has a PSPACE-complete compressed
word problem. The ordinary uncompressed word problem for such a quotient can
be solved in logspace [10]. Finally, a PSPACE-algorithm that checks whether a
given element of a free inverse monoid belongs to a given rational subset is pre-
sented. This problem is also shown to be PSPACE-complete (even for a fixed
finitely generated submonoid instead of a variable rational subset).

1 Introduction

The decidability and complexity of algorithmic problems in finitely generated monoids
and groups is a classical topic at the borderline of computer science and mathematics.
The most basic question of this kind is the word problem, which asks whether two words
over the generators represent the same element. Markov and Post proved independently
that the word problem for finitely presented monoids is undecidable in general. Later,
Novikov and Boone extended the result of Markov and Post to finitely presented groups,
see the the survey [15] for references.

In this paper, we are interested in inverse monoids. A monoid is inverse, if for each el-
ement x there exists a unique “inverse” x−1 such that x = xx−1x and x−1 = x−1xx−1

[3]. In the same way as groups can be represented by sets of permutations, inverse
monoids can be represented by sets of partial injections [3]. Algorithmic questions for
inverse monoids received increasing attention in the past and inverse monoid theory
found several applications in combinatorial group theory, see e.g. [10] and the survey
[15] for further references.

Since the class of inverse monoids forms a variety of algebras (with respect to the op-
erations of multiplication, inversion, and the identity element), the free inverse monoid
FIM(Γ ) generated by a set Γ exists. Munn gave in [16] an explicit representation of
the free inverse monoid FIM(Γ ). Elements can be represented by finite subtrees of the
Cayley-graph of the free group generated by Γ (so called Munn trees). Moreover, there
are two distinguished nodes (an initial node and a final node). Multiplication of two el-
ements of FIM(Γ ) amounts of gluing the two Munn trees together, where the final node

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 448–459, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Compressed Word Problems for Inverse Monoids 449

of the first Munn tree is identified with the initial node of the second Munn tree. This
gives rise to a very simple algorithm for the word problem of FIM(Γ ), which can more-
over implemented in linear time. In [10], it was also shown (using Munn trees together
with a result of Lipton and Zalcstein [5] saying that the word problem for a finitely
generated free group can be solved in logspace) that the word problem for FIM(Γ ) can
be solved in logspace.

Although the word problem for a free inverse monoid can be solved very efficiently,
there are several subtle differences between the algorithmic properties of free inverse
monoids on the one hand and free monoids and free groups on the other hand. Let us
give two examples:

– Solvability of equations: By the seminal results of Makanin, this problem is decid-
able for free monoids and free groups. On the other hand, solvability of equations
in a finitely generated free inverse monoid of rank at least 2 (the rank is the minimal
number of generators) is undecidable [19].

– Rational subset membership problem: Membership in a given rational subset of a
free monoid or free group can be decided in polynomial time. The same problem is
NP-complete for finitely generated free inverse monoids of rank at least two [2].

In this paper, we show that in a certain sense also the word problem is harder for free
inverse monoids than free monoids (groups). For this we consider the compressed word
problem, where the input words are given succinctly by so called straight-line pro-
grams (SLPs) [18]. An SLP is a context free grammar that generates only one word, see
Section 4. Since the length of this word may grow exponentially with the size (num-
ber of productions) of the SLP, SLPs can be seen as a compact string representation.
SLPs turned out to be a very flexible compressed representation of strings, which are
well suited for studying algorithms for compressed strings; see [8] for references. In
the compressed word problem for a finitely generated monoid M the input consists of
two SLPs that generate words over the generators of M , and it is asked whether these
two words represent the same element of M . Hence, the compressed word problem
for a free monoid simply asks, whether two SLPs generate the same word. Plandowski
proved in [17] that this problem can be solved in polynomial time; the best algorithm is
due to Lifshits [4] and has a cubic running time. Based on Plandowski’s result, it was
shown in [7] that the compressed word problem for a free group can be solved in poly-
nomial time. This result has algorithmic implications for the ordinary (uncompressed)
word problem: In [11,20] it was shown that the word problem for the automorphism
group of a groupG can be reduced in polynomial time to the compressed word problem
for G (more general: the word problem for the endomorphism monoid of a monoid M
can be reduced in polynomial time to the compressed word problem for M ). Hence, the
word problem for the automorphism group of a free group turned out to be solvable in
polynomial time [20], which solved an open problem from combinatorial group theory.
Generalizations of this result for larger classes of groups can be found in [11,13].

Our first main result states that the compressed word problem for every finitely gen-
erated free inverse monoid of rank at least two is complete for Πp

2 , the second universal
level of the polynomial time hierarchy (Thm. 4). The upper bound follows easily us-
ing Munn’s solution for the word problem together with the above mentioned result of
Lipton and Zalcstein for free groups. The lower bound is based on a reduction from
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a variant of the SUBSETSUM problem together with an encoding of a SUBSETSUM
instance by an SLP [7]. Hence, the compressed word problem for free inverse monoids
is indeed computationally harder than the compressed word problem for free monoids
(groups) (unless P = Πp

2 ). It is not difficult to see that the compressed word problem
for a free inverse monoid of rank 1 can be solved in polynomial time (Prop. 1).

In [14], Margolis and Meakin presented a large class of finitely presented inverse
monoids with decidable word problems. An inverse monoid from that class is of the
form FIM(Γ )/P , where P is a presentation consisting of a finite number of relations
e = f , where e and f are idempotents of FIM(Γ ); we call such a presentation idem-
potent. An alternative proof for the decidability result of Margolis and Meakin was
given in [21]. In [10] it was shown that the word problem for every inverse monoid
FIM(Γ )/P , where P is an idempotent presentation, can be solved in logspace. This
implies that the compressed word problem for each of these inverse monoids belongs
to the class PSPACE. Our second main result states that the are specific idempotent
presentations P such that the compressed word problem for FIM(Γ )/P is PSPACE-
complete (Thm. 5).

In the last part of the paper we consider the compressed variant of the rational subset
membership problem. The class of rational subsets of a monoidM is the smallest class
of subsets, which contains all finite subsets, and which is closed under union, product
and Kleene star (A∗ is the submonoid generated by the subset A ⊆M ). If M is finitely
generated by Γ , then a rational subset of M can be represented by a finite automaton
over the alphabet Γ . In this case, the rational subset membership problem asks, whether
a given element of M (given by a finite word over Γ ) belongs to a given rational subset
(given by a finite automaton over Γ ). Especially for groups, this problem is intensively
studied, see e.g. [12]. In [2], it was shown that the rational subset membership problem
for a free inverse monoid of finite rank at least two is NP-complete. Here, we consider
the compressed rational subset membership problem, where the input consists of an
SLP-compressed word over the generators and a finite automaton over the generators.
We show that the compressed rational subset membership problem for a free inverse
monoid of finite rank at least two is PSPACE-complete. The difficult part of the proof
is to show membership in PSPACE. PSPACE-hardness holds already for the case that
the rational subset is a fixed finitely generated submonoid (Thm. 6).

Proofs that are omitted in this paper can be found in the long version [9].

2 Preliminaries

Let Γ be a finite alphabet. The empty word over Γ is denoted by ε. Let s = a1 · · ·an ∈
Γ ∗ be a word over Γ , where n ≥ 0 and a1, . . . , an ∈ Γ for 1 ≤ i ≤ n. The length of s
is |s| = n. For 1 ≤ i ≤ n let s[i] = ai and for 1 ≤ i ≤ j ≤ n let s[i, j] = aiai+1 · · · aj .
If i > j we set s[i, j] = ε. For n ∈ N let Γ≤n = {w ∈ Γ ∗ | |w| ≤ n}. We write
s � t for s, t ∈ Γ ∗, if s is a prefix of t. A set A ⊆ Γ ∗ is prefix-closed, if u � v ∈ A
implies u ∈ A. We denote with Γ−1 = {a−1 | a ∈ Γ} a disjoint copy of the finite
alphabet Γ . For a−1 ∈ Γ−1 we define (a−1)−1 = a; thus, −1 becomes an involution on
the alphabet Γ ∪ Γ−1. We extend this involution to words from (Γ ∪ Γ−1)∗ by setting
(a1 · · · an)−1 = a−1

n · · ·a−1
1 , where ai ∈ Γ ∪ Γ−1. For a ∈ Γ ∪ Γ−1 and n ≥ 0 we
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use a−n as an abbreviation for the word (a−1)n. We use standard terminology from
automata theory. A nondeterministic finite automaton (NFA) over an input alphabet Γ
is a tuple A = (Q,Σ, δ, q0, F ), where Q is the set of states, δ ⊆ Q × Σ × Q is the
transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. For a
deterministic finite automaton, δ : Q×Σ →p Q is a partial mapping fromQ×Σ to Q.

Complexity theory: We assume some basic background in complexity theory. Recall
that Πp

2 (the second universal level of the polynomial time hierarchy) is the class of
all languages L for which there exists a polynomial time predicate P (x, y, z) and a
polynomial p(n) such that L = {x ∈ Σ∗ | ∀y ∈ Σ≤p(|x|)∃z ∈ Σ≤p(|x|) : P (x, y, z)}.
POLYLOGSPACE denotes the class NSPACE(log(n)O(1)) = DSPACE(log(n)O(1)).
A PSPACE-transducer is a deterministic Turing machine with a read-only input tape, a
write-only output tape and a working tape, whose length is bounded by nO(1), where n
is the input length. The output is written from left to right on the output tape, i.e., in each
step the transducer either outputs a new symbol on the output tape, in which case the
output head moves one cell to the right, or the transducer does not output a new symbol
in which case the output head does not move. Moreover, we assume that the transducer
terminates for every input. This implies that a PSPACE-transducer computes a mapping
f : Σ∗ → Θ∗, where |f(w)| is bounded by 2|w|O(1)

. A POLYLOGSPACE-transducer is
defined in the same way as a PSPACE-transducer, except that the length of the working
tape is bounded by log(n)O(1). The proof of the following lemma uses the same idea
that shows that logspace reducibility is transitive.

Lemma 1. Assume that f : Σ∗ → Θ∗ can be computed by a PSPACE-transducer
and that g : Θ∗ → Δ∗ can be computed by a POLYLOGSPACE-transducer. Then the
mapping f ◦g can be computed by a PSPACE-transducer. In particular, if the language
L ⊆ Θ∗ belongs to POLYLOGSPACE, then f−1(L) belongs to PSPACE.

Free groups: It is common to identify a congruenceα on a monoidM with the surjec-
tive homomorphism from M to the quotient M/α that maps an element m ∈M to the
congruence class of m with respect to α. The free group FG(Γ ) generated by the set Γ
is the quotient monoid

FG(Γ ) = (Γ ∪ Γ−1)∗/δ, (1)

where δ is the smallest congruence on (Γ ∪ Γ−1)∗ that contains all pairs (bb−1, ε) for
b ∈ Γ ∪Γ−1. It is well known that for every u ∈ (Γ ∪Γ−1)∗ there exists a unique word
r(u) ∈ (Γ ∪ Γ−1)∗ (the reduced normal form of u) such that δ(u) = δ(r(u)) and r(u)
does not contain a factor of the form bb−1 for b ∈ Γ ∪Γ−1. It holds δ(u) = δ(v) if and
only if r(u) = r(v). Since the word r(u) can be calculated from u in linear time, the
word problem for FG(Γ ) can be solved in linear time. Let IRR(Γ ) = {r(u) | u ∈ (Γ ∪
Γ−1)∗} be the set of all irreducible words. The epimorphism δ : (Γ ∪Γ−1)∗ → FG(Γ )
restricted to IRR(Γ ) is a bijection.

The Cayley-graph of FG(Γ ) with respect to the standard generating set Γ ∪ Γ−1

will be denoted by C(Γ ). Its vertex set is FG(Γ ) and there is an a-labeled edge (a ∈
Γ ∪ Γ−1) from x ∈ FG(Γ ) to y ∈ FG(Γ ) if y = xa in FG(Γ ). Note that FG(Γ ) is a
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Fig. 1. The Cayley-graph C({a, b}) of the free group FG({a, b})

finitely-branching tree. Figure 1 shows a finite portion of C({a, b}). Here, and in the
following, we only draw one directed edge between two points. Thus, for every drawn
a-labeled edge we omit the a−1-labeled reversed edge.

3 Inverse Monoids

A monoid M is called an inverse monoid if for every m ∈ M there is a unique
m−1 ∈M such that m = mm−1m and m−1 = m−1mm−1. For detailed reference on
inverse monoids see [3]; here we only recall the basic notions. Since the class of inverse
monoids forms a variety of algebras (with respect to the operations of multiplication,
inversion, and the identity element), the free inverse monoid FIM(Γ ) generated by a set
Γ exists. Vagner gave an explicit presentation of FIM(Γ ): Let ρ be the smallest congru-
ence on the free monoid (Γ ∪ Γ−1)∗ which contains for all words v, w ∈ (Γ ∪ Γ−1)∗

the pairs (w,ww−1w) and (ww−1vv−1, vv−1ww−1); these identities are also called
Vagner equations. Then FIM(Γ ) * (Γ ∪Γ−1)∗/ρ. An element x of an inverse monoid
M is idempotent (i.e., x2 = x) if and only if x is of the form mm−1 for some m ∈M .
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Hence, Vagner’s presentation of FIM(Γ ) implies that idempotent elements in an in-
verse monoid commute. Since the Vagner equations are true in the free group FG(Γ ),
there exists a congruence γ on FIM(Γ ) such that FG(Γ ) = FIM(Γ )/γ. When viewing
congruences as homomorphisms, we have δ = ρ ◦ γ, where δ is the congruence on
(Γ ∪Γ−1)∗ from (1). Elements of FIM(Γ ) can be also represented via Munn trees: The
Munn tree MT(u) of u ∈ (Γ ∪ Γ−1)∗ is a finite and prefix-closed subset of IRR(Γ ); it
is defined by

MT(u) = {r(v) | v � u}.
By identifying an irreducible word v ∈ IRR(Γ ) with the group element δ(v), MT(u)
becomes the set of all nodes along the unique path in C(Γ ) that starts in 1 and that is
labeled with the word u. The subgraph of the Cayley-graphC(Γ ), which is induced by
MT(u) is connected. Hence it is a finite tree and we can identify MT(u) with this tree.
The following result is known as Munn’s Theorem:

Theorem 1 ([16]). For all u, v ∈ (Γ ∪ Γ−1)∗, we have: ρ(u) = ρ(v) if and only if
(r(u) = r(v) and MT(u) = MT(v)).

Thus, ρ(u) ∈ FIM(Γ ) can be uniquely represented by the pair (MT(u), r(u)). In fact,
if we define on the set of all pairs (U, v) ∈ 2IRR(Γ ) × IRR(Γ ) (with v ∈ U and U finite
and prefix-closed) a multiplication by (U, v)(V,w) = (r(U ∪ vV ), r(vw)), then the
resulting monoid is isomorphic to FIM(Γ ). Quite often, we represent an element ρ(u) ∈
FIM(Γ ) by a diagram for its Munn tree, where in addition the node ε is represented by
a bigger circle and the node r(u) is marked by an outgoing arrow. If r(u) = ε, then we
omit this arrow. By Thm. 1 such a diagram uniquely specifies an element of FIM(Γ ).

Example 1. The diagram for ρ(bb−1abb−1a) ∈ FIM({a, b}) looks as follows:

b
a a

b

Thm. 1 leads to a polynomial time algorithm for the word problem for FIM(Γ ). For
instance, the reader can easily check that bb−1abb−1a = aaa−1bb−1a−1bb−1aa in
FIM({a, b}) by using Munn’s Theorem. In fact, every word that labels a path from ε
to aa (the node with the outgoing arrow) and that visits all nodes of the above diagram
represents the same element of FIM({a, b}) as bb−1abb−1a. Munn’s theorem also im-
plies that an element ρ(u) ∈ FIM(Γ ) (where u ∈ (Γ ∪ Γ−1)∗) is idempotent (i.e.,
ρ(uu) = ρ(u)) if and only if r(u) = ε.

For a finite setP ⊆ (Γ∪Γ−1)∗×(Γ∪Γ−1)∗ define FIM(Γ )/P = (Γ∪Γ−1)∗/τP to
be the inverse monoid with the set Γ of generators and the set P of relations, where τP
is the smallest congruence on (Γ ∪ Γ−1)∗ generated by ρ∪ P . Viewed as a morphism,
this congruence factors as τP = ρ ◦ νP with FIM(Γ )/νP = FIM(Γ )/P . We say that
P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ is an idempotent presentation if for all (e, f) ∈ P ,
ρ(e) and ρ(f) are both idempotents of FIM(Γ ), i.e., r(e) = r(f) = ε by the remark
above. In this paper, we are concerned with inverse monoids of the form FIM(Γ )/P for
a finite idempotent presentation P . In this case, since every identity (e, f) ∈ P is true
in FG(Γ ) (we have δ(e) = δ(f) = 1), there also exists a congruence γP on FIM(Γ )/P
with (FIM(Γ )/P )/γP = FG(Γ ). The following commutative diagram summarizes all
morphisms introduced so far.
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(Γ ∪ Γ−1)∗

FIM(Γ ) FG(Γ )FIM(Γ )/P

ρ

γ

δτP
νP γP

In the sequel, the meaning of the congruences ρ, δ, γP , γ, τP , and νP will be fixed.
To solve the word problem for FIM(Γ )/P , Margolis and Meakin [14] used a closure

operation for Munn trees, which is based on work of Stephen [22]. We shortly review
the ideas here. As remarked in [14], every idempotent presentation P can be replaced
by the idempotent presentationP ′ = {(e, ef), (f, ef) | (e, f) ∈ P}, i.e., FIM(Γ )/P =
FIM(Γ )/P ′. Since MT(e) ⊆ MT(ef) ⊇ MT(f) if r(e) = r(f) = ε, we can restrict
in the following to idempotent presentations P such that MT(e) ⊆ MT(f) for all
(e, f) ∈ P . Define a rewriting relation ⇒P on prefix-closed subsets of IRR(Γ ) as
follows, where U, V ⊆ IRR(Γ ): U ⇒P V if and only if

∃(e, f) ∈ P ∃u ∈ U
(
r(uMT(e)) ⊆ U and V = U ∪ r(uMT(f))

)
.

Finally, define the closure of U ⊆ IRR(Γ ) with respect to the presentation P as

clP (U) =
⋃
{V | U ∗⇒P V }.

Example 2. Assume that Γ = {a, b}, P = {(aa−1, a2a−2), (bb−1, b2b−2)} and u =
aa−1bb−1. The graphical representations for these elements look as follows:

a a

a

= b b

b

= a b

Then the closure clP (MT(u)) is {an | n ≥ 0} ∪ {bn | n ≥ 0} ⊆ IRR(Γ ).

Margolis and Meakin proved the following result:

Theorem 2 ([14]). Let P be an idempotent presentation and let u, v ∈ (Γ ∪ Γ−1)∗.
Then τP (u) = τP (v) if and only if (r(u) = r(v) and clP (MT(u)) = clP (MT(v))).

The result of Munn for FIM(Γ ) (Thm. 1) is a special case of this result for P = ∅.
Note also that clP (MT(u)) = clP (MT(v)) if and only if MT(u) ⊆ clP (MT(v))
and MT(v) ⊆ clP (MT(u)). Margolis and Meakin used Thm. 2 in connection with
Rabin’s tree theorem in order to give a solution for the word problem for the monoid
FIM(Γ )/P . Using tree automata techniques, a logspace algorithm for the word prob-
lem for FIM(Γ )/P was given in [10]. For this result, it is important that the idempotent
presentation P is not part of the input. The uniform version of the word problem, where
P is part of the input, is EXPTIME-complete [10].

4 Straight-Line Programs

We are using straight-line programs as a succinct representation of strings with reoc-
curring subpatterns [18]. A straight-line program (SLP) over a finite alphabet Γ is a
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context free grammar A = (V, Γ, S, P ), where V is the set of nonterminals, Γ is the
set of terminals, S ∈ V is the initial nonterminal, and P ⊆ V × (V ∪ Γ )∗ is the
set of productions such that (i) for every X ∈ V there is exactly one α ∈ (V ∪ Γ )∗

with (X,α) ∈ P and (ii) there is no cycle in the relation {(X,Y ) ∈ V × V | ∃α ∈
(V ∪ Γ )∗Y (V ∪ Γ )∗ : (X,α) ∈ P}. These conditions ensure that the language gener-
ated by the straight-line program A contains exactly one word val(A).

Remark 1. The following problems can be solved in polynomial time:

(a) Given an SLP A, calculate |val(A)| in binary representation.
(b) Given an SLP A and two binary coded numbers 1 ≤ i ≤ j ≤ |val(A)|, compute an

SLP B with val(B) = val(A)[i, j].

Also notice that val(A) can be computed from A by a PSPACE-transducer.

Plandowski [17] presented a polynomial time algorithm for testing whether val(A) =
val(B) for two given SLPs A and B. A cubic algorithm was presented by Lifshits [4].

Let M be a finitely generated monoid and let Γ be a finite generating set for M . The
compressed word problem for M is the following computational problem:

INPUT: SLPs A and B over the alphabet Γ .
QUESTION: Does val(A) = val(B) hold in M?

The above mentioned result of Plandowski [17] means that the compressed word prob-
lem for a finitely generated free monoid can be solved in polynomial time. The follow-
ing result was shown in [7].

Theorem 3 ([7]). For every finite alphabetΓ , the compressed word problem for FG(Γ )
can be solved in polynomial time (and is P-complete if |Γ | ≥ 2).

5 Compressed Word Problem for FIM(Γ )

Recall that the word problem for FIM(Γ ) can be solved in logspace [10]. In the com-
pressed setting we have:

Theorem 4. For every finite alphabet Γ with |Γ | ≥ 2, the compressed word problem
for FIM(Γ ) is Πp

2 -complete.

Proof. For the Πp
2 upper bound, let A and B be SLPs over some alphabet Γ ∪Γ−1 and

let m = |val(A)| and n = |val(B)|. These numbers can be computed in polynomial
time by Remark 1. By Thm. 1, we have val(A) = val(B) in FIM(Γ ) if and only if:

val(A) = val(B) in FG(Γ ) (2)

∀i ∈ {0, . . . ,m} ∃j ∈ {0, . . . , n} : val(A)[1, i] = val(B)[1, j] in FG(Γ ) (3)

∀i ∈ {0, . . . , n} ∃j ∈ {0, . . . ,m} : val(B)[1, i] = val(A)[1, j] in FG(Γ ) (4)

Thm. 3 implies that (2) can be checked in polynomial time, whereas (3) and (4) are
Πp

2 -properties.
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It suffices to prove the lower bound for Γ = {a, b}. We make a logspace reduction
from the followingΠp

2 -complete problem [1], where u ·v = u1v1 + · · ·+unvn denotes
the scalar product of two integer vectors u = (u1, . . . , un), v = (v1, . . . , vn):

INPUT: vectors u = (u1, . . . , um) ∈ Nm, v = (v1, . . . , vn) ∈ Nn, and t ∈ N (all
coded binary)
QUESTION: Does ∀x ∈ {0, 1}m∃y ∈ {0, 1}n : u · x + v · y = t hold?

Let s = u1+· · ·+um+v1+· · ·+vn, su = u1+· · ·+um, and sv = v1+· · ·+vn. W.l.o.g.
we can assume t < s. Using the construction from [7] (proof of Theorem 5.2) we can
construct in logspace an SLP A1 such that val(A1) =

∏
x∈{0,1}m au·xA1a

su−u·x. Here
the product is taken over all tuples from {0, 1}m in lexicographic order. By replac-
ing A1 by A2a

sv (which can be easily generated by a small SLP), we obtain an SLP
A2 with val(A2) =

∏
x∈{0,1}m au·xA2a

s−u·x. Similarly, we obtain an SLP A3 with

val(A3) =
∏

y∈{0,1}n av·y(bb−1a−sv )asv−v·y . Finally, be replacing A2 in A2 by the
start nonterminal of A3 we obtain an SLP A with

val(A) =
∏

x∈{0,1}m

[
au·x

∏
y∈{0,1}n

(
av·ybb−1a−svasv−v·y

)
as−u·x

]
.

Moreover, it is easy to construct a second SLP B such that

val(B) = val(A)a−s·2m(
atbb−1as−t

)2m

.

We claim that val(A) = val(B) in FIM({a, b}) if and only if

∀x ∈ Nm∃y ∈ Nn : u · x + v · y = t. (5)

We have r(val(A)) = r(val(B)) = as·2m

. Thus, val(A) = val(B) holds in FIM({a, b})
if and only if MT(val(A)) = MT(val(B)). Since val(A) is a prefix of val(B), we obtain
MT(val(A)) ⊆ MT(val(B)). Moreover, for the prefix val(A)a−s·2m

of val(B) we have
r(val(A)a−s·2m

) = ε and MT(val(A)a−s·2m

) = MT(val(A)). This and the fact that
MT(val(A)) ⊆ MT(val(B)) implies that MT(val(A)) = MT(val(B)) if and only if

MT((atbb−1as−t)2
m

) ⊆ MT(val(A)). (6)

We show that (6) is equivalent to (5). We have

MT((atbb−1as−t)2
m

) = {ai | 0 ≤ i ≤ s · 2m} ∪ {at+k·sb | 0 ≤ k < 2m}.

Since r(val(A)) = as·2m

, we have ai ∈ MT(val(A)) for all 0 ≤ i ≤ s · 2m. Hence,
(6) is equivalent to at+k·sb ∈ MT(val(A)) for every 0 ≤ k < 2m, i.e. (for a bit vector
u = (u1, . . . , un) ∈ {0, 1}n let n(u) =

∑n
i=1 ui2i−1 be the number represented by u)

∀x ∈ {0, 1}m : an(x)·s+tb ∈ MT(val(A)). (7)

Now, MT(val(A)) ∩ a∗b = {an(x)·s+u·x+v·yb | x ∈ {0, 1}m, y ∈ {0, 1}n}. Hence, (7)
if and only if ∀x ∈ {0, 1}m∃y ∈ {0, 1}n : u · x + v · y = t. 
�
For a free inverse monoid of rank one, the compressed word problem is simpler:

Proposition 1. The compressed word problem for FIM({a}) can be solved in polyno-
mial time.
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6 Compressed Word Problems for FIM(Γ )/P

For an inverse monoid of the form FIM(Γ )/P , where Γ is finite and P is a finite idem-
potent presentation, the word problem can be still solved in logspace [10]. In this case,
the complexity of the compressed word problem reaches even PSPACE:

Theorem 5. The following holds:

(a) For every finite idempotent presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗, the
compressed word problem for FIM(Γ )/P belongs to PSPACE.

(b) There exists a fixed finite idempotent presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

such that the compressed word problem for FIM(Γ )/P is PSPACE-complete.

Proof. Let us first show (a). In [10], it was shown that the ordinary word problem for
FIM(Γ )/P can be solved in logarithmic space. Since val(A) can be computed from A
by a PSPACE-transducer (Remark 1), statement (a) follows from Lemma 1.

For the lower bound in (b), we use the following recent result from [8]: There exists
a fixed regular language L over some paired alphabet Σ × Θ such that the following
problem is PSPACE-complete (for strings u ∈ Σ∗, v ∈ Θ∗ with |u| = |v| = n let
u⊗ v = (u[1], v[1]) · · · (u[n], v[n]) ∈ (Σ ×Θ)∗):

INPUT: SLPs A (over Σ) and B (over Θ) with |val(A)| = |val(B)|
QUESTION: Does val(A)⊗ val(B) ∈ L hold?

W.l.o.g. assume that Σ ∩Θ = ∅. LetA = (Q,Σ×Θ, δ, q0, F ) be a deterministic finite
automaton with L(A) = L. Let Γ = Σ ∪ Θ ∪Q ∪ {A,B,C} (all unions are assumed
to be disjoint). Consider the fixed idempotent presentation over the alphabet Γ with the
following relations:

a

b q

A
=

a

b q

A

p
if δ(q, (a, b)) = p

B f
=
B

C

f
if f ∈ F

=A

C

A

CC

With the upper left relation, we simulate the automaton A. The upper right relation
allows to add a C-labeled edge as soon as a final state is reached; the B-labeled edge
acts as a kind of end marker for the input word. Finally, the last relation allows to
propagate the C-labeled edge back to the origin (node 1).

Assume that val(A) = a1 · · · an and val(B) = b1 · · · bn. Consider the string

w = q0q
−1
0

n∏
i=1

(aia
−1
i A)BB−1

n−1∏
i=0

(A−1bn−ib
−1
n−i).

It is easy to compute from A and B in polynomial time an SLP C with val(C) = w. The
Munn tree MT(w) looks as follows:
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. . .
A A A A A

a1

b1 q0

a2

b2

a3

b3

a4

b4

an−1

bn−1

an

bn B

We claim that w = CC−1w in FIM(Γ )/P if and only if val(A) ⊗ val(B) ∈ L(A).
Clearly, w = CC−1w = 1 in FG(Γ ). Moreover, clP (MT(w)) = clP (MT(CC−1w))
if and only if C ∈ clP (MT(w)). Thus, it suffices to show that C ∈ clP (MT(w)) if and
only if val(A)⊗ val(B) ∈ L(A). First, assume that val(A)⊗ val(B) /∈ L(A). Let qi be
the state ofA after reading (a1, b1) · · · (ai, bi) (0 ≤ i ≤ n). Thus, qn �∈ F . This implies
that clP (MT(w)) = MT(w) ∪ {Aiqi | 0 ≤ i ≤ n}. Hence, C �∈ clP (MT(w)). On the
other hand, if qn ∈ F , then clP (MT(w)) = MT(w) ∪ {Aiqi, A

iC | 0 ≤ i ≤ n} and
therefore C ∈ clP (MT(w)). 
�

7 Rational Subset Membership Problems

In this section we briefly outline our results on the compressed variant of the rational
subset membership problem for free inverse monoids. We start with a lower bound.

Theorem 6. There exists a fixed alphabet Γ and a fixed finite subset K ⊆ (Γ ∪ Γ−1)∗

such that the following problem is PSPACE-hard:
INPUT: An SLP A over the alphabet Γ ∪ Γ−1

QUESTION: Does ρ(val(A)) ∈ ρ(K∗) hold?

Note that ρ(K∗) is the submonoid of FIM(Γ ) generated by ρ(K). Let us now turn to
an upper bound.

Theorem 7. The following problem belongs to PSPACE:
INPUT: An SLP A over an alphabetΓ ∪Γ−1 and an NFAA over the alphabet Γ ∪Γ−1.
QUESTION: Does ρ(A) ∈ ρ(L(A)) hold?

The proof of Thm. 7 is based on tree automata techniques. Recall that a Munn tree
MT(u) can be viewed as an edge labeled tree. The node ε can be made the root of the
tree. Such a rooted edge-labeled tree can be evaluated by a tree automaton. Usually,
tree automata work on node labeled trees, but this is only a technicality. The proof of
Thm. 7 is based on the following two lemmas.

Lemma 2. There is a PSPACE-transducer, which computes MT(val(A)) for a given
input SLP A.

Lemma 3. There is a PSPACE-transducer, which computes from a given nondeter-
ministic finite automaton A over the alphabet Γ ∪ Γ−1 and a given SLP A over
the alphabet Γ ∪ Γ−1 a nondeterministic tree automaton B = B(A,A) such that:
ρ(val(A)) ∈ ρ(L(A)) if and only if MT(val(A)) is accepted by B.

Proof of Thm. 7. We apply Lemma 1, where f : (A,A) '→ (MT(val(A)),B(A,A))
and L is the uniform membership problem for tree automata, i.e., the set of all pairs
(T,B), where T is a tree and B is a tree automaton that accepts T . By [6], L belongs to
LOGCFL and hence to POLYLOGSPACE. Moreover, the mapping f can be computed
by a PSPACE-transducer by Lemma 2 and 3. 
�
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Abstract. Explicit pushing for weighted tree automata over semifields
is introduced. A careful selection of the pushing weights allows a normal-
ization of bottom-up deterministic weighted tree automata. Automata in
the obtained normal form can be minimized by a simple transformation
into an unweighted automaton followed by unweighted minimization.
This generalizes results of Mohri and Eisner for deterministic weighted
string automata to the tree case. Moreover, the new strategy can also be
used to test equivalence of two bottom-up deterministic weighted tree
automata M1 and M2 in time O(|M | log|Q|), where |M | = |M1| + |M2|
and |Q| is the sum of the number of states of M1 and M2. This improves
the previously best running time O(|M1| · |M2|).

1 Introduction

Automata theory is a main branch of theoretical computer science with successful
applications in many diverse fields such as natural language processing, system
verification, and pattern recognition. Recently, renewed interest in tree automata
was sparked by applications in natural language processing and XML processing.
These applications require efficient algorithms for basic manipulations of tree
automata such as determinization [7], inference [20], and minimization [17,16].

In natural language processing, weighted devices are often used to model prob-
abilities, cost functions, or other features. In this contribution, we consider push-
ing [21,10] for weighted tree automata [1,11] over commutative semifields [15,14].
Roughly speaking, pushing moves transition weights along a path. If the weights
are properly selected, then pushing can be used to canonicalize a (bottom-up)
deterministic weighted tree automaton [3]. The obtained canonical representa-
tion has the benefit that it can be minimized using unweighted minimization,
in which the weight is treated as a transition label. This strategy has success-
fully been employed in [21,10] for deterministic weighted (finite-state) string
automata, and we adapt it here for tree automata. In particular, we improve the
currently best minimization algorithm [19] for deterministic weighted tree au-
tomata from O(|M | · |Q|) to O(|M | log|Q|), which coincides with the complexity
of minimization in the unweighted case [17].
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The improvement is achieved by a careful selection of signs of life [19]. Intu-
itively, a sign of life for a state q is a context which takes q into a final state.
In particular, equivalent states will receive the same sign of life, which ensures
that their pushing weights are determined using the same evaluation context.
This property sets our algorithm apart from the similar algorithm in [19, Al-
gorithm 1] and allows a proper canonicalization. After the pushing weights are
determined we perform pushing, which we define for general (potentially nonde-
terministic) weighted tree automata. We prove that the semantics is preserved
and that equivalent states have equally weighted corresponding transitions after
pushing, which allows us to reduce minimization to the unweighted case [17].

Secondly, we apply pushing to equivalence testing. The currently fastest algo-
rithm [9] for checking equivalence of two deterministic weighted tree automata
M1 and M2 runs in time O(|M1| · |M2|). Our algorithm that computes signs of
life can also handle states in different automata with the help of a particular
sum construction. The pushing weight (and the evaluation context) is deter-
mined carefully, so that equivalent states in different automata receive the same
sign of life. This allows us to minimize both input automata and then only
test the corresponding unweighted automata for isomorphism. This approach
reduces the run-time complexity to O(|M | log|Q|), where |M | = |M1|+ |M2| and
|Q| = |Q1|+ |Q2| is the number of total states.

2 Preliminaries

The set of nonnegative integers is N. Given l, u ∈ N we denote {i ∈ N | l ≤ i ≤ u}
simply by [l, u]. Let k ∈ N and Q a set. We write Qk for the k-fold Cartesian
product of Q, and the empty tuple () ∈ Q0 is displayed as ε. An alphabet is a
finite, nonempty set of symbols. A ranked alphabet (Σ, rk) consists of an alpha-
bet Σ and a mapping rk: Σ → N. Whenever ‘rk’ is clear from the context, we
simply drop it. The subsetΣk of k-ary symbols ofΣ isΣk = {σ ∈ Σ | rk(σ) = k}.
We let Σ(Q) = {σ(w) | σ ∈ Σk, w ∈ Qk}. To improve the readability, we often
write σ(q1, . . . , qk) instead of σ(q1 · · · qk), where σ ∈ Σk and q1, . . . , qk ∈ Q. The
set TΣ(Q) of Σ-trees indexed by Q is inductively defined to be the smallest
set such that Q ⊆ TΣ(Q) and Σ(TΣ(Q)) ⊆ TΣ(Q). We write TΣ for TΣ(∅).
The size |t| of a tree t is inductively defined by |q| = 1 for every q ∈ Q and
|σ(t1, . . . , tk)| = 1 +

∑k
i=1|ti| for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q).

We reserve the use of a special symbol � /∈ Q that is not an element in any
considered alphabet. The set CΣ(Q) of Σ-contexts indexed by Q is defined as the
smallest set such that � ∈ CΣ(Q) and σ(t1, . . . , ti−1, C, ti+1, . . . , tk) ∈ CΣ(Q) for
every σ ∈ Σk with k ≥ 1, index i ∈ [1, k], t1, . . . , tk ∈ TΣ(Q), and C ∈ CΣ(Q).
We write CΣ for CΣ(∅). Note that CΣ(Q) ⊆ TΣ(Q ∪ {�}). Let C ∈ CΣ(Q) and
t ∈ TΣ(Q). Then C[t] is the tree obtained from C by replacing � by t.

A (commutative) semifield [15,14] is a tuple (A,+, ·, 0, 1) such that (A,+, 0)
and (A, ·, 1) are commutative monoids, of which (A\{0}, ·, 1) is a group; a ·0 = 0
for every a ∈ A; and · distributes over +. The multiplicative inverse of a ∈ A\{0}
is denoted by a−1; i.e., a · a−1 = 1 for every a ∈ A \ {0}.
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Let (A,+, ·, 0, 1) be an arbitrary commutative semifield.

A weighted (finite-state) tree automaton [6,5,18,4,3] (for short: wta) is a tuple
M = (Q,Σ, μ, F ) such that (i) Q is an alphabet of states; (ii) Σ is a ranked
alphabet; (iii) μ : Σ(Q)×Q→ A is a transition weight mapping; and (iv) F ⊆ Q
is a set of final states. Note that the restriction to final states instead of fi-
nal weights does not restrict the expressive power [3, Lemma 6.1.4]. We often
write t → q for (t, q). The size |M | of M is |M | =

∑
(t→q)∈μ−1(A\{0})(|t| + 1).

We extend μ to hμ : TΣ(Q)×Q→ A by hμ(q → q) = 1, hμ(p→ q) = 0, and

hμ(σ(t1, . . . , tk)→ q) =
∑

q1,...,qk∈Q

μ(σ(q1, . . . , qk)→ q) ·
k∏

i=1

hμ(ti → qi)

for all p, q ∈ Q with p �= q, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Q). The wta M recog-
nizes the weighted language M : TΣ → A such that M(t) =

∑
q∈F hμ(t→ q) for

every t ∈ TΣ. Two wta M and M ′ are equivalent if M = M ′.
The wta M = (Q,Σ, μ, F ) is (bottom-up total) deterministic (or a dwta) if

for every t ∈ Σ(Q) there exists exactly one q ∈ Q such that μ(t → q) �= 0.
For dwta we prefer the presentation (Q,Σ, δ, c, F ) with δ : Σ(Q) → Q and
c : Σ(Q) → A \ {0}, which are defined such that δ(t) = q and c(t) = μ(t → q)
for every t ∈ Σ(Q), where q is the unique state such that μ(t → q) �= 0. The
mappings δ and c are extended to δ : TΣ(Q)→ Q and c : TΣ(Q)→ A \ {0} by

δ(q) = q δ(σ(t1, . . . , tk)) = δ(σ(δ(t1), . . . , δ(tk)))

c(q) = 1 c(σ(t1, . . . , tk)) = c(σ(δ(t1), . . . , δ(tk))) ·
k∏

i=1

c(ti)

for every q ∈ Q, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Q). For every t ∈ TΣ we can
observe that M(t) = c(t) if δ(t) ∈ F and M(t) = 0 otherwise.

An equivalence relation ≡ on Q is a reflexive, symmetric, and transitive sub-
set ≡ ⊆ Q2. The equivalence class (or block) of q ∈ Q is [q]≡ = {p ∈ Q | p ≡ q},
and (P/≡) = {[p]≡ | p ∈ P} for every P ⊆ Q. Whenever ≡ is obvious from
the context, we simply omit it. The equivalence ≡ respects finality if [q] ⊆ F or
[q] ⊆ Q \ F for all q ∈ Q (i.e., all states of a block are either final or nonfinal).

Suppose that M is deterministic. Let ≡M ⊆ Q2 be the Myhill-Nerode
equivalence relation [2]

≡M = {(q, p) ∈ Q2 | ∃a ∈ A \ {0}, ∀C ∈ CΣ(Q) : c(C[q]) = a · c(C[p])} .

If M is clear from the context, then we just write ≡ instead of ≡M . The deter-
ministic (unweighted) tree automaton (dta) [12,13,8] for M is M ′ = (Q,Σ, δ, F ).
It recognizes the tree language L(M ′) ⊆ TΣ, which is {t ∈ TΣ | δ(t) ∈ F}.

Let M1 = (Q1, Σ, δ1, c1, F1) and M2 = (Q2, Σ, δ2, c2, F2) be two arbitrary
dwta. A congruential relation ∼ ⊆ Q1 ×Q2 (between M1 and M2) is such that
δ1(σ(q1, . . . , qk)) ∼ δ2(σ(p1, . . . , pk)) for every σ ∈ Σk, q1, . . . , qk ∈ Q1, and
p1, . . . , pk ∈ Q2 such that qi ∼ pi for every i ∈ [1, k]. Note that this definition
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of a congruential relation completely disregards the weights. It coincides with
the classical notion of congruence if M1 = M2. The equivalence ≡M is a congru-
ence [2]. If Q1∩Q2 = ∅, then a congruential relation ∼ extends to a congruential
equivalence ∼= ⊆ (Q1 ∪Q2)2 such that ∼= = (∼ ∪∼−1)∗.

Finally, let us introduce a particular sum of 2 dwta, which preserves deter-
minism. Without loss of generality, let Q1 ∩ Q2 = ∅. The dwta M1 , M2 is
(Q1 ∪ Q2, Σ, δ, c, F1 ∪ F2), where δ(t1) = δ1(t1), δ(t2) = δ2(t2), c(t1) = c1(t1),
and c(t2) = c2(t2) for every t1 ∈ Σ′(Q1) and t2 ∈ Σ′(Q2) with Σ′ = Σ \ Σ0.
As usual, we assume that unspecified transitions go to a nonfinal sink state.
Clearly, M1,M2 does not compute the sum of M1 and M2 because it is missing
all transitions for nullary symbols. Outside of nullary symbols (the initial steps)
it behaves just like the standard sum [3] of M1 and M2.

3 Efficient Computation of Signs of Life

In this section, we show how to efficiently compute signs of life (see Def. 1),
which are evidence that a final state can be reached, and weights for pushing
(see Sect. 4). Our algorithm (see Alg. 1) is similar to [19, Alg. 1], but we guarantee
that equivalent states receive the same sign of life. This last property will prove
to be essential in Sects. 5 and 6. Since we also want to use the computed signs of
life for equivalence testing (see Sect. 6), we potentially work with a sum M1,M2

of two dwta M1 and M2 here, where the transitions for nullary symbols have
been removed in order to preserve determinism.

Let M = (Q,Σ, δ, c, F ) be a dwta with Q = Q1 ∪ Q2 and Q1 ∩ Q2 = ∅,
and let g : Q1 → Q2.

We extend g to a mapping g : TΣ(Q1) → TΣ(Q2) such that g(q1) = g(q1) for
every q1 ∈ Q1 and g(σ(t1, . . . , tk)) = σ(g(t1), . . . , g(tk)) for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ(Q1). Let us first recall the definition of a sign of life from [19],
which we adjust here to handle the potential sum.

Definition 1 (see [19, Sect. 2]). Let C ∈ CΣ(Q1), q1 ∈ Q1, and q2 ∈ Q2.
Then C is a sign of life for q1 if δ(C[q1]) ∈ F . It is a sign of life for q2 if
δ(g(C)[q2]) ∈ F . Any state that has a sign of life is live, and any state without
a sign of life is dead.

Next, we explain Alg. 1 briefly. Let M1 be the dwta obtained by restricting M
to Q1. First we realize that every final state q ∈ F is trivially live. We set
the sign of life for its block [q] to the trivial context � (line 3) and its weight
to 1 (line 4). Since the congruence ∼= respects finality, the block [q] contains
only final states. Overall, this initialization takes time O(|Q|). Next, we add
all transitions leading to a final state of F ∩ Q1 to the FIFO queue T , which
takes time O(|M1|). Clearly each transition using Q1 can be added at most once
to T , so the ‘while-loop’ executes at most once per transition. In the loop, we
inspect the transition τ = σ(q1, . . . , qk) that we took from T . We check each
source state qi ∈ Q1 (with i ∈ [1, k]) whether it has been explored before. If not,
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Alg. 1. ComputeSoL: Compute signs of life and their weight
Require: dwta M = (Q,Σ, δ, c, F ), g : Q1 → Q2 with Q = Q1 ∪ Q2 and Q1 ∩Q2 = ∅,

and congruential equivalence ∼= such that g ⊆ ∼= and ∼= respects finality
Ensure: live states L ⊆ Q, sol : (L/∼=) → CΣ(Q1), and λ : L → A \ {0} such that

λ(q1) = c(sol(B)[q1]) for all q1 ∈ L ∩ Q1 and
λ(q2) = c(g(sol(B))[q2]) for all q2 ∈ L ∩ Q2, where B = [q1]∼=

L ← F // all final states are live
2: for all q ∈ F do

sol([q]∼=) ← � // sign of life is the trivial context for final states. . .
4: λ(q) ← 1 // . . . with trivial weight

T ← new FifoQueue
6: Append(T, {τ ∈ Σ(Q1) | δ(τ ) ∈ F ∩ Q1}) // add all transitions leading to F ∩ Q1

while T is not empty do
8: τ ← RemoveHead(T ) // get first transition

let τ = σ(q1, . . . , qk) with σ ∈ Σk and q1, . . . , qk ∈ Q1

10: for all i ∈ [1, k] such that qi /∈ L do
let C = σ(q1, . . . , qi−1,�, qi+1, . . . , qk) // prepare context

12: L ← L ∪ [qi]∼= // all equivalent states are live; add to L
sol([qi]∼=) ← sol([δ(τ )]∼=)[C] // add transition to sign of life of target state

14: for all q ∈ [qi]∼= do
if q ∈ Q1 then

16: λ(q) ← λ(δ(C[q])) · c(C[q]) // set new weight
Append(T, {τ ′ ∈ Σ(Q1) | δ(τ ′) = q}) // add transitions leading to q

18: else
λ(q) ← λ(δ(g(C)[q])) · c(g(C)[q]) // set new weight

20: return (L, sol, λ)

then its whole block [qi] is unexplored, since we explore the states by blocks.
Overall, we thus perform at most |M1| checks. Once we discover an unexplored
state qi (i.e., a state not yet marked as live), we mark its whole block [qi] as
explored (and live). In addition, we set the block’s sign of life to the sign of life
of the target state’s block [δ(τ)] extended by the context C created from the
current transition τ (line 13). Finally, for each state q in the current block [qi]
we compute the weight of the sign of life by plugging q into the current transition
instead of qi. If q ∈ Q2, then we adjust the transition using g. In this way, we
obtain a transition weight a and a target state p. Since the weight of the sign of
life for p has already been computed (because otherwise the transition τ would
not have been in the queue T ), we simply set λ(q) = λ(p) · a (line 16 and 19).
Clearly, this is done at most once for each state, so we obtain a total complexity
(counted over all loops) of O(|Q|) for this part. We complete the iteration by
adding all transitions to newly explored states of Q1 to T . Overall, we obtain
the complexity O(|M1|+ |Q|).

Theorem 2. Algorithm 1 is correct and runs in time O(|M1|+ |Q|).
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Fig. 1. Dwta over the Real numbers before (left) and after (right) pushing

Proof. We already argued the run-time complexity, so let us prove the post-
condition. For q ∈ F , we have λ(q) = 1 = c(q) = c(�[q]) by lines 3–4, which
proves the post-condition because sol([q]∼=) = �. Let C′ = C if q ∈ Q1, and
otherwise let C′ = g(C). In the main loop, we set λ(q) = λ(δ(C′[q])) · c(C′[q]) in
line 16 or 19. Since q′ = δ(C′[q]) has already been explored in a previous iteration,
we have λ(q′) = c(C′′[q′]) by the induction hypothesis, where C′′ = sol([q′]∼=) if
q′ ∈ Q1 and C′′ = g(sol([q′]∼=)). Consequently,

λ(q) = c(C′′[q′]) · c(C′[q]) = c(C′′[C′[q]]) = c((C′′[C′])[q]) ,

which proves the post-condition because sol([q]∼=) = sol([δ(C[q])]∼=)[C] by line 13.
Since λ(q) �= 0, it also proves that sol([q]∼=) is a sign of life for q and that q is live.
The proof that all states q /∈ L are indeed dead is simple and omitted here. 
�

Example 3. An example dwta is depicted in Fig. 1 (left). For any transition
(small circles), the arrow leads to the target state and the source states have
been arranged in a counter-clockwise fashion (starting from the target arrow).
As usual, final states are indicated by double-circles. Let us note that the coars-
est congruence ∼= that respects finality is {{q1, qf}, {q2, qb}}. We use this par-
tition together with g = ∅ in Alg. 1. First, we mark all final states {q1, qf}
as live. Their block is assigned the trivial context � and each final state is
assigned the trivial weight 1. We then initialize the FIFO queue with the transi-
tions {γ(qb), γ(q2), γ(q1), γ(qf )} leading to q1 or qf . Let us pick the first transi-
tion γ(qb) from the queue. Since qb has not yet been marked as live, we consider
all transitions γ(�)[q] = γ(q) where q ∈ [qb]∼= = {qb, q2}. The sign of life for [qb]∼=
is γ(�), and the corresponding weights λ(qb) and λ(q2) are λ(qb) = λ(qf ) · 2 = 2
and λ(q2) = λ(qf ) · 8 = 8, respectively. For all remaining transitions, all source
states are already live. Consequently, we have computed all signs of life and the
pushing weights λ(q1) = λ(qf ) = 1, λ(q2) = 2, and λ(qb) = 8.

4 Pushing

Recall that the Myhill-Nerode congruence states that there is a unique scal-
ing factor for every pair (p, q) of equivalent states. Thus, any fixed sign of life
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can be used to determine the scaling factor between p and q. In the previous
section, we computed a sign of life sol(q) for each live state q ∈ L as well as the
weight λ(q) of sol(q). Now, we will use these weights to normalize the wta by
pushing [21,10,22]. Intuitively, pushing cancels the scaling factor for equivalent
states. In weighted (finite-state) string automata, pushing is performed from the
final states towards the initial states. Since we work with bottom-up wta [3] (i.e.,
our notion of determinism is bottom-up), this works analogously here by moving
weights from the root towards the leaves.

In this section we work with an arbitrary wta M = (Q,Σ, μ, F ) and an
arbitrary mapping λ : Q→ A \ {0} such that λ(q) = 1 for every q ∈ F .1

Definition 4 (see [21, p. 296]). The pushed wta pushλ(M) is (Q,Σ, μ′, F )
such that μ′(σ(q1, . . . , qk) → q) = λ(q) · μ(σ(q1, . . . , qk) → q) ·

∏k
i=1 λ(qi)−1 for

every σ ∈ Σk and q, q1, . . . , qk ∈ Q.

The mapping λ records the pushed weights. In plain words, every transition
leading to a state q ∈ Q charges the additional weight λ(q), and every transition
leaving the state q compensates this by charging the weight λ(q)−1. Next, let us
show that M and pushλ(M) are equivalent.

Proposition 5 (see [21, Lm. 4]). The wta M and pushλ(M) are equivalent.
Moreover, if M is deterministic, then so is pushλ(M).

Proof. Let pushλ(M) = (Q,Σ, μ′, F ). The preservation of determinism is obvi-
ous. We prove that hμ′(t→ q) = λ(q) · hμ(t→ q) for every t ∈ TΣ and q ∈ Q by
induction. Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . We have
hμ′(ti → qi) = λ(qi) ·hμ(ti → qi) for every i ∈ [1, k] and qi ∈ Q by the induction
hypothesis. Consequently,

hμ′(t→ q)

=
∑

q1,...,qk∈Q

μ′(σ(q1, . . . , qk)→ q) ·
k∏

i=1

hμ′(ti → qi)

=
∑

q1,...,qk∈Q

λ(q) · μ(σ(q1, . . . , qk)→ q) ·
k∏

i=1

λ(qi)−1 ·
k∏

i=1

(
λ(qi) · hμ(ti → qi)

)
= λ(q) · hμ(t→ q) .

We complete the proof as follows.

pushλ(M)(t) =
∑
q∈F

hμ′(t→ q) =
∑
q∈F

λ(q) · hμ(t→ q) =
∑
q∈F

hμ(t→ q) = M(t)

because λ(q) = 1 for every q ∈ F . 
�
1 This additional requirement is necessary because our wta have final states [3, Sec-

tion 4.1.3]. A model with final weights [3, Section 4.1.3] would be equally powerful,
but could lift this restriction.
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Alg. 2. Overall structure of our minimization algorithm
Require: a dwta M
Ensure: return a minimal, equivalent dwta

∼= ← ComputeCoarsestCongruence(M) // complexity: O(|M | log|Q|)
2: (L, sol, λ) ← ComputeSoL(M,∼=, ∅) // complexity: O(|M |)

M ′ ← pushλ(M) // complexity: O(|M |)
4: N ← Minimize(alph(M ′),∼=) // complexity: O(|M | log|Q|)

return alph−1(N)

Example 6 (cont’d). Let us return to our example dwta M in Fig. 1 (left) and
perform pushing. The pushing weights λ are given in Ex. 3. For the transi-
tion τ = σ(qb, qf ) we have δ(τ) = q2 and c(τ) = 4. In pushλ(M) we have the
new weight c′(τ) = λ(q2) · c(τ) · λ(qb)−1 · λ(qf )−1 = 2 · 4 · 8−1 · 1−1 = 1. The
dwta pushλ(M) is presented in Fig. 1 (right). It is evident in pushλ(M) that
q2 and qb are equivalent, whereas q1 and qf are not.

5 Minimization

We will now turn to the main application of weight pushing for dwta: efficient
minimization. The overall structure is presented in Alg. 2. Note that the coarsest
congruence for a dwta M = (Q,Σ, δ, c, F ) that respects finality can be obtained
by minimization [17] of the underlying unweighted automaton (Q,Σ, δ, F ).

Let M = (Q,Σ, δ, c, F ) be a dwta, λ : Q → A be the pushing weights
computed in Alg. 1, and pushλ(M) = (Q,Σ, δ, c′, F ).

The dwta pushλ(M) has the property that c′(σ(q1, . . . , qk)) = c′(σ(p1, . . . , pk))
for all σ ∈ Σk and states q1, . . . , qk, p1, . . . , pk ∈ Q such that qi ≡ pi for every
i ∈ [1, k]. In analogy to the string case [10], this property allows us to treat
the transition weight as part of the input symbol. In this way we obtain a
dta, which we can minimize using, for example, the algorithm of [17]. After the
minimization, we can expand the input symbol again into a symbol from Σ and
the transition weight.

Definition 7. Let W = {c(τ) | τ ∈ Σ(Q)} be the set of occurring weights. The
syntactic dta for M is alph(M) = (Q,Σ ×W, δ′, F ), where

– (Σ ×W )k = Σk ×W for every k ∈ N, and
– δ′(〈σ,w〉(q1 , . . . , qk)) = q if and only if

δ(σ(q1, . . . , qk)) = q and c(σ(q1, . . . , qk)) = w

for every σ ∈ Σk, w ∈ W , and q1, . . . , qk ∈ Q. If no such q ∈ Q exists, then
δ′(〈σ,w〉(q1 , . . . , qk)) is undefined.
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Note that a dta with the above structure can be turned back into a dwta. We will
write alph−1 for this operation. Clearly, these constructions can be performed in
time O(|M |). To prove that the change to the unweighted setting is correct, we
still have to prove that the involved congruences coincide. Let ∼= be the classi-
cal (state) equivalence for alph(push(M)), and let ≡ be the (state) equivalence
for M . To prove that they coincide, we show both inclusions.

Lemma 8. The equivalence ≡ is a congruence of alph(push(M)) that respects
finality.

Proof. Let alph(push(M)) = (Q,Σ ×W, δ′, F ) and push(M) = (Q,Σ, δ, c′, F ).
Since M and alph(push(M)) have the same final states, ≡ respects finality. For
the congruence property, let σ ∈ Σk and q1, . . . , qk, p1, . . . , pk ∈ Q be such that
qi ≡ pi for every i ∈ [1, k]. Then δ(σ(q1, . . . , qk)) ≡ δ(σ(p1, . . . , pk)) because ≡ is
a congruence for M . If c′(σ(q1, . . . , qk)) = w = c′(σ(p1, . . . , pk)), then

δ′(〈σ,w〉(q1 , . . . , qk)) = δ(σ(q1, . . . , qk))
≡ δ(σ(p1, . . . , pk)) = δ′(〈σ,w〉(p1, . . . , pk)) .

For the remaining combinations of 〈σ,w′〉 both transitions would be undefined
(or go to the sink state), which would prove the congruence property. It remains
to show that c′(σ(q1, . . . , qk)) = c′(σ(p1, . . . , pk)).

By Def. 4, we have

c′(σ(q1, . . . , qk)) = λ(δ(σ(q1, . . . , qk))) · c(σ(q1, . . . , qk)) ·
k∏

i=1

λ(qi)−1

c′(σ(p1, . . . , pk)) = λ(δ(σ(p1, . . . , pk))) · c(σ(p1, . . . , pk)) ·
k∏

i=1

λ(pi)−1 .

Now we prove that

λ(δ(Cj [qj ])) · c(Cj [qj ]) ·
j−1∏
i=1

λ(pi)−1 ·
k∏

i=j

λ(qi)−1

= λ(δ(Cj [pj ])) · c(Cj [pj ]) ·
j∏

i=1

λ(pi)−1 ·
k∏

i=j+1

λ(qi)−1

for every j ∈ [1, k], where Cj = σ(p1, . . . , pj−1,�, qj+1, . . . , qk). Let q′j = δ(Cj [qj ])
and p′j = δ(Cj [pj ]). Since qj ≡ pj , we obtain that q′j ≡ p′j because ≡ is a
congruence. Consequently, sol(q′j) = C = sol(p′j). Moreover, we have

λ(qj)
λ(pj)

=
c(C[Cj [qj ]])
c(C[Cj [pj ]])

=
c(C[q′j ]) · c(Cj [qj ])
c(C[p′j ]) · c(Cj [pj ])

and
λ(q′j)
λ(p′j)

=
c(C[q′j ])
c(C[p′j ])

,

where the former holds because C[Cj ] is a sign of life for both qj and pj and the
latter holds by definition. With these equations, let us inspect the main equality.

λ(δ(Cj [qj ])) · c(Cj [qj ]) ·
∏j−1

i=1 λ(pi)−1 ·
∏k

i=j λ(qi)−1

λ(δ(Cj [pj ])) · c(Cj [pj ]) ·
∏j

i=1 λ(pi)−1 ·
∏k

i=j+1 λ(qi)−1
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=
λ(q′j) · c(Cj [qj ]) · λ(qj)−1

λ(p′j) · c(Cj [pj ]) · λ(pj)−1
=
c(C[q′j ]) · c(Cj [qj ]) · λ(pj)
c(C[p′j ]) · c(Cj [pj ]) · λ(qj)

=
c(C[q′j ]) · c(Cj [qj ]) · c(C[p′j ]) · c(Cj [pj ])
c(C[p′j ]) · c(Cj [pj ]) · c(C[q′j ]) · c(Cj [qj ])

= 1

Repeated application (from i = 1 to k) yields the desired statement. 
�

Theorem 9. We have ≡ = ∼=.

Proof. Lemma 8 shows that ≡ is a congruence of alph(push(M)) that respects
finality. Since ∼= is the coarsest congruence of alph(push(M)) that respects fi-
nality by [17], we obtain that ≡ ⊆ ∼=. The converse is trivial to prove. 
�

The currently fastest dwta minimization algorithm is presented in [19]. It runs
in time O(|M | · |Q|). With the help of pushing, we achieve the run-time of the
fastest minimization algorithm in the unweighted case.

Corollary 10. For every dwta M = (Q,Σ, δ, c, F ), we can compute a minimal,
equivalent dwta in time O(|M | log|Q|).

6 Testing Equivalence

In this section, we want to decide whether two given dwta are equivalent. To this
end, let M1 = (Q1, Σ, δ1, c1, F1) and M2 = (Q2, Σ, δ2, c2, F2) be dwta. The over-
all approach is presented in Alg. 3. First, we need to compute a correspondence
between states. For every q1 ∈ Q1, we compute a tree t ∈ δ−1

1 (q1). If δ−1
1 (q1) = ∅,

then q1 is not reachable and can be deleted. To avoid these details, let us as-
sume that all states of Q1 are reachable. In this case, we can compute an access
tree h(q1) ∈ TΣ for every state q1 ∈ Q1 in time |M1| using standard breadth-first
search, where we unfold each state (i.e., explore all transitions leading to it) at
most once. To keep the representation efficient, we store the access trees in the
format Σ(Q1), where the states refer to their respective access trees. To obtain
the correspondence g, we compute the corresponding state of Q2 that is reached
when processing the access trees. Formally, g(q1) = δ2(h(q1)) for every q1 ∈ Q1.
Consequently, we have that h(q1) ∈ δ−1

1 (q1) ∩ δ−1
2 (g(q1)) for every q1 ∈ Q1.

Next, we compute the coarsest congruence for the (reduced) sum M1 ,M2,
where we intend to compute a congruential equivalence. This can be achieved
by a simple modification of the standard minimization algorithms (for exam-
ple [17]), in which we replace states q1 ∈ Q1 by their corresponding state g(q1),
whenever we test a state of Q2. For example, when splitting a block using the
context C = σ(q,�, q′) with q, q′ ∈ Q1, we use this context for all states of Q1 and
the context g(C) = σ(g(q),�, g(q′)) for all states of Q2. If we find correspond-
ing states that are not related by the congruence, then the dwta are obviously
not equivalent because for corresponding states there exists a common tree t that
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Alg. 3. Overall structure of our equivalence test
Require: dwta M1 = (Q1, Σ, δ1, c1, F1) and M2 = (Q2, Σ, δ2, c2, F2)
Ensure: return yes if and only if M1 and M2 are equivalent

g ← ComputeCorrespondence(M1, M2) // complexity: O(|M1|)
2: M ← M1 � M2 // (reduced) sum of M1 and M2∼= ← ComputeCoarsestCongruence′(M, g) // complexity: O(|M | log|Q|)
4: if g �⊆ ∼= then

return no // g is not compatible with the coarsest congruence
6: (L, sol, λ) ← ComputeSoL(M,∼=, g) // complexity: O(|M |)

λ1 = λ|Q1 ; λ2 = λ|Q2 // prepare pushing weights
8: M1 ← pushλ1

(M1); M2 ← pushλ2
(M2) // complexity: O(|M1| + |M2|)

N1 ← Minimize(alph(M1),∼=|Q1×Q1) // complexity: O(|M1| log|Q1|)
10: N2 ← Minimize(alph(M2),∼=|Q2×Q2) // complexity: O(|M2| log|Q2|)

return Isomorphic?(N1, N2)

leads M1 and M2 into the respective state. Since the states are related by the
congruence, there exists a context C that is accepted in only one of the states.
This yields a difference of acceptance on C[t].

Next, we compute signs of life and pushing weights. It is again important
that equivalent states (in M1 ,M2) receive the same sign of life. We minimize
M1 and M2 using the method of Section 5 (i.e., we perform pushing followed
by unweighted minimization). Finally, we test the obtained unweighted dta for
isomorphism. An easy adaptation of the statement (and proof) of Lemma 8 can
be used to show that q1 ∈ Q1 and q2 ∈ Q2 are equivalent in alph(pushλ1

(M1))
and alph(pushλ2

(M2)), respectively (see Algorithm 3), if and only if q1 ≡M q2.
This proves the correctness of Algorithm 3, whose run-time should be compared
to the previously (asymptotically) fastest equivalence test for dwta of [9], which
runs in time O(|M1| · |M2|).

Theorem 11. We can test equivalence of M1 and M2 in time O(|M | log|Q|),
where |M | = |M1|+ |M2| and |Q| = |Q1|+ |Q2|.

Acknowledgements. The authors gratefully acknowledge the insight and sug-
gestions provided by the reviewers.
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Abstract. In this paper we investigate several periodicity-related algo-
rithms for partial words. First, we show that all periods of a partial word
of length n are determined in O(n log n) time, and provide algorithms and
data structures that help us answer in constant time queries regarding
the periodicity of their factors. For this we need a O(n2) preprocessing
time and a O(n) updating time, whenever the words are extended by
adding a letter. In the second part we show that substituting letters of
a word w with holes, with the property that no two holes are too close
to each other, to make it periodic can be done in optimal time O(|w|).
Moreover, we show that inserting the minimum number of holes such
that the word keeps the property can be done as fast.

Keywords: Combinatorics on Words, Periodicity, Partial Words.

1 Introduction

Periodicity is one of the most fundamental properties of words. Problems cor-
related to periodicity computation have applications in formal languages and
automata theory, algorithmic combinatorics on words, data compression, string
searching and pattern matching algorithms (see [1–3] and the references therein).
The first idea of a fast algorithm identifying all periods of a word was given in [4],
with a small flaw, together with the first time-space optimal string matching algo-
rithm. In [5], Crochemore provides the first correct time-space optimal algorithm
computing the periods of a word. This solution, and many other subsequent effi-
cient solutions of the problem, rely heavily on the possibility of performing string
matching in linear time and space.

For partial words, sequences that beside regular symbols contain some holes
or “don’t cares”, the concept of periodicity was also deeply analyzed ([3] surveys
most of the work in this area, and discusses the results obtained in comparison
with the ones obtained for words). To start with, the problem of testing the
primitivity of a partial word (i.e., partial words with no period that divides their
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length) was discussed in [6, 7], where partial solutions were proposed; similarly
to the classical case, these solutions were based on matching algorithms. To this
end, we recall that a fast pattern matching algorithm is provided in [8], starting
from the ideas initiated in [9]. More precisely, deterministic pattern matching
algorithms solving the problem in O(n log n) are known (see also [10]).

The study of repetitions in partial words was initiated in [11]. A string is said
to contain a repetition if it has consecutive factors compatible with the same full
word. In [11], it is proved that over a binary alphabet there exist infinite partial
words that are cube-free, which, in other words, means that for all factors the
periods are greater than one third of the factor’s length. In [12] the authors
solve a conjecture regarding the minimum size alphabet needed to construct an
infinite partial word that remains overlap-free even after an arbitrarily insertion
of holes; that is, all factors of the infinite word have periods greater than half their
length. As an important step of their proof, the authors use a O(nd) algorithm
that determines if, after hole insertions such that between each two holes there
are at least d− 1 non-hole symbols, a word has a certain period.

Algorithms regarding freeness of factors of partial words, factors free of some
property, were firstly discussed in [11, 13]. In [13] the authors construct data
structures which enable them, after a preprocessing phase done in O(n2), to
answer queries regarding the freeness of their factors in constant time. Moreover,
the authors provide a method to update the data structures, in O(n logn) time,
whenever a symbol is concatenated to the right end of the existing string, and
still answer the queries in constant time.

This paper proposes a series of algorithms for some basic problems related
to periodicity in partial words, more efficient than the already existing ones,
and discusses possible generalizations of these problems. After presenting some
basics regarding partial words and periodicity, in the end of this section, our
paper continues with two main parts. First, in Section 2 results from [6, 7, 13] are
extended and improved. We investigate how all periods of a partial word of length
n are determined in O(n log n) time, and then we provide algorithms and data
structures that help us answer in constant time queries regarding the periodicity
of factors. Whenever the words are extended, we have a O(n2) preprocessing
time and a O(n) updating time. In Section 3, we give algorithms that identify
ways of making a word periodic by substituting in optimal time some letters by
holes, in a restricted way, and improve the already mentioned results from [12].

While the results of Section 2 regard some natural algorithmic questions on
the periodicity of words, note that the results presented in Section 3 may become
useful in the area of combinatorics on words. For instance, one may be interested
in constructing words that do not contain any periodic partial words, that have
at least several symbols between any of their holes ([11, 12]); that is, one looks for
words in which we can randomly substitute symbols with holes, such that no two
holes are too close, and they remain nonperiodic. Theorem 2, from the Section 3,
enables us to test efficiently whether a given word verifies this property or not.
Also, in [14, 15] the idea of producing from given full words, by substitution of
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symbols with holes, partial words that verify some combinatorial properties is
discussed, and possible connections with bio-informatics are established.

We continue with several basic definitions. Note that for most of the claims
we only give sketches of proofs, and the algorithms are only intuitively specified.

Let V be a nonempty finite set of symbols called an alphabet. Each element
a ∈ V is called a letter. A full word over V is a finite sequence of letters from
V, while a partial word over V is a finite sequence of letters from V� = V ∪ {-},
the alphabet V extended with the hole symbol -.

The length of a partial word u is denoted by |u| and represents the total
number of symbols in u. The empty word is the sequence of length zero and is
denoted by ε. A partial word u is a factor of a partial word v if v = xuy for
some x, y. We say that u is a prefix of v if x = ε and a suffix of v if y = ε.
We denote by u[i] the symbol at position i in u, and by u[i..j] the factor of u
starting at position i and ending at position j, consisting of the concatenation
of the symbols u[i], . . . , u[j], where 1 ≤ i ≤ j ≤ |u|.

The powers of a partial word u are defined recursively by u0 = ε and for
n ≥ 1, un = uun−1. The period of a partial word u over V is a positive integer p
such that u[i] = u[j] whenever u[i], u[j] ∈ V and i ≡ j (mod p). In such a case,
we say u is p-periodic.

If u and v are two partial words of equal length, then u is said to be contained
in v, denoted by u ⊂ v, if u[i] = v[i], for all u[i] ∈ V. Partial words u and v are
compatible, denoted by u ↑ v, if there exists w such that u ⊂ w and v ⊂ w.

A partial word u is said to be d-valid, for a positive integer d, if u[i..i+ d− 1]
contains at most one --symbol, for all 1 ≤ i ≤ |u| − d+ 1.

For a complete view on the basic definitions regarding combinatorics on words
and partial words we refer the reader to [1–3]. The basic definitions needed to
follow the algorithms presented here are found in [16]; we just stress out that all
time bounds provided in this paper hold on the unit-cost RAM model.

2 Testing the Periodicity of Partial Words

In this section we present a series of algorithms that identify, efficiently, all the
periods of a partial word, and then we follow an approach from [13] and discuss
how one can efficiently build data structures that allow us to answer in constant
time queries asking whether a factor of a partial word is periodic. We also present
a method to update these data structures when a new symbol is added to the
initial word. For the rest of this section, let w be a partial word of length n.

It is trivial to check in linear time whether there exists a symbol ai that
contains all symbols of the set Si = {w[i+ kp] | i+ kp ≤ n, k ∈ N}, for all i ≤ n,
given w and p as input. This is equivalent to deciding whether the partial word
w is p-periodic.

Let us provide an algorithm that finds all periods of a given partial word w,
of length n. Note that w is p-periodic if and only if w is compatible with the
prefix of length n of the word w[ip+ 1..n]-n, for all i ∈ N such that ip ≤ n.

First, for all values i with 1 ≤ i ≤ n, we store an n position array Occ such
that Occ[i] = 1, if w ↑ w[i..n]-i−1, and Occ[i] = 0, otherwise. This step can
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be completed in O(n logn) time by running the pattern matching algorithm
from [8] for w and w -n . Next, we identify the positive numbers p that fulfill
Occ[kp+ 1] = 1, for all k such that 0 ≤ kp ≤ n. As we have noted above, such a
number p is a period of w.

In order to prove that this step is implemented in O(n log n) time, we first
note that, for all i with Occ[i+ 1] = 0, none of i’s divisors can be a period of w.
The total number of divisors we need to analyze is

∑n
i=1 σ(i), where σ(i) is the

number of positive divisors of i. Since (
∑n

i=1
1
i )/(logn) converges to a positive

constant,
∑n

i=1 σ(i) ∈ O(n logn). In O(n logn) space and time, using a method
based on the Sieve of Eratosthenes, we create an array L of lists L[i] of divisors
for every i ∈ {1, . . . , n}. Next, we define Per, an array with n− 1 elements, all
initially set to 1. Going through all i ∈ {0, . . . , n− 1} with Occ[i+ 1] = 0, we set
Per[j] = 0 for all j’s that divide i. Computing Per takes O(n logn) time, and
from Per[i] = 1 it follows that Per[ki] = 1, for all k with 1 ≤ ki+ 1 ≤ n.

According to the above remarks, a number p is a period of w if and only
if Per[p] = 1. Consequently, all periods of w, and thus, the minimal one, are
computed in O(n logn) time. Moreover, to decide if w is primitive we only need
to check whether there exists p such that Per[p] = 1 and p divides |w|.

These results are particularly useful in two applications: finding the minimal
period of a partial word and deciding whether a word is primitive. We are aware
of the claims and proofs that these problems can be solvable in linear time (see
[7] and, respectively, [6]). However, the algorithms proposed in these papers are
relying on the fact that one can find all factors of a partial word ww that are
compatible with w in linear time, by extending to the case of partial words some
string matching algorithms for full words, that work in linear time. The proof
of this fact was not given formally, and we are not convinced that such results
actually hold, especially since, for partial words the length does not always equal
the sum between the period and the border of the word as in the case of regular
words. We refer the reader, for instance, to the discussions in [9].

Next, we consider the problem of how to construct data structures that allow
us to answer in constant time queries regarding the periodicity of the factors of
a partial word, and can be easily updated when the word is extended.

Problem 1.
1. Given a partial word w of length n over an alphabet V, preprocess it in order
to answer, for i ≤ j and i, j, p ∈ {1, . . . , n}, the following types of queries:

“Is w[i..j] p-periodic?”, denoted per(i, j, p).
“Which is the minimum period of w[i..j]?”, denoted minper(i, j).

2. For a partial word w, consider the update operation : add a symbol a ∈ V� to
the right end of w, to obtain wa. Preprocessw and define a method to update the
data structures constructed during this process, in order to answer in constant
time per queries, after several update operations were applied to w.

We describe a solution for the first part of the problem, as one can easily adapt
it to solve the second part as well.

First define a matrix A, such that, for i, l ∈ {1, . . . , n}, we have A[i][l] = k
with 0 < k ≤ i and i− k divisible by l, if w[k + l] = w[k + 2l] = . . . = w[i] = -
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and w[k] �= -, or, if such a k does not exist, A[i][l] equals the leftmost position
t of the word, where i− t is divisible by l. The matrix is computed in quadratic
time by a dynamic programming approach.

Then, we define a matrix T with T [i][l] = min{j | 0 < j ≤ i and w[j..i]
l-periodic}, where i, l ∈ {1, . . . , n}. This matrix can be used to answer per
queries in constant time: we answer yes to query per(i, j, p) if T [j][p] ≤ i, and
no otherwise. Moreover, the matrix T can be computed in quadratic time by
dynamic programming, using the already computed matrix A.

To efficiently answer minper queries, we define a matrix Pm, where, for i, j ∈
{1, . . . , n} with j ≤ i, we have Pm[j][i] = min{p | w[j..i] is p-periodic}.

Note that, whenever j > i, we have Pm[j][i] = 0. Moreover, if w[j..i] is not p-
periodic, for any p < i−j+1, then Pm[j][i] = i−j+1.Also, Pm[j][i] ≥ Pm[j+1][i].
Consequently, the matrix Pm can be computed using the following approach.
For a number i, with 1 ≤ i ≤ n, we first identify the longest factor w[j1..i] of
w[1..i] that is 1-periodic, and conclude that the minimum period of w[	..i] is 1
for j1 ≤ 	 ≤ i; then we identify the longest factor w[j2..i] of w[1..i] that is 2-
periodic, and conclude that the minimum period of w[	..i] is 2 for j2 ≤ 	 ≤ j1−1.
The process continues in this way, for the periods p, 3 ≤ p ≤ i; in general we
identify the longest factor w[jp..i] of w[1..i] that is p-periodic, and conclude that
the minimum period of w[	..i] is p for jp ≤ 	 ≤ jp−1 − 1. Clearly, for a fixed i
we determine all the values Pm[j][i] in O(n) time. Therefore, we compute the
matrix Pm in O(n2) time.

The answer to a query minper(j, i) is Pm[j][i], and can be returned in O(1)
time.

To solve the second part of Problem 1, assume that for a partial word w, of
length n, we compute the matrices A and T, as described. Let wa be the word
obtained after adding a ∈ V� to w, and let us update A and T by adding to
each of them a new column and a new row. Note that, for all i ∈ {1, . . . , n +
1}, A[i][n + 1] = i and T [i][n + 1] = 1; moreover, for all l ∈ {1, . . . , n}, both
A[n+ 1][l] and T [n+ 1][l] are computed, in linear time, using the same dynamic
programming approach as in the static case. Thus, according to [13], one can
add the new rows and columns to T and A in time O(n). Once all structures are
updated, we answer per queries exactly as previously described.

To update Pm we set Pm[n + 1][n + 1] = 1 and Pm[n + 1][i] = 0, for all
i ≤ n, and use the same algorithm that computes the matrix Pm to compute
Pm[j][n+1] with j ≤ n. This takesO(n) time, while answering minper queries is
done as before. When the word is updated several times, we iterate this method.

The next theorem summarizes the results obtained in this section so far.

Theorem 1. Let w be a partial word of length n.
1. All the periods of w can be computed in time O(n log n).
2. The partial word w can be processed in time O(n2) in order to answer in
constant time per and minper queries. After an update operation, the previously
constructed data structures are updated in O(n) time, and both per and minper
queries are answered in time O(1).
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Remark 1. Computing the matrix T for a partial word enables us to also identify
all the periodic factors of that word.

3 From Full Words to Periodic Partial Words

In this section we change our focus to constructing, in linear time, a p-periodic
partial word, starting from a full word, by replacing some of its symbols with
holes such that no two consecutive holes are too close one to the other:

Problem 2. [12] Given a word w ∈ V ∗, and positive integers d and p, d, p ≤ |w|,
decide whether there exists a p-periodic d-valid partial word contained in w.

The input of this problem consists of the word w and the numbers p and d. The
alphabet V can be arbitrarily large, but, clearly, we can assume that |V | ≤ n
(that is, we do not care about symbols that do not appear in w).

We first approach a related problem.

Problem 3. Let q and m be positive integers, let M be a sequence of m arrays
with at most q elements from V, denoted M1, . . . ,Mm, and let d be a positive
integer, d ≤ m. Furthermore, let k ≥ 1 be a positive constant, and p0, . . . , pk ∈
{1, . . . ,m} such that p0 = 0, pk = m and pi < pi+1, for i ∈ {0, . . . , k − 1};
assume that the arrays Mpi+1, . . . ,Mpi+1 have q − i elements. Decide whether
one can replace by holes several symbols of Mi in order to obtain arrays M ′

i ,
where i ∈ {1, . . . ,m}, such that the following two conditions hold:

1. There exists a symbol si that contains all the symbols of M ′
i with i ∈

{1, . . . ,m}. This condition is called the periodicity condition.
2. For all j ≤ q and i ∈ {1, . . . ,m − d + 1}, a multiset {M ′

i [j], . . . ,M
′
i+d−1[j]}

contains at most one hole. If one of the arrays M ′
� in the set has less than

j elements, then the symbol M ′
�[j] is missing from the set. This condition is

called the d-validity condition.

The input consists of the sequence M and the number d; again, the alphabet V
can be arbitrarily large, but we can assume that |V | ≤ mq.

Intuitively, the solution of this problem is based on the following idea: a possi-
ble way to substitute some of the symbols of an array with holes, in order to fulfill
the periodicity condition, induces some restrictions on the way the substitutions
can be applied on the d−1 arrays that follow it (due to the d-validity condition).
Thus, we obtain a set of restrictions for each d consecutive arrays. We propose
a formalization of the substitutions that can be made on each array as boolean
variables and of the restrictions induced by these substitutions as formulas in-
volving the variables. The fact that all the restrictions must be simultaneously
fulfilled reflects in that the conjunction of all the formulas must be satisfiable.
We show how the formulas can be constructed and how the satisfiability of their
conjunction can be decided efficiently.

More formally, the solution of Problem 3 has two main steps. But before
discussing them, note that there are two types of substitutions (also called re-
placements) that we can apply to the symbols of an array Mi:
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Type 1: We replace all the symbols Mi[j] �= Mi[1], with holes.
Type 2: There exists a symbol Mi[j0] �= Mi[1] such that we replace all the

symbols Mi[j], different from Mi[j0], with holes.
Moreover, an array necessitates no substitution if all its symbols are equal.
The first step of our solution consists in defining the boolean variables xi, for

1 ≤ i ≤ m, where xi = 1 if and only if we need to apply a Type 2 replacement
to Mi to reach a valid solution. We derive, for each d consecutive arrays of
M, say Mi, . . . ,Mi+d−1, a boolean formula φi, involving some of the variables
defined above. Intuitively, the formula φi can be satisfied if and only if some of
the symbols of the corresponding arrays can be replaced with holes and obtain a
sequence that verifies both the periodicity condition and the d-validity condition.

As a final step, from all these formulas we construct a new formula φM , which
is true for an assignment of the variables xi, with 1 ≤ i ≤ m, if and only if
Problem 3 has a solution (that can be obtained from this assignment). The
formula φM has a quite simple form, and a solution for it can be easily obtained.

We claim that all these steps can be implemented in O(mq) time. The time
complexity does not depend on the cardinality of V and the value of d.

Coming back to the solution of Problem 2, we show how it can be transformed
in linear time O(|w|) into an instance of Problem 3, which can be solved also
in time O(|w|); one can also give, effectively, the substitutions that must be
performed in the word, in the same time complexity. Note, once more, that the
complexity of our solutions depends only on |w|, and not on the cardinality of
the input alphabet, nor on d, nor on p. Summarizing, we show:

Theorem 2. Problem 2 can be decided in linear time O(|w|). A solution for this
Problem can be obtained in the same time complexity.

3.1 Solution of Problem 3

Here, we give some more technical details on the solution of Problem 3, especially
on how it can be reformulated as a boolean-formula satisfiability problem, and
on how this problem can be solved efficiently.

For the sequence of arrays M , define the sequence of binary arrays M b, with
M b

i [j] = 1 if Mi[j] = Mi[1], and M b
i [j] = 0 otherwise. The following remarks are

due to the d-validity condition:

Remark 2. In d consecutive arrays, only one Type 2 replacement is possible. Also,
if there exits k with M b

j0 [k] = M b
j1 [k] = 0, where 1 < k ≤ q and 0 < j1 − j0 ≤ d,

then one cannot apply Type 1 replacements to both Mj0 and Mj1 .

Let us consider d consecutive arrays, Mi, . . . ,Mi+d−1, all with q elements, and
assume q ≥ 2, as the case when q = 1 is trivial. From Remark 2 we have:

Remark 3. If three arrays j1, j2 and j3, from the above, have a position k with
1 < k ≤ q, where M b

j1
[k] = M b

j2
[k] = M b

j3
[k] = 0, then Problem 3 has no solution.

For k with 1 < k ≤ q, let Li(k) = {j | j ∈ {i, . . . , i + d − 1},M b
j [k] = 0} if the

set is nonempty, and Li(k) = {1, . . . ,m + 1}, otherwise. Moreover, denote by
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Li =
⋂

k∈{2,...,q}
Li(k). Following our remarks, the only cases one should analyze

are |Li| ∈ {0, 1, 2}, since |Li| = m + 1 requires no substitutions in the arrays,
while if 3 ≤ |Li(k)| ≤ d, for some k, then the problem has no solution.

If Li = ∅ and any two arrays have 0 at the same position, the problem has no
solution. Otherwise, Type 1 substitutions are done to all arrays that have 0.

If Li = {j0}, then either only one of the arrays M b
i , . . .M

b
i+d−1 contains 0, so

we apply only Type 1 substitutions, and have φi = 1, or more than one array M b
j

contains 0, and, thus, we apply a Type 2 replacement to Mj0 , Type 1 substitutions
to all other arrays, if possible, and have φi = xj .

Finally, whenever Li = {j1, j2} with j1 < j2, if there exists an array that
contains 0, other than M b

j1
and M b

j2
, then the problem has no solution, following

Remark 3. Otherwise, we apply a Type 2 replacement to one of the two arrays,
Type 1 substitutions to all the others, and set φi = xj1 xor xj2 .

A similar discussion can be done when Mi, . . . ,Mi+d−1 have different lengths.
Making use of the previous remarks, one obtains InitialFormula(M, i), an

algorithm returning the formula φi.

Remark 4. Following the above, if xi does not appear in any of the φj formulas,
where 1 ≤ j ≤ m − d + 1, then the type of substitution applied to that array
is irrelevant for the construction of a solution for the problem. However, if xi

appears in a formula, then there exists j with 0 < |j − i| < d and a position k,
such that M b

i [k] = 0 and M b
j [k] = 0.

Now, a new algorithm Simplify(φ1, . . . , φm−d+1) groups the formulas φi, where
1 ≤ i ≤ m− d+ 1, according to their first variable, and gets the sets F1, . . . , Fm

of formulas whose first variables are, respectively, x1, . . . , xm. In the same algo-
rithm, we ensure that each of these sets contains at most one formula.

From an intuitive point of view, algorithms InitialFormula and Simplify
implement the first step of our solution. They reveal which substitutions can
be applied simultaneously on d consecutive arrays of M , such that both the
periodicity and the d-validity conditions are fulfilled. It remains to put together
all these restrictions and produce a solution for the whole sequence M .

With the help of another algorithm Filter(F1, . . . , Fm), we simplify even more
the formulas by keeping in mind that they must all be simultaneously satisfied,
and by eliminating the variables that clearly cannot be true. More precisely, we
detect for which of the arrays i we should apply a Type 2 replacement, but cannot
do this because of the Type 1 replacements on the d− 1 arrays that precede and
the d−1 arrays that succeed it (and set xi = 0). In this way, the sets F1, . . . , Fm

are updated. Moreover, we compute the set of equalities U containing xi = x�
i ,

for i ∈ {1, . . . ,m} and some 	 ≤ q, that indicate which symbol s = Mi[	] cannot
be substituted by a hole whenever a Type 2 replacement is applied to Mi. Note
also that this algorithm identifies the case when one of the formulas φi cannot
be satisfied, thus, the initial problem has no solution.

In the end, starting from the simplified list of formulas, we construct φM by
running another algorithm, Formula(φ1, . . . , φm−d+1). In fact this algorithm de-
tects some redundant restrictions that appear in the list of formulas and eliminates
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them; during this processing one can also identify a case when the problem has
no solution. More precisely, we obtain first the sets of formulas F1, . . . , Fm, and
the set of equalities U , by running Filter(Simplify(φ1, . . . , φm−d+1)). Then we
modify iteratively these sets in the following manner. If we have two formulas
ρ = xj1 xor xj2 and φ = xj′1 with j′1 − j1 ≥ d and j′1 − j2 ≤ d − 1 we delete
ρ and add the atomic formula xj1 . That is, on the array j′1 we must apply a
Type 2 replacement, and we also must apply such a replacement on one of the
arrays j1 or j2; but we cannot apply simultaneously a Type 2 replacement on
j′1 and j2 so we can only apply such replacements on j1 and j′1. Also, by similar
reasons, if we have two formulas ρ = xj1 and φ = xj′1 xor xj′2 with j′2 − j1 ≥ d
and j′1 − j1 ≤ d − 1 we delete φ and add the atomic formula xj′2 . Finally, if
we have two formulas ρ = xj1 and φ = xj′1 with j′1 − j1 ≥ d − 1 we have no
solution (two Type 2 replacements should be applied in d consecutive lines) and
set φM = 0. Once all the possible such modifications are applied, we get φM as
the conjunction of all these formulas.

Recalling the intuitive explanations given in the previous sections, algorithms
Formula and Filter implement the second step of our solution. They put to-
gether the restrictions reflected by the boolean formulas, and detect whether
some of these restrictions are in conflict.

At this point, we claim that Problem 3 has a solution for the input sequence of
arraysM if and only if there exists a truth assignment of the variables x1, . . . , xm

that makes φM equal to 1. Clearly, instead of each formula xi xor xj that ap-
pears in φM we can write the formula (xi∨xj)∧(xi∨xj). Hence, φM is a formula
in 2-Conjunctive Normal Form, that one can solve efficiently with an algorithm
for the 2-CNF-SAT Problem, in linear time [17].

A more careful analysis shows that, the special form of the formula φM , as
it results from Remark 4 and the modifications done in algorithm Formula,
allows us to decide whether it is satisfiable more easily. More precisely, φM is
not decidable when it equals 0, while, otherwise, a truth assignment that makes
φM = 1 is obtained as follows: if the clause (xi) is present in φM , then we assign
xi = 1, delete these variables from φM , and for the rest of the variables that
appear in the formula we choose an arbitrary assignment that makes all the
clauses true. Intuitively, we choose a valid assignment for the first d variables,
and this is propagated in the rest of the set. Once we found an assignment of
the variables xi, 1 ≤ i ≤ p, that makes φM = 1, the set of equalities U indicates
exactly which symbols are replaced by holes. More precisely, the symbol Mi[t]
remains unchanged when xi = 0 and Mi[t] = Mi[1] or when xi = xt

i = 1.
In order to compute the time complexity of the approach described above

we discuss several implementation details. To begin with, we make the usual as-
sumption (for the RAM-model) that the time needed to read (access the memory
location containing) a symbol from V or to compare two such symbols is con-
stant. The size of an input of Problem 3 is proportional with the total number of
elements of the arrays that form the sequence M , times the size of the represen-
tation of a symbol of V (denoted here size(V )), plus the number of bits needed
to represent d. In other words, the size of the input is O(size(V )mq + log d).
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Under these assumptions, it is not hard to see that a direct implementation of
the above algorithms leads to a complexity of O(mqd). However, we show that
by using some efficient data structures one can attain a complexity of O(mq).
More precisely, we show that the formula φM can be constructed in linear time
and, since it has O(mq) clauses and variables, deciding its satisfiability, and
finding an assignment of the variables that makes φM = 1, also takes linear
time. Hence, deciding if Problem 3 has a solution, and effectively finding one,
is done in O(mq) time. The proof consists in several observations which ensure
that each of the previously described procedures is implemented in O(mq) time.

First, the sequence M b can be constructed in time O(mq), canonically.
The key idea of our implementation is used in the algorithm InitialFormula.

Let us show how one computes efficiently the sets Li and the formulas φi for all i.
Fix i ∈ {1, . . . ,m−d+1} and define, for each k ∈ {1, . . . , q}, an ordered queue Qk

that contains, at the moment when Li is computed, the values {i1, . . . , it}, such
that M b

ij
[k] = 0 and 0 ≤ ij − i < d, for all j ∈ {1, . . . , t}. Furthermore, define,

for each k ∈ {1, . . . , q}, a variable pk that stores the cardinality of the queue
Qk. If any pk is greater than 2 when Li is computed, we decide that φi = 0.
Otherwise, we can determine in O(q) time the elements that appear in all the
non-empty queues Qk, and return them as the set Li. Moreover, the formulas
φi are computed in O(q) time. Note that, when i = 1, the queues Qk with
k ∈ {1, . . . , q}, are constructed by simply traversing the arrays M1, . . . ,Md in
O(dq) time. When we move from computing Li and the formula φi, to computing
Li+1 and the formula φi+1, in order to update the queues, we have to delete the
minimum element from all these queues, if this element equals i, and add to the
queue Qk the element i + d for all values of k such that M b

i+d[k] = 0. Again,
this operations take O(q) time. Following these observations, the time needed to
compute all formulas φi, for i ∈ {1, . . . ,m− d + 1}, is O(mq).

The algorithm Simplify is implemented in linear time, as it basically sorts
the initial formulas by a bucket-sort strategy, while the verifications done in
Filter are performed efficiently using ideas and data-structures similar to those
presented above for InitialFormula. Finally, one can see from the explanations
provided above that the algorithm Formula runs in O(m) time: once we order
the formulas with Simplify we just have to look at consecutive formulas and
see if a modification of the described type must be applied or not; we can modify
each formula at most once, we may delete it, or we just leave it alone, so the
total running time of this function is linear in m. We notice that, if at any point
φ is the formula on top of the stack S and xj its second variable, then all the
variables xi that appear in formulas from S verify i < j.

Summarizing, Problem 3 can be decided in linear time O(mq). A solution for
this Problem can also be obtained in the same time complexity.

3.2 The Main Problem

We show now how to solve Problem 2 using the previously discussed solution
of Problem 3, in time O(|w|). The time complexity of our approach does not
depend on either the size of V , d, nor p.
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If d ≤ p, then define p+d−1 arrays M such that Mi contains all symbols w[x]
with x ≥ 1 and x ≡ i (mod p), while Mp+j contains the symbols w[p + x] with
x ≥ 1 and x ≡ j (mod p) for 1 ≤ i ≤ p and 1 ≤ j ≤ d − 1. Finally, construct
φM as previously explained. Clearly, the first (n (mod p)) arrays have q = �n

p �
elements, the next p arrays (or, if p + d − 1 ≤ p + (n (mod p)), the remaining
arrays) have q−1 elements, and the remaining arrays have q−2 elements. So, in
the formalism of Problem 3, the constant k equals 2, m = p+d−1, and q = �n

p �.
We associate to each Mi a variable xi, as previously explained, for all i ∈

{1, . . . , p + d − 1}. Note that if j ≡ i (mod p) and j > i then the variables xi

and xj are not independent, as substituting some of the symbols of the array
Mi with holes implies a substitution of the symbols of Mj with holes. This is
because Mj contains only symbols of w that appear also in Mi. To capture
the dependency in our formula, we use the set of equalities U, produced by
algorithm Filter, and we extend it to obtain a new set of equalities U ′, as follows.
Generally, for some i ≤ p the formulas xi = x1

i , xi+p = x1
i+p (i.e., applying

Type 2 replacements on the arrays i or i + p means that the first symbol is not
preserved), and x1

i �= x1
i+p when Mi[1] �= Mi+p[1], will be added to U ′. Assume

now that we have i ≤ p and xi = x�
i and xi+p = x�′

i+p in U ; we also add to
U ′ the equalities x�

i = x�′
i+p if Mi[	] �= Mi+p[	′], x�

i = x1
i+p if Mi[	] �= Mi+p[1],

and x1
i = x�′

i+p if Mi[1] �= Mi+p[	′] (these formulas say that the replacements on
array i and on array i + p must leave the same symbol unchanged). Next, we
conjunct φM and all formulas in U ′, to obtain a new formula φ′M .

Problem 2 has a solution if and only if there exists a truth assignment of the
variables {x1, . . . , xp+d−1} ∪ {xj

i | 1 ≤ j ≤ q, 1 ≤ i ≤ p} that gives φ′M = 1. This
is decidable, for instance, by an algorithm solving the 2-SAT problem. A solution
is constructed applying Type 2 replacements to all Mi with xi = 1 and Type 1
replacements to the rest of the arrays, followed by corresponding substitutions
in the input word. For the Type 2 replacements, the symbols not replaced by -’s
are the symbols Mi[t], where the equality xi = xt

i is in U.
If d > p, we first define the sequence of arrays M, such that, for i ≤ p, Mi

contains all symbols w[x] with x ≥ 1 and x ≡ i (mod p). Note that, although
several symbols of an array can be replaced with holes, it is not the case for any
two consecutive such symbols, since this violates the d-validity condition. Thus,
there are at most two possibilities to choose the symbol that is not replaced by
- in the array: if it contains two different symbols, one of them must be replaced
with hole, and the other not. Choosing a symbol a in the first array that has at
least two different symbols, determines on all arrays Mi of M a symbol ai that
remains unchanged: the symbol that is found in the respective array on the same
position as the position of a in the array we transformed. Thus, all the symbols of
M that are not replaced with holes are already determined. It remains to check
if the obtained word is d-valid. If so, the problem has a solution; otherwise, one
tries to keep unchanged a different symbol in the initial array. If we cannot find
a valid replacement in this way either, then the problem has no solution.

It is not hard to see that the time needed to solve the problem, in this case,
is also O(n), and does not depend on neither the size of V , d nor p. Clearly, this
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time is optimal. In conclusion, we have shown Theorem 2. We stress out that this
theorem improves the result in [12], where Problem 2 was solved in time O(nd).
Note that our approach is different from the one in the cited paper.

Finally, we mention an optimization problem related to Problem 2: given a
word w ∈ V ∗ and two positive integers d and p with d, p < |w|, construct a
p-periodic d-valid partial word contained in w, and having a minimum number
of holes. An optimal solution for this problem is based on the above solution for
Problem 2 and a dynamic programming strategy:

Theorem 3. Given a word w, and positive integers d and p with p < |w|, the
construction of a p-periodic d-valid partial word having minimum number of holes
and contained in w can be done in O(|w|). A solution can be effectively obtained
in the same time complexity.
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Abstract. The family of deterministic input-driven pushdown automata
(IDPDA; a.k.a. visibly pushdown automata, a.k.a. nested word automata)
is known to be closed under reversal, concatenation and Kleene star. As
shown by Alur and Madhusudan (“Visibly pushdown languages”, STOC
2004), the reversal and the Kleene star of an n-state IDPDA can be

represented by an IDPDA with 2O(n2) states, while concatenation of
an m-state and an n-state IDPDA is represented by an IDPDA with

2O((m+n)2) states. This paper presents more efficient constructions for
the reversal and for the Kleene star, which yield 2Θ(n log n) states, as
well as an m2Θ(n log n)-state construction for the concatenation. These
constructions are optimal due to the previously known matching lower
bounds.

1 Introduction

A subclass of deterministic pushdown automata called input-driven pushdown
automata (IDPDA), in which the input letter determines whether the automaton
should push a symbol, pop a symbol or leave the stack untouched, was introduced
by Mehlhorn [13] in 1980s and had only one follow-up paper at the time [5]. Their
systematic investigation was initiated more than twenty years later by Alur
and Madhusudan [2], who renamed the model to visibly pushdown automata,
proved that its deterministic and nondeterministic cases are equal in power,
and established its closure under all basic operations. These results inspired an
ongoing stream of research on the properties of this model [1,3,6,7,9,15]. Part of
the literature has adopted yet another name for the same model: nested word
automata.

Though deterministic and nondeterministic IDPDAs define the same class of
languages, they differ in terms of succinctness of description. A pushdown au-
tomaton uses states of two types: internal states and pushdown symbols. The
natural succinctness measure is the sum of the number of these states. The de-
terminization blowup of nondeterministic IDPDAs was assessed by Alur and
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Madhusudan [2,3], who proved that representing an n-state nondeterministic
IDPDA in the worst case requires 2Θ(n2) states in an equivalent deterministic
IDPDA. Recently, the authors [16] defined an intermediate family of unambigu-
ous IDPDAs and showed that transforming a nondeterministic automaton to
an unambiguous one, as well as an unambiguous automaton to deterministic,
requires 2Θ(n2) states in each case.

The closure of the language family defined by input-driven pushdown au-
tomata under all basic language-theoretic operations, established by Alur and
Madhusudan [2], leaves related succinctness questions. According to Alur and
Madhusudan [2], the Kleene star of an n-state IDPDA can be represented by an
IDPDA with 2O(n2) states, and the concatenation of an m-state and an n-state
IDPDA is representable by an IDPDA with 2O((m+n)2) states. In each case, the
construction proceeds by representing the result of the operation by a nonde-
terministic IDPDA, and then by determinizing the latter. For the reversal of an
n-state IDPDA, Piao and Salomaa [17] presented a similar 2O(n2)-state construc-
tion, that relies on constructing a nondeterministic IDPDA and determinizing
it, and also gave an improved construction for the concatenation of two IDP-
DAs, which uses m · 2O(n2) states. At the same time, Piao and Salomaa [17]
demonstrated lower bounds on the number of states required to represent these
operations: the reversal and the Kleene star requires 2Ω(n log n) states, and the
concatenation requires 2Ω(n log n) states as well.

This paper presents more efficient constructions for these three operations,
and thus determines the asymptotically optimal number of states needed to
represent them. It is shown that both the reversal and the star of an n-state
IDPDA can be represented using only 2O(n log n) states, which coincides with
the lower bound given by Piao and Salomaa [17]. For the concatenation, the
proposed construction yields an IDPDA with m2O(n log n) states. This result is
accompanied by an m2Ω(n log n)-state lower bound, which refines the lower bound
by Piao and Salomaa [17].

2 Definitions

A (deterministic) input-driven pushdown automaton (IDPDA) [13,2] is a special
case of a deterministic pushdown automaton, in which the input alphabet is
split into three classes, Σ+1, Σ−1 and Σ0, and the type of the input symbol
determines the type of the operation with the stack. For an input symbol in Σ+1,
the automaton always pushes one symbol onto the stack. If the input symbol
is in Σ−1, the automaton pops one symbol. Finally, for a symbol in Σ0, the
automaton may not use the stack: that is, neither modify it, nor even examine
its contents.

Unless otherwise mentioned, the acronym IDPDA shall refer to a deterministic
input-driven pushdown automaton, and when the computation is allowed to use
nondeterminism, the model shall be referred to as a nondeterministic IDPDA.

Different names and different notation for these automata has been used in the
literature. Most of the time, they are regarded as pushdown automata, and recent



State Complexity of Operations on Input-Driven PDAs 487

literature often refers to them under an alternative name of visibly pushdown
automata [1,2,3,6,7]. An alternative outlook at essentially the same definition
regards this model as an automaton operating on nested words: a nested word
automaton [3,9,17].

An IDPDA is formally defined over an action alphabet , which is a triple Σ̃ =
(Σ+1, Σ−1, Σ0), in which the components Σ+1, Σ−1 and Σ0 are finite disjoint
sets. In the following, unless otherwise mentioned, Σ+1, Σ−1 and Σ0 always refer
to components of an action alphabet, and their union is denoted by Σ. A string
over Σ̃ is an ordinary string over Σ, where each symbol is assigned a “type”
depending on the component it belongs to.

Let Q denote the set of (internal) states of the automaton, with a subset of
accepting states F ⊆ Q, let Γ be its pushdown alphabet, and let ⊥ ∈ Γ be
the initial pushdown symbol. For each input symbol a ∈ Σ+1, the behaviour
of the automaton is described by partial functions δa : Q → Q and γa : Q →
(Γ \ {⊥}), which provide the next state and the symbol to be pushed onto the
stack, respectively. For every b ∈ Σ−1, there is a partial function δb : Q× Γ →
Q specifying the next state, assuming that the given stack symbol is popped
from the stack. For c ∈ Σ0, the state change is described by a partial function
δc : Q → Q. There is an additional condition that whenever the stack contains
only one symbol (which shall be ⊥), any attempts to pop this symbol will result
in checking that it is there, but not actually removing it. Once the automaton
processes the last symbol of the input, it accepts if the current state is in F ,
regardless of whether the stack is empty or not.

Most of the constructions in this paper manipulate functions, mainly functions
from Q to Q, and some related notation ought to be introduced. For any sets X
and Y , denote the set of functions from X to Y by Y X . Such functions can be
applied to subsets of X : if f : X → Y is a function, then f(S) = { f(x) | x ∈ S }
for any set S ⊆ X ; similarly, the set of pre-images of a set T ⊆ Y is denoted
by f−1(T ) = { x | x ∈ X : f(x) ∈ T }. If f : X → Y and g : Y → Z are two
functions, then their composition g ◦ f is a function from X to Z defined by
(g ◦ f)(x) = g(f(x)).

The set of well-nested strings over an alphabet (Σ+1, Σ−1, Σ0), denoted by
LDyck, is defined by the following context-free grammar:

S → <S> (< ∈ Σ+1, > ∈ Σ−1)
S → SS

S → c (c ∈ Σ0)
S → ε

Computations of IDPDAs on well-nested strings have the most straight form.
The automaton finishes reading such a string with the same stack contents as
in the beginning, and it never attempts to pop any symbols underneath. The
behaviour of an automaton on a well-nested string w can thus be characterized
by a function fw : Q → Q, which maps the initial state of the automaton to
its state after processing the string. The behaviour on a concatenation uv can
be obtained as a function composition fuv = fv ◦ fu. Given an IDPDA A, one
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can construct another IDPDA B with the set of states QQ, that calculates the
behaviour of A on the longest last well-nested substring it reads; this idea will
be used in several constructions in this paper.

The measure of succinctness of an IDPDA adopted in the literature is the
combined number |Q|+ |Γ | of internal states and pushdown symbols, which may
be regarded as two kinds of states. The state complexity of a language is the
least value of |Q|+ |Γ | among the IDPDAs recognizing this language. The state
complexity of an operation is a function mapping the state complexities of its
arguments to the worst-case state complexity of the result.

Generally, state complexity lower bounds are established using more or less
ad hoc methods [3,19]. Various lower bound criteria for the size of IDPDAs were
given by Piao and Salomaa [17]. The following variant of those criteria is tailored
for the specific purpose of proving the results in this paper.

Lemma 1. Let A be an IDPDA over action alphabet (Σ+1, Σ−1, Σ0) and let S
be a set of strings over Σ0. Suppose that there exists a word w ∈ Σ∗ such that

(i) For each u ∈ S, wu is a prefix of some word of L(A), and,
(ii) for any u1, u2 ∈ S, u1 �= u2, there exists v ∈ Σ∗ such that wu1v ∈ L(A) if

and only if wu2v �∈ L(A).

Then the number of states of A is at least |S|.

Proof. By (i) for each u ∈ S, A reaches the end of wu in some state qu. Since
the strings of S contain only symbols of Σ0, condition (ii) implies that for any
u1 �= u2 the states qu1 and qu2 need to be distinct. 
�

3 Reversal

The reversal of a string w = a1a2 . . . a� over an action alphabet Σ̃ = (Σ+1, Σ−1,
Σ0), with 	 	 0 and ai ∈ Σ, is the string wR = a� . . . a2a1 over the inverted
alphabet Σ̃R = (Σ−1, Σ+1, Σ0), in which the symbol types “+1” and “−1” are
interchanged. The reversal of a language L over Σ̃ is the language LR = {wR |
w ∈ L }, viewed as a language over the inverted alphabet Σ̃R.

Consider an deterministic input-driven pushdown automaton recognizing a
language L. Then a nondeterministic IDPDA recognizing the language LR can
be obtained by reversing all transitions and exchanging the sets of initial and
accepting states [17]. However, the construction for determinizing a nondeter-
ministic IDPDA implies only an 2O(n2) upper bound on the number of states of
a deterministic IDPDA recognizing the reversal. A more efficient construction
for reversing a given deterministic IDPDA is given in this section.

The construction is first presented in a simplified form applicable to an IDPDA
A operating on well-nested strings. Under this assumption, an IDPDA for L(A)R

can separately calculate the behaviour of A as a function from Q to Q on every
nested level of brackets, transfer the behaviour through the stack upon reading a
closing bracket, and combine behaviours on substrings upon reading an opening
bracket.
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Lemma 2. Let A be an IDPDA over an alphabet (Σ+1, Σ−1, Σ0) that accepts
only well-nested strings, let Q be its set of states and let Γ be its pushdown
alphabet. Then there exists an IDPDA C with the set of states QQ and the
pushdown alphabet QQ × Σ−1 that recognizes the language L(A)R (under the
assumption that C rejects upon reaching the end of the input with nonempty
stack).

Proof. The goal of the construction is to simulate the behaviour of A on a well-
nested string w, upon reading the string wR. Note that the input alphabet of C is
now the inverted alphabet (Σ−1, Σ+1, Σ0). A state of C represents the behaviour
of A on the reversal of the longest well-nested suffix of the string read so far.

The initial state of C is q′0 = id, the identity function on Q. The transition on
each symbol from Σ0 is defined as a composition of the transition function of A
on this symbol with the calculated behaviour of A on the previously read suffix:

δ′c(f) = f ◦ δc.

If f : Q→ Q is the behaviour of A on the suffix u, then this transition computes
the behaviour of A on cu.

Whenever C reads a symbol from Σ−1, on which A pops, C must push. What
it does is to push the calculated behaviour f : Q → Q on the suffix and the
current symbol > ∈ Σ−1 to the stack, and begin calculating a new behaviour on
the deeper level of nesting:

δ′>(f) = id,

γ′>(f) = (f,>).

By the time C reaches the matching bracket < ∈ Σ+1, it will have the behaviour
of A on the inner level calculated in its internal state g : Q → Q. It pops from
the stack the pair (f,>), where f is the behaviour on the suffix and > is the
other previously read bracket. Let u denote the well-nested string between these
brackets, the behaviour on which is g, and let v be the suffix, on which the
behaviour is f . Now B has all the data to calculate the behaviour of A on <u>v
as follows:

δ′<(g, (f,>)) = f ◦ h,
where the function h : Q→ Q, defined by

h(q) = δ>

(
g(δ<(q)), γ<(q)

)
,

represents the behaviour of A on <u>.

Claim. For every string w over Σ̃, let f be the behaviour of A on the longest
well-nested prefix of w. Then the automaton C, executed on wR with the initial
state id, finishes its computation in the state f .

The claim is proved by an induction on the length of w. The basis is w = ε, with
the empty string as the longest well-nested prefix, and the behaviour of A on it
is the identity function, which is the initial state of C. For the induction step,
the proof is split into three cases, depending on the form of w:
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– If w begins with a symbol c ∈ Σ0, let w = cuv, where u is longest well-
nested prefix of the rest of w. The first portion of the computation of C
on wR = vRuRcR is a computation on the shorter string vRuR. By the
induction hypothesis for uv, the automaton C computes the behaviour of A
on u. Let f be this behaviour. Then cu is the longest well-nested prefix of
w, and the transition of C by c correctly computes the behaviour of A on cu
as a composition f ◦ δc.

– Let the first symbol of w be < ∈ Σ+1. Then the longest well-nested prefix of
w is a string of the form <u>v, where u and v are well-nested and > ∈ Σ−1.
Let w = <u>vx and note that the longest well-nested prefix of vx is v.
The computation of C on wR = xRvR>uR< begins with the computation
on xRvR and, by the induction hypothesis, calculates the behaviour of A
on v. Denote this behaviour by f . Next, C reads > and pushes the pair
(f,>) to the stack, and afterwards, C processes the well-nested substring
uR. Applying the induction hypothesis to the ensuing computation of C—
that is, to the string u>vx with the longest well-nested prefix u—shows that
C calculates the behaviour A on u. Finally, C reads <, pops the pair (f,>)
from the stack, uses the behaviour of A on u stored in the internal state
to calculate the behaviour h of A on <u>, and finally combines it with the
behaviour of A on v as f ◦ h. This is the behaviour of A on <u>v, which is
the longest well-nested prefix of w.

– Assume that w begins with a symbol > ∈ Σ−1. Then the longest well-nested
prefix of w is ε, and the computation of C on wR ends with transition by >,
which sets the internal state to id.

It is left to define the set of accepting states of C as

F ′ = { f : Q→ Q | f(q0) ∈ F },

where q0 is the initial state of A and F is the set of accepting states of A. Then,
for every well-nested string w, the automaton C, executed on wR computes the
behaviour f of A on w, and accepts if and only if f(q0) ∈ F , that is, if and only
if A accepts w. If the input string is not well-nested, then C either reaches an
undefined transition by the bottom stack symbol ⊥, or finishes reading the input
with nonempty stack. 
�

In the general case of IDPDAs operating on not necessarily well-nested strings,
the construction is slightly extended.

Lemma 3. For every IDPDA A over an alphabet (Σ+1, Σ−1, Σ0) with a set of
states Q and a pushdown alphabet Γ , there exists an IDPDA C over the inverted
alphabet (Σ−1, Σ+1, Σ0) with the set of states QQ×2Q and the pushdown alphabet
QQ × 2Q ×Σ−1 that recognizes the language L(A)R.

Proof. Given a string uv, where u is its longest well-nested prefix, the automaton
C is given a string vRuR and should simulate the computation of A on uv. The
goal of the construction is that C calculates (i) the behaviour of A on u, and (ii)
the set of states, beginning from which A would accept the string uv.
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The initial state of C is q′0 = (id, F ), where F is the set of accepting states
of A.

On any symbol c ∈ Σ0, its transitions are:

δ′c
(
(f, S)

)
=
(
f ◦ δc, δ

−1
c (S)

)
.

Every symbol > ∈ Σ−1, which is a closing bracket for A, is therefore an
opening bracket for C, and its transitions are defined as follows:

δ′>
(
(f, S)

)
= (id, { q | δ>(q,⊥) ∈ S }),

γ′>
(
(f, S)

)
= (f, S,>).

Each A’s opening bracket < ∈ Σ+1 is regarded by C as a closing bracket, and
is processed as follows:

δ′<
(
(g, T ), (f, S,>)

)
= (f ◦ h, h−1(S)),

where h : Q→ Q is defined by

h(q) = δ>

(
g(δ<(q)), γ<(q)

)
.

And if the stack is empty (that is, < has no matching right bracket):

δ′<
(
(g, T ),⊥

)
= (id, δ−1

< (T ))

Claim. For every string w, the automaton C, after reading wR, reaches a state
(f, S), where f is the behaviour of A on the longest well-nested prefix of w, and
S is the set of all such states q, that A, having begun a computation in the state
q with the empty stack, accepts after reading w.

Finally, the set of accepting states of C is defined as

F ′ = { (f, S) | q0 ∈ S },

where q0 is the initial state of A. 
�

A matching lower bound for reversal is already known.

Proposition 1 (Piao and Salomaa [17]). Let Σ+1 = {<}, Σ−1 = {>},
Σ0 = {a, b, c}. For n 	 1, the language

Ln =
⋃

u∈{a,b}�log n�

u<({a, b}∗c)n−1uc({a, b}∗c)∗>

has an IDPDA with O(n) states, while any IDPDA for its reversal requires at
least 2Ω(n log n) states.

This shows that the construction in Lemma 3 is optimal up to a constant multiple
in the exponent, and thus the state complexity of reversal has been determined
as follows.

Theorem 1. The state complexity of reversal of IDPDAs is 2Θ(n log n).
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4 Concatenation

Given an m-state IDPDA and an n-state IDPDA, one can represent their con-
catenation by a nondeterministic IDPDA with m+n states, and then determinize
it to obtain 2O((m+n)2) states [2]. An improved construction given below directly
yields a deterministic IDPDA, and this IDPDA contains only m2O(n log n) states.
Like in the previous section, this construction is first presented in an idealized
form, in which all strings are well-nested, an no unmatched brackets may appear.

Lemma 4. Let A and B be IDPDAs over an alphabet (Σ+1, Σ−1, Σ0) that accept
only well-nested strings, let P and Q be their respective sets of states, let Γ and
Ω be their pushdown alphabets. Then there exists an IDPDA C with the set of
states P × (2Q ∪ QQ) and the pushdown alphabet Γ × (2Q ∪ QQ) × Σ+1 that
recognizes the language L(A) · L(B).

Proof. The first component of all states of C is used to simulate the operation
of A. The states from P ×2Q are used for well-nested prefixes of the input. After
reading a well-nested prefix w, the automaton C should reach a state with a
second component S ⊆ Q, containing all states of B reached on strings in { u |
uw ∈ L(A) }. After reading a prefix w that is not well-nested, C should calculate
a state with the second component f : Q → Q representing the behaviour of B
on the longest well-nested suffix of w.

Let π and δ be the transition functions of A and B, respectively. Let μ and ν
be their push functions on Σ+1, let p0 and q0 be their initial states, and let FA

and FB be their sets of accepting states.
The initial state of C is (p0, { q0 | if p0 ∈ FA }).
Its transitions on the symbols outside all brackets, for p ∈ P , S ⊆ Q and

c ∈ Σ0, are:

δ′c
(
(p, S)

)
=
(
πc(p), δc(S) ∪ {q0 | if πc(p) ∈ FA}

)
.

When C enters the first level of brackets by a symbol < ∈ Σ+1, it continues
simulating A in the first component, and switches to computing the behaviour
of B in the second component:

δ′<
(
(p, S)

)
= (π<(p), id),

γ′<
(
(p, S)

)
=
(
μ<(p), S, <

)
,

where id : Q → Q is the identity function. The state S and the symbol < are
stored in the stack, along with the stack symbol of the simulated automaton A.

When C returns from the first level of brackets by a symbol > ∈ Σ+1, it
has the behaviour of B on the substring inside the brackets computed, and can
combine it with the behaviour on the brackets < (popped from the stack) and
> (read from the input) to form a function h : Q→ Q, defined by

h(q) = δ>(g(δ<(q)), ν<(q)).
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Then C can apply this function to the set S popped from the stack as follows:

δ′>
(
(p, g), (s, S,<)

)
=
(
π>(p, s), h(S)

)
.

Transitions inside the brackets, on c ∈ Σ0, are

δ′c
(
(p, f)

)
= (πc(p), δc ◦ f).

Going into the next level of brackets: for p ∈ P , f : Q→ Q and < ∈ Σ+1,

δ′<
(
(p, f)

)
= (π<(p), id),

γ′<
(
(p, f)

)
=
(
μ<(p), f, <

)
.

Returning into the previous level of brackets, which is not the first level: for
> ∈ Σ−1, p ∈ P , f : Q→ Q, s ∈ Γ , g : Q→ Q and < ∈ Σ+1,

δ′>
(
(p, g), (s, f,<)

)
=
(
π>(p, s), g ◦ f

)
,

where h : Q→ Q is defined by

h(q) = δ>

(
g(δ<(q)), ν<(q)

)
.

Claim. Upon reading a well-nested prefix w of an input string, the automaton
C enters a state (p, S), where p is the state reached by A on w, and S is the
set of all such states q ∈ Q that w = uv for some u ∈ L(A) and v ∈ Σ∗ with
δ(q0, v) = q.

Upon reading a not well-nested prefix w, the automaton C enters a state
(p, f), where p is the state reached by A on w, and f is the behaviour of B on
the longest well-nested suffix of w.

Let all states (p, S) ∈ P × 2Q with S ∩ FB �= ∅ be the accepting states of C.
Then, by the above claim, C accepts a string w if and only if w = uv for some
u ∈ L(A) and v ∈ L(B), and therefore L(C) = L(A)L(B). Unlike the automaton
constructed in Lemma 2, here the automaton C is also able to reject strings other
than well-nested. 
�

The next lemma presents the construction for concatenation of IDPDAs of the
general form.

Lemma 5. Let A and B be any IDPDAs over an alphabet (Σ+1, Σ−1, Σ0), let P
and Q be their respective sets of states, let Γ and Ω be their pushdown alphabets.
Then there exists a IDPDA C with the set of states P × 2Q × 2Q × QQ and
the pushdown alphabet Γ × 2Q × 2Q × QQ × Σ+1 that recognizes the language
L(A) · L(B).

The automaton C simulates A in the first component of its state, and calculates
the behaviour of B on the last well-nested suffix of the input in the fourth com-
ponent. The second and the third components are both sets of such states q ∈ Q,
that the string read so far is a concatenation of a string in L(A) with a string, on
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which B goes from q0 to q. The third component handles all such factorizations,
where the suffix processed by B is a concatenation of well-nested strings and
closing brackets from Σ−1. The second component refers to factorizations with
the suffix of any other form. The details of the construction are omitted due to
space constraints.

A 2Ω(n log n)-state lower bound on the state complexity of concatenation of an
m-state IDPDA and an n-state IDPDA was given by Piao and Salomaa [17]. This
lower bound does not provide any dependence of the state complexity of con-
catenation on the complexity of the first language. The following more elaborate
version refines the result of Piao and Salomaa [17] to reflect this dependence.

Lemma 6. Let Σ0 = {a, b,#}, Σ+1 = {<} and Σ−1 = {>}. Then, for every
m,n 	 1, the language

Km =
{
w ∈ {a, b,#, <,>}∗

∣∣ |w|b ≡ 0 (mod m)
}

has a DFA with m states, and the language

Ln =
⋃

k,�∈{1,...,n}
akb∗#(a∗b∗#)∗<(a∗b∗#)ka�b∗#(a∗b∗#)∗a�>ak

has an IDPDA with O(n) states and n pushdown symbols, while any IDPDA for
their concatenation KmLn requires at least mnn states.

Theorem 2. The state complexity of concatenation of IDPDAs is m ·2Θ(n log n).

Using a variant of the languages Ln from Lemma 6, we get a lower bound for
the state complexity of square.

Lemma 7. Let Σ0 = {a,#}, Σ+1 = {<} and Σ−1 = {>}. Then, for every
n 	 1, the language

Ln = (a∗#)∗ ∪
⋃

k,�∈{1,...,n}
ak#(a∗#)∗<(a∗#)ka�#(a∗#)∗a�>ak

has an IDPDA with O(n) states and n pushdown symbols, while any IDPDA for
the language Ln · Ln requires at least nn states.

Theorem 3. The state complexity of square of IDPDAs is 2Θ(n log n).

5 Kleene Star

The concatenation L(A)L(B) was recognized by simulating A as it is, along with
keeping track of all possible computations of B following a prefix in L(A). Every
time the simulated A would accept, one more computation of B was added to
the set.

The below construction for the star is derived from the one for the concate-
nation. There is no automaton A this time, but multiple computations of B are
traced in the same way as before. Whenever one of them would accept, the set
is augmented with another computation of B.
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Lemma 8. Let B be an IDPDAs over an alphabet (Σ+1, Σ−1, Σ0) that accepts
only well-nested strings, let Q be its set of states. Then there exists a IDPDA C
with the set of states 2Q ∪QQ and the pushdown alphabet (2Q ∪QQ)×Σ+1 that
recognizes the language L(A)∗.

The construction is extended to the full case of IDPDAs not restricted to well-
nested strings as follows.

Lemma 9. Let B be any IDPDA over an alphabet (Σ+1, Σ−1, Σ0), let Q be its
set of states, and let Γ be its pushdown alphabet. Then there exists a IDPDA C
with the set of states 2Q × 2Q ×QQ and the pushdown alphabet Γ × 2Q × 2Q ×
QQ ×Σ+1 that recognizes the language L(A)∗.

The construction is similar to the one for the concatenation, and is not included
in this extended abstract.

This establishes a 2O(n log n)-state upper bound on the state complexity of the
star for IDPDAs. A matching lower bound is already known from Salomaa [19],
who presented an IDPDA A with O(n) states and stack symbols, such that the
total number of states and stack symbols in any IDPDA recognizing L(A)∗ is at
least 2n log n. These results are combined to the following asymptotic estimation.

Theorem 4. The state complexity of Kleene star of IDPDAs is 2Θ(n log n).

6 Conclusion

The complexity of all basic operations on both deterministic (IDPDA) and non-
deterministic (NIDPDA) input-driven pushdown automata has now been deter-
mined. In the following table, it is compared to the similar results on two basic
types of finite automata recognizing regular languages.

DFA NFA IDPDA NIDPDA
∪ mn [12] m+ n+ 1 [10] Θ(mn) [17] m+ n+O(1) [2]

∩ mn [12] mn [10] Θ(mn) [17] Θ(mn) [9]

∼ n 2n [4] n 2Θ(n2) [16]

· m · 2n − 2n−1 [12] m + n [10] m2Θ(n log n) m+ n+O(1) [2]
2 n · 2n − 2n−1 [18] 2n [8] 2Θ(n log n) n+O(1) [2]
∗ 3

42n [12] n+ 1 [10] 2Θ(n log n) n+O(1) [2]
R 2n [11] n+ 1 [10] 2Θ(n log n) n+O(1) [2]

Investigating the complexity of operations on unambiguous IDPDAs [16] is
suggested for future work. Since descriptional complexity questions are already
difficult for unambiguous finite automata [14], this task might be nontrivial as
well.

The authors are grateful to the anonymous referees for valuable comments,
many of which could not yet be addressed due to space and time constraints.
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Conflict Packing Yields Linear Vertex-Kernels

for k-FAST, k-dense RTI and a Related
Problem�

Christophe Paul, Anthony Perez, and Stéphan Thomassé

LIRMM - Université Montpellier 2, CNRS - France

Abstract. We develop a technique that we call Conflict Packing in
the context of kernelization [7]. We illustrate this technique on several
well-studied problems: Feedback Arc Set in Tournaments, Dense

Rooted Triplet Inconsistency and Betweenness in Tournaments.
For the former, one is given a tournament T = (V, A) and seeks a set
of at most k arcs whose reversal in T results in an acyclic tournament.
While a linear vertex-kernel is already known for this problem [6], using
the Conflict Packing allows us to find a so-called safe partition, the cen-
tral tool of the kernelization algorithm in [6], with simpler arguments.
Regarding the Dense Rooted Triplet Inconsistency problem, one is
given a set of vertices V and a dense collection R of rooted binary trees
over three vertices of V and seeks a rooted tree over V containing all but
at most k triplets from R. Using again the Conflict Packing, we prove
that the Dense Rooted Triplet Inconsistency problem admits a lin-
ear vertex-kernel. This result improves the best known bound of O(k2)
vertices for this problem [16]. Finally, we use this technique to obtain a
linear vertex-kernel for Betweenness in Tournaments, where one is
given a set of vertices V and a dense collection R of betweenness triplets
and seeks an ordering containing all but at most k triplets from R. To the
best of our knowledge this result constitutes the first polynomial kernel
for the problem.

1 Introduction

The concept of fixed parameter algorithms [13] has been introduced to cope with
NP-Hard problems. For a given (parameterized) problem, the goal is to identify
a parameter k, independent from the data-size n, which captures the exponen-
tial growth of the complexity cost to solve the problem at hand. That is the
complexity of such an (FPT) algorithm is f(k) · nO(1), where f is an arbitrary
computable function. As one of the most powerful techniques to design efficient
fixed parameter algorithms, kernelization algorithms [7] have attracted a lot of
attention during the last few years. A kernelization algorithm transforms, in
polynomial time (via reduction rules), an arbitrary instance (I, k) of a param-
eterized problem into an equivalent instance (I ′, k′) with the property that the
� Research supported by the AGAPE project (ANR-09-BLAN-0159) and the Phylar-

iane project (ANR-08-EMER-011-01).
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parameter k′ and the size |I ′| of the reduced instance only depend on k. The
smaller the size of the reduced instance (called kernel) is, the faster the prob-
lem can be solved. Indeed, once reduced the instance can be efficiently tackled
with any exact algorithms (e.g. bounded search tree or exponential time algo-
rithms). In this paper, we develop and push further a kernelization technique
used on a few parameterized problems [9,24], called Conflict Packing. Combined
with a polynomial time algorithm that computes an accurate vertex partition
(called safe partition in [6]), Conflict Packing yields linear vertex-kernels. In
this extended abstract, we illustrate the Conflict Packing technique on three
parameterized problems. We first obtain a linear vertex-kernel for Feedback

Arc Set in Tournaments. While such a kernel was already known to ex-
ist [6], our proofs are simpler and shorter. Then we obtain the main result of
this paper, namely the first linear vertex-kernel for Dense Rooted Triplet

Inconsistency, improving the best known bound of O(k2) vertices [16]. Finally
we apply the technique on Betweenness in Tournaments and obtain a linear
vertex-kernel. No polynomial kernel was known before [18].

Feedback Arc Set in Tournaments ( k-FAST). Let T = (V,A) be a tour-
nament on n vertices, i.e. an oriented graph obtained from an arbitrary orienta-
tion of the complete (undirected) graph, and k be an integer. The task is to check
whether there exists a subset of at most k arcs of A whose reversal transforms
T into an acyclic (i.e. transitive) tournament. In other words, k-FAST consists
in computing a linear vertex ordering v1 . . . vn having at most k backward arcs
(vivj with i > j). It is well-known that a tournament is transitive if and only
if it does not contain a directed triangle (circuit on 3 vertices). The k-FAST

problem is a well studied problem from the combinatorial [14,21] as well as
from the algorithmic point of view [3,19]. It is known to be NP-complete [3,11],
but fixed parameter tractable [4,18,20]. The first kernelization algorithms for k-
FAST [4,12] yield O(k2) vertex-kernels. Recently, a kernel with at most (2 + ε)k
vertices has been proposed [6]. More precisely, using a PTAS which computes a
linear vertex ordering with at most (1 + ε)k backward arcs, the authors of [6]
show how to find in polynomial time an ordered vertex partition, called safe par-
tition P , of T . Roughly speaking, a vertex partition is safe if the backward arcs
whose extremities lie in different part can be reversed independently from the
others (inside the parts). We prove that the Conflict Packing technique (which
provides a lower bound on the number of editions to be made) can be used to
compute such a partition.

Dense Rooted Triplet Inconsistency ( k-dense RTI). In phylogenetics, a
classical problem consists in testing whether a collectionR of rooted binary trees
over three leaves of a set V , called rooted triplets, is consistent : does there exist
a binary tree T on leaves V such that every rooted triplet {a, b, c} of R is home-
omorphic to the subtree of T spanning {a, b, c}? This problem can be solved in
polynomial time [1]. When R is not consistent, different optimization problems
can be considered: removing a minimum number of leaves or removing a mini-
mum number of rooted triplets (see e.g. [10,23]). We consider the parameterized
version of the latter problem in the dense case, called k-dense RTI, where one
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is given a dense collection of rooted triplets R and an integer k (the parameter)
and seeks a rooted tree over V containing all but at most k rooted triplets from
R. It is known that when R is dense, i.e. contains exactly one rooted triplet for
every triple of leaves (or vertices), then it is consistent with a binary tree if and
only if it does not contain any conflict on four leaves [5,16]. The k-dense RTI

problem is known to be NP-complete [10] but fixed parameter tractable [15,16],
the fastest algorithm running in time O(n4) + 2O(k1/3logk) [16]. Moreover, [16]
provided a quadratic vertex-kernel for k-dense RTI. However, unlike for k-
FAST, no PTAS nor constant approximation algorithm is known [16]. Using
Conflict Packing enables us to obtain a linear vertex-kernel for this problem.
This result improves the best known bound of O(k2) vertices [16].

Betweenness in Tournaments ( k-BIT). In the k-BIT problem, one is given
a set of vertices V , a dense collection R of betweenness triplets defined over V
and an integer k. A betweenness triplet t defined over {a, b, c} chooses one of
its vertices (say b), and we say that an ordering σ over {a, b, c} contains t if
b is between a and c in σ. The aim of the k-BIT problem is to compute an
ordering of V containing all but at most k triplets from R. The k-BIT problem
is NP-Complete [2] but fixed-parameter tractable [18,22]. Using Conflict Packing
we obtain a linear vertex-kernel for this problem, which is to the best of our
knowledge the first polynomial kernel for this problem [18].

Outline. We first illustrate the Conflict Packing technique on the k-FAST prob-
lem, proving how to compute a so-called safe partition in polynomial time (Sec-
tion 2). Next, we generalize the results to the k-dense RTI problem (Section 3).
Finally, we give another example where this technique can be applied, namely
k-BIT (Section 4).

2 Linear Vertex-Kernel for k-FAST

Preliminaries. Let T = (V,A) be a tournament. We write uv whenever the
arc of A between vertices u and v is oriented from u to v. If V ′ ⊆ V , then
T [V ′] = (V ′, A′) is the subtournament induced by V ′, that is A′ = {uv ∈ A |
u ∈ V ′, v ∈ V ′}. If A′ ⊆ A, then T [A′] = (V ′, A′) denotes the oriented graph
where V ′ ⊆ V contains the vertices incident to some arc of A′. A tournament
T = (V,A) is transitive if for every triple of vertices u, v, w such that uv ∈ A
and vw ∈ A, then uw ∈ A. A directed triangle is a circuit of size three, i.e. a set
of vertices {u, v, w} such that {uv, vw,wu} ⊆ A.

Lemma 1 (Folklore). Let T = (V,A) be a tournament. Then the following
properties are equivalent: (i) T is acyclic; (ii) T is transitive; (iii) T does not
contain any directed triangle.

Clearly T is transitive if and only if there exists an ordering σ on V such that
for every u ∈ V and v ∈ V with σ(u) < σ(v) (also denoted u <σ v) then
uv ∈ A. Such an ordering is called transitive. We use Tσ = (V,A, σ) to denote a
tournament whose vertices are ordered with respect to some ordering σ. An arc
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vu ∈ A such that u <σ v is called backward in Tσ. In other words, T is transitive
if and only if there exists a total ordering σ of its vertices such that Tσ does not
contain any backward arc. Hereafter, a directed triangle will be called a conflict.
Our kernel uses the following rule from [4].

Rule 1. Remove any vertex v that does not belong to any conflict.

Certificate and safe partition. The following definitions are adapted from notions
introduced in [6]. Let e = vu be a backward arc of an ordered tournament Tσ.
The span of e is the set of vertices span(e) = {w ∈ V | u <σ w <σ v}. If
w ∈ span(e) is a vertex not incident to any backward arc, then c(e) = {u, v, w}
is a certificate of e. Observe that c(e) induces a conflict. By convention, when
speaking of an arc e of a certificate c we mean that e belongs to T [c]. If F ⊆ A
is a set of backward arcs of Tσ, we can certify F whenever there exists a set
c(F ) = {c(f) : f ∈ F} of arc-disjoint certificates (i.e. for every distinct e and f
of F , |c(e) ∩ c(f)| � 1). If Tσ = (V,A, σ), then P = {V1, . . . , Vl} is an ordered
partition of Tσ if it is a partition of V and for every i ∈ [l], Vi is a set of
consecutive vertices in σ. By convention, if i < j, then for every u ∈ Vi and
v ∈ Vj we have u <σ v. We denote by AO = {uv ∈ A | u ∈ Vi, v ∈ Vj , i �= j} the
subset of outer-arcs. We say that an ordered partition P = {V1, . . . , Vl} is a safe
partition of an ordered tournament Tσ = (V,A, σ) if AO contains at least one
backward arc and if it is possible to certify the backward arcs of Tσ[AO] only
with outer-arcs of AO. The following rule was central in the kernel of [6]:

Rule 2 (Safe partition). Let Tσ be an ordered tournament, and P = {V1, . . . ,
Vl} be a safe partition of Tσ with F the set of backward arcs of Tσ[AO]. Then
reverse all the arcs of F and decrease k by |F |.

Conflict packing. Our kernelization algorithm applies the two rules above. The
basic idea to identify a safe partition in polynomial time is to greedily compute
a maximal packing of arc-disjoint conflicts C, called conflict packing. Then, by
maximality, removing from T the vertices V (C) covered by C yields a transitive
subtournament T ′ = T [V \V (C)]. We use the transitive ordering σ′ of T ′ to define
an ordering σ on V . We prove that if V \ V (C) is large enough (with respect to
parameter k) then a safe partition P of Tσ can be identified. By rule 2, the set
F of backward arcs of Tσ[AO] can thus be reversed. We first give a bound on the
number of vertices covered by a conflict packing C. An instance of k-FAST is
positive if there exists a set of at most k arcs whose reversal lead to a transitive
tournament.

Lemma 2. Let T = (V,A) be a positive instance of k-FAST and C be a conflict
packing of T . Then |V (C)| ≤ 3k.

Lemma 3 (Conflict Packing). Let T = (V,A) be an instance of k-FAST and
C a conflict packing of T . There exists an ordering of T whose backward arcs uv
are such that u, v ∈ V (C).

Theorem 1. The k-FAST problem admits a kernel with at most 4k vertices
that can be computed in polynomial time.
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Proof. Let T = (V,A) be a positive instance of k-FAST reduced under Rule 1.
We greedily (hence in polynomial time) compute a conflict packing C of T and
let σ be an ordering of V obtained through Lemma 3. Consider the bipartite
graph B = (I ∪ G,E) where (i) G = V \ V (C), (ii) there is a vertex ivu in I
for every backward arc vu of Tσ and (iii) ivuw ∈ E if w ∈ G and {u, v, w} is a
certificate of vu. Observe that any matching in B of size at least k + 1 would
correspond to a conflict packing (i.e. a collection of arc-disjoint conflicts) of size
at least k+1, which cannot be. Hence a minimum vertex cover D of B has size at
most k [8]. We denote D1 = D∩I and D2 = D∩G. Assume that |V | > 4k. Then
since |D2| � k and |V (C)| � 3k (by Lemma 2), G\D2 �= ∅. Let P = {V1, . . . , Vl}
be the ordered partition of Tσ such that every part Vi consists of either a vertex
of G \D2 or a maximal subset of consecutive vertices (in σ) of V \ (G \D2).

Claim 1. P is a safe partition of Tσ.

Proof. Let w be a vertex of G \ D2. By Lemma 3, w is not incident to any
backward arc. As T is reduced under Rule 1, there must exist a backward arc
e = vu such that w ∈ span(e). It follows that AO contains at least one backward
arc. Let e = vu ∈ AO be a backward arc of σ. By construction of P , there exists
a vertex w ∈ (G \ D2) ∩ span(e). Then {u, v, w} is a certificate of e and ivuw
is an edge of B. Observe that as D is a vertex cover and w /∈ D2, the vertex
ivu has to belong to D1 to cover the edge ivuw. Thereby the subset I ′ ⊆ I
corresponding to the backward arcs of AO is included in D1. Finally, we argue
that I ′ can be matched into G \D2 in B. Assume there exists I ′′ ⊆ I ′ such that
|I ′′| > |N(I ′′) ∩ (G \D2)|. As there is no edge in B between I \D1 and G \D2

(D is a vertex cover of B), the set D′ = (D \ I ′′)∪ (N(I ′′)∩ (G \D2)) is a vertex
cover of B and |D′| < |D|: contradicting the minimality of D. Thereby for every
subset I ′′ ⊆ I ′, we have |I ′′| � |N(I ′′) ∩ (G \ D2)|. By Hall’s theorem [17], I ′

can be matched into G \D2. As every vertex of G \D2 is a singleton in P , the
existence of the matching shows that the backward arcs of AO can be certified
using arcs of AO only, and hence P is safe. -

Hence if |V | > 4k, there exists a safe partition that can be computed in poly-
nomial time, and we can reduce the tournament using Rule 2. We then apply
Rule 1 and repeat the previous steps until we either do not find a safe partition
or k < 0. In the former case we know that |V | � 4k; in the latter case, we return
a small trivial No-instance. This concludes the proof. 
�

3 Linear Vertex-Kernel for k-dense RTI

The kernelization algorithm for k-dense RTI follows the same lines than the
kernelization algorithm for k-FAST. It involves two rules: the first removes ir-
relevant leaves and the second deals with a safe partition of the instance. The
first rule was already used to obtain a quadratic kernel in [16]. As an instance
of k-dense RTI is constituted of triplets that choose one vertex (observe that
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an instance of k-FAST can be seen as couples that choose one vertex), we have
to adapt the notions of conflict, certificate and safe partition. To prove our safe
partition rule, we use again the Conflict Packing technique.

Preliminaries. A rooted triplet t is a rooted binary tree on a set of three leaves
V (t) = {a, b, c}. We write t = ab|c if a and b are siblings of a child of the root of
t, the other child of the root being c. We also say that t chooses c. An instance of
k-dense RTI is a pair R = (V,R), where R is a set of rooted triplets on V . We
only consider dense instances, that is R contains exactly one rooted triplet for
every triple of V . For a subset S ⊆ V , we define R[S] = {t ∈ R | V (t) ⊆ S} and
R[S] = (S,R[S]). A rooted binary tree is defined over a set V if the elements of
V are in one-to-one correspondence with the leaves of T . Hereafter the elements
of V are called leaves and the term nodes stands for internal nodes of T . By T|S ,
with S ⊆ V , we denote the rooted binary tree over S which is homeomorphic
to the subtree of T spanning the leaves of S. Let t ∈ R be a rooted triplet and
T be a tree over V . Then t is consistent with T if T|V (t) = t, and inconsistent
otherwise. A set of rooted triplets R is consistent if there exists a rooted binary
tree T over V such that every t ∈ R is consistent with respect to T . If such a tree
does not exist, then R is inconsistent. A conflict C is a subset of V such that
R[C] is inconsistent. If a dense set of rooted triplets R is consistent, then there
exists a unique binary tree T in which every rooted triplet of R is consistent.

Lemma 4 ([16]). Let R = (V,R) be an instance of k-dense RTI. The fol-
lowing properties are equivalent: (i) R is consistent; (ii) R contains no con-
flict on four leaves; (iii) R contains no conflict of the form {ab|c, cd|b, bd|a} or
{ab|c, cd|b, ad|b}.
It follows that, as in k-FAST where it was enough to consider directed triangles
as conflict, we can restrict our attention to conflicts on sets of four leaves. Here-
after, the term of conflict is only used on sets of four leaves. Our kernelization
algorithm uses the following rule from [16].

Rule 3. Remove any leaf v ∈ V that does not belong to any conflict.

Certificate. An embedded instance of k-dense RTI is a triple RT = (V,R, T )
such that R is a dense set of rooted triplets on V and T is a rooted binary
tree over V . When dealing with an embedded instance RT , the inconsistency
of a rooted triplet always refers to the tree T . If x is a node of T , then Tx

denotes the subtree of T rooted in x. Given three leaves {a, b, c}, we define
span(t) as the set of leaves of V contained in Tlca({a,b,c}), where lca stands for
least common ancestor. Moreover, given S ⊆ V we define RT [S] = (S,R[S], T|S).
Finally, editing an inconsistent rooted triplet t = ab|c w.r.t. T means replacing t
with the rooted triplet on {a, b, c} consistent w.r.t. T . As mentioned earlier, our
kernelization algorithm only uses conflicts on sets of four leaves. The following
lemma describes more precisely the topology of such conflicts.

Lemma 5. Let RT = (V,R, T ) be an embedded instance of k-dense RTI. Let
{a, b, c, d} be a set of leaves such that t = bc|a is the only inconsistent rooted
triplet of RT [{a, b, c, d}]. Then {a, b, c, d} is a conflict if and only if d ∈ span(t).
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In the following, given an embedded instance RT = (V,R, T ) of k-dense RTI,
a conflict containing exactly one rooted triplet inconsistent with T is called a
simple conflict. We now formally define the notion of certificate for an embedded
instance RT . Let t be a rooted triplet inconsistent with T . If d ∈ span(t) does
not belong to any inconsistent rooted triplet then c(t) = V (t)∪{d} is a certificate
of t. Observe that c(t) induces a simple conflict. By convention, when speaking
of a rooted triplet t of a certificate c we mean that t belongs to R[c]. If F ⊆ R
is a set of rooted triplets inconsistent with T , we can certify F whenever it is
possible to find a set c(F) = {c(t) : t ∈ F} of triplet-disjoint certificates (i.e. for
every distinct t and t′, |c(t) ∩ c(t′)| � 2).

Safe partition reduction rule. Let RT = (V,R, T ) be an embedded instance of
k-dense RTI. We say that P = {T1, . . . , Tl} is a tree partition of V if there exist
l nodes and leaves x1, . . . , xl of T such that: (i) for every i ∈ [l] Ti = Txi and
(ii) the set of leaves in ∪l

i=1Txi partition V . A tree partition of RT naturally
distinguishes two sets of rooted triplets: RI = {t ∈ R | ∃i ∈ [l] V (t) ⊆ V (Ti)}
and RO = R \RI . Let us call a rooted triplet of RO, an outer triplet.

Definition 1. Let RT = (V,R, T ) be an embedded instance of k-dense RTI

and P = {T1, . . . , Tl} a tree partition of RT such that RO contains at least one
triplet inconsistent with T . Then P is a safe partition if it is possible to certify
the rooted triplets of RO inconsistent with T only with rooted triplets of RO.

We show that it is possible to reduce any embedded instance which has a safe
partition. Rouhgly speaking, we prove that the editions in RO are independent
from the editions in RI .

Rule 4 (safe partition). Let RT = (V,R, T ) be an embedded instance of k-
dense RTI and P be a safe partition of T with F the set of rooted triplets of
RO inconsistent with T . Edit every rooted triplet t ∈ F w.r.t. T and decrease k
by |F|.

Lemma 6. The safe partition rule (Rule 4) is sound.

Conflict packing. The remaining problem is now to either compute in polynomial
time a safe partition if one exists or bound the size of the instance with respect
to k. To that end, we use the conflict packing technique as for k-FAST. Observe
that the aim of a conflict packing is to provide a lower bound on the number of
editions required to obtain a consistent instance. In the context of k-dense RTI,
two conflicts may share a rooted triplet t but still require two distinct editions.
To see this, let {a, b, c, d, e} be a set of leaves and consider the following conflicts:
C = {ab|c, ac|d, ad|b, cd|b} and C′ = {ed|c, ed|b, bc|e, bd|c}. Observe first that C
remains a conflict for any choice of {b, c, d}. Since C and C′ only have this rooted
triplet in common, no edition on C′ can solve C. Hence (at least) two distinct
editions are require to solve both C and C′. Due to this remark, we refine our
definition of conflict packing as follows. A leaf a belonging to a conflict {a, b, c, d}
is a seed if {a, b, c, d} is a conflict for any choice of {b, c, d}. A conflict packing is a
maximal sequence of conflicts C = {C1, C2, . . . , Cl} such that for every 2 ≤ i ≤ l:
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– Either Ci intersects ∪1�j<iCj on at most two leaves or,
– Ci has a unique leaf not belonging to ∪1�j<iCj , which is a seed of Ci.

Lemma 7. Let R = (V,R) be a positive instance of k-dense RTI and C be a
conflict packing of R. Then l ≤ k and |V (C)| ≤ 4k.

So let us now consider a conflict packing C (which can be computed greedily
in polynomial time). Observe that R[V \ V (C)] is consistent by maximality of
C. This means that there exists a unique tree T such that every rooted triplet
of R[V \ V (C)] is consistent with T . We will use that tree T to embed R and
compute a safe partition.

Lemma 8 (Conflict packing). Let R = (V,R) be an instance of k-dense

RTI and C a conflict packing of R. There exists an embedded tree T of R such
that every rooted triplet t inconsistent with T is such that V (t) ⊆ V (C).

Proof. The leaves of G = V \ V (C) are called good leaves. As already observed
R[G] is consistent with a unique tree T ′. Notice that for every leaf a ∈ V (C),
Ra = R[G∪{a}] is also consistent (otherwise C would not be maximal). Thereby
there exists a unique binary tree Ta such that every rooted triplet t of Ra is
consistent with Ta. In other words T ′ contains a unique tree edge e = xz which
can be subdivided into xyz to attach the leaf a to node y. Hereafter the edge
e will be called the locus of a. The maximality argument on C also implies
that for any pair of leaves a and b in V (C), Rab = R[G ∪ {a, b}] is consistent.
If a and b have different loci, then Rab is clearly consistent with the tree T
obtained from T ′ by inserting a and b in their respective loci. It remains to
consider the case where a and b have the same locus. Let e = xy be a tree edge
of T ′ such that x is the child of y and let Be ⊆ V (C) be the subset of leaves
whose locus is e. Given a, b ∈ Be, we define the following binary relations <e

and ∼e on Be as follows: a <e b if there exists c ∈ G such that ac|b ∈ R and
a ∼e b if neither a <e b nor b <e a. Using the maximality of C we will prove
that <e is a strict weak ordering (i.e. <e is a transitive and asymmetric relation
and ∼e is transitive). This implies that the equivalence classes of ∼e partition
the leaves of Be and are totally ordered by <e.

Claim 2. The relation <e is a strict weak ordering.

We can now describe how the tree T is build from T ′. For every tree edge e = xy
with x a child of y such that Be �= ∅ we proceed as follows. Let B1 . . . Bq be the
equivalence classes of ∼e such that Bi <e Bj for 1 � i < j � q. The tree edge e is
subdivided into the path x, z1 . . . , zq, y. For every i ∈ [q], if Bi contains a unique
leaf a, then a is attached to node zi. Otherwise, a new node wi is attached to zi

and we add an arbitrary binary tree (rooted in wi) over the leaves of Bi. We now
prove that T has the desired property. Let t = {a, b, c} be any triplet of R, and
assume first that V (t) ⊆ G. Then t is consistent by construction. Next, assume
w.l.o.g. that V (t)∩V (C) = {a}: then t is consistent with T since Ra is consistent
and a has been inserted to its locus. Finally, assume V (t) ∩ V (C) = {a, b}. If
a and b have different loci then t is clearly consistent with T . Now, if a and b
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have the same locus e then t is consistent since a and b have been added to e
according to the strict weak ordering <e. It follows that any triplet of T such
that V (t) ∩G �= ∅ is consistent with T . 
�

We now state the main result of this section. Its proof follows the same lines
than the proof of Theorem 1. In particular, the safe partition is built using the
same bipartite graph and matching arguments.

Theorem 2. The k-dense RTI problem admits a kernel with at most 5k ver-
tices.

4 Linear Vertex-Kernel for k-BIT

Preliminaries. A betweenness triplet t defined over a set of three vertices {a, b, c}
chooses one of its vertices. We write t = abc to illustrate that t chooses b. An
instance of k-BIT is a pair B = (V,R) where R is a set of betweenness triplets
defined over V . We only consider dense instances, that is R contains exactly one
triplet for every triple of V . Let t = abc ∈ R be a betweenness triplet (or triplet
for short) and σ be an ordering on V . Then t is consistent with σ if a <σ b <σ c
or c <σ b <σ a. A set of triplets R is consistent if there exists an ordering
σ on V such that every t ∈ R is consistent with σ. If such an ordering does
not exist, then R is inconsistent. A conflict C is a subset of V such that R[C]
is inconsistent. Given an instance B = (V,R), an edition for a triplet t ∈ R
is a modification of its choosen vertex. A set F of edited triplets of R is an
edition for B if the edition of every t ∈ R leads to a consistent instance. We
use Bσ = (V,R, σ) to denote an instance of k-BIT fixed under some ordering
σ. Given an ordered instance, we use the same notations than in Section 3 for
embedded instances.

Lemma 9. Let B = (V,R) be an instance of k-BIT. Then B is consistent if
and only if B does not contain any conflict on 4 vertices.

Sunflower reduction rule. The main difference with the previous section lies in
the definition of simple conflict for an ordered instance Bσ = (V,R, σ): given
an inconsistent triplet t and a vertex d that does not belong to any inconsistent
triplet, we do not need to require that d belongs to span(t) to obtain a conflict.
As indicated by Lemma 11, any such vertex can be used to form a conflict with
V (t). In particular, this result allows us to replace the Safe Partition rule with a
Sunflower -based reduction rule. A sunflower S is a set of conflicts {C1, . . . , Cm}
pairwise intersecting in exactly one triplet t. We say that t is the centre of S.

Lemma 10 (Sunflower Lemma). Let B = (V,R) be an instance of k-BIT.
Let S = {C1, . . . , Cm}, m > k be a sunflower of centre t. Any edition of size at
most k has to edit t.

Observe that there exist two ways to edit the centre t. By setting m > 2k we can
fix this and obtain a quadratic vertex-kernel for k-BIT (by adapting techniques
from [16]). Nevertheless, this is not enough to obtain a linear vertex kernel. To
that aim, we combine Conflict Packing and a sunflower rule on simple conflicts.
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Lemma 11. Let Bσ = (V,R, σ) be an ordered instance of k-BIT. Let {a, b, c, d}
be a set of vertices such that bca ∈ R is the only inconsistent triplet of
Bσ[{a, b, c, d}]. Then {a, b, c, d} is a conflict.

Given an ordered instance Bσ = (V,R, σ), a triplet t = {a, b, c} inconsistent
with σ and a vertex d that does not belong to any inconsistent triplet, the set
V (t) ∪ {d} is called a simple conflict. A sunflower S = {C1, . . . , Cm} of Bσ is
simple if the Ci’s are simple conflicts and if the centre of S is the only triplet
inconsistent with σ for every Ci, 1 � i � m. The soundness of the Simple
sunflower rule follows from Lemmas 10 and 11.

Rule 5 (Simple sunflower). Let Bσ = (V,R, σ) be an ordered instance of k-
BIT. Let S = {C1, . . . , Cm}, m > k be a simple sunflower of centre t. Edit t
w.r.t. σ and decrease k by 1.

Conflict Packing. Using Conflict Packing and the Simple sunflower rule, we prove
that the k-BIT problem can be solved in polynomial time on instances whose
parameter is such that k < (|V |/5). The existence of this algorithm directly
implies the existence of a linear vertex-kernel for k-BIT, as stated in Corollary 1.
The definition of a conflict packing C, involving the notion of seed, is the same
than the one given in Section 3. As in Section 3, given a positive instance of
k-BIT we have |V (C)| � 4k. Given a conflict packing C, we can compute in
polynomial time an ordering σ such that any triplet t inconsistent with σ verifies
V (t) ⊆ V (C). Providing that V \ V (C) is large enough (w.r.t. parameter k), we
prove how to compute a simple sunflower on Bσ = (V,R, σ).

Theorem 3. Let B = (V,R) be an instance of k-BIT such that k < (|V |/5).
There exists an algorithm that either computes an edition of size at most k or
answers No in polynomial time.

Corollary 1. The k-BIT problem admits a kernel with at most 5k vertices.
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Abstract. Sand pile models are dynamical systems describing the evo-
lution from N stacked grains to a stable configuration. It uses local rules
to depict grain moves and iterate it until reaching a fixed configuration
from which no rule can be applied. The main interest of sand piles re-
lies in their Self Organized Criticality (SOC), the property that a small
perturbation — adding some sand grains — on a fixed configuration has
uncontrolled consequences on the system, involving an arbitrary number
of grain fall. Physicists L. Kadanoff et al inspire KSPM, a model present-
ing a sharp SOC behavior, extending the well known Sand Pile Model.
In KSPM(D), we start from a pile of N stacked grains and apply the
rule: D−1 grains can fall from column i onto the D−1 adjacent columns
to the right if the difference of height between columns i and i+1 is
greater or equal to D. This paper develops a formal background for the
study of KSPM fixed points. This background, resumed in a finite state
word transducer, is used to provide a plain formula for fixed points of
KSPM(3).

Keywords: Discrete dynamical system, self-organized criticality, sand
pile model, transducer.

1 Introduction

Sand pile models were introduced in [1] as systems presenting a critical self-
organized behavior, a property of dynamical systems having critical points as
attractors. In the scope of sand piles, starting from an initial configuration of N
stacked grains the local evolution of particles is described by one or more iteration
rules. Successive applications of such rules alter the configuration until it reaches
an attractor, namely a stable state from which no rule can be applied. SOC
property means those attractors are critical in the sense that a small perturbation
— adding some more grains — involves an arbitrary deep reorganization of the
system. Sand pile models were well studied in recent years ([8],[4],[5],[16]).
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≥ D

Fig. 1. KSPM(D)
transition rule

In [11], Kadanoff proposed a generalization of classical
models closer to physical behavior of sand piles in which
more than one grain can fall from a column during one it-
eration. Informally, Kadanoff sand pile model with param-
eter D and N grains is a discrete dynamical system, which
initial configuration is composed of N stacked grains, mov-
ing in discrete space and time according to a transition
rule : if the height difference between column i and i + 1
is greater or equal to D, then D − 1 grains can fall from column i to the D − 1
adjacent columns on the right (see figure 1).

In [10], the authors show that the set of reachable configurations endowed with
the order induced by the successor relation has a lattice structure, in particular
it has a unique fixed point.

More formally, sand pile models we consider are defined on the space of ul-
timately null decreasing integer sequences. Each integer represents a column
of stacked sand grains and transition rules describe how grains can move from
columns. Let h = (h0, h1, h2, . . . ) denote a configuration of the model, where
each integer hi is the number of grains on column i. Configurations can also be
given as height difference σ = (σ0, σ1, σ2, . . . ), where for all i ≥ 0, σi = hi−hi+1.
We will use this latter representation throughout the paper, within the space of
ultimately null non-negative integer sequences.

Definition 1. The Kadanoff sand pile model with parameter D, KSPM(D), is
defined by:

– A set of configurations, consisting in ultimately null non-negative integer
sequences.

– A set of transition rules : we have a transition from a configuration σ to a
configuration σ′ on column i, and we note σ i→ σ′ if
• σ′

i−1 = σi−1 +D − 1 (for i �= 0)
• σ′

i = σi −D,
• σ′

i+D−1 = σi+D−1 + 1
• σ′

j = σj for j �∈ {i− 1, i, i+D − 1}.

Remark that according to the definition of the transition rules, a condition for
σ′ to be a configuration is that σi ≥ D. We note σ → σ′ when there exists an
integer i such that σ i→ σ′. The transitive closure of → is denoted by ∗→. A
strategy is a sequence of nonnegative integers s = (s1, . . . , sT ). We say that σ′

is reached from σ via s when σ
s1→ σ′′ s2→ . . .

sT→ σ′, and we note σ
s→ σ′. We

also say, for each integer t such that 0 < t ≤ T , that the column st is fired at
time t in s (informally, the index of the sequence is interpreted as time). For any
strategy s and any nonnegative integer i, we state |s|i = #{t|st = i}. Let s0,

s1 be two strategies such that σ s0

→ σ0 and σ
s1

→ σ1. We have the equivalence:
[∀ i, |s0|i = |s1|i]⇔ σ0 = σ1.

We say that a configuration σ is stable, or a fixed point if no transition is
possible from σ. A basic property of the KSPM model is the diamond property.
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If there exist two distinct integers i and j such that σ
i→ σ′ and σ

j→ σ′′,
then there exists a configuration σ′′′ such that σ′ j→ σ′′′ and σ′′ i→ σ′′′. From
this property, one can easily check that, for each configuration σ, there exists
a unique stable configuration, denoted by π(σ), such that σ ∗→ π(σ). Moreover,
for any configuration σ′ such that σ ∗→ σ′, we have the convergence property:
π(σ′) = π(σ) (see [10] for details).

Let N be a fixed integer. This paper is devoted to the structure of π((N, 0ω))
(where 0ω stands for an infinity of 0’s. π((N, 0ω)) is denoted π(N), for simpli-
fication). Informally, our goal is to know what finally happens, starting from a
configuration where all grains are in the first column.

The main interest of our approach is to provide a new tool to study fixed
points: a deterministic finite state word transducer. (a transducer is essentially
a finite state automaton, which outputs a word during each transition). The
idea is the following, we concentrate on a set I of D − 1 consecutive columns
and constructs a set of states, according to the possible values of configurations
on I. We then study how the way grains fall from the left part into I (input
word) is related to the way grains fall from I to the right part (output word).
The word transducer is formally defined in section 2.3. Using this transducer, an
application to the case D = 3 is also proposed in section 2.3. This application
leads to:

Theorem 1. In KSPM(3), there exists a column number i(N) in O(logN) such
that:

π(N)[i(N),∞[ = (2, 1)∗[0](2, 1)∗0ω

where σ[i,j] is the subsequence (σi, . . . , σj), and [0] stands for at most one 0.

This result can be interpreted as a kind of spatial emergence in a complex system.
On a short length, the structure of the sand pile is complex, but a very regular
shape is issued from the complexity.

Describing and proving regularity properties, for models issued from basic
dynamics is a present challenge for physicists, mathematicians, and computer
scientists. there exists a lot of conjectures, issued from simulations, on discrete
dynamical systems with simple local rules (sandpile model [3] or chip firing
games, but also rotor router [12], the famous Langton ant[6][7]...) but very few
results have actually been proved.

As regards KSPM(D), the prediction problem (namely, the problem of comput-
ing the fixed point) has been proven in [13] to be in NC3 for the one dimensional
case (the model of our purpose), which means that the time needed to compute
the fixed point is in O(log3N) where N is the number of grains, and P-complete
when the dimension is ≥ 3. In this paper we give a straightforward character-
ization, describing asymptotically completely fixed points. A recent study ([9])
showed that in the two dimensional case the avalanche problem (given a config-
uration σ and a column i on which we add one grain, does it have an influence
on index j?) is P-complete, which points out an inherently sequential behavior.
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2 Avalanches and Transducer

2.1 Previous Results about Avalanches

Let σ be a configuration, σ↓0 is the configuration obtained by adding one grain on
column 0. In other words, if σ = (σ0, σ1, . . . ), then σ↓0 = (σ0+1, σ1, . . . ). Clearly,
for any strategy s, if σ s→ σ′, then we have σ↓0 s→ σ′↓0. In particular, since we
have: (N, 0ω) ∗→ π(N), we get: (N, 0ω)↓0 ∗→ π(N)↓0, i.e. (N + 1, 0ω) ∗→ π(N)↓0.
The model is convergent, therefore we get the inductive formula:

π(π(N)↓0) = π(N + 1).

In the following, we will use the inductive approach described above, which
consists in computing π(N + 1) by first computing π(N), then adding a grain
on the origin column, and process all possible transitions until a fixed point is
reached. For initialization, π(0) = 0ω.

The convergence property also allows to only consider leftmost strategies. A
strategy s such that σ s→ σ′ is called leftmost if it is the minimal strategy from
σ to σ′ according to lexicographic order. A leftmost strategy is such that at
each iteration, the leftmost possible transition is performed. The kth avalanche
sk is the leftmost strategy from π(k − 1)↓0 to π(k). For our iterative approach,
we need to describe avalanches. In a previous work [14], we provide a simplified
description of an avalanche. This description is a core result toward the construc-
tion of the transducer in section 2.3. A first insight shows that any column is
fired at most once within an avalanche. The formal statement of the avalanche
description requires one more definition, even though it is graphically simple.
For any sequence x = (x1, . . . , xn) and any integers i, j with 1 ≤ i ≤ j ≤ n, we
denote x[i,j] = (xi, . . . , xj).

Given an avalanche sk = (sk
1 , . . . , s

k
T ), a column sk

t is a peak if and only if
sk

t > max sk
[1,t−1]. Intuitively, peaks are columns where an avalanche progresses

rightward.

Proposition 1. [14] Let s = (s1, . . . , sT ) be the kth avalanche and (p1 . . . , pq)
be its sequence of peaks. Assume that there exists a column l, such that for each
column i with l ≤ i < l + D − 1, i ∈ s. Then for any column p such that
p ≥ l +D − 1,

p is a peak of s ⇐⇒ π(k − 1)p = D − 1 and ∃i s.t. pi < p ≤ pi +D − 1

Furthermore, let pi = st, with pi ≥ l +D − 1, be a peak. Then

T ≥ t+ pi− pi−1 − 1 and for all t′ s.t. t < t′ ≤ t+ pi − pi−1 − 1, st′ = st′−1− 1

A graphical representation of this statement is given on figure 2.
The theorem and therefore the simplified description applies starting from

a certain column l which depends on parameters of the model D and N . We
say that the kth avalanche sk is dense starting at l and ending at m when m is
the greatest fired column (∀ i > m, i /∈ sk) and any column between l and m
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l

Fig. 2. Illustration of Proposition 1 with D = 6. Surrounded columns l to l+D−2 are
supposed to be fired. Black column is the greatest peak strictly lower than � + D − 1
before the avalanche. A column is grey if and only if its value is D−1. Following arrows
depicts the avalanche.

included has been fired (∀ l ≤ i ≤ m, i ∈ sk). A consequence of Proposition 1
is that the avalanche sk considered is dense starting at l, where l denotes the
parameter in the statement of Proposition 1. We define the global density column
L(D,N) as the minimal column such that for any avalanche sk, with k ≤ N , sk

is dense starting at L(D,N). When parameters D and N are fixed, we sometimes
simply denote L.

Proposition 2. [14] The global density column L(3, N) is in O(logN).

In KSPM(3), a trivial bounding of the maximal non empty column of π(N)
shows that it is in Θ(

√
N), so proposition 1 describes asymptotically completely

avalanches used to construct the fixed point. We come back on this point in
section 3.

2.2 Successive Avalanches

When the kth avalanche is dense starting at l and ending at m, for each column i
such that l+D−1 ≤ i < m, columns i−D+1, i and i+1 are fired within the kth

avalanche. Therefore, π(k)i = π(k−1)↓0i = π(k−1)i. Moreover, π(k)j = π(k−1)j

for j > m+D− 1. An intuitive consequence is that two consecutive avalanches
are similar. This intuition is formally stated in this section.

Let sk denote the kth avalanche of KSPM(D). We recall that the global density
column L(D,N) of KSPM(D) is the minimal column such that for any avalanche
sk, with k ≤ N , sk is dense starting at L(D,N). We also define Φ(D,N) =
(φ1, . . . , φn), the subsequence of (s1, . . . , sN ) reaching column L(D,N) +D− 1.
Formally, sk ∈ Φ(D,N) ⇐⇒ L(D,N) + D − 1 ∈ sk. Φ(D,N) is called the
sequence of long avalanches up to N of KSPM(D).

We also define the sequence (μ0, μ1, ....., μn) of configurations such that μ0 =
π(0) = 0ω, and for each integer k such that φk = sm, we have μk = π(m).

The definition of long avalanche is motivated by the property above, which
says that the effect of such an avalanche is easy to compute on the right of the
global density column.

Remark 1. In KSPM(D), if sk is a long avalanche, whose sequence of peaks is
denoted by P k (the largest peak being maxP k), from proposition 1 we have:

– π(k)max P k = π(k − 1)maxP k −D + 1 = 0,
– π(k)i = π(k − 1)i for L(D,N) +D − 1 ≤ i < maxP k,
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– π(k)i = π(k − 1)i + 1 for maxP k < i ≤ maxP k +D − 1,
– π(k)i = π(k − 1)i for i > maxP k +D − 1.

This result is a clear application of transition rules (for each considered column
i we know which columns of the set {i − D + 1, i, i + 1} are fired in sk, so we
can update the configuration). In other words, the main element that we need
to compute (the right part of) π(k) from π(k − 1) is maxP k.

Lemma 1. In KSPM(D), let L be the global density column of N , and Φ =
(φ1, . . . , φn) its sequence of long avalanches up to N . Let k < n, and P k (resp.
P k+1) be the sequence of peaks i of φk (resp. φk+1) such that i ≥ L+ 2(D− 1).
The largest peak of P k is denoted by maxP k. We have:

P k \ {maxP k} = P k+1 ∩ �L + 2(D − 1),maxP k�

The lemma above can be seen as follows: |P k+1| ≥ |P k|−1, and the |P k|−1 first
elements of P k+1 and P k are equal. Informally, the peak sequence can increase
in arbitrary manner, but can decrease only peak after peak.

Proof. Let κ, κ′ be two integers such that φk is the κth avalanche, and φk+1 is
the κ′th avalanche. For each column i such that i ∈ �L + D − 1, maxP k�, we
have i−D + 1, i, i+ 1 ∈ φk and therefore π(κ)i = π(κ− 1)i.

By definition of long avalanches, any avalanche s between φk and φk+1 stops
before L + D − 1, i.e. for all i ≥ L + D − 1, i /∈ s. Combining it with previous
remark, we have for all κ′′ such that κ ≤ κ′′ < κ′

for all i ∈ �L +D − 1, L+ 2(D − 1)� , π(κ′′)i ≥ π(κ− 1) (1)
for all i ∈ �L + 2(D − 1),maxP k� , π(κ′′)i = π(κ− 1) (2)

because columns within interval �L + D − 1, L + 2(D − 1)� can gain height
difference when a column within �L,L+D−1� is fired. This is in particular true
for κ′′ = κ′ − 1. We now study the κ′th avalanche φk+1. From relation (1) and
since π(κ′− 1) is a fixed point, for all i ∈ �L+D− 1, L+ 2(D− 1)�, π(κ− 1)i =
D − 1⇒ π(κ′ − 1)i = D − 1. Let Qk (resp. Qk+1) be the sequence of peaks i of
φk (resp. φk+1) such that L+D− 1 ≤ i < L+ 2(D− 1) Using proposition 1, we
therefore get

Qk ⊆ Qk+1 (3)

Let I = �L + 2(D − 1),maxP k�. From relation (2)

for all i ∈ I, π(κ− 1)i = D − 1 ⇐⇒ π(κ′ − 1)i = D − 1 (4)

We now eventually prove the conclusion of the lemma. Let pi = min{i ∈ P k},
from proposition 1 we equivalently have pi = min{i′ ∈ I|π(κ − 1)i = D − 1}
(the existence of pi is a hypothesis of the lemma). Let p′i′ = min{i′ ∈ P k+1} =
min{i′ ∈ I|π(κ′ − 1)i′ = D − 1} (the existence of p′i′ is given by subset relation
(3)), using relation (4) we have p′i′ = pi.

Other peaks within I are obviously equal from proposition 1 and relation (2)
with κ′′ = κ′ − 1. 
�



514 K. Perrot and E. Rémila

2.3 Transducer

N

size

L(4,N)

I3 I4

Fig. 3. D=4. Long avalanches
up to 500, one by line. The
global density column is lined
in bold black. A light grey
square is a fired column, a
dark grey square is a peak.
The sequence of types of 4-
influent subsequences up to 500
is 0, 1, 2, 0, 1, 2, 0, 2, 1, 0.

We now exploit the similarity between successive
avalanches. Informally, we will cut configurations
into intervals I1, I2, . . . of size D − 1 and study
each of them and their interactions when consid-
ering an avalanche. Given three successive inter-
vals Ii−1, Ii and Ii+1, we construct a finite state
word transducer which computes the influence
of Ii on Ii+1, knowing the influence of Ii−1 on
Ii and the value of the configuration in Ii. The
main idea to use transducers is that the value
of any interval Ii with i > 0 in π(0) is 0D−1,
so we can relate temporally emergent patterns
arising from transduction iterations to spatially
emergent patterns on stable configurations.

The interval Ii is the column sequence ((D −
1)i, (D − 1)i + 1, ..., (D − 1)i + D − 2)). We
call state of an interval Ii of a fixed point
π its value (π(D−1)i, π(D−1)i+1..., π(D−1)i+D−2).
Hence, each interval state is an element of the
set S = {0, 1, ...., D− 1}D−1.

We fix an interval Ii such that (D − 1)i ≥
L(N) + 3(D− 1). The largest peak j of φk, such
that j < (D−1)i, is denoted by p(i, k). The type
α(i, k) of the long avalanche φk on Ii is defined
as follows.

– if p(i, k) ∈ Ii−1, then α(i, k) = p(i, k)
mod [D − 1];

– if p(i, k) /∈ Ii−1, then α(i, k) = ε.

Therefore, the set of possible types is T =
{ε, 0, 1, ..., D − 2}. We say that two long
avalanches are i-similar if they have the same
type for i. Note that if a long avalanche φk

changes the state of Ii, then from remark 1
there necessarily exists a peak of φk in the in-
terval Ii−1.

We now divide the sequence Φ of long
avalanches up to N into maximal length subse-
quences of the type (φk, φk+1, ...., φk′′

) such that,
for each integer k′ such that k ≤ k′ < k′′, φk′

and φk′+1 are i-similar. Such a subsequence is called an i-subsequence. An i-
subsequence is said of type α for i when the type of each avalanche of the
subsequence is α. When α is not the empty word ε, we say that the subsequence
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is i-influent. Remark that, from Lemma 1, each (i + 1)-influent subsequence is
contained in an i-influent subsequence. See figure 3 for an example of i-influent
subsequence.

Lemma 2. Let Φ[k,k′′ ] = (φk, φk+1, ...., φk′′
) be a subsequence of type α for i,

with k′′ ≤ n, and with Ii an interval whose columns are greater than L+3(D−1).
Given the state (a0, a1, ..., aD−2) of Ii in the configuration μk−1, and α, one can
compute, with no need of more knowledge:

– the state (a′0, a′1, ..., a′D−2) of Ii in the configuration μk′′
,

– the sequence of types of the successive i+ 1-influent subsequences contained
in Φ[k,k′′ ]

Proof. This is obvious when the type of the subsequence is ε, since there is no
change and the i+ 1-subsequence contained in (φk, . . . , φk′′

) is also ε.
The computation is simple when there is no integer m such that 0 ≤ m ≤ α

and am = D − 1. In this case, the peak p(i, k) is the last peak of φk, thus
μk

p(i,k) = 0, which gives that p(i, k) is not a peak of φk+1, thus the subsequence
is reduced to a singleton which is not i + 1-influent (second part of the result).
For (D−1)i ≤ j ≤ p(i, k)+D−1, we have μk

j = μk−1
j +1, and for p(i, k)+D−1 <

j < (D−1)(i+1), we have μk
j = μk−1

j . Thus, we have a′m = am+1 for 0 ≤ m ≤ α
and a′m = am for α < m ≤ D − 2 (first part of the result).

Otherwise, φk contains a peak in Ii. Let q(i, k) denote the largest one. The
column q(i, k) is the largest j such that μk−1

j = D − 1 and j < (D − 1)(i + 1).
Thus q(i, k) mod D− 1 is the largest m such that am = D− 1. In this case, φk

starts an i+1-subsequence of type q(i, k). Consider the following long avalanches.
From Lemma 1, while q(i, k) remains a peak of φk′

, p(i, k) also remains a peak
of φk′

. From Remark 1, while q(i, k) is not the last peak of φk′
, the state of

Ii remains invariant. So the first avalanche φk′
that changes the state of Ii is

the one whose last peak is q(i, k) (this avalanche exists from the hypothesis:
k′′ < n). We have μk′

q(i,k) = 0, which closes the i+ 1-subsequence of type q(i, k).

We also have μk′
j = μk

j + 1 for q(i, k) < j < (D − 1)(i + 1), and μk′
j = μk

j for
p(i, k) ≤ j < q(i, k). This gives the state of Ii for μk′

(as in the previous case,
this can be rewritten to show that this state can be expressed only from α and
(a0, a1, ..., aD−2)) and proves that p(i, k) = p(i, k′ + 1).

The argument above can be repeated as long as we have a column j of Ii whose
current value is D − 1. When there is no more such column, the peak p(i, k) is
deleted (its value becomes 0) by the next long avalanche which is necessarily φk′′

from the maximality of i-similar subsequences. 
�

The algorithm below gives the exact computation. From the state of an interval
Ii and an avalanche type on Ii, f returns the greatest fired peak in Ii, and
g computes the new state of Ii and appends the result of f to a sequence of
types on interval Ii+1. g recursively calls itself, anticipating the i-similarity of
successive avalanches when maxP k lies on the right of interval i.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Input: a non empty type α and an interval state A = (a0, . . . , aD−2).

Data structure: a sequence w of types.

Functions:
f : S × T \ {ε} → T g : S × T \ {ε} × T ∗ → S × T ∗

f(A,α) :=
if
({m ≤ α|am = D − 1} �=∅)
then

max{m|am = D − 1}
else

ε

g(A,α, w) :=
match f(A, α) with
|ε → (a0 + 1, . . . , aα + 1, aα+1, . . . , aD−2), w)
|p →

g((a0, . . . , ap−1, 0, ap+1 + 1, . . . , aD−2 + 1), α, w ::p)

Computation: (A,α) �→ g(A,α, ε)

The algorithm above allows to define a deterministic finite state transducer
� (see for example [2]). � is a 5-tuple (Q,Σ, Γ, I, δ) where the set of states Q is
S, the input and output alphabets (resp. Σ and Γ ) are equal to A = T \ {ε} =
{0, . . . , D − 2}, the transition function δ has type Q × Σ → Q × Γ ∗ and is
defined by the algorithm above: δ(q, α) = Computation(q, α). The initial state
is (0, 0, ...., 0), and we do not need to define a final state. The image of a word u
by � is denoted by t(u).

21 11
a|ε

b|ab

12

b|b a|a

22
b|ba

a|ε

a|ba b|ε20

b|ε

a|ε10

b|ε

a|ε

00 b|ε

a|ε

Fig. 4. Transducer for D = 3 - Edges are labelled x|u,
where x ∈ A is the type to the current interval (input)
and u ∈ A∗ is the resulting sequence of types applied to
the next interval (output). For example, t(abaaaaab) =
abaab. Remark that, for n > 0, we have: t((ab)n) =
(ab)n−1.

If α is the type of an
i-influent subsequence for
a fixed integer i, then the
sequence of types of the
corresponding i+1-influent
subsequences ( i.e. subse-
quences where considered
avalanches lie) is t(α) .
Thus, if u is the sequence
of types of consecutive i-
influent subsequences for
a fixed integer i, then
t(u) is the sequence of
types of the corresponding
i+1-influent subsequences.
Note that the last consid-
ered avalanche may not be
the last one of the last i+1-
influent subsequence.

For the lowest interest-
ing value, D = 3, the
transducer � can easily
be drawn. This diagram is
given on figure 4 . For read-
ability, we write a and b
instead of, respectively, 0
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and 1, for the alphabet of the transducer, and we omit the drawing of states which
are not connected with the initial one and are not useful for the computation of
t(u), for any word u.

The transducer has three transient states, (00, 10 and 20) and four recurrent
states (11, 12, 21 and 22) organized in a cycle. A non trivial analysis of this
transducer is given in appendix A. The result is stated on the lemma below.

Lemma 3. [D = 3] For any k there exists n in O(log k) such that for all u of
length k, tn(u) is a prefix of (ab)ω.

2.4 From Words to Waves

The lemma above can be used to describe fixed point configurations, noticing
that |u| ≤ N , as follows:

Proposition 3. In KSPM(D), let L be the global density column of N and Ii
be an interval whose columns are greater than L + 3(D − 1). Assume that the
sequence of types of i-influent subsequences of long avalanches up to N is

(0, . . . , D − 2)x(0, . . . , p), with x ≥ 0 and p ≤ D − 2.

Let y be the size of the last subsequence of type p. We have y ≤ x + 1, and

π(N)[i,∞[ =
{

(p, . . . , 1)(D−1, . . . , 1)x−y0(D−1, . . . , 1)y0ω if y < x + 1
(p+ 1, . . . , 1)(D−1, . . . , 1)x0ω if y = x + 1

Proof (sketch). It is a trivial induction on avalanches. We concentrate on the
right part of fixed points: π(k)[i,∞[. Initially for k = 0, it is equal to 0ω. The D−1
first i-influent subsequences lead to D− 1, . . . , 1, 0ω. Then from (D− 1, . . . , 1)x,
using lemma 1 to predict the size of each i-influent subsequence, we have that
a sequence of type (0, . . . , D − 2) corresponds to exactly (x + 1)(D − 1) long
avalanches, and the behavior verifies the following invariant : the ((x+1)p+y)th

long avalanche, 0 ≤ p < D − 1 and 0 < y ≤ x + 1, has type p and lead to{
p, p− 1, . . . , 1, (D − 1, . . . , 1)x−y0(D − 1, . . . , 1)y0ω if y ≤ x;
p+ 1, p, . . . , 1, (D − 1, . . . , 1)x0ω if y = x + 1. 
�

3 Conclusion

Let us sum up results on KSPM(3). We introduced the finite state transducer
which, given a sequence of types (associated with a sequence of long avalanches)
on an interval Ii, outputs the sequence of types (associated with the same se-
quence of long avalanches) on interval Ii+1. We proved in a previous paper [14]
that the global density column L(3, N) is in O(logN), and therefore that to-
ward the study of the fixed point π(N), the word transducer applies starting
from an interval Ij with j in Ω(logN). Lemma 3 shows that iterating O(log |u|)
times the transducer function t outputs a prefix of (ab)ω , from any input se-
quence u. An upper bound for the size of any input word (sequence of types)
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in KSPM(3) is N . As a consequence, there exists an index k in O(logN) such
that the sequence of types associated with subsequences of long avalanches up
to N on interval Ij+k is a prefix of (ab)ω . Finally, proposition 3 converts the
temporal emergence of regularities when we iterate t into a spatial emergence
of a wave pattern. It points out that as soon as a sequence of types which is a
prefix of (ab)ω is applied on an interval, then on the right of that interval π(N)
is a wave. A simple framing of the maximal non-empty column of π(N) shows
that it is in Θ(N), therefore the wave (2, 1)∗[0](2, 1)∗ describes asymptotically
completely fixed points of KSPM(3) obtained starting from a finite number of
stacked grains. This concludes the proof of Theorem 1.

We hope a generalization of this result to any parameter D, confirming
experiments:

Conjecture 1. For a fixed parameter D, there exists a column number i(N)
in O(logN) such that: π(N)[i(N),∞[ = (D − 1, D − 2, . . . , 2, 1)∗[0](D − 1, D −
2, . . . , 2, 1)∗0ω

We name this pattern a wave for when your draw the corresponding sand pile,
it looks like waves. Toward this aim, a possible outline is decomposed into two
subproblems: one is to provide a general formula in O(logN) for the global
density column, allowing the use of transducers from that index; a second is a
general study of KSPM(D) transducers resulting in the experimentally checked
emergence of balanced outputs, then using proposition 3 we eventually conclude.
Unfortunately from D = 4, transducers lack of human-readability for their num-
ber of state is DD−1. Nevertheless, one may look for core properties on built
transducers in order to deduce regular pattern emergence.
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Appendix

A Analysis of the Transducer for D = 3

In this appendix we provide a sketched1 analysis of the transducer for D = 3,
leading to a proof of lemma 3. Note that though we consider maximal length
subsequences of long avalanches, input words for the transducer may contain
arbitrary numbers of successive occurrences of a and b since we consider only
i-influent subsequences.

Definition 2 (Height). The height h of a finite word u ∈ A∗ is h(u) = ||u|a−
|u|b| where |u|x is the number of occurrences of the letter x in u.

Lemma 4. For any finite word v ∈ L, we have: h(t(v)) ≤ h(v)
4 + 1

Corollary 1. Given a word u ∈ A∗ of length l, there exists an n(l) in O(log l)
such that tn(l)(u) is a prefix of (ab)ω.

Let us remark that l < N for any input word u so corollary 1 apply for actual
sand pile behavior. We therefore have a strong property on words emerging from
iterations of the transducer function t : they are exponentially quickly prefixes
of (ab)ω .

1 A version with full appendix is available, see [15].
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Abstract. We introduce a variant of modal logic, named EXISTENTIAL COUNT-
ING MODAL LOGIC (ECML), which captures a good number of problems known
to be tractable in single exponential time when parameterized by treewidth. It ap-
pears that all these results can be subsumed by the theorem that model check-
ing of ECML admits an algorithm with such complexity. We extend ECML
by adding connectivity requirements and, using the Cut&Count technique intro-
duced by Cygan et al. [4], prove that problems expressible in the extension are
also tractable in single exponential time when parameterized by treewidth; how-
ever, using randomization. The need for navigational character of the introduced
logic is informally justified by a negative result that two expository problems in-
volving non-acyclic local conditions, Cl-VERTEX DELETION and GIRTH > l
VERTEX DELETION for l ≥ 5, do not admit such a robust algorithm unless Ex-
ponential Time Hypothesis fails.

1 Introduction

The notion of treewidth, extensively used by Robertson and Seymour in their proof of
Wagner’s Conjecture [20], in recent years proved to be an excellent tool for capturing
characteristics of certain graph classes. Of particular interest are algorithmic applica-
tions of treewidth. Many problems, while hard in general, become robustly tractable,
when the input graph is of bounded treewidth — a usual technique is based on construc-
tion of a dynamic programming algorithm on the tree decomposition. When combined
with the graph-theoretical properties of treewidth, the approach leads to a number of
surprisingly efficient algorithms, including approximation [6,9], parameterized [7,18]
and exact algorithms [12,22]. In most cases, the dynamic program serves as a subrou-
tine that solves the problem, when the treewidth turns out to be small.

The tractability of problems parameterized by treewidth can be generalized into
a meta-theorem of Courcelle [3]: there exists an algorithm that, given a MSO formula
ϕ and a graph G of treewidth t, tests whether ϕ is true in G in time f(|ϕ|, t)|G| for
some function f . Courcelle’s Theorem can be viewed as a generalization of Thatcher
and Wright Theorem about equivalence of MSO on finite trees and tree automata; in
fact, in the proof one constructs an analogous tree automaton working on the tree de-
composition. Unfortunately, similarly to other theorems regarding MSO and automata
equivalence, the function f , which is in fact the time needed to process automaton’s
production, can depend non-elementary on |ϕ| and t [13,23]. Therefore, a lot of effort

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 520–531, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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has been invested in actual construction of the dynamic programming algorithms mim-
icking the behaviour of a minimal bottom-up automaton in order to obtain solutions
that can be considered efficient and further used as robust subroutines. One approach,
due to Arnborg et al. [2], is extending MSO by maximisation or minimisation proper-
ties, which corresponds to augmenting the automaton with additional counters. In many
cases, the length of the formula defining the problem can be reduced to size independent
of the expected size, yielding a f(t)|G|O(1) time algorithm. Unfortunately, careful anal-
ysis of the algorithm shows that the obtained function f can be still disastrous; however,
for many concrete problems the algorithm can be designed explicitly and the complexity
turns out to be satisfactory. For example, for the expository VERTEX COVER problem,
the book by Kleinberg and Tardos gives an algorithm with running time 4t|G|O(1) [14],
while the book by Niedermeier contains a solution with complexity 2t|G|O(1) [19].

Recently, Lokshtanov et al. [16] initiated a deeper study of currently best dynamic
programming routines working in single exponential time in terms of treewidth, i.e.,
with complexity ct|G|O(1) for some constant c. For a number of problems they proved
them to be probably optimal: a faster solution would yield a better algorithm for CNF-
SAT than exhaustive search. One can ask whether the phenomenon is more general: the
straightforward dynamic programming solution reflecting the seemingly minimal au-
tomaton is optimal under believed assumptions. This question was stated by the same
set of authors in [17] for a number of problems based on connectivity requirements, like
CONNECTED VERTEX COVER or HAMILTONIAN PATH. For these, the considered rou-
tines work in time 2O(t log t)|G|O(1), and a matching lower bound for one such problem,
DISJOINT PATHS, was already established [17].

Surprisingly, the answer turned out to be negative. Very recently, Cygan et al. [4]
introduced a technique called Cut&Count that yields single exponential in terms of
treewidth Monte-Carlo algorithms for a number of connectivity problems, thus breaking
the expected limit imposed by the size of the automaton. The results also include several
intriguing lower bounds: while problems that include minimization of the number of
connected components of the solution are tractable in single exponential time in terms
of treewidth, similar tractability results for maximization problems would contradict
Exponential Time Hypothesis. Recall that Exponential Time Hypothesis (ETH) states
that the infinimum of such c that there exists a cn algorithm solving 3CNF-SAT (n is
the number of variables), is greater than 1.

A natural question arises: what properties make a problem tractable in single expo-
nential time in terms of treewidth? Can we obtain a logical characterization, similar to
Courcelle’s Theorem?

Our contribution. We introduce a model of logic, named EXISTENTIAL COUNTING

MODAL LOGIC (ECML), which captures a good number of problems known to admit
an algorithm running in single exponential time in terms of treewidth. The model con-
sists of a variation of modal logic, encapsulated in a framework for formulating algorith-
mic problems. We prove that model checking of ECML formulas is tractable in single
exponential time, when parameterized by treewidth. In addition to solving the decision
problem, the algorithm can actually count the number of solutions. The result general-
izes a number of explicit dynamic programming routines (for example [1,5,10,11,21]),
however yielding significantly worse constants in the bases of exponents.
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Furthermore, we extend the ECML by connectivity requirements in order to show
that the tractability result for ECML can be combined with the Cut&Count technique
of Cygan et al. Again, we are able to show similar tractability for all the problems
considered in [4], however with significantly worse constants in the bases of exponents.

Finally, we argue that the introduced logic has to be in some sense navigational
or acyclic, by showing intractability in time 2o(p2)|G|O(1) under ETH of two model
problems involving non-acyclic local requirements,Cl-VERTEX DELETION and GIRTH

> l VERTEX DELETION for l ≥ 5, where p is the width of a given path decomposition.

Outline. In Section 2, we introduce the notation and recall the well-known definitions.
We try to follow the notation from [4] whenever it is possible. In Section 3, we introduce
the model of logic. Section 4 contains the main tractability result, while Section 5 treats
of combining it with the Cut&Count technique. In Section 6, we prove the intractability
results under ETH. Section 7 is devoted to concluding remarks and suggestions on the
further study.

2 Preliminaries and Notation

2.1 Notation

Let G = (V,E) be a (directed) graph. By V (G) and E(G) we denote the sets of
vertices and edges (arcs) of G, respectively. Let |G| = |V (G)| + |E(G)|. For a vertex
setX ⊆ V (G) byG[X ] we denote the subgraph induced byX . For an edge setX ⊆ E,
by V (X) denote the set of the endpoints of the edges from X , and by G[X ] — the
subgraph (V (X), X). Note that for an edge set X , V (G[X ]) may differ from V (G).

In a directed graphG by connected components we mean the connected components
of the underlying undirected graph. For a subset of vertices or edgesX of G, we denote
by |cc(X)| the number of connected components of G[X ].

A monoid is a semigroup with a neutral element (a unit). The unit of a monoid M
is denoted by eM . Throughout the paper all monoids are commutative, therefore we
choose to denote the operations by + and refer to them as to additions. We treat the
natural numbers N (nonnegative integers) also as a monoid with operation + and unit 0.

2.2 Treewidth and Pathwidth

Definition 1 (Tree Decomposition, [20]). A tree decomposition of a (undirected or di-
rected) graph G is a tree T in which each vertex x ∈ T has an assigned set of ver-
tices Bx ⊆ V (called a bag) such that

⋃
x∈T

Bx = V with the following properties:

– for any uv ∈ E, there exists an x ∈ T such that u, v ∈ Bx.
– if v ∈ Bx and v ∈ By , then v ∈ Bz for all z on the path from x to y in T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of T mi-
nus one. The treewidth of a graph G is the minimum treewidth over all possible tree
decompositions of G. A path decomposition is a tree decomposition that is a path. The
pathwidth of a graph is the minimum width over all path decompositions.

We use a modified version of tree decomposition from [4], called nice tree decom-
position, which is more suitable for development of dynamic programs. The idea of
adjusting the tree decomposition to algorithmic needs comes from Kloks [15].
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Definition 2 (Nice Tree Decomposition, Definition 2.3 of [4]). A nice tree decompo-
sition is a tree decomposition with one special bag r called the root with Br = ∅ and in
which each bag is one of the following types:

– Leaf bag: a leaf x of T with Bx = ∅.
– Introduce vertex bag: an internal vertex x of T with one child vertex y for which
Bx = By ∪ {v} for some v /∈ By . This bag is said to introduce v.

– Introduce edge bag: an internal vertex x of T labeled with an edge uv ∈ E with
one child bag y for which u, v ∈ Bx = By . This bag is said to introduce uv.

– Forget bag: an internal vertex x of T with one child bag y for whichBx = By\{v}
for some v ∈ By . This bag is said to forget v.

– Join bag: an internal vertex x with two child vertices y and z with Bx = By = Bz .

We additionally require that every edge in E is introduced exactly once.

The main differences between standard nice tree decompositions used by Kloks [15]
and this notion are: emptiness of leaf and root bags and usage of introduce edge bags.

As Cygan et al. observed in [4], given an arbitrary tree decomposition, a nice tree
decomposition of the same width can be found in polynomial time. Therefore, we can
assume that all our algorithms are given a tree decomposition that is nice.

Having fixed the root r, we associate with each node x of a tree decomposition T
a set Vx ⊆ V , where a vertex v belongs to Vx iff there is a bag y which is a descendant
of x in T with v ∈ By (we follow convention that x is its own descendant). We also
associate with each bag x of T a subgraph of Gx defined as follows:

Gx = (Vx, Ex = {e | e is introduced in a descendant of x }) .

As every edge is introduced exactly once, for each join bag x with children y, z, Ex is
a disjoint sum of Ey and Ez .

3 The Model of Logic

We begin with introducing a notion of a recognizable set (for reference, see [8]).

Definition 3. A set S ⊆ N is called recognizable iff there exists a finite monoid M ,
a set F ⊆M and homomorphism αS : N→M such that S = α−1

S (F ).

The notion of recognizable sets coincides with semilinear sets over N. To better under-
stand the intuition behind it, let us state the following simple fact.

Lemma 4 ([8]). A set S ⊆ N is recognizable iff it is ultimately periodic, i.e., there exist
positive integers N, k such that n ∈ S ⇔ n+ k ∈ S for all n ≥ N .

Intuitively, the main property of recognizable sets that will be useful, is that one can
represent the behaviour of a nonnegative integer with respect to the operation of addition
by one of finitely many values — the elements of the monoid.

Now, we are ready to introduce the syntax and semantics of ECML. We will do this
in two steps. First, we introduce the inner, modal part of the syntax. Then, we explain
how this part is to be put into the context of quantification over subsets of vertices
and edges, thus creating a framework for defining problems.
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3.1 The Inner Logic

The inner logic is called COUNTING MODAL LOGIC (CML). Of course, instead of
a modal paradigm we could introduce an equivalent variation of guarded first order
logic; however, modality seems to better capture the character of properties that can be
expressed. Therefore, we choose this option.

A formula ψ of CML is evaluated in a certain vertex v of a (directed) graph G
supplied by a vector of subsets of vertices X and a vector of subsets of edges Y ,
of lengths p, q respectively. If ψ is true in vertex v of graph G, we will denote it by
G,X, Y , v |= ψ. We begin with the syntax of CML for undirected graphs, defined by
the following grammar:

ψ := ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ ⇒ ψ | ψ ⇔ ψ | X | Y | ♦Sψ | �Sψ

X := X1 | X2 | . . . | Xp

Y := Y1 | Y2 | . . . | Yq

The boolean operators are defined naturally. Let us firstly discuss the modal quantifiers
♦S and �S . By definition, S has to be a recognizable set. We define the semantics
of ♦S in the following manner: we say that G,X, Y , v |= ♦Sψ iff the number of
neighbours w of vertex v satisfying G,X, Y ,w |= ψ belongs to S. The quantifier �S

is somewhat redundant, as we say that G,X, Y , v |= �Sψ iff G,X, Y , v |= ¬♦S¬ψ.
To shorten notation, we use ♦ for♦N

+
and � for �N

+
, where N+ is the set of positive

integers. Thus, the definitions of ♦ and � coincide with the natural way of introducing
these quantifiers in other modal logics: ♦ψ means that ψ has to be true in at least one
neighbour, while �ψ means that ψ has to be true in all the neighbours. Observe that
the evaluation of the formula can be viewed as a process of walking on the graph —
each time we evaluate a modal quantifier we move to a neighbour of the current vertex.
Thus, after the first modal quantification there is a well specified edge that was used to
directly access the current vertex from his neighbour.

Operators X can be viewed as unary predicates, checking whether the vertex, in
which the formula is evaluated, belongs to a particular Xi. Formally, G,X, Y , v |= Xi

iff v ∈ Xi. Operators Y play the same role for edges — they check, whether the edge
that was used to directly access the vertex belongs to a particular Yj . Therefore, we
narrow ourselves only to such formulas that use operators Y under some quantification.

We extend the logic to directed graphs by defining the neighbour to be a vertex that
is adjacent via an arc, with no matter which direction. We introduce two new operators
belonging to Y: ↓ and ↑. The ↓ operator is true iff the arc that was used to directly access
the current vertex is directed towards it, while ↑ is true iff it is directed towards the
neighbour. Note that the new operators are significantly different from other operators
in Y, as they are not symmetrical from the point of view of the endpoints.

3.2 The Outer Logic

Let an instance be a quadruple (G,FX,FY , k): a (directed) graph G = (V,E) to-
gether with a vector of fixed subsets of vertices FX , a vector of fixed subsets of edges
FY and a vector of integer parameters k. In most cases the fixed sets are not used, how-
ever they can be useful to distinguish subsets of vertices or edges of the graph that are
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given in the input, like, for example, terminals in the STEINER TREE problem. Let K

be a class of instances: a set of instances with the same lengths of vectors FX,FY , k.
We say that K is expressible in ECML iff belonging to K is equivalent to satisfying
a fixed formula ϕ of the following form:

ϕ = ∃X∃Y

[
φ ∧ ∀v(G,FX,FY ,X, Y , v) |= ψ

]
.

Here:

– X , Y are vectors of existentially quantified sets of vertices and edges, respectively;
– φ is an arbitrary quantifier-free arithmetic formula over the parameters, cardinalities

of sets of vertices and edges of G and cardinalities of fixed and quantified sets;
– ψ is a CML formula evaluated on the graphG supplied with all the fixed and quan-

tified sets.

We say that formulas of this form belong to EXISTENTIAL COUNTING MODAL LOGIC

(ECML).

Example 5. The VERTEX COVER problem, given an undirected graphG and an integer
k, asks whether there exists a set of at most k vertices such that every edge has at least
one endpoint in the set. This can be reformulated as following: if a vertex is not chosen,
then all its neighbours have to be chosen. Thus, the class of YES instances of VERTEX

COVER can be expressed in ECML using the following formula:

∃X⊆V (|X | ≤ k) ∧ ∀vG,X, v |= (¬X ⇒ �X).

Example 6. The r-DOMINATING SET problem, given an undirected graphG and an in-
teger k, asks whether there exists a set of at most k vertices such that every vertex is
at distance at most r from a vertex belonging to the set. The class of YES instances of
r-DOMINATING SET can be expressed in ECML using the following formula:

∃X⊆V (|X | ≤ k) ∧ ∀vG,X, v |= (X ∨♦(X ∨ ♦(X ∨ . . .♦(X ∨♦X) . . .)))︸ ︷︷ ︸
r quantifications

.

4 Tractability of Problems Expressible in ECML

We are ready to prove the main result of the paper: the tractability of K-RECOGNITION

problem. The algorithm is based on the technique of prediction, useful in the construc-
tion of more involved dynamic programming routines on various types of decomposi-
tions. For an example, see the tractability result of Demaine et al. for r-DOMINATING

SET [5] that is in fact a prototype of the constructed algorithm.

K-RECOGNITION

Input: An instance I = (G,FX,FY , k)
Question: Does I ∈ K?
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Theorem 7. If the class of instances K is expressible in ECML, then there exists an al-
gorithm that, given an instance I along with a tree decomposition ofG of width t, solves
K-RECOGNITION in time ct|G|O(m) for some constant c depending on the class K,
where m is the number of quantified sets in the formula ϕ defining K. Moreover, the
algorithm can also compute the number of vectors X,Y satisfying the formula ϕ.

Before we proceed to the proof, let us strongly underline the fact that the theorem yields
fixed parameter tractability of problems expressible in ECML, when the parameter is
the treewidth only. The polynomial factor depends on the length of the formula (in fact,
only on the number of quantified sets, which is in most cases small), so we obtain a
different FPT algorithm for every ECML expressible class.

Proof. As was already mentioned in Section 2, we may assume that the given tree
decomposition is a nice tree decomposition.

Let ϕ = ∃X∃Y

[
φ ∧ ∀v(G,FX,FY ,X, Y , v) |= ψ

]
be the formula defining the

class K of instances of form (G,FX,FY , k). Denote by p0, q0, p1, q1 lengths of vec-
tors FX , FY , X , Y respectively, where m = p1 + q1. We show the algorithm for
computing the number of possible solutions X,Y ; testing the outcome against zero
solves the decision problem.

Firstly, the algorithm counts the cardinalities of fixed sets from vectors FX,FY and
introduces them into the arithmetic formula φ along with parameters and the numbers
of vertices and edges of G. Then, the algorithm branches into (1 + |V |)p1(1 + |E|)q1

subroutines: in each it fixes the expected cardinalities of quantified sets from vectors
X,Y . The algorithm executes only the branches with cardinalities satisfying φ and at
the end sums up obtained numbers of solutions. This operation yields only a |G|O(m)

blow-up of the running time, so we may assume that the expected cardinalities of all
the quantified sets are precisely determined. Let us denote by x, y vectors of expected
cardinalities of X , Y , respectively.

As �S quantifier can be expressed by♦S quantifier, we may assume that ψ uses only
♦S quantifiers. Consider all subformulas ψ1, ψ2, . . . , ψl of ψ beginning with a quanti-
fier, denote ψi = ♦Siψ′

i. Let us define Si as α−1
Si

(Fi) for homomorphism αSi : N →
Mi, finite monoid Mi and Fi ⊆Mi. Let H =

∏l
i=1Mi be a product monoid.

Let us denote X = {0, 1}p1, P = {0, 1}l. Furthermore, let I = H×P×X. Intuitively,
I is a set of possible information that can be stored about a vertex. The information
consists of: history, an element of H; prediction, a binary vector from P indicating,
which formulas ψi are predicted to be true in a vertex; and alignment, a binary vector
from X indicating, to which quantified sets Xi a vertex belongs.

Before we proceed to the formal description of the algorithm, let us give some intu-
ition about what will be happening. The history is an element of the product monoid,
used to count already introduced neighbours satisfying certain formulas ψ′

i. The addi-
tive structure on H enables us to update the history during introduce edge and join steps.
However, while determining satisfaction of subformulas ψi in vertices of the graph, for
the vertices in the bag we have to know their ’type’ in the whole graph, not just the in-
fluence of already introduced part. Therefore, we introduce prediction: the information,
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which subformulas are predicted to be true in a vertex in the whole graph. When doing
updates while introducing edges we can access the predicted values, however when
forgetting a vertex we have to ensure that its history is consistent with the prediction.

Let R be the set of solutions, i.e., pairs of vectors X,Y for which ψ is satisfied in
every vertex and satisfying constraints imposed on cardinalities of the sets. For a node x
of the tree decomposition let s ∈ IBx be an information evaluation. We denote s(v) =
(hv, πv, bv), where v ∈ Bx. Let τ , σ be vectors of integers of lengths p1, q1 respectively,
satisfying 0 ≤ τi ≤ xi and 0 ≤ σj ≤ yj for all 1 ≤ i ≤ p1, 1 ≤ j ≤ q1. Let us define
Rx(τ , σ, s): the set of partial solutions consistent with vectors τ , σ and information
evaluation s. By this we mean the set of pairs of vectors X,Y of subsets of vertices
and edges of Gx respectively, such that the following conditions are satisfied.

– |Xi| = τi for 1 ≤ i ≤ p1, |Yj | = σj for 1 ≤ j ≤ q1.
– Every v ∈ Bx belongs to exactly those Xi, for which the i-th coordinate of bv is 1.
– In all v ∈ Gx \ Bx the formula ψ is satisfied, when evaluated in Gx supplied with

quantified and fixed sets. However, when evaluating some formula ψj in a vertex
w ∈ Bx we access the corresponding coordinate in the prediction πw instead of
actually evaluating it in Gx.

– For all v ∈ Bx the number of neighbours of v in Gx satisfying the formulaψ′
i maps

in αSi to the i-th coordinate of hv, where ψ′
i is evaluated in the neighbour as if it

was accessed directly from v. Again, boolean values of formulas ψj in the vertices
of Bx are taken from the prediction instead of truly evaluated.

Observe that R = Rr(x,y, ∅). The number of possible vectors τ , σ and information
evaluations s is bounded by |I|t|G|O(m), so it suffices to show a dynamic program that
computesAx(τ , σ, s) = |Rx(τ , σ, s)| for all possible arguments in a bottom-up fashion.
It is not hard to implement the performance of the routine for every type of a bag. The
details of an algorithm running in |I|2t|G|O(m) time are described in the full version of
the paper.

5 Adding Connectivity Requirements

We extend ECML by connectivity requirements. We say that an arithmetic formula
φ(x, y) is monotone over y iff φ(x, y) ⇒ φ(x, y′) for y ≥ y′. In ECML+C, the
arithmetic formula φ can also depend on |cc(FXi)|, |cc(FYj)|, |cc(Xi)|, |cc(Yj)|,
numbers of connected components of fixed and quantified sets. The dependence on the
quantified part, variables |cc(Xi)| and |cc(Yj)|, is however restricted to be monotone,
i.e., if y is the variable of φ that corresponds to the number of connected components of
some quantified set, then φ has to be monotone over y. The need of monotonicity can
be justified by a number of lower bounds for problems involving maximization of the
number of connected components, due to Cygan et al. [4].

It appears that we can combine the Cut&Count technique with the dynamic pro-
gramming routine described in Section 4 in order to obtain similar tractability of prob-
lems defined in ECML+C. Unfortunately, application of the technique gives us the
tractability of only the decision problem. To the best of author’s knowledge, extending
the Cut&Count technique to counting problems is an open question, posted in [4].
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Theorem 8. If the class of instances K is expressible in ECML+C, then there exists
a Monte-Carlo algorithm that, given the instance I along with a tree decomposition of
G of width t, solves K-RECOGNITION in time ct|G|O(m) for some constant c depending
on the class K, where m is the number of quantified sets in the formula defining K. The
algorithm cannot produce false positives and produces false negatives with probability
at most 1

2 .

Again, we strongly underline the fact that the theorem yields an FPT algorithm with
only treewidth as a parameter for every class K separately, as the polynomial factor
depends on the formula defining the class.

The proof is a straightforward translation of the proof of Theorem 7 to the language
of Cut&Count. Due to space limitations it can be found in the full version of the paper.

6 The Necessity of Acyclicity

We prove the intractability results for two expository problems involving non-acyclic
local requirements.
Cl-VERTEX DELETION

Input: An undirected graph G and an integer k
Question: Is it possible to remove at most k vertices from G so that the remaining
vertices induce a graph without cycles of length l?

GIRTH > l VERTEX DELETION

Input: An undirected graph G and an integer k
Question: Is it possible to remove at most k vertices from G so that the remaining
vertices induce a graph without cycles of length at most l?

Observe that local conditions involved in these problems are not closed under un-
raveling of the graph, which is a necessary condition to be expressible in CML. From
this we can informally infer that in any approach of this kind the language of defining
local requirements has to be in some sense navigational, as it cannot capture even the
simplest properties not closed under bisimulation.

Theorem 9. Assuming ETH, there is no 2o(p2)|G|O(1) time algorithm for Cl-VERTEX

DELETION nor for GIRTH > l VERTEX DELETION for any l ≥ 5. The parameter p
denotes the width of a given path decomposition of the input graph.

As a path decomposition of width p is also a tree decomposition of width p, the re-
sult is in fact stronger than analogous for treewidth instead of pathwidth. Before we
proceed to the proof, note that both these problems admit a simple 2O(t2)|G|O(1) dy-
namic programming algorithm, where t is the width of a given tree decomposition. In
the state, one remembers for every pair of vertices of bag Bx, whether in Gx they can
be connected via paths of length 1, 2, . . . , l − 1 disjoint with the solution.

We present a polynomial-time reduction that given a 3CNF-SAT instance: a formula
ϕ in 3CNF over n variables and consisting ofm clauses, produces a graphG along with
its path decomposition of width O(

√
n) and an integer k, such that
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– if ϕ is satisfiable then (G, k) is a YES instance of GIRTH > l VERTEX DELETION;
– if (G, k) is a YES instance of Cl-VERTEX DELETION then ϕ is satisfiable.

As every YES instance of GIRTH > l VERTEX DELETION is also a YES instance
of Cl-VERTEX DELETION, the constructed instance (G, k) is equivalent to given in-
stance of 3CNF-SAT both when considered as an instance of Cl-VERTEX DELETION

and of GIRTH > l VERTEX DELETION. Thus, existence of an algorithm forCl-VERTEX

DELETION or GIRTH > l VERTEX DELETION running in 2o(p2)|G|O(1) time would
yield an algorithm for 3CNF-SAT running in 2o(n)(n + m)O(1) time, contradicting
ETH. We can assume that each clause in ϕ contains exactly three literals by copying
some of them if necessary.

Let us choose α = � l−1
2 �, β = � l+1

2 �. Thus, following conditions are satisfied:
2 ≤ α < β, α + β = l, 2β > l, 2α + 4 > l.

Now we show the construction of the instance. The proof of its soundness and the
bound on pathwidth can be found in the full version of the paper.
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(b) Clause gadget CS

Construction. We begin the construction by creating two sets of vertices A,B, each
consisting of

⌈√
2n
⌉

vertices. As |A × B| ≥ 2n, let us take any injective function
ψ : L→ A× B, where L is the set of literals over the variables of the formula ϕ, i.e.,
symbols x and ¬x for all variables x.

For every variable x we construct a variable gadget Qx in the following manner. Let
ψ(x) = (u, v) and ψ(¬x) = (u′, v′) (u and u′ or v and v′ may possibly coincide).
Connect u with v and u′ with v′ via paths of length α. Denote the inner vertices of the
paths that are closest to u and u′ by tx and t¬x respectively. Connect tx with t¬x via two
paths: one of length α and one of length β. Note that these two paths form a cycle of
length l. The gadget consists of all the constructed paths along with vertices u, u′, v, v′.

Now, for every clause S = r1 ∨ r2 ∨ r3, where r1, r2, r3 are literals, we construct
the clause gadget CS in the following manner. Let ψ(ri) = (ui, vi) for i = 1, 2, 3
(ui or vi may possibly coincide). For i = 1, 2, 3 connect ui with vi via a path of length
β, and denote inner vertices of these paths that are closest to ui by sS,ri . Connect each
pair (sS,r1, sS,r2), (sS,r2 , sS,r3), (sS,r3, sS,r1) via two paths: one of length α and one
of length β. Thus, we connect sS,r1 , sS,r2, sS,r3 by a triple of cycles of length l. The
gadget consists of all the constructed paths together with vertices ui, vi.

We conclude the construction by setting k = n+ 2m.
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7 Conclusions and Open Problems

In this paper we introduced a logical formalism based on modality, EXISTENTIAL

COUNTING MODAL LOGIC, capturing a good number of well-studied problems known
to be tractable in single exponential time when parameterized by treewidth. We proved
that testing, whether a fixed ECML formula is true in a given graph, admits an algo-
rithm with complexity ct|G|O(1), where t is the width of given tree decomposition. We
extended ECML by connectivity properties and obtained a similar tractability result
using the Cut&Count technique of Cygan et al. [4]. The need for navigational character
of the logic was informally justified by a negative result under ETH that two model
problems with non-acyclic requirements are not solvable in 2o(p2)|G|O(1) time, where
p is the width of a given path decomposition.

One open question is to breach the gap in the presented negative result. For l = 3,
Cl-VERTEX DELETION is solvable in single exponential time in terms of treewidth,
while for l ≥ 5 our negative result states that such a robust solution is unlikely. To the
best of author’s knowledge, for l = 4 there are no matching lower and upper bounds.

Secondly, there are problems that admit a single exponential algorithm when pa-
rameterized by treewidth, but are not expressible in ECML. One example could be
Kl-VERTEX DELETION, that, given a graph G along with an integer k, asks whether
there exists a set of at most k vertices that hits all the subgraphsKl. A dynamic program
for this problem running in time 2t|G|O(1) can be constructed basing on the observa-
tion, that for every subclique of a graph there has to be a bag fully containing it. Can
we find an elegant extension of ECML that would capture also such type of problems?
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Abstract. We adress the controller synthesis problem for distributed
systems with regular and deterministic contextfree specifications. Our
main result is a complete characterization of the decidable architectures
for local specifications. This extends existing results on local specifi-
cations in two directions. First, we consider arbitrary, not necessar-
ily acyclic, architectures and second, we allow deterministic contextfree
specifications. Moreover, we show that as soon as one considers global
deterministic contextfree specifications, even very simple architectures
are undecidable.

1 Introduction

Open non-terminating reactive systems are computing systems which conti-
nously interact with an environment. Such systems are modeled as infinite games
between a controller for the system and the environment. As the behavior of the
environment is usually not constrained a priori in such settings, it is considered as
being antagonistic. Non-terminating reactive systems have first been considered
in the context of switching circuits. Church’s Synthesis Problem [2] is to de-
cide whether there exists a switching circuit such that all possible input/output
behaviors of the circuit satisfy a given specification and, if such a circuit ex-
ists, it should be constructed effectively. The first solution to this problem has
been given by Büchi and Landweber [1] who showed that for any specification
formulated in monadic second order logic over words, the synthesis problem is
decidable and finite state solutions can be constructed effectively.

Since then, non-terminating reactive system have received growing attention
in computer science. Such systems naturally capture many settings where a given
plant should be controlled in such a way, that any constrained system behavior
satisfies a certain specification. Moreover, the prospect of being able to construct
such systems automatically from a given specification, rather than verifying a
system that has already been built, has led to intensive research on the controller
synthesis problem [8,12,14] and to extensions of the basic setting in various
directions. For example, other specification formalisms have been considered like
temporal logics [11] and contextfree specifications [16], the systems have been
extended to distributed systems which consist of several components [13], and
stochastic versions of reactive systems have been investigated [4].
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We consider distributed systems with regular and contextfree specifications.
Such a distributed system is specified by an architecture which consists of a set
of processes and channels via which the processes can communicate. Distributed
systems have first been considered in [13] where it has been shown that in general,
the distributed controller synthesis problem is undecidable for specifications from
the linear time temporal logic LTL. Moreover, for pipelines, a special class of
acyclic architectures, decidability has been proved for LTL specifications. In [9]
the decidability results have been extended to certain classes of architectures
with cycles and to specifications from the branching time logic CTL. Finally,
in [5], a full characterization of the decidable architectures has been given by
means of certain patterns of information flow, called information forks: Two
processes form an information fork if they are incomparably informed and the
controller synthesis problem for an architecture is decidable if, and only if, it does
not contain an information fork. This holds for both LTL and CTL specifications.

In [10], the concept of local specifications was introduced. There, any sys-
tem process has an individual specification which defines the correct behaviors
of just this process instead of the whole system. Obviously, any set of regular
local specifications can be transformed into a regular global specification, so all
decidability results for global regular specifications hold for local regular speci-
fications as well. However, there are architectures, called two-flanked pipelines,
which contain an information fork but are decidable for local regular specifica-
tions [10]. Moreover, for the class of acyclic architectures, a characterization of
the decidable architectures was established for regular specifications.

We extend this result to architectures which may contain cycles and to spec-
ifications which are regular or deterministic contextfree. Notice that in the case
of global specifiations, backward-channels (channels from processes with a lower
level of information to better informed processes) are futile, so architectures
without information forks can be transformed into a normal form which does
not have cycles [5]. These techniques do not, however, preserve local specifica-
tions and in fact, in the case of local specifications, backward-channels can be
significant, as they may increase the access of the local specifications to the over-
all (global) system behavior. Therefore, to deal with cycles in the case of local
specifications, one has to use different methods. Also, processes not reachable
from the environment cannot be eliminated in general, so a decidable archi-
tecture may consist of several basic decidable subarchitectures. Our analysis is
centered around those two structural aspects and the higher expressive power of
deterministic contextfree specifications. In Section 4 we first prove decidability
and undecidability results for some special classes of architectures, followed by
a complete characterization of the decidable architectures in Section 5.

In Section 3, we also show that as soon as one considers global deterministic
contextfree specifications, even very simple architectures become undecidable.
For architectures with only one system process, [16] has shown that they are
decidable for deterministic contextfree specifictions. We show that this is not
the case for architectures with at least two system processes or at least one
channel from the environment which cannot be read by any system process.
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2 Preliminaries

We denote the boolean alphabet by B = {/,⊥}. For any alphabet Σ and
words α, β ∈ Σ∗ ∪ Σω and n ∈ N we write α(n) for the n-th letter of α,
α�n= α(0) . . . α(n − 1) and α 0 β if α is a prefix of β. For an integer k > 0
let [k] denote the set {0, ..., k− 1}. For a cartesian product A = A0× . . .×An−1

and I ⊆ [n] we denote AI =
∏

i∈I Ai. Moreover, PrI(a) = (ai)i∈I for an element
a = (a0, . . . , an−1) ∈ A, PrI(α) = PrI(α(0))PrI(α(1)) . . . for a word α ∈ A∗∪Aω

and PrI(L) = {PrI(α) |α ∈ L} for a language L ⊆ A∗ ∪ Aω . However, usually
we do not refer to an explicit ordering of the components of a cartesian product
and write PrAI instead of PrI . If A has certain identical components, this is of
course not unambigious, but it will be clear from the context to which compo-
nents the operator projects. Moreover, if α ∈ Xω and β ∈ Y ω, α�β ∈ (X×Y )ω

denotes the ω-word with (α�β)(i) = (α(i), β(i)) for all i ∈ N. For a function
σ : Σ∗ → Σ′, the ω-language which is generated by σ over a language Lin ⊆ Σω

is {σ(α �0)σ(α �1) . . . |α ∈ Lin} ⊆ (Σ′)ω. For any functions f : A → B and
g : B → C the composition f ◦ g : A→ C is defined by (f ◦ g)(a) = g(f(a)).

Architectures. An architecture A = (P,C, r) consists of the following compo-
nents. P = {penv} ∪ Psys is the set of processes where penv = p0 takes the role
of the environment and Psys = {p1, . . . , pn} with n ≥ 1 are system processes.
Moreover, C =

⋃
p∈P Cp is the set of channels where the sets Cp are pairwise

disjoint and r : C → P is a function, assigning for each channel a process which
reads it such that r(Cp) ⊆ Psys for all p ∈ Psys. We assume that, for all p ∈ Psys,
r−1(p) �= ∅ and Cp �= ∅, i.e., each system process has at least one input and one
output channel. So basically, an architecture is a directed graph with multi-egdes.

An architecture A is called connected, if Psys induces a connected subgraph
of A. Consider a set Q ⊆ Psys. If the subgraph of A induced by Q∪ {penv} is an
architecture, then we denote this architecture by A(Q) and we say that A(Q)
is the subarchitecture of A induced by Q. (Notice that not each set Q ⊆ Psys

induces a subarchitecture of A.) An architecture A′ is a subarchitecture of A if
A′ = A(Q) for some set Q ⊆ Psys.

For p ∈ P , Hp = {c ∈ Cp|r(c) = p} are called hidden channels of p, i.e.,
they cannot be read by any other process. Cp0 are external input channels and
Hp0 ⊆ Cp0 are hidden input channels.

⋃n
i=1 Cpi \Hpi are internal communication

channels and the channels
⋃n

i=1Hpi are used to model external output channels.
We say that process p sends information to process p′ �= p if there is some

channel c ∈ Cp such that p′ = r(c). Process p is called reachable, if there is a
directed path from penv to p. Process p is better informed than p′ �= p if p is
reachable and each directed path from penv to p′ goes through p. Notice that a
process may send information to another process via multiple channels. However,
if more convenient, we can assume w.l.o.g. that there is at most one such channel.

An architecture A = (P,C, r) is called pipeline (two-flanked pipeline) with
backward-channels if r(Cp0 ) = {p1} (r(Cp0 ) = {p1, pn} in case of a two-flanked
pipeline) and, for i ∈ [n] \ {0}, r(Cpi ) ⊆ {pj | 0 < j ≤ i + 1} (see Figure 1).
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penv p1 p2 p3 penv p1 p2 p3

Fig. 1. Pipeline and two-flanked pipeline with backward-channels

A channel c ∈ Cpi with r(c) = pj is called backward-channel if 0 < j < i and it
is called forward-channel if j = i+1. Moreover, A is called (two-flanked) pipeline
if it has no backward-channels.

A labeling (Σc)c∈C for A assigns to any channel c ∈ C a nonempty finite set
Σc of signals which can be sent along c. We define, for every p ∈ P , the input
and output alphabets of p as Σp

in =
∏

c∈r−1(p) Σc and Σp
out =

∏
c∈Cp

Σc. The
local alphabet of p is Σp = Σp

in × Σp
out. The global system alphabet is defined

as ΣA =
∏

c∈C Σc =
∏n

i=0Σ
pi

out. At each point in time i every process p writes
a letter αp(i) ∈ Σp

out to the corresponding channels c ∈ Cp. A global system
behavior is an ω-word α = αp0

� . . .� αpn from (ΣA)ω . For p ∈ Psys, the local
process behavior of p is βp

�αp, where βp = PrΣp
in

(α),
A global system specification is a language L ⊆ (ΣA)ω consisting of all correct

system behaviors. A local specification for process p is a language Lp ⊆ (Σp)ω .
For a collection (Lp1 , . . . , Lpn) of local specifications for the system processes,
the corresponding global system specification is the language L ⊆ (ΣA)ω such
that PrΣp(L) = Lp for any system process p ∈ Psys.

A local strategy for process p maps a local input history of process p to the
next output symbol of process p, i. e., it is a function σp : (Σp

in)∗ → Σp
out. The

local behavior βp
�αp of process p is consistent with σp, if αp(i) = σp(βp�i) for

all i ∈ N. For a language Lin ⊆ (Σp
in)ω , the local strategy σp is called winning

on Lin if any local behavior βp
�αp of p with βp ∈ Lin which is consistent with

σp is in Lp. It is called winning for process p, if it is winning on (Σp
in)ω.

A joint strategy for p1, . . . , pn is a tuple σ = (σp1 , . . . , σpn ) where each σpi

is a local strategy for process pi. A global system behavior α = αp0
� . . .� αpn

is consistent with σ, if the local process behavior of each system process p is
consistent with σp. The strategy σ is winning, if any system behavior which is
consistent with σ is in the global system specification L. Notice that a joint strat-
egy which consists of local winning strategies is also winning for L. The converse
is, however, not true in general: a local strategy for a process p which is part of
a joint winning strategy is not necessarily locally winning as the inputs that p
receives from other system processes are constrained by their local strategies.

A specification L ⊆ (ΣA)ω is realizable in an architecture A with labeling
(Σc)c∈C if there is a joint winning strategy for processes p1, . . . , pn. The realiz-
ability problem is to decide, given an architecture A, a labeling (Σc)c∈C and a
specification L ⊆ (ΣA)ω, whether L is realizable in A. For a class L of specifica-
tions we say that an architecture A is decidable for specifications from L if the
realizability problem is decidable for the fixed architecture A when specifications
are restricted to L.
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Specifications. We consider regular and deterministic contextfree specifica-
tions. Regular specifications are those which can be recognized by parity au-
tomata. Notice that deterministic, nondeterministic and alternating parity
automata over words have all the same expressive power [15]. Deterministic con-
textfree specifications are those which can be recognized by deterministic parity
pushdown automata (parity DPDA) [3], i.e., finite state automata which addi-
tionally have access to a stack-memory. We also consider deterministic 1-counter
specifications, i.e., recognizable by parity DPDA with only a single stack-symbol.
We assume standard concepts and notations for these automata. Notice that de-
terministic contextfree languages form a proper subclass of contexfree languages
and that, while games with deterministic contextfree winning condition are de-
cidable [16], nondeterministic contextfree games are undecidable (see, e.g., [6]).

Trees and Tree-Automata. For a finite alphabet Σ and a finite set X , a
Σ-labeled X-tree is a function t : X∗ → Σ. We use alternating parity tree
automata (parity ATA) and nondeterministic parity pushdown tree automata
(parity NPDTA) on such trees. Again, we assume standard concepts and nota-
tions for these automata [7,14]. Notice that for any parity ATA A there is an
equivalent nondeterministic parity tree automaton (parity NTA) N , that means,
L(A) = L(N ) [15]. Moreover, like for parity NTA, the nonemptiness problem
for parity NPDTA is decidable [7]. Furthermore, for any parity NTA A and any
parity NPDTA B, there is a parity NPDTA C such that L(C) = L(A)∩L(B). We
also use the widening operator wide(t, Y ) on a Σ-labeled X-tree t which yields
the Σ-labeled X × Y -tree t′ = wide(t, Y ) with t′(x, y) = t(x). For any parity
NTA A over Σ-labeled X × Y -trees, there is a parity NTA B over Σ-labeled
X-trees, which accepts a tree t if, and only if, wide(t, Y ) ∈ L(A) [8].

3 Global Specifications

Theorem 1. The realizability problem for global deterministic contextfree speci-
fications is undecidable for an architecture A if, and only if, |P | > 2 or Hp0 �= ∅.

Proof. (Sketch) We proceed by a reduction from the Post’s Correspondence
Problem PCP. Let p1, p2 ∈ Psys and let cin ∈ Cp0 . W.l.o.g., assume r(cin) = p1.
Moreover, let cout ∈ Cp2 . We silence all other channels by defining Σc = {"} for
all c ∈ C \ {cin, cout}. Now given an instance I = ((u0, v0), . . . , (um−1, vm−1))
of the PCP over an alphabet Θ, consider the specification L which consists of
all words αin

�αout
�α′ where αin ∈ {U, V }ω and αout = "ik . . . i1"w"Σ

ω
cout

with
ij ∈ [m] and w ∈ Θ∗ such that w = ui1 . . . uik

if αin(0) = U and w = vi1 . . . vik

if αin(0) = V . Clearly, L can be recognized by a parity DPDA and the system
processes have a joint winning strategy if, and only if, I has a solution. The
crucial point is that the process which produces αout cannot observe the first
letter of αin. This is also the case if αin is sent via some channel from Hp0 . 
�

Remark 2. By a reduction from the halting problem for 2-register machines one
can show that Theorem 1 also holds for deterministic 1-counter specifications.
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4 Local Specifications

From now on, we consider architectures with specifications given by collections
of local specifications, one for each system process. For the class of acylic ar-
chitectures, it has been shown in [10], that the realizability problem for local
regular specifications is decidable if, and only if, each conntected subarchitec-
ture is a subarchitecture of a two-flanked pipeline. We continue the investigation
by classifying the decidable architectures for the more general case where cycles
are allowed and the local specifications may also be deterministic contextfree.
In this section, we first prove decidability and undecidability results for some
special classes of architectures.

4.1 Decidability

Pipelines with Backward-Channels. Let A = (P,C, r) be a pipeline with
backward-channels, let (Σc)c∈C be a labeling of A and let Lp1 , . . . , Lpn be local
specifications for the system processes where Lp1 , . . . , Lpn−1 are regular and Lpn

is regular or deterministic contextfree. For any system process pi we define the
accumulated output alphabet Σ≥i

out :=
∏

j≥i Σ
pj

out which labels all the output
channels of all processes pj with j ≥ i and the alphabet Σb,pi

out which labels all
the backward-channels and external output channels of process pi. Moreover, for
0 ≤ i < n, Σi denotes the alphabet on the channels from pi to pi+1.

To prove decidability, we adopt the B-labeled trees used in [10] to represent
communication languages of the processes, that means, sets of infinite sequences
of signals which can be sent along certain channels in the given architecture.
Given an alphabet Σ, a B-labeled Σ-tree t represents the ω-language Lω(t) =
{α ∈ Σω | t(α�k) = / for all k ∈ N}. Now if such a tree t represents in fact a
communication language, then the/-labelled nodes of t form a nonempty subtree
of t, containing the root of t. More formally, t has the following properties: (C1)
t(ε) = /, (C2) if t(u) = ⊥, then t(ua) = ⊥ for all a ∈ Σ and (C3) if t(u) = /,
then t(ua) = / for some a ∈ Σ. We call B-labeled Σ-trees which have the
properties (C1) - (C3) communication trees over Σ and we denote the set of all
such trees by Tc(Σ). Notice that for t ∈ Tc(Σ), {u ∈ Σ∗ | t(u) = /} = {u ∈
Σ∗ |u 0 α for some α ∈ Lω(t)}.

Now, given a tree tin which represents input sequences that a process receives
and a tree tout which represents output sequences that the process may write,
we define the strategy product tin↪→tout of tin and tout as a set of trees t, each of
which defines an assignment of input sequences from Lω(tin) to output sequences
from Lω(tout), so it yields a strategy σ(t) for the process. Formally, for a tree
tin ∈ Tc(Σ) and a tree tout ∈ Tc(Σ′), the strategy product tin↪→tout is defined as
the set of all B-labeled Σ×Σ′-trees t such that: (S1) if tin(u) = ⊥ or tout(v) = ⊥
then t(u�v) = ⊥, (S2) if tin(u) = / then there is exactly one v ∈ (Σ′)|u| such
that t(u�v) = / and (S3) if t(u�v) = / then there is some b ∈ Σ′ such that
for all a ∈ Σ with tin(ua) = / we have t(ua�vb) = / and t(ua�vc) = ⊥
for c ∈ Σ′ \ {b}. Notice that in fact for any such t, PrΣ(Lω(t)) = Lω(tin) and
PrΣ′(Lω(t)) ⊆ Lω(tout). Moreover, notice that tin↪→tout ⊆ Tc(Σ ×Σ′).
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The key argument for the decidability result for pipelines with backward-
channels is that a system process pi is better informed than any system process
pj with j > i. In particular, a strategy for pi needs only to depend on the input
that it receives from the previous process pi−1 and not on the input received
via backward-channels. Due to this observation, the following definition of an
extended local strategy is meaningful. For 1 ≤ i ≤ n, an extended local strategy
for process pi is a tuple σ≥i = (σi, . . . , σn) of functions σj : (Σi−1)∗ → Σ

pj

out, i.e.,
it takes the local input history of process pi, ignoring the backward-channels
read by pi, and yields the next output symbol for each process pj with j ≥ i.
Such a strategy is called locally winning on inputs from Lin ⊆ Σω

i−1, if each
global system behavior α of A with PrΣi−1(α) ∈ Lin which is consistent with
σ≥i fulfills Lpi , i.e., PrΣpi (α) ∈ Lpi . The main technical argument how these
strategies can be used to decide the realizability problem for A is given in the
following Lemma.

Lemma 3. For any 1 ≤ i < n there is a parity NTA Ni over B-labeled Σ≥i
out-

trees which accepts a tree tout ∈ Tc(Σ≥i
out) if, and only if, there are a B-labeled

Σi−1-tree tin ∈ Tc(Σi−1), a tree t ∈ tin ↪→ tout and strategies σ1, . . . , σi−1 for
processes p1, . . . , pi−1 such that σ(t) is locally winning on Lω(tin) and
– σ1 ◦ PrΣ1 ◦ . . . ◦ σi−1 ◦ PrΣi−1 generates a language L ⊆ Lω(tin) over Σω

0

– (σ1, . . . , σi−1, σ(t)) is winning for p1, . . . , pi.

Proof. (Sketch) We prove this by induction on i. We omit the base case i = 1
and consider only the case i > 1. For this, let Ni−1 be a parity NTA over
B-labeled Σ≥i−1

out -trees according to the induction hypothesis. Then there is a
parity NTA N ′

i−1 over B-labeled Σi−1 × Σ≥i
out-trees which accepts a tree t if,

and only if, wide(t, Σb,pi−1
out ) ∈ L(Ni−1). Now we construct a parity ATA Ai

over B-labeled Σ≥i
out-trees which, roughly, works as follows: Running on a tree

tout, in each step, Ai guesses an output signal b ∈ Σ≥i
out and a set ∅ �= X ⊆

Σi−1 of possible input signals and sends, for each (x, y) ∈ Σi−1 × Σ≥i
out, a copy

into direction y. If x ∈ X and y = b, it sends a /-copy, otherwise it sends
a ⊥-copy. Moreover, if Ai encounters a ⊥-symbol in tout when being in a /-
copy (that means, output b should not have been chosen in the previous step
according to tout), it immediately rejects. In this way, Ai guesses a tree tin ∈
Tc(Σi−1) and a tree t ∈ tin ↪→ tout. While doing so, Ai simulates N ′

i−1 on t
and it simulates a deterministic parity automaton recognizing Lpi on all paths
α ∈ Lω(t). Therefore, Ai accepts iff t ∈ L(N ′

i−1) and σ(t) is locally winning
on Lω(tin). Now using the induction hypothesis, one can show that Ai fulfills
all conditions of the lemma. Moreover, there is a parity NTA Ni with L(Ni) =
L(Ai), which concludes the proof. 
�

For the last process pn, we need the following Lemma.

Lemma 4. There is a parity NPDTA Nn over B-labeled Σn−1×Σpn

out-trees which
accepts a tree t if, and only if, t ∈ tin↪→ tout for some tin ∈ Tc(Σn−1) and some
tout ∈ Tc(Σpn

out) such that σ(t) is locally winning on Lω(tin).
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Now by applying a widening argument for Σb,pn−1
out , similar as in the proof of

Lemma 3, one obtains an automaton N ′
n−1 from Nn−1 and there is a parity

NPDTA N recognizing the intersection of L(N ′
n−1) and L(Nn), where Nn is the

parity NPDTA obtained from Lemma 4. Then one can show that (Lp1 , . . . , Lpn)
is realizable in A if, and only if, L(N ) �= ∅ and as nonemptiness of L(N ) is
decidable, the decidability result is established.

Theorem 5. The realizability problem for A is decidable if Lp1 , . . . , Lpn−1 are
regular and Lpn is regular or deterministic contextfree.

Two-Flanked Pipelines with Backward-Channels. Let A = (P,C, r) be a
two-flanked pipeline with backward-channels, let (Σc)c∈C be a labeling of A and
let Lp1 , . . . , Lpn be regular local specifications for the system processes.

First we consider the case where there are no backward-channels from the
last process. The main idea and the constructions are essentially the same as
for the case of pipelines with backward-channels. Clearly, the construction has
to be adapted to account for the fact, that processes pi for i < n can determine
the decisions of all processes pj with i ≤ j < n, but not those of process pn.
However, since these decisions are not relevant for the satisfaction of the local
specification of pi, it is not necessary that process pi makes those decision.

So, an extended local strategy for pi is now a tuple σ≥i = (σi, . . . , σn−1) of
functions σj : (Σi−1)∗ → Σ

pj

out and the accumulated output alphabets Σ≥i
out have

to be adapted accordingly. Of course it has also to be taken into account, that
a strategy for process pn depends not only on the input from pn−1 but also on
a part of the input from the environment.

Now Lemma 3 holds just as before with the new definition of Σ≥i
out and the new

notion of an extended local strategy. Lemma 4 however, has to be reformulated.

Lemma 6. There is a parity NTA Nn over B-labeled Σn−1-trees which accepts
a tree tin ∈ Tc(Σn−1) if, and only if, there is a local strategy for process pn which
is locally winning on {α ∈ (Σpn

in )ω |PrΣn−1(α) ∈ Lω(tin)}.

Theorem 7. The realizability problem for regular local specifications is decidable
for A if there is no backward-channel from the last process pn.

Now we prove decidability for the case n = 2, where we also have backward-
channels from the last process, so let P = {p0, p1, p2}, let Γi =

∏
c∈C0,r(c)=pi

Σc,
Σ1 =

∏
c∈C1,r(c)=p2

Σc and Σ2 analogous. For convenience, we omit the external
output channels of p1 and p2, it is straightforward how to account for these
channels in the proof given below, if they are present.

For the proof, we extend the B-labeled trees as here, ω-languages over Σ =
Σ1 × Σ2 are represented, but we want to maintain access to the components.
A B2-labeled Σ-tree t represents the language Lω(t) ⊆ Σω with α ∈ Lω(t)
if, and only if, for each finite prefix w of α we have t(w) = (/,/). However,
more information is stored in such a tree: the components PrΣi(α) may depend
on each other which is expressed in the inidividual components of the B-tuples.
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If t(u�v) = (/,⊥), then this tells us that v�|v|−1 may be answered by u but
u�|u|−1 may not be answered by v, analogous for t(u�v) = (⊥,/). Clearly this
is different from just saying that u�v will not occur.

Of course, any such tree t which in fact represents a joint output language of p1

and p2 has properties analogous to the properties (C1) - (C3) of the communica-
tion trees Tc(Σ). However, as we don’t need those properties in the decidability
proof, we do not require them explicitly.

Theorem 8. The realizability problem for regular local specifications is decidable
for any two-flanked pipeline with backward-channels and n = 2.

Proof. (Sketch) We construct two parity ATA A1 and A2 over B2-labeled Σ-
trees which, roughly, work as follows. When running on a tree t, at each step,
A1 guesses an output signal b ∈ Σ1 and sends, for any possible input signal
(x, y) ∈ Γ1×Σ2, a copy into direction (b, y). If the corresponding node is labeled
with ⊥ in the Σ1-component (that means, output b should not be chosen in this
situation according to t), then A1 rejects immediately and if it is labeled with
⊥ in the Σ2-component (that means, input y will not occur in the next step
according to t), A1 goes into a special accepting state. This way, A1 guesses a
local strategy for p1 on all inputs from Γ1 and those inputs from Σ2 which it
may receive according to the intended joint strategy for p1 and p2. Moreover,
on all paths which are consistent with this strategy, it simulates a deterministic
parity automaton, recognizing the local specification Lp1 . The automaton A2

works analogously and thus one can show that L(A1) ∩ L(A2) �= ∅ iff a joint
winning strategy for p1 and p2 exists. 
�

4.2 Undecidability

First, if there are at least two connected processes which may have a determin-
istic 1-counter specification, then those two processes can directly simulate a
2-register machine. As the halting problem for such machines is undecidable, we
obtain the following result.

Theorem 9. The realizability problem is undecidable for any connected archi-
tecture with at least two local deterministic 1-counter specifications.

The next result restricts the decidable architectures which may have one deter-
ministic 1-counter specification.

Theorem 10. The realizability problem is undecidable for any architecture with
two connected processes p �= p′ such that p is reachable and has a deterministic
1-counter specification and p′ is not better informed than p.

Proof. (Sketch) We proceed by a reduction from the halting problem for 2-
register machines, so let R be a 2-register machine. We only consider the archi-
tecture consisting of penv and the two system processes p, p′ where penv sends
information to p, p sends information to p′ and p′ has an external output channel.
The proof idea can easily be adapted to all other cases. The local specification of
p′ requires that p′ writes a sequence of configurations of R and that its output
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symbol equals the input symbol that it receives from p in each step. Notice that
those symbols have to be chosen simultaneously. In each step, the environment
may trigger the 1-counter automaton recognizing Lp to check whether the next
two configurations are in the successor relation w.r.t. one of the registers. For
this, the environment has two special symbols sj for j ∈ {1, 2} where j deter-
mines which of the registers should be checked. Obviously, the system processes
have a joint winning strategy iff R does not halt. 
�

Notice that to apply the automata constructions from the decidability proofs of
Section 4.1 to an architecture as in Theorem 10, one has to construct alternat-
ing pushdown tree automata since the process with the pushdown specification
is not the one with the lowest level of information. However, nonemptiness of
alternating pushdown tree automata is not decidable.

The remaining two results concern regular local specifications and we just
state them here without giving proofs. Essentially, those results can be proved
by combining and refining ideas from [13], [5] and [10].

Theorem 11. The realizability problem for regular local specifications is un-
decidable for any architecture with a reachable process p1 such that p1 sends
information to processes p2 �= p3 which are not better informed than p1.

Theorem 12. The realizability problem for regular local specifications is unde-
cidable for any architecture with at least two incomparably informed processes p1

and p2 which are both reachable such that there is a process p3 /∈ {p1, p2} which
is reachable from both p1 and p2.

5 Characterization

Now we characterize the exact classes of architectures which are decidable for
local regular specifications and, for each such decidable class, we determine the
exact set of processes which may have a deterministic contextfree specification
such that decidability still holds. Notice that an architecture which is already
undecidable for regular local specifications is clearly undecidable if we addition-
ally allow deterministic contextfree specifications. Since for local specifications
the realizability problem for some architecture is decidable if, and only if, it is
decidable for every connected subarchitecture, w.l.o.g. we restrict our attention
to connected architectures. We also note that in the case of local specifications
the hidden channels of the environment are futile.

In the following, we denote the class of all pipelines with backward-channels
by K1 and the class of all two-flanked pipelines with backward-channels which
have either only two system processes or which do not have a backward-channel
from the last process by K2. Moreover, for an architecture A, M(A) denotes the
set of all system processes of A which are not reachable. Notice that Psys \M(A)
induces a subarchitecture of A.

Theorem 13. Let A = (PA, CA, rA) be a connected architecture. Then A is de-
cidable for regular local specifications if, and only if, any connected subarchitecture
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of A(PA
sys \M(A)) is in K1 ∪K2. Moreover, A remains decidable for deterministic

contextfree specifications if, and only if, one of the following conditions hold.

(1) A ∈ K1 and Lp1 , . . . , Lpn−1 are regular.
(2) There is a p ∈M(A) such that Lp′ is regular for all p′ ∈ PA

sys \ {p}.

Proof. (Sketch) We prove here only that A is decidable, if any connected subar-
chitecture of A(PA

sys \M(A)) is in K1∪K2 (see Figure 2) and there is a p ∈M(A)
such that Lp′ is regular for all p′ ∈ Psys \ {p}. For this, we define M := M(A)
and CM :=

⋃
p∈M Cp and we consider some labeling (Σc)c∈C of A.

First, let L̃p = {α ∈ Σω
M |PrΣp(α) ∈ Lp} for p ∈ M and let L̃M =

⋂
p∈M L̃p.

Then αM ∈ L̃M iff there is a joint strategy σM = (σp)p∈M for the processes in M
such that any global system behavior β of A which is consistent with σM fulfills
all local specifications of the processes in M and PrΣM (β) = αM . Moreover, as
at most one specification Lp for p ∈M is deterministic contextfree and all others
are regular, L̃M is deterministic contextfree.

Now consider any connected subarchitecture B = (P,C, r) of A(Psys \ M)
and let CM→B = CM ∩ (rA)−1(P ). As all specifications Lp for p ∈ PA

sys \M
are regular, it suffices to consider the case where B is a two-flanked pipeline
with backward-channels and here, we only consider the case where B has no
backward-channel from the last process. We define the architecture B̂ = (P, Ĉ, r̂)
as follows. The channels from M to P are simulated by new channels CM→B ⊆ Ĉ
of process pn−1, via which pn−1 sends information to the respective receipients
of the original channels. Moreover, pn−1 has a set of duplicate channels Cd

M→B

which are read by process pn and the specification Lpn−1 requires that the in-
formation sent along the channels CM→B is the same as the information sent
along the channels Cd

M→B.
Now let Nn−1 be the parity NTA over B-labeled Σ̂≥n−1

out -trees according to
Lemma 3, applied to B̂. Then there is a parity NTA N ′

n−1 over B-labeled Σ̂n−1-
trees which accepts a tree t iff wide(t, Σ̂b,pn−1

out ) ∈ L(Nn−1). Moreover, let Nn

be the parity NTA over B-labeled Σ̂n−1-trees according to Lemma 6, applied
to B̂. Then there is a parity NTA NB over B-labeled Σ̂n−1-trees such that
L(NB) = L(N ′

n−1) ∩ L(Nn). Furthermore, one can construct an alternating
parity automaton AB such that μ ∈ L(AB) iff there is a tree t ∈ Tc(Σ̂n−1)
such that PrΣd

M→B
(Lω(t)) = {μ} and t ∈ L(NB). Using this, one can further-

more show that μ ∈ L(AB) iff there is a strategy σ = (σ1, . . . , σn) for processes
p1, . . . , pn in the architecture A such that any global system behavior β of A
which is consistent with σ and fulfills PrΣM→B

(β) = μ, fulfills all local specifi-
cations of the processes p1, . . . , pn.

Finally, for any connected subarchitecture B of A(Psys \M) let L̃(AB) =
{α ∈ Σω

M |PrΣM→B
(α) ∈ L(AB)} and L =

⋂
B L̃(AB)∩ L̃M . Then L �= ∅ iff the

system processes have a joint winning strategy. As L is deterministic contextfree,
emptiness of L can be decided. 
�
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◦ ◦ ◦ ◦

◦
◦ ◦

◦ ◦

◦

◦ ◦ ◦

◦
M

Fig. 2. Generic decidable architecture with non-reachable processes M
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Geometric Graphs with Randomly Deleted

Edges - Connectivity and Routing Protocols

K. Krzywdziński and K. Rybarczyk

Adam Mickiewicz University, Poznań, Poland

Abstract. In the article we study important properties of random ge-
ometric graphs with randomly deleted edges which are natural models
of wireless ad hoc networks with communication constraints. We con-
centrate on two problems which are most important in the context of
theoretical studies on wireless ad hoc networks. The first is how to set
parameters of the network (graph) to have it connected. The second is the
problem of an effective message transmition i.e. the problem of construc-
tion of routing protocols in wireless networks. We provide a thorough
mathematical analysis of connectivity property and a greedy routing
protocol. The models we use are: an intersection of a random geomet-
ric graph with an Erdős–Rényi random graph and an intersection of a
random geometric graph with a uniform random intersection graph. The
obtained results are asymptotically tight up to a constant factor.

1 Introduction

1.1 Background

A random geometric graph is a widely used model of wireless ad hoc networks.
A wireless ad hoc network is a collection of devices randomly deployed over a
given area and equipped with radio transmitters. This type of networks have
proved to have many applications in environment and industrial monitoring, se-
curity, cell phone networks etc. It is generally assumed that in wireless ad hoc
networks direct communication between two nodes is possible if they are mu-
tually in their transmission range, thus the usage of random geometric graphs
seems natural. In random geometric graphs vertices are located in the Euclidean
plane according to a given probability distribution and two vertices v and w are
connected by an edge if their Euclidean distance is not greater than some con-
stant r (for a monograph on random geometric graphs see [21]). The vertices of
the model represent devices and edges arise if appropriate devices are in mutual
transmission range. A random geometric graph, though concise enough to pro-
mote strong theoretical results, frequently does not apply directly to networks
in realistic settings. In fact, wireless links in real networks may be extremely
unreliable. Moreover, the connections are sometimes constrained by security re-
quirements. In reality the message transmission between devices may be ob-
structed and the direct communication is possible only if additional conditions
are also fulfilled. Therefore it is justified to introduce new graph models which

F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 544–555, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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are considerably closer to reality than a random geometric graph. In the con-
text of theoretical studies on wireless networks two questions concerning new
models seem to be of main importance: how to set parameters of the network
to have it connected and whether routing protocols are effective in the network.
Both of them are related to the message transmission problem in wireless ad hoc
networks, which is the main subject of this article.

1.2 Related Work

The most important results on connectivity of random geometric graphs were
obtained by Gupta and Kumar in [14] and Penrose (see [21] and references
therein). In [14] Gupta and Kumar considered a random graph in which n ver-
tices are uniformly distributed in a disk of a unit area and two vertices are
connected by an edge if they are at distance at most r(n). It was shown that if
πr2(n) = (lnn + c(n))/n and c(n) → ∞ then the probability that an instance
of the considered random graph model is connected tends to 1 as n tends to in-
finity. In concluding remarks Gupta and Kumar proposed a generalised random
geometric graph, which models wireless ad hoc network with independent link
constraints. In the model two vertices at distance at most r(n) are connected
with probability p(n). Gupta and Kumar conjectured that if

πp(n)r2(n) =
lnn+ c(n)

n
(1)

and c(n) → ∞ then a random geometric graph with independently deleted
edges is connected with probability tending to one as n→∞. Properties of the
model were later studied for example in [9] and [26]. In [26] Yi et al. showed a
Poisson approximation of the number of isolated nodes in a random geometric
graph with independently deleted edges for r and p as in (1) and c(n)→ c. The
result implies that as c(n)→ −∞ a random geometric graph with independently
deleted edges is disconnected with probability tending to one as n→∞. To the
best of our knowledge no sufficient conditions for connectivity are known. The
model proposed by Gupta and Kumar is also related to the so–called “bluetooth
model” (see [22] and references therein). However the results proved in this article
are much stronger than those which would follow from the results concerning
“bluetooth model” and the models comparison.

Sometimes link constraints in a wireless network are not independent and an-
other model should be used. This is the case of wireless sensor networks with
random key predistribution. The widely recognised solution to the problem of
security of the message transmission in those networks is so–called random key
predistribution introduced in [12]. So far, the studies on wireless sensor networks
with random key predistribution reveal either experimental results (see for ex-
ample [6,12,15]) or concentrate only on the security aspects, neglecting a limited
transmission range (i.e. properties of uniform random intersection graphs are
studied, see for example [1,2,8,23]). As it is pointed out in [8] the model with
both security and transmission limitations is an intersection of a random ge-
ometric graph and a uniform random intersection graph. Its variant has only
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recently been analysed in rigorous mathematical manner in [17]. However in [17]
an additional assumption on deployment knowledge is made and the techniques
used cannot be applied to the model studied in this article.

The connectivity of a wireless network implies possibility of the message trans-
mition from any device to any other device. However it yields another question:
how this message should be send? This is a folklore result that the simplest
method of the message transmission in wireless ad hoc network is forwarding a
routed message to the neighbour closest (in the sense of Euclidian distance, an-
gle or other) to the destination. Such greedy forwarding, basing on the topology
of the network graph, is called geographic routing. In geographic routing two
main assumptions are made. The first one, that each network device possesses
information about its own and about its neighbours positions. The second, that
the source of a message is provided with the position of the destination. As any
device knows only about its immediate neighbours, there is often insufficient in-
formation for it to make a good decision on the forwarding direction and a packet
may get trapped. Already numerous attempts to enhance the greedy algorithm
in general setting have been proposed (see for example [5,19,20]). Routing in
the network with unreliable links has been also studied (see for example [27]).
The mathematical analysis of the greedy routing protocol in random geometric
graph was the subject of [25]. However, to the best of our knowledge none of the
results considered analytical analysis of the greedy routing protocol in wireless
networks with unreliable links.

1.3 Our Contribution

In the article we analyse in detail theoretical models of wireless networks with
independent link constraints and wireless sensor networks with random key pre-
distribution. We maintain the assumption that in the graph model a link between
vertices is possible if they are at distance at most r, at the same time making an
additional one, that the link may be obstructed with a certain probability. We
analyse in detail asymptotic properties of two models. First of the considered
models is a random geometric graph with independently disappearing edges, pro-
posed in [14]. In the second model the edge deletion depends on the structure
of a uniform random intersection graph. More precisely, we analyse the models
which are an intersection of a random geometric graph with an Erdős–Rényi
random graph (see [14]) and an intersection of a random geometric graph with
a uniform random intersection graph (see [8]).

For the first time we present a thorough mathematical analysis of a greedy
routing protocol in wireless networks with link constraints. Moreover we provide
a solution to the conjecture posed in [14] concerning connectivity of the random
geometric graph model with independently deleted edges (an intersection of a
random geometric graph with Erdős–Rényi random graph). In Theorem 4 an
answer is given and the obtained result is tight up to a constant factor. In ad-
dition in Theorem 3 we state sufficient conditions for connectivity of the model
of wireless sensor network with random key predistribution (an intersection of
a random geometric graph with a uniform random intersection graph). This is
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the first analytical result which takes into account both security and transmis-
sion range constraints in this type of networks. Moreover we show how to set
parameters of the network with communication constraints in such way that the
greedy routing protocol effectively delivers the message to the destination. We
also set an upper bound on the length of transmission path in the presented
greedy routing protocol.

1.4 The Article Organisation

The article is organised as follows. In Section 2 we introduce the models and pro-
vide a version of the greedy protocol which is considered in the article. Section 3
discusses the routing protocol in networks modelled by a graph with indepen-
dent communication constraints, whereas Section 4 shows a sketch of analogous
results for the model of wireless sensor network with random key predistribution.

2 Preliminaries

2.1 Definitions of the Models

In further considerations we make an assumption that D is a disk of a unit area.
However it should be pointed out that the results apply also to a wider class of
areas after rescaling and repeating the proofs. We assume that V = Vn is a set
of n points independently, uniformly distributed on D, 0 < r = r(n) < 1/

√
π,

p = p(n) ∈ [0; 1] are real numbers and d = d(n) is a positive integer. The
assumption r(n) ≤ 1/

√
π is a natural one, since otherwise radius of D would be

smaller than transmission range in the modelled network. Moreover, for any two
points v, v′ ∈ D, by ‖v, v′‖ we denote their Euclidian distance.

Let Gr(n) be a random geometric graph, i.e. a graph with the vertex set
V = Vn and the edge set E(Gr(n)) = {vv′ : v, v′ ∈ V and ‖v, v′‖ ≤ r}.

We denote by Gr (n, p) an instance of the graph model suggested by Gupta
and Kumar in [14]. A random graph Gr (n, p) is obtained form Gr(n) by inde-
pendently deleting each edge with probability 1 − p (i.e. each edge stays in a
graph independently with probability p). Notice that in Gr (n, p) the edge set
is an intersection of the edge sets of Gr(n) and an Erdős–Rényi random graph
G(n, p), in which each edge appears independently with probability p (see [3,16]).

The second considered model represents a wireless sensor network with ran-
dom key predistribution. As noticed in [8] (see also [17]) it is an intersection of
Gr(n) and a uniform random intersection graph G(n,m, d). In a uniform ran-
dom intersection graph G(n,m, d) each vertex v ∈ V chooses a subset from an
auxiliary arbitrarily given feature set W = Wn of cardinality m = m(n). More
precisely, given d = d(n), each vertex v ∈ V is attributed a subset of features
S(v) chosen uniformly at random from all d(n)–element subsets of W . A uniform
random intersection graph is a graph with the vertex set V = Vn and the edge
set E(G(n,m, d)) = {vv′ : v, v′ ∈ V and S(v)∩S(v′) �= ∅}. In fact G(n,m, d) is a
variant of a widely studied random intersection graph. The model of a random
intersection graph was studied for the first time in [18,24] and its generalised
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version was introduced in [13]. By Gr(n,m, d) we denote a graph with the vertex
set Vn and an edge set E(Gr(n)) ∩ E(G(n,m, d)), where Gr(n) and G(n,m, d)
are independent (i.e. their edge sets are constructed independently).

2.2 Greedy Routing Protocol

Notice that in Gr(n) a set of n′ vertices that are mutually at distance at most r
form a clique. In contrast those vertices in Gr (n, p) and Gr(n,m, d) behave like
G(n′, p) and G(n′,m, d), respectively. Therefore, in Gr (n, p) and Gr(n,m, d), in
a close neighbourhood of the destination the network does not have any features
of a random geometric graph and the geographic routing would fail. We propose
a new routing protocol, which is a combination of a modified geographic compass
routing and the standard Breadth First Search procedure (BFS). Recall that in
geographic routing we assume that: each network device possesses information
about its own and about its neighbours positions and the source of a message is
provided with the position of the destination.

The algorithm parameter 0 < ε < 1/2 is chosen prior to algorithm start
and remains constant throughout the execution. Let G be a graph representing
the network and r be a transmission range. Denote by s the source, by t the
destination and by G[t] a subgraph of G induced on the vertices at distance at
most r from t (in the transmission range of t). The algorithm CompassPlus is
as follows:

First s has a token, which contains a message.

1. Denote by v a vertex in possession of the token.
2. (Compass Routing Mode) If ‖v, t‖ > r, then send the token to a neighbour w
of v at distance at least εr, such that the measure of the angle ∠tvw is minimised.
3. (BFS Routing Mode) If ‖v, t‖ ≤ r, then use BFS on G[t] to route the message
(i.e. use a path established by the Breath First Search procedure).

3 Geographic Routing in Gr (n, p)

In further considerations by the length of a path we mean the number of its
edges in the graph. Moreover by D(v) we denote a disk of radius r and centre
in a point v ∈ D. In this section we prove the following theorem.

Theorem 1. Let C > 8, p = p(n) ∈ [0; 1] and r = r(n) ∈ (0; 1/
√
π]. If

πr2p ≥ C
lnn
n
, (2)

then Gr (n, p) is connected with probability tending to 1 as n→∞.
Moreover if 0 < ε < min{

√
1− 8/C, 1/2}, then with probability tending

to 1 as n → ∞ CompassPlus delivers information in Gr (n, p) in at most
2‖s, t‖/(εr(n)) + ln(πr2n/6)/ ln ln(πr2n/6) + 4 steps between any two vertices
s, t in some set of size n(1− o(1)).
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It follows by the result from [26] that if πr2p ≤ C ln n
n and C < 1 then with

probability 1−o(1) Gr (n, p) is disconnected. Therefore r and p fulfilling equation

πr2p = C
lnn
n
. (3)

establish a threshold function for the connectivity and efficient delivery prop-
erty in Gr (n, p) and the obtained result is tight up to a constant factor. Since
augmenting value of p or r may only make a graph more connected in further
considerations we concentrate on the case given by (3) for C > 8.

The proof of Theorem 1 proceeds as follows. In Lemma 1 we prove that with
probability close to one during Compass Routing Mode of CompassPlus a
message is delivered from s to some vertex contained in D(t). Moreover we give
an upper bound on the length of the path that a message have to pass from s
to a vertex in D(t). In Lemma 2 we show that with probability 1 − o(1) the
message may be sent from any vertex from D(t) to t using BFS Routing Mode
of CompassPlus and we give an upper bound on the length of the path. In
Lemmas 3 and 4 we finish the proof of the first part of Theorem 1. Lemma 5
implies the second part of Theorem 1.

Lemma 1. Let 0 < ε ≤ 1/2 and (3) with C > 8 be fulfilled. Then with prob-
ability at least 1 − O

(
n−(C(1−ε2)−8)/8

)
for any s ∈ V (Gr (n, p)) and any point

t ∈ D CompassPlus in Compass Routing Mode constructs in Gr (n, p) a path
of length at most 2‖s, t‖/(εr(n)) between s and some vertex contained in D(t).

Proof. Denote by A the event: “For all v, t ∈ V (Gr (n, p)) there exists w such
that, w is a neighbour of v at distance at least εr from v, ∠tvw is minimised and

‖w, t‖ < ‖v, t‖ − (εr)/2.” (4)

Notice that
P (A) = 1−O

(
n−(C(1−ε2)−8)/8

)
(5)

implies the thesis. Namely A implies that for all s, t ∈ V (Gr (n, p)) all steps
of Compas Routing Mode of CompassPlus are possible and in each step a
distance between t and a vertex in possession of the message is shortened by
(εr)/2. Let s = v0, v1, . . . , vl ∈ D(t) be a path constructed by Compas Routing
Mode. If for all 1 ≤ i ≤ l we have ‖vi, t‖ < ‖vi−1, t‖ − (εr)/2, thus inductively
‖vl, t‖ < ‖v0, t‖ − l(εr)/2 = ‖s, t‖ − l(εr)/2. Therefore l ≤ 2‖s, t‖/(εr(n)) and
the constructed path is of length at most 2‖s, t‖/(εr(n)).

Therefore it remains to prove (5). Notice that D(v) may be divided by 4 lines
coming through v (4 diameters of D(v) pairwise creating angles 45o, 90o and
135o) into 8 equal parts. All parts are 1/8 of the disk D(v) and all of them may
be enumerated by 1, . . . , 8. Given the division, if k–th part is contained in D
we denote by Dk,ε(v) a subset of its points, which are at distance at least εr
from v (see Figure 1). We also have to take into consideration border conditions.
Therefore if k–th part of the division is not contained entirely in D, we rotate
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it around v until it is contained in D and then denote by Dk,ε(v) its subset
of points, which are at distance at least εr from v (see D5,ε(v′) on Figure 1).
Notice that either t ∈ D(v) or the segment (v, t) intersects at least one of the
sets Dk,ε(v), k = 1, . . . , 8. Therefore either t ∈ D(v) (equivalently v ∈ D(t)) or
the next vertex in possession of the token should lie on some sector Dk,ε(v). For
example on Figure 1, three vertices in D(v′) do not belong to any sector Dk,ε(v),
but they cannot be intermediate vertices in Compass Routing Mode. However
they may be t. Moreover, if t /∈ D(v), (v, t) intersects Dk,ε(v) and w ∈ Dk,ε(v)
then w is at distance at least εr from v and ∠tvw is at most 45o (see Figure 2).

Now we bound the probability that for all v ∈ V and all 1 ≤ k ≤ 8 there
exists a neighbour of v in Dk,ε(v). Let Nk,ε(v) be the set of neighbours of v in
Gr (n, p) contained in Dk,ε(v). Then for any constant 0 ≤ ε < 1/2

P (∃v∃kNk,ε(v) = ∅) ≤
∑
v∈V

∑
1≤k≤8

P (Nk,ε(v) = ∅)

≤ 8n
(

1− (1−ε2)πr2p
8

)n−1

≤ (1 + o(1))8 exp
(
−n (1−ε2)C ln n

8n + lnn
)

= O

(
n−C(1−ε2)−8

8

)
.

Therefore with probability 1 − O
(
n−(C(1−ε2)−8)/8

)
for all v ∈ V and all

1 ≤ k ≤ 8 a set Dk,ε(v) contains a neighbour of v, i.e.

P (∀v∀kNk,ε(v) �= ∅) = 1−O
(
n−(C(1−ε2)−8)/8

)
.

Now we shall prove that event ∀v∀kNk,ε(v) �= ∅ implies event A. If event
∀v∀kNk,ε(v) �= ∅ occurs then for all v, t ∈ V such that ‖v, t‖ ≥ r a step in
Compas Routing Mode of CompassPlus is always possible. Now it remains to
show that under ∀v∀kNk,ε(v) �= ∅, if in a step w receives the message form v
then (4) is true. Consider an instance of Gr (n, p) such that for all v ∈ V and

Fig. 1. Division into Dk,ε(v) Fig. 2. One step of CompassPlus
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all 1 ≤ k ≤ 8 there exists a neighbour of v in Dk,ε(v) (i.e. for any v and any
k a set Nk,ε(v) is nonempty). Let k be such that the segment (v, t) intersects
Dk,ε(v). By above assumptions there exists w – a neighbour of v, in Dk,ε(v). Let
t′ be a point at distance εr from v and such that ∠tvt′ = 45o (see Figure 2). It
is easy to see that

either Dk,ε(v) ⊆ D(t) (i.e. w ∈ D(t)) or ‖w, t‖ ≤ ‖t′, t‖.

Therefore for any v and w, if ‖v, t‖ ≥ r and 0 < ε < 1/2, then (see Figure 2)

‖w, t‖2 ≤ ‖t′, t‖2 ≤
(
‖v, t‖ −

√
2εr
2

)2

+ 1
2 (εr)2

=
(
‖v, t‖ − εr

2

)2 − εr ((√2− 1)‖v, t‖ − 3
4εr
)
<
(
‖v, t‖ − εr

2

)2
.

Thus if ‖v, t‖ ≥ r and ε < 1/2, then

‖w, t‖ < ‖v, t‖ − (εr)/2.

Thus ∀v∀kNk,ε(v) �= ∅ implies A and we have

P (A) ≥ P (∀v∀kNk,ε(v) �= ∅) = 1−O
(
n−(C(1−ε2)−8)/8

)
. 
�

A simple corollary of the above lemma is the result stated below. It is only a
little less tight than this from [25] but may be shown by much simpler methods.
Moreover here the parameter o(1) from [25] is replaced by O

(
n−(C(1−ε2)−8)/8

)
(constant may be calculated effectively after careful insight into the proof of
Lemma 1) and the length of the path is estimated.

Theorem 2. Let 0 < ε ≤ 1/2 and πr2 = C lnn/n, where C > 8. Then with
probability at least 1 − O

(
n−(C(1−ε2)−8)/8

)
for any s, t ∈ V (Gr(n)) Compass-

Plus constructs in Gr(n) a path of length at most 2‖s, t‖/(εr(n)) + 1 between s
and t.

Proof. Follows immediately by Lemma 1 and fact that Gr(n) is Gr (n, 1). 
�

Now we concentrate on the BFS Routing Mode. In fact we prove that with prob-
ability close to one G[t] is connected and have small diameter (as a graph) for
almost all t ∈ V (Gr (n, p)). This proves that in BFS Routing Mode of Com-

passPlus the message is delivered in short time.
For any graph G and any vertices v, v′ ∈ V (G), by dist(v, v′) we denote their

distance in G (i.e the length of the shortest path between v and v′ in G).

Lemma 2. Let C > 8 and (3) be fulfilled, v ∈ V (Gr (n, p)) and G[v] be a
subgraph of Gr (n, p) induced on vertices contained in D(v). Then with probability
1 − o(1) (where o(1) is uniformly bounded over all v ∈ V (Gr (n, p))) G[v] is
connected and for all v′ ∈ V (G[v]) we have

dist(v′, v) ≤ ln(πr2n/6)/ ln ln(πr2n/6) + 4.
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Proof. For any v ∈ V (Gr (n, p)) the figure D ∩ D(v) may be divided into 6
(or less) connected, not necessarily disjoint parts of diameter (in the sense of
Euclidian norm) at most r and area πr2/6, such that each of them contains v.
For example if D(v) ⊆ D, then D(v) may be divided into 6 equal parts by 3 lines
containing v pairwise making angle 60o. Denote by Gi(v), 1 ≤ i ≤ 6, a subgraph
of Gr (n, p) induced on the vertices contained in the i-th part of the division.

For any v ∈ V (Gr (n, p)) and 1 ≤ i ≤ 6 denote by N = N(i, v) = |V (Gi(v)) \
{v}| a random variable counting the vertices of Gi(v) except v. Surely N is
binomialy distributed Bin(n− 1, P ), where P = πr2/6. Therefore

EN = (n− 1)P = (1 + o(1))nr2π/6→∞, (6)
VarN = P (1− P )(n− 1) ≤ EN. (7)

Let J =
[

(πr2(n− 1))(1− (nr2)−1/3)/6 ; (πr2(n− 1))(1 + (nr2)−1/3)/6
]
.

By Chebyshev’s inequality

P (N /∈ J) = P
(
|N − EN | > EN(nr2)−1/3

)
≤ V arN

(EN)2(nr2)−2/3 = o(1).

For all n̄ ∈ J we have n̄ = (1 + o(1))πnr2/6 and by (3)

p =
C

6
lnn
πr2n

6

≥ 4
3

ln πr2n
6

πr2n
6

= (1 + o(1))
4
3

ln(n̄ + 1)
n̄+ 1

.

Denote by AG an event that diamG ≤ ln(πr2n/6)/ ln ln(πr2n/6) + 4 and G
is connected. Notice that all the vertices in Gi(v) are pairwise in transmission
range. Therefore, since 4/3 > 1, by classical results on the connectivity and the
diameter of an Erdős–Rényi random graph (see [3,4,7,10,11]) for Gi = Gi(v)
we have P

(
AGi

∣∣∣ N = n̄
)

= 1− o(1), where o(1) is uniformly bounded over all

values n̄ ∈ J . Denote by AC
Gi

a complement of the event AGi , then

P
(
AC

Gi

)
≤
∑

n̄∈J P
(
AC

Gi

∣∣ N = n̄
)

P (N = n̄) + P (N /∈ J) = o(1),

thus P
(
∃1≤i≤6AC

Gi(v)

)
≤
∑6

i=1 P
(
AC

Gi(v)

)
= o(1). Therefore with probability

1 − o(1) all graphs Gi(v), 1 ≤ i ≤ 6, are connected. Each vertex from D(v) is
contained in at least one of the graphs Gi(v), therefore the lemma follows. 
�

Lemma 3. Let C > 8, (3) be fulfilled, t ∈ D be any point and G[t] be a subgraph
of Gr (n, p) induced on the vertices contained in D(t). Then G[t] is connected
with probability 1− o(1).

Proof. The proof is analogous to the proof of the above lemma. We only have
to replace v by t and omit the assumption that v is a vertex of Gi(v). Moreover
we have to add G7(t) – a graph induced on the vertices contained in the circle
with centre in t and area equal πr2/6. Then we can prove that with probability
1 − o(1) all graphs Gi(v), 1 ≤ i ≤ 7, are connected. This implies that G[t] is
connected (it is a union of Gi(v)). 
�
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Lemma 4. Let C > 8 and (3) be fulfilled. Then Gr (n, p) is connected with
probability tending to 1 as n→∞.

Proof. Let t be the centre of D. By Lemma 3 G[t] is connected with probability
1 − o(1). If we set 0 < ε < min(

√
1− 8/C, 1/2), then by Lemma 1 with prob-

ability 1 − o(1) every vertex from V (Gr (n, p)) is connected by a path with at
least one vertex from V (G[t]). Therefore any two vertices from V (Gr (n, p)) are
connected by a path with probability tending to 1 as n→∞. 
�

Lemma 5. Let C > 8, 0 < ε < min(
√

1− 8/C, 1/2) and (3) be fulfilled. Then
with probability tending to 1 as n → ∞ CompassPlus delivers information in
Gr (n, p) in at most 2‖s, t‖/(εr(n))+ln(πr2n/6)/ ln ln(πr2n/6)+4 steps between
any two vertices s, t in some set of size n(1 + o(1)).

Proof. Let t ∈ V (Gr (n, p)). Denote G[t] as in Lemma 2 and by At event that
for all v′ ∈ V (G[t]) we have dist(v′, t) ≤ ln(πr2n/6)/ ln ln(πr2n/6) + 4 and G[t]
is connected. Let δ(n) = maxt∈V (Gr(n,p)) P (Ac

t) , where Ac
t is a complement of

At By Lemma 2
δ(n) = o(1) (8)

Let X =
∑

t∈V (Gr(n,p))Xt, where Xt is an indicator random variable of the event
Ac

t . Then EX =
∑

t EXt ≤ δ(n)n and by Markov’s inequality

P
(
X ≥

√
δ(n)n

)
≤ EX√

δ(n)n
=
√
δ(n) = o(1) (9)

Therefore the number of destination vertices such that the routing may fail at
the BFS Routing Mode with probability 1 − o(1) is at most

√
δ(n)n = o(n).

This combined with Lemma 1 finishes the proof. 
�

4 Geographic Routing in Gr(n, m, d)

Analogous results to those presented in the previous section may be obtained
for Gr(n,m, d).

Theorem 3. Let d ≥ 2 and m = m(n)→∞ be such that

πr2d2

m
≥ C

lnn
n

and C > 8. (10)

Then with probability tending to 1 as n → ∞ a graph Gr(n,m, d) is connected.
Moreover if 0 < ε < min(

√
1− 8/C, 1/2) with probability 1 − o(1) Compass-

Plus delivers information in at most 2‖s, t‖/(εr(n)) + (1 + o(1)) ln(πr2n/6)/ ln
ln(πr2n/6) steps between any two vertices s, t ∈ V (Gr(n,m, d)) in some set of
size n(1− o(1)).

Proof (Sketch of the proof). In order to obtain the above result we have to repeat
the reasoning from the previous section with two minor modifications.
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In the proof of Lemma 1 we have only to make changes in calculation from
the first equation. We should notice that, for values of d as in (10), a vertex v′

lying in D(v) is not connected by an edge with v with probability
(
m−d

d

)
/
(
m
d

)
=

1−(1+o(1))d2/m independently of all other vertices. Therefore P (Nk,ε(v) = ∅) ≤
exp

(
−(1 + o(1))(1 − ε2)πr2d2/m

)
.

Moreover in the proofs of Lemmas 2 and 3 instead of results on connectivity
and the diameter stated in [3,4,7,10,11] we should use results from [23]. In order
to prove only the connectivity result for the case m = nα (α – a constant) we
may also use the result from [1]. 
�

5 Concluding Remarks

We have shown how to set the parameters of a wireless ad hoc network with
independent communication constraints and wireless sensor network with ran-
dom key predistribution in such a way that they are connected and messages’
transmission in greedy manner functions well with probability close to 1. For
that purpose we have used the models which are random geometric graphs with
randomly deleted edges and gave asymptotic results on their properties. We have
also mentioned the necessary condition for disconnectivity of the network, which
shows that the obtained result is tight up to a constant factor. Moreover we have
set an upper bound on the length of transmission paths in the presented greedy
routing protocol.

Acknowledgements. We thank an anonymous referee for the remark on the
“bluetooth model”. This work is partially supported by the Ministry of Science
and Higher Education grant NN206 017 32/2452 and partially supported by the
Ministry of Science and Higher Education grant NN206565740.
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Abstract. Timed automata are a model that is extensively used in for-
mal verification of real-time systems. However, their mathematical se-
mantics is an idealization which assumes perfectly precise clocks, but
does not correspond to real hardware. In fact, it is known that impreci-
sions, however small they may be, may yield extra behaviours. Several
works concentrated on a relaxation of the semantics of timed automata
to model the imprecisions of the clocks. Algorithms were given, first for
safety, then for richer linear-time properties, to decide the robustness of
timed systems, that is, the existence of a bound on the imprecisions un-
der which the system satisfies a given property. In this work, we study
a stronger notion of robustness: we show how to decide whether the un-
timed language of a timed automaton is preserved under small enough
imprecisions, and provide a bound on the imprecision parameter.

1 Introduction

Timed automata [2] are a well established model in real-time systems design.
These allow the modeling, model-checking and synthesis of systems with tim-
ing constraints, and several mature tools are today available. Implementing such
mathematical models on physical machines is an important step in practical ver-
ification, and it is a challenging problem in timed systems. In fact, it is known
that perturbations on clocks, however small they may be, can lead to a dif-
ferent semantics than the mathematical semantics in timed automata [15,11]
(see Fig. 1 below). One way of modelling these perturbations is to enlarge all the
guards, that is to transform any timing constraint of the form “x ∈ [a, b]” into
“x ∈ [a − Δ, b + Δ]” for some parameter Δ > 0. In fact, the resulting seman-
tics is an overapproximation of a concrete implementation semantics, called the
program semantics studied in [12], which corresponds to the execution of timed
automata by a simple microprocessor with a digital clock. An important problem
is then to determine whether a given timed automaton is implementable, that
is, whether its implementation is correct with respect to a given property, in a
fast enough hardware. For this purpose, robust model-checking, which asks for
the existence of a parameter Δ under which the resulting enlarged semantics is
� This work has been partly supported by projects DOTS (ANR-06-SETI-003) and

ImpRo (ANR-10-BLAN-0317).
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correct, was proven decidable for safety properties [15,11] and for richer linear-
time properties [8,9]. If robust model-checking succeeds, then the given timed
automaton is implementable in a fast enough hardware in the sense of [12].

In this work, we study a stronger notion of robustness which requires un-
timed language equivalence between the original and the enlarged automaton
for some value of the parameter Δ. We call such timed automata language ro-
bust. In particular, if a timed automaton is language robust, then any (untimed)
language based property (such as linear-time properties) proven for �A� will be
preserved in �AΔ� for small enough Δ, hence also in the program semantics
mentioned above. We show that language robustness is decidable in 2EXPTIME
for general timed automata, and we identify a class for which it can be decided
in PSPACE. Note that the high complexity of our algorithm in the general case
is not surprising, since deciding untimed language inclusion for timed automata
is already a computationally hard problem (we recently showed this to be EXP-
TIME-hard [10]). In order to establish our results, we revisit the results of [11]
and generalize these to a more general setting, taking into account the untimed
languages (Section 4). Then, we prove a Ramsey-like combinatorial theorem on
directed paths, which has an independent interest (Section 5). The proof of the
main result (Section 6) combines these independent results.

Related work. A closely related line of work considers clock drifts, where clocks
can have different rates [15,12,11,3,13] (this is equivalent to enlargement under
some assumptions [11]). A solution based on modelling the perturbations using
timed automata was suggested in [1], but their approach suffer from the fact
that the verification results obtained in some platform may not hold in a faster
(or more precise) platform (this holds in our setting, see Subsection 2.3). Other
notions of robustness have been investigated, mainly to remove “isolated” or
“unlikely” behaviours using topological and probabilistic methods (e.g. [14,5]),
but these do not make the link with physical implementations.

2 Preliminaries

2.1 Timed Automata

A labelled timed transition system (LTTS) is a tuple (S, s0, Σ,→), where S is
the set of states, s0 ∈ S the initial state, Σ a finite alphabet, and→ ⊆ S× (Σ ∪
R≥0)× S the transition relation.

Given a finite set of clocks C, we call valuations the elements of RC
≥0. For a

subset R ⊆ C and a valuation v, we write v[R← 0] for the valuation defined by
v[R← 0](x) = v(x) for x ∈ C\R and v[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0,
the valuation v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. For two valuations u
and v, we let d∞(u, v) = maxx∈C |u(x)− v(x)|.

Given a clock set C, a guard is a formula generated by the grammar ΦC ::=
k ≤ x | x ≤ k | ΦC ∧ ΦC , where k ranges over Q≥0 and x over C. We define
the enlargement of a guard by Δ ∈ Q≥0 as 〈k ≤ x〉Δ = k − Δ ≤ x, and
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〈x ≤ k〉Δ = x ≤ k+Δ, for x, y ∈ C and k ∈ Q≥0. The enlargement of a guard g,
denoted by 〈g〉Δ, is obtained by enlarging all atomic formulas.

A valuation v satisfies a guard g, denoted v |= g, if all formulas are satisfied
when each x ∈ C is replaced by v(x).

Definition 1. A timed automaton A is a tuple (L, C, Σ, l0, E), consisting of
finite sets L of locations, C of clocks, Σ of labels, E ⊆ L×ΦC ×Σ× 2C ×L of
edges, and l0 ∈ L, the initial location. An edge e = (l, g, σ,R, l′) is also written

as l
g,σ,R−−−→ l′, where g is called the guard of e.

A timed automaton A is integral if all constants that appear in its guards are
integers. For any Δ ∈ Q≥0, AΔ will denote the timed automaton where all
guards are enlarged by Δ. We will refer to finite automata with no clocks as
untimed automata.

Definition 2. The semantics of a timed automaton A = (L, l0, C, Σ,E) is an
LTTS denoted by �A�, over alphabet Σ, whose state space is L×RC

≥0. The initial
state is (l0,0), where 0 denotes the valuation where all clocks have value 0.
Transitions are defined as (l, v) τ−→ (l, v + τ) for any state (l, v) and τ ≥ 0,

(l, v) σ−→ (l′, v′), for any edge l
g,σ,R−−−→ l′ in A such that v |= g and v′ = v[R← 0].

A run of �A� is a finite or infinite sequence ρ = (qi, τi, σi)i≥0 where qi is a state
of �A�, τi ∈ R≥0 and σi ∈ Σ, such that for each i ≥ 0, qi

τi−→ q′i
σi−→ qi+1 for some

state q′i. A run is initialized if q0 = (l0,0). A trace is a word in Σ∗ ∪Σω. We say
that the above run ρ follows the trace σ0σ1 . . ., which is denoted by tr(ρ). We
define (ρ)i = qi, the i-th state of ρ, and first(ρ) = q0 its first state. If ρ is finite,
then we denote by last(ρ) its last state. We denote by ρi...j the run defined by ρ
between states of indices i and j. Let L(�A�) denote the set of (untimed) traces
of the initialized finite and infinite runs of �A�. For any state q of �A�, L(�A�, q)
will denote the traces of the runs that start at q. The length of a finite run ρ is
the length of its trace, and is denoted by |ρ|.

We define the usual notion of regions and region automaton [2]. Consider an
integral timed automaton A with clock set C. Let K be the largest constant that
appears in its guards. For any (l, u), (l′, v) ∈ L × RC

≥0, we let (l, u) * (l, v) if,
and only if, l = l′ and

�0 �1 �2 �3
a,x=1

y:=0

y≥2,y:=0
a

x≤2,x:=0
b

x=0∧y=2
c

Fig. 1. The following is an example run of the above automaton: (�0, 0, 0)
1−→

(�1, 1, 1)
a−→ (�1, 1, 0)

0.9−−→ (�1, 1.9, 0.9)
b−→ (�2, 0, 0.9)

1.4−−→ (�2, 1.4, 2.3)
a−→ (�1, 1.4, 0).

It can be seen that location �3 is not reachable in the runs of �A�. In fact, L(�A�) =
(ab)∗ + (ab)∗a + (ab)ω. See [15].
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either �u(x)� = �v(x)� or u(x), v(x) > K, ∀x ∈ C,
and frac(u(x)) = 0 ⇐⇒ frac(v(x)) = 0, ∀x ∈ C,
and frac(u(x)) < frac(u(y)) ⇐⇒ frac(v(x)) < frac(v(y)), ∀x, y ∈ C,

where frac(·) denotes the fractional part. The equivalence class of a state (l, v)
for the relation * is denoted by reg((l, v)) = {(l, u) | (l, u) * (l, v)}, and called
a region of A. Note that our definition of regions includes locations. It is known
that * has finite index [2]. For any region r, let r denote its topological closure.
A region is bounded if it is a bounded subset of L×RC

≥0. One can associate to A,
a finite (untimed) automaton R(A), called the region automaton, whose states
are the regions of A, and which has an edge of label σ ∈ Σ from region r to r′

whenever q d−→ q′′
σ−→ q′ in �A� for some d ≥ 0 and q ∈ r and q′ ∈ r′. A path

of R(A) is a sequence π = (ri, σi)i≥0 where ri is a region and σi ∈ Σ, such that
for each i ≥ 0, R(A) has an edge from ri to ri+1 with label σi. The i-th state of
path π is denoted by (π)i. Path π is initialized if r0 = reg((l0,0)). The trace of π
is the word σ0σ1 . . ., which is denoted by tr(π). The set of traces of the finite or
infinite paths of R(A) is denoted by L(R(A)). A finite path π = (ri, σi)0≤i≤n

is a cycle if r0 = rn. A run ρ = (qi, τi, σi)i≥0 of �A� follows a path (ri, σ
′
i)i≥0

of R(A) if qi ∈ ri and σi = σ′
i for all i ≥ 0. It is known that for any path π of

R(A), there is a run of �A� that follows π, starting from any state in first(π)
and conversely. In particular, L(R(A)) = L(�A�) [2].

2.2 Restrictions on Timed Automata

Following [11,15], we defined timed automata with closed and rectangular guards
(that is, we do not have diagonal constraints such as k ≤ x − y ≤ l). We also
assume that all clocks are bounded above by some constant M . Considering
closed guards is natural in our setting, since we are interested in the behaviour
of the systems under positive enlargement. Assuming rectangular guards and
bounded clocks is not restrictive in terms of expressiveness, but has an effect
on the size of the models ([7]). As in [11,15,4], the only real restriction is the
following. We consider timed automata where all clocks are reset at least once
along any cycle of the region automaton; these are called progress cycles. A
sufficient condition for a timed automaton to have only progress cycles is that
any cycle of the underlying finite automaton resets all clocks at least once ([4]).

Although we prove our results for general timed automata with progress cy-
cles, we also identify a subclass for which we improve the complexity of the
problem we study. We call a timed automaton concise if its region automaton is
deterministic (that is, from all states of the region automaton, there is at most
one outgoing edge per label)1.

1 It would actually suffice to define conciseness by requiring that all states that satisfy
the guards of edges with the same label to be language-equivalent (that the same
untimed language is recognized). In fact, in this case, the region automaton can be
made deterministic by leaving one (arbitrary) edge per label at each state.
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2.3 Robustness

By definition of the enlargement, we have L(�AΔ�) ⊆ L(�AΔ′�) for any Δ ≤ Δ′,
and in particular L(�A�) ⊆ L(�AΔ�) for any Δ ≥ 0. We are interested in the
inverse inclusion, which does not always hold as we also noted in the introduction.
In fact, if A denotes the timed automaton given in Figure 1, then for any Δ > 0,
all long enough words in (ab)∗c belong to L(�AΔ�) but not to L(�A�) ([11]). (In
fact location 	3 is reachable in �AΔ� iff Δ = 0). Intuitively, this is due to the
fact that at each cycle ab, the imprecisions can add up in �AΔ�, and the values
of the clocks can deviate from what they can normally be in �A�.

Definition 3 (Language-robustness). A timed automaton A is language-
robust if there exists Δ > 0 such that L(�A�) = L(�AΔ�).

Informally, A is language-robust if �AΔ� has no extra behaviour than �A� for
some Δ > 0, in terms of untimed language. Observe that whenever L(�AΔ�) ⊆
L(�A�), we also have L(�AΔ′�) ⊆ L(�A�) for any Δ′ < Δ. This is a desirable
property, called “faster is better” [12,1], which means that once we prove the
correctness of the system for some Δ, it remains correct on any faster platform.

3 Main Result

Theorem 1. Let A be any timed automaton with progress cycles, and W the
size of its region automaton. Let K = W if A is concise, and K = 2W otherwise,
and fix any N0 ≥ 15 ·W · |C|2 · 2(|C|+1)2 · (K + 1)2. Then, there exists Δ > 0 such
that L(�AΔ�) = L(�A�) if and only if L(�A 1

N0
�) = L(�A�).

Our main result, that is, the decidability of language-robustness is a direct corol-
lary of the previous theorem. In fact, AΔ0 can be transformed into a (language-)
equivalent integral automaton by multiplying all constants by 1

Δ0
. We will

denote by R(AΔ0 ) the region automaton of the corresponding integral timed au-
tomaton. We can then check whether R(AΔ0) and R(A) recognize the same un-
timed language. We obtain the following complexity results.

Corollary 1. For concise timed automata with progress cycles, language robust-
ness can be decided in PSPACE. For general timed automata with progress cycles,
language robustness can be decided in 2EXPTIME.

Proof. Consider a concise timed automaton A, and let R(A) denote its region
automaton. Let R(A)c denote the complement of R(A) (which recognizes the
complement of L(R(A))). Then, one can decide whether L(AΔ0)∩L(R(A)c) �= ∅
in polynomial space. In fact, the states of both R(AΔ0 ) and R(A)c can be
encoded in polynomial space (for Δ0 given by the theorem for concise A). Then,
the usual non-deterministic procedure (e.g. [2]) that guesses an accepting path
in the product of these can be carried out in polynomial space.
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Now, consider an arbitrary timed automaton A. Then the encoding of regions
of AΔ0 requires exponential space, for Δ0 given for this case. We describe an
alternating exponential space procedure (which is doubly exponential time) to
decide L(AΔ0) ⊆ L(R(A)). The procedure starts by the initial states of R(AΔ0)
and R(A). At each step, it first universally guesses a successor of R(AΔ0 ), then
it existentially guesses a successor of R(A). The machine can count the length
of such an execution up to 2W , which is the number of regions of the former
system (above which any path contains a cycle). Thus, this procedure accepts
iff for each path in R(AΔ0 ), there is a path with the same trace in R(A). 
�

In the rest of this paper, we present the proof of Theorem 1. We start with
a study of the properties of enlarged timed automata (Section 4), and some
combinatorial results (Section 5), then give the proof (Section 6).

4 Properties of the Semantics under Enlargement

Let us fix a timed automaton A with C > 0 clocks. We start with the following
result, which is a direct corollary of Lemma 3.14 we proved in [17]. It states that
for any Δ > 0, the trace of any run of �AΔ� of length less then O(� 1

Δ�) can
be followed in R(A) too. An immediate implication is that if the length of the
runs are fixed a priori, then a small enough enlargement has no effect on the
behaviour of timed automata (in terms of untimed language). Figure 2 illustrates
the construction of the following lemma.

Lemma 1 ([17]). Fix any n ∈ N and Δ > 0 such that Δ ≤ 1
5nC2 . Let ρ be

any run of �AΔ�. Then, for all 1 ≤ i0 ≤ |ρ|, there exists a region, denoted
by H(ρ, i0, n), included in reg((ρ)i0 ), such that for all regions r ⊆ H(ρ, i0, n),
there is a path π of R(A) over the trace tr(ρi0...min(i0+n,|ρ|)), with (π)1 = r and
(π)j ∩H(ρ, i0 + j − 1, n) �= ∅ for all 1 ≤ j ≤ |π|.

We are now interested in “long” or infinite runs. In [11], it is shown that for some
timed automatonA (e.g. the one in Fig. 1) some regions that are not reachable in
�A� become entirely reachable in �AΔ�, for any Δ > 0 (See also [15] for a similar
analysis under clock drifts). An analysis of the behaviour of �AΔ� shows that this
is due to the accumulation of the “error” of Δ along some cycles of the region
automaton. They give a characterization of those cycles ofR(A) which cause this
behaviour and get a decision procedure for safety properties. In this section, we
revisit the analysis of the cycles of R(A) under enlargement, and prove the same
results in a slightly more general setting. Roughly, we show that, the states that
are reachable in �AΔ� by repeating a single cycle are also reachable by repeating
particular sets of cycles in any order. Our proofs follow [11].

A state whose valuation has integer components is called a vertex. For any
region r, we denote by V (r) the set of vertices of r. Given a cycle π from a
region r, we define the relation ν(π) ⊆ V (r)× V (r), the vertex map of π, where
(q, q′) ∈ ν(π) if and only if there is a run in �A�, from q to q′ following π.
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H(ρ, 1, n)

(ρ)1

H(ρ, j, n)

(ρ)j

ρ′

π

Fig. 2. A run ρ of �AΔ�. The leftmost tri-
angle represents reg((ρ)1), and the right-
most one reg((ρ)j) (their corners, edges
and interiors are subregions). By Lemma 1,
there is a region H(ρ, 1, n) such that start-
ing from any region in H(ρ, 1, n), one can
construct a path π of length n (the red
dashed curve) such that (π)j intersects
H(ρ, j, n) for all j.

Note that for all q ∈ V (r), there
exists at least one q′ ∈ V (r) such
that (q, q′) ∈ ν(π), and q′′ ∈ V (r)
such that (q′′, q) ∈ ν(π) by the well-
known properties of regions ([11]).
Two cycles π1 and π2 are equivalent
if first(π1) = first(π2) and ν(π1) =
ν(π2). Let π be a cycle of R(A) start-
ing at some region r. For any k >
0, we let Vπ,k = {q ∈ V (r) |
(q, q) ∈ ν(π)k}. This is the set
of vertices q ∈ first(π) for which
there are runs following πk that start
and end at q. We define the con-
vex hull of the union of these sets
as Lπ = convex-hull(

⋃
k>0 Vπ,k). It is

clear from the definition of Lπ that Lπ = Lπ′ for any equivalent cycles π and
π′. The main result of this section is the following lemma, which generalizes
Theorem 23 in [11] (see also Lemma 7.10 in [15]).

Lemma 2. Let π1, . . . , πp be equivalent cycles of R(A) that start in region r,
and consider any Δ > 0. Then, there exists k > 0 such that for any q, q′ ∈ r,
and any word w ∈ {π1, . . . , πp}k there is a run in �AΔ� from q to q′ on word w.

To prove this lemma, we first show that Lπ1 is backward and forward reachable in
�A�, from any point of r, by iterating at least C times any of the equivalent cycles
in any order (Lemma 5), and that any pair of points in Lπ1 can be connected
by a run of �AΔ�, again by iterating these cycles (Lemma 7).

A natural property of runs of timed automata is that convex combinations of
two runs yield a run over the same word, as shown in the following lemma. We
denote λ(l, v) = (l, λv) where λ ∈ R≥0, v is a valuation and l a location.

Lemma 3 ([11, Lemma 24], and [15, Lemma 7.1]). Let π be a path in R(A),
and let ρ and ρ′ be runs in �A� that follow π. Then for all λ ∈ [0, 1], there ex-
ists a run ρ′′ of �A� following π, such that (ρ′′)i = λ(ρ)i + (1 − λ)(ρ′)i for all
1 ≤ i ≤ n. 
�
The following proposition provides a bound on the number of vertices of regions.
It also implies that from each region, there is a finite number of cycles with
pairwise distinct vertex maps. Remember that all clocks are bounded above by
some constant, so we only need to consider bounded regions.

Lemma 4 ([11, Lemma 14]). Any bounded region has at most C+1 vertices.
Any point u ∈ RC

≥0 is a convex combination of the vertices of reg(u). 
�
The following lemma states that, Lπ is backward and forward reachable from
any state of first(π), by repeating at least C times cycles equivalent to π.

Lemma 5. Let π1, . . . , πp be equivalent cycles of R(A), that all start in region
state r, and fix any q ∈ r. Then, for any k ≥ C and any path w ∈ {π1, . . . , πp}k,
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there exists q1, q2 ∈ Lπ1 and runs ρ1 and ρ2 of �A� that follow w, such that
first(ρ1) = q and last(ρ1) = q1; and first(ρ2) = q2 and last(ρ2) = q.

Proof. We first prove the statement when q is a vertex. As we already noted
above, for all v ∈ V (r), there exists at least one v′ ∈ V (r) such that (v, v′) ∈
ν(π1), and the number of vertices is at most C+1 by Lemma 4, so by repeating C
times any cycles among π1, . . . , πp, we get a sequence of vertices v1, . . . , vC+1

such that (vi, vi+1) ∈ ν(π1). But then, vi = vj for some i < j, thus we have
vi, vi+1, . . . , vj ∈ Lπ1 . Now, we can extend the sequence v1 . . . vj to k vertices by
repeating the cycle vivi+1 . . . vj . Clearly, this run can be constructed following
any path w since πi’s are equivalent.

Consider now an arbitrary point q in r. By Lemma 4, q can be written as a
convex combination of the vertices of r. Let v1, . . . , vm denote the vertices of r,
and λ1, . . . , λm ≥ 0 be such that λ1 + . . .+ λm = 1 and q = λ1v1 + . . .+ λmvm.
As we showed above, for any vi, there is a run in �A� that follows w, from vi to
some vertex v′i ∈ Lπ1 . Lemma 3 yields the desired run. 
�
Lemma 6. Let π1, . . . , πp be equivalent cycles in R(A). Then there exists m > 0
such that for all paths w ∈ {π1, . . . , πp}m, and for all q ∈ Lπ1, there is a run ρ
in �A� from q to q, following w.

Proof. By definition of Lπ1 , any z ∈ Lπ1 is a convex combination of a set of
vertices vi in Lπ1 . But, for any vertex vi ∈ Lπ1 , there exists mi > 0 such that
(vi, vi) ∈ ν(π1)mi . So, there exists m > 0 such that (vi, vi) ∈ ν(π1)m for all
1 ≤ i ≤ k. Now, the convex combination of these runs yield the desired run
from q to q, by Lemma 3. 
�
The following lemma shows that any pair of states in Lπ can be connected by a
run in �AΔ�.

Lemma 7 ([11, Lemma 29]). Let π be a cycle of R(A) that starts in region r
and let q ∈ Lπ ∩r. Then for any Δ > 0, and any q′ ∈ r such that d∞(q, q′) ≤ Δ

2 ,
there is a run, in �AΔ�, from q to q′ following π. 
�
Proof (of Lemma 2). By Lemma 5, repeating at leastC times the cycles π1, . . . , πp

suffices to reach some point q1 ∈ Lπ1 . The same lemma provides a point q2 ∈ Lπ1

which is backward reachable from q′ by repeating C times any of these cycles.
It follows from the definition of regions that for any pair of points q1, q2 that
belong to a same region, one can find points q1 = u0, u1, . . . , uN = q2 in r where
N = � 1

Δ� such that d∞(ui, ui+1) ≤ Δ
2 for all 0 ≤ i ≤ N − 1. Let m > 0 be the

bound provided by Lemma 6. Now, q2 can be reached from q1, by a run over any
word {π1, . . . , πp}mN by Lemma 7 (applied N times to pairs (ui, ui+1)). 
�

5 Some Combinatorial Tools

In this section, we prove a Ramsey-like theorem for colored directed paths, which
gives a lower bound on the length of monochromatic subpaths contained in
these (Subsection 5.1). This improves, by an exponential, the result provided by
a direct application of Ramsey’s theorem [16]. In Subsection 5.2, we give a simple
property on untimed finite automata accepting ultimately universal languages.
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5.1 A Ramsey-Like Theorem for Directed Paths

A directed graph is a pair G = (V,E) where V is a finite set of nodes and
E ⊆ V × V , is the set of edges. A graph G is complete if for all i, j ∈ V either
(i, j) ∈ E or (j, i) ∈ E. A graph is a linearly-ordered complete graph, if for some
(strict) linear order ≺ on V , (i, j) ∈ E iff i ≺ j. The degree of a node v is
d(v) = |{u | (v, u) ∈ E or (u, v) ∈ E}|. Two nodes u and v are connected in
the graph G if there exists a sequence u = s0, s1, . . . , sk = v of nodes such that
(si, si+1) ∈ E or (si+1, si) ∈ E for all 0 ≤ i ≤ k − 1. A graph is connected if all
its nodes are connected. A subgraph of G = (V,E) is a graph (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E. A connected component is a maximal connected subgraph.
A directed path of G is a sequence of nodes v1, . . . , vn such that (vi, vi+1) ∈ E
for all 1 ≤ i ≤ n− 1, and its length is n. A r-coloring of a graph G = (V,E) is a
function E → {1, . . . , r} that associates to each edge a color from {1, . . . , r}. A
path is monochromatic if all its edges are assigned the same color.

Our result is based on the following theorem from [6].

Theorem 2 ([6]). Let G be a connected directed graph over n nodes such that,
for some h, every node v satisfies d(v) ≥ h. Then G contains a directed path of
length min(n, h + 1). 
�

The main result of this subsection is the following theorem.

Theorem 3. Let G = (V,E) be a linearly-ordered complete graph over n nodes
given with an r-coloring of its edges. Then G contains a monochromatic directed
path of length �

√
n/r − 2� − 1.

Proof. Fix h = �
√
n/r − 2� − 1. For each 1 ≤ i ≤ r, define subgraph Gi which

contains exactly the edges colored by i. Then, for each Gi, define G′
i by removing

any node v (and any edge containing v) whose degree in Gi is less than h. In
G′

i, any node has either none or at least h edges of color i. Let G′ be the union
of all G′

i’s. To define G′, we remove at most (h − 1)rn edges (h − 1 edges per
color and node). Thus, G′ has at least

(
n
2

)
− (h − 1)rn edges. Then, one of

the G′
i’s has at least

(
n
2

)
/r − (h − 1)n edges, say G′

i0
. We show that G′

i0
has

a connected component C with at least
√

(n− 1)/r − 2(h− 1) nodes. In fact,
consider a graph with N nodes and M edges. Let K denote the number of
nodes of the largest connected component. Since there are at most N connected
components, each of them containing at most

(
K
2

)
edges, we get that M ≤ N

(
K
2

)
,

which implies
√

2M/N ≤ K. Applying this to G′
i0 , we get the desired connected

component C. Now, by construction of G′
i0

, all nodes of C have degree at least
h in C (in fact, by maximality, all edges of G′

i0 adjacent to the nodes of C are
also included in C). Then, by Theorem 2, C contains a directed path of length
at least min(

√
(n− 1)/r − 2(h− 1), h). But the first term of the min is greater

than or equal to h by the choice of h. So, there is a directed path of length at
least �

√
n/r − 2� − 1 in G′

i0
, and this is a monochromatic path in G. 
�
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5.2 Ultimately Universal Languages

Let Σ denote a finite alphabet. We call a regular language L ⊆ Σ∗ ultimately
universal if there exists k ≥ 0 such that

⋃
l≥k Σ

l ⊆ L.

Lemma 8. Let L be an ultimately universal language recognized by a determin-
istic untimed automaton with n locations. Then

⋃
l≥n−1Σ

l ⊆ L.

6 Proof of the Theorem

Fix any timed automaton A with C ≥ 1 clocks. Let W denote the number
of regions of A. Let D denote a deterministic untimed automaton such that
L(D) = L(R(A)) (say, obtained by minimization), and let K denote the size ofD,
which is at most 2W (K ≤W ifA is concise). We letM = 2(C+1)2

(
(K + 1)2 + 2

)
,

n ≥WM and fix any Δ0 ≤ 1
5nC2 . The theorem states that if L(�A�) = L(�AΔ�)

for some Δ > 0, then L(�A�) = L(�AΔ0�). The only interesting case is when Δ <
Δ0 since otherwise L(�A�) ⊆ L(�AΔ0�) ⊆ L(�AΔ�) and the theorem follows. So
let us suppose that L(�A�) = L(�AΔ�) for some Δ < Δ0. Let ρ be a run of
�AΔ0�. We will show that tr(ρ) ∈ L(D) = L(�A�), which will prove the theorem.

Lemma 9. Any path π of R(A) of length at least n can be factorized as π =
π1τ1τ2 . . . τK−1π2 where π1, π2 are paths, and τi’s are equivalent cycles.

Proof. Since n ≥ W ·M , by the Pigeon-hole principle, π contains a factor t =
t1 . . . tM such that first(t1) = first(tj) for all j. We apply Theorem 3 to get a
further factorization of t. Consider a directed graph of the usual linear order
< over {1, . . . ,M}. To each edge (j, k) of the graph, where j < k, we assign
as color, the vertex map ν(tjtj+1 . . . tk). The number of colors is then bounded
by 2(C+1)2 . Applying Theorem 3, we get that t contains a factor τ1 . . . τK−1,
where τ1 = tj1tj1+1 . . . tj2 , τ2 = tj2tj2+1 . . . tj3 , . . . , τK−1 = tjK−1 . . . tjK , for some
j1 < j2 < . . . < jK , such that ν(τ1) = ν(τj) for all 1 ≤ j ≤ K. 
�

Lemma 10. Let π = π1τ1τ2 . . . τK−1π2 be a path of R(A) where π1 and π2 are
paths and τi’s are equivalent cycles. Then, there exists k0 > 0 such that for all
q ∈ first(π), q′ ∈ last(τK−1), k ≥ k0, and any word w ∈ tr(π1) · (tr(τ1) + . . . +
tr(τK−1))k, there is a run ρ′ of �AΔ� over w with first(ρ) = q and last(ρ) = q′.

The proof of the previous lemma uses Lemma 7 (See Appendix). We are now
ready to prove our main theorem. The reader may follow the proof in Figure 3.

Proof (of Theorem 1). Consider ρ and the constants as defined above, and notice
that Δ0 ≤ 1

N0
. Let H(ρ, i, n) be the regions given by Lemma 1 for all i ≥ 0. We

will inductively construct the desired run γ of D with tr(γ) = tr(ρ). At step i
of the induction, we will define γαi...αi+1 for some increasing sequence (αi)i≥0

with α0 = 1. When constructing γ, we will also construct an auxiliary run ρ′ of
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AΔ0 : ρ
1 αi αi+1

D : γ
αi1

AΔ : ρ′

1 βi

π1 τ1 τ2 . . . τK-1

(ρ′)βi+1

(γ)αi+1

π1 τ1 τ2 . . . τK-1

Fig. 3. An induction step in the proof of Theorem 1. First, ρ′ is extended following
path π1τ1τ2 . . . (shown in red dashed line), and for any long enough repetition of
cycles τ1, . . . , τK , H(ρ,αi+1, n) (shown in pink filled circle) can be reached. Then, γ is
extended to (γ)αi+1 (shown in green loosely dotted line).

�AΔ� in parallel, defining ρ′βi...βi+1
at each step i, for some increasing sequence

(βi)i≥0 with β0 = 1, and ensuring that (ρ′)βi ∈ H(ρ, αi, n) and L(�AΔ�, (ρ′)βi) ⊆
L(D, (γ)αi) for all i ≥ 0.

– For i = 0, since ρ is an initialized run, we have (ρ)1 = (l0,0) so H(ρ, 1, n) =
reg(()l0,0). We have α0 = β0 = 1, (ρ′)1 = (l0,0) and (γ)1 is the initial state of
D. We have L(�AΔ�, ρ′1) ⊆ L(D, γ1) by hypothesis.

– For any i ≥ 1, suppose by induction that γ is defined between indices 1 and
αi and that ρ′βi

∈ H(ρ, αi, n). We will choose αi+1 > αi and βi+1 > βi, and first
define ρ′βi...βi+1

such that (ρ′)βi+1 ∈ H(ρ, αi+1, n), then define γαi...αi+1 . Let π
be the path of R(A) which starts at reg((ρ′)βi), given by Lemma 1 for the run
ραi...|ρ|. If ρ is finite and |ρ| − αi ≤ n, then D has a run from γαi on word tr(π)
(since L(�AΔ�, ρ′αi

) ⊆ L(D, γαi)) and we are done. Suppose now that ρ is either
infinite, or |ρ| − αi > n. Then |π| = n, and by Lemma 9, π can be decomposed
into π = π1τ1 . . . τK−1π2 where τi’s are equivalent cycles. We let αi+1 > αi such
that last(τK−1) is the (αi+1 − αi)-th state of π. �AΔ� has a run from (ρ′)βi to
some z ∈ first(τ1) following π1 (in fact, (ρ′)βi ∈ first(π1)). By construction of
π, there exists z′ ∈ H(ρ, αi+1, n) ∩ last(τK−1) �= ∅, and by Lemma 10, for any
k ≥ k0 and any word w ∈ (tr(τ1)+ . . .+ tr(τK−1))k, there is a run, in �AΔ�, from
z to z′ following trace w. Let ρ′′(w) denote the run thus constructed from (ρ′)βi

to z′ on tr(π1) · w. We let βi+1 s.t. ρ′βi...βi+1
(w) = ρ′′(w) for an arbitrary w.

Now, D has a run from (γ)αi to some state q0 over trace tr(π1) because
L(�AΔ�, (ρ′)βi) ⊆ L(D, (γ)αi). Let D′ denote the finite untimed automaton ob-
tained from D by designating q0 as the initial state, and all states qf such that
L(�AΔ�, z′) ⊆ L(D, qf ) for some w ∈ (tr(τ1) + . . . + tr(τK−1))k, k ≥ k0, as final
states. There is at least one final state because L(D) = L(�AΔ�) and D is deter-
ministic. Let there be an edge in D′ with label tr(τi) from state q to q′ whenever
there is a path in D from q to q′ over word tr(τi). Observe that D′ is still deter-
ministic. Since ρ′′(w) is defined for any w ∈ (tr(τ1)+ . . .+tr(τK−1))k, k ≥ k0, D′,
defined over alphabet {tr(τ1), . . . , tr(τK−1)}, is ultimately universal. But then,
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by Lemma 8, D′ accepts any word in {tr(τ1), . . . , tr(τK−1)}K−1, and in particular
tr(τ1 . . . τK−1). Therefore, there is a run in D from (γ)αi to some state (γ)αi+1

following tr(τ1 . . . τK−1), which satisfies L(�AΔ�, (ρ′)βi+1) ⊆ L(�A�, (γ)αi+1 ). 
�
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Abstract. A linear decision tree is a binary decision tree in which a
classification rule at each internal node is defined by a linear threshold
function. In this paper, we consider a linear decision tree T where the
weights w1, w2, ..., wn of each linear threshold function satisfy

∑
i |wi| ≤

w for an integer w, and prove that if T computes an n-variable Boolean
function of large unbounded-error communication complexity (such as

the Inner-Product function modulo two), then T must have 2Ω(
√

n)/w
leaves. To obtain the lower bound, we utilize a close relationship between
the size of linear decision trees and the energy complexity of threshold
circuits; the energy of a threshold circuit C is defined to be the maximum
number of gates outputting “1,” where the maximum is taken over all
inputs to C. In addition, we consider threshold circuits of depth ω(1)
and bounded energy, and provide two exponential lower bounds on the
size (i.e., the number of gates) of such circuits.

1 Introduction

A linear decision tree is a binary decision tree in which a classification rule at
each internal node is defined by a linear function so that right and left edges
correspond to ≥ 0 and < 0, respectively. The complexity of a linear decision
tree is usually measured by the depth and the size, where the depth is the
length of the longest path from the root to a leaf and the size is the number of
leaves. The depth and size are reasonable measures of time and space required
for the corresponding algorithm, respectively. In previous research, the depth
complexity of linear decision trees is extensively studied, and lower bounds are
obtained for many problems [3–5, 8, 15]. In particular, Gröger and Turán obtain
a linear lower bound on the depth of the linear decision trees computing the
Inner-Product function IPn [8]. However, the size complexity is less understood
especially for Boolean functions. Since the depth is a lower bound on the size,
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the linear lower bound on the depth given in [8] yields a linear lower bound on
the size. To the best of our knowledge, this is the largest known lower bound on
the size of linear decision trees computing an explicit Boolean function.

In this paper, we restrict ourselves to the case where the weights of each linear
functions are not too large, and show an exponential lower bound on the size of
linear decision trees for a large class of Boolean functions including the Inner-
Product function IPn. More precisely, we prove that any linear decision tree
computing an n-variable Boolean function of unbounded-error communication
complexity Ω(n) has size 2Ω(

√
n)/w, provided that the linear threshold function

at each internal node has a weight vector (w1, w2, ..., wn) such that
∑

i |wi| ≤ w;
hence we have an exponential lower bound on the size if w = 2o(

√
n). For the

model of ternary decision trees computing a function f : Rn → {0, 1} where
each internal node gives ternary classification into ”> 0”, ”= 0”, or ”< 0”, ex-
ponential lower bounds are known even if the classification rule is defined by
a high degree polynomial [2, 9]. However, they consider ternary decision trees
computing a real function, and hence their results do not immediately imply
lower bounds for binary linear decisions computing a Boolean function. In fact,
the explicit function used to derive the exponential lower bound on the size of
ternary decision trees in [9] can be computed by a binary linear decision tree of
polynomial size. In the paper [5], Fleischer obtained an exponential lower bound
on the size of binary linear decision trees, but they consider a real function too.
For a simpler and more standard model of binary decision trees in which the clas-
sification rule is defined by a Boolean variable, Wegener derives an exponential
lower bound on the size of the trees computing the Parity function [19].

To obtain our lower bound, we utilize a close relationship between the size of
linear decision trees and the energy complexity of threshold circuits; a threshold
circuit is a combinatorial circuit of threshold gates, and the energy of a threshold
circuit C is defined to be the maximum number of gates outputting “1,” where
the maximum is taken over all inputs to C. More precisely, we use the following
fact given by Uchizawa et al. [17]: if a function f cannot be computed by any
threshold circuit of size O(l), energy O(log l) and weight O(w), then f cannot be
computed by any linear decision tree of size O(l) and weight O(w) either. Thus,
a lower bound on the size of threshold circuits of small energy and weight implies
a lower bound on the size of linear decision trees. Using the unbounded-error
communication complexity argument, we prove that if a threshold circuit C of
energy e and weight w computes IPn, then the size s of C is s = 2Ω(n/e)/w,
which suffices to provide the desired lower bound for linear decision trees. Our
result appears to be the first application of the notion of energy complexity of a
threshold circuit for a computational model other than a threshold circuit, and
shows a new method to obtain a lower bound: if a computational model can
be simulated by a threshold circuit of small energy and weight, then we have a
lower bound for the model.

In addition, we obtain lower bounds on the size (i.e., the number of gates)
of threshold circuits of depth ω(1) and bounded energy. The above lower bound
2Ω(n/e)/w immediately yields an exponential lower bound on the size of threshold
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circuits of energy no(1) and weight 2o(n). Note that this lower bound is indepen-
dent of depth. We also consider the case where weights of threshold gates are
unrestricted, and provide an exponential lower bound on the size of threshold
circuits of depth no(1) and energy O(1). These two exponential lower bound are
of independent interest, since they contrast with the known super-polynomial
lower bounds for threshold circuits which require the depth to be a constant
with further restrictions on fan-in, weight, or energy [1, 6, 7, 10–12, 14, 18].

2 Definitions

2.1 Linear Decision Trees

Let g be a linear threshold function with n inputs, weights w1, w2, . . . , wn and
a threshold t. Then, for every input x = (x1, x2, . . . , xn) ∈ {0, 1}n, g(x) =
sign (

∑n
i=1 wixi − t) where sign(z) = 1 if z ≥ 0 and sign(z) = 0 if z < 0. We

assume throughout the paper that the weights and threshold of every threshold
function are integers. A linear decision tree T computing a Boolean function of
n variables is a binary decision tree in which each internal node is labeled by
a linear threshold function of the n variables and each leaf is labeled by 0 or
1. For a given input x ∈ {0, 1}n, the output T (x) of T is determined by the
following procedure starting from the root until reaching a leaf: if the linear
threshold function at the current node outputs 0 for the input x, then go to the
left child; otherwise go the right. If the leaf reached is labeled by z ∈ {0, 1}, then
T (x) = z. The size l of T is defined to be the number of leaves in T . We say
that T has weight w if weights w1, w2, . . . , wn of each threshold function in T
satisfies

∑
i |wi| ≤ w.

2.2 Threshold Circuits

A threshold gate with an arbitrary number k of inputs computes a linear thresh-
old function of k inputs. A threshold circuit is a directed acyclic graph where each
internal node is a threshold gate or an input variable. The size s of a threshold
circuit is defined to be the number of threshold gates in the circuit.

Let C be a threshold circuit computing a Boolean function f of n vari-
ables x1, x2, . . . , xn, and have size s. Let g1, g2, . . . , gs be the gates in C,
where g1, g2, . . . , gs are topologically ordered with respect to the underlying
directed acyclic graph of C. We regard the output of gs as the output C(x)
of C, and call the gate gs the top gate of C. A threshold circuit C com-
putes a Boolean function f : {0, 1}n → {0, 1} if C(x) = f(x) for every input
x = (x1, x2, . . . , xn) ∈ {0, 1}n. We say that C has weight w if the sum of the
absolute values of the weights for the n input variables x1, x2, . . . , xn of each
gate in C is at most w. Note that only the weights of the input corresponding
to x1, x2, . . . , xn are taken into account. The level of a gate in C is the length
of the longest directed path to the gate from an input node. The depth d of C is
the level of the top gate gs of C. We define the energy e of a threshold circuit C
as the maximum number of gates outputting “1”, where the maximum is taken
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over all inputs x ∈ {0, 1}n [17]. Thus, e = maxx∈{0,1}n

∑s
i=1 gi(x), where gi(x)

is the output of gi for x ∈ {0, 1}n. Clearly 0 ≤ e ≤ s. It should be noted that
the inequality d ≤ e does not necessarily holds for threshold circuits of depth d
and energy e. For example, the Parity function of n variables can be computed
by a threshold circuit of size O(n), depth O(n), and energy two [16].

2.3 Communication Complexity

Consider a game of two players, say Alice and Bob, with a Boolean function
f : {0, 1}n × {0, 1}n → {0, 1}, where Alice and Bob have unlimited compu-
tational power. Alice receives an input x ∈ {0, 1}n and Bob does an input
y ∈ {0, 1}n. Alice and Bob exchange bits according to a protocol, and try to
compute the value f(x,y). The cost of a protocol is defined to be the maximum
number of exchanged bits in the protocol. There are several variants of commu-
nication complexity measures of Boolean functions. In this paper, we consider
the following three of them.

Definition 1. The deterministic communication complexity of f(x,y), denoted
by D(f), is defined to the minimum cost over all the deterministic protocols that
compute f(x,y) for every input x× y ∈ {0, 1}n × {0, 1}n.

Definition 2. Alice and Bob can use an unlimited “private” source of random
bits. The unbounded-error communication complexity of f(x,y), denoted by
U(f), is defined to be the minimum cost over all the randomized protocols that
compute f(x,y) correctly with probability strictly greater than 1/2 for every input
x× y ∈ {0, 1}n × {0, 1}n.

Definition 3. Alice and Bob share an unlimited “public” source of random bits.
For each real number ε, 0 ≤ ε < 1/2, the bounded-error communication com-
plexity of f(x,y), denoted by Rε(f), is defined to be the minimum cost over all
the randomized protocols that compute f(x,y) correctly with probability 1− ε for
every input x× y ∈ {0, 1}n × {0, 1}n.

The Inner-Product function IPn of 2n variables is defined as follows. For every
pair of inputs x = (x1, x2, · · · , xn) ∈ {0, 1}n and y = (y1, y2, · · · , yn) ∈ {0, 1}n,
IPn(x,y) = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn, where ⊕ denotes the XOR function. It is
known that IPn has large unbounded-error and bounded-error communication
complexity:

Proposition 1 ([6, 13]). U(IPn) = Ω(n), and R 1
2−δ(IPn) = Ω(n + log δ) for

every number δ, 0 < δ ≤ 1/2.

3 Lower Bounds for Linear Decision Trees

Our main result is the following lower bound on size of linear decision trees:

Theorem 1. Let f be a Boolean function of n variables such that U(f) = Ω(n).
If a linear decision tree T of weight w computes f , then the size of T is 2Ω(

√
n)/w.
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By Proposition 1 and Theorem 1, we immediately obtain the following exponen-
tial lower bound on the size of linear decision trees.

Corollary 1. If a linear decision tree T of weight w = 2o(
√

n) computes IPn,
then the size of T is 2Ω(

√
n).

We below give a proof of Theorem 1. In the paper [17], Uchizawa et al. show that
there is close relationship between linear decision trees and threshold circuits of
small energy, as follows.

Lemma 1 ([17]). Assume that a Boolean function f : {0, 1}n → {0, 1} can be
computed by a linear decision tree of l leaves and weight w. Then f can also be
computed by a threshold circuit C of size O(l), energy O(log l) and weight O(w).

In other words, if a function f cannot be computed by any threshold circuit
of size O(l), energy O(log l) and weight O(w), then f cannot be computed by
any linear decision tree of size O(l) and weight O(w). Thus, a lower bound for
threshold circuits implies a lower bound for linear decision trees. The following
theorem gives the desired lower bound.

Lemma 2. Let f be a Boolean function of n variables such that U(f) = Ω(n).
If f can be computed by a threshold circuit C of energy e and weight w, then the
size s of C is s = 2Ω(n/e)/w.

Combining Lemma 1 and 2, we can easily prove Theorem 1 as follows.
Proof of Theorem 1. Let T be a linear decision tree that computes IPn and has
size l and weight w. If log l ≥ √n, we are done. Consider the other case

log l <
√
n. (1)

Then Lemma 1 implies that IPn can be computed by a threshold circuit C of
size s = O(l), energy e = O(log l) and weight O(w). By Theorem 1, we have
l ≥ 2Ω(n/ log l)/w, and hence Eq. (1) implies that l = 2Ω(

√
n)/w. 
�

Thus, it suffices to prove Lemma 2. We prove Lemma 2 by an unbounded-
error communication complexity argument used in [7]. The following lemma
summarizes the argument.

Lemma 3. Assume that a Boolean function f : {0, 1}n → {0, 1} can be repre-
sented by a threshold function of a number k of Boolean functions f1, f2, . . . , fk

with weights w1, w2, . . . , wk, that is,

f(x) = sign

(
k∑

i=1

wifi(x)

)
(2)

for every input x ∈ {0, 1}n. Then

U(f) ≤ max
i

D(fi) +O(log k). (3)

We omitted the proof of Lemma 3 due to the page limitation.
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Lemma 3 implies that we can obtain an upper bound on the unbounded-error
communication complexity of a Boolean function f by expanding f to a linear
combination of Boolean functions f1, f2, . . . , fk. The following lemma plays a
key role in our proof, and give such Boolean functions.

Lemma 4. Assume that a Boolean function f : {0, 1}n → {0, 1} can be com-
puted by a threshold circuit C of size s, depth d, energy e and weight w. Then
f can be represented by a threshold function of a number k of depth-2 threshold
circuits C1, C2, . . . , Ck with weights w1, w2, . . . , wk, where

k =
e∑

i=0

(
s

i

)
≤ se + 1. (4)

That is,

f(x) = sign

(
k∑

i=1

wiCi(x)

)
(5)

for every input x ∈ {0, 1}n. Besides, for every index i, 1 ≤ i ≤ k, Ci has size

si ≤ e+ 1, (6)

and weight w. Moreover, the weights w1, w2, . . . , wk satisfy

k∑
i=1

|wi| ≤ 3s2(d+1)e+1
. (7)

Remark. The above lemma has a quite similar form to Lemma 2 in [18]. The
main difference between them is that the right hand side of Eq. (7) is 3s2(d+1)e+1

while that of the corresponding equation of Lemma 2 in [18] is 2s3(e+1)d

. Note
that the depth d and energy e symmetrically appear in the exponents in the
formulas. This difference is critical to yield an exponential lower bound on the
size of threshold circuits of depth ω(1) in Section 5. While the proof idea of the
above lemma is mostly based on that of Lemma 2 in [18], we in fact require a
new idea to obtain Eq. (7).

We prove Lemma 4 in the next section. Lemma 3 and 4 immediately imply
Lemma 2, as follows.

Proof of Lemma 2. Let f be a Boolean function of 2n variables such that

U(f) = Ω(n). (8)

Assume that f can be computed by a threshold circuit C of size s, depth d,
energy e and weight w. Lemma 4 implies that f can be represented by a thresh-
old function of a number k of threshold circuits C1, C2, . . . , Ck with weights
w1, w2, . . . , wk satisfying Eqs. (4)−(7). For each integer i, 1 ≤ i ≤ k, let fi be
the function that Ci computes, then Eq. (3) implies that

U(f) ≤ max
i

D(fi) +O(log k). (9)
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Let si be the size of Ci. Since Ci has weight w, Alice and Bob can compute
the output of every gate in Ci by such a protocol that one of the players sends
in binary representation the sum of the products between the weights and the
inputs of the gate. Hence we have D(fi) = O(si logw) for every integer i, 1 ≤
i ≤ k. Thus, Eqs. (4), (6) and (9) imply that

U(f) = O(si logw + log k) = O(e(logw + log s)) (10)

By Eqs. (8) and (10), we obtain the desired result. 
�

4 Proof of Lemma 4

In this section, we prove Lemma 4. Assume that a function f : {0, 1}n → {0, 1}
can be computed by a threshold circuit C of size s, depth d, energy e, and weight
w. Let C consist of the gates g1, g2, . . . , gs. One may assume that g1, g2, . . . , gs

are topologically ordered with respect to the underlying directed acyclic graph of
C, and that gs is the output gate of C. For each index i, 1 ≤ i ≤ s, we denote by
wi,1, wi,2, . . . , wi,n the weights of the gate gi for the inputs x1, x2, . . . , xn and by
wi,g1 , wi,g2 , . . . , wi,gs the weights of gi for the outputs of the gates g1, g2, . . . , gs,
respectively. Since the gates g1, g2, . . . , gs are topologically ordered, we have
wi,gi = wi,gi+1 = · · · = wi,gs = 0. We denote by ti the threshold of gi. Thus, the
output gi(x) of gi for x ∈ {0, 1}n is represented as

gi(x) = sign

⎛⎝ n∑
j=1

wi,jxj +
i−1∑
j=1

wi,gj gj(x)− ti

⎞⎠ . (11)

For each gate gi, 1 ≤ i ≤ s, we denote by lev(gi) the level of the gate gi in C.
We shall present threshold circuits and weights satisfying Eqs. (4)−(7).

Define S as a family of subsets of {1, 2, . . . , s} such that S = {S ⊆
{1, 2, . . . , s} | 0 ≤ |S| ≤ e}. For every set S ∈ S, we construct a depth-2 threshold
circuit CS consisting of |S|+ 1 gates as follows. In the first level, the circuit CS

contains a gate gS
i for every index i ∈ S that computes

gS
i (x) = sign

⎛⎝ n∑
j=1

wi,jxj +
∑
j∈S

wi,gj − ti

⎞⎠ (12)

for every input x ∈ {0, 1}n. In the second level, CS contains a gate gS computing
AND of the outputs of the gates gS

i for every i ∈ S, that is,

CS(x) = gS(x) = sign

(∑
i∈S

gS
i (x)− |S|

)
. (13)

If S = ∅, then CS(x) = sign(0) = 1 for every input x ∈ {0, 1}n.
For each set S ∈ S, we give the weight wS for the circuit CS as follows.

For S = ∅, let wS = −1. For each set S ∈ S\{∅}, assume that S contain the
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indices i1, i2, . . . , i|S| such that 1 ≤ i1 < i2 < · · · < i|S| ≤ s. Then we denote by
v = (v1, v2, . . . , ve) the weight vector for S defined as follows: For each index j,
1 ≤ j ≤ e,

vj =
{
d+ 1− lev(gij ) if 1 ≤ j ≤ |S|;
0 if |S|+ 1 ≤ j ≤ e.

Clearly, we have 0 ≤ vj ≤ d, for every index j, 1 ≤ j ≤ e. Then we define [S] as
the integer whose (d + 1)-nary representation is the weight vector v, that is,

[S] =
e∑

j=1

vj(d + 1)e−j .

Then let

wS =
{
k[S] if gs ∈ S;
−k[S] otherwise.

(14)

where k = |S| =
∑e

i=0

(
s
i

)
.

Consequently, we obtain the following threshold function:

sign

(∑
S∈S

wSCS(x)

)
. (15)

In the rest of the section, we prove that the threshold function (15) satisfies
Eqs. (4)−(7).

Since we have k = |S| =
∑e

i=0

(
s
i

)
≤ se + 1, Eq. (4) holds. Clearly, for every

set S ∈ S, size(CS) = |S| + 1 ≤ e + 1, and hence Eq. (6) holds. Moreover, it
holds that

[S] ≤
e∑

j=1

d · (d + 1)e−i ≤ (d + 1)e

for every S ∈ S. Hence ∑
S∈S

|wS | =
∑
S∈S

k[S]

≤ k · k(d+1)e

≤ 3s2(d+1)e+1
.

We have thus proved Eq. (7). Below, we verify Eq. (5).
Consider an arbitrary and fixed input x ∈ {0, 1}n. Let

S∗ = {i ∈ {1, 2, . . . , s} | the gate gi outputs 1 for x in C}.

Thus, for every index i ∈ S∗,

gi(x) = 1. (16)
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Let
F = {S ∈ S | ∀i ∈ S, the gate gS

i outputs 1 for x in CS},
then Eq. (13) implies that, for every set S ∈ F,

CS(x) = gS [x] = 1. (17)

Eqs. (11) and (12) imply that, for every index i ∈ S∗,

gi(x) = sign

⎛⎝ n∑
j=1

wi,jxj +
i−1∑
j=1

wi,gjgj [x]− ti

⎞⎠
= sign

⎛⎝ n∑
j=1

wi,jxj +
∑
j∈S∗

wi,gj − ti

⎞⎠ = gS∗
i (x)

and hence Eq. (16) implies that gS∗
i (x) = 1. We thus have

S∗ ∈ F. (18)

Eqs. (17) and (18) imply that

gS∗ [x] = 1. (19)

Then the following claim holds.

Claim. For every set S ∈ F\{S∗}, [S] ≤ [S∗]− 1.

Proof idea. Let S be an arbitrary set in F such that

S �= S∗. (20)

Thus, for every index i ∈ S,

gS
i (x) = 1. (21)

For each index j, 1 ≤ j ≤ d, we define Sj as a set of indices i such that the gate
gi is in the level j of C, that is, Sj = {i ∈ S | lev(gi) = j}. Similarly, we define
S∗

j = {i ∈ S∗ | lev(gi) = j}.
By Eq. (20), there exists an index h such that, for every index j, 1 ≤ j ≤ h−1,

Sj = S∗
j (22)

and Sh �= S∗
h. Let i be an arbitrary index in Sh. Then,

gS
i (x) = sign

⎛⎝ n∑
j=1

wi,jxj +
∑
j∈S

wi,gj − ti

⎞⎠
= sign

⎛⎝ n∑
j=1

wi,jxj +
∑

j∈S1∪S2∪···∪Sh−1

wi,gj − ti

⎞⎠ . (23)
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By Eq. (22) and (23), we have

gS
i (x) = sign

⎛⎝ n∑
j=1

wi,jxj +
∑
j∈S∗

wi,gj − ti

⎞⎠
= sign

⎛⎝ n∑
j=1

wi,jxj +
i−1∑
j=1

wi,gjgj(x)− ti

⎞⎠ = gi(x) (24)

Hence, by Eqs. (21) and (24) we have gi(x) = 1, and thus i ∈ S∗
h. Consequently,

we have Sh ⊂ S∗
h, which implies the claim. 
�

We are now ready to prove Eq. (5). There are two cases to consider: (i) f(x) =
C(x) = 1, and (ii) f(x) = C(x) = 0. We prove Eq. (5) only for the case (i),
since the proof for the other case is similar. Consider an arbitrary input x such
that f(x) = C(x) = 1. In this case, it suffices to prove that∑

S∈S

wSCS(x) ≥ 0. (25)

Eqs. (17) and (19) implies that∑
S∈S

wSCS(x) = wS∗ +
∑

S∈S\{S∗}
wSCS(x)

≥ wS∗ −
∑

S∈F\{S∗}
|wS |. (26)

Since C(x) = gs(x) = 1, we have s ∈ S∗, and hence Eqs. (14) and (26) imply
that ∑

S∈S

wSCS(x) ≥ k[S∗] −
∑

S∈F\{S∗}
k[S]. (27)

If F = {S∗}, then we have
∑

S∈S
wSCS(x) ≥ k[S∗] > 0, and hence Eq. (25)

holds. If F �= {S∗}, then Claim 1 implies that [S] ≤ [S∗]− 1 for every S ∈ F\S∗.
Therefore, by Eq. (27) we have∑

S∈S

wSCS(x) ≥ k[S∗] − (k − 1)k[S∗]−1 > 0,

and hence Eq. (25) holds.

5 Lower Bounds for Threshold Circuits of Depth ω(1)

In this section, we give two exponential lower bounds on the size of thresh-
old circuits of depth ω(1). The first lower bound is immediately obtained from
Lemma 2, as follows.
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Theorem 2. If IPn can be computed by a threshold circuit C of size s, energy
e = no(1) and weight w = 2o(n), then s = 2Ω(n1−o(1)).

Note that the bound is, in fact, independent of depth.
The other lower bound is obtained from Lemma 3 by which arbitrary thresh-

old circuit C computing a Boolean function f can be converted to a threshold
function of a number k of depth 2 threshold circuits C1, C2, . . . , Ck of size at
most e + 1. This lemma enable us to use a bounded-error communication com-
plexity argument that yields a lower bound on the size of threshold circuits of
depth three. More precisely, we obtain the following theorem.

Theorem 3. Assume that f is a Boolean function of 2n variables such that

R 1
2−δ(f) = Ω(n + log δ) (28)

for every number δ, 0 < δ ≤ 1/2. If a threshold circuit C of depth d and energy
e computes f , then the size s of C satisfies

s = exp
(
Ω

(
n

e(d + 1)(e+1)

))
(29)

We omit the proof of Theorem 3. Since IPn satisfies Eq. (28), Theorem 3 imme-
diately yields the following corollary.

Corollary 2. If a threshold circuit C of depth d = no(1) and energy e = O(1)
computes IPn, then the size s of C satisfies s = 2Ω(n1−o(1)).

6 Conclusion

In this paper, we consider a binary linear decision tree T computing a Boolean
function f , and prove that if T has weight w and f has large unbounded-error
communication complexity, then T must have size 2Ω(

√
n)/w. Our result implies

an exponential lower bound on the size of linear decision trees computing IPn

provided that w = 2o(
√

n). The energy complexity of threshold circuits plays
important role in our proof; and our result suggests that we can obtain a strong
lower bound for some computational model if the model can be simulated by
threshold circuits of small energy and weight.

In addition, we consider threshold circuits of depth ω(1) and bounded energy,
and obtain an exponential lower bound on the size of threshold circuits of energy
no(1) and weight 2o(n) and an exponential lower bound on the size of threshold
circuits of depth no(1) and energy O(1).
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Abstract. Cost monadic logic has been introduced recently as a quan-
titative extension to monadic second-order logic. A sentence in the logic
defines a function from a set of structures to N∪{∞}, modulo an equiv-
alence relation which ignores exact values but preserves boundedness
properties. The rich theory associated with these functions has already
been studied over finite words and trees.

We extend the theory to infinite trees for the weak form of the logic
(where second-order quantification is interpreted over finite sets). In par-
ticular, we show weak cost monadic logic is equivalent to weak cost au-
tomata, and finite-memory strategies suffice in the infinite two-player
games derived from such automata. We use these results to provide a
decision procedure for the logic and to show there is a function definable
in cost monadic logic which is not definable in weak cost monadic logic.

1 Introduction

A fundamental result in the theory of regular languages is the equivalence be-
tween monadic second-order logic (MSO) and finite-state automata, which Büchi
exploited in order to provide a decision procedure for the logic. Recently, Col-
combet [3] has proposed a quantitative extension to MSO called cost monadic
second-order logic (cost MSO). In this setting, a cost MSO sentence defines a
function from some domain (like words or trees over a finite alphabet) to N∪{∞},
modulo an equivalence relation ≈ which ignores exact values but preserves the
existence of bounds over any subset of the domain. Mirroring the classical re-
sult, there is an equivalent automaton model called cost automata which can be
used to help decide whether the functions definable by cost MSO sentences (over
finite words [3] or finite trees [7]) are equivalent up to ≈.

This “theory of regular cost functions” is a strict extension to the theory of
regular languages, which retains the equivalences, closure properties, and decid-
ability of the classical theory. It captures the theory of regular languages since we
can identify each language with its characteristic function mapping structures
in the language to 0 and everything else to ∞; it is a strict extension since cost
MSO can count some behaviour within the input structure (e.g. the number of
positions labelled with some symbol). The theory has been studied over finite
words [3,4] and finite trees [5,7]. This paper is an initial step in extending the
theory to infinite trees when restricting to weak cost monadic logic (written cost
WMSO) in which second-order quantifiers are interpreted over finite sets.
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1.1 Motivation

The motivation for studying the logic and automata considered in this paper
comes from problems that can be reduced to questions of boundedness. The most
famous language-theoretic problem like this is the “star-height problem”: given a
regular language L and natural number n, is there some regular expression (using
concatenation, union, and Kleene star) for L which uses at most n nestings of
Kleene-star operations? Hashiguchi [8] first showed that this problem is decidable
over finite words and Kirsten [9] gave an alternative proof. Colcombet and Löding
have shown that this problem is also decidable over finite trees [5].

In each case, finite-state automata enriched with counting features were used
(distance, nested distance-desert, and cost automata). The star-height problem
was then reduced to a question of “limitedness”: given some automaton with
counting features, is the function it computes bounded over all accepted struc-
tures? Because limitedness is a special case of deciding ≈, this theory of regular
cost functions is a useful framework for reasoning about this sort of problem.

Kirsten [9] and Colcombet [3] cite problems in areas as diverse as speech
recognition, databases, and model theory which have been solved using a similar
approach. One open problem is the “parity-index problem”. It asks: given a
regular language L of infinite trees and i < j, is there a parity automaton using
only priorities {i, i+ 1, . . . , j}? Colcombet and Löding [6] have shown that this
problem is reducible to limitedness for a “cost-parity automaton” over infinite
trees, but the decidability of limitedness for these automata remains open. Thus,
understanding the theory of regular cost functions over infinite trees is desirable.

1.2 Contributions

We show that the results over finite trees from [7] can be lifted to infinite trees
when restricting to cost WMSO. The main contribution is proving cost WMSO
is effectively equivalent to alternating “weak cost automata” and that these au-
tomata can be simulated by a type of non-deterministic automata. This is used
to prove the relation ≈ is decidable for functions definable in cost WMSO. An-
other consequence (similar to the classical theory) is a separation result showing
there is a function definable in MSO which is not definable in cost WMSO.

The main difficulty compared to the finite-tree case in [7] is the simulation re-
sult for weak cost automata. It relies on the fact that certain “weak cost games”
(games derived from weak cost automata) admit finite-memory strategies. Prov-
ing this result over infinite trees is more difficult because of the interplay between
the traditional acceptance condition and the cost features of the game.

1.3 Organisation

In Sect. 2 we provide background on trees, cost WMSO, and cost functions. We
then present in Sect. 3 the general framework for reasoning about cost automata
acting on infinite trees using infinite two-player games. Using this framework,
we prove the results mentioned above for cost WMSO and weak cost automata
in Sect. 4. We conclude in Sect. 5.
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2 Cost Monadic Logic

2.1 Trees

Let N be the set of non-negative integers and N∞ := N∪{∞}, ordered such that
0 < 1 < · · · < ∞. For i ≤ j, we write [i, j] to denote {i, i + 1, . . . , j}. We fix
a finite alphabet A which is ranked : each symbol a ∈ A has some arity j ∈ N
denoted by a ∈ Aj . Let r be the maximum arity of the labels in A. The set TA

of infinite A-labelled ranked trees is the set of partial functions t : [1, r]∗ → A
such that the domain of t (denoted pos(t)) is prefix-closed, t(ε) ∈ A is the label
at the root, and if t(x) ∈ Aj then t(xi) is defined if and only if i ≤ j.

2.2 Cost Monadic Logic

Cost monadic second-order logic, or cost MSO, is a quantitative extension to
MSO (see e.g., [14] for an introduction to monadic second-order logic). As usual,
the logic can be defined over any relational structure, but we describe here the
logic over A-labelled ranked trees. In addition to first-order variables which range
over nodes and second-order monadic variables which range over sets of nodes,
cost MSO uses a single additional variable N called the bound variable which
ranges over N. The atomic formulas in cost MSO are the usual atomic formulas
from MSO (namely, the membership relation x ∈ X and relations a(x, x1, . . . , xk)
which assert that a ∈ Ak is the label at position x with children x1, . . . , xk from
left to right), as well as new predicates |X | ≤ N where X is any second-order
variable and N is the bound variable. Arbitrary cost MSO formulas can be built
inductively in the usual way by applying boolean connectives or by quantifying
(existentially or universally) over first- or second-order variables. We additionally
require that predicates of the form |X | ≤ N appear positively in the formula
(i.e. within the scope of an even number of negations).

If we fix a value n for N , then the semantic of |X | ≤ N is what one would
expect: the predicate is satisfied if and only if the valuation of X has cardinality
at most n. If this value for N is not specified, then a sentence ϕ in cost monadic
logic defines a function [[ϕ]], from TA to N∞ (the natural numbers extended with
a special infinity symbol ∞). The function is

[[ϕ]](t) := inf{n : t, n |= ϕ}

where t, n |= ϕ if t satisfies ϕ when all occurrences of N take value n. By
convention, inf ∅ =∞, so in case ϕ is a pure MSO sentence (with no instances of
the predicates |X | ≤ N), [[ϕ]](t) is 0 if t satisfies the sentence ϕ and∞ otherwise.

In Sect. 4, we will focus our attention on cost weak monadic second-order
logic (written weak cost monadic logic or cost WMSO) which restricts the
second-order quantification to finite sets, as usual. WMSO (and consequently
cost WMSO) is still a very expressive logic (e.g. CTL embeds into it) but as
we will see in Sect. 4, it has some nice properties that make working with the
corresponding automata and games easier than in the full logic. We pause to
give an example of a typical function definable in cost WMSO.
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Example 1. Let A = A2 = {a, b, c}. We seek to define the function which, for
trees with infinitely many a’s, outputs the maximum number of b’s along a single
branch (and otherwise assigns value ∞). A suitable cost WMSO sentence ϕ is

∀X.∃x.
(
¬(x ∈ X) ∧ a(x)

)
∧ ∀Z.

(
(∀z.(z ∈ Z → b(z)) ∧ chain(Z))→ |Z| ≤ N

)
.

where chain(Z) is a WMSO formula asserting Z is totally ordered (and hence
the nodes are on the same branch). We write a(x) for ∃x1.∃x2.a(x, x1, x2).

The first conjunct is a typical WMSO formula: “infinitely many a’s” is ex-
pressed as “for all finite sets of nodes, there is an a-labelled node outside”. The
least n that can be substituted for N to satisfy the second conjunct is exactly
the bound on the number of b’s along a single branch (∞ if there is no bound).

2.3 Cost Functions

Given cost WMSO sentences ϕ and ψ, we would like to be able to decide for any
t ∈ TA whether [[ϕ]](t) ≤ [[ψ]](t) or [[ϕ]](t) = [[ψ]](t). This is undecidable even over
words by [10], so we must relax the relation being used. Following [4], we define
relations � and ≈. Given f, g : TA → N∞, we say g dominates f (written f � g)
if and only if for all U ⊆ TA, g(U) bounded implies f(U) bounded. We write
f ≈ g if and only if f � g and g � f . Thus, � and ≈ are weakenings of ≤ and =
which ignore exact values of f and g, but do preserve boundedness properties.

If we want to be more precise about the relationship between f and g, we
can annotate � and ≈ with a correction function α : N → N, a non-decreasing
function which satisfies α(n) ≥ n for all n. We write f �α g if f(t) ≤ α(g(t))
for all t ∈ TA (with the convention that α(∞) = ∞). Thus, α describes how
much we may need to “stretch” g such that it dominates f . As an example, the
function | · |a which counts the number of a’s in an infinite {a, b}-labelled tree
is not ≈-equivalent to | · |b; however, | · |a ≈α 2| · |a for α(n) = 2n. To compare
single values m,n ∈ N, we also write m �α n if m ≤ α(n).

With these relations, we can formally define a cost function F to be an equiv-
alence class of ≈, but we will blur the distinction between a particular function
f : TA → N∞ and its equivalence class F . The natural decision procedure in
this setting is the following: given two cost functions f and g, is f � g? We re-
mark that the classical language inclusion problem and the limitedness problem
mentioned in the introduction can be seen as a special cases of this procedure.

3 Cost Games

3.1 Objectives

We will use a game-theoretic approach to tree automata (see e.g., [14]).
An objective O is a tuple 〈C, f, goal 〉 where C is a finite alphabet of actions,

f : Cω → N∞ maps sequences of actions to a value, and goal ∈ {min,max}
describes how a player seeks to optimize f . Switching the goal (from min to max
or max to min) yields the dual objective O representing the aim of the opponent.

These objectives take the place of classical winning conditions. For
example, with a parity condition, Eve wins if the maximum priority occurring
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infinitely-often is even. This is described by the objective 〈Ω,P,min〉 where
Ω ⊆ N is a set of priorities and P (u) is 0 if the maximum infinitely-occurring
priority in u is even (∞ otherwise). Winning for Eve corresponds to minimizing
P . The Büchi condition is a special case where Ω = [1, 2].

We want to enrich the classical objectives with counter actions such that
values come from N∞ (instead of only {0,∞}). A counter γ is initially assigned
value 0 and can be incremented i, reset r to 0, checked c, or left unchanged ε.
We care about the value of the counter at the moment(s) when it is checked.
Given a word uγ over the alphabet {ε, i, r, c}, we define a set C(uγ) ⊆ N which
collects all of the checked values of γ. For instance, C(iriεiicriic) = {2, 3}
since the first time the counter is checked it has value 3 and the second time
it has value 2. In the case of a finite set of counters Γ and a word u over the
alphabet {ε, i, r, c}Γ , C(u) :=

⋃
γ∈Γ C(uγ) (uγ is the γ-projection of u).

We will use three objectives which combine a classical parity condition with
particular atomic counter actions and valuations. The B-parity objective1 (over
counters Γ and priorities Ω) is CostΓ,Ω

B := 〈{ε, ic, r}Γ ×Ω, costΓ,Ω
B ,min〉 where

costΓ,Ω
B (u) := sup(C(u) ∪ {P (u)})

and P (u) is the function described above which interprets the parity condition
(on the projection of u to its last component). The atomic actions in this case
are ε, ic, and r. For example, if u = ((ic, 2)(ic, 2)(ε, 1)(r, 2)(ic, 1))ω, then
cost{1},[1,2]

B (u) = sup({1, 2, 3}∪{0}) = 3. The idea is that if the parity condition
is satisfied (as in this example), then the value is the supremum of the checked
counter values; otherwise, the counters are ignored and the value is ∞.

A useful variant of this B-objective is the hB-parity objective. In this case,
the set of counters Γ is totally ordered and whenever a counter is incremented or
reset, all lower counters are reset (we say the counters are hierarchical). Formally,
we let HΓ := {c ∈ {ε, ic, r}Γ : cγ �= ε implies cγ′ = r for all γ′ < γ} and then
CostΓ,Ω

hB := 〈HΓ ×Ω, costΓ,Ω
B ,min〉.

The S-parity objective (over counters Γ and priorities Ω) has max as the
goal and atomic actions ε, i, r, and cr. It is CostΓ,Ω

S := 〈{ε, i, r, cr}Γ ×
Ω, costΓ,Ω

S ,max〉 where costΓ,Ω
S (u) := inf(C(u)∪ {P (u)}) and P (u) is 0 (respec-

tively,∞) if P (u) is∞ (respectively, 0). In other words, if the parity condition is
not satisfied then the counters are ignored and the value assigned is 0; otherwise,
the minimum checked value is used (∞ if the counters are never checked).

3.2 Cost Games

A cost game G := 〈V, v0, δ, O〉 consists of a set of positions V , an initial position
v0 ∈ V , an objective O = 〈C, f, goal〉 for Eve, and a control function δ : V →
B+(C×V ) (where B+(C×V ) is the set of positive boolean combinations, written
as a disjunction of conjunctions of elements from C× V ).

1 This B and S notation was originally used in [2] to stand for counters which were
bounded and strongly unbounded (whose limit tended towards infinity).
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A play π is an infinite word (vi, ci+1, vi+1)i∈N ∈ (V × C × V )ω such that
v0 is the initial position and (ci+1, vi+1) appears in δ(vi) for all i ∈ N. Given
a set σ of plays, let pref (σ) denote the set of prefixes of plays in σ. We say
(v0, c1, v1), . . . , (vj , cj+1, vj+1) ∈ pref (σ) is a partial play ending in vj+1 (by
convention, we say ε ∈ pref (σ) ends in v0). At a position v ∈ V , the positive
boolean combination given by δ(v) can be viewed as a subgame in which Eve
selects a disjunct in δ(v) and Adam selects a conjunct within this disjunct. For
instance, if there is some partial play π ending in v ∈ V with δ(v) = (c, v) ∨
((c′, v′) ∧ (c′′, v′′)), then Eve can choose a disjunct, say (c′, v′) ∧ (c′′, v′′), and
Adam can choose one of the conjuncts in this disjunct, say (c′′, v′′). The play is
then extended to π · (v, c′′, v′′) and c′′ describes the cost for making this move.

A strategy σ for Eve is a set of plays σ such that if a partial play π ∈ pref (σ)
ends in position v, there must be some disjunct (c′1, v

′
1) ∧ . . . ∧ (c′j , v

′
j) in δ(v)

such that for every conjunct (c′i, v
′
i) for i ∈ [1, j], π · (v, c′i, v′i) ∈ pref (σ). We say

σ is positional (or memoryless) if Eve’s next move depends only on the current
position rather than the history of the play (i.e. for all partial plays π, π′ ∈ σ
ending in v, π · (v, c′, v′) ∈ pref (σ) if and only if π′ · (v, c′, v′) ∈ pref (σ)).

The objective O = 〈C, f, goal〉 describes how to assign values. For a play
π = (vi, ci+1, vi+1)i∈N, the value is val(π) := f(πC) where πC := c1c2 . . .. If goal
is min, then the value of a strategy σ for Eve is val (σ) := sup{val(π) : π ∈ σ}
and the value of the game is val (G) := inf{val(σ) : σ is a strategy for Eve in G}.
In other words, Eve seeks to minimize over all strategies the maximum value
of all plays compatible with the strategy. Dually, if goal is max, then val(σ) :=
inf{val(π) : π ∈ σ} and val (G) := sup{val(σ) : σ is a strategy for Eve in G}. We
will refer to games by their objective (e.g. B-parity games).

The dual G of a game G is obtained by switching disjunctions and conjunctions
in the control function and using the dual objective (i.e. replacing min with max,
and vice versa). This switches the roles of Adam and Eve.

3.3 Cost Automata

An alternating cost automaton A = 〈Q,A, q0, O, δ〉 has a finite set of states Q,
a ranked alphabet A, an initial state q0 ∈ Q, an objective O = 〈C, f, goal〉, and
a transition function δ which maps (q, a) ∈ Q× Ai to B+([1, i]× C×Q).

Given t ∈ TA, we represent A acting on t via the cost game A × t = 〈Q ×
pos(t), (q0, ε), δ′, O〉 where δ′((p, x)) = δ(p, t(x))[(c, (q, xk))/(k, c, q)] and φ[s′/s]
represents the formula φ with s′ substituted for all occurrences of s. That is, a
position in the game corresponds to a state of the automaton and a location in
the input tree; the control function δ′ modifies the transition function δ of the
automaton to map to the appropriate positions in the game. We set [[A]](t) :=
val(A × t), so A defines a function [[A]] : TA → N∞. If there is a cost function g
such that [[A]] ≈ g then we say that A recognizes g.

Notice that counter and priority actions occur on transitions. It is straightfor-
ward to translate between transition-labelled automata and the more common
state-labelled automata (at the price of increasing the number of states).



586 M. Vanden Boom

In the simpler case that δ(q, a) for a ∈ Ai is a disjunction of statements of the
form

∧
j∈[1,i](j, cj , qj), then we say that the cost automaton is non-deterministic.

As with cost games, we will describe a cost automaton by its objective. A
fundamental result, however, is that the B-, hB-, and S-objectives are equivalent.

Theorem 1. It is effectively equivalent for a cost function f to be recognizable
by a B-parity automaton, an hB-parity automaton, and an S-parity automaton.

The proof requires results based on composing cost games with “history-
deterministic” cost automata which translate between objectives (in analogy
to the deterministic automata used in the translation between Muller and parity
conditions). This technique was used for finite-duration cost games [7] and can
be adapted to infinite cost games, but we will not develop this idea further here.

If the cost-parity automata are given as non-deterministic S-parity and B-
parity automata, then it is also possible to decide �.

Lemma 1. The relation f1 � f2 is decidable for cost functions f1 and f2 over
infinite trees if f1 is given by a non-deterministic S-parity automaton and f2 is
given by a non-deterministic B-parity automaton.

The decision procedure is an adaptation of the proof in [7]. It uses ideas from
the standard algorithm for deciding language inclusion for regular languages of
infinite trees. We construct a product automaton combining f1 and f2 and allow
Eve to “guess” a tree witnessing f1 �� f2 (this is possible since we are working
with non-deterministic automata). In fact, through a series of translations, the
decision of f1 �� f2 is reduced to solving a classical parity game (without costs).

4 Weak Cost Automata

We have defined the general framework for cost games and cost automata over
infinite trees. In this section, we restrict our attention to a subclass of cost
games which are derived from weak cost automata. We are able to show that
this subclass defines the same cost functions as cost WMSO, and that weak
B-games admit finite-memory strategies. Using these results, we show that it is
decidable whether [[ϕ]] � [[ψ]] for cost WMSO sentences ϕ and ψ.

4.1 Weak Cost Automata

A weak B-automaton A = 〈Q,A, q0,CostΓ,[1,2]
B , δ〉 is an alternating B-Büchi

automaton such that there is no cycle in δ using both priority 1 and 2. This
corresponds to the standard definition (see e.g., [11]) but adapted to the case
when priorities label transitions rather than states. A B-Büchi game such that
every play stabilizes to moves using only a single priority is called a weak B-game.
If A is a weak B-automaton, then A× t is a weak B-game for all t ∈ TA. Weak
hB- and weak S-automata and games are defined by changing the objective.
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Example 2. Let A = A2 = {a, b, c} and consider a 1-counter weak B-automaton
A = 〈{q0, qa, qb, q�},A, q0,Cost{1},[1,2]

B , δ〉.
We describe informally δ such that A computes the function from Example 1.

Adam can either count the number of b’s on some branch (incrementing and
checking the counter while in state qb), or prove there are only finitely many a’s
in the tree. If there are infinitely many a’s then there is some branch τ such that
an a-labelled node is reachable from each position on τ (but this a-labelled node
does not need to be on τ itself). Eve picks out such a branch (marking it with
q0). At any point on this branch, Adam can move to state qa and force Eve to
witness a reachable a-labelled node. If she can, then the play stabilizes in q�.

The only transitions with priority 1 occur when in state qa. The automaton
can reach qa only from q0; once in qa it can only move to q�. Thus, there is no
cycle in the transition function which visits both priorities, so A is weak.

A useful notion from [12] is an alternating chain, a sequence of states q0 . . . qn

such that there is some p ∈ [1, 2] with q1 reachable from q0 using transitions of
priority p, and for all i ∈ [1, n − 1], qi+1 reachable from qi using transitions of
priority p (respectively, p) if i is even (respectively, odd) (1 = 2 and 2 = 1). We
say the length of q0q1 . . . qn is n. In the example, the automaton has alternating
chains of length at most 2 (q0qaq�). Since the length of these chains is bounded
in weak cost automata, it can serve as an induction parameter in proofs.

4.2 Closure Properties

Instead of closure under union and intersection, weak cost automata are closed
under min and max (the proof requires disjoint-union and product constructions
as in the classical case). More interesting is closure under weak inf-projection
and weak sup-projection. These operations correspond to finite projection in the
classical setting. Let h : A → B be a map from ranked alphabets A and B such
that A ⊇ B and h(b) = b for all b ∈ B. We write h(t′) = t for the natural
extension to trees which relabels each A-labelled vertex of t′ according to h. If t′

contains only finitely many vertices labelled from A\B, then we write hf (t′) = t.
Weak op-projection of some cost function g over the alphabet A is the function
gop,hf

(t) = op {g(t′) : hf(t′) = t} over the alphabet B where op is inf or sup.
Generalizing [11, Lemma 1] and using results from [7], we can show weak B

(respectively, weak S) automata are closed under weak inf-projection (respec-
tively, weak sup-projection). Given a weak cost automaton for g and a tree t,
we simulate it in “non-deterministic mode” on a finite prefix, then switch to
“alternating mode” and run the original weak automaton on the remainder of t.
While in non-deterministic mode, nodes labelled b ∈ B can be relabelled with
some a ∈ h−1(b). By [7], this non-deterministic version on finite trees yields a
value ≈-equivalent to the original alternating automaton. By the semantics of B
(respectively, S) automata, the non-determinism is resolved into taking the infi-
mum (respectively, supremum) of the values of g(t′) for t′ satisfying hf (t′) = t.

Lemma 2. Weak B-automata are closed under min, max, weak inf-projection.
Weak S-automata are closed under min, max, weak sup-projection.
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4.3 Equivalence with Logic

It is no coincidence that we could express the cost WMSO sentence from Exam-
ple 1 using the weak B-automaton in Example 2.

Theorem 2. It is effectively equivalent for a cost function f to be definable in
cost WMSO and recognizable by a weak cost automaton.

Proof. (Sketch) To move from logic to automata, we use the standard technique
of showing that each atomic formula is recognizable using a weak cost automaton,
and then proving that these automata are closed under operations corresponding
to other logical constructs (using Theorem 1 and Lemma 2).

To move from a weak cost automaton to a cost WMSO sentence, we do in-
duction on the maximum length m of alternating chain. If m = 0, we can write
a formula which assigns a value based strictly on the counters (it describes the
existence of finite partial runs of a non-deterministic version of the automaton
over finite trees, given by [7]). Otherwise, if m > 0, we find a finite partial run
such that on each path, the automaton started with a transition of priority 1
but has passed through a transition of priority 2 and hence has reached a po-
sition with alternating chains strictly less than m (this may require converting
between B- and S-versions of the automaton using Theorem 1). The inductive
hypothesis yields formulas which correctly capture the value of the automaton
on the continuations of the run, so we take the conjunction of these formulas
and a formula describing the value on the initial partial run.

4.4 Shape of Strategies

A well-known result in the theory of infinite games is that parity games are
positionally determined (see [14] for an introduction to this area). This means
that from each position either Adam or Eve can win, and if Eve, say, has a
winning strategy, then Eve has a positional strategy which is also winning.

In order to prove results like the decidability of �, it becomes essential to
have corresponding results about the strategies needed in cost games. Martin’s
theorem immediately implies that cost games are determined; in the cost setting,
this means that the value of the original game and the dual game is the same.

Proposition 1. For all cost games, val(G) = val(G).

There is no bound on the amount of memory Eve would need in order to achieve
the optimal value in a cost game. However, in the cost setting, we just need to en-
sure that there is a positional strategy σ for Eve in G such that val(G) ≈α val (σ).
If σ satisfies this condition, it means that by playing positionally according to
σ, the error committed by Eve is bounded by α. It was shown that positional
strategies suffice for finite-duration hB-games [5,7]. We now prove a similar re-
sult for weak hB-games in which the underlying game graph has no cycles. This
is a reasonable restriction since the cost games A × t where A is a weak hB-
automaton and t is an infinite tree satisfy this requirement. (The result no longer
holds for infinite game graphs with cycles.)
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We start with an arbitrary strategy τ that witnesses a bounded cost n in a
weak hB-game G with an acyclic game graph, alternating chains of length at most
m, and k hierarchical counters. Without loss of generality, we assume that all
edges from a position v in the game have the same priority p (denoted Ω(v) = p).
We consider the corresponding strategy tree T , the tree of all plays consistent
with τ . Let V (respectively, S) denote the set of positions in G (respectively, T ).
Let h : S → V denote the homomorphism which maps a position in the strategy
tree to the corresponding game position. Using an optimal strategy τ , Eve’s
choice at a particular v ∈ V may depend on the history of the play leading
to v. Thus, there may be s, s′ ∈ h−1(v) such that the moves possible from s are
different than from s′; however, because the game graph is acyclic, s, s′, and v
must be at the same depth. A positional strategy σ can be viewed as a mapping
from V to S which for each v selects a single element of h−1(v) for Eve to use
(regardless of the history). To build this map, we use the notion of “signatures”.2

We first define the components of the signature. For the B-condition, we let
βj(s) for 1 ≤ j ≤ k be the number of times a path from s can increment counter j
before it is reset. Note that βj(s) ≤ n for all s ∈ S since T has a bounded cost n.
The strategy should try to minimize βj in order to minimize the cost.

For the weak acceptance condition, let βalt(s) be the maximum length of al-
ternating chain on a path from s in T . Just minimizing βalt would not guarantee
that the resulting positional strategy satisfies the weak acceptance condition.
Thus, we also define inductively a strictly increasing sequence of depths (di)i∈N

and a function β : S → {0, 1}. The depths (di)i∈N “slice” T based on reacha-
bility of transitions of priority 2. Let d0 := 0. Given di, the depth di+1 > di

is chosen such that every path from every position in the set Si = {s ∈ S :
s is at depth di and Ω(s) = 1} visits priority 2 by depth di+1. This uniform
choice is possible since (i) there are only finitely many nodes of priority 1 at
a particular depth (because cost games have finite branching), and (ii) from a
particular node s with Ω(s) = 1, there is a bound on the length of paths of
priority 1 from s (if not, König’s Lemma would imply that there is an infinite
path of priority 1 in T , which is impossible).

Let s be a node between di and di+1. We set β(s) := 0 if every path from
s can reach priority 2 by di+1. Otherwise, if Ω(s) = 1 and some path from s
cannot reach a node s′ with Ω(s′) = 2 by di+1, then β(s) := 1. The strategy
should minimize βalt and β in order to ensure that plays stabilize in priority 2.

The signature for s ∈ S is sig(s) := 〈βalt(s), β(s), βk(s), βk−1(s), . . . , β1(s)〉.
Let σ : V → S be the positional strategy which maps v to the element in
h−1(v) with the lexicographically-least signature. It turns out that minimizing
this signature ensures the weak acceptance condition is satisfied and the value
of the play is still bounded.

Theorem 3. If G is a weak hB-game with an acyclic game graph, alternating
chains of length at most m, and k hierarchical counters, then there is a positional
strategy σ (defined above) such that val(G) ≈α val (σ) for α(n) = 2m(n+ 1)k.
2 We do not use infinite ordinals in the definition of these signatures so, in that sense,

it is simpler than many of the classical proofs which use this approach.
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It is possible to generalize this technique to show that weak B-games and and
B-Büchi games admit finite-memory strategies.

Theorem 4. For all k ∈ N, there exists αk such that for any G which is a weak
B-game (or its dual) or a B-Büchi game, if G has an acyclic game graph and k
counters then there is a finite-memory strategy σ such that val(G) ≈αk

val(σ).

4.5 Results

Taking advantage of Theorems 3 and 4, we can show that it is possible to simulate
a weak cost automaton with a non-deterministic automaton. The idea is that the
non-deterministic version guesses a finite-memory strategy in the weak cost game
corresponding to the original weak automaton, and then computes its value.

Theorem 5. If a cost function f is recognizable by a weak cost automaton A
then a non-deterministic B-Büchi automaton B and non-deterministic S-Büchi
automaton S can be effectively constructed from A such that f ≈ [[B]] ≈ [[S]].

The decidability for cost WMSO follows from Theorems 2, 5, and Lemma 1.

Corollary 1. The relation [[ϕ]] � [[ψ]] is decidable for any cost WMSO sentences
ϕ and ψ over infinite trees.

Another nice consequence of Theorem 5 is a separation result. Rabin [13] showed
there is a language of infinite trees definable in MSO not definable in WMSO.
The separating language L consists of infinite trees over the alphabet {a, b} on
which every branch has finitely many b’s. A similar result holds in the cost setting
(and the separating function is the characteristic function of L).

Proposition 2. There is a cost function over infinite trees definable in cost
MSO (in fact, in pure MSO) which is not definable in cost WMSO.

5 Conclusion

We have extended the framework of cost games and cost automata to infinite
trees, building on the work from the finite-tree case [7]. In doing so, we were able
to prove that the relations � and ≈ are decidable for cost WMSO, an expressive
fragment of cost MSO. The proof relies crucially on the fact that finite-memory
strategies suffice in the cost games derived from weak cost automata.

The natural extension of this work would be to show that full cost MSO is
decidable over infinite trees. This paper and the work by Colcombet and Löding
in [7] have already set the stage for such a result. The missing link is a proof
that finite-memory strategies suffice in cost-parity games. As explained in [6],
this is a challenging open problem because of the complex interplay between an
arbitrary parity condition and the actions of the counters in the cost game.

Another interesting direction would be to compare cost WMSO with the ex-
tension of WMSO with the unboundedness operator U, where UX.ϕ(X) ex-
presses “there is no bound on the size of sets X satisfying ϕ”. This logic has been
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studied over infinite words in [1] where an equivalent automaton model called de-
terministic max automata are introduced. These automata lack non-determinism
but allow an explicit max operation on counters. It would be interesting to find
a similar deterministic model for cost automata over infinite words.

Acknowledgments. I would like to thank Thomas Colcombet, Denis Kuper-
berg, and the referees for their helpful comments and support.
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Abstract. Recently, various linear problem kernels for NP-hard planar
graph problems have been achieved, finally resulting in a meta-theorem
for classification of problems admitting linear kernels. Almost all of these
results are based on a so-called region decomposition technique. In this
paper, we introduce a simple partition of the vertex set to analyze ker-
nels for planar graph problems which admit the distance property with
small constants. Without introducing new reduction rules, this vertex
partition directly leads to improved kernel sizes for several problems.
Moreover, we derive new kernelization algorithms for Connected Vertex
Cover, Edge Dominating Set, and Maximum Triangle Packing problems,
further improving the kernel size upper bounds for these problems.

1 Introduction

Planar graph problems have been extensively studied in parameterized com-
plexity theory. It is well-known that many problems being W[1]-hard on general
graphs can be shown fixed-parameter tractable when restricted to planar graphs.
Recently, deriving linear problem kernels for NP-hard planar graph problems
received considerable attention. A kernelization algorithm has as input an in-
stance (G, k) of a parameterized problem P and applies a set of polynomial-time
executable data reduction rules to shrink the size of G, resulting in an equivalent
instance (G′, k′). Hereby, (G, k) is a yes-instance of P if and only if (G′, k′) is
a yes-instance of P , k′ ≤ k, and the size of G′ is bounded by a function f(k).
The new instance (G′, k′) is called the problem kernel, while the function f(k)
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is the kernel size. If f is a linear function, we have then a linear kernel. For more
background on data reduction and problem kernels, we refer to [7,2].

The first non-trivial result on linear kernels of planar graph problems has
been achieved by Alber, Fellows, and Niedermeier [1]; they proved a linear ker-
nel for the Dominating Set problem on planar graphs. In this seminal paper they
introduced a so-called “region decomposition” of planar graphs to analyze the
size of the kernel. Later, Guo and Niedermeier [8] observed that this decompo-
sition technique can be used for various planar graph problems which admitting
a “distance property” and achieved linear kernels for Connected Vertex Cover,
Edge Dominating Set, Maximum Triangle Packing, and Efficient Dominating
Set. After this, a series of papers used this technique to show linear kernels for a
variety of problems on planar graphs, such as Induced Matching [13], Full-Degree
Spanning Tree [9], and Connected Dominating Set [6,10,11]. Finally, Bodlaen-
der et al. [3] came up with a meta-theorem for classifying problems with linear
problem kernels on planar graphs, using a decomposition similar to region de-
compositions.

In this paper, we introduce a simple vertex partition method for analyzing
kernels of problems on planar graphs, and based on this, we improve the kernels
for several problems which admit the distance property with small constants,
introduced by Guo and Niedermeier [8] as the precondition for applying their
framework for designing linear kernelization algorithms. A problem is said to
admit the distance property with constants cV and cE if

1. the problem asks for a set S of vertices or edges satisfying a specified property
and

2. for every solution set S with the vertex set V (S), it holds that,

∀u∈V , ∃v∈V (S), d(v, u)≤cV and ∀e∈E, ∃v∈V (S), d(e, v)≤cE ,

where the distance d(v, u) between two vertices v and u is the length of a
shortest path between them and the distance d(e, w) between an edge e =
(u, v) and a vertex w is the minimum of d(u,w) and d(v, w).

With the general framework [8], linear kernels have been achieved for Con-
nected Vertex Cover, Edge Dominating Set, and Maximum Triangle Packing
on planar graphs, with the size bounds of 14k, 28k1, and 624k, respectively.
We demonstrate the power of the new vertex partition method by showing that,
without introducing new data reduction rules, the new method directly improves
the upper bounds on the kernels for Connected Vertex Cover, Edge Dominating
Set, and Maximum Triangle Packing. These problems are defined in the follow-
ing. Moreover, we derive new data reduction rules for these problems, arriving
at new kernel sizes 4k, 12k, and 75k.

Definition. This paper considers only undirected, loopless, simple graphs. For
a given graph G = (V,E), let V (G) denote the vertex set of G and E(G) denote
1 The analysis in [8] for Edge Dominating Set mistakes the number of edges as the

number of vertices in the solution set. Thus, the actual kernel size achieved there
is 28k instead of 14k.
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the edge set of G. We use K3 to denote a triangle, that is, a graph with 3 vertices
and 3 edges. For a vertex v, N(v) is the open neighborhood of v. The degree
of v, denoted by deg(v), is the size of N(v). A vertex in a graph is a cut-vertex
if the removal of the vertex increases the number of connected components.
For V ′ ⊆ V , define N(V ′) := {u|u∈V \ V ′, ∃v∈V ′, (v, u)∈E} and we denote
by G[V ′] the subgraph of G which is induced by V ′. Denote by G − V ′ and
G − E′ the graphs obtain from G by removing V ′ and E′, respectively, where
V ′ ⊆ V and E′ ⊆ E.

A vertex cover C is a vertex subset of a graph G such that every edge has
at least one of its endpoints in C. A connected vertex cover C is a vertex cover
with the additional requirement that G[C] is connected. An edge dominating
set D is an edge subset such that every edge is either in D or has an common
endpoint with some edge in D. A triangle packing is a subgraph of G consisting of
vertex-disjoint triangles. The size of a triangle packing is the number of triangles
it contains. The problems considered here have a planar graph G (we always
assume that G dose not contain any isolated vertices) and an integer k > 0 as
input. (Connected) Vertex Cover asks for a (connected) vertex cover with size at
most k. Edge Dominating Set seeks for an edge dominating set with at most k
edges. Finally, Maximum Triangle Packing decides whether there is a triangle
packing with at least k vertex-disjoint triangles.

2 A Simple Vertex Partition for Analysis of Kernels

We first introduce a simple partition of the vertex set of a graph and show that
for some problems satisfying the distance property with cV = 1, this partition
leads directly to better upper bounds on the kernel sizes without introducing new
data reduction rules. Let I = (G = (V,E), k) be an instance of such a problem P .
In the following, we always use S to denote the vertex set of a solution for P
on I. Setting J := V \ S, we define the following subsets:

J3 := {v∈J | |N(v)∩S| ≥ 3},
J2 := {v∈J | |N(v)∩S| = 2},
J1 := {v∈J | |N(v)∩S| = 1}, and
J0 := J \ (J3 ∪ J2 ∪ J1).
Given a planar graph G for a problem satisfying the distance property cV = 1,

we can easily conclude that J0 = ∅. Moreover, the planarity of G gives directly
the bound on |J3|:

Lemma 1. Given a planar graph G = (V,E) as the input instance for a prob-
lem P and the vertex set S ⊆ V of a solution for P on G, we have |J3| ≤
max{0, 2(|S| − 2)}.

Proof. Consider the bigraph B := G[S∪J3] − E(G[S]) − E(G[J3]). It is well-
known that any triangle-free planar graph with n ≥ 3 vertices and m edges
satisfies m ≤ 2n−4. Therefore, 3|J3| ≤ |E(B)| ≤ 2(|S|+ |J3|)−4, which implies
that |J3|≤2(|S| − 2). 
�
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While analyzing the kernel sizes for problems with cV = 1 on planar graphs, we
only need to bound the sizes of J1 and J2. To this end, we partition J2 into the
following subsets J2(uv) := {w ∈ J2 | N(w) ∩ S = {u, v}} for all u, v ∈ S. Since
each such subset can be considered as an edge between two vertices in S, the
planarity of G directly implies a bound on the number of non-empty subsets.

Lemma 2. Given a planar graph G = (V,E) as the input instance for a prob-
lem P and the vertex set S ⊆ V of a solution for P on G, there are at most 3|S|−
6 pairs of vertices u, v ∈ S for which the corresponding set J2(uv) is not empty.

To get a linear-size problem kernel, it remains to bound the size of J1 and
the maximal size of the non-empty J2(uv). We can show that with the same
set of reduction rules from [8], we can use the above vertex partition to derive
better kernel size bounds than the ones in [8]: For Vertex Cover, there are two
rules introduced to get a kernel with at most 10k vertices [8], one removing the
degree-1 vertices and the other removing the common degree-2 neighbors of two
vertices u and v, if u and v have at least two such neighbors. Now we analyze
the kernel size with the vertex partition method. If a reduced instance has a
vertex cover S with at most k vertices, we have then J0 = J1 = ∅. Moreover,
by Lemma 1 and Lemma 2, |J3| ≤ 2k − 4 and there are at most 3|S| − 6 pairs
of vertices in S which have non-empty J2(uv). Since each J2(uv) has at most 1
vertex, the total kernel size is bounded by 6k. For Connected Vertex Cover, the
first rule in [8] removes the degree-1 neighbors of each vertex, except for one.
Then, if two vertices have more than two common degree-2 neighbors, only 2 of
them are kept. Thus, |J2| ≤ 2(3|S|−6) ≤ 6k−12 and |J1| ≤ |S|. Then, the kernel
size is bounded by 10k. Since the rules for Edge Dominating Set in [8] are the
same as for Connected Vertex Cover, the same argument works as well. However,
the vertex set of the edge dominating sets can have at most 2k vertices. Thus,
the kernel here can have at most 20k vertices. We can also achieve better kernel
size bounds with the vertex partition method for Maximum Triangle Packing,
based on a more complicated analysis. The details of this analysis is omitted
since we will present some new rules and an even better bound for this problem
in Sect. 5.

In the next sections, we introduce new data reduction rules to achieve more
improved kernels for Connected Vertex Cover, Edge Dominating Set, and Max-
imum Triangle Packing.

3 Connected Vertex Cover

The Connected Vertex Cover (CVC) problem is known to be NP-hard, even for
2-connected planar graphs with maximum degree 4 [15]. While CVC on general
graphs has no kernels of polynomial size [4], Guo and Niedermeier [8] gave a
kernel with at most 14k vertices for planar graphs. We apply the following 2
data reduction rules. The first one has been used in [8].

For a vertex v, we define N1(v) as the set of vertices which are in N(v) and
have degree one, that is, N1(v) := {u|u∈N(v), deg(u) = 1}.
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Rule 1. If there is a vertex v with |N1(v)| ≥ 2, remove all the vertices in N1(v)
except for one.
Rule 2. For a vertex v with N(v) = {u,w}, if v is not a cut-vertex, then
remove v, and if N1(u) = ∅ (resp. N1(w) = ∅), add a new degree-1 neighbor to
u (resp. w).

The correctness of Rule 2 follows from the following lemma.

Lemma 3. Let v be a degree-2 vertex such that N(v) = {u,w}, and v is not
a cut-vertex. Then, G has a connected vertex cover of size bounded by k if and
only if G−{v} has a connected vertex cover of size bounded by k that contains u
and w.

Proof. Suppose that G has a connected vertex cover C of size bounded by k.
If v /∈ C, then C must contain both u and w, and we are done; otherwise, we
distinguish two cases. If v is a degree-1 vertex in G[C], say u ∈ C but w /∈ C, then
clearly all neighbors of w must be included in C. Since v is not a cut-vertex,
w has at least one other neighbor than v. Therefore, C \ {v} ∪ {w} must be
connected and covers all edges in G−{v}. If v is not a degree-1 vertex in G[C],
then both u and w are in C. If G[C \ {v}] is connected, we are then done,
since C \ {v} remains a connected vertex cover of G−{v} and thus, satisfies the
claim; otherwise, we have exactly two connected components in G[C \ {v}], one
containing u and the other containing w. Since v is not a cut-vertex of G, v must
be contained in a cycle in G, together with u and w. Let A be the set of other
vertices on this cycle. Since C is a vertex cover, there must be a vertex b ∈ A\C
which is adjacent to both components. Replacing v by b then gives a connected
vertex cover for G− {v}. The other direction is clearly true. 
�

Obviously, all rules run in polynomial time. We arrive now at the kernel size.

Theorem 4. Connected Vertex Cover on planar graphs admits a problem
kernel with at most 4k − 4 vertices.

Proof. Let S denote a solution for a reduced instance (G = (V,E), k). Without
loss of generality, assume |S| ≥ 2. We partition the vertices in G as introduced
in Sect. 2 with respect to S. Clearly, |J0| = 0 and by Lemma 1, |J3| ≤ 2|S| − 4.
Since J is independent, each vertex in J1 has only one neighbor and this neighbor
is in S. Due to Rule 1, |J1| ≤ |S|. Moreover, since all cut-vertices must be
contained in any connected vertex cover, Rule 2 implies that there exists no
degree-2 vertex in J , and thus, J2 = ∅. Thus, we have |V | = |J3|+ |J1|+ |S| ≤
4|S| − 4 ≤ 4k − 4. 
�

4 Edge Dominating Set

The Edge Dominating Set (EDS) problem is NP-hard on planar graphs [5]. The
currently best kernel of EDS is of size O(k2) for general graphs [14] and with at
most 28k vertices for planar graphs [8].
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Let v be a vertex in G, and D be an edge dominating set of G. We say D
contains v, or v is contained in D if v is an endpoint of some edge of D. For two
vertices v and u, we define N2(v, u) := {w|w∈N(v)∩N(u), deg(w) = 2}.
Rule 1. If there is a vertex v with |N1(v)| ≥ 2, remove all the vertices in N1(v)
except for one.
Rule 2. If there are two vertices v and u with (v, u) �∈ E(G) and |N2(v, u)| ≥ 2,
remove all the vertices in N2(v, u), and if N1(v) = ∅ (resp. N1(u) = ∅), introduce
a new degree-1 vertex adjacent to v (resp. u).
Rule 3. Suppose that G is reduced with respect to Rule 1. If there is an
edge (v, u) with |N2(v, u)∪N1(v)∪N1(u)| ≥ 2, remove all vertices in N2(v, u)∪
N1(v) ∪N1(u), and introduce a new degree-2 vertex adjacent to both v and u.

The correctness of Rule 1 is obvious. The next two lemmas prove the correct-
ness of Rules 2 and 3, respectively.

Lemma 5. Let v and u be two vertices with (v, u) �∈ E(G) and |N2(v, u)| ≥ 2,
then there exists a minimum edge dominating set that contains both v and u.

Proof. Suppose that D is a minimum edge dominating set for G. In order to cover
all the edges between {v, u} and N2(v, u), at least two vertices from {v, u} ∪
N2(v, u) must be contained in D. Since N2(v, u) induces an independent set
and N(N2(v, u)) = {v, u}, one of v and u must be in D. If only one of v and u is
contained in D, without loss of generality, suppose that v is contained in D and u
is not. Consider two vertices x, y ∈ N2(v, u). In order to cover (x, u) and (y, u),
both (v, x) and (v, y) must be in D. Replacing (v, y) by (u, y) clearly gives a new
edge dominating set D′ with |D| = |D′|. The lemma follows. 
�

Lemma 6. Let w be a vertex with N(w) = {v, u} and (v, u) ∈ E(G). There
exists a minimum edge dominating set that contains both v and u.

Proof. Assume there is a minimum edge dominating set D for G that contains
at most one of v and u. Without loss of generality, we suppose that v is not
contained in D. Then, (u,w) ∈ D. Replace (u,w) by (v, u) in D, and denote the
new set as D′. Since all the edges dominated by (u,w) can also be dominated
by (v, u), D′ is a minimum edge dominating set of G. 
�

The polynomial running time of the rules is easy to see. We arrive now at the
kernel size.

Theorem 7. Edge Dominating Set on planar graphs admits a kernel with
at most 12k − 10 vertices.

Proof. Let (G = (V,E), k) be a reduced instance with respect to the three rules.
Suppose that G has an edge dominating set D with |D| ≤ k. The corresponding
vertex set S := V (D) contains at most 2k vertices. We consider again the decom-
position introduced in Sect. 2. Clearly, |J0| = 0 and |J3| ≤ 2|S| − 4. Moreover,
since V \ S induces an independent set, all vertices in J2 are degree-2 vertices
and the vertices in J1 have degree one. Let S1 := S ∩N(J1) and S2 := S \ S1.

We introduce an auxiliary graph GS = (S,ES1 ∪ EJ), where ES1 = {(v, u) |
(v, u) ∈ D, v ∈ S1 and u ∈ S2}, and EJ = {(v, u) | {v, u} ⊆ S and N2(v, u) �= ∅}.
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Obviously, GS is a planar graph and thus, |E(GS)| ≤ 3|S| − 6. Since S1 induces
an independent set in G (this is true, since, otherwise, Rule 3 would be applied)
and S1 ⊆ S, for each vertex v ∈ S1, there exists an edge (v, u) ∈ D with u ∈ S2.
Thus, we have |ES1 | ≥ |S1|. By Rule 3, there exists no edge (v, u) ∈ D with
v ∈ S1, u ∈ S2 and N2(v, u) �= ∅ and thus, we have ES1 ∩ EJ = ∅. By Rules 2
and 3, any two vertices in S share at most one common degree-2 neighbor. Thus,
|J2| = |E(GS)|− |ES1 | ≤ |E(GS)|− |S1|. It is clearly that |J1| ≤ |S1| , therefore,
|J1|+ |J2| ≤ |E(GS)| ≤ 3|S| − 6. Thus, we have |V | = |S|+ |J1|+ |J2| + |J3| ≤
6|S| − 10. Together with |S| ≤ 2k, the size bound follow. 
�

5 Maximum Triangle Packing

The Maximum Triangle Packing (MTP) problem is NP-hard on planar graphs [5].
A kernel of size 45k2 for MTP on general graphs [12] and a kernel with at
most 624k vertices for MTP on planar graphs [8] have been known. As already
observed in [8], MTP does not satisfy the distance property before applying the
following cleaning rule introduced in [8]:
Cleaning rule. Remove all vertices and edges that are not in any triangle.

After removing these vertices and edges, MTP has the distance constants cV =
1 and cE = 1. Note that (Connected) Vertex Cover and Edge Dominating Set
have the constant cE = 0. With cE = 1, we have some edges outside S which
make the analysis more involved. The following 6 rules together with the cleaning
rule are applied. The first three are from [8].

Rule 1. If a vertex v has two neighbors w1 and w2 that form a triangle with v
but are not involved in any other triangle that does not contain v, then remove v,
w1, and w2 and decrease the parameter k by one.
Rule 2. If v and u have two common neighbors w1 and w2 such that N(w1) =
{v, u} and w2 is only contained in triangles that also contains v or u, then
remove w1.
Rule 3. If there are six vertices v, u, w1, w2, w3, w4 such that u,w1, w2 form a
triangle, v, w3, w4 form a triangle, and there is no triangle that contains one of
w1, w2, w3, w4 but none of v and u, then remove v, u, w1, w2, w3, w4 and decrease
the parameter k by two.

Now we introduce three new reduction rules.

Rule 4. If there are four vertices v, u, w1, w2 such that v, u, w1 form a triangle,
v, u, w2 form a triangle, w1 is only contained in triangles that also contains v, and
w2 is only contained in triangles that also contains v or u, then remove (u,w1).
Rule 5. Consider four vertices v, u, w1, w2 such that {w1, w2} ⊆ N(v) ∩ N(u),
(w1, w2) ∈ E(G) and every triangle containing w1 contains also u or v. If there
is a vertex x such that N(x) = {v, u, w1} or there are two vertices a, b ∈ N(w1)
such that every triangle containing a contains u and every triangle containing b
contains v, then remove (w1, w2).
Rule 6. Consider three vertices u,w1, w2 such that {w1, w2} ⊆ N(u), (w1, w2) ∈
E(G), and every triangle containing w2 contains u or w1. If there is a
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vertex a ∈ N(w2) ∩ N(u) such that every triangle containing a contains u,
then remove (w1, u).

Lemma 8. Rules 4, 5, and 6 are correct.

Proof. Since the graph G′ resulting by applying Rules 4 to 6 to a given graph G
is a subgraph of G, every triangle packing of G′ is a triangle packing of G. We
prove now that if there is a triangle packing P of size at least k for G, then G′

has a triangle packing of size at least k as well.
Rule 4. If (u,w1) is not contained in P , then we are done; otherwise, since

w1 is only contained in triangles that also contains v and w2 is only contained in
triangles that also contains v or u, the vertices u, w1, and v form a triangle of P
and w2 is not contained in P . Thus, replace the triangle formed by v, u, w1 by
the triangle formed by v, u, w2, we can get another triangle packing that contains
at least k triangles for G− {(u,w1)}.

Rule 5. If (w1, w2) is not contained in P , then we are done; otherwise, since w1

is only contained in triangles that also contains v or u, there is a triangle T
with w1, w2, y in P with y ∈ {u, v}. Then for the both cases of this rule, there
remains a vertex x or one of two vertices a, b ∈ N(w1) unused by P . Thus, by
replacing T by the triangle formed by y, w1, x or by y, w1, a (or b, depending
on y) in P , we can get a triangle packing that contains at least k triangles
from G− {(w1, w2)}.

Rule 6. If (w1, u) is not contained in P , then we are done; otherwise, let T be
the triangle containing (w1, u). Clearly, vertices a and w2 cannot be in any other
triangle in P than T . Then, replacing T by the triangle formed by a, w2, and u,
we can get a triangle packing that contains at least k triangles from G−{(w1, u)}.


�

Theorem 9. Maximum Triangle Packing on planar graphs admits a kernel
with less than 75k vertices.

Proof. To derive the kernel size, we consider only the case that the algorithm
in Fig. 1 returns a reduced instance (G, k) and a triangle packing P for this
instance with less than k triangles. Let S := V (P ). Clearly, |S| ≤ 3k − 3. We
use again the partition of the vertex set of G with respect to S. Clearly J0 = ∅
and |J3| ≤ 2|S| − 4. We derive some observations of J1 and J2.

Observation 1. J1 induces an independent set.
This observation is true due to the cleaning rule and Rule 1 and implies that

each vertex in J1 has some neighbor in J2 ∪ J3. Moreover, a vertex v ∈ J1

with N(v) ∩ S = {u} must be adjacent to a vertex w ∈ J2 ∪ J3 with u ∈
N(w)∩S. We define J2(uv) as the set of vertices w in J2 with N(w)∩S = {u, v}
and J1(v) := {u ∈ J1 | N(u) ∩ S = {v}}.
Observation 2. Each vertex u ∈ J2 ∪ J3 is adjacent to at most one vertex
in J1(v) for every v ∈ S.

We prove this observation by contradiction. Suppose that there are a, b ∈ J1(v)
adjacent to u ∈ J2 ∪ J3. Clearly, u is adjacent to v. However, Rule 4 can then
be applied for vertices a, b, u, v.
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Input: A planar graph G and a positive integer k.
Output: A triangle packing containing at least k triangles, or an instance (G′,
k′) and a maximal triangle packing of size at most k′ − 1 for G′.
1 reduce (G, k) with respect to the rules;
2 find a maximal triangle packing P of G;
3 if P contains at least k triangles, return P ;
4 let G′ := G, k′ := k and return G′, k′, and P ;

Fig. 1. The kernelization algorithm for MTP

From this observation, we know that each vertex v ∈ J3 can have at most |N(v)∩
S|many neighbors in J1. By |J3| ≤ 2|S|− 4, the vertices in J3 altogether can have
at most 2(|S|+ |J3|)− 4 ≤ 6|S| − 12 neighbors in J1.

Observation 3. If |J2(uv)| ≥ 2, there is no degree-2 vertex in J2(uv) for ev-
ery u, v ∈ S.

This observation is true due to Rule 2. In the following, we will assume
that |J2(uv)| ≥ 2 for all u, v ∈ S and thus, no degree-2 vertices in J2.

Observation 4. For every pair of vertices u, v ∈ S with J2(uv) �= ∅, all con-
nected components of the subgraph of G induced by J2(uv), except for one
which can have at most 3 vertices and 2 edges, are singleton components, that
is, components with a single vertex.

If there are two connected components with at least two vertices, then Rule 3
would apply. Consider that the non-singleton component C. If |C| > 3, then
either there exists a path of length three or G[J2(uv)] is a star. In former case, we
have a matching of size 2 in G[J2(uv)] and Rule 3 would be applied. If G[J2(uv)]
is a star, then there is a vertex adjacent to all other vertices. Since all vertices
in J2(uv) are adjacent to both u and v, we have then a K3,3, contradicting
the planarity of G. Clearly, there cannot be a triangle in G[J2(uv)], since P is
maximal. There are at most two edges in C.

Observation 5. If there are at least three vertices from J1(u) ∪ J1(v) adjacent
to the vertices in J2(uv), then they are all from J1(u) or all from J1(v).

Due to Observation 2, if there are three vertices from J1(u)∪J1(v) adjacent to
the vertices in J2(uv), then they cannot be adjacent to the same vertex in J2(uv).
If the observation is not true, there are at least two vertices in J2(uv) adjacent
to J1(u)∪J1(v), one having a neighbor in J1(u) and the other having a neighbor
in J1(v). Then Rule 3 can be applied.

Next we will consider first the case that each J2(uv) for vertices u, v ∈ S
induces an independent set. Later, we show that in the case that there are edges
in G[J2(uv)], we can achieve an even smaller kernel size bound.

Observation 6. There is at most one vertex x in J2(uv) such that N(N(x) \
{u, v}) ∩ S ⊆ {u, v}.

If there is a vertex x ∈ J2(uv) with N(N(x) \ {u, v}) ∩ S ⊆ {u, v}, then all
its neighbors are from J2(uv) ∪ J1(v) ∪ J1(u). By the assumption that J2(uv)
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induces an independent set, x must be adjacent to J1(v)∪ J1(u). By Rule 1, we
know that x is adjacent to both J1(v) and J1(u). If there were two such vertices
in J2(uv), then Rule 3 would be applied.

Observation 7. If there is a vertex x ∈ J2(uv) with N(N(x) \ {u, v}) ∩ S ⊆
{u, v}, then no vertex y ∈ J2(uv) \ {x} can have neighbor from J1(u) ∪ J1(v).

This follows from the proof of Observation 6 and Rule 3.
By Observation 7 and the assumption that |J2(uv)| ≥ 2, we can assume that

there is no vertex in J2(uv) with N(N(x) \ {u, v})∩S ⊆ {u, v} and every vertex
in J2(uv) has exactly one neighbor from J1(u)∪J1(v). This assumption is sound
due to the following reason: Although, in the case that there is a vertex x ∈
J2(uv) with N(N(x) \ {u, v})∩ S ⊆ {u, v}, the vertex x can have two neighbors
from J1(u)∪J1(v), one from J1(u) and one from J1(v), no other vertex y ∈ J2(uv)
with y �= x can have neighbor from J1(u)∪J1(v), due to Observation 7. Moreover,
by the assumption |J2(uv)| ≥ 2, there is at least one other vertex y ∈ J2(uv)
and, thus, this case will not give a greater upper bound on |J2∪J1|. Now, we use
this assumption that every vertex in J2(uv) for every pair of vertices u, v ∈ S
has a neighbor which is adjacent to a vertex w ∈ S with w /∈ {u, v} to analyze
the size of J2.

We consider an arbitrary but fixed planar embedding of G. If for vertices u, v ∈
S, there are at least two vertices in J2(uv), then we can find a closed areaR(uv) of
the embedding containing all vertices in J2(uv), enclosed by two paths between u
and v, each path having length 2. Let x and y be the middle vertices of these
paths. If |J2(uv)| > 2, then there must be some vertex in S contained in R(uv).
The reason for this is that each vertex from J2(uv) has a neighbor b with (N(b)\
{u, v}) ∩ S �= ∅.

In the following, we call a vertex w ∈ S\{u, v} “supports” a vertex a ∈ J2(uv),
if (N(w) ∩ N(a)) \ {u, v} �= ∅. Every vertex w ∈ S \ {u, v} can support at
most 2 vertices in J2(uv), since, otherwise, we would have K3,3 as a minor
of G, contradicting the planarity of G. Let S(uv) denote the set of vertices
from S\{u, v} that lie inside ofR(uv) and support some vertex b ∈ J2(uv)\{x, y}.
We can get |J2(uv)| ≤ 2 + 2|S(uv)|.

Next we show that no vertex w ∈ S(uv) can be in S(u′v′) for {u, v} �=
{u′, v′}. Suppose that this is not true. Since w lies inside of R(uv), the closed
area R(u′v′) between u′ and v′ must be completely contained in R(uv). Let a
be a vertex in J2(uv) supported by w and b be the common neighbor of w
and a. By a ∈ J2(uv), a is not in R(u′v′) and then, b must be on one of the
paths enclosing R(u′v′). By (w, b) ∈ E and b ∈ J2(u′v′), we have w ∈ {u′, v′}
and w /∈ S(u′v′).

Now we can conclude that |J2| ≤
∑

u,v∈S,J2(uv) �=∅(2+2|S(uv)|). Since S(uv)∩
S(u′v′) = ∅ for {u, v} �= {u′, v′} and by Lemma 2, there are at most 3|S| − 6
non-empty J2(uv)’s, we have |J2| ≤ 8|S| − 12. By Observations 2 and 6, there
are at most |J2| many vertices from J1 being adjacent to J2. Altogether, |J1| ≤
|J2|+6|S|−12 ≤ 14|S|−24. The kernel has then at most |J1|+ |J2|+ |J3|+ |S| ≤
25|S| − 40 ≤ 75k − 115.
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Next, we consider the case that there are some edges in G[J2(uv)] for some
u, v ∈ S. By Observation 4, there is exactly one component in G[J2(uv)] having
some edges. The following observation follows from Rule 3.

Observation 8. If there is a connected component C in G[J2(uv)] for u, v ∈ S
with |C| ≥ 2, then no vertex in J1 can be adjacent to the vertices in J2(uv)\V (C).

First we consider the case that this only non-singleton component C contains
three vertices and two edges. Let w1, w2, w3 be these vertices with w1, w3 ∈
N(w2). Due to Rule 5, both w1 and w3 must have some neighbors other than
w2, u, v. They cannot be adjacent to J2(uv) \V (C). They cannot be adjacent to
vertices in J1(u) ∪ J1(v) either, since, otherwise, Rule 3 would be applied. So,
each of them must have some neighbor in J3 or J2(u′v′) for {u′, v′} �= {u, v}, that
is, it has a neighbor which is adjacent to a vertex w ∈ S with w /∈ {u, v}. Then,
these two non-adjacent vertices can be considered together with the independent
set vertices from other components in G[J2(u, v)], as discussed above. Moreover,
these two vertices and all vertices in J2(uv)\V (C), due to Observation 8, cannot
be adjacent to vertices in J1. Finally, by Rules 4 and 5, we know that, if w2 has
no neighbor which is adjacent to a vertex w ∈ S with w /∈ {u, v}, then w2 can
have at most one neighbor from J1. Thus, with this additional component C, we
will not get a greater upper bound on the kernel size: We have vertex w2 and
its only neighbor from J1 in addition, but at least two vertices—w1, w3, and all
vertices in J2(uv) \ V (C)—lose their neighbors in J1.

Now consider the case that C consists of only two vertices w1 and w2 and one
edge. If w1 and w2 both have some neighbor which is adjacent to a vertex w ∈ S
with w /∈ {u, v}, then we can consider them together with the independent set
vertices together, as discussed above. Note that Observation 7 holds also for these
two vertices due to Rules 4 and 5. If only one of them has no neighbor which
is adjacent to a vertex w ∈ S with w /∈ {u, v}, say, w1, then w1 can only have
neighbors in J1(u) ∪ J1(v). However, by Rule 5, w1 cannot have neighbors from
both J1(u) and J1(v). If w1 has some neighbor from J1(u), then Rule 6 would
be applied. Thus, although we have in this case one vertex from C which cannot
be considered together with the independent set vertices, we lose the neighbor
of w2 from J1. Finally, if both w1 and w2 have no neighbor which is adjacent
to a vertex w ∈ S with w /∈ {u, v}, then w1 and w2 together with J2(uv) \ C
cannot have neighbors from J1(v)∪J1(u); otherwise, Rule 4 or Rule 5 would be
applied. Clearly, this case does not give a greater upper bound on |J2(uv)|. 
�

6 Conclusion

In this paper, we introduced a simple vertex partition method to analyze the
kernel size for planar graph problems. This method, compared to the region de-
composition [1], is much simple and leads to better kernel sizes for the same set
of reduction rules, as shown with (Connected) Vertex Cover, Edge Dominating
Set, and Maximum Triangle Packing. Furthermore, we introduced new reduction
rules for Connected Vertex Cover, Edge Dominating Set, and Maximum Triangle
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Packing, further improving the kernel sizes for these problems. We also mention
here that the analysis for Connected Vertex Cover and Edge Dominating Set
can be lifted up to graphs with bounded genus.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004)

2. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) Kernelization. In: FOCS 2009, pp. 629–638. IEEE Computer
Society, Los Alamitos (2009)

4. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York (1979)

6. Gu, Q., Imani, N.: Connectivity is not a limit for kernelization: Planar connected
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Abstract. An edge dominating set of a graph G = (V, E) is a subset
M ⊆ E of edges in the graph such that each edge in E − M is incident
with at least one edge in M . In an instance of the parameterized edge
dominating set problem we are given a graph G = (V, E) and an integer k
and we are asked to decide whether G has an edge dominating set of size
at most k. In this paper we show that the parameterized edge dominating
set problem can be solved in O∗(2.3147k) time and polynomial space. We
also show that this problem can be reduced to a quadratic kernel with
O(k3) edges.

1 Introduction

The edge dominating set problem (EDS), to find an edge dominating set of min-
imum size in a graph, is one of the basic problems highlighted by Garey and
Johnson in their work on NP-completeness [6]. It is known that the problem is
NP-hard even when the graph is restricted to planar or bipartite graphs of max-
imal degree three [16]. The problem in general graphs and in sparse graphs has
been extensively studied in approximation algorithms [16,5,2]. Note that a max-
imum matching is a 2-approximation for EDS. The 2-approximation algorithm
for the weighted version of EDS is considerably more complicated [5].

Recently, EDS also draws much attention from the exact and parameterized al-
gorithms community. Randerath and Schiermeyer [10] designed an O∗(1.4423m)
algorithm for EDS which was improved to O∗(1.4423n) by Raman et al. [11].
Here n and m are the number of vertices and edges in the graph and the
O∗-notation suppresses polynomial factors. Fomin et al., [4] further improved
this result to O∗(1.4082n) by considering the treewidth of the graph. Rooij and
Bodlaender [12] designed an O∗(1.3226n) algorithm by using the ‘measure and
conquer method.’
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For parameterized edge dominating set (PEDS) with the parameter k being
the size of the edge dominating set, Fernau [3] gives an O∗(2.6181k) algorithm.
Fomin et al. [4] obtain an O∗(2.4181k)-time and exponential-space algorithm
based on dynamic programming on bounded treewidth graphs. Binkele-Raible
and Fernau [1] further improve the running time to O∗(2.3819k).

Faster algorithms are known for graphs that have maximal degree three. The
EDS and PEDS problems in degree-3 graphs can be solved in O∗(1.2721n) [14]
and O∗(2.1479k) [15].

In this paper, we present two new algorithms for PEDS. The first one is a
simple and elegant algorithm that runs in O∗(2.3715k) time and polynomial
space. We improve the running-time bound to O∗(2.3147k) by using a tech-
nique that deals with remaining graphs of maximal degree three. We also design
a linear-time algorithm that obtains a quadratic kernel which is smaller than
previously-known kernels.

Our algorithms for PEDS are based on the technique of enumerating minimal
vertex covers. We introduce the idea of the algorithms in Section 2 and introduce
some basic techniques in Section 3. We present a simple algorithm for PEDS in
Section 4 and an improved algorithm in Section 5. In Section 6 we discuss the
problem kernel.

2 Enumeration-Based Algorithms

As in many previous algorithms for the edge dominating set problem [3,4,12,14]
our algorithms are based on the enumeration of minimal vertex covers. Note that
the vertex set of an edge dominating set is a vertex cover. Conversely, let C be
a minimal vertex cover and M be a minimum edge dominating set containing
C in the set of its endpoints. Given C, M can be computed in polynomial time
by computing a maximum matching in induced graph G[C] and adding an edge
for each unmatched vertex in C. This observation reduces the problem to that
of finding the right minimal vertex cover C. Now, the idea is to enumerate all
minimal vertex covers. Moon and Moser showed that the number of minimal
vertex covers is bounded by 3n/3 and this shows that one can solve EDS in
O(1.4423n) time [7,8].

For PEDS, we want to find an edge dominating set of size bounded by k. It
follows that we need to enumerate minimal vertex covers of size only up to 2k.
We use a branch-and-reduce method to find vertex covers. We fix some part of
a minimal vertex cover and then we try to extend it with at most p vertices.
Initially p = 2k.

For a subset C ⊆ V and an independent set I ⊆ V − C in G, an edge
dominating set M is called a (C, I)-eds if

C ⊆ V (M) and I ∩ V (M) = ∅.

In the search for the vertex cover V (M) of a minimum (C, I)-eds M , we keep
track of a partition of the vertices of G in four sets: C, I, U1 and U2. Initially
C = I = U1 = ∅ and U2 = V . The following conditions are kept invariant.
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1. I is an independent set in G, and
2. each component of G[U1] is a clique component of G[V \ (C ∪ I)].

The vertices in U1 ∪ U2 are called undecided vertices. We use a five-tuple

(G,C, I, U1, U2)

to denote the state described above. We let qi = |Qi| denote the number of
vertices of a clique component Qi of G[U1]. Rooij and Bodlaender proved the
following lemma in [12].

Lemma 1. If U2 = ∅ then a minimum (C, I)-eds M of G can be found in
polynomial time.

When there are no undecided vertices in the graph we can easily find a minimum
(C, I)-eds. Lemma 1 tells us that clique components in the undecided graph
G[V \ (C ∪ I)] do not cause trouble. We use some branching rules to deal with
vertices in U2.

Consider the following simple branching rule. For any vertex v ∈ U2 consider
two branches that either include v into the vertex cover or exclude v from the
vertex cover. In the first branch we move v into C. In the second branch we
move v into I and move the set N(v) of neighbors of v into C.

When we include a number of vertices into the vertex cover, we reduce the
parameter p by the same value. Furthermore, in each branch we move any newly-
found clique component Q in G[U2] into U1 and reduce p by |V (Q)| − 1. The
reason is that each clique has at most one vertex that is not in the vertex cover.

Let C(p) denote the worst-case running time to enumerate vertex covers up
to size p. Then we have the following inequality:

C(p) ≤ C(p− 1− qv) + C(p− |N(v)| − qN(v)), (1)

where qv (resp., qN(v)) denotes the sum of |V (Q)|− 1 over all cliques Q in G[U2]
that appear after removing v (resp., N(v)) from U2.

At worst, both qv and qN(v) are 0. Then we end up with the recurrence

C(p) ≤ C(p− 1) + C(p− |N(v)|).

Note that one can always branch on vertices of degree at least 2 in G[U2]. In
this manner Fernau [3] solves the edge dominating set problem in O∗(1.6181p) =
O∗(2.6181k) time which stems from the solution of the Fibonacci recurrence

C(p) ≤ C(p− 1) + C(p− 2).

Fomin et.al., [4] refine this as follows. Their algorithm first branches on vertices
in G[U2] of degree at least 3 and then it considers the treewidth of the graph
when all the vertices in G[U2] have degree one or two. If the treewidth is small
the algorithm solves the problem by dynamic programming and if the treewidth
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is large the algorithm branches further on vertices of degree two in G[U2]. This
algorithm uses exponential space and its running time depends on the running
time of the dynamic programming algorithms.

The method of iteratively branching on vertices of maximum degree d is pow-
erful when d > 2. Unfortunately, it seems that we cannot avoid some branchings
on vertices of degree 2, especially when each component of G[U2] is a 2-path,
i.e., a path that consists of two edges. We say that we are in the worst case when
every component of G[U2] is a 2-path.

Our algorithms branch on vertices of maximum degree and on some other
local structures in G[U2] until G[U2] has only 2-path components. When we are
in the worst case our algorithms deal with the graph in the following way. Let
P = v0v1v2 be a 2-path in G[U2]. We say P is signed if v1 ∈ V (M), and unsigned
if v1 �∈ V (M). We use an efficient way to enumerate all signed 2-paths in G[U2].

In the next section we introduce our branching rules.

3 Branching Rules

Besides the simple technique of branching on a vertex, we also use the following
branching rules. Recall that in our algorithm, once a clique component Q appears
in G[U2], we move V (Q) into U1 and reduce p by |V (Q)| − 1.

Tails. Let the vertex v1 have degree two. Assume that v1 has one neighbor v0
of degree one and that the other neighbor v2 has degree greater than one. Then
we call the path v0v1v2 a tail .

In this paper, when we use the notation v0v1v2 for a tail, we implicitly mean
that the first vertex v0 is the degree-1 vertex of the tail. Branching on a tail
v0v1v2 means that we branch by either including v2 into the vertex cover or
excluding v2 from the vertex cover.

Lemma 2. If G[U2] has a tail then we can branch with the recurrence

C(p) ≤ 2C(p− 2) ⇒ C(p) = O(1.4143p). (2)

Proof. Let the tail be v0v1v2. In the branch where v2 is included into C, {v0, v1}
becomes a clique component and is moved into U1. Then p reduces by 1 from
v2 and by 1 from {v0, v1}. In the branch where v2 is included into I, N(v2) is
included into C. Since |N(v2)| ≥ 2, p also reduces by 2 in this branch. 
�

4-Cycles. We say that abcd is a 4-cycle if there exist the four edges ab, bc, cd
and da in the graph. Xiao [13] used the following lemma to obtain a branching
rule for the maximum independent set problem. In this paper we use it for the
edge dominating set problem.

Lemma 3. Let abcd be a 4-cycle in graph G, then any vertex cover in G contains
either a and c or b and d.

As our algorithm aims at finding a vertex cover, it branches on a 4-cycle abcd in
G[U2] by including a and c into C or including b and d into C. Notice that we
obtain the same recurrence as in Lemma 2.
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4 A Simple Algorithm

Our first algorithm is described in Fig. 1. The search tree consists of two parts.
First, we branch on vertices of maximum degree, tails and 4-cycles in Lines 3-4
until every component in G[U2] is a 2-path. Second, we enumerate the unsigned
2-paths in G[U2]. In each leaf of the search tree we find an edge dominating set
in polynomial time by Lemma 1. We return a smallest one.

Algorithm EDS(G, C, I, U1, U2, p)

Input: A graph G = (V, E), and a partition of V into sets C, I , U1 and U2.
Initially C = I = U1 = ∅, U2 = V . Integer p; initially p = 2k.
Output: An edge dominating set of size ≤ k in G if it exists.

1. While there is a clique component Q in G[U2] do move it into U1 and
reduce p by |Q| − 1.

2. If p < 0 then halt.
3. While there is a tail or 4-cycle in G[U2] do branch on it.
4. If there is component Q of G[U2] that is not a 2-path then pick a vertex

v of maximum degree in Q and branch on it.
5. Else let P be the set of 2-paths in G[U2] and y = |P |.
6. If y > min(p, k) then halt.
7. Let z = min(p − y, k − y).
8. For each subset P ′ ⊆ P of size 0 ≤ |P ′| ≤ z do

For each v0v1v2 ∈ P ′ do move {v0, v2} into C and move v1 into U1;
For each v0v1v2 ∈ P −P ′ do move v1 into C and move {v0, v2} into U1.

9. Compute the candidate edge dominating set M and return the smallest
one. (Here U2 = ∅, C ∪ I ∪ U1 = V )

Fig. 1. Algorithm EDS(G, C, I, U1, U2, p)

4.1 Analysis

In order to show the correctness of the algorithm we need to explain Line 6 and
Line 8.

For each 2-path in G[U2] we need at least one edge to dominate it. So, we
must have that y ≤ p and y ≤ k. This explains the condition in Line 6.

It is also easy to see that for each unsigned 2-path we need at least two
different edges to dominate it. Let p′ be the number of unsigned 2-paths. In
Line 8, we enumerate the possible sets P ′ ⊆ P of unsigned 2-paths. Notice that

(y + p′ ≤ k and y + p′ ≤ p) ⇔ p′ ≤ z.

Now we analyze the running time of this algorithm. Lemma 1 guarantees that
the subroutine in Line 9 runs in polynomial time. We focus on the exponential
part of the running time. We prove a bound of the size of the search tree in our
algorithm with respect to measure p.

First, we consider the running time of Lines 3-4.
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Lemma 4. If the graph has a vertex of degree ≥ 3 then Algorithm EDS branches
with

C(p) ≤ C(p− 1) + C(p− 3) ⇒ C(p) = O(1.4656p). (3)

Proof. If the algorithm branches on a tail or a 4-cycle we have the upper bound
given by (2). Otherwise the algorithm branches on a vertex of maximum degree
and generates a recurrence covered by (3). Notice that (3) covers (2). This proves
the lemma. 
�

Lemma 5. If all components of the graph are paths and cycles then the branch-
ings of Algorithm EDS before Line 5 satisfy (3).

Proof. If there is a path component of length greater than 2, then there is a tail
and the algorithm branches on it with (2).

If there is a component Cl which is an l-cycle in G[U2], the algorithm deals
with it in this way: If the cycle is a 3-cycle, the algorithm moves it into U1

without branching since it is a clique.
If the cycle is a 4-cycle then, according to Lemma 3, our algorithm branches

on it with (2).
If the cycle has length at least 5, our algorithm selects an arbitrary vertex v0

and branches on it. Subsequently it branches on the path that is created as long
as the length of the path is greater than 2. When the cycle is a 5-cycle we obtain
the recurrence

C(p) ≤ 3C(p− 3) ⇒ C(p) = O(1.4423p).

When the cycle is a 6-cycle we obtain the recurrence

C(p) ≤ C(p− 2) + C(p− 3) + C(p− 4) ⇒ C(p) = O(1.4656p).

The two recurrences above are covered by (3). Straightforward calculations
show that when the cycle has length ≥ 7, we also get a recurrence covered by
(3). For brevity we omit the details of this analysis. 
�

By Lemma 4 and Lemma 5 we know that the running time of the algorithm,
before it enters Line 5 is O∗(1.4656x), where x is the size of C upon entering
the loop in Line 8. We now consider the time that is taken by the loop in Line 8
and then analyze the overall running time.

First we derive a useful inequality.

Lemma 6. Let r be a positive integer. Then for any integer 0 ≤ i ≤ � r
2�(

r − i
i

)
= O(1.6181r). (4)

Proof. Notice that (
r − i
i

)
≤

� r
2 �∑

i=0

(
r − i
i

)
= F (r + 1),

where F (r) is the rth Fibonacci number. We have F (r) = O(1.6181r). 
�
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Now we are ready to analyze the running time of the algorithm. It is clear that
the loop in Line 8 takes less than y

(
y
z

)
basic computations. First assume that

x ≤ k. We have that z ≤ k − y thus y + z ≤ k. If we apply Lemma 6 with
r = y + z we find that the running time of the loop in Line 8 is O∗(1.6181k).
By Lemmas 4 and 5 the running time of the algorithm is therefore bounded by
O∗(1.4656x · 1.6181k) = O∗(2.3715k).

Assume that x > k. We now use that z ≤ p− y thus y + z ≤ p. By Lemma 6
the running time of Step 8 is O∗(1.6181p). Now p ≤ 2k − x and x > k. The
running time of the algorithm is therefore bounded by

O∗(1.4656x · 1.6181p) = O∗(2.3715k).

We summarize the result in the following theorem.

Theorem 1. Algorithm EDS solves the parameterized edge dominating set prob-
lem in O∗(2.3715k) time and polynomial space.

5 An Improvement

In this section we present an improvement on Algorithm EDS. The improved
algorithm is described in Fig. 2.

The search tree of this algorithm consists of three parts. First, we iteratively
branch on vertices of degree ≥ 4 until G[U2] has no such vertices anymore
(Line 3). Then we partition the vertices in U2 into two parts: V (P ) and U ′

2,
where P is the set of 2-path components in G[U2] and U ′

2 = U2 \V (P ). Then the
algorithm branches on vertices in U ′

2 until U ′
2 becomes empty (Lines 4-5). Fi-

nally, we enumerate the number of unsigned 2-paths in P (Line 9) and continue
as in Algorithm EDS.

In Algorithm EDS1 a subroutine Branch3 deals with some components of
maximum degree 3. It is called in Line 5. This is the major difference with Algo-
rithm EDS. Algorithm Branch3 is described in Fig. 3. The algorithm contains
several simple branching cases. They could be described in a shorter way but we
avoided doing that for analytic purposes.

We show the correctness of the condition in Line 7 of Algorithm EDS1.
The variable p0 in Algorithm PEDS1 marks the decrease of p by subroutine
Branch3. Note that no vertices in V (P ) are adjacent to vertices in U ′

2. Let M1

be the set of edges in the solution with at least one endpoint in U ′
2 and let M2

be the set of edges in the solution with at least one endpoint in V (P ). Then

M1 ∩M2 = ∅ and |M1|+ |M2| ≤ k and |M1| ≥
p0

2
.

Thus |M2| ≤ k − p0
2 . The correctness of Algorithm EDS1 now follows since the

only difference is the subroutine Branch3.
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Algorithm EDS1(G, C, I,U1, U2, p)

Input: A graph G = (V, E) and a partition of V into sets C, I , U1 and U2.
Initially C = I = U1 = ∅, U2 = V . Integer p; initially p = 2k.
Output: An edge dominating set of size ≤ k in G if it exists.

1. While there is a clique component Q in G[U2] do move it into U1 and
decrease p by |Q| − 1.

2. If p < 0 halt.
3. While there is a vertex v of degree ≥ 4 in G[U2] do branch on it.
4. Let P denote the set of 2-path components in G[U2] and U ′

2 = U2 \ V (P ).
Let y = |P | and p′ = p.

5. While U ′
2 �= ∅ and p ≥ 0 do

(G, C, I,U1, U2, p) = Branch3(G, C, I,U1, U2 = U ′
2 ∪ V (P ), p).

6. Let p0 = p′ − p.
7. If y > min(p, k − p0/2) halt.
8. Let z = min(p − y, k − p0/2 − y).
9. For each subset P ′ ⊆ P of size 0 ≤ |P ′| ≤ z do

For each v0v1v2 ∈ P ′ do move {v0, v2} into C and move v1 into U1;
For each v0v1v2 ∈ P −P ′ do move v1 into C and move {v0, v2} into U1.

10. Compute the candidate edge dominating set M and return the smallest
one. (Here U2 = ∅, C ∪ I ∪ U1 = V .)

Fig. 2. Algorithm EDS1(G, C, I, U1, U2, p)

5.1 Analysis of Algorithm EDS1

The proof of the following lemma is omitted here due to lack of space. You can
access this proof in our current draft located at the ArXiv.

Lemma 7. The branchings of Algorithm Branch3 satisfy the recurrence

C(p) ≤ C(p− 2) + 2C(p− 3) ⇒ C(p) = O(1.5214p). (5)

Algorithm EDS1 first branches on vertices of degree at least 4. These branchings
of the algorithm satisfy

C(p) ≤ C(p− 1) + C(p− 4) ⇒ C(p) = O(1.3803p). (6)

Recall that the subroutine Branch3 reduces p by p0. The analysis without the
subroutine is similar to the analysis of Algorithm EDS in Section 4.1 except that
k is replaced by k − p0

2 and that Formula (3) is replaced by Formula (6). Thus
without the subroutine Branch3 the algorithm has running time proportional
to

(1.3803 · 1.6181)k−p0
2 = 2.2335k−p0

2 .

By Lemma 7 the running time of the algorithm is therefore bounded by

O∗(2.2335k−p0/2 · 1.5214p0) = O∗(2.2335k−p0/2 · 2.3147p0/2) = O∗(2.3147k).

This proves the following theorem.
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Algorithm Branch3(G, C, I,U1, U2 = U ′
2 ∪ V (P ), p)

1. If there is a clique component in G[U ′
2] then move it to U1.

2. If there is a 2-path component v0v1v2 in G[U ′
2] then branch on v1.

3. If U ′
2 �= ∅ then

3.1 If there is a degree-3 vertex v adjacent to two degree-1 vertices in
G[U ′

2] then branch on v.
3.2 If there is a tail v0v1v2 such that v2 is a degree-2 vertex in G[U ′

2]
then branch on the tail.

3.3 If there is a tail v0v1v2 such that v2 is a degree-3 vertex in G[U ′
2]

then branch on the tail.
3.4 If there is a degree-3 vertex v adjacent to one degree-1 vertex in G[U ′

2]
then branch on v.

3.5 If there is a 4-cycle in G[U ′
2] then branch on it.

3.6 If there is a degree-3 vertex v adjacent to any degree-2 vertex in G[U ′
2]

then branch on v.
3.7 Pick a maximum vertex v in G[U ′

2] and branch on it.
In addition to 3.1–3.7:

* If some 2-path component v0v1v2 is created in 3.1 – 3.7 then branch on
v1.

Fig. 3. Algorithm Branch3(G, C, I, U1, U2, p)

Theorem 2. Algorithm EDS1 solves the parameterized edge dominating set
problem in O∗(2.3147k) time and polynomial space.

6 Kernelization

A kernelization algorithm takes an instance of a parameterized problem and
transforms it into an equivalent parameterized instance (called the kernel), such
that the new parameter is at most the old parameter and the size of the new
instance is a function of the new parameter.

For the parameterized edge dominating set problem Prieto [9] presented a
quadratic-time algorithm that finds a kernel with at most 4k2 + 8k vertices by
adapting ‘crown reduction techniques.’ Fernau [3] obtained a kernel with at most
8k2 vertices.

We present a new linear-time kernelization that reduces a parameterized edge
dominating set instance (G, k) to another instance (G′, k′) such that

|V (G′)| ≤ 2k′2 + 2k′ and |E(G′)| = O(k′3) and k′ ≤ k.

In our kernelization algorithm we first find an arbitrary maximal matching M0

in the graph in linear time. Let m = |M0|, then we may assume that m ≥ k + 1
otherwise M0 solves the problem directly. Let

Vm = V (M0) and V ∗ = V − Vm.
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Since M0 is a maximal matching, we know that V ∗ is an independent set. For
a vertex vi ∈ Vm, let xi = |V ∗ ∩ N(vi)|. We call vertex vi ∈ Vm overloaded, if
m+ xi > 2k. Let A ⊆ Vm be the set of overloaded vertices.

Lemma 8. Let M be an edge dominating set M of size at most k. Then

A ⊆ V (M).

Proof. If an overloaded vertex vi �∈ V (M) then all neighbors of vi are in V (M).
Note that at least one endpoint of each edge in M0 must be in V (M) and that
V ∗ ∩N(vi) and V (M0) are disjoint. Therefore, |V (M)| ≥ xi +m. Since vi is an
overloaded vertex we have that |V (M)| > 2k. This implies that |M | > k which
is a contradiction. 
�

Lemma 8 implies that all overloaded vertices must be in the vertex set of the
edge dominating set. We label these vertices to indicate that these vertices are
in the vertex set of the edge dominating set.

We also label a vertex v which is adjacent to a vertex of degree one.
Our kernelization algorithm is presented in Fig. 4. In the algorithm the set

A′ denotes the set of labeled vertices. The correctness of the algorithm follows
from the following observations. Assume that there is a vertex u only adjacent
to labeled vertices. Then we can delete it from the graph without increasing the
size of the solution. The reason is this. Let ua be an edge that is in the edge
dominating set of the original graph where a is a labeled vertex. Then we can
replace ua with another edge that is incident with a to get an edge dominating
set of the new graph. This is formulated in the reduction rule in Line 4 of the
algorithm. We add a new edge for each labeled vertex in Line 5 to enforce that
the labeled vertices are selected in the vertex set of the edge dominating set.

Algorithm Kernel(G, k)

1. Find a maximal matching M0 in G.
2. Find the set A of overloaded vertices and let A′ = A.
3. If there is a vertex v ∈ Vm that has a degree-1 neighbor then delete v’s

degree-1 neighbors from the graph and let A′ ← A′ ∪ {v}.
4. If there is a vertex u ∈ V ∗ such that N(u) ⊆ A′ then delete u from G.
5. For each vertex w ∈ A′ add a new vertex w′ and a new edge w′w

(In the analysis we assume that the new vertex w′ is in V ∗).
6. Return (G′, k′ = k), where G′ is the new graph.

Fig. 4. Algorithm Kernel(G, k)

It is easy to see that each step of the algorithm can be implemented in linear
time. Therefore, the algorithm takes linear time.

We analyze the number of vertices in the new graph G′ returned by Algorithm
Kernel(G, k). Note that A′ is a subset of Vm. Let B = Vm − A′. Let q be the
number of edges between V ∗ and B. Then
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q =
∑
vi∈B

xi ≤
∑
vi∈B

(2k −m) = |B|(2k −m).

Let
V ∗

1 =
⋃

v∈B

N(v) ∩ V ∗ and V ∗
2 = V ∗ − V ∗

1 .

Each vertex in V ∗
1 is adjacent to a vertex in B. Since there are at most q edges

between V ∗
1 and B we have

|V ∗
1 | ≤ q.

Notice that all vertices of V ∗
2 have only neighbors in A′. In Line 4 the algorithm

deletes all vertices that have only neighbors in A′. In Line 5 the algorithm adds
a new vertex w′ and a new edge w′w for each vertex w in A′. Thus V ∗

2 is the set
of new vertices that are added in Line 5. This proves

|V ∗
2 | = |A′| = 2m− |B|.

The total number of vertices in the graph is

|Vm|+ |V ∗
1 |+ |V ∗

2 | ≤ 2m+ |B|(2k −m) + (2m− |B|)
= 4m+ |B|(2k −m− 1)
≤ 4m+ 2m(2k −m− 1) since |B| ≤ 2m
= 2m(2k −m + 1)
≤ 2k(k + 1) since m ≥ k + 1.

Note that the maximal value of 2m(2k−m+ 1) as a function of m is attained
for m = k + 1

2 . Thus the function 2m(2k −m+ 1) is decreasing for m ≥ k + 1.

To obtain a bound for the number of edges we partition the edge set into
three disjoint sets.

1. Let E1 be the set of edges with two endpoints in Vm;
2. let E2 be the set of edges between A′ and V ∗; and
3. let E3 be the set of edges between B and V ∗.

It is easy to see that

|E1| = O(m2) = O(k2) and |E3| = q = |B|(2k −m) = O(k2).

By the analysis above

|E2| ≤ |A′| × |V ∗
1 |+ |V ∗

2 | ≤ |A′|q + |V ∗
2 | ⇒ |E2| = O(k3).

Thus we obtain the following theorem.

Theorem 3. Algorithm Kernel runs in linear time and linear space and it re-
turns a kernel with at most 2k2 + 2k vertices and O(k3) edges.
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Niedermeier, Rolf 182



618 Author Index

Okhotin, Alexander 485
Ono, Hirotaka 376

Paul, Christophe 497
Paulusma, Daniël 339
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Steinová, Monika 376

Takimoto, Eiji 568
Tanaka, Hidetoki 120
ten Cate, Balder 290
Thomas, Michael 84
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